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Abstract

The tandem-rotor helicopter is a platform of increased interest for autonomous develop-
ment. This thesis considers the guidance and model predictive control (MPC) of a tandem-
rotor helicopter. First, the dynamics of the tandem-rotor system are developed and a sim-
plified dynamic model is presented. An error definition is formulated using the matrix Lie
group SE2(3), which is used to linearize the system. Next, a computationally simple, two-
stage guidance strategy is presented. A coarse reference trajectory to a target is calculated
using a quartic guidance law, leveraging the differentially flat properties of the system. The
trajectory is then refined using a finite-horizon linear quadratic regulator (LQR). To control
the system, an MPC strategy is selected for its ability to directly incorporate constraints.
The nonlinear system is linearized about the reference trajectory enabling the formulation
of a quadratic program (QP) with control input and state constraints. A novel method of
constraining the attitude is developed through the use of a linearized attitude keep-in zone
and an ℓ1-norm constraint on the attitude error. A non-uniformly spaced prediction horizon
is leveraged in the MPC formulation to capture the multi-timescale vehicle dynamics while
keeping the problem size tractable. Monte-Carlo simulations are performed to demonstrate
the robustness of the proposed guidance and control structure to random initial conditions,
model uncertainty, and environmental disturbances. Lastly, a cascaded MPC approach is
considered as an alternative control strategy with a smaller computational footprint. Further
Monte-Carlo simulations are carried out to compare the performance of the cascaded MPC
approach with the single MPC structure.
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Résumé

L’hélicoptère tandem-rotor est une plateforme d’intérêt croissant pour le développement
autonome. Cette thèse considère le guidage et le contrôle prédictif de modèle (MPC) d’un
hélicoptère tandem-rotor. Tout d’abord, la dynamique du système tandem-rotor est dévelop-
pée et un modèle dynamique simplifié est présenté. Une définition d’erreur est formulée en
utilisant le groupe de Lie matriciel SE2(3), qui est utilisé pour linéariser le système. Ensuite,
une stratégie de guidage en deux étapes, simple à calculer, est présentée. Une trajectoire
de référence grossière vers une cible est calculée à l’aide d’une loi de guidage quartique,
en exploitant les propriétés différentiellement plates du système. La trajectoire est ensuite
raffinée à l’aide d’une régulateur linéaire quadratique (LQR) à horizon fini. Pour contrôler
le système, une stratégie MPC est sélectionnée pour sa capacité à incorporer directement
les contraintes. Le système non linéaire est linéarisé autour de la trajectoire de référence, ce
qui permet la formulation d’un programme quadratique (QP) avec des contraintes d’entrée
de commande et d’état. Une nouvelle méthode de contrainte de l’attitude est développée
par l’utilisation d’une zone de maintien d’attitude linéarisée et d’une contrainte de norme
ℓ1 sur l’erreur d’attitude. Un horizon de prédiction à espacement non uniforme est utilisé
dans la formulation du MPC pour capturer la dynamique du véhicule à plusieurs échelles
de temps tout en maintenant la taille du problème raisonnable. Des simulations de Monte-
Carlo sont effectuées pour démontrer la robustesse de la structure de guidage et de contrôle
proposée aux conditions initiales aléatoires, à l’incertitude du modèle et aux perturbations
environnementales. Enfin, une approche MPC en cascade est considérée comme une straté-
gie de contrôle alternative avec une empreinte de calcul plus petite. D’autres simulations de
Monte-Carlo sont effectuées pour comparer les performances de l’approche MPC en cascade
avec la structure MPC simple.
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Preface

The contributions of this thesis that are original to the author’s knowledge are as follows.

• Chapter 4

– The use of a two-step trajectory generation scheme where a coarse trajectory is
first generated using quartic polynomials and refined using a discrete-time, finite-
horizon LQR algorithm.

• Chapter 5

– The formulation of an MPC problem using an augmented SE2(3) error definition.

– The use of a linearized keep-in zone constraint on the attitude along with an ℓ1-
norm constraint on the attitude error to effectively limit the roll and pitch of the
vehicle in an MPC framework.

• Chapter 6

– The use of a cascaded MPC structure in the context of UAV control where the
dynamic model used for inner-loop control is linearized about the outputs of the
outer-loop controller.

All text, plots, figures, and results in this thesis are produced by Faraaz Ahmed.
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Chapter 1

Introduction

The number of applications for unmanned aerial vehicles (UAVs) are growing, now in-
cluding delivery, search and rescue, surveillance, and inspection [1, 2]. While quadrotor
and traditional helicopter platforms are popular for these types of tasks, a tandem-rotor
helicopter offers several advantages, including a large center of mass range, and larger lift
capacities with smaller rotors [3]. The ability to successfully complete this growing list of
missions is dependent on the ability to operate autonomously in a variety of different en-
vironments. Autonomous operation of a UAV consists of solving the navigation, guidance,
and control problems simultaneously and continuously. The navigation estimates the current
states of the UAV, while the guidance is responsible for trajectory planning, and the control
must generate inputs for the vehicle’s actuators. Improved navigation, guidance and control
methods enable the tandem-rotor helicopter to operate in challenging environmental condi-
tions, such as those with high winds and a large number of obstacles. This thesis focuses
on the guidance and control problems and assumes that an external navigation algorithm is
capable of providing accurate state estimates.

The ability to effectively enforce state and control input constraints are vital for the safe
operation of UAVs. Vehicle actuators such as servos, motors, and swashplates have finite
control authority. Commands from a controller that are unachievable by the actuators can
result in loss of tracking performance, instabilities, and in the worst case, loss of control
[4]. Similarly, certain vehicle states such as attitude, position, and velocity should be con-
strained to avoid dangerous operating conditions or physical obstacles in the surrounding
environment. Model predictive control (MPC) is a method of optimal control extensively
used in industry for its ability to explicitly enforce constraints in an optimization problem
[5]. Because an optimization problem must be solved at each timestep, which can be com-
putationally expensive, MPC has historically been used in process control applications with
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slow dynamics [6]. However, rapid developments in small-scale computing has resulted in the
ability for MPC to be implemented in real-time on faster systems [7]. Still, for large systems
with fast dynamics, real-time MPC can be difficult to implement [8]. In addition to having
fast, nonlinear dynamics, the tandem-rotor helicopter has a large number of system states
and control inputs. Therefore, a number of challenges must be overcome to successfully
implement MPC.

1.1 Objectives

The objective of this thesis is to develop a robust guidance and control strategy for the
tandem-rotor helicopter platform that will enable it to plan and accurately track a desired
trajectory. First, a computationally lightweight, optimal guidance strategy is developed,
which can compute a desired reference trajectory from the current location to a target. The
ability to recompute the reference trajectory in real-time is critical to the robustness of the
guidance and control structure. The second objective is to develop an MPC strategy that can
be implemented in a real-time environment using limited computing platforms. To achieve
this objective, several methodologies are investigated including a non-uniformly spaced MPC
prediction horizon, system linearization using an augmented matrix Lie group error definition
along a reference trajectory, and a cascaded MPC formulation. The use of input and state
constraints is heavily leveraged in the MPC formulation. Specifically, a major contribution
of this thesis is the synthesis of a linearized attitude keep-in zone and an ℓ1-norm constraint
on the attitude error, which together enforce attitude constraint satisfaction.

1.2 Organization

The remainder of this thesis is organized as follows.

• Chapter 2 introduces several relevant mathematical concepts that are used throughout
this thesis including geometry, kinematics, matrix Lie groups, differential flatness, and
optimization.

• Chapter 3 presents the dynamic model used to represent the tandem-rotor system. The
linearization and discretization procedures used in the guidance and control algorithms
are also presented in detail. Additionally, the model used to introduce environmental
disturbances in simulations is presented.

• Chapter 4 details the guidance algorithm developed for online trajectory generation.
The two-stage guidance strategy is described along with simulations demonstrating the

2



trajectory generation process for a landing maneuver.

• Chapter 5 presents the control strategy developed for the tandem-rotor helicopter. A
brief introduction to MPC is given along with the QP formulation for the linearized
tandem-rotor system. The controller performance is demonstrated through simulations
of a landing maneuver.

• Chapter 6 considers an alternative control strategy by splitting the proposed MPC
controller from Chapter 5 into a cascaded control structure. Additional simulation
results are presented to demonstrate the improvements in computation time attained
using this method.

• Chapter 7 provides a summary of the findings, concluding remarks and recommenda-
tions for possible future work.

3



Chapter 2

Preliminaries

In this chapter, various mathematical concepts and tools are briefly introduced. These
tools are used extensively throughout this thesis to develop the guidance and control algo-
rithms for the tandem-rotor helicopter.

2.1 Geometry

2.1.1 Physical Vectors and Reference Frames

A physical vector u−→, is an element with both magnitude and direction that is used to
describe how a body moves in physical space. A reference frame Fa, is defined by three
orthonormal physical basis vectors, a−→

1, a−→
2, and a−→

3 [9]. The vectrix F−→a, is defined as

F−→a =

 a−→
1

a−→
2

a−→
3

 . (2.1)

A physical vector u−→ can be written as

u−→ = F−→
T
a ua, (2.2)

=
[
a−→

1 a−→
2 a−→

3
] u1a

u2a

u3a

 , (2.3)

where ua are the components of u−→ resolved in Fa.
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2.1.2 The Direction Cosine Matrix

The orientation of Fa, relative to a second reference frame Fb, is given by a direction
cosine matrix (DCM) Cab ∈ SO(3). The DCM Cab is defined as

Cab = F−→a · F−→
T
b , (2.4)

=

 a−→
1

a−→
2

a−→
3

 ·
[
b−→

1 b−→
2 b−→

3
]
. (2.5)

The DCM Cab and the DCM Cba are related in the following way,

Cba = C−1
ab = CT

ab. (2.6)

Additionally, since Cab and Cba are orthonormal matrices,

CbaCab = CT
abCab = C−1

ab Cab = 1. (2.7)

A physical vector u−→ can be resolved in either Fa as ua, or in Fb as ub. The two are related
by

ua = Cabub = CT
baub. (2.8)

The column-matrix qba is a parameterization of the DCM Cba defined as

qba = c̄ba =

 c̄1ba
c̄2ba
c̄3ba

 , (2.9)

where

Cab =
[

c̄1ba c̄2ba c̄3ba
]
. (2.10)

2.2 Kinematics

Kinematics describe the motion of geometry without concern for the cause of the motion.
The position of a point z relative to another point w is described by the physical vector r−→

zw.
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The time rate of change of r−→
zw with respect to frame Fa is given by

r−→
zw·a = v−→

zw/a, (2.11)

where v−→
zw/a is the velocity of point z relative to point w, with respect to Fa. Similarly, the

time rate of change of v−→
zw/a with respect to Fa is given by

r−→
zw·a·a = v−→

zw/a·a = a−→
zw/a/a, (2.12)

where a−→
zw/a/a is the acceleration of point z relative to point w, with respect to Fa. The

angular velocity of Fb relative to Fa is described by the physical vector ω−→
ba. The physical

vectors for position, velocity, acceleration, and angular velocity can all be resolved in a
particular reference frame using (2.2).

The time rate of change of the DCM Cab is given by Poisson’s equation

Ċab = Cabω
ba×

b . (2.13)

In discrete-time, Poisson’s equation becomes

Cabk+1
= Cabk

exp
((
Tωba

bk

)×)
, (2.14)

where T = tk+1 − tk is the discretization timestep.

2.3 Matrix Lie Groups

Matrix Lie groups provide a framework that allow various vehicle states, such as attitude,
velocity, and position, to be described by a single matrix element. This matrix structure is
exploited to form an invariant error definition when linearizing the system dynamics, the
benefit of which is discussed in Chapter 3. In this section, the two matrix Lie groups used
in this thesis, SO(3), and SE2(3), are reviewed.

2.3.1 Overview

Let G denote a matrix Lie group and let g denote the matrix Lie algebra associated with
G [10]. An element of g can be mapped to G using the exponential map, exp(·) : g → G

and the inverse operation is achieved using the logarithmic map, log(·) : G→ g. For matrix
Lie groups, the exponential map is the matrix exponential and the logarithmic map is the

6



matrix natural logarithm. The matrix Lie algebra is mapped to a k dimensional column
matrix using the linear “vee” operator (·)∨ : g → Rk, and the inverse operation is performed
using the “wedge” operator (·)∧ : Rk → g.

2.3.2 Linearization

An element of a matrix Lie group can be expressed in terms of an element of the Lie
algebra using the exponential map,

X = exp (ξ∧) . (2.15)

The exponential map is defined by the power series

exp (ξ∧) =
∞∑
k=0

1

k!
(ξ∧)

k
, (2.16)

= 1 + ξ∧ +
(ξ∧)2

2
+

(ξ∧)3

6
+ · · · . (2.17)

Consider a small perturbation δξ such that

δX = exp(δξ∧). (2.18)

Then a first order approximation of (2.18) can be obtained from (2.17) by neglecting terms
of order O

(
∥δξ∧∥2

)
, resulting in

δX ≈ 1 + δξ∧. (2.19)

2.3.3 The Special Orthogonal Group SO(3)

The matrix Lie group SO(3) is used to represent three-dimensional rotations and is given
by [11]

SO(3) =
{

C ∈ R3×3 | CTC = 1, det(C) = 1
}
, (2.20)

where the matrix C is a DCM. The Lie algebra associated with SO(3) is so(3) and is given
by

so(3) =
{
ϕ× ∈ R3×3 | ϕ ∈ R3×3

}
, (2.21)

7



where the cross operator (·)× maps elements of R3 to skew-symmetric matrices in R3×3 and
is defined as

ϕ× =

 ϕ1

ϕ2

ϕ3


×

=

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 . (2.22)

The identities [11],

u×v = −v×u, (2.23)(
u×v

)×
= u×v× − v×u×, (2.24)

are used in various derivations in this thesis. When working with elements of so(3), the cross
operator is equivalent to the wedge operator (·)∧ seen elsewhere.

The exponential map from so(3) to SO(3) is given by Rodrigues formula

expSO(3)

(
ϕ×) = cosϕ1 + (1 − cosϕ) aaT + sinϕa×, (2.25)

where ϕ = ∥ϕ∥ and a = ϕ/ϕ. The logarithmic map from SO(3) to so(3) is given by

logSO(3) (C) = (aϕ)× , (2.26)

where the angle ϕ is given by

ϕ = cos−1

(
tr (C)− 1

2

)
, (2.27)

and the axis a is given by

a =
1

2 sin(ϕ)

 C2,3 − C3,2

C3,1 − C1,3

C1,2 − C2,1

 . (2.28)

The left Jacobian J(ϕ) and its inverse are given by

J(ϕ) =
sinϕ

ϕ
1 +

(
1− sinϕ

ϕ

)
aaT +

1− cosϕ

ϕ
a×, (2.29)

J(ϕ)−1 =
ϕ

2
cot

ϕ

2
1 +

(
1− ϕ

2
cot

ϕ

2

)
aaT − ϕ

2
a×, (2.30)
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where ϕ =
∥∥ξϕ∥∥ and a = ξϕ/ϕ.

2.3.4 The Group of Double Direct Isometries SE2(3)

The group of double direct isometries, SE2(3), introduced by [10], is given by

SE2(3) =

X =

 C v r
0 1 0

0 0 1

 ∈ R5×5

∣∣∣∣∣∣∣C ∈ SO(3), v, r ∈ R3

 , (2.31)

where C is a DCM, v is the velocity, and r is the position. The associated Lie algebra, se2(3)
is given by

se2(3) =
{
Ξ = ξ∧ ∈ R5×5 | ξ ∈ R9

}
, (2.32)

where

ξ∧ =

 ξϕ

ξv

ξr


∧

=

 ξϕ
×

ξv ξr

0 0 0

0 0 0

 . (2.33)

The exponential map from se2(3) to SE2(3) is

expSE2(3)
(ξ∧) =


expSO(3)

(
ξϕ

×
)

J
(
ξϕ
)
ξv J

(
ξϕ
)
ξr

0 0 0

0 0 0

 , (2.34)

where J(ξϕ) is the left Jacobian given by (2.29). The logarithmic map from SE2(3) to se2(3)

is

logSE2(3)
(X) =

 logSO(3)(C) J
(
ξϕ
)−1 v J

(
ξϕ
)−1 r

0 0 0

0 0 0

 , (2.35)

where J(ξϕ)−1 is the inverse of the left Jacobian given by (2.30).
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2.4 Differential Flatness

Consider a nonlinear system

ẋ = f(x,u), (2.36)

y = h(x), (2.37)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The system is called differentially flat if a set of outputs
z ∈ Rm of the form [12]

z = ζ
(

x,u, u̇, · · · ,u(l)
)

(2.38)

can be found such that

x = x
(

z, ż, · · · , z(l)
)
, (2.39)

u = u
(

z, ż, · · · , z(l)
)
. (2.40)

The outputs z are called the flat outputs. Note from (2.38) that the flat outputs must be
a function of the state x, as well as the control input u, and any number of derivatives of
u. The complete system state and control inputs can be derived from the flat outputs and
derivatives of the flat outputs, as indicated by (2.39) and (2.40). Therefore, the flat outputs
completely characterize the behaviour of the system.

This property, first introduced in [13], is especially useful in trajectory generation, where
a trajectory must only be planned in terms of the flat outputs. The complete set of state
and control input trajectories can be directly derived from the flat outputs. Moreover, the
derived state and control input trajectories are guaranteed to follow the system dynamics
given by (2.36).

2.5 Optimization

A standard optimization problem is expressed as [14]

minimize
x

f(x)

subject to g(x) ≤ 0,
(2.41)

where x ∈ Rn is the optimization variable, f : Rn → R is the objective function, and g : Rn →
Rm is the constraint function. The solution to (2.41), denoted x⋆, is the value of x which
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minimizes the objective function while satisfying the constraints.

2.5.1 Convex Functions

A function f(x) : Rn → R is convex if it satisfies Jensen’s inequality [14]

f(αx + βy) ≤ αf(x) + βf(y), ∀x, y ∈ Rn, ∀α, β ∈ R, (2.42)

with α + β = 1, α ≥ 0, β ≥ 0.

2.5.2 Convex Optimization

A convex optimization problem is of identical form to that of (2.41), where the functions
f(x) and g(x) are convex [14]. A solution to a convex optimization problem is also a global
solution.

2.5.3 Quadratic Programming

A quadratic program (QP) is a subset of convex optimization problems where the ob-
jective function is quadratic and the constraint functions are affine [14]. A QP is expressed
as

minimize
x

1
2
xTQx + cTx

subject to Ax ≤ b,
(2.43)

where Q = QT > 0. There are many numerical methods for solving QPs including interior-
point methods [15] and active set methods [16].
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Chapter 3

Tandem-rotor Dynamics

In this chapter, the tandem-rotor helicopter is introduced along with a simple dynamic
model used to represent the system in the subsequent guidance and control algorithms. An
augmented SE2(3) state error definition is presented, followed by the linearization and dis-
cretization procedure for the nonlinear rigid-body equations of motions. Lastly, the equations
of motion used to model wind disturbances in simulation are detailed.

3.1 Tandem-rotor Helicopters

The tandem-rotor helicopter, as detailed in [3], is a type of twin-main-rotor helicopter
where the two main-rotors are mounted along the longitudinal axis. Typically, the front and
rear rotor disks are overlapped by approximately 35% and are therefore separated vertically.
While single-rotor helicopters utilize a tail rotor to counteract the reaction torque from the
main-rotor, the tandem-rotor helicopter uses counter-rotating main-rotors which cancel out
the reaction torque from each other. In terms of the dynamic behaviour, the main difference
between the tandem-rotor and single-rotor helicopters is in the longitudinal and yaw dynam-
ics. The tandem-rotor helicopter achieves pitch control using differential collective, and yaw
control using differential lateral cyclic. Roll control and vertical control are achieved through
lateral cyclic, and collective of both rotors, respectively.

Tandem-rotor helicopters have traditionally been used in heavy lift and cargo operations
due to their ability to lift larger payloads with smaller rotor diameters [17]. They generally
have a larger center of mass range and good longitudinal stability characteristics. The most
well-known application of the tandem-rotor design is the Boeing CH-46 Sea Knight and CH-
47 Chinook, the latter of which is used worldwide for a variety of applications and has been
produced for over 60 years [18].

12



3.2 Dynamic Model

The tandem-rotor helicopter is modeled as a rigid body subject to thrust, gravitational,
and drag forces as shown in Figure 3.1.

f
−→

1

f
−→

2

f
−→

ext

2

1

3

w

dm

g
−→

z

a
−→

3

a
−→

1

a
−→

2

r
−→

zw

r
−→

dmz

b
−→

1

b
−→

2

b
−→

3
Fa

Fb

r
−→

2z

r
−→

1z

r
−→

3z

Figure 3.1: Rigid body model of tandem-rotor helicopter system.

Let z be a point collocated with the center of the mass of the helicopter. The kinematics
are [9]

Ċab = Cabω
ba×

b , (3.1)

ṙzwa = vzw/a
a , (3.2)

where Cab is the orientation of Fa relative to Fb, ωba
b is the angular velocity of Fb relative to

Fa resolved in Fb, rzwa is the position of point z relative to point w resolved in Fa, and vzw/a
a

is the velocity of point z relative to point w with respect to Fa, resolved in Fa.
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The dynamics are [9]

mBv̇zw/a
a = Cabf

Bz
b , (3.3)

JBz
b ω̇ba

b = mBz
b − ωba×

b JBz
b ωba

b , (3.4)

where mB is the helicopter mass, and JBz
b is the helicopter’s second moment of mass resolved

in Fb. The forces acting on the helicopter are

fBzb = fpb + CT
abf

a
a + CT

abf
g
a, (3.5)

where fpb = [0 0 f ]T is the propulsion force, f = f 1 + f 2 is the total thrust force from the
rotors, faa = CabDCT

abv
zw/a
a is the aerodynamic drag force, D = diag(dx, dy, dz) is a constant

matrix composed of rotor drag coefficients [19], and fga = [0 0 mBg]
T is the gravitational

force, where g = 9.81 m/s2. The torques acting on the helicopter are

mBz
b = mb + ma

b , (3.6)

where mb is the total control moment from the rotors, and ma
b = −ECT

abv
zw/a
a − Fωba

b is the
parasitic torque from the rotor drag, where E and F are constant drag matrices [19].

3.3 Control Objective

The objective of the controller is to generate actuator commands that allow the tandem
rotor helicopter to follow a defined reference trajectory. Denote the reference frame by
Fr, the reference attitude trajectory Car, the reference velocity trajectory vzrw/a

a , and the
reference position trajectory rzrwa . The reference states at time step k are cast into elements
of SE2(3) as

Xr
k =

 Cark
vzrw/a
ak rzrwak

0 1 0

0 0 1

 ∈ SE2(3). (3.7)

The tracking error is defined using a left-invariant multiplicative error definition [10],

δXk = Xr−1

k Xk =

 δCk δvk δrk
0 1 0

0 0 1

 ∈ SE2(3), (3.8)
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where the individual errors δCk, δvk, and δrk are given by

δCk = CT
ark

Cabk
, (3.9)

δvk = CT
ark

(
vzw/a
ak

− vzrw/a
ak

)
, (3.10)

δrk = CT
ark

(
rzwak − rzrwak

)
. (3.11)

The tracking error is expressed in terms of the Lie algebra as

δXk = exp (δξ∧k ) =


expSO(3)

(
δξϕ

×
)

J
(
δξϕ
)
δξv J

(
δξϕ
)
δξr

0 1 0

0 0 1

 , (3.12)

where J(·) is the SO(3) left Jacobian given by (2.29).

Note that the matrix Lie group SE2(3) does not include angular velocity as a state. If
the system state is defined by a purely SE2(3) error definition, then the rotational dynamics
given by (3.4) are no longer included in the system. Instead, the angular velocity becomes a
control input. In order to incorporate the rotational dynamics, the state is augmented with
the angular momentum tracking error δh, defined as

δhk = δCkhBz/a
bk

− hBzr/a
rk

, (3.13)

where hBzr
r = JBzr

r ωra
r is the reference angular momentum trajectory, and hBz

b = JBz
b ωba

b is the
true angular momentum. Note that the angular momentum error, δh, is used in the state
instead of the angular velocity error, δω, because the Jacobians of the resulting linearized
system are simpler. The augmented state δxk is therefore

δxk =


δξϕk
δξvk
δξrk
δhk

 ∈ R15. (3.14)

By including the rotational dynamics in the system, the angular velocity is now part of the
state, and the rotor torque, mb is now a control input. The control objective is to drive the
tracking error to zero such that δxk = 0.
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3.4 Control Inputs

Unlike [20], where a lower level inner-loop controller is used to generate torque commands
and track the desired angular velocity, the proposed controller outputs torque commands
directly. This allows input constraints to be enforced at the torque command level. Therefore
the control inputs are the total thrust force, f , and the total rotor torque, mb,

uk =

[
fk

mbk

]
∈ R4. (3.15)

Denote the reference thrust input trajectory f r and the reference torque input mr
r. The

reference control input vector is then

ur
k =

[
f r
k

mr
rk

]
∈ R4. (3.16)

The input error is defined as

δuk =

[
δfk

δmk

]
=

[
fk − f r

k

mbk
− δCT

k mr
rk

]
. (3.17)

Note that the reference torque is resolved in Fr and must be multiplied by δCT
k to resolve it

in Fb.

3.5 Linearization of Dynamics

Consider the following first-order approximations, valid for small δξ [21],

δC ≈ 1 + δξϕ
×
, (3.18a)

δCT ≈ 1 − δξϕ
×
, (3.18b)

J
(
δξϕ
)
≈ 1 + 1

2
δξϕ

×
. (3.18c)

Using (3.18), and the error definitions from (3.8), (3.13), and (3.17), the continuous-time
equations of motion can be linearized about the reference trajectory. The linearization
procedure for each element of δXk is presented next.
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3.5.1 Attitude Error Dynamics

Starting with the attitude error dynamics, the time rate of change of the attitude error
is found by differentiating (3.9) as

δĊ = ĊT
arCab + CT

arĊab (3.19)

=
(

Carω
ra×

r

)T
Cab + CT

arCabω
ba×

b (3.20)

= −ωra×

r CT
arCab + CT

arCabω
ba×

b (3.21)

= −ωra×

r δC + δCωba×

b . (3.22)

The angular velocity, ωba
b , can be written as

ωba
b = JBz−1

b hBz/a
b (3.23)

=
(
CbrJ

Bzr
r Crb

)−1
δCT

(
δh + hBzr/a

r

)
(3.24)

=
(
δCTJBzr

r δC
)−1

δCT
(
δh + hBzr/a

r

)
(3.25)

= δCTJBz−1
r

r

(
δh + hBzr/a

r

)
(3.26)

= δCTJBz−1
r

r δh + δCTJBz−1
r

r hBzr/a
r (3.27)

= δCTJBz−1
r

r δh + δCTωra
r . (3.28)

Substituting (3.28) into (3.22),

δĊ = −ωra×

r δC + δC
(
δCTJBz−1

r
r δh + δCTωra

r

)×
. (3.29)

Linearizing (3.29) using (3.18) and dropping higher-order terms,

d
dt

(
1 + δξϕ

×
)
= −ωra×

r

(
1 + δξϕ

×
)
+
(

1 + δξϕ
×
)((

1 − δξϕ
×
)

JBz−1
r

r δh

+
(

1 − δξϕ
×
)
ωra

r

)× (3.30)

δξ̇ϕ
×
= −ωra×

r − ωra×

r δξϕ
×
+
(

1 + δξϕ
×
)(

JBz−1
r

r δh + ωra
r − δξϕ

×
ωra

r

)×
(3.31)

= −ωra×

r − ωra×

r δξϕ
×
+
(

JBz−1
r

r δh + ωra
r − δξϕ

×
ωra

r

)×
+ δξϕ

×
ωra×

r (3.32)

= −ωra×

r δξϕ
×
+
(

JBz−1
r

r δh
)×

−
(
δξϕ

×
ωra

r

)×
+ δξϕ

×
ωra×

r . (3.33)
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Making use of (2.24),

δξ̇ϕ
×
=
(
δξϕ

×
ωra

r

)×
−
(
δξϕ

×
ωra

r

)×
+
(

JBz−1
r

r δh
)×

(3.34)

=
(

JBz−1
r

r δh
)×

. (3.35)

Uncrossing both sides,

δξ̇ϕ = JBz−1
r

r δh. (3.36)

3.5.2 Velocity Error Dynamics

Next, the velocity error dynamics are linearized. The time rate of change of the velocity
error is found by differentiating (3.10) as

δv̇ = ĊT
ar

(
vzw/a − vzrw/a

)
+ CT

ar

(
v̇zw/a − v̇zrw/a

)
(3.37)

= −ωra×

r CT
ar

(
vzw/a − vzrw/a

)
+ CT

ar

(
ga −

Cabf13

mB

− 1

mB
CabDCT

abv
zw/a
a

− ga +
Carf

r13

mB

+
1

mB
CarDCT

arv
zrw/a
a

) (3.38)

= −ωra×

r δv + CT
ar

(
− Cabf13

mB

+
Carf

r13

mB

− 1

mB
CabDCT

abv
zw/a
a

+
1

mB
CarDCT

arv
zrw/a
a

) (3.39)

= −ωra×

r δv +
1

mB

(
−δCf13 + f r13 − δCDCT

abv
zw/a
a + DCT

arv
zrw/a
a

)
. (3.40)

Substituting using (3.9), (3.10), (3.12) and (3.17),

d
dt
(
J(δξϕ)δξv

)
= −ωra×

r J(δξϕ)δξv +
1

mB

(
− δC (f r + δf) 13 + f r13

− δCDδCTCT
ar

(
CarJ

(
δξϕ
)
δξv + vzrw/a

a

)
+ DCT

arv
zrw/a
a

)
.

(3.41)
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Linearizing using (3.18) and dropping higher order terms,

d
dt

((
1 + 1

2
δξϕ

×
)
δξv
)
= −ωra×

r

(
1 + 1

2
δξϕ

×
)
δξv +

1

mB

(
−
(

1 + δξϕ
×
)(

f r

+ δf
)

13 + f r13 −
(

1 + δξϕ
×
)

D
(

1

− δξϕ
×
)

CT
ar

(
Car

(
1 + 1

2
δξϕ

×
)
δξv + vzrw/a

a

)
+ DCT

arv
zrw/a
a

)
(3.42)

δξ̇v = −ωra×

r δξv +
1

mB

(
− δf13 − δξϕ

×
f r13 − Dδξv

+ Dδξϕ
×

CT
arv

zrw/a
a − δξϕ

×
DCT

arv
zrw/a
a

)
.

(3.43)

Using (2.23),

δξ̇v = −ωra×

r δξv +
1

mB

(
(f r13)

× δξϕ − D
(

CT
arv

zrw/a
a

)×
δξϕ

+
(

DCT
arv

zrw/a
a

)×
δξϕ − Dδξv − 13δf

) (3.44)

= −
(

1

mB
D + ωra×

r

)
δξv +

1

mB

((
DCT

arv
zrw/a
a

)×
− D

(
CT

arv
zrw/a
a

)×
+ (f r13)

×

)
δξϕ − 1

mB
13δf.

(3.45)

3.5.3 Position Error Dynamics

Next, the position error dynamics are linearized. The time rate of change of the position
error is found by differentiating (3.11) as

δṙ = ĊT
ar (r

zrw − rzw) + CT
ar (ṙ

zrw − ṙzw) (3.46)

= −ωra×

r CT
ar (r

zrw − rzw) + δv (3.47)

= −ωra×

r δr + δv. (3.48)
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Substituting using (3.12) and (3.17),

d
dt
(
J(δξϕ)δξr

)
= −ωra×

r J(δξϕ)δξr + J(δξϕ)δξv. (3.49)

Linearizing using (3.18) and dropping higher order terms,

d
dt

((
1 + 1

2
δξϕ

×
)
δξr
)
= −ωra×

r

(
1 + 1

2
δξϕ

×
)
δξr +

(
1 + 1

2
δξϕ

×
)
δξv (3.50)

δξ̇r = −ωra×

r δξr + δξv. (3.51)

3.5.4 Angular Momentum Error Dynamics

Lastly, the angular momentum error dynamics are linearized. The time rate of change
of the angular momentum error is found by differentiating (3.13) as

δḣ = δĊhBz/a
b + δCḣBz/a

b − ḣBzr/a
r (3.52)

= δĊhBz/a
b + δC

(
mb − ECT

abv
zw/a
a − Fωba

b − ωba×

b hBz/a
b

)
−
(

mr
r − ECT

arv
zrw/a
a − Fωra

r − ωra×

r hBzr/a
r

)
.

(3.53)

Substituting using (3.12), (3.13), (3.17), and (3.28),

δḣ = δĊδCT
(
δh + hBzr/a

r

)
+ δC

(
δm + δCTmr

r

− EδCTCT
ar

(
CarJ

(
δξϕ
)
δξv + vzrw/a

a

)
− F

(
δCTJBz−1

r
r δh + δCTωra

r

)
−
(
δCTJBz−1

r
r δh + δCTωra

r

)×
δCT

(
δh + hBzr/a

r

))
− mr

r + ECT
arv

zrw/a
a + Fωra

r + ωra×

r hBzr/a
r

(3.54)

= δĊδCT
(
δh + hBzr/a

r

)
+ δCδm − δCEδCTCT

ar

(
CarJ

(
δξϕ
)
δξv + vzrw/a

a

)
− δCF

(
δCTJBz−1

r
r δh + δCTωra

r

)
− δC

(
δCTJBz−1

r δh + δCTωra
r

)×
δCT

(
δh + hBzr/a

r

)
+ ECT

arv
zrw/a
a + Fωra

r + ωra×

r hBzr/a
r .

(3.55)
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Linearizing using (3.18) and dropping higher order terms,

δḣ = δξ̇ϕ
×
(

1 − δξϕ
×
)(

δh + hBzr/a
r

)
+
(

1 + δξϕ
×
)
δm

−
(

1 + δξϕ
×
)

E
(

1 − δξϕ
×
)

CT
ar

(
Car

(
1 + 1

2
δξϕ

×
)
δξv + vzrw/a

a

)
−
(

1 + δξϕ
×
)

F
((

1 − δξϕ
×
)

JBz−1
r

r δh +
(

1 − δξϕ
×
)
ωra

r

)
−
(

1 + δξϕ
×
)((

1 − δξϕ
×
)

JBz−1

r δh

+
(

1 − δξϕ
×
)
ωra

r

)× (
1 − δξϕ

×
)(

δh + hBzr/a
r

)
+ ECT

arv
zrw/a
a + Fωra

r + ωra×

r hBzr/a
r

(3.56)

= δξ̇ϕ
×

hBzr/a
r + δm − Eδξv + Eδξϕ

×
CT

arv
zrw/a
a − FJBz−1

r
r δh + Fδξϕ

×
ωra

r

−
(

JBz−1
r

r δh
)×

hBzr/a
r − ωra×

r δh + ωra×

r δξϕ
×

hBzr/a
a +

(
δξϕ

×
ωra

r

)×
hBzr/a
a

− δξϕ
×

ECT
arv

zrw/a
a − δξϕ

×
Fωra

r − δξϕ
×
ωra×

r hBzr/a
a .

(3.57)

Substituting in the previously derived expression for δξ̇ϕ from (3.36) and using (2.24),

δḣ = δm − Eδξv + Eδξϕ
×

CT
arv

zrw/a
a − FJBz−1

r
r δh + Fδξϕ

×
ωra

r

− ωra×

r δh − δξϕ
×

ECT
arv

zrw/a
a − δξϕ

×
Fωra

r

(3.58)

=

((
ECT

arv
zrw/a
a

)×
− E

(
CT

arv
zrw/a
a

)×
+ (Fωra

r )× − Fωra×

r

)
δξϕ

− Eδξv +
(
−ωra×

r − FJBz−1
r

r

)
δh + δm.

(3.59)

Combining (3.36), (3.45), (3.51), and (3.59), the continuous-time, linearized error dy-
namics can be written in state-space form as

δξ̇ϕ

δξ̇v

δξ̇r

δḣ


︸ ︷︷ ︸

δẋ

=


0 0 0 JBz−1

r
r

A21 A22 0 0
0 1 −ωra×

r 0
A41 −E 0 A44


︸ ︷︷ ︸

A


δξϕ

δξv

δξr

δh


︸ ︷︷ ︸

δx

+


0 0

−1/mB13 0
0 0
0 1


︸ ︷︷ ︸

B

[
δf

δm

]
︸ ︷︷ ︸

δu

(3.60)
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where

A21 =
1

mB

((
DCT

arv
zrw/a
a

)×
− D

(
CT

arv
zrw/a
a

)×
+ (f r13)

×
)
, (3.61)

A22 = −ωra×

r − 1

mB
D, (3.62)

A41 =
(

ECT
arv

zrw/a
a

)×
− E

(
CT

arv
zrw/a
a

)×
+ (Fωra

r )× − Fωra×

r , (3.63)

A44 = −ωra×

r − FJBz−1
r

r . (3.64)

If the drag terms D, E, and F are assumed to be zero, then the dependence on the reference
attitude, Car, disappears and the Jacobians only depend on the reference thrust, f r, and
reference angular velocity, ωra

r .

3.6 Augmenting the System With an Integrator

To reduce steady-state error due to unmodeled dynamics or constant disturbances, the
linearized dynamics can be augmented with integral control on the position and velocity
states. The integrator is of the form [22]

ξi =

∫ t

0

(c1δr + c2δv) dτ, (3.65)

where c1, c2 > 0. The integrator is linearized using (3.12) and (3.18) as

δξ̇i = c1J(δξ
ϕ)δξr + c2J(δξ

ϕ)δξv (3.66)

≈ c1δξ
r + c2δξ

v. (3.67)

Therefore, the augmented system dynamics are

δ ˙̄x = Āδx̄ + B̄δu, (3.68)

where the augmented state is

δx̄ =

[
δx
δξi

]
∈ R18, (3.69)
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and matrices Ā and B̄ are given by

Ā =


0 0 0 JBz−1

r
r 0

A21 A22 0 0 0
0 1 −ωra×

r 0 0
A41 −E 0 A44 0
0 c21 c11 0 0

 , B̄ =

[
B
0

]
. (3.70)

3.7 Discretization

The continuous-time linearized system is discretized using the matrix exponential, as
presented in [23] and [24]. First, the matrix Ξ is constructed using the linearized continuous-
time A and B matrices from (3.60), or the augmented Ā and B̄ matrices from (3.70),

Ξ =


A 0 0 0
0 −AT 0 0
0 0 A B
0 0 0 0

 . (3.71)

Next, the matrix Υ is found by multiplying Ξ by the sampling period T and taking the
matrix exponential,

Υ = exp(TΞ) (3.72)

=


Υ11 ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆

0 0 ⋆ Υ34

0 0 0 ⋆

 . (3.73)

The discrete-time matrices Ak and Bk are then extracted from Υ as,

Ak = Υ11, (3.74)

Bk = Υ34, (3.75)

and are used to create the discrete-time linearized system,

δxk+1 = Akδxk + Bkδuk. (3.76)
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3.8 Environmental Disturbance Modeling

Environmental disturbances are included in simulations through the use of wind mod-
eling. The total wind field is modeled as a combination of constant ambient wind and
stochastic gusts. Consider a particle s that moves with the ambient wind field, a particle g
that moves with the wind gusts, and a particle q that moves with the total wind field, as
shown in Figure 3.2a. The motion of q relative to w, with respect to Fa is given by

v−→
qw/a = v−→

sw/a + v−→
gw/a. (3.77)

This relationship is visualized in Figure 3.2b.

r
−→

sw

r
−→

gw

r
−→

qw

s

w

q

g

Fa

a
−→

1

a
−→

2

a
−→

3

(a) Particle definitions.

v
−→

sw/a
v
−→

gw/a

v
−→

qw/a

(b) Velocity diagram.

Figure 3.2: Wind kinematic definitions.

The wind gusts are modeled using the Dryden spectral representation to add turbulence.
The discrete-time Dryden model is given by [25]

v
gw/a
b1k

=

(
1− V

L1

T

)
v
gw/a
b1k−1

+

√
2
V

L1

Tσ1η1, (3.78)

v
gw/a
b2k

=

(
1− V

L1

T

)
v
gw/a
b2k−1

+

√
2
V

L1

Tσ1η2, (3.79)

v
gw/a
b3k

=

(
1− V

L2

T

)
v
gw/a
b3k−1

+

√
2
V

L2

Tσ2η3, (3.80)

where vgw/a
bk

=
[
v
gw/a
b1k

v
gw/a
b2k

v
gw/a
b3k

]T
are the wind gust velocities resolved in the body

frame at time k, V is the nominal aircraft velocity in ft/s, T is the timestep, L1 and L2

represent the turbulence scale lengths in ft, σ1 and σ2 represent the turbulence intensities,
and η1,2,3 ∼ N (0, 1). The low-altitude model for altitudes under 1000 ft is used to set the
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turbulence length scales and intensities. The turbulence length scales are

L1 =
h

(0.177 + 0.000823h)1.2
, L2 = h, (3.81)

where h is the altitude in feet. The turbulence intensities are

σ1 =
σ2

(0.177 + 0.000823h)0.4
, σ2 = 0.1W20, (3.82)

where W20 is the wind speed at 20 ft. Typical values for W20 are 25 ft/s for light turbulence
and 75 ft/s for severe turbulence [26].

Next, the windspeed vector, v−→
qw/a, and groundspeed vector, v−→

zw/a, are used to calculate
the airspeed vector, v−→

zq/a, by the relationship

v−→
zq/a = v−→

zw/a − v−→
qw/a, (3.83)

and is visualized by the wind triangle in Figure 3.3.

v
−→

zq/a
v
−→

qw/a

v
−→

zw/a

Figure 3.3: Wind triangle relationship.

Lastly, the airspeed is used to calculate the external force due to drag. The components
of the aerodynamic drag force acting on the vehicle, resolved in the body frame are given by
[27]

f ext
bi

= 1
2
ρ
∥∥∥vzq/a

b

∥∥∥2 SiCDi
, i = 1, 2, 3, (3.84)

where ρ is the air density, vzq/a
b is the airspeed vector resolved in Fb, Si is the projected area

of the vehicle normal to the b−→
i direction, and CDi

is the drag coefficient of the vehicle in
the b−→

i direction. For simplicity, the vehicle is modeled as a simple cylinder to determine
the drag coefficients.
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3.8.1 Simulation Results

Simulated wind velocities over a 20 s period in light and heavy turbulence conditions are

shown below in Figure 3.4. The nominal wind velocity is set to vsw/a
a =

[
0 −6 0

]T
m·s−1,

and the gust velocity vgw/a
a is generated using the Dryden model. These wind velocity plots

are representative of the environmental disturbances applied to the vehicle when testing the
controller performance in Chapters 5 and 6.
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(b) W20 = 75 ft · s−1.

Figure 3.4: Simulated wind velocities generated by the Dryden model with low and high
levels of turbulence.
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Chapter 4

Guidance

In this chapter, the guidance strategy for the tandem-rotor is presented. The objective
of the guidance is to use a trajectory planning algorithm to generate a reference trajectory
of control inputs and states from the current location to some desired target location.

There are many methods of trajectory generation in the literature that try to strike a
balance between computational complexity and the ability to handle aggressive motions in
complex environments [28]. For the purposes of this research, the ability to run the trajectory
generation algorithm in real-time on limited hardware is of high importance. Additionally,
the proposed use case for the tandem-rotor helicopter does not include complex maneuvering.
Therefore, simple and computationally lightweight algorithms are preferred.

Direct collocation is a relatively simple and common method of optimal trajectory gen-
eration that respects the system dynamics, path constraints, and boundary conditions [29].
However, this method requires solving a nonlinear program (NLP), which may not be fea-
sible in a real-time environment. Additionally, direct collocation and other methods of
trajectory generation require prior temporal knowledge about the desired trajectory, such as
the duration of the desired trajectory [30]. Given the wide variety of initial conditions and
environmental conditions that the tandem-rotor helicopter may operate in, this information
may not always be known.

Another class of trajectory generation algorithms exist that exploit the differentially flat
dynamics of the system to constrain the trajectory and an optimization problem is solved
to minimize some quantity, such as the time [31], or a position derivative [32]. The simplest
of these algorithms is a quartic polynomial method [33], which is leveraged in this thesis.

Because the resulting trajectory is coarse and doesn’t respect boundary conditions for all
states, a method of trajectory refinement is required. Linear quadratic regulator (LQR) has
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traditionally been used as a method of optimal control. In particular, LQR control on the
matrix Lie group SE2(3) is successfully demonstrated in [20]. The solution to a discrete-time
finite-horizon LQR problem is used in this thesis as a method of trajectory generation to
refine the quartic reference trajectory and ensure all boundary conditions are satisfied.

4.1 Overview

The proposed two-stage guidance structure is shown in Figure 4.1.
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x̂k+1
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Figure 4.1: Proposed guidance structure.

The first stage uses simple polynomial functions to generate coarse minimum-time po-
sition and velocity trajectories from the current vehicle position to a target location. By
simplifying the tandem-rotor control inputs to the total thrust and rotor torque, as shown in
Section 3.4, the system can be shown to be differentially flat [19]. The differentially flat prop-
erty of the tandem-rotor helicopter dynamics is leveraged to generate the remaining states
and control inputs. To reduce the computational complexity, the trajectory is simplified to
two dimensions, horizontal and vertical.

The second guidance stage refines and expands the coarse reference trajectory into a
smooth three-dimensional reference trajectory. The linearized tandem-rotor dynamics de-
rived in Section 3.5 are used along with the reference states and control inputs from the
quartic trajectory to create a high-quality feedforward term for the controller.

Because the guidance algorithm is computationally simple, it can be recomputed online
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at any time. This could occur due to a large disturbance pushing the vehicle off the planned
trajectory. Additionally, to reduce memory usage, the reference trajectory can be planned
for a smaller fixed duration and replanned in real-time as necessary.

4.2 Quartic Trajectory Generation

A quartic guidance law is generated to provide a minimum-time position and velocity
trajectory from the current position to a target location using the method from [33]. Because
the flat outputs are the position and heading, the remaining state, xq

k, and control input
trajectories, uq

k, can be found as a function of the quartic polynomials and a specified heading
[19].

4.2.1 Quartic Polynomials

Consider an initial location denoted by the point z0 and a target location denoted by
point zf . The track angle ψt from the initial location to the target is given by

ψt = atan2
(
rz0wa2

− rzfwa2
, rz0wa1

− rzfwa1

)
+ π. (4.1)

An intermediate frame Fq is defined such that q−→
1 is aligned with ψt and q−→

3 is aligned with
a−→

3. The DCM Cqa is defined using a C3 rotation

Cqa =

 cosψt sinϕt 0

− sinψt cosψt 0

0 0 1

 . (4.2)

A coarse reference trajectory for position, velocity, acceleration, jerk, and snap is generated
from the current position to the target along a single axis using a series of fourth-order
polynomials as [33]

rzqwqi
= rzfwqi

+ vzfw/a
qi

t+
1

2
v̇zfw/a
qi

t2 +
1

6
v̈zfw/a
qi

t3 +
1

24
...
vzfw/a
qi

t4, (4.3)

vzqw/a
qi

= vzfw/a
qi

+ v̇zfw/a
qi

t+
1

2
v̈zfw/a
qi

t2 +
1

6
...
vzfw/a
qi

t3, (4.4)

v̇zqw/a
qi

= v̇zfw/a
qi

+ v̈zfw/a
qi

t+
1

2
...
vzfw/a
qi

t2, (4.5)

v̈zqw/a
qi

= v̈zfw/a
qi

+
...
vzfw/a
qi

t, (4.6)
...
vzqw/a
qi

=
...
vzfw/a
qi

. (4.7)
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The values for the coefficients rzfwqi , vzfw/a
qi , and v̇zfw/a

qi are selected based on the desired state
at the end of the trajectory. In the case of a landing trajectory,

rzfwqi
= 0, (4.8)

vzfw/a
qi

= 0, (4.9)

v̇zfw/a
qi

= 0, i = 1, 2, 3. (4.10)

The values of v̈zfw/a
qi and ...vzfw/a

qi are chosen based on the current position and velocity of the
helicopter to ensure the generated trajectory is smooth,

v̈zfw/a
qi

=
−24

t3i

((
rzfwqi

− rz0wqi

)
+ vzfw/a

qi
ti +

1

2
v̇zfw/a
qi

t2i

)
+

6

t2i

(
vzfw/a
qi

− vz0fw/a
qi

+ v̇zfw/a
qi

t
)
,

(4.11)

...
vzfw/a
qi

=
72

t4i

((
rzfwqi

− rz0wqi

)
+ vzfw/a

qi
ti +

1

2
v̇zfw/a
qi

t2i

)
− 24

t3i

(
vzfw/a
qi

− vz0fw/a
qi

+ v̇zfw/a
qi

t
)
,

(4.12)

where point z0 is collocated with the current position of the helicopter’s center of mass.
The polynomials given by (4.3) to (4.7) are stated in terms of the negative time to target t.
Therefore ti is the initial negative time to target and tf = 0. The value of ti is chosen such
that the resulting velocity profile is monotonic.

The existence of a monotonic velocity profile is guaranteed if the conditions

vz0w/a
q1

(
rzfwq1

− rz0wq1

)
> 0, (4.13)

−4
(
r
zfw
q1 − rz0wq1

)
v
z0w/a
q1

≤ti ≤
−2
(
r
zfw
q1 − rz0wq1

)
v
z0w/a
q1

, (4.14)

are both satisfied in the q−→
1 direction. Additionally, to avoid a negative thrust command,

the condition

ti ≤
3
(
v
zfw/a
q3 + v

z0w/a
q3

)
g

1−

√√√√√1 +
4g
(
r
zfw
q3 − rz0wq3

)
3
(
v
zfw/a
q3 + v

z0w/a
q3

)2
 , (4.15)

must be met in the q−→
3 direction. The polynomials are generated both in the q−→

1 and q−→
3

directions. In order to have equal trajectory times for the horizontal and vertical profiles,
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the initial negative time to target is selected as

ti = min

−2
(
r
zfw
q1 − rz0wq1

)
v
z0w/a
q1

,
3
(
v
zfw/a
q3 + v

z0w/a
q3

)
g

1−

√√√√√1 +
4g
(
r
zfw
q3 − rz0wq3

)
3
(
v
zfw/a
q3 + v

z0w/a
q3

)2

 .

(4.16)

Once the polynomials in the horizontal and vertical directions are computed, the position,
velocity, acceleration, jerk, and snap trajectories can be expressed in Fa as

rzqwa = CT
qarzqwq , (4.17)

vzqw/a
a = CT

qavzqw/a
q , (4.18)

v̇zqw/a
a = CT

qav̇zqw/a
q , (4.19)

v̈zqw/a
a = CT

qav̈zqw/a
q , (4.20)

...vzqw/a
a = CT

qa
...vzqw/a
q . (4.21)

4.2.2 Differential Flatness

The differential flatness property of the tandem-rotor system is leveraged to generate
the remaining reference state and control input trajectories. For the tandem-rotor system,
the flat outputs are the position rzqwa and the heading angle ψq. The position trajectory is
given by the previously generated quartic polynomial, and the desired heading can be freely
chosen. It is assumed in this formulation that the desired heading is constant over the entire
trajectory, however this is not a requirement.

The reference control force fqa is calculated using (3.3) and velocity trajectory from (4.18),

fqak = mB

(
v̇zqw/a
ak

− ga

)
. (4.22)

The q−→
3 vector resolved in Fa is given by

q3
ak

=
fqak
∥fqak∥

. (4.23)
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Two intermediate vectors c1a and c2a are formed using the reference heading

c1ak =

 cos(ψq
k)

sin(ψq
k)

0

 , c2ak =

 − sin(ψq
k)

cos(ψq
k)

0

 . (4.24)

Then the remaining bases vectors of Fq, resolved in Fa, are found by

q2
ak

=
q3×
ak

c1ak∥∥q3×
ak

c1ak
∥∥ , (4.25)

q1
ak

= q2×

ak
q3
ak
. (4.26)

The reference attitude Caq can be constructed using the bases vectors as

Caqk
=
[

q1
ak

q2
ak

q3
ak

]
. (4.27)

Next, the reference thrust force f q is computed,

f q
k = −13C

T
aqk

fqak , (4.28)

while the components of the reference angular velocity ωqa
q are found by [19]

ωqa
q1

=
−B1C2D3 + B1C3D2 − B3C1D2 + B3C2D1

A2 (B1C3 − B3C1)
, (4.29)

ωqa
q2

=
−C1D3 + C3D1

B1C3 − B3C1
, (4.30)

ωqa
q3

=
B1D3 − B3D1

B1C3 − B3C1
, (4.31)

32



where

B1 = − f q
k

mB
13 − (dz − dx)

((
Caqk

11

)T vzqw/a
ak

)
, (4.32)

C1 = −
(
dx − dy

) ((
Caqk

12

)T vzqw/a
ak

)
, (4.33)

D1 =
(
Caqk

11

)T v̈zqw/a
ak

+ dx
(
Caqk

11

)T v̇zqw/a
ak

, (4.34)

A2 = − f q
k

mB
13 −

(
dy − dz

) ((
Caqk

11

)T vzqw/a
ak

)
, (4.35)

C2 =
(
dx − dy

) (
Caqk

11

)T vzqw/a
ak

, (4.36)

D2 = −
(
Caqk

12

)T v̈zqw/a
ak

− dy
(
Caqk

12

)T v̇zqw/a
ak

, (4.37)

B3 = −c2
T

ak
Caqk

13, (4.38)

C3 =
∥∥∥c2

×

ak
Caqk

13

∥∥∥ , (4.39)

D3 = ψ̇q
kc1

T

ak
Caqk

11. (4.40)

The components of the reference angular acceleration ω̇qa
q are found by [19]

ω̇qa
q1

=
−B1C2E3 + B1C3E2 − B3C1E2 + B3C2E1

A2 (B1C3 − B3C1)
, (4.41)

ω̇qa
q2

=
−C1E3 + C3E1
B1C3 − B3C1

, (4.42)

ω̇qa
q3

=
B1E3 − B3E1
B1C3 − B3C1

, (4.43)

where

E1 =
(
Caqk

11

)T ...vzqw/a
ak

− 2

(
1

mB
ḟ q
k13

)
ωqa
q2k

+
f q
k

mB
13ω

qa
q1k
ωqa
q3k

+
(
Caqk

11

)T
Γk, (4.44)

E2 = −
(
Caqk

12

)T ...vzqw/a
ak

− 2

(
1

mB
ḟ q
k13

)
ωqa
q1k

− f q
k

mB
13ω

qa
q2k
ωqa
q3k

−
(
Caqk

12

)T
Γk, (4.45)

E3 = ψ̈q
kc1

T

ak
Caqk

11 + 2ψ̇q
kω

qa
q3k

c1
T

ak
Caqk

12 − 2ψ̇q
kω

qa
q2k

c1
T

ak
Caqk

13

− ωqa
q1k
ωqa
q2k

c2
T

ak
Caqk

12 − ωqa
q1k
ωqa
q3k

c2
T

ak
Caqk

13,
(4.46)
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and [19]

1

mB
ḟ q
k13 =

(
Caqk

13

)T v̈zqw/a
ak

+ ωqa
q1k

(
dy − dz

) (
Caqk

12

)T vzqw/a
ak

+ ωqa
q2k

(dz − dx)
(
Caqk

11

)T vzqw/a
ak

+ dz
(
Caqk

13

)T v̇zqw/a
ak

,

(4.47)

Γk = Caqk

((
ωqa×

qk

)2
D + D

(
ωqa×

qk

)2
− 2ωqa×

qk
Dωqa×

qk

)
CT

aqk
vzqw/a
ak

+ 2Caqk

(
ωqa×

qk
D − Dωqa×

qk

)
CT

aqk
v̇zqw/a
ak

+ Caqk
DCT

aqk
v̈zqw/a
ak

.

(4.48)

Finally, the torque input mq
qk

can be calculated as [19]

mq
qk

= JBzq
q ω̇qa

qk
+ ωqa×

qk
JBzq
q ωqa

qk
+ ECT

aqk
vzqw/a
ak

+ Fωqa
qk
. (4.49)

The quartic reference state trajectory, xq, at time k is

xq
k =


rzqwak

qqa
k

vzqw/a
ak

ωqa
qk

 ∈ R18, (4.50)

where qqa
k is a parameterization of the DCM Caqk

given by (2.9). The quartic reference
control input trajectory, uq, at time k is

uq
k =

[
f q
k

mq
qk

]
∈ R4. (4.51)

4.3 Linear Quadratic Regulator Trajectory Generation

The quartic trajectory is used to warm start a standard discrete-time, finite-horizon LQR
problem [34]. While LQR has traditionally been used as a strategy for optimal control, as
demonstrated in [20], in this thesis LQR is used as a guidance strategy. The objective is to
refine the coarse quartic reference trajectory and generate a high quality feedforward term
for the MPC. The discrete-time, finite-horizon LQR problem formulation is similar to that of
the MPC problem, allowing for the same augmented SE2(3) error definition to be leveraged.

4.3.1 Optimal Gain Sequence

The first step in the LQR trajectory generation process is to compute the optimal LQR
gain sequence along the desired trajectory. Consider the system dynamics, linearized about
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the quartic reference trajectory xq, and control inputs uq, to give the linearized state-space
model

δ ˙̄xr = Ārδx̄r + B̄rδur, (4.52)

where the Jacobians Ār and B̄r are given by

Ār =


0 0 0 JBz−1

q
q 0

Ār
21 Ār

22 0 0 0
0 1 −ωqa×

q 0 0
Ār

41 −E 0 Ār
44 0

0 c21 c11 0 0

 , B̄r =


0 0

−1/mB13 0
0 0
0 1
0 0

 , (4.53)

and the matrices Ār
21 and Ār

22 are given by

Ār
21 =

1

mB

((
DCT

aqv
zqw/a
a

)×
− D

(
CT

aqv
zqw/a
a

)×
+ (f q13)

×
)
, (4.54)

Ār
22 = −ωqa×

q − 1

mB
D, (4.55)

Ār
41 =

(
ECT

aqv
zqw/a
a

)×
− E

(
CT

aqv
zqw/a
a

)×
+
(
Fωqa

q

)× − Fωqa×

q , (4.56)

Ār
44 = −ωqa×

q − FJBz−1
q

q . (4.57)

Note that the linearized system has been augmented with an integrator as shown in Sec-
tion 3.6, and that the form of these Jacobians are identical to those given by (3.70). Recall
that the script q refers to the reference frame Fq associated with the quartic trajectory.
The script r is used to refer to the reference frame Fr associated with the guidance LQR
trajectory.

The augmented, linearized, continuous-time dynamics are discretized as shown in Sec-
tion 3.7 to give the discrete-time dynamics

δxr
k+1 = Ār

kδx̄
r
k + B̄r

kδu
r
k. (4.58)

Now the relevant reference states from the quartic trajectory, xq, can be used to populate
(4.53) and create a sequence of Ār

k and B̄r
k Jacobians.
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The LQR cost function is of the form [34]

J
(
δur

0, · · · , δur
N−1

)
= 1

2
δx̄rT

N Sδx̄r
N + 1

2

N−1∑
k=0

(
δx̄rT

k Qδx̄r
k + δurT

k Rδur
k

)
, (4.59)

where N is the horizon length, S = ST ≥ 0 is the terminal state error penalty, Q = QT ≥ 0

is the state error penalty, and R = RT > 0 is the control input penalty. The optimal control
input is given by the solution to the discrete-time, finite-horizon LQR problem,

δur
k = −Kkδx̄

r
k, (4.60)

where the LQR gain Kk is given by

Kk = R̄−1
k+1B̄rT

k Pk+1Ār
k, (4.61)

and

R̄k+1 = R + B̄rT

k Pk+1B̄r
k. (4.62)

The sequence of Pk, for k = 0 to k = N is found by solving the discrete-time Riccati equation
backwards in time. Starting from the terminal condition PN = S, each successive Pk is solved
by

Pk = ĀrT

k

(
Pk+1 − Pk+1B̄r

kR̄−1
k+1B̄rT

k Pk+1

)
Ār

k + Q. (4.63)

Once Pk is found, R̄k+1 is found using (4.62), and Kk is found using (4.61). This process is
repeated N times to calculate the sequence of gains Kk across the entire horizon.

4.3.2 Reference State and Control Input Trajectory

The sequence of reference control inputs, ur and states xr are then generated by propa-
gating the closed-loop dynamics. At each timestep, the current vehicle attitude, Car, velocity,
vzrw/a
a , and position, rzrwa , are cast into an element of SE2(3),

Xr =

 Car vzrw/a
a rzrwa

0 1 0

0 0 1

 ∈ SE2(3). (4.64)
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Similarly, the desired vehicle attitude, Caq, velocity, vzqw/a
a , and position, rzqwa , states from

the quartic trajectory are cast into an element of SE2(3),

Xq =

 Caq vzqw/a
a rzqwa

0 1 0

0 0 1

 ∈ SE2(3). (4.65)

The left-invariant tracking error is given by

δXr
k = Xq−1

k Xr
k =

 δCr
k δvr

k rrk
0 1 0

0 0 1

 . (4.66)

The tracking error is then cast to the Lie algebra as

δξrk = log (δXr
k)

∨ , (4.67)

and the angular momentum error is given by

δhr
k = δCr

khBzqa
qk

− hBzra
rk

. (4.68)

Therefore, the complete error state is given by

δx̄r
k =

 δξrk
δhr

k

δξik

 =


δξϕ

r

k

δξv
r

k

δξr
r

k

δhr
k

δξik

 ∈ R18. (4.69)

Next, the optimal incremental control input δur
k is computed though (4.60) using the optimal

LQR gain, Kk and the current state error, δx̄r
k. The quartic feedforward term, uq

k, is added
to δur

k to produce the total reference control input ur
k,

ur
k =

[
f r
k

mr
rk

]
=

[
f q
k + δf r

k

δCrT

k mq
qk
+ δmr

k

]
∈ R4. (4.70)
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The nonlinear vehicle dynamics given by (3.1) to (3.4) and the integrator dynamics given by
(3.65) are integrated using a forward Euler method to generate the reference states, xr

k+1 as

Cark+1
= Cark

exp
((
hωra

rk

)×)
, (4.71)

rzrwak+1
= rzrwak

+ hvzrw/a
ak

, (4.72)

vzrw/a
ak+1

= vzrw/a
ak

+ h
1

mB
fBzrak

, (4.73)

ωra
rk+1

= ωra
rk

+ hJBz−1
r

r

(
mBzr

rk
− ωra×

rk
JBz
r ωra

rk

)
, (4.74)

ξik+1 = ξik + h (c1δr
r
k + c2δv

r
k) , (4.75)

where h is the timestep.

The steps (4.64) to (4.75) are repeated at every timestep to generate a complete set of
refined reference trajectories for the states, xr, and control inputs, ur.

4.4 Simulation Results

To demonstrate the proposed two-stage guidance law, a simulation is run to generate a
reference trajectory for a landing approach maneuver. The states are initialized as

Cab0
= expSO(3)

([
0 0 −π/36

]T)
,

rz0wa =
[
−30 −5 −20

]T
m,

vz0w/a
a =

[
5 −1 0.2

]T
m · s−1,

ωb0a
b =

[
0 0 0

]T
rad · s−1.

The parameters used by the guidance LQR algorithm are given in Table 4.1. The generated
reference path from the initial position to the target is shown in Figure 4.2. The initial path
planned by the quartic guidance law is simply defined by the fourth-order polynomial given
by (4.3). The guidance LQR algorithm refines the path based on the LQR cost function and
the initial conditions.

The generated state and input trajectories are shown in Figures 4.3 and 4.4, respectively.
The polynomial function used by the quartic guidance law can be seen in the position and
velocity trajectories. Note that while the algorithm can always perfectly match the initial
vehicle position state, it is not always possible to match the initial velocity state. Recall from
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Table 4.1: Guidance LQR Parameters Used in Trajectory Generation Simulation

Parameter Value Units
dt 0.02 s
Qϕ diag(1e3, 1e3, 1e6) -
Qv diag(1e1, 1e1, 1e1) -
Qr diag(1e2, 1e2, 1e2) -
Qh diag(1e2, 1e2, 1e2) -
Qi diag(1, 1, 1) -
Q diag(Qϕ,Qv,Qr,Qh,Qi) -
S 10 · Q -
R diag(1e − 3, 1, 1, 1) -
c1 1 -
c2 1 -

Section 4.2.1 that the condition given by (4.13) must be satisfied to generate a trajectory
with a monotonic velocity profile. This condition is only satisfied if the vehicle’s initial
velocity is in the direction of the target, which is not guaranteed. In the case that (4.13) is
violated, the quartic guidance law assumes a valid initial velocity that allows the trajectory
to be generated. The guidance LQR is then able to smooth the error between the reference
velocity from the quartic guidance and true initial velocity. Similarly, the initial attitude and
angular velocity states are not considered by the quartic guidance, however the guidance LQR
ensures that all boundary conditions are matched, and that the final reference trajectories
sent to the controller are smooth.

39



Figure 4.2: Simulated landing approach path generated by two-stage guidance.
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Figure 4.3: Simulated landing approach state trajectories generated by two-stage guidance.
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Figure 4.4: Simulated landing approach control input trajectories generated by two-stage
guidance.
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Chapter 5

Model Predictive Control

Now that a guidance strategy has been developed, a control strategy is necessary to
generate actuator inputs that will allow the tandem-rotor helicopter to follow the desired
reference trajectory. Although not commonly studied, several examples exist in the literature
of control strategies applied to tandem-rotor helicopters. In [35], a proportional-integral (PI)
velocity and heading controller is developed for a Chinook helicopter autoland system, while
a nonlinear Lyapunov algorithm for hover control is demonstrated in [36]. Lastly, an L1

adaptive controller is designed using a linearized model of the system dynamics in [37].

In this chapter, an MPC approach for tandem-rotor control is presented. The MPC
framework offers a number of advantages over other methods of control. It is relatively simple
to design, particularly for systems with many states and control inputs. More importantly,
MPC provides a framework that allows state and control inputs to be directly constrained,
which is not always straightforward with other control methods. Historically, MPC was
developed in the 1960s and was primarily used in the refining and petrochemical industries
until the early 2000s [6]. Since then, MPC has found widespread applications in a range of
industries including automotive and aerospace control, information technology, energy, and
finance [5].

MPC in its most basic form has several that must be addressed in order to be successfully
implemented on the tandem-rotor system. They are as follows.

1. MPC can be unsuitable for large real-time systems with fast dynamics and many
constraints.

2. Nonlinear systems cannot be posed as a QP.

Additionally, the tracking performance of the controller is dependent on the accuracy of the
selected dynamic model and state estimates provided to the controller. Although this is not
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MPC specific, and is in fact a weakness of any model-based scheme, it is an issue that must
be addressed to ensure good performance. This chapter aims to develop an MPC strategy
for the tandem-rotor helicopter that addresses each of these weaknesses.

5.1 Overview

Matrix Lie groups can be used to compactly and accurately represent vehicle attitude,
pose, or extended pose, which in turn can be leveraged in state estimation and control
problems [20, 38–42]. In particular, an invariant linear quadratic Gaussian controller defined
on SE(2) is used to control a simplified car in [40], and invariant LQR using an error
defined on SE2(3) is used to control a quadrotor in [20]. The use of an invariant error
definition, instead of a traditional multiplicative error definition [23], along with a particular
type of process model, results in Jacobians that are state-independent. This yields improved
robustness to initial conditions for state-estimation and control. MPC on matrix Lie groups
has been explored in [41] and [42] for spacecraft attitude control on SO(3).

In this chapter, an invariant error definition [38, 39] is used to develop the MPC strategy.
The attitude, velocity, and position states are cast into an element of the matrix Lie group
SE2(3) [39]. The nonlinear dynamics from Chapter 3 are linearized about the reference
trajectory from Chapter 4, using the linearization process from Chapter 3. This allows
the MPC optimization problem to be posed as a QP. The QP is subject to various linear
constraints on the control inputs and states. The dynamics used for control design do
not exactly fit the invariant framework. Nevertheless, the invariant approach to control is
followed due to the straightforward linearization process and the reduced dependence of the
Jacobians on attitude [20, 40].

Unlike [20], where the angular velocity is a control input to the plant, the proposed MPC
algorithm is able to control and constrain the body force and torque directly. This is accom-
plished by augmenting the SE2(3) state with the vehicle angular momentum, eliminating
the need for a separate inner-loop controller to generate torque commands. A challenge with
this approach is that the resulting process model is multi-timescale, necessitating a small
controller timestep and long MPC prediction horizon [43]. This combination is computation-
ally burdensome and is remedied by introducing a non-uniformly spaced prediction horizon,
much like [44] and [45].
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5.2 Introduction to MPC

MPC is a method of optimal control that uses a simplified dynamic model of the system
to predict its likely future evolution and chooses an optimal control action to apply at the
current time [5]. An MPC algorithm consists of three steps. At each time k,

1. The estimate of the current state, xk, is updated.

2. An optimization problem is solved to get the sequence of optimal control inputs, µ⋆
k.

3. The first optimal control input from the sequence, u⋆
0|k, is applied to the system.

These steps are repeated continuously until the control objective is reached.

The proposed control structure is highlighted in Figure 5.2a and expanded to show the
detailed MPC pipeline in Figure 5.2b. First, the nonlinear system dynamics are linearized
about the reference trajectory from the guidance and discretized. Next, the MPC prediction
and constraint matrices are created to formulate the QP. A QP solver then solves the opti-
mization problem yielding the sequence of optimal control inputs. Lastly, the feedforward
control input from the guidance is added to the optimal feedback control input to form the
total input. The remainder of this chapter explains these steps in detail.

5.3 Finite Horizon MPC for Linear Time-varying Systems

For the discrete-time-linearized system (3.76), the state predictions are written as

δxi|k = Ai(k)δxk + Ci(k)δµk, i = 0, . . . , Np, (5.1)

where δxi|k is the state vector given by (3.14) at time k + i predicted at time k, Np is the
prediction horizon length, and δµk is the predicted input sequence,

δµk =


δu0|k

δu1|k
...

δuNp−1|k

 . (5.2)
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Figure 5.1: MPC algorithm demonstration.
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The time-varying state transition matrices, Ai(k) and Ci(k), are formed using Ak and Bk

given by (3.74) and (3.75), and are defined as

Ai(k) =

↶
i−1∏
j=0

Ak+j, (5.3)

Ci(k) =

[( ↶∏i−1
j=1Ak+j

)
Bk

( ↶∏i−1
j=2Ak+j

)
Bk+1 · · · Bk+i−1 0 · · · 0

]
, (5.4)

where
↶∏

indicates that successive terms in the sequence are left-multiplied. The cost matrices
Sk and Mk are defined by stacking the state transition matrices as

Sk =


C1(k)

C2(k)
...

CNp
(k)

 , Mk =


A1(k)

A2(k)
...

ANp
(k)

 . (5.5)

Therefore, the predicted state sequence over the prediction horizon, δχk, can be compactly
written as

δχk =


δx1|k

δx2|k
...

δxNp|k

 = Skδµk +Mkδxk. (5.6)

Note that δxk = δx0|k is the current state error at time k. The predicted finite-horizon cost
to be optimized is

J(δxk, δui|k) = δxT
Np|kPδxNp|k +

Np−1∑
i=0

(
δxT

i|kQkδxi|k + δuT
i|kRkδui|k

)
, (5.7)

where Q = QT ≥ 0 is the state penalty matrix, R = RT > 0 is the control input penalty
matrix, and P = PT ≥ 0 is the terminal state penalty matrix. The penalty matrices are
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composed of weights on each of the control inputs and states

Q =


Qϕ

Qv

Qr

Qh

 , P =


Pϕ

Pv

Pr

Ph

 , R =

[
Rf

Rm

]
. (5.8)

The stacked state penalty and control input error matrices over the prediction horizon are

Q̄ =


Q

. . .

Q
P

 , R̄ =


R

. . .

R

 . (5.9)

Substituting the definitions from (5.6) and (5.9) into (5.7),

J(δxk, δui|k) = δχT
k Q̄δχk + δµT

k R̄δµk + δxT
k Qδxk (5.10)

= (Skδµk +Mkδxk)
T Q̄ (Skδµk +Mkδxk) + δµT

k R̄δµk + δxT
k Qδxk (5.11)

= δµT
k

(
ST

k Q̄S + R̄
)
δµk + 2δxT

kMT
k Q̄Skδµk

+ δxT
k

(
MT

k Q̄Mk + Q
)
δxk

(5.12)

= δµT
k Hδµk + 2FTδµk + ck, (5.13)

where

Hk = ST
k Q̄Sk + R̄, (5.14)

Fk = ST
k Q̄Mk, (5.15)

ck = δxT
k

(
MT

k Q̄Mk + Q
)
δxk. (5.16)

The optimization problem can then be expressed as a QP,

min
δµk

J(δµk) =
1

2
δµT

k Hkδµk + FT
k δµk. (5.17)

Note that the ck term has been dropped from (5.17) since it is not a function of the opti-
mization variables, δµk. Solving the QP gives the optimal control input sequence δµ⋆

k.
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Figure 5.3: Total prediction horizon time using a traditional uniform timestep and a non-
uniform timestep with Np = 16.

5.3.1 Non-uniform Prediction Horizon Timestep

The process model given by (3.2) and (3.4) contains “fast” attitude dynamics and “slow”
translational dynamics. To accurately predict the dynamics of this multi-timescale system,
a large prediction horizon is necessary. To increase the time span of the prediction horizon
without increasing the number of optimization variables, a non-uniformly spaced prediction
horizon is implemented [44]. The short-term horizon sampling time is kept small to resolve
the “fast” attitude dynamics. The long-term horizon sampling time is increased to ensure
the “slow” translational dynamics are predicted sufficiently far into the future.

This effect is demonstrated by Figure 5.3. In this example, a total of N = 16 steps are
used. By splitting the prediction horizon into 3 segments with increasing timestep intervals,
the total horizon time is increased by a factor of 3.5 without increasing the number of
prediction steps.

The penalty matrices Q and R are modified to account for the different sampling time
at each segment in the horizon such that [45]

Qi = (∆ti/∆t1)Q, Ri = (∆ti/∆t1)R, (5.18)

where ∆ti is the sampling time of the individual horizon segment.

5.4 State and Input Constraints

Recall that the reference trajectory generated by the guidance does not enforce any state
or control input constraints. This is by design since including constraints in the LQR formu-
lation would require solving a QP instead of an analytic solution, increasing computational
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complexity [46]. An advantage of MPC is the ability to explicitly embed state and control
input constraints in the optimization problem. The desired constraints must be defined in
terms of the optimization variables and written as a linear inequality to be included in the
QP. In this thesis, three types of constraints are considered.

5.4.1 Attitude Keep-in Zone

The presence of an external disturbance, such as a wind gust, can cause the vehicle
to deviate from the planned reference trajectory, therefore the controller must be able to
compensate within the desired attitude limits. The attitude of the helicopter is constrained
using a keep-in zone [47], defined as

x1T

b CT
aby

1
a ≥ cos(α)− ϵ1, (5.19)

where ϵ1 is a slack variable. The inequality given by (5.19) ensures that the angle made by
x1
b and CT

aby1
a does not exceed α. By setting

x1
b =

 0

0

1

 , y1
a =

 0

0

1

 , (5.20)

the roll and pitch angles are constrained simultaneously by α. The attitude keep-in zone
constraint is visualized by Figure 5.4 where the attitude keep-in zone, represented by the
green cone, constrains the b−→

3 vector shown in blue.

To incorporate this constraint in the QP, (5.19) must be linearized and written in terms
of the optimization variables, δµk and ϵ1. First, (5.19) is linearized using (3.8) and (3.18),

x1T

b δC
TCT

ary
1
a ≥ cos(α)− ϵ1 (5.21)

x1T

b

(
1 − δξϕ

×
)

CT
ary

1
a ≥ cos(α)− ϵ1 (5.22)

x1T

b

(
CT

ary
1
a

)×
δξϕ ≥ cos(α)− x1T

b CT
ary

1
a − ϵ1. (5.23)

From the stacked state transition matrix (5.6), the ith predicted attitude in the horizon can
be written as

δξϕk|i = Pa
i (Skδµk +Mkδxk) , (5.24)
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Figure 5.4: Visualization of attitude keep-in zone constraint.
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where Pa
i is a projection matrix. Substituting (5.24) into (5.23) results in

x1T

b

(
CT

ark+i
y1
a

)×
Pa
i (Skδµk +Mkδxk) ≥ cos(α)− x1T

b CT
ark+i

y1
a − ϵ1. (5.25)

By rearranging (5.25), the linearized keep-in zone constraint can be written in terms of the
optimization variables as

[
−x1T

b

(
CT

ark+i
y1
a

)×
Pa
iSk −1

] [ δµk

ϵ1

]
≤
[
− cos(α) + x1T

b CT
ark+i

y1
a

]
+
[

x1T

b

(
CT

ark+i
y1
a

)×
Pa
iMk

]
δxk. (5.26)

5.4.2 Attitude Error

Due to the linearization performed to formulate the attitude keep-in zone constraint,
(5.26) is only valid for small δξϕ. Although the controller attempts to drive δξϕ to zero,
it does not ensure that the size of the attitude error is kept below a desired threshold.
Therefore, an additional constraint is imposed on the size of the attitude error to ensure
the nonlinear keep-in zone constraint given by (5.23) is respected. While the ℓ2-norm is a
logical choice to constrain the size of the vector δξϕ, the ℓ1-norm is used here for two reasons.
Firstly, it provides a conservative size constraint since ∥x∥2 ≤ ∥x∥1 [48]. Secondly, unlike the
ℓ2-norm, the ℓ1-norm can be easily written as a series of linear inequalities, which is required
to incorporate the constraint in the QP.

The ℓ1-norm attitude error constraint is written as

∥∥δξϕ∥∥
1
≤ γ + ϵ2, (5.27)

where γ is a scalar that limits the size of δξ, and ϵ2 is a slack variable. Equation (5.27) is
equivalent to the linear inequalities [14]

3∑
i=1

zi ≤γ + ϵ2, (5.28)

−zi ≤δξ
ϕ
i ≤ zi, i = 1, 2, 3 (5.29)

where zi, i = 1, 2, 3 are additional optimization variables. To incorporate (5.28) and (5.29)
into the QP, they must be expressed in terms of the optimization variables δµk, z, and
ϵ2. Note that (5.28) already satisfies this requirement, however (5.29) must be modified.
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Substituting (5.24) into (5.29) results in

−zi ≤ Pa
i (Skδµk +Mkδxk) ≤ zi. (5.30)

The compound inequality given by (5.30) can be split into two separate inequalities,

−zi ≤ Pa
i (Skδµk +Mkδxk) , (5.31)

−zi ≤ −Pa
i (Skδµk +Mkδxk) . (5.32)

Therefore, the ℓ1-norm constraint can be written in matrix form by combining and rearrang-
ing (5.28), (5.31), and (5.32), 0 11×3 −1

Pa
iSk −1 0

−Pa
iSk −1 0


 δµk

z
ϵ2

 ≤

 γ

0
0

+

 0

−Pa
iMk

Pa
iMk

 δxk. (5.33)

5.4.3 Control Inputs

Control input constraints are defined by first setting maximum and minimum total force
and torque control efforts,

umax =

[
fmax

mbmax

]
, umax =

[
fmin

mbmin

]
. (5.34)

The MPC algorithm operates on the incremental control input, δuk, therefore the control in-
put constraints are defined by subtracting the reference control input, ur

k, from the maximum
and minimum control efforts,

δumaxk
= umax − ur

k, (5.35)

δumink
= umin − ur

k. (5.36)

The constraints on the control inputs are therefore,

δumink
≤ δuk ≤ δumaxk

. (5.37)

Equation (5.37) can be written in terms of the optimization variables δµk as,

δumini|k
≤ Pc

iδµk ≤ δumaxi|k
, (5.38)
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where Pc
i is a projection matrix. Note that this is not the same as the projection matrix,

Pa
i , from in Sections 5.4.1 and 5.4.2. The compound inequality from (5.38) can be written

as two separate inequalities as

−Pc
iδµk ≤ −δumini|k

, (5.39)

Pc
iδµk ≤ δumaxi|k

. (5.40)

By rearranging (5.39) and (5.40), the control input constraints are written in matrix form,[
Pc
i

−Pc
i

]
δµk ≤

[
δumaxi|k

−δumini|k

]
. (5.41)

5.4.4 Formulating the Constrained QP

To incorporate the formulated constraints into the QP, the cost function from (5.7) must
be modified to include penalties on the slack variables ϵ1 and ϵ2,

J(δxk, δui|k, ϵ) = ϵTηϵ+ δxT
Np|kPδxNp|k +

Np−1∑
i=0

(
δxT

i|kQkδxi|k + δuT
i|kRkδui|k

)
, (5.42)

where η = diag(η1, η2) is a penalty on the slack variables. The constraints (5.26), (5.33), and
(5.41) are combined to form matrices than can be included in the QP. First, the control input
vector is augmented to include the additional optimization variables from the constraints,

δµ̃k =



δµk

z1
...

zNc

ϵ1|1
...

ϵ1|Nc

ϵ2|1
...

ϵ2|Nc



, (5.43)

where Nc ≤ Np is the constraint horizon. The length of the constraint horizon can be shrunk
to reduce the size of the QP. The matrices R̄ and S are also augmented to incorporate the
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additional optimization variables,

R̃ =


R̄

0
η11

η21

 , S̃ =
[
S 0 0 0

]
. (5.44)

Therefore, the Hk and Fk matrices become

H̃k = S̃T
k Q̄S̃k + R̃, (5.45)

F̃k = S̃T
k Q̄Mkδxk. (5.46)

Next, the constraints are combined and written in terms of δµ̄k,

Gk =



−x1T

b

(
CT

ark+1
y1
a

)×
Pa
1Sk 0 −1 0

... . . . . . . . . .

−x1T

b

(
CT

ark+Nc+1
y1
a

)×
Pa
Nc
Sk 0 −1 0

0 11×3 0 −1
... . . . . . . . . .

0 11×3 0 −1

Pa
1Sk −1 0 0
... . . . . . . . . .

Pa
Nc
Sk −1 0 0

−Pa
1Sk −1 0 0
... . . . . . . . . .

−Pa
Nc
Sk −1 0 0

Pc
1 0 0 0
... . . . . . . . . .

Pc
Nc

0 0 0

−Pc
1 0 0 0

... . . . . . . . . .

−Pc
Nc

0 0 0



,

(5.47)

56



Wk =



− cos(α) + x1T

b CT
ark+1

y1
a

...
− cos(α) + x1T

b CT
ark+Nc+1

y1
a

γ
...
γ

0
...
0
0
...
0

δumax1|k
...

δumaxNc|k

−δumin1|k
...

−δuminNc|k



, Tk =



x1T

b

(
CT

ark+1
y1
a

)×
Pa
1Mk

...

x1T

b

(
CT

ark+Nc+1
y1
a

)×
Pa
Nc
Mk

0
...
0

−Pa
1Mk
...

−Pa
Nc
Mk

Pa
1Mk

...
Pa
Nc
Mk

0
...
0
0
...
0



. (5.48)

The constraint matrices are added to the QP from (5.17) to give the constrained QP,

min
δµ̃k

J(δµ̃k) =
1

2
δµ̃T

k H̃kδµ̃k + F̃T
k δµ̃k.

s.t. Gkδµ̃k ≤ Wk + Tkδxk,

(5.49)

5.5 MPC Solution

5.5.1 Solving the Constrained QP

The constrained QP given by (5.49) is solved yielding the optimal incremental control
input sequence

δµ⋆
k =


δu⋆

0|k

δu⋆
1|k
...

δu⋆
N−1|k

 . (5.50)
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Several commercial and open-source solvers exist which can efficiently solve QPs. For the
simulations performed in this thesis, Matlab’s internal QP solver, quadprog(), is used.

5.5.2 Adding the Feedforward Terms

The first control input in the optimal input sequence given by (5.50) is extracted yielding

δu⋆
0|k =

[
δf ⋆

0|k

δm⋆
0|k

]
. (5.51)

Finally, the total control input, uk, is obtained by adding the feedforward input, ur
k, given

by (4.70) to the incremental control input

uk =

[
fk

mbk

]
=

[
f r
k + δf ⋆

0|k

δCT
k mr

rk
+ δm⋆

0|k

]
. (5.52)

Note that the reference torque command, mr
rk

, is resolved in Fr. Before being combined with
δmk, it must be resolved in Fb through multiplication by δCT

k .

5.6 Disturbance Estimation

To improve guidance, an estimate of the disturbances acting on the vehicle, particularly
a near-constant wind, is needed. Assuming the states are accurately estimated, then the
disturbance at the previous timestep can be approximated as

dk−1 = xk − f(xk−1,uk−1), (5.53)

where f(xk,uk) represents modeled dynamics from (3.2) and (3.4). A simple moving average
filter is used to estimate the current disturbance. When the trajectory is replanned, the
controller passes the disturbance estimate to the LQR guidance to improve the accuracy of
the new reference trajectory. Without this simple disturbance estimator in the guidance, the
tracking performance is poor.

5.7 Simulation Implementation

5.7.1 Actuator Mixer

Before being applied to the system, an actuator mixer is used to map the control input
commands from the MPC, given by (5.52), to front and rear rotor force components, f1bk and
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f2bk , respectively. As is common for tandem-rotor helicopter control [3], it is assumed that
the b−→

1 rotor force component is strictly used for pitch trimming. Therefore, only the b−→
2,

and b−→
3 rotor force components are used for control. The mapping from the control inputs

to the rotor force inputs is
f 1
b2k

f 1
b3k

f 2
b2k

f 2
b3k

 =


0 1 0 1

−r1zb3 r1zb2 −r2zb3 r2zb2
0 −r1zb1 0 −r2zb1
r1zb1 0 r2zb1 0


−1

uk, (5.54)

where r1zb =
[
r1zb1 r1zb2 r1zb3

]T
and r2zb =

[
r2zb1 r2zb2 r2zb3

]T
are the positions of the front

and rear rotors relative to the vehicle’s center of mass, respectively.

5.7.2 Dynamics Propagation

For all simulations, the vehicle dynamics given by (3.1) to (3.4) are propagated using
the forward-Euler method as

Cabk+1
= Cabk

exp
((
hωba

bk

)×)
, (5.55)

rzwak+1
= rzwak + hvzw/a

ak
, (5.56)

vzw/a
ak+1

= vzw/a
ak

+ h
1

mB
fBzak , (5.57)

ωba
bk+1

= ωba
bk
+ hJBz−1

b

(
mBz

bk
− ωba×

bk
JBz
b ωba

bk

)
, (5.58)

where h is the timestep.

5.8 Simulation Results

5.8.1 Simulated Landing Trajectory

A series of simulations are performed using the tandem-rotor helicopter parameters
shown in Table 5.1 and the equations of motion from (3.2) and (3.4). The simulations
are meant to replicate a final approach to a landing site. For each simulation, the target
position and velocity are

rzfwa =
[
0 0 0

]T
m,

vzfw/a
a =

[
0 0 0

]T
m · s−1.
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The initial states are

Cab0
= 1,

rz0wa =
[
−30 −5 −20

]T
m,

vz0w/a
a =

[
5 0 −0.5

]T
m · s−1,

ωb0a
b =

[
0 0 0

]T
rad · s−1,

and the reference heading is ψr = 0 rad. The nominal wind speed is set to

vsw/a
a =

[
0 −5 0

]T
m · s−1,

and wind gusts, vgw/a
a , are generated using the Dryden model shown in Section 3.8 with

W20 = 12 m · s−1.

The guidance and control loop is run at 50 Hz. The parameters used by the guidance LQR
algorithm to generate the reference trajectory are shown in Table 5.2, while the parameters
used by the MPC algorithm are shown in Table 5.3. Note that while the MPC prediction
horizon is Np = 20, the control horizon and constraint horizon are both limited to Nu =

Nc = 10 to reduce computational complexity [7]. A non-uniform prediction horizon is created
by splitting the horizon into three distinct timestep intervals. The reference trajectory is
replanned if the ℓ1-norm constraint is active for longer than 0.4 s. In practice a navigation
loop would provide state estimates, x̂k, to the guidance and control algorithms. For these
simulations, it is assumed the state estimates are accurate such that xk = x̂k.

Table 5.1: Tandem-rotor Helicopter Parameters Used in Simulation

Parameter Value Units
mB 218 kg
JBz
b diag(26.8, 97.6, 87.2) kg · m2

r1zb
[
1.045 0 −0.514

]T m
r2zb

[
−0.937 0 −0.686

]T m

The results from a single simulation are highlighted to demonstrate advantages of the
proposed guidance and control structure. The helicopter path from the starting position to
the target is shown in Figure 5.5. Dashed lines show reference trajectories, while solid lines
show actual trajectories. Changes in line color indicate a replanned trajectory, and occur
when the attitude error exceeds the specified threshold. Initial tracking of the reference
trajectory is good when the disturbance estimate from the controller is most accurate. As

60



Table 5.2: Guidance LQR Parameters Used in Simulation

Parameter Value Units
dt 0.02 s
Qϕ diag(1e3, 1e3, 1e6) -
Qv diag(1e1, 1e1, 1e1) -
Qr diag(1e2, 1e2, 1e2) -
Qh diag(1e2, 1e2, 1e2) -
Qi diag(1e2, 1e2, 1e2) -
Q diag(Qϕ,Qv,Qr,Qh,Qi) -
S 10 · Q -
R diag(1, 1, 1, 1) -
c1 1 -
c2 1 -

the disturbance evolves, the tracking performance suffers until the trajectory is replanned
with an updated disturbance estimate.

The attitude keep-in zone and ℓ1-norm attitude error constraints are visualized in Fig-
ure 5.6a. The attitude keep-in zone constraints are respected if the solid colored lines remain
above the dotted black line. Conversely, the ℓ1-norm attitude error constraint is respected if
the solid colored line remains blow the dotted black line. The linearized keep-in zone and at-
titude error constraints are respected throughout the entire simulation. During periods with
larger attitude error, the linearized and nonlinear keep-in zone constraints diverge slightly.
In some cases, the nonlinear constraint is marginally violated. This behavior is limited by
the attitude error constraint, which maintains the validity of the keep-in zone by limiting
the size of δξϕ. The divergence of the nonlinear and linearized keep-in zones can be further
limited by reducing γ. However, overly restricting the attitude error results in diminished
tracking performance in the presence of large disturbances. It can be seen that the trajectory
is replanned when the ℓ1-norm attitude error constraint becomes active. Once the trajectory
is replanned, the attitude error immediately drops to zero since the new reference trajectory
is planned from the current state.

The control input constraints are shown in Figure 5.6b. The force and torque inputs are
effectively bound by the imposed constraints. When the reference trajectory is replanned,
there is a step change in the state error resulting in discontinuous control inputs. In practice,
the control inputs would be passed through a low-pass filter before being sent to the actuators
to ensure smooth commands.
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Figure 5.5: Helicopter’s progress along the planned path during a single simulation. Dashed
lines represent desired trajectory, solid lines represent actual trajectory. Changes in colour
represent replanned trajectories.
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titude error (bottom) constraints.

0 2 4 6 8 10 12

0

1000

2000

3000

0 2 4 6 8 10 12

-200

0

200

0 2 4 6 8 10 12

-200

0

200

0 2 4 6 8 10 12

-200

0

200

(b) Control input constraints.

Figure 5.6: Attitude and control input constraint performance over a single simulation.
Changes in colour represent replanned trajectories.
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Table 5.3: MPC Parameters Used in Simulation

Parameter Value Units
dt 0.02 s
Np 48 -
Nu 10 -
Nc 10 -
Qϕ diag(1e3, 1e3, 1e6) -
Qv diag(1e1, 1e1, 1e1) -
Qr diag(1e2, 1e2, 1e2) -
Qh diag(1e2, 1e2, 1e2) -
Q diag(Qϕ,Qv,Qr,Qh) -
P 10 · Q -
R diag(1, 1, 1, 1) -
η1 1e24 -
η2 1e24 -
∆t1 0.04 s
∆t2 0.16 s
∆t3 0.64 s
Np1

24 -
Np2

12 -
Np3

12 -
umin

[
0 −200 −200 −200

]T N, N · m
umax

[
3000 200 200 200

]T N, N · m
α 10 deg
γ 0.1 rad

5.8.2 Monte-Carlo Simulations

Monte-Carlo simulations are performed to test the robustness of the proposed guidance
and control structure to initial conditions, environmental disturbances, and model uncer-
tainty. The initial state of the helicopter is randomized such that

ϕ0 =
[
0 0 0

]T
+ w1 rad,

rz0wa =
[
−30 −5 −20

]T
+ w2 m,

vz0w/a
a =

[
5 0 0.5

]T
+ w3 m · s−1,

ωb0a
b =

[
0 0 0

]T
+ w4 rad · s−1,
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where ϕ0 = logSO(3)(Cab0
), w1 ∼ N (0, σ2

ϕ1), w2 ∼ N (0, σ2
r1), w3 ∼ N (0, σ2

v1), and w4 ∼
N (0, σ2

ω1), where x ∼ N (a,B) indicates that x is normally distributed with mean a and
variance B.

The nominal wind condition and Dryden gust model are randomized such that

vsw/a
a =

[
0 −3 0

]T
+ w5 m · s−1,

W20 = 10 + w6 m · s−1,

where w5 ∼ N (0, σ2
w1), and w6 ∼ N (0, σ2

d).

Lastly, the estimated mass, m̂B, and inertia matrix, ĴBz
b , are perturbed from their true

values such that

m̂B = mB + w7 kg,

ĴBz
b̂

= CT
bb̂

JBz
b Cbb̂ kg · m2,

where w7 ∼ N (0, σ2
m), and Cbb̂ = expSO(3)(ϕ) is a perturbation DCM, where ϕ ∼ N (0, σ2

J1).
By perturbing JBz

b with a DCM, cross-coupling is introduced in the inertia matrix, however
the eigenvalues of the inertia matrix are preserved. The standard deviation values used to
randomize the states and model parameters are shown in Table 5.4.

Table 5.4: State and Parameter Standard Deviations Used in Monte Carlo Simulations

Parameter Value Units
σϕ 0.0873 rad
σv 0.333 m · s−1

σr 1 m
σω 0.0291 rad · s−1

σm 10 kg
σJ 0.0436 kg · m2

σw 1.333 m · s−1

σd 0.667 m · s−1

The distribution of root-mean-square error (RMSE) results for 100 Monte-Carlo runs is
shown in Figure 5.7 in the form of violin plots. In each case, the helicopter is able to reach
the target position. The large distribution on the control input, particularly thrust, is due
to the applied mass uncertainty. With reduced mass uncertainty, the variance in δf and δm
is smaller, as seen in Figure 5.8.
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Figure 5.7: State and input RMSE values across 100 Monte-Carlo simulations with random
initial conditions, wind gusts, and model uncertainty.

Table 5.5: Prediction Horizon Parameters

Case ∆t1 (s) Np1
∆t2 (s) Np2

∆t3 (s) Np3
Tpred (s)

1 0.04 24 0.16 12 0.64 12 10.56
2 0.02 48 - - - - 0.96

5.8.3 Effect of Non-uniform Prediction Horizon

An additional set of Monte-Carlo simulations are run to demonstrate the advantage
of the non-uniform prediction horizon. In Case 1, the proposed non-uniform timestep is
used, while Case 2 features a uniform fixed-timestep equal to the controller timestep. The
prediction horizon parameters for both cases are shown in Table 5.5. In both cases, the
prediction horizon contains a total of 48 steps, therefore the problem size is identical. All
Monte-Carlo parameters are as previously stated in Section 5.8.1 except for a reduction in
the amount of model uncertainty such that σm = 3.333 kg, and σJ = 0.0436 rad. Attempts
to further increase the model uncertainty result in non-convergence of the MPC in Case 2.

The distribution of RMSE results for 100 Monte-Carlo runs is shown in Figure 5.8. With
the longer total prediction horizon, the average attitude, velocity, and position errors in Case
1 are 9%, 62%, and 64% lower, respectively. However, the average thrust and torque input
errors in Case 1 are 81% and 32% higher, respectively. Comparing other metrics, the average
time to reach the target and the average number of replanned trajectories is 44% and 48%

lower respectively in Case 1. Therefore, although the average control effort is higher in Case
1, the longer prediction horizon achieved by the non-uniformly spaced timestep provides
substantial benefit in tracking performance.
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Figure 5.8: State and input RMSE values across 100 Monte-Carlo simulations comparing
non-uniform (Case 1) and uniform (Case 2) prediction horizons.
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Chapter 6

Cascaded Model Predictive Control

The MPC strategy previously presented in Chapter 5 allows all of the system control
inputs to be generated by a single controller, however the resulting control structure is fairly
large. The size and complexity of the QP used in the MPC solution grows quickly with the
number of states, control inputs, constraints, and horizon length. As an example, consider
the MPC structure for the tandem-rotor system with the following features,

• 12 states and 4 control inputs,

• Horizon length of Np = Nu = Nc = 20,

• Control input, attitude keep-in zone, and ℓ1-norm attitude error constraints.

The resulting QP has 180 optimization variables and 320 constraints. Additionally, the QP
must be run at 50 Hz because it includes the “fast” inner-loop dynamics. The combination
of a large QP and fast update rate makes real-time implementation on limited hardware
infeasible.

A common approach used to avoid solving a QP in real-time is explicit MPC, where the
optimal control solutions for all different operating regions are precomputed and stored [49].
Then the controller simply uses a lookup table to determine the current operating region and
associated control input. Explicit MPC has a long history of successful implementation as
shown in [50] and [51]. It has also been demonstrated on LTV systems as shown in [52] and
[53]. Explicit MPC however is only generally practical for small problem sizes [8] because
the number of operating regions, and hence size of the lookup table, grows exponentially
with the horizon, constraints, and state dimension.

A more practical approach is the cascaded MPC approach where the single MPC is split
into separate outer and inner-loop controllers. Cascaded MPC has been commonly used to
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effectively control multi-timescale systems, such as in [54] where cascaded nonlinear model
predictive control (NMPC) is demonstrated on a quadrotor, and in [55] where a cascaded
MPC structure is applied to a power system. In this thesis, cascaded MPC provides a method
of effectively handling the multi-timescale dynamics of the tandem-rotor helicopter in a less
computationally demanding way than the single MPC structure of Chapter 5. Although
this approach necessitates solving two QPs in real-time, each MPC has fewer states and less
optimization variables, resulting in smaller QPs with less computational complexity.

6.1 Overview

The proposed cascaded MPC structure is shown below in Figure 6.1.
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Figure 6.1: Proposed cascaded guidance and control structure.

The inner-loop controller operates on the fast attitude dynamics and continues to run
at 50 Hz. However, the outer-loop controller only operates on the slow translational dy-
namics and can therefore run at a much slower update rate of 10 Hz. In this chapter, the
cascaded MPC approach is presented as well as simulation results highlighting the reduction
in computation time compared to the single MPC strategy from Chapter 5.
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6.2 Outer-loop MPC

The outer-loop MPC operates on the position and velocity dynamics of the tandem-
rotor helicopter given by (3.1), (3.2), and (3.3). Instead of the augmented error definition
presented in Chapter 5, the elimination of the rotational dynamics allows a purely SE2(3)

error to be used in the outer-loop MPC formulation. Therefore, the tracking error δXk is as
shown in (3.8) and the state is

δxo
k =

 δξϕk
δξvk
δξrk

 ∈ R9, (6.1)

where the superscript (·)o refers to a quantity related to the outer-loop MPC. Notice that
the state dimension has been reduced from 12 to 9 which decreases the size of the QP. The
control inputs are the thrust force and angular velocity commands

uo
k =

[
fT
k

ωba,cmd
bk

]
∈ R4. (6.2)

The input error is defined as

δuo
k =

[
δfk

δωk

]
=

[
fk − f r

k

ωba,cmd
bk

− δCT
kω

ra
rk

]
. (6.3)

6.2.1 Linearization of Dynamics

The linearized dynamics for the outer-loop MPC largely follow Section 3.5, however the
linearization of the attitude dynamics is modified slightly. In this case, δω is a control input
instead of a state. Therefore, the attitude error dynamics are linearized as

δĊ = ĊT
arCab + CT

arĊab, (6.4)

=
(

Carω
ra×

r

)T
Cab + CT

arCabω
ba×

b (6.5)

= −ωra×

r CT
arCab + CT

arCabω
ba×

b (6.6)

= −ωra×

r δC + δCωba×

b . (6.7)

Using the error definition from (6.3),

δĊ = −ωra×

r δC + δC
(
δω + δCTωra

r

)×
. (6.8)
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Linearizing (6.8) using (3.18) and dropping higher-order terms,

d
dt

(
1 + δξϕ

×
)
= −ωra×

r

(
1 + δξϕ

×
)
+
(

1 + δξϕ
×
)(

δω +
(

1 − δξϕ
×
)
ωra

r

)×
(6.9)

δξ̇ϕ
×
= −ωra×

r − ωra×

r δξϕ
×
+ δω× + ωra×

r −
(
δξϕ

×
ωra

r

)×
+ δξϕ

×
ωra×

r (6.10)

= δω× − ωra×

r δξϕ
× −

(
δξϕ

×
ωra

r

)×
+ δξϕ

×
ωra×

r . (6.11)

Using (2.24),

δξ̇ϕ
×
= δω× − ωra×

r δξϕ
× −

(
δξϕ

×
ωra×

r − ωra×

r δξϕ
×
)
+ δξϕ

×
ωra×

r , (6.12)

= δω×. (6.13)

Uncrossing both sides,

δξ̇ϕ = δω (6.14)

The linearized velocity and position error dynamics are identical to those shown in Sec-
tions 3.5.2 and 3.5.3. Therefore, the linearized, continuous-time outer-loop dynamics are δξ̇ϕ

δξ̇v

δξ̇r


︸ ︷︷ ︸

δẋo

=

 0 0 0
A21 A22 0
0 1 −ωra×

r


︸ ︷︷ ︸

Ao

 δξϕ

δξv

δξr


︸ ︷︷ ︸

δxo

+

 0 1
−1/mB13 0

0 0


︸ ︷︷ ︸

Bo

[
δf

δω

]
︸ ︷︷ ︸

δuo

, (6.15)

where A21 and A22 are given by (3.61) and (3.62).

6.2.2 Constraints

The attitude keep-in zone, ℓ1-norm attitude error, and control input constraints are
included in the outer-loop MPC and are formulated as shown in Section 5.4. The torque
input constraint can be replaced with an identical constraint on the angular velocity input
using the method shown in Section 5.4.3.
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6.3 Inner-loop MPC

The inner-loop MPC operates on the rotational dynamics of the tandem-rotor helicopter
given by (3.4). The state is simply the angular momentum

δxi
k = δhk ∈ R3, (6.16)

where the superscript (·)i indicates a quantity related to the inner-loop MPC, and the track-
ing error δhk is as defined in (3.13). The control inputs are the rotor torque commands

ui
k = mbk

∈ R3, (6.17)

and the input error δm is as defined in (3.17). Note that the state and input dimensions
have been reduced to R3, which significantly reduces the size of the inner-loop QP.

6.3.1 Linearization of Dynamics

The linearized dynamics of the inner-loop rotational dynamics is as shown in Sec-
tion 3.5.4, therefore the the continuous-time, linearized inner-loop dynamics are

δḣ =

((
ECT

arv
zrw/a
a

)×
− E

(
CT

arv
zrw/a
a

)×
+ (Fωra

r )× − Fωra×

r

)
δξϕ

− Eδξv +
(
−ωra×

r − FJBz−1
r

r

)
δh + δm.

(6.18)

For simplicity, the drag terms in the inner-loop are ignored, resulting in

δḣ︸︷︷︸
δẋi

= −ωra×

r︸ ︷︷ ︸
Ai

δh︸︷︷︸
δxi

+ 1︸︷︷︸
Bi

δm︸︷︷︸
δui

. (6.19)

From (6.19), it can be seen that a reference angular velocity trajectory ωra
r is required in Ai

to linearize the inner-loop dynamics. Recall that the outer-loop MPC generates a sequence
of optimal control inputs, u⋆

k. The sequence of optimal angular velocity commands, ω⋆
k are

extracted from u⋆
k yielding

ω⋆
k =


ωra

r0|k

ωra
r1|k
...

ωra
rN−1|k

 . (6.20)

72



Instead of using the reference angular velocity from the guidance, the inner-loop dynamics
are linearized about ω⋆

k. The resulting linearization more accurately represents the desired
trajectory.

Note that from the definition of δm, a reference torque input trajectory, mr
rk

must also be
supplied to the inner-loop MPC. This is accomplished using the differential flatness property
of the system and the steps described in Section 4.2.2. First the reference angular accelera-
tion, ω̇ra

rk
is calculated using (4.41) to (4.43). Then, the reference torque input, mr

rk
can be

calculated using (4.49).

6.3.2 LTI Assumption

It can be seen from (6.19) that the linearized inner-loop dynamics are an LTV system
because the reference angular velocity in Ai is time-varying. Consider the cascaded control
structure shown in Figure 6.1. Assuming that the outer-loop MPC is tuned such that
the control inputs generated by the controller vary slowly, the reference angular velocity
trajectory used to linearize the inner-loop dynamics can be approximated as a constant
value for each iteration of the outer-loop controller,

ω⋆
k ≈


ωra

r0|k
...

ωra
r0|k

 . (6.21)

Using this assumption, (6.19) becomes an LTI system, and the inner-loop dynamics only
need to be linearized and discretized once per iteration of the outer-loop controller. The Sk

and Mk matrices from (5.5) are simplified to

Si
k =


Bi

AiBi Bi

...
... . . .

AiN−1Bi AiN−2Bi · · · Bi

 , Mi
k =


Ai

Ai2

...
AiN

 . (6.22)

6.3.3 Constraints

A state constraint on the angular momentum is not necessary since the angular velocity
command is already constrained in the outer-loop MPC. Therefore, the only constraint
included in the inner-loop MPC is a control input constraint on the torque. This constraint
is formulated as shown in Section 5.4.3.
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6.4 Simulation Results

Monte-Carlo simulations are performed to demonstrate the performance of the cascaded
MPC structure. Case 1 features the single MPC structure presented in Chapter 5. The
parameters used in the guidance and control algorithms are identical to those shown in
Table 5.2, and Table 5.3. Case 2 features the cascaded MPC structure presented in this
chapter. The controller parameters used in the outer-loop and inner-loop MPC algorithms
are shown in Table 6.1 and Table 6.2, respectively. The vehicle parameters and standard
deviation values used in the Monte-Carlo simulations for both Case 1 and Case 2 are as
shown in Table 5.1 and Table 5.4, respectively.

The guidance and outer-loop controller run at 10 Hz, while the inner-loop controller runs
at 50 Hz. Note that while a non-uniform horizon is used in the outer-loop MPC to extend
the total prediction horizon time, a traditional fixed timestep prediction horizon is used in
the inner-loop MPC. This is done because the inner-loop update rate is relatively fast and
the inner-loop dynamics operate on a single timescale. Therefore, the benefits to using a
non-uniform horizon for the inner-loop MPC are greatly reduced.

The distribution of state and input RMSE values across 100 Monte-Carlo simulations
are shown in Figure 6.2. Although the average attitude tracking error is larger in Case 2,
the velocity and position tracking performance shows improvement in Case 2. Similarly, the
thrust input error is larger in Case 2, however the torque input error is reduced in Case 2.
This indicates that the inner-loop MPC is able to track the reference torque command better
than the single MPC controller.

While a clear tracking performance benefit is not seen, the cascaded MPC structure shows
significant reduction in computational complexity from having two smaller QPs compared to
a single larger QP. To quantify this effect, the total CPU time used to solve the constrained
QP at each timestep is summed for each simulation. The distribution of total CPU solve
time across the 100 Monte-Carlo simulations is shown in Figure 6.3. The average CPU solve
time for each simulation is 56.0 s and 5.4 s for Case 1 and Case 2, respectively. Note that
the average simulation time for the landing trajectory is 14.6 s. The large QP from the
single MPC structure in Case 1 results in long, inconsistent solve times meaning it cannot
be implemented in real-time. However, the smaller QPs from the cascaded MPC structure
in Case 2 results in shorter, more consistent solve times that are better suited for real-time
implementation.
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Table 6.1: Outer-loop MPC Parameters Used in Simulation

Parameter Value Units
dt 0.1 s
Np 20 -
Nu 5 -
Nc 5 -
Qϕ diag(1e1, 1e1, 1e1) -
Qv diag(1e1, 1e1, 1e1) -
Qr diag(1e1, 1e1, 1e1) -
Qh diag(1e1, 1e1, 1e1) -
Q diag(Qϕ,Qv,Qr,Qh) -
P 10 · Q -
R diag(1e − 3, 1, 1, 1) -
η1 1e24 -
η2 1e24 -
∆t1 0.2 s
∆t2 0.4 s
∆t3 1.6 s
Np1

10 -
Np2

5 -
Np3

5 -
umin

[
0 −2 −2 −2

]T N, rad · s−1

umax

[
3000 2 2 2

]T N, rad · s−1

α 10 deg
γ 0.1 rad

Table 6.2: Inner-loop MPC Parameters Used in Simulation

Parameter Value Units
dt 0.02 s
Np 10 -
Nu 5 -
Nc 5 -
Q diag(1e3, 1e3, 1e3) -
P 1 · Q -
R diag(1, 1, 1) -

umin

[
−200 −200 −200

]T N · m
umax

[
200 200 200

]T N · m
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Figure 6.2: State and input RMSE values across 100 Monte-Carlo simulations comparing
the single MPC structure (Case 1) and the cascaded MPC structure (Case 2).

Figure 6.3: Total CPU solve time across 100 Monte-Carlo simulations comparing the single
MPC structure (Case 1) and the cascaded MPC structure (Case 2).
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Chapter 7

Closing Remarks and Future Work

7.1 Conclusions

This thesis presents a guidance and control strategy for a tandem-rotor helicopter. First,
the nonlinear system dynamics are developed and the linearization is presented using an
augmented SE2(3) error definition. Next, a two-stage guidance approach is developed,
which leverages the differentially flat property of the dynamics and a discrete-time, finite-
horizon LQR algorithm to generate a reference trajectory. This approach is computationally
lightweight as it is purely analytical and does not require the solution of an optimization
problem. Simulations are performed to demonstrate the ability of the guidance strategy to
match the boundary conditions of all states.

For control, an MPC approach is presented. A non-uniformly spaced prediction horizon is
used to predict the multi-timescale dynamics while limiting the optimization problem size. A
novel method of attitude constraint is presented using a combination of attitude keep-in zone
and ℓ1-norm attitude error constraints. Monte-Carlo simulations demonstrate robustness of
the control strategy to random initial conditions, model uncertainty, and environmental
disturbances. Additionally, the non-uniform prediction horizon is shown to be beneficial
over a traditional fixed prediction horizon. Although a linear MPC formulation is used, the
problem size still exceeds the limits of simple real-time computing platforms. Therefore,
a cascaded MPC approach is presented as an alternative controller implementation. The
output of the outer-loop MPC is used to linearize the inner-loop system dynamics. Further
Monte-Carlo simulations show the significant reduction in computational effort required by
the cascaded MPC structure and suggest that this method is more suitable for real-time
implementation.
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7.2 Future Work

One notable avenue for further development is the concept of H∞ loop-shaping on MPC,
as shown in [56]. This MPC formulation allows the controller to reject constant unmeasured
disturbances with zero steady-state error and meet transient performance objectives. At the
same time, the closed-loop stability properties of the H∞ formulation are guaranteed as long
as the constraints are inactive.

Recall that the cascaded MPC structure presented in Chapter 6 was not able to match
the attitude tracking performance of the single MPC structure from Chapter 5. Given the
clear advantages of the cascaded MPC structure in terms of its suitability for real-time
implementation, more effort should be given to improving the tracking performance of the
cascaded MPC implementation.

Lastly, given the results of Chapter 4 and 6, an attempt should be made to implement
the proposed guidance and cascaded MPC algorithms on an embedded computing platform.
The guidance and control structure could be modified with minimal effort to work with
an off-the-shelf UAV platform by simply swapping out the tandem-rotor helicopter dynamic
model and modifying the control input mapping. Real-world experiments would greatly help
validate the potential performance of the guidance and control algorithms.
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