THE INTERHARMONIUM

AN INVESTIGATION INTO
NETWORKED MUSICAL APPLICATIONS

AND BRAINWAVES

ANDREW BROUSE
MusiC TECHNOLOGY, FACULTY OF MUSIC
MCGILL UNIVERSITY, MONTREAL

AUGUST, 2001

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements of the degree of

Master of Arts in Music Technology.

© Andrew Brouse, 2001

il

National Library
of Canada

Acquiéitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K14 ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Voira rélérence

Our 8le Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-78994-2

ABSTRACT

This work surveys currently available methods for measuring human
brainwaves in order to generate music and technologies for real-time
transmission of audio and music over the Internet. The end goal is to produce a
performable music system which sends live human brainwaves over the

Internet to produce sounding music at another, physically separated location.

RESUME

Ce travail traite des méthodes pour mesurer des ondes de cerveau humain afin
de générer de la musique et des technologies pour diffuser la musique en temps
réel sur des réseaux électroniques. Le but est de créer un systémé pour |
envoyer les ondes de cerveau par Internet vers un autre ordinateur

physiquement séparé pour produire de la musique.

It is not a garment I cast off this day,

but a skin that I tear with my own hands.

Nor is it a thought I leave behind me,

- but a heart made sweet with hunger and with thirst."

Kahlil Gibran

' Gibran. p.4

ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance of the following persons:

Bruce Pennycook

Alexandre Burton

Ian Manns

Robert Zatorre

Jean Gotman

Richard McKenzie

Nina Czegledy

Maxime Rioux

Galerie Oboro

and finally, for incredible patience, my advisor,

Philippe Depalle

table of contents

abstract
resumé
acknowledgments
table of contents
introduction
motivation
history
brainwaves in music and art
networked audio
technology
brainwave measurement
internet protocols
music protocols
project
experiments
design
implementation
operation
directions for use
conclusion and future directions
glossary

appendix a : Music for Solo Performer

appendix b : 3rd Party Externals Used

appendix ¢ : IETF Proposals and Requests for Comment

bibliography

16
16
18
21
21
23
27
33
33
37
47
56
64
69
70

74

76

77

78

introduction

This work is about brainwaves, networks and the harmonic series. Tam
investigating sending brainwaves over the Internet to make music using the
harmonic series. I will attempt to expound the historical, technical and artistic

bases of my research into these areas.

I will detail some of my investigations into the technologies and historical
practices which can and have enabled real-time transmission of musical data
over electrical networks. I will also look at some of the history and aesthetics of

the use of human brainwaves in the creation of musical works of art.

The end goal of this work was to produce a performable music system which
would enable myself or others to capture human brainwaves and transport the
data in real-time over the Internet to another location where the brainwave
data could be reconstituted and used to synthesize music. My initial plans were
much more ambitious than I could practically realize. By documenting the, at
times difficult and frustrating, process of developing this system I will hopefully

aid others who wish to pursue such a path.

introducton : motivation

In developing hardware and software inventions in Music Technology, my goal
is first and foremost creative and compositional. What interests me most about
certain new technologies is the possibilities which they open up to composers
and artists. Itis exactly this which has made me become interested in the
principle technologies used in the InterHarmonium. Gordon Mumma’s attitude

towards music and technology nicely sums up my own approach to the subject:

My “end-product’ is more than a package of electronic hardware, itis a
performance of music ... some differences exist between the design and
human-engineering of electronic music studio equipment and that of live-
performance equipment. In the studio the composer doesn’t really work in
real-time. He works on magnetic tape, without an audience, and can use
his studio-time for ‘reworking’. In the live performance an audience is
waiting to be entertained, astonished, amused, abused, or whatever, and
there is no time for ‘reworking’. My decisions about electronic procedures,
circuitry, and configurations are strongly influenced by the requirements of
my profession of a music maker. This is one reason why I consider that my
designing and building of circuits is really ‘composing’. I am simply

employing electronic technology in the achievement of my art. *

My musical goal is to be able to have multiple network connected clients able to
send and receive real-time musical control and data signals in order to create a
wide-area musical performance system. (Certainly, other possible usages of

such a system could include remote data acquisition and analysis). This should

¢ Nyman. p.77

not be considered in any way as an attempt to replicate a musical ensemble
playing together in the same room - the speed of light and tolerable latencies
for ensemble performance essentially guarantee that this will never happen.’
Pursuing that end is a fruitless goal in my opinion. WhatI am interested in,
instead, is a system whereby all the realities of the network (latency, packet
loss etc.) are accepted as part of the system and are in fact a generative part of

its operational philosophy.

In the creation of such a system, I do believe that T am taking part in, and
contributing to, the tradition of experimental musics as summed up so

succinctly by John Cage:

Those involved with the composition of experimental music find ways and
means to remove themselves from the activities of the sounds they make.
Some employ chance operations, derived from sources as ancient as the
Chinese Book of Changes, or as modern as the tables of random numbers |
used also by physicists in research. Or, analogous to the Rorschach tests of
psychology, the interpretation of imperfections in the paper upon which

one is writing may provide a music free from one’s memory and

imagination. }

In using certain technologies to realize my work, I choose to exploit the
limitations of those technologies and rather that trying to make them behave in
a certain deterministic way, I choose to accept the way that they behave and to

include the indeterminacy and incertitude of, for example, the Internet and

® Crowcroft. p.118
* Cage. p.10

brainwaves, as part of my composition. Thus, in using certain Internet
protocols such as the “unreliable” User Datagram Protocol (UDP) for data
transport as opposed to the “guaranteed delivery” Transmission Control
Protocol (TCP), I must accept that some information can and will be lost. To
what extent this happens may have only to do with how busy the network is
on that day, or whether a certain router is down, or perhaps just a stray

electron at a network interface might cause some data to be lost.

What particularly entices me about the Internet is that it is a human-created
model: a macrocosm/microcosm of our own consciousness, our society, and
indeed, our own brain. It is not any accident that the ideas which have taken
form in the current Internet had been proposed many years before its inception
by visionaries such as Vannevar Bush’, Paul Baran® and J.C.R. Licklider”. I
enjoy the idea that there is an autonomous intelligence about the network
which we cannot control - this was its design. Rather than trying to impose
restrictive controls and demands on the situation in order to realize a final
intent, I prefer to accept the realities of the Internet “as-it-is”. Any packet
losses or network hiccups are the product of very complex interactions between
human-designed software and hardware in interaction with the realities of the
physical universe. That changes in the moment-to-moment state of a
brainwave performer are likewise susceptible to various unpredictable
psychological and physiological factors is also attractive to me. Thisis, ina
sense, the incursion of true nature upon the “controlled nature” of human

beings. Nature is always more complex, chaotic and unpredictable than the will

* - hitp://www.theatiantic.com/unbound/flashbks/computer/bushf.htm
¢ hitp://mww.rand.org/publications/RM/RM3420
7 hitp://www.ibiblio.org/pioneers/licklider.htmi

10

of human beings would have it. Nature - as Morse Peckham would say - is

nonetheless, our nature.?

We are surrounded by many kinds of networks. There are neural, electrical,
pulmonary, respiratory, alimentary, lymphatic and other networks inside our
own bodies. Networks of waterways connect watersheds to streams, rivers to
lakes and finally to the seas and oceans. Over 2000 years ago, the ancient
Romans constructed elaborate networks of aqueducts to supply water to their
homes. Rail, road and air networks connect our cities and towns to each other.
There are electrical networks created by human beings which have been in
existence for almost 150 years; the electrical power grid and the telephone
system are both pervasive. There are human networks of interconnected,
interdependent individuals in our societies. More recently, we have come to be
familiar with computer networks and particularly that global computer

network known as the Internet.

The Internet allows a kind of instantaneous collaboration over great distances
which was not previously easily possible. We have seen that this can be very
empowering and productive for human endeavour. At the same time, it
brings with it another kind of distancing, a removal, a virtualization, of the
human experience. The virtualizing qualities of the Internet - shared to a large
extent with other means of "mechanical reproduction”’ as noted by Walter

" 10

Benjamin (primarily in relation to film), could imply a "loss" or "death” " as

Roland Barthes refers to in Camera Lucida (in relationship to photography).

® Peckham. pp.308-315
® Benjamin. pp. 217-240
* Barthes. pp. 92-94

11

When we listen to a CD or view an “audiovisual’, ‘multimedia’ presentation in
front of a computer monitor or video projector, we are witnessing a very |
limited reproduction of an original experience or performance. Many obvious
factors such as smell, touch, taste are missing as well as many much more subtle
nuances of visual, auditory and motor perception. One could make the case
that there are even more ineffable modes of human perception which are lost in
the process of virtualization which we would have difficulty to express in

words.

My objective in designing a system for internet music performance is to take
that which is invisible or ineffable and make it visible and palpable. Thus, in a
sense, I am building a system which attempts to circumvent the virtualization
inherent in internet transmission. My current notion is to extend the work in
brainwave control of music by sending those brainwaves directly over the
Internet to interact with remote or local music generation systems. Technically,
what this involves is to take analogue brainwave signals as input, discretize and
analyse these signals according to user-selectable parameters and then interact
with other user-agents running a similar system at other arbitrary networked
locations. One could certainly extrapolate from brainwaves as a control source
to using any other continuously variable analogue phenomenon for that

function.

I am particularly interested in the alpha wave frequency band of the human
brainwave spectrum. This is largely due to the specific physiological / somatic
states in which alpha rhythms are most strongly associated. In order to

produce strong alpha waves, the subject must be in a deeply meditative, non-

12

visual state. No conscious attempt to control the alpha waves in other

physiological states will succeed.

Ultimately, I want to make music that I want to listen to. ['have long been
fascinated by the Harmonic Series and music which is derived from theit. 1
have created installations, performances and compositions which exploited
various characteristics of the Harmonic Series. This stems in part from my
interest in the ideas of Hermann Helmholtz, Harry Partch, LaMonte Young,
Terry Riley, James Tenney and others who have investigated tunihg systems

based upon the Harmonic Series.

Additionally, I want to explore an effect known as the "Missing Fundamental".
The Missing Fundamental is a psychoacoustic phenomenon whereby the
human ear perceives a fundamental frequency - the first harmonic of a tone -
when that frequency is not in fact present.” This often occurs on inexpensive
speakers such as those found in a car radio where the ear recognizes the
harmonic overtone structure of a fundamental tone which cannot in fact be
reproduced by that speaker. The attendant human psychoacoustic mechanism

perceptually 're-creates’ that missing fundamental.

I would like to use this notion to create a situation in which the missing
fundamental is in fact the alpha wave centre frequency (8-13 Hz). This
frequency is not directly perceivable by the human hearing mechanism but, I
posit, could be made psychoacoustically apparent by its overtone structure.

Due to the very close proximity of partials, this overtone structure can produce

" Zatorre. pp. 566-572

13

very rich and dense tonal clusters which can then be modulated and selectively

adjusted to produce complex soundscapes.

To accurately determine the pitch of a very low sound it is necessary to observe
that sound for a long period of time. The longer we listen to a tone the more
accurately we can perceive or measure its pitch and the more accurately we can
harmonize another interval to that tone and thus the accuracy of any tuning
system depends on how long the pitches are sustained. In his experiments into
just-intoned musical instruments, Hermann Helmholtz chose the Harmonium
as the ideal instrument for experimenting with tuning systems for exactly this

reason.

Among musical instruments, the harmonium, on account of its uniformly
sustained sound, the piercing character of its quality of tone, and its
tolerably distinct combinational tones, is particularly sensitive to
inaccuracies of intonation. And as its vibrators also admit of a delicate and
durable tuning, it appeared to me peculiarly suitable for experiments on a

more perfect system of tones.”

This phenomenon was also noted by Tony Conrad, John Cale, Marian Zazeela
and LaMonte Young in their early 1960's experinients with long sustained tones
(the use of which were initially inspired by sustained notes in the serial music of
Webern).” They found that as tones were sustained for long periods of time it
necessitated a readjustment of the tuning system because it became apparent

how out-of-tune the equal-tempered pitches were. Concert singers and

2 Heimholtz. p.316
® hitp:/f'www.alimusic.com/cg/amg.dli ?p=amg&sqgl=Bsxknikn6bb39~C

14

violinists usually adjust their temperament or sometimes use vibrato to mask
this out-of-tuneness especially when playing with a fixed equal-tempered
instrument such as a piano. Conversely, this out-of-tuneness is not nearly as

- noticeable when the notes are not sustained for long periods of time and thus
those kinds of music in which equal-temperament is used place less emphasis

on sustained tones and tend to have faster moving melodic lines.

In my system, the alpha wave frequency is averaged over a very long time
such that the fundamental frequencies will not change rapidly but the
instantaneous surface detail will shift and pulse while the underlying harmonic
structure will remain and only change after a significant period of time. This
has relevance to some traditional Indian and Chinese tuning systems and
indeed to the music of LaMonte Young and a large current of contemporary
works which use some form of just intonation. In most of these cases a strong
emphasis is placed on a constant lower fundamental tone whilst the surface
details shift and pulse. This also has concordance with the operation of alpha
phenomenon is human beings in that alpha states cannot be easily achieved and
usually take several minutes at least to reach after a period of quiet

meditation / concentration.

15

history

In 1999, 1 arranged a performance of Alvin Lucier’s seminal composition “Music
for Solo Performer” (1965) at Pollack Hall in McGill University’s Faculty of
Music. [have been familiar with and interested in the music of Alvin Lucier for
quite some time. Lucier’s music usually exploits some very simple, basic
acoustical, electromagnetic or other natural physical phenomenon in a novel,
intuitive and poetic manner. It is the poetry of his work which attracts me. He
has always been a composer unafraid to use technology in his compositions but

never lets it become the composition.
history : brainwaves in music and art

Ih “Music for Solo Performer”, the first musical work to use brainwaves as a
generative source, Lucier specifies the use of the alpha brainwave spectrum to
generate sounds by directly linking these subsonic (8-13 Hz)* waves to
transducers which in turn actuate percussion instruments to generate the

sounding music.” (see Appendix A)

In order to perform this piece, I needed a device to measure human
brainwaves. After some searching, I found a number of commercial devices
available for doing this. I found most of these devices to be either too
expensive or very limited in functionality. Additionally, most of these devices -

were geared to the “hobbyist biofeedback’ user rather than being scientific

* Fisch. p.149
** Lucier. p.69

16

instruments. In principle, a circuit to measure alpha brain waves is not
extremely difficult to build. It is effectively a very high-gain, high-quality
differential amplifier. What this does is measure the differences in potential at
various places on the human scalp and enormously amplifies them while
rejecting as much as possible all the other electromagnetic interference which is
about. The difficulty in building such a system is to ensure it has very low noise

and high rejection of extraneous signals.

As I was searching for the right device, Bruce Pennycook suggested 1 should get
in touch with Robert Zatorre at the Montreal Neurological Institute (MNI) to
see if he could be of any assistance. Dr. Zatorre put me in touch with Dr. Jean
Gotman, also of the MNI, who, after some discussion, suggested that a disused
analogue EEG machine might be made available for my experiments. The MNI
finally agreed to give me an old but still functional Grass’model 8 analogue EEG
machine which was being phased-out of service at that time. After learning to
use this machine I began to experiment with using it to make music. At a key
point in my learning and experimentation, lan Manns, a Ph.D. candidate in
Neurology at MNI, helped me with some details of setup and usage of the EEG
machine. As for the actual percussion instruments required by the score of
“Music for Solo Performer”, I turned to a collection of instruments deVélOped
by Montreal musician and artist, Maxime Rioux. Maxime had for several years
been developing a system for ‘automatic’ music performance which he calls the

” Automates Ki”:

Les automates sont mis par de hautes ou de basses fréquences inaudibles.

Ces fréquences font vibrer des membranes de petits haut-parleurs sur

17

lesquelles sont fixées des baguettes, ressorts, fils et autres objets contondants
qui vont se percuter sur des instruments acoustiques tels; tambours, cymbales,

cordes, clochettes, boftes de conserves, ete.’®

These “automates’ are various motley percussion instruments which are
actuated by inaudible low-frequency pulsations created by analogue
synthesizers and various other analogue electronic devices. It was the similarity
between Maxime’s actual performance system and the requirements of the
Lucier score that led me to ask Maxime to participate in my performance of

“Music for Solo Performer”.
history : networked audio

One could trace the history of networked audio as far back as Thaddeus Cahill’s
Telharmonium which allowed music to be generated and played over
telephone lines at around the turn of the last century (c.1900). In fact Edward
Farrar’s experimental attempts at sending musical tones over telegraph lines
beginning in 1851 marks probably the first attempt to send music over an

electrical network.”

The history of broadcast of real-time media over Internet Protocol (IP),
however, is relatively recent. This phenomenon is only about ten years old.
The ideas have been around somewhat longer but the remote possibility of

actually implementing working broadcast systems is much more recent.

* hitp://homepage.mac.com/automateski/technique.html
Y Weidenaar. p.1

18

The capacity for real-time delivery of audio/visual media over internet protocol
was first implemented by the university and research communities in the early
1990s. Centres such as Lawrence Berkeley Labs and the University College of
London produced reference tools for real-time audio/ video/whiteboard
conferencing over the nascent Mbone. These tools were all open-source, UNIX-
based applications intended for use amongst international researchers and not

conceived for the lay person.

The term “broadcast” has an entirely different meaning in internetworked
computers than it does in the traditional radio/television sense. I will use the
term broadcast generally to indicate the traditional meaning of the word.
Broadcast in the very specific sense of Internet Protocols means to send some
information (packets) to all hosts on the network without discretion. When we

‘broadcast’ audio on the Internet this is certainly not what we are doing.

For transmission of real-time media over Internet Protocol (IP) we do not in
fact “broadcast” but we use either the “multicast” protocol or a “multiple
unicast” format. Multicast is in fact closest to what we traditionally think of as
“broadcast” and it is in fact the preferred method for real-time media
distribution on the Internet. Multicast sends data to a certain (class D) internet
address and hosts who wish to tune in request a stream from that address
(oftentimes based on session directories which can be made available). Multiple
unicast involves sending one unique stream of data per client requesting it. The
immediate situation which is evident here is that the bandwidth used increases
arithmetically in proportion to the number of clients receiving a multiple unicast

transmission whereas it remains relatively static for any number of clients in a

19

multicast session. Unfortunately multicast is not practicable over the majority
of networks due to the fact that it is not enabled on the majority of internet

routers.

20

~ technology

During the planning of this project, I researched various technologies which
could potentially allow me to realise this project. The key parameters for
selection of which technology to use were: appropriateness, cost, reliability and
availability. Following is a summary of my inquiries into enabling technologies
for brainwave measurement, internet transport protocols and musical transport

protocols.
technology : brainwave measurement

I investigated devices and techniques for measuring brainwaves. The process is
in fact quite simple, proper methodology is however crucial in order to get a
me’aningful result. Human brainwaves can be measured by putting electrodes
at key points on the séalp and measuring the microvoltages which appear there.
To minimise extraneous noise and interference a ground electrode is normalIy
placed on one earlobe of the corresponding cranial hemisphere. Differential |
voltages are measured between different points on the human skull. Electrodes
are normally placed on the frontal, temporal, parietal and anterior lobes. An
electrolytic paste is normally applied to facilitate good electrical and physical
contact. Tradiﬁonally, brainwaves have been measured using highly sensitive
and precise analogue electronic devices which recorded the results onto a paper
trace which could then be later analysed by a neurologist. With the advent of
sophisticated digital signal processing techniques this method has been largely
phased out. Neurologists today will more likely employ some form of digital

capture of data which can be analysed on a digital computer workstation. This

21

is in fact what I am doing but at a later stage in the process.

The principles of Digital EEG capture and analysis of continuous brainwave data
are very similar to those used in digital audio reproduction and analysis, the
primary differences being the means of data capture. analogue signal levels,

and the sampling rates and sample bit depths which are commonly used.”
Historically, one of the key limiting factors in sampling rates for Analogue EEG
was the highest frequency at which the writer pens could physically oscillate
which is around 70 Hz. Standard sampling rates used in digital EEG systems are
between 200-400 Hz as most of the frequencies of interest lie below 100 Hz. A
400 Hz sampling rate thus gives us a comfortable Nyquist limit of 200 Hz.

Below which we should be able to faithfully reproduce sampled waveforms.

In order to make music with brainwaves, I have investigated many software
and hardware products which enable one to capture and analyse brainwave
data. The only software which I found which was designed to allow for the
kind of interaction which I was looking for is that which comes with the IBVA”
system - a $2000 US hardware/software combination which nonetheless could
not be considered ‘professional’ or ‘scientific’. This software does perform a
real-time FFT analysis of the incoming brain data and can then send out control

messages via MIDI.

One major limiting factor of this genre of data acquisition device is that the

sampling rate, sensitivity etc. are pre-determined by the hardware and software

'8 Fisch. pp. 127-153

- hitp://www.ibva.com

22

configuration which is not modifiable. The software allows a certain amount of
flexibility in mapping the FFTs to MIDI but one is still limited to working within
the kinds of data which MIDI can easily represent and to the preprogrammed

software and hardware configuration which does the translation.
technology : internet protocols
IP (Internet Protocol)

Internet Protocol is the unifying layer of the internet; all devices on the internet
must communicate via Internet Protocol. It is a set of rules and conventions for
addressing packet messages between different endpoints on the network. The
Internet today uses Internet Protocol version 4 (IPv4) which cannot easily
guarantee a fixed amount of bandwidth over a given period of time, that is to
say: it is difficult to guarantee a Quality of Service (QoS). It also has an address
space which is limited to a theoretical maximum of 2% possible hosts. These

issues will be resolved to some extent with the imminent upgrade to IPv6.

It is interesting to compare IP to the IEEE 1394 (Firewire) protocol in which 80%
of the bandwidth is reserved and guaranteed for isochronous (real-time) data
and 20% is reserved for asynchronous (best-effort) transfer. With a protocol
such as this it is possible to guarantee bandwidth and QoS (which are reasons

why it is so popular for digital video interconnections).

TCP (Transmission Control Protocol)

23

Internet Protocol is a digital packet-switched protocol unlike the old analogue
telephone system which is circuit-switched. Packet switching is more efficient
but has problems such as congestion, redundancy and out-of-order packets.
Current packet-switched networks and their protocols have been engineered
primarily for robustness, reliability and data-integrity. This is most strongly
manifested in modern TCP networking stacks. Much as these characteristics are
honourable aims, they tend to work against the delivery of real-time media
over the Internet. Many popular internet application layer protocols such as
http, ftp, telnet, etc. need reliability and are thus built on TCP and use
asynchronous data transfer and best-effort service. That is, the data packets are
delivered as quickly and reliably as possible without concern for the temporal

relationships, packet order or inter-packet jitter.

In delivering real-time data such as audio, we are concerned with time-sensitive
media, which demands isochronous data transfer. Data packets must be
received in-order and in the same relative rate and timeframe in which they
were sent. It turns out that the existing TCP/IP protocol stack does not serve
us well in this instance due to it’s built-in error correction, flow-control, and
(irohically) packet-ordering. TCP will continue to re-request a dropped packet
until it is received. This will throw off the timebase of isochronous operations:
by the time we get the missing data it ’is already too late. TCP also does not
lend itself well to send-to-many operations. What is needed are more
lightweight protocols. UDP is usually chosen because it is lightweight,
connectionless and does not impose any unneéessary functions between the

application and the network.

24

UDP (User Datagram Protocol)

UDP is a simple connectionless packet oriented datagram (unlike TCP which is
stream-oriented), each output produces exactly one UDP datagram which in
turn produces exactly one IP datagrani. UDP adds source and destination port
numbers, a checksum and time-to-live (TTL) to the standard IP datagram.
There is no reliability provided but there is a checksum provision. Higher level
protocols which use UDP for transport: include daytime, dns, nfs, rtp, audp and
otudp. UDP has a much smaller packet header than TCP, is connectionless and
provides no error checking or correction. UDP/IP is a fast, lean protocol and is
well suited to the délivery of real-time media which is why most current
schemes use it. UDP does not, however, offer any services which might be of

help in the delivery of real-time media.
RTP (Real-time Transport Protocol)

The Real Time Transport Protocol (RTP) was proposed by the IETF Audio-
Video working group in 1996 (rfc 1889 and 1980). This provides a means for
end-to-end delivery of media payloads in real-time applications. Real Time
Control Protocol (RTCP) provides for feedback on performance and quality of
data transmitted via RTP. Real-time Transport Protocol is a simple payload
format for various real-time media streams such as audio and video. It
normally rides on top of UDP and does not provide any increased reliability
over UDP but does identify media formats, sample rates and provides packet

timestamps for ordering purposes.

25

RTSP (Real Time Streaming Protocol)

A newer protocol developed jointly by Henning Schultzrinne of Columbia
University, Real Networks and Netscape is the Real Time Streaming Protocol
(RTSP). This protocol acts as a remote control for communication between
clients and remote media servers to control such functions as Play, Pause and
Record. RTSP usually uses RTP for payload transport but does not generally
carry payloads itself. RTSP itself is generally running on TCP. The RTSP and
RTCP connections are for control information and contain relatively little data
so there is not a large performance loss in basing these on the TCP layer. As
RTP is concerned with the actual transport of media payloads in real time and is
moving a lot of data, it is based on the more efficient UDP protocol. RTSP uses
a syntax similar to HTTP but unlike HTTP web servers the RTSP server must

maintain state in its relationship to each client.

RTCP RTSP RTP

TCP ubp

Internet Protocol

a simplified RTSP protocol stack

26

The overall functioning of an RTSP system works something like this:

1. A client requests a media stream via RTSP

2. The server and client negotiate via RTSP

3. The server delivers the real-time media via RTP.

4. The client and server communicate via RTCP in order to monitor and improve the quality of
media delivery according to bandwidth restrictions and lost packets.

5. The client and server communicate via RTSP in order to stop or pause the stream and to

teardown the session.

technology : music protocols
MIDI

The MIDI standard, originally proposed and implemented in the early 1980s,
has proven to be durable and satisfactory as a protocol for musical event
control largely due to its inexpensive, robust and open implementation. For
several reasons, however, I feel that MIDI is not useful or interesting for me to
work with in the context of InterHarmonium and I feel that there are already

better, more flexible, alternatives currently available.

The MIDI data transmission rate is certainly sufficient for passing brainwave

- data but is particularly limiting in the possible ways of working with and
expressing that data. The MIDI transmission rate of 31.25 kbits/s would offer
me a theoretical 1953 samples/s at 16 bits resolution which would give a
Nyquist frequency of approximately 976 Hz. This is clearly sufficient for the

bandwidth of brainwave data and could in fact easily support 8 channels of

27

brainwave data. Why then, would I not use MIDI for this purpose? Itis
primarily a question of flexibility and extensibility. I want to expand or enlarge
this system at a future time and MID], being a legacy standard as it is, imposes
many arbitrary limits which may not be an obstruction at this point in time but

could clearly become a problem later on.

MIDI was initially conceived to be inexpensive to implement in a wide variety
of consumer hardware devices, specifically electronic keyboards, it used an
inexpensive digital serial logic chips which was popular at that time - the UART
controller. The limited data rate of 31.25 kbits /s forced the designers éf the
MIDI protocol to use various “kludges” to pack as much information as
possible into that limited bandwidth. These design compromises today make
the standard seem inelegant, rigid and confusing. In théory a MIDI signal could
be sent over a standard 56 kbit modem. In practice, due to the unpredictable

nature of the public Internet, it is not likely this would be very tractable.
Z1P1

There have certainly been other attempts to conceive a better protocol than -
MIDI for control of musical events; even at the inception of MIDI there were
harsh criticisms of its shortcomings. The ZIPI protocol” was for a time
developed by Zeta Music Systems, CNMAT and other collaborators but was
later dfopped apparently due to legal complications and for other technical

reasons.

20 Selfridge-Field. p.610

28

After the problems encountered with ZIPI, some of the same people who
worked on ZIPI have contributed to OpenSoundControl (OSC). OSC was
openly specified and sourced in the hopes that it might be more widely

adopted.
OpenSoundControl

OpenSoundControl was conceived as a replacement for MIDI and as a possible

cure for some of the problems of this ageing yet pervasively useful protocol.

OpenSound Control (OSC) is a protocol for communication among computers,
sound synthesizers, and other multimedia devices that is optimized for
modern networking technology. Entities within a sound synthesis or
processing system are addressed individually by an open-ended URL-style
symbolic naming scheme that includes a powerful pattern matching
language to specify multiple recipients of a single message. We provide
high resolution time tags and a mechanism for specifying groups of
messages whose effects are to occur simultaneously. There is also a
mechanism for dynamically querying an OpenSoundControl system to find

out its capabilities and documentation of its features. '

OpenSoundControl is a protocol for musical speéification and control which was
designed to be very flexible and independent of the underlying traﬁsport layer.
OSC uses a URL-like syntax and supports standard UNIX features such as file
name globbing. The primary implementation of OSC uses the UDP protocol

for transport. As mentioned, UDP is a lightweight and fast prbtocol but does

' hitp://cnmat. CNMAT .Berkeley. EDU/OSC/

29

not have the reliability which the TCP protocol has. When I asked Matt Wright
- the primary author of OSC - about the use of UDP as a transport for OSC, he
said they had not encountered any problems with lost or dropped packets in
their tests. Granted, these tests primarily took place on the network of the UC
Berkeley campus or over the relatively reliable inter-university networks
between centres like CNMAT (UC Berkeley) and CCRMA (Stanford). Certainly
one would find that across more heterogeneous and complicated network

spans there would be some packet loss and jitter.
AUDP (Audio UDP)

AUDP is a protocol developed for efficient transport of digital audio over a
Local Area Network. It was developed at IRCAM and integrated into the jMax
music application environment. It is based directly on the UDP layer and does
not use the RTP layer at all. Tt was determined that RTP added too much
overhead to the packets and did not offer any significant features for this

particular application.
Comparison : RTSP, RTP, OSC, AUDP

At this point I would like to make a comparison between the RTSP and RTP
protocols and the OSC and AUDP profocols. RTSP and RTP were both
developed under the aegis of the IETF (Internet Enginéering Task Force) as
general-purpose control and transport methods for real-time delivery of
audiovisual sessions over the‘internet. OSC was developed specifically asa

musical control protocol for the academic computer music community. AUDP

30

was likewise developed as a real-time transport protocol for digital audio at

IRCAM for the specific needs of the academic computer music community.
RTSP and OSC

RTSP and OSC are both similar in that they concern themselves primarily with
sending control information to remote hosts on an IP network. Whereas OSC
is primarily intended for use on a LAN, RTSP was designed to be reliable over
the public internet. OSC is primarily delivered over UDP whereas RTSP is
primarily delivered over TCP. RTSP was primarily conceived, using a quasi-
HTML syntax, for session control between media servers and clients over the
internet. OSC was conceived as a very open, flexible System for transmitting
musical (or other) control data over an IP/Ethernet LAN. While RTSP is more

robust for one specific purpose, OSC is more flexible and lightweight.

RTP and AUDP are also both similar in that they concerh themselves primarily
with transporting real-time media streams to remote hosts on an IP network.
Whereas AUDP is primarily intended for use on a LAN (between hosts running
the jMax software application), RTP was designed to be reliable over the public
internet. Both protocols utilise UDP but RTP includes more'provisions for error
correction and recovery whereas AUDP is more lightweight and assumes it is
running on a LAN Where packet loss is not likely to be a problem. RTP includes
the RTCP (Real Time Control Protocol) which can monitor and adjust stream
settings to improve media delivery to clients whereas AUDP includes no such

provision. AUDP was conceived as a flexible, open system for transmitting

31

only sampled digital audio for low-latency musical applications over a LAN
whilst RTP was conceived as a general-purpose protocol for delivery of real-

time media streams to clients on the public Internet.

As it turns out in my project, I am using UDP, TCP and OSC. I would have
been interested to experiment with AUDP but I had only recently become
aware of it and attempts by the system administrator in the Music Faculty to

install jMax with AUDP on our research Linux machine have been fruitless.

32

project

In the following section I will outline the trial and error processes which led to
the crucial decisions about how to implement the actual software project. This
was an often arduous process somewhat like navigating a hostile foreign

terrain with no signposts or guides to point the way.
project : experiments

I began experimenting with networked music systems when I discovered the
‘W’ protocol and object in the Max environment. ‘W’ was an unsupported
client-server protocol written by David Zicarelli and included with Max 3.5.
When the appropriate server was available to act as a mirror one could send
Max messages to other connected clients on a network such as the Internet. I
successfully ran a patch which connected from the McGill Universi’cy
Undergraduate Music Computer Lab (UCL) to a server running special
software and then reflected back commands and MIDI notes to the 8 other

- computers in the UCL. The W server software” was running on a Silicon
Graphics machine at I'Université de Montréal (having been compiled and
installed there by Alexandre Burton). Iwas seeing a latency of 50-100ms based
on my own perceptual impressions at the time. This is already problematic for
real-time musical performance. Considering that this represents a round trip
just across Mont Royal on the RISQ (Reseau d'Information Scientifique du
Québec) network it is a surprisingly high latency. I pinged their web server

host to see what the ping times were like and got a somewhat better result:

2 http:/iwww.synthesisters.com/download/wproj.sit

33

[brouseQimprov ~]$ ping www.umontreal.ca [..:]

21 packets transmitted, 21 packets received, 0% packet loss

round-trip min/avg/max = 1.6/3.1/11.6 ms],

It is nonetheless possible to imagine musicians playing together in such a
situation as long as they were comfortable working with the built-in delay
times. I have managed to compile the W server and Max external myself from
the source and had it running on "jasper.music.mcgill.ca" - a Macintosh G3
running the Mac OS X Server 1.2 operating system. On this system I found the
w server software was - likely due to a software bug - consuming 95% of the

available cpu power.

Wserver) root Running 35.2

WindowServer root Running 2.4

Procass¥iewer root Running 0.8

rotatelngs : root Running 0.0

apache Rbeiad Running 0.0
wserver hogging the CPU

It was an interesting experiment but as the “W” object is not supported in the
Max environment and the server software only seems to run well on SGI this
option was not interesting in the long term. There was once a tcp Max object
created by David Rokeby capable of sending messages over tcp/ip but which is
neither freely available nor supported. Quite recently, however, Norman Jaffe
has released a suite of TCP/IP objects which are freely available and seem to be

updated regularly.

I had for a while also been aware of the OpenSoundControl (OSC) protocol and

‘the means to implement it over various networks in the Max environment:

34

otudp (Open Transport UDP). These were developed at CNMAT (the Center
for New Media and Audio Technologies at the University of California,
Berkeley). Ultimately, I found OSC to be much more robust and flexible than

the ‘w’ protocol.

In my tests using OSC, 1 found that it worked flawlessly over the McGill Music
LAN where every machine has a direct point-to-point path to every other
machine via IP over a homogeneous Ethernet link layer. I did not encounter
any packet loss at all although OSC is using the ‘unreliable’ UDP to send its
packets. This is consistent with the observations of Matt Wright in using OSC at
CNMAT over the Berkeley LAN. As OSC was conceived to communicate
musical control signals under such conditions it seems to be doing its job
properly. OSC was not, as such, conceived for use over the heterogeneous
public internet where the only constant is the use of Internet Protocol and

packets pass over many heterogeneous transports including routers, firewalls

and various underlying link layers (Ethernet, FDDI, SONET, POTS, ATM etc.).

It was in fact somewhat surprising to me how well OSC performed over the
McGill LAN. Idid not experience any packet loss at all in inter-machine
communications. It also performed very well in a loopback configuration
sending to the same host (localhost : IP 127.0.0.1). In fact, as a means of sending
control signals between different applications this easily outperformed MIDI on
the same or different machines. It also had much better performance and
reliability than the InterApplication (IAC) bus provided via OMS (Open Music
System - MIDI software for MacOS from Opcode Systems). As MIDI has a

fixed, relatively slow, data rate this is not too surprising. UDP/IP over fast

35

ethernet on the other hand can benefit from a theoretical maximum of 100

Mbits /s bandwidth with very little overhead.

In experiments from my home computer on an ADSL connection (Sympatico)
to McGill I found I could not establish even my remote IP address using my
reflector patch at McGill. In checking the status window later on the McGill
machine I found that there had been corruption of the data sent over UDP. The
path from my home to the McGill Music LAN takes at least 12 hops through a
variety of routers which inevitably contributes to this packet loss (especially as
many routers are not very friendly to UDP traffic). In order to enable two-way
communication between arbitrary internet hosts I need a reliable way to
establish at least the remote IP address of given hosts. It became apparent that
for this purpose I needed to communicate with the remote machine via TCP/IP.

I decided to use the said tcp objects made available by Norman Jaffe.”

I was thus able to implement my own mini-protocol which establishes those
things which must be reliably established (such as the IP addresses of
participating machines) via TCP/IP and then sends that musical data which
depends on timely delivery over UDP/IP by way of OSC. Itis interesting to
note that this is similar to how the RTSP and RTP protocols interact. RTSP
negotiates streaming media sessions over TCP and then tells RTP to tranéport
the actual audiovisual media over UDP for efficiency. It then - via TCP - enables’

error detection, correction and monitoring of Quality of Service (QoS).

2 http:/iwww.opendragon.com/Pages/MaxObjects.shiml

36

project : design

The principle idea and challenge when I set out to assemble this project was to
build a music system which could accept real-time control signals from human
brainwaves and send them to a client computer which would then synthesize

sound from the received (brainwave) control signals.

At the outset my objectives were much more ambitious than I could practically
achieve. In the end, I felt it was more important to build a simpler but usable
and robust networked music system than to attempt something very

complicated which might or might not work well.

In deciding what software packages to use to implement this project, Ilooked
at Max/MSP, SuperCollider, pd, jMax, QuickTime, OpenSoundControl, CAST,
as well as the possibility of directly coding something in CodeWarrior,

ProjectBuilder or RealBasic.

Important in this choice was that the chosen tools be flexible, fast to prototype,
powerful, not too expensive to use and able to be diffused via a free runtime or
the ability to make a standalone application. I would have preférred to develop
my project under Mac OS X for reasons of stability and network performance
but it seems that in particular ‘audio and MIDI music application developers are
having the hardest time at transitioning to OS X. I suspect that this is largely
due to the fact that the audio and MIDI APIs for OS X are still not published or
finalized (even though has been a shipping product for several months). It

turns out that the applications which I need are almost all running under Mac

37

059.

I would prefer to make the end-user agent software able to run on a multitude
of computer platforms (Windows, Linux, etc.) The only feasible way of doing
this would be to write in Java, or possibly use a development environment like
RealBasic which takes care of most of the cross-platform issues (compiles for OS
9, OS X, and Windows from the same source project). RealBasic does support
MIDI, QuickTime audio and streaming natively but would be very difficult to
include any sophisticated algorithmic functions and 1/ O flexibility.
CodeWarrior and ProjectBuilder are obviously both very powerful and
sophisticated development environments but are not amenable to
experimentation and prototyping. SuperCollider is a very powerful,
sophisticated, and efficient environment. It is very flexible, has very high-
quality sound output and supports OSC. It is however Macintosh-only and
does not allow the creation of binary applications but does have a free runtime
version. The language is powerful but somewhat cryptic and not well-
documented. The cryptic nature of the language was confirmed when - while I
was attending the SuperCollider Nightschool at CNMAT in July, 2000 - Alberto
da Campo, one of the most active and knowledgeable SuperCollider users,
confirmed that he himself only knew about 30% of the language. Thus, it seems
that the only person who really knows SuperCollider is its creator, James

McCartney.
I finally chose to do the majority of my work in Max/MSP largely for the speed

and flexibility in implementation of complex projects which that environment

offers. Other key advantages are the large toolkit of available signal analysis

38

and processing tools which are already available in this environment, and the
possibility to create a stand-alone application. Something developed in
Max/MSP could nonetheless be reasonably easily adapted to another
framework or written directly in C. Max/MSP is mature and supports all of the
things which I need: control, MIDI, audio DSP and OpenSoundControl. There
is also a large user base which tends to be very helpful and knowledgeable.
Less desirable about Max is that it is not very efficient at real-time audio
processing (but getting better), and that the audio and signal processing quality

is not always as good as I would wish.

My initial decision in developing this software was to use the latest versions of
my chosen software tool: Max/MSP (versions 4/2 respectively). David Rokeby
once described as a “deal with the Devil” his rewriting and recompiling
software he was using for his installation “The Giver of Names” at Galerie
Oboro right up until a few hours before the installation was set to open to the
public. Thad initially made such a decision to adopt new 'bleeding-edge'
technologies for the implementation of my thesis project. Apart from the pure
adrenaline rush of living dangerously, there were salient reasons why this
choice was made. The new versions of Max/MSP would have allowed me
certain advantages which I imagined would make the final product more useful
and powerful: the new audio driver model allows much greater flexibility in
audio signal routing and the ability to resample a waveform at a different
sampling rates are two key enhancements which would have been very useful

in my system.

New technologies always offer compelling reasons for their adoption but the

39

fact remains that software rarely behaves ‘as advertised’ and it is one thing to
take risks using something with which one is intimately familiar and quite

another when one cannot be entirely sure how the software will behave.

At the end of the day, I want a system which will work and do so reliably.
After a significant amount of frustration with bugs and inconsistencies in the
aforementioned software products, I decided to take a more conservative tack
and to use software tools with which I am familiar and which I know will
behave in a predictable manner. To this extent, I chose to implement my
project primarily using the Max/MSP 3.6.2 software version which has been

stable for over one year.

In order to implement my system I determined that I needed to support a

certain number of specific functions/ capabilities:

° There will be a ‘server’ software which will measure the brainwaves, perform some
basic analysis, maintain a connection with the 'client’ software and send out the brainwave
data to the client in real-time

. There will be a client software which will initiate a connection with the server

] The client and server will negotiate a reliable 2-directional communications link
between two networked hosts via TCP

° The client and server then negotiate a less reliable but more high-performance real-

time data connection over UDP
I am using an analogue electroencephalogram (EEG) machine to amplify and

filter the raw brainwaves from their original amplitude of around 5-10 gV up to

a range of 500-1000 mV where they can be brought directly into the Max/MSP

40

software via a standard audio analogue-to-digital converter. Human
brainwaves typically contain useful spectral information in the range from 0-128
Hz with the majority of the énergy lying below 40 Hz. This spectral range is
subdivided into several smaller bands each of which have particular significance
to the trained neurologist. The frequency spectra are generally considered to
break down as follows: delta, 1-4 Hz.; theta, 4-8 Hz.; alpha, 8-13 Hz.; and beta
13+ Hz.* The band with which I have mostly concerned myself is the Alpha
wave band comprising those frequencies between 8-13 Hz .® T am particularly
interested in this band because of the specific physiological /somatic states in
which alpha rhythms are most strongly produced. In order to produce strong

alpha waves, the subject must be in a deeply meditative, non-visual state.

Due to practical and economic factors, I decided to implement the capture of
analogue brainwave data using the Grass Model 8 EEG machine which I have in
my possession. I now know how to operate the machine effectively and it
provides high quality capture amplifiers and filters. This machine can be
configured to capture many sorts of varying voltage sources including:
electroencephalogram (EEG), electrocardiogram (EKG), electromyogram
(EMG), and polygraph (lie detector)’® It could also be used to measure other
varying potentials such as Galvanic Skin Response (GSR), Eye Movement
Potentials (EOG)” or even electrical potentials in living plants or other
organisms. The major downside to using the Grass EEG is that it is rather bulky
and not easily portable. It also does require a somewhat careful setup each time

itis used. I feel these issues were outweighed in this case by the precision,

** Fisch. p. 167

® Fisch. p.124

* Grass.pp. 16.2-16.3
7 Eaton. p.4

41

flexibility and cost to me ($0) of the instrument.

I have implemented the software such as to allow different methods of data
capture. I am assuming that whatever kind of analogue data is being captured
it can be brought in using a standard audio A/D converter. This could be the
built-in audio ports on a Power Macintosh computer, another sound card or an
external breakout box such as the MOTU 2408 via a host PCl interface or 828 via
FireWire (IEEE 1394) interface. In my case I have used all of these methods at
various ﬁmes. Audio input is either via the Sound Manager library built into
the Mac OS system software or via the Steinberg ASIO (Audio Streaming
Input/Output) software. Ultimately, any sound input which can be used by

- Max/MSP is sufficient for my purposes. For portability, it is nice to be able to
use the built-in Macintosh sound inputs which can, albeit not entirely faithfully,
capture the required range of frequencies but will only allow for two channels
of input. Seeing as an EEG is normally done with 6 or more channels of sensor
input this already presents a limitation. Portability is also rather moot until I
have a more portable analogue EEG analogue capture device. I did investigate
building my own custom electronics for EEG capture buf concluded that, for the
meantime, this would entail too great an expenditure of time and money.
Newer versions of the MSP software can allow the A-D capture device to be
reconfigured dynamically in software so this would permit me to be flexible in

my future implementations.
I concluded that the high-precision electronics of the Grass analogue EEG (DC-

coupled) combined with good quality audio A-D converters (which are AC-

Coupléd but can capture the frequencies [am interested in) and the Max/MSP

42

software was a good combination for economic, technical, artistic and
compositional reasons. It would havé been possible to build reasonably good
quality analogue amplifiers and filters myself instead of using the Grass EEG
machine but in this case the EEG machine was entirely free, of very high
quality, quite functional, and came with a history of having actually been used

in the treatment of patients. I also found it to be rather aesthetically pleasing.

I have decided to use TCP to establish contact between remote hosts and for
sending of control information and other crucial communications and to use
OSC/UDP to send real-time data. The use of UDP for real-time data entails
some potential data loss but allows greater efficiency in communication. I have
used the TCP objects from Norm Jaffe as previously mentioned which have
solved the problem of reliable communication but have introduced some other
mysterious problems of their own into the patches which seem to be related to
cached buffer state and buffers not being released in a timely fashion. OSC has

been employed for real-time data transfer.

I have devised my own mini-protocol in order to allow negotiation between
server and client. I have attempted to model this based on my knowledge of
existing protocols and to keep it as simple, flexible and self-descriptive as
possible. A method is provided to establish initial contact and auto negotiation
of TP addresses and ports between the client and server. When this negotiation
occurs successfully, a confirmation message is returned to the client. At this
stage I have only enabled a one-to-one server-client relationship. It is possible

in the future I could extend this to allow multiple clients of a single server.

43

Up to 8 separate communication channels can be opened at one time and
maintained. The 8 communication channels have been multiplexed so that they
can run over the same UDP port. For a multi-client implementation all clients
would comrhunicate via a common TCP port but use unique UDP ports. The
server and client have been constructed so as to be capable of operating either
in a loopback (on the same computer) mode or across multiple hosts. The port
assignments are currently hard-coded but could be dynamically assigned by the

server as requests for connections are made in a multi-client version.

As much as possible, I am trying to implement this software (in Max) using

good object-oriented design principles. I would summarize these as follows:

e object encapsulation

° privacy. of local data

® message passing between objects
° multiple instantiation of objects
o hiding of complexity in objects

e use of classes and subclasses

This is done primarily by extensively using ”abstractions” or sub-patches which
are saved externally and then loaded (instantiated) into the main patch. This
allows multiple identical copies of that object to be used. I feel this approach to
Max programming is somewhat like programming in an OO style in a non OO
language. (i.e. it is possible in straight C to use data structures as “quasi-
objects” and gain many of the advantages of OO programming while retaining

the efficiency and clean syntax of C). The other advantage of this approach is

44

that one can built objects which provide a specific, limited but reliable, tested
and reusable functionality which can be used to build up more complex
systems. This also helps enforce the “hiding of complexity” which enables good
OO design. In this manner, one can have multiple copies of an abstraction
which are instantiated into the “main” patch rather than use sub-patchers in the
patch itself. This gives the ability to use multiple instances of the same object

which will be identical and - if properly debugged - reliable.

The Max environment does not allow sub-classing as such but I feel that by
following these principles it will be easier at a future time to re-implement this
software prototype in a full OO development environment with all the
attendant advantages of efficiency and full object oriented behaviour. All this
being said and despite my best object-oriented intentions, MaX is very much a
procedural programming environment which ultimately enforces a procedural

programming style.

I have found it necessary to incorporate various unsupported 3rd party Max
external objects into my project to implement various functionalities which are
not present in the default Max/MSP environment. The external objects which I
have added to the Max/MSP environment are: "OpenSoundControl" and
"otudp” to implement OSC and UDP functions; "tcpClient” and "tcpServer” to
implement TCP; "centroid~" to provide a means of estimating spectral content;
and "smooth" to provide a means of averaging integer values over variable

amounts of time.

Standard sampling rates in modern digital EEG systems are between 200-400

45

Hz? This reflects the fact that most of the frequencies of interest lie below 100
Hz. A 400 Hz sampling rate then gives a comfortable Nyquist limit of 200 Hz.
It turns out that sending 400 floating-point numbers/s over OSC/UDP does not
seem to pose a problem (at least not on a LAN) and it seems to be well within
the capabilities of OSC. The one thing which I had to do to allow this much data
to pass without packet loss was to increase the default buffer and packet sizes of
the OpenSoundControl and otudp objects significantly. (OSC to its
maximum=32000 bytes default=1024, otudp to 2048 buffers - default=20 - with
a size of 512 bytes each default=1024). These values may seem excessive but
were determined on an experimental basis in order to enable me to send the
amount of data necessary with minimal packet loss. I have been quite liberal in
allocating memory to the Max application and to the otudp and OSC objects as
network performance is crucial to this software and neither OSC and otudp nor
Max/MSP have ways to dynamically allocate more memory than that which is

allocated at their instantiation. -

There are surely more efficient means of accomplishing this (e.g. writing my

own custom object or protocol) but for my purposes, OSC is general and

efficient enough that for the sake of simplicity I have decided to use it. OSC, in
fact, entails very little overhead on top of straight UDP, it merely serves to

| format the packets so that they can be efficiently sent by otudp. OSC is being,

albeit slowly, adopted by different software vendors as an alternative - if not

replacement - for MIDL.

2 Fisch. p.129

46

project : implementation

For the InterHarmonium there are two main software components - a server
and a client called respectively InterHarmonjum Server (IHServer) and
InterHarmonium Client (IHClient). These have both been built as Max/MSP
patches which can be run using the MaxMSPPlay runtime application. They
have also been compiled into standalone applications which do not require any

additional software to run.

InterHarmonium Server

InterHarmonium Server

vemote IF address

ik erhocmorum

quit

The server consists of three key parts: a data acquisition "Brain" module which
gathers data from up to 8 analogue inputs, downsamples it and prepares it for
’sending to the remote client, a TCP server which negotiates a reliable
connection with the remote client, and a UDP server which formats and sends

real-time data to the remote client.

The "Brain" subpatcher contains all of the logic and functional units which
handle capturing and formatting of the brainwave data. Inside the first level of
the subpatcher there are two abstractions: brainSend and prep. Prep merely

prepends the argument passed to it onto whatever message comes into the

47

patcher and then sends it out. This allows me to send multiple channels of
brainwave data on one data transmission channel and to be able to sort them
out on the other end (using route). This could be thought of as a rudimentary
form of multiplexing although using sample frames would provide more data
coherence. The brainSend abstraction contains in itself two other abstractions:
brainIn and simBrain. BrainIn opens an analogue to digital input channel using
the channel number argument which is passed to it from the parent patcher
where the argument is the input channel 4 as recognized by Max/MSP. This
object handles input of the raw EEG (audio) signal. The argument must be a
valid integer channel number. This abstraction uses the number~ object not only
to display instantaneous input levels but also to resample the brainwave input
signal using the interval message to set its effective sampling rate (which can be
adjusted). The number~ object sends out the instantaneous floating-point
values of the signal at the given interval. The smallest interval or period which
number~ will support is 20 ms which translates into an effective sampling rate of
50 Hz and Nyquist limit of 25 Hz. Given the frequency spectrum of interest
(alpha) lies between 8-13 Hz this is sufficient.

Brain Inferface

48

The Grass EEG machine already has very high quality analogue filters for
isolating this frequency range and thus I have not implemented a low-pass or
band-pass filter in software. This would be very easy to add at a future time if

necessary.

The simbrain abstraction is primarily for setup and testing purposes.
Connecting a human subject to an EEG machine is time-consuming and can be
somewhat inconvenient for the subject and technician. The simbrain
abstraction thus generates a pseudo-random signal in the same range as the
alpha brainwaves and enables end-to-end setup and debugging of the system
with no need for a human subject to be hooked up to the EEG machine. I have
used the drunk object to simulate a random walk across the frequency range of
concern. The ‘z’ key on the computer keyboard will toggle between simbrain

and the real brainwaves coming in via the analogue to digital converter.

T have used the centroid~ external by Ted Apel, John Puterbaugh, and David
Zicarelli to determine an averaged centroid frequency for the alpha brainwaves.
By combining this with the “smooth” object from David Rokeby, I can obtain
varying degrees of smoothness or averaging of the centroid signal which I then
use to determine a fundamental frequency of the signal to pass on to the

HarmonicGenerator.

The Tcpserver listens on an available port (9999 in this case) for incoming
connection requests. When a request is received, the external object tcpserver
negotiates with the client on the other end to establish a reliable connection.

Once a connection is established with the remote client, data can be sent using

49

the ‘send’” command. This is easily done by prepending ‘send’ to whatever
message needs to be sent. Integer and floating-point numbers do not require
the send command as they are automatically sent. Apart from negotiating IP
number and port number with the remote host and maintaining the
connection, the TcPserver is also used to send short dialog messages, the
centroid frequency of Alpha waves and a few other key control messages.
Incoming messages from the client are sorted by using ‘route’ and are then
dealt with as necessary. The “self’ command to the tcpserver object returns the
IP address of the local machine. This allows me to test the configuration in a
‘loopback’ mode: with the server and client both operating on the same

machine.

TCPServer Andrew Brouse 2001

help

50

The Negotiate sub-patcher takes host and port messages received from the
TCP server and formats them so that the UDP server’s functional core, otudp,
can understand them. otudp only understands messages of the format (sosT
1P _ADDRESS PORT NUMBER) which must be sent as one message. Negotiate is

effectively the glue between the TcpPserver and the ubpserver.

The uppserver handles the transport of real-time brainwave data. Once a
destination IP address and port have been specified, the UDP server just sends
whatever data is passed to it along to the destination address. No verification
of receipt is performed. The opensoundcontrol and otudp objects work
together and thus, to pass any data from the Max environment through otudp,
it is necessary to use openSoundControl. To a large extent I am not really using
all the features of the OSC protocol as such but am using the object as a conduit
for Max messages. The otudp status menu command will provide a dump of all
current otudp vital statistics to the Max window. As already mentioned,
OpenSoundControl has been given the largest buffer size which it will accept
(32000 bytes) and otudp has been given a very generous number of buffers
(2048) and buffer size (512 bytes). These values were arrived at by trial and
error and seem to deliver the ‘best performance and reliability. I have probably
allocated more memory than is reqﬁired but since these objects have no way to

dynamically re-allocate memory, I feel this is the best course of action.

51

InterHarmonium Client

The InterHarmonium client software consists of four primary parts: the
TCPClient abstraction which takes care of negotiating TCP network
connections, upeclient which handles receiving of data via UDP, Fuzzylogic
which provide basic routing, algorithmic and mapping functionality and the
HarmonicGenerator abstraction which takes the data from ruzzyLogic, parses it,
and employs that data in turn to generate sound using its additive Fourier

synthesizer.

&ndrew Brouse 2001

InterHarmonium Client

This HarmonicGenerator abstraction is based on a similar idea to an application
which I made in 1998 also called “HarmonicGenerator” which performed
additive Fourier synthesis of pure tones. The purpose of this patch is to
generate any arbitrary harmonic in relationship to a given fundamental

frequency with specified phase, amplitude and panning settings. =~ All tones are

52

generated by the toneGen abstraction. The fundamental frequency is received
by r fund in each of the tone generators as a floating point number. The
sender abstraction takes care of formatting messages to be sent to each
individual toneGen object. In this particular case,’I have used 25 toneGen
objects to provide a maximum of 25 distinct partials. This alone consumes
approximately 45% of the available cpu power on my 333 MHz Macintosh G3
PowerBook and thus I would be very reluctant to provide any more tone
generators. It is certainly possible to generate a very rich and complex sound

with just 25 oscillators.

Andrew Broyse 2001

toneGen

gate™ selects
output off [4],
steren [s] or
muitichanne!

The toneGen abstraction takes two argument: the first being its symbolic |
identifier (in this case I have used upper-case letters) and the second being its

default initial harmonic number (frequency ratio to the fundamental). Itis

53

important to note that this should be specified as a floating-point number (i.e.
12.0 rather than 12). If it is initially specified as an integer, then only integer
multipliers and frequencies will be generated. All toneGen objects receive the
fundamental frequency via the r fund object. Each specific toneGen receives its
partial (harmonic) number, phase, amplitude envelope and panning instructions
which are sent to the same name as its identifier with part, phase, env and pan
prepended respectively to allow routing of messages. This information is then
passed to the oscillate~ abstraction which actually genérates the tones. A
gate~ object is used with a keyboard selector to allow for signal output routing
to be either off [0], to stereo [s], or discretely output to a multichannel matrix

mixer [m] which is not currently implemented.

A simple panner abstraction takes a floating-point input between -1.0 and +1.0
to represent the range from hard left to hard right panning. Ihave used a
simple square-root expression to provide an approximation of equal power

panning.

panner "™

54

The oscillate~ abstraction is a simple object which takes care of setting and
updating the frequency of the harmonic in relationship to the fundamental,

adjusting phase (0-1.0), and the amplitude envelope (0-1.0).

Output is conventionally routed to the stereo outputs of dac~. The tilde [~] key

can be used to toggle audio on and off.

55

project : operation
InterHarmonium Server (IHServer)

When the IHServer starts up it initiates a series of actions in order to enable it to

respond to client requests:

1. bringing in the sampled brainwaves and downsampling them

2. routing and preparing the brainwave data

3. opening a TCP port on the host computer and waiting for a connection

4. negotiating with a host when a connection is requested

5. responding to client requests to open a specified UDP port for sending data
6. sending out the raw brainwave samples

7. accepting other requests from the client (such as disconnect)

8. being able to dialogue with the client

As mentioned, the functionality of the Server is divided into three principal
components: TCPServer, UDPServer and Brain with a negotiation/formatting

component which links the TCPServer and the UDPServer.

The TCPServer is responsible for maintaining a reliable contact with the client
and for sending all control communications as well as permitting dialog
between the server and client. It is essential to have one reliable - if inefficient -
channel of communication in order that vital information such as the client’s IP

address and UDP port number can be passed between server and client.

When the application starts, it sends a loadbang which first turns verbose mode

56

off, and then - after a 100 ms delay, turns listen on. After a 1 second delay, a
metro object send a bang every one second to the tcpServer object. This
effectively causes this object to poll its current status. (Bang causes a status
output). The status output of the server is passed - via route - to the changes
object which determines if the status has changed. If the status changes it will
output that change at the polling interval. When the bound status message is
received - indicating that the tcpServer object is bound to the specified port of
the Macintosh IP stack - a bang is sent to turn listen on. This will ensure that the
server will be put into listen mode regardless of how long it takes to bind to the
TCP/1IP stack. The active server listening port can be set as desired but this will
cause any connected client to be disconnected. The server must always be
started before the client. Menu commands are provided for seeing the status of

the TCPServer and for switching verbose mode on and off.

The negotiate sub-patch accepts host and port numbers to be passed to the
UDPServer. These numbers will have been sent by the client in order to initiate
a UDP connection. In each case the token of "host" or "port" is appended to the
beginning of each number in order to identify each message. Route is used at
the receiving end to separate these messages and to strip off the token in order

that the data might be used as appropriate.

Route strips off the ‘host’ and “port’ tokens and simultaneously routes the data
to the appropriate branch in the processing chain. Both the IP address and port
number are then set. When the IP address is set this is sent to an append object
which contains the port number. This constructed address and port number

then has ‘host’ appended to the beginning and we now have a message which

57

can be understood by otudp. Thus the port number must be set before the IP
address because when the IP address is set the entire formatted message is sent =

out immediately.

The uppserver is responsible for preparing and sending out the raw brainwave
data as received from the Brain module to the specified Internet address.
Because UDP is a connectionless protocol this module will just continue to send
data to the specified network object without regard for whether it is being
received or not. The key desired characteristic of this component is that it be as

efficient as possible in delivering the real-time data.

Tagged data is sent to the opensoundcontrol object which arranges the Max
data into an acceptable binary format and then passes this formatted data on to
otudp which is configured as a ‘writer’ for sending data. otudp has been
configured by default to send to the loopback address (127.0.0.1) which allows
one to run the server and client on the same machine for testing purposes. The
client, however, will autodetect its own IP address and attempt to negotiate that

address with the server when it starts up.

The Brain module handles input of sample brainwave data via the selected
audio input, downsamples this to a range appropriate for brainwave data (50
Hz sampling rate) and handles tagging and routing of the data. It also provides
a submodule, simBrain, which give a pseudo—random signal in the same range
as an alpha brainwave which can be used during setup and testing when a live

subject is not available for setting up the system.

58

Brain is configured to allow eight channels of analogue audio (brainwave) input
which corresponds with many currently available analogue-to-digital converter
interfaces. In this case I have used the MOTU 828 FireWire (IEEE 1394) interface

for much of my testing.

Once the server has been started then the client can be set up to connect to it.
You must know the internet address (IP address) of the server in order to use
the client. The TCP port of the server/ client has been hard-coded as port 9999
but could be dynamically allocated. The UDP port can be set by the client

during the negotiation process.
InterHarmonium Client (IHClient)

In the ‘main’ patch of the InterHarmonium Client software, functionality is
divided up into four principle sub-patchers: Tcpciient, UbPClient, Fuzzylogic
and HarmonicGenerator. Each of these sub-patchers encapsulates certain
functions and passes messages and data along to the other functional units as
necessary. This enables me to much more easily replace any one of the
functional units at any time in the future. A ‘quit’ button is provided within the

patcher as well as via a menu command.

The rceclient patch establishes and maintains reliable network data
connections with the InterHarmonium Server software. It is built around the
“tcpClient” Max object. Note the difference in capitalization to distinguish the

patcher from the object.

59

rceclient handles all TCP interactions on the client side and the patch is
essentially a wrapper for various functionalities of the tcpClient object. The two
arguments to the tcpClient object specify the IP address and port to connect to.
Thé tcpClient object is set to aloopback (IP 127.0.0.1) on port 9999 by default.
Output of the object is routed according to whether it receives a data (reply),
status, or ‘self’ message. The route objectis used extensively to filter messages
based on their content. The “s 2c1ient” object is used to send messages to the
tcpClient object for the sake of visual clarity in the patch. A function was
provided for setting the user’s IP address behind a firewall/router which does
network address translation (as the internal IP address of their computer will be
different than the external IP on the internet). This function is currently
disabled. The functions which are enabled are: set TCP port, set Server IP
address, get own IP address, connect, disconnect, negotiate, verbose on/ off,

and dialog - to send short text messages to the server.

The uppciient patch primarily handles the UDP connection to the server and
receives real-time data from the server over that connection. It is based around
the otudp and OpenSoundControl objects. The “otudp” object reads raw UDP
packets from the port specified as its first argument. The number of available
buffers is indicated by ‘nbufs’ (2048) and the buffer size is indicated by ‘bufsize’
(512). The UDP port is set by default to be port 7006 but can be changed if

desired.
UDP packets are sent to the OpenSoundControl object which reformats the

data which is then sent to route to effectively de-multiplex the packets and strip

off the routing information (tokens a-f). The data is then sent out 8 outlets

60

corresponding to the 8 channels of brainwave data. The raw numbers are also
then packed together again into a list which is sent to the “scope” patch to

provide a visual display of the data.

Appropriate messages can be sent to otudp to turn off error reporting, get
status or change the UDP receive port. The opensoundcontrol object is merely

translating the UDP packets into a Max-usable form.

The FuzzyLogicMatrixRoute patch is a misnomer which reflects my wishes for
what I initially intended it to be and what I might replace it with in the future
rather than what it is right now. In actuality, this is really just 8 discrete
configurable lookup tables (LUT) which allow the user to set up ‘mappings’ of
input to output data. This mapping is programmable and repeatable via a

‘save’ function.

Because the input signals are floating-point and the table object currently only
understands integers, I convert the floats first to int, perform the mapping and
then convert them back into floats. This imprecise procedure itself introduces
another “fuzzy” distortion into the signal. The conversion is performed thus:
1. Multiply the float by 256 |

2. Convert toint.

3. Use this scaled integer to do an inverse lookup on a 256 by 256 table.

4. A predetermined set of tables are read at launch time (tabl-tab8). These can be edited by

the user.

5. Lookup values are then scaled back by the inverse of 256 (1/256 = 0.003906) which makes

them into floating point numbers again.

61

The HarmonicGenerator patch manages allocation of sound generating patches
according to data which is passed to it. It takes 8 continuously varying floating
point numbers as input and generates sound from that data. As the title

implies, the generated sound is based upon the Harmonic Series.

The 8 floating point inputs pass through the MultiplyMatrix patch which is an
attempt to generate 24 continuously varying floating point values which are
nonetheless all interrelated in complex ways. The actual implementation of this
patch could doubtless be improved. The output of the multiply matrix is then
passed through an abs object which ensures that the values remain positive.
The resulting 24 floating point values are then used to provide values for the
phase, pan and amplitude envelopes of the tone generator modules. These
values are passed to the tone generators via a sender object which is used
primarily for tidiness and encapsulation. The sender object takes an argument
which corresponds with the argument of a tone generator inside the
ToneGenBank patcher. The ToneGenBank (Tone Generator Bank) patcher
contains 25 distinct toneGen modules which are all identical save for their two
passed arguments. The first argument as mentioned corresponds with a sender
patch, the second sets the initial harmonic number as a ratio to the current
fundamental frequency. Thus if the second argument to toneGen is 20., it will
generate a sine tone 20 times that of the fundamental. The audio outputs of

each individual toneGen are summed by the receive~ objects.
The tonegen patch takes care of receiving synthesis parameters as input (partial,

phase, envelope and pan), synthesizing the sound according to those

parameters, and then routing it to an output as desired.

62

The synthesis parameters are received from the “sender” patch and then routed
according to the parameter being controlled. The actual sound synthesis is
done by the oscillate~ abstraction and panning is done by the panner
abstraction. Provision is made for sending the audio output to either a panned

stereo output or a multichannel matrix mixer (not yet implemented).

The oscillate~ abstraction does simple sine tone synthesis according to given

parameters. It is built as a wrapper for the cycle~ synthesis object.

The first inlet sets the fundamental frequency which can then be multiplied by
any number (set via the second inlet). The third inlet sets the relative phase and
the fourth sets the amplitude which is somewhat smoothed by the use of a 1ine

object.

The panner abstraction takes an audio input signal and a floating point number
(-1.0 to 1.0) and pans the audio between the two outputs according to the
following schema: -1 = hard left; 0 = centre; +1 = hard right. To produce a more
realistic effect an approximate equal power panning formula is used based upon

the square-root of the pan value.

63

project : directions for use

Note: this software will only run on a recent Power Macintosh

(G3 ornewer , MacOS 9.04 or newer) with a network connection.

1. If you receive the software on CD, it is recommended to copy the entire
contents of the CD to a folder on your hard drive. This can be effected by

dragging the CD icon from the desktop into the place you want to install it.

changes

"0

2. The Max external objects "tcpServer”, "tcpClient", and "changes" must

reside in the same folder as the InterHarmonium applications.

3. The InterHarmonium Server and Client applications are designed to work
on two separate physical machines connected via an IP network but they may
also run on the same machine in 'loopback’ mode. (This significantly increases

the resource load on this machine and at least a G3 /300 MHz Power Mac is

64

recommended.)

4. OMS (Open Music System from Opcode) is neither necessary nor

recommended.

5. Launch the InterHarmonium Server on the server machine first then

launch the InterHarmonium Client on the client machine.

6. The Server should display some status messages as it launches and then

finally display "listening: 9999" in the Status window.

7. 1f you have OMS and you are running in loopback mode, you will get an

OMS error message. Click "quit" when this message comes up.
8. There is ordinarily no reason to make any changes to the default
configuration of the server when it launches - all configurations can be changed

from the client.

9. To run in 'loopback’ mode with both Server and Client on the same

machine, on the Client software:

* select 'Set Loopback Address' in the 'NetworkControl' menu.
(This should in fact already be selected by default.)

10. To run the system with sound output:

65

® select 'Connect’ in the 'NetworkControl' menu.
o select 'Negotiate' in the 'NetworkControl' menu.

° select "Audio On' in the 'HarmonicControl' menu, this will start the

unmodulated harmonic generator
Then in the Server application:

o either connect the live brainwaves to an A->D device or select
'SimBrain On' in the 'BrainControl' menu, this will begin sending the
brainwave control signals to the client and you should immediately hear

modulation

. you can monitor the brain waveforms by selecting 'Scope Display’'

in the 'BrainControl' (Server) or 'HarmonicControl' (Client) menus.

11. Keyboard Shortcuts
(press the given key on the computer keyboard to actuate the corresponding

shortcut - most apply to both the server and the client)

d - open dialog box to send short text message to the remote machine

m - output to multichannel mixing matrix (to be implemented at a future time)
o - turn sound output off

s - output to stereo left/right channels

z - toggle real / simulated brain signals

66

~ (tilde) - toggle audio on/ off at the local machine
12. Menu functionality:

Server:
NetworkControl - adjusts network settings

Listen On
Listen Off
Set Listen Port
Disconnect
Verbose Mode
otudp Status
TCP Status

BrainControl - adjust settings related to brainwave processing
‘Audio On
DSP Status Window
SimBrain On

Scépe Display
Patchers - opens key patchers

TCPServer

UDPServer

Brain

Client:

67

NetworkControl - adjusts network settings
Set Remote IP Address
Set Loopback Address
Set TCP Port
Set UDP Port
Connect
Disconnect
Dialog
Verbose Mode
otudp Status
TCP Status

HarmonicControl - adjust settings related to brainwaves->sound mapping
Audio On
DSP Status Window
Synthesize

Scope Display

Patchers - opens key patchers
TCPClient
UDPClient
FuzzyLogic
MatrixRoute

HarmonicGenerator

68

conclusion and future directions

The two great challenges in realizing this project have been technical and
artistic: how to make it work technically and have it resonate artistically.
Though I have tackled both, neither has completely yielded the results I had
wished for at the outset. This project has been neither a complete failure nor a
resounding success. It has been a first tentative step in an exciting and not well-
trodden direction. The software, as written, does what it was conceived to do;
it functions more-or-less properly. When I recently performed using this
software at "Bruits du Noir", I ended up significantly rewriting large sections of
the audio synthesis function. I now feel I would prefer to rewrite the entire
software package itself. There are many possibilities for improvements in the

elegance, robustness and flexibility of this software.

What has become increasingly clear to me - as long as I create software like this
to make music - is that the software must evolve to meet the needs of the music
as the music itself evolves. Neither the music nor the tools upon which it relies
can evolve in a vacuum; they are interdependent. The purpose of this exercise,
then, has been to discover hot just what kind of music I want to make and not
just how to create the tools to make it but how the two thought processes -

artistic and technological - interact.

As this work has progressed I increasingly get the feeling that it is just starting;
in an extremely disquieting way, it has raised far more questions for me than it
has answered. I find this at once frustrating yet also stimulating. All1can

postulate is that it will continue.

69

glossary

ADB
ADPCM
ADSL
APCM
APT
ASIO
AT™M
AUDP
Brdadcast
BSD

- broadcast

CAST

Apple Desktop Bus

Adaptive Differential Pulse Code Modulation
Asymmetrical Digital Subscriber Line
Adaptive Pulse Code Modulation
Application Programmer Interface

Audio Streaming Input/Output (Steinberg)
Asynchronous Transfer Mode

Audio UDP

IP broadcast to all hosts on the network
Berkeley Software Distribution

traditional notion of media broadcast (Radio, TV)

CNMAT Additive Synthesis Tools

CCRMA Center for Computer Research in Music and Acoustics

CELP
CNMAT
CODEC
Cru

D1

DCT
DSP
EEG
EKG
EMG

- EOG

Code Excited Linear Prediction

Center for New Music and Audio Technologies
COder/DECoder

Central Processing Unit

professional digital uncompressed video standard
Discrete Cosine Transform

Digital Signal Processing

Electroencephalogram (graph)

Electrocardiogram

Electromyogram

~Electrooculogram

70

FDDI Fiber Distributed Data Interface
FFT Fast Fourier Transform

Firewire IEEE 1394 bus standard also known as iLink

GNU GNU’s Not Unix (Unix-like operating system)
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IP Internet Protocol

IP/TV Internet Protocol Television (Cisco)

Ipv4 Internet Protocol version 4

Ipvé Internet Protocol version 6

ISDN Integrated Services Distribution Network
ITuU International Telecommunications Union
LAN Local Area Network

LPC Linear Predictive Coding

MacOS Macintosh Operating System

Max/MSP music software development environment

Mbone virtual Multicast Backbone

MIDI Musical Instrument Digital Interface

MNI Montreal Neurological Institute

MODEM - ModulatorDEModulator

MOTU Mark of the Unicorn

Multicast IP multicast to group

mLAN IEC 61883-6 protocol for Digital Audio over Firewire

NAT Network Address Translation
0C-3 Optical Carrier Level 3 (155.52 Mbps)
OMS Open Music System (Opcode)

71

OO(P) | Object-Oriented (Programming)

OsC Open Sound Control
OslI Open Systems Interconnection
OT OpenTransport (streams-based MacOS IP networking stack)
otudp Open Transport UDP object for Max
PCM Pulse Code Modulation
POTS Plain Old Telephone System
QoS Quality of Service
RFC Request for Comments
RISQ Reseau d'Information Scientifique du Québec
RS5VP Resource Reservation Protocol
RTCP Real Time Control Protocol
RTP Real-time Transport Protocol
RTSP Real Time Streaming Protocol
SCSI Small Computer System Interconnect
SDP Session Description Protocol
SGI Silicon Graphics Incorporated
- SMIL ' Synchronized Multimedia Interaction Language

SONET Synchronous Optical Network

Tl 1.544 Mbps digital transmission line

T3 44736 Mbps digital transmission line

TCP Transmission Control Protocol

TTL i Time-To-Live

UART Universal Asynchronous Receiver/Transmitter
UCL Undergraduate Computer Lab (McGill University)
ubDP User Datagram Protocol

72

Unicast
W3C
WAN
WWW
ZIP1

1P unicast to one other host on the network
World Wide Web Consortium
Wide Area Network

World Wide Web
proposed replacement for MIDI

73

appendix a : music for solo performer

MUSIC FOR SOLO PERFORMER (1965)*

for enormously amplified brain waves and percussion

The alpha rhythm of the brain has a range of from 8 to 12 Hz., and, if
amplified enormously and channeled through an appropriate
transducer, can be made audible. It can be blocked by visual attention
with the eyes open or mental activity with the eyes closed. No part of
the motor system is involved in any way. Control of the alpha
consists simply of alteration of thought content - for example, a
shifting back and forth from a state of visual imagery to one of

relaxed resting.

Place an EEG scalp electrode on each hemisphere of the occipital,
frontal, or other appropriate region of the performer’s head. Attach
a reference electrode to an ear, finger, or other location suitable for
cutting down electrical noise. Route the signal through an appropriate
amplifier and mixer to any number of amplifiers and loudspeakers
directly coupled to pyercussion instruments, including large gongs,
cymbals, tympani, metal ashcans, cardboard boxes, bass and snare
drums (small loudspeakers face down on them), and to switches,
sensitive to alpha, which activate one or more tape recorders upon

which are stored prerecorded, sped-up alpha.

Set free and block alpha in bursts and phrases of any length, the

sounds of which, as they emanate from the loudspeakers, cause the

%9 Lucier. p.69

74

percussion instruments to vibrate sympathetically. An assistant may
channel the signal to any or all of the loudspeakers in any combination
at any volume, and, from time to time, engage the switches to the

tape recorders. Performances may be of any length.
Experiment with electrodes on other parts of the head in an attempt
to pick up other waves of different frequencies and to create stereo

effects.

Use alpha to activate radios, television sets, lights, alarms, and other

audiovisual devices.,

Design automated systems, with or without coded relays, with which

the performer may perform the piece without the aid of an assistant.

Edmo/nd Dewan, Technical Consultant

75

appendix b : 3rd Party Externals Used

Norm Jaffe

<http:/ / www.opendragon.com/Pages/ MaxObjects.shtml>

topClient

tepServer |
[changes 1 |

David Rokeby
<http:/ / www.interlog.com/ ~drokeby>
<http:/ /node.net/ cgi-bin/ ftpex/FTPex.cgi?get&IRCAM_Pub_Nov.99

/EAT /utilities / Rokeby%200bjects.sit>

CNMAT (Matt Wright)

<http:/ / www.cnmat.berkeley.edu/osc>

Eudp write www .cnrmat.berkeley edu 7123 1

IUpenSoundContml !

Ted Apel, John Puterbaugh, and David Zicarelli.

<http:/ /www-crca.ucsd.edu/ ~tapel/ software. html>

[Gentroid™ 512 |

76

appendix c : IETF Proposals and Requests for Comment

Host Extensions for IP Multicasting
<ftp:/ / ftp.isi.edu/in-notes / rfc1112.txt>

SDP: Session Description Protocol
<ftp:/ / ftp.isi.edu/in-notes/ rfc2327.txt>

Real Time Streaming Protocol (RTSP)
<ftp:/ / ftp.isi.edu/in-notes/ rfc2326.txt>

RTP: A Trahsport Protocol for Real-Time Applications
<ftp:/ / ftp.isi.edu/in-notes/ rfc1889.txt>

RTP Profile for Audio and Video Conferences with Minimal Control
<ftp:/ / ftp.isi.edu/ in-notes/ rfc1890.txt>

RTP Payload for Redundant Audio Data
<ftp:/ / ftp.isi.edu/in-notes/ rfc2198.txt>

Audio/Video Transport Working Group
<http:/ / www jetf.org/html.charters/avt-charter html>

77

bibliography

Abelson, Harold and Gerald Jay Sussman with Julie Sussman. Structure and
Interpretation of Computer Programs. Cambridge, Mass: MIT Press, 1996.

Apple Computer Inc. Quicktime for the Web: A Hands-On Guide. San Francisco:
Morgan Kaufmann, 2000

Bargar R., Church S., Fukuda A., Grunke J., Keislar D., Moses B., Novak B.,
Pennycook B., Settel Z., Strawn]., Wiser P., and Woszczyk W. "Internet
Capabilities", White Paper, Journal of the Audio Engineering Society, Vol. 47, No 4,
April 1999: pp. 300-310.

Barthes, Roland. Camera Lucida. New York: Noonday, 1981.

Beggs, Josh and Dylan Thede. Designing Web Audio. Sebastopol: O'reilly, 2001.

Benade, Arthur H. Fundamentals of Musical Acoustics, 2nd ed. New York: Dover,
1990.

Benjamin, Walter. llluminations. New York: Schocken, 1969.

Bosanquet, RH.M. An Elementary Treatise on Musical Intervals and Temperament
(London 1876). Utrecht: Diapason Press, 1987.

Cage, John. Silence. Middletown, Conn: Wesleyan University Press, 1961.

Crowcroft, Jon, Mark Handley and Ian Wakeman. Infernetworking Multimedia.
San Francisco: Morgan Kaufmann, 1999.

Donahoo, Michael and Kenneth Calvert. The Pocket Guide to TCP/IP Sockets : C
Version. San Diego: Academic Press, 2001.

78

Deering, Steve. "Multicast Routing in a Datagram Network." Palo Alto:
Stanford University, 1991. (Ph.D. thesis) - see “Host Extensions for IP
Multicasting” RFC 1112, 1988.

Eaton, Manford. Bio-Music: Biological Feedback Experiential Music Systems. Kansas
City: Orcus, 1971.

Fisch, Bruce J. Fisch and Spehlmann’s EEG primer : basic principles of digital and
analog EEG. Amsterdam: Elsevier, 1999.

Gibran, Kahlil. The Prophet. New York: Alfred A. Knopf, 1981.

Goldberg, RoseLee. Performance: Live Art 1909 to the Present. New York:
Abrams, 1979.

Gozza, Paolo. Number to Sound: The Musical Way to the Scientific Revolution.
Dordrecht: Kluwer Academic Publishers, 2000.

Hacker, Scot. MP3: The Definitive Guide. Sebastopol: O’Reilly, 2000.

Helmholtz, Hermann. On the Sensations of Tone as a Physiological Basis for the
Theory of Music. New York: Dover, 1954.

Holtzman, Steven R. Digital Mantras : The Languages of Abstract and Virtual
‘Worlds. Cambridge, Mass: MIT Press, 1996.

Jacobs, D. “MuscleMusic: experience using BodySynth.” IRCAM, 1992.

Kelly, Kevin ed. Signa‘l: Communication Tools for the Information Age. New York:
Harmony, 1988.

Knapp and Lustad. “Bioelectric controller for computer music”. Computer
Music Journal, 14(1) pp. 42-47. 1990.

79

Kumar, Vinay. Mbone: Interactive Multimedia on the Internet. Indianapolis: New
Riders, 1996.

Lu, Guojun. Communication and Computing for Distributed Multimedia Systems.
- Boston: Artech House, 1996.

Lucier, Alvin and Douglas Simon. Chambers. Middletown: Wesleyan University
Press, 1980.

Mambretti, Joel and Andrew Schmidt. Next Generation Internet. Toronto:
Wiley, 1999.

Maremaa, Tom and William Stewart. Quicktime for Java: A Developer Reference.
San Francisco: Morgan Kaufmann, 1999 .

McLaughlin, Elbert H. "The coalescence of music and the internet : a hybrid
solution for the use of music materials in worldwide web publication.”
Montreal: McGill University, Faculty of Music. (MA Thesis), 1996.

Minsky, Marvin. The society of mind. New York: Simon and Schuster, 1986.

Moorer, James. "Audio in the New Millennium." Journal of the Audio Engineering
Society, Vol. 48, No 5, May 2000: pp.490-498.

Naughton, John. A Brief History of the Future: The Origins of the Internet. London:
Phoenix, 2000.

Nufiez, Paul. Electric Fields of the Brain: The Neurophysics of EEG. Oxford: Oxford
University Press, 1981.

Nyman, Michael. Experimental Music. New York: Schirmer, 1974.

80

Peckham, Morse. Man’s Rage for Chaos: Biology, Behavior and the Arts. New York:
Schocken, 1976,

Pope, Stephen Travis. The Well-Tempered Object : Musical Applications of Object
Oriented Software Technology. Cambridge, Mass: MIT Press, 1991.

Qdesign Corporation. Qdesign Music Codec 2 Manual. Vancouver: Qdesign
Corporation, 1999.

Raghavan, 5.V. and Satish K. Tripathi. Networked Multimedia Systems, Concepts,
Architecture, and Design. New Jersey: Prentice-Hall, 1998. '

Roads, Curtis. The Computer Music Tutorial. Cambridge, Mass: MIT Press, 1996.

Rosenboom, David. Biofeedback and the Arts: Results of Early Experiments.
Vancouver: Aesthetic Research Centre of Canada, 1976.

Schultzrinne, Henning and Jonathan Rosenberg. Internet Telephony. 2000.
(Unpublished)

Schultzrinne, Henning. "Internet Media-on-Demand: The Real-Time Streaming
Protocol.” New York: Columbia University, Dept. of Computer Science, 1999.
(presentation)

Schwartz, Elliot. Electronic Music : A Listener’s Guide. New York: Praeger, 1975.

Selfridge-Field, Eleanor. Beyond MIDI: The Handbook of Musical Codes.
Cambridge, Mass: MIT Press, 1997.

Sorenson Vision Inc. Sorenson Broadcaster - User Guide. Logan, Utah: Sorenson
Vision Inc., 1999.

Stern, Judith and Robert Lettieri. Quicktime Pro for Macintosh and Windows.

81

Berkeley: Peachpit Press, 1999.
Stevens, W. Richard. TCP/IP Hlustrated. Reading, Mass: Addison-Wesley, 1994.

Tenney, James. "Harmonium #3.” Baltimore: Sonic Art Editions, 1990.

Tomkins, Peter and Christopher Bird. The Secret Life of Plants. New York:
Harper & Row, 1973. |

Wanderley, Marcelo and Marc’Battier. Trends in Gestural Control of Music.
(CD) Paris: IRCAM, 2000.

Weidenaar, Reynold. Magic Music from the Telharmonium. London: Scarecrow
Press, 1995.

Wiener, Norbert. The Human Use of Human Beings: Cybernetics and Society. New
York: Discus, 1967.

Williamson, Beau. Developing IP Multicast Networks - Volume 1. Indianapolis:
Cisco Press, 2000.

Zatorre, R.J. (1988). "Pitch perception of complex tones and human temporal-
lobe function.” Journal of the Acoustical Society of America, 84, pp. 566-572.

Zuckerkandl, Victor. Sound and Symbol: Music and the External World. Princeton:
Princeton University Press, 1973.

82

