
Boundary Treatment for Anisotropic All-Quad

Mesh Adaptation through an Lp-CVT Approach

Chun Kit Calvin Li

Department of Mechanical Engineering

McGill University, Montreal

December 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science

©Chun Kit Calvin Li, 2023

Abstract

In computational fluid dynamics (CFD), achieving highly accurate and efficient simula-

tions often demands the application of adaptive mesh refinement strategies. In particular,

all-quad meshes are widely acclaimed for their ability to reduce the complexity of tensor-

product formulations compared to triangles, making them a preferred choice for the

Discontinuous Galerkin Method. Nevertheless, the generation and adaptation of such

meshes near intricate boundaries continue to present formidable challenges, especially

when confronted with anisotropic flow characteristics. Anisotropy in flow occurs when

specific flow directions exhibit distinct characteristics or gradients compared to others such

as in the vicinity of shockwaves. Accurate representation of such anisotropic features is

crucial in comprehending complex fluid flow behaviors. This work presents an approach to

address these challenges through boundary treatment for all-quad mesh adaptation using

the Lp-CVT (Lp-Centroidal Voronoi Tessellation) framework. While our primary focus lies

in applying this approach to simulate a transonic flow over a NACA0012 airfoil within a

CMesh, the secondary focus is on testing the boundary treatment method on analytical

test cases to ascertain its versatility. Additionally, a comparative study against a conven-

tional test case without boundary treatment is conducted to emphasize the importance

of boundary treatment in capturing anisotropic features. Lastly, the compatibility of this

method with the Discontinuous Galerkin Method highlights its applicability in the context

of high-order numerical discretization for compressible flows, ultimately advancing our

ability to model and understand complex fluid flow phenomena.

i

Résumé

En dynamique des fluides numérique (CFD), la réalisation de simulations très précises et

efficaces nécessite souvent l’application de stratégies adaptatives de raffinement du mail-

lage. En particulier, les maillages tout quad sont largement reconnus pour leur capacité à

réduire la complexité des formulations de produits tensoriels par rapport aux triangles,

ce qui en fait un choix privilégié pour la méthode Galerkin discontinue. Néanmoins,

la génération et l’adaptation de tels maillages à proximité de frontières complexes con-

tinuent de présenter de formidables défis, en particulier lorsqu’elles sont confrontées à

des caractéristiques d’écoulement anisotropes. L’anisotropie de l’écoulement se produit

lorsque des directions d’écoulement spécifiques présentent des caractéristiques ou des

gradients distincts par rapport à d’autres, par exemple à proximité d’ondes de choc. Une

représentation précise de ces caractéristiques anisotropes est cruciale pour comprendre les

comportements complexes d’écoulement des fluides. Ce travail présente une approche

pour relever ces défis grâce au traitement des limites pour l’adaptation du maillage tout

quad à l’aide du cadre Lp-CVT (Lp-Centroidal Voronoi Tessellation). Alors que notre objec-

tif principal consiste à appliquer cette approche pour simuler un écoulement transsonique

sur un profil aérodynamique NACA0012 au sein d’un CMesh, l’objectif secondaire est

de tester la méthode de traitement des limites sur des cas de tests analytiques afin de

vérifier sa polyvalence. De plus, une étude comparative avec un cas de test convention-

nel sans traitement des limites est menée pour souligner l’importance du traitement des

limites dans la capture des caractéristiques anisotropes. Enfin, la compatibilité de cette

méthode avec la méthode Discontinue Galerkin met en évidence son applicabilité dans le

ii

contexte de la discrétisation numérique d’ordre élevé pour les écoulements compressibles,

améliorant ainsi notre capacité à modéliser et à comprendre les phénomènes complexes

d’écoulement des fluides.

iii

Acknowledgements

I would like to first thank Professor Siva Nadarajah for his guidance, support, and advice

throughout completing this research thesis. He has shown me on numerous occasions

how to critically think and ask questions regarding the smallest details to further answer

some of the ongoing loopholes in the field of Mesh Adaptation. His dedication to detail

has driven me to always pursue excellence in my work, which is key to the success of the

research results shown in this thesis.

Second, I would like to thank my parents, my two brothers, and my girlfriend for their

constant support in allowing me to always have priorities in my academic endeavors.

Third, I would like to thank all my peers from the Computational Aerodynamics

Lab. It has been a fruitful 2 years with the group, and I am grateful to have had their

companionship throughout the completion of this research project. Notably, I am thankful

to Pranshul Thakur, Alexander Cicchino, and Julien Brillon for their contributions to the

success of this project.

Lastly, I want to thank Professor Siva Nadarajah and the Department of Mechanical

Engineering at McGill University for their financial support throughout the completion of

this degree.

iv

Table of Contents

Abstract . i

Résumé . ii

Acknowledgements . iv

List of Figures . x

List of Tables . xi

Nomenclature xii

1 Introduction 1

1.1 Overview of Mesh Adaptation Techniques 4

1.1.1 A Priori and A Posteriori Error Estimators 4

1.1.2 Riemannian Metric and Frame Fields 6

1.1.3 Metric-based Mesh Adaptation . 7

1.2 Thesis Overview . 9

2 Mesh Generation 10

2.1 Structured vs Unstructured Mesh . 10

2.2 Computational vs Physical Domain . 15

2.2.1 Transformation Matrix . 16

2.3 Two-Dimensional Triangular Mesh Generator 19

2.3.1 Delaunay Triangulation . 19

2.3.2 Voronoi Diagram . 21

v

2.4 Two-Dimensional Algebraic and PDEs based Quadrilateral StructuredMesh

Generator . 23

2.4.1 Transfinite Interpolation . 23

2.4.2 Hermite Interpolation . 26

2.4.3 Parabolic Equation Approach . 28

2.4.4 Elliptic Equation Approach . 29

2.4.5 Hyperbolic Equation Approach . 33

2.4.6 Solution to the Hyperbolic Equation Approach 34

2.4.7 Artificial Dissipation . 37

2.5 Metric based Inner Product, Norm, and Distance Definition 40

2.5.1 Euclidean Metric Space . 41

2.5.2 Riemmanian Metric Space . 41

2.6 Frame Fields . 44

2.7 Metric-based Mesh Adaptation . 47

2.8 Lp-CVT Mesh Generator . 49

2.8.1 Local Facet Energy Computation . 49

2.8.2 Total Energy and Derivative Computation 50

2.8.3 Quasi-Unit Mesh . 55

2.9 Simplified Boundary Reconstruction of Lp-CVT 56

2.10 Boundary Nodes Distribution . 58

2.11 Moving Boundary Formulation for Lp-CVT 59

2.11.1 Modified Total Energy and Derivative Computation 59

2.12 All-Quad Mesh Generator . 61

2.13 Overview of Lp-CVT algorithm . 61

3 Numerical Methods 63

3.1 Discontinuous Galerkin Method . 64

3.2 Discrete Error Minimization . 66

3.3 Adjoint Method . 67

vi

3.3.1 Dual-Weight Residual . 69

4 Continuous Mesh Model and Error Estimates 72

4.1 Continuous Mesh Model . 72

4.1.1 Continuous Element Definition of Area and Density 73

4.1.2 Continuous Mesh Characterization 73

4.2 Continuous Error Model . 74

4.2.1 Local Interpolation Error . 74

4.2.2 Global Interpolation Error . 77

4.3 Goal-Oriented Approach . 78

5 Results 81

5.1 Analytical Metric Field . 81

5.1.1 Constant Metric Field . 82

5.1.2 Quadratic Metric Field . 88

5.2 Discrete Frame Field . 92

5.2.1 S-Shock Adaptation . 92

5.2.2 Boundary Layer Adaptation . 101

5.3 Euler Test Case . 107

5.3.1 Transonic NACA0012 Steady State Test Case 108

6 Conclusion 114

6.1 Future Work . 115

vii

List of Figures

1.1 Two-Dimensional CH10 Airfoil Structured Mesh 2

1.2 Mesh Adaptation Techniques - Coupled . 4

1.3 Mesh Adaptation Techniques - Decoupled . 4

2.1 Two-Dimensional Structured Grid with 2nd order polynomial growth func-

tion along the y-axis. 12

2.2 Two-Dimensional Delaunay Triangulation over aNACA0012 airfoil bounded

by a circular domain produced by DistMesh. 13

2.3 Leading Edge of NACA0012 airfoil bounded by a circular domain produced

by DistMesh. 14

2.4 Left: Physical Domain — Right: Computational Domain. 16

2.5 Structured CMesh Grid with quadrilateral cells generated using a Hyper-

bolic Grid Generator . 18

2.6 CDT generated by DistMesh inside a bounded domain 20

2.7 Geometric duality between Delaunay Triangulation and Voronoi Diagram . 21

2.8 Comparison of regular Voronoi cell and Centroidal Voronoi cell 22

2.9 Transfinite Interpolation of a rectangle with a semicircle. 25

2.10 Transfinite Interpolation in three dimensional space. 25

2.11 Solution to Heat Equation - Isothermal lines. 29

2.12 Superimposed solution of Heat Equation. 30

2.13 Clustering effect by introducing Q(⇠, ⌘). 32

viii

2.14 Example of Hyperbolic Equation Grid Generation at the leading edge of

airfoil . 38

2.15 Transfinite Interpolation . 39

2.16 Hermite Interpolation . 39

2.17 Laplace Equation Solution . 39

2.18 Poisson Equation Solution . 39

2.19 Unit ellipse at each position depicted by red points 44

2.20 Frame field Mapping . 45

2.21 Comparison of various Lp-norm on a Circle 47

2.22 Metric tensor ellipse with a single corresponding generated triangle 48

2.23 Metric tensor ellipse with possible configuration of generated triangles . . . 48

2.24 Voronoi Cell with 6 facets - Left: Full Volume Voronoi Cell, Right: Clipped

Boundary Voronoi Cell . 49

2.25 Triangle with 3 Bisectors . 52

2.26 Example of Voronoi Diagram with clipped boundary 54

2.27 Example of Edge Splitting . 55

2.28 Example of Edge Merging . 56

2.29 Reconstruction of Boundary Voronoi Cell . 57

2.30 Moving boundary formulation for Lp-CVT 59

2.31 Flowchart showing the Lp-CVT algorithm . 62

3.1 2nd order triangle and quadrilateral elements 65

4.1 H1 patchwise reconstruction . 76

4.2 Flowchart showing the flow solver coupled with the Lp-CVT algorithm . . . 80

5.1 Comparison of clipped and reconstructed boundary Voronoi diagram based

on a constant metric field . 82

5.2 Reconstructed boundary with ghost cells . 83

5.3 Constant Metric Field Result Summary . 85

ix

5.4 Constant Metric Field All-Quad Mesh Summary 86

5.5 Constant Metric Field Result with Irregular Boundary 87

5.6 Quadratic Metric Field Result Summary . 89

5.7 All-Quad Output Mesh and Energy Gradient 90

5.8 Feature-based Initial S-Shock Solution . 92

5.9 Summary of S-Shock Case Results Set 1 - Moving Boundary 97

5.10 Summary of S-Shock Case Results set 2 - Moving Boundary 98

5.11 Summary of S-Shock Case Results Set 1 - Static Boundary 99

5.12 Summary of S-Shock Case Results Set 2 - Static Boundary 100

5.13 Summary of S-Shock Case Results . 101

5.14 Summary of Boundary Layer Case Results Set 1 - Moving Boundary 103

5.15 Summary of Boundary Layer Case Results set 2 - Moving Boundary 104

5.16 Summary of Boundary Layer Case Results Set 1 - Static Boundary 105

5.17 Summary of Boundary Layer Case Results Set 2 - Static Boundary 106

5.18 Summary of Boundary Layer Case Results 107

5.19 Moving Boundary Lp-CVT Mesh Adaptation Cycles 111

5.20 Static Boundary Lp-CVT Mesh Adaptation Cycles 112

5.21 Final Output Mesh Result Summary . 113

x

List of Tables

5.1 Energy gradient value for clipped boundary (dE
dxiC

) and reconstructed bound-

ary (dE
dxiR

) at the bottom and right side boundary 83

5.2 Summary of convergence for Quadratic Metric All-Quad Mesh and krEk2 . 91

5.3 Summary of reconstructed length for 25 boundary points based on the

nearest frame field of the initial S-Shock solution 94

xi

Nomenclature

Physical and computational domain

x Physical domain horizontal location

y Physical domain vertical location

⇠ Computational domain horizontal location

⌘ Computational domain vertical location

J1 Computational domain Jacobian matrix

J2 Physical domain Jacobian matrix

J Jacobian determinant

Voronoi and Delaunay diagram

Ti ith Delaunay triangle

Vi ith Voronoi cell

Pi ith Voronoi site

gi Centroid of ith Voronoi cell

Algebraic and PDEs based quadrilateral structured mesh generation

i Horizontal direction traversal index

xii

j Vertical direction traversal index

P (⇠, ⌘) Horizontal forcing function

Q(⇠, ⌘) Vertical forcing function

Fi,j Cell area function

s1 Spacing between first and second boundary grid line

✏ Stretching ratio

� Artificial dissipation factor

Riemannian metric space

M Metric tensor

lM Distance under metric tensor

�1,�2 Eigenvalues of metric tensor M

Frame field

fp Frame field at point p

V Frame field linear mapping

e1, e2 Principal axis of frame field

✓1, ✓2 Orientation of frame field

h1, h2 Length of principal axis of frame field

h Average size of frame field

⇢ Anisotropy

R(✓) Rotation matrix

xiii

Lp-CVT mesh generator

Th Mesh triangulation

Ik Local energy

fi ith facet

T (⇠) Reference triangle

ELp
Lp-CVT total energy

M(y) Background metric field

ei Mesh edge

lmin Minimum edge length for merging

lmin Maximum edge length for splitting

lb,i Local reconstructed boundary length

lr Simplified reconstructed boundary length

LM Edge length under metric space

Discontinuous Galerkin method

u Flow solution

R(u) Residual

F (u) Flux vector

F̂ (u) Numerical flux vector

S(u) Source term

uh Discrete flow solution

xiv

�h Shape function

 h Test function

pk Local polynomial order

Nk(pk) Total number of DOFs

⌦ Physical domain

⌦k Local domain

⌦h Computational domain

Discrete error minimization

Eh Discrete error

⇧hp Optimal projection operator

C Target complexity

Adjoint method

J (u) Functional of interest

 Adjoint variable

 h Discrete adjoint variable

L Lagrange multiplier

IH
h

Projection operator from coarse to fine grid

⌘k Local dual-weighted residual

Continuous mesh model

A(x) Local element area

xv

d(x) Local element density

N(V) Total number of cells

N (V,P) Total number of degrees of freedom

P(x) Polynomial distribution

Continuous error model

eintx̃,p(x) Local interpolation error of degree p at location x

A1 Maximum of p+1 directional derivative in direction 1

A2 Maximum of p+1 directional derivative in direction 2

⇠1 Unit vector of direction 1

⇠2 Unit vector of direction 2

u+
h

Enriched solution through H1 patchwise reconstruction

e Local continuous error estimator

E Global continuous error estimator

Goal-oriented approach

Ik Target cell area

Ic
k

Current cell area

↵k Scaling factor

⇠k Logarithmic scaling factor

rmax Maximum refinement factor

cmax Maximum coarsening factor

xvi

Chapter 1

Introduction

In the early phases of a novel aerospace conceptual design, significant attention is dedi-

cated to assembling all of the available computational analysis tools that can be leveraged.

Through the results generated by these tools, engineers can better understand the ca-

pability and limitations of their designs during various simulated flight conditions. In

particular, non-dimensional aerodynamic forces such as coefficient of lift and drag are of

interest because these parameters allow for the comparison between various designs (such

as different wing, or engine configurations). This eventually leads to the optimization of

the design allowing the engineer to specifically select the best-suited design for the target

operation envelope. Amongst the available tools, Computational Fluid Dynamics (CFD)

excels in this domain by efficiently calculating and forecasting the flow’s behavior across a

domain, empowering engineers to leverage these outcomes for optimizing their designs

to meet engineering expectations. In practice, two main building blocks are required for

building a CFD simulation, and they are namely a mesh and a flow solver. However, some

numerical methods can be independent of the mesh which are known as mesh-free meth-

ods, where the solution point, i.e. a fluid particle, can move freely in the spatial domain

through interactions with its neighbors which is known as the Lagrangian approach [1].

A mesh is considered a prerequisite for the flow solver, and hence, must be generated

beforehand. Mesh generation consists of discretizing a domain prescribed by a geometry

1

which often acts as the boundary over which the flow will be simulated, i.e., an airfoil,

as shown in Figure 1.1. Once the mesh is obtained, the flow solver can utilize the mesh

to perform calculations over each cell to predict and converge the solution with a certain

level of acceptance of the error.

Figure 1.1: Two-Dimensional CH10 Airfoil Structured Mesh

Despite recent advancements in numerical models, there are still limitations on the

performance of these solvers due to the mesh utilized for computations. This has been

identified as one of the open topics that require improvement in NASA’s CFD Vision 2030

Study report [2] which is set to be resolved in the upcoming years. Another source of error

in the output solution arises from significant changes in flow features. Typically, these

are known as anisotropic flow features characterized by directional notions that must

be resolved for an accurate solution to occur. For instance, when the flow encounters a

shockwave, there is an abrupt deceleration resulting in a substantial change in the velocity

gradient. This creates a challenging region for the solver to converge, as accurately resolv-

ing the velocity change of the flow passing through the shockwave becomes increasingly

difficult. Therefore, solution or mesh points must be strategically placed to identify areas

2

where additional points are needed to accurately depict the solution. One way to achieve

this is to employ cells of different sizes and orientations in those regions which can help the

solver converge much faster compared to a uniformly distributed mesh. This is because

anisotropic cells aid the solver in resolving anisotropic flow features more effectively by

aligning the cells with the anisotropic flow features of the solution. Additionally, accurate

representation of the shockwave is very difficult from a static boundary mesh configura-

tion (i.e. boundary points do not move), hence boundary treatments are key to allowing

the mesh to have flexibility at the boundary to thereby better depict such flow features.

A key improvement to resolving the solution in those regions is to make use of mesh

adaptation techniques [3, 4, 5, 6] which adapts the mesh based on the need to better resolve

the accuracy of the solution or feature of interest at those locations.

3

1.1 Overview of Mesh Adaptation Techniques

Over the past two decades, mesh adaptation techniques have gained significant research

interest within the CFD community. This is due to its ability to reduce the computational

cost of a flow solver while maintaining or increasing the level of accuracy in the solution.

In simple words, mesh adaption seeks to generate an optimal mesh to control the error

of a solution [7]. Mesh adaptation can, in general, be separated into two different classes

when coupled with a flow solver, as depicted in the following Figure 1.3.

Mesh Adaptation +

Flow Solver Coupling

u1 u2

Mesh 1 Mesh 2

Figure 1.2: Mesh Adaptation Techniques - Coupled

Mesh Adaptation Flow Solver
u1

Mesh 1

u1

Mesh 2

u2

Mesh 2

InputMesh 2 and u2 for next iteration
Continue until convergence on solution

Figure 1.3: Mesh Adaptation Techniques - Decoupled

1.1.1 A Priori and A Posteriori Error Estimators

The error indicator is a map where each cell contains information from the error of the

solution. The goal of the error indicator is to quantify the error that is produced in the

solution and allow the mesh adaptation algorithm to identify regions of high and low

4

error and adapt its mesh accordingly. This information is computed on the original grid,

or in some cases, on a projected fine mesh through patch reconstruction schemes, and

then, provided to the mesh adaptation generator to produce a new mesh. As mentioned

previously, two error estimators are possible, and they are either a priori or a posteriori error

estimators. The term a priori stands for ”prior” or ”beforehand” and the term a posteriori

stands for ”post” or ”after”.

Just as the name implies, a priori error estimator can be computed before the solution

converges through manipulations of the governing equation, hence it does not require

the solution of the flow solver and relies only on mathematical expressions to predict

the region of interest for the mesh adaptation to occur. The benefit of such a method is

that the error estimator can be determined even before solving for the solution, however,

the expression itself requires derivations which are a function of the mesh as well as the

solution, u, and can often be cumbersome to resolve. Also, this presents a difficulty in

numerical simulations where the exact solution is rarely available, and therefore, a priori

error estimators cannot be applied directly [8]. Also, a priori error estimators are often

insufficient when encountered with solutions that contain complex flow features such as

shockwaves or singularities because they rely on an asymptotic error behavior and require

a regularity assumption on the solution which can cause inaccuracy in the final solution

[9]. The application of such a method has been shown in a few cases such as in [10, 11, 12].

In contrast, an a posteriori error estimator relies on the discrete solution where the

solution points are used to construct a map that provides the necessary information for

the mesh adaptation algorithm to use for moving the mesh points. The benefit of such a

method is that the actual solution points are used for generating the error estimator after the

solution has converged, and this provides a much more direct approach to quantifying and

estimating the interpolation error present in the solution. Some widely used methods for a

posteriori error estimators include recovery techniques based on the gradient [13, 14] and

approximation techniques based on piecewise interpolation of the solution nodes [4, 15] as

well as its higher-order formulations [16, 17]. The foundation of this work was based on

5

the original work of Alauzet and Loseille [18] on linear elements which introduced the

concept of a ”continuous mesh framework”. The idea is to use mathematical concepts such

as calculus of variation which are well defined on Riemannian metric space to construct

an error estimator and use it as a tool for mesh adaptation[18, 19]. An approach using

this framework for an adjoint-based error estimate for ”hp” mesh adaptation can be found

here [20]. Additionally, a posteriori error estimators can take advantage of anisotropic flow

features present in the solution such as shockwave position to encode the optimal size and

spacing required in the mesh to accurately resolve such flow characteristics. Shockwave

positions are usually not known before solution convergence hence why an a posteriori

error estimator is favored over a priori error estimators [21]. In this work, an a posteriori

error estimator is investigated with two classes of error tracking methods which are namely

the feature and adjoint-based error indicators which will be discussed shortly.

1.1.2 Riemannian Metric and Frame Fields

In the previous section, the principle of a priori and a posteriori error estimators were

introduced. We shift the focus to the type of error that can be tracked for mesh adaptation

and how the error estimator is built. Two common error indicators are feature and

adjoint-based error indicators. The feature-based indicator is a simple way of encoding

the solution error through general features of the solution such as solution gradients, or

solution curvature while the adjoint-based indicator estimates the contribution of each

cell to the error of a functional of interests [22]. For instance, the adjoint-based error

estimator can be constructed in such a way as to track where the lift and drag coefficient

errors are highest and adapt the mesh accordingly. A review paper by Alan et al. shows

recent developments in error estimators for anisotropic mesh adaptation technique and

presents very well the state of the art for these methods [23]. Once the error tracking

approach is selected (feature or adjoint-based), this information is then encoded into a

map which is known as a metric field. Riemannian metric spaces are naturally curved and

are well-defined by matrices known as metrics. Their applicability to mesh adaptation

6

has been widely employed in CFD, and the goal is to produce equidistributed edges

in this space, which is generally not attainable in planar spaces as demonstrated in the

work of d’Azevedo and Simpson [24, 25]. Most notably, Riemannian metrics allow for

alignment of the cell with anisotropic flow features which can be controlled via the metric

field. The metric field defines the size or anisotropy and the orientation of the underlying

mesh topology of interest. Once the mesh is adapted through the Riemannian metric

space which results in an isotropic mesh on this space, an anisotropic mesh will naturally

appear in the planar space which completes the duality between the curved and planar

space. In this work, quadrilateral elements are used over triangular elements in the mesh

adaptation using metric fields due to their added benefit of being inherently tensor product

elements. This unlocks the possibility of using sum-factorization to solve matrix-vector

multiplications of an order lower than using triangles which do not have a trivial tensor

product form. More information regarding quadrilateral tensor product expansions can

be found in Chapters 3 and 4 of Spectral/hp Element Methods for CFD by Kardiadakis and

Sherwin [26]. Besides the general metric field, most notably, frame fields present another

interesting way of encoding the error indicator and this method arises from the field of

computer graphics. This method encodes the orientation of the cell through the principal

axes of the quadrilateral cell, and similarly, the length of those axes describes the size of

the cell as stated by Panozzo et al. in their work [27, 28]. In addition, their work also

encodes the density of cells in the frame field, which thereby facilitates their application to

an anisotropic quadrilateral mesh generator.

1.1.3 Metric-based Mesh Adaptation

Early work on two-dimensional grid refinement based on the truncation error of the

solution was attempted by Beger and Jameson [29] and also, Beger and Oliger [30]. They

showed the benefit of using local grid refinement on quadrilateral meshes for solving

hyperbolic problems and Euler’s equation at a fraction of the computational cost compared

to a uniform grid. The refinement process works by splitting a single cell by four for every

7

cell that is flagged during the grid refinement process. However, one drawback of such

methods using local refinement is the reliance on the initial grid since the grid can only

converge with refinement based on the initial location of the grid points. Additionally,

certain flow features of dominance such as shockwaves or boundary layers result in high-

gradient regions that can be overlooked by the refinement process, leaving less apparent

features badly resolved in the final solution [31].

To alleviate this issue, more work began to focus on error estimators that are based

on the direction features of the flow rather than the change in the high-gradient region

of the solution. This in part contributed to the beginning of anisotropic mesh adaptation

where the anisotropic feature of the flow is prescribed into a metric acting as an error

estimator. Peraire et al. were the first to attempt such methods on two-dimensional

triangular linear grids where the mesh would align with directional features from the

solution [32]. Their method involved the reconstruction of the Hessian of the solution

based on the density of the solution as an error indicator. As a result, directional error

estimates inherently surfaced from the Hessian matrix and the mesh was able to adapt

based on the directional properties of the flow. A three-dimensional version of this work

has been introduced shortly after which can be found in this paper [33]. Then, in regards

to encoding the error estimator inside a Riemmanian metric field, the first to introduce

and attempt mesh adaptation based on this concept was George et al. [34]. Their work

focused on generating an isotropic mesh (i.e., a mesh where the edge lengths are uniform)

using the Hessian in the Riemmanian space, and this resulted in an anisotropic mesh in

the physical space. Later, adjoint-based mesh adaptation started to gain popularity due

to its capability of adapting the mesh based on a functional of interest, and Becker and

Rannachar introduced the concept of dual-weight residual [35]. Venditi and Darmofal

performed pioneering work in applying this concept to anisotropic mesh adaptation

which includes inviscid and viscous flow [36, 37, 38]. More recently, high-order works on

this subject has also been attempted by Dolejšı́ [16, 17]. Lastly, MacLean and Nadarajah

introduced an anisotropic mesh adaptation based on the Lp-CVT method which adapts

8

to both feature- and adjoint-based error estimators [39]. In this work, we will attempt to

extend it by including boundary treatments for the Lp-CVT. The goal is to investigate the

applicability of the boundary modification and also, the benefit that it brings to tracking

the anisotropic features more effectively at the boundary.

1.2 Thesis Overview

This thesis is structured as follows. First, Chapter 2 will present a broad overview of

mesh generation and adaptation techniques. Specifically, the generation of quadrilateral

structured mesh will be covered for both two-dimensional and three-dimensional space

to provide a simple introduction to mesh generation and how it applies to the field of

mesh adaptation. Additionally, the Lp-CVT mesh generator will be explained in more

detail to show how boundary treatments are utilized to better depict optimal mesh points

at boundaries. Second, in Chapter 3, we present a review of the discontinuous Galerkin

(DG) method for the discretization of conservation laws. Third, Chapter 4 will show

an overview of the continuous mesh models and describe the relationship between the

Lp-CVT mesh adaptation technique and the DG method. Then, in Chapter 5 we will

present the numerical results comparing both with and without boundary treatment mesh

adaptation on analytical and discrete frame fields. In particular, an applied test case

using the Lp-CVT mesh generator will be shown for solving a transonic flow around a

NACA0012 airfoil. Finally, Chapter 6 will conclude the results and present future works

that remain to be investigated.

9

Chapter 2

Mesh Generation

Mesh generation constitutes the initial phase preceding the resolution of any computational

(numerical) problem. The choice of a numerical approach for solving governing equations

necessitates the discretization of the domain of interest to compute solutions at various

mesh points. Additionally, the mesh serves not only as a tool for numerical computation

but also as a means of visually representing flow features which helps communicate the

solution to the end-users. In contrast to solvers, mesh generation involves numerous

constraints that are not solely user-dependent, but also include considerations tied to

the evolving solution itself. This enforces the significance of mesh adaptation which is a

technique frequently employed to minimize user intervention in mesh generation while

also enhancing the resolution of the solution in each adaptation cycle. All in all, this

chapter aims to provide a comprehensive overview of mesh generation, introducing key

principles and techniques of both mesh generation and adaptation.

2.1 Structured vs Unstructured Mesh

In the context of this work, where two-dimensional domains are of primary interest, grids

can be classified into two main types: structured and unstructured meshes. A structured

mesh is highly organized, presenting a patterned grid that enables the solver to locate

10

specific grid points using a unique set of indices along the grid lines, as illustrated in

Figure 2.1. On the other hand, unstructured grids lack any sense of structure and are

inherently disorganized. While this allows for flexibility in representing arbitrary domains

by conforming to the shape of the geometry without requiring a predefined structure, it

comes at the cost of requiring specific data structures for retrieving their locations.

A straightforward technique for generating an unstructured mesh based on triangular

elements is the Delaunay Triangulation (DT) which is discussed in Section 2.3.1. An

example of a basic implementation of this technique is presented by Persson et al. [40],

where the author employs DT to generate a mesh and optimizes mesh points using a

force-based smoothing procedure. The mesh boundary is defined by a signed distance

function (SDF), distinguishing nodes inside or outside a specified boundary of interest.

Figure 2.2, produced by DistMesh, illustrates this process.

Alternative techniques such as Constrained Delaunay Triangulations (CDT) can be

employed as found in [41] which forms the principle behind the popular mesh generation

software GMSH [42]. This approach involves adding a boundary constraint to DT, allowing

for mesh generation within a specified domain defined by the boundary constraint (e.g.,

a square or circular domain, as depicted in Figure 2.2). In addition to defining the shape

of the boundary, the distribution of the points along the boundary can also be specified.

For instance, Figure 2.1 shows an equidistant distribution of points along the x-axis

(horizontal boundary) and a 2nd order polynomial growth function along the y-axis (vertical

boundary).

11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Two-Dimensional Structured Grid with 2nd order polynomial growth function

along the y-axis.

12

Figure 2.2: Two-Dimensional Delaunay Triangulation over a NACA0012 airfoil bounded

by a circular domain produced by DistMesh.

13

Figure 2.3: Leading Edge of NACA0012 airfoil bounded by a circular domain produced by

DistMesh.

In Figure 2.1, an equidistant point distribution along the x-axis, coupled with a poly-

nomial function (y = x2), is employed to determine the spacing along the y-axis. Due to

the point distribution on the boundary, comprising 40 points in both the x and y direc-

14

tions, the intersection of horizontal and vertical lines creates individual mesh points. The

combination of mesh points generates the computational domain.

Figure 2.2 shows an unstructured grid with triangular elements around a NACA0012

airfoil inside a circular domain and a close-up view of the leading edge of the airfoil is

shown in Figure 2.3. In this case, unstructured mesh proves effective in arbitrary domains

where triangular elements are well-fitted inside the domain conforming to both the airfoil

and circular boundary. Interestingly, the airfoil’s leading edge is discretized with linear

elements (i.e., straight lines) which consequently penalizes the depiction of the leading

edge curvature. The resolution of the leading edge curvature is therefore influenced by the

chosen number of points which is typically user-defined. Despite the apparent simplicity

of mesh generation, achieved by inputting spacing distribution on each axis using a

chosen function (e.g., exponential function, inverse hyperbolic tangent function, etc.),

numerical methods and mesh generation, in general, are not as straightforward as they

may seem. The earlier example illustrated a straightforward geometry, butmesh generation

complexity arises when dealing with intricate geometries, particularly those involving

curved boundaries (as illustrated in Figure 2.2). Simple straight lines are inadequate for

satisfying results in the presence of curved boundaries due to a lack of resolution when

too few elements are used. Furthermore, specific grid constraints, such as orthogonality on

the initial grid layer adjacent to boundaries, may be necessary which adds complication to

the mesh generation process.

2.2 Computational vs Physical Domain

In mesh generation and numerical methods, establishing a reference system is often

crucial. There exist two distinct domains which are namely the computational and phys-

ical domains that play a pivotal role. The computational domain is characterized by

straight-sided boundaries with spacing along the x-axis and y-axis that are equidistant,

eliminating the need for specifying any customized spacing. This often facilitates the

15

computations performed by the solver by disregarding any numerical schemes coupled

with non-equidistant spacing. Conversely, the physical domain is typically defined by

the geometry of the domain of interest, often with prescribed boundary curvature and

point distribution. It is crucial to recognize that both domains coexist due to a one-to-one

relationship between each grid point located in both domains [43]. The following example

illustrates both domains, as presented in [43].

Figure 2.4: Left: Physical Domain — Right: Computational Domain [43]

2.2.1 Transformation Matrix

The transformation matrices define the conversion between the physical and the computa-

tional domain and are shown as follows,

2

66664

⇠

⌘

3

77775
=

2

66664

⇠(x, y)

⌘(x, y)

3

77775
J1 =

2

66664

⇠x ⇠y

⌘x ⌘y

3

77775

16

2

66664

x

y

3

77775
=

2

66664

x(⇠, ⌘)

y(⇠, ⌘)

3

77775
, J2 =

2

66664

x⇠ x⌘

y⇠ y⌘

3

77775
,

J1 = [J2]
�1, (2.1)

J = det[J2] = x⇠y⌘ � x⌘y⇠, (2.2)

where ⇠ denotes the x variable in the computational domain, ⌘ denotes the y variable

in the computational domain, and finally, x and y are the same definitions as from the

physical domain. J1 is the Jacobian matrix for the computational domain variables, J2

is the Jacobian matrix for the physical domain variables, and finally, J is the Jacobian

determinant which is defined as the determinant of J2.

The derivatives that are shown previously can be obtained through finite differences.

Typically, a central finite difference is used for inner grids, whereas forward and backward

finite differences are used instead at the boundaries. Depending on the location of the grid

points, forward difference can be used at the first boundary line and backward difference

at the last boundary line for both ⇠ and ⌘ directions.

To convert between both domains, the following relationships can be used,

fx =
@(f, y)

@(⇠, ⌘)
/
@(x, y)

@(⇠, ⌘)
=

y⌘f⇠ � y⇠f⌘
J

. (2.3)

fy =
@(x, f)

@(⇠, ⌘)
/
@(x, y)

@(⇠, ⌘)
=

�x⌘f⇠ + x⇠f⌘
J

. (2.4)

One might question the need for going through the process of obtaining derivative

values of a function of the ⇠ and ⌘ directions. The answer lies in the fact that the earlier

established relationships enable the formulation of equidistant finite differences, as men-

tioned previously. It is interesting to note that all the derivatives on the right-hand side of

17

equation 2.3 and 2.4 depend on the computational domain variables, making them easily

computable. This ease arises from the uniform distribution of spatial spacing between grid

lines in both the ⇠ and ⌘ directions, rendering 4⇠ and4⌘ constants.

In the physical domain, challenges may arise if the grid is clustered towards ⇠ = 1, as

shown in the case of a C-Mesh illustrated in Figure 2.5, where grid lines are concentrated

near the airfoil. In such instances, the use of non-equidistant finite differences for solution

computation becomes necessary, introducing complexity to the process. On the contrary,

this is eliminated through performing computations in the computational domain which

ensures a clean and efficient computational environment for the solver. This thereby

facilitates easy tracking of grid points and their locations at the expense of a conversion

step through equation 2.3 and 2.4.

Figure 2.5: Structured CMesh Grid with quadrilateral cells generated using a Hyperbolic

Grid Generator

18

2.3 Two-Dimensional Triangular Mesh Generator

In this section, a brief overview of the Delaunay Triangulation as well as the Voronoi

diagramwill be discussed. This will form the basis of the Lp-CVT method shown in section

2.8.

2.3.1 Delaunay Triangulation

The Delaunay Triangulation (DT) stands out as a widely employed technique in mesh

generation, generating triangles in two-dimensional and tetrahedra in three-dimensional

space. The approach involves connecting nodes within a domain to form triangular

elements, ensuring that no points reside within the circumcenter of the triangles known as

the ”empty circumdisk property” condition, originally introduced by Delaunay in 1934

[44]. This condition serves to maximize the minimum angle within any triangle in the

triangulation, leading to an optimal mesh [45]. Various forms of optimal DT based on

diverse criteria have been explored over time. For instance, optimal DT can be generated

by minimizing the linear interpolation error for a given function [46] or by employing

constrained optimization based on predefined boundary edges [41]. The latter case,

known as Constrained Delaunay Triangulation (CDT), will be the subject of investigation

in this study. Figure 2.6 illustrates an example produced by DistMesh, showcasing a CDT

generated with a square outer boundary and a circular cavity within the domain.

19

Figure 2.6: CDT generated by DistMesh inside a bounded domain

One of the major properties of DT is that it has a geometric dual called a Voronoi

Diagram (VD) [47]. This duality is shown in Figure 2.7 where the red-colored map is

the Voronoi Diagram and the black-colored map is the DT superimposed on the Voronoi

Diagram. The idea is to connect all the Voronoi sites to form triangles. Three Voronoi sites

20

(i.e. V1,V2,V3) would be used for generating one triangle T1. This will form the basis of the

Lp-CVT method which is based on these two concepts as presented in the section 2.8.

Figure 2.7: Geometric duality between Delaunay Triangulation and Voronoi Diagram

2.3.2 Voronoi Diagram

VD is built based on the premise that any point, p, inside a Voronoi cell, Vi, is the closest to

its Voronoi site, Pi, compared to any other Voronoi sites, Pj , present in the domain. This

forms a set of non-overlapping convex polygons which are formulated as follows [47],

{Vi} = {p : kp� Pik < kp� Pjk, 8i 6= j} (2.5)

One special type of VD that is of interest in this work is called the Centroidal Voronoi

Diagram (CVD). This type of VD is very similar to the definition of 2.5, however, the

Voronoi sites, Pi, are optimized to be aligned with the centroid of the Voronoi cell. Figure

2.8 shows a comparison between a regular Voronoi cell and a Centroidal Voronoi cell. This

is formulated as an optimization problem where the functional of interest is written as

21

follows from [48],

F (x) =
X

i

Z

⌦i2⌦
ky � xik

2dy, (2.6)

where ⌦i is the corresponding Voronoi cell, ⌦ is the domain of interest, yi is any point

located inside or at the boundary of the Voronoi cell, ⌦i, and xi is the corresponding

Voronoi site of ⌦i. Since F is of class C2 continuous as shown in [49], this unlocks the

possibility of using Newton’s method to optimize F . The gradient of equation 2.6 is

written as follows from [50] which can be employed with a quasi-Newton BFGS (Broy-

den–Fletcher–Goldfarb–Shanno) method to solve the minimization of equation 2.6,

rF |xi(xi) = 2mi(xi � gi), (2.7)

where mi is the volume of the Voronoi cell, and gi, is the centroid of the Voronoi cell.

Figure 2.8: Comparison of regular Voronoi cell and Centroidal Voronoi cell

22

2.4 Two-Dimensional Algebraic and PDEs based Quadrilat-

eral Structured Mesh Generator

Various methods exist for generating two-dimensional meshes. Amongst the most popular

are algebraic methods [51, 52], the partial differential equation (PDE) approach [43, 53, 54,

55], conformal mapping [56], and other methods [57]. This section will focus on algebraic

methods and the application of the partial differential equation approach.

As a supplementary note, algebraic methods hold a personal preference due to their

simplicity and rapid computational speed. However, it is crucial to acknowledge their

inherent limitations, which can significantly diminish their practicality. While algebraic

methods serve as an excellent starting point for learning about meshing, they may not

be the optimal choice for consistently generating high-quality meshes in the long run.

Within the field of purely algebraic methods, noteworthy techniques include Transfinite

Interpolation and Hermite Interpolation (in addition to other methods, which are beyond

the scope of this section). The appeal of these methods lies in their computational efficiency,

as they dynamically compute the grid, allowing for near-instantaneous results within a

single loop. Notably, these methods operate without the need for iterative convergence to

address errors, as they follow a purely mathematical approach where inputting a value

into a function yields an output grid.

2.4.1 Transfinite Interpolation

Transfinite Interpolation is the most basic approach to generating a two-dimensional

grid. Essentially, this approach employs linear interpolation, where the grid lines are

interpolations from the boundaries. Consequently, the closer a grid line is to the boundary,

the more it mirrors the boundary. The equation used for computing the transfinite grid is

23

noted as follows from [58],

x(⇠, ⌘) = x(⇠max, ⌘)⇠ + (1� ⇠)x(0, ⌘) + x(⇠, ⌘max)⌘ + (1� ⌘)x(⇠, 0)

� ⇠⌘x(⇠max, ⌘max)� ⇠(1� ⌘)x(⇠max, 0)� (1� ⇠)⌘x(0, ⌘max)

� (1� ⇠)(1� ⌘)x(0, 0)

(2.8)

y(⇠, ⌘) = y(⇠max, ⌘)⇠ + (1� ⇠)y(0, ⌘) + y(⇠, ⌘max)⌘ + (1� ⌘)y(⇠, 0)

� ⇠⌘y(⇠max, ⌘max)� ⇠(1� ⌘)y(⇠max, 0)� (1� ⇠)⌘y(0, ⌘max)

� (1� ⇠)(1� ⌘)y(0, 0)

(2.9)

One key observation about the formula though is that the ⇠ and ⌘ are defined as

equidistant step lengths in each direction. This approach enables the expression of the

computational domain as a unit spatial domain with N x N grid points. Figure 2.9 shows

an example of a transfinite mesh. The blue points are boundary points that are predefined

in the physical domain which defines the shape of the boundary.

Clearly, in the vicinity of the semicircle, the grid points are more clustered and conform

to the curvature of the circular boundary. Conversely, upon closer examination of the

grid lines near the upper region, their trajectory appears nearly linear, aligning with the

straight-sided upper boundary. Note that in transfinite interpolation, since the grid lines

inherently conform to the boundaries, it is possible to identify different sections in the

mesh based on the shape of the boundary. From Figure 2.9, three well-defined sections

emerge, seperated at x = 0.25 and x = 0.75. This outcome is expected due to the prescribed

function along the bottom boundary in the ⇠ direction. This function entails a linear

segment, succeeded by a semicircular segment, and concludes with another linear segment.

Consequently, the execution of the transfinite algorithm results in a mesh that embodies

these three predetermined sections, as illustrated in Figure 2.9.

24

Figure 2.9: Transfinite Interpolation of a rectangle with a semicircle.

Figure 2.10: Transfinite Interpolation in three dimensional space as demonstrated in [58]

25

2.4.2 Hermite Interpolation

In Hermite Interpolation, a distinct difference from Transfinite Interpolation is the require-

ment of derivatives at the boundary. At first glance, this method seems to add control over

the grid, allowing for the specification of parameters to shape the grid’s appearance at the

boundary. However, it is not always so obvious how to pick the first layer of grid lines to

run the Hermite Interpolation since there are many ways to determine the first adjacent

grid line to the boundary.

Selecting the first grid lines refers to deciding the first inner grid lines for first-order

finite difference at the boundaries which is required in the formula for the Hermite In-

terpolation. One way to define them is to make the first inner grids orthogonal to the

boundaries, however, this may not always be the case since not all grids require this

property. Additionally, the inner grid points are free to move and hence, keeping the first

layer orthogonal may not yield good results as it could interfere with the solution and

provide non-smooth solutions.

26

The formula for the Quadratic Hermite Interpolation is as follows,

xi,j = ↵0(⇠)x0,j + ↵0
0(⇠)(x⇠)0,j + ↵1(⇠)ximax,j

+ ↵0
1(⇠)(x⇠)imax,j

+ �0(⌘)xi,0 + �0
0(⌘)(x⌘)i,0 + �1(⌘)xi,jmax

+ �0
1(⌘)(x⌘)i,jmax

� [↵0(⇠)�0(⌘)x0,0 + ↵0(⇠)�
0
0(⌘)(x⌘)0,0

+ ↵0
0(⇠)�0(⌘)(x⇠)0,0 + ↵0

0�
0
0(⌘)(x⌘⇠)0,0

+ ↵0(⇠)�1(⌘)x0,jmax
+ ↵0(⇠)�

0
1(⌘)(x⌘)0,jmax

+ ↵0
0(⇠)�1(⌘)(x⇠)0,jmax

+ ↵0
0(⇠)�

0
1(⌘)(x⇠⌘)0,jmax

+ ↵1(⇠)�0(⌘)ximax,0 + ↵1(⇠)�
0
0(⌘)(x⌘)imax,0

+ ↵0
1(⇠)�0(⌘)(x⇠)imax,0 + ↵0

1(⇠)�
0
0(⌘)(x⇠⌘)imax,0

+ ↵1(⇠)�1(⌘)ximax,jmax
+ ↵1(⇠)�

0
1(⌘)(x⌘)imax,jmax

+ ↵0
1(⇠)�1(⌘)(x⇠)imax,jmax

+ ↵0
1(⇠)�

0
1(⌘)(x⇠⌘)imax,jmax

]

(2.10)

↵0(⇠) = 2⇠3 � 3⇠2 + 1, ↵0
0(⇠) = ⇠3 � 2⇠2 + ⇠ (2.11)

↵1(⇠) = �2⇠3 + 3⇠2, ↵0
1(⇠) = ⇠3 � ⇠2 (2.12)

�0(⌘) = 2⌘3 � 3⌘2 + 1, �0
0(⌘) = ⌘3 � 2⌘2 + ⌘ (2.13)

�1(⌘) = �2⌘3 + 3⌘2, �0
1(⌘) = ⌘3 � ⌘2 (2.14)

These equations are taken from [59]. Note that the previous equations apply for the y

coordinate as well by simply exchanging x for y. From this equation, Hermite Interpolation

27

does show more complication compared to Transfinite Interpolation since it requires the

definition of both the first and second-order derivatives at the boundaries. In particular,

the second-order partial derivative requires the corner points for its computation (using

central finite difference) which thereby adds difficulty in the calculation. For the Cubic

Hermite Interpolation, it is shown as follows,

x(⇠, ⌘) = (1�3⌘2+2⌘3)x(⇠, 0)+⌘2(3�2⌘)x(⇠, 1)+⌘(1�⌘)2
@x

@⌘
(⇠, 0)+⌘2(⌘�1)

@x

@⌘
(⇠, 1) (2.15)

Note that the previous equations apply for the y coordinate as well by simply exchang-

ing x for y. In the cubic equation, the derivatives are required at the first boundary and are

only of first-order derivatives, thus, implementing this approach is much easier. Equation

2.15 is taken from [57].

2.4.3 Parabolic Equation Approach

In contrast to previous grid generation methods, PDE approaches are less straightforward.

They require a solution to the governing partial equation of choice for the output mesh

to be generated. The solution is the grid itself (i.e. the position of x and y coordinates).

Parabolic equation approaches are inherently diffusive as they include a second-order

derivative and as a consequence, boundary discontinuity is often prevented. The parabolic

system is shown as follows,
@x

@⌘
� A

@2x

@⇠2
= Sx (2.16)

@y

@⌘
� A

@2y

@⇠2
= Sy (2.17)

The typical approach to solving this PDE would be to first generate the boundaries of

the grid inside the physical domain. Then, the solver would march from the first boundary

layer in the vertical direction, ⌘ = 1, up to the last layer, ⌘ = NY.

28

2.4.4 Elliptic Equation Approach

For the elliptic equation approach, two popular governing equations are of interest and

they are known as the Laplace and Poisson equation. For instance, the heat equation for a

steady-state two-dimensional problem can be reduced to an elliptical PDE. The problem

can then be solved using already well-known numerical methods with corresponding

boundary conditions. Boundary conditions would then be required for initializing the

problem by specifying the temperature of the boundaries which is analogous to specifying

the grid points on the boundary for mesh generation purposes. The solution would result

in the following from Figure 2.11,

Figure 2.11: Solution to Heat Equation - Isothermal lines [60]

Once the solution isothermal lines are obtained, it is also possible to superimpose the

isolines together to yield the following from Figure 2.14,

29

Figure 2.12: Superimposed solution of Heat Equation[60]

From Figure 2.14, it is noticeable that the overlapping isothermal lines from both

solutions of Figure 2.11 are similar to grid points. This is the logic behind the elliptic

equation approach where the goal is to solve the elliptical PDE to then generate a mesh by

superimposing the isothermal lines that are controlled using the boundary condition. In

the case of the Poisson equation, a forcing function can also be used for additional effects

such as attraction and repulsion of points. The output mesh will then benefit from the

forcing function by adding possible customization to alter the isothermal lines in a way

that the end user will be able to define a grid of interest that is suitable for his or her test

case.

The elliptical PDE is presented as follows for the Laplace and Poisson equations. Note

that the Laplace equation is derived from the Poisson, but with the forcing function

removed.

⇠xx + ⇠yy = P (⇠, ⌘) (2.18)

⌘xx + ⌘yy = Q(⇠, ⌘) (2.19)

Using the following relationships derived from the transformation between the Physical

and Computational domains in section 2.2.1, the elliptical PDE can be converted into the

30

physical domain by using,

⇠x = y⌘/J (2.20)

⇠y = �x⌘/J (2.21)

⌘x = �y⇠/J (2.22)

⌘y = x⇠/J (2.23)

J = x⇠y⌘ � x⌘y⇠. (2.24)

Now, the elliptic PDE is written as follows,

↵x⇠⇠ � 2�x⌘⇠ + �x⌘⌘ = �J2(Px⇠ +Qx⌘) (2.25)

↵y⇠⇠ � 2�y⌘⇠ + �y⌘⌘ = �J2(Py⇠ +Qy⌘), (2.26)

where,

↵ = x2
⌘
+ y2

⌘
(2.27)

� = x⇠x⌘ + y⇠y⌘ (2.28)

� = x2
⇠
+ y2

⇠
(2.29)

The forcing functions are defined as follows,

P (⇠, ⌘) = �

nX

i=1

aisgn(⇠ � ⇠i)exp
⇥
�ci|⇠ � ⇠i|

⇤

�

mX

j=1

bjsgn(⇠ � ⇠j)exp
h
�dj

»
(⇠ � ⇠j)2 + (⌘ � ⌘j)2

i
(2.30)

31

Q(⇠, ⌘) = �

nX

i=1

aisgn(⌘ � ⌘i)exp
⇥
�ci|⌘ � ⌘i|

⇤

�

mX

j=1

bjsgn(⌘ � ⌘j)exp
h
�dj

»
(⇠ � ⇠j)2 + (⌘ � ⌘j)2

i
(2.31)

Now, the derivatives are set up to be solved in the computational domain, therefore, the

solver can benefit from employing simple finite differences through equal spacing. The

approach is to first set up the grid points at the boundary in the physical domain, and

then solve for the solution in the computational domain. The forcing functions are only

added when there is a need to include clustering around points of grid lines as shown in

Figure 2.13. The P (⇠, ⌘) is the control function for the ⇠ direction and Q(⇠, ⌘) is the control

function for the ⌘ direction. These equations can be solved using a Gauss-Seidel approach.

Figure 2.13: Clustering effect by introducing P (⇠, ⌘) and Q(⇠, ⌘) [61]

32

2.4.5 Hyperbolic Equation Approach

Hyperbolic equation is newer than elliptical and parabolic equation approaches. The main

benefit of this method is that it is much faster in mesh generation time because it uses a

front marching method (i.e., traversing the solution from the inner boundary up to the

outer boundary). Also, it is very applicable to CFD because the grid generated using this

method is inherently orthogonal at the boundaries which is very useful for resolving the

boundary layer in a viscous flow. The disadvantage of this method is that the scheme itself

is not very stable. To adjust for instabilities, it is possible to introduce artificial dissipation

which will be shown later to post-process the mesh at the output step. For a general review

of the hyperbolic equation approach, the review paper by Sørensen is a good source [62].

The fundamental concept that builds up the hyperbolic system is two constraints. The

first one is the orthogonality at the boundaries. This is achieved through the following

equation,

~r⇠ · ~r⌘ = 0 �! x⇠ · x⌘ + y⇠ · y⌘ = 0 (2.32)

This is the definition of orthogonality from linear algebra where the dot product

between two vectors is zero when they are perpendicular to each other. The second

constraint is on the Jacobian determinant as shown in section 2.2.1, and it is given as

follows,

J = det[J2] = x⇠y⌘ � x⌘y⇠ = F (⇠, ⌘) (2.33)

Here, the cell area function is denoted as F (⇠, ⌘) and is equal to the Jacobian determi-

nant. The cell area function is defined as follows,

Fi,j = 4ci,j ·4si,j (2.34)

4ci,j = 0.5 ⇤
Ä��~ri,j � ~ri�1,j

��+
��~ri+1,j � ~ri,j

��
ä

(2.35)

4si,j = 4s1 ⇤ (1 + ✏)j�1, (2.36)

33

where s1 is the spacing of the second grid from the first boundary grid along ⌘ = 1 and ✏ is

the stretching ratio along the ⌘ direction as specified by the user.

2.4.6 Solution to the Hyperbolic Equation Approach

The solution x and y are represented by a known state, xk and yk, as well as an increment,

4x and 4y, denoted as follows,

x = xk +4x (2.37)

y = yk +4y (2.38)

Then, equation 2.37 and 2.38 are substituted into the two constraints (equation 2.32 and

2.33) which describe the hyperbolic system as follows,

(xk +4x)⇠(x
k +4x)⌘ + (yk +4y)⇠(y

k +4y)⌘ = 0 (2.39)

(xk +4x)⇠(y
k +4y)⌘ � (xk +4x)⌘(y

k +4y)⇠ = F (⇠, ⌘) + F k(⇠, ⌘) (2.40)

Doing some simplification, the following is obtained,

x⌘x
k

⇠
+ xk

⌘
x⇠ + y⇠y

k

⌘
+ yk

⇠
y⌘ = 0 (2.41)

x⇠y
k

⌘
+ y⌘x

k

⇠
� x⌘y

k

⇠
� y⇠x

k

⌘
= F (⇠, ⌘) + F k(⇠, ⌘) (2.42)

Then, the previous equations can be grouped into the following system of equations,

2

66664

xk

⌘
yk
⌘

yk
⌘

�xk

⌘

3

77775

2

66664

x⇠

y⇠

3

77775
+

2

66664

xk

⇠
yk
⇠

�yk
⇠

xk

⇠

3

77775

2

66664

x⌘

y⌘

3

77775
=

2

66664

0

F (⇠, ⌘) + F k(⇠, ⌘)

3

77775
(2.43)

In addition, equation 2.43 can be further simplified by introducing the following terms

while also using a first-order backward finite difference for ⌘ and second-order central

34

difference for ⇠ derivatives which yields,

R =

2

66664

x

y

3

77775
A =

2

66664

xk

⌘
yk
⌘

yk
⌘

�xk

⌘

3

77775
B =

2

66664

xk

⇠
yk
⇠

�yk
⇠

xk

⇠

3

77775
H =

2

66664

0

F (⇠, ⌘) + F k(⇠, ⌘)

3

77775
(2.44)

Then, the following is obtained,

[A]
Ri+1,j �Ri�1,j

24⇠
+ [B]

Ri,j �Ri,j�1

4⌘
= Hi,j (2.45)

Multiplying on both sides by the inverse matrix of ”B” yields the following,

[B]�1[A]
Ri+1,j �Ri�1,j

24⇠
+ [I]

Ri,j �Ri,j�1

4⌘
= [B]�1Hi,j (2.46)

At this stage, all variables with the superscript k are known states. Since an outward

marching scheme from the first boundary at ⌘ = 1 is employed, it is apparent that the

matrices A and B are evaluated at the (⌘� 1th) grid lines. Further simplification of equation

2.46 yields,

�
1

24⇠

Ä
[B]�1[A]

ä
i,j�1

Ri�1,j +
Ri,j

4⌘
+

1

24⌘

Ä
[B]�1[A]

ä
i,j�1

Ri+1,j = [B]�1
i,j�1Hi,j +

Ri,j�1

4⌘
(2.47)

Notice here that it is possible to regroup certain terms to simplify the previous equation

in the following way,

[AA] = �
1

24⇠

Ä
[B]�1[A]

ä
i,j�1

(2.48)

[BB] = [I] (2.49)

[CC] = �[AA] (2.50)

[DD] = [B]�1
i,j�1[H]i,j +Ri,j�1 (2.51)

35

Finally, the following formulation is obtained,

[AA]Ri�1,j + [BB]Ri,j + [CC]Ri+1,j = [DD]i,j. (2.52)

And, from this formulation, a block tridiagonal matrix appears. Thomas algorithm

could have been employed to solve equation 2.52 if it was a simple tridiagonal matrix,

however, since this is a block tridiagonal matrix, the block tridiagonal matrix version of

the Thomas algorithm would be required and the matrix is set up as follows,

2

6666666666666666666666664

[BB]2 [CC]2

[AA]3 [BB]3 [CC]3

. . .
. . .

. . .

. . .
. . .

. . .

[AA]NX�2 [BB]NX�2 [CC]NX�2

[AA]NX�1 [BB]NX�1

3

7777777777777777777777775

2

6666666666666666666666664

R2

R3

...

...

RNX�2

RNX�1

3

7777777777777777777777775

=

2

6666666666666666666666664

[DD]02

[DD]3

...

...

[DD]NX�2

[DD]0
NX�1

3

7777777777777777777777775

For the first and last entry in the [DD] column matrix, additional terms are required

because this is a block tridiagonal system. At the edges of the grid line, boundary grid

points are already specified before solving for the solution, hence, these are known ”grid

points” on the other side (in the [DD] matrix) which can be added to it. Hence,

[DD]02 = [DD]2 � [AA]2R1 (2.53)

[DD]0
NX�1 = [DD]NX�1 � [CC]NX�1RNX (2.54)

36

Lastly, the first-order derivatives in the ⌘ direction are already known and should be

specified. However, specifying them is challenging since it requires the grid point at the

next ⌘ level to complete the first-order finite difference, hence, what is generally done is to

employ the two constraints that make up the hyperbolic system and solve them for the

first-order derivatives along the ”⌘” direction. This yields,

xk

⌘
= �

yk
⇠
F k

(xk

⇠
)2 + (yk

⇠
)2

(2.55)

yk
⌘
=

xk

⇠
F k

(xk

⇠
)2 + (yk

⇠
)2

(2.56)

This sums up the discussion for the solution. In the next section, the artificial dissipation

term that is added to increase stability in the scheme will be discussed.

2.4.7 Artificial Dissipation

When solving the block tridiagonal matrix, instability can occur due to the formulation

of the hyperbolic PDE, hence, an artificial dissipation term can be added next to the [DD]

column matrix in equation 2.53. This yields,

[AA]Ri�1,j + [BB]Ri,j + [CC]Ri+1,j = [DD]i,j + � (2.57)

where � is given by the following,

� = �(Ri+2,j � 4Ri+1,j + 6Ri,j � 4Ri�1,j +Ri�2,j) (2.58)

Note that � is the artificial dissipation factor which is a user-defined parameter. One

issue here is that the � term requires the points that are two grid spaces on the left and

right, which means that the algorithm will have to start sweeping the solution at the

third point or ⇠ = 3 to make sure that the artificial dissipation term can be computed

correctly. Multiple ways can be used to compute this, one standard approach is to use

37

a larger grid which contains two extra grid layers outside the standard boundary for

computing the artificial dissipation term. This leads to a larger grid size compared to

the original grid. Another possible way is to generate ghost points on the outside of the

boundaries which can be computed on the fly as the algorithm moves across the boundary

grid points. These ghost points would be generated using the first two layers generated

using transfinite interpolation and then reflected outside the boundaries using simple

geometrical techniques. With this technique, the original grid can be conserved. More

information about this can be found in [63].

Figure 2.14: Example of Hyperbolic Equation Grid Generation at the leading edge of airfoil

38

Here are examples of the various meshing techniques for structured quadrilateral mesh.

Figure 2.15: Transfinite Interpolation Figure 2.16: Hermite Interpolation

Figure 2.17: Laplace Equation Solution Figure 2.18: Poisson Equation Solution

39

2.5 Metric based Inner Product, Norm, and Distance Defini-

tion

A general introduction to quadrilateral mesh generation has been established, now, the

following section will focus on metric tensors and how they are applied to anisotropic

mesh adaptation.

First, a metric or a metric tensor M is a symmetric definite positive matrix. When

applied to a dot product between two vectors, u and v, the definition is then written as,

hu ,viM = hu ,Mvi = uT
Mv (2.59)

Now, when applying the metric to a norm on a vector u, the norm is defined as,

kukM =
»

hu ,uiM (2.60)

The simplest form or example of a metric tensor is an identity matrix, such as,

I2 =

2

64
1 0

0 1

3

75 (2.61)

This as a result simply recovers the Euclidean space R2 where the dot product as well

as the norm in equation 2.59 and 2.60 is recovered as,

hu ,viI2 = hu , I2vi = uT I2v = uT v (2.62)

kukI2 =
»

hu ,uiI2 =
p

uT u (2.63)

40

Note that, in the metric space, it is also possible to define a distance formula between

two vectors which can be written as,

dM(u,v) = ku� vkM (2.64)

Similarly, the Euclidean distance formula can be recovered by using an identity matrix

for the metric tensorM.

2.5.1 Euclidean Metric Space

A Euclidean metric space is a metric space spanned by a constant metric tensor on its

domain ⌦. In particular, this means that the metric tensor M in equation 2.59, 2.60 and

2.64 is constant for any given vectors u and v. In other words, the metric tensorM does

not depend on the coordinate system. Namely, it is defined as,

M =

2

64
m1 m2

m3 m4

3

75 (2.65)

With this formulation, the distance formula can still be evaluated using equation 2.64

which at the same time, acts as the length computed between two vectors. We will refer to

this as the length of the edge evaluated under the Euclidean metric space, which is defined

as,

lM(ab) = dM(a, b) = ka� bkM (2.66)

2.5.2 Riemmanian Metric Space

A Riemannian metric space, as opposed to a Euclidean metric space, does not have a

constant metric tensor spanning the whole domain ⌦. In contrast, a metric field is instead

introduced and it varies smoothly in the whole domain ⌦. As a result, the metric tensor

41

M can then written as,

M =

2

64
m1(x, y) m2(x, y)

m3(x, y) m4(x, y)

3

75 (2.67)

The continuous mesh framework discussed in Chapter 4 will be based on the Rieman-

nian metric space. Now, since the metric tensor M is varying within the whole domain ⌦,

the length of an edge is no longer equal to the distance due to the variation of the metric

tensor between two vectors. Instead, the length of an edge is defined using an integral for

t 2 [0,1],

lM(ab) =

Z 1

0

k�0(t)kM dt =

Z 1

0

»
abT M(a+ tab) ab dt (2.68)

To visualize a metric field, it is very common to use the metric norm as an indicator

for demonstrating how the metric tensor at a specific location in the domain varies across

the space. The easiest way to do this is to build a unit circle around the chosen location

using the metric norm. To demonstrate this concept, recall equation 2.60 and equalize it to

1, then squaring both sides yields,

kukM = hu ,uiM = 1 (2.69)

Now, expanding it results in,

uT
Mu = (x� a)T M(x� a) = 1, (2.70)

where x is an arbitrary position in the domain (i.e. the end of vector u), and a is the center

of the unit circle (i.e. starting point of vector u). An interesting note here is that the metric

tensorM can be further simplified through eigenvalue decomposition, which results in,

uT (R⇤RT)u = (x� a)TR⇤R
T (x� a) = 1 (2.71)

42

(x� a)T

2

64
r11 r12

r21 r22

3

75

2

64
�1 0

0 �2

3

75

2

64
r11 r12

r21 r22

3

75

T

(x� a) = 1, (2.72)

where R is an orthonormal matrix and ⇤ is a diagonal matrix with its entries being the

eigenvalues of the metric tensor M. Note as well that the eigenvalue entries are strictly

positive. Consequently, equation 2.72 becomes,

(x̃� ã)T

2

64
�1 0

0 �2

3

75 (x̃� ã) = 1 (2.73)

which is equal to,
2X

i=1

Å
x̃i � ãi

hi

ã2

= 1 (2.74)

Equation 2.74 reassembles very much the equation of an ellipse with the length of its

axes being described by hi which is equal to ��1/2
i

. Lastly, there exists a natural mapping

between the metric norm and the L2 norm which is depicted through the eigenvalue

matrix. The similarity between both norms comes down to the mapping between the

metric tensor M and the identity matrix I2. This relationship is written as follows,

kukM = kM
� 1

2uk2 (2.75)

Figure 2.19 shows an example of a smoothly varying metric tensor applied to an

Euclidean space where the unit ball is drawn at the chosen red points. All in all, the

purpose of the Riemannian metric space is to compute the edge length using equation 2.68.

For more information about Riemannian metric space, please refer [7, 18, 39].

43

Figure 2.19: Unit ellipse at each position depicted by red points

2.6 Frame Fields

Frame fields are similar to Riemmanian metric fields as they share many common concepts

that can be applied in both cases. This concept was originally introduced by Panozzo et al.

in their work [27, 28]. The beauty of this concept is that the frame fields inherently contain

information about the target orientation as well as the target size of a quadrilateral through

defining a frame at every location on a smooth surface S in R2. This is done through a

pair of linearly independent vectors that are ordered in a cyclic counterclockwise fashion,

namely v and w, which defines each frame at on a tangent plane TpS at a position p on S

through,

fp =< v,w,�v,�w > = V < e1, e2,�e1,�e2 >, (2.76)

44

Figure 2.20: Frame field Mapping

where V is a linear mapping between the reference element and the physical element. Also,

the matrix V is defined as follows through polar decomposition,

V =

ï
v w

ò
=

2

64
cos(✓1) cos(✓2)

sin(✓1) sin(✓2)

3

75

| {z }
R(✓)

2

64
h1 0

0 h2

3

75 (2.77)

In this formulation, the parameters h1 and h2 are the lengths of the respective vectors

v and w. Also, ✓1 and ✓2 are the angles associated with vectors v and w where the first

matrix containing angles is known as the rotation matrix R(✓). In this work, right-angled

quadrilaterals are of interest for the mesh adaptation, and therefore, assumptions are made

to generate frames that contain vectors v and w that are orthonormal. To achieve this, the

angle ✓2 is simply shifted by 90� over ✓1 resulting in ✓2 = ✓1 + 90�.

Now, by introducing an average size h =
p
h1h2 =

p
det(V), and the anisotropy

term ⇢ = h1
h2
, equation 2.77 can be further reduced to for the forward (equation 2.78) and

45

backward (equation 2.79) mapping,

V = hR(✓)

2

64
p
⇢ 0

0 1p
⇢

3

75 (2.78)

V �1 =
1

h

2

64
1p
⇢

0

0
p
⇢

3

75 R(�✓) (2.79)

In a similar fashion to equation 2.75, the linear mapping matrix V can be related to the

L1 norm (L2 norm here) through the following relationship,

kukf = kV �1uk1 (2.80)

However, in practice, L1 norm is non-differentiable, and therefore, a selection of the p

value must be made to approximate the L1 norm. In [39], Maclean and Nadajarah found

that a p value of six is sufficient since values beyond six did not yield further benefits.

Hence in this work, p is selected as six. Additionally, using this formulation of Lp norm, it

follows very well the definition of the Lp-CVT framework introduced by Lévy and Liu in

[48], which will be utilized with frame fields for the mesh adaptation framework discussed

in this work. Figure 2.21 shows the various norms using different values of p where an

increase in the p value of the Lp-norm gradually changes the shape of the circle into a

rectangle which helps in generating rectangular triangles to eventually form quadrilaterals

in the output mesh.

46

Lp-Norm Visualization on a Circle
L
2
-norm

L
6
-norm

L
10
-norm

L
20
-norm

L
1000

-norm

Figure 2.21: Comparison of various Lp-norm on a Circle

2.7 Metric-based Mesh Adaptation

From the previous discussion, it is established that both a metric tensor as well as a frame

provide information on anisotropy when related to a norm. The idea behind metric-based

mesh adaptation is to generate an isotropic unit mesh with edges of unit lengths in the

metric space which results in an anisotropic mesh in the physical space [12]. This method

is utilized in various software such as BAMG [64] and Yams [64]. This can be formulated

as follows from [17],

Th = argmin
X

e2T 0
h

�
kekM � C

�2
, (2.81)

47

where the edge length is computed using equation 2.60 and the parameter C is a scaling

constant that is user-defined. As demonstrated in [17], Dolejšı́ uses a scaling constant of
p
3 which represents the edge length of an equilateral triangle within a unit circle. Figure

2.23 shows an example of a triangle generated based on a metric tensor,

Figure 2.22: Metric tensor ellipse with a single corresponding generated triangle

Another interesting fact is that the triangle generated in Figure 2.23 is not unique

[17, 18, 19, 65]. A visual inspection of the metric tensor ellipse shows that the following

triangle configuration (i.e.T 0
1 , T

0
2 , T

0
3 , T

0
4) is also possible,

Figure 2.23: Metric tensor ellipse with possible configuration of generated triangles

Therefore, depending on the metric tensor which adds anisotropy to the mesh and the

method of choice for metric-based adaptation, the output mesh will very likely not be

unique for a given initial mesh. For this work, the Lp-CVT technique will be used to solve

a similar problem in the Lp norm with concepts from Voronoi Diagram.

48

2.8 Lp-CVT Mesh Generator

In this work, Lp-CVT is used as the mesh adaptation framework which stands for Cen-

troidal Voronoi Tesselation in the Lp norm. As discussed previously in section 2.3, Lp-CVT

follows very similarly the principle of CVT, however, instead of using the L2 norm for

defining the distance between the contour of the cell and its centroid, this method aims to

build Voronoi cells through an arbitrary p norm while taking into account anisotropy from

a background metric fieldM(y).

2.8.1 Local Facet Energy Computation

Before jumping into the theory behind Lp-CVT, it is important to first understand the

structure of a Voronoi cell. A Voronoi cell is made of facets which are triangular structures

within a cell called facet. Facets are the principal component (i.e. f1 and f4 in Figure 2.24)

for computing energy and gradient on Voronoi cells when solving for the Lp-CVT.

Figure 2.24: Voronoi Cell with 6 facets - Left: Full Volume Voronoi Cell, Right: Clipped

Boundary Voronoi Cell

49

First, the local energy of a facet inside a Voronoi Cell is given by the following,

Ik =

Z

fk

kM(y)(y � xi)k
p

p
dy

=

Z

f 0
kM(T (⇠))(T (⇠)� xi)k

p

p
J d⇠

=

Z

f 0
kF (y)kp

p
J d⇠,

(2.82)

where M(y) is the background metric term evaluated at a location y which defines the

target anisotropy, and xi is the node in which the Voronoi Cell is built around (i.e. x0 in

Figure 2.24). Now, y are arbitrary points inside a facet. For the evaluation of the integral

by Gaussian Quadrature, y are selected to be the quadrature points in the facets. Note

that the term T (⇠) is the mapping between the reference triangle to the actual facet in

the physical domain and therefore, quadrature points on the reference triangle do not

change which facilitates the computation of the integral. Finally, J is the determinant of

the Jacobian defining the linear transformation between the reference and physical domain

which maps the reference triangle to the actual triangle and it is identical to equation 2.2.

Lastly, F (y) is equal toM(T (⇠))(T (⇠)� xi)which is written as a shorthanded term for

later derivations. These terms will be derived in the following section.

2.8.2 Total Energy and Derivative Computation

The total energy in the Voronoi diagram, ELp
is therefore the sum of the energy generated

by each Voronoi cell, ⌦i, which is in itself equal to the sum of all facets, fk, in the cell, which

is shown as follows,

ELp
=
X

i

X

fk2⌦i

Ik =
X

i

X

fk2⌦i

Z

f 0
kF (y)kp

p
J d⇠ (2.83)

50

Similarly, the total energy gradient is given by,

@E

@xi
=
X

fk2⌦i

@Ik
@xi

+
X

cj2⌦i

X

fk3ci

@Ik
@cj

@cj
@xi

(2.84)

The gradient can then be separated into three terms. The first term on the left, @Ik

@xi

, is

the sum of the derivative of the local energy of a facet with respect to its Voronoi site. Then,

the second term on the right, @Ik

@cj
, is the partial derivative of the local energy of a facet with

respect to a Voronoi vertex (i.e. c11 and c12 in Figure 2.24). Finally, the third term, dcj
dxi

, is the

chain rule for the derivative of the vertex position with respect to the Voronoi site. The

terms are defined as follows,

@Ik
@xi

=

Z

f 0
=

kF k
p

p

@F

ñ
@M

@T

@T

@xi
(T (⇠)� xi) +M(T (⇠))

Å
@T

@xi
� 1

ãô
J + kF k

p

p

@J

@xi
d⇠ (2.85)

@Ik
@cj

=

Z

f 0
=

kF k
p

p

@F

"
@M

@T

@T

@cj
(T (⇠)� xi) +M(T (⇠))

Ç
@T

@cj

å#
J + kF k

p

p

@J

@cj
d⇠ (2.86)

Now, the derivative of the vertex position with respect to the Voronoi site, dcj
dxi

in two-

dimensional space is derived based on the derivation of Lévy and Liu for the case of

three-dimensional space [48].

Let the circumcenter, Co, of a triangle be defined by the bisectors on each of the three

sides of the triangle as defined in Figure 2.25. By inspection, two bisectors are sufficient for

defining the circumcenter since in a triangle, the circumcenter is implicitly defined by the

intersection of the first two bisectors. The third bisector can be drawn by connecting the

circumcenter to the third side of the triangle. Now, let x0 be the origin of the triangle or a

Voronoi site. Then, we can define the following,

�!
AB = x1 � x0 (2.87)

�!
AC = x2 � x0 (2.88)

51

Figure 2.25: Triangle with 3 Bisectors

Also, the following can be established with the definition of the bisectors,

�!
AB · (Co � P1) =

�!
0 (2.89)

�!
AC · (Co � P2) =

�!
0 (2.90)

Distributing the dot product in equation 2.89 and 2.90, and manipulating the equations

gives the following,
�!
AB ·Co =

�!
AB · P1 (2.91)

�!
AC ·Co =

�!
AC · P2 (2.92)

Now, rewriting equation 2.91 and 2.92 as a system of equations, and replacing the corre-

sponding variables yields the following,

2

64
[x1 � x0]T

[x2 � x0]T

3

75Co =

2

64
[x1 � x0] · [x1 + x0]/2

[x2 � x0] · [x2 + x0]/2

3

75 (2.93)

52

Now, letA andB denote the following,

A =

2

64
[x1 � x0]T

[x2 � x0]T

3

75 (2.94)

B =

2

64
[x1 � x0] · [x1 + x0]/2

[x2 � x0] · [x2 + x0]/2

3

75 =
1

2

2

64
[x1

2
� x0

2]

[x2
2
� x0

2]

3

75 (2.95)

Then,

Co =

2

64
[x1 � x0]T

[x2 � x0]T

3

75

�1 2

64
[x1 � x0] · [x1 + x0]/2

[x2 � x0] · [x2 + x0]/2

3

75 = A�1B (2.96)

Hence, by using the relationships for the derivative of matrices from Minka [66], we

have the following,

d(AB) = dAB +AdB (2.97)

d(A�1) = �A�1(dA)A�1, (2.98)

where,

dC = d(A�1B) = (dA�1)B +A�1dB

= �A�1(dA)A�1B +A�1dB

= A�1(dB � (dA)C),

(2.99)

and,
dCo

dx0
= A�1

Ç
dB

dx0
�

Å
dA

dx0

ã
Co

å
, (2.100)

where,

dA

dx0
=

2

64
�1

�1

3

75 ,
dB

dx0
=

1

2

2

64
�2x0

�2x0.

3

75 (2.101)

53

Finally,

dCo

dx0
=

2

64
[x1 � x0]T

[x2 � x0]T

3

75

�1 2

64
[Co � x0]T

[Co � x0]T

3

75 (2.102)

Now, in the case where the vertex point is clipped at the boundary, the following

formula can be used instead which is derived by Baudouin et al. in [67],

dCo

dx0
=

2

64
[x1 � x0]T

[N]T

3

75

�1 2

64
[Co � x0]T

0

3

75 , (2.103)

where N is the normal vector at the boundary line segment as shown in f4 in Figure 2.24.

However, this as a consequence is only an approximation of the derivative at the boundary

since the Voronoi Cell is clipped (i.e. the Voronoi Cell is not a full cell, but a broken cell

that is dictated by the shape of the boundary). Figure 2.26 shows an example of a Voronoi

diagram with clipped boundary cells (i.e. red points that are located at a corner on the

boundary where the cells are rectangular).

Figure 2.26: Example of Voronoi Diagram with clipped boundary

54

2.8.3 Quasi-Unit Mesh

Recall that in the general case, the goal of metric-based mesh adaptation is to generate a

unit mesh in the metric space. However, this is not guaranteed in practical application as

the Riemannian metric field may very often not be compatible with the domain size [18].

Instead, a quasi-unit mesh is targeted for the minimization problem and a relaxed criteria

is applied to the required length of the edges on all elements of the mesh.

This is applied through the insertion and removal of Voronoi sites in the domain such

that,

lM(ei) 2 [lmin, lmax] 8i 2 [1, 3] (2.104)

Where the edge length, ei, is computed using equation 2.68 and i are the indices indicating

the edges of a Delaunay triangle.

Figure 2.28 shows an example of edge splitting where the edges that are greater than

lmax are identified and highlighted in green on the left (i.e. li,1, li,2, li,3). Then, a Voronoi site

is inserted at the midpoint of it to split the edge by two (i.e. the blue points). Finally, a new

Voronoi diagram is generated based on the new set of Voronoi sites shown on the right

and three new Voronoi cells are generated (i.e. turquoise, purple, and yellow cells).

Figure 2.27: Example of Edge Splitting

55

Similarly, Figure 2.28 shows an example of edge merging or edge removal where the

edges that are less than lmin are identified and highlighted in orange on the left (i.e. lij,1).

Then, this edge is collapsed by merging both xi and xj together to form xk located at the

midpoint of lij,1. Finally, a new Voronoi diagram is generated based on the new set of

Voronoi sites shown on the right where two Voronoi cells (i.e. yellow cell) are merged

together to form a single Voronoi cell with site xk (i.e. turquoise cell).

Figure 2.28: Example of Edge Merging

2.9 Simplified Boundary Reconstruction of Lp-CVT

One limitation to the Lp-CVT algorithm is that the generated Voronoi diagram is clipped,

which affects the correctness of the gradient computed at the boundary. An improvement

to the Lp-CVT method is to consider reconstructing cells at the boundary to yield full

Voronoi cells which can help in evaluating the gradient at the boundary as demonstrated

by Ekelschot in [68]. This also avoids the need to use equation 2.103 to compute the

derivative of the vertex position with respect to the Voronoi sites for a clipped boundary

and instead, the regular equation 2.102 can be used.

56

The approach used in this work is more simpler than what has been presented by

Ekelschot. In his work, ghost cells are generated at the boundary to reconstruct the

boundary cells (i.e. each boundary cell would have a corresponding ghost cell). The ghost

cells are located at a unit metric length (i.e. lM = 1) from the boundary cell and they are

assumed to be rectangular because, at a high Lp norm, the Voronoi cells would naturally

contain right angles at the minimum state [68]. Instead, our work focuses on generating

ghost cells that are equidistant to the initial boundary � located at a length of lr which

is the average of the distance lb,i (i.e. edge length in physical space for the ith cell) for all

boundary cells located at a unit metric length from the initial boundary, �. Then, a ghost

boundary �0 made of ghost cells is generated for reconstructing the boundary cells. Figure

2.29 shows an example of boundary reconstruction. The length lr is computed as follows,

lr =

P
nb

i
(lb,i)|lM=1

nb

, (2.105)

where nb is the total number of boundary Voronoi cells.

Figure 2.29: Reconstruction of Boundary Voronoi Cell

57

2.10 Boundary Nodes Distribution

This section discusses the boundary node distribution based on the underlying metric

or frame field. For the static boundary case, the boundary nodes must first be placed

with spacing between each point that conforms with the underlying metric field for the

algorithm to converge. This is because the static boundary case only optimizes the volume

points based on the metric field, and therefore, the boundary nodes must be placed close

to the optimal point beforehand for the volume points to adapt accordingly and yield an

optimal solution. This is not true for the moving boundary case as the boundary points are

optimized simultaneously with the volume points which adds robustness to the algorithm.

As a result, the output mesh of the moving boundary case is not limited by the initial

distribution of the boundary points.

The placement of the boundary nodes according to the underlying metric field is based

on the work of Maclean [39]. First, let the boundary curve be parametrized by an equation

�(t) for t 2 [0, 1] where �0(t) is the tangent vector of �(t). Then, the boundary edge can

be defined by an integral of a single vector field based on the frame field in the L2 norm

defined as,

LM(�) =

Z 1

0

kM(�(t))�0(t)k2 dt =

Z 1

0

dL(t) dt (2.106)

This equation can then be evaluated by the Trapezoidal rule as follows,

LM(�) ⇡
N�1X

k=0

1

2
(dL(tk+1) + dL(tk)(tk+1 � tk), (2.107)

where tk are the sampled points defined by tk = k/N 8k 2 [0, N+1]whereN+1 is the total

number of points on the boundary including the endpoint. Once the boundary edge length

is obtained, points are then added one by one through a partial sum ensuring each added

point is of unit length forming the entire boundary. This requires solving an incomplete

integral to find the location of each added point by determining tk as summarized in [39].

58

2.11 Moving Boundary Formulation for Lp-CVT

Amajor contribution of this work is to introduce the notion of moving boundary for the

Lp-CVT algorithm. The formulation of the moving boundaries has different implications

for the code which will be summarized in this section.

2.11.1 Modified Total Energy and Derivative Computation

For the total energy computation, the equation 2.83 can still be used, however, since

the boundary cells are now part of the optimization process, they must be added to the

equation as well. Previously, with static boundaries, only the volume cells are taken

into account for the total energy computation since only the volume Voronoi sites are

optimized.

For the total energy derivative computation, a chain rule is applied to equation 2.84

which is similar to what has been shown in [69],

@E

@xi
=

@E

@xT

@xT

@xi
, (2.108)

where @E

@xi
includes the boundary Voronoi sites in addition to the volume Voronoi sites.

Figure 2.30: Moving boundary formulation for Lp-CVT

59

One observation to @E

@xi
is that depending on the boundary definition (i.e. linear or

curved boundary), the gradient may be formulated differently. Figure 4.2 shows an

example of a linear and curved boundary case.

For the linear boundary case, only the direction of interest will be accounted for in

the gradient computation since the boundary Voronoi site may be located on a vertical

side or a horizontal side of the boundary (assuming a rectangular domain). Therefore, the

design chain-ruled derivative matrix @xT
@xi

will contain 0 and 1 depending on the @E

@xi
that is

of interest. An example of gradient computation for both the constrained x-direction and

y-direction points in Figure 4.2 is shown as follows,

@E

@xi|{z}
1 xnD

=

2

666666664

@E

@xb,1

@E

@yb,1

@E

@xb,2

@E

@yb,2

3

777777775

T

| {z }
1 xnT

2

666666664

@xb,1

@yb,1

@xb,1

@xb,2

@yb,1

@yb,1

@yb,1

@xb,2

@xb,2

@yb,1

@xb,2

@xb,2

@yb,1

@yb,1

@yb,1

@xb,2

3

777777775

| {z }
nT xnD

=

2

666666664

@E

@xb,1

@E

@yb,1

@E

@xb,2

@E

@yb,2

3

777777775

T 2

666666664

0 0

1 0

0 1

0 0

3

777777775

=

2

64
@E

@yb,1

@E

@xb,2

3

75 , (2.109)

where nT is the total number of variables and nD is the total number of design variables.

For the curved boundary case, the exact equation of the boundary can be utilized for the

gradient computation while assuming that the x-direction is of interest. This is because

once the new update on the x position is received, the y value can be simply updated

through the boundary equation, y = y(x). An example of gradient computation for the

constrained x-direction points on the curved boundary in Figure 4.2 is shown as follows,

@E

@xi|{z}
1 xnD

=

2

64
@E

@xb,3

@E

@yb,3

3

75

T

| {z }
1 xnT

2

64
@xb,3

@xb,3

@yb,3

@xb,3

3

75

| {z }
nT xnD

=

2

64
@E

@xb,3

@E

@yb,3

3

75

T 2

64
1

@yb,3

@xb,3

3

75 =
@E

@xb,3
+

@yb,3
@xb,3

, (2.110)

where yb,3 is equal to the boundary equation, y = y(x) and @yb,3

@xb,3
is equal to the derivative

of y(x).

60

2.12 All-Quad Mesh Generator

Once the Lp-CVT algorithm has converged, the geometric duality of the Voronoi diagram

is generated which results in a Delaunay Triangulation, or a mesh full of triangles. This

triangular mesh is generated through the CGAL library [70]. Since the Lp-CVT algorithm

is solved using a high p norm of six as mentioned in section 2.6, the output mesh is

expected, but not guaranteed, to contain right-angled triangles which facilitate the process

of recombination of triangles to form quadrilaterals. Therefore, a refinement procedure

is performed by adding additional points at the midpoint of each edge to increase the

likelihood of a quad-dominant mesh after the recombination step. The recombination

process is done through the Blossom-Quad algorithm from the GMSH library [42, 71].

Once the quad-mesh is generated, the mesh is coded into a .MSH file (which is a GMSH

format) for compatibility with our flow solver PHILIP [72].

2.13 Overview of Lp-CVT algorithm

Solving the Lp-CVT problem requires a minimization of the functional, equation 2.83. The

goal is to reach a minimum state where the Voronoi sites xi are aligned with the centroid

of the Voronoi cell. In other words, the red points which are the xi must align on top of

the green points which are the centroid of the Voronoi cell in Figure 2.26. An example of

this has also been shown previously in Figure 2.8. With the formulation of the gradient

from equation 2.84, the functional can be solved using a quasi-Newton method. For this

work, the L-BFGS algorithm is employed from the ROL library of Trilinos [73] to solve

the minimization problem. Note that convergence in the algorithm is achieved once the

norm of the step size or the gradient as shown in equation 2.84 has reached below a certain

tolerance. Additionally, edge splitting and merging are performed as an outer loop to the

Lp-CVT algorithm until approximately 2% of the total edges are flagged for splitting and

merging.

61

Figure 2.31: Flowchart showing the Lp-CVT algorithm

62

Chapter 3

Numerical Methods

A brief introduction to the discontinuous Galerkin method will be presented in this section

which is the numerical scheme employed in our in-house flow solver PHiLiP [72]. Then,

a brief introduction to mesh adaptation will serve as the framework for the analytical as

well as discrete metric test case.

High-order numerical schemes are of interest as they present a significantly better cost

of computation without sacrificing accuracy [74]. In high-order methods, the solution can

be approximated using basis functions with polynomials of degree ”p” on a mesh with

a spatial discretization of size ”h”. Hence, high-order schemes possess the flexibility of

allowing the solution to be represented on various configurations of ”hp” mesh thereby

allowing the possibility of adaptation techniques to be developed on this basis. For this

work, the discontinuous Galerkin method is used for solving Euler’s equation in two-

dimensional space. This method was originally introduced by Reed and Hill and can be

found here [75]. In regards to adaptation, the solution can be adapted either by changing

the order of the element to increase the accuracy of the solution by using higher degree

polynomials to represent the solution or by changing the solution node placement on the

mesh at the location of interest. In this work, the ”p” order of the solution is assumed to be

uniform throughout the domain.

63

3.1 Discontinuous Galerkin Method

In CFD, the governing equation of interest for modeling fluid motions can be written in

the form of a general conservation law known as,

R(u) =
@u

@t
+r · F (u)� S(u) = 0, (3.1)

where u is the flow solution, R(u) is the residual, F (u) the flux vector and S(u) is

the source term. In particular, Euler’s equation and the Navier-Stokes equation can be

expressed in the form of Equation 3.1.

To solve equation 3.1, consider a computational domain, ⌦h, with a boundary � which

approximates the actual domain, ⌦, with techniques shown in Chapter 2. Then, the discrete

solution can be defined as uwhich is an approximation to the exact solution defined as u in

⌦. The principle of the DG method is to represent the discrete solution uh as a sum of the

local discrete solution uk

h
represented on a local domain or cell known as ⌦k where ⌦k 2 ⌦h.

Each local domain has a boundary �k and the local discrete solution is represented by,

uk

h
(x) =

Nk(pk)X

i=1

uk

i
�h,i(x) 8x 2 ⌦h, (3.2)

where pk is the order of the element, �h,i is the ith shape function defined on element k that

is defined by a set of basis function Vhp where �h,i 2 Vhp, and Nk(pk) is the total number of

solution points within the element k. Note that Nk(pk) depends on the type of cell chosen

(i.e. triangle or quadrilateral) as well as the order of the element pk and is defined as,

Nk(pk) =
1

2
(pk + 1)(pk + 2) (Triangle) (3.3)

Nk(pk) = (pk + 1)2 (Quadrilateral) (3.4)

More information about high-order elements can be found in Chapter 5 of The Finite

Element Method in Charged Particle Optics by Khursheed [76]. An example of both the

64

triangle as well as quadrilateral for pk equals to 2 (i.e. second-order element) is shown in

Figure 3.1,

Figure 3.1: 2nd order triangle and quadrilateral elements

Now, to represent the solution, a sum of the local solution can be expressed as follows,

uh(x) =
M

⌦k2⌦h

uk

i
(x). (3.5)

From equation 3.1, it is possible to solve for a solution by multiplying the equation with

arbitrary test functions h 2 Vhp and requiring that the residual R(u) to be orthogonal to

the test functions. After integrating by parts, the following is obtained,

Z

⌦k

 h

@uh

@t
d⌦�

Z

⌦k

r h · F (uh)d⌦�

Z

⌦k

 hS(uh)d⌦+

Z

@⌦k

 hF̂ (u+
h
, u�

h
, n)d� = 0, (3.6)

, where n is the normal vector at an element boundary, F̂ is the numerical flux that is

conserved across the elements, where u+
h
, and u�

h
, are the discontinuous interior and

exterior solutions.

65

3.2 Discrete Error Minimization

The premise of metric-based mesh adaptation is to adapt the mesh in accordance with a

metric tensor that encodes the targeted mesh to increase the accuracy of the solution. As

such, the error in the solution is known as the discrete error which is defined as follows,

Eh(uh) = ku� uhk
q

Lq(⌦h)
=

Z

⌦h

(u� uh)
qdx, (3.7)

where the discrete error is evaluated with respect to an Lq norm, u is the exact solution

and uh is the discrete solution.

The goal is then to optimize the mesh while attempting to reduce the discrete error

presented by equation 3.7. At the same time, it is also desired to generate an adapted

mesh with the optimal number of degrees of freedom (DOFs) to not sacrifice accuracy for

higher computational cost. Therefore, the global discrete error minimization problem is

formulated as follows from [16].

Given the existence of the exact solution u 2 C1(⌦) and a maximum number of degrees

of freedom C, or target complexity, solve,

min
Qhp

Eh(⇧hpu) = ku� ⇧hpuk
q

Lq(⌦h)
(3.8)

s.t. Nhp(Qhp)  C,

where Nhp(Qhp) is the total number of DOFs and ⇧hp is the optimal projection operator for

the solution space such that
⇧hpu = argmin

uh2Vhp

Eh(uh) (3.9)

where Vhp is the discontinuous hp solution space defined by the set of basis functions

on each element.

Solving the problem of equation 3.8 is a difficult task in the discrete setting (i.e. the

discrete mesh) as there are considerations of both continuous (i.e. shape of the elements

which can vary smoothly) and discrete elements (i.e. total number of elements, element

66

connectivity, etc.) that need to be optimized and taken into account [17, 39, 77]. Instead, a

fully continuous framework is of interest which will be discussed in Chapter 4.

3.3 Adjoint Method

In CFD, it is often of interest to solve the general conservation law and converge on a

particular parameter with minimal error. For instance, we might be interested in the lift

or drag value which can computed as a functional of interest. Then, the solution can aim

to minimize the error on this functional by adapting the mesh and to do this, the adjoint

method is often used.

Consider a functional of the flow solution J (u, x) where (u, x) 2 Nn, and also a con-

straint where R(u, x) = 0 denotes the solution residual as stated in equation 3.1 and its

partial derivative Rx is nonsingular everywhere in the domain ⌦. Then, we are interested

in minimizing J by identifying the critical points through setting dxJ to zero where dxJ

defines the change in the functional with respect to the design parameter x. The total

derivative dxJ can be formulated as follows,

dxJ = dxJ (u, x) = @uJ dxu+ @xJ =
@J

@u

@u

@x
+

@J

@x
(3.10)

And likewise, the constraint can be defined as,

dxR(u, x) = 0 since, R(u, x) = 0 everywhere in⌦ (3.11)

Therefore,

dxR = dxR(u, x) = @uRdxu+ @xR =
@R

@u

@u

@x
+

@R

@x
= 0 (3.12)

And,
@u

@x
= �

@R

@x

Å
@R

@u

ã�1

(3.13)

67

Now, substituting equation 3.13 into 3.10, we obtain the following where we can also

introduce the parameter T which is known as the adjoint variable,

dxJ = �
@J

@u

Å
@R

@u

ã�1

| {z }
 T

@R

@x
+

@J

@x

=
@J

@x
� T

@R

@x

(3.14)

Another derivation of the same result can be done through the Lagrangian as follows

where are the Lagrange multipliers or the adjoint variable,

L(u, x,) = J (u, x)� T

⇠⇠⇠⇠⇠:0
R(u, x) since, R(u, x) = 0 everywhere in⌦ (3.15)

Hence, we may compute the total derivative of dxJ (u, x) as dxL(u, x,) instead due to

the relationship in equation 3.15 and also, note that R(u, x) = 0 everywhere in the domain

⌦, then,

dxL(u, x,) = dxJ (u, x)� dx(
T
R(u, x))

= dxJ (u, x) + dx
T

⇠⇠⇠⇠⇠:0
R(u, x) + TdxR(u, x)

=
@J

@u

@u

@x
+

@J

@x
� T

Å
@R

@u

@u

@x
+

@R

@x

ã

=
@u

@x

Å
@J

@u
� T

@R

@u

ã

| {z }
adjoint equation

+

Å
@J

@x
� T

@R

@x

ã

(3.16)

In both equations 3.14 and 3.16, we can recover the total derivative dxJ = @J
@x

� T @R
@x

⇡ 0

through solving the adjoint equation,

@J

@u
� T

@R

@u
= 0 (3.17)

68

The benefit of this formulation is evident in equation 3.14 where the multiplication
@R
@x

Ä
@R
@u

ä�1
is required N times for N design parameters which is computationally expen-

sive. However, through solving the adjoint equation and finding the adjoint variable T ,

this process can be performed one time through solving a single linear system of equation

(equation 3.26) for N design parameters. Lastly, the functional of the flow solution can be

expressed in an integral form such as,

J (u) =

Z

⌦

g⌦(u)d⌦+

Z

�

g�(u)d�, (3.18)

where equation 3.18 is the general integral form that allows for the computation of param-

eters such as lift and drag value.

3.3.1 Dual-Weight Residual

To apply the concept of the adjoint method in mesh adaptation, we can adopt the dual-

weight residual (DWR) method which was first attempted by Venditti and Darmofal

[36, 37, 38]. This approach is also known as goal-oriented mesh adaptation which utilizes

the concept of fine and coarse grids.

First, a projection operator must be introduced to traverse from the coarse grid to the

fine grid and vice versa which is defined as follows,

uH

h
= IH

h
uH , (3.19)

where h represents the fine grid, and H represents the coarse grid. Therefore, uH

h
is the

fine grid solution resulting from a projection of the coarse grid solution uH . The idea of

the DWR method is to utilize the fine grid solution for accurately estimating the solution

represented on the coarse grid while not ever requiring the solution to converge on the fine

grid. Hence, we are interested in Jh(uh) which can be, first, expanded through a Taylor

69

series expansion with the higher order terms neglected as,

Jh(uh) ⇡ Jh(u
H

h
) +

@Jh

@uh

����
u
H

h

(uh � uH

h
). (3.20)

Similarly, the residual can also be expressed as,

Rh(uh) = 0 ⇡ Rh(u
H

h
) +

@Rh

@uh

����
u
H

h

(uh � uH

h
). (3.21)

Assuming that the fine grid solution converges and the residual is equal to zero, the

discrete error between the actual fine grid solution and its projected solution from the

coarse grid solution can be approximated as follows,

(uh � uH

h
) ⇡

@Rh

@uh

����
u
H

h

!�1

Rh(u
H

h
). (3.22)

Now, 3.22 can be substituted into equation 3.20 to yield the following,

Jh(uh) ⇡ Jh(u
H

h
)�

@Jh

@uh

����
u
H

h

@Rh

@uh

����
u
H

h

!�1

| {z }Å
 h|uH

h

ã
T

Rh(u
H

h
), (3.23)

where h|
T

u
H

h

satisfies the fine grid discrete adjoint equation,

@Jh

@uh

����
u
H

h

�

⇣
 h|uH

h

⌘T @Rh

@uh

����
u
H

h

= 0. (3.24)

And also, the fine grid discrete adjoint solution is evaluated from the coarse grid through

a projection operator similar to equation 3.25,

 H

h
= IH

h
 H , (3.25)

70

where T

H
satisfies the coarse grid discrete adjoint equation,

@JH

@uH

� T

H

@RH

@uH

= 0. (3.26)

Finally, the discrete error between the actual fine grid functional value and its projected

value from the coarse grid solution can be approximated from equation 3.27 as follows,

Jh(uh)� Jh(u
H

h
) ⇡ �

⇣
 h|uH

h

⌘T
Rh(u

H

h
). (3.27)

In this work, this discrete error term will be approximated through the sum of cell-wise

DWR values, namely,

���Jh(uh)� Jh(u
H

h
)
��� 

X

k

����
⇣
 h|uH

h

⌘T
Rh(u

H

h
)

����, (3.28)

where the equation 3.28 acts as a bound on the functional error and reducing the cell-wise

DWR value locally will globally improve the error bound (through the sum).

71

Chapter 4

Continuous Mesh Model and Error

Estimates

In section 3.2, the global discrete minimization problem is presented, however, it is not

easily solvable through a discrete framework. Therefore, a continuous mesh model will

be presented in this section which stems from the original work of Loseille and Alauzet

[18, 19].

4.1 Continuous Mesh Model

The main idea behind the continuous mesh model is the duality between the discrete mesh

that can be generated through techniques presented in Chapter 2 and the Riemannian

metric space as discussed in Chapter 3. Most notably, a continuous framework is defined

as a collection of continuous elements which are known as metric tensors M which

are defined in the domain ⌦ such that M = M(x) 8x 2 ⌦ where M(x) is known as a

Riemannian metric space [18]. Through the introduction of the continuous mesh model, it

is possible to introduce a continuous error model where the optimal mesh can be solved

through the use of variational calculus. For the scope of this work, frame fields will be

considered as the underlying continuous mesh model.

72

4.1.1 Continuous Element Definition of Area and Density

From section 2.6, the notion of the orientation (i.e. R(✓)), size (h), and anisotropy (⇢), has

been established for frame fields. Using these parameters, the area as well as the density at

any point, x, in the domain, ⌦, can be computed as follows,

A(x) = 4 · h(x)2 = 4 ·
⇣»

h1(x) · h2(x)
⌘2

= 4 · det
�
V (x)

��1
(Area) (4.1)

d(x) =
1

A(x)
=

1

4 · det
�
V (x)

� (Density) (4.2)

Equation 4.1 defines the area of a parallelogram which matches the definition of a

frame field where h1 and h2 represent half of the height and base of the parallelogram.

4.1.2 Continuous Mesh Characterization

From [17], the continuous mesh model can be characterized as follows,

• Orientation is equivalent to the rotation matrix R(✓) where ✓ 2 [0, ⇡)

• Stretching is equivalent to the anisotropy ⇢(h1, h2) 2 (0, 1]

• Size is equivalent to the density d(x) > 0

These three parameters form a tuplet which characterizes the continuous element. In

addition, we can characterize the continuous mesh by approximating the total number of

cells,N, as well as the total number of degrees of freedom (also known as continuous target

complexity), N . To achieve this, we can simply integrate the density over the domain and

multiply it by the polynomial degree of each element to yield respectively,

N(V) =

Z

⌦

d(x)dx =

Z

⌦

1

4 · det
�
V (x)

�dx (Total number of cells), (4.3)

N (V,P) =

Z

⌦

d(x)(P(x) + 1)2dx (Total number of degrees of freedom), (4.4)

where P(x) is equal to the distribution of polynomial degree across the domain.

73

4.2 Continuous Error Model

This section will discuss how to encode the discrete error from the solution onto the

frame field (i.e. continuous element) and solve the global discretization problem as shown

in equation 3.8 in a continuous framework. In particular, the goal is to first, optimize

the rotation matrix as well as the anisotropy locally on each element, and solve a global

problem to find the optimal density in the continuous mesh.

4.2.1 Local Interpolation Error

First, let’s derive the local continuous interpolation error based on the continuous mesh

model [16]. Consider a smooth function u, a point x̃ = (x̃1, x̃2)T 2 ⌦ and a polynominal

degree p 2 N. Using Taylor series expansion, the function u(x) can be expressed around x̃

as follows,

u(x) =
p+1X

k=0

1

k!

Ñ
kX

l=0

k!

l!(k � l)!

@ku(x̃)

@xl

1@x
k�l

2

(x1 � x̃1)
l(x2 � x̃2)

k�l

é
+O(|x� x̃|p+2) (4.5)

Then, we can also introduce a local projection operator ⇧x̃,p where the partial deriva-

tives for the projected function ⇧x̃,pu(x̃) has the same value as the partial derivatives of u

at the point x̃ up to an order of p,

@k

@x2
1@x

k�l

2

⇧x̃,pu(x̃) =
@k

@x2
1@x

k�l

2

u(x̃), (4.6)

where l is equal to any number from 0 to k, and k is equal to any number from 0 up to the

polynomial order p.

Hence, it is evident that substituting the solution u(x̃) defined by equation 4.5 into

equation 4.6 and taking the difference on both sides yields the following,

u(x)�⇧x̃,pu(x) = C

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0Ç
@k

@x2
1@x

k�l

2

⇧x̃,pu(x̃)�
@k

@x2
1@x

k�l

2

u(x̃)

å
+eintx̃,p(x̃)+O(|x�x̃|p+2), (4.7)

74

where the function eintx̃,p is the local interpolation error of degree p around x̃,

eintx̃,p(x) =
1

(p+ 1)!

Ñ
kX

l=0

Ç
p+ 1

l

å
@p+1u(x̃)

@xl

1@x
p+1�l

2

(x1 � x̃1)
l(x2 � x̃2)

p+1�l

é
. (4.8)

Equation 4.8 is equal to zero if evaluated at the point x̃. Now, the objective is to find a

bound to this local interpolation error through the use of the frame field (i.e. continuous

element), and this bound can be defined through the directional derivative of u(x) where,

as demonstrated in [16, 39], the bound is given by,

���eintx̃,p(x)
��� 

⇣
(x� x̃)TR()diag(A1, A2)

2
p+1R(�)(x� x̃)

⌘
(4.9)

Note that R() is the rotation matrix as defined in 2.77 and A1 as well as A2 are the

maximum value of the p+ 1 directional derivative in directions ⇠1 and ⇠2 respectively as

defined below,

A1(x̃, p) = max
k⇠k2=1

|Dp+1
⇠ u(x̃)| (4.10)

⇠1(x̃, p) = argmax
k⇠k2=1

|Dp+1
⇠ u(x̃)| (4.11)

 (x̃, p) 2 [0, 2⇡) such that ⇠1(x̃, p) = (cos(), sin()) (4.12)

A2(x̃, p) = |Dp+1
⇠2

u(x̃)|, where ⇠1 · ⇠2 = 0, (4.13)

where the directional derivatives are found from the enriched solution u+
h
that is p+ 1

times differentiable and recovered through anH1 patchwise reconstruction of the neighbor

solution cells. A similar recovery method can be found in more detail in these two papers

by Zienkiewics and Zhu [13, 14]. Note that the patchwise reconstruction is performed

using four neighbor solution points shown as,

75

Figure 4.1: H1 patchwise reconstruction

The enriched solution is therefore recovered by multiplying both the enriched solution

and the discrete solution by test functions �+ which are p+ 1 times differentiable,

hu+
h
� uh,�

+
iH1 = 0, (4.14)

hu+
h
,�+

iH1 = huh,�
+
iH1 8�+

2 Pp+1, (4.15)

where,

u+
h
= �+a, (4.16)

�+ = [�1,�2,�3,�4, ...,�p+1] = [1, x, y, x2, xy, y2, ...]. (4.17)

The approach to recovering the enriched solution is therefore to solve for a. Finally, the

anisotropy as well as the orientation of the frame field can be recovered using,

⇢ =

Å
A1

A2

ã �1
p+1

(4.18)

✓ = �
⇡

2
(4.19)

76

Once the anisotropy and orientation of the frame field are identified, we can define the

local continuous error estimator as follows,

e(x, d, p) = B(x, p)(d)�
q(p+1)

2 , (4.20)

where the term B(x, p) only depends on the anisotropy and orientation which was deter-

mined previously and is defined as follows,

B(x, p) = 2
q(p+1)+2

2

Ç
2⇡

q(p+ 1) + 2

å
(A1(x, p)A2(x, p))

q

2 . (4.21)

Now, the density function d remains to be solved in equation 4.20 globally through

minimizing a global continuous error estimator that will be discussed in the next section.

4.2.2 Global Interpolation Error

The global continuous error estimator is derived by summing the local continuous error of

the integration of the local continuous error estimator over the patchwise reconstructed

domain, ⌦k which is composed of the current cell shown in orange, and four neighbor

cells shown in green in Figure 4.1.

The global continuous error estimator is defined from [39] as,

E(d,P) =
X

k2Qh

Z

⌦k

e(xk, dk, pk)dx =
X

k2Qh

keintx̃,pk
q

Lq(
P

) �

X

k2Qh

keintx̃,pk
q

Lq(k) ⇡ Eh, (4.22)

where equation 4.22 provides an upper bound for the discrete minimization problem as

stated in equation 3.8. Now, the remaining work is to minimize the global continuous

error estimator in a similar fashion compared to the discrete variant of it while assuming

uniform polynomial distribution, i.e. P(x) = C, and this is defined as follows.

Given the existence of the exact solution u 2 C1(⌦) and a maximum number of degrees

of freedom C, we seek a continuous mesh dependent on the density d and polynomial

distribution P (x) such that the global continuous error estimator E(d,P) is minimal,

77

min
d

E(d,P) =

Z

⌦

B(x,P(x))(d)�
q(p+1)

2 dx (4.23)

s.t. Nhp(d,P) =

Z

⌦

d(x)(P(x) + 1)2dx  C

Now, to solve the minimization problem of the global continuous error estimator, we

can employ a traditional constraint optimization framework such as through the use of

Lagrange multipliers resulting in the following expression for the density,

d(x) =

Ç
2�(P(x+ 1)

qB(x,P(x))

å 2
�q(P(x)+1)+2

, 8x 2 ⌦, (4.24)

where the Lagrange multiplier � can be found by solving the constraint of equation 4.23

through the Bisection method.

In summary, from the local error estimator, we can compute the orientation and the

anisotropy which can be used to solve the minimization of the global continuous error.

Then, once the minimization problem is solved, the density is found as well which com-

pletes the last part for constructing the frame field. The encoding of the frame field is

done through the ”.MSH” format where the information is encoded in the ”Elements”

section of the ”.MSH” file. From there, the Lp-CVT algorithm reads this frame field map

and performs mesh adaptation.

4.3 Goal-Oriented Approach

As discussed in section 3.3.1, a mesh can be adapted to reduce the error in a functional of

interest by locally reducing the cell-wise DWR value which will globally reduce its error

as shown in equation 3.28. Through the approach by Balan et al. [78], the idea is to refine

regions in the mesh where the DWR is high and coarsen regions where the DWR value is

low. To achieve this, the area of the cell will be of interest, and the area can be linked to the

78

size of a frame field by the following,

h =

…
1

4
A(x) =

…
1

4
↵kIck, (4.25)

where Ic
k
is the current cell area, and ↵k is a scaling factor that governs whether or not the

cell should be refined or coarsened, and the target cell area is therefore,

Ik = ↵kI
c

k
, (4.26)

where the scaling factor ↵k is a function of a logarithmic scaling factor ⇠k which is itself a

function the cell-wise DWR value, ⌘k, which is defined as follows,

↵k =

8
>><

>>:

((rmax � 1)⇠2
k
+ 1)�1, ⌘k � ⌘ref,

((cmax � 1)⇠2
k
+ 1), ⌘k < ⌘ref,

(4.27)

⇠k =

8
>><

>>:

log(⌘k)�log(⌘c)
log(⌘max)�log(⌘c)

, ⌘k � ⌘ref,

log(⌘k)�log(⌘c)
log(⌘min)�log(⌘c)

, ⌘k < ⌘ref,

(4.28)

where the maximum and minimum DWR values are defined as follows,

⌘max = max
k2⌦k

⌘k, (4.29)

⌘min = min
k2⌦k

⌘k. (4.30)

Now, three parameters of choice as defined by the user are respectively rmax (maximum

refinement factor), cmax (maximum coarsening factor), and ⌘ref (a reference DWR value).

If the DWR value ⌘k is greater than or equal to the reference DWR value, then the cell is

refined, otherwise, the cell is coarsened. Now, to ensure that the output mesh respects the

target complexity C, we use the bisection method to find the ⌘ref which results in a target

complexity of C with the selected parameter of choices. We first evaluate the ↵k parameter,

79

then we define the target size h which we will use to compute the complexity which is

evaluated using equation 4.4, then, the functional of choice for the bisection method would

be the current complexity minus the target complexity, and therefore, the algorithm would

converge once the current and target complexities are equalized.

Figure 4.2: Flowchart showing the flow solver coupled with the Lp-CVT algorithm

80

Chapter 5

Results

In this section, a series of test cases will be presented to confirm the applicability of

the boundary treatment for anisotropic all-quad mesh adaptation through an Lp-CVT

approach. The goal is to demonstrate the applicability of the boundary treatment with

analytical metric fields as well as discrete metric fields and how it compares with the

performance of the same test case without boundary treatment. The benefits as well as

the drawbacks will be discussed. Then, a flow solver test case simulating a transonic flow

over a NACA0012 will be presented with the boundary treatment method and this will

showcase the application of this technique to a practical engineering scenario.

5.1 Analytical Metric Field

The analytical metric field is a continuous metric field that is defined at every position x

in the domain ⌦. These are different compared to a discrete metric field as an analytical

metric field does not depend on a background metric field which essentially defines

discretely a metric field for every cell in the mesh. In contrast, each point x in the domain

is exactly defined by a metric function (i.e. there are variations in the metric field defined

within the cell) for the analytical case. We will first examine how the boundary treatment

method, as defined in section 2.11, works on simple analytical metric fields such as a

81

constant metric field, then, we will also investigate more challenging analytical metric

fields such as a quadratic metric field. Note that as mentioned before in section 2.6, for

all test cases presented here, an Lp norm of six will be employed since values exceeding

six do not provide any additional benefit in estimating the L1 norm. Additionally, unless

otherwise specified, the input Voronoi diagram for the static boundary cases conforms to

the underlying metric field on the principle of section 2.11 to allow for convergence.

5.1.1 Constant Metric Field

The first analytical metric field that is of interest is the constant metric field defined as

follows,

M =

2

64
1 0

0 1

3

75 (5.1)

The constant metric field is the simplest form of a metric field that can exist and does

not vary in space, therefore, it acts as the baseline and benchmark case to prove the validity

of the boundary treatment method applied to the Lp-CVT algorithm.

(a) Clipped Boundary Voronoi Diagram (b) Reconstructed Boundary Voronoi Diagram

Figure 5.1: Comparison of clipped and reconstructed boundary Voronoi diagram based on

a constant metric field

82

The first validity check that is of interest is the boundary reconstruction technique

provided in section 2.9. Figure 5.1 shows an example of the reconstructed boundary shown

on the right-hand side. Note that the boundary cells are reconstructed based on a set of

ghost cells and this is shown in Figure 5.2 where the ghost cells or the ghost boundary is

highlighted in magenta.

(a) Reconstructed Voronoi Diagram with Ghost

Cells

(b) Reconstructed Voronoi Diagram

Figure 5.2: Reconstructed boundary with ghost cells

The gradient of the energy computed at the boundary (for both the bottom and right-

sided boundary nodes) is summarized in the following table,

xi 1.0 2.0 3.0 4.0 4.0 4.0

yi 0.0 0.0 0.0 1.0 2.0 3.0
dE

dxiC
-4.10885e-13 -3.01231e-13 -2.33456e-13 0.0396205 0.0396205 0.0396205

dE

dyiC
-0.0396205 -0.0396205 -0.0396205 -7.18901e-13 -7.80369e-13 8.2186e-14

dE

dxiR
-1.27378e-10 2.11382e-10 1.64414e-10 -1.28909e-10 3.9692e-11 6.08676e-11

dE

dyiR
-2.76333e-10 -1.07701e-10 1.38448e-10 -7.7596e-11 -1.48943e-10 5.26289e-11

Table 5.1: Energy gradient value for clipped boundary (dE
dxiC

) and reconstructed boundary

(dE
dxiR

) at the bottom and right side boundary

83

Table 5.1 shows the energy gradient for the bottom side as well as the right side of

the boundary. For the bottom side (i.e. points at yi equals 0), the clipped boundary

energy gradient dE

dxiC
shows convergence on the x-direction with tolerance up to O(1e-13),

however, the y-direction gradient only converges up to O(1e-2). This drastic difference

in convergence can be explained by the fact that the boundary node energy gradients

are evaluated with a clipped Voronoi cell. This limitation is due to the boundary being

predefined by a rectangular boundary and hence, the full Voronoi cell cannot be used for

the evaluation of the gradient. For the energy value to be at an optimal state, the boundary

points on the bottom side must further move in the y-direction, which is physically not

possible on the boundary. Hence, the evaluation of the gradient with a clipped equation

limits the optimal state found with the LBFGS algorithm as the boundary energy gradients

do not fully reflect the actual full cell at the boundary. Additionally, at convergence, all

three y-direction clipped energy gradients are identical, showing that the constant metric

field is being well applied in the code requiring the three boundary nodes to move in the

same direction and by the same amount.

In contrast, the reconstructed boundary cell shows convergence in both the x and

y-directions which is much better compared to the clipped version. The convergence as

shown in Table 5.1 shows convergence up to O(1e-10) and O(1e-11) where the y-direction

energy gradient is fully recovered and is of the same magnitude as the x-direction. Note

that the tolerance is not as low as the clipped boundary case (about one to two orders

higher), however, the reconstructed boundary case does show a tolerance that is deemed

acceptable for determining a convergence. This may be because a simplified version of

the boundary reconstruction method is used (as demonstrated in section 2.9) instead of

the cell-wise boundary reconstruction method used by Ekelschot [68]. For our work, the

simplified version was implemented instead due to the structure of our code, but, the

drawbacks are not apparent, and in contrast, acceptable convergence is shown, thus, the

simplified version of the boundary reconstruction will be used in the following section

with the moving boundary method.

84

For further validation, the right-side energy gradient is also investigated and similar

results are observed. Since the right-side boundary nodes are constrained in the y-direction,

the energy gradient convergence is therefore achieved by the y-direction (i.e. the boundary

points no longer move in the y-direction, and have reached an optimal state). On the other

hand, the x-direction energy gradient shows convergence up to O(1e-2), similar to the

bottom side. With the reconstructed boundary, the energy gradient is again recovered

where both the x and y-direction energy gradients converge at the same magnitude.

(a) Initial Voronoi Input Diagram

0 2 4 6 8 10 12
Iterations [-]

10�9

10�7

10�5

10�3

10�1

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Constant Metric Field
Static Boundary

Moving Boundary with Boundary Reconstruction

(b) Energy gradient convergence

(c) Static Boundary Output Voronoi diagram (d) Moving Boundary Output Voronoi diagram

Figure 5.3: Constant Metric Field Result Summary

85

For the subsequent analysis in this section, the reconstructed boundary method will be

utilized for evaluating the boundary energy gradient. Figure 5.3 shows the result of the Lp-

CVT algorithm solved with both the static and moving boundary method for the constant

metric field. The test case is set up with an initial number of 9 randomly distributed

volume points and 16 boundary points for a total of 25 points in a domain ⌦ = [0, 4]2.

Note that no edge splitting is utilized in this test case as only the first energy gradient

convergence is of interest for a proof of concept. Unsurprisingly, both the static andmoving

boundary method converges to the same output plot as shown in Figure 5.3. Additionally,

the energy gradient convergence is very similar (up toO(1e-9)) with the moving boundary

showing a steeper decrease in energy gradient at around the 6th iteration compared to

the static boundary which decreases slower and requires two additional iterations for

convergence. Figure 5.4 shows the all-quad mesh output for both the static and moving

boundary approach, and both output meshes are identical.

(a) Static Boundary All-Quad

GMSH Output

(b) Moving Boundary All-Quad

GMSH Output

Figure 5.4: Constant Metric Field All-Quad Mesh Summary

Another interesting test case was performed for the moving boundary approach which

is to begin the optimization with an initial Voronoi diagram with irregular boundaries.

This implies that the boundary points are distorted compared to the regular boundary

which was used in the previous results. This test case shows the strength of the moving

86

boundary approach where the starting boundary distribution can be decoupled from the

underlying metric field. This method does not necessarily require the boundary to follow

the metric field for it to converge. The output mesh is similar to the regular boundary case

as shown in Figure 5.5, and the convergence of the gradient is also promising where it

matches closely the static boundary method with the regular boundary.

(a) Initial Voronoi Input Diagram with Irregular

Boundary

(b) Moving Boundary Output Voronoi Diagram

with Irregular Boundary

0 2 4 6 8 10 12
Iterations [-]

10�9

10�7

10�5

10�3

10�1

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Constant Metric Field

Static Boundary

Moving Boundary with Boundary Reconstruction

Moving Boundary with Irregular Boundary Reconstruction

(c) Energy gradient convergence

Figure 5.5: Constant Metric Field Result with Irregular Boundary

87

5.1.2 Quadratic Metric Field

The second analytical metric field that is of interest is the quadratic metric field defined as

follows,

M(x, y) =

2

64
1 + 4x2

�4xy

�4xy 1 + 4y2

3

75 (5.2)

Notice here that this metric field varies with respect to the x and y-coordinate in the domain

⌦ and it has been explored in previous work [18, 39, 68]. The test case is set up with an

initial number of 20 randomly distributed volume points and 40 boundary points for a total

of 60 points in the domain ⌦ = [�1.3, 1.3]2. For the moving boundary, the initial Voronoi

diagram is set up with uniform and irregular boundaries to demonstrate the capability

of the moving boundary method. To achieve a quasi-unit mesh, the edge splitting and

merging threshold are set to LM 2 [0.0, 2.0] for static boundary and LM 2 [0.005, 2.0] for

moving boundary. In contrast to the work of Maclean in [39] where the author does not

introduce any merging thresholds for the static boundary, the moving boundary approach

requires at minimum a small merging threshold to avoid overlapping of boundary points

which can create extra edges if not removed/merged.

Figure 5.6 shows the results of the static and moving boundary approach. The static

boundary approach shows a boundary conforming to the quadratic metric field which is

symmetric on each side. As a result, the final output mesh is almost symmetric along the

diagonal axis. For the uniform and irregular moving boundary approach, the resulting

boundary distribution upon convergence reassembles a lot of the initial uniform and

distorted boundary which suggests a solution that cannot be achieved using a static

boundary. Additionally, it is apparent that near the four corners, there are clustering of

points resulting from the quadratic metric field, however, the clustering effect is not as

strong as the static boundary since more boundary points moved toward the center of the

domain near x = 0 and y = 0.

88

(a) Initial Voronoi Input Diagram (b) Static Boundary Output Voronoi diagram

(c) Initial Voronoi Input Diagram with Uniform

Boundary

(d) Moving Boundary Output Voronoi diagram

with Uniform Boundary

(e) Initial Voronoi Input Diagram with Irregular

Boundary

(f)Moving Boundary Output Voronoi diagram

with Irregular Boundary

Figure 5.6: Quadratic Metric Field Result Summary
89

(a) Static Boundary All-Quad GMSH Output (b) Moving Boundary with Uniform Boundary

All-Quad GMSH Output

(c)Moving Boundary with Irregular Boundary

All-Quad GMSH Output

0 20 40 60 80 100 120 140
Iterations [-]

10�10

10�8

10�6

10�4

10�2

100

102

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Quadratic Metric Field
Static Boundary

Moving Boundary with Uniform Boundary Reconstruction

Moving Boundary with Irregular Boundary Reconstruction

(d) Energy gradient convergence

Figure 5.7: All-Quad Output Mesh and Energy Gradient

Figure 5.7 shows the all-quad mesh output from GMSH for each approach as well

as the energy gradient convergence. One major observation is that the all-quad mesh

output is much more structured for the static boundary approach compared to the moving

90

boundary approach. This is not surprising since the boundary nodes are more constrained

throughout the optimization phase with a symmetric boundary distribution which adds

order to the cells upon convergence. On the other hand, the moving boundary approach

provides additional flexibility to the algorithm to place boundary points at locations

of interest, which results in less patterned output mesh configurations driven by the

movement of boundary nodes. Nevertheless, allowing the merging of points to occur

with the moving boundary approach, fewer points are required in the output mesh which

results in fewer cells generated. The convergence data is summarized in the following

table,

Boundary Condition #Nodes #Quadrilaterals Iteration krEk2

Static Boundary 513 460 104 6.36196e-11

Moving Uniform Boundary 481 432 98 3.3297e-09

Moving Irregular Boundary 463 416 137 1.03667e-09

Table 5.2: Summary of convergence for Quadratic Metric All-Quad Mesh and krEk2

In terms of energy gradient convergence, all three approaches appear to behave very

similarly with the uniform as well as the irregular moving boundary approach showing

a plateau near the 94th and 135th iteration respectively which is due to the convergence

on the step size tolerance. The static boundary approach converges to O(1e-11)whereas

the moving boundary approach converges to O(1e-9). The difference of about two orders

of convergence can be explained by the fact that the simplified boundary reconstruction

scheme is used instead of the cell-wise boundary reconstruction method used by Ekelschot

[68]. A simpler scheme is used to achieve expected convergence at the cost of reduced

accuracy on the gradient evaluation which is deemed acceptable for this work. Neverthe-

less, the behavior of spike down and up in the energy gradient is a result of the split and

merge algorithm acting on the outer loop of the LBFGS scheme which essentially restarts

the optimization process after each convergence until only 2% of the total number of edges

is required for split or merge where the algorithm stops.

91

5.2 Discrete Frame Field

Unlike analytical metric fields, discrete frame fields are not continuous across the domain

⌦. In contrast, each cell is discretely defined by a frame field as explained in Chapter 2,

and the frame field is generated using the continuous mesh model as explained in Chapter

4. This section aims to explore the applicability of the moving boundary approach on

discrete frame fields, which will serve as a basis for the flow solver test case that will be

discussed shortly. Note that the encoded frame field is defined as V �1 on each cell.

5.2.1 S-Shock Adaptation

The s-shock test case is an advection-diffusion problem with a manufactured solution S.

For this test case, an initial p1 solution on a 16 x 16 grid is solved and a feature-based error

estimator will be used for encoding the frame fields. The governing equation is defined as

follows,

r · (Dru)� C ·ru = S(u), (5.3)

(a) Initial S-Shock solution (p = 1) (b) Initial S-Shock Frame Field Map

Figure 5.8: Feature-based Initial S-Shock Solution

92

where,

D =
0.01⇡

e

2

64
12 3

3 20

3

75 , C =

ï
1.1, �

⇡

e

òT
, (5.4)

and the manufactured solution is given by the function S(u),

u(x, y) = 0.75 tanh
�
4 sin(10y � 5)� 24x+ 12

�
. (5.5)

Figure 5.8 shows the initial solution as well as the initial frame field output with the

L2 norm of the V �1 frame field shown on the right which will be used as an input to the

Lp-CVT algorithm. First, the boundary reconstruction approach with moving boundary

is studied on the initial solution. Table 5.2 shows that reconstructing the boundary using

the simple approach as opposed to the cell-wise method from [68] does not provide

significant benefit to the energy gradient convergence. Most notably, the evaluation of the

reconstructed boundary length resulting in kukf = 1 can be quite different from boundary

to boundary at the start of the mesh adaptation cycle. This is because no frame field

interpolation or extrapolation is performed, and only association of the frame field nearest

to the boundary points is used, therefore, accurate evaluation of the gradient may be

unachievable. Additionally, in the simple boundary reconstruction approach, outliers

can overweight the entire boundary reconstructed length lr (i.e., if one boundary frame

field requires a reconstructed boundary length lb,i of 60, whereas the other boundary

points only require a reconstructed boundary length of 0.2 to result in kukf = 1, then

the final reconstructed boundary length using the simple approach may be drastically

higher than 0.2, which impacts the accurate evaluation of the energy gradient). Three

grey rows are highlighted in Table 5.2 to demonstrate outliers which drives the lr value

considerably higher. A single light cyan row is also highlighted to show a higher kEk2

value compared to the other boundary points at convergence. Therefore, the simple

approach for reconstructing the boundary does not show satisfactory results for discrete

frame fields and will not be used in the analysis of discrete frame fields.

93

#Node xi yi lb,i lr =
Pnb

i (lb,i)|lM=1

nb
lr/lb,i krEk2

1 0.111111 0 0.175599 3.957021 22.53441648 0.00188491

2 0.222222 0 0.654876 3.957021 6.042397339 0.0226864

3 0.333333 0 0.81468 3.957021 4.857147592 0.00849525

4 0.444444 0 5.92369 3.957021 0.667999338 0.269867

5 0.555556 0 0.291196 3.957021 13.58885768 0.937548

6 0.666667 0 0.17281 3.957021 22.89810196 0.462133

7 0.777778 0 0.247215 3.957021 16.00639524 0.753397

8 0.888889 0 18.9879 3.957021 0.208396979 0.0102965

9 1 0.111111 0.369684 3.957021 10.70379297 0.00743074

10 1 0.222222 0.147742 3.957021 26.78331822 0.0252558

11 1 0.333333 0.128109 3.957021 30.88792357 0.000198845

12 1 0.444444 0.12143 3.957021 32.58684839 0.00063762

13 1 0.555556 0.106829 3.957021 37.04070056 0.000464526

14 1 0.666667 0.104173 3.957021 37.98509211 0.04506

15 1 0.777778 0.103097 3.957021 38.3815339 0.626763

16 1 0.888889 0.326615 3.957021 12.11524578 0.00920862

17 0.888889 1 3.30233 3.957021 1.198251235 0.00146308

18 0.777778 1 1.83148 3.957021 2.16055922 0.000079735

19 0.666667 1 1.12603 3.957021 3.514134615 0.0154094

20 0.555556 1 1.26035 3.957021 3.13962074 0.000378001

21 0.444444 1 0.209269 3.957021 18.9087777 0.819118

22 0.333333 1 0.170561 3.957021 23.20003401 8.67232

23 0.222222 1 0.27236 3.957021 14.52864224 0.0221344

24 0.111111 1 60.2364 3.957021 0.065691525 0.732611

25 0 0.888889 1.8411 3.957021 2.149270002 0.0045626

Table 5.3: Summary of reconstructed length for 25 boundary points based on the nearest

frame field of the initial S-Shock solution

94

The test case is set up with an initial number of 70 randomly distributed volume

points and an arbitrary number of boundary points as defined by section 2.10 in a domain

⌦ = [0, 1]2. Figure 5.9 shows the results of the Lp-CVT algorithm after using the moving

boundary approach and Figure 5.10 shows the results of static boundary for a total of five

mesh adaptation iterations. The Lp-CVT algorithm is performed using split and merge

thresholds of LM 2 [0.25, 2.25], ensuring a quasi-unit mesh with a considerable amount of

tolerances on the target edge sizes. Clearly, the target output mesh of the fifth adaptation

cycle shows the best overall alignment of the mesh with the s-shock for both approaches.

Noticeably, the moving boundary approach shows a greater amount of boundary mesh

points compared to the static boundary approach at each mesh adaptation cycle. This is

expected as the moving boundary approach does not fix the number of boundary points

in contrast to the static boundary approach and allows for the points to move. As a result,

a more structured quad-dominant mesh near the boundary (far from the s-shock) emerges

compared to the static boundary case where the distribution of the points at the boundary

is predefined. This comparison is shown in Figure 5.13 a) and b).

Additionally, Figure 5.10 e) and Figure 5.12 e) show the convergence of the Lp-CVT

energy gradient for both approaches. As expected, for a discrete frame field, since the

cell-wise frame field is only a discrete representation of the actual frame field, the Lp-CVT

energy gradient shows a region of stalling (i.e. flat lines) where the energy gradient has

difficulty converging. This same phenomenon has been observed in [39] when the output

adapted mesh based on a discrete as well as an analytical frame field were compared.

However, the moving boundary approach does show much more difficulty in achieving

a lower order of convergence compared to the static boundary approach. One possible

reason behind this is that the boundary gradients are not fully resolved with local cell

boundary reconstruction, ultimately stalling the convergence. In addition, the moving

boundary approach shows a smaller drop in order of convergence at the start of the mesh

adaptation cycle (i.e. drop of about 1 to 2 orders of convergence). However, as more and

more cells are being adapted towards regions of large directional changes in the solution,

95

the frame field becomes much more refined, resulting in much better convergence at the

fifth mesh adaptation cycle (i.e. drop of about 3 to 4 orders of convergence). The same is

true for the static boundary approach, however, since only volume nodes are of interest,

the energy gradient convergence is a much better order of convergence decrease compared

to the moving boundary approach.

In terms of the L2 norm of the solution error, Figure 5.13 d) shows that a uniform

grid performs the worst when refining the mesh uniformly, while the moving and static

boundary approaches show similar performance with an almost equal number of degrees

of freedom (DOFs). Note that during the early mesh adaptation cycles, both the static and

moving boundary approaches have divergences. The first mesh adaptation cycle for the

static boundary approach converges to a lower DOFs mesh compared to the baseline mesh.

This happens due to the algorithm converging with respect to the step length of the LBFGS

algorithm, therefore, the output mesh is considered as an optimal mesh since no further

solutions can be found in the proposed search direction. This then creates a small red line

pointing towards 930 DOFs in Figure 5.13 and goes back to 1030 DOFs on the second mesh

adaptation cycle. Similarly, the moving boundary approach also experiences the same

converging scenario an increase in the L2 norm of the solution error is observed at the

second mesh adaptation cycle. Besides, the static boundary approach shows a stalling

in the convergence of the error after around 2000 DOFs, whereas the moving boundary

approach still shows a downward slope in the error convergence plot, suggesting that

this method can achieve much lower error convergence due to the benefit of allowing

boundary points to move. Lastly, both the static and moving boundary approaches show a

similar progression in the number of DOFs increase per mesh adaptation cycle since the

target complexity grows by 1.5 times per cycle starting with an initial target complexity of

1536.

96

(a)Mesh Adaptation Cycle 1 - Solution (b) Mesh Adaptation Cycle 1 - Frame Field

(c)Mesh Adaptation Cycle 2 - Solution (d) Mesh Adaptation Cycle 2 - Frame Field

(e)Mesh Adaptation Cycle 3 - Solution (f)Mesh Adaptation Cycle 3 - Frame Field

Figure 5.9: Summary of S-Shock Case Results Set 1 - Moving Boundary

97

(a)Mesh Adaptation Cycle 4 - Solution (b) Mesh Adaptation Cycle 4 - Frame Field

(c)Mesh Adaptation Cycle 5 - Solution (d) Mesh Adaptation Cycle 5 - Frame Field

0 100 200 300 400 500
Iterations [-]

100

101

102

103

104

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Moving Boundary S-SHOCK Test case
Mesh Adaptation Cycle 1

Mesh Adaptation Cycle 2

Mesh Adaptation Cycle 3

Mesh Adaptation Cycle 4

Mesh Adaptation Cycle 5

(e) Lp-CVT - L2 norm Energy Gradient

Figure 5.10: Summary of S-Shock Case Results set 2 - Moving Boundary

98

(a)Mesh Adaptation Cycle 1 - Solution (b) Mesh Adaptation Cycle 1 - Frame Field

(c)Mesh Adaptation Cycle 2 - Solution (d) Mesh Adaptation Cycle 2 - Frame Field

(e)Mesh Adaptation Cycle 3 - Solution (f)Mesh Adaptation Cycle 3 - Frame Field

Figure 5.11: Summary of S-Shock Case Results Set 1 - Static Boundary

99

(a)Mesh Adaptation Cycle 4 - Solution (b) Mesh Adaptation Cycle 4 - Frame Field

(c)Mesh Adaptation Cycle 5 - Solution (d) Mesh Adaptation Cycle 5 - Frame Field

0 50 100 150 200 250 300 350 400
Iterations [-]

100

101

102

103

104

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Static Boundary S-SHOCK Test case
Mesh Adaptation Cycle 1

Mesh Adaptation Cycle 2

Mesh Adaptation Cycle 3

Mesh Adaptation Cycle 4

Mesh Adaptation Cycle 5

(e) Lp-CVT - L2 norm Energy Gradient

Figure 5.12: Summary of S-Shock Case Results Set 2 - Static Boundary

100

(a) Static boundary - Final Output Mesh (b) Moving boundary - Final Output Mesh

(c) Uniform boundary - Final Output Mesh

1000 1500 2000 2500 3000 3500 4000
Degrees of Freedom [-]

10�2

L
2
N
or
m

of
So
lu
ti
on

E
rr
or

[-
]

Convergence of L2 Error - Feature-based S-SHOCK Case
Uniform

Static Boundary

Moving Boundary with no Boundary Reconstruction

(d) L2 Norm of Solution Error Convergence Plot

Figure 5.13: Summary of S-Shock Case Results

5.2.2 Boundary Layer Adaptation

The second discrete frame field case that is of interest is the boundary layer case. For this

test case, a feature-based error estimator will be used. The manufactured solution is given

by the following,

u(x, y) =

Ç
x+

e
x

✏
�1

1� e
1
✏

åÇ
y +

e
y

✏
�1

1� e
1
✏

å
(5.6)

101

where ✏ is equal to 0.005 which has been used previously [77]. Similar to the s-shock test

case, the boundary layer equation is solved within a domain of ⌦ = [0, 1]2 with a merge

and splitting threshold of LM 2 [0.25, 2.25]. Also, this test case is set up with 70 randomly

distributed volume points and an arbitrary number of boundary points as defined by

section 2.10. The uniqueness of this test case lies in its emphasis on attracting points near

the top right corner of the domain and serves as a means to evaluate the mesh adaptation

scheme’s capability to generate anisotropic grids in regions of boundary layers. Figure 5.14

and 5.15 shows the results of the Lp-CVT algorithm after each mesh adaptation cycle for

the moving boundary approach, and likewise, Figure 5.16 and 5.17 shows the results using

the static boundary approach. One key observation of the convergence of the Lp-CVT

energy gradient shown in Figure 5.15 e) and Figure 5.17 e) is that there are instabilities

present in both the static and moving boundary because of the use of discrete frame fields.

Despite their analogy to a continuous framework, achieving deep convergence poses a

challenge, as noted in the preceding section. In terms of the total number of iterations,

the moving boundary approach shows very quick convergence with about 350 iterations

being the highest iteration count amongst the adaptation cycles. This is explained through

the algorithm converging once detecting less than 2% of total edges requires splitting or

merging as discussed in section 2.13. In contrast, the static boundary approach converges

on the step length of the LBFGS algorithm, suggesting no further solution is possible in

the search direction.

Figure 5.18 d) shows similar performance in the L2 norm convergence plot where on

some occasions, the static boundary would outperform the moving boundary method.

However, the drawback is that the static boundary method does not allow for points mov-

ing on the boundary which would be critical for curved surfaces as will be demonstrated

in the next section. Finally, both methods show a decrease in the L2 norm convergence of

about 2 orders of magnitude. The uniform mesh configuration shows the worst perfor-

mance with about two times the total amount of DOFs in the last mesh adaptation cycle

compared to standard static and moving boundary Lp-CVT.

102

(a)Mesh Adaptation Cycle 1 - Solution (b) Mesh Adaptation Cycle 1 - Frame Field

(c)Mesh Adaptation Cycle 2 - Solution (d) Mesh Adaptation Cycle 2 - Frame Field

(e)Mesh Adaptation Cycle 3 - Solution (f)Mesh Adaptation Cycle 3 - Frame Field

Figure 5.14: Summary of Boundary Layer Case Results Set 1 - Moving Boundary

103

(a)Mesh Adaptation Cycle 4- Solution (b) Mesh Adaptation Cycle 4 - Frame Field

(c)Mesh Adaptation Cycle 5 - Solution (d) Mesh Adaptation Cycle 5 - Frame Field

0 50 100 150 200 250 300 350
Iterations [-]

100

101

102

103

104

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Moving Boundary Boundary Layer Test case
Mesh Adaptation Cycle 1

Mesh Adaptation Cycle 2

Mesh Adaptation Cycle 3

Mesh Adaptation Cycle 4

Mesh Adaptation Cycle 5

(e) Lp-CVT - L2 norm Energy Gradient

Figure 5.15: Summary of Boundary Layer Case Results set 2 - Moving Boundary

104

(a)Mesh Adaptation Cycle 1 - Solution (b) Mesh Adaptation Cycle 1 - Frame Field

(c)Mesh Adaptation Cycle 2 - Solution (d) Mesh Adaptation Cycle 2 - Frame Field

(e)Mesh Adaptation Cycle 3 - Solution (f)Mesh Adaptation Cycle 3 - Frame Field

Figure 5.16: Summary of Boundary Layer Case Results Set 1 - Static Boundary

105

(a)Mesh Adaptation Cycle 4 - Solution (b) Mesh Adaptation Cycle 4 - Frame Field

(c)Mesh Adaptation Cycle 5 - Solution (d) Mesh Adaptation Cycle 5 - Frame Field

0 200 400 600 800 1000
Iterations [-]

100

101

102

103

104

L
2
N
or
m

of
E
ne
rg
y
G
ra
di
en
t
[-
]

LpCVT - Static Boundary Boundary Layer Test case
Mesh Adaptation Cycle 1

Mesh Adaptation Cycle 2

Mesh Adaptation Cycle 3

Mesh Adaptation Cycle 4

Mesh Adaptation Cycle 5

(e) Lp-CVT - L2 norm Energy Gradient

Figure 5.17: Summary of Boundary Layer Case Results Set 2 - Static Boundary

106

(a) Static boundary - Final Output Mesh (b) Moving boundary - Final Output Mesh

(c) Uniform boundary - Final Output Mesh

2000 4000 6000 8000 10000 12000 14000 16000
Degrees of Freedom [-]

10�2

10�1

L
2
N
or
m

of
So
lu
ti
on

E
rr
or

[-
]

Convergence of L2 Error - Feature-based BL Case
Uniform

Static Boundary

Moving Boundary with no Boundary Reconstruction

(d) L2 Norm of Solution Error Convergence Plot

Figure 5.18: Summary of Boundary Layer Case Results

5.3 Euler Test Case

The flow solver test case is based on solving a two-dimensional Euler equation to test

the capability of the boundary treatment applied to the Lp-CVT algorithm for real-world

applications. However, due to the early maturity of the scheme, only a single adjoint-based

example is explored to show the preliminary results of applying this scheme to a flow test

case.

107

5.3.1 Transonic NACA0012 Steady State Test Case

This test case aims to resolve a shockwave on a NACA0012 airfoil set at an angle of attack of

1.25 with the inflow condition set to Mach 0.8 resulting in a transonic flow. The governing

equation is the two-dimensional Euler’s equation shown as follows,

@xF + @xG = 0 (5.7)

where

F =

2

666666664

⇢u

⇢u2 + p

⇢uv

⇢u (e+ p)

3

777777775

, G =

2

666666664

⇢v

⇢uv

⇢v2 + p

v(⇢e+ p)

3

777777775

, (5.8)

where u and v are the velocity components in both horizontal and vertical directions, ⇢ is

the density, p is the pressure and e is the internal energy component.

For this test case, an adjoint-based approach is used to evaluate the effectiveness of

the Lp-CVT approach in adapting the initial mesh based on a drag-based functional. The

solution is approximated using a first-order polynomial, or p = 1, and a steady-state

solution is of interest. The pressure solutions based on the moving boundary approach are

shown in Figure 5.19. Similarly, the results of the static boundary approach are shown in

Figure 5.20. In addition to the Lp-CVT approach, a fixed-fraction method is also employed

for comparison purposes of the drag values outputted using each scheme with a fixed-

fraction of f = 0.05. The fixed-fraction method is a simple grid refinement strategy

employed to refine local cells by quadrupling the number of cells within a single original

cell. Hence, a single cell effectively becomes four cells in the following mesh adaptation

cycle [39] if marked for refinement. The marking of cells to be refined is determined

through the highest element-wise error in the domain and the portion of cells to be refined

108

is based on the fixed-fraction parameter f as defined previously to be 5%. Note that the

fixed-fraction method is only used as a reference in this test case in addition to the Lp-CVT

method.

Five mesh adaptation cycle is targeted for this test case to investigate the convergence

on the drag coefficient. The baseline grid is the same for all three methods, and it is a

coarse grid composed of 560 cells. It can be seen that the baseline grid does a poor job of

resolving the shockwave above the airfoil which is expected since a p = 1 solution with

coarse grids above the airfoil does not capture well the flow features. At the first mesh

adaptation cycle for both the static and moving boundary, the shockwave begins to appear

suggesting that both methods are starting to converge towards the expected flow features.

Interestingly, the static boundary approach yields a small shockwave under the airfoil

while the moving boundary does not. This may be because the moving boundary approach

allows the points to slide on the airfoil surface, allowing for more points to gather on the

top side first to resolve the upper shockwave. In contrast, the static boundary approach

has predefined and permanent airfoil point locations throughout all the mesh adaptation

cycles, which adds a dependency on the original grid for solution convergence. This is

especially apparent when looking at iterations 2 to 5 for the static boundary approach

where the bottom shockwave is more and more apparent, and remains at the same location.

On the contrary, the moving boundary approach slowly resolves a bottom shockwave as

the adaptation cycles increase.

Figure 5.21 shows the final output mesh for each approach as well as the corresponding

leading edge. In contrast to the fixed-fraction, for both the static and moving boundary

approaches, the boundary points are projected on the exact airfoil surface during the

quadrilateral recombination step resulting in a much better representation of the airfoil

curvature. Figure 5.21 e) shows the leading edge of the fixed-fraction final output mesh

which contains refined cells, however, most of them are linear, which does not help in

resolving the curvature of the airfoil. As expected, Figure 5.21 a) shows a symmetric mesh

configuration along the horizontal axis due to the static boundary configuration, however,

109

this results in larger cells above the airfoil surface and very skewed and small cells near

the leading edge which is a limitation of the static boundary approach. The distribution of

the boundary points on the airfoil at the beginning of the mesh adaptation phase already

predetermines the possible expected cell size that can be resolved near the airfoil. Hence, a

uniform cell distribution is therefore observed above and below the airfoil, undermining

the flexibility to resolve the target cell size and orientation if smaller and skewed cells are

required in those regions as shown in Figure 5.21 b). Figure 5.21 c) shows that the leading

edge of the moving boundary approach yields much smaller cells near the leading edge,

and also, unsymmetric boundary distribution is observed which demonstrates added

flexibility in resolving the target cell size as well as the original curvature of the airfoil

throughout the mesh adaptation cycles. Lastly, the presented results are preliminary and

hence the convergence of the functionals such as the lift and drag are not sufficiently

mature to be presented. This will be part of future work.

110

(a) Baseline (b) Mesh Adaptation Cycle 1

(c)Mesh Adaptation Cycle 2 (d) Mesh Adaptation Cycle 3

(e)Mesh Adaptation Cycle 4 (f)Mesh Adaptation Cycle 5

Figure 5.19: Moving Boundary Lp-CVT Mesh Adaptation Cycles

111

(a) Baseline (b) Mesh Adaptation Cycle 1

(c)Mesh Adaptation Cycle 2 (d) Mesh Adaptation Cycle 3

(e)Mesh Adaptation Cycle 4 (f)Mesh Adaptation Cycle 5

Figure 5.20: Static Boundary Lp-CVT Mesh Adaptation Cycles

112

(a) Static boundary - Final Output Leading

Edge

(b) Static boundary - Final Output Mesh

(c) Moving boundary - Final Output Leading

Edge

(d) Moving boundary - Final Output Mesh

(e) Fixed-Fraction Method - Final Output

Leading Edge

(f) Fixed-Fraction Method - Final Output

Mesh

Figure 5.21: Final Output Mesh Result Summary

113

Chapter 6

Conclusion

In conclusion, the moving boundary method demonstrates enhancements over the static

boundary approach by providing flexibility at the boundary, allowing for the movement of

points at specific locations of interest. This is demonstrated through the analytical metric

field test cases where a similar final output mesh has been observed between the static and

moving boundary approach, however, in the case of the moving boundary approach, a

non-uniform starting boundary distribution can be used instead to yield similar results.

In the case of more challenging test cases such as the quadratic analytical metric field, a

simple boundary reconstruction technique has been introduced to recover the incorrect

energy gradient computed at the boundary due to clipped Voronoi cells. This technique

has proven to be useful in analytical test cases, however, poor results were observed when

used with discrete frame fields. The s-shock test case showed that the simplified boundary

reconstruction technique can be wrongly employed when drastic changes in the discrete

frame fields around the boundary are present. Nonetheless, it was shown that the regular

moving boundary approach showed satisfactory results when compared to the static

boundary approach, achieving a three- to four-order reduction in the convergence. It was

also shown through the boundary layer test case that instabilities in the energy gradient

convergence are present for both the moving and static boundary approach, suggesting

that discrete frame fields are more likely to converge based on the merging and splitting

114

threshold criteria or step length convergence rather than on gradient convergence. Finally,

the transonic flow solver test case showed that the moving boundary method can add

flexibility to resolve curvatures on surfaces while performing mesh adaptation based on

different target cell sizes, however, this could potentially alter the original surface, yielding

a different geometry at the final output mesh unless a higher-order representation of the

grid is employed.

6.1 Future Work

Future work can be focused on improving the boundary reconstruction scheme to recon-

struct the boundary based on a local cell area rather than averaging the metric length

required for yielding a quasi-unit mesh over the entire boundary. Additional checks can

also be done on the final output mesh to verify if the original geometry of the surfaces

present in the domain is still valid after performing boundary point movements. Addi-

tionally, more flow test cases should be performed to evaluate the maturity of the moving

boundary approach, and convergence of the functional such as lift and drag should be

investigated once convergence is achieved. Lastly, a high-order version of the Lp-CVT

can be explored which would likely start with the static boundary approach, and then,

progress toward the moving boundary approach. The high-order version of this algorithm

should benefit the adjoint-based mesh adaptation as the coefficient of lift or drag can

be much better resolved following a curvature in the elements near the airfoil surface

which would help track the flow features that are naturally driven by the shape of the

airfoil. Moreover, the high-order representation of the grid would better maintain the

airfoil geometry.

115

Bibliography

[1] M. L. Hosain and R. B. Fdhila, “Literature review of accelerated CFD simulation

methods towards online application,” Energy Procedia, vol. 75, pp. 3307–3314, Aug.

2015. [Online]. Available: https://doi.org/10.1016/j.egypro.2015.07.714

[2] A. Cary, J. Chawner, E. Duque, W. Gropp, B. Kleb, R. Kolonay, E. Nielsen,

and B. Smith, “Realizing the vision of CFD in 2030,” Computing in Science

& Engineering, vol. 24, no. 1, pp. 64–70, Jan. 2022. [Online]. Available:

https://doi.org/10.1109/mcse.2021.3133677

[3] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck,

R. Hartmann, K. Hillewaert, H. Huynh, N. Kroll, G. May, P.-O. Persson, B. van

Leer, and M. Visbal, “High-order CFD methods: current status and perspective,”

International Journal for Numerical Methods in Fluids, vol. 72, no. 8, pp. 811–845, Jan.

2013. [Online]. Available: https://doi.org/10.1002/fld.3767

[4] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-G.

Vallet, “Anisotropic mesh adaptation: towards user-independent, mesh-independent

and solver-independent CFD. part i: general principles,” International Journal for

Numerical Methods in Fluids, vol. 32, no. 6, pp. 725–744, Mar. 2000. [Online]. Available:

https://doi.org/10.1002/(sici)1097-0363(20000330)32:6h725::aid-fld935i3.0.co;2-4

[5] D. Ait-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, and M.-G.

Vallet, “Anisotropic mesh adaptation: towards user-independent, mesh-independent

and solver-independent CFD. part II. structured grids,” International Journal for

116

https://doi.org/10.1016/j.egypro.2015.07.714
https://doi.org/10.1109/mcse.2021.3133677
https://doi.org/10.1002/fld.3767

Numerical Methods in Fluids, vol. 39, no. 8, pp. 657–673, 2002. [Online]. Available:

https://doi.org/10.1002/fld.356

[6] J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin, and W. G. Habashi,

“Anisotropic mesh adaptation: towards user-independent, mesh-independent and

solver-independent CFD. part III. unstructured meshes,” International Journal for

Numerical Methods in Fluids, vol. 39, no. 8, pp. 675–702, 2002. [Online]. Available:

https://doi.org/10.1002/fld.357

[7] F. Alauzet and A. Loseille, “A decade of progress on anisotropic mesh adaptation for

computational fluid dynamics,” Computer-Aided Design, vol. 72, p. 13–39, Mar. 2016.

[Online]. Available: http://dx.doi.org/10.1016/j.cad.2015.09.005

[8] W. Huang, L. Kamenski, and J. Lang, “A new anisotropic mesh adaptation

method based upon hierarchical a posteriori error estimates,” Journal of

Computational Physics, vol. 229, no. 6, p. 2179–2198, Mar. 2010. [Online]. Available:

http://dx.doi.org/10.1016/j.jcp.2009.11.029

[9] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement techniques,”

Journal of Computational and Applied Mathematics, vol. 50, no. 1–3, p. 67–83, May 1994.

[Online]. Available: http://dx.doi.org/10.1016/0377-0427(94)90290-9

[10] A. Belme, F. Alauzet, and A. Dervieux, “An a priori anisotropic goal-oriented

error estimate for viscous compressible flow and application to mesh adaptation,”

Journal of Computational Physics, vol. 376, p. 1051–1088, Jan. 2019. [Online]. Available:

http://dx.doi.org/10.1016/j.jcp.2018.08.048

[11] A. Belme, “Unsteady aerodynamics and adjoint method,” Ph.D. dissertation, Univer-

sité Nice Sophia Antipolis, 2011.

[12] A. Loseille, A. Dervieux, and F. Alauzet, “Fully anisotropic goal-oriented

mesh adaptation for 3d steady euler equations,” Journal of Computational

117

https://doi.org/10.1002/fld.356
https://doi.org/10.1002/fld.357
http://dx.doi.org/10.1016/j.cad.2015.09.005
http://dx.doi.org/10.1016/j.jcp.2009.11.029
http://dx.doi.org/10.1016/0377-0427(94)90290-9
http://dx.doi.org/10.1016/j.jcp.2018.08.048

Physics, vol. 229, no. 8, p. 2866–2897, Apr. 2010. [Online]. Available: http:

//dx.doi.org/10.1016/j.jcp.2009.12.021

[13] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a

posteriori error estimates. part 1: The recovery technique,” International Journal for

Numerical Methods in Engineering, vol. 33, no. 7, p. 1331–1364, May 1992. [Online].

Available: http://dx.doi.org/10.1002/nme.1620330702

[14] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a

posteriori error estimates. part 2: Error estimates and adaptivity,” International Journal

for Numerical Methods in Engineering, vol. 33, no. 7, p. 1365–1382, May 1992. [Online].

Available: http://dx.doi.org/10.1002/nme.1620330703

[15] V. Dolejšı́, “Anisotropic mesh adaptation for finite volume and finite element

methods on triangular meshes,” Computing and Visualization in Science, vol. 1, no. 3, p.

165–178, Nov. 1998. [Online]. Available: http://dx.doi.org/10.1007/s007910050015

[16] V. Dolejšı́, “Anisotropic hp-adaptive method based on interpolation error estimates in

the lq-norm,” Applied Numerical Mathematics, vol. 82, p. 80–114, Aug. 2014. [Online].

Available: http://dx.doi.org/10.1016/j.apnum.2014.03.003

[17] V. Dolejšı́, G. May, and A. Rangarajan, “A continuous hp-mesh model for adaptive

discontinuous galerkin schemes,” Applied Numerical Mathematics, vol. 124, p. 1–21,

Feb. 2018. [Online]. Available: http://dx.doi.org/10.1016/j.apnum.2017.09.015

[18] A. Loseille and F. Alauzet, “Continuous mesh framework part i: Well-posed

continuous interpolation error,” SIAM Journal on Numerical Analysis, vol. 49, no. 1, p.

38–60, Jan. 2011. [Online]. Available: http://dx.doi.org/10.1137/090754078

[19] A. Loseille and F. Alauzet, “Continuous mesh framework part ii: Validations and

applications,” SIAM Journal on Numerical Analysis, vol. 49, no. 1, p. 61–86, Jan. 2011.

[Online]. Available: http://dx.doi.org/10.1137/10078654X

118

http://dx.doi.org/10.1016/j.jcp.2009.12.021
http://dx.doi.org/10.1016/j.jcp.2009.12.021
http://dx.doi.org/10.1002/nme.1620330702
http://dx.doi.org/10.1002/nme.1620330703
http://dx.doi.org/10.1007/s007910050015
http://dx.doi.org/10.1016/j.apnum.2014.03.003
http://dx.doi.org/10.1016/j.apnum.2017.09.015
http://dx.doi.org/10.1137/090754078
http://dx.doi.org/10.1137/10078654X

[20] N. Ringue and S. Nadarajah, “Optimization-based anisotropic hp-adaptation

for high-order methods,” in 23rd AIAA Computational Fluid Dynamics Conference.

American Institute of Aeronautics and Astronautics, Jun. 2017. [Online]. Available:

http://dx.doi.org/10.2514/6.2017-3101

[21] M. Ainsworth and J. Oden, “A posteriori error estimation in finite element analysis,”

Computer Methods in Applied Mechanics and Engineering, vol. 142, no. 1–2, p. 1–88, Mar.

1997. [Online]. Available: http://dx.doi.org/10.1016/S0045-7825(96)01107-3

[22] C. Roy, “Strategies for driving mesh adaptation in cfd (invited),” in 47th AIAA

Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.

American Institute of Aeronautics and Astronautics, Jan. 2009. [Online]. Available:

http://dx.doi.org/10.2514/6.2009-1302

[23] A. Balan, M. A. Park, S. L. Wood, W. K. Anderson, A. Rangarajan, D. P. Sanjaya,

and G. May, “A review and comparison of error estimators for anisotropic mesh

adaptation for flow simulations,” Computers amp; Fluids, vol. 234, p. 105259, Feb. 2022.

[Online]. Available: http://dx.doi.org/10.1016/j.compfluid.2021.105259

[24] E. F. D’Azevedo and R. B. Simpson, “On optimal interpolation triangle incidences,”

SIAM Journal on Scientific and Statistical Computing, vol. 10, no. 6, p. 1063–1075, Nov.

1989. [Online]. Available: http://dx.doi.org/10.1137/0910064

[25] E. F. D’Azevedo and R. B. Simpson, “On optimal triangular meshes for minimizing

the gradient error,” Numerische Mathematik, vol. 59, no. 1, p. 321–348, Dec. 1991.

[Online]. Available: http://dx.doi.org/10.1007/BF01385784

[26] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational

Fluid Dynamics. Oxford University Press, Jun. 2005. [Online]. Available:

http://dx.doi.org/10.1093/acprof:oso/9780198528692.001.0001

119

http://dx.doi.org/10.2514/6.2017-3101
http://dx.doi.org/10.1016/S0045-7825(96)01107-3
http://dx.doi.org/10.2514/6.2009-1302
http://dx.doi.org/10.1016/j.compfluid.2021.105259
http://dx.doi.org/10.1137/0910064
http://dx.doi.org/10.1007/BF01385784
http://dx.doi.org/10.1093/acprof:oso/9780198528692.001.0001

[27] D. Panozzo, E. Puppo, M. Tarini, and O. Sorkine-Hornung, “Frame fields: Anisotropic

and non-orthogonal cross fields additional material,” Proceedings of the ACM TRANS-

ACTIONS ON GRAPHICS (PROCEEDINGS OF ACM SIGGRAPH, 2014.

[28] O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-Hornung, “Designing n-

polyvector fields with complex polynomials,” in Computer Graphics Forum, vol. 33,

no. 5. Wiley Online Library, 2014, pp. 1–11.

[29] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differen-

tial equations,” Journal of computational Physics, vol. 53, no. 3, pp. 484–512, 1984.

[30] M. J. Berger and A. Jameson, “Automatic adaptive grid refinement for the euler

equations,” AIAA journal, vol. 23, no. 4, pp. 561–568, 1985.

[31] G. P. Warren, W. K. Anderson, J. L. Thomas, and S. T. Krist, “Grid convergence

for adaptive methods,” 1991. [Online]. Available: https://api.semanticscholar.org/

CorpusID:120939509

[32] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, “Adaptive remeshing for

compressible flow computations,” Journal of computational physics, vol. 72, no. 2, pp.

449–466, 1987.

[33] J. Peraire, J. Peiro, and K. Morgan, “Adaptive remeshing for three-dimensional com-

pressible flow computations,” Journal of Computational Physics, vol. 103, no. 2, pp.

269–285, 1992.

[34] P. George, F. Hecht, and M. Vallet, “Creation of internal points in voronoi’s type

method. control adaptation,” Advances in Engineering Software and Workstations,

vol. 13, no. 5–6, p. 303–312, Sep. 1991. [Online]. Available: http://dx.doi.org/10.1016/

0961-3552(91)90034-2

120

https://api.semanticscholar.org/CorpusID:120939509
https://api.semanticscholar.org/CorpusID:120939509
http://dx.doi.org/10.1016/0961-3552(91)90034-2
http://dx.doi.org/10.1016/0961-3552(91)90034-2

[35] R. Becker and R. Rannacher, “A feed-back approach to error control in finite

element methods: Basic analysis and examples,” 1996. [Online]. Available:

https://api.semanticscholar.org/CorpusID:10696092

[36] D. A. Venditti and D. L. Darmofal, “Adjoint error estimation and grid adaptation

for functional outputs: Application to quasi-one-dimensional flow,” Journal of

Computational Physics, vol. 164, no. 1, p. 204–227, Oct. 2000. [Online]. Available:

http://dx.doi.org/10.1006/jcph.2000.6600

[37] D. A. Venditti and D. L. Darmofal , “Grid adaptation for functional outputs:

Application to two-dimensional inviscid flows,” Journal of Computational Physics, vol.

176, no. 1, p. 40–69, Feb. 2002. [Online]. Available: http://dx.doi.org/10.1006/jcph.

2001.6967

[38] D. A. Venditti and D. L. Darmofal, “Anisotropic grid adaptation for functional

outputs: application to two-dimensional viscous flows,” Journal of Computational

Physics, vol. 187, no. 1, p. 22–46, May 2003. [Online]. Available: http:

//dx.doi.org/10.1016/S0021-9991(03)00074-3

[39] K. MacLean and S. Nadarajah, “Anisotropic mesh generation and adaptation for

quads using the l-cvt method,” Journal of Computational Physics, vol. 470, p. 111578,

Dec. 2022. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2022.111578

[40] P.-O. Persson and G. Strang, “A simple mesh generator in matlab,” SIAM

Review, vol. 46, no. 2, p. 329–345, Jan. 2004. [Online]. Available: http:

//dx.doi.org/10.1137/S0036144503429121

[41] L. P. Chew, “Constrained delaunay triangulations,” in Proceedings of the third annual

symposium on Computational geometry - SCG ’87, ser. SCG ’87. ACM Press, 1987.

[Online]. Available: http://dx.doi.org/10.1145/41958.41981

[42] C. Geuzaine and J. Remacle, “Gmsh: A 3-d finite element mesh generator with

built-in pre- and post-processing facilities,” International Journal for Numerical

121

https://api.semanticscholar.org/CorpusID:10696092
http://dx.doi.org/10.1006/jcph.2000.6600
http://dx.doi.org/10.1006/jcph.2001.6967
http://dx.doi.org/10.1006/jcph.2001.6967
http://dx.doi.org/10.1016/S0021-9991(03)00074-3
http://dx.doi.org/10.1016/S0021-9991(03)00074-3
http://dx.doi.org/10.1016/j.jcp.2022.111578
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1145/41958.41981

Methods in Engineering, vol. 79, no. 11, p. 1309–1331, May 2009. [Online]. Available:

http://dx.doi.org/10.1002/nme.2579

[43] J. Steger and R. Sorenson, “Automatic mesh-point clustering near a boundary

in grid generation with elliptic partial differential equations,” Journal of

Computational Physics, vol. 33, no. 3, p. 405–410, Dec. 1979. [Online]. Available:

http://dx.doi.org/10.1016/0021-9991(79)90165-7

[44] B. Delaunay, S. Vide, A. Lamémoire, and V. De Georges, “Bulletin de l’academie des

sciences de l’urss,” Classe des sciences mathématiques et naturelles, vol. 6, pp. 793–800,

1934.

[45] O. R. Musin, “Properties of the delaunay triangulation,” in Proceedings of the thirteenth

annual symposium on Computational geometry, 1997, pp. 424–426.

[46] L. Chen and J.-c. Xu, “Optimal delaunay triangulations,” Journal of Computational

Mathematics, pp. 299–308, 2004.

[47] N. P. Weatherill, “Delaunay triangulation in computational fluid dynamics,” Comput-

ers & Mathematics with Applications, vol. 24, no. 5-6, pp. 129–150, 1992.

[48] B. Lévy and Y. Liu, “Lp Centroidal Voronoi Tessellation and its applications,” ACM

Transactions on Graphics, vol. 29, no. 4, pp. 1–11, Jul. 2010. [Online]. Available:

https://doi.org/10.1145/1778765.1778856

[49] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang, “On centroidal

voronoi tessellation—energy smoothness and fast computation,” ACM Transactions on

Graphics (ToG), vol. 28, no. 4, pp. 1–17, 2009.

[50] M. Iri, K. Murota, and T. Ohya, “A fast voronoi-diagram algorithm with applications

to geographical optimization problems,” in System Modelling and Optimization: Pro-

ceedings of the 11th IFIP Conference Copenhagen, Denmark, July 25–29, 1983. Springer,

1984, pp. 273–288.

122

http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1016/0021-9991(79)90165-7
https://doi.org/10.1145/1778765.1778856

[51] W. J. Gordon and C. A. Hall, “Construction of curvilinear co-ordinate systems

and applications to mesh generation,” International Journal for Numerical Methods

in Engineering, vol. 7, no. 4, p. 461–477, Jan. 1973. [Online]. Available:

http://dx.doi.org/10.1002/nme.1620070405

[52] W. J. Gordon and L. C. Thiel, “Transfinite mappings and their application to grid

generation,” Applied Mathematics and Computation, vol. 10–11, p. 171–233, Jan. 1982.

[Online]. Available: http://dx.doi.org/10.1016/0096-3003(82)90191-6

[53] J. F. Thompson, F. C. Thames, and C. Mastin, “Automatic numerical generation of

body-fitted curvilinear coordinate system for field containing any number of arbitrary

two-dimensional bodies,” Journal of Computational Physics, vol. 15, no. 3, p. 299–319,

Jul. 1974. [Online]. Available: http://dx.doi.org/10.1016/0021-9991(74)90114-4

[54] J. K. Hodge, A. L. Stone, and T. E. Miller, “Numerical solution for airfoils near stall in

optimized boundary-fitted curvilinear coordinates,” AIAA Journal, vol. 17, no. 5, p.

458–464, May 1979. [Online]. Available: http://dx.doi.org/10.2514/3.61155

[55] J. WHITE, “Elliptic grid generation with orthogonality and spacing control on an

arbitrary number of boundaries,” in 21st Fluid Dynamics, Plasma Dynamics and Lasers

Conference. American Institute of Aeronautics and Astronautics, Jun. 1990. [Online].

Available: http://dx.doi.org/10.2514/6.1990-1568

[56] G. Moretti, “Grid generation using classical techniques,” NASA. Langley Research

Center Numerical Grid Generation Tech., 1980.

[57] P. R. Eiseman, “Grid generation for fluid mechanics computations,” Annual Review

of Fluid Mechanics, vol. 17, no. 1, p. 487–522, Jan. 1985. [Online]. Available:

http://dx.doi.org/10.1146/annurev.fl.17.010185.002415

[58] A.-S. W. Lindberg, T. M. Jørgensen, and V. A. Dahl, “Linear, transfinite and

weighted method for interpolation from grid lines applied to oct images,”

123

http://dx.doi.org/10.1002/nme.1620070405
http://dx.doi.org/10.1016/0096-3003(82)90191-6
http://dx.doi.org/10.1016/0021-9991(74)90114-4
http://dx.doi.org/10.2514/3.61155
http://dx.doi.org/10.2514/6.1990-1568
http://dx.doi.org/10.1146/annurev.fl.17.010185.002415

Applied Soft Computing, vol. 68, p. 293–302, Jul. 2018. [Online]. Available:

http://dx.doi.org/10.1016/j.asoc.2018.03.031

[59] Y. C. Liou, Journal of Scientific Computing, vol. 13, no. 1, p. 105–114, 1998. [Online].

Available: http://dx.doi.org/10.1023/A:1023260812163

[60] K. A. Hoffmann and S. T. Chiang, “Computational fluid dynamics volume i,” Engi-

neering education system, 2000.

[61] R. KUMAR, “Elliptic grid generation for naca0012 airfoil.”

[62] N. N. Sørensen, “Hypgrid2d. a 2-d mesh generator,” 1998.

[63] A. P. Kuprat, C. W. Mastin, and A. Khamayseh, “Boundary orthogonality in

elliptic grid generation,” 1998. [Online]. Available: https://api.semanticscholar.org/

CorpusID:123368319

[64] P. Frey, “Yams a fully automatic adaptive isotropic surface remeshing procedure,”

Ph.D. dissertation, Inria, 2001.

[65] W. Cao, “Anisotropic measures of third order derivatives and the quadratic

interpolation error on triangular elements,” SIAM Journal on Scientific Computing,

vol. 29, no. 2, p. 756–781, Jan. 2007. [Online]. Available: http://dx.doi.org/10.1137/

050634700

[66] T. P. Minka, “Old and new matrix algebra useful for statistics,” See www. stat. cmu.

edu/minka/papers/matrix. html, vol. 4, 2000.

[67] T. C. Baudouin, J.-F. Remacle, E. Marchandise, J. Lambrechts, and F. Henrotte,

“Lloyd’s energy minimization in the Lp norm for quadrilateral surface mesh

generation,” Engineering with Computers, vol. 30, no. 1, pp. 97–110, Oct. 2012. [Online].

Available: https://doi.org/10.1007/s00366-012-0290-x

124

http://dx.doi.org/10.1016/j.asoc.2018.03.031
http://dx.doi.org/10.1023/A:1023260812163
https://api.semanticscholar.org/CorpusID:123368319
https://api.semanticscholar.org/CorpusID:123368319
http://dx.doi.org/10.1137/050634700
http://dx.doi.org/10.1137/050634700
https://doi.org/10.1007/s00366-012-0290-x

[68] D. Ekelschot, M. Ceze, A. Garai, and S. M. Murman, “Robust metric aligned

quad-dominant meshing using lp centroidal voronoi tessellation,” in 2018 AIAA

Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Jan.

2018. [Online]. Available: http://dx.doi.org/10.2514/6.2018-1501

[69] D. Shi-Dong and S. Nadarajah, “Full-space approach to aerodynamic shape

optimization,” Computers amp; Fluids, vol. 218, p. 104843, Mar. 2021. [Online].

Available: http://dx.doi.org/10.1016/j.compfluid.2021.104843

[70] The CGAL Project, CGAL User and Reference Manual, 5.6 ed. CGAL Editorial Board,

2023. [Online]. Available: https://doc.cgal.org/5.6/Manual/packages.html

[71] J. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, and C. Geuzainet,

“Blossom-quad: A non-uniform quadrilateral mesh generator using a minimum-

cost perfect-matching algorithm,” International Journal for Numerical Methods

in Engineering, vol. 89, no. 9, p. 1102–1119, Feb. 2012. [Online]. Available:

http://dx.doi.org/10.1002/nme.3279

[72] D. Shi-Dong, S. Nadarajah, J. Brillon, D. Blais, Keigan MacLean, Pranshul Thakur,

C. Pethrick, A. Cicchino, and M. Tatarelli, “dougshidong/philip: Philip version 2.0.0,”

2022. [Online]. Available: https://zenodo.org/record/6600853

[73] T. Trilinos Project Team, The Trilinos Project Website.

[74] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck,

R. Hartmann, K. Hillewaert, H. Huynh, N. Kroll, G. May, P. Persson, B. van Leer, and

M. Visbal, “High-order cfd methods: current status and perspective,” International

Journal for Numerical Methods in Fluids, vol. 72, no. 8, p. 811–845, Jan. 2013. [Online].

Available: http://dx.doi.org/10.1002/fld.3767

[75] W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport

equation,” Los Alamos Scientific Lab., N. Mex.(USA), Tech. Rep., 1973.

125

http://dx.doi.org/10.2514/6.2018-1501
http://dx.doi.org/10.1016/j.compfluid.2021.104843
https://doc.cgal.org/5.6/Manual/packages.html
http://dx.doi.org/10.1002/nme.3279
https://zenodo.org/record/6600853
http://dx.doi.org/10.1002/fld.3767

[76] A. Khursheed, High-Order Elements. Boston, MA: Springer US, 1999, pp. 99–110.

[Online]. Available: https://doi.org/10.1007/978-1-4615-5201-7 5

[77] A. Rangarajan, A. Balan, and G. May, “Mesh optimization for discontinuous galerkin

methods using a continuousmeshmodel,”AIAA Journal, vol. 56, no. 10, pp. 4060–4073,

2018.

[78] A. Balan, M. Woopen, and G. May, “Adjoint-based hp -adaptivity on anisotropic

meshes for high-order compressible flow simulations,” Computers amp; Fluids, vol.

139, p. 47–67, Nov. 2016. [Online]. Available: http://dx.doi.org/10.1016/j.compfluid.

2016.03.029

126

https://doi.org/10.1007/978-1-4615-5201-7_5
http://dx.doi.org/10.1016/j.compfluid.2016.03.029
http://dx.doi.org/10.1016/j.compfluid.2016.03.029

	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview of Mesh Adaptation Techniques
	A Priori and A Posteriori Error Estimators
	Riemannian Metric and Frame Fields
	Metric-based Mesh Adaptation

	Thesis Overview

	Mesh Generation
	Structured vs Unstructured Mesh
	Computational vs Physical Domain
	Transformation Matrix

	Two-Dimensional Triangular Mesh Generator
	Delaunay Triangulation
	Voronoi Diagram

	Two-Dimensional Algebraic and PDEs based Quadrilateral Structured Mesh Generator
	Transfinite Interpolation
	Hermite Interpolation
	Parabolic Equation Approach
	Elliptic Equation Approach
	Hyperbolic Equation Approach
	Solution to the Hyperbolic Equation Approach
	Artificial Dissipation

	Metric based Inner Product, Norm, and Distance Definition
	Euclidean Metric Space
	Riemmanian Metric Space

	Frame Fields
	Metric-based Mesh Adaptation
	Lp-CVT Mesh Generator
	Local Facet Energy Computation
	Total Energy and Derivative Computation
	Quasi-Unit Mesh

	Simplified Boundary Reconstruction of Lp-CVT
	Boundary Nodes Distribution
	Moving Boundary Formulation for Lp-CVT
	Modified Total Energy and Derivative Computation

	All-Quad Mesh Generator
	Overview of Lp-CVT algorithm

	Numerical Methods
	Discontinuous Galerkin Method
	Discrete Error Minimization
	Adjoint Method
	Dual-Weight Residual

	Continuous Mesh Model and Error Estimates
	Continuous Mesh Model
	Continuous Element Definition of Area and Density
	Continuous Mesh Characterization

	Continuous Error Model
	Local Interpolation Error
	Global Interpolation Error

	Goal-Oriented Approach

	Results
	Analytical Metric Field
	Constant Metric Field
	Quadratic Metric Field

	Discrete Frame Field
	S-Shock Adaptation
	Boundary Layer Adaptation

	Euler Test Case
	Transonic NACA0012 Steady State Test Case

	Conclusion
	Future Work

