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INTRODUCTION

A useful collection of thermodynamical formulas
for a single phase one component system of constant
mass was given by Bridgman in 1914 (2). A revised
version was published in 1925 (3), with the addition
of a table for a two phase one component system. In
1930, Goranson (9) published tables for multi-component
systems, employing Bridgman's method in amplified form.
These tables include the following cases:

(a).all component masses but one constant;
(b) all component masses but two constant;
(¢) all component masses but three constant:

In 1935, a general method for the derivation of
thermodynamical relations in simple systems, naking
use of elementary »roperties of Jacobilans, was civen
by Shaw (/). In 1940, Tobolsky (/9), apparently unaware
of this work, gave another, more cumbersome, method of
deriving relations. (A comparison of the two methods,
by means of examples, is given in Appendix 1.)

In the present paper, the methods of Jacobian
analysis are extended to systems determined by more
than two independent variables. A detailed analysis
is given for systems of type (a) treated by Goranson,

consideration of which was begun previously by the
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author in his Master's thesis (/13). Brief treatments
are given of cases (b) and (c).

Following the line of approach given in Table Ia
of Shaw's paper for dealing with a particular equation
of state, a large number of proposed equations are
grouped under some general headings, with information
provided for the ready evaluation of derivatives
associated with any ziven eguation.

A systematic treatment is given for the derivation
of relations on the assumption of an equation of state
and the first law of thermodynamics.

Further simplification in the transformation of
second derivatives for two variable systems 1s wchieved
by the use of second ordzr differentials. A number of
simple second derivative relations are also obtainel by
the methods used for first derivatives.

Some miscellaneous topics are considered in the
appendices: Tobolsky's method, a proof of the restricted
Le Chatelier-Braun Principle using Jacobians, two phase

two component systems, and applications of matrix notation,
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SULLIARY

The following résunié indicates the material covered
in the various chanters and appendices:
Chapter 1: The methods of Jacobian analysis are extended
to systems determined by three independent variables, a
detailed treatment being given for the case of a system
in which all component masses but one are constant. Tables
are provided which simplify considerably the problem of
deriving relations between first partial derivatives for
systems of this type.
Chapter 2: The same methods are appiied to systems deter-
mined by (a) four, and (b) five, independent variables,
brief treatments being given for systems in which (a) all
component masses but two are constant, (b) all component
masses but three are constant.
Chapter 3: To illustrate the use of Jacoblans in other
thermodynamical systems, a brief review is ziven of the
thermodynamics of magnetization. Part (A) is a sunury
of Stoner's analysis (/7), with indications of the use of
the methods developed in Chapter 1. In Part (B), methods
previously siven for simple systems (/¢) are directly
applied to Guggenheim's analysis (/0) for a system at

constant confisuration.
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Chapter 4: Followins the method used in Table Ia of Shaw!'s
paper (/) for particular equations of state, & lar-e number
of proposed equations are zrouped under sone general head-
ings, with information provided for the ready evaluztion
of derivatives, or determination of relations associated
with any particular equation. The Tables also simplify
the problem of comparins the values of a siven derivative
obtained from different equations of state.

Chapter 5: A systematic treatment is given for deriving
relations requiring only the assumption of an equation

of state and the first law of thermodynamics.

Chapter 6: Second order differentials, combined with the
methods of Jacobian analy-:is, are used to achieve further

simplification in the transformiation of second derivatives

0]

for two variable systes

\.

In addition, an adaptation cf the methods developed
for Tirst derivatives is employed in deriving a larce
number of simple second derivative relations.,

Appendix 1l: By means of examnples, a comparison is given
of Tobolsky's method for deriving relations, and the
methods of Jacoblan analysis.

Appendix 2: An alternative proof, employing Jacobians,
is ziven for the restricted Le Chatelier-Braun Principle

as enunciated by IZpstein (7).
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Appendix 35: The use of Jacobians is inticated for
surmarizing information pertainin. to two phause tuwo
component systens.

Appendix Y4: Watrix notation is used for writin: compactly:
(a) the conditions of equilibrium in & heteroceneous
system; (b) the differential expressions for the character-
istic functions; and (c) a derivation of the Gibbs-Duhem
relations for the system.

Appendix 5: This deals with an alternative, hut less
comprehensive, treatment of the systems described in
Chapter 1. The method consists in replacing a three
variable system by a set of simple systemns, to which are

applied previously developed methods of Jacobian analysis.
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Chapter 1.

Variable YMass Systems: All masses but one constant.

The purpose of this chapter is to extend the methods
of Jacobian analysis previously developed for simple systerns
(/1) , to the case of a system determined by three independent
variables; in particular, to a variable mass svstem in which
all masses but one are constant. Tables for such a system
have been published by Goranson (9); by their use, a ziven
first derivative is expressed in terms of dasrivatives in
which pressure, temperature, and the variable mass component
are the independent variables. Derivatives involvingz the
chemical potential are not included in these tables; hovrever,
a4 pumber of such relations is ~iven in his table of second
derivatives.

e shall find that, by the methods of Jacobian analysis,
the relations given by Goranson are readily verified; deriv-
atives involving the chemical potential are as easily hanilad;
and a given derivative can be transformed quite simply into
a set of derivatives containing any specified set of indep-
endent variables (not necessarily pressure, temperature, and
the variable mass component). Further, the investization

of relations among given sets of derivatives is considerably

simplified.



The mathematical relations between derivatives &nd
Jacobians, and the properties of Jacobians, will not be
developed here. A brief accouat of the properties most
useful in the present work will be found in (/3).

Consider a homogeneous system consisting of n chemical
species S; s Sz ,+e. Sy, having masses m,, ",, ... Mx; and
let all masses be kept constant with the excention of m,
the mass of component Sx. The differential expression for
the energy of the system is:

dE = TAS - pdAV + 1AMy eeverneenreneennnnns . (1)
where uKis the chenical potential of component Z..
The definitions of the other characteristic functions lead

to the differential expressions:

dH = Tds + vdp + nK de ® & & o o & o o ® & & & & 06 & 6 0 & 0 0 O s 0 s 0 0 o0 ( 2)
dF = ~(j)dT —pdV + \““Kde o 06 0 0 0 0 @ ® @ © o 0 9 06060 0606 06 06 006 0 000 0 ( 3)
AG = -=3dT + VAD +1MK cvereeecennnenn ceeaes ceeee. (W)

where H is the enthalpy, I the Helmholtz free ener:y, and

¢ the Gibbs function.

Four additional characteristic functions can be

defined as follows:

E, = B - Wyl
H, = H - 1l
F, = F - L .M,
Gy = G = Byl



with corresponding differential expressions:

dE 2

TAS - PAV = Ml eevenvernonencnnnnnnns . (5)

AH, = TAS + VAP - mdlg  eoveeevrnnnconsnnncaaas (6)

dF, = =SAT - PAV = MyAlgk seeeeecennceonnoceneees (7)

dG, = -SdT + Vvdp - MAlg eevvenn.. Ceeeieeaeen ... (8)

It will be noted that vk1ls an independent variable for these
functions, analogous to the role played by min equations

(1) - (4). There does not appear to be any imrediate practical
application of these functions; however, in the case of other
systems determined by three indenrendent variables, functioms
analogous to the above are found to be of use (e.g. in the
thermodynamics of magnetization as treated by Stomer (17)).

For the present purpose, we shall find shortl; that one of

the reciprocity relations obtained from any one of the
equations (5) to (8) yields a simple equality between Jacobians
not easily obtained from equations (1) to (4).

In Jacobian notation, the above equation:z become:
T(E,x,y)=TI(3,%,7)-pI (v, x,7) +£ T (M, X,7) eevvrvveeneaas (9)
T(H,x,7)=TT(S,%,7)+vI(p, %, V) +id (M, X, 7)) cveeeennnnnn. (10)
J(F,x,y)=-8T(T,x,y) -pI (v, %, ")+ T (me, X,7) eeevnvnnnns (11)
J(G,X,y)=-SJ(T,X,y)+VJ(P,X,Y)+nKJ(EpK,Y) Ceeecceeenennn (12)
J(EL,X,Y)=TJ(S,X,Y)—pJ(V,X,y)-mKJ(pK,X,y) P .9

J(Hz’x;y)=TJ(s,x,y)+vJ(p,x,y)-mKJ(pK,x,y) B R



expressions (/) to (§) are exact differentials.
Thus from equation (|):
(OT/0V)g mye = =(0D/08)
- ) K
(0T/dme)g . = (01 /03) 4 e 3
- O/inlg = (e /D05

whence J(p,v,m) = J(T,3,m,) ;
J(v,T,3) = -J(v,n,m,);
J(p,v,3) = T3, ksmy)
i.e. Ag= 7,5
L= =Yg
i3= Ky

The equality Aj; = Z,is most easily obtained from any one of
equations (5) - (8).

Table 2 has been constructed for the following purpoce:
For a particular choice of independent variables ¢,r,t, the
corresponding Jacobian J(q,r,t) = 1. The evaluation of
J(x,y,z), when x,y,z are none o’ q,r,t, is then somewhat
complicated. By expressing J(x,y,z) in terms of other
Jacobians, this difficulty is removed. For example, if
J(p,v,T) = 1, the occurrence of J(S,pK,mK); i.e., Ky, is
avoided by use of the relation K4 = A,. All cases that may

be encountered are summarized in Table 2. The lengthier

entries are deduced from relations among the refersnce



quantities to be derived subsequently. The table is used
as follows: if any symbol in column 1 is ejual to 1, the
corresponding symbol in column 2 is avolded by use of the
equivalent expression in column 3.

Construction of Tables 3 and 3a.

‘e now turn to Tables 3 and 3a, the construction of
which is based on the direct application of equations (2)
to (16). Jacobians involving only one of the characteristic
functions are expressed in terms of the reference Jacobians
by substituting for x and y any two of p,v,T,S,1e, M, .
Those involving two or more of the characteristic functions
are similarly resolved by making use of the portions of the
tables already completed.
Ex. 1 J(H,V,T)=TJ(S,v,T)+vJ(p;vf¢ﬁ1JKmk,v,T)éTI'+vi,+pKK3
Zx. 2 J(G,E,T)=-SJ(T,2,T)+vI(p,2,T)+u,J(m,E, T)

~

=-v(TB, +DA, +ix3y ) =1 (T2 +D73) .
Table 3% involves the functions £,I,7,7F; Table 3a
provides a similar swanary ror the less frequently encountered
functions E,,d,,F,,% . The value of J(z,v,z), for any x

civen in the left-hand column and any 7,2z given in the

top row, is found at the intersection of the specifled row

and column.

Relations among Reference Jacobians.

Before discussing applications of Table 3, we shall




consider briefly the relations that exist amon:y the various
reference Jacobians., If XosXy 3X,,%X3,2,,2,, are a set of
admissible variables, eizht Jacobians corresponding to this
particular selection are related by the equation:
I(xg,%,,X,) J(x,,2,,2,) - I(x,,%,,%,) J(x,,2,,2,)

+J(XZ,X3,X¢) J(X,,z,,zl)- J(X,,Xo,xl) J(Xl,Z',Z =0 ... ()

)
However, it will be found more useful to have a relation
involving, in general, only six Jacobians. This can be
obtained from (A) by setting, for example, x, = z,. e
then have (with a slight change of notation) °

J(x,y,u)-J(z,t,u)+J(y,z,u) - J(x,t,u)+J(z,x,u)- I(r,t,u) = O ...(B)

Example. Setting x =p; y =v, z2=T; t = 5; u=m,, we

obtain:
J(p,v,m) J(T,S,mx)+J(V,T,mK) J(p,3,m,)+3(T,p, mK) J(V,S,LK)=O;
i.e. A, + 5,0, - B, Y, = O,

This equation is, in fact, the one to be used in the derivation
of relations for a simple (ccnstant mass) system (compare
with the equation in Shaw's paper, b* +ac- £n=0, to which
it corresponds).
By assigning different sets of values to x,y7,z,t,u a
larse number of relations is obtained. Several of these
are summarized in Table 4. "7ith u equal to one of »,v,T,
Sy, the number of sets of values of x,y,z,t, is equal

K?
to 5, 1.e. to a definite value of u correspond five equations.



Thus thirty equations are obtained in sroups of five.
Equation (B) was also used in the dsrivation of tle
lengthier entries of Table 2.

Applications

A direct and particularly useful application of Tables
5 and 3a consists in expressing a given partial derivative
in terms of other derivatives containing any chosen set
of independent variables. For example, if p,T,m, are chosen
as independent variables, a given derivative can be readily
transformed into a group of derivatives for which the
independent variables are p,T,mg.

Tables giving information of this particular type have
been published by Goranson (9); these are restricted by not
including derivatives involving . Table 3 yields, without
any difficulty, all the results ~iven in Goranson's Groups
9 to 36, and provides data for the evaluation of derivatives
involving . Further any other choice of independent
variables can be made, by setting the anpropriate Jacobian
equal to 1. Hence a given desrivative is readily expressible
in terms of partial derivatives for which the independent
variables are any chosen set x,v,z. Except for the case
where the independent variables are p,T,m,, such results

are not, in general, directly obtainable from tables of

partial derivatives hitherto published.



The above remarks apply also to Table 3a, which is

used in transforming derivatives of BysH,,F, ,G,
Ex. 1 Express (JF/aP)ns in terms of derivatives for which
the independent variables are:

(a) p,T,m, ; (b) v,S,m,.

(2) (Goranson, Group 12, p. 177) Here B; = 1.
(DF/'DP)TJy = ("PX"FPKZ;)/Bf |
-p[(0v/0) (83/3m) - (3v/0m,) (35 /0p)] +1 (37/0T)

(aS/a{le)

Since (bS/bp)r”m is not one of the standard derivatives
)
employed by Goranson, we may 3substitute for it the equivalent
_(Bv/bT)d,’w obtained from the equality i, = 3, .
(b) Here Y, = J(v,3,m,) =1.
(aF/Dp)Trg = (-pj:l +ﬂ"“KZl)/BI
p(dT/0my) - 1e(3p/03)
T -(0p/v) (3T /d1y, )+ (dp/om, ) (2T/dv)

on dividing numerator and denominator by Y,, and evaluating

the resulting ratios of Jacobians.

In the above answers, subscripts indicating the quantities
held constant in the several derivatives have been dropped,
since they are sufficiently clear from the context.

Ex. 2 Express (3T/aph”v in terms of derivatives for which

v,T,m¢ are the independent varilables.
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ET/BP,+v- J(H,T,v) /T(2,p,V)= - (TX, +v4, +Wv7) /(TA +*‘w)°
Dividing numerator and denominator by 7; = J(v,T,ry)

and evaluating the resultins ratios of Jacobians, we obtain:

(dT/3p), - = _ T(05/0m ) +v(dp/dmy) *ix |
’ T [(9p/97,) (9S/0T)=(dp/dT) ( {)S/am,()] b (an/dT)
Ex. 3 Express (bp«/aphqu in terms of derivatives for which

p,T,m, are the independent variables. (%oranson, Group 7,
p. 270).
This example illustrates how derivatives involving 1,
are as easily handled as dzsrivatives involving other quantities.
Goranson treats this as a 3econd derivative problem.
(i /D)y oy = (TEG+VE, ) /(-TC,)
(TA,-vB,) /(-TC,)

- 2[(Qv/om) (95/dm,) - (3v/dme) (35/9m) ] -v(95 /9, )
- ~T(d/3T)
(6v/9mk)+(as/amk)Ev-T(bv/BT{]/(JS/aT).

Ex. 4 Express (&E/BT% . in terms of derivatives containing
- [
v,T,mg as independent variables.
(a}:i,‘/b'lf'),wK =( -TC, +pA3+pkK‘)/(-BL).
[T (B ¥, +B,5 -« 4 A‘f)/“3+ Deip =Yy 3 n]/
where C, has been replaced by its equivalent in Table 2.

For J(V,T,mk)=X§= 1, the numerator of the expression on the

right is:
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=T [(30/30) (D /dm) - (9D /3m, ) (e /30)] (22/0T)
-(T(98/dmg) +12) [(3p/0v) (05/0m, ) - (3p/92,) (333 %]
+(p-T0p /A7) [(3p/dm) (I /AT) = (9p/0T) Dy 3m)]  -....(a)
The denominator is: «

(@p/0my) (31 /3v) = (90/07) (D1 /9my)  vevvvnnneeennnn..(D)

The equivalent expression for (3E/5T is then given by

%U%<
the ratio of (a) to (b).

an
Derivatives of this type (in which ukis/independent

variable) are not given in Goranson's Tables.

Applications of Table 4.

Zx. 5 By analogy with the formwula for the difference of
the specific heats in a simple s7stem, we wish to investicate
the difference between (38/3T%%%K and (33/3T)W/% . e note
that u, is held constant in both derivatives, and that the
remaining variables are p,v,T,3. Referria; to Table 4,
we find the appyropriate equation to be:
Ay + T,C - BY,;=0

"le then have:

(és/bT)M‘K - (a3/0m), . = (C./B) - (Y, /%)
= (5,0, - B.Y,) /BT,
5 /B
~(9v/dT), . (9p/9T) 4ey .

Further, by the methods developed in this chapter, the atove -

(4

result can be transformed into other derivatives containing

any specified set of independent variables.



e § Tind a relation wronz (Iv/d, (0 03,
6P ’ &
—n / \ a B - .
(D “~y 2)‘ K v ’ (D K /Dmx )S‘;f ) (a;-w ,/BV)WK,J’ y =LA, -T nscessary,
otlier deriv.tivesz,
/N~ _ )
(a V’ }) _")h"x,f - 4&11.,/'/31_ o 00 0 0 0 0 (—:-)
~\ — A !/ -
(b V/DC/‘L")f - -“-3 /Cl ‘ e o 0 060 0 00 0 (z)
m ,/ = — an A ) =
( a".‘VJ/ (‘)"‘K )lf,f - ( L'“‘L+ K¢ ) ,'/‘17- e e e 00600 00 ( _/)
(b A‘"’K,/a"‘ﬁ )S',f = C' /CL ® 6 060 0 0 0 0 0 (,.!'\
] - v/ . ~
(b‘"K/Dv)M‘)f - I ‘/.:1.‘,_ = - Bl/fx‘f © o 0000 0 00 (_))

Insprection of the z2hove ecuations shows that the
only reference Jacobians Involved are 4,,4;, «,3,,C,,C,.
Tror Table Y4, te a.prorriate re' tion is:
4,3y = 40 * %0, =0 ceeeeaeas (O)
Ti= reference Jazcoblans are readily eliminated fron
equations (1) to (5) and a relation w-ong the Tive dsrivative:

obtained, no additional der’vatives heinz requlred.

me . \ = /5y~ .
Thus : by (av,ahmmf T2

C' = (a K I/a ~ K )J_II - (“; 2

= / m\ . 3 .l(\’

J.AJ (av ak.)}u‘x” (D,«/),,__K )‘f,’ 3

2= ! ) /3 .

W}, - _(ar‘ﬁl av}”‘k}’ (av/ aO\’N—K,’ v 2

n - /m -/ \ o

b= [030 0, n] vz, -0,

Suhstitutia~ in (3):

/ / DR z )~
(l/T) [(ajl) K)";J’ "’":“K]' (ba-ﬂ( /bV)”‘k;J” (DV D")\mx,f +(9V/’9“‘\\MK,(FX

X (97« ,/3 « )5- - (DV/BS}"MJ. 0 /a K )-‘}f =0

14
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Summary: In view of the variety of topics mentioned, we
present a summary of the main points:
(1) The Tables of First Derivatives given by Goranson (3roups
9 to 36) transform a given derivative into other derivatives
containing p,T,m, as independent variables. Derivatives
involving g @re not treated in these groups; they can be
divided into two types:
(a) those expressible in terms of the reference Jacobians

Ky, Koy Ky, K* ;
(b) those expressible in terms of =;,3,,C,,%,,Y, ,7,.

Some relations of type (a) are ziven in Joranson's
Table of Second Derivatives (Table II, Groups 1 to &, last
expression in each group). Relations of type (b) are not
treated by Goranson.
(2) (a) The methods of Jacobian analysis, tozether with
Table 3, provide a simple means of verifying or independently
deriving the relations given by Goranson.

(b) A given derivative is readily expressed in terms of
other derivatives containing any chosen set of independent

variables.

(¢) Derivatives involving n, are as easily handled as

the others.

(d) The use of Table 4 simplifies the problem of invest-

igating relations among derivatives for which the independent

variables are not too dissimilar.



(3) Characteristic functions are defined, in addition to
those commonly used. Although they do not seem to have
any practical significance for variable mass svstens,
functions analogous to them are of importance in othgr

three variable systems.
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TABLE 3, (cont'd)
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