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Abstract

Exploration of the visual scene is comprised of periods of fixation on specific objects in our
environment, interrupted by abrupt eye movements that bring new objects in our visual field.
Whenever we perform an eye movement, a chaotic smearing of the visual world is introduced on
the retina from the input displacement. However, our perception of our environment remains
stable. In order to achieve this, our brain must have a compensation mechanism for these shifts.
Since eye-movements last for a very brief period of time, it is imperative to make use of a modality

that is able to capture the transient characteristics of this compensatory phenomenon.

This thesis is a compiled series of findings that utilize magnetoencephalography (MEG) for studying
the areas involved in encoding the visual input in human subjects, during fixation and around eye
movements. The advantage that MEG provides is coverage of the entire cortical surface with sub-

millisecond precision.

The visual cortex during fixation has been extensively studied for decades (with invasive and
imaging modalities), showing spatial and feature selectivity in individual visual areas. However,
retinal mapping on the cortical surface was crudely presented with MEG, making it an
unfavourable modality for studying neural mechanisms that rely on visual spatial selectivity.
Chapter 2 of this thesis demonstrates a novel approach for MEG in creating high-resolution
retinotopic maps on the primary visual cortex, with results comparable to the golden standard -
fMRI. Moreover, by utilizing these maps, the spatial resolution of MEG is quantified, showing that
with proper stimulation and brain curvature, MEG can achieve spatial resolution comparable to

that of fMRI.

Chapter 3 contains the results from the studies investigating visual remapping, which is one of the
mechanisms that our brain uses for achieving visual stability around eye movements. In
remapping, visual neurons respond to stimuli outside of their classical receptive field, but only if
there is an imminent eye movement. This study supports the modulatory effect of attention on
remapping and shows the spectral and temporal engagement of the superior parietal and visual

cortices in this mechanism. Moreover, two different types of remapping with unique temporal and
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spatial signatures are shown in the human cortex, further reconciling the controversy about the

mechanistic role of remapping.

MEG techniques rely on high sampling of cortical signals from hundreds of sensors. The amount
of data that is created through every session can provide challenges in the management and
efficiency of the analysis. Imaging studies in general benefit from high quality software that
provide tractable and efficient analysis pipelines. However, although invasive neurophysiology
methods are constantly evolving in recent years, especially by using dense electrode arrays —
generating a vast amount of data, most labs rely on developing their own analysis techniques, with
error-prone verification and poor documentation. Chapter 4 of this thesis provides a novel
approach to invasive neurophysiology analysis, by introducing a new research resource, that
bridges across recording scales (from slices to behaving animals) and delivers a unifying analytical
environment to the broadest research community in neurophysiology. Overall, this chapter

contributes to reproducibility, standardization and transparency in science.



Résumé

L'exploration de la scene visuelle comprend des périodes de fixation sur des objets spécifiques de
notre environnement, interrompues par des mouvements oculaires brusques qui apportent de
nouveaux objets dans notre champ visuel. Chaque fois que nous effectuons un mouvement
oculaire, une tache chaotique du monde visuel est introduite sur la rétine du déplacement
d'entrée. Cependant, notre perception de notre environnement reste stable. Pour y parvenir,
notre cerveau doit disposer d'un mécanisme de compensation pour ces changements. Etant
donné gue les mouvements oculaires durent tres peu de temps, il est impératif de recourir a une

modalité capable de saisir les caractéristiques transitoires de ce phénomeéne compensatoire.

Cette theése est une série de résultats compilés qui utilise la magnétoencéphalographie (MEG) pour
étudier les zones impliquées dans le codage de I'entrée visuelle chez des sujets humains, pendant
la fixation et autour des mouvements oculaires. L'avantage que MEG fournit, est la couverture de

toute la surface corticale avec une précision sous-milliseconde.

Le cortex visuel lors de fixation a été étudié de maniere approfondie pendant des décennies (avec
des modalités invasives et d'imagerie), montrant une sélectivité spatiale et caractéristique dans
les zones visuelles individuelles. Cependant, la cartographie rétinienne sur la surface corticale a
été grossierement présentée avec MEG, ce qui en fait une modalité défavorable pour étudier les
meécanismes neuronaux qui reposent sur la sélectivité spatiale visuelle. Le chapitre 2 de cette thése
démontre une nouvelle approche pour MEG dans la création de cartes rétinotopiques a haute
résolution sur le cortex visuel primaire, avec des résultats comparables a I'étalon d'or - I'lRMf. De
plus, en utilisant ces cartes, la résolution spatiale de MEG est quantifiée, montrant qu'avec une
stimulation et une courbure cérébrales appropriées, MEG peut atteindre une résolution spatiale

comparable a celle de I'lRMf.

Le chapitre 3 contient les résultats des études portant sur le remappage visual, l'un des
mécanismes que notre cerveau utilise pour atteindre la stabilité visuelle autour des mouvements
oculaires. Lors du remappage, les neurones visuels répondent a des stimuli en dehors de leur

champ récepteur classique, mais uniguement en cas de mouvement oculaire imminent. Cette
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étude soutient l'effet modulateur de l'attention sur le remappage et montre I'engagement
spectral et temporel des cortex pariétaux et visuels supérieurs dans ce mécanisme. De plus, deux
types différents de remappage avec des signatures temporelles et spatiales uniques sont
présentés dans le cortex humain, ce qui réconcilie davantage la controverse sur le réle mécaniste
du remappage. Les techniques MEG reposent sur un échantillonnage élevé des signaux corticaux
provenant de centaines de capteurs. La quantité de données qui est créée a chague session peut
poser des défis dans la gestion et I'efficacité de I'analyse. Les études d'imagerie bénéficient en
général de logiciels de haute qualité qui fournissent des pipelines d'analyse faciles a manier et
efficaces. Cependant, bien que les méthodes de neurophysiologie invasive évoluent constamment
au cours des derniéres années, en particulier en utilisant des réseaux d'électrodes denses -
générant une grande quantité de données, la plupart des laboratoires s'appuient sur le
développement de leurs propres techniques d'analyse, avec une vérification sujette aux erreurs
et une mauvaise documentation. Le chapitre 4 de cette these propose une nouvelle approche de
I'analyse de la neurophysiologie invasive, en fournissant une nouvelle ressource de recherche, qui
fait le pont entre les échelles d'enregistrement (des tranches aux animaux qui se comportent) et
offre un environnement analytique unificateur a la communauté de recherche la plus large en
neurophysiologie. Dans I'ensemble, ce chapitre contribue a la reproductibilité, a la normalisation

et a la transparence de la science.
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Chapter 1: Introduction

1.1 Vision as part of consciousness

Whenever an artist paints a painting, they try to capture a still image of the environment they had
in front of them. Every stroke slowly contributes to different attributes of all the characteristics of
the objects that laid before their eyes: luminance, edges, shape, color, size, depth etc. A
compendium of these characteristics, each with a different level of importance, create a vivid
recreation of what the artist was experiencing, and the artist’s personal touch on the finished
artwork. This procedure is performed for every position of the environment that is finally depicted
in the painting. Breaking down the steps that ultimately contributed to the finished painting: the
artist was constantly looking around their environment, sequentially used different brushes and
colors to make a representation of their environment, and finally they created a still image of their

environment.

Analogous steps apply to the brain when it encodes the visual information of the visual scene. Our
perception of the outside world relies on the effortless communication between several brain
regions which contribute to encoding different aspects of our environment. Vision plays a crucial
role in our awareness and is of no surprise that a substantial portion of the brain is dedicated to
vision (Felleman and Van Essen, 1991), with a plethora of areas specializing in specific attributes
of the visual scene. However, although there are many cortical and subcortical areas
collaboratively contributing to the creation of an internal representation of the outside world, this
is achieved in a surprisingly brief period of time (information is encoded even at images presented

as briefly as ~13ms (Potter et al., 2014)).

The exploration of the visual scene is comprised of fixation periods, followed by brief periods of
eye-movements where the high-resolution part of the eye (the fovea) is focused on the point of
interest. Although the eye-movements are performed around 3 times per second while we explore
different objects in our environment, we don’t perceive a chaotic scene but rather a stable one,

just like the finished painting that was described in the analogy earlier.



An explanation for this observation is that the brain needs to have compensation mechanisms that
contribute to visual stability around eye-movements. Studying such a phenomenon, dictates the

usage of a modality that is able to capture its transient characteristics.

This thesis studies the processes that take place during fixation (Chapter 2) and around eye-
movements (Chapter 3), in real-time, non-invasively, in human subjects. Moreover, Chapter 4
introduces a unifying framework for performing invasive neurophysiology analysis across any

recording scale (from cells to whole brain).

1.2 Encoding during fixation

Vision has been a field of study among scientists and philosophers for centuries. The encoding of
the visual information starts the moment that the light reflections of our environment reach the
retina and is followed by a series of sequential processing from several different areas as the signal

propagates through the brain.

An analogy that vision acts as a camera can be accurate up to the point that they both receive light
as their input, but that is about it. Even for this oversimplification though, anyone who has some
experience with photography can appreciate the challenges in capturing a crisp picture of the
environment, especially when the conditions are not ideal: e.g. in low lighting conditions, or when

there is small movement in the frame.

However, the mechanisms that allow us to ultimately perceive individual objects in our

surroundings from just the light input is, as (Gregory, 1966) put it: “no short of a miracle”.

Mammalian eyes have evolved to have a high-resolution part which is located at the center of the
retina (fovea) that provides detailed processing of the target. Anatomically, this differentiation of
spatial sampling in the retina is attributed to the non-homogeneous density of two different types
of photoreceptors along the retina: rods and cones. The rods are extremely sensitive to luminance
(they can be activated by a single photon) and are prevalent around the outer ring of the retina.

In contrary, the cones need a brighter source of light to be activated and are sensitive to the



wavelength of the light source. The distribution of the cones is larger close to the fovea and

decreases along the eccentricity of the eye.

Based on the characteristics of these 2 types of photoreceptors, there is a trade-off between

luminance sensitivity and visual acuity.

The photoreceptors pass the information to retinoganglion cells that utilize their long axons to
ultimately propagate the visual signals to cortical and subcortical structures. The visual field is
separated to two visual hemifields (left - right) and the connections from each eye follow an
orderly separation in the optic chiasm. The axons of the retinoganglion cells form the optic nerve
up to the optic chiasm. After the optic chiasm, the axons that carry information from each
hemifield, bundle together to form the optic tract and reach the lateral geniculate nucleus (LGN)
in the thalamus, on the contralateral hemisphere. This arrangement dictates that the entire
processing of each visual field (from low level to high level) will be conducted on the contralateral
hemisphere. Projections from the LGN finally reach the primary visual cortex. These afferent fibers
create a neural mapping of the visual scene to the cortical surface of the primary visual cortex

(V1). The arrangement of these afferent fibers on the cortex is called the optic radiation.

Since the center of gaze consists of higher resolution encoding, is it expected that the fibers that
reach the primary (striate cortex) and extrastriate visual cortex would have a bigger representation
of the fovea on the cortex relative to the periphery. There is a substantially greater portion of the
cortex designated to the visual area around the point of fixation compared to the more peripheral
elements of the visual scene. This cortical arrangement is called cortical magnification and is
biologically justified by the importance of the locus where the animal/human focuses their gaze

upon. This arrangement will be revisited later at the section about retinotopy.

The anatomical connectivity that was described above, is depicted in Figure 1.1.
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Figure 1.1 Visual information travels from the retina to the primary visual cortex through an organized fiber network. Adapted from

(Polyak, 1941)

1.2.1 Receptive field

Neurons in the sensory areas are selective to a subspace of their encoding sensory space and this
subspace is termed the receptive field (RF) of those neurons. The term was first introduced in the
tactile domain by Sherrington (1906) in his analysis of the scratch withdrawal reflex. Visual
receptive fields were first investigated by (Hartline, 1938, 1940) in the frog, where the discovered
that retinal light stimulations could elicit excitatory responses on isolated optic nerve fibers.
(Kuffler, 1953) discovered the antagonistic center-surround organization of the cat RFs and this
work was later extended to stimulus size (Barlow et al., 1957). The most famous work on receptive
fields was performed by Hubel and Wiesel where they recorder on the visual cortex of the cat and
the monkey and found RF selectivity in shape, orientation and position of the stimulus in the
anaesthetised paralysed cat (Hubel and Wiesel, 1959, 1962) and later in the monkey (Hubel and
Wiesel, 1968).



1.2.2 Visual hierarchy

Early 20" century anatomical research paved the road to cerebral segregation (Brodmann, 2006).
Brodmann used anatomical criteria (size, shape, density of neuronal populations) to create a map
of individual areas in the brain. Later work that was concentrated in the visual cortex, discovered
a few dozens of visual areas that contributed to different visual processing (Felleman and Van

|Il

Essen, 1991). The most important outcome from these studies, is the amount of cortical “real

estate” that is assigned to vision.

The anatomical distinction of visual areas provides valuable information about the existence of
separate areas but doesn’t explicitly inform us of the role of each area. Invasive neurophysiological
studies in the past century have been invaluable to our understanding of the role of each area.
Most importantly, the location of the receptive fields, and the selectivity in particular stimuli have

built a fully functional map of the visual cortex.

Neuronal selectivity and anatomical connectivity in visual areas has led to two different
hierarchical pathways to emerge: the ventral and dorsal pathways (Figure 1.2). The ventral
pathway is involved in object recognition (what) and the dorsal pathway is involved in visual
information in guiding movements (where). The ventral pathway starts from the primary visual
cortex and continues all the way to the temporal lobe. An example from the ventral pathway would
be neurons in inferotemporal cortex (IT), which exhibit poor spatial selectivity, but can
discriminate between specific semantic categories (e.g., face vs. non-face stimuli) and even
between different instances of those categories (e.g., specific people). In contrary, the dorsal
pathway accumulates information about movement. It extends from the primary visual cortex to

the parietal cortex, an area that specializes in integrating visuomotor information.
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Figure 1.2 Dorsal and ventral pathways. Adapted from (Mack et al., 2013)

As mentioned before, both pathways follow a hierarchical model. The complexity of the stimuli
that the areas encode follow the order of the visual hierarchy. For example, the retina would be
at the bottom of the visual hierarchy since neurons in it can only differentiate between different
light stimulations, and the neurons in area IT described before would be much higher. (Felleman
and Van Essen, 1991) suggested that the hierarchical organization of the visual system constructs
the new features of each area through a pooling system. Every stage of the hierarchy is responsible
for selectively pooling their inputs according to what each area encodes, and ultimately creating

a more and more complex selectivity in their features.

Moreover, the size of the receptive fields varies based on the neuron’s eccentricity (how far from
the fovea lies the location of the encoding visual field) and the position of the neuron in the visual
hierarchy. Receptive field size follows the order of the visual hierarchy and increases along the
eccentricity. This is true for all the successive stages of visual processing (from photoreceptors,

bipolar cells, ganglion cells, through neurons in multiple visual cortical).

A summary of these two points are depicted in Figure 1.3 for visual areas V1, V2,and V4 (Adapted

from (Freeman and Simoncelli, 2011)):
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Figure 1.3 Physiological measurements of receptive field size in macaque monkey in several visual areas, across various

eccentricities.

1.2.3 Retinotopy

The visual cortex is organized into visual maps, so that nearby neurons encode nearby regions of
visual space. In other words, for a given change in the cortical location, we can expect a
corresponding change in the retinal position that is encoded by that location (Dumoulin and
Wandell, 2008; Engel et al., 1997; Holmes, 1945; Horton JC and Hoyt WF, 1991; Sereno et al,,

1995). This organization on the visual cortex is termed retinotopy.

Foveal representation is encoded in the most caudal part of the occipital cortex and eccentricity

increases more rostrally.

Over half of the neocortex in non-human primates is occupied by visual areas. Most of them have
been studied by a collection of micro-electrode, histological staining and tracing techniques.
Extensive mapping of the characteristics of each visual area can be tedious with these techniques.
More importantly, studying human visual areas invasively is impractical, and most early knowledge

of the human retinotopic organization was from soldier wounds.

The development of fMRI revolutionized retinotopic mapping. Researchers were able to reveal
unprecedented functional cortical details from a variety of visual areas. Traditional experiments

were comprised of a moving wedge or expanding and contracting circles around a central fixation



point (Figure 1.4). The use of mapping techniques to identify individual cortical visual areas has
allowed hierarchical processing and functional specialisation to be investigated much more

directly.

Figure 1.4. Travelling wave retinotopic paradigm for mapping visual areas in the human visual cortex. Adapted from (Wandell et

al., 2007).

1.3 Eye movement circuitry
The previous sections described how the visual system deconstructs a still visual scene into
specialized features in each visual area: from low level features such as orientation lines, all the

way to more complex features like objects and faces.

However, in realistic conditions, our eyes are never really lying still, but rather continuously
explore the environment. Eye movements bring the high resolution part of the eye, the fovea, to
the point of interest, exploiting the high density of photoreceptors that are localized around that
area. This heterogeneity of the human retina is dictating that gaze can be directed to only one

object at a time.

Eye tracking during the exploration of the visual scene reveals trajectory patterns that are
associated with informative features of the visual scene that capture our attention. In other words,

attention can be considered an information-processing filter. A series of studies (Itti and Koch,



2000; Tatler and Vincent, 2008; Tatler et al., 2005) have proposed that gaze is influenced by
physically salient visual features, in a bottom-up manner, where low level features of the images
provide an “objective” focus of attention, in models for feature integration theory (Treisman and
Gelade, 1980), guided search (Wolfe, 1998) and attentional engagement theory (Duncan and
Humphreys, 1992, 1989). On the other hand, top-down approaches of gaze control are based on
semantics, working memory and the demands of the behavioral task (Castelhano et al., 2009;
Fischer et al., 2013; Mills et al., 2011; Tatler and Vincent, 2008; Yarbus, 1967). Art exploration for
example, is a complex process where multiple low and high level features can affect the eye’s
trajectory. It has been shown that the viewer’s art expertise and familiarity or interest in a specific
work of art, influence the exploration process (Nodine et al.,, 1993). Moreover, the viewing
behavior during the time-course of the scene exploration appears to be influenced initially by
bottom-up saliency features, followed by late top-down control characteristics (Castelhano et al.,

2009; Helo et al., 2014; Mills et al., 2011; Tatler and Vincent, 2008).

Our understanding of the circuitry that is responsible for the saccadic generation comes both from
human and animal experiments. Human experiments typically involve study of patient groups that
have suffered a lesion in isolated areas, or from non-invasive imaging techniques. Animal models
provide information of the saccadic involvement of an area through microstimulation or from
activation-deactivation of neurons through the usage of substances. A series of studies have
isolated critical nodes in the saccadic-generation network in the brainstem, superior colliculus, the
thalamus, basal ganglia, parietal and frontal regions (Hikosaka et al., 2000; Leigh and Zee, 1991;
Moschovakis, 1996; Scudder et al., 2002; Wurtz and Goldberg, 1989). Eye-ball rotation control is
believed to be produced by a network of neurons that provide a burst generator in the brainstem
(see detailed review Scudder et al.,, 2002). However, brainstem is controlled by the superior
colliculus and the frontal eye fields, operating in a recurrent network through the basal ganglia
and the thalamus (Chalupa & Werner, 2004). Figure 1.5 represents the nodes that interact for the

production of eye movements.
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Figure 1.5. Circuitry for saccadic generation. Adapted from “The visual Neurosciences (2004)”.

The superior colliculus is connected directly to the retina, the ventral and dorsal pathways, but
also the prefrontal cortex (Fries, 1984). The visual inputs that is has create a retinotopic map on
its superficial layers. Additionally, the intermediate layers of the superior colliculus, functionally
create a topographic map of the saccade direction and amplitude. However, the receptive or
movement field of each neuron is larger than the precision of each saccade, therefore in order to
produce a specific saccade, a combinatorial activation of several neurons leads to the summation

to the appropriate saccadic vector (Lee et al., 1988; Van Gisbergen et al., 1987).

The circuitry that is depicted in the previous figure, support the theory that saccadic eye
movements can both be influenced by a bottom-up but also a top down mechanism: the visual
inputs from the dorsal and ventral streams can provide a saliency map based on visual/object
features, whereas inputs from the prefrontal cortex to the superior colliculus can add a higher-

order/contextual cognitive selection of the target.
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1.4 Visual stability

When we explore the visual scene, we make 2-3 saccades every second while our eyes jump
abruptly through each object around us. The exploration can be broken down to two parts: fixation
periods that last a few hundred ms, and eye displacements that are much shorter (~40-50 ms).
The eye movements can be formulated by the initiation point during each fixation, and a vector

that corresponds to the visual field translation caused by the saccade.

Early studies assumed that a cancellation signal was sent to the visual eye-movement centers that
canceled the effect of the displacement. It was initially termed as “effort of will” (Helmholtz, 1896)
and later as a corollary discharge (Sperry, 1950), but both represented the same principle idea: a

representation of the vector of the imminent movement is sent to multiple areas of the cortex.

The corollary discharge is considered to contribute to several distinct mechanisms that provide
visual stability, such as saccadic omission and saccadic suppression, but these mechanisms are

outside of the scope of this thesis.

1.4.1 Remapping

The visual information encoding during fixation was described in a previous section. During
fixation, the retina receives input from a fraction of the environment and transmits this
information to the visual areas for specialized feature extraction. The spatial selectivity of each
neuron is determined during the early stages of development and maintained throughout the

individual’s life.

However, the receptive fields of neurons in several visual areas have been shown to demonstrate
transient shifts around the brief timing of a saccade. It has been hypothesized that this is a
neuronal mechanism that the brain uses to compensate for the visual field displacements, and
ultimately contribute to visual stability (Colby and Goldberg, 1999). This mechanism is termed
remapping. Remapping relies on a corollary discharge to get the information of the source and the
target of the neural population connected by the saccade vector, in order to exchange information

about the visual input (Sommer and Wurtz, 2006).
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The first demonstration of visual remapping was performed in the lateral parietal cortex (LIP)
(Duhamel et al., 1992) — Figure 1.6. In this study, the experimenters first identified the classic
receptive fields of LIP neurons (this was termed the current field or CF) while the animal fixated
on a target. Then they briefly flashed a probe right before the saccade, at the location that the
receptive field of each neuron would occupy right after the saccade (this was termed the future
field, or FF), and the neurons still elicited responses. In other words, neurons revealed anticipatory
access to information from what was going to fall in their receptive field in the future after the
completion of the saccade, acting in a sense as neuronal “fortune tellers”. The access that neurons
have to spatial information both from the CF and the FF around the timing of the saccade, is one

of the mechanisms that is believed to enable smooth perceptual transition.
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Figure 1.6. First demonstration of the remapping mechanism. Adapted from (Duhamel et al., 1992)
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These experiments paved the way for a series of studies that investigated the neuronal mechanism
that leads to this shift of the location of receptive fields. The LIP anatomical connectivity to SC and
FEF, and the engagement of specific areas during eye-movements, indicated potential candidate
areas for finding the same predictive mechanism. Remapping has been observed using
electrophysiology in several brain regions; Superior Colliculus: (Churan et al., 2011; Walker et al., 1995),
Frontal Eye Fields (FEF): (Umeno and Goldberg, 1997), Lateral Intraparietal Area (LIP): (Duhamel et al.,
1992; Wang et al., 2016; Kusunoki and Goldberg, 2003), V4: (Neupane et al., 2016a; Tolias et al,,
2001a). Early areas in the visual hierarchy have shown less evidence of the effect, with decreasing presence
of remapping for earlier areas (Nakamura and Colby, 2002). Additionally, fMRI studies have shown
remapping effects on the parietal cortex, and on the extrastriate and striate cortex (Merriam and Colby,

2005; Merriam et al., 2007).

Remapping has been shown to be dependent on a corollary discharge that originates in the SC and is
mediated through the mediodorsal thalamus to FEF. Deactivation of the mediodorsal thalamus with muscimol
impaired the ability of monkeys to perform a double step saccade and also remapping activity in FEF

diminished (Sommer and Wurtz, 2002, 2006).

1.4.2 Remapping as a mechanism for visual stability or as a mechanism for

attentional pointers?

The early remapping experiments showed that a neuron that exhibits remapping can be activated from a
probe that is presented at a location that corresponds to the translation of the neurons’ receptive field by the
saccade vector. However, a series of studies (Zirnsak and Moore, 2014) in FEF and (Tolias et al., 2001a)
in V4, showed that neurons in those areas could exhibit remapping at shifted locations of the FF towards the
saccade target (convergent, or saccade target remapping). This result is contradictory to the hypothesis that
remapping is contributing to visual stability since it is more consistent with a role in emphasizing visual
information around the saccade target. However, (Neupane et al., 2016a) showed that both types of
remapping can be monitored within visual area V4. The important differentiation between the two types of

remapping that was shown in this study was that remapping associated with perceptual constancy occurred
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for saccades in all directions, while attentional shifts mainly occurred for neurons that their receptive fields

were located in the same hemifield as the saccade target.

The approach of remapping solely as a mechanism for spatial constancy becomes problematic when we
consider that a plethora of inter- and intra-areal connections need to be established to account for every
possible saccade vector movement. A line of thought that emerged to account for this problem was to
consider that visual compensation during eye-movements could be restricted to salient or task-relevenat
objects, selected by spatial attention (Cavanagh et al., 2010; Rolfs and Szinte, 2016; Szinte et al., 2018).
Psychophysical experiments have shown the influence of anticipatory spatial attention to the location that the
visual stimulus will occupy after the saccade (Jonikaitis and Theeuwes, 2013; Rolfs et al., 2011a; Szinte
et al., 2016). Additionally, MT neuronal recordings showed that attention plays a crucial role in the strength
of remapping (Yao et al., 2016). However, in contrast to this “infinite connectivity” paradox, (Neupane et
al., 2017) showed selective connectivity between neurons that encode the CF and the FF through

communication by coherence.

Moreover, there have been indications that remapping is influenced from a top down mechanism when
monitoring the latency and strength of remapping in the visual cortex in humans with fMRI (Merriam et al.,
2007) and in the monkey (Nakamura and Colby, 2002). However, the link to the strength of remapping in
the visual cortex is not linked to attention per se, but rather to the density of connections from FEF

(Nakamura and Colby, 2002; Schall et al., 1995; Stanton et al., 1995) or LIP to early visual areas.

1.4.3 Receptive field expansion during remapping?

When an object is flashed close to the timing of a saccade, it has been shown that subjects mislocalize their
position (Dassonville et al., 1992; Honda, 1989; Jeffries et al., 2007; Ross et al., 1997). A series of
studies tried to investigate a link between remapping and this mislocalization by monitoring the intermediate
retinal positions that connect the current field to the future field. By projecting stimuli along the vector that
connects the two receptive field locations, (Wang et al., 2016) showed in LIP that “there is a spread of
activity from caudal to rostral, such that neurons with movement fields successively closer to the center of
gaze fire later”. This wave-like activity propagation showed that there is an expansion of the receptive fields

around the timing of the saccade. However, this finding came in contrast to a previous study (Sommer and
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Waurtz, 2006) that investigated the same kind of expansion in FEF that couldn’t find expansion and concluded
that there is a “jump” of the remapped responses from the CF, straight to the FF. One explanation could be

difference in the stimulation positions as discussed in (Wang et al., 2016) or area discriminations.

1.5 Magnetoencephalography

When a current flows along a wire, a magnetic field is induced around it (Orsted, 1819). Moreover,
an electrical dipole is always surrounded by a magnetic field, and the polarity of the field is
influenced by the direction that the current is flowing. This electromagnetic property is also

|II

present in the neuronal “wiring”. Pyramidal neurons with their long apical dendrites that are
perpendicular to the cortical surface create a tractable magnetic field that with the usage of
extremely sensitive sensors can be monitored from a distance (Buzsaki et al., 2012). Although the
magnetic field produced by a single neuron is extremely small, synchronized post-synaptic

currents flowing across multiple neurons can summate to a detectable signal.

Magnetic
induction

Figure 1.7 Cellular origin of MEG signals. Adapted from (Baillet, 2017).
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Magnetoencephalography (MEG) is a non-invasive neurophysiological technique that measures
the magnetic fields generated by the neuronal activity of the brain. MEG has the ability to monitor
the entire cortical surface simultaneously with excellent temporal resolution (Baillet, 2017). A
typical MEG system consists of a few hundred sensors that are located within a magnetically

shielded room.

MEG faces the challenge that the signal to noise ratio decreases with source depth; the deeper a
neural generator is relative to the MEG sensors, the more attenuated the magnetic signal is (in
proportion to distance squared); however, there have been reports of localization of deep
structures: amygdala (Balderston et al., 2014; Cornwell et al., 2008; Dumas et al.,, 2013),
hippocampus (Cornwell et al., 2012) and brainstem (Coffey et al., 2016a; Parkkonen et al., 2009).

Signal attenuation is also reported within sulci (Goldenholz et al., 2009).

More importantly, since the MEG utilizes an array of sensors that are far from the cortical sources,
it ultimately becomes a modeling problem to correctly allocate the active sources. Several
methods have been proposed to solve this problem, each with a different set of assumptions
needed to reach to a unique solution (Baillet et al., 2001; Hamaldinen and Illmoniemi, 1994,
Hamaldinen et al., 1993; Pascual-Marqui et al., 1994; Sarvas, 1987, Gramfort et al., 2013a).
Traditionally, there are two approaches for modeling the brain activity with MEG: the dipole
methods and the imaging methods. Dipole methods place a set number of dipoles on the cortical
surface with a given orientation, and then fit the modeling to the data. The localization accuracy
of these methods can be perfect, but it can be problematic when more sources are actually active
than the assumed on the model, or when a larger area is activated (Benbadis et al., 2010; Darvas
et al., 2004). On the other hand, the imaging methods place a distributed network of sources
(typically a few hundreds of thousands) along the cortical surface (traditionally, the MRI of the
subject is also acquired for these methods), and although the resolution becomes much coarser,
multiple sources are monitored much better. The sources are oriented perpendicularly to the

cortical surface, effectively following the cortical manifold to resemble the pyramidal cells.
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The spatial resolution of MEG is often assumed to be poor because of the ill-posed nature of the
MEG sources, but a quantitative analysis was seldom performed. Chapter 2 of this thesis utilizes a
retinotopic paradigm that takes into account the modeling and physical properties of neuronal
populations along the cortical surface in order to monitor the spatial resolution of MEG. This study
concluded that thereis an interplay between distance between sources and cortical curvature that
affects the resolution; resolving MEG sources can be separated by as little as 0.5mm of cortex,
with an average resolution on the order of 2-3mm. This study showed that the spatial resolution
of MEG, in same convoluted areas, can even exceed the spatial resolution of fMRI. It is important
to note here that these values were computed for responses elicited in the primary visual cortex,
that has very high spatial specificity. Areas that encode high resolution sensory stimuli (e.g.
primary auditory cortex) would be expected to show equally precise resolution if stimulated
properly. It would be interesting to measure the trade-off between specificity and spatial
resolution in different cortical areas, but this study focused on the absolute limit of MEG’s spatial

resolution.

1.5.1 Retinotopy in MEG

Although single cell recordings and fMRI techniques have revealed retinal inputs to the cortex for
decades now, a cortical representation of the visual field with MEG hadn’t been demonstrated.
Previous studies in the visual cortex with MEG showed temporal discrimination between entire
visual areas (Cottereau et al., 2011; Hagler et al., 2009), or used a small number (4-8) of stimuli to
perform coarse retinotopic mapping (Brookes et al., 2010; Moradi et al., 2003; Poghosyan and
loannides, 2007; Sharon et al.,, 2007). Moreover, the traditional experimental paradigm for
retinotopy in fMRI (rotating wedge), yielded an inconsistent trajectory with V1 anatomy (Perry et
al., 2011). Spatial localization comparison studies have shown 3-5 mm localization error to fMRI in
V1 (Moradi et al., 2003) and 2mm from activation simulation centers (Poghosyan and loannides,

2007).

Chapter 2 demonstrates a novel technique for characterizing the spatial distribution of MEG

signals across the primary visual cortex. We showcase confined receptive fields of the visual input
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computed from sources located within the primary visual cortex (visual area V1). Having access to
the mapping of which sources encode which part of the visual scene can be detrimental for certain
studies; remapping is an ideal example, since it relies on the receptive fields before and after the
saccade. The MEG results were compared with fMRI performed on the same subjects and the

retinotopic maps showed surprising resemblance.

1.5.2 Remapping in MEG

As explained in previous sections, remapping is a complex mechanism that involves several brain
regions. The transient character of remapping dictates that monitoring of the neuronal signals in
real-time is crucial. Therefore, MEG is an ideal candidate for studying the fast mechanisms of
remapping. However, to my knowledge, no MEG study has attempted to study remapping with
the traditional approaches that were described in the section regarding remapping.

(Moon et al., 2007; Werf et al., 2008) investigated the sensorimotor transformation in FEF and LIP during
saccades and anti-saccades, but didn’t demonstrate the selective spatial neuronal shift. (Medendorp et al.,
2007) investigated single and double step saccades but the temporal delay used in their paradigm allowed
them to investigate the memory aspect of the parietal cortex involvement in the saccades, rather than spatial
remapping intrinsically.

Chapter 3 of this thesis takes into account the modulatory effect that attention has on remapping
and we show remapping activity in the superior parietal and early visual cortices. Moreover, we
showcase the two different types of remapping that was shown in (Neupane et al.,, 2016b) —

forward and saccade target remapping.
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1.6 Open science

Science moves forward by corroboration. Researchers need to verify each other’s results and
replicate them since “replication is the cornerstone of science” (Moonesinghe et al., 2007).
However, there is growing alarm about results that cannot be reproduced; “Reproducibility crisis”
was a term that emerged through disappointing replication results in various medical, life and
behavioural sciences in the last decade (Open Science Collaboration, 2015). Moreover, Nature
reported in 2016: “More than 70% of researchers have tried and failed to reproduce another
scientist's experiments, and more than half have failed to reproduce their own experiments”

(Baker, 2016).

A line of defense against this problem, is the establishment of standardized methods that are
common among researchers. Several scientific communities e.g., in genetics, astrophysics or
neuroimaging, have approached the issue by developing and supporting open and well-
documented software platforms for verified, reproducible and shareable approaches to mass-
data handling and analytics. However, although neuro-electrophysiology has evolved
tremendously over the recent years, with a growing emphasis on recording from dense and
distributed electrode arrays, most labs rely on developing their own analysis techniques, with error

prone verification and poor documentation.

Moreover, due to the high sampling rate of neurophysiological techniques, the inflation in data
volumes and dimensions redefines the frontiers of analytical approaches in the field. This also
raises new challenges in terms of data management and transparency of increasingly complex

analytical pipelines.

1.6.1 Open source — software for invasive neurophysiology

Invasive neurophysiology has benefited from software tools for specific segments of the analysis
workflow, such as spike-detection, sorting and time series analysis (Fee et al., 1996; Hazan et al.,

2006; Hill et al., 2011; Mitra and Bokil, 2007; Oostenveld et al., 2011; Pachitariu et al., 20163;
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Quiroga et al., 2004; Siegle et al., 2017). However, they remain relatively specialized, some with

limited support and documentation and most with restricted interoperability with other tools.

Chapter 5 in this thesis is dedicated to an analytical solution that can help tackle reproducibility
crisis in invasive neurophysiology. In the spirit of open neuroscience, the software platform
incorporates and interoperates with existing prominent open-source resources such as
Brainstorm for scalp electrophysiology, a collection of spike-sorting tools (WaveClus, Kilosort,
UltraMegaSort2000), the open Neurodata Without Borders format (NWB - (Rubel et al., 2019;
Teeters et al., 2015)) etc. Additionally, the integrated app also provides a practical solution to data
organization and annotation via the Brain Imaging Data Structure (BIDS) harmonization grassroot

effort (Gorgolewski and Poldrack, 2016; Gorgolewski et al., 2016).

The app features an intuitive graphical user interface to access the most varied possibilities in data
reviewing and analyses and advanced 3-D visualization and registration with anatomical
imaging — all with no coding knowledge. A vast library of tools is also accessible via scripts that
users can produce directly or generate with an assembly-block logic also from the
graphical interface. The app is extensively documented online and supported by a user forum. Our
manuscript features the tools with array recordings and MRI structural data from non-human
primates, augmented with a step-by-step online tutorial, as companion material provided to

readers.

This new research resource bridges across recording scales (from cells to whole-brain) and data
modalities, registers neurophysiology with structural anatomy, and thereby delivers a unifying

analytical environment to the broadest research community in neurophysiology.
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Chapter 2 contains the results from the study undertaken during the PhD work to investigate the
visual selectivity of individual MEG sources. It provides evidence of high-resolution retinotopic
maps estimated within the primary visual cortex and an estimation of the spatial resolution of the

MEG. This work was published in Neuroimage (Nasiotis et al. 2017).
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Chapter 2 - High-resolution retinotopic maps
estimated with magnetoencephalography

Konstantinos Nasiotis®*, Simon Clavagnier®, Sylvain Baillet?, and Christopher C. Pack®*

2 Montreal Neurological Institute, 3801 University Street, Montreal, H3A 2B4, QC, Canada
b Montreal General Hospital, 1650 Av. Cedar, Montreal H3G 1A4, QC, Canada

*Correspondence: konstantinos.nasiotis@mail.mcgill.ca, christopher.pack@mcgill.ca.

2.1 Abstract

Magnetoencephalography (MEG) is used in clinical and fundamental studies of brain functions, primarily
for the excellent temporal resolution it provides. The spatial resolution is often assumed to be poor,
because of the ill-posed nature of MEG source modeling. However, the question of spatial resolution in
MEG has seldom been studied in quantitative detail. Here we use the well-known retinotopic organization
of the primary visual cortex (V1) as a benchmark for estimating the spatial resolution of MEG source
imaging. Using a standard visual stimulation paradigm in human subjects, we find that individual MEG
sources exhibit well-delineated visual receptive fields that collectively follow the known mapping of the
retinal surface onto the cortex. Based on the size of these receptive fields and the variability of the signal,
we are able to resolve MEG signals separated by approximately 7 mm in smooth regions of cortex and less
than 1 mm for signals near curved gyri. The maximum resolution is thus comparable to that of the spacing
of hypercolumns in human visual cortex. Overall, our results suggest that the spatial resolution of MEG can

approach or in some cases exceed that of fMRI.

2.2 Introduction

Among the various methods for non-invasive imaging, magnetoencephalography (MEG) source
imaging is known to provide outstanding temporal resolution, while it is typically assumed to have
modest spatial resolution (Darvas et al.,, 2004; Hamaldinen et al., 1993). Consequently MEG

imaging is most often used in experiments aimed at measuring temporal fluctuations in neural
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signals for which the assignment of a precise anatomical source is not critical. Although recent
reports have raised the possibility of extracting rich spatial signals from MEG (Cichy et al., 2015),
a quantitative estimate of the resolution that can be attained with this imaging modality is lacking.

Here we have examined the capacity of MEG to resolve the well-known retinotopic
organization of the primary visual cortex (V1). This representation provides a useful benchmark,
because it has been thoroughly and quantitatively characterized using a variety of methods,
including electrophysiology (Das and Gilbert, 1995; Hubel and Wiesel, 1977), PET (Fox et al., 1987),
optical imaging (White and Culver, 2010) and fMRI (Engel et al., 1997). These approaches have
demonstrated a smooth change in the locus of cortical activation for corresponding changes in the
position of the retinal stimulus (Dumoulin and Wandell, 2008; Engel et al., 1997; Sereno et al.,
1995). Thus to the extent that an imaging modality has high spatial resolution, it should be able to
differentiate responses to visual stimuli in different locations. The smallest shift in the locus of
cortical activation that can be detected serves as a measure of resolution.

Here we have obtained retinotopic maps from human subjects using MEG in combination
with a standard visual stimulation paradigm. We show that surprisingly high spatial resolution
maps can be obtained with appropriate choices of visual stimulation and source modeling. In
particular, we are able to reliably detect distinct MEG responses emanating from sources

separated by 7.0 mm along smooth cortical surfaces and less than 1 mm along the arched gyri.

2.3 Materials and Methods

2.3.1 Participants

Data were recorded from two healthy, right-handed male subjects (one author, one naive), both
of whom had normal or corrected to normal vision. Both subjects gave written consent prior to
participation in three sessions, involving structural MRI, functional MRI, and MEG recordings. All
experimental protocols were approved by the Research Ethics Board of the Montreal Neurological

Institute.
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2.3.2 Structural MR
For the MRI scans, each subject was positioned on his back with a 32 channel surface coil centered
over the occipital pole. Three-dimensional T1-weighted anatomical MR image volumes covering
the entire brain were acquired on a Siemens TIM Trio scanner, prior to the functional scans (3D-
MPRAGE, TR/TE= 2300/2.98 ms, Tl = 900 ms, 176 sagittally oriented slices, slice thickness =1 mm,
256 x 240 acquisition matrix).

fMRI data from Subject 1 (S1) and Subject 2 (S2) were originally collected for independent
studies. A multi-slice T2*-weighted Gradient-echo echo-planar imaging (GE-EPI) sequence with
slightly different parameters was used for S1 (TR/TE = 1940/30 ms, flip angle = 76 degrees, slice
number = 32 with no gap, slice thickness = 2 mm; 128 x 128 acquisition matrix, a 256 x 256 mm
rectangular field of view (FOV) and GRAPPA (acceleration factor along Phase Encoding direction
(PE) = 3, reference lines = 33) and S2 (TR/TE = 2000/30 ms, flip angle = 76 deg, slice number = 37
with no gap, slice thickness = 3 mm; 64 x 64 acquisition matrix, 192 x 192 mm rectangular FOV and
GRAPPA. The slices were pseudo-coronally oriented perpendicular to the calcarine sulcus and

covered the entire occipital lobe.

2.3.3 fMRI Retinotopic Experiment
The visual stimuli were generated with the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) and
were back-projected on a screen outside of the bore at a viewing distance of 140 cm.

For S1, the stimulus consisted of a checkerboard pattern (100% contrast) visible through
apertures of various orientations, as previously used for neuronal population receptive field (pRF)
mapping (Clavagnier et al., 2015; Dumoulin and Wandell, 2008). The stimuli were viewed
monocularly, with the dominant or the non-dominant eye being covered by a black patch
alternatively on each run.

For S2, the stimuli consisted of 8 wedges (each subtending 45°) and 8 rings (each with a
width of 1.38°) of a high-contrast moving dartboard pattern (Dumoulin and Wandell, 2008; Engel
et al., 1997; Sereno et al., 1995). The 8 wedges and the 8 rings were successively presented for 2
seconds. The wedges were presented in a clockwise predictable order, and the rings of different

eccentricities were sequentially presented in the expanding direction. The presentation followed
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a periodic pattern and completed a full cycle in 16 seconds with a total of 8 cycles per scanning
run. The maximum stimulus radius was 11°, and all stimuli were viewed under binocular
conditions.

In both cases, eye position was controlled by means of a fixation task (colored dot at the
center of the visual field). The volunteer had to report, via a button press, the occurrence of a
color change of the fixation target (from red to green or green to red). Each fMRI time series
consisted of 106 (S1) or 60 (S2) measurements. Eight (S1) or four (52) fMRI scans per eye were

collected.

2.3.4 MEG Data Collection

Data were recorded using a 275-channel (axial gradiometers) whole-head MEG system (CTF MEG
International Services Ltd.). Each subject’s head was digitized (typically 200 points) with a 6
degree-of-freedom digitizer (Patriot - Polhemus) prior to MEG data collection. This was used to
mark the scalp, eyebrows and nose, and to optimize co-registration with the anatomical MRI.
Three head positioning coils were attached to fiducial anatomical locations (nasion, left/right pre-
auricular points) to track head movement inside the MEG. Eye movements and blinks were
recorded using 2 bipolar electro-oculographic (EOG) channels. EOG leads were placed above and
below one eye (vertical channel) and the second channel was placed laterally to the two eyes
(horizontal channel). Heart activity was recorded with one channel (ECG), with electrical reference
at the opposite clavicle, for subsequent MEG artifact detection and removal. All data were
sampled at 2400 Hz.

Visual stimuli were presented onto a screen placed in front of the subjects at a viewing
distance of 45 cm, which permitted visual stimulation up to 25x20 degrees of eccentricity. The
display system consisted of a projector (Sanyo PLC-XP57L) located outside the magnetically
shielded room and two reflecting mirrors that directed images to the screen. The refresh rate of

the projector was 60 Hz with a resolution of 1280x1024 pixels.
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Subjects were seated in a dimly illuminated room (0.13 cd/m?) and asked to fixate a red
dot of 0.1 degree radius; the fixation point remained visible throughout the experiment. While the
subject fixated, we presented stimuli comprised of multiple square probes positioned randomly
within the central 20 degrees of the visual field (Figure 1). Probe stimuli on each frame were
comprised of 5-15 squares (34.59 cd/m?) displayed at maximum contrast against the background
(0.94 cd/m?). The width of each square was set to 30% of its distance from the fixation point, with
the exception of those located at eccentricities less than 1 degree, which were forced to have a

size of 0.3 degrees. This scaling was chosen to approximate the size of receptive fields for neurons

Figure 1 Stimulus presented to the subjects to elicit visual responses. Squares with sizes scaled according to retinal
eccentricity were presented in random positions that changed on each frame presented. Each frame was presented
for 100 ms, and each run lasted 10 minutes.

in V1 and V2 (Gattass et al., 1987; R Gattass, 1981). When a square overlapped with the fixation
point, the latter was always presented over it, so the effective stimulation of that square was less
than its area. Regions in which two squares overlapped were shown at the same luminance as
individual squares. Each frame was presented for 100 ms with no time gap between frames. Since

the screen’s refresh rate was 60Hz, each frame was presented for 6 monitor cycles.

Each subject participated in a single MEG session, comprised of 6 runs that lasted 10
minutes each. The sequence of stimulus frames was random within and across runs. Subjects were

given a short break between runs.
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To measure the actual timing of each stimulus presentation with respect to MEG data
collection, we presented a small square at the bottom right corner of each frame. The luminance
of the square changed on successive frames, and a photodiode was used to identify the exact time

of occurrence of each stimulus frame, relative to the MEG signal.

2.3.5 Regions of interest

The primary visual cortex (V1) has the finest visual resolution among the visual areas in the
occipital cortex, since its receptive fields are the smallest for each eccentricity (Burkhalter and
Essen, 1986; Felleman and Essen, 1987; Gattass et al., 1987; R Gattass, 1981; Smith et al., 2001;
Zeki, 1978). This makes V1 an ideal candidate for evaluating the resolution of MEG, since only a
small part of the V1 cortex is expected to be activated with every localized stimulus on the visual
field.

From the fMRI experiment, the cortical area of V1 was estimated and imported into the
MEG data processing environment as a surface-based anatomical region of interest. Constraints
on the visual stimulation available inside the MRI magnet led to limited coverage of the V1 maps
for both hemispheres in both subjects. Given previous work showing that higher eccentricities are
represented more anteriorly along the calcarine sulcus (Dougherty et al., 2003; Dumoulin and
Wandell, 2008; Engel et al., 1997; Sereno et al., 1995), we manually extrapolated our V1-fMRI
maps anteriorly by including additional sources until the parieto-occipital fissure. The V1 maps,

along with the extrapolated area, were selected as a region of interest for MEG source analysis.

2.3.6 MEG data analysis

MEG forward modeling was completed with the overlapping spheres approach (Huang et al.,
1999). This method fits a sphere to the scalp surface under each sensor. A sphere can be used as
a simplified model, since the magnetic fields are virtually undistorted by the skull (Barth et al,,
1986; Okada et al., 1999).

Noise covariance across MEG sensors was estimated from a 2-minute empty-room
recording prior to the experiments. Weighted Minimum Norm Estimates (WMNE) (Lin et al.,

2006a) of cortically constrained, distributed sources were obtained using Brainstorm’s default
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parameters (Depth weighting: 0.5, Regularize noise covariance: 0.1, Whitening: PCA / SNR: 3).
Source orientations were constrained to be perpendicular to the cortical surface.

A high-resolution cortical tessellation (150,000 sources) was used from each subject’s
individual anatomy for creating the source model (Dale and Sereno, 1993). This approach caused
sources to have, in most cases, less than a millimeter distance from their closest neighbors,
providing the possibility of detecting variations in the MEG signal on small spatial scales.

The inverse modeling transforms the signals from 275 sensor-signals, to 150,000 sources-
signals. This leads to a vast amount of data. In order to decrease the volume of data, the signals
were down-sampled to 600 Hz, and only the time-series from the sources located inside the V1
regions of interest (as described above) were considered for further analysis (4,890 sources for S1
and 5,311 sources for S2). The signal of each source was epoched into 1-minute bins, and the
baseline (time average) of each epoch was subtracted. In order to reduce the contribution of
heartbeat artifacts, signal space projection (Tesche et al., 1995; Uusitalo and lImoniemi, 1997) was

applied to the MEG signals prior to source modeling.

2.3.6.1 Estimation of visual receptive fields

The epoched time-series from the sources located in the region of interest were band-pass filtered
(4™ order Butterworth filter) in the 1-12Hz range (Figure 2). This range was chosen from analysis
of pilot data from our lab showing strong, evoked visual responses in this frequency range from
sources located in V1 (Appendix 1). Within this range, evoked visual responses were almost always
biphasic (Appendix 2, (Aine and Stephen, 2003; Kaoru Seki, 1996; Nakamura et al., 2000; Stephen
et al., 2002) , with the leading phase varying across sources.

In order to identify the responses associated with individual stimulus frames, we set a threshold of

three standard deviations below the mean response of each epoch (Figure 2, green line). The negative
polarity of the response was chosen arbitrarily; using the positive phase of the response yielded results that
were nearly identical to those reported here. On average ~3% of the total frames presented during the

experiment led to threshold crossings in the filtered single-trial MEG responses for both subjects.
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Figure 2. Example of a 5 second segment of signal from an occipital source, filtered between 1 and 12 Hz. The
line in green indicates the threshold of 3 standard deviations below the mean of the filtered signal that was
used for detection of selective visual responses. The red triangles indicate the time points at which the stimulus

was updated.

For each significant response that crossed the threshold on a given source, we took the
average value of each pixel on the screen during the preceding two frames (200 ms). This
procedure is equivalent to the reverse correlation analysis commonly used to study receptive
fields in individual neurons (de Boer and Kuyper, 1968; DeAngelis et al., 1995; Livingstone et al,,
2001; Marmarelis and Marmarelis, 1978; Mineault et al., 2013; Pack et al., 2006). The resulting
spatial maps were then summed across all significant responses for the same source, to yield that
source’s receptive field map. This map was then normalized by the frequency with which each
pixel was activated during the experiment. Because the most peripheral pixels were activated very
infrequently, this normalization introduced discontinuities near the edges of the display screen.
We therefore cropped each response-triggered average at ~16 degrees of eccentricity. The
analysis was performed for every source individually. In order to avoid artifactual responses, we

rejected epochs in which blinks were detected in the EOG.
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2.3.6.2 Statistical significance of receptive fields

An anisotropic 2D Gaussian function was fit to each source’s responses, to estimate the center of

the receptive field and its spread along the two visual field axes:

fx,y) = Axexp (—(alx — x0)* = 2b(x —x0) (Y — ¥o) + c(y —¥0)?)), (1)

cos%0 | sin?6 p = sin20 | sin26 __ sin?6 | cos?6
2 2 - = 2 2
202 205 ' 402 403

where =

! T 202 205

Here A is the amplitude, x4,y represent the center, and oy, 0, the standard spread of the
Gaussian kernel. The angle ¥ denotes the clockwise rotation applied to the elliptical function to fit
the data.

In order to verify that receptive fields were not due to random signal fluctuations, we
compared the amplitude (A) of the Gaussian fit to a threshold that was defined through a
permutation test (Pack et al., 2006). We used the same number of frames that were averaged to
create the receptive field, but shuffled the order of the stimuli. The resulting receptive field was
fit again to a 2D Gaussian function, and the amplitude of this Gaussian was compared to the one
that was computed from the experimental data. This procedure was repeated 1000 times.
Significant receptive fields were considered as those that had higher amplitude than 95% of those

calculated through the permutation.

The distance between the fixation point and the center of the Gaussian fit provided the eccentricity
of each source’s receptive field. For the sources that demonstrated significant receptive fields, the value of
their eccentricity was assigned to each source’s cortical location. For display purposes, the eccentricities
were grouped into 3 different ranges: 0-2, 2-5, 5-11 and were color-coded for projection onto the cortical

surface.
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2.3.6.3 Comparison of MEG with fMRI results
For comparing the receptive fields that were obtained from the two modalities, for each hemisphere of the

two subjects, we selected a line along the upper lip of the calcarine sulcus, thus sampling a wide range of
eccentricities (Engel et al., 1997). For the MEG data points, only the sources that belonged on this line and
demonstrated significant receptive fields were taken into account for the comparison. In order to generate
a representation of the change of the visual field representation on the cortical surface, a source of 5.8° of
eccentricity was selected as the reference. This eccentricity was selected as a reference because all lines
from the 4 hemispheres demonstrated a source at 5.8° with significant receptive fields. The eccentricity of
each source on those lines was plotted relative to the geodesic distance between the references and every
other source. The geodesic distance was computed with the fast-marching algorithm (Sethian, 1996). The
fast marching algorithm is very similar to the Dijkstra algorithm (Dijkstra, 1959) that is used in graph theory
to find the shortest paths on graphs.

The fMRI points were computed on 2-dimensional, flattened representations of the cortical
manifold centered on the foveal confluence and subtending 100 mm of diameter. Linear ROls were
manually drawn within V1 to match as closely as possible those already determined on the MEG-based
data, one per each hemisphere. The linear ROl was made of equidistant (on the flat maps) cortical bins that
were assigned the average of the eccentricity values of the voxels they contained. The numbers of bins
depended on the length of the line. Linear cortical magnification factor was estimated after calculating the
geodesic cumulative distance between the bins (with the origin arbitrary set at 5.8°) and plotting them

against their main eccentricity.

2.3.6.4 Spatial resolution
For the calculation of spatial resolution, we used data comprised of the threshold crossing of each individual

source that demonstrated a significant receptive field. The total number of frames in the experiment was
36,000, and a binary vector (1 x 36,000) was created for each source indicating on which frame the source
response passed the threshold. Consequently, for any two sources with significant receptive fields, we
formed a 2 x 36,000 matrix. For two sources with identical visual responses, the two rows of this matrix
would be identical, which would in turn imply that we were unable to resolve signals at the corresponding
inter-source distance.

To quantify resolution, we therefore performed a singular value decomposition (SVD) on that
binary matrix and obtained 2 singular values (s; and s;) that expressed the separability between the two

vectors. When the two vectors are identical, only the first singular value is representative of the matrix,
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and the second value is zero. This would correspond to an inability to resolve differences between the two
sources. On the other extreme, when the two vectors have their values completely non-overlapping, the
2
1

two singular values are equal. The separability index (Sl), given by ST = Szi ol is therefore indicative of the
1 2

degree of overlap between the two binary vectors and representative of the correlation among sources.
The Sl thus ranges from 0.5, when responses are completely independent, to 1.0, when responses are
identical. The advantage of using the singular values ratio, compared to the dot product between the two
vectors, is that the former is affected by instances when only one of the two sources crosses the threshold,
which was often the case in our data.

In order to establish the Sl values that would be expected based on pure noise, we described the
probability of having concurrent threshold crossings for every pair of sources. This probability is based on
the number of frames to which each source showed selectivity and the total number of frames presented.
We estimated the cumulative probability of concurrent threshold crossings and included in the plot only
the data points that were above the 95% distribution, which was set as the noise level.

The probability of having a concurrent threshold crossings based on chance is defined by a

hypergeometric distribution:

(- (%)

(v2)

noise distribution =

(2)

where v; and v; are the number of frames on which the first and the second source surpassed the frame
selectivity threshold respectively, TF is the total number of frames (36,000), and a is the number of
concurrent threshold crossings (o € [0, min (v4,v5)]). From this distribution we calculated the cumulative
distribution for setting the noise threshold at 95%.

For each combination of sources with significant receptive fields in the same hemisphere, we
plotted the Sl relative to their geodesic distance and their relative orientation, creating a 3 dimensional
plot. The data points were binned into 1 mm by 2° bins, extending from 0 - 80 mm and 0 - 180°, for the
observed geodesic distance and orientation values respectively. Since not all bins had the same number of
data points, we fit the data-points to a 2-dimensional exponential function, weighted by an inverse

multivariate kernel density estimator (Hwang et al., 1994):

f(d,0) = ay + ae®P+c®)  (3)
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Here D is the geodesic distance between sources, and © the relative orientation between the sources. B is
a constant that captures the baseline (0.5) and common noise among sources, a is the amplitude and b and
c are constants that capture the decay of the exponential function for the distance and orientation axes.
The threshold for defining the resolution is based on the decay constant of the exponential function
that was used to fit the data points. Since the exponential is 2-dimensional, the threshold is a line that
relates geodesic distance and relative orientation between sources. The decay constant shows the space-
angle combinations that are needed for the correlation to drop to 1/e (36.8%) of its maximum value. The
line that defines this threshold can be interpreted as the point where the responses of the two sources are

63.2% separable. The threshold is given by the equation:

—1=bD +cO (4)

The placement of the sources on the cortical surface, and therefore the geodesic distance and the
relative orientation between them, is affected by the curvature of the surface. For examining the possible
placements for given curvatures, we assumed for simplicity that the local cortical surface could be
approximated by an osculating sphere with radius: R = 1/curvature (DoCarmo, 1976). The combinations of

the orientation and perimetric distance of sources that can be placed on a sphere form a line that follows:

2m0

d= 360 * Curv

(5)

where d is the distance between the two dipoles along the curve of the osculating sphere, 8 is the
relative angle between the dipole sources, and Curv is the curvature of the sphere (1/Radius of
the sphere). By solving the linear system of equations (4) and (5), we can derive the maximum

resolution that MEG can achieve for surfaces with given curvatures.

2.3.7 Software

MEG data analysis was performed with Brainstorm(Tadel et al., 2011). Cortical reconstruction and

volumetric segmentation were performed with the Freesurfer image analysis suite

(http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al., 1999, 2001).
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2.4 Results

We studied the spatial properties of MEG signals emanating from the visual cortex in two human
subjects. We elicited visual responses by presenting images comprised of a small number of
squares flashed simultaneously on a computer monitor. In this section we analyze the relationship
between the positions of individual stimulus squares and MEG source responses, as well as the
distribution of these receptive fields across the cortical surface; we use these data to derive an

estimate of the overall resolution of MEG source imaging.

2.4.1 Visual receptive fields estimated from individual occipital sources

Based on the stimulation procedure illustrated in Figure 1, we were able to recover discrete visual
receptive fields for individual MEG sources. These receptive fields were obtained by reverse
correlating (de Boer and Kuyper, 1968; Ringach and Shapley, 2004) the source responses and the
stimuli (see Methods). The results described below were based on receptive field estimates
obtained with 60 minutes of data collection, although comparable results can be obtained with
far less data (Appendix 3).

Figure 3 illustrates the receptive field that was calculated for a single source located in the
right hemisphere in area V1 of subject 1. The origin of this plot corresponds to the position of the
fixation point. For this source there was a well-localized receptive field located at a retinal
eccentricity of 4.3 degrees; as expected from a source located in the right hemisphere, its
receptive field was in the left visual field. The radius of the receptive field for this source was 1.4
degrees, which is about 10 times bigger than what previous studies have demonstrated for
individual V1 neurons (Gattass et al., 1987; R Gattass, 1981; Van Essen et al., 1984) and about 2
times bigger than V1 population receptive fields obtained with fMRI (Dumoulin and Wandell,
2008). This suggests that the spatial resolution of MEG, while somewhat coarse, can be
comparable to that of other imaging modalities. However, as shown below, MEG spatial resolution

varies substantially with source orientation.
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Figure 3 Example of a receptive field calculated from a single cortical source. This
source belonged to the right hemisphere and was located above the calcarine sulcus
in the primary visual cortex. The white star on the color bar defines the limit, above
which the receptive field was deemed significant.

2.4.2 Retinotopic maps estimated with MEG

The visual cortex is organized into visual maps, so that nearby neurons encode nearby regions of
visual space(Dumoulin and Wandell, 2008; Engel et al., 1997; Holmes, 1945; Horton JC and Hoyt
WF, 1991; Sereno et al., 1995). That is, for a given change in cortical location, one finds a
predictable change in the retinal position encoded by that location. In order to estimate this
relationship in our MEG data, we calculated the physical location and the retinal eccentricity
associated with each MEG source.

The physical location of each source was estimated from structural MRI images for each
subject, from which we created cortical surface reconstructions (Dale and Sereno, 1993). The
calculation of the receptive fields was performed only on the sources that were located inside the
regions of interest. Within these regions we computed 4,890 receptive fields for subject 1 and
5,311 for subject 2. For every computed receptive field, a 2-D Gaussian function was fit to the data

and significance testing was conducted (see Methods).
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For both hemispheres in both subjects, there was a fairly smooth gradation of the
eccentricities of the significant receptive fields along the upper lip of the calcarine sulcus in area
V1. The sources that had foveal responses were clustered at the most posterior part of the cortex,
and those with higher eccentricity were located more anteriorly, as expected from known
retinotopic organization (Wandell et al., 2007).

Figures 4 and 5 depict the individual MEG retinotopic maps based on eccentricity. The
eccentricity values were binned into 3 categories, and an example receptive field from one source
from each eccentricity category is displayed next to the maps for each hemisphere for both
subjects. The figures also show the occipital eccentricity maps that were calculated from the
subjects’ fMRI data. Separate maps that show the polar angle are depicted in Appendix 4 and 5.

The individual receptive fields for the example sources indicate localized spatial selectivity
in the positions and sizes of the receptive fields. The foveal sources exhibited clear receptive fields
at eccentricities as small as 0.34 degrees; this was the smallest eccentricity for which receptive
fields could be reliably estimated, given the 0.15° extent of the fixation point. The maps also
indicate a precise mapping of visual inputs to the contralateral hemisphere, with very little spread
of receptive fields across the vertical meridian (Jeffreys and Axford, 1972). As expected, the

receptive fields were larger for more peripheral sources.
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Figure 4. Example receptive fields taken from different positions in the V1 retinotopic map (left and right panels). The foveal example receptive fields are
expanded for better visualization. Full retinotopic maps are shown for MEG (top) and fMRI (bottom) for subject 1. Only sources that formed a cluster of 3
or more sources and all of them demonstrated receptive fields are projected.
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2.4.3 Estimate of cortical magnification factor with MEG

In order to draw a more quantitative comparison between the maps obtained with MEG and those
obtained with other methods, we computed the cortical magnification factor for V1 in each
individual hemisphere, using the full 60 minutes of data for each experiment. Cortical
magnification corresponds to the amount of cortical space devoted to a given portion of the retinal
input: Notably, previous work has shown that the central visual field is represented by a larger
area compared to periphery (Daniel and Whitteridge, 1961).

To quantify cortical magnification across the retinotopic maps recovered previously, we
selected sources located on a line running along the upper lip of the calcarine sulcus for all 4
hemispheres of the two subjects (Engel et al., 1997). The line was chosen to sample the range of
eccentricities shown in Figures 4 and 5.

Figure 6A plots the location of each receptive field as a function of the position of the
corresponding source. Here position is referenced to a single source with a receptive field at an
eccentricity of 5.8° (Engel et al., 1997 used 10°). Relative to more foveal sites, stimulation at 5.8°
activates a small portion of the visual cortex, which facilitates more accurate alignment across

subjects and across hemispheres.
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Figure 6. (A) Visual field eccentricity as a function of distance from the 5.80 source in V1 for all 4 four hemispheres of the two subjects.
The sources were selected from a line that runs along the upper lip of the calcarine sulcus. The different shapes and colors of the data
points indicate the hemisphere to which they belong. The dashed red line represents the fit to the data. (B) Comparison of the cortical
magnification factor among the present and previous studies.
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Each pointin Figure 6A corresponds to a source with a significant receptive field. Negative
values on the x-axis correspond to sources located posterior to the 5.8° eccentricity point, and
positive values indicate more anterior sources. The x-axis of the plot represents geodesic distances
between the sources on the cortical surface.

The results indicate a consistent trend across hemispheres and across subjects. Near the
posterior end of the occipital cortex (leftmost points in Figure 6A), changes in cortical location
yield very small changes in the retinal location of the corresponding receptive fields; in other
words, the central region of the retina is represented by a relatively large amount of cortical space,
as reported with other methods (Duncan and Boynton, 2003; Endo et al., 1997; Engel et al., 1997;
Horton JC and Hoyt WF, 1991; Qiu et al., 2006; Sereno et al., 1995). In contrast, sources located
more anteriorly (rightmost points in Figure 6A) are associated with less cortical tissue; small
changes in retinal position yield large changes in cortical position.

These trends can be captured parametrically by an exponential function that relates
increases in retinal eccentricity distances on the cortical surface. To explore this relationship, we
fit a function of the form: 8 = e€(@*%0) (6) (Engel et al., 1997), where 0 is the eccentricity of the
receptive field for the source, d the cortical distance, and c and do are parameters that scale and
shift the exponential relationship. The mean values of the parameters obtained were: 8 =

0:04+(d+40.01) £rom these values we obtained the linear magnification factor, which has units of
millimeters of cortex per degree of visual angle: M(0) = (%) 0~ (Qiu et al., 2006). From our data,

the corresponding relationship is M(8) = 21.14071 mm/degree. These values are plotted in
Figure 6B (Brown dashed line), along with analogous functions from previous studies.

The shape of M found from our data is similar, although with a clear upward shift with
respect to that obtained with fMRI and PET(Duncan and Boynton, 2003; Engel et al., 1997; Horton
JC and Hoyt WF, 1991; Qiu et al., 2006; Sereno et al., 1995).
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2.4.4 Comparison with fMRI
To compare the results that we obtained from the MEG analysis to those obtained in the same

subjects with fMRI, we selected the same lines along the calcarine sulcus that were selected for
creating Figure 6A for each of the 4 hemispheres. These are overlaid with the data points from the
fMRI results in Figure 7. Only the data points for MEG sources with significant receptive fields were
included on the plot. Overall the results indicate a close correspondence between the retinotopic

organization obtained with MEG (red dots) and with fMRI (blue stars) in all hemispheres.
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Figure 7. Comparison between MEG (red dots) and fMRI (blue stars) data for the 4 hemispheres. Data points were selected along

linear regions of interest that run along the upper lip of the calcarine sulcus. The green and blue dashed lines correspond to the
95% significance bounds for MEG and fMRI exponential fits respectively.

2.4.5 Spatial resolution of MEG
We used the pattern of visual responses and source locations described above to estimate the

spatial resolution of MEG. Conceptually one can characterize spatial resolution as the minimum
physical separation of sources that reliably yields different visual responses. Given the convoluted
nature of the cortex, we expect this measure of resolution to differ depending on the position of
each source relative to individual sulci and gyri. We therefore estimated spatial resolution
separately for sources of different orientations. For this analysis, we considered all sources for

which statistically significant receptive fields could be recovered (see Methods).
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We developed a metric of correlation (SI; see Methods) that takes into account the
responses of each source to each frame of the visual stimulus presentation. This metric takes
values near 1.0 for sources that have identical responses across all stimuli to 0.5 for sources that
respond completely independently. We estimated this correlation for all pairs of sources,
combining data for sources separated by similar geodesic distances and relative orientations.

The pairwise value of this correlation is plotted in Figure 8A, as a function of geodesic
proximity and relative orientation between sources. As expected, the responses of nearby sources
with similar orientation are highly correlated, and this correlation decreases with increasing
differences in spatial position or orientation. In the limit, the pairs of sources are nearly completely
independent, as sources that are physically far apart respond to stimuli that are widely separated
in retinal space.

We estimated the spatial resolution of MEG as the decay constant of an exponential fit to
the correlation functions obtained in our data (see Methods and Figure 8A) (Adjusted R?: 0.68).
The results show that for sources with the same orientation (i.e. cortical regions along a relatively
flat region of a sulcus), responses can be reliably differentiated when they are separated by
approximately 7.0 mm. For regions of greater curvature (i.e. near a gyrus), resolution can be
considerably greater. The red line in Figure 8B indicates that the decay constant is reached at
smaller physical separations for dipoles of increasing relative orientations. Assuming a maximum
curvature of 1.5 mm™ that can be measured before reaching the noise level of the MRI
measurement on an 1xImm isotropic space (Pienaar et al., 2008), this calculation yielded a
maximum MEG resolution of 0.49 mm (blue line). For regions with more modest curvature (green

and yellow lines in Figure 8B), resolution was on the order of 2 to 4 mm.
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Figure 8. (A) 2-dimensional exponential fit of the separation index (SI) as a function of spatial separation and relative orientation of
pairs of sources. The correlation decreases along both dimensions, and the decay constant (red line) is taken as a measure of resolution.
(B) Different combinations of geodesic distance and relative orientation between sources influence the separability among responses.
The red line represents the red line in figure 8A. The area marked in red represents the combinations that are beyond the resolution
of MEG, and the green area the combinations that MEG can resolve. The dark patterned area represents observations that are within
the noise level of the MRI tessellations. The other colored lines represent resolution for dipoles placed near gyri with different
curvatures. The blue line shows the combinations on a gyrus with the maximum curvature typically found in human brains; this
therefore represents the limit of MEG resolution.

Of course, any estimate of resolution will depend on various experimental and analytical choices.
Although we did not explore these factors exhaustively, we performed one additional analysis to
explore the influence of response threshold (see Methods). A lower threshold (2 standard
deviations below the mean) admitted far more responses into our receptive field measurements,
but lowered the resolution significantly, yielding values of 41.3mm and 105.0 degrees for the
space and orientation constants. By comparison, a threshold of 4 standard deviations yielded a
space constant of 3.6mm, and an orientation constant of 52.5 degrees. Although this resolution
was slightly better than what we obtained with the 3 standard deviations threshold, it led us to
reject 97% of the data that was used in the 3 std threshold condition. Thus the higher threshold

might be warranted for experiments with rich data records, if extra resolution is necessary.
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2.5 Discussion

2.5.1 Brief summary of results
In this study we have demonstrated the capacity of individual MEG sources to show selectivity

for specific areas of the visual field. We showed that localized visual receptive fields for individual
sources (Figure 3) can be obtained from modest amounts of data (Appendix 3), and that the
ensembles of these receptive fields form orderly maps within the occipital lobe (Figures 4 and 5).
These maps are well matched to those obtained with fMRI (Figure 7). Analysis of correlated
responses between pairs of sources suggest a reliable resolution on the order of a few

millimeters, with the precise number depending on local brain curvature (Figure 8).

2.5.2 Comparison to previous work

The resolution of any imaging modality depends on a combination of the instrument and the
analysis methods. For MEG, an important aspect of data analysis is the set of assumptions needed
to reach a unique solution (Baillet et al., 2001; Hamaldinen and limoniemi, 1994; Hamaldinen et
al., 1993; Pascual-Marqui et al., 1994; Sarvas, 1987) to the electromagnetic inverse problem
(Helmholtz, 1853). These require a method for modeling the source of MEG signals.

Traditionally, two approaches for modeling brain activity have been used: dipole methods,
and imaging methods. Dipole methods make use of a small number of dipoles to explain the
cortical activity in the simplest possible way. Although they achieve seemingly point-like
localization, these models are restrictive, and an imaging method is preferred when the number
of active regions cannot be predicted or large areas are activated (Benbadis et al., 2010; Darvas et
al., 2004). An imaging method with distributed sources along the cortex is generally expected to
provide coarse resolution due to the largely underdetermined character of the inverse problem:
the model transforms the signals from a few hundred sensors to tens of thousands of sources on
the cortex. Nevertheless, imaging methods provide a more realistic representation of the cortex
and are more suitable to account for spatially extended cortical activations. When the activated

areas are in close cortical proximity, the localization of the sources becomes problematic, resulting
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in crosstalk between nearby sources (Liu et al., 2002). The minimum distance required to
overcome this crosstalk provides one estimate of the spatial resolution of MEG.

Previous studies focused on the localization accuracy of MEG, which is the cortical distance
between a “ground truth” cortical location, and the center of mass or peak of the MEG activation.
The cortical points that are selected as the true origin of the activity are usually cortex locations
that show increased activation in equivalent fMRI experiments(Moradi et al., 2003; Poghosyan and
loannides, 2007; Sharon et al., 2007), locations that have been chosen in simulations (Liu et al.,
2002), dipole localization in phantom studies (Leahy et al., 1998; Sutherling et al., 2001) or even
dipoles that were placed inside a cadaver head (Barth et al., 1986).

Although previous MEG studies have examined the visual cortex, none to our knowledge
has attempted to recover detailed retinotopic maps. Two previous studies demonstrated
differentiation in response timing across entire visual areas(Cottereau et al., 2011; Hagler et al,,
2009), while another study (Sharon et al.,, 2007) used several inverse methods to compare
localization of fMRI and MEG+EEG from only 4 visual field stimuli positions. Cicmil et al. (2014)
used 3 different inverse problems (MNE, Beamformers and Multiple Sparse Priors) with quadrant
checkerboards and rings of 3 different eccentricities, and concluded that significant improvement
could be achieved by using MNE on eccentricity stimuli confined to one visual field quadrant.
Another study (Brookes et al., 2010) used a retinotopic experiment of 5 wedges and investigated
the effect of data averaging from a retinotopic experiment on the spatial specificity of MEG.
Moradi et al. (2003) compared MEG early activation with fMRI in V1 and achieved localization
errors on the order of just 3-5 mm. Perry et al. (2011) used a rotating checkerboard stimulus and
examined the elicited power at gamma frequencies, which did not yield a trajectory consistent
with V1 anatomy. Poghosyan and loannides (2007) displayed circular checkerboards in 8 positions
of the visual field and achieved localization in each visual cortex area to within 2mm of a simulated
activation center.

Several previous MEG tonotopy studies have used sharp responses (namely the M100) for
detecting selectivity (Cansino et al., 1994; Langner et al., 1997; Pantev et al., 1988, 1994, 1995). It
would be interesting to use the method described in this paper to retrieve the tonotopic

organization of the auditory cortex.
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2.5.3 Limitations of current results

The method for computing the receptive fields that was described in this paper led to the creation
of retinotopic maps that follow the known retinotopic organization of the primary visual cortex,
on the upper lip of the calcarine sulcus. However, this technique was unable to capture many
sources with significant receptive fields in the upper visual field (see Appendix 4 and 5); these are
located below the calcarine sulcus. One reason for this might be the fact that every stimulus frame
was comprised of several squares that were projected onto both the upper and lower visual field.
Since it has been reported (Fylan et al., 1997; Perry et al., 2011; Poghosyan and loannides, 2007,
Portin and Hari, 1999) that the signals from upper visual field stimulation are weaker than those
from the lower visual field, it might be that their event related responses were not strong enough
to cross the amplitude threshold.

A second limitation is that our retinotopic maps detected few significant receptive fields
inside the sulci. This becomes evident when we project the maps onto an inflated cortex (Appendix
6). This leads to the appearance of discontinuities on the gradient of the eccentricity map for both
subjects. These results are consistent with previous work showing reduced signal strength for
sources located inside sulci (Goldenholz et al., 2009). Consistent with this idea, we found in pilot
studies that the ratios of the peak z-scored signal fluctuations relative to pre-stimulus baseline
(Appendices 1-3) were higher in the upper lip of the calcarine sulcus (1.18) than in the lower lip
(1.05) or the inside the sulcus (1.00). Since the method for estimating receptive fields is solely
based on amplitude thresholding, the lack of significant results in the upper visual field is likely due

to relatively poorer signal strength in the corresponding cortical space.

Another limitation was that significant receptive fields were mostly recovered in the
primary visual cortex, and our attempts to recover retinotopic maps in extrastriate areas were less
successful. We also did not detect the borders between areas V1, V2, and V3 that typically appear
as inversions of the angle of visual field selectivity (Dougherty et al., 2003; Sereno et al., 1995;
Wandell etal., 2007). One possible explanation is that we filtered our data (Figure 2) at frequencies
specifically chosen to optimize V1 responses. This filtering might have been optimal for capturing
large signal fluctuations on V1 sources but not necessarily for others. Similarly, we optimized our

stimuli based on estimates of receptive field sizes in early visual areas (Freeman and Simoncelli,
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2011). Presumably, for any visual area, using larger stimuli would yield poorer resolution, while
smaller stimuli would yield weaker responses, although we have not explored this trade-off

experimentally.

2.5.4 MEG usage is beneficial in areas were the fMRI signal gets distorted due to
large blood vessels

The fMRI signal can be affected by the presence of large blood vessels in certain areas due to the
inflow effect (Gao and Liu, 2012). Consequently retinotopic maps in our fMRI experiment had small
patches in which the signal could not be resolved reliably. Those areas were located on the most
posterior part of the cortex for both subjects. Nearby voxels showed selectivity for stimuli
presented at eccentricities less than one degree, suggesting that the missing patches also
represented the central part of the visual field. Because MEG measures neuronal activity directly,
it is not perturbed by large vessels, and thus we were able to resolve cortical activity in these
regions (Figures 4 and 5). This suggests that MEG can provide information that is complementary

to that obtained with fMRI.

2.5.5 Resolution

Our results show that the resolution is affected by both the distance and relative orientation
among sources (Figure 8). Thus we expect spatial resolution to be quite different for sources
located around gyri, within the sulci (see above), and in flatter areas. Given optimal brain curvature
and sensory stimulation, MEG can detect differential selectivity between sources that are
physically very close. However, for flatter regions of cortex, the resolution is likely to be
substantially worse than that of fMRI. Therefore smoothing of the retinotopic maps obtained with
MEG is helpful for comparing between the two modalities.

Findings of differential selectivity for sources in very close proximity have been reported
recently (Cichy et al., 2015), in a study in which the authors investigated the ability of MEG to

discriminate between distributed simulated patterns of cortical activity differing on the macro-

47



column scale. Moreover, a recent study investigated the ability to differentiate cortical laminae
with the use of different MEG models and a head-cast for minimizing head-movements
(Troebinger et al., 2014). Therefore, a combination of an appropriate model at the appropriate

cortical geometry can yield surprisingly good results.

Importantly, any estimate of MEG resolution will be influenced by the forward and inverse
modeling required to transform the signals from the sensor level to the source level. Continuous
head position recordings or even the usage of a head-casket or bite-bars is expected to improve
the co-registration with the head-points and therefore the quality of the data recorded. Our
results regarding the effect of dipole orientation on resolution highlight the importance of using
each subject’s fMRI data to place the dipoles. If the anatomy used is based on an atlas, it is
expected that the sources’ placements will not be ideal and therefore the localization will be
affected.

Although we used standard Brainstorm parameters in our modeling, other choices would
likely have led to different conclusions about the level of crosstalk and point spread (Liu et al.,
2002) shared by nearby sources. Similarly, our conclusions about resolution were determined by
the assumption that the dipoles orientations were normal to the cortical surface and followed
cortical curvature along the gyri and sulci. Moreover, the analysis that was performed in this study,
reflects the resolution that can be achieved with a specific selection of methods; namely, the

threshold applied to the signal amplitude and the stimulus that was projected.

2.5.6 Conclusion

MEG has traditionally been used in applications requiring excellent temporal resolution. However,
its spatial resolution is most often considered to be coarse. We have shown that MEG can recover
retinotopic maps with similar shape to those obtained with fMRI, and in some areas with

comparable spatial resolution.
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2.8 Supplementary Figures - Appendix
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Appendix 1. (A) Stimulus that was used in a pilot experiment to elicit visually responses. The subjects maintained fixation at a dot

located at the center of the screen, and the stimulus appeared for 100 ms every second. (B) Time-frequency decomposition of the

signal from a V1 source during the pilot experiment. There is increased power in the 1-12Hz band.
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Appendix 2. Overlap of all V1 responses from 259 averaged trials. The figure
demonstrates the averaged responses of the filtered signals of all V1 sources
located in the left hemisphere of one subject. The responses elicited by the
stimulus are bimodal.
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2.8.1 Efficiency of receptive field estimation with MEG

The receptive field shown in Figure 3 is the result of averaging responses over the full data record,
which lasted for 60 minutes. To determine retrospectively if similar results could have been
obtained with a shorter experimental duration, we estimated receptive fields from shorter
segments of data, using 2,859 statistically significant receptive fields (see Methods) recovered
from the primary visual cortex from both hemispheres of the two subjects.

Appendix 3 shows the average 2-D correlation between the receptive fields calculated
from the full experimental data and those obtained from data over increasing durations. After
fitting an exponential function to this statistics, we obtained a mean time constant of 14.6 + 2.9
minutes (adjusted r’=0.9276) to retrieve receptive fields that were similar to those obtained with

the full 60-minute data set.
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Appendix 3 Time-course of receptive field estimation relative to the final receptive field for every
minute of the experiment. Each data-point represents the 2D correlation of the receptive field of
each source, calculated based on data recorded up to that time point, with the source’s final
receptive field calculated from the full data record. The red line represents the fit on the data points.
Each faded line corresponds to the 2d correlation of the receptive field of a single source.
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SUBJECT 1 - MEG MAP

Appendix 4. Angle retinotopic map of Subject 1. The receptive fields were binned based on their angle. The
color assigned is relative to the position of the center of the receptive field on the visual field.

SUBJECT 2 - MEG MAP

Appendix 5. Same as Appendix 4, but for subject 2
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SUBJECT 1 - MEG MAP
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Appendix 6. The same retinotopic map as the one computed in Figure 5 but now projected on an inflated cortex. Dark grey areas
represent the sulci. The blue, yellow and red colored sources represent eccentricities of 0-2, 2-5, 5-11 respectively. The calculation
for the receptive fields was performed only for the sources located posteriorly to the parieto-occipital sulcus. Only sources with

significant receptive fields are projected. Most of the sources that are located inside the sulci do not demonstrate significant
receptive fields.
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Chapter 3 contains the results from the study undertaken during this PhD work to understand the
mechanism of remapping. It shows remapping in the superior parietal and the visual cortices, with
the manifestation of two different types of remapping. This work is in preparation for journal

submission.
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Chapter 3 - Transient shifting of attentional
encoding measured with
magnetoencephalography
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3.1 Abstract

Visual neurons encode information about our environment through hardwired connections to the
retina that get established during early development. These connections create a neural mapping
of the visual field to the cortical surface. However, it has been shown that the functional encoding
of the visual space changes around the timing of eye-movements (saccades). This phenomenon
has been termed visual remapping and has been approached by researchers with two separate
schools of thought: some studies considered remapping as a compensating mechanism that
contributes to visual stability (forward remapping), and others as a manifestation of spatial
attention (saccade target remapping). A previous study (Neupane et al., 2016a) confirmed the
existence of both types of remapping within visual area V4 of non-human primates, and showed
an early visual response that confirms the first type of remapping, followed by a later response

that corresponds to saccade target remapping. Here, we used magnetoencephalography (MEG)
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to investigate cortical areas that are involved in the transient shift of receptive fields during an
attention task. We utilized MEG’s excellent temporal resolution to map multiple cortical areas and
show significant activity in the parietal and visual areas, with space- and time-signatures that
indicate distinct involvement of those areas in remapping. Time frequency decompositions
showed that remapping information is gated by B-band activity in the parietal cortex, followed by
sluggish B-band increased responses in the lateral-occipital cortex. Our results don’t confirm the
presence of both types of remapping within a single area, but rather a memory encoding trace on

the parietal cortex, followed by a late inhibitory-gated response in the lateral-occipital cortex.

Additionally, we show sequential activation of the superior parietal areas of each hemisphere
around the timing of the saccade when the remapping information needs to transfer across
hemispheres, which could potentially be indicative of visual information propagation from the

retinotopic to the remapped areas.

3.2 Introduction

Eye movements move the high-resolution part of the eye, the fovea, to the target. Whenever we explore the
visual scene, retinal displacements occur several times per second. Although these abrupt displacements
should create a chaoticimage, we instead perceive a stable one. Remapping is one of the mechanisms that is
considered to help the brain compensate for these shifts in the visual scene and contribute to the
maintenance of a stable image. During remapping, neurons transiently shift their receptive fields and respond
to stimuli that were presented to the location where their receptive field is going to land after the completion
of the eye-movement.

How remapping contributes to this information transfer is not understood yet. (Neupane et al., 2017)
hypothesized that neuronal populations that encode the current and future fields establish a channel of
coherent oscillations in the alpha band. Importantly, this was shown for neurons in area V4 that encoded
receptive fields connected across multiple saccade vectors, confirming the assumption that a mechanism
responsible for visual stability should be present for any saccade direction (Heiser and Colby, 2006; Mirpour

and Bisley, 2012; Neupane et al., 2017).
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However, when saccades were directed close to the receptive fields there have been indications of expansion
of the receptive fields towards the saccade target, in FEF (Chen et al., 2018; Zirnsak et al., 2014), MT (Niknam
et al., 2019) and V4 (Hartmann et al., 2017; Neupane et al., 2016b, 2016a; Tolias et al., 2001). This type of
remapping is assumed to be influenced by attentional shifts to the saccade target. Indeed, a series of
psychophysical (Cavanagh et al., 2010; Rolfs and Szinte, 2016; Rolfs et al., 2011; Szinte et al., 2016, 2018) and
electrophysiological (Bisley and Goldberg, 2003, 2010; Gottlieb et al., 1998; Joiner et al., 2011; Mirpour and
Bisley, 2016; Yao et al., 2016; Zelinsky and Bisley, 2015) studies have confirmed the modulatory effect of
attention to the remapping mechanism. Attention has been hypothesized to prioritize only specific objects of
interest perisaccadically, which effectively would not activate all connections between current and future
fields.

The plethora of studies that support either type of remapping, constitutes evidence of the potential
expression of remapping in both forms. Here, we investigate perisaccadic activity by using
magnetoencephalography (MEG); a modality that provides sub-millisecond temporal precision and the ability
to monitor multiple cortical areas simultaneously. We report perisaccadic responses in cortical space,
frequency and time during an attentional paradigm. Our results indicate distinct engagement of the parietal
cortex to forward remapping, and traces of the lateral-occipital cortex that could facilitate saccade-target

remapping through an inhibitory-gating mechanism.

3.3 Methods

3.3.1 Participants

Data were recorded from 8 healthy, right-handed subjects, all of whom had normal or corrected to normal
vision. All subjects gave written consent prior to participation in multiple sessions, involving structural MR,
and MEG recordings. All experimental protocols were approved by the Research Ethics Board of the

Montreal Neurological Institute.
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3.3.2 Structural MRI
For the MRl scans, each subject was positioned on his back with a 32-channel surface coil centered

over the occipital pole. Three-dimensional T1-weighted anatomical MR image volumes covering
the entire brain were acquired on a Siemens TIM Trio scanner (3D-MPRAGE, TR/TE= 2300/2.98

ms, TI =900 ms, 176 sagittally oriented slices, slice thickness = 1 mm, 256 x 240 acquisition matrix).

3.3.3 MEG Data Collection
Data were recorded using a 275-channel (axial gradiometers) whole-head MEG system (CTF MEG

International Services Ltd.). Each subject’s head was digitized (typically 200 points) with a 6 degree-of-
freedom digitizer (Patriot - Polhemus) prior to MEG data collection. This was used to mark the scalp,
eyebrows and nose, and to optimize co-registration with the anatomical MRI. Three head positioning coils
were attached to fiducial anatomical locations (nasion, left/right pre-auricular points) to track head
movement inside the MEG. Eye movements and blinks were recorded using 2 bipolar electro-oculographic
(EOG) channels. EOG leads were placed above and below one eye (vertical channel) and the second channel
was placed laterally to the two eyes (horizontal channel). Heart activity was recorded with one channel
(ECG), with electrical reference at the opposite clavicle, for subsequent MEG artifact detection and
removal. All data were sampled at 2400 Hz.

Visual stimuli were presented onto a screen placed in front of the subjects at a viewing distance
of 45 cm, which permitted visual stimulation up to 25x20 degrees of eccentricity. The display
system consisted of a projector (VPixx Technologies, PROPPixxx) located outside the magnetically

shielded room and three reflecting mirrors that directed images to the screen. The refresh rate of

the projector was 120 Hz with a resolution of 1920x1080 pixels.

3.3.4 Stimulus
Subjects were seated in a dimly illuminated room (0.13 cd/m2) and asked to fixate on one of two

possible red dots of 0.3 degrees radius and perform saccades between these two targets (10-
degrees distance) when they appeared. A probe was presented on the lower visual field between
the two targets. After the subjects performed a saccade, they had to report the orientation (left

or right tilt) of the last probe presented, through a button press. If no response was given by the
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subject within five seconds, a new trial was initiated. Feedback was given to the subjects for their

selection by turning the fixation dot green or gray, for correct and failed trials respectively.

Each trial was separated into two segments: P1 and P2 probe presentations. Depending on each
of the two cases, a 4-degree side square probe (34.59 cd/m2) appeared on the lower visual field

between the two targets on a black background (0.94 cd/m2) — Figure 1:

P1: the probe was presented for 50 ms, while the subject maintains fixation on one of the two
targets. This probe was a white square displayed at maximum contrast against the background
and appeared 500-1500 ms after the target was presented. This delay assumes that the subject
has already fixated on the next target, and the P1 probe was expected to elicit retinotopic

responses to the cortical sources that their receptive field was within the probe’s location.

P2: the P2 probe was also presented for 50 ms and was turned on for 50-150 ms (adjusted on the
response latency of each subject) after the new target location was presented. The P2 probe was
comprised of a series of parallel dark lines against a white background, with their orientation tilted
+5 or -5 degrees relative to the vertical orientation. This probe was expected to elicit the
remapped responses to the sources that their receptive field would overlap with the probe’s
position, after the eye movement was performed. It should be noted that it is imperative this
probe was completely off before the eye-movement was initiated to accurately measure

remapped responses, so extra attention was paid to these two parameters.

Once the P2 probe has been presented, the subject was asked to report the orientation of the
lines within it (right tilt/left tilt). The subjects use their index or middle finger (left vs right
conditions) of their right hand to report the orientation. In case no response was performed by

the subject after 5 seconds, a timeout initiated the next trial.

Monitoring of the probes’ on and off states was performed by a photodiode that was located at
the corner of the screen, hidden from the subject’s visual field. A P2 trial was considered successful
only when the saccade was initiated after the probe was completely off. The photodiode was

sampled from the acquisition system at the same rate as the MEG signals.
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At the end of the experiment, every subject also participated in a 10-minute run where the
subjects performed saccades between the two targets, and no probes were displayed (saccades

in the dark). These trials were used during the analysis for baseline correction.
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Figure 1. Experimental design. Subjects were asked to perform saccades between two targets while a probe appeared at the lower
visual field between the targets. Probe P1 was a solid white square presented at maximum contrast during fixation to elicit
retinotopic responses (not shown on the figure). Probe P2 contained orientation lines (tilted 5 degrees left/right) and the subjects
were asked to report their orientation through a button press (depicted on the left of the figure). P2 probes were presented close to
the saccade onset to elicit remapped responses.

3.3.5 Artifact Removal
The eye acts as a dipole. MEG is very sensitive to eye-movements and the eyes’ transition between

the two targets influences the MEG signals extensively. We used independent component analysis
(ICA) with InfoMax (Bell and Sejnowski, 1995) to isolate those components that originate from the
eye-dipole and reject them. The top part of Figure 2 shows a 40-seconds example segment of the
EOG signals (vertical-VEOG and horizontal-HEOG, 3 blinks are distinctly shown on this segment),
and the bottom part shows the first 12 ICA components of the MEG signals. The 3™ component
(in red) is clearly highly correlated to the eye-movements and is removed. The topography of the
component (not displayed on Figure 2) is localized anteriorly and is associated to the eyes’ dipoles.
ICA decomposition revealed components that captured the eye movement artifact presence on

the MEG signals in all subjects.
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Figure 2. ICA Analysis components. Top row: Electrooculography signals (EOG). The large deflections on the vertical EOG
(VEOG) channel reflect eye blinks. Since the saccades were performed on the horizontal axis, the horizontal EOG channel (HEOG)
follows the trajectory of the eyes. Bottom row: 20 first MEG ICA components. For all subjects, ICA decomposition revealed a
single component that was highly correlated with the HEOG. On this example, component 3 is highlighted to indicate the
resemblance to the eye movement.

3.3.6 Time-segments of interest
Conditions were separated based on:

1. P1 probes’ onset, while fixating on the first or the second target.

2. Saccade offset, for saccade to the left and saccade to the right, after a P2 probe was

presented.

3. Saccade offset, for saccade to the left and saccade to the right, when no probe was

presented (saccades in the dark).

Successful retinotopic trials (aligned on P1 probe onset: [-500,500] ms) were considered those

that the subject maintained fixation around the probe onset on one of the targets.
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Successful remapped trials (aligned on saccade offset: [-1000, 1000] ms) were considered those
that the P2 probe was completely off (based on the photodiode’s trace) before the saccade onset.
As an additional quality-control for the trials selection, the maximum latency between the P2
probe offset and the successive saccade onset, was selected to be 150 ms, since remapping has
been observed to be stronger when the saccade initiation is closer to the probe presentation

(Umeno and Goldberg, 2001).

All trials that contained a blink were discarded.

3.3.7 MEG data analysis
MEG forward modeling was completed with the overlapping spheres approach (Huang et al.,

1999). This method fits a sphere to the scalp surface under each sensor. A sphere can be used as
a simplified model, since the magnetic fields are virtually undistorted by the skull (Barth et al.,
1986; Okada et al., 1999).

Noise covariance across MEG sensors was estimated from a 2-minute resting state session.
Weighted Minimum Norm Estimates (WMNE) (Lin et al., 2006) of cortically constrained, distributed
sources were obtained using Brainstorm’s default parameters (Depth weighting: 0.5, Regularized
noise covariance: 0.1, Whitening: PCA / SNR: 3). Source orientations were constrained to be
perpendicular to the cortical surface. 15,000 cortical sources where used for modeling each

subject’s structural morphology.

The signals were first projected on the cortical surface of each subject’s anatomy with the wMNE
inverse model, and all of the signal processing functions that are described below were applied on

the signals from the individual cortical sources.

For population analysis (multiple subjects’ analysis), the average signals from each subject were
projected to the template brain, and statistical computations were performed on that common

space.
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3.3.8 Statistical analysis
For the statistical analysis, all trials for each condition were averaged for each subject, and all

individual source maps were mapped to, rectified, and smoothed on the MNI/ICBM152 brain
template (Fonov et al. 2009), which is part of the default anatomy in Brainstorm’s protocol

(methodology described in (Tadel et al., 2019)).

A 1,000 randomizations paired permutation test was applied on the averages of all subjects
between the saccade conditions where a saccade was performed with the presence of a P2 probe,
and the conditions where a saccade was performed in the absence of the P2 probe (saccades in
the dark). Separate tests were performed for the saccades to the left and right directions. The
statistical significance threshold was set to a = 0.05 (uncorrected). These tests were performed

for every timesample.

3.3.9 Time-Frequency analysis
Time frequency wavelet decompositions were performed on each trial, for each subject, at the 6-

90 Hz range. Each conditions’ wavelets were then averaged for each subject.

Sequentially, an event related synchronization/desynchronization (ERSD) analysis was performed
on each wavelet average, with respect to a baseline set at [-800, -200] ms before the saccade

offset.
Each subjects’ ERSDs were then averaged, ending up with 8 ERSD files for each condition.

This measure provides information of the modulation of the power of each frequency relative to

the presaccadic baseline.

3.3.10 Regions of interest for information flow
The regions of interest described here, were selected based on the combination of the statistical

and the ERSD results. In order to have the same point of reference for all subjects, we used the
Mindboggle Atlas (Klein et al., 2017), and specifically the superior parietal and lateral-occipital

areas (in green and blue respectively in Figure 3).
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Figure 3. Superior parietal and lateral-occipital cortices were selected as regions of interest based on the results

3.3.11 Computation of information flow
MEG sources can suffer from cross-talk from strong neighboring sources (Nasiotis et al., 2017).

The placement of the probe between the two targets was expected to elicit retinotopic and
remapped responses into two different hemispheres. In order to make sure that the retinotopic
response was not leaking to the opposite hemisphere and provided a false positive remapped
indication, we performed a principal component analysis to the ROIs that were located on the
“retinotopic”/contralateral hemisphere, and regressed out the strongest components that were

above a threshold of 0.3, from every source in the “remapped”/ipsilateral parietal cortex.
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For example, for a saccade to the left condition, the subject was initially fixating on the right target,
and the P2 probe was presented on the lower left visual field right before the saccade initiation.
Therefore, the right hemisphere would encode the retinotopic information, and the left
hemisphere the remapped. In order to reduce the crosstalk between the retinotopic to the
remapped response, we computed the significant principle components on the right superior-
parietal regions of interest, and sequentially we regressed out the components that crossed the
threshold, from the left superior-parietal ROI. The selection of the regression technique was based
on the fact that source crosstalk was expected to be time-locked. Additionally, the regression was
also an effective tool for crosstalk removal even in source flip-sign occurrences that are present

near the sulci.

This process was performed separately for each subject, and then the signals were projected to

the average cortex.

3.3.12 Software
Stimulation was programmed in Matlab (Mathworks), using Phychophysics toolbox (Brainard,

1997; Kleiner et al., 2007). MEG data analysis was performed with Brainstorm (Tadel et al., 2011).
Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image

analysis suite (http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al., 1999, 2001).
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3.4 Results

We investigated the cortical responses around the timing of eye-movements in 8 human subjects.
Subjects were engaged by reporting the orientation of a small patch of lines within a probe that
was presented between two targets. The selection of the location of the probe between the two

targets dissociated retinotopic and remapped responses into two different hemispheres.

In this section, we demonstrate the biomarkers that indicate the manifestation of visual

remapping in MEG.

3.4.1 Time Frequency — ERSD
All trials were segmented around the timing of the saccade offset, for both saccades to the left

and to the right (-1000:1000 ms). Frequencies between [6, 90] Hz were monitored for ERSD
metrics, and all subjects’ cortical responses were projected and smoothed (3mm smoothing) on
the average brain. ERSD provides the percentage of modulation of the power of each frequency
compared to a pre-saccadic baseline. Figure 4 shows the power modulation on the B-band, for a
timestamp 100 ms after the saccade offset, for 4 conditions of interest (saccade left/right, with
probe/without probe). By contrasting the different conditions, we observed a differentiation on
the power modulation on the ipsilateral parietal cortex when a probe was presented and when

the subjects performed saccades in the dark.
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Saccade Left Saccade Right

Figure 4. ERSD maps of the probe/no probe conditions for both saccade directions. All figures are synced at 100ms after the saccade
offset for the B-band. Power modulation was normalized to a baseline [-800,-200]ms relative to the saccade offset. The presence or
the absence of a P2 probe right before the saccade, distinctly affects the B-band activity on the ipsilateral parietal cortex for both

saccadic directions.

Event related synchronization has been linked to decreased neural activity and desynchronization

to activity increase (Pfurtscheller and Lopes da Silva, 1999).

The superior parietal cortex on the ipsilateral hemisphere shows synchronization on the conditions

were there was no probe presented, and desynchronization when the P2 probe was presented.

This result indicates that the superior parietal cortex on the ipsilateral cortex engages during the

execution of the saccade only when a P2 probe was presented right before the saccade.
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3.4.2 Statistical significance of remapped responses
The ERSD analysis indicated on which frequency band there was modulation of the probe/no

probe conditions’ power relative to their baselines and indicate the contrast between probe/no
probe conditions. To verify that the difference between the probe/no probe conditions was
statistically significant, we filtered all probe/no probe trials on B-band and performed the

permutation test described in the methods section for both saccade directions.

The permutation test was performed on each time-sample, allowing us to create a real-time
statistical map of the entire cortical surface. The results indicate which areas are engaged in the
task, on which frequencies, and their temporal characteristics. Figure 5 shows the statistical map
created, for both saccade directions, in different timestamps ranging [-100,300] relative to the

saccade offset.

Our results reveal a statistically significant early B-band suppression between the probe/no probe
conditions in the ipsilateral superior parietal cortex, followed by a late B-band increased response

(starting ~280ms after the saccade offset) on the contralateral visual cortex.
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Figure 5. Two-tailed permutation test (1000 repetitions) between probe/no probe conditions, for saccades to the left (Top) and to
the right (Bottom). The test was performed separately for every time-sample. The figure displays multiple snapshots on different
timestamps ranging [-100,300]ms relative to the saccade offset. Due to the selection of the position of the probe, saccades to the
left would showcase forward remapping on the left hemisphere (equally saccades to the right, on the right hemisphere). The maps
indicate an early remapped response in the ipsilateral parietal cortex, followed by a sluggish B-band increase in the contralateral

lateral-occipital cortex.

3.4.3 Information flow
Crosstalk from the contralateral to the ipsilateral hemisphere has been regressed out (see

Methods) in order to monitor the timing that each ROl was getting engaged in the task.

Forward remapping requires information exchange with the other hemisphere (since the probe is
presented between the two targets) and it is expected that the information about the probe would
reach the “retinotopic” hemisphere before it gets transferred to the “remapped” (Merriam et al.,

2003).

The figure below shows the mean time trace within each ROI (superior parietal ROls on both
hemispheres), for both saccade directions. The traces correspond to unfiltered signals and indicate
the engagement of the contralateral superior parietal cortex approximately 40ms before the
ipsilateral counterpart. Moreover, the mean activity of the contralateral parietal cortex is

consistently higher that the ipsilateral (Figure 6).
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Figure 6. Mean z-scored activity around the saccade offset (-500, 500 ms) of the superior parietal cortices on the population average.
Signals were rectified before being projected on the average topography and sequentially z-scored relative to a baseline [-1000, -
200]ms before the saccade offset. Time-locked influence of the contralateral hemisphere to the ipsilateral was regressed out (see
methods). For saccades to the left, the left hemisphere would encode forward remapped information (and the right hemisphere for
saccades to the right respectively). The results suggest a sequential activation of the contralateral and then ipsilateral superior
parietal cortices, which could be indicative of the information flow from the retinotopic to the remapped areas. The latency of the

information flow presaccadically appears to be ~40ms.
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3.5 Discussion

3.5.1 Brief summary of results
In this study we have demonstrated remapping activity in the parietal and lateral-occipital cortex.

Time frequency decomposition analysis around the timing of the saccade showed modulation in
the B-band (Figure 4) in both areas. Statistical analysis revealed an early beta decrease on the
ipsilateral parietal cortex, followed by a late B-band increase on the contralateral lateral-occipital
area for an attentional task designed to dissociate forward and saccade target remapping into two

separate hemispheres.

Temporal analysis of the parietal cortex in both hemispheres showed sequential activation from
the retinotopic to the remapped areas, which can be indicative of the visual updating information

flow.

3.5.2 Previous work
Remapping has been observed in several brain regions through invasive electrophysiological methods in non-

human primates: Superior Colliculus: (Churan et al., 2011; Walker et al., 1995), Frontal Eye Fields (FEF):
(Umeno and Goldberg, 1997), Lateral Intraparietal Area (LIP): (Duhamel et al., 1992; Wang et al., 2016;
Kusunoki and Goldberg, 2003), V4: (Neupane et al., 2016b, 2016a, 2017; Tolias et al., 2001), MT:
(Yao et al., 2016), MST (Inaba and Kawano, 2014), or non-invasively with functional magnetic resonance
imaging (fMRI) in parietal, striate and extra-striate cortex: (Merriam et al., 2003, 2007) (however, a
replication attempt of the fMRI study wasn’t able to show evidence of visual remapping in humans with fMRI
(Lescroart et al., 2016)).

Remapping was shown to be mediated by a corollary discharge from the superior colliculus, through the
mediodorsal thalamus, to the FEF (Sommer and Wurtz, 2006) and is less prominent descending along the
visual hierarchy (Merriam et al., 2007; Nakamura and Colby, 2002). This has been hypothesized that is
caused by the fewer connections from FEF (Nakamura and Colby, 2002; Schall et al., 1995; Stanton et
al., 1995) or LIP to early visual areas. Further justification of the effect of visual hierarchy on remapping is that

neurons in the superficial layers of the superior colliculus don’t respond predictively to the future field and
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these are the layers that project mostly to the retina, the striate and the early extrastriate visual cortex (in
contrast to the intermediate layers of the SC that show remapping) (Walker et al., 1995). Additionally, the
neuronal latency relative to the saccade onset increases in visual areas lower in the visual hierarchy
(Nakamura and Colby, 2002). This observation, along with the observation of fewer projections from areas

that exhibit remapping to the earlier visual areas support the notion of a top-down mechanism.

Remapping is considered to be a mechanism that contributes to visual stability. Although this
would dictate that the saccadic shift would imply remapping of every point of the visual field,
several studies have approached the remapping phenomenon as a shift of attentional pointers to
regions of interest (Cavanagh et al., 2010; Rolfs and Szinte, 2016; Rolfs et al., 2011; Szinte et al.,
2016, 2018). These studies support the claim that only points of interest get remapped are

effectively remapped.

Yet, one study showed that within a single area, both mechanisms (remapping contributes to

spatial constancy but also to attentional modulation) can be observed (Neupane et al., 2016a).

Previous eye-movement/remapping MEG studies (Moon et al., 2007) investigated the sensorimotor
transformation in FEF and LIP during anti-saccades, but didn’t demonstrate the selective spatial neuronal shift.
(Medendorp et al., 2007) investigated single and double step saccades but the temporal delay used in their
paradigm allowed them to investigate the memory aspect of LIP involvement in the saccades, rather than

spatial remapping intrinsically.

Two studies tried to monitor remapping along the visual track between the receptive field (RF) of
neurons, and the future field (FF) they will have after the saccade. Visual probes projected at the
midpoint between the RF and FF (along the saccade vector that connects the two receptive fields)
have been reported both to elicit (Wang et al., 2016 - in LIP) and not elicit (Sommer and Wurtz,
2006 - in FEF) remapped responses; resulting to conflicting reports as to whether this mechanism
involves a “jump” of the remapped responses, or a propagating “wave” of activity (receptive field
expansion) that connects the two cortical locations that encode the CF and FF through the

associated intermediate neuronal populations.
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3.5.3 Where we expected to see remapping with MEG
Electrophysiological techniques applied on non-human primates found that the strength of remapping was

roughly monotonic with position in the visual hierarchy. Aimost no remapping was observed in the primary
visual cortex (1/64 neurons (Nakamura and Colby, 2002)). Equivalent fMRI experiments in humans,
showed the same result (Merriam et al., 2007) but with higher distribution of remapped sources along the
visual cortex: remapped responses were small in V1 and V2 (around 20% of the voxels exhibited remapping)
and larger in V3A and human V4 (hV4) (~50% of hV4 voxels showed remapping). The increased capacity of
fMRI to show remapping even in the primary visual cortex was attributed to the effective response fields of

the fMRI voxels (Merriam et al., 2007).

Our study (Nasiotis et al., 2017) revealed that MEG was capable of estimating high-resolution V1 retinotopic
maps. We measured the effective receptive fields of individual sources on a high-resolution cortical
tessellation, and our results suggests that they were roughly 10 times bigger from individual neurons and
about 2 times bigger than V1 population receptive fields estimated with fMRI. It is due to this larger cortical
integration that in theory, MEG would be able to summate the remapped responses of populations of

neurons.

Regarding the subcortical superior colliculus, the MEG signal attenuates within deeper structures due to the
electromagnetic properties of the sources (although there are reports that show it can be achieved (Backus

et al., 2016; Coffey et al., 2016)).

Although MEG studies have been able to localize FEF from increased presaccadic activity (loannides et al.,
2004, 2010), our results weren't able to identify statistical significance in any of the areas that FEF have been

localized with MEG or other imaging modalities (Vernet et al., 2014).

Therefore, we focused our investigation on the superficial areas that demonstrated significance: the parietal

and the lateral-occipital cortex.
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3.5.4 Experimental Design

3.5.4.1 Selection of the probe’s position
The P1 and P2 probes appeared at a location that was between the two targets. The P1 probes

were expected to elicit responses in the contralateral hemisphere as is expected from the
retinotopic map. However, the P2 probes were expected to activate the contralateral hemisphere
(retinotopic responses), but also the ipsilateral hemisphere (remapped responses). The selection
of the P2 probe’s horizontal location between the two targets, ultimately dissociates the

retinotopic and remapped responses into different hemispheres.

The location of the probe was selected to be on the lower visual field. The lower visual field has
been associated with stronger visual responses and was expected to increase the signal to noise
ratio (Fylan et al., 1997; Nasiotis et al., 2017; Perry et al., 2011; Poghosyan and loannides, 2007;
Portin and Hari, 1999).

3.5.4.2 Number of probes
Pilot experiments on this study used multiple locations for probe presentation (6 possible locations

on the visual field, and one control on the upper field). The initial design of this experiment
intended to also investigate inter-areal, and intra-areal interactions, since our previous study
(Nasiotis et al., 2017) showed that the spatial resolution of MEG would be able to achieve that.
However, there is a striking difference between this remapping and our previous retinotopic study:
the design of the reverse correlation — retinotopic study, allowed visual stimulation every 100mes,
leading to 36,000 frames presented to each subject every hour. The remapping pilot study with
the 7 potential probes on the other hand, allowed on average approximately 50 successful trials
on every session. This led us to reduce the number of potential probes, initially to three, and finally

to just one, to increase the number of trials per condition and ultimately the signal to noise ratio.

3.5.4.3 Attention on the remapping task
The first subject underwent a series of pilot studies until we refined the remapping paradigm.

These studies experimented with the size of the probe, its spatial frequency, temporal frequency
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(frequency tagging), and the engagement, or not, of the subject with the paradigm (introducing

attention).

Attention has been shown to play a modulatory effect in remapping (Rolfs and Szinte, 2016; Rolfs
et al., 2011; Yao et al., 2016). In order to investigate this modulation in MEG, the first subject

underwent 3 total modifications of the experiment:

1. The first session was the one described in the manuscript: one probe was presented
between the two targets, and the subject had to pay attention on the P2 probe and report
the orientation of the lines within the probe.

2. The first control disengaged the subject from the task. The P2 probe was presented at the
same location but had no orientation within it (probe consisted of a white square at
maximum contrast) and the subject wasn’t asked to give any feedback. This first control
took out the attention component.

3. The second control session tried to rule out the engagement of the ipsilateral hemisphere
solely due to the attentional engagement and the saccadic movement; or in other words,
that the location of the probe is important for the ipsilateral activation. In order to control
for that, the location of the probe was moved further from the saccade target on the
direction of the saccade; for example, for a saccade to the left the probe was presented
further left from the target. By positioning the probe to that location, remapping was
expected to be isolated within the right hemisphere and the left hemisphere shouldn’t

show any significant activity.

These controls revealed that the ipsilateral parietal cortex was engaged only when attention was
involved in the paradigm and only when a probe was presented at a location that the activity

needed to be remapped to the ipsilateral hemisphere.

3.5.5 Two types of remapping
Neural oscillations play an important role in the establishment of communication between brain regions. The

nature of a communication structure is to show selectivity in the information that is passed through.

Remapping involves memory since neurons respond to stimuli that have been omitted from the screen. Short-
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term memory requires communication between multiple brain regions that collectively mediate the encoding
and maintenance of sensory information (Liebe et al., 2012). Throughout the maintenance period, the
signature of the encoded memory should be sustained (D’Esposito, 2007) even if the stimulus has
been eliminated.

Our results suggest the manifestation of two types of remapping with distinct spatial and temporal
characteristics, as shown in Figure 5. The early component is revealed in the ipsilateral superior
parietal cortex after the time of the saccade, which is consistent with the idea of forward/memory
trace remapping.

A more sluggish component appears in the contralateral lateral-occipital cortex ~280ms after the
saccade offset. The visual cortex shows increased B-band activity only on the hemisphere that
encodes receptive fields in the direction of the saccade. A similar result has been observed in V4
with the same temporal (~¥250ms) and spatial signature (only for saccades towards the RF of the
neurons, Neupane et al., 2016a), linking this late component to saccade target remapping. Since
our study utilized only a single probe, it is still an open question if the response is elicited by
neurons that encode the probe, the saccade target, or a convoluted spatial mix of the two (Zirnsak
et al., 2014). Future experiments with more thorough probing of the visual space would be able

to shed light to this question.

The parietal cortex showed decreased B-band activity post-saccadically. Decreased power in the
lower frequency ranges (less than 20 Hz) has been observed during memory encoding, on items
that were remembered compared to those not remembered (Burke et al., 2014; Fellner et al,,
2013; Hanslmayr et al.,, 2016; Long et al.,, 2014; Noh et al.,, 2014). Lower power in B-band
oscillations have been linked to increased attentional modulation (Friese et al., 2016) and to
encoding and maintenance of memory load in the parietal region (Proskovec et al. 2018).

In contrast, the lateral-occipital cortex showed a late increase in the B-band activity. Higher B-band
oscillatory power is assumed to result from the rhythmic activity of inhibitory interneurons
(Klimesch et al., 2007; Jensen and Mazaheri, 2010). Inhibition has been described as a modulatory
factor that can increase signal to noise ratio by enabling neurons to fire during specific cycles of

ongoing oscillations (Klimesch, 2012; Shen et al., 2011; Yizhar et al., 2011). This temporally precise,
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tuned interplay between inhibition/excitation can be the gating mechanism of the saccade target

remapping component.

3.5.6 Remapping information flow
Our experimental design forced the retinotopic and the forward-remapped information to be encoded in two

separate hemispheres since the probe was located between the two targets. The contralateral hemisphere
encodes the probe’s characteristics before the eye movement and transfers the information through a

complicated network all the way to the ipsilateral hemisphere.

Split-brain experiments in the macaque monkey, have shown that across-hemifield remapping of stimulus
traces occur even in the absence of the forebrain commissures, but the remapped responses are smaller and
appear later (Heiser et al., 2005). In other words, there are redundant cortico-cortical and sub-cortical

connections that mediate remapping.

(Crapse and Sommer, 2009) have shown that FEF is getting information regarding the ipsilateral visual field
from the opposite superior colliculus in the midbrain. LIP is connected to FEF (Anderson et al., 2011),
therefore it could potentially receive the ipsilateral information from that pathway. Although MEG cannot
monitor the information flow through the subcortical areas, the relative timing of the information flow

between the two hemispheres appears to be ~40ms for transfer across parietal cortices.

3.5.7 Why we didn’t see remapping in all expected areas
FEF was also monitored for remapping since it is a cortical area. However, FEF is located within

sulci where the MEG signal shows weaker responses (Goldenholz et al., 2009; Nasiotis et al., 2017).
The striate and extrastriate cortex on the other hand, although more accessible with MEG, are
expected to show weaker remapping responses. hV4 has been a subject of controversy among
researchers (Winawer and Witthoft, 2015) and the homology with the monkey V4 and human V4
has been under debate. However, (Merriam et al., 2007) found remapping in area hV4 (ventral
area adjacent to ventral V3 - (Wandell et al., 2005, 2007)). This area is located on the ventral
stream, in greater distance to the MEG sensors which is expected to reduce the signal to noise

ratio. Moreover, (Merriam et al.,, 2007) showed that remapped responses were smaller in
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magnitude that the visual response. This is consistent with physiological studies in monkeys in
which cells have remapped responses that are on average half as large as the responses to stimuli
in the receptive field (Duhamel et al., 1992) or 75.3% in amplitude of the visual response

(Nakamura and Colby, 2002) and with our own results from this study.

Besides the obvious problem that a noisy signal would create, we hypothesize another plausible
reason for not being able to localize cortical sources that elicit remapping responses. The spatial
resolution of invasive electrophysiological methods that can detect activity from individual
neurons is far more precise than the MEG signal. Namely, the weakest MEG signal that can be
detected is considered to be generated by simultaneous activity of 10,000-50,000 neurons
(Murakami and Okada, 2006). Therefore, comparing MEG to invasive methods that have shown
remapping effects with event related approaches in several areas is not appropriate due to the

uneven, in orders of magnitude, spatial resolution.

However, remapping has been shown with fMRI as well, where each voxel also representing the
summated activity of large populations of neurons. There is a fundamental difference between
the two brain imaging methods that could cause fMRI methods to be able to show remapping and
MEG to be insensitive to it. The BOLD signal in fMRI studies is created by changes in brain
metabolism (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1990). Any localized activity
will cause oxygen consumption and therefore a change in the BOLD signal. The neurons that
contribute to the BOLD signal are not required to be perfectly time locked, since the BOLD signal
is very sluggish and is only affected by the total neuronal activity; either neurons fire and consume
oxygen, or they don’t. Time-locked responses from the voxel integrated neurons are not
detrimental. MEG on the other hand, has excellent temporal resolution. Considering that neurons
in very close proximity (neurons picked up from different electrodes on the same 10x10 Utah-
array — 4x4mm) can show very smeared remapped latencies (unpublished data from our lab
showed latency-difference as extreme as 300ms between remapping neurons within the same
Utah array) and that the MEG sources integrate a considerable number of nearby neurons, it is
probable that the MEG sources effectively integrate the activity of many non-time locked neurons,

leading to a significantly attenuated remapping signal. Therefore, a MEG source would be able to
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show the remapping activity only if the neurons it integrated where time-locked. Figure 7 shows

a schematic that demonstrates this potential explanation.
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Figure 7. Schematic showing a possible explanation why MEG might not be able to show remapping in all areas. The cartoon
shows two neurons that are not time-locked and how different recording methods/modalities would pick up their activity. (A) shows
a hypothetical situation of what the BOLD and the MEG signals would be if the fMRI voxels and MEG sources had the spatial
resolution to monitor activity from individual neurons. The BOLD signal would be insensitive to the temporal difference in firing
of the two neurons, whereas the MEG sources would be able to reveal it. (B) In a more realistic scenario, the fMRI voxels and
MEG sources, incorporate the activity of multiple neurons. However, the BOLD signal is affected from the summated energy
consumption of the neurons within the voxel and the signal would be strengthened. MEG sources on the other hand, would average
out the total activity, resulting in an attenuated signal.

3.5.8 Future research
Short term memories are suggested to be physiologically stored through patterns of physical

activity (Buschman et al., 2011; Fell and Axmacher, 2011; Lisman and Idiart, 1995; Lisman and
Jensen, 2013). These studies suggest that the physiological capacity of this storage is influenced
by nested oscillations that co-exist within slower oscillations. In the example of theta-gamma
nested oscillations, the storage limit would be the number of y sub-cycles that can fit within a 6-
cycle. Remapping could be an example of this memory storage mechanism and the number of
objects/probes that can be remapped could be limited by the number of faster oscillations that

are nested (perhaps in the B-oscillations that we observed). Although this idea is fundamentally
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contradictory to the relation of remapping to spatial constancy (spatial constancy wouldn’t be
achieved if only 5-7 spatial locations remap), it could potentially provide the upper limit of objects
on the approach of remapping as a mechanism of attentional pointers. Future studies can

investigate the storage capacity of spatial features during remapping.

3.6 Conclusion

We have shown that remapping can be observed with MEG through an experimental paradigm
that utilizes subject’s attention. We have shown the presence of two potential types of remapping
in real-time on human subjects; the real-time engagement of the parietal cortex in the mechanism,
and evidence of a late, possibly saccade target remapping. Finally, our results show the sequential
activation of the retinotopic and the remapped superior parietal cortex in the two opposite

hemispheres.
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Chapter 4 contains the results from the integrated open-source software for invasive
neurophysiology. It provides the framework that can help the next generation of neuroscientists
through intuitive pipelines. This work was published in Nature Scientific Data (Nasiotis et al. 2019).
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4.1 Abstract

The methods for electrophysiology in neuroscience have evolved tremendously over the recent
years with a growing emphasis on dense-array signal recordings. Such increased complexity and
augmented wealth in the volume of data recorded, have not been accompanied by efforts to
streamline and facilitate access to processing methods, which too are susceptible to grow in
sophistication. Moreover, unsuccessful attempts to reproduce peer-reviewed publications
indicate a problem of transparency in science. This growing problem could be tackled by
unrestricted access to methods that promote research transparency and data sharing, ensuring
the reproducibility of published results.

Here, we provide a free, extensive, open-source software that provides data-analysis, data-
management and multi-modality integration solutions for invasive neurophysiology. Users can
perform their entire analysis through a user-friendly environment without the need of
programming skills, in a tractable (logged) way. This work contributes to open-science, analysis

standardization, transparency and reproducibility in invasive neurophysiology.
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4.2 Introduction

Invasive electrode recordings are a unique source of in-vitro and in-vivo neurophysiological data
at high resolution in both space and time, recorded in relation to complex animal and human
behavior. The complexity of this kind of data has increased in recent years, with the advent of
increasingly dense multi-channel and multi-site electrode arrays. This evolution provides exciting
opportunities to explore the relationship between local events, such as action potentials, and
more global dynamics at the systems level, such as fluctuations in oscillatory network activity. At
the same time, these multiscale explorations require different analytical methods from those

traditionally used in the field.

Challenges in exploring high-dimensional spatio-temporal data sets are not specific to
electrophysiology: they occur frequently in neuroimaging data, as scanners produce increasingly
large volumes of data, which are often shared across multiple groups or research centres. In
response, the brain imaging community has made significant strides in developing shared software
platforms to harmonize analytical methods and to facilitate data sharing(Abraham et al., 2014,
Gorgolewski et al., 2011; Gramfort et al., 2013b, 2014; Hanke et al., 2009; Tadel et al., 2011).
Indeed, free, open-source software toolkits have been critical for facilitating training and
augmenting research productivity. This approach has transferred to the field of scalp
electrophysiology(Baillet et al., 2011), but as of yet it has not found widespread use in invasive
neurophysiology (IN). Software tools do exist for specific segments of the IN data workflow, such
as for spike detection and sorting and time-series analysis(Fee et al., 1996; Hazan et al., 2006; Hill
et al., 2011; Mitra and Bokil, 2007; Oostenveld et al., 2011; Pachitariu et al., 2016b; Quiroga et al.,
2004; Siegle et al., 2017), but they remain relatively specialized, some with limited support and

documentation and most with restricted interoperability with other tools.

While we acknowledge significant efforts in harmonizing data formats for electrophysiology
((RUbel et al., 2019; Stead and Halford, 2016; Teeters et al., 2015), Neuroshare -
http://neuroshare.sourceforge.net/index.shtml) , it does seem that this field lags behind others in
meeting the demands of recommended practices for data management and
transparency(Gorgolewski and Poldrack, 2016; Larson and Moser, 2017). In this regard, well-

supported software tools are required to produce analytical workflows that are validated, well
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documented and reproducible. Important components include data organization, review and
quality control, verified implementations of signal extraction and decomposition methods,
solutions for advanced visualization registered to anatomy, and sound approaches to machine
learning and statistical inference. As in the brain imaging field, such tools would facilitate the
reproducibility of published results and the dissemination of methods within and between
research groups. They would also save considerable time and resources currently required to re-
code published methods. In addition, re-coding presents challenges in code verification relative to
a published method, raising possible concerns about the validity of the end results and limiting the

long-term value of the effort.

Here we deploy and share open-source software (called Invasive Neurophysiology-Brainstorm, or
IN-Brainstorm) that integrates multiple aspects of data analysis for most modalities and signal
types for basic electrophysiology: from single cells to distributed channel arrays, from spiking
events to local field potentials, from ongoing recordings to event-related responses, and from in
vitro preparations to free-behaving models. We also emphasize the importance of an extensive
graphical interface for user-friendly access to advanced analytical methods, of flexible scripting
features for high-performance computing, and of traceable code execution. The proposed tool is

accompanied by extensive online documentation and support from a user community web forum.

This free application builds on the foundations of the Brainstorm platform(Tadel et al., 2011),
which is well-established (21,000 wuser accounts), free open-source software for
magnetoencephalography (MEG) and electroencephalography (EEG). Brainstorm can integrate
multimodal data volumes in addition to scalp electrophysiology e.g., magnetic resonance imaging
(MRI), CT-scans and functional near-infrared spectroscopy (fNIRS). It also features advanced

source modeling for electrophysiological signals.

The IN-Brainstorm application provides a comprehensive suite that interoperates with other, more
specific and constantly evolving IN tools available from the open-source community e.g., for
performing spike sorting. The end result is a unique and expansive software toolkit that bridges

across recording scales and data modalities, registers invasive neurophysiology with structural
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anatomy data, and thereby delivers a unifying analytical environment to the neurophysiology

research community.

4.3 Results

The IN-Brainstorm functionalities described here offer comprehensive solutions for data
importation and analysis, including spike-sorting, extraction of local field potentials, and
correlations among these measures across multiple channels. Importantly, thanks to an intuitive
graphical user interface, no programming skills are required for accessing and using the advanced
methods available, including for assembling and sharing advanced data analysis pipelines. A
summary of these software features is provided in Table 1, and a schematic of the workflow

enabled by the toolbox is shown in FIGURE 1.

The bedrock of the present developments is the Brainstorm platform. Brainstorm(Tadel et al.,
2011) is written in Matlab (Matlab2008a and higher) and Java. It is therefore independent of the
operating system (Windows, MacOS and Linux). Community code management is via GitHub.
Users without access to a Matlab license can use a fully executable version of the application
compiled for the above operating systems. Extensive documentation is freely available online, with

specialized  tutorials, datasets and videos (https://neuroimage.usc.edu/brainstorm/e-

phys/Introduction). A thorough comparison of Brainstorm and other open source toolboxes was

published recently(Unakafova and Gail, 2019).

In the following sections, we describe a broad spectrum of analysis options for multiscale
electrophysiology that are enabled by IN-Brainstorm and illustrate these features with the

processing of an example raw data file.
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4.3.1 Importing, reviewing and pre-processing raw data

4.3.1.1 Raw data importation
Data to be analyzed must first be imported into the software. Brainstorm can read raw

electrophysiology data from 80 different file formats. We have added new data formats specific
to single- and multi-unit electrophysiology, including Plexon (.plx, .pl2), Blackrock (.nsX), Ripple
(.nsX), Intan (.rhd, .rhs), Tucker Davis Technologies, and Neurodata Without Borders (.nwb). New
formats can be added on demand. Raw data can also be read directly from ASCIl and basic binary
data formats, with header file parameters easily specified from a GUI.

4.3.1.2 Data review

Raw files of continuous data from chronic preparations can be voluminous due to hours-long
durations, tens of kilo-Hertz sampling rate and simultaneous recording from multi-channel
electrode arrays. Hence loading such large raw files at once into computer memory can be
impractical. For this reason, we have implemented efficient data review solutions of the raw
signals, that load portions of the raw data on the fly depending on the visualization parameters
set by the user (e.g., virtual page length, selection of a subset of channels or montages for review,

keyboard and mouse shortcuts for navigating and marking events).

Task events (e.g., stimulus types and presentation times, behavioral responses) and ancillary
recordings (electrooculograms, electrocardiogram, eye and body movements, video recordings of
behaviour, etc.) are readily registered to the electrophysiological data in IN-Brainstorm, for
multimodal data review, quality control and event-related processing. We emphasize that when a
raw file is reviewed, the physical data is not duplicated as a Brainstorm file. Instead, the header of
the original data file is automatically parsed to extract metadata, such as channel parameters,

sampling rate, time stamps, event codes, etc.

Figure 2 (left) shows an example of IN-Brainstorm display for data review, including sub-menus for
displaying and navigating through files and events. The right panel shows an example of raw data
collected with a Plexon MAP system and a 32-channel linear electrode implanted in cortical areas
MT and MST of a non-human primate. The animal maintained fixation during the presentation of

a motion stimulus comprising of dots that translated in 8 different directions.
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The red line in the figure shows the time of a “Stim On 0” event, extracted from the data. Spikes
detected online (labelled as Spikes Channel) were extracted directly from the raw file contents by

IN-Brainstorm, with automatic registration to the data time series.

The bottom right panel of Figure 2 shows a selection of 4 channels temporally aligned with the top
figure. The spikes from a neuron that was isolated on the first electrode are marked with green
circles at the top of the full time-series displayed in the top panel. Users can browse the raw traces
using point-and-click GUI and a series of keyboard shortcuts. On-the-fly bandpass and notch

filtering can be applied to the signals.

4.3.1.3 Quality control & data pre-processing
Starting from the kind of raw data shown in Figure 2, users can easily navigate through the

recordings and experimental trials and events for quality control. Data segments, channels and
entire trials can be marked as “bad” and excluded from further analyses using automatic processes

or based on user evaluations.

The IN-Brainstorm pre-processing toolkit features solutions for adjustments of recording baseline,
data resampling and frequency filtering (with linear phase filters). Additionally, detection and
attenuation of artifacts (e.g., heartbeats, eye and body movements, stimulation and juice artifacts)
can be achieved with principal(Uusitalo and limoniemi, 1997) or independent component
analysis(Bell and Sejnowski, 1995; Cardoso, 1999). Finally, combining sensor data with the actual
geometry of the recording array(s) enables many 2-D and 3-D visualization possibilities for time-

series and realistic topographical plots, as illustrated further below.

4.3.2 Spike detection and spike sorting
Following the importation and preprocessing of data, IN data is often processed to extract spiking

events from single or multiple neurons. This entails detecting spike occurrences and classifying
these events according to their respective neural sources(Quiroga, 2007). Most data acquisition
systems feature online spike detection and sorting. These online events can be imported directly

into IN-Brainstorm with the corresponding raw recordings. Yet, usual IN practice is to refine spike
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classification with a two-step procedure consisting of 1) unsupervised clustering, which
automatically assigns each spike to a neural source based on waveform features, then 2)
supervised clustering, which requires manual reviewing and editing of the labels from

unsupervised clustering and the elimination of spurious spike events.

For IN-Brainstorm, we have enabled the direct interoperability with a selection of existing and
openly-available spike-sorting toolkits: Waveclus(Quiroga et al., 2004), UltraMegaSort2000(Fee et
al., 1996; Hill et al.,, 2011) and Kilosort(Pachitariu et al.,, 2016b). Those packages can be
downloaded and installed automatically, in a completely transparent procedure. Sequentially,
these tools are called by and interact with IN-Brainstorm without programming interventions from

users.

4.3.2.1 Unsupervised spike sorting
Figure 3 (left) shows IN-Brainstorms” GUI for unsupervised spike-sorting. Raw files are dragged and

dropped into the GUI process box before a spike-sorting tool is selected from the IN-Brainstorm
toolkit. Next, spike events are detected on each electrode and classified according to their putative

neuronal generators.

The unsupervised spike events produced overwrite the online counterparts that were detected
during data acquisition. The output of the spike-sorting process (Figure 3 Box 1) is automatically
registered to and accessible from the IN-Brainstorm database and linked to the corresponding raw
file. The spike events are labelled in a principled manner (per channel and source cell number —

Figure 3 Box 2).

4.3.2.2 Supervised spike sorting
As WaveClus and UltraMegaSort2000 have built-in supervised spike sorting graphical user

interfaces, we synchronized their GUIs with IN-Brainstorm’s. For Kilosort, we developed specific
GUI bridges via Klusters(Hazan et al., 2006). The user-selected supervised clustering tool is called
from Brainstorm’s main window after an unsupervised spike-sorted file is selected (Figure 4a). The

user then switches to the GUI of the selected supervised spike clustering tool (Figure 4b-d). Once
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supervised spike clustering is complete, the spike events are updated accordingly and registered
into the software’s file system. Double-clicking on the link to the raw data file lets the user review
the updated spike events along with the raw electrophysiological traces as shown in Figure 2

(Right).

Spike events and categories from other spike-sorting tools can be readily imported as Brainstorm
events, following the procedure described in the online documentation

(https://neuroimage.usc.edu/brainstorm/e-phys/ConvertToBrainstormEvents).

4.3.3 Extraction of local field potentials
In addition to spiking activity, IN recordings yield local field potentials (LFPs), which provide direct

measures of the summed post-synaptic electrical activity in the vicinity of recording
electrodes(Legatt et al., 1980). These can be useful as a complement to spiking activity or a
surrogate for some aspects of neural activity (e.g.,(Mineault et al., 2013)), provided that LFP traces

can reliably be filtered and separated from spike waveforms(Zanos et al., 2011).

Figure 5a shows the IN-Brainstorm’s GUI for extracting LFP traces from raw recordings. The
application features efficient tools to remove spike traces (Zanos et al., 2011), to perform anti-
aliasing bandpass filtering and to down-sample the raw data. The de-spiking method proposed by
Zanos et al.(Zanos et al.,, 2011) increases the accuracy of subsequent spike-field coherence

measures and of spike-triggered average signals.

The resulting LFP traces and experimental events are automatically registered in IN-Brainstorm’s
data repository for further review and analysis with a vast library of tools and pipelines - as

described below - or for easy exportation to other software or plain files.

LFP extraction produces a new IN-Brainstorm down-sampled time-series binary file (Figure 5b)
with all the corresponding metadata, such as channel description (e.g., electrode labels and
locations), and spike and experimental events. This file is easily sharable among researchers since
its size is typically ~20-30 times smaller than the original raw file. Figure 5C shows a segment of

the LFP file created.
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4.3.4 Epoching

Once the relevant neural signals (LFPs and spikes) have been extracted from the raw data, they
can be divided according to experimental epochs. Epochs are typically comprised of experimental
trials, with the time window selection defined around a stimulation or behavioral event of interest.

These can be imported directly into the IN-Brainstorm file system.

To illustrate these functions, we make use of the example visual cortex recording described
previously (Figure 2). The experiment involved presentations of moving stimuli while the animal
maintained fixation; we defined the relevant epochs as segments of [-500, 1000] ms around the
onset of each visual stimulus (Figure 6 Left). In total we considered 8 different directions of the
visual stimulus moving pattern; each stimulus condition was repeated 4 times (one condition was
repeated for 96 trials for usage in the raster plot, and noise correlation functions). Imported trials

to the database are shown in (Figure 6 — Right).

The following analysis steps can then be applied on the epoched trials.

4.3.5 Analysis of individual LFP signals
LFP traces can be analyzed using Brainstorm’s extensive library originally developed for EEG and

MEG research(Tadel et al., 2011). We show in Table 1 a list of the main data processing categories
that are available for LFP analysis. There is extensive online documentation, accompanied by data
files, that describes in detail the methods and practices of LFP signal analysis

(http://neuroimage.usc.edu/brainstorm).

We briefly provide below a few examples of these functions and their implementation in IN-

Brainstorm.

4.3.5.1 Time-frequency decompositions
Having extracted the LFP signal and defined an appropriate analysis epoch, one can compute the

LFP power at different frequencies and at different times relative to a stimulus event. Such

information is often used to infer stimulus selectivity, anatomical sources of input, and other
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factors that are not necessarily apparent in spiking activity(Buzsaki, 2006; Fries et al., 2008;

Pesaran et al., 2002; Wilke et al., 2006; Womelsdorf et al., 2006).

IN-Brainstorm provides functionality for spectral and time-frequency decompositions, which can
be derived using power spectrum density estimates, Hilbert or wavelet transforms. An example
time-frequency decomposition (wavelet) is shown in Figure 7a for the example LFP data
corresponding to a single stimulus condition and epoch that shows strong alpha and beta
responses after stimulation. The wavelet decomposition was z-scored with respect to a pre-

stimulus baseline [-500:-100] ms.

4.3.5.2 LFP-LFP signal analysis
LFP signals from multichannel recordings can be analyzed to detect occurrences of various forms

of signal similarities in the time or frequency domain. These measures are often interpreted as
representing functional connectivity between different sites(Fries, 2005; Fries et al., 2002, 2008;
Womelsdorf et al., 2006). IN-Brainstorm provides support for widely-used measures based on
amplitude or phase statistics as indicators of possible interregional brain interactions (coherence,
phase-locking values, bandlimited amplitude envelope correlations, phase-transfer entropy) and
parametric models (estimates of time- or frequency-domain Granger causality). Advanced
measures of interdependence between oscillatory components of polyrhythmic brain activity can
be derived with phase-amplitude coupling (PAC) estimation tools(Canolty et al., 2006; Samiee and
Baillet, 2017). An example estimation of coherence among all combinations of electrodes is shown
in Figure 7b for a single stimulus condition and epoch. The bimodal pattern that emerges (high
coherence among some channels and low coherence among others) is an indication of the
transition of the linear probe across neighboring cortical areas, from MT (electrodes 1:13) to MST

(21:32).
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4.3.6 Analysis of individual neuron spiking activity
Spikes are registered in IN-Brainstorm as events; the corresponding features are 1) the time of

occurrence and 2) a label for distinguishing between neuronal sources. We provide several

features for visualization of epoched spiking data.

4.3.6.1 Raster plot — Peristimulus Time Histograms
Raster plots and peristimulus time histograms (PSTH), are routinely used to visualize the relations

between neuronal firing and a stimulus event or a behavioral response.
We provide three methods for visualizing spiking activity with IN-Brainstorm:

The first method (raster plot) shows the spiking data as trial vs. time for each neuron. Similarly,
the second method (PSTH) shows the average binned firing rate for each neuron, along its 95%
confidence intervals. Raster plots and PSTHs of spiking rates are displayed after interactive
selection of the cell to be reviewed. Figure 8a shows the raster plot of the first neuron detected
from contact ADO1 (top), and its equivalent PSTH with 10-ms binning (bottom). The PSTH of the
neuron’s firing rate from 96 trials of a single condition revealed a stimulus-onset-to-maximum-

firing latency of about 150 ms.

The third method is embedded within the topographical plots section as shown below.

4.3.6.2 Tuning curves
Tuning curves capture the relationship between an experimental variable (e.g., the orientation of

a visual stimulus) and a scalar measure of neural activity (e.g., a single neuron’s trial-averaged

firing rate).

Tuning curves are readily produced from continuous data files that contain the event markers of
interest to the study. Tuning curves are displayed with IN-Brainstorm after manual assignment of
the order of the experimental conditions (x-axis), the selection of the neurons to be displayed, and
the selection of the time window of interest for reporting spiking activity. A separate tuning curve

figure is produced for each neuron selected.
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We selected the events and individual neurons previously identified from spike sorting via IN-
Brainstorm’s GUI. Figure 8b shows the tuning curves of one example neuron (labeled as “Spikes
Channel ADO7 [1]”) for the 8 different conditions (Stim On -3/4 pi, Stim On -2/4 pi etc.) of the
motion stimuli, and its 95% confidence intervals. The tuning curve shows the preference of this

neuron for stimuli moving in the right direction (Stim On -1/4 pi condition).

4.3.6.3 Topographical plots
When multichannel recording devices are used, neurophysiology data can be shown as

topographically registered to structural anatomy. IN-Brainstorm can show neuronal firing at the
3-D locations of the recording probes/arrays. To illustrate this feature, we used a separate dataset
that was collected from two 96-channel Utah arrays and one 32-linear probe(Krause et al., 2017).
A structural T1-weighted MRI volume was acquired preoperatively. The head and brain surface
envelopes were segmented with Freesurfer(Fischl et al.,, 2001) and directly imported in IN-
Brainstorm. The electrode contact locations were co-registered to the 3-D anatomical volume by
specifying the distance of the electrodes along the probe and locating the tip of the probe and the

entry point through the skull, using Brainstorm’s MRI volume viewer.

Neuronal firing was binned in 10-ms segments and displayed on the animal’s anatomy as shown
in Figure 9a (a single bin is displayed in the figure). This figure shows IN-Brainstorm’s ability to
overlay the segmented cortical surface, MRI orthogonal slices, the implanted devices with actual
geometry, and color-coded displays of raw or processed electrophysiology data (here
instantaneous firing rates). Figure 9b shows a zoomed-in version of Figure 9a over the Utah array

implanted in the prefrontal cortex.

4.3.7 Spike-spike analysis: Noise correlations
While tuning curves capture neuronal sensitivity to stimulus properties, the fidelity of a population

code is thought to be limited by noise that is common across neurons(Zohary et al., 1994); for
example, neurons would be noise correlated if for each stimulus their activities are

correlated(Eyherabide and Samengo, 2013). Such noise correlations are typically quantified as the
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Pearson correlation coefficient between the firing rates of two neurons across trials. Such
correlations strongly influence the accuracy of population coding(Abbott and Dayan, 1999;

Averbeck et al., 2006; Liu et al.; Panzeri et al., 1999; Sompolinsky et al., 2001).

Noise correlation statistics are displayed with IN-Brainstorm from the correlation of the spike
trains that each neuron elicited within a given epoch, for all neuronal combinations. The end result
is a nxn matrix (with n the number of unique neurons that produced spikes during the selected

trials) that shows noise correlation estimates between the selected neurons.

Figure 8c shows the noise correlation profile across the 32-channel array of the example dataset,
for 53 unique neurons that elicited spikes across all trials at the 8 conditions of presentation of the
moving stimulus in the original data set from Figure 2. Spikes included in the correlation

computations were selected in the [0,300]-ms time range of each trial.

The computed noise correlation showed 2 pairs of neurons with abnormally high noise correlation
(above 0.8). After further inspection, it was revealed that this was due to the fact that the spike-
sorter that was used was not taking into account the relative position of the electrodes, and the

same neurons were picked up from neighbouring channels:

Neurons: ADO1 |1| - ADO2|2| and ADO8 |1| - AD09 |1| were the same neuron.

4.3.8 Spike-LFP analysis
Spikes are local events, reflecting outputs from individual neurons. LFPs in contrast can capture

activity over regions, including subthreshold post-synaptic activity, and therefore reflect the state
of a broader network (Cui et al., 2016). There is considerable interest in relating the two types of
signals for estimating the dependence of spiking activity on the broader context in which the

neuron is embedded.

4.3.8.1 Spike-field coherence
Spike-field coherence (SFC) estimates the consistency between the time occurrence of spike trains

and the phase of co-localized LFP cycles as a function of frequency(Arce-McShane et al., 2018).
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SFC can also be used to evaluate synchronized activity between distant brain regions, as a marker
of neuronal communication(Fries, 2005; Gregoriou et al., 2009; Liebe et al., 2012; Singer, 1999;
Womelsdorf et al., 2007). IN-Brainstorm features the spike-field coherence estimator proposed by
Fries(Fries et al., 2001). The user can derive SFC estimates for each GUl-selected neuron, for all

electrodes and frequencies of interest.

Figure 8d shows SFC up to 50 Hz between a single neuron detected at channel ADO7 of the
example data set and the LFP traces at all the 32 channels of the probe. The time window selected
around the spiking events was [-150, 150] ms. The horizontal white line indicates the electrode

where the neuron was detected.

4.3.8.2 Spike-triggered average of the LFP
Spike-triggered averaging (STA) of the LFP reveals how neuronal spiking is related to the dynamics

of proximal or distant LFPs(Jin et al., 2008; Nauhaus et al., 2009; Ray and Maunsell, 2011). STA
proceeds with trial averaging of LFP traces time-locked to a designated neuron’s spike events,

followed by normalization with the total spike count.

Analogous to spike-field coherence, STA is computed over a user-selected time window around
each spiking event. STA scores are per neuron, showcasing the average LFP amplitude around the
occurrence of the spikes of each neuron. STA can be visualized on topological 2-D representations
of the recording array, to reveal time-locked associations between neuronal spiking activity and

local or remote LFP recordings.

Figure 8e shows the STA time-locked to the firing of the first neuron detected by electrode ADO1
across trials and conditions. The topographical 2-D plot is produced with IN-Brainstorm using
multidimensional scaling of the actual 3-D location and geometry of the implanted probe. The LFP

epoch around spike event was [-150,150] ms.
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4.3.9 Statistical inference and machine learning
Once measures have been extracted from spiking or LFP data, tools to conduct inferential

statistical analysis in the multiple dimensions of electrophysiological data (space, time, frequency,

connectivity) are available from Brainstorm’s library.

Parametric (one- and two-sample tests) and nonparametric permutation tests, descriptive and
distribution statistics from histograms (Q-Q plot and Shapiro-Wilk test for data normality) are
available. Here too, the software architecture emphasises interoperability with other toolkits, for
expanded resources. For instance, multidimensional and nonparametric cluster statistics can be
run on LFP and time-frequency data, from Brainstorm, via calls to FieldTrip(Oostenveld et al.,

2011).

In addition, statistical learning tools for decoding and multivariate pattern analysis (MVPA) are also
available (see e.g. Cichy et al.(Cichy et al., 2014)). The Brainstorm library also includes support
vector machine (SVM) and linear discriminant analysis (LDA) classification of LFP time series based

on experimental events and conditions.

4.3.10 Additional features

4.3.10.1 Processing Power
Hardware acceleration in the processing of long recordings is enabled by Matlab’s standard

parallel computing (e.g., multi-core) features, which are controlled directly from Brainstorm’s GUI.
Flexible management of memory resources is also accessible to users, with the specification of the
amount of RAM allocated to data manipulations while executing the LFP extraction process.
Moreover, GPU acceleration computations are enabled through Kilosort for the spike-sorting step.
4.3.10.2 Data management

Generally speaking, formal data management plans are seldom adopted by electrophysiology labs.
Instead, the handling of data is typically project-based, with trainees managing their individual
data collection and analyses until publication. When they move on to another project or to the
next step of their career, they frequently leave data, analysis pipelines and results behind, with

minimal documented organization for sustainability and knowledge transfer. This limits the long-
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term value of data and negatively impacts the reproducibility and verification of research
results(Baker, 2016). Brainstorm has tools to improve and facilitate data management: data is
hierarchically organized by Studies, followed by Subjects/Samples and (experimental) Conditions,
which point to data elements such as links to raw data files, single-trial epochs, sample statistics,
and other derivatives: power spectra, wavelet decompositions, measures of cross-frequency
coupling and inter-regional connectivity, etc. As with all features in the application, user
interactions with Brainstorm’s data organization are facilitated both by the application’s GUI and

direct access via scriptable functions using Matlab code.

Another important aspect of Brainstorm is its capacity for importing entire data repositories at
once, with associated metadata, when those datasets are organized according to the emergent
Brain Imaging Data Structure (BIDS). Originally driven by the neuroimaging community, BIDS is a
grassroots effort to harmonize data organization and documentation (Gorgolewski et al., 2016).
BIDS has recently been extended to MEG electrophysiology(Niso et al., 2018) and is presently

integrating EEG(Pernet et al.), and invasive neurophysiology(Holdgraf et al.).

4.3.10.3 Batch processing
The software has a specific GUI for assembling data processing pipelines in an intuitive manner,

choosing elementary processes from the (IN-)Brainstorm library and assembling them together
into a logical progression along the workflow. These pipelines enable the reproduction of any data
workflow with a click of a button. They can also be shared in Matlab format with collaborators or
the entire user community. The Matlab code for pipelines can also be generated automatically by
Brainstorm e.g., for execution in headless (no GUI) mode on high-performance computing servers

and cloud resources.
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4.4 Discussion

We provide a free, extensive open-source software application for invasive electrophysiology. IN-
Brainstorm is built on the foundations of Brainstorm, which was originally designed for human
multimodal electrophysiology and imaging. IN-Brainstorm supports multiple data formats of raw
signals from a variety of acquisition systems. The recorded traces and their LFP versions can be
reviewed, quality-controlled and processed within a unique analytical environment, with easy GUI
interactions, rich visualization, intuitive pipeline editing for scripting and sharing. We have built

bridges for IN-Brainstorm to interoperate seamlessly with established, free spike-sorting tools.

A specific emphasis was put on providing versatile solutions for multidimensional data
visualization, including 2-D and 3-D topographical plots registered to structural anatomy from co-
registered MRI data. Source modeling of array data is also available using boundary element
modeling of head and brain tissues(Gramfort et al., 2010; Kybic et al., 2005) and a variety of source
modeling techniques available in Brainstorm(Baillet et al., 2001). Videos synchronised to
electrophysiological traces can also be imported and visualized simultaneously in synchrony, for

marking behavioral events.

The software is supported by an expansive online documentation (with tutorial data) and online
user forum. The active Brainstorm user community contributes to an efficient peer-
reviewing/debugging process, and daily updates deliver bug fixes and software improvements that

are readily available to the users.

With IN-Brainstorm, electrophysiologists are provided a free, integrated software environment
that promotes and facilitates harmonized principles of data management, methods,
documentation, code verification and reproducibility of data analyses. Such practical and user-
friendly tools also accelerate the education of electrophysiologist trainees and promotes the
adoption and expansion of data harmonization efforts, such as BIDS and Neurodata Without

Borders.

Every instance of data processing is logged, with the filenames of the data used and time stamps

of execution. These simple, yet powerful features document the provenance of data derivatives
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and analysis results. Custom IN analysis pipelines assembled for elementary processing blocks of
the software’s library can be shared with collaborators, publishers and the scientific community.
Pipelines are constructed via the GUI and saved as Matlab files. The open-source code of IN-
Brainstorm is thoroughly documented, verifiable and can benefit from contributions from any user
via GitHub. Sharing is further encouraged and facilitated by Brainstorm’s data organization in
Studies, which can be zipped for archiving, exportation (e.g., as a BIDS repository) or importation
into the Brainstorm environment of a collaborator. Batch processing of multiple data volumes is
automated, thanks to the systematic organization of Brainstorm’s file system and can be executed

on high-performance computing servers without requiring GUI interactions.

For all these reasons, we believe that IN-Brainstorm responds to an unmet need of the
electrophysiology community. By providing a unique environment with a common set of analytical
tools, the application also provides a unique bridge between recording scales, data types and
researchers, and additionally, between the methods used in human, animal and slice preparations.
It also represents a scalable framework to developments and integration of existing or future tools

and data formats for the entire field of electrophysiology.

4.5 Methods

4.5.1 Code availability
The toolbox can be acquired as part of Brainstorm’s GitHub repository:

https://github.com/brainstorm-tools/brainstorm3

4.6 Data Availability

The dataset that was used for showcasing this toolbox, is available as part of the tutorial for the toolbox’s

features: https://neuroimage.usc.edu/brainstorm/e-phys/Introduction
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4.11 Figures

Figure 1. Workflow of the toolbox

Brainstorm
Raw Signal

l Spiking Events
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Figure 1. Workflow of the e-Phys toolbox. Users initially import the header to the raw binary signal. Once the data is
identified, the users perform the spike-sorting step. The spike-sorting process is divided into two parts: Unsupervised (the
algorithm creates neuronal clusters automatically) and Supervised (the user inspects the output of the unsupervised part).
At this point of the workflow, the LFP can be extracted. All the spiking events that were previously computed and the
down-sampled LFP signals are all encapsulated to a single binary file. The original binary file can be stored to an external
source and is no-longer needed. Finally, users can now perform preprocessing and analyze their data, utilizing the
spike-related function that have been introduced to Brainstorm by this toolbox.

e-PHYS TOOLBOX

Acquisition Systems Blackrock (.nsX), Ripple (.nsX), Plexon (.plx, .pl2), Intan (.rhd), Neurodata
without borders (.nwb), Tucker Davis Technologies

Spike Sorters WaveClus, UltraMegaSort2000, Kilosort (Klusters)

LFP spectral Artifact Removal ] Bayesian spectral spiking-artifact removal

Spike-related Functions Tuning Curves, Raster Plots, Spike Field Coherence, Spike triggered Average

LFP - ANALYSIS

Pre-processing DC-offset removal, Band-pass / band-stop / notch filtering, resampling

Artifact Removal SSP, ICA

Frequency FFT, Welch Density, Morlet Wavelets, Hilbert transform, Multi-tapers, Phase
Amplitude Coupling, Instantaneous frequency, Canolty Maps

Connectivity Correlation, coherence, Bivariate Granger causality, Phase Locking Value,
Amplitude Envelope Correlation, Phase Transfer Entropy

Statistics and machine learning Parametric testing (zero / baseline), Partial Least Squares, Support Vector

| Machine classification, Linear Discriminant Analysis classification

Table 1. Synopsis of the e-Phys toolbox and the tools that can be used for LFP analysis. The e-Phys toolbox provides a
working framework for every step of the e-Phys analysis and each module can easily be enriched with future additions.
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Figure 2. Dataset navigation and pre-processing window
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Figure 2. Left: (A) Main Brainstorm window showing the created dataset entry (ytu288c-01) on the data-tree section.

(B) Selection of starting time point and duration of signal segment to be loaded for reviewing. (C) Experimental and spiking
events are displayed. (D) An event is selected from the “Stim on 0” condition. This selection automatically synchronizes all
reviewing windows to the timepoint of the event’s occurrence. Right Top: 1 second segment displaying raw signals from all
electrodes. The vertical red line indicates alignment around the selected event (“Stim On 0”). The green dots on the top of the
figure represent the spiking events from the first neuron on electrode with label ADO1. Right Bottom: A selection of the first 4
electrodes, aligned in time with the top figure.
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Figure 3. Unsupervised Spike-sorting
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Figure 3. Left: Selection of the embedded spike-sorters for unsupervised spike-sorting within Brainstorm. Right: Example of a
dataset spike-sorted with UltraMegaSort2000. (Box 1)A new entry in the database UltraMegaSort2000 Spike Sorting appears
and indicates that this dataset has been spike-sorted. (Box 2). New events appear in the Events window, corresponding to the
spikes that the spike-sorter clustered (Spikes Channel X).
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Figure 4. Supervised spike-sorting
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Figure 4. Supervised spike sorting. (A). Main window that the user selects the electrode (or group of electrodes for Klusters)
and the spike sorted files automatically update the spike sorter in use. Once the neuronal clusters have been adjusted, the
user presses the Save and Next button and the next electrode gets selected to continue the supervised spike-sorting.

(B, C, D). Supervised GUI for UltraMegaSort, WaveClus and Klusters respectively.
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Figure 5. Conversion from raw signals to LFPs
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Figure 5. Converter from raw signals to LFPs. (A). Users can select the filtering limits of their LFP and apply a notch filter
if necessary. The converter downsamples the raw signal to 1 KHz. (B). Once the conversion is complete, a single binary
file (.bst) that contains all the necessary information (LFPs, experimental and spiking events) is stored on the hard drive,
and automatically imported on the data-tree as a new dataset. (C). 1 second segment review of the created LFP signal
traces. The spiking events from the first neuron of electrode ADO1 are represented by the green dots on the top of the
figure, as in Figure 2.
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Figure 6. Importing of trials
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Figure 6. (Left) Selection of the events of interest and temporal boundaries around them, for importing the LFP segments.
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125



Figure 7. Analysis of LFP signals
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Figure 7. (A). Wavelet Decomposition ([2-90] Hz) of a single LFP trial from electrode labeled ADO9 for moving stimulus
condition towards -1/4 pi degrees direction. Users can select the channel they want to be displayed from a drop-down list
on the main Brainstorm window.

(B). Estimation of NxN coherence for a single trial across all electrodes. The coherence values are color-coded for a specific
frequency (on the example 40 Hz frequency is selected). Users can display coherence in the other frequencies by moving a

sliding toggle.
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Figure 8. Spike-LFP analysis functio
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Figure 8. (A) Raster Plot. (Top) Example raster plot for 96
trials of a single condition for the first neuron picked up on
electrode fabeled ‘ADO1’. Firing has been binned into 10ms
segments. The green shading indicates the period where the
stimulus was presented on the screen. A single condition
was repeated 96 times instead of 4 for the purpose of this
raster plot. (Bottom) Average firing rate from all trials shows
maximum firing ~150ms after the stimulus onset for this
neuron. The vertical red line indicates interactive temporal
alignment between the two plots and the green shade the
period of the stimulus presentation.

(B) Tuning curves function. (LEFT): Users select the neurons
that they want to display the tuning curves, and sequentially
the conditions {and their order) that would formulfate the x-
axis (right side of the conditions selection window).
Additionally, we included a selection for the time-window
where the spikes would be counted. (RIGHT): Tuning curve
for an example neuron, sefected from the window on the left
of Figure B. The x-axis shows the different experimental
conditions at the order selected on the previous window.
This neuron expresses selectivity for the condition “Stim On
0.

(C) Noise correlation. The function selects all the neurons
that elicited spikes within the trials imported and displays a
nxn figure where the noise correlation is computed for all
combinations of neurons. Specifically for the dataset
illustrated, there were 53 unique neurons picked up by the
electrodes (according to the spike sorting step). This figure
shows the computation of noise-correlation on all trials (@
subset on a specific condition is also possible) for the
presentation 96 trials of a motion stimulus, and spikes are
selected on {0,300] ms around the stimuli presentations.

(D) Spike field coherence for an example neuron picked up
from the first electrode (ADO7) for the motion stimufus
condition “Stim On 0”. The spike-field coherence window
displays spectral influence of a single neuron to alf 32
electrodes. Frequency is shown up to 60 Hz. Time selection
around each spike was [-150, 150] ms

(E) Spike triggered average of a neuron picked up on
electrode labeled ADO1. A graph of the linear probe with the
relative electrode locations is displayed on the left of the
figure. The time selection around the spikes was set to |-
150,150] ms for all trials of all experimental conditions. The
electrodes have been presented into four rows for easier
visualization. In reality, the linear probe extends on a single
dimension (1:32). The scale of the STA is shown on the
bottom right. All traces have been aligned to the same time-
selection (0 ms — time occurrence of the spikes of AD01),
indicated by the vertical line of each signal’s display.



Figure 9. Topographical visualizations

Figure 9. (A). Visualization of the implanted electrodes on the anatomical MRI of the non-human primate. The MR slices are
superimposed on the figure. (B). Zoomed in version of an implanted Utah array on the cortical surface, with the spiking activity
color-coded on the array’s topography for a single time-bin.
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Chapter 5 briefly summarizes the findings presented in this thesis and outlines the significance of

this work and some possible future avenues of research that could potentially follow this PhD

work.
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Chapter 5: Discussion

Chapters 2, 3 and 4 in this thesis constitute original scholarship and are published (chapters 2 and
4 in Neuroimage and Nature Scientific Data respectively) or in preparation for journal submission

(chapter 3).

5.1 Summary of results and contribution to original knowledge

5.1.1 Retinotopy in MEG
The most elementary characteristic of a visual neuron would be its receptive field. Ever since

neurophysiologists introduced the idea of visual spatial selectivity in the mid 20" century,
countless invasive and imaging studies have utilized that spatial information to understand why

neurons elicit responses and communicate among them.

MEG has been used for clinical applications and basic research studies that require real-time, non-
invasive mapping of the human cortex. Although almost five decades have passed since the first
MEG system (Cohen, 1968), the spatial selectivity of visual areas has been demonstrated very
crudely with this modality, in accordance with the general acceptance that MEG provides

“modest” spatial resolution.

Chapter 2 introduces a novel method for mapping the retinal input to the cortical manifold. In this
study we used high-resolution cortical tessellations from each subject (~150,000 vertices) and we
managed to isolate individual sources within the primary visual cortex that showed significant
confined receptive fields. In order to measure the fidelity of our results, the same subjects
additionally participated in fMRI retinotopic experiments, and the MEG retinotopic maps showed
surprising alignment with those from the fMRI. Moreover, we estimated the cortical magnification
achieved with MEG by selecting sources along the calcarine sulcus and formulating the
relationship between their relative distance and receptive field eccentricity, comparing it with
other imaging modalities (Duncan and Boynton, 2003; Endo et al., 1997; Engel et al., 1997; Horton
JC and Hoyt WF, 1991; Qiu et al., 2006; Sereno et al., 1995). Having established the reliability of
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the cortical responses within the primary visual cortex, we then investigated the seperability
between adjacent sources in order to formulate an estimation for spatial resolution. Our
calculations considered physical properties of MEG sources that were expected to affect
resolution, and computed an estimator based on geodesic distance and relative orientation. Our
resolution estimator indicated that with proper stimulation, MEG sources can be reliably
differentiated if they’re 7mm apart while their orientation is parallel. For regions of greater
curvature (i.e. near a gyrus), resolution can be considerably greater (averaging 2-4 mm) — with the
absolute limit of 0.49mm that is achieved at the noise level of 1x1 mm isotropic space voxels from

MRI tessellations (Pienaar et al., 2008).

In order to put these numbers into perspective, the neuronal density in the human primary visual
cortex is estimated to be ~40,000 cells / mm? (Leuba and Garey, 1989). Taking into account that
the weakest MEG signal was previously calculated to be elicited by the simultaneous activity of a
population of ~50,000 neurons (Murakami and Okada, 2006), our results suggest that we
disentangled signals from much smaller populations. Our study took full advantage of high-
resolution cortical tessellations that provide anatomically precisely oriented sources. Usage of a
lower resolution cortical surface could have led to improper source vector orientation, and would
be likely to offer limited accuracy in source estimation (Bonaiuto et al., 2019). An extra step
towards increased resolution would be to use head casts that can reduce movement inside MEG
(Meyer et al., 2017; Troebinger et al., 2014). This study shows that proper stimulation of areas

that are anatomically known to be located near gyri, can be properly detected by MEG sources.

5.1.2 Remapping in MEG
Being able to estimate the receptive fields from individual sources, opens up the road to selectively

include sources in MEG analysis for visual studies. Remapping is a prime candidate mechanism
that relies on neuronal populations with specific spatial selectivity; receptive fields before and
after the saccade. The initial studies on remapping demonstrated a shift of the receptive field of a
neuron parallel to the saccade vector. Despite a plethora of studies that supported this remapping

direction, (Tolias et al., 2001a; Zirnsak and Moore, 2014) showed remapping vectors that were
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skewed towards the saccade target. The interpretation of these studies was that receptive field
shifting reflects target selection rather than visual stability. (Neupane et al., 2016b, 2016a) created
a bridge between these two lines of thinking, demonstrating that both types of remapping are

present within V4 neurons.

The studies described in Chapter 3 show remapping manifestation in the superior parietal and
visual cortices. The experimental paradigm was designed in such a way that the retinotopic and
remapped responses were dissociated into two different hemispheres, by presenting the probe
between the two targets (retinotopic responses were allocated on the contralateral hemisphere
and remapped on the ipsilateral). Our results support the existence of the two aforementioned
types of remapping; an early superior parietal component (40-150ms after saccade offset) showed
significant responses consistent with the approach of “forward remapping”, and a late (~280ms
after saccade offset) early-visual-cortex component showed responses that were consistent with
“convergent” remapping. Interestingly, we observed these late “convergent” remapping
responses in the visual cortex (activation span across several visual areas), but not in the parietal
cortex. Since our experimental design involved repeated saccades between two set targets,
“convergent” remapping might be an epiphenomenon of covert attention from the anticipation

of the fully predictable target appearance (Deubel, 2008; Neupane et al., 2016a).

In alignment with our results, two neurophysiological studies have demonstrated convergent

remapping in the visual cortex and specifically in V4 (Neupane et al., 2016a; Tolias et al., 2001b).

Evidence of convergent remapping has been demonstrated in FEF (Zirnsak and Moore, 2014), but
not in the parietal cortex. Based on our data, the parietal cortex might not be involved in the
convergent remapping responses, although invasive neurophysiological studies would be able to

provide better understanding due to their spatial resolution.

Importantly, several studies unsuccessfully attempted to observe remapping in area MT
(Hartmann et al., 2011; Inaba and Kawano, 2014; Ong and Bisley, 2011), and this was achieved
only when an attentional memory task was introduced to the paradigm (Yao et al.,, 2016).
Attentional modulation of remapping has been observed in the parietal cortex as well (Gottlieb et

al., 1998; Mirpour and Bisley, 2016), an area that inactivation studies have shown association to
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visual spatial attention (Liu et al., 2010; Wardak et al., 2004). In our study, we attempted several
pilot experimental paradigms that have been commonly used in remapping literature, but none of
them elicited remapping responses. It was only until we introduced attention through an oriented
probe in our paradigm that we were able to detect the remapping responses. Moreover, two of
our subjects underwent a series of control experiments (attention / no attention) that further
supported the modulatory role of attention in remapping and remapping’s role in the creation of

priority/saliency maps around eye movements.

5.1.3 Invasive neurophysiology analysis
Chapter 4 introduced a modern approach in invasive neurophysiology analysis, in accordance to

values of open-science, transparency, standardization and reproducibility. The toolbox utilizes a
set of features that enable the creation of a full pipeline for invasive neurophysiology analysis
within Brainstorm — from importing signals from a wide variety of acquisition systems, to
performing spike rate visualization on the anatomical modeling of the implants. It enables quick
overview of the raw signals for quality control, artifact rejection, event-related analysis, and a set
of pre-processing features. A series of spike-sorters are supported (WaveClus, UltraMegaSort2000
and Kilosort) for supervised and unsupervised spike-sorting, with interoperability with the main
Brainstorm interface. A convenient LFP converter is included that downsamples and packages all
experimental and spiking events along with the LFP signals into a single file for easy sharing among

researchers.

A series of functions can be utilized for extracting LFP and spiking information. The toolbox is
designed in a modular approach so its functionality can be easily enriched. Every instance of data-
processing is logged, and the open-source code of every function is thoroughly documented.
Additionally, an active user forum and daily GitHub updates provide an extra layer of support to

the software.

This software responds to an unmet need of the electrophysiology community. By providing a
unique environment with a common set of analytical tools, the application also provides a unique

bridge between recording scales, data types and researchers, and additionally, between the
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methods used in human, animal and slice preparations. It also represents a scalable framework to
developments and integration of existing or future tools and data formats for the entire field of
electrophysiology. Additionally, we emphasized on the efficiency of the software due to the trend
of modern neurophysiology to move towards high-density electrodes. The software can run on

headless mode on a cluster and benefit from GPU processing for spike-sorting (through Kilosort).

5.2 Future development
The retinotopic maps we computed in Chapter 2 have been created by projecting thousands of

stimulation frames to the subjects. Our retinotopic maps showed significance only within the
primary visual cortex and some within V2. This is probably due to the selection of the size of the
probes between the nominal size of the receptive fields in V1 and V2 (Freeman and Simoncelli,
2011). Further studies can investigate the size effect of stimulation to different visual areas.
Moreover, our selectivity detection method showed that only 3% of the frames that had a probe
within the final receptive field of the source crossed the detection threshold. This is a potential
indication of a phase-locking mechanism that can be exploited by a closed-loop system. Real-time
MEG monitoring of ongoing oscillations in different frequencies coupled with a minimal latency

projector can shed light to this question.

The functional role of remapping has not yet been demonstrated with neurophysiology. An
extension to the analysis we performed on the current paradigm would be to separate the trials
based on the orientation of the remapped probe, to explore if remapping also transfers feature
information besides location. The small orientation differentiation used in this paradigm might be
too prohibitive (we only used +5°), but a bigger tilt should be able to be recovered by MEG as
shown previously for cortical columns (Cichy et al., 2015 - they used +45°). Moreover, (Neupane
et al., 2017) showed coherent oscillations between the neurons that encode the current and the
future receptive field. In our study we isolated the sources that encode these two points in the
visual field within the visual and parietal cortex, but were not able to show significant
communication by coherence (Fries, 2005) between these areas. Further investigation on the

communication between remapping areas can include bicoherence methods (Shils et al., 1996).
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The modular architecture of the invasive neurophysiology toolbox gives it enormous potential for
further development. At the point that this thesis is written its functionality has already expanded
to include more features compared to what was published in the work within Chapter 4; e.g.
already included computation of place fields (for hippocampal recordings), support of the Allen
Institute mouse atlas (for inter- and intra-areal analysis) and support for high density electrodes -

Neuropixels.
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