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Abstract

We consider the one dimensional discrete Schrodinger operator h = hg + V' on the full line and
half line, where hg is the discrete Laplacian and V' is a real-valued potential. We explain the Spectral
theorem for the operator and give explicit formulas of the Green’s function and spectral measures
in case of the Laplacian. We explore the rank one potentials and compute their scattering operator.
We also explore periodic potentials on the full line. We introduce random Schrodinger operators,
and reproduce the proof of the celebrated theorem of Pastur that the spectrum is almost surely the
same set. To illustrate ergodic families of random operators, we study the Anderson model in one

dimension.

L’objet de la these est 'opérateur de Schrédinger discret h = ho+ V' en une dimension, sur la ligne
et la demi-ligne, ou ho est le Laplacien discret et V' est un potential & valeurs réelles. Nous expliquons
le théoréme spectral pour cet opérateur et donnons des formules explicites dans le cas du Laplacien.
Nous explorons les perturbations du premier ordre. Nous explorons aussi les potentiels périodiques
sur la ligne. Apres avoir introduit les opérateurs de Schrodinger aléatoirs, nous reproduisons le célebre
théoreme de Pastur établissant ’éxistence d’un spectre identique presque partout. Afin d’illustrer les

familles d’opérateurs de Schrodinger aléatoirs ergodiques, nous étudions le modele d’Anderson.
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1 Introduction

1.1 Outline of paper

This thesis exposes many tools that are used in mathematical physics research and is written at a level
that other graduate students can understand. It is almost self-contained, and most of the missing elements
can be found in [Ja ]. Because this thesis contains very little physics, there is not much interpretation to
be discussed. We will therefore proceed with basics that will come in handy in all sections of the thesis.

In the second part of the introduction, we define the Schrédinger equation, and introduce all the
essential tools of the thesis : the transfer matrices, the Wronskian, the Green’s Function and Weyl-m
functions, the Borel and Poisson transforms, the boundary values of the resolvent, and the Helffer-

Sjostrand formula for the Spectral theorem.



The second section analyzes the Laplacian on the the full line, not only as an operator from ¢*(Z)
to itself but also from ¢P(Z) to itself. We state the Spectral theorem for the operator and show that its
spectrum is [—2,2]. We calculate the Green’s function and boundary values of the resolvent, as well as
the spectral measures j5, for h and 9,,. We then move on to the Schrédinger operator and show that
the Green’s function decays exponentially as we move away from the diagonal. This result allows us in
particular to show that the spectrum of the Schrédinger operator as an operator from ¢P(Z) to itself is
the same. We then describe the direct integral decomposition of operator and discuss the generalized
eigenfunction expansion.

In the third section we repeat much of the same analysis for the half line case.

In the fourth section, we return to the full line operator and show that rank one perturbation has
the same spectrum as the Laplacian plus an eigenvalue outside [—2,2]. After introducing the basics of
Scattering Theory and proving Pearson’s theorem, we directly show that the wave operators exist and
are complete for rank one perturbations, and compute the scattering matrix.

The fifth section deals with various basic potentials that have mainly absolutely continuous spec-
tra. We show that periodic operators have absolutely continuous spectra composed of finitely many
bands. Finally we reproduce Simon’s proof ([Sil ]) that having all eigenfunctions bounded implies purely
absolutely continuous spectrum.

In the sixth section, we discuss random Schrédinger operators and prove Pastur’s theorem. We discuss
issues of measurability that become necessary, and then further discuss minimally and uniquely ergodic
operators. We end by showing that the Anderson model is ergodic and show that its spectrum is almost
surely [—2, 2] + supp v, where v is the probability distribution of the model.

Lastly, the appendix contains many solutions to exercises in [Ja ] that a reader unfamiliar with
Spectral Theory might want to read.

1.2 Transfer Matrices, Wronskian, Green’s Function, Borel Tranform and

some Spectral Theory

We begin by establishing notation that will be recurrent throughout the thesis.
Notation 1.1.

(i) Let £(Z) denote the vector space of all sequences u = {u(n)}nez with coefficients in C.

(ii) For 1l < p < o, denote the Banach space (P(Z) = {u € U(Z) : |ul, = ( ZZ lu(n)|P)P < o0}

ne
(iii) For p = o, denote the Banach space {*(Z) = {u € L(Z) : |ulo = su;z) lu(n)| < o}.
ne

(iv) Let £y(Z) < £*(Z) denote the vector space of all sequences with finitely many non-zero terms.

(V) U(Z4),0P(Z), 0" (Z) and Lo(Z ) are defined similarly for 7, :={1,2,...}.

(vi) Co(R) are the continuous functions on R that vanish at infinity.

(vii) C.(R) are the continuous functions on R with compact support.

(viii) By(R) are the bounded Borel functions.



(ix) p(A) and o(A) = C\p(A) denote resolvent set and spectrum of a bounded operator A. The resolvent
at z is denoted R(A, z) or (A —z)~ L.

Note that €o(Z) (resp. £o(Zy)) is dense in ¢P(Z) (resp. (P(Z,)) for all 1 < p < co. We will be
working chiefly on ¢*(Z) (resp. (*(Z4)) , and we will denote by {6, }nez (resp. {d,}nez, ) the canonical
orthonormal basis, in the sense of a Hilbert spaces.

Depending on the section, H will typically stand for ¢2(Z) or £2(Z. ), but will also be used sometimes
to refer to any Hilbert space. B(H) will denote the bounded operators on H.

Definition 1.2. The discrete Schridinger operator on the full line (Z) is defined as follows:

(i) Let V : Z — R, which we will refer to as the potential. To such a function we associate the linear
map, again denoted by V., V : U(Z) — U(Z), (Vu)(n) = V(n)u(n).

(ii) The discrete Schrodinger operator on €(Z) is the map h = hg +V : £(Z) — £(Z),
(hu)(n) = u(n —1) + u(n + 1) + V(n)u(n). (1.1)
By the discrete Schrodinger equation on Z we mean the difference equation:

hu = zu, wel(Z),zeC (1.2)

Definition 1.3. The discrete Schrodinger operator on the half line Z is defined analogously, with a
Dirichlet boundary condition: h = ho +V : U(Z4) — £(Z4),

(hu)(n) = u(n —1) + u(n + 1) + V(n)u(n) (1.3)
u(0) = 0 (1.4)

FEquivalently, it can be written as:

un—1)+un+1)+V(n)un) n=2
(hu)(n) = (1.5)
u(n+ 1) + V(n)u(n)
By the discrete Schrodinger equation on Z we mean the difference equation:
hu=zu, wel(Zy),zeC (1.6)

When the potential V is identically zero, h is called the Laplacian and is denoted hg. It is also denoted
—A in the literature. We also introduce the shift operators on ¢(Z) (resp. (Z.)):

(i) to the right (Ru)(n) = u(n — 1).
(ii) to the left L : (Lu)(n) = u(n + 1).

Consequently h = L+ R+V. L, R and V are linear operators so that the full line and half line Schrodinger

operators are linear operators.



We define the eigenspaces associated to z € C as:

E(z):={u€l(Z): hu = zu} for the full line Schrédinger operator (1.7)
E(z):={u€l(Z;): hu = zu} for the half line Schrédinger operator (1.8)

Note that if u € E(z) and z € R, then @ € E(z), where T = {u(n)}nez.

It is also useful to look at the Schrodinger equation from the point of view of dynamical systems:
Definition 1.4. Define for z € C and u € £(Z) (resp. u € €(Z)):

A(z,n) := <Z a Y(n) _01> and ®(n):= <u(n * 1)>

0 1
-1 z—V(n)
A key observation is that u satisfies the Scrodinger equation if and only if Vn € Z (resp. Vn € Z4):

Then detA(z,n) = 1 and A(z,n)~! =

®(n) = A(z,n)®(n —1). (1.9)

For this reason the matrix A(z,n) is called the transfer matrix. The corresponding flow on ¢(Z;C?)

is given by the fundamental matrix:

A(z,mn) -+ A(z,m + 1) n>m
T(z,n,m) := 1 n=m

Alz,n+1)" - A(z,m)™t n<m
Then T satisfies the following identities: Vn,m,i € Z (resp. Vn,m,ie€ Z,),
(i) T'(z,n,n—1) = A(z,n).
(ii) ®(n) = T(z,n,m)®(m).
(iil) T'(z,n,m) = T(z,n,0)T(z,i,m).
(iv) T(z,n,m)~t = T(z,m,n).
We later use, we will be using the operator norm of T, i.e.

T
TG m)| = sup L&l (1.10)
$eC2\{0} I}l

The Wronskian comes in handy sometimes:
Definition 1.5. The Wronskian of two sequences u,v € €(Z) (resp. €(Z)) is the sequence
Wy (u,v) := u(n)v(n+ 1) — u(n + L)v(n). (1.11)

It satisfies Wy, (u, v) = =Wy (v, u).

Lemma 1.6. Let u,v € E(z). Then:



(i) W(u,v) := Wp(u,v) is a constant sequence.
(ii) W (u,v) is zero if and only if u and v are linearly dependent.
Proof.

(i) The Wronskian is constant since for all n:

W (u,v) = u(n)v(n + 1) — u(n + L)v(n)
=u(n)(zv(n) — V(n)v(n) —v(n + 1)) — (zu(n) — V(n)u(n) — u(n + 1))v(n)

= Wy_1(u,v).

(ii) The Wronskian is obviously zero if « and v are linearly dependent. Conversely, if W(u,v) = 0,
v(2) u(2)
v(1) (1)
2 2 0
it has a nonzero kernel, i.e. there are «, /3, not both zero, such that (U( ) )> <a> = ( )

v(1) u(l)) \p 0
Applying T'(z,1 £ n, 1) for n = 1,2, ... shows that av(n) + fu(n) = 0 for all n.

in particular Wi (u,v) = 0 and so the matrix has determinant equal to zero. Thus

O
Proposition 1.7. On the full line dim E(z) = 2 Yz € C, whereas on the half line dim F(z) =1 Vz € C.

Proof. We first consider the full line case. If u € E(z), it is enough to know any two consecutive terms
of u to completely determine the other terms. For instance if ®(0) is known, then applying T'(z,n,0)
determines all the other terms uniquely. Hence there exist at least two linearly independent solutions

c(2),8(z) € £(Z) to the equation hu = zu satisfying:

W(c(z),s(z)) =1 # 0 shows that ¢(z) and s(z) are indeed linearly independent.
Now suppose u € FE(z) is nonzero. In particular, «(0),u(1) cannot both be zero.
s(1,2) ¢(1,2)
5(0,2) ¢(0,2)

(s(l,z) c(l,z)) (oz) _ <u(1)>
s(0,2) ¢(0,2)) \B u(0)

Applying T'(z, £n,0) for n = 1,2, ... shows that u(n) = as(n, z) + Sec(n, z) for all n.

The determinant of ( > being nonzero, there exist «, 3, not both zero, such that

For the half line case, note that for u € F(z), it is enough to know wu(1) to completely determine the

other terms. Hence there exists at least a solution s(z) € £(Z,) to the equation hu = zu satisfying:
s(0,2) =0 s(l,2z) =1

Now if u € E(z) is nonzero, then in particular, u(1) # 0 and so Ja such that s(1,z) = cu(l). An easy

induction shows that in fact s(n,z) = au(n) for allne 7. O



Definition 1.8. In both the full line and half line cases, we call the solutions ¢(z) and s(z) to the formal

difference equation hu = zu with boundary conditions:
0 1 0 1
50.9) s(1,2)) _ L2
c(0,2) ¢(1,2) 10

The following lemma for the full line case trivially holds in the half line case since u(0) = 0.

the fundamental solutions.

Lemma 1.9. Foru e E(z): u(n) = u(0)c(n, z) + u(l)s(n, z) for alln € Z. In particular,

_[s(n+1,2) c(n+1,2)
T(zm,0) = ( s(n, z) c(n, 2) ) (1.13)
Proof. Let u(n) = ac(n) + Bs(n) for every n. Then:
(W(c, u)) _ (c(n) e(n + 1)) <u(n + 1))
W (s, u) s(n) s(n+1) —u(n)
. (c(n) c(n+1)> <c(n+1)> 5 (c(n) ( +1)> <s(n+1)>
s(n) s(n+1) —c(n) s(n) s(n+1) —s(n)
_ 0 W (e, s)
() (")
So that o = VV‘;((ZZ)) =u(0) and 8 = % = u(1). O

Lemma 1.10. |T(z,n,0)7| = |T(z,n,0)].

Proof. Using lemma 1.9, observe that

0 —1
T(z,n,0)" = J T(z,n, 00T, J= (1 0 )

where T" denotes the transpose of T. Since .J is unitary,
IT(z,1,0) = |T(z,n,0)" || = |T(,n,0)*| = |T(2,n,0)].

Note that we have used the fact that for bounded operators A on a Hilbert space, |A| = |A*| and
that for square matrices |A|| = |A]. O

The Green’s function will play a key role:

Definition 1.11. For z € p(h), let G(z,n,m) := {6, (h — 2) " 6,n), n,m € Z for the full line case and

n,m € Z, for the half line case. They are the matriz elements of (h — z)~L.

Because the resolvent map p(h) 3 z — R(h, z) € B(H) is analytic, p(h) 3 z — (5, (h — 2)"15,,) € C is
analytic for every n,m. The Green’s function also satisfies the following key relation: if G, := {G,,(n) =

G(Zamm)}neZ/L and Gy, 1= {Gp(m) = G(z,n, m)}meZ/ZJra then

((h = 2)G)(7) = Gngn and  ((h — 2)Gp)(m) = 6. (1.14)



A simple application of the first resolvent identity gives the following useful formula in both the full

line and half line cases:
Lemma 1.12. For alln € Z: Tm {5, (h — 2)7,) = (Im 2) |(h — 2)716,|>.
Proof. Tm (3, (h = 2)~60) = & (G, (h = 2)718,) = G, (R = 2)T0,))

=%®mnh_@4‘%h—@4pﬁ=g%%{m—fr%z—ﬂﬁ—zyq%>=ﬂm@Hm—zf%w?

O

Lemma 1.13. Let h be the full line Schridinger operator and z € p(h). There are linearly independent
sequences uy(z) and u_(z) € E(z) that are square summable near +00 and —o0 respectively. Moreover,

the subspaces E(z, 1) of E(z) consisting of square summable sequences at +o0 are one-dimensional.

Proof. Let uy(n,z) := {(6n, (h — 2)7161) for n > 1 and u_(n,2) := (5, (h — 2)715_1) for n < —1. The
remaining terms are obtained by applying the transfer matrix.

By construction (hus)(n) = zuy(n) for n < 1. For n > 1 we have

(hut)(n) = G(z,n+1,1) + G(z,n —1,1) + V(n)G(z,n,1)
= (hép, (h—2)"161)
{(h = 2)8n, (h = 2)7101) + 2{bp, (h — 2) "' 61)

zu (n).

w4 is square summable at +00 since >}, [(0,, (h —2)7101)? < [(h—2) 7161 [? < 0. If uy(2) and u_(2)
were linearly dependent, then they would be in E(z) n¢?(Z), i.e. eigenvectors of h, contradicting z € p(h).

If U+ 1 and U+ 2 € E(Z, iOO), then W (ui,l, ui,g) = 1i1+ll Wn(UJ_r71,ui72) =0. O]
n— 100
Lemma 1.14. Let uy and u_ be as in lemma 1.13.

(i) For the full line Schridinger operator, ¥n,m € Z:

(n,z)u_(m,z)
W (Jus Gy SN
G(z,n,m) = (1.15)

wuq (m,z)u_(n,z)

W (s (z) ST
(ii) For the half line Schrédinger operator, Yn,m e Z .. :
ut (n,z)s(m,z)
Wit e () ME
G(z,n,m) = (1.16)

uy (m,z)s(n,z)
Witus(z) 1TSM

In particular the Green’s function is symmetric.

Proof.

1. Let

uy (n,z)u_(m,z) m<n

W (u—(2),u+(2))
H(z,n,m) := o) : : (1.17)

uq (m,z)u_(n,z

W (s (z) S M



Fix m. If Hy := {H1(n) = H(z,n,m)}nez, then ((h — 2)H1)(n) = ,m. Moreover H; is square
summable. Therefore ((h—z)(H1 —G1))(n) = 0 and Hy — G is square summable. Hence H; = G.

Since this is true for all m, G(z,n,m) = H(z,n,m).

2. This is shown using the same argument, and uses the fact that s(z) satisfies the half line Schrodinger

equation at n = 1.

O

We will now introduce the Weyl m-functions. First we need to do an observation. Let z € C\R. Then

uy (1, 2) := (&1, (h—2)7161) is not zero by lemma 1.12. Also, u, (0, 2) is not zero. To see this, consider the

sequence i (z) defined by iy (n, 2) := (§,, (h—2)716;) for n > 1 and where h is the half line Schrédinger

operator, and the other terms are obtained by applying the transfer matrix of the full line Schrédinger

operator. Then a4 (z) € E(z,+00) and so uy(z) and 44 (z) are linearly dependent. Now w4 (0,2) = 0

would imply that @ (z) is an eigenvector of the half line Schrodinger operator with eigenvalue z, which
contradicts z € C\R. Hence u4 (0, z) # 0, and u (0, z) # 0.

Definition 1.15. The Weyl-m function is defined on C\R by m4 (z) := {51, (h — 2z)~181), where h is the
half line Schrodinger operator.

By lemma 1.14, m (z) = —Zigé; It is a holomorphic function.

Many of the tools that we will use are originally proved using techniques of harmonic analysis. The

reader is encouraged to consult the notes on Topics in Spectral Theory, [Ja |, for more details.

The Borel transform of a complex or positive measure p satisfying S[R (fi(‘?‘ < o0 is defined by

du(t

Fo(z) = J d® g, (1.18)
R t— 2z

The Poisson transform of p satisfying SR ‘fi(ttz) < o0 is defined by
) edu(t)
P, (FE = —— . 1.1
(B + ie) J[R(E—t)Q—&—EZ’ e>0 (1.19)

The functions F),(z) and P,(z) are analytic in C,. If 4 is the Lebesgue measure, then P,(z) = 7 for all
z € C4. If p is a positive or signed measure, then Im F), = P,. We will need the following result on the

differentiation of measures:

Theorem 1.16. Let v be a complex measure and p a positive measure. Let v = fu + vy be the Radon-

Nikodym decomposition. Let psing be the part of p singular with respect to the Lebesque measure. Then:

Eﬁlm = f(E), for p—a.e. E. (1.20)
(i) |
gfgm = 0, for vy —a.e. E. (1.21)
(iii)
B (B +ie) = f(E), for psing — a.e. E. (1.22)

210 F,(E + ie)



Let A be a self-adjoint operator on a Hilbert space H, ¢ € H, and p,, the spectral measure for A
and 9. Let Fy,, and P, be the Borel and Poisson transform of y,. The important fact is that for all
ze C\R:

_ dptqy (x
wia—a = [ 24D g, (1.23)
R £ — X%
We will need the following theorem, which may be referred to in the literature as the theorem of De
la Vallée Poussin:
Theorem 1.17.

(i) For Lebesgue a.e. E € R the following limil exists and is finite and non-zero:

1ig)l F.,(E+ic) = 1%1@/;, (A—E —ie) ') := (@, (A — E —i0) 1),

(i) dpryac(E) = Im (, (A = E = i0) " 4)dE.
(iil) pypsing 95 concentrated on the set {E € R: liflol Im (¢, (A — E — i)~ 1)) = 0}

Finally to end this section, we briefly describe a more sophisticated Functional Calculus based on the
Helffer and Sjostrand formula. The reader is referred to Chapter 2 of [D ] for the complete exposition.
The reader unfamiliar with Spectral Theory might want to look first at Chapters VII and VIII of [RS1 ]
for the standard approach to the Functional Calculus. We let (z) := /1 + |z[2. For 8 € R, let S” be the

set of complex-valued C*(R) functions such that there exists a ¢, so that:
|F™)(@)] < enlx)P™", VYzeR,VneN. (1.24)

We set A:= |J S? and equip A with a family of norms: for n > 1:
£<0

=3 [ W@l (1.25)
k=0+—%

A is an algebra for the multiplication of functions. It contains rational functions that vanish at +oo0 and
have non-vanishing denominator on the real axis, in particular functions of the form f,(x) := 1/(z — 2).
In fact CP(R) is dense in A for the norms | - ||,.

For f € C*(R), we define its quasi-analytic extension f : C — C by

a=(ifWuW?ﬂamw (1.26)
k=0 :

with z = . + iy, n > 1, o(z,y) = 7(y/{x)), where 7 € CP(R) is equal to one on [—1,1] and has
support on [—2,2]. Note that f € C®(C). Its support is on the set |y| < 2(z). The choice of 7 and n

turn out to have no importance. An explicit computation gives:

i) = (a(; +zjy> f(2) (1.27)
(z,y) + wy(x Y) | e (iy)" o(z,y)
(k Of““) ) + D @)=

10



Since the support of o, (z,y) and o, (z,y) are included in the set (z) < |y| < 2{x), if z is fixed and

y — 0 we see that

f(z2)

ZF()| = oyl (1.28)

It is in that sense that we mean that f is quasi-analytic.

Definition 1.18. For any f € A and any self-adjoint operator A on a Hilbert space H, the Hilffer-
Sjostrand formula for f(A) reads:

f(A) = % L a%f(z)(A — 2) " Ydzdy € B(H). (1.29)

This usefulness of this formula is that it gives an explicit formula for f(A) and allows to compute
functions of operators by means of their resolvent. It can be shown that the expression (1.29) converges
in norm for all f € A and that it satisfies the bound |f(A)| < ¢,/ flny1 for all f e Aand n > 1. Tt

can be shown that f(A) is independent of the choice of o and n. The important consequence of formula

(1.29) is that it possesses the properties of a Functional Calculus.
Theorem 1.19.
(i) If f € C*(R) and supp f n o(A) = &, then f(A) = 0.
(i) (£9)(A) = F(A)g(A) for all f,g e A.
(ii)) f(A) = f(A)* and [ f(A)] < [f]e-
(iv) fo(A) = (A—2)"! for all z € C\R.

In particular, there exists a unique linear map Co(R) 3 f — f(A) € B(H) which is a Functional Calculus,
i.e. it coincides with the standard Functional Calculus (the uniqueness being a consequence of the Stone-

Weierstrass theorem,).

2 The Discrete Schrodinger Operator on the Full Line

2.1 The Laplacian, its Spectral theorem and Spectrum

As we saw in proposition 1.7, F(z) is a two dimensional subspace. For the Laplacian, we can in fact give

an explicit basis:
Proposition 2.1. The following are a basis for E(z):

(i) For ze C\{=2,2}: u = {u(n) = (2=}, 7 and v = {v(n) = (ZZ=4) ), 5.

(ii) For z = —=2: u={u(n) = (—=1)"}phez and v = {v(n) = —(=1)"n}nez.
(iii) For z =2: u = {u(n) = 1},ez and v = {v(n) = n},ez.

Proof. Fix A € C, A # 0, and consider the sequences {u(n) = A\"},cz and {v(n) = A "},ez. Then
(hou)(n) = A"+ A"=L = (A + $)u(n) = zu(n) and similarly (hov)(n) = (A + §)v(n) and so we see
that u,v € E(A + %) u and v defined as such will be linearly dependent if and only if Ja such that

11



a\" = \7" Vn € Z. That is, if and only if A € {—1,1}, or equivalently if and only if z € {—2,2}.

Moreover,

1 ++/22 -4
z=)\+x(=>)\2—z)\+1=0<=))\=%.

Therefore for z € C\{~2,2}, {u(n) = A" = (Z2Z7=4)"} and {v(n) = A™" = (Z2Z7=4)="} (we could also
have taken the other root) are linearly independent in E(z). For z = —2 and z = 2, the above gives
one eigenvector, namely {u(n) = (—1)"} and {u(n) = 1} respectively. To find another eigenvector, we
propagate (s(0),s(1)) = (0,1). O

Corollary 2.2.
(i) For z € C\[-2,2], every sequence in E(z) is unbounded, that is, dim(E(z) n £*(Z)) = 0.
(ii) For z € (—2,2), every sequence in FE(z) is bounded, that is, dim(E(z) n (*(Z)) = 2.
(iil) For z € {—2,2}, dim(E(z) n {*(Z)) = 1.
Proof. Let A and z be related as in proposition 2.1, that is z = X + %7 u(n) = A" and v(n) = A7"™.
(i) If |A| > 1 then nh_r)r;o |u(n)| = oo; n1—i>I£loo |u(n)| = 0; nl_i,rilgo [v(n)| = oo; nh_r)rgc |[v(n)] = 0. If w is a non

trivial linear combination of u and v, say w = au + Sv, then ‘|au(n)| — |Bv(n)|| < |Jw(n)| shows

that w is also unbounded. The same argument works for the case |A| < 1.

(i) If [A| = 1, A ¢ {=1,1}, say A = € for some 6 € (0,7) U (7,27), then z = A + 1 = 2cosf.
lu(n)| = " < 1 and |v(n)| = |e7?"| < 1. If w = au + B, then |w(n)| < |a| + |B].

(iii) Finally for A € {—1,1} we exhibited in proposition 2.1 bases containing a bounded sequence and an
unbounded sequence, and so it must be that every basis for F(—2) and E(2) contains exactly one

unbounded sequence.

O
From the definitions, it is obvious that for 1 < p < oo, the shift operators R, L : (P(Z) — (P(Z) are
isometries. Consequently hotP(Z) < ¢P(Z) and ||holle» < |R]er + |L|e» = 2. In fact:

Proposition 2.3. For 1 <p < o, hg: P(Z) — (P(Z) is a bounded linear operator and |[ho|e = 2.

Proof. On (*(Z), take u(n) = 1,¥n. Then |ju]s, = 1, (hou)(n) = 2,Vn, and [hou|w = 2, so |hglle= = 2.
On (P(Z), 1 < p < oo, consider the sequence of sequences for N € N:

1 n=-1,0,N,N+1
u(N)(n):{ L Usns=N Then  (hou™)(n)={ 2 1<n<N-1

0 otherwise ]
0 otherwise

Then Hu(N) lp = (N + 1)1/” and Hhou(N)Hp =4+ (N - 1)2p)1/p

so that

lim HhOU(N) HZD - 1 (4 + (N — 1)21))1/1) — 92 and HhOHZP = sup ”hOuHP _
Nooo JuM],  Nowoo o (N4 1)VP uet? (2) ullp
u#

12
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Among the ¢P(Z) spaces only £?(Z) is a Hilbert space. So the following characterization of the discrete
Laplacian is applicable only to ¢2(Z):

Proposition 2.4. hq : (*(Z) — (*(Z) is self-adjoint.

Proof. Since R, L are unitary operators, L* = L™! = Rand R* = R~! = L. O
We now investigate the spectrum of hg. Without any Spectral Theory, we can already find that

Proposition 2.5. For all 1 < p < w0, [-2,2] < o(hg) as an operator from (P(Z) to (P(Z).

Proof. We essentially use the Weyl criterion (theorem 8.8). Let E € [—2,2] and let 6 € [0,27) be such

that 2cosf = E. Consider the sequence in N € N of truncated plane waves travelling to the right:

0  otherwise

1 n=-—1 1 n=-—1
et? n=>0 e —F n=>0
2cosfe™ 1<n<N-—1 0 l<n<N-1
(N) = == _ (N) _ =n<
(hou™)(n) G(N-10 N ((ho—E)u™)(n) Gi(N=1)0 _ ppiN6 N
eiNo n=N+1 etVo n=N+1
0 otherwise 0 otherwise

Then for 1 < p < oo:

. Jhou™) — B, . (24 ]e"? — EP 4 |e!N=D0 _ peiNOpy1/p
lim = lim

N—ow H'LL(N) Hp N—w Nlp =0

. W
Hence ]\}linoo(ho - E)M =0.

1

If E were not in the spectrum of hg, then by continuity of (hg — E)~! we would have:

lm (ho — B)-1(hg — B)—"r im0
s (ho = E)~" (ho — )HU(N)HP_NI—I»IIOC [«™],

in contradiction to the fact that % are unit vectors.

For the case p = o, Corollary 2.2 gives [—2,2] = oy, (ho), the point spectrum of hg. O

To fully determine the spectrum of hg as an operator from ¢2(Z) to ¢%(Z), it is convenient to invoke
the Spectral theorem for (bounded) self-adjoint operators. We know of the existence of a unitary U :
(*(Z) — L*(M,dp) and a bounded real-valued function f such that hg is unitarily equivalent to the
operator of multiplication by f on L?(M,du). For the Laplacian, the unitary map is precisely the Fourier
transform:

F:13(7) - L? ([—7‘(‘,71’], d9> (Fu)(0) = Z u(n)e™?
27 =

with inverse given by
F (fnal gl )~ £@ D = (0 0).
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Proposition 2.6. hg : (*(Z) — (*(Z) is unitarily equivalent via the Fourier transform F to the multi-
plication operator M, : L? ([—m, 7], 2) — L? ([—m, 7], 2£) by the function g(0) = 2cos(0), that is:

2T oy

([FhoF11£) (6) = 2c08(6) £ ().

In particular, o(hg) = ess ran (2cos(f)) = [-2,2].

Proof. ¥or f e L* ([—m, 7], %), we have :

([roF~11f) () = (=17, 1(0) ) + (2, £(6) ) = (e, 2c08(0)1(9) )

and so
([fhorl] f) 0= <em9, 2 cos(6) f(9)>em9 — 2cos(0) £ (6).
nez
By proposition 8.22, o(hg) = o(M,) = ess ran (2cos(f)) = [—2,2]. O

We now look to extend the result about the spectrum to all £2(Z) spaces.

Given an infinite array (anm);-_o»
:

(Au)(n) := > anpmu(m). Recall that we have the following standard results:

meZ

we can form a formal operator A from ¢(Z) to itself acting as

[l =sup (3 lanm] )i 14k = sup (Ylanml)s 14l < |AI7]AL .
m n n m

[Al: and |A]s deal with sums along columns and rows of A. We add another similar result which

deals with sums along diagonals of A:

Lemma 2.7. Let A = (a;;){

ii=—o e an infinite matriz satisfying M := >, sup la;j| < . Then

keZi—j=k
A:P(Z) — (P(Z) is a bounded operator for 1 < p < 0.

Proof. Let x be a unit vector. For 1 < p < oo:

sty = (3] S| )" = (B (Sheoel)’)

? J

1/p

- (Z (Z ‘aij|1_1/p|aij|l/p|$j‘)p)1/p
i

N (zil(;|aij|(1—1/p)q>p/f1(;|aij|xj|p>)1/f’ - (2 (2 sup |akl|) (;'ainxj'p))l/p

i k—l=i—j

<Z(Z sup |akl|) (me”xﬂ ))l/p :Ml/q(zzmijnx”p)l/p
I
_ Ml/q<;|xj|p;aij|)l/p - Ml/q(;|xj|p2ik_slu13_j|am|>1 _ Ml/q+1/p<2|x IP) Yy

We have used Holder’s inequality and the fact that one can interchange the order of summation for

positive doubly indexed sequences. For p = oo:

[Az|o = sup‘ Z aijxj‘ < sup Z lagjz;| < supz laij| < M.
i€Z jez i€Z jez i€Z jez

14
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Notation 2.8. By definition, for z € p(ho), (ho — 2) : £?(Z) — €*(Z) is invertible with bounded inverse.
Let A(z) be the matriz operator with elements given by anm(2) = (5n, (hog — 2)"L6m).

Theorem 2.9. Let z € p(hgy) as an operator from (*(Z) to itself. Then the matriz elements of A(z)
satisfy:
|nm (2)] = |(Bns (ho — 2) " 1m )| < Ce™Im=7l (2.1)

VYm,n € Z and for some constants v,C > 0 which depend on z. In particular A(z) : (P(Z) — (P(Z) is a

bounded linear operator for 1 < p < o0.

Proof. Assume m > n:

<6n» (hO - Z)_16m> = <6na []:_1M(2cos(9)—z)—1]:]5m> = <(5n,.7:_1 (éieim9)>

2cost — z /2

—1ik0 eimb z(m n)o 1 Am—n
<5n, > J —df = — § —d\.
kz‘/27r ,WQCOSQ—Z\/QW 2 2cosf — z 2mi A2 —Az+1
Al=1
Now M2 —Xz+1=0— Al = ztvziod V2ZL4. Notice that A\{As = 1, so that either both roots are on
the unit circle, or one is inside and the other outside. In the first case, suppose that \; = €®. Then
2c08¢ = €% + e % = 2z = 2 € [-2,2]. However [—2,2] = o(hg), so it never happens that both roots
are on the unit circle. In the other case, suppose for definiteness that |A\;| < 1 and |A2| > 1. Then an

application of Cauchy’s integral formula gives:

m—n m—n (m—n)(In [A1]|+7 arg A1)
A d\ — Al _e
A=) (A= A2) AL — A2 A1 — A2

<5n7 (hO - 2)715m> = ZLT('Z § (

A]=1

Define y(z) := —In|A1| and C(z) := |ﬁ| Then v(2), C(2) > 0 and [(6,,, (ho—2) "'y = C(2)e7)m=nl,

If n > m, then |(5,,, (ho — 2) " 0| = |{Om, (ho — )~ 16,)| = C(2)e~ @M="l Equation (2.1) follows by
taking C' = max{C(z),C(z)} and v = min{y(z),v(2)}.
That A(z) : ¢P(Z) — ¢P(Z) is a bounded linear operator for 1 < p < o0 now follows from lemma 2.7

and the fact that ) e *l < o0 O
kezZ
The proof of the preceding theorem contains a lot of useful information that we will get back to after;

but to finish what we had started, we have:

Theorem 2.10. For all 1 < p < w0, o(hy) = [—2,2] as an operator from €P(Z) to (P(Z). In all cases
R(hg, z) = A(z).

Proof. By proposition 2.5, it remains to prove that [—2,2]¢ < p(hg). We know that the result holds for
ho : 2(Z) — (%(Z). Fix z € [~2,2]° and let u € 7(Z) (1 < p < o). Then ([(ho - z)A]u) (n) =

= Z (1, (ho — 2) " 6, u(m Z (g1, (hg — 2) Lomdu(m) — = Z (8, (ho — 2) 716, du(m)

meZ meZ meZ

= Z (<6n71, (hO - 2)715m> + <5n+17 (hO - 2)715m> - Z<5n7 (hO - Z)il(sm>)u(m)

meZ
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= Z {(ho = 2)6n, (ho — 2) Lo ou(m) = u(n).

meZ

Furthermore:

([A(ho —2) ) = N (s (ho = 2) " 8 (u(m — 1) + u(m + 1) — zu(m))

meZ
= Z (6, (ho — 2) " omdulm Z (6, (ho — 2) 1 omdulm + 1) — 2 Z (6, (ho — 2) " omdu(m)
meZ meZ me”Z
= Y (On. (ho = 2) omsu(m) + ) (B, (ho — 2) " Hom_yu(m) — 2 Y. (B, (ho — 2) ™ S )u(m)
meZ meZ meZ
= (<5n, (ho — 2) " a1 + Gy (ho — 2) " 61 du(m) — 28y, (ho — z)_15m>>u(m)
meZ

= Z (6, (ho — 2) " (ho — 2)6m u(m) = u(n).

meZ
The above calculations are justified since all sums converge (absolutely). They show that (hy — 2) :
(P(Z) — (P(Z) is a bijection with inverse A, which we know to be bounded. Hence z € p(hg) as an
operator from (P(Z) to (P (Z). O

2.2 Boundary Values of the Resolvent and Green’s Function for the Laplacian

We now turn our attention to those values z in the resolvent of hg that have Im z # 0.

For later use, we advise the reader that we will be using the convention that

Vz = +\f (51gn Wzl + 2 +iv/)z] — m) (2.2)

Proposition 2.11. For E € R and for allne Z:

. - a1 _ v
51—1>Hi10<6”’ (ho — E —ig) o)== T2 (2.3)
Proof. From the calculations of theorem 2.9, we know that (§,,(ho — 2)"16,) = /\2 = + \/Zi y

depending on whether \; = ¥z =1 z2 or \; = Z=¥E= 22 . Let z = E +ieg, ¢ # 0. Applylng formula (2.2)

gives:
\/ﬁ when £ =0
1
z2—4 | sign(Be) \/\/(E2—52—4)2+(2Es)2+(E2—52—4) - i\/\/(EQ—52—4)2+(2Ee)2—(E2—52—4) hen E £ 0
V2 V(E?—e2-4)2 1 (2E¢)? when £ 7

From lemma 1.12, sign(Im (8, (kg — 2z)~'6,,)) = sign(Im z) which allows us to adjust the signs:

G o = )50 = = S22

Finally the result follows by taking the limit. O]
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Proposition 2.12. For all n,m € Z, the Green’s function is given by:

sign(Im z) (z — sign(Im 2)v/22 — 4)Im—"

_ _ ,\1 -
G(Z, n, m) - <5n7 (hO Z) 5m> - m 2|m—n| (24)
and N |
. . e +i  (EFivd— E?2)mn
p— J— 1 =
E1_1)r§0 G(E +ie,n,m) := {bp, (ho — E Fi0) " 0 i Sl . (2.5)
Moreover,
G(z,n,m) = G(z,n,m). (2.6)
Proof. From proposition 2.11 we see that \; = 2+v2=4 V222_4 < sign(e) < 0.
The result again follows from the calculations of proposition 2.9, namely (4, (ho — 2) " 16,,) = ))\‘EH:;Q
for m > n. Note that —v/z? —4 = v/22 — 4 and ——~— = ——L—. That shows the identity (2.6). O

\/z2—4 T Vz2—4
The Green’s functions tend to different limits as € — 0, which reflects the jump discontinuity of the

resolvent through the spectrum of hg. For further use, we’ll need in particular the formula:

iE__ 11 Fel[-272]

24/4—E? 2
11{51<50, (ho - 2)7151> = (27)
€ — Esign(E c

2 /Eg2£4) + % Ee [*272]

We can find another interesting way to express the Green’s function for |z| > 2:

o0
Proposition 2.13. For [z| > 2, (6|(ho — 2) " 0,) = — > 51 {d0|h§0n), where
k=0

(&) k= |n| and kK —n is even
2

0 otherwise

<5m7 hg n+m> = <50a h55n> = {

Proof.
o8]
For the first part, note that for |z| > 2, (h—2)7! = —=1(1 — &)=t = —1 % A2 For the second part

z

we give two different proofs. The first goes as follows:

{00, h"d,, ) is equal to the number of paths P = (P(1), P(2), ..., P(k)) on the lattice of length x starting
at P(1) = 0 and ending at P(k) = n and satisfying |P(i)— P(i+1)| = 1 for 1 <4 < k—1. For a given path
P, let k;, and ki be the number of displacements to the left and right respectively. Then kj, + kg = k
and kr(—1) + kr(1l) = n. So the number of such paths is 0 if k < |n| or if x and n don’t have the same
parity, and is equal to ( % ) = ( é ) otherwise. Note that reasoning in terms of paths shows that we
have translation invariance, i.e. (09|h"d0n) = (Om|h*Onim) ¥Yn,m € Z, so we have in fact calculated all
matrix elements of h".

The second proof uses the fact that the Fourier transform is inner product preserving, namely:
ind

1 (™ -
(2cos€)’“6 ) J (2cosB)" e dp

ol S
{dol 5 = om

5n> = <\/%|

—T

n

1 1k ? 1 o (k 9 rtm—
_ KE dy = — J—k+mn ld .
2ms § (z+27) Pl 27”;3 (j) §) - -

|z|=1 |z|=1
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By the fundamental result 5 §|z|:1 2Mdz = 1ifm = —1 and 0if m € Z\{—1}, we get that {§p|h" 6, ) = (;)
if there exists jp, 0 < jo < k satisfying 2jp = k — n, and equals 0 otherwise. This is equivalent to the
formulation given before. ]

We end the section by computing the spectral measures ps, for the canonical basis elements {4, }.

Note that by the formula of the Green’s function we see that ps, = ps,, for all n,m.

Proposition 2.14. Let ug be the spectral measure for dg and hg. Then ug is purely absolutely continuous

and
d/l,() 1 1

)= = —— 1
d () TVi—a2 [-2,2]
Proof. We know that hg is unitarily equivalent to the operator of multiplication by 2cosf (proposition

3.5). Hence (0, f(ho)do) = 5= §"_ f(2cos#)df. Letting 2cosd = x, df = \/7 for 0 e [—m 0] and df =

—\/40217 for 6 € [O,ﬂ'] Hence S[R d,uo( ) = <60, (ho 50> = S f 4 :1:2 — S2 4
S f (m)%ﬁﬂ[_zz]( x)dzx. Since this holds for all bounded Borel functlons f, the result follows. O

(). (2.8)

w2

2.3 The Green’s Function for the Schrodinger Operator

The goal of this section is to show that regardless the potential, the Green’s function G(z,n,m) for the

Schrodinger operator decay exponentially.

Proposition 2.15. For 1 < p < o, h : lP(Z) — (P(Z) is a bounded operator if and only if |V =
sup |V (n)| < 0. Furthermore: |h]ep <24 |V]ep-
nez

Proof. If there is a sequence V' (ny,) such that klgrcio |V (nk)| — o0, then ||hd,, |, — o0 and so h is unbounded.
The rest follows from |Aller < [holler + [V]er <2+ |V|oo. O

In the most part of this thesis, we will assume tht |V, < 0. Consequently V' is a bounded
operator and (u, Vo) = (Vu,v) for all u,v € (?(Z) shows that V : (2(Z) — (*(Z) is a self-adjoint
operator. If V' is an unbounded operator, self-adjointness is a consequence of proposition 8.21. In any
case Dom (h) = Dom (V) = ¢%(Z) if and only if |V, < o0 and h : Dom (V) — (2(Z) is self-adjoint.

Later on we will be interested in characterizing the spectrum of h : £2(Z) — ¢?(Z) for various potentials
V. We can already mention that o(h) < [-2 — |V, 2 + |V x], the formula being obviously true if V" is
unbounded and follows from the fact that for bounded self-adjoint operators, the spectral radius is equal
to the operator’s norm.

We will prove a fundamental estimate on {8, (h — z)~16,,) for z € p(h). This will allow us to show,
among other things, that for 1 < p < oo, the spectrum of h as an operator from ¢?(Z) to itself is the same
as its spectrum as an operator from ¢2(Z) to itself. The argument we employ is a Combes-Thomas type

argument. Of course we have an a priori estimate

|<5n7 (h - 2)716m>| < m = é (29)

Definition 2.16. For a € R, define the maps:
(i) T : 3(2) - 2(2) , (Tau)(n) = e u(n).
(ii) he : 02(Z) > 0%(Z) , hg =T, ohoTF.

(ili) Ry :0%3(Z) — 03(Z), (Rau)(n) = (e7* — Du(n + 1) + (e’ — Du(n — 1).
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Equivalently, we can write R, = (e7* — 1)R + (e'® — 1) L. It is obvious that T, and R, are bounded
operators and R, is self-adjoint. We really need a to be real in the definition of h, otherwise T, is not
unitary. However we can allow a to be complex in the definition of R,. The proof of the following lemma

is staightforward.
Lemma 2.17. The map T, satisfies:
(i) Ty is unitary.
(i) T* = T_,.
(if)) T, 0y = T, © Th,.
Proposition 2.18. Let z € p(h) as an operator from €*(Z) to itself. Then Ya € R:
(1) hg is unitarily equivalent to h.
(ii) he = h+ R,.
(ili) (hg —2) = (h—2)[1+ (h—2)"'Ry] and (hy — 2) L =[1+ (h — 2) 1R (h — 2)7L.
(iv) (Opy (B — 2) 710y = €75 [T+ (h— 2) " Ry (h — 2) 71 ,).
Proof.
(i) hq = T,hTF and T, is unitary by lemma 2.17.
(i) First, hy = T,hTF = TohoTX + T, VT = TohoT¥ + V. Then:
([T5]u)(n) = e~ *"u(n)

(ThoT ) (n) = e~ Dufn + 1) + e 0 Du(n - 1)

([Tuho T} u)(n) = e “u(n + 1) + e*u(n — 1).

Finally:

=e "y(n+ 1) + eu(n — 1) + V(n)u(n)
= (u(n+1) +u(n— 1)+ V(n)u(n)) + (e~ — Du(n + 1) + (e"* — Du(n — 1)
= (hu)(n) + (Rau)(n).

(hau)(n)

(iii) (he —2) = (h—2) + Ry = (h— 2)[1 + (h — 2) ' R,]. Since h, and h are unitarily equivalent,
z € p(h) < z € p(h,) and it follows that [1 + (h — 2)"!R,] is a bijection.

(iv)
By (h = 2) " 00> = (Tubn, To(h — 2) T TH T8, = e =™ (5, Ty (h — 2) " T 6,,)

— ¢S (R — 2) ) = e TGS 14 (h— 2) T Ry T (b — 2) ).
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We can reformulate the last item of the previous theorem as follows: the map
Raa— e ™5, [1+ (h—2)'Ry] (h—2) ') e C (2.10)

is constant and equals (&, (h — 2)~1d,,>. We proceed to extend this map analytically. We remind the
reader of two useful facts from complex analysis.

Theorem 2.19.

(i) (Identity theorem) Given functions f and g holomorphic on a connected open set D < C, and a

sequence {Tn}nen of points in D converging to x € D, if f(x,) = g(x,) Vn € N, then f =g on D.

(i) Let {fn(2)}2_y be a sequence of holomorphic functions on an open connected set D < C which
converge uniformly to f(z). Then f(z) is holomorphic on D.

Notation 2.20. Denote D, (C) ={aeC:|a| <7} and D.(R) ={aeR: |a| < r}.
Theorem 2.21. Let z € p(h) as an operator from (%(Z) to itself. Then for a € C:
(i) [Rale= < 2lalelel.
(i) The map C 3 a — R, € B({*(Z)) is entire analytic.

(iil) Let rg > 0 be the unique number such that 2roe™ = d := dist(z,0(h)). Then for |a| < ro, we have:

d

L+ (=) Ral ™ = PP Ih=2) T Bl L+ (=) Ral ™ = gy
j=0

(iv) The map D,,(C) 3a — [1 + (h— 2)"'R,]~t € B(¢*(Z)) is analytic.

(v) The map
D, (C)3a— e @=m(5 1+ (h—2)"'Ry] L (h — 2)" 16,

is the analytic continuation of the map
D, (R)3a — e ™5 (14 (h—2) "' Re] H(h — 2) " 6m).

In particular, for alla € D, (C): (5,, (h—2)"16m) = e~ @=m)(§, [14(h—2)""Ro] " (h—2)"10,).
Proof.

(i) If a € R, the following argument works:
IRa| < [(e7" — D)R| + ||(e’* = 1)L| < |e™% — 1] + |¢'® — 1| < 4]sin(a/2)| < 2|a| < 2|alel.

However in general we need the following inequality: for ¢ € C, |e! — 1] =

S EEE
n=0 n>1
ell —1. By the Mean Value theorem, ¢-=¢" = ¢¢ for some c € [0, [t]], so |ef — 1] < ell — 1 = [t|e¢ <

[¢[—0
|t] el
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(ii) This is equivalent to verifying that the map C 3 a — A(R,) € C is entire analytic for every linear
functional A € (B(£2(Z)))*. But A(R,) = (e7% — 1)A(R) + (e’® — 1)A\(L) which is just the sum of
two entire analytic functions (A(R) and A\(L) are just constants for a given \).

PO . .
(ili) If [a| < 7o, then [(h—z) " R, < 52alel®l < 22rgem™ = 1. S0 3 (—1)/[(h—2)"*R,)7 is well defined

7=0
and equals [1 + (h — 2)"*R,]~!. For the second part, |[[1 + (h —2)"1R,]7!| =

(VL= R £ Y 1= Rl = Y (F2lake) = g
j=0 =0

ISE

0

J

(iv) We show that the map D, ,_. 3 a — [1 + (h — 2)"'R,] 7! € B({?(Z)) is weakly analytic for every
e > 0. Let \ be any linear functional on B(¢2(Z)). By continuity of A, for every a € D,,_.:
X . . * . .
AL+ (h=2)7"Ra] ™) = A (Z (=D)’[(h — Z)_lRa]j> =2 A((—1)][(’1 - z)_lRa]j>~
j=0

J=0

Since a — R, analytic and the product of operator-valued analytic functions are analytic, we obtain

Mcwie-rp )L
j=0

of complex-valued analytic functions. For a € D,,_., we have:

a sequence

- _ - _ - 2(rg — €)elro=e) I
(11027 R )| < G = 7 Rl < o (20 -0
rg—€ 0
Since Aro=e)el0™) < 1, the series Y, M; converges and so by the Weierstrass M-test, the sequence
j=0

N . , o , ,
Sn(a) = 3 A((—l)ﬂ[(h — z)lRaP) converges uniformly to > A((—l)][(h - z)lRa]J). By
j=0 =

7=0

0

theorem 2.19 we conclude that 3 A((—l)j[(h - z)_lRa]j) is analytic on D,,_.. The result

j=0
follows by taking € — 0.

(v) From (iv), we get that the map D,,(C) 3a — [1 + (h — 2) 7 R,] 7 (h — 2)~! € B(¢?(Z)) is weakly
analytic. In particular the map D,,(C) 3 a — (§,,[1 + (h — 2) " R,]"Y(h — 2)716,,) € C is
analytic. Therefore, the maps D, (C) 3 a — e~ "™)(5, [1 4+ (h — 2)"'Rq]"*(h — 2)~15,,) and
D,,(C) 3 a — {(8,,(h — 2)718,,) are two analytic maps that agree on D, (R) by (2.10). It follows
by the Identity theorem that these two maps agree on D, (C).

O

We are now ready to prove our fundamental estimate, the analogous result to theorem 2.9. For

z € p(h) as an operator from ¢?(Z) to itself, let A(z) be the infinite matrix operator whose entries are
A = {Ony (h — 2) 7 0.

Theorem 2.22. The matriz elements of A(z) satisfy
|@nm| := [, (B — 2) 76,0 < Ce7In=m
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where C,y > 0 depend only on z. In particular A(z) : £P(Z) — (P(Z) is a bounded linear operator for
1<p<oo.

Proof.
By part (v) of theorem 2.21, we have that for all a € D,.,(C):

1

[y (= 2) "0l = e[, [1 4+ (B = 2) 7 Ra] ™ (A = 2) o) < e~ ™|
d —2|ale

The result follows by choosing a = —iysign(n — m) where 0 < v < 7. O
An identical computation as in proposition 2.10 shows that if z € p(h) as an operator from ¢%(Z) to
itself, then z € p(h) as an operator from ¢P(Z) to itself for all 1 < p < co. To show that the resolvent sets

are in fact the same, we will use the following fact concerning Banach space adjoints:

Definition 2.23. Given Banach spaces X,Y and a bounded linear operator A : X — Y, the Banach
space adjoint of A, denoted A’, is defined to be the bounded linear operator from Y* to X* such that for
all N eY*, v e X:

(A'X)(z) = MAz).

We explicitly compute the Banach space adjoint of h — z : £P(Z) — (P(Z) for 1 < p < oo:
Proposition 2.24. Let 1 < p < o0, q its conjugate exponent and denote U : ((P(Z))* — (1(Z) the
isometric isomorphism. Then (h — z)" : (¢P(2))* — (¢P(Z))* satisfies

(h—2) =UYh—2)U. (2.11)

Proof. Let we (P(Z), e ((P(2))*, UX = {\(n)}nez. Then:

[(h—2)Au = A((h—2)u) = Z A(n) (u(n + 1) + u(n — 1) + V(n)u(n) — zu(n))

nez

= > (AMn+1) + An—1) + V(n)A(n) — 2A(n)) u(n).

nezZ

The above calculation is justified since the sums converge (absolutely) by Holder’s inequality. For the
sake of clarity, define A := (h — z)'A € (¢2(Z))* and UX = {\(n)}nez € £4(Z). Then we have

[(h=2)Mu= Y An)u(n) = Y. (AMn+1)+ An—1) + V(n)A(n) — 2A(n)) u(n).

nez nezZ

Since this is true for all u € ¢P(Z), we must have
A+ 1)+ AXn +1) + V(n)A(n) — 2A(n)) = A(n)

for all n. In other words, (h — 2)UX = UX = U(h — z)’\. Finally, since this is true for all X € (¢7(Z))*,
we get (h—2) =U"*(h—2)U. O

In our situation the Banach space adjoint A’ is of interest because it enjoys the following relationship
with A:

Theorem 2.25. Let X be a Banach space, A€ B(X). Then o(A) = o(A’) and R(A’,z) = R(A4, z)".
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Reed-Simon attribute the theorem to Phillips.

We will also need a Riesz-Thorin interpolation type result:

Theorem 2.26. Let 1 < py < p; < 0. Forte[0,1], let p;* := (1—t)py +tpy L. If A: Po(Z) — 7°(Z)
and A : tP1(Z) — (P (Z) are bounded linear maps with respective norms My and My, then A : (P*(Z) —

P (Z) is a bounded linear operator with norm less than My " Mj.
Note that p; takes all values between pg and p; as t varies from 0 to 1.

Notation 2.27. For 1 < p < o0, denote o(h,p) and p(h,p) the spectrum and resolvent set of h as an
operator from (P (Z) to itself.

Theorem 2.28. For all1 <p < o, o(h,p) =o(h,2). For p =0, o(h,0) < o(h,2).

Proof. Remains to show that p(h,p) < p(h,2) for 1 < p < . Denote ¢ the conjugate exponent of p. We

have:

z € p(h,p) < (h—2): (P(Z) — (P(Z) is a bijection and (h — 2)~! € B({*(Z))
z)

< (h—2) : ((P(2))* — (£P(Z2))* is a bijection and [(h — 2)']~! € B((¢*(2))¥)
< (h—2): 09(Z) — £%(Z) is a bijection and (h — 2)~' € B(£%(Z))
)

Here we have used theorem 2.25 and proposition 2.24. We apply theorem 2.26 to get that (h — z)~! :
(?(7) — (*(Z) is a bounded operator. Hence z € p(h,2). O

We end this section by giving another consequence of the exponential decay of the Green’s function.

Proposition 2.29. Let z € p(h). Then the sequences uy(z) and u_(z) € E(z) introduced in lemma 1.13
are in fact exponentially decaying at +00 and —oo respectively. Moreover they are exponentially growing

at —o0 and 400 respectively.

Proof. Recall that uy (n, z) = (8, (h—=2)"161) forn > Land u_(n, z) = (5, (h—2z)"15_1) for n < 1. Their
Wronskian W (u,,u_) is constant. By theorem 2.22 we know that u, and u_ in fact decay exponentially
at +o0 and —oo respectively. The Wronskian cannot be zero, since if they were linearly dependent, i.e.
uy = au_ for some a # 0, then they would be eigenvectors in ¢?(Z), contradicting z € p(h). For n > 1,
we get

Wy, ua)] < Jug (n)u—(n+ 1] + u_(n)ug (n+1)]

< 0 (Do )]+ e o)) = 0 (P Rl

e’y(n+1) en

So % < lér_r)l -lrlg W;# This shows that u_ is eventually exponentially growing at +o0. A similar

calculation shows the result for u, at —oo. O

2.4 The Spectral theorem for the Schrodinger Operator

In this section we will denote H := ¢*(Z) and we will assume that V is a bounded potential so that h is

a bounded operator.
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Lemma 2.30. For all k € Z the pair of vectors {0y, dr+1} is a cyclic set for h and H.

Proof. Let L be the linear span of {h"dy, h"6,11 : n > 0}. We need to show that £ is dense in ¢?(Z).
Opt2 = hgy1 — 0 — Vk110k+1 SO Opy2 € L. Inductively we get 6, € L for all m > k + 2. A similar
induction shows that §,, € £ for all m < k — 1. O

In what follows we will be working with the cyclic set {Jo, d1}. It follows from the general theory that
h has spectral multiplicity two.

For i = 0,1, let H; be the cyclic subspace generated by h and ;. Let U; : H; — L?*(R,dus,) be the
unique spectral unitary operators and p;, the spectral measures for H; and §;. We have (U;h)f = E(U;f)
for all f e H; and (U;6;)(E) = Lsupp us, (£). A similar analysis done in the half line case (theorem 3.11)

shows that the following limits

) _ _ a1 . _ _ a1
o ImG (h= B—ie) Y0, O (b= B~ ig)"'6n)

el0 Im<5l, (h —F - i5)71(5i> ’ €l0 <(52, (h —F - 7;5)71(52'>

exist and are finite for ps, ac — a.e. £ and ps, sing — a.€. £ respectively. They define functions 57(5)(E) for
every n € Z. If 1; denotes the orthogonal projection on H;, then we have (U;1;5,)(E) = 5 (E). For
ts, — a.e. E the sequence {6511) (E)}nez satisfies the Schrodinger equation:

89 (B) + 60 (B) + V(n)s®(E) = EsQ)(E).

If we follow the general theory, the next step is to glue the subspaces Hy and H; together as follows.
Since Hg < H, we have 113-51 = 01 — 1901 # 0, where ]lé- denotes the orthogonal projection on 'Hé. Let
Ho be the cyclic space spanned by h and 136;.

Lemma 2.31.
(i) Ho and Hg are h-invariant.
(ii) 1oh = hly and 1gh = hig.
(iil) Ho = Hg and H = Ho ® Ho.
Proof.
(i) This is obvious.
(ii) Let f e H. (Loh)f = (Loh)(Lof + 15 f) = (hlg)f and so Loh = hlg by invariance.

(iii) We only need to show that Ho = Hg. (h"dg, h™1501) = (h"T™, 1561y = 0 for all n,m > 0. By
linearity and continuity of the inner product we get that Ho < Hg. Since H is a closed subspace
of Hg, we can decompose Hg into Ho @ (Ho)t. Now w € (Ho)t < (u + v,w) for all u € Hy and
v € Ho. However {5y, 01} are cyclic for h so there exists a sequence (w, )%_; converging to w, where

each w,, is of the form

N(n) N(n) N(n) N(n) N(n)
Z aj(hjé()) + Z bj(hjél) = 2 aj(hj&)) + 2 bj(hj:ﬂ.o(sl) + 2 b](hj]lé‘él)
j=0 J=0 J=0 J=0 J=0
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for some aj,b; € C. Using the fact that Ho and Ho are invariant, we can more simply write
Wy, = Uy, + v, where u, € Ho and v,, € Hg. Then |w|? = (lim w,,w) = lim (u, + v,,w) = 0 and
n—0o0 n—0o0

so (Ho)* = {0}.

O
Let fi5, be the spectral measure for h and 158; and U : Hy — L?(R,dfs,) be the corresponding

spectral unitary. The limits

. Im(156y, (h — E — i)~ 1156,) . 1361, (h— E —ie)~1568,)
el0 Im<]lé‘51, (h —F - i€)_1ﬂ.3‘51>, el0 <:ﬂ_é‘51, (h —F - Z'E)_ljlé‘61>

exist and are finite for 7is, »c — a.e. I and Jis, sing — a.e. E respectively and allow us to define functions
6, (E) for fig, — a.e. E. Moreover (U136,)(E) = §,(E). However this development fails to be useful
because the functions &, (E) do not satisfy the Schrédinger equation.

We will now describe the direct integral decomposition of A on H, and describe the eigenfunction
expansion.

Consider a family signed measures {u;; : i,j = 0,1} on R and the corresponding matrix valued

d d
o= Ho,0  Ho,1 odpi= Ho,0  @po,1 (2.12)
H1,0 11 dpio  dpng

For the following general procedure we will assume that p is a positive semi-definite and hermitian

measure :

matrix, that is, u(B) is positive semi-definite and hermitian for all Borel sets B. Let e1,ea be the
standard basis for C2. Then 0 < ef u(B)er = poo(B) and 0 < el u(B)ea = py1,1(B) shows that pg o
and fi,,; are positive measures on R. Hermicity implies 11901 = p1,0. We define the trace measure

W 1= po,0+p1,1, which is positive. Another consequence of positive semi-definiteness is that detu(B) > 0

so that [po1(B)| < +/po,0(B)pi,1(B) < % [(\/Fo.0 — v/fi1.1)% = 0 ]. Hence p; ; « p'" for i,j = 0,1.
We introduce the corresponding matrix of Radon-Nikodym derivatives:

(2.13)

d d
roo(p) CROL(E)
R E = R%‘] E i,7=0,1 = C/l"ililo d/711
(E) = (Ri j(E))ij=0 (a 2 (E) fﬁw;(E)>

Lemma 2.32. R(E) is positive semi-definite for u'" a.e. E.

Proof. Let Q = {¢ € C : ¢ has rational coordinates}. First note that

P:= {E € R: R(E) is positive definite } = m {E eR: Z &R (E)E > 0}
£0,61€Q 1,§=0,1

together with the fact that >, &R, ;(E)&; is a measurable function shows that P is a measurable set.

i,j=0,1
Now suppose by contradiction that R(E) is not positive definite u*" a.e. Then

,ﬁ‘( U {Ee[R: > @Ri,j(E)§j<o}> >0

£0,61€Q 1,7=0,1

Co

and so there is ( =
G

) € Q2 such that the set B((y, (1) := {E eR: X GRi;(E) < O} satisfies

i,5=0,1
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" (B(p,¢1)) > 0. Then the following yields a contradiction:

¢ u(B(Co, 1)) = Y, GRij(B)Gdu'(E) <0.
B(C0:C1) 4,j=0,1
O
Let U(F) be the unitary matrix which diagonalizes R(F), that is:
E 0
R(E) = U(B)* ) U(E). (2.14)
0 TQ(E)

Note that 0 < 71 (E),m2(F) < 1 and tr R(E) = r(E) +r2(F) = 1.
Consider the sesquilinear form on the collection of Borel measurable functions from R to C2: let
Fy(E), Fi(E),Go(E),G1(F) : R — C be measurable functions and let

F(E) = BB G(E) = Go(E) )
R (E) G1(E)

Define:

<F G> f N F(E)G;(E)dpi () (2.15)

4,7=0,1

- | X Eme® Y @)

i,j=0,1 du”’
N J[R<F(E), R(E)G(E))sta du'" (E)

Since R(E) is positive semi-definite and Hermitian, the sesquilinear form satisfies:

1. <F,aG + BH> = a<F,G> + B<F,H> for all a, 8 € C.
2. <F, G> - <G, F>
3. <FF> > 0.

Denote by £2(R,C?,du) the collection of Borel measurable functions F(E) = (

1] = \/@ <o

and define L*(R,C?,du) as the set of all equivalence classes in £?(R,C?, du) modulo the set of null
function, that is, F' and G belong to the same equivalence class if and only if |F' — G| = 0. Then
L?(R,C2,dpu) is a pre-Hilbert space with inner product given by 2.15. To show that L?(R,C?,du) is in
fact complete, note that the map

Fo(E) for which
Fi(E)

U: L3R, €2, du) — L(R, C2, (”EP 0 )) dp'™) (2.16)

ro(E
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U:F(E)— U(E)F(E) (2.17)

is unitary since
| F @) REGE s " (E) = | CEFE. (P, ) VEGCE) s du' (E).

Moreover, it is evident that L?(R, C2, (”(E) (OE)) dp'™) = L? ([R7 r(E)dut" (E)) @®L? ([R, 7‘1(E)d,u’”’(E))7
and the latter being a Hilbert space, because the direct sum of two Hilbert spaces is again a Hilbert space,
it follows that L?(R, C?,dpu) is complete.

We now construct a unitary map from ¢?(Z) to L*(R,C?,du) such that h acts as multiplication by £
in L?(R,C?,du). A direct proof of completeness can be found in Chapter 1.4 of [C ].

We now come back to the Schrodinger operator.

Definition 2.33. Fori = 0,1, let p; ; denote the spectral measure for h and 6;, and H; the corresponding

cyclic subspaces. Let p := oo + p1,1. These are positive measures and ji;; < p.
As a consequence of proposition 8.14, we have:
Proposition 2.34. supp p = o(h), supp pac = Gac(h), SUPD Psing = Osing(h)-

By the polarization identity there are spectral measures o1 and pq o for h such that Vz € C\R:

d
(s (h— )16,y = f dri0.1(F) —Fuo,l(z)
G =270 = | ot®)
’ E—Z H1,0

We show that the matrix measure
e (2.18)
M10  HM1,1
satisfies the assumptions given in (2.12). But first we need the following lemma:
Lemma 2.35. (Uplod1)(E) and (U111d0)(E) are real valued functions.

Proof. For all f € Hy, [(Uoh)f](E) = E[Uof](E). In particular, we have (Uydp)(E) = 1(E) and for
k=1, (Uh*sy) = E¥1(E). Hence {h*dy : k = 0} spans Ho while {E¥ : k > 0} spans UyH,. If we applied
the Gram-Schmidt orthonormalizaton procedure to both of these collections we would obtain sequences
in (?(Z) with real coefficients on the one hand and polynomials in L?(R,dug ) with real coefficients.
So 1pdy is a linear combination (or limit) of sequences with real coefficients and (Uplod1)(E) is a linear

combination (or limit) of polynomials with real coefficients. O

Proposition 2.36. po1 = p1,0 and these are signed measures (not complex). Moreover ug1 < p. More
specifically,
dpo, 1 (E) = (Uolod1)(E)dpo,o(E) = dp1o(E) = (Url16o)(E)dp,1 (E).

Proof. ¥z € C\R:

J 761‘;9’1@) = (8o, (h — 2)7"61) = (Lodo, (h — 2)7161) = (o, (h — 2) "' Lody) = f (Uoﬂoglg]f)d“O’O(E) .
R Z R z
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1
E—z
the Dominated Convergence theorem allows us to conclude dpg1(E) = (Uplodr)(E)dpoo(E) and thus
Ho1 K p.

Also, by lemma 2.35, p0,1 is indeed a signed measure. Next,

Because { P2 € C\[R} is dense in Cp(R), by approximating characteristic functions and applying

Gus (= 2)700) = oy =10 = [ PGB o) = [ P B ),
So we also have d,uLO(E) = (U()]lofsl)(E)d/LQo(E) O

As a result, the spectral matrix measure y is Hermitian. Remains to verify that:
Lemma 2.37. The spectral matrix measure p associated to h is positive semi-definite.

Proof. Let B be an arbitrary Borel set and &y, &; € C and consider its corresponding orthogonal projector
15(h). Then:

2
> 0.

N E&mig(B) = Y €& 15(h)d;) = |1p

2,7=0,1 1,7=0,1

(h) D) &b

i=0,1

O
Moving forward the fundamental solutions ¢(E) and s(E) € ¢(Z) to the Schrodinger equation satisfying
the initial conditions (c¢(0, E), ¢(1, E)) = (1,0) and (s(0, E), s(1, E)) = (0,1) will play a key role.

Proposition 2.38.

(i) For fired n € Z, c(n,E) and s(n, E) are polynomials in E with real coefficients and of degree at

most |n|.
(ii) For fired n € Z, 6,, = c¢(n,h)dg + s(n,h)d;.
(iil) £o(Z) = {Py(h)do + P1(h)d1 : Py, Py are polynomials}.
(iv) Ewvery f € £o(Z) decomposes into Py(h)dg + P1(h)d1 for some unique polynomials Py and P;.
Proof.

(i) By definition, ¢(0, E) is the function identically equal to 1 and ¢(1, E) is the function identically
equal to 0. The functions ¢(n, F) for n > 1 and n < 0 are inductively obtained by the Schrodinger
equation. So ¢(2,FE) = —1, ¢(3,E) = —(E — V(2)), etc.

(ii) The identity is easily checked for n = 0,1. We now proceed by induction. Assume that the formula
holds for 0,1, ...,n. Then:

c(n+1,h)00 + s(n+1,h)01 = [(h = V(n))e(n,h) —c(n—1,h)]dp + [(h = V(n))s(n,h) — s(n — 1,h)]d
= (h =V (n))[e(n, h)do + s(n,h)01] — [e(n — 1,h)do + s(n — 1, h)d1]

= (h=V(n))dn — bn

= Ony

n

The identity is also proved inductively for n < 0.
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(ili) Any f € £y(Z) can be written as Y f(n)d, = (>, f(n)e(n, h)) do+ (25, f(n)s(n, h)) 1. This shows
that £o(Z) < {Po(h)dp + P1(h)d1 : Py, Py are polynomials} and the reverse inclusion is obvious.

(iv) To show that the decomposition is unique, suppose that Py(h)dg + Pi(h)d1 = Qo(h)dp + Q1(h)d; <
[Po(h) — Qo(h)]do = [P1(h) — Q1(h)]61. If Py(h) — Qo(h) is monic of degree n > 0, then [Py(h) —
Qo(h)]dg =6—p + 6+ 2>, (O, [Po(h) — Qo(h)]do)dk, which forces the degree of Py(h) — Q1(h)

—n<k<n

to be simultaneously equal to n — 1 and n + 1, which is not possible. Hence Py(h) — Qo(h) =
Pi(h) = Q1(h) = 0.

O]
Denote P?(R, C?,du) the subset of L?(R, C2, du) consisting of vector valued polynomials. In particular

s(n,

S (E) = (mg) € PX(R,C2?, du).

Moreover,

(6u(E),6m(E) ) = L c(n, E)e(m, E)dpo,o(E) + J{R c(n, E)s(m, E)duo.1(E)

+ J[R s(n, E)e(m, E)dp,0(E) + J{R s(n, E)s(m, E)duy 1 (E)
= {e(n, h)do + s(n, h)d1, c(m, h)do + s(m, h)d1)
= (0n, 6m) (2.19)
shows that {d,,(EF) : n € Z} is an orthonormal family with respect to p.
Theorem 2.39.
(i) The map

U to(Z) — P(R,C2,dp)

U : Py(h)dy + Py (h)6, — P(E) = <P0(E)>

Py (E)

or equivalently,

Usf = fn)d, — > f(n)s,(E)

is a surjective isometry with inverse given by

U= P(E)— {<§n(E),P(E)>} .

n

(ii) The map extends uniquely to a unitary map
U:*(2) - L*(R,C?, du)

Uu: f = Z f(n)(Sn - Z f(n)(Sn(E)

neZ nez
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with the property that
(U™ fI(E) = Bf(E). (2.20)

Proof.

(i) The isometry comes from the fact that:

<P0(h)50 + Pl(h)(Sh PQ(h)(SO + P, (h)(51> = )Pj(E)duiJ'(E)

i,j=0,1'R

To show that the two different versions agree, note that if f = Py(h)dg + P1(h)d1 € €o(Z) and [ =
Do f(n)on, = (35, f(n)e(n, h))do + (25, f(n)s(n, h))d1, then Py(h) = > f(n)c(n,h) and Pi(h) =
Do f(n)s(n,h), so that > f(n)o,(E) = P(E).

To show surjectivity, note that
(6u(E), P(E) ) = (eln, h)o + s(n, R)31, Po(R)8o + Pr(R)81) = (B, Po(R)do + Pr(R)31)

and Py(h)dp + P1(h)d; obviously maps to P(E).
Finally, let P(E) € P2(R,C2,dp), P(E) = 3., <6n(E’), P(E’)>6n(E). Then

[(Uh <<5n . P(E’)> n <6n+1(E’), P(E’)> n V(n)<6n(E’), P(E’)>) 5(E)

> <<5n 1(E') + 0n41(E) + V(n)én(E’),P(E’)>) 5n(E)

- <<E 6 (E"), P(E’)>> on(E) = EP(E).

(ii) The extension follows by density of £5(Z) in ¢*(Z) and density of P?(R,C?,du) in L*(R, C?, du) (see

lemma 8.3).

Corollary 2.40. For all ¢ € C(R) or By(R):

[(Us(U™)FIE) = o(E)f(E). (2.21)

Proof. Tterating formula (2.20) and using linearity shows that for any polynomial ¢ and f, g € £2(Z):

(fo9(h)g) = (UNE), Us () )(E) ) = {UN(E), o(E)Ug)(E) ).

[Note that if V' were an unbounded potential, then instead of considering polynomials, we would be
considering functions of the form f,(x) = 1/(xz — z).] We show that this relation holds for all ¢ € By(R)
or C(R). Expanding the last relation gives:

| oEranso(B) = 1o = {UNELHEIUNE)) = [ BYpusun(E). @22)
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Although piy 4 and g4 are complex measures, we can split them up into a linear combination of four
positive measures and apply the Dominated Convergence theorem to each component. Let gg € C(R) and
choose a sequence of polynomials converging uniformly to ¢. [As pif., and pyfu, are concentrated on
o(h) we may restrict the analysis to a large enough interval]. It is easy to see that ¢ € L'(R, Lfg) O
L'(R, s fu4g) and an application of the Dominated Convergence theorem shows that (2.22) holds for ¢.
Then approximating characteristic functions with continuous functions shows that in fact pyr 4 = s rug-
Therefore (2.22) also holds for ¢ € By(R). O

Definition 2.41. For E € supp p, we form the matrix

dpo,0 dpo,1
R(E) = (dra(E) dr (E>> (2.23)

d, d,
deio () 4 (E)

The theorem on the differentiation of measures gives for i,j = 0, 1:

P, (FE+ i - 1
Rij(E) - lim i zs):r Im (6;,(h — E —ic)~ ;) p—ae E
elo Py(E+ie)  =l0 [<50, (h— E —ie)~16) + (01, (h — E — ie)~ 151>]

(2.24)
1 (E) 0

Let U(E) be the unitary matrix such that R(E) = U(E) ( 0 &
T2

)) U*(FE). As discussed at

the beginning of this section, we have the following isomorphism:

Tl(E) 0

U: L*(R,C? du) — L*(R,C?,
( 1) ( 0 ()

) dp) = L*(R, 1 (E)dp(E)) ® L*(R, r2(E)dp(E))  (2.25)

(UF)(E) = U(E)F(E) (2.26)
Definition 2.42. Let R(n,m, E) := (0,(E), R(E)dm(E))std-
A reformulation of equation (2.19) reads §; R(n, m, E)dp(E) = (6, 6 ). Moreover, by formula (2.21),

one easily works out that for all ¢ € C(R) or By(R):

fromygy = Y f H(EYR(n, m, B)dp(E). (2.27)

n, meZ
We can give a precise characterisation of the multiplicity of h as follows:
Definition 2.43. Fori =1,2, let ¢; := {F € supp p : R(F) has rank i}.

Note that the &; are Borel measurable sets since 1 = {detR(E) = 0} and &3 = {detR(E) > 0} and

detR(E) = dﬁl‘;’o (E) d’élp'l (E) — d’éz’l (E) d;;;,o (E) is a measurable function.

R(FE) is hermitian so it has a decomposition in terms of its eigenvectors {e;(F )}N(E) of the form
M) 1 one
R(E)= ) ri(E)ei(E){e;(E),"), where N(E) = ! (2.28)
i 2 on ey
We introduce the generalized eigenfunctions:
Definition 2.44. Let f;(E) € {(Z) be defined by f;(n, E) := A/1;(E){d,(E E))sia.
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Consequently

N(E) N(E)
R(n,m,E) = Z 7i(E){0n(E), €i(E))stalei(E), 6m(E))sta = Z fi(n, E) fi(m, E). (2.29)

Note that we have used the fact that R(n,m, E) = R(n,m, E).

Proposition 2.45. The f;(E) solve the Schrodinger equation and for E € o, fi(E) and fo(E) are

linearly independent.

Proof.
filn = 1.E) + filn + 1, E) + V(n) fi(n, E) = /1i(E)(Sn-1(E) + 6n11(E) + V()30 (E), :(E))sua
= V/ri(E)(E8u(E), ei(E))sa = Efi(n, E).
Next we show that the Wronskian is non-zero for E € :
W(f(E), f2(E)) = f1(0, E) (1, E) = f1(1, E) f2(0, E)
= /11(E)r2(E) (<50(E)7 e1(E))stal01(E), e2(E))sta — 01(E), e1(E))staldo(£), ez(E)>sm)

= /11 (E)ry(E)detU(E).

where we used the fact that the columns of U(E) are e;(F) and e2(E). O
Let 1.,(h) denote the orthogonal projections onto the subspaces correpsonding to ;. Note that
g1 U ey = o(h) and g1 N eg = & implies that 1., (h) @ 1., (h) is the identity operator on £2(Z).

Theorem 2.46. h = hl., (h)@®hl.,(h) and the spectral multiplicity of hl., (h) is one whereas the spectral
multiplicity of hle,(h) is two. The unitary map

2(2) - (R, 1.,dp) D L*(R, €, 1.,dp) (2.30)

3, fun. B)g(n) on &
3, fuln, E)g(n). X, f2(n, E)g(n)) on =

is such that hi., (h) is unitarily equivalent to multiplication by E on L?(R,1.,dp) and hi.,(h) is unitarily

(2.31)

9 =1{9(n)}nez — { (

equivalent to multiplication by E on L?(R,C? 1.,dp).
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The proof of this theorem is essentially the result of combining equations (2.27) and (2.29). Namely:
=Zwmmiﬁwmmmmmm@
+ Y uetm) | (BT E)fm. o

n,m

+2wmmﬁ¢wmmmmew

Finally, we have the equivalent of proposition 3.14, proved in the same way:

Proposition 2.47. For every ¢ > 0, there exists for p — a.e. E a constant ¢ = ¢(E) > 0 such that
|fi(n, B)| < c(n)'/?*< for alln e Z.

2.5 The Generalized Eigenfunction Expansion for the Laplacian

We apply the machinery developed in the previous section in the case of the Laplacian. For all n € Z,

Ee[-2,2]:
cn+1,E)\ (B -1\ [c,B)\ (E -1\ [0
cn,E) )] \1 0 c0,E)) \1 0 1
sin+1,E)\ (B -1\ (s(,B)\ (E -1\ [1
sim,E) ) \1 0 s0,E)) \1 0 0

E -1 TR ol
Lo ) are Eﬂfw. Let O(E) = arctan( 4EE2>.

and

The eigenvalues of the transfer matrix A(E,n) = <
Then
eT0E) if Fe(0,2)
E +iy4— E2 , . ’
T : _ eizH(E)-H‘n' if Ee (_2’0)
et i E=0

If the decomposition is A(E,n) = P~ (E)D(E)P(E), then for E € (0,2):

1 1 e~ WE 0 i e~ WE) 1
—1 _ _ _
P(E) = <ei0(E) 61’9(E)) D(E) = ( 0 eiG(E)) P(E) = A— F2 \ _ei0(B) 1

Therefore the fundamental solutions for E € (0, 2):

s(n, B) = —— (e=i0Em _ giomn) _ 2sm(6(E)n)
h@—m( NEM  (i0E) i (2.32)

2sin (0(E)(n — 1))

2.33
e (2.33)

c(n,E) =—
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Similarly for E € (—2,0), they are:

»2sin (0(E)n)
RV
e(n, B) = —(—1yn-1 250 0E)(n ~ 1))

and for £ = 0:

4— F?

s(n,0) = sin (7n/2)

¢(n,0) = —sin (r(n —1)/2)

Note that we have the following relationships:

Moreover:

s(n,E) = —s(—n, E), ¢(n,F) =

2sin (0(E)n) O(E)n A2

—s(n—1,E).

shows that s(n,2) = n. Similarly

For n > 0:

For n even,

gy s ) = i e (B Vi "
¢n,2)=—(n-1)
s(n,—2) = —(—=1)"n
c(n,—2) = (=1)"Yn—-1)
~1 E—VE2—4\" [(E+VE?Z—4\"
om ) = E2—4<( 2 ) _< 2 ) )

=0 7=0
n/2—1 n/2—1—k
n
-3 e |
= = 2041
n/2—1 n/2—1
n
-3 e 3
= a2+

34

o (1= (=1)"").

)

)

l
k

J

)|

k

B
2

o 4)n/2717i

- nﬂil rn/2—1—i n Tl/2 1
= 2i+1 '

) n—2k—1

E

2

)&
ol

) n—2k—1

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)



Notice that we have used the fact that:

Tl
)52
LI )

For n odd,

(n—1)/2
s(n,E) = o Z (;) Ezz’(Ez . 4)(n—1)/2—i
i=0

i=0 L j=0
- (":;/2 :(—1)k (n_;ﬁf_k (Z) ((n - 12/2 - l>] <§>n2k1
)

- (n—1)/2 —(_l)k (ni}/2< n )(l)] <E>n2k1
= = 20+ 1) \k 2

Hence for all n > 0

wn- S SEOIE™ e

k=0 I=k
where [[2]] = sup {ne Z:n < x}.

We use the boundary values to calculate the spectral measures. For E € [—2,2]:

dpi g . VR R VAT
dEJ = ;lgmglm (0i, (ho — £ — ig) 15j> = (1 4EE2 2; 41 > (2.41)
27 \/4—E? T \A—E?
with
(B) = oolB) + 11(B) = | 1 001(E) = (242
4 0,0 H1,1 5 [—2,2] ﬂ_m .
Using d’“ HELl = dgiEj 4E gives:

N dum' . 1/2 E/4
R(E) = dp (B) = (E/4 1/2)
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G (F 0 V(B LYY

(BB )E D) Sy
where
- = 1 E 1 E
e1(E) = <_¢§§> e2(E) = (ﬁ) n(E)=5-5 nE)=5+7 (2.44)
g1 ={FE€[-2,2]:detR(E) =0} = {+2} ey ={F€[-2,2]:detR(F) >0} =(-2,2) (2.45)
And the generalized eigenfunctions are:

Filn,B) = Vra(BYG,(B) er(B) = V172~ BB 2 eelE), (2.46)
fa(n, E) = A/12(E){6n(E),ea(E)) = A/1/2 + E/4M (2.47)

V2
3 The Discrete Schrodinger Operator on the Half Line

3.1 The Laplacian, its Spectrum and Boundary Values of the Resolvent

It is obvious that for 1 < p < oo, the shift operator R : (P(Z) — (P(Z4) is an isometry. L : (P(Z;) —
(P(Z,) is not an isometry however, but satisfies ||L|p = 1. Consequently hot?(Z,) < ¢?(Z,) and
[holler < |R|er + |L|er = 2. In fact:

Proposition 3.1. For 1 <p < w, hy: (P(Z,) — P(Z,) is a bounded linear operator and |holler = 2.

This proposition is proven exactly in the same as for the full line case (proposition 2.3). We obviously
need to check that:

Proposition 3.2. hg: (?(Z,) — (3(Z) is self-adjoint.

Proof. To show self-adjointness, it is enough to show that {(§,|hdm,) = {(hd,|0m) for all n,m € Z,
because of linearity and continuity of the inner product and of hg. For |[n —m| > 2 or n = m, clearly
(O |hdmy = {h0p|dm)y = 0, while if [n — m| = 1, (6, |hdpm) = (hdp|dm) = 1. O

We can also give an explicit basis for E(z).
Proposition 3.3. The following are a basis for E(z):

(i) For ze C\[-2,2]: u = {u(n) = (ZVZ=A)n  (2ZZdy=ny

(ii) For ze (=2,2): u={u(n) = sin(nb)},ez, , where 0 is such that z = 2 cos(0).
(ili) For z=2: u = {u(n) = n}nez, .
(iv) For z = —2: u = {u(n) = (=1)""n},ez, .

Proof. For A € C consider the sequence {u(n) = \" —A""},ez, . Then (hou)(n) = A+ A" u(n) = zu(n).

Solving for A in terms of z gives A = Ziv222_4. The solution for z € [—2,2] can easily be verified

directly. O
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Remark 3.1. On the modified half line ' :== {N,N + 1, N + 2, ...}, the basis for E(z) would be {u(n) =
(BTN (I N for 2 € O\[<2,2] and {u(n) = sin (0 = N + 1)0) }uer for
z € (—2,2).

We investigate the spectrum.
Proposition 3.4. For 1 <p < w, [-2,2] < a(hg) as an operator from (P(Z.) to itself.

Proof. The argument is analogous to proposition 2.5.
Let £ € (—2,2) and let 6 be such that 2cosf = E. Consider the truncated Weyl sequence:

YMeZ,: u'™(n):= { sin(nf) 1<n<m

0 n>m
Then
0 n =
0 l<n<m
((ho = BYul™)(n) = { =sin ((m+1)8) n=m
sin(m@) n=m+1
0 n>m+1

&, —B)ul™|,
As aresult of lemma 8.2, lim Hu(m)Hg = lim ] |sin(nf)|P = coforl < p < oo. Hence lim W =
m—0 m—00 "1 m—0 w P
0. The case p = o follows from proposition 3.3, because o,(ho) = (-2, 2). O
For the next result, we recall a few basic facts about Fourier series. Every f € L?([—m, 7], £), admits

the following decomposition:

18

f(0) = (an cos(nf) + by, sin(nG))

n=0

for some a,,b, € C. Moreover any function can be decomposed as the sum of an even and odd func-

tion = f(0) = [£(0) + F(=0)]/2 + [f(0) — f(=0)]/2. Let LI([-m, 7], 57) and L3([-,7],57) be the

subspaces of L?([—7, 7], %) of even and odd functions. These subspaces are closed and orthogonal. In

fact the map e™? — (cos(nf),sin(nf)) shows that L?([—m, 7], ) = L2([-m, 7], &) @ L2([-, 7], L£).
{1,v/2cos(f),+/2cos(26), ...} and {+/2sin(f), /2 sin(26), ...} are complete orthonormal sets for L2([—, ], %)
and L2([—m, ], 22).

Define the map

"om

Foiu—a(0) = 2 u(n)v/2sin(nd).

n>1

i) — 2 (fmal 7 )

The map is well defined and inner product preserving:

{u, vy = Z Uy Uy = Z U U Onm = Z T vm{V/2sin(nh), V2 sin(md)) = ((0),5(6)).

n>1 n,m>1 n,m=>1
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Therefore F, extends uniquely to a map from ¢2(Z) to L2([—n, 7], 49) and is surjective from the general

theory of Fourier series. The inverse is:

]}5_1 : Lg ([—71',7?], ;;i) — EQ(Z+)
U f o fn) = (V2sin(nb), £(6)) = ﬁ sin(nf) (6) 5.

However since the map L2 ([ T, 7], gz) — L2([0,7],df), v/2sin(nf) — 1/2/7sin(nf) is unitary, it is

more customary to write the Fourier sine transform as follows:

Fo:bo(Zy) — LA([0, 7], db)

Fs:u— u(0) Z (n)\/2/m sin(n#).

n>1

with inverse

FoULA([0,7], d6) — 2(Z,)
Fbs S = (/2 msin(ud), (6)) = [ /2msin(ut) £6)05.

Proposition 3.5. hg : (*(Z,) — (*>(Z) is unitarily equivalent via the Fourier sine transform F to the
multiplication operator My : L? ([0, 7], df) — L? ([0, 7],d0) by the function g(0) = 2cos(6), that is:

(IFuhoF11F) 8) = 2c0s(6) £(0).
In particular, o(hg) = ess ran (2cos(0)) = [—2,2].

)

Proof. For f e L*([0,r],df), we have :

([hof ) <\/2/77rs1n(n71 ) > <\/2/7s1n(n+1 )f(0)>
= <\/2/751n (nd),2cos 9)f(9)>

and so

([fshofgl]f) 0) = Z <V2/751n(n9)2cos(9)f(9)>\/2/77rsin(n9) = 2cos(0)f(6).

nezZ

O

Remark 3.2. On the modified half line I’ = {N,N + 1, N + 2,...}, the Fourier sine transform is u(0) =

\/2/7 sin ((n — N+ 1)9).
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There is another way of writing out the Spectral theorem for hy. The change of variable § = arccos(z)

shows that there is a unitary map

U:03(7,) — L*([-1,1],dx) (3.1)

u = {u(n)}nez — (Ou)(zx) = Z ) sin(n arccos(z)). (3.2)

™1 — m2 n>1
and hg is unitarily equivalent to multiplication by z.

Proposition 3.6. Let us, be the spectral measure for 61 and hg. Then s, is purely absolutely continuous

and

dlu/51 1
T () = Py 4 — 221[_g 9)(7). (3.3)

Proof. (81, f(ho)é1) = § 2 5in*(0) f(2cos 0)df. Letting 2cosf = z, df = —\/ZIL for 6 € [0,7]. Hence
Se f(@)dus, (z) = (01, f(ho)d1) = S_Qf x)V4 — x2dx/(2m) = §i f(2)V4 — 2?1y o1 (x)dx/(27). O
Note that pus, is a probability measure and the Lebesgue measure is absolutely continuous w.r.t. us,.
3 _ _ 2w
In particular dy = d#a dus, (y) = Jiy
x = y/2, then

(y). Going back to 3.2, if we do the change of variable

J_l(f]u)(x)(ﬁv)(x)dx _ Z u(n)v(m)f 2 sin(n arccos(x)) sin(m arccos(x))dx

_ 2
n,m>1 -1 7 1 z

2 2 sin(n arccos(y/2)) sin(m arccos(y/2))
X utmetm [ 2 — ay

2 sin(n arccos SN (71 arccos
Il e Ll

Also note that SR2ecos@2) _ 1 Therefore we have established the unique unitary satisfying

V=R
[(UhoU~") f](y) = yf(y) for f e L*(R,dus,) and (Ud1)(y) = 1(y):

Theorem 3.7. The unitary map U : (*(Z) — L*([—2,2], us,)

w = {u(n)} — (Uu) Z sin(n arccos y/2)) (3.4)

n>1 \/]'_y/2

is the spectral theorem for the cyclic vector 81 of ho on €*(Z ).
We now investigate the boundary values of the resolvent.

Proposition 3.8. For E € R and for allne Z:

lim (81, (ho — B — ie) "'01) = i%\/zl — B2, (3.5)

Proof.
Let z = E +ie, € # 0. We have:

N _ 1 , 1 (™ sin?(9) -1 1 (w—w™1)?
—_ 1 == —_— = — — f— —
@1, (ho=2)7"81) = (V2sin(8), 2cosf — z\&sm(e)> ™ J_,r 2cosf — zda 2 2 §> w? —wz + 1dw
jw|=1
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Let w; and wy be the two roots of w? —wz 4+ 1 = 0. We showed in proposition 2.11 that wiws = 1,
together with the fact that o(hg) = [—2, 2] implies that |w;| < 1 and |we| > 1. Applying Cauchy’s integral

formula gives:

N —1(w —wih? (i +wh)?—4 -1 22-4 1
01, (ho — )= —— 27 -~ 17 =+-1/22-4
<1 ( 0 Z) 1> 2 w1 — W2 2 w1 — W2 2 w1 — W2 -2 &
depending on whether w; = £+ ;2*4 or wy = === sz2*4.
ie2 + 4 when £ =0

22 —4 =

7 (sign(Ee) \/\/(EQ — €2 —4)2 + (2Be)2 + (B2 —e2 —4) + i\/\/(E2 —e2 —4)2 + (2Be)2 — (B2 — 2 — 4)) when E # 0
Using lemma 1.12 to adjust the signs gives:

_ sign(e)vz22 — 4
<517(h0—z) 1(51>: %

The result follows by taking the limit. O]
Proposition 3.9. Let z = E + ie, E € [—2,2],e # 0. Then VYn,m > 1:

sin(né(E))sin(mé(E))
4— E?

11?01<5n, (ho — E —ig) " 16,,) = 2i

where O(E) is the angle such that ?(F) = E=ivAZE? V;‘*EQ.

Proof. According to the proof proposition 3.8:

- 1 (™ sin(nd)sin(md)
n —F— ! m, = — s
(G (ho i0)~16,,) WL o) gy

L eremen o)

2 2mi w? —wz+1

d
2 2m .

|w|=1
—1 (W —wp ) (W —w ™)

2 w1 — W

Now wy = 22 == V222*4©5>0. Let \ = 222 == V222*4. Then for £ > 0:

o LA =A™ (A™ = A7™)
1 J—
<5na(h0_E_ZE) 5m>_ 2 24
Note that
l,mzf\/ﬂfﬁl E —iv4 — E2 i0(E)
1 = =e .
0 2 2
Therefore

(eO(EB) _ o=ind(B))(gim0(E) _ o—im0(E)) _ 9 sin(nd(E)) sin(mé(E))

1
2 Vi — E2 41— B2

nﬂ)@n, (ho — E —ie) t6,,) =
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We have to mention that we have correctly verified that

1 1 -
s, pe = 5- V4= E21[_50(E)dE = —Im (61, (ho — E —i0)"'6,)dE

and it is a probability measure.

3.2 Spectral Theory of the Schrodinger Operator

In this section, we consider the Schrodinger operator h on H := ¢%(Z ) given by:

(hu)(n) = u(n+1) + u(n — 1) + V(n)u(n) (3.7)
u(0) =0 (3.8)

Here V : Z, — R is a priori any function. It follows that h is a linear self-adjoint operator and we

will assume that V' is a bounded potential so that h is a bounded operator.
Lemma 3.10. §; is a cyclic vector for h: (*(Z,) — (*(Z ).

Proof. We need to show that the linear span of {h¥§; : k > 0} is dense in ¢2(Z,). An easy induction
k

shows that for any k > 0, hF§; = 61 + > ¢;0; for some constants ¢;. As a result the linear span of
i=1

{h%6; : k > 0} is the same as the linear sp;n of {8k : k > 1}, which is obviously dense in ¢?(Z.). O

We apply the machinery of the spectral theorem for self-adjoint operators: let ps5, be the spectral

measure for h and §;. Since §; is a cyclic vector, h is of multiplicity one, we trivially have a direct integral

decomposition and o (h) = supp pus,. Let U : £2(Z,) — L?*(R,dus,) be the unique unitary map satisfying

[(URUY) fI(E) = Ef(E) for f € L*(R,dus,) and Ud, = 1(E). The Borel transform F,; (z) satisfies the

important relation {4y, (h — 2)~*61) = { d‘;‘si(m) for all z € C\R.

z

We introduce functions 6, (E) that are defined with the boundary values of the resolvent and that turn
out to be equal to (Ud,,)(F) almost everywhere. As a result, the collection of functions {3, (E)}nez, form
an orthonormal basis for L*(R, dus,) and for any f = {f(n)}nez, € *(Z1), (Uf)(E) =Y., f(n)d.(E).
The formula in terms of boundary values of the resolvent will give us a better insight on the functions

(Udn)(E).
Theorem 3.11. For alln > 1:

(i) (Udn)(E) is a polynomial of degree n — 1 in E with real coefficients.

.. . Im (8;,(h—E—ie)~'6,
(il) (Ulaedn)(E) = lalﬁ)l Tor 261,((thsz))*161; for pis, ac - a.e. E.

. 51,(h—E—ig)™ 16,
(iil) (Ulgingdn)(E) = E%W for ps, sing - a.e. E.

(iv) In (ii) and (iii) the limits exist and are finite for ps, ac - a.e. E and ps, sing - a.e. E respectively.

(v) Let I, be the set of E for which the limits in (ii) and (iil) exist and are finite. Define the following

function on I, :
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. Im (81,(h—E—ie)"'s,)
lalf{} Im <611,(h7E7i5)*161>

if F'€ supp ps, ac

0n(E) :=
) lim r(h=BEie) " 0n) if F e supp us, si
<10 {(61,(h—E—ie)~151) 1,sing

We obtain a function which is defined for ps, - a.e. E and satisfies

(Ubn)(E) = 0,(E) for ps, —a.e.E.
(vi) The collection of functions {0, (E)}nez, can be defined on a common subset I = N, I, of R so that
ws,(I) =1 and for allne Z,, (Us,)(E) = 0n(E) for us, — a.e.E.
Proof.

(i) (Udp)(E) is the zero function and (Udy)(E) = L(E). dp+1 = hdy, — V(n)dp — dp—1 gives
(Ubn41)(E) = (U(hdn))(E) =V (n)(Udn)(E)=(Udn1)(E) = E(Udn)(E)=V (n)(Udn)(E)=(Ubn—1)(E).

So (Uds)(E) = E — V (1), a polynomial of degree 1. An easy induction establishes the result.

tm o = 9710 = g ([ G ) - [ 2, 0)

21 t—z

_ L (US)() dys, (t)

(t—E)? +¢&?
So
. Im {6y, (h— E —ie)™16,) .. Pws,u, (E+ic)
lim - = lim -
elo Im (61, (h — E —ig)~161)  elo Py, (E +ie)
= (Uby)(E) for ps, .ac —a.e. E
= (U(Lac + Lsing)6n) (E) for pis5, ac —a.e. E
= (ULacdn)(E) for ps, ac — a.e. E.
Similarly
G (= B0 s (B i)

210 (01, (h—E —ie) 101y &lo Fp, (E +ic)
= (Ud,)(E) for us, sing —a.e. E
= (ULging0n)(E) for ps, sing — a.e. E.

(iv) This is due to the fact that (UL..0,)(E) € L*(R, dsy ac) and (Ulsingd,)(E) € L*(R, disy sing)-

(v-vi) Are easily verified.
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Of course, the spectral theorem provides us with the following formula:
(Ubn41)(E) + (Ubp-1)(E) + V(n)(Ud,)(E) = E(Udy)(E) for us, —a.e. E. (3.9)

Here we explicitly carry out the calculation for §,(E). The advantage of defining all the §,(F) on a
common set [ is that for every fixed E € I we can make sense of the following sequence: §(E) := {6(n, E) =
0n(E)}nez, € £(Z). By convention we also define for E € I, 6(0, E) := 0. Then (§(0, E),d(1, E)) = (0,1).

Proposition 3.12. There is a set I' < I, ps, (I') = 1, such that for alln >1 and E€ I':
Ont1(E) +0p—1(E) + V(n),(E) = Eé,(E). (3.10)

In particular, §(E) is the fundamental solution to the Schrodinger equation, namely 6(E) = s(E).

Proof. We first show the result for £ € I nsupp ps, ac:

o Tm {0y, (h— B —ie) " (bps1 + 601 + V5,))
b1 (B) + 6n1(E) + V ()5, (E) = lim T o E i

o I G (h— B — i) i)
N 0 Im <51, (h —F— i6)7151>

Im (<51, 525 + (E + i€)(ov, (h— B — i5)15n>>
= lim Tm (o0, (h— B —i2) 1615

. Im (51, (h— E —ie)"%,) .. Red(d,(h—E—ic)~15,)
—lim E 1 .
210 Y Tm (01, (h —E —ie)-1ay) 10 Im (o1, (h — E —i2)-101)

By theorem 1.16, lifg Re (61, (h — E —ig)~18,) exists and is finite for s, oc — a.e.F, and

lifg Im (81, (h — E —ie)~18;) exists and is finite and non-zero for pis, ac — a.e.E, so that
€

CE—ie)!
1inge(él,(h E—ig)™6,)

0 Im <51, (h —FE— 2‘6)7151> =0

A similar calculation gives that for '€ I nsupp fis, sing:

5n+1(E) + (5n,1(E) + V(n)én(E) =

o (61,0, G (h—E—ie) ) Sy, (h— E—i)7'5,)
= S BTy I L (= B =) ey s (h = B —ie) Tery

Since lifg (61, (h — E —ig)7181)| = o0 for ps, sing-a.e. E, the first limit goes to 0. As for third limit,
g

. \—1
it also goes to 0 since by theorem 3.11, lig)l % exists and is finite for ps, ging-a.e. E. O]
€ ) Y

Notation 3.13. We use the Japanese bracket convention {ny = /1 + n2.

Proposition 3.14. Let € > 0. Then there is a set I”(e) < I such that pgs, (I"(€)) = 1 with the following
property: for every E € I"(g), there exists a constant ¢ = ¢(E) > 0 such that |5, (E)| < ¢«(n)/?>*< for all

n€Z+.
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Proof. Let f = {f(n)}nez, € (*(Z+) be arbitrary. The Monotone Convergence theorem gives:

w>{f, [)=UfUf) = JV )16, (B)[*dus, (E ~[2Lflw (E)*dps, (B).

nez nez 4

From this we conclude that for ps, - a.e. E there exists a constant ¢(E) < cosuch that >, |f(n)|*|6.(E)|* <
nez

c(E)?%. In particular, |f(n)||6,(E)| < ¢(E) for us, - a.e. E. Considering the sequence

r={s0 - <n>1/} e (2,

yields the result. O

Proposition 3.15. Let E € R and suppose that the fundamental solution s(E) satisfies the following:
there exists e > 0 and ¢ > 0 such that |s(n, E)| < e(n)!=¢ for allm € Z. Then E € o(h).

Proof. We construct a Weyl sequence:

s 0<n<m
5™ (1) = (j§1|s<a)\2)
0 n>m

Then ||s(™)| = 1 and using the fact that s(E) solves the Schrodinger equation we have:

0 0<n<m
—s(m+1) = n=m
o (g |s<j>\2)
(=B = Y
(g |uj|2>
0 n>m+1

Then |(h — E)s™)|3 = WM We claim that this sequence has a subsequence converging
> [s()I?
=1
to 0. If this is not the case then there is exists mg > 0 and a > 0 such that m > mq implies |s(m)|? +

m
Is(m+1)> > a Y, |s(j)|* = a. For m > mq, we have :
=1

m m— 1 2
« «
\s(m)|2+|s(m+1)|22a2 25 (D2 + s +1)] )ZT(m—mo)
j=1 3:1
and so
L 17 a? "t a? (m —mg — 1)(m — my)
X B0 = 5 3 (P +1sG+ ) = T X G-mo) = :
J= J= J=mo
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Hence for m > mg we have :
ls(m)[* + [s(m + 1)

S 1)

2 1 2
m—0o0 m—w a2 (m—=mo—1)(m—mo)

This contradiction establishes the existence of a subsequence {m;}?_; with lim [(h—E)s(™)|2 =0. O
m—00

Definition 3.16. Let S = {E € R : there exists ¢ > 0 such that |s(n, E)| < c(n)'=¢ for allne 7, }.
Theorem 3.17. o(h) = S.

Proof. proposition 3.15 gives S < o(h). For the reverse inclusion, fix some 0 < ¢ < 1/2 and let
Z = I' n I"(¢). Then by propositions 3.14 and 3.12, Z < S. Since o(h) = supp pus,, it is enough to
check that supp us, = Z. Let E € supp us, and suppose that E ¢ Z. Then there exists B.(E) such that
B.(E)NnT =. So0 < ps, (B:(E)) < s, (R\Z) = 0, where the strict inequality is by definition of the
support and the equality is due to the fact that Z is the intersection of two sets of full measure. That’s

a contradiction. O]

4 Rank one Perturbations of the Laplacian on the Full Line

4.1 Overview of Rank one Perturbations

In this section we focus on potentials which are nonzero at exactly one point on the line. We will assume
V(0) # 0 and V(n) =0 for n % 0. If X := V(0), A € R, then the corresponding Schrodinger operator is
hya = h + X, )do. The goal of the spectral theory is to describe hy in terms of A. This section is based
on Chapter 5 of [Ja |.

Lemma 4.1. The cyclic space spanned by hy and 0y is the same as the cyclic space spanned by hg and

do. In particular it doesn’t depend on \.

Proof. Let £, denote the linear span of {(hy —2)"1dg : z € C\R} and L, the linear span of {(ho—2)~1dy :
z € C\R}. Formula (ii) of lemma 4.2 gives £y < £ and formula (iii) gives the reverse inclusion. O
If Ho denotes this cyclic subspace, then hA‘Hé = hO'Hé' Therefore we may focus on hy|y, . Let

be the spectral measure for hy and dy. Recall the Borel transform F)(z) = { % = (0o, (hx —2)"150).

The following lemma relates the rank one perturbation to the Laplacian and is easily proved.
Lemma 4.2. For any z € C\R:
(i) (ha = 2)7" = (ho —2)7" = (ha = 2) ' (ho = ha)(ho — 2) ™" = (ho — 2) ™" (ho — ha)(hx — 2) 1.
(i) (hx —2)"180 = (ho — 2) 280 — Ao, (hx — 2) 8> (ho — 2)~1dp.
(iii) (ho — 2)7 160 = (hx — 2) 100 — A0, (ho — 2) " Loo)(hx — 2) 1.
(iv) Fa(2) = ety

(v) Tm Fi\(2) = rsmee
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Recall that we had already calculated the Borel transform Fy(z) in proposition 2.11. We had found
that for z =z + iy, z e R,y > 0:

1
. _ - -1 _
Fo(x + iy) = (b, (ho — 2) o) = e (4.1)
= ze[-22]
Fo(z) = lim Fy(z + iy) = . (4.2)
oo @) e R\[-2,2]
from which we conclude that
Fy(x +1iy) = (8o, (hx — 2) " 160) = ot (4.3)
A—Vz22—4
MRS ze[-2,2]
Fy(z) = li?& Fy(x +1y) = (4.4)
Y

1

Definition 4.3. For \ # 0, let
. d
(i) Gle) o= [ Lolt).

(i) Sy:={zreR: Fy(z) = —1/X, G(z) = oo}.

(iif) Ty :={x e R: Fy(z) = —=1/X, G(z) < w0}.
(iv) L:={xeR:Im Fy(z) > 0}.

Note that Sy, Ty and L are mutually disjoint. It can be shown (see theorem 21 of Chapter 3 of [Ja |)

that Sy and Ty have zero Lebesgue measure. The following lemma gives more information on G(z):

Lemma 4.4. Let p be a positive o-finite measure. Then

G(z) := J[R (j'i(?y =0 pu—ae seR. (4.5)

Proof. First suppose that du(t) = f(t)dt + dus(t) is a finite measure. We have:

). (jﬂ(?ﬁ - QLwt g <{ Ry t}> = 4f Lﬁés(; Uf}f, . +1/1t/)t>dt

The first equality is proved by interchaning the order of integration and invoking Fubini’s theorem (see

theorem 8.16 in [Ru ]). Let D(s,t) := % By the theorem on the differentiation of measures,
dp(t)

tlim D(s,t) = o for ps — a.e. s € R. Hence = oo for us —a.e. s € R. Also, tlim D(s,t) = f(s) for
—00 —0

(s—1)2
Leb — a.e. s € R, hence for p,. —a.e. s € R, and combined with the fact that f(s) > 0 for p,. —a.e. s € R,

gives tlim D(s,t) > 0 for pae —a.e. s € R. Hence S[R (‘i’i(tt))z = o for pae —a.e. s€R.
S0
If 1 is o-finite, we partition R into a countable collection of disjoint sets {X;}2; with u(X;) < oo for
all i. Considering the collection {ux,} of finite measures on R defined by px,(F) = u(E n X;) puts us

back into the previous case. O]

Theorem 4.5.

46



(i) T is the set of eigenvalues of hx and pxpp = . %,
:L’ET,\

(i) pxse @s concentrated on S.

(iil) For all A\, L = %2%%(hy) and oac(hy) = dac(ho).

(iv) The measures {[tx sing} reR @re mutually singular.

Applying this theorem to the full line Schrodinger operator gives:

Theorem 4.6. For hy = hg + Xdo, )do :

(i) Z2(ha) = 0ac(hn) = [-2,2].

(ii) For every A\ # 0, hy has a unique eigenvalue at E(\) = sign(A\)v/A\2 + 4.
(iil) dur(E) = dpxpp(E) + ha(E)dE, where

1 1 4 — E2
Hxpp = W(S{E(A)}, ha(E) = ;mﬂ[—zz](E)

and
1 dt

e = | —aviee

(iv) o(hy) =[-2,2] U E()).
Proof.

(i) Referring to formula (4.2), we have that Im Fy(z) > 0 if and only if € [—2,2]. Therefore
L= E:bch(h/\) = [_272] = Jac(hO) = Uac(hA)~

(ii) Referring to formula (4.2), Fy(x) = —1/A has no solution in [—2,2]. Fy(x) = —1/X if and only if
—sien(@) _ _1/)\ Solving for = > 0, we have a solution only if A > 0, in which case z = VA% + 4.

Vax?—4
For x < 0 a solution exists only if A < 0 and then x = —+/\2 + 4. Hence for a given A # 0,
there is a unique z solving Fy(x) = —1/X and = = sign(A\)vVA2 +4. Since |z| > 2, G(z) =

Si_2.21 (w_%)gm/% < 0. Therefore the set of eigenvalues Ty = {sign(\)v/A2 + 4} consists of one

point and Sy = ¢J.

(iii) We have that pysc = 0. By the de la Vallée Poussin theorem, hy(E) = d‘fi% = 1Im F\(E) =

V4—E?2
gy L-2.2(E).

(iv) Follows from the previous items.

4.2 Elements of Scattering Theory

In this section we will introduce the basic concepts of Scattering Theory and prove Pearson’s theorem
(the proof we present was given by Claude-Alain Pillet). The reader is referred to Section XI.3 of [RS3

] for a more complete exposition on the subject.
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Definition 4.7. Let A, B be self-adjoint operators on a Hilbert space H. The wave operators Q4 (A, B)
exist if the limits
Q% (A, B) := s-lim e~ "P1,.(B)

t—+00

exist for all vectors in ¢ € H.

When there is no confusion we shall write €24 instead of Q1(A, B). We denote H,c.(A4/B) :=
Lac(A/B)H.

Theorem 4.8. (Stone’s theorem) For any self-adjoint operator A, the group {e"4}icr is a strongly
continuous one-parameter unitary group. Moreover, for all ¢» € Dom(A), the map t — e"*44 is strongly

differentiable and

lim
t—0

LA% —Y_ i A (4.6)

Proposition 4.9. Suppose that the wave operators exist. Then:
(i) Q4 are partial isometries with initial subspace Hac(B) and final subspace contained in Hac(A).

(ii) Ran Q4 are A—invariant subspaces; Q4 [Dom(B)] < Dom(A4); and

AQ (A, B) = Q4 (A, B)B. (4.7)

(ili) For any ¢ € By(R), p(A)2 (4, B) = Q. (A, B)p(B).

Proof. Obviously Ha.(B)*t < Ker Q4. If u € Hao(B) = (Hae(B)1):, then |[e?*Ae~ 81, (B)u| = |u| for

every t and so |4 ul| = |u|. Note that for every s € R, Q4 = 40, e or equivalently,
sTHe A 1)y = Qy(e7™8 —1)s7 L

Taking the limit s — 0 and applying Stone’s theorem proves equation (4.7). Equation (4.7) also shows
that Ran 24 are A—invariant.

Also note that Alran o, is unitarily equivalent to Bl (p). Since the ac/sc/pp components of the
Hilbert space are preserved under unitaries, it follows that Ran Q4 < H,.(A4).

By virtue of e~ 40, = Qie 8, we have for f € H, (f,e” 40, f) = (Q% f,e B f) or equivalently,
S Mdua(N) = (g e ™ dup(X) for some spectral measures pi4 and pp. By the uniqueness theorem
for the Fourier-Stieltjes transform of finite measures, it follows that ua = pp. Hence (f, o(A)Q4f) =
Q% f,p(B)f) for all ¢ € By(R) and the result follows. O

Remark 4.1. Since Alga, o+ is unitarily equivalent to By, (p), we have that 0ac(B) < 0ac(A) when

ac

the wave operators exist.

Wave operators also satisfy a chain rule, namely that if 4 (A4, B) and Q4 (B, C) exist then Q4 (A, C)
exist and Q4 (A,C) = Q4 (A, B)Q4 (B, ).

Definition 4.10. If the wave operators exist then they are said to be complete if Ran Q4 (A, B) = Hac(A).

Proposition 4.11. The wave operators Q4 (A, B) are complete if and only if Q4+ (B, A) ewist.
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Proof. 1f both Q4 (A, B) and Q4 (B, A) exist, then by the chain rule
Tac(A) = Q4 (A, A) = Q4 (A, B)Q4 (B, A)

and 8o H..(A) © Ran Q4 (A, B); the reverse inclusion was shown in proposition 4.9. Conversely, suppose
that Q4 (A, B) exist and Ran Q4 (A, B) = Hac(A). Let ¥ € Hac(A). We want to prove the existence of
the limit

B g —itAy,

lim e
t—+0o0

By assumption there is a ¢ such that ¥ = Q4 (A, B)¢. Then

lim |[Lac(B)¢ — e Pe " 4y| = tli)gloo [ e P 1,0(B)p — Qi (A, B)g| = 0.

t—+0o0
O
Adjoints of partial isometries are known to act like inverses, namely:
]laC(B) = Q”;(A,B)Qi(fLB), ILaC(A> = Qi(A,B)Qi(/LB), (4-8)
If the wave operators are complete, then the chain rule shows that the adjoints are given by
Q%L(A,B) = Q+(B, 4) = slim B A, (A). (4.9)
+ et
We now introduce the scattering operator - the fundamental object of Scattering Theory:
Definition 4.12. The scattering operator is defined by
S(A,B) := Q% (A, B)Q2_(A,B) (4.10)

It is a unitary operator on Hae(B).

Our next goal is to prove the basic existence and completeness theorem of the wave operators, namely
Pearson’s theorem. First we introduce a few technical tools. Recall the classical Riemann-Lebesgue
lemma, namely that if 4 is a complex measure absolutely continuous w.r.t. the Lebesgue measure, then
tgr-i{loo S[R e du(z) = 0. We have a Riemann-Lebesgue type lemma for operators:

Lemma 4.13. Let A be a self-adjoint operator, then w-lim e®*41,.(A) = 0.

t—+o0
Proof. Let 1) € Hac(A), and let H, be the cyclic subspace generated by A and 1, 1, the orthogonal
projection onto H,. Note that Hy < Hac(A). Also ¢ € Hac(A) implies that uy, is purely absolutely
continuous. Then:

(§, €™ py = Ly, e M)y = J{R (Uyplyo) (@)™ dpuy ().

Note that (Uyly¢) € L3(R,duy) © LY(R,duy). Hence (Uyly)(z)duy(x) defines a complex measure
absolutely continuous w.r.t. the Lebesgue measure, and so the result follows from the classical Riemann-

Lebesgue lemma. O

Corollary 4.14. If C' is a compact operator on H and A self-adjoint, then ts—lirm Ce*M,.(A) = 0.
— T 0
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Proof. Tt is enough to show for finite rank operators since they are dense in the compact operators with
N 1 An{tn, Héy be finite rank (N < o). Then:

respect to the operator norm. Let Cnx = >, '

N
lim Cneac(A)f = Jim Zl At € ac(A) ) = 0.

We now introduce a dense subset L*(A) of Hac(A) that will be useful for the following proofs.

Definition 4.15. Let A be a self-adjoint operator and denote by L™(A) the set of all 1 € H such that
dpy (z) = | f(@)|?dx with f € L*(R). Let || f|| be the L*-norm of f.

It can be verified that [|-[| is a norm on L®(A). If ¢ € Hac(A), then duy(x) = |f(x)|*dz for
some f € L*(R). If fn(z) := f(x)1{j<ny(2), then by the Dominated Convergence theorem f, — f in
L?(R). Since supp fn C supp f C 0ac(A), there are ¢y, € Hac(A), namely ¢, = Ly sj<n}(A)2), such that
dpg, (2) = | fo(z)|*dz. Furthermore v, converges to ¢ in the usual norm on H and so L*(A) is dense in
HoelA).

Lemma 4.16. Let A be self-adjoint, f € L*(A), and let T be a Hilbert-Schmidt operator on H. Then
| imeta e < 2mppims, (a.11)

where ||T|3 = tx(T*T) denotes the Hilbert-Schmidt norm.

Proof. Since T is Hilbert-Schmidt, in particular it is compact and so it has a representation T =
3 Al n, Y with Y, A2 = |T'|% and orthonormal families {¢,,} and {¢,,}. We have

T FI* = X A% K em, A 2

and (py,, e f) = (o (Urpn)(2)|f(z)|?e"®dz is the Fourier transform of (2m)Y2(Usep,)|f|* € L*(R) n

L?(R). An application of the Monotone Convergence and Plancherel theorems gives:

itA 2d _ )\2 s itA 2d . )\i ﬁQ 4d
L”Te P =3 nJR|<so SAREED) J{RI( o) @) f () d

2r < Y AP L (Urpn) @) PIf (@) Pdx = 2wl FIPIT 131U o0l < 27l £1I71T°)5-

O
We now prove Pearson’s theorem. The proof we provide was given by Claude-Alain Pillet and is

substantially more transparent than that given in [RS3 ].

Theorem 4.17. (Pearson’s theorem) Let A and B be self-adjoint and J be a bounded operator such that
J(Dom(B)) < Dom(A). Suppose that there is a trace-class operator C so that C = AJ — JB in form,
that is, for 1» € Dom(A) and ¢ € Dom(B) we have:

(), C¢) = (A, J¢) — (b, JB). (4.12)
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In particular we also have:

(9, C*Y) = (¢, J*AYp) — (B, J*). (4.13)
Then the following strong limits exist:

Q4 (A, B; J) := slim e Je="B1,.(B). (4.14)

t—

Proof. Let W (t) := "4 Je~"B. By the Cauchy criterion of completeness, we need to show that

lim
t,s—+00

[W(t) - W(s)] f” —0 (4.15)

for all f € Hao(B), and in fact we only need to show (4.15) for a dense subset, namely L*(B).

Since

2

[ -wels = awer[wo-weln-swewo - we)n

it is enough (by symmetry) to show that

i W0 W) = W(s) | 1) =0 (4.16)
Consider
(f, e BW (1)* [W(t) - W(s)]e’i“B . (4.17)

Since [W(t) fW(s)] — (¢ V) g — zSi emACe B dr and C is trace-class, it follows that e 4Ce~""B

s dr

is compact and so [W(t) - W(s)] is compact as a norm limit of compact operators. Thus lim [W(t) -

uU— 100

W(s)]e’i“Bf = 0 by Corollary 4.14. In particular (4.17) goes to zero as u — to0.

Hence if we can show that

lim (f. [eiwmt)*[mw S W ()] - W) W () — W(s)J]f> 0 (4.18)

t,s—>+0

uniformly in u, (4.16) will follow immediately.
WO - Wl - W - Wl

— ¢, [eiuBmt)*W(t)e-M - W(t)*W(t>]f> ¢, [eiwmw*ms)e-w - W(t)*w<s>] 5
= X1 (¢, s,u) — Xa(t, s,u).

We will show that li% Xs(t, s,u) = 0 uniformly in u, and the same method will hold for X (¢, s, u).
a0

t,s—+

Note that - (e BW (£)*W (s)e~"B) = ierB [B, W(t)*W(s)]e"B and so

Xo(t, 5,u) — i L “(f 6B [B, W(t)*W(s)] =B 5.
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We show that [B, W(t)*W(s)] = B (Jret=9AC — C*emi1=9)4]) e7B by computing the ma-
trix elements. Let 1, ¢ € Dom(B). Then:

(o |Bwerwe)s)

= (i, Be'tB J¥e=itAgisA Jo—isB gy _ (y)y ¢itB Je=itAgisA jo—isB oy
= (Be Py, Jre 1T Je B g) — (I e By, JBeT P o)
- [<67it3¢7 T Ae—i 94 Jo—isB gy (oitBy), C*efi(tfs)Ajefiqu»:I
,[<Aei(tfs)AJ€7ith7 T 9B gy — (eHi=9)A 7=itBy, CefisB¢>]
= (B[R AC _ O i) A T B gy

Moreover since C' is trace-class, C = F*G for some F, G Hilbert-Schmidt. Therefore:

Xz(t, S,U) _ ZJ <F€i(t_S)AJ€_i(T+t)Bf, Ge—i(r+s)Bf>dr _ Zf <G6_i(r+t)Bf, Fe—i(t—s)AJe—i(r+s)Bf>d,r
0 0

=1Xo1(t, s,u) —iXoa(t, s,u).

We will show that lim Xoi(t,s,u4) = 0 uniformly in w, and the same method will hold for
0

st
Xoo(t, s, u).

0
){271(157 s, u) < J HFei(tfs)AJefi(rth)BfHHGefi(r+s)BfHdr
0

0 _ _ 1/2 o _ 1/2
< (J ”Fez(ts)Ajez(r+t)Bf|2d,r) <f |Gez(r+s)Bf2dr>

0 0

0 ) ) 1/2 0 ) 1/2
_ (J ||Fez(ts)AJ€erf|2dT) (f |G6”Bf2d7’>
t s

) Ioe) . 1/2
< varFe Al ([ 16e par)
- , 1/2
< VLA ([ 1Gee i)

Note that we could apply lemma 4.16 because Fe'(!=*)4J is Hilbert-Schmidt. Again by the same
lemma we know that the integral on the LHS goes to zero as s — o and the rate of convergence is
independent of u. This completes the proof. O

If Dom(A) = Dom(B), and A — B is trace-class, this also proves the

Theorem 4.18. (Kato-Rosenblum theorem) If A and B are self-adjoint operators and A — B are trace-

class, then the wave operators Q4 (A, B) exist and are complete.

It is worth mentioning that if h = ho+V where V is in £}(Z), then h—hy is trace-class, i.e. tr(|]V|) < oo,

so that Q4 (h, hg) exist and are complete.

52



4.3 Scattering Operator for the Rank One Perturbation

We will deal with Rank one perturbations of the Laplacian operator (h = hg + A0y, -0, ), show directly
the existence and completeness of the wave operators (instead of just quoting the results of the previous
section), compute the wave and scattering operators.

For computational purposes, it is useful to rewrite the wave operators in the following way:

t
Q4 (A, B) = 1..(B) + i slim | e*4(A - B)e *P1,.(B)ds (4.19)

t—+owo 0

which is a consequence of

¢ ¢
J 7 (e"*e"*P1,(B)) ds = e"e P 1,0 (B) — 1,0(B) = ZJ e A - B)e "B1,.(B)ds.
o as 0
Let C¥(—2,2) denote the smooth functions supported on (—2,2). Recall that the absolutely contin-
uous part of the spectral measure py for 6, and hy is CZ‘—; = T2+ %) %.

2

Lemma 4.19. C(—2,2) is dense in L* ([—2, 2], e Vf(lfmz,)dx) for all X € R.
Proof. We take for granted that C%(—2,2) is dense in L? ([—2,2],dx) and for simplicity of notation, we

consider the case A = 0.

¥(z) e L? ([—2,2], \/4176195) . \4/1% e L2 ([-2,2], dz)

2

= 3 ¢(z) € CF(—2,2) such that Jg {L/Z)(:Ci)Q —¢(x)| de <€
—2 — X
= J;2 ’lp(l‘) -V 4 — $2¢(.13) ﬁdﬂf <é€

1
= CP(-2,2) is dense in L? ([2’ 2], 4dx>

since V4 — 22¢(x) € CF(—2,2). O
Proposition 4.20. Q% (hy, hg) ezist and are complete.

Proof. We have to show that the following limit exists for every ¢ € Hqc(ho):

¢
lim e'thae=ithoy, — o) 4 i)\t 11111 J (B, 71809 NethNG, s, (4.20)
— 100 0

t—+oo

It is enough to show that

since it implies that S(t)<5m e~ shoyhyelsha g, ds is a Cauchy sequence.

o0
J (O, e isho ’L/J>€i8h>‘ Onds
0

o0
< J [(8,,, e~ "M0pd|ds < oo (4.21)
0

Consider the vector 1,.(hg)d,. Its spectral measure is purely absolutely continuous and is given by

dpis, ac(E) = lIm (6, (ho — E —1i0)716,)dE = 1

1
—1_ E)dE.
= Az
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Denote by Hs, the cyclic space generated by d,, and 15, the projection onto it. Then the cyclic space
generated by L,c(ho)dy, is equal to 1ac(ho)Hs, . If 0 € Hac(ho), then 15 1) € 1,c(ho)Hs, . By lemma 4.19,
D :={¢ € Haclho) : (Us,1s,¢)(E) € CL(—2,2)} is dense in Hac(ho).

Assume for now that ) € D. In particular we have

. (Us, 15, 9)(E) - d (Us,1s,0)(E)

BE-t2dE 71— E?
Integrating twice by parts shows that

<6n> 67i8h0¢> = <1a6(h0)5n7 67i5h0w> = <5n> eiiShO 15n7/)>
- f I (Us, 15, (E)dts, ne
R

2
_ —ise (Us, 15, 0)(E)
—fde o dE

SRETALEEOR

Hence (6, e~"hoy)| < {S%, []|} and it follows by (4.21) that SSO [{6,, e~ PhoapS|ds < [ab] + Sio s%ds <

Now if 9 € Hac(hg) is arbitrary, then choose a sequence 1, € D converging to ¢, and use an /3

argument to show that the sequence e?" e~ ¢ is Cauchy, namely, if W (¢) := e?*"re~%"0  then:

W@y =W @)l < [W(E)Y = W ()b | + W (E)thn = W(E)n + [W (@) on — W)Y

which goes to zero as n,t,t’ — 0.
To show that Q4 (hg, hy) exist, the same proof works by considering the cyclic space generated by

Lac(ha )0y, and its spectral measure dis, ac(E) = TR =BT %1[,2’2] dE. O

Moving forward the following useful will be result.
Lemma 4.21. Let f(x) be a bounded measurable function and suppose that tlirglc Sé f(x)dx < 0. Then

lim fo ey = lim JO " e (s)ds. (4.22)

t—0
. . t _ o0 —els|
In particular, tlgg) §_, fx)dx 151%1 §7 e ®lf(s)ds.

Proof. Let lim Sé f(x)dz := a, g(t) := Sé f(s)ds, and q(e) := §; e~**f(s)ds. Then ¢'(t) = f(t) a.c., so

integration by parts shows that ¢(¢) = Sgo e~ %%g(s)ds. Since SSO ce %%ds =1 for all € > 0, we have

T

o)l < |

0
ee %%|g(s) — alds + f ee%%|g(s) — alds.
0 T
Let § > 0 be given and choose T > 0 such that |g(¢) — a| < 6/2 for ¢t > T', and then choose e > 0 so
that (sup lg(t)| + |a> Te < 0/2 (note that g is bounded). Then |¢(g) — a|] < ¢ for all € < e.
teR

A similar identity on the negative half line holds by symmetry and the identity on the full line is a
combination of the two identities. O
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Let Hs, denote the cyclic space generated by hg and d,. Recall that the cyclic space generated
by hy and 4, is equal to Hs,, and moreover, h””in = hOin,; Since for a bounded operator A
elt4 =3 (itA)"/nl, it follows that Hs, and Hz are invariant subspaces for e*#"0 and e*x. Also Hs,
and ’Héln are invariant subspaces for 1,.(ho) and 1,.(hy). Therefore when we write {f, Q4 (hy, ho)g), or
(9,4 (hx, ho)f) we may assume that f,g € Hs,. Let us denote u := s, ny.ac the absolutely continuous
part of the spectral measure for d,, and ho; du(E) = ﬁdE' For simplicity of notation, we will

denote the element of L?(R, dyu) corresponding to x € Hs, simply by x(E).

Proposition 4.22. Let g € H be given and let [Q0% (hx, ho)g]|(E) be the element of L*(R, dp) corresponding
to Q% (hx, ho)g. Then

[Q% (A, ho)g)(E) = g(E) = Mo, (hx — E F1i0)~"g) (4.23)

Proof. Let f € Hac(ho) = H. We will compute {f, Q% (hx,ho)g), the computation for Q* (hy, ho) is

identical.

(b ho)gy =, Q4 (hoy ha)g)

=(f,9) =i lim Lt<f, €08, )0, e~ g)ds

=(f, 9> —iA 13?3 JO ’ e =5(f, €05, (6,, e ghds

~g.g) - vt [ e | [ FBE )| e
~(f.)— Nl [ f(E)[ ff@m eis(hAEi€>g>ds]du(E>.

The interchange of order of intergration is justified by Fubini’s theorem. Also for fixed ¢ > 0,

e—is(hk—E—is) ©

o0
—is(hyx—E—ie) _
| e s = B, S — )

0

and et —E—ie) — g=is(ha—E) =3¢ converges strongly to the zero operator, so:

.9 (g = (f.) = Misy | FTEB (ha = B = i)~ g)iu( ).

At this point we have to justify that we can take the limit inside the integral. Since (J,,(hy — E —
i0)~!g) exists and is finite for Lebesgue a.e. E, we have by Egoroff’s theorem that for any n there is a
measurable set M, with |R\M,| < 1/n and {6, (hx — E —ic)"tg) — (5,, (hy — E —i0)"tg) uniformly
on M,. It is not hard to see that the set

(J{f € Haclho) : supp f = M,} (4.24)

n>0

is dense in Hac(ho). Suppose that f belongs to this set. Then (&, (hy — E —ig)"tg) — (5, (hy —
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E —i0)~!g) on the support of f. Therefore since f € L' (R, du), by the Dominated Convergence theorem,
i [ [FTEVIG (b = B = i) ™) = Gy = B = i0) "l du(E) = 0. (4.25)

As a uniform limit of analytic functions, (4, (hy — E —i0)~lg) is bounded on the support of f so
{0, (hx — E —i0)"tg) € L (R,du). Therefore

(L 9% (s ho)g) = F, g — A j FEY0ns (h — B — i0) " g)dp(E) (4.26)

holds for a dense set of f in Hac(ho). O

Proposition 4.23. Let g € H be given and let [S(hx, ho)g](E) be the element of L*(R,dp) corresponding
to S(hx, ho)g mapping Hac(ho) = H to itself. Then

[S(hx, ho)gl(E) = g(E) = X (1 = X8y, (hx — E —i0)7'6,)) (0n, M(E)g). (4.27)
where M(E) = (hg — E —i0)™' — (hg — E +i0)~!
Proof. Recall that Q% (hx, ho)Q4(hx, ho) = Lac(ho). Let f € Hac(ho). Then
(o (S = 1)g) =(f, Q- (hr, ho)* (= (hx, ho) — Q4 (i, ho))g)
=4 (hx, ho) f, (2—(ha, ho) — Q24 (ha, ho)g)
In virtue of relation (4.19), Q_ —Q, = —i s-lim Sit e"x(hy — hg)e~ "0 ds. Therefore

t

(f,(S—1)g) =~ itli%<9+(h,\, ho)f, | €™ (hy —ho)e *hog ds)

—t

t
= —i\ tlinolof Qi (hr,ho)f, etsha 3 Ons 67i5h0g>d3
PRIt

S— 11%1 eI, (ha, ho) f, €72 8,0(8,,, e M0 g)ds
€ R

where we have applied lemma 4.21. We use the intertwining property e *" Q. = Q e %" and

apply the result of proposition 4.22:
(f: (8 =1)g) = = iXlim f “ElslGeT Q% (B ho) 6B €0 g)ds
- m%l eels IU F(E)e™E (L(E) — M0y, (ha — E —i0)716,,)) dp(E)]@n,e“hOg)ds

= —iAlim Lm (1(E) — Xop, (hx — E —i0)76,,)) UR@, e~ is(ho—E—iesign(s) g>ds]du(E)

Here du(E) = %dE.

- o 1
[J‘ <6n’e—zs(ho—E—zsslgn(a)g>d8] _ - (<6m (ho _FE— i5>_1g> o <5n» (hO _E+ iE)_lg>) .
R

A similar density argument as in proposition 4.22 shows that we may take the limit inside the integral.
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It follows that
(F1 (5~ 1)g) = —A f FOB) (L(E) — Xon, (hx — E — i0)™26,)) (6, M(E)gydpu(E)

where M(E) = (hg — E —i0)~! — (hg — E +i0)~ L. O

5 Analysis of Absolutely Continuous Spectra

5.1 Periodic Schrodinger Operators on the Full Line
5.1.1 The Case of a Finite Interval

In this section we investigate the Laplacian on a finite interval with Dirichlet, periodic and antiperiodic

boundary conditions. The results will be partly useful for the next section.
Notation 5.1.
(i) Pis NMeZ, N <M, letT = [N,M] < Z.
(ii) We denote p := (M — N + 1) the length of the interval [N, M].
(iii) Let £(T') denote the Hilbert space of all sequences u = {u(n)}N<n<nr with coefficients in C.
Note that H := C? = ((T") is a Hilbert space of dimension p.

Definition 5.2. The Laplacian operator hg on H with Dirichlet boundary conditions is given by:

(hou)(n) =u(n + 1) + u(n —1) (5.1)
w(N —1) =0 5.2)
u(M +1) =0 (5.3)

ho is easily verified to be a linear operator and therefore it may be represented by a matrix. The

matrix representing hg in the canonical basis for ¢(T) is self-adjoint p x p matrix of the form:

0 0 0
01 0 0

[ho] = (5.4)
0 1
1 0

The spectrum o (hg) is pure point. In fact:

Proposition 5.3. The eigenvalues and corresponding eigenvectors of hg are:

7k
A =2 ), k=12, ..,
k cos<p+1> P
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. = { o) = s

Proof. 1t is a simple matter to verify that hour = Apug as given above. We have found p = dim H

(n—N + 1)7rk) }

p+1

distinct eigenvalues, so we have found all of them. O

Definition 5.4. The Laplacian operator hy on H with periodic boundary conditions is given by:

(hou)(n) =u(n +1) +u(n—1) (5.5)
u(N —1) = u(M) (5.6)
u(M + 1) = u(N) (5.7)

The matrix representing hg in the canonical basis for ¢(I") is self-adjoint p x p of the form:

0 1 0
0 1 0
0 1 0 0
[ho] = (5.8)
0 0

0

Proposition 5.5. The eigenvalues and corresponding eigenvectors of ho are (including repitition):

2%
Ak =2cos<”>, k=0,1,..p—1
p

up = {(U;k)(ﬂ) _ eiQk‘n’n/p}.
More precisely:

(i) If p is even: the § + 1 distinct eigenvalues are:

2 = 2cos (27r0> > 2cos <i27r1> > 2cos <i27r2) > ... > 2cos <127r(p/2_1)) > 2cos <27rp/2> = —2.
p

p p p p
(ii) If p is odd: the % distinct eigenvalues are:

1 2 — 2 —-1)/2
2 = 2cos (277()) > 2cos <+27r> > 2cos <+27r) > ...> 2co0s (+27r(pg)/) > 2cos (+27r(p)/> .
p p p p p

Definition 5.6. The Laplacian operator hy on H with antiperiodic boundary conditions is given by:

(hou)(n) =u(n +1) +u(n—1) (5.9)
u(N —1) = —u(M) (5.10)
w(M +1) = —u(N) (5.11)
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The matrix representing hg in the canonical basis for ¢(T") is self-adjoint p x p of the form:

0 1 0 -1
0 1 0
0 1 0 " 0
[ho] = o (5.12)
0 0
T | 0

Proposition 5.7. The eigenvalues and corresponding eigenvectors of hg are (including repitition):

(2k + )7

AL =2cos(
p

>7 k=0,1,...,p—1

up = {(uk)(n) _ 6i(2k+1)7rn/p}'
More precisely:

(i) If p is even: the § distinct eigenvalues are:

1 3 5 -3 —1
2 cos (+7r) > 2cos (+ﬂ') > 2cos (+7T> > ... > 2cos <+7rp ) > 208 (+7rp > .
p p p p p

(ii) If p is odd: the % distinct eigenvalues are:

1 3 5 -2
2 cos (iw) > 2cos (iw) > 2cos (iﬂ') > ... > 2cos (iﬂ'p ) > 2cos (wp) = —2.
p p p p p

5.1.2 The Full Line Periodic Operator

We explore period p periodic Schrédinger operators on H := £2(Z), namely:

(hu)(n) = u(n — 1) + u(n + 1) + V(n)u(n) (5.13)
Vin+p)=V(n)VneZ (5.14)

We reproduce the proofs given in Chapter 5 of [Si]. The main goal of this section is to show that
the spectrum of periodic operators is absolutely continuous and composed of at most p disjoint bands,
or intervals. The analysis of such operators is part of Floquet theory. Again we remind the reader that
the potential V is real-valued, so that h is a self-adjoint operator. Periodicity of V also implies that h is
a bounded operator not only from ¢2(Z) to £?(Z) but also from ¢*(Z) to £*°(Z). If L denotes the shift to
the left, periodicity implies

hLP = LPh. (5.15)

Definition 5.8. For 6 € [0,27), we set:
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(X(Z) := {u e t®(Z) : u(n + p) = e Pu(n) ¥n} = {u e (*(Z) : LPu = e "%u}. (5.16)

Solutions to (5.13) in £°(Z) are called Floquet solutions. They belong to ¢*(Z)\(*(Z). Recall that

any m € Z can be decomposed into m = n + kp for some n € {1,...,p} and k € Z, that is, m = n (p).
Lemma 5.9. ((Z) is a vector subspace of {*°(Z) of dimension p.

Proof. The map (3 (Z) 3 u — {u(n)}f _; € CP is easily seen to be a linear bijection. In particular it

maps the basis {(5§j) :j =1,...,p} to the basis {0; : j = 1,....p}, where 5éj) is the sequence defined as

5‘gj)(n+kp) =e k0§, n=1,.,pkeZ O
We fix the basis of £§°(Z) to be

{5(gj) :j=1,...,p} where (5éj)(n +kp) =e M5 n=1,.,pkeZ.

Proposition 5.10. (7 (Z) is h-invariant and its matric representation in the basis {5(9)}?:1 18:

V(1) 1 0 . e et
1 V(2) 1 0
0 1 V(3) 0
[h(0)] =
0 Vip—1) 1
e’ 1 V(p)

Proof. Combining (5.15) and (5.16) gives LP(hu) = h(LPu) = h(e™"u) = =" (hu), showing that h takes
03 (Z) to itself. An easy calculation of héél), héép) and h(5(§j), 1 < j < p yields the above matrix. O
To simplify the notation, we will write h(6) instead of [h(6)].

Lemma 5.11. Ifu9) e KOO( ) for j =1,...,q are nonzero with the 6; distinct, then {u(j)}gzl are linearly

independent.

Proof. Notice that for all k € Z, e*%iu() (n + kp) = e ~%)y () (n), and so

L ; (6 —0)(L+1) _q i(0;—0;)(L+1) _q . .

Z 6ik9ju(i) (n + kp) _ u(’l)(n) (e eji(gj_si)_l —+ € ei(BiJ—Gj)_l — ]_) ¥ #1

k=—L (2L 4+ 1)u® (n) =i
Consequently:

L
L_m 2L Z i@ (n + kp) = §;;u (n).

9d .
Now if > au® =0, then Vn € Z:
i=1

q L
. 1
Z (5”u ) = ngrgo 5L+ Z (Z aut (n + k:p)) 0
1=1 k=—L
andso a; =0for j=1,..,q O
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Notation 5.12. We denote the p eigenvalues (counting multiplicity) of h(0) by:
e1(f) <eq(f) < ... <ep(h). (5.17)

The following theorem is of fundamental importance in the analysis of the periodic Schrodinger op-

erator.
Theorem 5.13. Let h be a periodic Schrodinger operator. Then with the notation above, we have:
(i) e;(2m —0) = e;(0) for 6 € [0,7].
(ii) For 6 € (0,m), the e;(8) are simple eigenvalues.
(i) Each e;(0) is real analytic on (0, ).
(iv) For 0,0" € [0,2x], h(0) and h(0') have disjoint eigenvalues unless § = 6" or 6 =27 — 6.

(v) The eigenvalues of h(0) and h(r) satisfy the following hierarchy:

ep(0) > ep(m) = ep_1(m) > ep—1(0) > ... (5.18)

(vi) On (0,7), (—1)P~7e;(0) is strictly monotone decreasing.
Proof.
(i) Suppose that the diagonalisation of h(f) is k() = P(6)D(6)P~1(6). Then:

h(2r — 0) = h(9) = P() D(@) P() = P(@)D(9) P) '

since the eigenvalues of h(f) are real. We have used the fact that for matrices A, B: AB = A B
and (A)~! = A-1.

(ii) Suppose by contradiction that X is a degenerate eigenvalue of h(f), that is, there are u, u(® e
(%(Z) and linearly independent such that hu(® = Au™ and hu® = M. By (i), A is also an
eigenvalue of [h(27—6)] and so there is u(® € £X._,(Z) such that hu® = \u®). By lemma 5.11, u(®)
is linearly independent with any linear combination of «(*) and u(?), hence we have dim E (\) = 3,

which violates proposition 1.7.

(iii) Let x(0,\) be the characteristic polynomial of h(f). It is a polynomial of degree p in A with
coefficients being analytic functions of §. The functions e;(f) are defined implicitely through the
relation x(6,e;(0)) = 0. For 6 € (0,7), the e;() are simple roots, and therefore %(G,ej(ﬂ)) #
0. Hence by the analytic implicit function theorem, the e;(#) are analytic as simple roots of a

polynomial with analytic coefficients.

(iv) All cases of 0,6 € [0,27) can be handled in the same way as in (ii) by finding three linearly

independent eigenvectors, except for the case {0,6'} = {0, 7}, which will be shown in (v).

(v-vi) We let h(®) denote the free Laplacian, that is (R(Du)(n) = u(n + 1) + u(n — 1), and R (0) its
restriction to £;°(Z). R is trivially a periodic Schrédinger operator and so all of the previous

analysis applies. Referring to propositions 5.5 and 5.7, we see that equation (5.18) is valid for h(%).
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In particular, A(%)(0) and h(®)(r) have different eigenvalues, so that (iv) is fully verified. (v) is also
true for h(©).

We continuously propagate all the properties that h(?) has for h as follows: For y € [0,1], we let
Y = (1- y)h(o) +yh. Notice that h(¥) is again a periodic Schrédinger operator with potential 3V
and so all of the previous analysis may be applied to h(¥). If h(¥) (#) denotes the matrix restricting
hW) to ¢ (Z) and x(y,0,\) is the characteristic polynomial of A*)(), which is a polynomial of
degree p in A with coefficients being continuous functions of y and 6, it follows that the eigenvalues
e;(y, 0) are continous functions of # and y on the square [0, 7] x [0, 1]. They determine p continuous
surfaces on the square (6,y) € [0, 7] x [0, 1]. These surfaces cannot intersect over (0, ) x [0, 1] since
for each 6 € (0,7), the eigenvalues e;(y, 0) of h((,y) are simple by (ii). Also, there is no way for the
eigenvalue e;(y, 0) of h(¥)(0) to cross the eigenvalue e;(y, ) of h¥)(r) as y varies without crossing
e;(y, 8) for some 6§ € (0, 7), which cannot happen by (iv). In particular, (v) and (vi) must hold for
all y € [0,1). By continuity, (iv), (v) and (vi) must also hold at y = 1.

O

We can now define the important notions of bands and gaps:

Definition 5.14. For j=1,2,....p

b :={e;(0):0€[0,2m]} = {e;(0) : 0 € [0, 7]}

and

b = {e;(0) : 0 € (0,m)}
The b; are called bands. For convenience, we will furthermore use the following notation: b; stands for
[€(0), e;(m)] if €;(0) < e;j(m) and stands for [e;(7),e;(0)] if €;(0) > e;().
By theorem 5.13, bij“t N bijr,lt = @ for j # j’ and two different bands may intersect only at their common

endpoint. The gaps are the open intervals between the bands. Thus there will be p — 1 gaps if and only

if the bands are disjoint. We have the mod p Fourier transform:

F:02(Z7) — L* ([o, 2n], %; @P) (5.19)
(Fu)n(0) = > u(n+ kp)e™? (5.20)
k=—0o0

The map is unitary since:

|Ful3e = Z J [(Fu)n( |26h9 Z Z u(n + kp)|? Z lu(n (5.21)

n=1k=—00 nezZ

It is a simple matter to check that the inverse is given by:

Flo L2 ([0, 27}, %; CP) — 1*(2) (5.22)
F )t k) = ™ fu0) = [ e p0) 0 (5.23)
[0,27] u
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By the spectral theorem for finite matrices, there are unitaries U(f) : C? — CP such that:

e1(0)
U~ (0)h(0)U(0) = - (5.24)
ep(6)
Lemma 5.15. The unitary matrices U() induce a unitary map U : L*? ([O7 27], ge : Cp) — L? ([O7 27], go :CP
Uf)O) =U®)f(0) (5.25)
Proof. U is unitary since:
de de
F3s = f 102 f 1)1
117 = Z 1 (0)1"5 0] 1£-O)lEn 5
d0 o
= Uf)(0)]2 J ’ Ufli-
ol Z RO
Its inverse &1 : L? ([0,27], £, CP) — L2 ([0, 27], 22; CP) is obviously given by:
UF)(O) =U0)f(6) (5.26)
]
It is important to remind the reader that in order for U(6)f(0) € L? ([0, 27], ge ; C?) to make sense,

we need U(f) to be a measurable function of . By that we mean that the entries of U(6) are measurable

functions of #. In fact, it is not hard to see that the entries of U(6) are in fact continuous functions of 6.

Theorem 5.16. Let h be a periodic Schrodinger operator. Then with the notation above, we have:

(i)
[(FRF™1) f1a(8) = [n(0) f1,.(6) (5.27)
(i)
[UF)RUF) ™) [10(80) = en(8) fa(6) (5.28)
Proof.

(i) For 1 <n <p:

[(hRF 1) f1(n+ kp) = (™, fuo1(8)) + (™, fura(0)) + V()™ fu(6))

0

[(FRF 100 = ) (7 fat (00 + 7 fusa (0)) + V() f(8)) €

k=—00

= fa1(0) + fn11(0) + V() fn(0) = [1(0) f]n(0)-

63

)



For n =1 (the case n = p is a similar calculation):

[(RF) A1+ kp) = (@, £,(0)) + (™, f(60)) + V(1) £1(0))

[(FRF 1) = Y (O 500 + ™ L0) + V™, f1(0))) e

k=—00

_ eikap(@) + f2(0) + V(1) f1(0) = [h(0) f]1(6).

(ii) We apply equation (5.27) to U1 f and get that for n = 1,...,p:
[(F)RUF) ™) f1a(0) = [MOT(0)f1.(6)
Thus equation (5.24) gives:
[UF)WUF) ™) F1a(0) = [UORO)U(0) f1n(0) = en(0) f2(0).

O

Lemma 5.17. Let a : [a,3] — R be strictly monotone and continuous and A : L?*([c, B],dx) —

L?([a, B],dz) the self-adjoint operator of multiplication by a:

(Af)(x) = a(z)f(2).

Then A is unitarily equivalent to the operator of multiplication

B: L*([a(a), a(B)],da™") — L*([a(a),a(B)],da™"),  (Bg)(y) = yg(y).

The unitary map is V : L*([a(a),a(B)],da™t) — L*([a, B],dx), Vg = g o a.

Remark 5.1. a is a bijection and a=' denotes its inverse function, not (1/a). da™' is the Stieltjes

measure associated with a~1.
Proof. The change of variables formula for Stieltjes integrals gives
a(8) 2 1 ? 2 1 ? 2
| ., 19wl = | tata@nda o) = [ 1vo) @)

which shows that V is an isometry. It is also surjective since V(f o a™!) = f. Finally one easily verifies
VBY~1 = A O

Theorem 5.18. Let h : (*(Z) — (*(Z) be a period p Schridinger operator with bands {b;}_,. Then

o(h) =b:= u;b; and the spectrum is purely absolutely continuous with multiplicity two.

L? ([o,zw], ;ﬁ) =12 ([077r]7 ;li) @L? ([w,27r]7 ;li)

de de de
2 or) — 72 2
L ([0,2#], 27‘(‘7([: > L ([O,QW], 27r) @...d L ([0,271'], 27r> .

1 p—1

Proof. Note that

and
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Hence by lemma 5.17:

P de: (X P de; ! (A
L2 ([07 271_]’ g; @p) _ <<_Dl L2 <[€j(0>7 ej(w)L ]27-(()>) C_D ((-Bl I? ([ej(ﬂ')y ej(27T)], 327T()>>

Let A € b"*. There is a unique 6 € (0,7) such that A = e;(0) = e;(2r — ). We write 6(\). In
particular 6'(\) = m Since e;(6) is real analytic on (0, 7), its inverse ej_l()\) is real analytic on bij’“t
and so in particular

1
de; ' (A) = (€7 1) (\)dA = 5———=d\ = 0'(\)dA. 5.29
T = (YO = i =) (5.29)

There is also a sign issue depending on whether ¢/;(6) Z 0:

ej(0) < ej(m) <= €5(0) >0, e (0,m) < (e;')(A) >0, xeb™.

From this we conclude that:

o <[ (0),¢5(m)] W) Pl 2 )3 s 0) < ()
. L% (b, 2= 10/(V)dA) it €;(0) > e;(m)

The same analysis can be carried out for 0 € (7, 27). We define
1 /
dv(N) = 2—|9 (N)|dA. (5.30)
T

Then

By composing the various unitary maps of theorem 5.16 and lemma 5.17, we have a unitary map
U:03(Z) — L*(b,dv()); C?)
satisfying for f(A) = (fT(N\), [~ (N\)):
Rt F15 () = AFE V).

The spectrum of My : L? (b,dv(\)) — L? (b,dv())), the operator of mulitplication by the independent
variable 6, is the support of the measure v, namely b. Thus o(h) = b. Formula (5.29) show that the
spectrum is purely absolutely continuous. O

In the proof of the previous theorem, we were pretty vague about the unitary map U : 2(2) —
L? (o(h),dv()); C*). We make this map more explicit.

Let A e bij’“t and 6 = 0()) be such that A = e;(0) = e;(2m — 0). Let ¢y denote an eigenvector for (6)

65



and A and ¢, denote an eigenvector for h(2m — @) and A. We have:

(h =Nt =0 (5.31)

and
o5 (n+ kp) = TN pE (n). (5.32)

Lemma 5.19. ¢} (n) #0 for allneZ.

Proof. ¥ € E(X) and X € R implies that @ € E(\). Moreover

o3 (n) =

+ik6(X\) Qaj\_ (n)

goj\r(n + k:p) —e efik(27r79(/\))

Siog € E;SFO()\). If o7 (n) = 0, then ¢{(n) = 0 and so W(gpj\“,g) = 0, implying that ¢} and
goj\' are linearly dependent. However, they are also linearly independent by lemma 5.11, so we get a
contradiction. O

As a consequence of lemma 5.19, we may normalize @f by requiring:
*
03 (0)>0 (5.33)

and

2 PGP =1, (5.34)

Lemma 5.20. With this normalization: ¢ = a

Proof. Since @;,g e E(\) n l3 gy and A is a simple eigenvalue of h(2m — 6(X)), it follows that ¢y
and g are linearly dependent. Normalization (5.34) shows that in fact they must be equal. O
Recall the measure dv(\) = 3=[0'(A)|dA defined on ;b from theorem 5.18. We finally have a

complete picture of the direct integral decomposition:

Theorem 5.21. The unitary map U : (2(Z) — L? (o(h),dv(N); C?)

U:u—at\) = Z ©x (n)u(n) (5.35)
nez
satisfies
[U(hu)]E () = AUu] (). (5.36)

Its inverse is given by

0 (F5 (). (V) — f(n) = j

o(h)

(w0 + 95 () dv(N) (5.37)

Proof. Note that ¢} := {¢¥ (n)}f_, is an eigenvector of h((\)) normalized by (5.34), so if Ay, ..., A, are
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the X's with a given 0, {927;“], }5:1 is an orthonormal basis for CP. Thus the following matrix is unitary:

ex (1) ¢x,(1) ex, (1)
P2 ¢h2) ot (2)

Ut = : : : : : (5.38)
oy (p) ¢, (p) 5, (p)

falfs - | P + L(h) ()P

p p 2 p p 2

=3 [ | X EmEaaoe] e+ X [ | EmE.em)] ao
T P P 27 P p 2

- [ by ;w;w)(n)(mn(m b j z ;w;j(g)m)(mn(e) o

— " T (F 2 d o db
| 1o Fn.org f ZH 05
T ,do [T 2d9

- | 1o gﬁﬂ (F 05 = 3 P

by (5.21

(5.36) is a consequence of (5.31) because:

Z ox (n)(u(n + 1) + u(n — 1) + V(n)u(n))
nez
-3 ((pf(n — 1)+ px(n+ 1) + Vn)er (1) u(n)
nezZ
= > () (n)u(n) = AlUu]=(N).
ne”zZ
0
5.2 Bounded Eigenfunctions and Absolutely Continuous Spectrum
In this section, we will consider the Schrédinger operator h on ¢?(Z ) given by
(hu)(n) =u(n+1) +u(n — 1) + V(n)u(n) (5.39)
u(0) =0 (5.40)

67



We reproduce the proof in Simon’s paper [Si2 | to show that if all the eigenfunctions of h = hg+V are
bounded, then h has purely absolutely continuous spectrum. We show that if V' is of bounded variation,
then the spectrum of h is absolutely continuous on (—2,2). For any z € C, recall the two fundamental

solutions ¢(z), s(z) with boundary conditions:

s(0,2) s(1,2)) _ (0 1 (5.41)
c(0,2) (1, 2) 10 .

Recall from definition 1.15 that the Weyl m-function is defined for z € C\R as m4(z) := —u(1,2),
where u(z) = J:((()Z;) is the unique sequence satisfying the full line Schrodinger equation, being square

summable at +00 and normalized by u(0, z) = 1. lemma 1.12 is so useful we give another proof of it:

Q0
Lemma 5.22. Let z € C\R. Then Im m(z) = (Im 2) Y. |u(n,2)[*

n=1

Proof. We look at the Wronskian of v and w:

o
—
<
—~
N
N
<
—~
I\
Y
=
Il

w(0)u(l) —u(l)u(0) = —my(z) + m4(2) = 2i Im my(2).

Wi (u(z),u(2)) = u(n + 1) (zu(n + 1) — V(n + Du(n + 1) — u(n))
—(zu(n+1)=V(n+Dun+1) —un))u(n + 1)
= Wa(u(2),u(2)) - 2 (Im 2)[u(n +1)|.

- N n+1
So Wit (u(2),u(2)) = Wo(u(z),u(z)) — 2i (Im z) > |u(i)|?. The result follows by taking n — oo. [
i=1

Recall the transfer matrix

A(E,n) :=T(E,n,n—1) = (E _1‘/(”) _01> (5.42)

where T is the matrix satisfying

s(n+1,E) c(n+1,FE)

T(Bn,0) = < s(n, E) e(n, E)

) and T(E,n,m) = T(E,n,0)T(E,m,0)" . (5.43)

Note that |T(E,n,n — 1) = |A(E,n)|| = 1 so that

1< C(E):= sup |T(E,n,m)| < sup |T(E,n,0)? (5.44)
neZ

n,mez
is finite if and only if both s(E) and ¢(F) are bounded.
Definition 5.23. Let S := {E € R: ¢(E),s(E) are bounded on Z.}.
Theorem 5.24. On S, the spectral measure p for h is purely absolutely continuous in the sense that
(1) prac(T) >0 for any T < S with |T| > 0.

(11) Usirlg(s) =0.

68



In fact, if E€ S, then:
) liml%nf Im my (E +ig) > 1C(E)~ > 0.
€

(iv) limsup |my (E + ie)| < 4C(E)? < .
el0

Proof. Tt is known that du(E) = %h%l Im m, (F + ie)dE, see for example [Si3 ]. By the theorem of de
€

la Vallée Poussin,

1
dptac(E) = - 61%1 Im m (E + ie)dE

and

Ising is supported on {E € R : lif{)l Im m4 (E +ie) = oo}.

Therefore (iii),(iv) imply (i), (ii) respectively.

T(E + ic,n,0) = [(ig 8) + A(E,n)] [ (ig 8) + A(E,n - 1)]...[ <i05 g) +A(E,1)]

(5.45)

(5.46)

= T(E,n,0) + 2 T(E,n,j+1) (ig 8) [(Zg 8) +A(E,j)]...[ <i05 g) +A(E,1)]

- o

I <

= T(E,n,0) + Y. (ie)T(E,n,j + 1) (; 3) T(E + ie, j,0)
j=0

By induction on n we show using (5.47) that
|T(E + ig,n,0)|| < C(1 + Ce)™ < Ce*
For n = 1, we have

ie 0

T(E + is,1,0)| =
I I \(0 ’

) +A(E, 1) <e+C < C(1+Ce).

Suppose that (5.48) holds for n — 1, then

ie 0

|T(E +ie,n,0)| < H (0

The identity

T(E + ie,n,0)"! u(E+ig,n+1) _ u(E + ig, 1)
Y u(E +ig,n) u(E + e, 0)

together with |71 = ||T'| and (5.48) leads to

[W(E +ie,n + 1)]* + [uw(E +ig,n)|* = C 22" (1 + |m4. (E + ie)|?)

Summing over n = 1,3, 5, ... yields:
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0) + A(E,n)] HT(E +ig,n—1,0)| < (e +C)O(1 4+ Ce)* ! = C(1 + Ce)™.



o0

0
Z |u(E+ie,n)|* > Z C2e 29" (1+ my(E +ie)]?) = C e % (1 6_460)_1 (14 |m(E +1ie)?)
n=1

1
n odd

0
The identity Im m (E +ie) =& >, |u(E + ig,n)|? (lemma 5.22) implies:
n=1

1 _
Im my (E +ig) > 107367260(450) (1 —e9) ! (1 + |m4(E +ie)|?)

and a simple application of ’'Hopital’s rule gives

.. . Immy(E +ig) 1 .4
| f >-C 5.49
o 1 |my(E +ie)|? — 4 (5:49)

: 1
Since 1 > W, (

(5.49) also implies lim sup |m, (E + ie)| < 4C® using the fact that
el0

5.49) implies lim&)nf Im my (E +ie) > +C73.
€

! > Im m (B + ie) and liminf ! = !
|my (B +ie)| ~ 14 |my(E +ig)|? <o |my(E +ig)|  limsup |my (F +ic)|’
0

We now apply this result to potentials with bounded total variation.

Theorem 5.25. Suppose that the potential of the Schridinger operator h = hg + V' vanishes at infinity

and is of bounded variation. That is:

1. V(n) - 0 as n — .
2. 3 [V(n+1) = V(n)| < .

n=1

Then o(h) is purely absolutely continuous on (—2,2). In particular, the result holds for V e (*(Z.).

Remark 5.2. Slightly more generally, if V is of bounded variation, then Vy := lim V(n) exists since

n—0o0
m—1
[V(n)—V(im)| < Z V(G +1)—-V()|—0asn,m— .
Jj=n

So by writing h = (ho + V) + (V — Vi) we see that it is no loss of generality to assume V(n) — 0, i.e.
o(h) will be purely absolutely continuous in (—2 + Vi, 2 + V).

Proof. Suppose that x satisfies he = Fz with E € R. Moreover we may assume that z(n) € R, Vn, since
that is the case for ¢(EF) and s(E). Let

K(n):=2*(n+ 1)+ 2%(n) + [V(n) — Elz(n)x(n + 1).

We show that K is a bounded sequence whenever F € (—2,2). (5.51) will then imply that x is bounded
and the result will follow by theorem 5.24.
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K(n+1)—K(n) = [z(n+2)—z(n)][z(n+2)+z(n)+ (V(n+1)— E)x(n+1)]+[V(n+1)=V (n)]z(n)z(n+1).
Thus
IK(n+1)—Kn)| < |[Vin+1)=V@)||lzn)zn+1)| < |V(n+1) = V(n)|(z*(n + 1) + 2%(n)). (5.50)

Suppose that E € (—2,2). Then since V(n) — 0, 3Ny such that for all n > Ny, 2—|V(n)—E| = § > 0.

For such n:

=
2

+ :cz(n) —|V(n) — El|lz(n)z(n + 1)|
+2%(n) + (6 — 2)|z(n)z(n + 1)|

@+ 1)+ 22 @) + (13 ) o + D] fa(o)]?

vV v
8
i}
N
_|_
=

NS NS,

(%(n + 1) + 2%(n)) (5.51)

v

so (5.50) becomes

|IK(n+1)— K(n)| < %W(n—&- 1) =V (n)|K(n)

so that )
Kn+1)< <1 + 3|V(n +1)— V(n)|) K(n).

Inductively, we get that for all n > Nj:

K(n) < K(No) ] (1 + §|V(n +1)— V(n)|> < K(No) [] <1 + §|V(n +1)— V(n)|> :
j=No j=No

This product is convergent is convergent since:

- 2 J- 2
In 1+-|Vin+1)-V(n)|) = In{l1+=<|V(n+1)—-V(n 5.52
11( SV +1) = Vo)) > (14 5@+ - Vi) (5:52)
< j;ﬂ %\V(n +1) = V(n)| < . (5.53)
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6 One Dimensional Random Schrodinger Operators

6.1 Pastur’s theorem, Minimally and Uniquely Ergodic Operators

We now deal with families of random Hamiltonians. The traditional setup is as follows: let = RZ and for
eachw e O, let V,, := > w(n){dy,,)d,. We write h,, = ho+V,,, and h, is an operator on ¢(Z). Since V,
is real-valued, h,, is self-adjoint on its natural domain Dom(h,) = {f € *(Z) : h, f € £*(Z)} = Dom(V,,).
Of course if instead 2 were equal to SZ for some bounded Borel subset S of R, then Dom(h,,) = ¢2(Z).
For many applications € is taken to be SZ with S bounded, and we will stick with this convention.

The structure on 2 is that of a probability space (2, F,P), where F is the c—algebra generated by
the cylinder sets, i.e. sets of the form {w : w;, € Ay, ...,w;, € An} for iy,...,9, € Z and Ay, ..., A, Borel
sets in S.

We define the shift operators T; on Q by (Tyw)(n) = w(n — i) (i.e. shifts to the right by i). Note
that T} : Q — Q is a bijection and (T;)~! = T~%. It is also a measurable transformation since the inverse
image of cylinder set is again a cylinder set, namely T_1{w : w(ny) € A1,w(n2) € Az, ...,w(nk) € A} =
{w:iwlng —1) € Aj,w(ng — 1) € Ao, ..., w(ng — 1) € Ag}.

Definition 6.1. A probability measure P on § is called stationary if P(T_1A) = P(A) for any A € F.
Accordingly the {T;} are called measure preserving transformations for P. A stationary probability measure
is called ergodic w.r.t to T if T_1(A) = A implies P(A) € {0,1}.

An extended random variable X : Q — R U {40} := R is called invariant under T} if X o T; = X
P-a.s. for all ¢ € Z.

Proposition 6.2. Suppose that P is ergodic and that the extended random variable X is invariant under
T. Then X is constant P-a.s.

Proof. Let Qp := {w: X(w) < M}. Since X is invariant, that is, X (Tyw) = X (w), T-1Qn = Qar, and
ergodicity implies that P(2y) € {0,1}. Notice that M < M’ implies Qs = Qpyr. Denote Z U {+w0} 1= Z.

We have
U Oy = U Q=N and ﬂ Oy = ﬂ Qv = .
MeR MeZ MeR MeZ
Now P( () Qas) =0 forces My := inf M to be finite.
ez P(S2ar) -1
We have Q]wo = m QM0+(1/7L) and QMO = {X < Mo} = U QMO—(l/n)
neN neN
and so P(Qag,) = 1, P(Qay,) = 0. Tt follows that P(X = My) = P(Qaz,\Qas,) = 1. O

Similarly to the T}, define unitary shift operators U; on ¢%(Z) by (U;u)(n) = u(n — i). The following

lemma provides a key relation for families of random operators.

Lemma 6.3. If {h,}ueq is a family of self-adjoint operators that is ergodic with respect to the family
{T:}iez of measure preserving transformations, then f(hr,.) = U; f(hy,)UF for all f € By(R), the bounded
Borel functions. Moreover, if h,, is bounded, then the relation holds for all polynomials and continuous

functions as well.

Proof. We will assume that the h,, are bounded operators. We show explicitly that hr,, = U;h,U}.
(Ui u)(n) = u(n + 1)
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(hoUFu)(n) = (hou)(n + i) + w(n)u(n + i)

(Uih,UFu)(n) = (hou)(n) + w(n —i)u(n)

Therefore, U;h,Ufu = ho + >, wp—i{6n, -)0n = hr,,. The relation easily extends to polynomials.
nezZ
If h,, were unbounded, the relation can be verified directly for resolvents, i.e. for functions f.(z) =

1/(z — z), z € C\R. Linear combinations of the f, are dense in Cy(R), the continuous functions vanishing
at infinity, and so by the Stone-Weierstrass theorem, the relation holds for f € Cy(R).
Finally since h,, and Uh,U* are self-adjoint, we have for f € Cy(R):

fR FE)dpo(E) = (b, fURU*)E) = (b, U S (ho)U*6)

— U, f(h)U* ) = L FE) vy g (E).

This shows that juy ¢ and vysy #, agree so that the relation holds in fact for all f € By(R). ]
We now come to the celebrated theorem of Pastur, namely that the spectrum of random Schrodinger

operators is almost surely the same set.

Theorem 6.4. There exist deterministic sets Yac, Yisc, 2pp such that for P-a.e. w,
Uac(hw) = Yac O'sc(hw> = Ysc Upp(hw) = Epp-

Proof. By lemma 6.3, we have

Tiw
J d/.tn (t) _ <6n, (UzhwUz* _ Z)_16n>
R

t—z

d
- <U7‘*5n7 (hw - Z)_1U1*6n> = <5n+i7 (hw 16n+1> J M"-H )

t—z

hence p&, , = pli.

Let pTiv = ZZ a,puli® be a spectral measure for hz,,. Then pT* = ZZ Ap s = ZZ Qp—ift. So
ne ne ne

Tiw is also a spectral measure for h,,. By proposition 8.14, o4c(hr,w) = supp puli% = dac(hy) = supp ps..

"
The same goes for the sc/pp components.

In what follows # stands for ac/sc/pp. For r1,79 € Q, 11 < ra, consider the set

71,72 {W (’1"1,7‘2) N supp N% = @}

supp uz;“’ = supp g means that T(ET1 ry) = Ejf ., for all i and since P is ergodic, we have
( T1, 7‘2) {O 1}

Let
and QF = ﬂ Qh o

7r1,r2€Q

1
0

# — Ej“% T2 1f [P(E;% r2)
O\EF . it P(E¥ )

71,72

Note that P(Q#) = 1 since Q# is the countable intersection of sets of full measure. We claim that
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for wi,wy € Q#, 04 (hy,) = 04(hy,). Indeed, if e ¢ o4(hy,), then there are rationals 1,7, such that

ri <e<ryand wy € B# Then ws € E#

F 7 and so e ¢ oy (hy,). Reversing the roles of wy and wo

yields the statement. U
In the last theorem, we overlooked an important step, namely verifying that the sets ET1 r, are

measurable. We will provide the necessary details to convince ourselves that the sets are measurable.

Definition 6.5. We say that the family of operators {A,} is weakly measurable if the mapping w —
(i, Ay d) is measurable for all ¥, ¢ € H (of course it is assumed here that the A, are bounded operators).
For a family of self-adjoint operators, we say that the family {A,} is self-adjoint measurable if the mapping
w — (, (Ay — 2)7Lp) is measurable for all 1, ¢ € H and z € C\R.

Note that (¢, A,B,¢) = ., (¥, Aubn){0pn, B, ¢) shows that the product of bounded weakly measur-
able operators is again weakly measurable.

We recall some facts about the measurability of projections and spectral measures. The reader is
referred to [Jal] for more details. If the map {h,} is self-adjoint measurable, then f(h,) is weakly
measurable for all f € By(R), in particular for f(t) = e’ and f(t) = 15(¢), the characteristic function of
a Borel set. By the Trotter product formula, the family {h,} is self-adjoint measurable.

Proposition 6.6. The projections Leont(hy) and Lac(hy,) are weakly measurable.

Proof. Let xn(n) =11if [n| < N and xn(n) = 0if |n| > N. It follows by the RAGE theorem (theorem
46, [Ja]) and the polarization identity that for every N:

lim = f < e ]]-COnt( )fa XNﬂ-cont(h )Eiithwg>dt =0,

T—w T

Therefore (assuming wlog that f € Leont(hew)H)

1 4 ] —ith
(fs Leont (hw)g) = T J s e'the (L —x~ + X~N)Leont (he)e t}wg>dt
0

T
(fy e (1 — XN ) Leont (he)e ™ ghdt

Il
3
|

the, gydt

Il
=
=
\
P
T
9]
s
=
€
—
=
|
=<
SN—

~ Jim & f (o™ (1 = o)Ly (hu)e ™ gt
The last term is estimated using 1, (he)g = >, g5, where the g; are eigenfunctions of h,, i.e. hwg; = A;jg;.
(o™ (1 X pp (e g) < e F(2 — X)Ly (h)e ]
< 171 2@ = xw)e g;| < 1A 2@ = x)i-
J J

Therefore we have

(o Leont (hw)g)y = hm lim —f {f,e he (1 — yn)e™ "”g>dt

NowT—w T

which is measurable.
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As for 1,¢(hy), we have the following formula:

1 N
(, Lae (o)) = Jim_lim lim — J [Im (1, (hy, — E —ic) " ")|PdE. (6.1)

—o0 ptl el0 7P J_

which shows that w — (¥, 1ac(hy)®) is weakly measurable. The result follows by the polarization
identity. O]

As a consequence of this proposition, it follows that
w = Lee(hw) = Leont (hw) — Lac(hw) and w — L,p(he) = 1 — Leong(hw) (6.2)

are weakly measurable.

Finally to show that the sets Ejf’f),2 of theorem 6.4 are measurable, we note that for any Borel set B,

w — (I (hw)V, 1#(hw)w> = ,Ufz;,#(B) (6.3)

are weakly measurable functions, and therefore the maps
w— 15(B) = it 4(B) (6.4)
are weakly measurable. Consequently the identity

Ef’ir2 = {w: (ry,r2) N supp py = I} = np{w: pe(ry —1/n,rg —1/n) = 0} (6.5)

shows that Eﬁim are measurable sets.

Let us make the setup of the random Schrédinger operators even more general. Let f € Q = S — R
be a continuous function and define the potential V,,(n) = f(T,w). In many applications, Q2 is compact,
so that f(7T,,w) has bounded range, and the h,, are uniformly bounded operators on ¢?(Z). The standard

metric on Q is then d(w,w’) = >, 2’"%%. Note that if f is taken to be the projection onto

the zeroth coorinate, we retrieve the potential described earlier.
Definition 6.7. If the orbit {T,w : n € Z} is dense in Q for every w, we say that T is minimal for .

If further we assume that 7" is minimal, we can give a worthy improvement on Pastur’s theorem. If

denotes the deterministic set such that o(h,) = ¥ for almost every w, then we have in fact (see [Da ]):
Theorem 6.8. Suppose that T is minimal for Q. Then for every w € Q, o(hy,) = X.

Proof. Let w1, ws € ) be given. By minimality, there is a sequence n; such that T, ws — wy as j — oo.

Note that 1,1, ,wa — Tinw1 uniformly in m € Z, and so:

I, osth = el = 3£ (BT 02) — F(Toon) P iom) 20| < <
where by continuity of f, we have chosen j sufficiently large so that |f(T,Ty,w2) — f (Trnw1)]? < e.

Ty,
Therefore thJ_ w, converges strongly to hy,. Denote by p,, i and uZl the spectral measures for ¢ and

T,
hr, jw2 and hy,, respectively. Then using the Borel transform representation shows that s, 32 converges
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T, .
weakly to ujzl, and so by the Portmanteau theorem, liminf /s, e (I) > HZI (I) for every open interval
I. Taking a point = € o(h,,) and picking intervals I,, centered at  and converging to x shows that

T, .
lim inf 1, i (In) = py' (1) > 0 and we can find a sequence (z,,) € sz10(thij) converging to x.

Therefore

o(hy,) © U o(thij).

j=1
Finally each of the operators thj w, 1s unitarily equivalent to h,,, therefore we have
o (hw,) © U U(thjwz) = 0(hw,)-
j=1
Reversing the roles of w; and wy completes the proof. O

Definition 6.9. A measurable transformation T : Q — € is said to be uniquely ergodic if it admits only

one invariant probability measure.

Recall the Ergodic theorem, the strong form of the Strong Law of Large Numbers: if f € L*($, dP),

then P - almost surely:

nlgr&)% 2 f(Typw) =J f(w)dP(w) (constant). (6.6)
k=0 Q@

Theorem 6.10. If T is uniquely ergodic, then for all f € C(Q), the collection of continuous functions,
n—1

L3 f(Tyww) converges uniformly in w € Q to ¢y := §, fdP.
k=0

Proof. Suppose not. Then there exists fo € C(2) for which the limit does not exist or for which the

convergence is not uniform. In either case, there exists € > 0 and a sequence (w;) such that for all j > 1,

nj—1

% D folThws) — g,

J k=0

= E.

’nj*l o0
Let @ := {p,,} be a countable dense subset of C(Q2). Consider {ni > wl(Tkwj)} v This is a bounded
7 k=0 J=
sequence of real numbers (bounded above by sup |¢1(w)|) and so it has a convergent subsequence. Using
a diagonal argument, there is a common subsequence (for simplicity also denoted by (w;)) such that for
all p,, € ®:
1 nj—l
— Z ©m(Tiw;) converges. (6.7)
" =0
We now show that by density of ® € C(£2) we can extend (6.7) to all g € C(Q). Let ¢ > 0 and choose

m such that sup |g(w) — ¢m(w)| < . Then
wel

n;—1 n;—1
1 J 1 J
— Z 9(Thw;) — — Z Om (Thw;)| < e. (6.8)
i 2o i k2o
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e}
An £/3 argument shows that { D g(Tkwj)} ~is a Cauchy sequence, namely:

1 nj—1 s 1 nj—1 1 n;j—1
7’7]‘ kZ: g(Trwj) — < E Z 9(Thwj) — —J 2 Om(Thwj)
—0 k=0 k=0 k=0
nj—1 N1 1 n;—1 =1
2 om(Thw;) — m(Tew;r) ‘ Z 9(Thpwjr) — — 2 Om (Trw;r)|.
n; k=0 k=0 "' ko "' k=0

The first and third terms on the RHS are controlled by (6.8) while the middle term is controlled
because of (6.7). Therefore for all g € C'(£2),

n;—1
1 J
— Z 9(Tpw;) converges. (6.9)
i k=0

On the other hand, we know by the Ergodic theorem that for all g € C'(£2), linolo 1 Zz;é 9(Trw) = ¢q4
almost surely. Therefore there exists @ such that lim L szé Jo(Tew) = cy,.

Considering the dense set ®, the sequence { Z e1(T; kw)} and repeating the diagonal argument
n=1

yields a common subsequence (n;) such that for all g e C(Q),

L s
— Z (Tx&) converges. (6.10)
ni

Now (6.9) and (6.10) define respectively two bounded linear functionals .Jy, J5 : C(Q) — R satisfying
Ji(1) = Ja(1) =1 and |Ji1|, | J2] < 1. By the Riesz Representation theorem, there exist Borel measures
11, po on € such that

Ji(g) = Lgduh Ja(g) =L gdpis.

The identity

=
45
SR
=R
=
€
:\H

Z_: Tkw

shows that pi, no are T-invariant. However as |J1(fo) — cf,| = € and Ja(fo) = cyy, 11 # p2 and so T' is
not uniquely ergodic, a contradiction. O

Definition 6.11. We say that P has full measure if P(O) > 0 for every open set in .

Proposition 6.12. If T is uniquely ergodic, and its invariant measure has full measure, then T is

minimal.

Proof. Let f be supported on an arbitrary open set O # J, and we may suppose wlog that SQ fdP = 1.
n—1

Then by theorem 6.10, nlgrgo % kgo f(Tyw) = SQ fdP =1 for every w. Therefore the orbit of w must enter

0. O

Again we are in the setting where 2 is compact and V,(n) = f(T,,(w)), f continuous.

Proposition 6.13. The map Q3w — (h, — 2) "¢ is continuous for every ¢ € £*(Z) and z € C\R.
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Proof. By the first resolvent identity, (h, — 2)"1¢ — (hw — 2) 1@ = (hy — 2) (Vi) — Vi) (her — 2) "1,
Therefore

[(he = 2) 7' = (hur —2)7'0] < [(Ves = Vi) (heor — 2) 4]

|I z
Now

(Voo = Var) (her = 2) 7101 = D7 (Vo = Vi) (her = 2) 0, 600

kezZ

= Vu(k (B)[{(her = 2) 7" 0, 012

keZ

Fix € > 0, there exists M such that |V,,(k) — V. (k)] < M for all k € Z,w,w’, and there exists K¢ such that

Dikizro M2 (her — 2)71¢,0k)> < €/2. By continuity of f, we can choose § > 0, such that d(w,w’) <&

implies >, _ e |Vio (k) = Vi (k) P[{(hr — 2) 7' ¢, 0x)|* < /2. The result follows. O
Let X be the set such that o(hy) = X, P-a.s.

Proposition 6.14. If P is of full measure, then o(hy) < 2 for all w € Q.

Proof. Let x ¢ . Consider a smooth bump function f € C’OO( ) that is supported around x, but
supp f N ¥ = . Then by the Helffer-Sjostrand formula, f(h,) = + Sa: — 2) " Ydady for all w.
Therefore {¢, f(hy)d) = %So %f (2){¢, (hy, — z)"Lp)dady for all w. Applymg proposition 6.13 and the
fact that P has full measure shows that the spectral measure for h,, is not supported near x. ]

6.2 Example of Ergodic Operators: The Anderson Model

The setup for the Anderson model is as follows: We have a probability space (2, F,P). The real-
valued potentials {V,,(n)},ez are independent and identically distributed random variables with common

probability distribution v, that is, for any Borel set A ¢ R and any n,

P({w:V,(n)e A}) =v(A)

and for any finite collection of Borel sets Ay, ..., Ax of R
k
[P({w:Vw(nl)eAl,...,V (nk) eAk}) H[P {w:Vy(ny) e As}) = Hl/

i=1

For every w € Q we define a multiplication operator

= > Vio(n)(8n, Vs

nez

with domain Dom(V,,) := {1y € £2(Z) : V1) € £*(Z)}. By the Anderson model we mean the hamiltonian
hy, =ho+V,

where hg = —A is the discrete Laplacian on the lattice. We obviously have Dom(h,,) = Dom(V,,).

Proposition 6.15. For every w € Q, V,, is self-adjoint on Dom(V,,) and essentially self-adjoint on £y(Z).
h, is self-adjoint and essentially self-adjoint on £y(Z).
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Proof. The statement for V,, is proposition 8.21. Since hy is a bounded self-adjoint operator, the statement
for hy, follows by the Kato-Rellich theorem (theorem 8.24). O

If supp v is compact, say supp v < [—M, M], then almost surely we have |V,,(n)| < M for all n. In
that case Dom(h,,) is all of £2(Z) and the family of random operators {h,, = ho + V,,} is almost surely
uniformly bounded by 2 + M.

Example 6.16. In the literature it is common to take the following probability space: We start with a
probability space (S, Bs,v), where S R and Bg denotes the Borel sigma-algebra on S. Then the standard

construction is the infinite product space

(ij:v [P) = ®(SaBS7V)

neZ

Xz Bs is the sigma-algebra generated by the cylinder sets {w : w(ni) € Ai,..,w(ng) € A} for
ny,...,ng € Z and Ay, ..., Ay Borel sets in R. Recall ), _,Bs = Bgz. [P satisfies [P({w s w(ng) €

nez

i=1

identically distributed by construction. The Anderson model takes the form :

k
Ay, .y wng) € Ak}) =[] v(A;). Consequently the random variables V,,(n) := w(n) are independent and

he = ho + Y w(n)(6n, )6,

nez
Theorem 6.17. The product measure P = ), ., v is ergodic w.r.t. the shifts {T}}, (Tjw)(n) = w(n—7j).
Notation 6.18. We denote Fy the collection of all cylinder sets in SZ.

Proof. First we show that {7} is a measure-preserving family. For A;,..., Ay < S, let A = {w:w(ni) e
Ay, .. w(ng) € Ak} € Fo. Then:
k
P(T_;A) = P({w: w(ni — j) € A1, ...,w(ng — j) € Ap}) = Hu(Ai) = P(A)

i=1

Moreover one easily verifies using the relations 7 ;(A°) = (T-;A)° and T_;(UnA4,) = U,(T-;A,) that
the collection Fq of all sets A € F satistying P (T_;A) = P(A) is a sigma-algebra. Thus F; = F.
Now we show that for all A, B € F:

P((T_;A) A B) — P(A)P(B) as |j| > © (6.11)

If A,B € Fy, then P((T_;A) n B) = P(A)P(B) for all |j| sufficiently large so that (6.11) holds.
Moreover
P((T_;57) n A) = P(ST)P(A)

and

P((T_;A) n S%) = P(A)P(S%)

for all A e Fy.
Consider the collection M of all sets F5 < F such that :

(1) .7:2 D fo U {SZ}
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(ii) (6.11) hold for all A, B € Fo.

Then (M, <) is a non-empty partially ordered set. If C = {C,} is a chain in M, then u,C, is easily
seen to an upper bound for the chain C belonging to M. Hence by Zorn’s lemma, M has a maximal
element, say F.

Remains to show that F is a sigma-algebra. It will then follow that (6.11) holds for all A, B € F.

If A,Be F, then

P((T_;A%) n B) = P((T_;A)° n B) = P(B) — P(T_;A) n B) — P(A°)P(B)
and
P(T-,;B) n A°) = P(T_;B) - P((T-;B) n A) - P(B) — P(B)P(A) = P(B)P(A°)

Since F is maximal, then A¢ e F. If {A,} are disjoint in F, B € F, then
P((T-j(UnAn)) N B) = > P((T;A,) n B) = JN P((T-;An) N B)dpc(n)

where i is the counting measure on N. Now P(T_;A, nB) < P(T_;Ay) = P(Ay), and §, P(Ay)duc(n) =

> P(An) = P(UnA,) < 0. So the Dominated Convergence theorem gives | 1|im P((T-j(undn)) N B) =
jl—00
P(unAy)P(B). Similarly |lllim P((T-;B) n (UnA,)) = P(B)P(un4y). So U, A, € F.
jl—o
Finally, if M € F is an invariant set, then P(M) = lim P((T_;M) n M) = P(M)?, so that P(M) €

|7]—00

{0,1}. O
Proposition 6.19. o(V,) =supp v P-a.s.

Proof. Since (*(Z) = L*(Z,P(Z), p.) where p. is the counting measure on Z, it follows by proposition
8.22 that for all w:

o(Vy) =essran (V,) ={zeR: pu.({neZ:|Vy(n) —z| <e}) >0,Ve > 0} = {V,(n) : ne Z}.
Remains to show that supp v = {V,(n) : n € Z} almost surely.

Adsuppr=TFe>0:v(A—g,A+¢)=0
=3&>0:E,:={w:V,(n)e (A—¢e,\+¢)} satisfies P(E,) =0 Vn
=3e>0: F:=uU,E, ={w:V,(n) e (A—¢g,\+¢) for some n} satisfies P(E) =0
=3e>0:E°={w:V,(n)¢ (A—¢e,\+¢) for all n} satisfies P(E°) =1
= \¢ {V,(n):neZ} for all we E

Consequently {V,,(n):n e Z} < supp v for all w € E°. For the reverse inclusion we use the Borel-
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Cantelli lemma. Let D be a countable dense subset of supp v:

AeD=YVm>0:v(A—1/m,A+1/m) >0
=VYm>0,Yn: E, mx:={w:V,(n)e (A=1/m,\+ 1/m)} satisfies P(E,, ;,.x) > 0

=VYm > 0: E,, = limsup E, ,, » satisfies P(E,, ») =1

n

= E) := Ny, By ) satisfies P(Ey) =1

At this point, A € {V,(n):ne Z} for all w € E). Finally, let E := nyE). Then P(F) = 1 and
D c {V,(n):neZ} for all we E. Hence

D =supp v c {V,(n):neZ} forallwe E.

]
In example (6.16), since the measure P = ®,czv is ergodic, there exists a deterministic set ¥ such

that o(hy) =X P-a.s. In fact, we have more generally:
Theorem 6.20. o(h,,) = [—2,2] +supp v P-a.s.
The proof of the theorem requires some preliminary results.

Proposition 6.21. Let A and B be self-adjoint operators on a Hilbert space H. Assume that A is
bounded and that o(A) is a connected set. Then c(A+ B) c 0(A)+o(B):={a+b:aco(A),beo(B)}.

Remark 6.1. By lemma 8.15, we may assume that the Dom(A) = H. B however may be unbounded.

Proof. We start by showing that o(A) + o(B) is a closed set. Indeed, since A is bounded and self-adjoint,
its spectrum is a compact subset of the real line, whereas since B is self-adjoint and possibly unbounded,
its spectrum is a closed subset of the real line. Now suppose a,, + b,, — x for some a,,, b, € 0(A),c(B).
By compactness a,, has a subsequence a,, converging to a € o(A). Then b,, converges to x — a, and so
x—a€o(B). Thus z € 0(A) + o(B).

Since o(A) is a connected set, proposition 8.4 says that o(A) = [m, M] for some m < M and
4] = max (M, —m).

By shifting the operator and the spectrum, and by the proof of proposition 8.4, we may assume wlog
that o(A) = [—|A], |A]]. We show the contrapositive. Suppose that z ¢ o(A) 4+ o(B) = {[b — ||All, b+

HAH] : b€ o(B)}. This with the fact that o(A) + o(B) is closed gives dist(z,o(B)) > ||A|. Also notice
that z ¢ o(B). Then:

Iz~ B) Al < (= — B) 4] = A2

= ditle0(B) "

Thus 1 € p((z — B)~*A). Finally the identity

z—(A+B)=(2—B)(1—(2— B)A)
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shows that z ¢ o(A + B).
O

Lemma 6.22. There is a measurable set Qg with P(Qo) = 1 such that the following is true: For any
w € Qo, any finite set A < Z, any collection {a;}ien < supp v and any € > 0, there is a sequence {jn,} < Z
with |j,| — o0 such that for all n

Szgf la; — V(i +jn)| <e
Proof. Fix a finite set A  Z, a collection {a;};ea < supp v and an € > 0.

Let A = {w :sup|a;—V,(i)| < e} = ﬂ {w:|a;—V,(i)] < e}. Notice that A is measurable since {V,,(n)}
€A
are assumed to be random variables. Then P(A) = [[P{w:]a; = V(i) <e} = [[ v(a; —e,a; + €) > 0.
€A €A
Now choose a sequence j,, € Z such that the distance between any j,, j.,, (n % m) is greater than

twice the diameter of A. Then the events

An = An(A{ai},e) = {w:supla; — V(i + jn)| < &}
€A

are independent and P(4,,) = P(A) > 0. So by the Borel-Cantelli lemma we have that the set

QA fai},e = {w 1 w e A, for infinitely many n}

has probability one.
Now since subsets of separable metric spaces are separable, supp v contains a countable dense set D.

Moreover, the collection S of all finite subsets of Z is countable. Thus the measurable set

=[] ey
AesS
{a;}cD,neN

has probability one. By construction and density of D in supp v, one easily verifies that €2 satisfies

the requirements of the assertion. O]

Proposition 6.23. Let a € supp v and denote h, = hg + a. Then for all y # 0, e € R, and w € Qy:
[(he — e —iy) "t = |[(ha — e —iy) 7!

Proof. Fix w € Q. By lemma, 6.22, for any arbitrary finite set A © Z, we can find a sequence { g } c”Z

.(m)

such that \](m)| — 0 and sup a — V(i +jn )| < L for all n. Using a diagonal argument we can extract

ieA
a sequence {j,} < Z such that |7n] — 0 and lim sup|a — V,,(i + j,)| = 0.

n—=0 jeA
Now let ¥ be a unit vector in ¢*(Z).

Yo = Us 0, VW =UVU;, B o= ho + V™

For ¢ € 0y(Z), let A = {k € Z : {0y, ¢y # 0}. Then |A| < o0 and choose {j,} such that hm sup |a —
D keA
Vo(k + jn)| = 0. Then

Jim VMo = ];A<6k,¢> T Vi, (k + i) (8) = ad
€
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The key relation to prove is that for ¢ € ¢3(Z), ze C < R:

11%@57) —2) Yo = (ha —2) "o (6.12)
This is known as strong resolvent convergence. It is well known (see e.g. Chapter 1.1 of [C ]) that if we
have self-adjoint operators (A, DomA), (A, DomAy)7_; and DomA is a core for # which is contained in

all of the DomAyg, and for which we have:
lim Agf = Af (6.13)
k—o0

for all f € DomA, then A; converges to A in the sense of strong resolvent convergence. We will prove
this fact here directly. First we show that this relation holds for a dense set. Let ¢ € D := {¢ € (*(Z) :
(ha —2) ¢ € £o(Z)}. Tt is not hard to see that D is dense in £2(Z).

lim (5 = 2) 71 = (ha — 2)"'¢ll = lim (A0 — 2) 7 (a = V) (ha — 2) 19|

n—0o0

I(a =V ) (hy — 2)"¢] = 0.

- TLI—I};O |Im z|

Hence (h&”) — 2)7! converges strongly to (h, — 2)~! on D. As the family {(h&") — )71} is uniformly
bounded, a standard § argument shows that the strong convergence can be extended to the closure.
The identity

Uj, (B0 — e —iy) "' = (he — € — iy) by

combined with (6.12) yields

lim |(he, — e = iy) " Y] = [(ha — e —iy) "]

n—0o0
Hence
[(he — e —iy) | = [ (ha — e —iy) ™|

O

=

Lemma 6.24. For any self-adjoint operator A, e € o(A) < [|(A—e —iy) ly|=t for every y > 0.

Proof. If e € o(A), we have a Weyl sequence 1, € Dom(A) of unit vectors, that is, nh_r)rgo [(A—e),| =0.
Now 1 = [[¢n]? < (A —e—iy) HP[(A — e —iy)vn[* = [(A — e —iy) "1 (I(A = e)vn]® + y2[¥n]?) <
y72 (I(A = )| + y?). Thus lim (A — e —iy) " *|(A = e —iy)pn[* = [(A — e —iy)"H*y* = 1, ie.
[(A—e—iy)~H] =y~

Conversely, |y|™! = (A — e —iy) ™| < dist(e + iy, 0(A4))~! < |y|~1, hence dist(e + iy, o (A4)) ! = |y|~1,
and so dist(e,o(A4)) = 0. O

We can now complete the proof of theorem 6.20.
Proof. proposition 6.19 and proposition 6.21 together imply o(hy,) < [—2,2] + supp v P-a.s.

=

For the reverse inclusion, let A € [—2,2], a € supp v. Then by lemma 6.24, |(hg — X — iy) ly| 1.

By proposition 6.23,
Y™t = I(ho = A=) = [(ha = A+ @) —iy) | < |[(he = A+ a) —ig) | < [y[™" P—as
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Hence |y|= = |(hy — (A + a) —iy) | and A\ + a € o(hy,) follows from lemma 6.24. O

7 Conclusion

This overview of one dimensional discrete Schrodinger operators was an excellent way leads to many
interesting questions, such as the analysis of absolutely, singular, and essential spectra for various poten-
tials. To progress in the direction of random and ergodic potentials, one might be interested in the recent

work of Artur Avila on quasi-periodic Schrédinger operators.

8 Appendix

The appendix is a collection of useful facts for the thesis, together with solutions to exercises in [Ja |.

Definition 8.1. (Rotations on the unit circle) Let M :={z € C: |z| = 1}. Let a € [0,1) be given and set
T.(2) = ™z, (8.1)

The orbit of z € M is the set O(z) := {T2(z) : n € N}.

Lemma 8.2. If « is rational, O(2) is a finite set for all z € M. If « is irrational, O(2) is dense in M
for all z € M.

Proof. We use the following metric on M: for w,w’ € R,
d(e2™ 2™y = |271w — 27w’| (mod 27).
If « is rational, say o = p/q, with p, ¢ coprime, then

O(e%riw) _ {e2friw7 eQm’(erp/q),e27ri(w+2p/q), .“7627ri(w+(q71)p/q)}'

Let « be irrational. Then T (e*™) = T™(e2™%) « |27(w + na) — 2m(w +ma)| = 0 (mod 27) < m = n.
Hence the trajectory never repeats itself. Also {T7(e?™“) : n € N} = e>™“{T(1) : n € N} shows that
it is enough to show that the orbit of z = 1 is dense in M. Suppose by contradiction that O(1) is not
dense, that is, there is ¢ > 0 and ¢ € [0, 1) such that d(e®™** , T(1)) > ¢ for all n.

If m > n are such that d(e?™"®, >} < ¢, then |27(m—n)a| (mod 27) < € and so d(1, e>™(m—m)e) <
. The angle 27(m — n)a is small enough that there exists k € N such that d(e?™¢, e2mik(n=mle) < ¢
However since e2™*(n=m) e O(1), it must be that d(e*>7"*,e2>7"*) > ¢ for all m,n. Hence there must

be at most 27/e < o0 elements of the form 2™ contradicting the fact that O(1) is an infinite set. [J

Lemma 8.3. Suppose that p is a positive finite measure on R. Then the set of all continuous functions
and the set of all bounded Borel functions are dense subsets of L*(R,dp). If in addition p is compactly
supported, then the set of polynomials is also dense in L*(R,dp).

FE) f(E)<n

0 [f(E)>n
If(E) — fu(E)] — 0 ae. since |f(E)| < o a.e. Moreover |f(E) — f.(E)| < 2|f(F)| € L*(R,dp)
so ||f = ful3 = Sz [f(E) — fn(E)[*dp — 0 by DCT. Next we show that bounded Borel functions can be

Proof. Let f e L*(R,dp) and consider f,(FE) =
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approximated by continuous functions. Let € > 0 be given. First choose N such that p([—N, N]¢) < e. By
Lusin’s theorem, there exists a compact K < [—N, N| such that f|x is continuous and p([-N, N\K) < e.
Note that K is a disjoint union of closed intervals together with countably many singletons. We define a
continuous function g on R as follows : ¢ is equal to f on K, piecewise linear on [—N, N|\K in such a
way that g is continuous on [~N, N] and |g|lo,[—n,n] < || fleo,[~n,n], ¢ Is identically 0 on [N —1, N +1]
and linear on [-N —1,—N] and [N, N + 1]. Then | f —g|3 = § .. [/ — g*dp < 4] f[%e

Finally, if p is compactly supported on [a,b] and f is continuous on R, then there is a polynomial P
such that | f — Pl (o) < & Then | f — P|3 < p([a,b])|f — PI%, [, ) < p([a; b])e?. O

Proposition 8.4. If A is a bounded self-adjoint linear operator on a Hilbert space H, then |A| =

sup [y, A)|. Moreover, if M := sup (¢, A) and m := g 1r‘1f (p, Ay, then
[]=1 []=1 =

{m} U {M} < o(A)  [m, M].

Proof. Let oo := sup [{¢, Ay)|. Cauchy-Schwarz gives a < | A|. For the reverse inequality, note that
=1

[Al = sup [|Av]
=1

= sup sup [(¢, A¢)|
=1 ¢l=1

= sup {[K&, Al : o] = 1, [¢] = 1}
= sup {{¢, AY)| : || = L, || = 1,{¢, A¢) is real }

By the polarization identity,

X, AY) = (o + ¥, AP + ) = (b — ¥, A(¢ —¥)) — o + i), A(¢ + i) + i) — ith, A(d — inp))

Since A is self-adjoint, the first two terms on the RHS are real while the two last terms are purely

imaginary. In particular, considering ¢ and ¢ so that (¢, Ay) is real, we have,

o+ 0,40+ ) — @ —w, A6 - )|

£$<W+wﬂ<$15 (| 16— P g A ¢HN>

1
< 1 ([ +vPa+ 16 —vl*a)’

1
=—a? (J¢]% + [¢]?)?

o, A)[*

where we have used the parallelogram identity in the last step. Finally taking the supremum over all
¢ and 1) satisfying |¢| = [[¢| = 1 and {¢, Av) is real yields |A| < a.

We define M := sup (¢, Ap), m := quﬁr‘lf (¢, Ap). Let ¢, be a sequence of unit vectors such that
l#l=1

[{dn, Adp>| — |A| and [, Ady, )| is an increasing sequence. Let {¢p}} = {¢, : {pn, App) > 0} and
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{d7} = {dn : {Pn, Ay ) < 0}. If {¢, } is a finite collection, it follows that |A| = sup (¢, Ag), or if {¢;}}

is a finite collection, it follows that |A| = ”21“151 —(¢p, Ap) = — H¢i>IH1£1<¢’ Ap). Henc‘le(bw‘ju = max (M, —m).
For any t € R, let A; = A —t. Then ||A;| = max (M —t, —m + ).
Choose t so that M —t = —m + t, namely, t* = w We have ||Au| = suP1<¢, Ay =
- Bt (5 A Il
Since Ay« is self-ajoint, its spectrum is real and its spectral radius is equal to | A | = M —t = —m+t.

Therefore o(Ayx) < [m —t, M — t]. Therefore o(A) < [m, M].
We claim that £||A;x| € o(Aw) and prove it using the criterion of Weyl (theorem 8.8). Since
Az | = sup {p, A'®), there is a sequence of unit vectors {¢, } such that (¢, (A —||Agx||)dny — 0. Then

lél=1
[(Aor = LA D)l = —20Ape [(n, Aus B + [ Apn ol + [ Aps |2 < —2 Aps[<Gs Apr ) + 2 Ags |2 — 0.
Hence ||Apx| € 0(Ax) and a similar argument using |A«| = —H;rulfl@, Ay ¢y shows that —| A €
O'(At*).
Finally, we have A — || A | = (A—t)— (M —t) = A—M and A + | A | = (A—t)+(—m+t) = A—m.
We conclude that m, M € o(A). O

Proposition 8.5. Let Cy(R) be the Banach space of continous functions from R to C that vanish at infinity
with norm, | f| = sup | f(z)|. For f e Co(R), let fy(x) = £, (x&dt = f * gy where g,(x) =
zeR

—t)2 +y2
Then:

() Lim|f = f,] =0

y__1
w24y’

(ii) the linear span of {W

+37 1 a € R,b> 0} is dense in Co(R).

(iii) the linear span of {1 : z € C\R} is dense in Cy(R).
Proof.

(1) One can evaluate the integral to find that g m

choose 0 > 0 such that |f(s) — f(t)| < e whenever |s —t| < . Then for fixed z and arbitrary y:

dt = % for all z. Let € > 0 be given and

) - sy = [2 [ LE210
y [ /@)= f@)
<3l e
1
<e+2Yf12 J Tl
[t—x|>6
1
<c+2)f)Y f el
[t—z|>6
=+ 4lfl

Hence limsup | f — fy| < e, and so limsup | f — f,| = 0.
yl0 yl0
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ii) The idea is to approximate f,(z) by Riemann sums of the form % where A\, and ¢, are
Y = (x—tr)%+y

independent of z. Let € > 0 be given and fix y > 0 so that |f — f,|| < &/3. Then fix A > 0 so that
|f(#)| <e/3 for all t € (—o0,—A) U (A, 00). Partition [—A, A] into n segments of equal length and

choose the tags tp = —A + 2Ak , k=0,1,...,n — 1. Define the functions

(0 oy (M)
gy(x’*%f_m—tmydt* ,;J G-ty

and
trt1

n—1
hy(x)_wkzzzo(:c—tk)Q—kgﬂn Z x—tk +y 2t

It follows that | f, — g,|| < &/3 and it remains to show that n can be chosen large enough so that
lgy — hyll < /3. [Then let A\ = Y24 f(4,) to finish the proof of 2.]

tht1 tk+1
it s L5 [ 2SI a2 5 [ 0 (e - )

(8.2)

By uniform continuity of f we may choose n large enough so that |f(t) — f(tx)| < §354 whenever
te [tkvthrl]'
Then

|7 L0 ) < st [ - i [ e i

T 1)2 624 her )y, @—t2+p2" 624 ) 4, 242" T 6un

and so the first term on the RHS of (8.2) satisfies

zi‘ftk+1 f(t) )zfj_yl H£€/6

For the second term on the RHS of (8.2), we use the MVT :

where w(z,t) = 4 ($_t)12+y2 = ((w_f)giyz)m So

1 1
(@—0)2+y% ~ (o—tn)2 42 (t —tx)

trt1

1 1
— dt = (t —tx)
e e e e LU E HfunwuZJ S
Y (try1 —te)?
n”]“””@”“l;)ig

-0(:)

tk+1

(]
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Hence we may choose n even larger as previously chosen to make

n—l = rtpa
£y f £(t) ((x - +y2) ] < /s

—i/(2b i/(2b
(111) (r—a;2+b2 - a:—(/a(+ig>) + z—/((a—)ib)'

O

Lemma 8.6. Let (A, D(A)) be a self-adjoint operator on H. Let F be a Borel set in R, 1y its charac-
teristic function and 1p(A) the corresponding orthogonal projection induced by the Functional Calculus.
Then

int(F) na(A) < o(Alg,, ir(4)) S 0(4) NnF

Remark 8.1. Since 1p(A) is an orthogonal projection, H = Ran 1p(A) ® Ker 1p(A) is a direct sum of

two closed and A-invariant subspaces of H. If we let
D(A|Ran ]lF) = ILF(A)D(A)

D(Alger 1,.) = (1 = 1p(A))D(A)

then by Al 1,.(a) we mean the operator A with domain D(Alg,, 1,.) and Al 1,4y the operator A

with domain D(Alg,, 4,). Moreover,
D(A|Ran ]lF) ®D(A|Ker 1p) = D(A)

A|Ran 1r(A) @ A|Ker 1r(A) A
is a direct sum of two self-adjoint operators.

Proof. Note that by 0(A) = 0(Alg,y 1,(4)) Y O (Alker 15(4))-

For the first inclusion, note that int(F)no(A) = [int(F)mo(A|Ran IF(A))] v [int(F) No(Alger IF(A))],
s0 it is enough to show that int(F") No(Alye, 1,.(a)) = &, or equivalently, o (Al 1,.(4)) < Fe¢. Choosing
an orthonormal basis {¢,, } for Ran 17(A) so that 1p(A) = Y (¢n, ¢, and a cyclic set of vectors {py} such

that the direct sum of the cyclic subspaces generated by A and {¢} equals Ker 15(A) (as in the statement
of the spectral theorem), we have that (Al 1,.(4)) = Usupp pg,. But pig, (F) = {or, 1r(A)py) =0
k

for every k, hence supp iy, < F¢. We conclude | Jsupp Ho, © Fe.
k

For the second inclusion, we show that o(Alg,, 1,(4)) < F. As before, choosing an orthonormal
basis {¢}.} for Ker 1z (A) and a cyclic set of vectors {¢/,} such that the direct sum of the cyclic subspaces
generated by A and {¢,} equals Ran 1r(A), we have that o(Alg,, 1,.(4)) = Usupp pe;, . But pe (F) =
(¢, Lpe(A)dl,)y = 0, hence supp pg < F and UsTp,u(b/n cF. ' O

The following lemma gives a characterisatir(l)n of the spectrum and the point spectrum in terms of

orthogonal projections.

Lemma 8.7. Let A be self-adjoint on H. Then:
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(i) ee a(A) if and only if for all e > 0, L(c_c 1) (A) # {0}.
(ii) e € op(A) if and only if 1y (A) # {0}.

Proof.

(i) If e € 0(A), then Ve > 0, e € (e —e,e+¢) no(A) < o(Alga, Jl(efa,eﬁ)(A)) by lemma 8.6, which
forces Ran 1(c_. c4c)(A) # {0}. Indeed, the spectrum of A : {0} — {0} is empty.

Conversely, if e ¢ o(A), then since o(A) is closed, there exists e > 0 such that c(A)n(e —ec,e +¢) =
. But then lemma 8.6 implies that o( Alg,, 1,.(4)) = &, Which is not possible (see theorem 8.20).

(ii) By the Functional Calculus, if Ay = e for some non zero v, then 1y (A)) = 1-1, so that
Ty (A) # 0. Conv?rsely, forall z € R, 2 - 1(.y(x) = e- Ly (x). Hence b - Ly (7)) = A -1 (A) =
e - Liey(A) where ¢ : By(R) — B(H) is the *-homomorphism of the Functional Calculus, so that if
Tfey(A) # 0, e is an eigenvalue of A.

A clear proof of the following useful theorem is in chapter 4 of [Ja |.

Theorem 8.8. (Weyl’s Criterion) Let (A, D(A)) be a self-adjoint operator on H. Then A € o(A) if and
only if there exists a sequence of unit vectors {1p,} in D(A) such that 1ir21O [(A—Nw,| =0.

Theorem 8.9. Let A be self-adjoint. Then:

(i) For z == +iy and ¢ € Dom(A): (A — 2)¥|* = |(A - 2)¥|* + y?[¢]*.

(ii) For any x € R and ¢ € H: yh—{%c iy(A —x —iy) Y = —1h.

(iil) If A, A2 € 0p(A), A1 # Aa, and 1,42 are corresponding eigenvectors, then ¥y L 1.
Definition 8.10. The cyclic space generated by A and v € H is the closure of the linear span of the set

{(A—2)"Yy; : z€ C\R}.
It is denoted Hy.
The identity Z}Lnolo iy(A — x —iy) "' = —1) of theorem 8.9 shows that 1) € H,.

Lemma 8.11. Let u, be positive finite Borel measures, a, > 0, such that

u(R) = 2 anfin(R) < 0.

For BeR, let

Then w is a positive finite Borel measure and supp = | Supp fhy,, -

n=
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a0
Proof. Clearly, supp 1 > |J supp fn,. To show the reverse inclusion, if « € supp p, then for every € > 0,

n=1
w(x —e,x + ) > 0, hence there exists n = n(e) € N such that u,(z — e,z + &) > 0. For such n, there is
0]
Ty € (r — &,z + ¢) with x,, € supp p,,. Then z,, >z ase — 0,50 x € |J supp pn. O
n=1

Lemma 8.12. Let A be a self-adjoint operator and 1 € H. Then the cyclic subspace H,, generated by A
and 1 is A-invariant, that is, Vz € C\R, (A — 2) " Hy < Hy.

Proof. Since (A—z)~1! is a continuous and linear operator, it is enough to show that (A—z) "1 (A—2")"1¢y €
Hy for all z,2" € C\R. If 2z # 2/, then this is equal to 5 ((A—2)"' = (A—2/)" ) e Hy. If 2 = 2/,
then choose a sequence z; € C\R such that z; # 2z and z; — z, so that o miz
the Functional Calculus (A — z)~! = S[_lforél(A —z)7 Y s0 (A—2)"2% = }ilf.é(A —z) Y A= 2" eHy

since the subspace is closed. O]

pointwise. Then by

Let A be a self-adjoint operator on a separable Hilbert space H and let {¢,,}>°_; be a cyclic set for A.

Let {a,}x_; be a sequence such that a,, > 0 and

0

D7 an]én]? < 0.

n=1

If H,, denotes the cyclic subspace generated by /a,¢, and A, and if H; L H; for all ¢, j then

o0 o0
H=PHn= @LQ(R,@M%) — L}(M,dp)

n=1

where

0]
M = Uuen

n=1

and

8

w(E) = ) tyame, F N Ry).
1

n

Note that for any Borel set E, {\/andn, Lp\/andn) = Py, (E) = n{Pn, LEDn) = anite, (E). Hence
o0

I Jargn = Gnlig, - f is a finite measure on M, since u(M) = 3] |\/an¢n|? < co. However p can also
-1

e
naturally be interpreted as a finite measure on R. This gives rise to the following definition:

Definition 8.13. The spectral measure for A, denoted 4, is a Borel measure on R defined by

e 6}
HA = Z anflg, -
n=1
Obviously, ua depends on the choice of {¢,,} and {a,}. The following theorem explains in what sense
we mean that p 4 is the spectral measure for A.
Recall that two positive Borel measures p; and uo are called equivalent (we write g ~ uo) if p1 and

12 have the same sets of measure zero, or equivalently, if p; « po < py.

Proposition 8.14. Let A be self-adjoint on H and {¢n}o_y, {©n}i_y be cyclic sets for H. Let pa and

n=1>’
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va be the spectral measures corresponding to {¢pn} _, and {¢n}_, respectively, that is,

o8] o8]
pa = Z Qn i, and vy = Z bpvg,, .
n=1

n=1

Then HA ~ VA, HAac ~ VAacy MAsc ~ VAsscy HA,pp ~ VA,pp-
MOT’@OUCT’, Supp UAac = Uac<A)a Supp HA,sc = USC<A)) Supp HA,pp = Upp(A)-

Proof. Set 11 = ¢1 and let H; be the cyclic space generated by A and ;.
We set A1 = Aly,. O

Define v,,, H,, and A,, inductively as follows. For simplicity let us assume that {¢,}>°_; is a minimal
set of generators. Decompose ¢ = él) + (;5;2), where ¢g1) € H, and (;552) e Hi. Set 1y = §2) and let Ho
be the cyclic space generated by A and 3. It is easy to check that H; L Ho. Set Ay = Aly,. In this
way define 1, H,, and A, inductively to obtain a sequence of mutually orthogonal spaces {#,}2°_; and

a seqence of operators {A,}%_,, such that each H,, is generated by A and v,,.

n=1s

[e0] o0 0
Now form the structure @@ H, = {(z1,72,...) € [[ Hn : X |za||*> < ©}. One checks that the
n=1 n=1 n=1

0 0 0
map U : P H,, > H, U(xy,x9,...) > > x, is unitary, so that we have in fact P H,, = H and that

n=1 n=1 n=1

0
U® AUt = A, We also see that A — z is invertible iff each A, — z is invertible, and (A4 — 2)~! is

n=1

0
bounded iff (4,, — z)~! are uniformly bounded. Hence we have o(A) > |J sp(4,) and taking closures

n=1

1

o0
gives 0(A) o |J o(A,,). To show the reverse inclusion it remains to show that if (A — 2)~" exists but is
n=1

0
not bounded then z € |J o(Ay). Now (4 —2)7!| = w iff sup [|(An —2)7Y| = . If there is n such

n=1 1<n<owo

that (A4, — 2)~! is unbounded then we are done. Otherwise each (A,, — z)~!

are bounded self-adjoint

operators and so as a result of the functional calculus we have |(A,, — z)~!|| = iy Which shows

-1
dist(z,0

0
the reverse inclusion. Hence o(A) = (J o(4,).

n=

For each n let pg, , iy, and v, be the spectral measures for A and ¢,,, ¥y, @, respectively. We want
to show that v4 « pa , equivalently that v,, « pa for all n. First notice that wu,, <« g, for all n.
Indeed, for any Borel measurable set F, let 1 = 1(A) be the orthogonal projection corresponding to

E; we have

= (D o+ D+, 1 (60 4 B 4 0))

(n—1)
= >ty (E) + py, (E)
i=1
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It follows that v,, « pa, since

Vo, (E) = <80nv ]lESDn>

= <Z cithi, 1 Z oy
i=1 j=1

= > il Wi, 1pths)
i=1

= Z i, (B)
=1

The rest follows by measure theory. Since ua « v4 < pa, there exists f € LY(R,ua) such that
va = § fdpa. Then

VAac — deﬂA,ac = de,UA,s — VA

The signed measure § fdua s —va, s is simultaneously absolutely continuous and singular with respect
to the Lebesgue measure, hence va s = § fdpa s and va o = § fdpaac. Reversing the argument gives
HAae ~ Vage and pas ~ vas. Now va({a}) = f(a)pa({a}), for every a € R. Reversing the role of 114

and v4 shows that they have the same set of atoms. Hence p14 pp ~ Va pp a0d f14 sc ~ VA sc-

o0 0
Now {\/an1)n }2_; are mutually orthogonal, generate the subspaces H,, and Y. [/@ntn|? < Y} anllén|? <
n=1

n=1

0. So by definition

0

Tac/sc/pp(A) = U SUPPH,/ar i)y » ac/sc/pp.

n=1

0 0
The measure 'y = >} [t jamp, = 2 Anfhy, is therefore a spectral measure for A.
n=1 n=1

Hence SUPDPH A ac/sc/pp = SuppM{Ayac/SC/pr
Finally, lemma 8.11 proves that

e}
U suppsyars, ac/se/pp = supp,,
n=1
O
A linear operator on a separable Hilbert space H is a pair (A, D) where D c H is a linear subspace
and A : D — H is linear. D is called the domain of A and will be denoted Dom(A). When Dom(A)
is dense in H we say that A is densely defined. Densely defined operators are convenient because they
admit well defined adjoint operators.
An operator (A, Dom(A)) is bounded on its domain if
1A%

T <w
veDy=0 Y]
An extension (A, Dom(A)) of (4, Dom(A)) is another linear operator such that Dom(A) > Dom(A)
and A = A. In this case it is customary to simply write A > A.

Dom(A)
The linear operator (A, Dom(A)) is said to be closed if the graph I'(A) := {(p, Ap) e HOH : v €
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Dom(A)} is closed with respect to the norm | (¢, %)||> = || + [¥[* on HEPD H. T(A) is a linear subset
of H@® H. A linear operator is said to be closable if it admits a closed extension. In that case it admits
a unique “smallest” closed extension (A, Dom(A)), called the closure of (4,Dom(A)), and characterized
by the fact that A = A for any other closed extension. Moreover, the graph of the _closure satisfies
I'(A) = T(A). Let A be closed. Then a set D — Dom(A) is called a core for A if A)D = A. The
importance of closed operators is twofold: first, one can define the spectrum of such operators in a
way that is consistent with the definition for bounded operators and second, they generalize bounded
operators. Indeed, by the Closed Graph theorem, linear operators defined on a Banach space are closed

if and only if they are bounded.

Lemma 8.15. Suppose that (A,Dom(A)) is densely defined and bounded on its domain. Then A extends

to a unique bounded operator defined on all of H.

Proof. Let 1, € Dom(A), ) € H\Dom(A) be such that ,, — ©. A, is a Cauchy sequence and hence

converges to £ € H. Let Ay := . The norm of the extended operator is the same as original, since
[ A onl o 1AL, —
ol = 1A ol + Tl |4 = u] — [|A] as n — oo. O

Lemma 8.16. If A: D — D' = H is a bijection, then (A, D) is closed if and only if (A=, D’) is closed.

Proof. Suppose that (A4, D) is closed and let 1, € D', v, = A1, € D be such that v, — 1 and
¢on — . Then | (¢n, A™2y,) — (¥, )| — 0 if and only if ||(pn, Apn) — (p,%)] — 0 so that ¢ € D" and
peD. O

The spectrum o(A) of a closed linear operator (A, D) is the complement of the resolvent set
p(A) :={zeC:(A—2): D — His a bijection, and (4 —2)~! : # — D is a bounded operator}

Note that the condition that (A — z)~! : H — D be a bounded operator together with the Closed
Graph theorem and lemma 8.16 requires that (A, D) be a closed operator, and conversely, the assumption
that (A, D) be closed implies that (4 — 2)~! : H — D is bounded.

The spectrum of a linear operator is always a closed set, and if A is a bounded operator on its domain,

then o(A) is compact. Furthermore,
Lemma 8.17. If o(A) # C, then A is closed.

Proof. 1f z € p(A), then (A — 2)~! : H — D is a bounded operator and so by the Closed Graph theorem
((A—2z)"1,H) is closed. It follows by lemma 8.16 that ((A — z), D) and hence (4, D) is closed. O

The adjoint (A*, D*) of (A, D) is the linear operator determined as follows: D* is set of all ) € H
such that there exists a £ € H so that

(W, Ap) =& p), forallpeD (8.3)

If D is dense, £ is unique so that one sets A*y := £. An operator and its adjoint are thus related by

W, Ap) =(A*),p), forallpe D,y e D*

If D* is also dense, we may further define A** := (A*)*, and so on.
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Theorem 8.18. Let (A, D) be densely defined. Then:
1. (A*,D*) is a closed operator.
2. If A is closable, then D* is dense and A = A**,
3. If A is closable, A" = Ax,

Proof.

1. Introduce the unitary operator e~ : H D H 3 (b, ) — {p, —1p) € HP H and the set e "3 T'(A) :=
{(Ap,—p) : ¢ € D}. Then (¢,&) e T(A*) if and only if (¢, Ap) = (&, @) for all p € D if and only if
<(z/1, €), (Agp, —go)> = 0 for all p € D if and only if (¢, &) € [e 7?3 T(A)]+4, thus ['(A*) = [e 7P 2T (A)]*.

2. Suppose that 7 € H is such that (1,17) = 0 for all 1y € D*. Then (n,0) € [[(A*)]* = [e 2 T(4)]* =
[e7?3T(A)]. Thus there exists ¢, € D such that ¢, — 0 and Ay, — 7. Since A is closable,
n = A0 =0 and so (D*)* =0, i.e. D¥ = (D*)*+ =H.
To show that A = A** we note that e 2 [E+] = [e 2 E]* and e ""F = (¢7'2)?E = —E = E for
any linear subspace E of H P H. Then:

D(4) =T(4) = [D(A)]" = [[e T = [e " [e  ET(A)]F = [e"3T(A")]* = I(A*¥)

Hence A = A**,

*

3. A* = AF = (A*)** = (A**)* = 4

O

An operator (A, D) is symmetric if for all o, € D, {p, Ay = (Ap, ). In addition, we assume that

symmetric operators are densely defined. If (A, D) is symmetric and ¢ € D, then taking £ = At in 8.3
shows that D* > D. Moreover

(Asp, ) = (ih, Ap) = (A*Y, @), forall ,pe D

shows that (A*, D*) is a (densely defined) closed extension of (A, D).
A symmetric operator is self-adjoint if it is equal to its adjoint. A symmetric operator is essentially
self-adjoint if its closure is self-adjoint. In that case A** = A = A" = A* where the first and last

equalities follow from theorem 8.18. We therefore have the following scenarios:

For symmetric operators

Ac A c A*
For closed symmetric operators

A= A% c A*
For essentially self-adjoint operators

Ac AF* = A*
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For self-adjoint operators

For (A, D) symmetric we define the defiency subspaces LT by
L* .= {pe D*: A*p = +ip} = Ker(A* Ti) = Ran(H + i)t = {p e H : (A, ) = +irh, ) Vo € D}.

Note that the definition of LT is invariant if one replaces A by its closure A. The deficiency indices
are the dimensions of L*. The following theorem characterizes symmetric operators with self-adjoint

extensions:

Theorem 8.19. Let (A, D) be a symmetric operator. Then it has a self-adjoint extension if and only if

the deficiency indicies are equal. Moreover, the following are equivalent:
1. A is essentially self-adjoint.
2. Both deficiency indices are zero.
3. A is the only self-adjoint extension of A.
Theorem 8.20. Let A be self-adjoint. Then
1. 0(A) c R and o(A) # .
2. |(A=2)"1 < urxlﬂ for z e C\R.
3. [(A—2)71* = (A—2)"Hor z € p(A).

Proof. We only prove that the spectrum is non empty. If o(A) were empty, then A=t : H — D
would be a bounded operator. Moreover it is self-adjoint by the third part of this theorem. Let us
determine its resolvent. If z # 0, then the operator A~! — z : H{ — H is bounded. It is injective
since (A7 —2)p = (A7 —2) & Ao — ) = 2(p —¥) = (p — ) = 0. It is surjective since
[A=t—2](—27TA(A—271) ") = o for all ¢ € H. Therefore by the Inverse Mapping theorem (A~ —2)~1
is bounded. Hence z € p(A~1). However since the spectrum of a bounded operator is non-empty we must
have o(A~1) = {0}. However, the spectral radius of a bounded self-adjoint operator is equal to its norm,
thus A=Y =0, i.e. A= =0 which is a contradiction. O

Let Q < R™ and B(f2) be the Borel sigma-algebra on 2. For any positive measure u we have the
Hilbert space H = L?(Q,B(Q),u). Consider a measurable function a : © — R that is bounded on
bounded subsets of 2. We set

D= {feH: L“ T @ (@)|f (@) Pdp(x) < o)

D is dense in H since it contains all characteristic functions 1 supported on bounded sets F < 2

and all their finite superpositions. Thus the multiplication operator (A, D) defined by
(Af)(z) = a(z)f(x) forall feD

is densely defined. We also introduce
L? := {f e H : supp(f) is compact}
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Then L2 is also dense in H# and L2 < D.

Proposition 8.21. (A, D) is self-adjoint and (A, L?) is essentially self-adjoint. (A, D) is therefore the
closure of (A, L?).

Proof. Since a is real-valued, A is easily shown to be a symmetric operator. Let z € C\R. Then the

bounded operator R(z) : H — H given by

(R(2)f)(x) = (a(z) — 2) 7 f(2)

is obviously the inverse of (4 — z) : D — H. Hence o(A) # C, and so A is a closed symmetric operator

by lemma 8.17. Moreover the deficiency indices of A are both zero: For f € D*,

A*f =+if & (g, A" f) = +ilg, f) ,Vge D
< (Ag, f) = £i(g, f) ,YVge D

= J Tgfdu:iif gfdu ,Nge D
Q Q

had Q(a(ﬂf) T i)g(z) f(z)dp(x) ,Yg € D

< f=0 pu—ae.

Hence (A, D) is essentially self-adjoint by theorem 8.19, hence self-adjoint. To show that (A4, L?) is

essentially self-adjoint, we need to show that I'(4,L2) = I'(4,D). For f € D and j € N, let f;(z) =
Tj—j 1 (@) f(z). Then f; € L? and the Lebesgue dominated convergence theorem implies that (f;, Af;) —
(f,Af) as j — . O

Proposition 8.22. The spectrum and resolvent of the multiplication operator (A, D) satisfy:
1. 0(A) =essran (a) := {z€ C: p({la(x) — 2| <e}) > 0,Ve > 0}.
2. (A= 271 = l(ale) — 2) o = gy for = € p(A).

Proof.

1. If X\ is not in the essential range of a, then the operator of multiplication by (a(z) — 2z)~! from
H — H is bounded. This operator is also the inverse of the operator of multiplication by (a(z) — 2)

from D — H, and so z € p(A). Conversely, if z is in the essential range of a, let
Fj=Fi(2) ={reQ:la(x) — 2| <277}

Then
(42115, = [ Jale) — 2P2r, (0)dla) <27 | trdu =21,
Q Q

Thus |[(A—2)1p, || < 2771k, | which shows that (A—z) "', if it exists, cannot be a bounded operator.

A—z)1p,
Indeed, (A — z)~! would map the unit element H( 2L to an element with norm greater than

_ (A=2)1x,]
27. Thus z € o(A).
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2. If 2 € p(A), then z ¢ ess ran (a) and so 3¢ > 0 such that p({|a(z)—A| < €}) = 0 & p({|(a(x)-N) 71| >
e7'}) =0 and so [(a(z) — 2)"!|e < o0. For f e L?(Q,p),

I(A—2)"1f12 = J laa) — 2|21 f (@) Pdp(x) < |(a(z) — )2 £
Q
and so (A — 2)7Y] < (a() — 2) -

Conversely, let € > 0 and F := {\a(m) — 2|7t > (a(z) — 2) oo — 5}. Then

[(A—2)""1p| = L ja(2) = 2|2 1p(@)du(z) = (|(a(z) = 2) e — &) 15[

which shows that ||(A —2)7Y| > [[(a(z) — 2) 7 Y|s-

If z € p(A), then d := inf )|z —y| = inf : |z —y| = dist(z,0(A)) > 0. If U, = {|a(z) — 2| <

y€Eess ran (a yeo (A

d— 1}, we have ;1(U,) = 0 for all n € N sufficiently large. Hence pu(u,Uy,) = p({|a(z)—z| < d}) = 0.
This shows that |(a(z) — 2)7'|e < L.

To show the reverse inequality, for all 2 > ¢ > 0 we have p({|a(z) — 2| < 1_dde}) >0 < pu({la(z) —
27! > L —€}) > 0 which implies that |(a(z) — 2) 7! > &

O
In general, if (A, Dom(A)) and (B, Dom(DB) self-adjoint operators, then (A + B, Dom(A) n Dom(B))
need not be self-adjoint. The following result on the perturbation of self-adjoint explains when A + B
may be self-adjoint. The following is based on Chapter X of [RS2].
Let A and B be densely defined operators on a Hilbert space H. B is said to be A-bounded if:

1. Dom(B) o Dom(A).

2. There exist a > 0 and b < oo such that for all ¢» € Dom(A)

1BY| < af A + b]v|
In this case we say that B has relative bound a with respect to A. The infimum over such relative bounds
is the relative bound of B with respect to A. Typically b is taken larger as a is chosen smaller.
Example 8.23. If B is a bounded operator, then B is A-bounded and its relative bound is zero.

Theorem 8.24. (Kato-Rellich) Let A and B be linear operators on H. Suppose that A is self-adjoint,
B is symmetric, and B is A-bounded with relative bound a < 1. Then A+ B is self-adjoint on Dom(A)

and essentially self-adjoint on any core of A. In particular, if

Corollary 8.25. If A and B are self-adjoint operators and B is bounded, then A + B is self-adjoint on
Dom(A) and essentially self-adjoint on any core of A.
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