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INTRODUCTION 

The new conceptual power of Cantor's set theory 

has had a dynamic effect upon creative mathematical 

thinking and, at the same time, introduced a para­

doxical element into mathema~ics that has shaken 

the very foundations of this discipline. A conse. 

quent thorough re-examination of the nature of 

mathematics has produded a wealth of ideas and a 

variety of approaches to foundational studies. 

Amidst the inevitable clashes between a purely 

"logicat", a partly "philosophical" and a "genuinely 

mathematical/l method of attack, i.e., between the 

logicists, the intuitionists, and the formal'ists, 

Gentzen made it the aim of his mathematical investi. 

gations to establish beyond doubt the reliability of 

large parts of classical mathematics. This under. 

taking was to be carried out in three distinct stages 

according to the degree to which the concept of infinity 

i 5 i n vo i ved : 

The first stage consists of elementary number theory, 

into which "infinity" enters merely in the form of 
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the stipulation of an infinit~ domain of objects; 

the second stage consists of analysis in Which the 

introduction of irrational numbers and infinlte 

series makes it necessary to treat an infinite set 

as an individual object; the third stage consists 

of general set t~eory in which infinite set~ of 

infinite sets are freely admitted. l ) 

Gentzen believed that elementary number theory, 

analysis, and a goOO part of set theory were 

entirely reliable. 2) In this view he was un­

doubtedly encouraged by Hilbert3)~ whose assistant 

he was from 1934 until Hilbert's eventual retire-

ment. 

The statement that a branch of mathematics is reli­

able is a statement about that branch of mathematics4 ) 

and this leads to the distinction between the theory 

to be vindicated and a meta-theory (or proof-theory) 

within which the notion of reliability can be formu-

lated. iReliability' here m~ans 'freedom from 

contradiction' and, expresses the fact that once a 

1) Gentzen (7), pp 65-66 
2) Gent~n (8), p. 204 (7), p. 79 
3) Gentzen (8) p. 205 
4) Gentzen (5) p. 10 
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theory has been formalized and the concept of a 

'proof t defined, it can be shown that a contradictory 

statement such as '1 = 2' cannot be obtained from 

true statements through the application of the logical 

rules that are permissible in the theory. The techni-

cal term for reliability used in this paper is the 

term 'consistency', and a proof that ends in a con-

tradiction obtained from true statements by means of 

the logical rules of the theory will be referred to 

as an 'inconsistent derivation'. 

The present translation contains two published versions 

of the "consistency" proof for Itelementary number theory". 

They will be referred to by (S) and (10) as listed in 

the bibliography. In (S) the consistency follows fram 

the non-derivabi 1 it Y of the. sequent 1 ~ 4 ~"'Jl 1 S) , 
whilst in (10) it takes the form of the non-derivability 

of the empty sequent 1 
,6) 

• 

In proving the consistency of a formalized axiomatic 

theory, the question arises whether the formalizatioh 

S) Gentzen (S) p. 74 
6) Gentzen (10) p. 14S 
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chosen actual1y encompasses the full range of 

meaningful statements that can be made in the 

informa 1 theory. In th i s respect Gentzen took 

--note of Godel's Incompleteness Theor~m and formu-

lated his rules flexibly enough to allow for what­

ever adaptation his formalization may require.7) 
.f 

Godel's further result concerning the impossibility 

of 'internaI' consistency proofs in formalized 

axiomatic theories is overcome by using trans-

finite induction up to Cantor's first 2 -number 

as the non-derivable technique in elementary number 

theory. A conclusive proofof this non-derivability 

is given in Gentzen's last paper published in 1942. 8 ) 

The next question that arises is what methods of 

proof can be used to establish the consistency of 

elementary number theory. As Gentzen points out, 

there can be no absolute consistency proof.9} In the 

Hilbert tradition, Gentzen decided that the consistency 

proof must be carried out by means of methods of proof 

that are unimpeachable and he believed that such methods 

7) Gentzen (S) p. 126 
8) Gentzen (11) p. 1401 Gentzen (10) p. (IfS) 
9) Gentzen (S) p~ 13; Gentzen (7) p. 72 
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should therefore be constructive, in particular, 

they should be 'ffnitist,.lO) This notion is used 

in the sense of Hilbert and Bernays who, on page 32, 

Vol. 1, of the Grundlagen der Mathematik, introduce 

it in the following way: 

..... die ausgefuhrte Betrachtung der Anfangsgründe 
von Zahlentheorie und Algebra dient dazu, uns das 
direkte inhaltlich, in Gedanken-Experimenten ~ 
anschaulich vorgestellten Objecten1l ) sich voll­
ziehende und von axiomatisbhen Annahmen freie 
Sb~liessen in seiner Anwendung und Handhabung 
vorzufuhren. Diese Art des Schliessens wollen 
wir, um einen kurzen Ausdruck zu haben, als das 
'finite' Schliessen und ebenso auch die diesem 
Schliessen zugrunde liegende methodische Ein­
stel1ung als die 'finite' Einstel1ung oder den 
'finiten' Standpunkt bezeichnen. lm gleichen 
Sinne wollen wir allemal mit dem Wort 'finit' 
zum Ausdruck bringen, dass die betreffende 
Uberlegung, Behauptung oder Definition sich an 
die Grenzen der grundsatzlichen Vorstellbarkeit 
von Objekten sowie der grundsatzlichen Ausfuhr­
barkeit von Prozessen halt und sich somit im 
Rahmen konkreter Betrachtung vollzieht." 

Whether the natural numbers are actual1y 'in-

tuitively stipulated objects' in the sense of 

Hilbert and Bernays is important for the consis-

tency proof and whi1e Gentzen allowed for infinitely 

4 12» many numerals 1, 2, 3, ,5, .•..... in (5 he 

JO) Gentzen (5) p. 7 and p. 50 
11) Translator's italics 
12) Gentzeri (5) p. 18 
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introduced only the single numeral 1 in (IO) together 

with the successor function. l3 } This change was no 

doubt intended to bring out the constructive nature 

of the natural numbers as generated from the axioms 

of Peano. 14} This interpretation of Gentzen's inten-

tion seems reasonable in the light of the principle 

which Gentzen adopted as a result of a critical 

examination of Russell's antinomy: 

"An infinite tbtality must not be regarded as 
actually existing and closed (actual infinity) 
but only as something becoming which can be 
extended constructively further and further 
from something finite (potential infinity} • .,15) 

The difficulties of the antinomies are thus overcome 

by the rejection the 'actualist' interpretation of 

infinity. 'Actualist' is a term which the translator 

has used as a rendering of Gentzen's 'an-sich Auffass u 

ung' in order to preserve the philosophical neutrality 

which Gentzen had adopted. In his address to the 

Mathematical Congress in Paris in 1937, Gentzen 

nevertheless suggested that a certain paraI leI might 

be drawn between the 'constructivist' and the 'actualist' 

13} Gentzen {lO} p. 132 
14} Gentzen (2) p. 1 
15} Gentzen (5) p. 58 
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views of mathematics and the philosophical schools 

of 'idealism' and 'realism,.16) This is the only 

place in aIl of his writings that he ever mentions 

a possible philosophical paral1el between mathe-

matical and philosophical theories. 

In keeping with the principle adopted, the consistency 

proof should be entirely 'constructive'. Gent~en con-

siders Brouwer's 'intuitionist' and Hilbert's 'finitist' 

approach to be two examples of this technique. 17 ) Vet 

he sees Brouwer's approach as too radical since it 

leads to the banishment of the large non-constructive 

part of analysis which has, for example, stood the 

test in a variety of applications in physics. 18 ) 

Gentzen thus aims at proving the consistency of certain 

non-finitist branches of rnathematics by means of fini-

tist (and therefore) constructivist techniques. In 

order to achieve this end, paragraphs 10 and 11 of 

(5) are devoted to a finitist 

logical connectives ~, V, 
interpretation of V1-fCa, 

16)Gentzen (8) p. 202 
17)Gentzen (7) p. 71 
18)Gentzen (7) p. 71 

f, 

for 

interpretation of the 

~~ V, a • The finitist 

example, is the foll owi ng: 
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Jt 
"If , starting with 1, we substituteAfor successive 

natural nurrbers, then however far we may proceed 

in the formation of numbers, in each case a true 

proposition results. 19) An existential proposi. 

tion , in agreement with Hilbert's 

IPartialurteil ,20 ) expresses the finitist fact that 

if the proposition J(~) has been recognized as 

meaningful and val id for an indi vidual '" ,we 

may conclude a ... !TCfl) .21) In keeping with the 

finitist point of view aIl predicates and functions 

occurring in the formalization of elementary number 

theory must furthermore be 'decidably defined', i.e., 

a rule or procedure must be specified in each case 

providing a mechanical test for deciding of a predi-

cate in finitely many steps whether or not it holds 

of a particular object, and which makes it possible 

to calculate the value of a function for any arbi-

trary element in a specified domaine It should be 

noted, incidentally, that white al lowing for the 

introduction of arbitrary functions in (5)12) Gentzen 

restricts himself to only one function, the successor 

function, in (10)~3) This simplifies the proof and 

19) 
20) 
21) 
22) 
23) 

Gentzen (5) p. 60 
Hilbert and Bernays (1) 
Gentzen (5) pp. 62-63 
Gentzen (5) p. 18 
Gên t zen (10) P. l '32_ 0;' 

p. 32 
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the modifications necessary for the introduction 

of arbitrary effectively calculable functions are 

described later. 24 ) 

The consistency proof falls into five sections: 

Section 1 contains a general introduction to and 

motivation for consistency proofs; 

Section II contains the formalization of elementary 

number theory as a formaI axiomatic theory; 

Section III deals with the finitist interpretation 

of the formalized axiomatic theory and contains a 

reference to GOdel's discovery that intuitionist 

and ciassical elementary number theory are in sorne 

sense equivalent. 25) It is of historical interest 

that Gentzen had proved this result independently 

in 1933, the year Gëdel published his result, but 

that he withdrew his galley proof before final 

publication when GOdel's result became known; 

Section IV constitutes the core of the consistency 

proof and for this section there exist three versions: 

24) Gentzen (10) p. ( ) 
25) Gentzen (5) p. 71 
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The first version was never published, since Gentzen 

withdrew his galley proof when he was accused of 

making implicit use of the intuitionist fan theoremj26) 

the second and third versions are the actual1y pub-

lished results in which transfinite induction on the 

ordinal numbers up to '. is employed. The first 

proof might be called the "natural lt proof, since the 

logical calculus used is Gentzen's NK_calculus27 ) bf 

natural deduction, whereas the second proof, which 

might be cal1ed the "logistic" proof, is based on 

Gentzen's LK_calculus,28) a Hilbert-type first arder 

predicate calculus. The equivalence of the calculi 

NK, LK, and a Hilbert-type calculus LDK is actually 

proved in Part II of the Investigations. 29 ) 

The New Version of the consistency proof contained 

in the present translation is actually a new version 

of Section IV of (S) while excerpts from the Galley 

Proof contain those parts of Section IV of (S) that 

were re-written during the proof-reading of (S). 

The translator hopes that the inclusion of the 

26) 
27) 

28) 

29) 

Personal communication from Prof. P. Bernays 
Gentzen (S) footnote (9) and Gentzen (3) l, 

Section II, pp. 4-8 (tr.) especially (S.3), 
Gentzen (10) p. 131 and Gentzen (3) l, Section 

pp. 8-10 (tr.) 
Gentzen (3) l, p. 8 (1.2) (tr.) 

p.8 (tr.) 
III, 
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Galley Proof in this thesis will help to illustrate 

Gentzen's genius for assessing the value of criticism 

advanced against him and will also bring out the 

remarkable speed with which Gentzen's managed to 

develop the radically new approach to the consis-

tency problem through transfinite induction while 

correcting the first draft of his consistency proof. 

The following correspondences should enable the reader 
t'kt. 

to compare the relevant passages ofAfirst consistency 

proof with those of the galley proof: 

Articles 14.3-14.63 (pp. 111-),0') correspond to 
articles 13.93-15.4 (pp. Il - /11, ) .30 ) 

Furthermore, pp.,104'.'!'O': Il •••• In the transformation 
of the derivation in Paragraph 12 ••••• 
and in its applications (at 14.441, 14.442 
and 14.443)'" 

corresponds to 

p.llt: lIu .. The following functions, 
in particular, ••••••• " ••••••• "the 
ordinal number of the derivation" (15.2). 

Also, p.16": " •••• €omplete induction ••••••• trans­
finite proposition" 

30) Cf. footnote (20) in Gentzen (5) 
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corresponds to 

te •••••••••• Furthermore, propositions 
of ••••• to ordinal number diminishes" 
(15.3), p. J.1Q. 

Also, .IP. ,"0' : ....... 1 hope that these reflections 
••••• can be further diminished ••••••• " 

corresponds to 

the entire section 16.11 on pp. • 

Any other changes in the initial draft were purely 

editorial and have no bearing on Gentzen's arguments. 

At this point a word must be said about the terminology 

adopted in translating technical terms. In most cases 

the appended glossary will resolve any difficulties 

that may arise in this connedtion; with the following 

exceptions: The main difficulties that arose in trans-

lating the present papers were associated with Gentzen's 

not i onl of uR i ch t i gke i t Il and "Kor rek the i t Il and t hose 

of "Sinn" and "BedeutungU;. Gentzen predicates "Richtig-
, 

keit ll ofaxioms, theorems, propositions, formulae, 

sequents, etc. as well as of inferences, inference 

figure schemata, and forms of inference. On the 

other hand, he al so predicates uKorrekthei tU of 

inferences, inference figure schemata, and forms of 
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inference as well as of derivations and rules of 

i nferenc:;e. In confo rmit y wi t h Engl i sh usage, 

"Richtigkeit" has been translated by "truth tl so that 

of a given proposition constructed from abjects, 

functions, and predicates, together with the logical 

connectives, it can be "calculated" whether it is 

"true" or "fal se" (p. 51). On the other hand, an 

idea is lost in the transl ation of Article 7.3 

(p. 53), where Gentzen asserts that it is easily 

proven that the logical rules of inference are 

tir i cht i glt in the sense that thei r app 1 k ati on to 

IIrichtig ll mathematical basic sequents leads to other 

IIrichtig" derivable sequent •• Here the translator 

speaks of "correct" 10gical rules of inference and 

of "true" sequents. This is justified since the 

term "richtig" can stand for almost anything fram 

"true" "correct" 31) "well-formed", "well defined U : , , 

to "formally val id". In fact, in the consi stency 

proof the notion of "truth" can in most cases be 

taken as synonymous with "format truth" in the 

31) tlcorrect" ordinal number, Gentz..en (5) p. 108 
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sense of the propositional calcu1us (Article 7.2, 

p. 52) and of the predicate calculus (Articles 7.3, 

p. 53,13.4, p. 81,1.2, p. 134). Nevertheless, 

Gentzen does think of a "formally true" sequent as 

expressing more than the fact that it is true by 

definition (p. 81) when he speaks of Itobviousl y true u, 

sequents, and he also seems to feel that the number­

theoretical axioms represent "immediately obvious u 

propositions (pp. 48, 62, 125). Such asides are in 

sorne sense Gentzen's "private" views and have no 

bearing on the argument developed in the consistency 

proof. The last paragraph of the first proof (p.13û) 

and the remark on p. 172 concerning the definition 

of the ordinal numbers make Gentzen's attitude to 

this distinction amply clear. We are also forced 

to speak of the Uintuitive notion of truth" being 

replaced by the "statability of él reduction procedure". 

T~is is a translation of u'inl;taltlicher Richtigkeits. 

begriff" and UAngebbarkeit einer Reduziervorschrift". 

The latter represents a technical notion and hence 

its somewhat un-English translation seems justified. 
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Incidentally, inferences, forms of inference, 

inference figure schemata, rùles of inference and 

derivations will always be spoken of as "correct". 

This allows us to consider a derivation, i.e., a 

proof, as "correct", if it contains no error in 

its construction. The vie", that sequents can be 

"obviously true" and that number-theoretical axioms 

are "immediatel y self-evident tl leads us to the 

notions of uinhaltlich" and IIformal lt • Since there 

exists no adequate English adjective for rendering 

"inhaltlich tl in any literal way, it has been trans-

lated by "intuitive". Other writers have used 

"concrete ll (Kneebone) or coined the new adjective 

IIcontensive ll (Curry). If we speak of a proposition 

as being lIintuitively true" we will mean that it 

has a definite IIsense" beyond its formal "meaning". 

The word IIsense" is here intended to coincide with 

the intuitionists notion of "sense" illustrated by 

the following example: 

I~e start with the natural numbers 1, 2, 3, etc. 
They are so familiar to us, that it is difficult 
to reduce this notion to simpler ones. Yet 1 
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shal1 try to describe their sense in plain words. 
In the perception of an object we conceive the notion 
of an entity by a process of abstracting fram the 
particu1ar qua1ities of the objecte We also recog­
nize the possibility of an indefinite repetition of 
the conception of entities. In these notions lies, 
the source of the concept of the natural numbers.' 
(L.E.J. Brouwer 1907, p. 3; 1948, p. 1237)32) 

Gentzen 1 s "Si nnlt i s mc,)st 1 y trans 1 ated by u1sense" so 

that a '!;enseless" pro\Josition, or a proposition 

"devoi d of sense", wi 11 express the fact that i t 

has no "sense" in Brouwer' s terminology. By denying 

an "actualist infinity", for examp1e,33) we are at 

the same t i me robbi ng propos i t ions such as "Fermat 1 s 

last theorem is true or is not true" of their Isense".34) 

Consequent1y, according to the intuitionist view, such 

propositions cannot even be azserted. A large part 

of the consistency proof is thus concerned with 

ascribing a "finitist sense" to actualist proposi .. 

tions, viz., for every provable proposition in the 

formalism developed, a reduction ru1e must be stated 

and this rule represents the "finitist sense" of the 

proposition. 3S) It shou1d be noted that informa11y 

the word "Bedeutung" a1so means "significance" and 

32) Heyting (1) p. 13 
33) Gentzen (S) p. 58 
34) Gentzen (S) p. S7 
3S) Gentzen (S) p. 129 
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"consequence": and it has been translated in this 

way whenever appropriate. An interesting contrast 

is noticeable between Gentzen's and Frege's notions 

of the Il:Si nn lll and the '~B edeutun gUI of If proposition. 

For the "BedeutunglJ' of a proposition Frege takes 

its truth-va 1 ue3 6) and for its USinn"! the thought 

expressed. 37) Thus, "1"he morning star is a body 

i Il umi nated by the sunliand urrhe even i n~~ star i s a 

body i Iluminated by the sun"; are two propositions with 

the SéllTle IfBedeutung ll but with a different "Sinn". This 

observation should suffice to show that the notions 

of "Sinn" and ItBedeutung", or '&sense" and umeaningu., 

as used by Gentzen, must not be identified with their 

counterparts in Frege's fam9us paper. Gentzen is concerned 
i 

rather with the "mathematical sense" and IImathematical 

meaning ll of a proposition. 

Let us now return to the logical calculi NK and LK 

u~ed in the two consistency proofs and examine their 

similarities and differences: 

36) Frege, On Sense and Reference, p.496) (Hartman, Philosophy 
]7) Frege, On Sense and Reference, p.495) of Recent Times l, 

, McGraw-Hi 1 1 1967) 
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The NK calculus, or the classical calculus of 

natural deduction, makes no expl icit use of U1sequents ll • 

It is indeed based on the idea of introducing assump-

tions and then applying logical rules to them in 

order to deduce a proposition from them, But here, 

in keeping with mathematical practice, the inference 

prop~ermakes the' proposition to be proved independent 

of the assumptions. In sub-case 2 (4.42) p. 3.9 of 

Euclid's proof of the non-existence of a largest 

prime, for example, it is assumed that there exists 

an arbitrary number d wi th the property that !-' f 4'4 ~!+, 
and it is eventually inferred from this assumption 

that ., tll !! + 1 • lt therefore holds wthout 

assumption that (Ii ')f .\' ~ ,~.,..) :,').., ~ 1 !'-! ~ , -
The intuitive meaning of the logical symbols employed 

is explained in Article 3812. In the NK calculus, the 

structure of the above argument is formalized by the 

inference figure 

Gentzenls version 

rAl • • Here we have of course 

of Herbrand's famous 

Deduction Theorem. In (5), the above figure takes 

the form of ~/1 ~ 1.1 • The inference figure has 
7' ...... ,u ':18 
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been rep1aced by an inference figure schema. The 

rule of substitution can therefore be dispensed 

with and to the "propositiona1" variables A and B 

now correspond the "syntactic" variables Ji, and fS • 

This change in notation has the additional advantage 

'#' of making it c1ear that in the inference figure ::. 
A:>6 

the proposi t i ons A and B are "ment i oned" but not 

"used", in the now familiar distinction. 38 ) Normally, 

valid propositions result from va1id propositions 

only if the symbols to be replaced are mentioned but 

not used in the proposition concerned. An elaborate 

system of quotation marks can a1so be employed to 

make this distinction clear. The use of a symbol 

is thus often indicated by putting quotation marks 

around the symbol: In the proposition "7 is a number u , 

the symbol 7 is mentioned but not used, whereas in 

"7 is an Arabie numeral" it is actually used. Con-

sequently, "7 is a number" and "VII is a number ll 

are true propositions, whereas in the case of 117 

is an Arabie numeral 11 and "VII is an Arabie numeral", 

the second proposition is false. Gentzen avoids 

38) Beth (1) pp. 257-258 
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such difficulties in the consistency proofs by 

employing inference figure schemata in place of 

inference figures, i.e., by introducing syntactic 

variables in place of propositional variables. 

The other major difference between the calculus in 

(S) and the calculus NK is the explicit introduction 

of sequents in CS). A sequentis an expression of 

the form.tl., J • ,. .) ~ ~ 13 where tJ i s a syn­

tactic variable for a proposition that depends on 

the assumpti ons J.l
'
) JI, 'l,J ~ .. ~ J,u~ • How such 

a notion arises Uhaturally" from the examination of 

Euclid's classical proof can be seen from--.t'4.2 1 

subcase 2: The proposition .., ~ I~! -1-1 depends 

on the assumpt ions Vj [c !/" 1 ~:1~ ~) ~ ..., :J 1 ~! +1] ........ ~ 

as well as on -r(J;!.-60') (~!+. and~..,l ~ ~,"~+I 

This dependence is symbolized by writing 

V J [L '1> 1 ~ ~ " 11.) :;) .., y 1 41 + 'J J ..., ( 1J.fl) 1 ~ J ." 1 J 

i .e., a propos i ti on of the form Ail tUJ,} UJ ~ 1:1 

where A, stands for ~ (l ~> 1 A-'~'~) :> 7 f!./ ~ ! 4-1 Jj 
Al. stands for -, ( ,~+/) ( ~! -If { i 
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UJ stands for 

13 stands for 
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-r~l ~!-I-I. 

,/J"U).JLtJ are called the antecedent formulae, 

and ~ is called the succedent formula. It is 

intuitively clear that J.J remains a valid proposi-

tion if we change the order of the assumptions made, 

or if we add a further assumption on which t1 does 

not depend, or if in the case where the same assump-

tion appears more than once, we cancel one of the 

occurrences. This leads naturally to what will be 

called the "structural" rules of inference of Inter-

change, Thinning, and Contraction. In CS), a thin-

ning is called an "omission of an antecedent formula" 

and a contraction an "adjuction of an addition antece-

dent formula".:.'J:he reason for this terminology 1S 

precisely the fact that Gentzen considers these 

rules to arise "natural1y" and are thus part of 

his "indisputable" forms of inference. This inter ... 

pretations of Gentzen's motives seems reasonable, 

especial1y since he had developed the formaI calculus 

of sequents before the consistency proof and had 
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used the terminology of (lO) in that calculus. 

It is worth noting that Gentzen seems to have been 

led to the formulation of his predicate logic in 

terms of "sequents" by studying a paper by P. Hertz39} 

entitled "Über Axiomensysteme für beliebige Satzsysteme lt • 

ln fact, it would appear that a critical study and 

solution of the problem posed by Hertz has had a re-

markable influence on Gentzen's entire methodologieal 

thinking. Gentzen's very first publieation40 } makes 

this amply elear. The "eut", for example, which led 

eventually to the famous "Hauptsatz", 41} 15 a general iza­

tion a kind of syllogism found in Hertz's paper.42 ) 

The "chain rule", tao, which is needed in (S) in order 

to change the vertical arrangement of proofs into a 

horizontal one for the purpose of assigning measures 

of eomplexity to the different proofs in number theory, 

ean be found in Hertz's paper. 42 ) 

For the purpose of an easier understanding of Gentzen's 

calculi NK and LK used in (5) and (10) it should be 

39) Math. Ann., 89, (1923), Heft 1, 2; 101, (1929) 
40) Gentzen (1) 
4'1) Gentzen (3) l, p. 11 (2.5, 2.S13); II, pp.2-3,(2.1)(tr.) 
42) Math. Ann., 101 (1929) pp. 459, 462, 473 and 

Gentzen (1) p. 331 
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pointed out that sequents can be afford~d an intuitive 

meaning in terms of the logical connectives of the 

propositional calculus: 

1) J.l'JJI,l., .• ',1U)' ---) Il, ~ fJ&;, ••• ) ts...p (,lA,..., ~ 1) 

can be expressed by the implication 

tt , .t.u .. t· . 4'~ ;::, 1J, V· ~. Vds" 43) 

2) ~ 1$,) . , . J 13 li as 1:1, V' V~"" 

3) ,tJ 1)' .~,,) U~ ~ as ..., (.Li, ~. .. . J ~) 
4) The empty sequent ~ as F (the false or 

any false 
proposition) 

The discussion up to this point makes it clear that 

the introductions and eliminations of the connectives 

in (S) have analogous counter-

parts in NK. The main difference between the calculi 

arises in the treatment of negation due to the diffi-

culties inherent in a finitist interpretation of that 

connective.44 ) On the other hand, the LK-calculus 

agrees in its entirety with the calculus employed 

in (10). The inference of complete induction, which 

1s of central importance in (S) and (10), does not 

of course appear among the rules of inference formalized 

in NK and LK. 

43) Gentzen (3) II, pp. 6.8 (tr.); (5) 4.S6,p.3S; p.43, 4S-46 
44) Gentzen (3) l, pp. 6-8 (tr.) 

"<- ~."-~_._ .. _~ .. --~~ ••• - -- -_.- -, 
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It must be pointed out that the notion of a "sequent U, 

as it appears above, and as it is ued in (10), is a 

generalization of the "natural" notion of a sequent 

as it arises in (S). This generalization is achieved 

by allowing multiple succedent formulae and thus 

symmetrizing the antecedent and succedent. The 

difference in (5) and (10) is the same as that 

exhibited in the calculi LJ and LK of the Investiga­

tions. 45) To the introduction and elimination of a 

logical connective in (S) there thus corresponds in 

(10) the introduction of that connective in the suc­

cedent and antecedent of the sequent. 46) 

For his initial supp1y of "true" sequents, Gentzen 

takes certain "logical" and "mathematical" basic 

sequents. In (5)47), a l~ogicallli basic sequent is 

a sequent of the form J).-. J) , a "mathemat i ca 1" 

basic sequent a sequent of the form -..-. e • 

In (tO), a "logical" basic sequent is sti 11 of the 

form J)--. ~ , but a "mathematical" basic sequent 

45) Gentzen (3) I, p. 10 (2.3) (tr.) 
46) Gentzen (10), 1.6, p. 142 
47) Gentzen (5), p. 38 
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becomes a sequent consisting entirely of prime 

formulae (i.e., formulae without logical connec-

t ives) and becomi ng a "true" sequent wi th every 

arbitrary substitution of numerical terms for pos. 

sible occurrences of free variables.48 ) The fact 

that Itlogicallt and IImathematical lt basic sequents 

are to be taken as "true" follows from the "defini­

tive form ll for sequents stated at 13.4 (5) and also 

the remarks made at 7.3, p. SI and p. 1J,f. It must 

be observed qui tr general1y that Gentzenls notion 

of the "truth ll of a sequent i s a generalization of 

the IItruth" and "falsity" of an implication 

as it is customarily defined in propositional logic, 

just as the sequent itself, as illustrated above, 

can be regarded as a generalization of the implication 

to .li, f . .. . J' ~ ::> I!, V· •• V t1.." 

As far as the IItruth-content" of number-theoretical 

propositions is concerned, Gentzen makes his position 

quite clear in the Investigations, II p. 7 (tr.). He 

considers propositions of the kind 3:3, 4.5~ 5:4, in 

48) Gentzen (10), p. 139 
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general, any arithmetical axiom as "true", as long 

as every numerical special case is intuitively true. 

He states further that 

"it is almost self-evident that from such propositions 
no contradictions are derivable by means of proposi­
tional logic. A proof for this would hardly be more 
than a formal paraphrasing of an intuitively clear 
situation of fact."49) 

This observation is of course entirely in harmony 

with the finitist attitude in its literal sense as 

explained in the excerpt from Hilbert and Bernays.50) 

Gentzen observes further that universally quantified 

arithmetic axiom formulae are also entirely reliable 

as long as each numerical special case is intuitively 

true. 51) 

What the consistency proof must therefore do is to 

prescribe a method whereby any arbitrary derived 

sequent, i.e., a number-theoretical theorem, that 

is non-contradictory, can be brought into a form in 

which its truth is intuitively recognizable. Here 

the notion of the lIintuitive truth-content" represents 

49) Gentzen (3) II, p. 7 (tr.) 
50) Cf. foot note 10) 
51) Gentzen (3) II, p. 7 (tr.) 

..... 
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a property that is common to all non-contradictory 

end-sequents but fai 1 s to hold for the sequent~.tl t-r~ 

in (5) and the empty sequent in (10). This property 

is furthermore invariant under the reduction of 

sequents and derivations of sequents to their defini-

tive form (by the definition of a derivation and the 

assumed reliability of the logical calculi employed)., 
1 _ 

Let us take a closer look at the procedure whereby 

Gentzen proves the consistency of formalized elemen-

tary number theory. We shall deal with (5) in detai 1. 

The reader will recal1 that the consistency of the 

propositional calculus in Hilbert-Ackermann (pp. 32-33) 

is proved by assigning certain numerical values to 

proposition variables and showing that the axioms of 

the calculus always take the value 0 and that this 

value is preserved by the permissible logical rules 

of the calculus. 

Gentzen in fact follows the method here indicated, 

although the procedure is of course considerably 

more complicated. AIl propositions of elementary 
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number theory become formulae in the formalization 

of elementary number theory carried out in (S) 

(Section II) and each formula is in turn written 

as a sequent. A sequent is either a logical basic 

sequent, a mathematical basic sequent, or the end. 

sequent of a derivation. Thus we must in some way 

state a rule whereby the "truth" of the end-sequent 

of a derivation can be "calculated". This is achieved 

by stating, first, a reduction rule for sequents, i.e., 

end-sequents of derivations, wh ich reduces the sequent 

in question to its "definitive" form in finitely many 

steps so that we can decide by inspection whether or 

not the sequent is "true". It is then shONn further 

that ne contradiction can be derived in the theory 

formalized if we start from "true" propositions, i.e., 

logical basic sequents and mathematical basic sequents, 

and apply to them the rules of the logical calculus 

developed. In formal language this amounts to showing, 

as pointed out at the beginning of this monograph, 

that the sequent ~ J,{ f "7 JI, cannot be the end­

sequent of a derivation, or, in the case of (lO), 
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that the empty sequent .--~~ cannot be deri ved. 

The sufficiency of this demonstration can be seen 

by considering the following consequences of the 

t:wo statements: 

In ( 5) : In (l 0) : 

-t 1J. 4'''' Ji. .... U~*'JI. ~ 

... u ..,.-rJl. --. 1::111.1 

,,"',4 .. .te. "I-~-II ''l'~ 

--. -., 1-.1. 

~ 1:: .(. 

Let us examine the method of reduction developed in 

(5) somewhat more closely: The reduction rule is 

stated in the following form: 

Sequents, in general, are reduced to the definitive 

form of 13~4 by first eliminating the connectives 

V, 3,:> an d r e pl ac i n 9 th em b y \7') 4'.1 .,' • 
,.!( .•.. , .-; , 

This is permissible since the former connectives 

can be expressed equivalently by means of the latter 

without affecting the finitist interpretation of the 

calculus. Next aIl free variables are replaced by 
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arbitrary numerals and all minimal terms by their 

associated IIfunctional values". Then three cases 

are distinguished depending on whether the succedent 

formula is of the form VtfCt) , or Jl4'B IN ..,j,t • 

These are then reduced to definitive forme If the 

succedent formula is false and no antecedent formula 

is fa1se, three further cases arise depending on 

whether one of the antecedent formulae has the form 

or • The defini-

tive form is finally reached in aIl cases. Special 

rules form logical and mathematical basic sequents 

are stated in 13.91 and 13.92, pp. 86-87 (5), 50 

that they too are brought into definitive forme 

The next step consists in reducing an actually 

derived sequent to definitive form, i.e., a sequent 

that is the end-sequent of a derivation. In the 

case where the end-sequent is already in definitive 

form, no reduction is defined. In order to be able 

to state his reduction rule, Gentzen first changes 

the vertical i.e., tree-like, arrangement of the 

derivations into a horizontal one by modifying the 

notion of a derivation and by the introducing the 
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so-called"'chain rule u • The detai 1 s of the changes 

which this entails can easily be seen from the 

consistency proof proper. 52 ) 

The crucial step in the argument consists in showing 

that the reduction procedure leads to the definitive 

form of a sequent in finitely many steps. This follows 

easily if no complete induction occurrs in the proof. 

The consistency of elementary number theory without 

complete induction is, after all, already a conse-

quence of the Hauptsatz and was proved in the Investi. 

gations II, pp. 5-7 (tr.) as an illustration of the 

consequences of that important theorem. As Gentzen 

points out, 53) the special position of complete 

induction is due to the fact that the number of 

reduction steps required can become arbitrarily 

large.. In (5) 14.24, the total number of steps 

required for the reduction of ~ l1 --.!'{ tJ , 

for example, depended on ..... (the value of 4: ) 

and -te. in turn, depended on choices if t was 

a free variable. Thus there exists no general bound 

52) Gentzen (5) pp. 92-93 
53') Gentzen (5) p~, 124 
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for the total number of reduct10n steps required 

for the reduction of 7) A ~ ~(fJ. In (lO) the 

difficulty arises when a proposition with the maximal 

~umber of connectives is pro~ed by complete"ind~ction54) 

making necessary the special' reduction step of a IICJ_ 

reduction ll • Here the difficulty i s not the number of 

individual complete inductions that May occur in a 

derivation. They can be fused into a single induction, 

as Gentzen has shown. 55) Thus, 

"the number of complete inductions occurring in a 
number-theoretical proof 1S no measure of the 
"comp 1 ex it y" of the proof in i t s meta-mathemat ica 1 
discussion; although this number does have some 
bearing on this point, it 1s not .,~ number of 
inductions but their "degree U" i.e., the complexity 
of the induction proposition, that counts. 1I 

In order to show that elementary number theory with 

complete induction is free from contradiction, we 

must therefore resort to ranking all possible proofs 

according to thei r complexi ty and thE! measures here 

required are the transfinite ordinalsu Gentzen puts 

it this way:56) 

~) Gentzen (lO) p. 148 
55) Gentzen (12) 
56) Gentzen (7) pp. 77-78 

"--
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In carrying out the consistency proof for elementary 
number theory, one ha s to consi der a t 1 conce i valUe 
proofs in number theory and to show that in a certain 
sense, to be defined formally below, each individual 
proof yields a "correct" result, 1n effect, no con­
tradiction. The "correctness" of a proof rests on 
the correctness of certain other, simpler proofs 
that are contained in it as special cases or as parts. 
This situation leads us to arrange the proofs in linear 
order in such a way that those proofs on whose correct­
ness the correctness of another proof depends are made 
to precede the latter proof in the sequence. This 
arrangement of the proofs is achieved by assigning 
to each proof a certain transfinite ordinal number. 
The proofs preceding a given proof are precisely 
those whose ordinal numbers precede its ordinal num­
ber in the sequence of ordinal numbers. At first 
sight, the natural numbers might appear to suffice 
as ordinal numbers for such an arrangement. Vet 
in actual fact the transfinite ordinal numbers are 
needed for the following reason: It may happen that 
the correctness of a proof depends on the correctness 
of infinitely many simpler proofs. An example: In 
a proof a proposition is proved by complete induction 
for al1 natural numbers. In that case the correctness 
of this proof obviously depends on the correctness of 
the infinitely many individua1 proofs obtained by 
spe~ja1izing to a particular natural number. In such 
cases it is not sufficient to use a natural number as 
ordinal number, because each natural number is pre­
ceded by only finitely many other numbers in the 
natural ordering. Hence we need the transfinite 
ordinal numbers in order to represent the arrange­
ment of the proofs according to its complexity. 

Furthermore, it n().ll becornes apparent precisely why 
the inference of transfinite induction is needed as 
the crucial inference for the consistency proof: 
W i th th i s i nference we prove the "cor rect ness" of 
each individual proof. For the proof no. 1 is 
trivially correct; and if the correctness of aIl 
proofs that precede a particular proof in the arrange­
is established, then the proof in question is a1so 
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correct, since the arrangement was made in such a 
way that the correctness of a proof depends on the 
correctness of specific earlier proofs. From this 
we can now obviously deduce the correctness of every 
proof by means of that same transfinite induction 
and have thus, in particular, established the desired 
consistency." 

The particular form in which the ordinal numbers are 

defined in (5) a~d (10) has obviously no bearing on 

the resu1t. In footnote 21) of (5) Gentzen points 

out the connection between the two methods of intro-

ducing the ordinal numbers. The difference in the 

two approaches lies again in the greater emphasis 

on the constructive nature of the elements of Cantor's 

second number class in (10) versus their "natura]l' 

formulation in (5) just as in the case of the dif-

ference in the introduction of the natural numbers 

in the two proofs. The constructive nature of the 

transfinite ordinals up to is brought 

out very clearly in Gentzen (7), where he points 

out that 57 ) 

57) Gentzen (7) p. 76 
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"there are really only two operations involved 
through whose repeated application all these 
numbers are quite automatically generated: 
1) given a number, we can form its successor 
(addition of 1); 2) given an infinite sequence 
of numbers, we can form a new number ranking 
after the wh01e of the sequence (formation of a 
limit). This procedure may not appear to be 
cons t ruct i ve si ne e th e format ion oflA) al ready 
seems to imp1y the actualist conception of 
the completed sequence of the natural numbers.. 
Yet this is not implied; it is quite possible 
here to interpret the concept of infinity 
potential1y by saying, for instance: The num­
ber~ stands in the ordering relation~,<c.,) to 
every natura 1 number tJ: , however far one may go 
in forming constructively such ordinal numbers. 
The infinite sequences that occur in forming the 
other ordinal numbers must be interpreted con­
structively in the same way." 

Nevertheless, it is precisely at this point that 

the consistency proof goes beyond the formal frame-

work of elementary number theory and thus ~scapes 

the limitations imposed on consistency proofs by 

Godel's Theorem. As Gentzen remarks: 58 ) 

"The transfinite induction in the consistency proof 
is now precisely that rule of inference which neces­
sarily, by the theorem of Gode1, cannot be shown to 
be correct by meaQs of the techniques of elementary 
number theory_"S9J 

58) Gentzen (7) pp. 78-79 
59) Gentzen (11) 
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It has been emphasized From the outset that all 

methods of proof used in the consistency proof 

should be entirely finitist in the sense of Hilbert 

and Bernays. It now turns out that the notion of 

IIfinitist" as quoted earlier 15 too narrow for the 

purposes of the consistency proof. The schema of 

transfinite induction contains a universally quanti-

Fied premise. Hilbert and Bernays thus recognize 

the necessity for extending their notion of finitist 

to this new situation. To quote: 60 ) 

"Wir wollen uns überlegen, wie diese Schlussweise ••• 
als gültig einzusehen ist, und zwar auf eine Art, 
bei der die Abweichung von unserem bisherigen 
Verfahren der finiten Beweisfuhrung 1ediglich darin 
besteht, dass Al1satze also Pramissen von Satzen 
zuge1assen werden. Dabei kommen aIs Pramissen immer 
nur solche Allsatze vor, die sich nachtrag1ich auf 
Grund des Ergebnisses der Uberlegung a1so zutreffend 
erweisen. 1I 

The fact that in the course of a proof by means of 

this "restricted" transfinite induction, as it is 

employed in the consistency proof, the quantified 

propositions are themselves actual ly verified "on 

60) Hilbert and Bernays II, p. 363 
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the basis of the results of the arguments carried 

outil would thus seem to bring this inference within 

the class of intuitionistical1y acceptable method~ 

of prQof. ItFinitist ll in the wider sense and"~ntui-

tionist ll in the narrower sense have here in sorne 

ways become synonymous, especially since intuitionists 

tend to accept transfinite induction as long as it 

ranges no further than Cantor's first E .number. 

Even E. Borel, one of the constructivist's most 

staunch supporters, was prepared to accept Cantor's 

second number class as constructively given. 61 ) To 

this Kleene observes that 62 ) 

"to what extent the Gentzen proof can be accepted 
as securing classical number theory in the sense 
of that problem formulation is in the present state 
of affairs a matter of individual judgment depending 
on how ready one is to accept induction up to Eo 
as a finitary (finitist) method. 1I 

It would appear, therefore, that what must turn the 

scales in favour of Gentzen is precisely "the construc-

tive nature of the transfinite ordinal used in the 

61) Kneebone (l) p. 246 
62) Kleene (l) p. 479 
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induction. We are here deating with numbers that 

can be uniquety displayed and well-ordered and 

which permit a very natural arithmetical manipulation. 

Gentzen himself pointed out the categorical difference 

between the denun~rable quantities involved in Cantor's 

second number class and higher cardinalities when he 

said that 63 ) 

"i n genera 1 set theor y, for examp 1 e, a carefu 1 proof­
theoretical investigation will eventual1y confirm the 
view that aIl cardinalities that exceed thedenumerable 
ones have, in a very real sense, only an i l1usory exis­
tenceand that i t wou 1 d be wi sest to do wi thout these 
concepts. u; 

Nevertheless, Gentzen continued to strive for a con-

sistency proof for classical analysis)considering this 

branch of mathematics as an "idealization", in the 

Hilbert sense 64 ). He felt that this view of the 

"second level" of mathematics would e~eDtual1y restore 

unit y among mathematicians if not among philosophers. 65 ) 

Unfortunately it has not been possible to date to 

realize the second stage of Hilbert's programme in 

the way Gentzen had envisaged its solution. We there-

63) Gentzen (7) p~ 74 
64) Gentzen (9) p. 268 
65)~entzen (9) p. 266 seq. 
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fore rest our case tiy quoting Gentzen's own words 

that summarize the value of the consistency proof 

for elementary number theory in the best possible 

66) way: 

"The proof certainly reveals that it is possible 
to reason consi s tent 1 y lias though" everyth ing in 
the infinite domain of objects were as actualis­
tical ly determined as in finite domains. Yet 
whether and in how far anything "real" corresponds 
to the actualist sense of a transfinite proposi­
tion - apart from what its restricted finitist 
sense expresses - is a question which the con­
sistency proof does not answer." 

66) Gentzen (S) p. 130 
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THE CONSISTENCY OF ELEMENTARY NuMBER THEORY 

By "elementary number theory", 1 mean the theory of the natural numbers 

that does not make use of techniques from analysfs.such as, e.g., 

irrational numbers or infinite series. 

The aim of the-present paper is to prove the consistency of elementary 

number theory or, rather~ to reduce the question of consistency to 

certain general fundamental principles. 

How such a consistency proof can be carried out at aIl and for what 

reasons it is necessary or at least very desirable to do so will be 

discussed in Section 1. 

SECTION 1. 

REFLECTIONS ON THE PURPOSE AND 

POSSIBILITY OF CONSISTENCY PROOFS 

In paragraph 1, 1 consider the question why consistency proofs are 

necessary and, in paragraph 2, how such proofs are possible. (1) In 

doing so, l shall briefly restate those aspects of the problem, 

already familiar to many readers, which are of particular relevance 

to the remainder of this paper. 

Paragraph 1 

THE ANTINOMIES OF SET THEORY AND THE IR 

SIGNIFICANCE FOR MATHEMATICS AS A WHOLE(2) 



2 

1.1. Mathematics is regarded as the most certain of aIl the sciences. 

That it could lead to results which contradict one another seems 

impossible. This faith in the indubitable certainty of mathematical 

proofs was sadly shaken around 1900 by the discovery of the "antinomies 

(or "paradoxes") of set theory". It so happens that in this specialized 

branch of mathematics contradictions arise in contexts in which no uni­

quely identifiable mistake in the inferences used can be found. 

Particularly instructive is "Russell' s Antinomy" which l shall now 

discuss in detail. 

1. 2. A set is a collection of arbitrary obj ects ("elements of the 

set"). An "empty set", which has no elements at aIl, is also admitted. 

We now div ide the sets into "sets of the f irst kind", Le., sets which 

contain themselves as an element, and "sets of the second kind", Le., 

sets which do ~ contain themselves as an element. 

We now consider the set 'ttL which has for its elements the entire 

collection of tbe sets of the second kind. Does this set itself belong 

to the first or the second kind? Both alternatives are absurd: For 

if the set m belongs to the first kind, Le., if it contains itself 

as an element, then this contradicts its definition by which aIl of 

its elements were supposed to be sets of the second kind. Suppose, 

therefore, that the set ttL belongs to the second kind, i.e., that 

it does not contains itself as an element. Since it has aIl sets of 

the second kind as elements by definition, it must in that case also 

contain itself as an element and we have thus once again arrived at a 
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contradiction. 

1.3. The result is Russell's antinomy which shows how easily an ob­

vious contradiction can result from a small number of admittedly some­

what subtle inferences. 

3 

What is the actual significance of this fact for mathematics as a whole? 

We may be inclined, at first, to dismiss the entire argument as unmath­

ematical by claiming that the concept of a "set of arbitrary objects" 

is too vague to count as a mathematical concept. 

Yet this objection becomes void if we restrict ourselves to quite 

specifie purely mathematical objects by making the following stipulation 

for example: The only objects admitted as elements of a "set" are first: 

Arbitrary natural numbers (1,2,3,4 etc.); second: Arbitrary sets con­

sisting of admissible elements. 

Example: The following three elements form an admissible set: First, 

the number-4; second, the set of aIl natural numbers; third, the set 

whose two elements are the number 3 and the set of aIl natural numbers. 

Using this purely mathematical concept of a set, we can then repeat the 

above (1.2) argument and obtain the same contradiction. 

1.4. The fact that we happen to have chosen the natural numbers for 

our initial objects has obviously no bearing at aIl on the emergence 

of the antinomy. It cannot, therefore, be said that a contradiction 

has been revealed in the donmin of the natural numbers; the fault must 
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be sought rather in the 10gica1 inferences employed. 

1.5. It is thus natural to go back to look for a definite error in 

the reasoning that has led to the antinomy. We might, for example, 

argue that the set 1:tt was def ined by referring to the totality of aIl 

sets (which was indeed subdivided into sets of the first and second 

kinds, and where 'ttL was formed with sets of the second kind). The 

set was then itse1f added to this totality, which raised the question 

of whether it belongs to the first or second kind. Such a procedure is 

circular; it is illicit to define an object by means of a totality 

and to add it then to that tota1ity so that in sorne sense it contributes 

to its own definition ("c ircu1us vitiosus"). 

1U 
We might fee1 that the correct interpretation of the se~should ra~her 

be the fol10wing: 

If a definite totality of sets is given then this tota1ity may be sub-

divided into sets of the first and second kinds. Yet if the sets of 

the second kind (or alternative1y, the first kind) are combined to a 

new set tu, , then that set constitutes something comp1etely new and 

cannot itself be added to that totality. 

1.6. The fact that the forms of inference 1eading to the antinomy 

seem correct at first sight is based on the idea that the concept of 

a "set" denotes something "actua1" (and the totality of aIl sets, 

therefore, const:l.tutes a predetermined c10sed totality); the critique 

advanced against this view implies that new sets can be formed on1y 



"constructively" so that a new set depends in its construction on 

already existing sets. 

5 

1.7. If we were to think that the antinomy has thus been explained 

away quite satisfactorily, we must at once face up to a new difficulty: 

The form of reasoning (the circulus vitiosus) which we have just 

declared to be inadmissible is already being used in analysis in a 

quite similar form in the usual proofs of sorne rather simple theorems, 

e.g., the theorem: "A function which is continuous on a closed inter­

val and is of different sign at the endpoints has a zero in the inter­

val. " 

The proof of this result is essentially carried out in the following 

way: The totality of points in the interval is divided into points 

of the first and second kinds so that a point is of the first kind if 

the function has the same sign for aIl points to its right up to the 

end of the interval and it belongs to the second kind if this is not 

the case. The limit point defined by this subdivision is then the re­

quired zero. It belongs itself to the points of the interval. Hence 

we have the "circulus vitiosus": The real number concerned is defined 

by referring to the totality of the real numbers (in an interval) and 

is then itself added to that totality. 

This form of inference is nevertheless considered correct in analysis 

on the following grounds: The number concerned is, after aIl, not 

newly created by the given definition, it already actually exists 

within the totality of the real numbers and is merely singled out from 



( 
this totality by its definition. 

Yet exactly the same can be said about the antinomy ment.ioned above: 

The set ~ is already actually present in the totality of aIl sets 

(defined at 1.3) and is merely singled out by its definition (at 1.2) 

from this totality. 

6 

Considerable differences certainly exist between the forms of Inference 

used to derive the antinomy and those customary in proofs from analysis. 

Yet we must ask ourse Ives whether these differences are radical enough 

to justify a further use of these inferences in analysis--since no 

contradictions have yet arisen--or whether their similarity with the 

Inferences that have let the antinomies should not prompt us to eliminate 

these Inferences also from analysis. Here the opinions of mathemati­

cians concerned with these questions diverge. 

1.8. We can indeed challenge the correctness of other forms of in­

ference customary in mathematics because of certain remote analogies 

that may be drawn between them and Inferences leading to the antjLnomies. 

Especially radical in this respect are the "intuitionists" (Brouwer), 

who ev en object to forms of Inference customary in number theory, not 

only because these Inferences might possibly lead to contradictions, 

but because the theorems to which they lead have IlO actual sense and 

are therefore worthless. l shall come back to this point later in 

greater detail. (Paragraphs 9-11 and 17.3). 

Less radical are the "logicists" (Russell). They draw a line between 

permissible and Ilon-permissible forms of Inference, and the antinomies 



turn out to be a consequence of a non-permissible circulus vitiosus. 

At one time the logicists had also disallowed the inference applied in 

the example from analysis cited above ("ramified the ory of types"), 

yet this inference was later re-admitted. 

1.9. Altogether we are left with the following picture: 

The contradictions (antinomies) which had occurred in set the ory , a 

specialized branch of mathematics, had given rise to further doubts 

about the correctness of certain forms of inference customary in the 

rest of mathematics. Various attempts to draw a line between permis­

sible and non-permissible forms of inference hav.e led to different 

approaches to the subiect. 

In order to end this unsatisfactory state of affairs, Hilbert drew up 

the following programme: 

The consistency of the whole of mathematics, in so far as it actually 

is consistent, is to be proved along exact mathematical lines. This 

proof is to be carried out by means of forms of inference that are com­

pletely unimpeachable ("f init ist" f orms of inference.) 

How such a consistency proof is conceivable at aIl will be discussed 

more fully in Paragraph 2. 

7 

In the remainder of this paper, l shaIl then carry out such a consistency 

proof for elementary number theory. Yet even here we shall meet forms 

of inference whose closer inspection will give us cause for concerne 

More about this in Section 3. One point should however be made clear 



from the outset; those forms of Inference which might possib1y be 

considered disputab1e occur hard1y ever in actua1 number theoretica1 

proofs, (11.4); we must, therefore, not be mis1ead and because of 

the great se1f-evidence of these proofs consider a consistency proof 

as superf1uous. 

8 
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Paragraph 2 

HOW ARE CONSISTENCY PROOFS POSSIBLE? 

2.1. General remarks about consistency proofs. 

2.11. The consistency of geometries is usua11y proved by appea1ing to 

an arithmetic mode1. Here the consistency of arithmetic is therefore 

pre-supposed. In a simi1ar way we can a1so estab1ish a correspondence 

between sorne parts of arithmetic, e.g., the theory of the comp1ex 

numbers and that of the rea1 numbers. 

What remains to be proved u1timate1y is the consistency of the theory 

of the natura1 numbers (e1ementary number theory) and the theory of 

the rea1 numbers (ana1ysis) of which the former forms a part; and 

fina11y the consistency of set the ory as far as that theory is con­

sistent. 

2.12. This task is basica11y different and more difficu1t than that 

of reducing the consistency of one theory to that of another theory 

by mapping the objects of the former theory onto the objects of the 

latter. Let us look more c1ose1y at the situation in the case of the 

natura1 numbers: 

These numbers can obvious1y not be mapped onto a simp1er domain of 

objects. Nor are we indeed concerned with the consistency of the 

9 



domain of numbers itself, i.e., with the consistency of the basic 

relationships between the numbers as determined by the "axioms" 

10 

(e.g., the "Peano Axioms" of number theory). To prove the consistency 

of these axioms without invoking other equivalent assumptions seems 

inconceivable. We are concerned rather wit~ the consistency of our 

logical reasoning about the natural numbers (starting from their axioms) 

as it occurs in the proofs of number theory. For it is precisely our 

logical reasoning which in its unrestricted application leads to the 

antinomy (1.4). Yet such general notions as that of an arbitrary set 

of sets (1.3) is of course no longer considered to be part of number 

theory. Elementary number theory comprises merely finite sets (of 

natural numbers, for example). If infinite sets of natural numbers 

are included we are already in the domain of the real numbers and 

hence in analysis. This is the fundamental distinction between 

elementary number theory and analysis. 

From here we reach set the ory by extending the concept of a "set" still 

further. 

How can the consistency of arithmetic be actually proved? 

2.2 "Proof Theory". 

2.21. The assertion that a mathematical the ory is consistent consti­

tutes a proposition about the proofs possible in that theory. It says, 
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after aIl, that none of these proofs leads to a contradiction. In 

order to ca·rry out a consistency proof we must therefore make the 

possible proofs in the theory themselves objects of a new "meta­

theory". The theory that has arbitrary mathematical proofs for its 

objects is called "proof theory" or "meta-mathematics". 

2.22 An example of a theorem in proof theory is the "principle of 

duality" in projective geometry: 

It says roughly that from a theorem about points and straight lines 

(in the plane) another true theorem results if the word "point" is 

replaced by "straight line" and the word "straight line" by "point". 

The theorem "for any two distinct straight lines there exists exactly 

one point coinciding with both straight lines (i. e., lying on them)", 

for example, has a dual counterpart in the theorem: "For any two 

distinct points there exists exactly one straight line coinciding 

with both points (i.e., passing through them)". 

The principle of duality is justified thus: The axioms of projective 

geometry in the plane are such that the dual transformation of an 

axiom always yields another axiom. If any theorem has therefore been 

derived from these axioms then a uniform replacement in the proof of 

the word "point" by "straight line" and of the word "straight line" 

by "point" thus yields a proof for the dual theorem. 

Il 

This justification is obviously proof-theoretical since it is about the 

"proof of a theorem". 



(This example also shows that proof the ory is capable of advancing 

mathematics proper.) 

2.23. The "formalization" of mathematical proofs. 

As the objects of our proof the ory we shall take the proofs carried 

12 

out in mathematics proper. 

the words of our language. 

These proofs are customarily expressed in 

These have the disadvantage that there are 

many different utterances for the ~ proposition, that an arbitrar­

iness exists in the order of the words, sometimeseven ambiguities. 

In order to make an exact study of proofs possible it is therefore 

desirable to begin by giving them a uniform uniquely predetermined 

form. This is achieved by the "formalization" of the proofs: the 

words of our language are replaced by definite symbols, the logical 

forms of inference by formaI rules for the formation of new formalized 

propositions from already proven ones. 

In Section II, l shall carry out such a formalization for elementary 

number theory. 

The example of the principle of duality (2.22) shows clearly the 

difficulties that are inherent in proof theory without a formalization: 

the linguistic expression of the theorem "for two mutually distinct 

straight lines there exists exactly one point that coincides with 

both straight lines" had to be chosen artificially in such a way 

that the rep lacement of "point" by "st raight line" --and vice versa 

again resulted in a lingufstically meaningful theorem. Even in 
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carrying out the proof of the principle of duality we are left with 

the feeling that we have not offered a really rigorous proof. In order 

to make this proof rigorous, we do in fact require an exact formalization 

of the propositions and proofs (for the domain of projective geometry). 

2.3. The forms of inference used in the consistency proof; the 

Il 
theorem of Godel. 

2.31. How can a consistency proof (for elementary number theory, for 

example) be carried out by means of proof theory? 

To begin with, it will have to be made precise what is to be under-

stood by a formalized "number-theoretical proof". Then it must be 

established that among aIl such possible "proofs" there can exist none 

which leads to a "contradiction". (This is a simple property of "proofs" 

which can be verified immediately for any given "proof".) 

Such a consistency proof is once again a mathematical proof in which 

certain inferences and specific concepts must be used. Their reli-

ability (especially their consistency) must already be pre-supposed. 

There can be no "absolute consiatency proof". A consistency proof 

can merely reduce the correctness of certain forms of inference to the 

correctness of other forms of inference. 

It is therefore clear that in a consistency proof one can use only 

forms of inference that count as considerably more secure than the 

forms of Inference of the theory whose consistency is to be proved. 
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2.32. Of the greatest significance at this point is the following 

proof-theoretical theorem proved by K. Godel: (3) "It is not possible 

to prove the consistency of a formally given (demarcated) theory 

which comprises elementary number the ory (nor that of elementary 

number theory itself) by means of the entire collection of techniques 

proper to the theory concerned (given that that theory is really 

cons istent)", 

14 

From this it follows that the consistency of elementary number theory, 

for example, cannot be established by means of a part of the methods 

of proof used in elementary number the ory nor indeed by aIl of these 

methods. To what extent then is a genuine re-interpretation still 

possible? 

It remains actually quite conceivable that the consistency of elementary 

number theory can in fact be verified by means of techniques which, in 

part, no longer belong to elementary number theory, but which can 

nevertheless be considered to be more reliable than the doubtful 

components of elementary number theory itself. 

2.4. In the following (Sections II-IV) l shall carry out a consistency 

proof for elementary number theory. In doing so l shall indeed apply 

techniques of proof which do not belong to elementary number theory 

(16.2). Several different consistency proofs already exist in the 

literature (4) aIl of which reach essentially the same point, vi~~ the 

verification of the consistency of elementary number theory with the 
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exclusion of the inference of "complete induction" which, as is weIl 

known, constitutes a very important and frequently used form of 

inference in number theory. The inclusion of complete induction in 

my proof presents certain difficulties (16.2). 

SECTION II 

THE FORMALIZATION OF ELEMENTARY NUMBER THEORY 

15 

As pointed out at 2.23, it is desirable for a proof-theoretical dis­

cussion of a mathematical theory to give that theory a precise formally 

determined structure. In order to prove the consistency of elementary 

number theory, l shall therefore begin by carrying out such a formal­

ization of elementary number theory. (5) 

This task falls ioto two parts: 

1. The formalization of the propositions occurring in elementary 

number the ory (Paragraph 3). 

2. The formalization of the methods of proof used in elementary 

number theory, i.e., forms of inference and specific concepts 

(Paragraphs 4 - 6). 

Paragraph 3 

THE FORMALIZATION OF THE PROPOSITIONS 

OCCURRING IN ELEMENTARY NUMBER THEORY 
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3.1. Preparatory Remarks. 

3.11. A formalization of mathematical propositions represents nothing 

fundamentally new even outside of proof theory. It is indeed true to 

say that mathematics has always undergone a successive formalization, 

i.e., a replacement of language by mathematical symbols. There are, 

for example, propositions which are written entirely in symbols, e.g., 

(~+!1' (~ - ~) = ~ - -f2 , in words: "The product of the 

sum and the difference of the numbers ~ and 1 is equal to the difference 

of the squares of both numbers". 

The proposition "If ~ = b, then 1 = a", on the other hand, is 

generally still represented by using words. Completely formalized, it 

is written: ~ = b:> 1 = ~. 

3.12. The linguistic expression "If li. holds, then dJ holds", formally 

written as li ~1.3 , is an example of the logical composition of propo-

sitions for the purpose of forming a new proposition. Further compo­

sitions of propositions are constructed with the symbols 3f ,V ,'" 
'i and:J with the following meanings: U.At 13 means" 2l holds 

and 15 holds", JJ" V-15 :" U holds or 11 holds" (i.e., !!!. 

least one of the two propositions holds), 711- :" U does.!!..Qt hold". 

V",U(.ft:) :" U(ftJ holds for aIl,*, ", a,*-U(*): "There is a 

*' , so that J.t GtJ holds". 



17 

3.13. As an example we shall consider "Goldbach's Conjecture" ("Every 

even natural number can be represented as the sum of two prime numbers"), 

which can be formally written as: 

V! f ~/! :> a ~ ~ , C 't + ~ .. ~ k L ~~ ~ + l!\A.a.t4.& 1 ) J! · 
Here Prim ~ stands for "~ is a prime number";~I~ , as usual, for 

"a is a divisor of b". AlI variables shall refer only to the natural 

(= positive whole) numbers. 

3.14. The symbols =, Pr ime and 1 are "predica te symbols"; once its 

argument places have been filled by numbers, such a symbol constitutes 

a proposition. The symbol +is a "function symbol"; once its argument 

places have been filled by numbers, it represents another number. 

The formaI counterpart of a proposition is generally called a "formula". 

(Just as in mathematics, for example, (e + 1.). (~ - f) =: '.!' - ~/l 
is called a "formula", although in a special sense.) 

After these remarks l shall now give a precise characterization of 

those formaI expressions which are to be admitted into our formalized 

number the ory for the purpose of representing propositions. 

3.2. Precise definition of a formula. (6) 

3.21. The following kinds of symbol will serve for the formation of 

formulae: 
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3.211. Symbols for individual natural numbers: 1,2,3,4,5,6,7,8,9, 

10,11,12, •••••• , briefly called "numerals". (No symbols for other 

numbers will be needed.) 

3.212. Variables for natural numbers: These l divide i~to free and 

bound variables (vid.seq.). Any other symbol that has not yet been 

used may serve as a variable; yet it must be stated in each case 

whether such a symbol is to be a free or a bound variable. 

3.213. Symbols for individual functions, briefly called "function 

symbols": +, . , and others as needed (cf. 6. 1) • 

3.214. Symbols for individual predicates, briefly called "predicate 

symbols": :::: , < ,~, J and others as needed (cf. 6.1). 

3.215. Symbols for the logical composition (logical connectives)* of 

propositions: Ji, V , ::> , ..., , 't/ , ,3 . 

3.22. Definition of a term (formaI expression for a - individua1 or 

indeterminate - number): 

3.221. Numera1s (3.211) and free variables (3.212) are terms. 

* Translator's addition. 

18 
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3.222. If 1/, and.t are terms, then so are ~+ ~ and ~, ~ 

other terms may be formed analogously by means of further function 

symbols that may have been introduced (3.213). 

3.223. No expressions other than those formed in accordance with 

3.221 and 3.222 are terms. 

3.224. Example of a term:[C!.,.J,)8, ~J+4- where a and b are - -
free variables. 

Brackets serve as usual the purpose of avoiding ambiguities in con-

nection with the grouping of the individual symbols. 

3.23. l now define the notion of a formula (formaI counterpart of a 

number-theoretical proposition): 

3.231. A predicate symbol (3.214) whose "argument places" are filled 

by arbitrary terms (3.22) yields a formula. 

Example: 

3.232. If U, is a formula, then so is .., li. If Il and 11 are 

f ormulae, then so are U J( 1$ , U V ~3 ,and 2J. ::> d3 

3.233. From a formula results another formula if aIl free occurrences 

of a variable in the former formula are replaced by a not yet occurring 



bound variable 1t. , and if the entire formula is at the same time pre­

fixed by V~ or 31; . 
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3.234. No expressions other than those formed in accordance with 3.231, 

3.232 and 3.233 are formulae. 

3.24. As in the case of terms, brackets must be used to display 

unambiguously how a formula has been constructed in accordance with 

3.232 and 3.233. 

Examples of Formulae: Cf. 3.13, 3.11, 3.231. 

The intuitive sense of a formula follows from the remarks in 3.1. It 

should be observed that a formula with free variables constitutes an 

"indefinite" proposition which becomes a "definite" proposition only 

if aIl free variables in it are replaced by terms without free variables, 

e.g. numerals. (7) 

A minimal term is a term consisting of one function symbol with numerals 

in the argument places, e.g.: 1+3. 

A minimal formula is a formula consisting of one predicate symbol with 

numerals in the argument places, e.g.: 4 = 12. 

A transfinite formula is a formula containing at least one V or a symbol. 

3.25. German and Greek letters will be used as "syntactic variables", 

i.e., as variables for our proof-theoretical considerations about number 
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theory. 

3.3. The question arises whether our concept of formula is wide 

enough for the representation of aIl propositions occurring in elementary 

number theory. 

Strictly speaking the answer is no. There certainly are propositions 

in elementary number theory (examples will follow) for which no 

immediate formaI representation exists in terms of the methods 

formalized. Yet such propositions may safely be disregarded as long 

as equivalent propositions exist in each case which are representable 

in our formalisme 

For this a number of important examples: 

3.31. As the objects of number theory l have taken into account only 

the natural numbers. Yet the rest. of the integers as weIl as, occasionally, 

the fractions are of course also needed in number theory. It is not 

difficult however, to reinterpret aIl propositions about integers and 

fractions as propositions about the natural numbers by observing that 

the negative integers ~ be made to ~~pond to pairs of positive 

integers and the fractions to pairs of integers. (An example: 

~ = ~ is interpreted as a.~ = ~.b.) Even in the case where finite 
b d 
sets of natural numbers or of integers or fractions are included among 

the objects of number theory (e.g., the "complete systems of residues") 

it is still possible to reinterpret aIl propositions as propositions 
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about the natural numbers, although in this case such interpretations 

are considerably more complicated. The same holds for propositions 

in which diophantine equations etc. are taken as objects. 

Here l do not intend to discuss these methods of re-interpretation 

further; they present no fundamental difficulties (especially for 

the consistency proof) and anyone who concerns himself somewhat more 

closely with these matters will easily see their feasibility (cf. also 

17.2). 

If infinite sets of natural numbers, integers, or fractions are 

admitted, such a reinterpretation is in general no longer possible 

precisely because we are here already dealing with objects from 

analysis (cf. 2.12). It is, after aIl, customary to define the real 

numbers themselves as certain infinite sets of rational numbers. 

3.32. Functions and predicates occur in number theory in a variety 

of forms. In defining a formula l have taken account of this fact by 

admitting at 3.213 and 3.214 "further symbols as needed". Further 

details about the introduction of arbitrary functions and predicates 

follow in Paragraph 6. 

3.33. As far as the logical compositions of propositions are finally 

concerned, the following are for example customary utterances: 

"The proposition 'JJ. holds if and only if the proposition holds." 

This composition of propositions is of course represented as follows: 

22 
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"There exists exact1y one number * ,for which the proposition 

,U [I:J holds." For this we write: J*[JJ.{J')J{Jf~{.ll{1)~?J;#*)JJ 
with obvious1y the same meaning. (Suitab1e bound variables are 

to be is the expression resu1ting chosen for~ and!J ; where d,[!J) 
JJ.{*) by the replacement of ~ by J .) from 

Jl.(x) 
"There are infinite1y many numbers o!. for which the proposition)èo1ds." 

This simp1y means that "For every number there exists a number greater 

than the former for which JI, ho1ds."; and in this form the proposition 

is representab1e in our forma1ism. 

"The sum total of numbers ~ for which the proposition JI. C*) 
holds, is n." This proposition - in which .!!. is left indeterminate -

can be represented in our formalism only in a considerab1y paraphrased 

form, possib1y as fo1lows: We include the finite sets of 

natural numbers among the objects of the theory and paraphrase the 

above proposition thus: "There exists a set of natura1 numbers whose 

sum total of elements is .!!. and for which it further holds: for each 

one of its elements the proposition ~ ho1ds and every number for 

which,lJ, holds belongs to the set." Here "sum total" is a function, 

"belongs" a predicate, and both must be defined in advance. The con-

cept of a finite set can final1y be paraphrased again according to 3.31. 

There exists of course a variety of other linguistic expressions aIl 

of which can be reduced to immediately formalizab1e utterances. 
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3.34. l sha11 return to the question of the comp1eteness of the formalism 

in a quite general sense after the consistency proof has been carried out 

(17.1). 



Paragraph 4 

EXAMPLE OF A PROOF FROM ELEMENTARY NUMBER THEORY 

4.1. l now proceed to the formalization of the methods of proof 

used in elementary number theory. I.e., l shall have to list as 

completely as possible aIl forms of inference and methods of 

forming concepts used in proofs of elementary number theory and 

assign to them a formally fixed form which avoids aIl the 

ambiguities of their linguistic representaUon. 

Only if a precise formaI definition can then be given of what 

is meant by an elementary number-theoretical "proof" can we begin 

with the proof theofY of elementary number theory. 

l shall begin by giving an example of a number theoretical proof 

in this paragraph, and shall classify the individual forms of 

inference according to definite criteria by means of examples from 

this proof. In Paragraph 5, l shall then give a precise general 

formulation to these forms of inference. 

Finally, in Paragraph 6, l shall discuss the methods of forming 

concepts and the here relevant number-theoretical "axioms". 

4.2. As an example of a proof fram elementary number theory, l 

shall choose Euclid's weIl known proof of the theorem: "There are 

infini tely many prime numbers." 

l shall first carry out the proof in words in a version which has 

been adapted somewhat to the purpose in hand. 

25 
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In the following (throughout Paragraph 4) l use the letters ..!., ~1).h2) 

~,j, l, .!!l, .E' as free variables, the letters 'J ' ~ - - as bound 

variables (for natural numbers). 

The theorem to be proved can be formulated more precisely as follows: 

"For every natural number there exists a larger one which is a prime 

number." 

Suppose now that ~ is an arbitrary natural number. We must therefore 

show that there exists a prime number which is larger than a. We 

consider the number ê ! ~I If it is a prime number then it already 

valida tes our assertion. If it is not a prime number then it has a 

divisor 1., (excluding 1 and itself). This divisor is larger than 

a for no number from 2 to a can divide6l1f , since any such division 

leaves a remainder of 1. If~, is a prime number it validates our 

assertion. If it is not a prime number then it too has a divisor ~~ 

other than 1 and itself. This number also divides4.'~1 since it 
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divides ft Hence tA is also larger than a. By continual repetition 

of this process we obtain a sequence of numbers: !!-.' 01- " -:1:11 ~~) 

whose terms become smaller and smaller. Hence the sequence must 

terminate at some point, i.e., its last number is a prime number which 

divides A. fol' and is larger than a. Hence the existence of a prime - -
number which is larger than a has been verified. Since ~ was a quite 

arbitrary naturai number it follows: for every natural number there 

exists a larger one which is a prime number. Q.E.D. 

4.3. In the proof l have pre-supposed various simple theorems as 

already known. These can be reduced to still simpler facts by further 



proofs, yet this is unimportant for our present purpose since we are 

interested, ab ove a11, in the inferences which occur in the various 

steps of the above proof. 

Here we must keep in mind that through practice we are accl1stomed to 

carrying out èntire sequences of proof at once without being conscious 

of each individua1 inference contained in that step. In order to 

single out the actua1 e1ementary inferences l sha11 therefore go 

through Euc1id's proof once again and bring to 1ight a11 individua1 

inferences contained in sorne parts of the proof. At the same time, 

l sha11 formalize according to Paragraph 3 the various propositions 

as they occur. 

4.4. Detai1ed Ana1ysis of Euc1id's Proof. 

The proof contains a somewhat disguised "complete induction" (cf. the 

place: "by continua1 repetition of this process .•... "). The usua1 

normal form of the inference by complete induction is this: 

The va1idity of a proposition is proved for the number 1; then it is 

shown that if the proposition ho1ds for an arbitrary natura1 number n 

i t a1so ho1ds for!!. + i ; hence this proposition holds for any 

arbitrary natura1 number. 

It will a1so be convenient to reduce to this normal form the 

27 

disguised complete induction which here occurs; to do this l sha11 

choose the fo110wing proposition as the "induction proposition", 

formu1ated for a number m: "Either there exists a prime number among 

the numbers from 1 to m which is greater than ~ or none of these numbers, 
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except 1, divides a..! ..,. 1 • Formally: 

{Il[t ,,~~ (~t~~~~ÜJ V 1 [(~>I +'~ "~'>"Z / (~!~/t]· 
The proof now runs as f011ows: 

4.41. The induction proposition must first be proved for m = 1. 

Here its second part is satisfied automatica11y since there is 

obvious1y no number which is 1arger than 1 and sma11er than or 

equa1 to 1. Exp1icit1y: for an arbitrary ~ it h01ds that 

"(~)' ~ !:~!); this we assume as given. Then it a1so h01ds that 

( C ) 1 ~ ~,,).:> .., S 1 (!! .... " ,and, since ~ was 

V,. [, f>' ~ ~ ~ 1) ~ ..., '1 1 (.~! + 1)] - - - .. 
arbitrary, 

From this 

f0110ws, in accordance with the meaning of \1 (3.12), the entire 

induction proposition for ~ = 1, viz: 

l~l[!61Hôu\..&l ~l >-:8J V"1 [l~>1 ~~ 4') => .. ! /(e !+I >] 

4.42. Next comes the "induction step", 1. e.: we assume that the 

induction proposition has been proved for an arbitrary number ~, so 

that 

is va1id and is now to be proven to be va1id for n + 1. This is done 

as fo110ws: 

On the basis of the induction assumption two cases are possible: /. a, [, ~ "!. 4' (~~, ~ t')~)l 
,t. ~ ({!> 1 ~! ~~)-=>..., 1. 1 (A_! .fol)] 

-



In the first case it follows without difficulty that31 [1." ~+. 
"S {'P;w.'.wlt 1 )~)J. l shall not discuss this further. ~n this case 

therefore the induction assumption has already been proved for ~ + l, 

viz. , 

Let us now look at the second case: 

\l, [ ( t?' ~ ~ 6 ~) :> '7 t 1 (~! -+' ) J · 
It-holds that ('! •• ) li!!.,.') V -, ( ~ .. ,) 1 (s ! of , ) 

distinguish two sub-cases: 

We can thus 

First sub-case: (~+" 1 (~l + 1 ) From this it follows that 

~e.(!.,,) % C~ ... ,) :> ~ , which l shall briefly show aince 

the only forms of inference here used are those for which we a1ready 

have examples in the remaining parts of the proof: 

n + 1 is a prime number; for if it had a divisor other than 1 and 
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itself, it wou1d be smaller than ~ + l, and would then a1so divide 

contradicting our assumption that ~ [C!.7'1 .. t ~ ~ )-=' ., II {'!! ""'}]. 
~ + 1 is furthermore larger than ~; for the numbers from 

2 to a do not divide Cl! ... , since such a division a1ways 1eaves a - -
remainder of 1. Rence it holds in fact that &c. ...... (!- 40') .., il! 04') >! 

; also n + 1 n + l, hence it holds that !! of' I.~ ... ' ~. 

f>;t.Î~('!.")4'(,!.")~and consequent1y a1so that 

a'J [, ~ '! ~ 1 ~ ( ~·"..e " ~ s > ~) 7 ) ... .. - -
and thus 



Second sub-case:., (!)..+,) 1 (~I +'). Suppose that ~ is an arbitrary 

number with a property that~>lct ~ i:~""'. From 6" B+ 1 .. 
follows ~,~ V t- J!,+' , which is to be taken as given. 
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Suppose first that jl:!J. ; it also holds that Vj[{!!/~!!.,~);:, .,] 1 (~-I-')Ji 
, hence in particular that{~>I4'~~!'-):::t"~IC~!~'). From 

~)') together with!-~!J.J it follows that~>1 }~,,~ ,and 

together. with the preceding therefore -r ~ 1 (~! +1) 

If, however, ~ = !!. + l, then, because of 'T(/I.""/)I(~!",/) , it also 

follows tha t .., ~ J (~! -I-,) 

Thus it holds in general that.., ~ 1 (~! -1-,) ,a consequence of the 

assumption ~ > 1 ~ ~ ~!!- ... , . Hence we can write{!>I4'~ ~!!-.,.r) .:::t"741 (",!~/)l 
and further, since ~ was an arbitrary number, 

'V~[ l~>' ~ j ~ ~""J::> ..,~ 1 (~! -1-0]) .. -.. -
and thus once again 

f31[!~~~' 3r(?~! Ar l~~)JJ 
V - Vj [ (~) 1 0/ ~ '" ~.H) ~ ""7 -t 1 (~! +') 1 ' 

- - -

We have therefore in all cases obtained the induction proposition 

for!!. + l, and this COmpletes the induction step. 
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4.43. The proof is now quickly cornpleted: 

From the complete induction follows the validity of the induction 

proposition for arbitrary numbers. We require it only for the 

number ~!.J.I : 

{~, [ , " 4! ofl ~ Clt,U'.L ~ 4' p A)]l 

V V~ Ct !1) 1 !y !:J ~ A lof 1 ) ::;, "7 !Ill A! of 1) ] • 

From the second case it follows in particular that 

Yet it h61ds tha t A.!"" 1 ,., ~ ~.' ~ 1 ~ ~.' .,. 1 - , which 

we assume as given; hence it fo11ows that 7 (~!+I) 1 (~! +/) 

On the other hand it holds of course that (I:! -loI) 1 (!.'el-I) ,we 

have thus obtained a contradiction, i.e., the second case cannot 

possibly occur; formally: 

"7 V~ [ (~> , .If ~ ~ ~! .,. 1 ):> ..,. ft / (~{ + 1) ] • 
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Only the first case remains, i.e.: ~, [, ~ ê ! +, l>:J 1'~, J.'J>.}] · 
Suppose thattis such a number so that ,~~!.,., 'r(~w.~t4'J>,JnOldS. 
Then it holds in particular that ac.tc..& ~.r (,,~ , from which -31 ['&A;"'t} ~ 
,~! ]f0110WS. Yet!!. was a quite arbitrary natural number, hence ~is -

result holds for a11 natural numbers, Le., V~ ~ l (~114~ 14' 1>~· -
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This is the final result of Euclid's proof. 

4.5. Classification of the individual forms of Inference by 

reference to examples from Euclid's Proof. 

Let us now focus our attention on the individual inferences occurring 

in the above proof. Here the following classification almost 

,Suggests itself: 

For every logical connective ~ , V 7 v , and 

;7 there exists certain associated forms of Inference. These may 

be further divided into forms of Inference by which the connective 

concerned is introduced and other forms of Inference by which the same 

connective is eliminated from a proposition. As examples for each 

individual case l shall give an Inference fram Euclid's Proof: 

4.51. A V-introduction occurs at the end of the proof, viz: after a, ['PMlkt' .t ,> a. J was proved for number ~, i t was inferred that 

V~ 31 ( 1>~~e ~~ 1 >~) - -
A V_elimination took place at 4.42, subcase 2, where from 

V~ [c ~" '" ~ ,~)~ .., ~I (~! .... ,)J it was inferred that 

( ~) 1 ~ ~ ~ ~) :>.., ~ le~! 0#-') 



4.52. A~ .. introdUCtiOn (from 4.42, 2 subcase): the two propositions 

and A. ~ t\. together yielded the proposition - -

AJ(~e1imination (from 4.43): 

From ~ ~ ~ ! ... , Jt (1M.ÎM.l { ", ~ >!) 

tha t ~i-..t .t 4' ,l) A .. --
4.53. AJ. introduction (from 4.43): 

it was inferred 

From ~"'t. C k{,,~ it was inferred that 1, (7'M;"e , f' J>~) - --
AJ_elimination (from 4.43): 

The proposition 
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a, [, {: IL! +1 Ji (~e 1 ~'>4}J 
was valide From it was inferred that ~ ~~.' 4' ~ ( a.;"'t ~ 0/ ~'~).J 
where~stood for any one of the numbers which existed by virtue of the -
previous proposition. 

4.54. A V-introduction (from 4.41): 

From V ~ [ (~-" .\' ~, , ):» .., J 1 (A! .,. ,) J. 

it was inferred that 

{ 3, [, €a 1 ~ C~t. ~ ~ 1 > ":)] J 
V V~ ël~)' %' 't"'-:> "-~J t~!-I/)]. -A \/-e1imination (from 4.42): the proposition 
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was valid. From it resulted the distinction of cases: 

Case (i) : ~1 [1 ~": 1\ ('P ......... , 1 '" 1 ') iI;,>]; 
~ [ ( ~)' '" ~ ,~) :::> .." 1 (. ~! -fa 1)] - - - .. Case (ii): 

This distinction of cases was terminated by the fact that the same 

proposition 

f~, [~, '!+'.!r CP .......... e Il( s>~ >11 V ~ [t P)/4-){,~+' );>7~ 1 (~!It) ] 
~ - ... -

could eventually be inferred in both cases. 

4.55. A,:)-introduction (from 4.42, subcase 2): 

J.~ 1 qd~I\."" ... -- we reached the Starting with the assumption 

result: -r ~ 1 ~! ... , Hence (ti->l.\'~ 4a!!- .... ).:>.,~ It!! ... ,) 
was valid. 

A;).elimination (from 4.42, subcase 2): 

From ~ ~ 1 Jt t. f: ':: and ( ~." ~ ~ ,,~) ~ .., fi 1 ( ~ .' + 1 ) 

it was inferred that 7 ~ J l!! ... ,) . 

4.56. For negation ( ...., ) the situation is not quite as simple; for 

here there exist several distinct forms of inference and these cannot 

be divided clearly into -r- introductions and -,- eliminations. l 

shall come back to this later (5.26). Here l shall cite only a single 

important example from Euclid's Proof, viz. a "reductio ad absurdum" -

inference (from 4.43): ., VJ [l ~)' l( i' ~ ! -#1 ) ~ .-, ~ J (~,! + ,) ] -
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was inferred from the fact that the assumption 

7,lc~!",)] led 

7(~!+') Il~! ~,) 

''( J (l~) 1 ~ ~ , ~ 4 ,) ,:) 

-to a contradiction, viz. ,. to the proposition 

, whereas is indeed p:Il'ovable. 

Paragraph 5 

THE FORMALIZATION OF THE FORMS OF INFERENCE OCCURRING 

IN ELEMENTARY NUMBER THEORY 

5.1. Preliminary Remarks. 

My next task is to formulate the different kinds of forms of 

inference, which have been introduced by means of the above examples, 

in their mos~ general form. 

The determination of the individual forms of inference is not 

entirely unique. Yet the sub-division into introductions and 

eliminations of the individual logical connectives which l have chosen 

seems to me especially lucid and natural. 

What, then, does the general form of a form of inference look like? 

E.'g., as the general form of the ~ - elimination one would be 

inclined to put simply the following: if a proposition of the form 

JJ. ,y 13 is proven (where U and n are arbitrary formulae), 

then 11 (or l' ) is also valid. 

Yet we must still keep in mind the following: the structure of a 

mathematical proof does not in general consist merely of a passing from 

valid propositions to other valid propositions by the application of the 

inferences. It happens, rather, that a proposition is often assumed as 
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valid and further propositions are deduced from it whose validity 

therefore depends on the validity of this assumption. Examples from 

Euclid 's proof: The "reductio" (4.56), the ::J -introduction (4.55), 

the induction step in the complete induction (4.42). 

In order to de scribe completely the meaning of any ~osition 

occurring in a proof we must therefore state in each case upon which 

of the assumptions that may have been made the proposition in question 

depends. 

l therefore make it a rule that, together with every (formalized) 

proposition occurring in a formalized proof the (formalized) 

assumptions Ji, , . .. , upon which the proposition depends 

must also be listed in the following form: 

li,} UA,) • •. ,) U".. - .. > 1$ 

whlch reads: From the assumptions "-, ' ~ follows 

Such an expression l calI a "sequent". If there are 

~ assumptions, we write -+ 1$. 

An example from Euclid's proof: The proposition .,~ 1 (~J+,) 
from 4.42, sub-case 2, must, in order to display its dependence on 

assumptions, be represented by the following sequent: 

-\>':1 [ (1)' ~ ~ ~ ~ );. .., 11 (~! -+ ,) J, .., ( Qo + 1) Il~! .. t) J 

-
d. > 1 1( ~ 4 ~ + 1 ~ ..., ~ 1 ( !.! -1- /) • 

Since every proposition of the original proof is nOw represented by a 
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seguent in the forma1ized proof we can formu1ate the forms of 

inference direct1y for seguents. 

Our ear1ier examp1e, the ~ - e1imination, wou1d now have to be 

formu1ated thus: "If the sequent ~ 1" ) ~ ... JJ.," is proven 

( f' ~ 0 ), then C;; ) .. , , ~ .., U or as, J • • ';J <} -+ Is 
is a1so va lid." 

In the fo11owing, genera1 schemata for the remaining forms of 

inference will be given in the same way. 

5.2. Precise General Fonnulation of the Individual Forms of Inference. 

5.21. Definition of a seguent (9)(forma1 expression for the meaning 

of a proposition in a proof together with its dependence on possib~.e 

assumptions) : 

A seguent is an expression of the form: 

LIJ.'J IJ.tI J •• , 2.l,-.. J 
where arbitrary formu1ae (3.23) may take the place ofrand 15 . The 

formulae ~, , III , ... , ~ l ca11 antecedent formu1ae of the 
--..( 11 f:,I".,. ~~ ~~~ 1 ~ ~,., .. ~. 

sequen~ It is permissib1e that no antecedent formulae occur, then the 

sequent has the form: ... 13 yet there must a1ways be a succedent 

formula. 

5.22. Definition of a derivation (forma1 counterpart of a proof): 

-



A derivation consists of a number of consecutive sequents of 

which each is either a "basic sequent" or has resulted frorn 

certain earlier sequents by a "structural transformation" or 

by the app lica tion of a "rule of inference". The defini tion of 

the various concepts will follow presently. 

The last sequent of a derivation contains no antecedent formulae, 

its succedent formula is celled the end-formula of the derivation. 

(It represents the proposition proved by the proof.) 

5.23. Definition of a basic sequent: 

l distinguish between "logical" and "mathematical" basic sequents. 

A logical basic sequent is a sequent of the form J) ~ J> 
where) can be any arbitrary formula. (Such a sequent occurs in 

the formalization of a proof if and when an assumption ~ is 

made in the proof.) 

A mathematical basic sequent is a sequent of the form .~ 

where the formula (JI represents a "mathematical axiom". What is 

to be understood by a number-theoretical "axiom'! in particular, will 

be explained in Paragraph 6. 

5.24. Definition of a structural transformation: 

The following kinds of transformation of a sequent are called 

structural transformations (because they affect only the structure 
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of a sequent, independently of the meaning of the individual formulae): 



5.241. Interchange of two antecedent formulae; 

5.242. Omission of an antecedent formula equal to another antecedent 

formula; 

5.243. Adjunction of an arbitrary formula to the antecedent formulae; 

5.244. Replacement of a bound variable within a formula throughout 

the scope of a V -or 3 -symbol by another bound variable not yet 

occurring in the formula. 

Transformations according to 5.241, 5.242 and 5.244 obviously leave 

the meaning of the sequent unchanged since it makes no difference to 

the meaning of the sequent in what order the assumptions are listed or 

whether one and the same assumption is listed more than once or, 
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finally, what symbol is used for the bound variable. All possibilities 

of transformation mentioned are thus of a purely formal nature and 

intuitively of no consequence; they must be stated explicitly only 

because of the special character of our formalization. 

A structural transformation according to 5.243 means that to a 

proposition we may adjoin an arbitrary assumption upon which, besides 

other possible assumptions, it is to depend. At first this may seem 

somewhat strange; yet if a proposition is ~, for example, we are 

forced to admit that:i..in that case it is also valid on the basis of an 

arbitrary assumption. (If we were to stipulate that this may be 

asserted only in cases wheme a "factual dependence" exists, 

considerable difficulties would arise because of the possibility of 

proofs in which only an ~~ use of an assumption is made.) 



5.25. Definition of a ru le of inference (formal counterpart 

of a form of inference): 

Altogether we require thirteen rules of inference. 

5.250. The German and Greek letters used here have the following 

meanings: 

For 11. , 1$ and e- may stand arbitrary formulae; for V. rt",) or 

-3.a. fe,) an arbitrary formula of this form, then fCa) or t Cf.> 
stands for tbat formula which has resulted fromtt",) by the 

replacement of the bound variable ~ by an arbitrary free variable ~ 

or an arbitrary term of ; for 7', Â, (fj) may be put arbitrary, 

possibly empty, sequences of formulae, separated by commas (as 

antecedent formulae of the sequent concerned). 

Now the individual rules of inference: 

5.251.~- introduction: from the sequents 1'.-" li. 
follows the sequent 7j 4 ~ UvB. 

and /l~j$ 
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4t - elimination: from 7'.,U~~ follows the 7' ~U or 7' .... 1$ . 

introduction: from 7' ... U follôws l' ~ tI V1:1 or 7'~ 1JV.JI. 

elimination: and~diJ~~ 
follows 1] A, (jj) .... tE 

V _ introduction: from 1'~1(",,) follows 1'~. f .. "(l'), 

as long as the free variable A does not occur in 7' and -V.1t.-). 



) eliminatian: from 7' -+ V.ft.) follows T' -+ 1Cf). 

3 - introduction: from 1'-. fI{:t,) follows ï' ~ -a.a-(iI) . 

~ - elimination: from T'~ 9,,9( .. J and ,.{I/,~~ ~ (1' follows 

1] ~ ... (I* , as long as the free variable ~ does not occur in 

7' ,..1 , e and a. 'itl'. 
~- introduction: follows 
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:::. - elimination: from and Ll ... ZI $ fo llows ~ if ~.tI. 

5.252. The "reductio" rule: from ~ 71..., tJ and ~A"'7h follows 

7', 4 ~ ., JI, . 

"Elimination of the double negationll
: from 7' ..... .,., 21.. follows 

7'...:, U 

5.253. The "complete induction" rule: from 7'.-.l'{tJ and~{.J4 .... JlIl"!. 
follows 7J 4 ~ a-lf), as long ~s the free variable dl does not occur 

in 7J 11 ~ g-Ct.) and 1{f) . 

5.26. Some remarks about the rules of inference. 

In general the formulation of the individual rules of inference will 

be understood by referring to the appropriate examples of inferences 

(4.5). Several points should however be explained: 

The T', ,!1 and ([j) are required since in the most general case we must 

allow for arbitrarily many assumptions. 

The formulation of the ~-introduction, the "reductio", and of complete 

induction in which the appropriate assumptions are written down at 
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'- the same time practically suggests itself, whereas it seems 

probably somewha t artificial in the case of the V -and a 
-elimination, if these rules are compared with the corresponding 

examples of inferences (4.5). Yet the formulation is smoothest if 

in the distinction of cases ( V -elimination) the two possibilities 

that result are simply regarded as assumptions which become redundant 

as soon as the same resul t (~ ) has been obtained from both; in the 

case of the~-elimination the situation is similar: the proposition 

~ll&) inferred from ~",.{.) is an assumption only to the extent 

to which it is assumed of the variable c11 occurring in it that it 

represents any one of the numbers with the property;j which exist 

according to ~" gl .. ). This assumption becomes redundant as soon 

as a result ( ~ ) has been deduced from it in which the variable 

A no longer occurs. 

This leads me at once to a further point requiring sorne elaboration: 

it concerns the restrictions on free variables imposed in the case of 

the ~-introduction, the i -elimination, and comp lete induction. 
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In each case the restriction says that in ail formulae involved in the 

rule of inference (including the assumption formulae) the free variable 

~belonging to the rule of inference may occur only in the formula 

g:(A) or i (n.,.') It is easily seen by means of examples that 

this requirement is necessary in general and actually quite obvious; in 

the case of mathematical proofs it is fulfilled automatically. (By its 

very purpose the variable ~ is naturally out of place in the remaining 

formulae.) 



The following must be said about the rules of inference for 

negation: as already mentioned at 4.56 the choice of elementary 

forms of inference is here more arbitrary than in the case of the 

other logical connectives. l should 1i.ke to mention the following 

simple alternative rules of inference that might have been .adopted: 

From 1/,) T' --.13 and .,lJJ /J ~ tl 

From 7' ... u V 11 and ~ --.. 7 S 

(Example at 4.43). 

From 7'.-. '7 h and JJ) A ...... t3 

follows ~ A ... I.J 

follows ~ 4 ...." tU 

follows 7! ~ ~ ?' JI, 
~ 

From 7' .... ., Jt follows 7'.-..,u. ~ :f.! (Example at 4.41). 

From .,,~ li, and A -+ .., U follows ~4 -.. ~ . 

As logical basic sequents for the -T -connective we could also have 

taken the following: 

, "Law of the Exéluded Middle". (Example 

at 4.42); ~ (.IL If '7 2J) , "Law of Contradiction". 

Yet the two rules of inference which l have chosen (5.252) are 

sufficient; the remaining rules and the basic sequents here listed are 

already contained in them (if the rules of inference for the other 

logical connectives are included); this may be verified without any 

essential difficulties. 
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5.3. Are our ru1es of inference actua11y sufficient for the 

representation of a11 inferences that occur in e1ementary number 

theory? 

5.31. The comp1eteness of the pure1y 10gica1 ru1es of inference, 

ile.,the ru1es be10nging to the connecti.~J VJ::» 7, lt::a, 
has a1ready been proved e1sewhere(10~ (comp1eteness here means that 

a11 correct inferences of the same type are representab1e by the 

sta ted ru1es). 

To these forms of inference we must now, for the purpose ~f 

44 

e1ementary number theory, add "complete induction". Here the question 

of the comp1eteness of the ru1es of inference becomes a rather 

difficu1t prob1em; l shal1 return to it after the consistency proof 

(17.1) has been carried out. At this point l shou1d mere1y 1ike to 

observe the fo11éwing: 

It may be considered as fair1y certain that al1 inferences occurring 

in the.usua1 number-theoretica1 proofs are representab1e in our system 

as long as they make no use of techniques from ana1ysis. The same may 

a1so be said of the frequent1y used "intuitive" inferences, even if 

this is not immediate1y obvious from 100king at them. 

In order to verify this genera11y each individua1 proof wou1d of course 

have to be examined separate1y and this wou1d be extreme1y 1aborious. 

5.32. l sha11 contend myse1f with a number of particu1ar1y important 

examp1es: 



COmplete induction occurs frequent1y in certain modified forms which 

are reducib1e to our normal form as fo110ws: 

5.321. First the "descending" complete induction, which runs as 

follows: 

From 7'~ :F{4,) and F(II"'») ~ .."fFlII.) follows ~~ ... ~(1) .. 
Again 1'1. must not occur in 1J ~,1(1) and l'{ f,) 

It is transformed thus: ·~1(_) ~ ..,1(41) is a basic sequent. 

From it follows (5.243) 1{Il+J)J ..,1{tI&) ....... ., 1'(l&j ,and together 
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withilct+") 4 ~ '1(11) follows by "reductio" (5.252)41.,1(11) ... .,'1'(II+I~ 
which equa1s (5.241) ..,1{1e)} 4 4 7 i (11,+1) If we then inc1ude 

the basic sequent .."S-(1., .... ., r(1J , we can app1y the ru1e of 

complete induction in the prescribed form 5.253, with ..,:t as the 

induction proposition, and àbtain -, ~ (t) Lt ~ 7 f{~ J. By 
1 

inc1uding l' --"S(f) , and thus a1so obtaining (5.243)~i(1~ .., .... 1(f) 
as valid, we deduce "" & -. ..,." s:-(t. ) by "reductio", . 

and· from it, by "elimination of the double negation" (5.252): 

~ A -.--. ~(t) 
5.322. A further examp1e consists of the fo110wing modified complete 

induction: 

From ." ..... 1 ('1) and v. [41 ~ dl :> a-lfIJl A --.~(Il-+', 
follows 7;.A ~ ;(4) . Again 4Z must not occur in 7J A .... 3"iJ,J 
and !r (~) ; -Ii designates a bound variable not occurring in !i' (1) . 

This induction is easily turned into a normal complete induction (5.253) 
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with the fo11owing induction proposition (stated for an arbitrary 

number !!y: Y. ['" ''!o :> 7(1) J ,in words possib1y: "For 

a11 numbers from 1 to m T ho1ds" .. 

5.323. The corresponding "descending" form runs: 

:F{Il+ /), 4~ 3. fI '4 ~ s:-{,'J 
From 1' ... TCtE) and 

follows ~~ "'5ttJ. 
This form can be reduced to the normal form of complete induction in 

the same way as the two previous examp1es. 
1 

The induction in Euc1id's Proof was origina11y of this kind (4.2) and 

was then reduced to its normal form (4.4). 

Paragraph 6 

SPECIFIC CONCEPTS AND AXIOMS 

IN ELEMENTARY NUMBER THEORY 

6.1. In a proof there may a1so occur "specific concepts" in 

addition to the actua1 inferences; these are introductions of new 

objects, functions, or predicates. 

What kinds of specific concepts are in practice used in number 

the ory? 

The introduction of new objects such as negative numbers etc. has 

a1ready been discussed at 3.31, and it was pointed out that these 

objects are basica11y dispensable. 

The introduction of a new function or a predicate usual1y takes the 

form of a verbal "definition" of these concepts. 
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Examp1es: 

Jo 
The function ~ - is defined as "the number a, taken b .. 
times as factor". 

The function ~! is defined as "the product of the numbers from 

1 to a". 

The number ( ~, ~:) is defined as "the greatest conunon divisor of 

a and b ". 

The predicate "" is a perfect number" means the same as "the 

number a is equa1 to the sum of its proper divisors". 

The predicate a b means the same as 7( a = b ). - -
The predicate ! 1 ~ means the same as il z(a.z = b). -. - ... 

!r 
The function ( - ) , the "Legendre Symbo1" is defined for the case -1. .- A - ~~ where b is an odd prime number as follows: ( ~) = o if 

A -
~~ ho1ds, 

-ho1ds, if 7 then ( 7) = 1, if the number a is a 
f -

quadratic residue mod b ( - ) = -1, if a is not a quadratic 

"" -residue mod b 

The function ak(~'2's)' the "Ackermann function", a function 

significant for certain questions of proof theory, may be defined thus(11) 

.. ki_A.L.')" A.+_'" ("recursive1y") : - , T, 
Air Ce, ~, 1) .. e:-.".,f 
Ait (4J./~,.2) c: 4.-

and further for "lA. : -

Ait (4., 0 , ~ .... ) :' ~ 

Ale ( !, -f -1- " ~ -+,) = Ale. (~) A./c '! ~:t ,..,. 1).1 S ), 
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l shall not set up general formal schemata for these and other 

methods of forming concepts. It will turn out that even without 

such schema ta these concepts may' be incorporated wholesale in the 

consistency proof. The same holds for the "axioms" about which l 

should now like to say a few words. 

6.2. In nu~ber-theoretical proofs we start from certain simple, 

immediately obvious propositions for which no further proof is 

offered. These are the "axioms". They are closely related to the 

specific concepts iu so far as these axioms state basic facts about 

the predicates and functions occurring in them. Actually, a new 
1 

concept may be formally introduced by merely stating a number of 

axioms about it ("iroplicit definition"). An example: The function 

( ~, ~) is completely characterizable by the axioms: 

v! V~['~I!) I~" l~I~) I~J4M V~~7al[{J J~~ ~/t)~~){! .. !)J · .. 
The choice of the axioms is not determined uniguely. We may aim at 

making do with as few simple axioms as possible.(l2)Yet in actually 

working number-theoretical proofs we usually stipulate a larger number 

ofaxioms without concern over redundancy, independence, etc. For 

my ~onsistency proof it is fairly immaterial which axioms are chosen. 

As in the case of the specific concepts, l shall contend myself with 

the statement of several examples from which it can be seen what kinds 

of proposition qualify as axioms: 

Sorne axioms for the predicate _. and the function + , formalized: 

v! (~,,~J 
~~ V, ( le ~:> ~::~) 
V! V; V,[C~--'~!1':-,).:I!:r"J - - ... - .. 

VA.-,(J+' .. x) 

V~·V~ l !~~ c ~ ... !) 
V~ V~-V, [ (~4!) + ~ ~ - -
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6.3. The concept of "the ••.• such that". 

The following special notion is still worth mentioning: 

If a proposition of form ri 
Yf., V"' . .. V • .,3, fS" (Il" •• , ",-",)11 V, [I"C""II., · ··;*,,5 );, ,:;JJ 
in words possibly: "For every combination of numbers~" .•.• , il.., 

there exists one a~d only one number 'J such that g-( .. " . . J4 "') ?J} 
holds", has been proved, then a function may be introduced which 

represents precisely this value (11 ) in its dependence on the 

combination of numbers ( ~, , .•.•... , -1) ("The _ •• such that"). 

Formally: For this function one might use the expression (written 

for the arguments~" •... ,~~): L!J:;-{~'J .... J 411, " 

for this expression the following then holds: 

.v~/··· V""~ (-M" ... , ... .." 1,.,7("" ... .1 ... .,/'!})) 
The *' S may aIso be empty in which case the L -symbol represents a 

single number. 

Such specific concepts which are not generally needed in practical 

elementary number the ory or which can be replaced by "definitions" 

of the kind mentioned above (6.1) are insignificant for the question of 

consistency since they may always be eliminated from a derivation.(13) 
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SECTION III 

DISPUTABLE AND INDISPUTABLE FORMS OF INFERENCE 

IN ELEMENTARY NUMBER THEORY ('4' 

~I, 

The task of the consistency proof will be (2.31) to justify the 

disputable forms of inference (including specifie concepts and 

aXioms) on the basis of indisputable inferences. For a proper 

understanding of my consistency proof for elementary number theory, 

which follows in Section IV, we shall therefore have to examine 

precisely what forms of inference and other techniques of proof 

frorn elementary number theory are indeed disputable and which 

others can be accepted as undoubtedly correct. An unequivocal 

separation is not possible (cf. 1.8); but we can certainly produce 

arguments which will make the admissibility of sorne methods of proof 

very plausible, whereas a corresponding justification fails for 

other methods in cases where there exists a remote analogy to the 

fallacies occurring in the antinomies of set theory which make these 

techniques suspect. 

We sha11 now deve10p such arguments by first considering the 

mathematica1 theory with a finite donmin of objects (Paragraph 7) and 

by then discussing the peculiarities and difficu1ties arising from 

the genera1ization to an infinite domain of objects (Paragraph 8-11). 
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Paragraph 7 

MATHEMATICS WITH FINITE DOMAINS OF OBJECTS 

7.1. The mathematica1 treatment of a finite domain of objects 

may be as fo110ws: 

The objects of the domain are enumerated; in doing so each object 

receives a definite designation which app1ies to no other object. 

A function or a predicate is defined thus: Suppose the number of 
'() 

argument places is ~ For every possible enumeration o~objects 

from the domain of objects, it is determined whether the object is 

the associated functiona1 value or, in the case of predicates: 

whether the predicate does or does not ho1d for this combination of 

objects. 

We cou1d a1so permit f~nctions and predicates to remain undefined 

for sorne combinations of objects, this represents an unimportant 

comp lication. 

Since there are a1ways on1y finite1y many enumerations of" objects, 

every function and every predicate may be cOmp1ete1y defined by such 

a "definition table". 

7.2. For every definite proposition (3.24) which has been constructed 

in accordance with 3.22, 3.23, from the given objects, functions, and 

predicates together with the 10gica1 connectives, it can furthermore 

be "ca1cu1ated" according to the fo110wing forma1 ru1e whether the 

proposition is ~ or fa1se: 
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The proposition is represented by a formula without free variables. 

If it con tains the symbo1 V then the term V. i (ft) concerned 

is replaced by [- ... [ 1'(,,' 4"f( "Ù f l'C,,)t· · -] .t g'{!Jl) 1 
where~, , ...• '~J represents the entire collection of objects of 

the domain. The same is done for every V that occurs .J and 

each is rep1aced by a corresponding expression with V 
instead of 8j . 

Then every E~ that occurs is "ca1cu1ated" on the basis of the 

definition tables for the functions occurring in it, i.e., the term 

is rep1aced by the object symbo1 which represents its "value". If 

severa1 function symbo1s are nested th en the ca1cu1ation is 

out step by step by working from the inside to the outside. 

Next we determine of every occurring minimal formula (3.24) on the 

basis of the definition table of the predicate concerned whether the 

formula represents a true or a fa1se proposition. Then fo110ws the 

determination of the truth or fa1sity of those parts of the formula 

which are made up of arbitrary 10gica1 connectives; this is done 

step by step from the inside according to the fo110wing instructions: 

~ ~ 1.3 is true, if JL and j! are both true, otherwise fa1se. 

Li V 11 is true, if U is true, and a1so if 31 is true; it is 

fa1se on1y if U and n are both fa1se. IJ. '::> 11 is fa1se if 

U is true and tl is fa1se; in every other case Ji:>:I.f is 

true • .,U is true if JI. is fa1se, but fa1se if Ji- is true. 

The entire procedure fo110ws at once from the actua1 sense which 
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we associate ~ith the formal symbols. For us it is important only 

to realize that in a theory with a finite domain of objects every 

well-defined proposition is decidable, i.e., that it can be 

determined by a definite procedure in f~nitely Many steps whether the 

proposition is true or false. 

7.3. It is easily proved that the logical rules of inference (5.2.), 

applied to this theory, are correct in the sense that their application 

to "true" mathematical basic sequents leads to "true" derivable 

sequents. Here the concept of the "truth" of a seguent is to be 

determined formally in agreement with its intuitive sense as follows: 

a sequent without free variables is false if all antecedent formulae 

are true and the succedent formula is false; in every other case it 

is true. A sequent with free variables is true if every arbitrary 

replacement of object symbols yields a true sequent. 

A verification of this statement would Mean no more than a 

confirmation of the fact that we have indeed chosen our formai rules 

of inference in such a way that they are in harmony with the intuitive 

sense of the logical connectives. 

7.4. It should still be noted that in practice the ab ove method of 

introducing objects, functions, and predicates and of "evaluating" 

the propositions is rarely used in mathematical theories with finite 

domains of objects; for a large number of objects this would become 

far too lengthy. In such cases the methods used are rather like those 

applied in the case of an infinite domain of objects described below. 



Paragraph 8 

DECIDABLE CONCEPTS AND PROPOSITIONS 

IN AN INFINITE DOMAIN OF OBJECTS 
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8.1. What becomes di.fferent if we wish to deve10p the theory with 

an infinite domain of objects such as the natura1 numbers, for 

examp1e? 

8.11. It is then no longer possible to enumerate the objects in 

order to designate them, si.nce there are infinite1y many of them. 

The place of an enumeration is taken by a construction ru1e of the 

fo11owing kind: 1 designates a natura1 number. Further 1 + 1, 

1 + 1 + 1, genera11y: From an expression representing a natura1 

number an expression for a further natura1 number is obtained by 

adjoining + 1. (The symbo1s 2, 3, 4, etc. may be introduced 

afterwards as abbreviations for 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, etc.; 

this is of secondary importance.) 

This ru1e which must be expressed in finite1y many words generates 

the infinite number sequence because it contains the possibi1ity of 

continuing this constructive process through a repetitive procedure. 

("Potentia1 infinity".) 

8.12. Nor can functions and predicates, as in the case of a finite 

domain, be defined by an enumeration of a11 individua1 values. If 

we wanted to give a definition table for a number-theoretica1 function 

with one argument, for examp1e, we wou1d have to state successive1y 

its value' for the arguments 1, 2, 3, 4, etc., hence. for infinite1y many 
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values. This is impossible. Instead we prescribe a calculation rule; 

e.g., for the function 2 . a : 2 • 1 is 2; 2 . (b + 1) is equal to 

(2 . l) + 2. This rule makes it possible to calculate the associated 

functional value uniquely one by one for each natural number. 

Generally, a function or a predicate is considered to be decidably 

defined if a decision procedure is given for it, i.e.: for every 

given enumeration of natural numbers it must be possible to 

calculate uniquely the associated functional value by means of this 

procedure or, in the case of predicates, it must be decidable 

uniquely whether the predicate concerned holds or does not hold for 

this collection of numbers. 

For aIl examples of definitions of functions and predicates given 

at 6.1 such decision procedures can be stated. In the case of 

specific concepts formed according to 6.3 this may at times no longer 

be possible. By eliminating these specific concepts we have 

transferred the doubts associated with them to the logical formé of 

inference; these will be further discussed below (ParagraphJ9 - Il). 

8.2. Let us now consider the propositions in the the ory with the 

infinite domain of objects of the natural numbers. 

Of every given definite proposition in which the connectives "aU" 

and "there is" do not occur it can be decided, as in the case of a 

finite domain, whether it is true or false. The procedure is the 

same as at 7.2. Instead of being determined by a definition table, 

the values of the terms of a proposition as weIl as the truth or 

falsity of the minimal formulae are now determined by the appropriate 
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decision ru1e for the functions or predicates concerned. 

The application of the 10gica1 ru1es of inference to propositions of 

this kind can a1so be shown to be admissible in the same way as in 

the case of a finite domain. 

It shou1d still be mentioned that a corresponding resu1t a1so ho1ds 

for propositions in which the connectives "a11" and "there is" 

refer on1y to finite1y many numbers. Such propositions can be 

decided in the way described, V and 3 must be rep 1aced by ~ and 

V as at 7.2, and the appropriate forms of inference, Le., the l'­
and ~ -forms of inference (5.251) as we11 as complete induction 

(5.253) can a1so be ShO~l to be admissible in the same way as long 

as the domain of the - free and bound - variables that occur is 

limited to the numbers from 1 to a fixed number ~ . 

Paragraph 9 

THE "ACTUALIST" INTERPRETATION OF 

TRANSFINITE PROPOSITIONS (15) 

9.1. Let us now turn to the essentia1ly transfinite propositions, 

Le., propositions in which the connectives "a11" or "there is" refer 

to the totality of a11 natura1 numbers. Here we are confronted by 

a fundamenta11y new state of affairs. 

First we must note that the decision ru1e which is applicable in the 

case of a finite domain (7.2, 8.2) does not transfer to such transfinite 

propositions. 
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In the case of a proposition about !!l natural numbers, for 

example, we would have to test infinitely many individual cases, 

which is impossible. No decision rule for arbitrary transfinite 

propositions is known and it is doubtful whether such a rule can 

ever be given. If there were such a rule then it could for example 

be decided of the thus far unproven last theorem of Fermat (as well 

as of Goldbach's Conjecture, etc.) by calculation whether it is true 

or false. 

What sense then can be attributed to a proposition whose truth 

cannot be verified? 

9.2. The traditional view is this: it is "actuaUy" pre-determined 

whether a transfinite proposition such as for example, Fermat's last 

theorem is "true" or "false" independently of whether we know or 

shall ever know which of the two is the case. Every transfinite 

proposition is thought of as having a definite actual sense; in 

particular, the sense of a " -proposition is thought to be this: 

"For every single one of the infinitely many natural numbers the 

proposition concerned holds"; the sense of a a -proposition: 

"In the infinite totality of the natural numbers there somewhere 

exists a number for which the proposition concerned holds". 

From this interpretation is inferred further that for transfinite 

propositions the same logical forms of inference are valid as for 

the finite case since the "actualist" sense of the logical 

connectives in transfinite propositions corresponds exactly to that 

in the finite case. 
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9.3. At this point there·now exists ample cause for criticism 

as long as one has decided to draw the utmost consequences from 

the insights gained in considering the antinomies of set theory. 

This l will now do and sha11, as a resu1t of a critica1 examination 

of Russe11'santinomy (1.6), 1ay down the fo110wing princip1e: 

An infinite tota1ity must not be regarded as actua11y existing and 

c10sed (actua1 infinity) but on1y as something becoming which can 

be extended constructive1y further and further from something fini te 

(potentia1 infinity). 

9.4. The constructive methods for the introduction of objects, 

functions, and predicates stated in Paragraph 8 are in line with this 

princip le. They were exp1icit1y based on the idea of a gradual 

progression in the number sequence, starting at the beginning, and 

not on the idea .. of a comp leted to'tality of a11 natura1 numbers. The 

same ho1ds true for the propositions discussed at 8.2, since they 

also refer to only finitely many objects and not yet to an infinite 

totality. 

9.5. The "actualist" interpretation of transfini te propositions 

described at 9.2, however, is no longer compatible with this principle, 

for it is based on the idea of the closed infinite number sequence. 

At the same time the view that the logical forms of inference can 

simply be transferred from finite to infinite domains of objects must 

be rejected. 

l remind the reader of a similar although more trivial case of an 
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inadmissible generalization from the fini te to the infinite" 

viz., the well-known fallacy: "Every (finite) set of natural 

numbers contains a largest number; hence the (infini te) set of aIl 

natural numbers contains a largest number." This argument leads to 

contradictions since :I.t does not in fact hold true. 

9.6. Raving rejected the actualist interpretation of transfinite 

propositionswe are still left with the possibility of ascribin& 

a "finitist" sense to such propositions, Le., of interpreting 

them in each case as expressions for definite finitely 

characterizable states of affairs. 

Once this view has been adopted the relevant logical forms of 

inference must be examined for their compatibility with this 

interpretation of the PEopositions. 

Such an examination will be carried out in Paragraph 10 below for 

an extensive portion of the transfinite propositions and their 

associated forms of inference. In Paragraph Il, l shall discuss 

the remaining propositicnal forms and their forms of inference; 

there our method will meet with difficulties and the significance 

of the intuitionist (1.8) delimitation between permissible and 

non-permissible forms of inference within number theory will become 

apparent; another still stricter delimitation will also turn out to 

be defensible. 



Para graph 10 

FINITIST INTERPRETATION OF THE CONNECTIVES 

3 AND V IN 

TRANSFINITE PROPOSITIONS 

l imagine first a nurnber the ory whose propositions refer to on1y 

finite1y many nurnbers. To it l sha11 adjoin step by step certain 

types of transfinite propositions. 

10.1. The ~ -connective. 

10.11. We sha11 begin with the simp1est forrn of a transfinite 

prop osi tion: , where sr sha11 not yet contain a 

V or ~ , so tha t the truth of ~(~ ) is verifiable for each 

individua1 nurnber substituted for ~ (8.2). 

True propositions of this forrn are for examp1e: 

J{)( ( ,1.1 ~ V av ~ 1 !) j -
Such propositions will undoubted1y be regarded as rneaningfu1 and 

true. After al1, one need not associate the idea of a c10sed infinite 

nurnber of individua1 propositions with this \1 , since its sense can 

be given a "finitist" interpretation as fo110ws: "if, starting with 

l we substitute for ~ successive natura1 nurnbers, then however 

far we may progress in the formation of nurnbers, a true proposition 

resu1ts in each case." 

60 
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t':'" 
10.12. This interpretation may be generalized to the case where ~ 

is an arbitrary proposi tion to whi.ch a finitist sense has already 

been ascribed: VI f (.> may be asserted meaningfully if ~(*) 
represents a meaningful and true proposition for arbitrary successive 

rep lacements of ~ by numbers. 

10.13. The forms of inference associated with the \t -connective, the 

-introduction, and the \1 -elimination (5.251), are in 

harmony wi th this interpretation: A .v is introduced if a proof is 

available that on the basis of certain assump tions ( Tf) -

transfinite assumptions are still completely meaningless and out of 

the question for the time being - sr(IIJ is true, and from this is 

inferred that on the basis of the same assumptions i~ ~(*) 
holds. This is in order, for if an arbitrary number n is given 

then it may be substituted for ft - in the whole proof - and a 

proof for results (on the same assumptions 77 which, by 

virtue of the restriction on variables for the V -introduction, 

do not contain dt and have thus obviously remained unaffected by 

this substitution). In the case of the V -elimination 7'~ 9"( f) 
is deduced from 7' ~ JI", 3"(11). Once possible occurrences of 

free variables have been replaced by numbers, the term t represents 

a definite number~ ; in keeping with its finitist sense the 

proposition .v1t ~(*) also guarantees that 1'{1f,) holds; hence 

this form of inference is also acceptable. 

10.14. The usual number-theoretical axioms may be formulated in such 

a way that they follow from propositions without V or by a 

number of bI -inferences ranging over the entire proposition (cf. 6.2.). 



The conclusion that)in terms of the finitist interpretation of the 

V 1 and on· the basis of the decidab1e defini tions of the functions 

and predicates occurring in them these axioms are true is of such 

se1f-evidence that it requires no further investigation. 

It actua11y seems hard1y possible that this conclusion cou1d be 

reduced to something basica11y simp1er. 

10.2. The ~ -connective. 

A transfinite proposition of the form ""- ~ 1$ is meaningfu1 and 

62 

may be asserted if U and 13 have a1ready been recognized as 

meaningfu1 and valid propositions. The ru1es for the ~ -introduction 

and Jf -e1imination are obviously in harmony with this interpretation. 

Here, as above, transfinite assumptions ( 7', L1 ) are exc1uded for 

the time being. 

10.3. The ~ -connective. 

The reader May so far have the impression that the "finitist 

interpretation" attributes to transfinite propositions rea11y on1y 

the same sense as that usua11y associated with such propositions. That 

this is not the case will emerge from the fo110wing discussion of the 

J and V (cf.10.6). 

~ 

What sense shall we allow a proposition of the form ~ ... ';/ (*J ? 

The actua1ist in interpretation: "somewhere in the infinite number 

sequence there exists a number with the property ~ "is for us 

devoid of sense. Yet if the proposition 1(1t,) has been recongized 

as meaningfu1 and va1id for a definite number ~ , we wish to be 
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able to conc1ude ( 3 -introduction) : ~ .. go, .. > There are no 

objections to this; the proposition ai I"C.l now constitutes 

on1y a weakeni~ of the proposition g-C1f,) ("Partia1aussage" for 

Hilbert, "Urteilsabstrakt" for Weyl) in that it now attests mere1y 

that we have found a number '" with the property ~ although this 

number itself is no longer mentioned. With this, 1. !F{.J(}has a 

finitist sense. 

If, instead of being introduced in !F (ff,) , the '1 is introduced in 

a proposition J e of) containing an arbitrary term ~ , then 

nothing has essentia11y changed. For if the fl:ee variables occurring 

in te~) are rep1aced by definite numbers (which free variables, 

after a11, stand for) then ~ becomes a definite calculable number ~ 

on the basis of the decidab1e definitions of functions. If a 

-introduction is accompanied by the occurrence of non-transfinite 

assumptions ( 7') the situation is not essentia11y a1tered. 

Consider now how other propositions can be inferred by the rJA. f(lfb 
elimination of the 3 from a proven proposition of the form tn the 

basis of the finitist sense of that proposition. In contrast with 

the situation in the case of V and '" it is obvious1y not possible 

to rec1aim the proposition S-(1f.) from J 1 ~(ft) which 

had p"rovided the justification for the assertion of -a~ g (*> 
precise1y because the value of" is no longer apparent from ;,. S'(*). 
Yet we may proceed as fo110ws: we conc1ude i' (1Jl) ,where A. is 

a free variable taking the place of the number 1(, whose value 

need not be known at this time. 

i(~) a certain proposition ~ 
If we then succeed in deducing from 

no longer containing Da. 



then this proposition is valid. We have thus a .1 -elimination 

in accordance with 5.251. 

This is the first rule so far in which an associated assumption, 

viz., J( CIl), occurs. This assumption can be transfinite. Although 

we have previously not granted a sense to transfinite propositions 

as assumptions but only as proven propositions, we can here say: 

the fact that 3 fi, r (1) has been proved and is meaningful means 

that a number ft must have been known and is reconstructible on the 

basis of the proof of =1. ~C ... ) so that 31 "'} also represents 

a meaningful true proposition. Here the assumption )'(C) is not 

regarded as an arbitrary assumption but as the true proposition 

i(<<) , where dL merely denotes the number tf, The 

proof of cr from the assumption !r(ctl thus no longer appears as 

hypothetical but as an ordinary direct proof; and precisely this is 

its sense. 

10.4. The V -connective has an easy analogy' to ~ , as did ~ 
to a transfinite proposition of the form Ulln is meaningful 
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and may be asserted if one of the propositions ~ and a$ has been 

recognized as meaningful and valid. The rule of the \1 -introduction 

corresponds completely to this interpretation. A V -elimination 

i8 carried out thus: if JJ. V1$ is given and if the same proposition 

(! follows from the assumption JJ. as weIl as from the 

assumption IJ$ then rr holds. This is in order since Ji IIt1 
enta ils that either 2l or ~ has at some point been recognized as 

valid. In this way a proof for ~ from,/,l,. , or a proof for ~ 
from 15 , can be made independent of the assumption , or 1$ , 
as was done in the case of the 57 -elimination, and we obtain a direct 
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proof. The second proof becomes redundant and it is thus 

immateria1 whether it has a sense or not. 

10.5. At this point it shou1d be exp1ained brief1y how the inference 

of complete induction is at once compatible with the finitist 

interpretation: Suppose tha t !f(1)iS a meaningfu1 va1id proposition. 

The term t in the conclusion I{ f;) represents a definite number 

~ once possible occurrences of free variables have been rep1aced 

by numbers. By rep1acing ~ successive1y by the numbers 1, 2, 3, 

up to 1(, - 1 in the proof of y{.,-I, ) from 3141 we have formed a 

direct proof, starting from the vaUd proposition 9'(1) via 1(l) , 

~l,) , etc. up to Jr{~) ,so that fina11y, ~~) is now a va1id, 

meanin gfu1 proposition. 

This may sound trivial; what is essentia1 is that the assumption 

~{ItJwhich may have been devoid of sense (if it was transfini te) has 

been afforded a sense by the possibi1ity of transforming the relevant 

portion of the proof invo1ved into a direct proof in which 

no longer functions as an assumption. 

10.6. The finiti'st interpretation given to the connectivesVand .a 
differs from the actua1ist interpretation not on1y conceptua11y but 

a1so in its practica1 consequences as the fo110wing examp1es show: 

The proposition "Fermat's Last Theorem is either true or not true" 

is ~ according to the actua1ist interpretation. However, according 

to the finitist interpretation of v , this proposition cannot be 
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asserted. For here it would be required that ~ of the two 

propositions has already been recognized as valid. Thisrhoweve~ is 

so far not the case. 

A corresponding example containing a sr is the proposition 

3! 1 c r~ "1.. V'! v-:. (-r:.)-I ~ ~ r.,. l r = ~ 'r;.)] 

V [~'~Ja~(!>J .t !I.~+ ,4 - ~~'JJ - .. 
in words possibly: "There exists a number JI so that either Fermat 1 s 

Theorem is true or there exists a counter-example with the exponent 

" This proposition is true according to the actualist interpretation 

but may not be asserted according to the finitist interpretation of 

the ~ since at this time no such number ~ is known. 

Consequently neither of these two propositions is provable by the 

forms of inference discussed so far since it was possible to 

attribute a finitist sense to these forms of inference; the additional 

forms of inference associated wi th the ""7 are needed for this purpose 

(cf.ll.2). 

10.7. The finitist interpretation of transfinite propositions 

containing the connectives V , ~ ,~ and V attempted in these 

paragraphs and the justification of the associated forms of inference 

involved is in' many respects incomplete; the meaning of propositions 

in which a number of such connectives occur in nested form, in 

particular, would still have to be discussed in greater d~tail. l 

shall not do this since l am here concerned only with establishing 

fundamentals. 
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A pure1y forma1 consistency proof for this part of number theory 

cou1d be deve10ped 1ater on the basis of these considerations. Yet 

such' a proof wou1d be of 1itt1e value since it itse1f wou1d have to 

make use of transfinite propositions and the same associated forms 

of inference which it is intended to IIjustifyll. Such a proof wou1d 

therefore ~ot represent an appea1 to more e1ementary facts, a1though 

it wou1d still confirm the finitist character of the forma1ized 

ru1es of inference. Yet we wou1d have to have a c1ear idea beforehand 

of what is to be considered finitist (in order to be able to carry 

out the consistency proof proper with flnitist methods of proof). 

Paragraph 11 

THE CONNECTIVES :::> AND.., IN 

TRANSFINITE PROPOSITIONS THE INTUITIONIST VIEW 

11.1. The :;:) -connec ti ve . 

We now intend to inc1ude transfinite propositions containing the 

connective ;;, 

What does U::>I$ mean? Suppose, for examp1e, that there exists 

a proof in which the proposition dr is proved on the basis of the 

assumption Ji by means of inferences that have a1ready been 

recognized as permissib1e. From this we infer by ~ -introduction: 

This proposition is mere1y intended to express 

the fact that a proof is availab1e which permits aiproof of the 

proposition 11 Jt 
u 

from the proposition once the proposition"is proven. 

The inference of the ~ -elimination is in harmony with this 

-



interpretation: here ~ is inferred from ~ and ~. ~ ~ 

this i8 in order, since JJ, ~ 1$ indicates precise1y the existence 

of a proof for J5 in the case where 2J. is a1ready proven. 

In interpreting in this way l have presupposed that the 

avai1ab1e proof of 15 from the assumption JJ, contains mere1y 

inferences a1ready recognized as permissib1e. Yet such a proof 
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cou1d itse1f contain other ::> -inferences and then our interpretation 

breaks down. For it wou1d be circu1ar to justify the ~ -inferences 

on the basis of a .;II -interpretation which itse1f a1ready invo1ves 

the presupposition of the admissibi1ity of the same form of inference. 

The ;> -inferences which occur in the proof wou1d in that case have 

to be justified beforehand; yet this has its difficu1ties especia11y 

if the assumption li. has itself the form t!"':> l) if this 

happens we have actua11y no proof for J) from ~ on the basis of 

which we cou1d ascribe a sense to 

In order to cope with this difficu1ty a more comp1icated interpretation 

ru1e wou1d certain1y have to be formu1ated. This constitutes one of 

the principal objectives of the consistency proof which fo11ows in 

Section IV. 

11. 2. The • • ., -connective presents even greater obstacles to a 

finitist interp.retation than the ='. Transfinite propositions were 

actua11y a1ways interpreted in such a way that they cou1d in each 

case be regarded as something that had previous1y been recognized as 

va1id. In its actualist interpretation .",lI. does not however 

express the fact that something ho1ds but rather pure1y negative1y 



that something, Viz.) the proposition li , does not hold. 

The following positive interpretation seems nonetheless possible: 

..,IJ. is to be regarded as meaningful and true if a proof exists 

to the effect that a falsehood is certain to follow from the 

assumption of the vaUdity of /J, And here the -, -connective 

is re-interpreted in terms of the :;:J -connective since ., JI. 

can certainly be defined as equivalent with Z ~ 1:11 J , for 

example. The inference of IIreductioll is in ,harmony with this 

interpretation, as may be shown quite formally: From JI~ 7'~ IS 
andll,4 ~ ~ :;,1·.,2 we wish to derive ~ A ...,B;J t ='~ • 
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This is done as foUows: By :> -elimination we obtain ~ 7J "'4 ~ 1 • .,,1 

hence (5.242) Ji, ~ A -+ 1. • .2 , and from this by 

:> -introduction} ~.d ... Ji :> 1. ~./. This completes the 

recl'..tction of the IIreductioll to the ~ -forms of inference. 

It should be noted that in this re-interpretation of the -? 

in terms of the aIl doubts associated with the ~ 

naturally carry over to the -JI' -connective to a corresponding 

degree. 

Now there actually arises a further difficulty: The lIelimination 

of the double negation" cannot at aU be shown to agree with the 

given ~ -interpretation. There is no compelling reason why the 

validity of (J,I. ~ 1 =.1.) ::> 1~.t should follow from the validity 

of U. 

This form of inference conflicts in fact quite categorically with 

the remaining forms of inference. In the case of the logical 



connectives 'y, 1$ , d , V and ~ we had in each case an 

introduction and an e1i.mination inference corresponding to one 

another in a certain way. (cf. the discussion in Paragraphs 10 and 

11.1) . In the case of the -"? -connective the "reductio" inference 

can be regarded both as an introduction (of.,. in 7.2J) and 

elimination (of .". in '71$); the "elimination of the double 

an 

negation", however, represents an additiona1 .., -elimination 

which does not correspond to the .., -introduction by "reductio". 

Double negation renders possible indirect proofs of positive 

propositions (Ji ) from their contraries by means of 

contradiction, in cases where a positive proof of the same 

proposition May be comp1ete1y inaccessible. In this way we can 

for examp le prove the two proposi tions containing V and ~ 

given as examp1es at 10 .. 6, whereas under the finitist interpretation 

of \1 and ~ these propositions May not even be asserted. 

From this it fo110ws that there is no way at a11 of including the 

inference of the "elimination of the double negation" in a finitist 

interpretation of the kind chosen for Vand 1 . 

11.3. Here the intuitionists draw the line in number theory by 

disa110wing the inference of the "elimination of the double negation" 

for transfinite propositions This delimitation is often also 

effected by disa110wing the "1aw of the excluded midd1e" , 

ltV~~, for transfinite ~ ; this comes to the same thing.(16) 

The "finitist interpretation" of the 

..,.,w 
Il nI' e 6 i L toua 1 

~ 
connectives 

a and v in transfinite propositions described in 

.> 
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Paragraph 10 agrees essentia11y with the interpretation of the 

intuitionists. Yet they a110w a more genera1 use of the 

~-connective; the ...., -connective is interpreted as, al: 11.2 

by reducing it to ~ ,and to this corresponds the expression Il 

"u. is absurd" in p lace of " li, does not ho1d" for '7 ~ 

The "elimination of the double negation" undoubted1y stands in 

definite contrast to the remaining forms of inference to such a 

degree that it might quite reasonab1y be disallowed. In fact, l 

consider a still more radical critiqu~, especia11y of the genera1 

use of the ~ (11.1), as equa11y we11 justified. 

fi 

A THEOREM BY GODEL ABOUT THE EQUIVALENCE OF 

INTUITIONIST AND THE WHOLE OF ELEMENTARY NUMBER THEORY 

As was first proven by K. G~de1 (17~ it is possible to e1iminate 

the inference of the "elimination of the double negation" invo1ving 

a transfinite Jl from àny given e1ementary number-theoretica1 

proof by a special interpretation of transfinite propositions so 

that every proof of this kind becomes intuitiona1istica11y 

acceptable. 

In this way, the who1e of actua1ist number theory becomes reduced 

to intuitionist number theory. In particu1ar, the former is 

consistent if the 1a~ter is. 

The interpretation invo1ved takes the fo110wing form: the 10gica1 

connectives k, V, .:> and 7 are assigned their intuitionist 

sense. Not so in the case of V and 'il 
is ïnterpreted as .., [ (",li)" 7 11 J 
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as The reason for this interpretation is 

that the V and 3 cannot here be assigned thei.r intuitionist 

meaning since the examples of propositions stated at 10.6 are 

provable in actualist number theory but not in intuitionist number 

the ory . Yet if V and :J are rep laced in the se examp le s by 4' 
V and -"7 in the way described then propositions result which 

are also intuitionalistically provable. 

In my consistency proof the " e limination of the double negation" 

actually presents no essential difficulties (13.93). 

11.4. The forms of inference which we have not been able to 

justify so far by means of a finitist interpretation and which are 

therefore disputable for the time being occur very rarely in proofs 

cattried out in practical number" theory. It follows from our 

discussion that such inferences are principally the "elimination of 

the double negation" (and the "law of the excluded middle") applied 

to transfinite propositions as weIl as the use of transfinite 

propositions containing nested ~ -and ..., -connectives. 

Transfinite propositior.s of a more complicated structure hardly ever 

occur in practice. In Euclid's proof presented in Paragraph 4, for 

example, the only essentially transfinite propositions are the two 

propositions occurrinr; at the end: à 1 (8.&"IIc-t, ~ J)II.) 

and V, J J [ ~ ..... , If ,> j J. The whole proof is entirely fini tis t. 
''-' - .. --

The other transfinite propositions which occur in it, i.e., those 

containing V or 3 , are such that their bound variables range only 

over a finite segment of the number sequence. 
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As an example of a more difficult proof l have looked through 

Rev. Zeller's proof of the IIlaw of quadratic reciprocityll(18) 

and here l have also been unable to find a IIdisputable inferencell • 

We are indeed justified in having the impression of an unguestionable 

correctness in the case of this and similar proofs. In these 

proofs we tend automatically to look more for a finitist than an 

actualist interpretation of the transfinite propositions. 

The task of the consistency proof for elementary number the ory 

is thus more a justification of theoretically possible rather 

than actually occurring inferences. 
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SECTION IV 

THE CONSISTENCY PROOF 

l sha11 now prove the consistency of e1ementary number the ory as a 

who1e as forma1ized in Section II. 

In carrying out this consistency proof we must make certain, as was 

pointed out in 2.31, that the inferences and specifie concepts used 

in the proof itse1f are indisputab1e or at 1east considerab1y more 

re1iab1e than the doubtfu1 forms of inference of e1ementary number 

theory. It fo11ows from our discussion in Section III that this re-

quirement can be regarded as met if the methods of proof used are 

"finitist" (in the sense of Paragraphs 9 - 11). The extent of our 

success in this direction will be examined more c1ose1y in Section V 

(16.1) • 

Paragraphs 13 to 15 contain the ~ of the consistency proof whereas 

Paragraph 12 is concerned wlth sorne re1ative1y simple pre1iminaries. 

Paragraph 12 

THE ELIMINATION OF THE SYMBOLS V , 3 , 
AND :::> FROM A GIVEN DERIVATION. 

Take any number-theoretica1 derivation (5.22) as given. It is to be 

shown that it is consistent, i.e., that its end-formula cannot have 

the form U, Ar ~ u 
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We begin by stating a rule for a transformation of the given derivation. 

As a result of this transformation the connectives V ,a and ::> 

will no longer occur in the derivation. 

12.1. In actualist logic, which is what we are in effect dealing 

with in unrestricted number theory, the different logical connectives 

can be represented by other connectives in various ways. By means of 

three connectives, viz., -? ,any one of the three connectives t, V 

and;:' as weIl as any one of the two connectives V and 3 
aIl others may be expressed. l shall make use of this fact to facilitate 

the cons istency proof and shall retain the symbols f' , If and ...., 

and express v 3 and => in terms of these. 

This does not mean that the ambiguities (11.1) associated with the 

are thus c?njured away, they stay with us in an equivalent form in 

the -, • 

The replacement takes the form: 

For U V-n we put ..., (C.., U ~) .f' 7 -1S ) 

For tU ::> 4J we put --, ( a t.., $) 

For a't $'(., we put ...., if;t ~(91) 

AlI V -, :; - and ? -symbols occurring in the derivation are 

replaced in this way. The order in which this is done is obviously 

immaterial. 

12.2. We must now examine to what extent the given derivation has 



remained correct after these replacements and, where this is not the 

case, modify the derivation accordingly. That such a modification is 

possible is very plausible since the new formulations for the \1 ,~ 
and ::> are indeed eguivalent to the original one.s in the actualist 

interpretation. The precise formaI verification is consequently not 

difficult: 

Logical basis seguents (5.23) have been turned into other logical 

basic sequents. 

The same holds true for mathematical basic seguents as long as we 

presuppose that a mathematical axiom in which the ~ - and 

~ -connectives occur becomes another mathematical axiom after 

the replacement of these connectives by -? , ~ and V. This 

requirement is easily met: we simply formulate aIl axioms in advance 

without the use of V, a and :> 

Structural transformatj.ons (5.24) and application instances of the 

rules of inference (5.25) have obviously remained correct as long as 
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we are not dealing with one of the rules associated with the connectives 

V, ~ and ::> . The latter rules must be replaced by applying 

other rules of inference in accordance with the following instructions: 

A V -introduction "from T'~ JI. follows r .... J,l V 1f:f "after 

the replacement takes the form: "From 7' af --9 .Ji. follows 

u~ 
~ designates the formula 
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which has resulted from ~ by replacement; jJ" and 7'* are 

to be understood in the sameway. 

In words, the new version which uses the forms of inference for ~ and 

r reads as follows: " 
-1 7' ''' holds on the assumptions If 

( -, U" ) .1 ., fl 11 
were to hold, then so would .,.u* in 

lU -If 
particular, and this cannot be the case since it contradicts ~ , i. e. , 

holds on the assumptions 7''''. 

To this corresponds the following formaI instruction: the appropriate 

/_ ~~ 'If) J • ..,,,,II 
place in the derivation is to be transformed thus: (p. ~ ~ ~ 

by ~ -elimination we obtain 

together with the sequent 

~ {..,,2/, 11)4'., JI' is a basic sequent; 

(., J,t ~) ~ '7' 13" ~ ..,.u ": this 

(..,li')I., '8~." ~ JI, tI, obtained from 

5.243 by "reductio", yields .,.,"---

r ,,~ 11." by means of 

..., (( ~ .Ji ") f .., '" 1(. 

The other form of the \1 -introduction is dealt with in the same way. 

A V-elimination has the following 

7'~~ ..,{{-r~II) t.., \If" 
form after the replacement: "From 

Il'' LI"~ e w 
and "'" J 

and :/$ ~ @f1 --9 (C »' f ollows r ~ li ~ {; Il --9- ~ - " • This is 

/.JI' fi /7 " Il h * -r "fi transformed thus: ....., Co ~ "7 Co yields JI, 1 -r \! ~ Co 

this together with .2t~ .d JI -.-. (! Il by "reductio" L1~ -F ~ ~ ...,. Jl<lll 
similarly 1$~ ..., e .. --11' ..., e-" together with ~~ (j)" ~ ~ ~ 
yields the sequent Cl> ~ ""7 e ~ ~ ~ ir~ ; taking both results 

together we obtain Li ~ .., ft': f!J: T e~ (..,U-:J~.,ll'by A' -introduction, 

-
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hence (5.242, 5.241) -? (!'; il ~ (1 fI--" (.., tt If) J.I '7 1.1 ft ; from 

7'*4 ., {(..,JJ,~)..&' .., 11.1() follows'" ~~"1'* ___ -,({-r.t/,K) ~..,. ~ 

h b " di" b i A --: ~ ~ r" ~ .,,,~, and, fin Il t us, y re uct 0 , we 0 ta n LJ , ~, ~ a y, 

If A:\" 7'11 /.1"'* 
by "elimination of the double negation" Li, fil? ~ ~ C-- , hence 

7'. * A Ir (j)~ n-~ 
(5.241) ~ Ll .1 ~ c;., • 

A ~ -introduction .or ;7 -elimination is dealt with analogously 

to the V -introductior or V -elimination; a Il -e liminat ion 

takes the place of a JI -elimination or a V -introduction the 

place of a ~ -introduction in the appropriate place of the deri­

vation. The details are straightforward. 

A ::::> -introduction after the replacement takes the form: "From 

1J,~ 71 ft ~ 11'" follows 7'11-4 7 (,uN 4" 7 ?Jft) " 
This is transformed thus: ;21, 1( ,s,1-:Q* ~ ,u/ll J''71:r k 

yields 

Ji' ~.., 1$* ~ LI. 4{ as weIl as tl,Jl4' -r \!Sil ~ -, -(/lit 

hence also il, II~ .lI,.If f' ., HI( ----p 711111 
this together with 

1L~ T''' --7- ~'k yields 'P~.tt IIi .., rtrll > "7' ~ K 

'lI Il V 7' If ,~ .If' 
hence .u f'" 15 1 ") 7 ~ By including 

,t(,'Jj 71S V ~ tl JII we obtain 7'1f --!> -, {LItt .r'7 -;;trlf} . 

A :::> -elimination after the replacement takes the form: "From 

7' IF ~ 1J,.t( and A 'il • -r (.Ll-K ~ -v 1$"') f ollows 

7' ~ li'" ~ 1'5* " This is transformed thus: 7'fI ~ J.L* and 

-? 13 ~ ~ "7 1if 1( y ie Id 7':.., "1.{ Jt --P .LI N .f' -, -:tJ~ 
hence ., 11 ~ 7' II' ~ ,t( Jt ~ 7 tI* ; by including 
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we obtain 7' J( LIli ~ 7" ~ J , 

and from this 

12.3. We have thus succeeded in transforming the given derivation 

into a derivation in which the symbols V, :J and no longer 

occur. It should be observed that the end-formula of the derivat:l.on 

has undergone a change only if it contained a V,3 or :=> 

12.4. It is worth noting that according to what was said at Il.3 the 

given derivation is now already essentially an intuitionalistically 

admissible number-theoretical derivation; for wherever the "elimination 

of the double negation" is still used it could be replaced by other 

rules of inference. 

Paragraph 13 

THE REDUCTION OF SEQUENTS 

The notion of the "statability of a reduction rule" for a sequent, to 

be defined below, will serve as a formaI replacement of the intuitive 

concept of truth; it provides us with a special finitist interpretation 

of propositions and takes the place of their actualist interpretation 

(cf. Paragraphs 9 - Il). 

In a sequent in which the connectives V,;/ and .::> no longer occur, 

an individual reduction step can be carried out in the following way 

(13.11 to 13.53): 

) 



) 
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13.11. Suppose that the sequent contains at least one free variable. 

In that case we replace every occurrence of this free variable by one 

and the same arbitrarily chosen numeral. 

13.12. Suppose that the sequent contains no free variables and that 

somewhere in one of its formu1ae a minimal term .~3.24) occurs (e.g., 

as part of a longer term). In that case we replace minimal term by 

its associated "functional value", i.e., by that numeral which represents 

its value for the given numbers as arguments by virtue of the definition 

of the function concerned (cf. 8.12). 

Thus l am now requiring of the functions that they are decidab1y 

defined in the sense of 8.12. 

13.21. Suppose that the sequent contains no free variables and no 

minimal terms and that its succeedent formula (5.21) has the form 

v. l'Cio) 
Y(1f,) , i.e., 

In that case we replace it by a formula 

by a formula which results from :r-( Sf) 

by the substitution of an arbitrari1y chosen numera1 tt for the 

variable -If . 

13.22. Suppose that the sequent contains no free variables and no 

minimal terms and that its succeedent formula has the form ~ ~~ 
In that case we replace it by the formula U or by the formula 1.1 
as we p1ease. 

13.23. Suppose that the sequent contains no free variables and no 



minimal terms and that its succeedent formula has the form ~ ~ 

In that case we replace it by the formula 1 = 2, (19) and at the same 

time adjoin the formula Jt (in the last place) to the antecedent 

formulae of the sequent (cf. Il.2). 

13.3. If none of the possibilities listed above applies then the 

succeedent formula of the sequent must be a minimal formula (3.24). 

l am now requiring of predicates, as was done for functions above, 

that they are decidably defined in the sense of 8.12. 

We can consequently decide of a given minimal formula on the basis of 
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the definition of the predicate concerned whether it represents a true 

or false proposition. 

13.4. Suppose that the sequent contains no free variables and no 

minimal terms and that its succeedent formula is a true minimal formula; 

or: that the succeedent formula is a false minimal formula (e.g., 1 = 2) 

and that one of its antecedent formulae is also a false minimal formula. 

For such an obviously true sequent (cf. 7.3.) no reduction step is 

defined. 

13.5. Suppose that the sequent contains no free variables and no 

minimal terms; that its succeedent formula is a false minimal formula; 

and that none of its antecedent formulae are false minimal formulae. 

In that case the following three different kinds of reduction step are 

permissible (counterpart to 13.2): 



13.51. Suppose that an antecedent formula has the form V~ l[{ltJ 

To it we adjoin an antecedent formula !!"( 1(,,) ,Le., a formula 

which resu1ts from TC 4f) by the substitution of a numera1 ~ 
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for the variable ~ In doing so we may either retain or omit the 

formula v~t(~) 

13.52. Suppose that an antecedent formula has the form 

In that case we adj oin to it either the formula Jl or the formula 

13 In doing so we may omit or a1so retain the formula 1L J' if 

13.53. Suppose that an antecedent formula has the form -7~ • We 

replace it by the succeedent formula ~ 

omit or retain the formula -, Ji.. 

In doing so we may either 

13.6. A reduction ru1e for a sequent in which the connectives V, 
~ and => do not occur is a ru1e which renders possible in each 

case the "reduction" of a sequent in finite1y many individua1 ~eduction 

steps (in accordance lvith 13.11 to 13.53) to one of the correct 

definitive forms (13.4) regard1ess of how we may choose the numera1 ~ 

invo1ved, or which of the two formu1ae ,li, and tJ (in the case of 

13.22) we may choose when carrying out a reduction step in which there 

exists a "choice" , Le., one of the steps described at 13.11, 13.21 and 

13.22. 

13.7. If severa1 possibi1ities arise in any other reduction step 

(e.g., in the case of 13.5) no choice exists since we sha11 require 

the reduction ru1e to be such that it determines what kind of reduction 



83 

step is to take place. Also e.g., what numeral ~ is to be used when 
r.-

adjoining an antecedent formula ~(~) and whether the affected formula 

is to be omitted or note 

13.8. Illustration of the Reduction Concept. 

13.81. The Reduction of True Seguents containing no Variables. 

In order to illustrate the reduction concept l shall begin by showing 

that for sequents without variables and without the symbols ~,~ 
and :> ,the concept of the statability of a reduction rule coincides 

with the concept of truth in the sense of a calculation procedure 

(7.2, 7.3): 

Such a "true" sequent is to be reduced to its definitive form according 

to the following rule: First, aIl terms that may occur are to be 

replaced by their "numerical values" (13 .12). If the definitive form 

(13.4) has not yet been reached, a reduction step is to be carried out 

by which the sequent is transformed into another "true" sequent in 

which fewer logical connectives occur than before. This is always 

possible. For reductions according to 13.22 and 13.23 certainly fulfil 

this requirement. In the case of 13.5 the following reduction step 

among the different ones possible is to be applied: 

If a false antecedent formula of the form Jl ~1f.1 occurs~ then either 

U or 11 must be false; in that case the formula li 4' 1:1 is 

rep laced by U or 15 If a false antecedent formula of the form 
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7 ~ occurs it is omitted and the succeedent formula is replaced 

by tt . 

Each one of the given reduction steps obviously leads to another true 

sequent, in particular to one with fewer logical connectives than 

before. The continuation of this procedure obviously leads to the 

definitive form of the sequent in finitely many steps. 

That, conversely, every sequent without variables for which a reduction 

rule is available is true follows from the fa ct that a false sequent, 

as is easily verified, would be transformed into another false sequent 

by every permissible reduction step, or that in the case of a reduction 

step according to 13.22, the choice of li or ~ could be made in 

such a way that this is the case. 

13.82. These considerations can be extended without difficulty to the 

case of sequents containing ~ -symbols ranging over only finitely 

many numbers. The reduction of the bf here corresponds to that of 

the k . 
13.82. If we proceed to the infinite domain of objects of aIl natural 

numbers the statement of a reduction rule for an arbitrary derivable 

sequent is in general no longer as simple. Since it is here no 

longer true that aIl formulae are decidable we may, for example, be 

forced at times to make use of the permission to retain the transformed 

antecedent formula in reduction steps according to 13.51 to 13.53, 

whereas this formula could always be omitted in the case of a finite 

domain (13.81, 13.82). 
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As an examp1e l sha11 give a reduction ru1e for the proposition 

mentioned at 10.6: "Fermat's 1ast theorem is either true or not true" 

which, according to its finitist interpretation at that point, is not 

a true proposition: after the replacement of the and written as a 

This is reduced as fo11ows: First we obtain (13.23): 
'1 

[.., V'~ V, fl V~ '7 { If;.> 1. ~ ~!$ f-t!:: II.!: JJ .. :' 
~[-T'7 ~Vjlll v~ .. (Ip.t ~ ~~~ ~!'- 111

)] - I.,~ 
. .. 

By two reductions according to 13.52 we obtain 

..., V~ Vz III V~ .. (':!:>.2 4' !-!l+ ~~= l ~ J) 
""""1 V ~ Yj YI V ~ .., (":. >,t J- JI: f!. -1-;!-= l ~ ) ~ 1-J ; 

The reduction of this logica1 basic sequent must now be comp1eted 

a10ng the 1ines described in genera1 at 13.92. 

13.90. In the fo11owing l sha11 prove that reduction ru1es can be 
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given for aIl sequents occurring in an arbitrarily given derivation 

once the derivation has been transformed according to Paragraph 12. 

From this the eonsistency will then follow at once: 

For if a sequent of the form ~ Ji .§' -r).t were derivable, then 

--. I-:l , for example, would also be derivable. This is so 

since ~ tL as weIl as ~ "7 /1( follow from 

-4 JI, Ji T J.l by J.r -elimination, hence also (5.243) 

and -, 1,. ~ -.-.,. ..., JI, by "reductio" 

we obtain 77 1-.2 and by "elimination of the double 

negation" (In the same way any arbitrary propo-
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sition can be derived from a contradiction.) Yet no reduction rule can 

be stated for the sequent ~ 1-,1 , since there is no reduction step 

that might possibly be applied to it, nor is it in definitive form 

(13.4) sinee 1 = 2 is false. 

13.91. Of the mathematical basic seguents l am requiring that reduction 

rules have been given for them and that these rules do not make use of 

the permission, which exists for reduction steps carried out according 

to 13.5, to retain the transformed antecedent formula. 

For aIl customary number-theoretical axioms such rules are easily 

stated. Let us look at the examples mentioned at 6.2 in particular; 

these must first be written as sequents and the ~ replaced by ~ 

and ~ the resulting sequent can then be reduced by first 

eliminating the V -symbols according to 13.1 and by replacing 

''"'' 
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their associated variables by arbitrary numerals and by then proceeding 

as described at 13.81. After aIl, the formulae which result are indeed 

"true" • 

13.92. Logical basic sequents are to be reduced according to the fol-

lowing simple rule: 

Suppose that a sequent of the form Ji. ~ JI. is given. We first 

replace the free variables by arbitrary numerals (13.11), th en the 

minimal terms by those numerals that represent their values (13.12). 

The latter procedure must be repeated until no further minimal terms 

occur - for it can certainly happen that new minimal terms arise during 

the computation. The sequent finally has the form ..t If -... ~ III 

The succeedent formula ~~ is then reduced by means of reduction 

steps according to 13.21, 13.22 and, if necessary, 13.12 until it has 

the form ~ ér or is a minimal formula. In the case of reductions 

according to 13.21 or 13.22 the replacement numerals or formulae may 

be chosen arbitrarily. 

If the succeedent formula has now become a true minimal formula then 

the reduction procedure is already at an end (13.4). 

If the succeedent formula has become a fa Ise minimal formula then 

further reduction steps must be carried out according to 13.51, 13.52 
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and 13.12 in such a way that the antecedent formula undergoes pre-
A 

cisely the same transformations, in the same order, as the succeedent 

formula Jj,"" did earlier. If the antecedent formula has taken on 

the form , for example, it must be replaced by a formula 

y{",,) and for the replacement numera1 l' the same numeral 

must be taken that was chosen in the corresponding reduction of the 

succeedent formula. Reduction steps according to 13.52 are dealt 

with correspondingly. The antecedent formula thus eventually becomes 

equal to the succeedent formula and the procedure is once again at an 

end since the definitive form (13.4) has been reached. 

If thë~succeedent formula has taken on the form -r ér, a reduction 

according to 13.23 must first be carried out. The sequent then runs: 

JI, j e ~ /- J As in the previous case, this sequent is 

reduced, in such a way that the antecedent formula lt"fl is transformed 

in the same way as was the succeedent formula ~JW' , so that finally 

appears in its place. Then the sequent runs .,. ~ e-~ 
By means of 13.53 it is reduced to tl'~~ This 

is another logical basic seguent; the formula ~ contains at least 

one 10gica1 connective less than 11, ", and this procedure will con-

sequently end after finite1y many steps. A reduction rule has thus 

been given for arbitrary logical basic sequents. 

13.93. In a similar way arbitrary sequents of the form,2ll11 ~tI. 

or 

or JJ., ï tI. ~ 1= J. 

or ,lJ ~ dt --.J)o ,li 4' Il 
or -, -"7 J,{ ----,..tl 

a fact which will be used 1ater. 

or ~,.,.)-..1"(-t) 

may be reduced, 



Here, too, the free variables and minimal terms are first rep1aced 

fI .fi LAI'" ~ n" according to 13.11 and 13.12. The sequent ~ ~ iJ ~ ~ 
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then has a form which a1so occurred in the reduction of the 10gica1 

basic seguent li. fi.§" 41" ~ JI,"! /sil according to 13.92; hence 

the reduction of the sequent in question can be comp1eted in the same 

way as that of the latter. The same ho1ds true for JI, -~1S"-..JfI tI" 
and, corresponding1y, for (-V., ~(I)) rf --'" {V(~))II 

here the basic sequent (r"ltt»"''-' ("~ 1'(#J)" 

mus t be used. In the case of J,{ ~ 6 11--'11 .Jt Il 11.r fi 
a reduction step according to 13.22 must be carried out; from it either 

rI", Ml! _ "II or II/r/"'" ___ M tI 
~ ~~ ~ ~ ~ <J ---, ~ fo110ws, whichever we wish. 

The reduction is then continued in exact1y the same way as that of the 

basic sequent JI, * ~ JI, Il or 13 If. ~ 11 11 
the additiona1 

antecedent formula is disregarded and presents no prob1em. In the 

case of li. ~ ., JI, Il ~ 1=,1 a reduction step according to 13 .53 yie1ds 
1/ 11/ ___ , 1 .fi 
~ ---r ~ , hence another basic sequent. 

1 J tfI _____ Il JI 
In the case of ..., "7 "'" -, M reduction steps are carried out 

on the succeedent formula according to 13.21, 13.22 and 13.12 unti1 

it has the form -, ér or is a minimal formula. If it has become 

a true minimal formula, then the reduction is at an end. If it has 

assumed the form .., ~ then it is reduced according to 13.23 to 

...,., JJ, "J (!' ~ / ':11,1. ,further (13.53) to 

(J -.. -rU Il then (13.23) to tt* .li. "--+ /- Il 
~ 

The same 

procedure is fo110wed in the case where the succeedent formula has 

litt 
become a fa1se minimal formula; in the case ~ ~ is 

... 
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obtained first and then 

In both cases we have obtained a sequent which has a1so occurred in 

the reduction of the 10gica1 basic seguent JI. " ~ .u fl 

according to the procedure stated at 13.92 (or by a procedure that is 

not essentia11y different). Once again we need only fo110w the 

procedure stated there in order to complete the reduction of the 

sequent in hand. 

It shou1d be noted that in any reduction steps according to 13.5 in 

the reduction procedures at 13.92 and 13.93 the antecedent formula 

invo1ved was never retained. 

Paragraph 14 

REDUCTION STEPS ON DERIVATIONS(20) 

In order to reduce arbitrary derived sequents we sha11 state a procedure 

by which certain reduction steps are carried out on the entire 

derivation of the sequent concerned. For this purpose l sha11 modify 

somewhat the notion of a derivation used so far (14.1) and sha11 then 

exp1ain how an individua1 reduction step is to be carried out on such 

a derivation (14.2). 

14.1. Modification of the Notion of a Derivation. 

The new notion of a derivation resu1ts from the old one (5.2) as fo11ows: 
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5.22 continues to app1y even though the "end-sequent" of the derivation 

may now a1so contain antecedent formu1ae (so that we can speak of a 

"derivation for a sequent"). The symbo1s V, a and :;, must 

not occur in the derivation. No sequent of the derivation may be 

used to obtain more than one further sequent (by the application of a 

ru1e of inference). 

It is easi1y seen that a derivation in the old sense can be transformed 

into a derivation with the same end-sequent which a1so satisfies this 

condition. We need mere1y work backwards from the end-sequent and 

write down corresponding1y often those sequents which have been used 

more than once together with the sequents used for their derivation. 

Mathematica1 basic seguents must fu1fi1 the requirement 13.91; 

together with these a11 their "reduction instances", Le., a11 

sequents which may occur in the course of a given reduction procedure, 

are a1so admitted as mathematica1 basic sequents. 

As 10gica1 basic seguents we may take arbitrary sequents of the form 

JJ. ~,u or Ji, ." d3 
or Jil 13 .... JJ. ~ 43 

or 

or , 
as we11 as a11 

sequents which may occur in the reduction of one of these sequents 

according to 13.92, 13.93. 

Structural transformations in their old form are no longer permissib1e. 
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Among the rules of inference we retain the rule of the V -introduction 

and of "complete induction" with the following modification: a 

V -introduction or a "complete induction" in whose sequents no 

free variables other than A occur, remains permissible if in aIl 

associated sequents not containing the variable ~ the minimal terms 

which occur are replaced by their "n..::merical values" until aIl minimal 

terms have been eliminated (for motivation cf. 14.22). 

The following new "ru~e of the'" -introduction" is added: From 

~ li, ... /.,l results 7' ---. "7 ~ 

One further rule of inference is still added - the "chain rule" -: 

From a sequence of sequents (at least one) of arbitrary form a 

sequent of the following kind results: for its succeedent formula 

we take the succeedent formula of any orie of the sequents of the 

sequence. If this formula is a false minimal formula, any other 

false minimal formula may be taken. For its antecedent formulae we 

write down, in arbitrary order, aIl antecedent formulae of the sequent 

concerned, together with aIl antecedent formulae of earlier sequents 

in the sequence. In carrying out this inference we may omit formulae 

for which the following holds: the same formula occurs already among 

the formulae written down (i.e. those not omitted); or: the formula 

is the same as the succeedent formula of a sequent occurring earlier 

in the sequence than the sequent from whose antecedent formulae it is 

taken. Other antecedent formulae may be inserted among the formulae 

already written down. Finally, the completed sequent may be transformed 
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further by replacing any one of its bound variables one or more times 

by another variable according to 5.244. 

The "chain rulel! has thus been formulated flexibly enough to allow 

for the transformation of a derivation in the old sense, which we 

assume to be already freed of the symbols v, and ~ 

by the method described in Paragraph 12 (and which we also suppose to 

fulfil the conditions for functions, predicates and axioms in 13.12, 

13.3, 13.91), into a derivation in the new sense without any change 

in its end-sequent. 

Reason: AlI structural transformations are special cases of the "chain 

rule". The omitted rules of inference may be replaced by the new 

basic sequents that have taken their place, together with the "chain 

ru le " , e.g., the ~ -introduction: 7'..., li. and A ... tr and 

1I1 11 --9 ,li 4'11 by the "chain rule" yields ~ ~~ 

U J'11 The V -elimination: 7' ----, V.$IM) and 

.v, f()I'4 g('J by the "chain rule" yields 7' -... .:F{~) The 

l' -elimination and the "elimination of the double negation" are 

replaced correspondingly. Finally the "reductio·~~: from JI} 7'--9 h 
and JI, A .. ., 11 and 11; .., 1S ~ 1 ~ J we obtain by the "chain 

rule" 7', ~ J Ji. - ,. / .. .t , and by -, -introduction 

finally 7',.d --+.., tL 

The ~ notion of a derivation is thus not narrower than the old 

one and for the purpose of stating a reduction rule for any one of 



) 

94 

the sequents occurring in a derivation we can without loss of generality 

assume as given a derivation in the ~ sense for the sequent concerned. 

In applying a rule of inference below l shall label as "premisses" those 

sequents from which a new sequent, the "conclusion", results. 

That the "chain rule" in its intuitive meaning constitutes a "correct" 

inference is fairly obvious. It can after aIl be shown that this 

rule is replaceable by the old rules of inference and the structural 

transformations. 

In formulating the "chain rule" it was permitted that no actual use 

was made of some premisses. This proves to be of practical value 

for the reduction procedure. The extensive replacement of the 

rules of inference by combinat ions of basic sequents and the "chain 

rule" is also motivated by convenience; it has the virtue of 

changing the original vertical arrangement of inferences into a 

horizontal arrangement. 

Finally, l shall also pre-suppose that it has been stated for each 

sequent of a given derivation whether it is a baaic seguent and of 

what kind or from what preceding sequents and by what rules of 

inference it has been obtained; l assume in general that it has 

been stated how the individual sequents, formulae, etc., involved 

in an application of a rule of inference, correspond to the designations 

used in the associated general schema: in this way the need for 

resolving possible ambiguities does not arise. 
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14.2. Reduction steps on derivations. 

l sha11 now define the notion of a reduction step on a derivation (14.1) 

and at the same time prove the fo110wing: in such a step the derivation 

concerned is transformed into another derivation and its end-sequent is 

hereby modified in the fo110wing way: 

The possible occurrences of free variables are rep1aced by arbitrari1y 

chosen numera1s; then any minimal terms that may be present are rep1aced 

by their "numerica1 values" unti1 aIl minimal terms have been eliminated; 

and, furthermore, at most one reduction step according to 13.2 or 13.5 

is carried out on the sequent. (It may thus happen that an end-sequent 

without free variables or terms remains entire1y unchanged.) 

The reduction step on derivations is unambiguous except in the cases 

in which the end-sequent undergoes one or more transformations according 

to a reduction step on sequents invo1ving a choice (13.11, 13.21, 13.22); 

here the choice may be made arbitrari1y; if this has been done the 

reduction step is then a1so unambiguous. 

If the end-sequent of the derivation is in definitive form according to 

13.4, then p~ reduction step is defined for this derivation. In other 

cases we carry out a reduction step whose definition now fo110ws 

(recursive1y). In the fo110wing we therefore assume that the end-sequent 

is not in definitive form. 

14.21. If the end-sequent of the derivation is a basic seguent then the 
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reduction step on it is carried out according to the reduction rules 

13.91 - 13.93, which clearly also cover aIl basic sequents in their 

present sense: a replacement of aIl possible occurrences of free 

variables and terms must here take place, followed merely by precisely 

~ step according to 13.2 or 13.5 (or none at aIl if the definitive form 

has already been reached). The claims made above concerning the 

reduction step on derivations are then obviously fulfilled. 

14.22. We now consider the case where the end-sequent is the result 

of the application of a rule of inference and we presuppose that for 

the derivations of the premisses the notion of a reduction step is 

already defined and the validity of the associated assertions 

demonstra ted. 

The reduction step on the entire derivation begins with the following 

preliminary (replacement of free variables and minimal terms): 

We begin by replacing aIl occurrences of free variables in the end­

sequent by arbitrarily chosen numerals. Then we replace the same 

variables (1. e. the variables that 'tolere rep laced in the end -sequent) 

in the entire derivation by the same numerals and replace the remaining 

free variables by 1, with one important exception: the free variable 

occurring in a \ri -introduction or "complete induction" and designated 

by ", at 5.25 mus·t not be rep laced in the premises ï' --'1 !F[a,) or 

~(tA.)J fj . ,. ~(4 +1) , nor in any sequent belonging to the 

derivation of that sequent. 
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Next we replace aIl minimal terms occurring in the derivation one 

by one by their "numerical values", with one important exception: 

~ replacement takes place in the premises of a \f -introduction or 

"complete induction" containing t\ , nor in any sequent belonging to 

the derivation of that sequent. 

Both of these replacement procedures obviously leave the derivation 

correct. Essential to this in the replacement of free variables is, 

first, the special condition for the variable A in the case of 

a V -introduction and a "complete induction" as formulated at 5.25, 

further the requirement (14.1) that every derivational sequent serves 

as a premise for at most ~ application of a rule of inference. These 

two facts make it actually possible to separate completely from the 

rest of the variables the variables to be replaced so that by this 

distinction no error is introduced into any application of a rule of 

inference. 

In the case of a term replacement the special requirement formulated 

at 14.1 for the V -introduction and the "complete induction" is 

important (which is why it was introduced); for the original normal 

form of these rules of inference (5.25) may be destroyed by the 

replacement. 

After this "preliminary" comes the actual reduction step according to 

the following rules. Yet if the end-sequent is now already in definitive 

form the reduction step terminates at this point. 
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14.23. Suppose that the end-sequent is the resu1t of a v -introduction 

or a -, -introduction. It is then e1iminated and its premise taken 

for the new end-sequent, where, in the case of a v -introduction, 

every occurrence of the free variable ~ must be replaced throughout 

the derivation of this premise by an arbitrari1y chosen numera1 and 

every minimal term by its Ifnumerica1 value", subject to the same 

restrictions as at 14.22; not to be rep1aced, however, are terms in which 

the variable ,., occurred earlier. 

The derivation has obvious1y remained correct and the end-sequent has 

become a reduced end-sequent in the sense of 13.21 or 13.23. 

14.24. Suppose that the end-sequent is the resu1t of a "complete induction". 

The numerica1 value of the term twill be denoted by the numera1 ~ 

-He shall be the numera1 for the number smaller by 1 (if 'ft, ,., 
is not equa1 to 1). The free variab1e

A
in the derivation of the premise 

1(-.1,4 .... ,(,.,,,,,) is the rep 1at:ed successive1y by the numera1s l, 2, 3, 

etc. up to 1ft , subject to the same restriction as at 14.22, and a11 

minimal terms that may have resu1ted are then rep1aced by their "numerica1 

values", a1so subject to the same restriction as at 14.22. The 

derivation as a who1e is then comp1eted by the application of the "chain 

ru1e" which makes it possible to derive the end-sequent ~.1 ...... ( 1(1IJ) w 

once again from 7' -oS) ('{i»" 
and the new1y derives sequents ( f(f.JJ -', /J, ~ (f'~))" 
and (5'C"") ~ a - ,., (l'C.))-­

(6(1fC»·, L1 --~~ (l'{'H)). 
etc. up to 
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The asterisk denotes in each case the changes that have occurred through 

the replacement of minimal terms. By virtue of the preparatory 

replacement of terms (14.22) and the further replacement of terms here 

carried out a11 occurrences of minimal terms have fina11y been e1iminated 

so that the re1ated .f" -expressions have indeed become equa1 to one 

another, even if they had not been equa1 before. If ~ equa1s 1, then 

we mere1y put 1 for '" and by the "chain ru1e" the end-sequent ~ d -fI{'flJ]ff 
from 7' --... (l'C1.J)· and ('(IJ) ~ d ...,. (T{,J)) Il . 

14.25. The 1ast case to be considered is that where the end-sequent is 

the conclusion of a "chain ru le" inference. This is the most difficu1t 

reduction since the chain ru le in sorne sense amasses the difficu1ties 

of a11 inferences. 

That premise whose succedent formula provides the succedent formula of 

the end-sequent l sha11 ca11 the "major premise". If the succedent 

formula of the end-sequent is a fa1se minimal formula we choose as 

major premise the first premise (in the given order) whose succedent 

formula is a1so a fa1se minimal formula. This does not change the 

correctness of the "chain ru1e", even if a 1ater premise was the major 

premise before; it may mere1y happen that certain antecedent formu1ae 

of the end-sequent can no longer be regarded as taken from the premisses 

but rather as new1y adjoined. 

From these preliminaries~'it fo110ws that the major premise can in no 

case be in definitive form (13.4), for otherwise the end-sequent wou1d 

obvious1y a1so have to be in definitive form and this was assumed not 
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to be the case. H~nce a reduction step can be carried out on the 

derivation of the major premise. In this respect l sha11 distinguish 

four cases which will be dea1t with in ~ (14.251 - 14.254). 

14.251.Suppose that the major premise undergoes a change according to 

13.2 in the reduction step on its derivation. In that case the end­

sequent is subjected to the appropriate reduction step for sequents 

according to 13.2; any choice that arises is to be made arbitrari1y. 
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The reduction step for derivations is then carried out on the derivation 

of the major premise and wherever a choice exists the same choice is to 

be made as before. The succedent formu1ae of both sequents are now the 

same once again (up to possible re-designations of bound variables) 

and the "chain ru1e" is once again correct. In this case the r eduction 

step for the who1e derivation is thus comp1eted. 

14.252. Suppose that the major premise undergoes a change according 

to 13.5 in the reduction step on its derivation and that the affected 

antecedent formula is one of the formu1ae that has been inc1uded among 

the antecedent formu1ae of the end-sequent (when the latter was formed 

by the "chain ru1e") or that it was omitted because an equa1 formula 

had a1ready occurred among the antecedent formulae. In that case the 

reduction step is carried out on the derivation of the major premise 

and, so that the "chain ru1e" becomes again correct, the end-sequent 

is modified according to the corresponding reduction step on sequents 

(13.5). I.e., if the affected antecedent formula was itse1f absorhed 

into the end-sequent th en the same reduction step is here carried out 
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on that formula; but if it was omitted because it agreed with an 

already existing formula then the reduction step is carried out on 

the latter formula and it is retained regard1ess of whether: the 

corresponding formula in the reduction of the premise is omitted or 

retained. 

14.253. (Principal Case.) Suppose that the major premise, say 

Â ~ (! ,undergoes a change according to 13.5 in the reduction 

step on its derivation and that the affected antecedent formula ( vr ) 
is a formula that was not inc1uded among the antecedent formu1ae of the 

end-sequent because it agreed with the succedent formula of an ear1ier 

premise; suppose further that this premise, ca11 it 

undergoes a change during the reduction step on its derivation which, 

in that case, must necessari1y be a change according to 13.2. (Since 

lr cannot be a minimal formula.) - Suppose that the end-sequent of 

the who1e derivation has the form 8~.D. l shall distinguish three 

individua1 cases depending on whether ~ has the form 

or ...,.u The treatment of the three cases is not 

essentia11y different. 

Suppose first that ~11 has the form In that case an 

antecedent formula sr(~)iS adjoined in the reduction step according to 

13.51 on A-#Ç, and -V .. atJf) is either retained or omitted; in the 

reduction step on .,.,~ V"FUs) , which must be carried out 

according to 13.21, the ~ symbo1 ~ may be chosen for the numera1 

to be substituted so that ]7~ Y{ff.)resu1ts. We now form three "chain ru1e" 



inferences: the first one contains for its premisses those of the 

original "chain ru1elt inference, but with 

in place of 7' --. Vell,,) ; Hs conclusion: 

A correct resu1t. The second "chain ru1e" inference contains for its 

premisses those of the original Itchain ru1e" inference, but with the 

sequent that was reduced according to 13.51 in place of ~ ~ ~ 

its conclusion: ~ ~(1C) ~ J This is a1so a correct "chain 

ru1e" inference. The third "chain ru1e" inference again yie1ds the 
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end-sequent Mo8M (i) .... JJ ~ /j~ ~(1(,) AM.Il ~ ~(",) --* Jj 

- Together with each one of the sequents used we must of course write 

down the complete derivation of each one of them so that now an 

a1together correct derivation again resu1ts. 

If has the form lifs , then an antecedent formula li or tr 
is adjoined in carrying out a reduction step on A..,.I!' according to 

13.52. T'-.2J..f'd$ becomes either 7'--- JJ. or 7'~h 

as desired; the choice shou1d be made so that the same formula occurs 

as in A ~ ~ The procedure is the continued exact1y as in 

the previous case .. 

If 7> has the form ..., JJ , then.4 ~ S- is reduced to 

~l~,IJ. and 7'--+? JI. to 1) JI. ~ /-.,1 . We 

now form, as before, two "chain ru1e" inferences wi th the conc 1usi onS 

~ll ~ ,=~ and ®....,.~ With their order interchanged, 

these two inferences again yie1d li) ~~ by a third "chain ru1e" 

inference. This is so since .() , like rr and 1.=1l , is a fa1se 
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minimal formula. 

14.254. We are still 1eft with the fo110wing possibi1ities: the major 

premise remains unchanged in the reduction step on its derivation; or: 

its change is of the kind assumed at 14.253 and the premise 1'~ ~ 

rernains unchanged in the reduction step on its derivation. -In both 

cases we carry out the reduction step on the derivation of the premisses 

that have remained unchanged and this completes the r eduction. Yet 

in the particu1ar case of a reduction step on the derivation of the 

premisses according to 14.253 (where the end-sequent, i.e., the premise, 

rernains unchanged) we proceed somewhat different1y, viz.: this reduction 

step is to be carried out yet without forming the "third chain ru1e 

inference" presented for this purpose; in its place we put rather the 

two premisses of that "chain ru1e" inference in place of the conclusion 

of that inference in the sequence of the premisses of that "chain ru1e" 

inference which terminates the derivation as a who1e. This obvious1y 

1eaves the "chain ru1e inference" correct. The end-sequent is not changed. 

The definition of a reduction step on a derivation is thus comp1eted. 

Paragraph 15 

ORDINAL NUMBERS AND PROOF OF FINITENESS 

It rernains to show that a successive application of a reduction step 

on a given derivation a1ways 1eads to the definitive form (of the end­

sequent) in finite1y many steps regard1ess of the choices made in 

....... 
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those cases in which a choice exists. In doing so, we sha11 at the 

same time have given a reduction rue1 (13.6) for arbitrary derived 

sequents, since the reduction of the derivation of the sequent 

(according to Paragraph 14) automatica11y invo1ves the reduction of the 

seguent (according to Paragraph 13). 

In order to prove the finiteness of the procedure we sha11 have to 

show that each reduction step in a definite sense "simplifies" a 

derivation. For this purpose l sha11 corre1ate with each derivation 

an "ordinal number" representing a m~asure for the "comp1exity" of the 

derivation (15.1, 15.2). It can then indeed be shown that with every 

reduction step on a derivation the ordinal number of that derivation 

(in genera1) diminishes (15.3). However, the finiteness of the reduction 

procedure is hereby not immediate1y guaranteed; for the ordering of the 

derivations (corresponding to the we11-ordering of their ordinal numbers) 

is of a special kind since it may happen that in terms of its comp1exity 

a derivation ranks above infinite1y many other derivations. E.g., a 

derivation whose end-sequent has taken on the form ~ \(~ sr(~) , 

as a resu1t of a "complete induction" and a \{ -introduction, must 

be regarded as more comp1ex than any one of the infinite1y many special 

instances obtained by substituting individua1 numera1s for ~ and 

reso1ving the "complete induction" (14.23, 14.24). The situation may 

be complicated still further by a multiple resting of such instances., 

Thus the "ordinal numbers" here have the nature of Ittransfinite ordinal 

numbers" (cf. footnote 21) and the inductive comprehension of their 

totality is not possible by ordinary complete induction but on1y by 
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"transfinite induction" whose va1idity requires a special verification 

(15.4). 

15.1. Definition of ordinal numbers (recursive). 

As "ordinal numbers" l sha11 use certain positive finite decima1 fractions 

formed according to the fo110wing ru1e: 

Ordinal numbers with the characteristic 0 are precise1y the fo110wing 

numbers: 0.1,0.11,0.111,0.1111, .•. i.e. in genera1: every number 

with the characteristic 0 whose mantissa consists of finite1y many 

l's; a1so the number 0.2. 

Zeros may not be appended to these expressions, neither here nor be10w;' 

this achieves uniqueness of notation. - l shal1 calI one mantissa 

smal1er than another mantissa if this relationship holds between the 

numbers that result from the prefixing of these mantissae by "0". 

The mantissa of an ordinal number with the characteristic j + 1 

( $~ 0 ) is obtained by taking several mutually distinct ordinal 

numbers (at least one) with the characteristic , 

ordering their mantissae according to size, so that the 1argest occurs 

first, the smal1est last, and by then writing them down in that order 

from 1eft to right, separating any two successive mantissae by, + 1 

zeros. AlI numbers obtainable in- this way from ordinal numbers with 

the characteristic 1 ' and no others, are ordinal numbers with the 

characteristic f + 1. 

Examples of ordinal numbers: 

0.111 I-//DI 1 .. .1 ~./I/ ~.,l DI D(JI1IJIOOII~ .1-J()I()O~OOO 1 
.J .J ~ ~ 
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It can be determined unique1y of a given number with the characteristic 

, + 1 from what numbers with the characteristic ~f it has been 

generated by the above ru1e •. For a number with the characteristic cr-
can obvious1y have no more than ~ consecutive zeros in any one place. 

Further detai1s about the ordering of the ordinal numbers fo11ow at 

15.4. 

15.2. The correlation of ordinal numbers with derivations. 

With every given derivation (in the sense of 14.1) we can corre1ate a 

unique appropriate ordinal number ca1cu1ated according to the fo11owing 

recursive ru1e: 

The fo11owing observation must here be kept in mind: the maximum 

number (~ ) of consecutive zeros in the mantissa is 1arger than 1 and 

a11 of its sections that are separated by successions of ... zeros, except 

for the 1ast one, begin with the numera1 2, the 1ast section consists 

on1y of l's. 

If the end-sequent of the derivation is a basic sequent, the derivation 

receives an ordinal number of the form 2.2001 ... 1, where the number 

of l's must be chosen to be 1arger by one than the total number of logica1 

connectives occurring in the sequent. 

Now suppose that the end-sequent is the conclusion of the application of 

a ru1e of inference and that for the derivation of the premisses their 

associated ordinal numbers are a1ready known. From these the ordinal 



number of the whole derivation is calculated as follows: 

If the end-sequent is the conclusion of a ~- or -, -introduction 

then the numeral 1 is adjoined to the ordinal number for the 

derivation of the premise. By virtue of the stated properties of 

arbitrary ordinal numbers for derivations we have obviously another 

correct ordinal number in accordance with 15.1. 

If the end-sequent is the conclusion of a "chain rule" inference, we 

focus our attention on the mantissae of the ordinal numbers of the 

derivations for the premisses; suppose that ~ is the maximum number 

of consecutive zeros in aIl of these mantissae. Should there be egual 

mantissae among them, we distinguish these by adjoining to one of them 

'i + 1 zeros and one 1, to another -...3 + 1 zeros and two ones, etc.; 
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this principle is to be applied to every occurrence of equal mantissae. 

The mantissae thus obtained are mutually distinct; they are then written 

down from left to right according to size (the largest one first) and two 

successive mantissae are in each case to be separated by ~± 2 zeros; 

finally i' + 2 zeros and one 1 are adjoined at the end. The result 

is the mantissa of the ordinal numbers for the whole derivation. For 

its characteristic we take the smallest natural number which exceeds 

the maximum number of consecutive zeros in the mantissa by 0 or more 

and which, first, exceeds by at least two the maximum number of 

consecutive zeros in any one of the ordinal numbers for the derivations 

of the premisses and which, second, is no smaller than twice the total 

number of logical connectives in the succedent formula of any one of the 
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premisses preceding the major premise (14.25). 

If the end-sequent is the conclusion of a "complete induction", then 

the ordinal number of the who1e derivation receives a mantissa of the 

form 201 .. 10 •• 01; where the number of consecutive l's i8 to be chosen 

greater by one than the total number of consecutive l's in the 

corresponding place in the 1arger one of the mantissae of the ordinal 

numbers for the derivations of both premisses (or either one of them, 

if both are equa1); i.e., if the latter mantissa begins with 200, 

one 1 is to be chosen; in every other case it must begin with 201 

10, in which case one more 1 than here is to be chosen. The total 

number of consecutive zeros must be "" + 2, where ~ ls the maximum 

number of consecutive zeros in the two mantissae mentioned. As 

characteristic we take the sma11est natura1 number that exceeds the 

maximum number of consecutive zeros in the mantissa by zero or more 

and whieh first is not sma11er by two than the corresponding maximum 

number of zeros in any one of the two ordinal numbers used and which 

second is not sma11er than twice the total number of 10gica1 connectives 

in the formula 1 (1) 

It ia easi1y seen that this new1y formed number is another correct 

ordinal number (15.1) and possesses moreover the special properties 

stated above. 

15.3. A reduction step diminishes the ordinal number of a derivation. 

We must now prove that with every reduction step on a derivation 
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according to 14.2 the ordinal number of the new1y resu1ting derivation 

becomes in genera1 sma11er than that of the old derivation. l sha11 

show: the characteristic does not increase; the mantissa decreases 
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in a11 cases in which the end-sequent is not a1ready in definition form 

after the replacement of the free variables and terms (14.21, 14.22); 

the maximum number of consecutive zeros in the mantissa furthermore 

remains unchanged ~cept in the case of a reduction according to 

14.253 where it increases by exact1y two. 

l sha11 again proceed recursive1y, i.e., l sha11 prove the assertion 

by complete induction. 

For derivations whose end-sequent is a basic seguent the resu1t 

fo11ows from the method of corre1ating ordinal numbers with such 

derivations together with the fact that in the reduction step the 

sequent undergoes a change according to 13.2 or 13.5, and here the 

total number of occurring logica1 connectives is diminished. (If the 

definition form of the derivation is achieved ear1ier then the ordinal 

number remains unchanged.) What is important'here is that in changes 

according to 13.5, the a1tered antecedent formula is a1ways omitted, 

c.f. 13.91 - 13.93. 

Suppose now that the end-sequent is the resu1t of the application of 

a ru1e of inference and that the assertion has a1ready been proved 

for the derivations of the Rremisses. 

The pre1iminary step (14.22) has obvious1y no influence on the ordinal 
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number of the derivation. If the definition form of the end-sequent 

results already with this step then the ordinal number therefore 

remains unchanged. If this is not the case then the following holds: 

If the end-sequent is the conclusion of a V - or ...., -introduction 

then the assertion follows at once from the method of correlati.ng 

ordinal numbers with such a derivation. 

Even if the end-sequent is the conc lusion of a "comp lete induction" 

the truth of the assertion follows easily. The "complete induction" 

is, after aIl, transformed into a "chain rule" inference; this does 

not lead to an increase in the characteristic of the ordinal number; 

although the mantissa may become much longer, it nevertheless diminishes 

since the mantissa of the ordinal number of one of the two original 
1 

derivations of the premisses must always occur at the beginning of that 

mantissa. The maximum number of consecutive zeros ( ~ + 2) remains 

unchanged. 

Suppose finally that the end-sequent is the conclusion of a "chain rule" 

inference. The selection of the premise of an earlier sequent as major 

premise (14.25) does not alter the mantissa of the ordinal number; the 

characteristic may on the other hand diminish because certain succedent 

formulae of the premisses no longer contribute to its calculation. 

The reduction step now takes the form of either 14.251 or 14.252. Here 

one of the mantissae of the ordinal nUmbe'L"S for the derivations of 

premisses is diminished without a change in the maximum number of 
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consecutive zeros occurring in it. This has obvious1y a simu1taneous 

diminishing effect of the mantissa for the ordinal number of the total ~ 

derivation. The number of zeros is after a11 still" + 2; the 

diminished mantissa may conceivab1y occur in a 1ater place of the 

sequence, which is ordered by size; if the mantissa was one of severa1 

equa1 mantissae then one 1ess 1 is adjoined to the remaining mantissae; 

yet in a11 cases the first mantissa in the sequence of mantissae 

separated by~ + 2 zeros which has not remained the same must be sma11er 

than before; consequent1y the total mantissa has certain1y a1so been 

diminished. The characteristic does not increase. 

In a reduction step according to 14.253 the ordinal number of the 

derivation is a1tered as fo11ows: let us first consider the ordinal 

numbers for the two derivations which conc1ude with the new1y formed 

first or second "chain ru1e" inference. For these two derivations 

the situation is the same as that in the previous case, i.e.: the 

two mantissae are sma11er than the mantissa of the ordinal number of 

the original derivation; the maximum number of consecutive zeros 

(- ~ + 2) has remained the ~; the characteristics have not increased. 

We now introduce the third "chain ru1e" inference and form the ordinal 

number of the new total derivation: Its mantissa begins with one of 

the two ear1ier mantissae fo11owed by ~ + 3 zeros (usua11y ~ + 4) ; 

it is consequent1y sma11er than the mantissa of the original ordinal number; 

the maximum number of consecutive zeros isi + 4, hence 1arger by two 

than before; the characteristic of the total derivation, fina11y, cannot 

have increased, for the total number of logica1connectives in the 
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succedent formula f( 'l'} ,or LI. or 1'$ , or tt , is sma11er than 

that in the formula , i. e., in , or 

.,~ ; hence the sum of twice the number of logical connectives in 

the former formulae with~+ 4 zeros, which determines the new 

characteristic, is not larger than the sum of twice the number of 

10gica1 connectives in the latter formu1ae with ~ + 2 zeros; nor 

could the characteristic of the original derivation be sma1ler than 

the latter sum since 11 was one of the succedent formu1ae which 

contributed to its calcu1ation. 

In a reduction step according to 14.254 the situation is the same as 

in the case of 14.251 and 14.252 unless we are dea1ing with an 

exceptiona1 case. Yet even a special case can be dealt with without 

difficulty on the basis of our previous considerations; here one of 

themantissae of the ordinal numbers for the derivations of the 

premisses is no longer replaced by ~ smaller mantissa, as was done 

above, but by ~; yet the effect is the same in every desired respect. 

The characteristic is not increased; its maximum number of consecutive 

zeros before the reduction was not sma11er by two than twice the total 

number of 10gica1 connectives in so that the contributions of sr{1t) , 

or .Ii or 13 ,or JJ, , after the reduc tion, cannot lead to an increa se. 

It has thus been proved that in a reduction step the ordinal number 

(usual1y)' diminishes. The most important point was our consideration 

concerning the characteristic of the ordinal number in discussing the 

reduction steps 14.253 and 14.254; this is the idea which enab1es us 
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to recognize a simplification of the derivation in such a reduction 

step in spite of the apparent increase in comp1exity. The 

simplification consists precise1y in the fact that the premisses of 

the "third chain ru1e" inference are "interwoven" to a 1esser degree 

(viz., to a degree corresponding to the total number of 10gica1 

connectives in the succedent formula of the first premise which is 

a1so the antecedent formula of the second premise) than the premisses 

of the first and second and the premisses of the original "chain ru1e" 

inference. The method of corre1ating an ordinal number with a 

"chain ru1e" inference (15.2) is formu1ated fram the above point of 

view; a11 other detai1s fo11ow more or 1ess automatica11y. 

15.4 Demonstration of the finiteness of the reduction procedure. 

Some facts - needed be10w - about the ordering according to size of the 

ordinal numbers: 

With every number 0(. with the characteristic S (f.J. 0) l corre1ate 

the system ê(~1 of those ordinal numbers with the characteristic 

r + 1 in whose formation according to 15.1 the numbe~was the 

1argest of the ordinal numbers with the characteristic $ that were 

used. Every ordinal number with the characteristicf + 1 be10ngs 

unique1y to one such system S(II). If~, is sma11er than tIt, 

then every number of (5(~.) is a1so sma11er than every number of 

The ordering of the systems (3«) corresponds 

therefore to the ordering of the numbers ~ . The fo110wing ho1ds 

for the ordering of the numbers (with the characteristic 1 + 1) 
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within a system G~): the sma11est number within S(J) is the 

number '" + 1. The remaining numbers of ac-J correspond order-

isomorphica11y to the tota1ity of those numbers with the characteristic 

1 + 1 which are sma11er than ~ + 1 in the fo11owing way: Every 

number of $ (,I) , except for '" + 1, resu1ts from ~ + 1 through 

the adjunction of , + 1 zeros fo110wed by the mantissa of any one of 

the numbers with the characteristic f + 1 which is sma11er than A(+ 1. 

The ordering of this mantissa is hereby carried over. 

-The correctness of a11 these assertions fo110ws easi1y from the 

definition of the ordinal numbers. The reader may find it beneficia1 

to examine the ordering of the ordinal numbers with the characteristics 

1, as we11 as 2 and 3, for examp1e, using this definition.(21) 

l now assert (theorem of Utransfinite inductionU): 

A11 ordinal numbers (15.1) are uaccessib1eu in the fo11owing sense by 

running through them in the order of increasing magnitude: the first 

number, 0.1, is considered as uaccessib1eu; if a11 numbers smaller than 

a number ~ have furthermore been recognized as uaccessib1eu then p 
is a1so considered as uaccessib1eu. 

Proof. 0.1 is accessible by hypothesis, hence a1so 0.11, hence 

a1so 0.111, etc., and it follows in general by complete induction that 

every number smal1er than 9.2 is accessible. Rence 0.2 is a1so 

accessible, and thus a11 numbers with the characteristic O. 
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l now apply a complete induction, i.e., l assume that the accessibility 

of aIl numbers up to and including those with the characteristic 1 
( ,.:,.. 0) has already been proven and that it is now to be proved 

for numbers with the characteristic S + 1. The first of these 

numbers, i.e., the number with the mantissa 1, is provable. Now note 

that we have already run through the numbers with the characteristic Jr 
01 

To every such number~corresponds a system ~) of numbers with the 

characteristic , + 1; this system consists of the number ~ + 1 

and a system order-isomorphic with those numbers with the characteristic 

1 + 1 that are smaller than ~ + 1. To run through the numbers with 

the characteristic $ + 1 now amounts merely to a running through of 

the systems ~~} in the same way in which we ran through the numbers 

'" with the characteristic f ; for if a number ~. + 1 has been 

recognized as accessible then aIl remaining numbers of the system 

~) obviously become accessible at the same time; we need merely 

run through this system in exactly the same wa~ in which we have already 

run through the isomorphic system of the numbers (with the characteristic 

r + .1) sma11er than 01 + 1. In this way we can run through a11 

numbers with the characteristic r + 1 by virtue of having run through 

the numbers with the characteristic To the totality of numbers 

el (with the characteristic 1 ) smaller than a number ot! 0 

corresponds, in the case of the number .1
0 

+ 1 (with the characteristic 

f + 1), the totality of numbers belonging to the systems cS~) 

(where ot<tI._ ). 
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Conclusion. By means of the "theorem of transfinite induction" the 

finiteness of the reduction procedure for arbitrary derivations now 

fo110vls at once. If the finiteness of the reduction procedure has 

a1ready been proven for a11 derivations whose ordinal number is 

sma11er than a number f then this a1so holds for every 

derivation with the ordinal number l' for by a single reduction 

step the latter derivation is transformed into a derivation with a 

sma11er ordinal number or a derivation in definitive form. If the 

derivation was a1ready in definitive form then there was nothing more 

to prove.) Thus the property of the finiteness of the reduction 

procedure carries over from the totality of the derivations with·.the 

ordinal numbers sma11er than l' to the derivations with the ordinal 

number () ; by the theorem of transfinite induction it therefore 

ho1ds for a11 derivations with arbitrary ordinal numbers. This 

conc1udes the consistency proof. 
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) SECTION V. 

REFLECTIONS ON THE CONSISTENCY PROOF 

Paragraph 16 

THE FORM~ OF INFERENCE USED IN THE CONSISTENCY PROOF 

117 

l sha11 review in the fo110wing the inferences and specific concepts 

used in the consistency proof from two aspects: First l sha11 

examine to what extent they can be considered as indisputab1e (16.1) 

second, in connection with the theorem of Gode1 (2.32), to what 

extent they correspond to the methods of p~oof contained in 

forma1ized e1ementary number theory and in what way they go beyond 

these methods (16.2). 

16.1 In terms of the indisputabi1ity of the methods of proof used, 

the critica1 point is the proof of the finiteness of the reduction 

procedure (15.4). We sha11 come back to this point 1ater. A110ther 

techniques of proof used in the consistency proof can certa.inly be 

considered as "finitist" in the sense out1ined in detai1 in Section III. 

This cannot be "proved" if for no other reason than the fact that the 

notion of "finitist" is not unequivocally formally defined and cannot 

in fact be de1ineated in this way. A11 we can du is to examine every 

individua1 inference from this point of view and try to assess whether 

that inference is in harmony with the finitist sense of the concepts 

that occur and make sure that it does not rest on a possib1y 

inadmissible "actualist" interpretation of these concepts. l sha11 

discuss brief1y the here most relevant passages of the consistency 

proof: 
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The objects of the consistency proof, as of proof theory in 

genera1, are certain symbo1s and expressions, su ch as terms, 

formu1ae, sequents, derivations, ordinal numbers, not to forget the 

natura1 numbers. A11 these objects are defined (3.2, 5.2, 14.1, 15.1) 

by construction ru1es ana10gous1y to the definition of the natura1 

numbers (8.11); in each case such a ru1e indicates how more and more 

such objects can be constructed step by step. - It must here be 

presupposed that in forma1ized e1ementary number theory certain specific 

"functions", "predicates" and "axioms" have been stipu1ated which 

satisfy the conditions laid down for these objects (13.12, 13.3, 13.91). 

Strict1y speaking, this presupposition introduces a transfinite1y 

used "if - then" 1nto the consistency proof; yet this "if - then" is 

obvious1y harm1ess since the proof need not be regardcd as meaningfu1 

at a11 unti1 that presupposition has actua11y been made and its 

conditions have been shown to be satisfied. 

A number of functions and predicates were furthermore app1ied to 

the se objects and they were decidab1y defined in the sense of 8.12. 

E. g., the function "the end-formula of a derivation", the predicate 

"containing at 1east one ev - or g -symbol" and many others. 

The fo110wing functions, in particu1ar, were a1so decidab1y defined, 

as is easi1y verified: "the derivation resu1ting from a derivation 

by a transformation according to Paragraph 12", "the derivation 

resu1ting from a derivation by a reduction step in which the conditions 

of a possible choice were unequivocally specified" (14.2), "the ordinal 

number of a derivation" (15.2). 
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Furthermore, propositions of the fo110wing kind were proved by 

complete induction: "for a11 sequents", "for a11 derivations" etc., 

whose va1idity for each individua1 sequent or derivation was decidab1e. 

E.g.: "The figure resu1ting from a derivation by a reduction step is 

another derivation and the transformation of the end-sequent fu1fi1s 

certain conditions" (14.2); "in carrying out a reduction step we 

diminish the ordinal number" (15.3). 

In applying the concept "aU" in the consistency proof, l have not 

used the clumsy finitist expression given in 10.11 for it; here the 

distinction between. the actualist finitist interpretations has no 

bearing on our reasoning in any case. 

The negation of a transfinite proposition occurs only once in the 

entire proof (at 13.90) and only in a harmless form in which the 

proposition concerned leads to a quite elementary contradiction. The 

negation can actually be avoided altogether if for "consistency" the 

following positive expression is used: "every derivation has an end-

formula which does not have the form ~ )~ll " Here the "not" is 

no longer transfinite. 

16.11. What can be said, final1y, about the proof of the finiteness 

of the reduction procedure (15.4)1 

The notion of "accessibility" in the "theorem of transfinite induction" 

is of a very special kind. It is certainly not decidable in advance 

whether it is going to apply to an arbitrary given number; from the 

point of view explained in Paragraph 9, this concept therefore has 

no immediate sense since an "actualist sense" has after aIl been rejected. 
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It gains a sense mere1y by being predicated of an individua1 number 

for which its va1idity is simu1taneous1y proved. It is quite 

permissible to introduce concepts in this way; the same situation 

arises, after aIl, in the case of aIl transfinite propositions if a 

finitist sense is to be ascribed to them, c.f. Paragraph 10. With 

the statement that "if a11 numbers smaller than ~ have already been 

recognized as accessible then " is also accessible" the definition 

of the notion of "accessibility" is already formulated in conformity 

with this interpretation. No circularity is of course involved in 

this formulation; the definition is, on the contrary, entirely 

constructive; for ~ is counted as accessible only when aIl numbers 

smaller than ~ have previously been recognized as accessible. 

The "a11" occurring here is of course to be interpreted finitistically 

(10.11); in each case we are after aIl dealing with a totality with a 

constructive rule for generating aIl elements. 

About the proof of the theorem of transfinite induction the following 

must be said: From the way the notion of "accessibility" was defined 

it fo11ows that in proving this theorem a "running through" of a11 

ordinal numbers in ascending magnitude must take place. In dealing with 

the numbers with the characteristic 0 the following is to be observed: 

the infinite totality of the numbers smaller than 0.2 is overcome by 

one single idea: the proof ~ be carried out arbitrarily far into 

this totality; hence it may be considered as comp1eted for the entire 

totality. This "poter.tial" interpretation of the "running through" of 

an infinite totality must be applied throughout the entire proof. 

The occurrence of a transfinite induction hypothesis in the complete 
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induction on ! is to be interpreted in the sense of 10.5 and is 

therefore unquestionable. In the inference: "if the number 01 

+ 1 has been recognized as accessible then aIl remaining numbers of the 

system are accessible" a transfinite "if - then" occurs. 

Objections were raised against this concept at Il.1; yet these do not 

apply to the present case for the very reason that the hypothesis is 

here not to be interpreted hyPothetically but rather as follows: 

only after having reached «+1 can we successfully run through the 

numbers of Q lJ) (viz., in exact correspondence with the way in 

which we ran through the numbers up to ci + 1). 

Now let us consider the induction step as a whole, i.e., the re-

interpretation of the running through of the f+ 1 -systems in terms 

of the running through of the f -systems. This is undoubtedly the 

most critical point of the argument. Yet l believe that if we think about 

it deeply enough we cannot dispute the remarkable plausibility of the 

argument here used. We might for example visualize the initial cases 

with the characteristics 1, 2, 3 in detail. After aIl, as the 

characteristic grows nothing new is basically added; the method of 

progression always remains the same. It must of course be admitted that 

the comp lexity of the multip ly nested infinities which must be "run 

through" grows considerably; this running through must always be regarded 

as "potential", as was done in the case of the characteristic O. The 

difficulty lies in the fact that although the precise finitist sense of 

the "running through" of the f -numbers is reasonably perspicuous in 

the initial cases it becomes of such great cOmplexity in the general case 

that it is only remotely visualizable; yet this must be regarded as 
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sufficient for an acceptable basis upon which the possibility 

of the running through of the , + 1 -numbers can be convincingly 

justified. 

The "conclusion", finally, adds nothing essentially new. The 

proposition that the reduction procedure for a derivation i8 finite 

regardless of how possible choices may be made, contains a transfinite 

"there is", viz., with respect to the total number of reduction steps. 

This proposition is of the same kind as the proposition conceiving the 

"accessibility"; in each special case it receives its definite sense 

only through the proof of its validity for this case; this corresponds 

to the finitist interpretation (10.3). For the purpose of the 

consistency proof alone, incidentally, the notion of a "choice" is 

dispensable since we are here dealing only with the reduction of a 

derivation with the end-sequent ___ 1.~ and since here aIl reduction 

steps are unequivocal and do not depend on choices. The total number of 

steps is not specified in advance; we can merely make certain statements 

about it and these become more and more indefinite as the ordinal number 

of the derivation increases. (The place of a direct statement of such 
" .~~~.t; Il 

a number is taken by its "et?bUH,"~. This can undoubtedly still be 

regarded as being in harmony with the finitist view. 

Altogether l am inclined to believe that in terms of the fundamental 

distinction between disputable and indisputab1e methods of proof 

(Paragraph 9), the eroof of the finiteness of the reduction procedure 

(15.4) can still be considered as indisputab1e so that the consistency 

proof represents a rea1 vindication of the disputab1e parts of e1ementary 

number theory. --
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16.2. In order to examine the extent to which the consistency proof 

coincides with the theorem of G~del (2.32) we would first have 

to correlate natural numbers with the objects of proof theory (formulae, 

derivations, etc.) corresponding ta the way in which it was done in 

" Godel's paper cited in footnote 3, and would also have to introduce the 

required functions and predicates for these objects as functions and 

predicates for the corresponding natural numbers. Then the consistency 

proof becomes a proof with the natural numbers as objects. In order to 

obtain a formally delineated formalism we would have to limit the 

possibilities of definition provided for above to definite schemata 

which can easily be chosen general enough to allow for the definition 

of all functions and predicates required in proof theory; cf., for 

example, Gbdel's version. 

The forms of inference in the consistency proof are then none others 

than those presented in our formalization of number theory; only the 

proof of finiteness (15.4) occupies again a special position. It is 

impossible to see how the latter proof could be carried out with the 

techniques of elementary number theory. For this reason the consistency 

proof is in harmony with Gbdel's theorem. 

In this connection the following two facts are of interest whose proof 

will not be given since it would lead too far afield: 

1. If the inference of cOmplete induction is omitted from formalized 

elementary number theory then the consistency proof can be formulated 

without essential change in such a way that - after having carried out the 

mentioned re-interpretation into a proof about natural numbers - the 

techniques of elementary number theory (including complete induction) 
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suffice comp1ete1y. 

2. The consistency proof for the who1e of e1ementary number theory, 

reinterpreted with the natura1 numbers as objects, can be carried out 

with techniques from ana1ysis.(22) 

The special position of the inference of complete induction is due to 

the fo110wing fact: if this inference is omitted then a definite upper 

bound can be given for the total number of reduction steps required for 

the reduction of a given sequent. Yet if the inference of complete 

induction is inc1uded then this number in its dependence on choices, 

can become arbitrari1y large. This is so since in the re-interpretation 

of this ru1e of inference (14.24) the total number of required reduction 

steps for the sequent ~ ~ ~ !r(t, obvious1y depended on the number 

fi, (the value of ! ) and this number may depend on a choice, as is the 

case if ! is a free variable, and must therefore first be rep1aced by 

an arbitrari1y chosen numera1 .,..., In this case it may happen that 

there exists ~ genera1 bound for the total number of reduction steps 

required in the reduction of the sequent ~ il - .. 9'{t) 

This fact must be the reason why in the ear1ier consistency proofs the 

ru1e of complete induction cou14 not be inc1uded (2.4). 

Paragraph 17 

CONSEQUENCES OF THE CONSISTENCY PROOF 

First l sha11 discuss the question to what extent the cansistency proof 

remains applicable if the "e1ementary number theory" formu1ated in 

Section II is extended by the addition of new concepts and methods (17.1), 

then l shall point out its transferabi1ity to other branches of mathematics 



) (17.2), and shall finally examine certain objections by the 

"intuitionists" against the signif:lcance of consistency proofs as 

such (17.3). 
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17.1. For the value of a consistency proof it is very significant 

whether the stipulated formalism for the particular mathematical theory 

involved, in our case elementary number theory, really fully contains 

that the ory (cf. 3.3, 5.3). Yet in practice elementary number theory 

is not subject to any formaI restrictions; it can always be extended 

further by new kinds of specifie concepts, possibly also by the 

application of new kinds of forms of inference. How does this affect 

the consistency proof? WeIl, whenever the present framework is exceeded 

an extension of the consistency proof to the newly incorporated techniques 

is required. The consistency proof is already designed in such a way 

that this is possible to a very large degree without difficulties. 

If new functions or predicates for natural numbers are introduced, for 

example, then a decision rule in accordance with 8.12 must be given for 

them; if additional mathematical axioms are introduced then a reduction 

rule must be given for them in accordance with 13.91 (cf. Paragraph 6 

and 10.14). Specifie non-decidable concepts in the sense of 6.3 present 

no difficulties either since they can be eliminated by the method 

described at that point. AlI these requirements are easily fulfilled as 

long as the introductions are, in some customary sense, "c.orrect", and 

the axioms "true". 

Even new kinds of inferences May be carried out which are not representable 

in the present forma li sm. In fact every formally defined system contained 
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in e1ementary number theory is necessari1y incomplete in the sense 

that there are number-theoretical theorems of an elementary character 

whose truth can be proven by plausible finitist inferences yet not by 

means of methods of proof of the system proper.(23) This fact was 

advanced as an argument against the value of consistency proofs.(24) 

Yet my consistency proof remains unaffected by it; quite generally 

it can here be said: if an elementary number-theoretical theorem can 

be proved by means of inferences not belor.ging to my formalism, then 

the statement of a reduction rule for this theorem according to 13.91 

will include the theorem in the consistency proof. The theorem given 

as an example by Godel has the quite elementary form Y .. ft l'" 

where 1~ represents a decidable predicate about the natural numbers; 

the fact that the finitist truth of this theorem has been recognized 

means that ~l~) is true for each individual ~ , and from this 

the reducibility of the sequent --+ V. fJlt' according to 13.21, 13.4 

follows at once. 

The concept of the red~ction rule has in fact been kept genera1 enough 

so that it is not tied to any definite logical formalism but corresponds 

rather to the general concept of "truth", certain1y to the extent to 

which that concept has any clear meaning at aIl (cf. 13.8). 

If a new form of inference is to be included as such in elementary number 

theory as formulated so far, it must be suitably included in the reduction 

procedure. (An examp le might be a "li:-ansfini te induc tion" up to a 

fixed "number of the second number class".) 

Yet if specific concepts and forms of inference from ana1ysis, which are 
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after aIl also used in proofs of number-theoretical theorems, are to 

be included in elementary number theory then the consistency proof 

can in general not be extended to these additions in a straightforward 

way; here difficulties arise whose resolutions are still outstanding. 

17.2. The consistency Qroof for elementary number the ory can never­

theless be transferred without difficulty to a number of other 

branches of mathematics. This can be done quite generally in the case 

of such mathematical theories whose objects are given by a construction 

rule corresponding to that for the natural numbers (8.11). A particularly 

simple and in aIl cases applicable kind of such a rule is this: first 

a definite number of primitive symbols is given and it is th en stated 

that each one of these symbols designates an object; if a primitive symbol 

is adjoined to the designation of an object then this results in another 

designation of an object. (In short: "Every finite sequence of primitive 

symbols designates an object of the theory".) 

In such theories functions and predicates are then introduced by decidable 

definitions (8.12) and the same logical forms of inference are used as 

those in elementary number the ory. The consistency proof carries over 

at once with the ouly difference that the place of the "numerals" is 

taken by the "object symbols" of the the ory and this changes nothing 

in essence. 

Such branches of mathematics are, for example, extensive parts of 

algebra (polynomials as objects are indeed finite combinations of symbols); 

from the realm of geometry, e.g., combinatorial topology; even large 

parts of analysis may be represented in this way if the concept of a real 

number is not used in its most general form. Finally important parts 
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of proof theory a1so be10ng here (cf. 16.1). 

The addition of negative numbers, fractiona1 numbers, diophantine 

equations, etc., to the natura1 numbers as objects in e1ernentary 

number theory proper (3.31) can be incorporated in the consistency 

proof in the same way. AlI propositions about these objects can of 

course a1so be re-interpreted as propositions about the natura1 

numbers, as mentioned at 3.31, by corre1ating these new objects in an 

appropriate way with the natura1 numbers. The same is a1so true of 

aIl other theories of the kind mentioned; a one-to-one correspondence 

can after aIl a1ways be established between Il finite combinations of 

symbo1s" and the natura1 numbers ("denumerability"). Yet this is 

unnecessari1y cumbersome and unnatura1 for the requirements of the 

consistency proof. 

17.3. (Cf. Paragraph 9). On the part of the intuitionists the following 

objection is raised against the significance of consistency proofs:(25) 

even if it had been demonstrated that the disputable forms of inference 

cannot 1ead to mutua11y contradictory resu1ts, these resu1ts would 

nevertheless be propositions without sense and their investigation therefore 

an id1e pastime; rea1 know1edge could be gained on1y by means of 

,indisputable intuitionist (or finitist, as the case may be) forms of 

inference. 

Let us, for examp1e, consider the existentia1 proposition cited at 10.6, 

for which the statement of a number whose existence is asserted is not 

possible. According to the intuitionist view this proposition is therefore 

without sense; an existentia1 proposition can after aIl be sensib1y asserted 

on1y if an numerica1 example is available. 
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What can we say to this? 

Does such a proposition have any cognitive value? To be sure, a certain 

practica1 value of propositions of this kind lies first of a11 in the 

fo110wing possibility of application advanced by opponents of the 

intuitionist interpretation: 

They might possib1y serve as a source for the derivation of simple 

propositions, possib1y representab1e by minimal formu1ae (3.24), which 

are themse1ves finitist and intuitiona1istica11y meaningfu1 and which 

must be true by virtue of the consistency proof. 

Furthermore, an existentia1 proposition , e. g., for 

which no examp1e is given, neverthe1ess serves the purpose of making a 

search for a proof for the proposition 

unnecessary; for there can be no such proof since a contradiction wou1d 

otherwise resu1t. 

These are certain1y reasons which make proofs of theorems by means of 

"actua1ist" forms of inference seem not entire1y use1ess, apart fram the 

"aesthetic value" of mathematica1 research as such. 

Thus propositions of actua1ist mathematics seem to have a certain uti1ity 

yet still no sense. The major part of my consistency proof, however, 

consists precise1y in ascribing a finitist sense to actua1ist propositions, 

viz.: for every arbitrary proposition, as long as it is provab1e, a 

reduction ru1e according to 13.6 can be stated and this fact represents the 

finitist sense of the proposition concerned and this is gained precise1y 

through the consistency proof. 
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This "finitist sense" can admittedly be rather cornplicated for even 

simply formed propositions and has in general a looser connection with 

the (actualistically deterrnined) form of the proposition than is the case 

in the rea1m of finitist reasoning. 

In this way the above mentioned existentia1 proposition, e.g., also 

receives a finitist sense, yet this sense is weaker than that of a 

finitistically proven existential proposition, since it does ~ assert 

that an examp1e can be given. 

A quite different question is what significance can still be attached to 

the actualist sense of the propositions. The proof certainly reveals 

that it i8 possible to reason consistently "as though" everything in the 

infinite domain of objects were as actualistically deterrnined as in 

finite domains (cf. Paragraph 9). Yet whether and in how far 

anything "real" corresponds to the actualist sense of a transfinite 

proposition - apart from what its restricted finitist sense expresses -

is a question which the consistency proof does not answer. 

NEW VERSION OF THE CONSISTENCY PROOF 

FOR ELEMENTARY NUMBER THEORY 

In the following l shall present a new version of the consistency proof 

contained in Section IV of an earlier paper;(26)only this time the main 

emphasis will be placed on developing the fundamental ideas and on making 

every single step of the proof as lucid as possible. For this purpose 

l shall in places dispense with the explicit exposition of aIl details; 

viz., in those places where this is unimportant for the understanding of 

the context as a whole and where it can furthermore be supplied by the 
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reader himse1f without much difficu1ty. 

Sections l and III of the ear1ier paper contained de1iberations the 

know1edge of which need not be presupposed for an appreciation of the 

10gic of the consistency proof, even though they are indispensable for 

the understanding of its purpose. In Section II, l had deve10ped quite 

a detai1ed forma1ization of e1ementary number theory which preserved a 

close affinity with mathematica1 practice. This forma1ization is of 

great value now as ever; a1though a complete forma1 system cou1d have 

been written down fram the start it seems to me that by doing so an 

essentia1 part of the context as a who1e wou1d have fa11en by the wayside. 

Added to this must be the fact that the forma1 representation of the 

forms of inference (Paragraph 5 of the ear1ier paper), which was direct1y 

assimi1ated to mathematica1 practice, with the characteristic notion of 

the "sequent", proves a1ready quite suitab1e for meta-mathematica1 

investigations, in fact, judging by my own experience, it is better suited 

to most purposes than the methods of representation generally customary 

to date. 

Neverthe1ess it can not be said that the "most natura1" 10gica1 ca1cu1us, 

simp1y because it corresponds most c10se1y to rea1 reasoning, is a1so the 

most suitab1e ca1cu1us for proof theoretica1 investigations. For the 

consistency proof, in particu1ar, a somewhat different version has proved 

to be even more suitab1e and will therefore be adopted in this paper. l 

am referring to that forma1ization of the 10gica1 forms of inference which 

l had a1ready deve10ped in my dissertati&~7) as the "LK-ca1cu1us". A 

know1edge of that paper is not however presupposed. l sha11 furthermore 

adopt on1y few basic concepts fram Section II of the ear1ier consistency 
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proof and shall refer to them as such. 

The constructivist proof of the "theorem of transfinite induction" 

(up to 1" ), article 15.4 of the earlier paper, is retained unchanged 

as the conclusion of the consistency proof and will not be revised for 

the time being; cf. the concluding remarks at the end of the present paper. 

Paragraph 1 

NEW FORMALIZATION OF 

NUMBER-THEORETICAL PROOFS. 

l shal1 formulate the concepts invo1ved and in each case add some 

exp1anatory remarks. 

1.1. "Formula". 

The definition of a formula is adopted from the ear1ier paper 

(Article 3.2), yet with the following simplification: 

On1y 1 is used as a numeral. Functions are not admitted (cf. however the 

concluding remarks) with the exception of a single one, the successor 

function, which is denoted by a prime: ~' has the same intuitive 

meaning as ~ +1. By means of this function symbo1 the natura1 numbers 

can now be represented by 1, l' 1" ,1' l , etc. Terms are therefore 

now a 1ways of the form 1 or l'or 1" etc. or ~ or Il 1 or It" etc., wherp. 

Dt stands for an arbitrary free variable. The former we calI numerical 

terms and they therefore correspond to the ear1ier numera1s; the latter 

variable terms. Predicate symbols are admitted as before according to 

need; it is required on1y (Article 13.3 of the earlier paper) that they 

are decidably defined, i.e., that it can be decided of every individual 
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natural number whether the predicate does or does not hold. On the basis 

of these concepts of terms and predicates the old definition of a~ 

formula (Article 3.23) is now preserved, yet the logical connective ~ 

will no longer be used. This represents no significant restriction 

since it is well known that ~ can be rep 1aced by 6f and...., or V 

and .., In addition we could still eliminate V and à , as was 

done in the earlier paper (Paragraph 12); yet this is unnecessary since 

by being in exact correspondence with ~ and V these connectives 

cause no difficu1ties whatever in the "LK-ca1cu1us". 

Examp1e of a formula: 

\/. ()l") ( ~ :J, (!JI" -~») _.. - .. 
where 4 is a free variable and ! - and J ... are bound variables. 

Three simple auxiliary concepts will still be needed be1ow: 

A prime formula is a formula containing no logica1 connectives. 

Examp1e: 
111 

a -
1/ 

= 1 

The terminal connective of a formula which is not a prime formula is that 

logica1 connective which is added last in the construction of that formula 

(according to Article 3.23 of the ear1ier paper). 

The degree of a formula is the total number of logical connectives 

occurring in it. 

Examp1es: A prime formula has degree O. The formula 

.,! (~ ) 1 ., J,- ~, ( ~'" = ~ ) ~ has degree 3 and its terminal connective - -
is the V 
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1.2. "Seguent". 

A seguent is an expression of the form 

1J" ') UA. 1 ... 1 2/,,)1' -----~ 11'1 l$a 7 .,. 1 lIy 
where arbitrary formulae may take the place of 

lI., J 1.1.'" , • J 1I.1'" 11)) 11" . , .. 1 1J y 

The ~ 's are called the antecedent formulae, the ~ 's the 

succedent formulae of the sequent. Both the antecedent and the succedent 

parts of the sequent may be empty. 

Suppose that it is known of each antecedent and succedent formula of a 

sequent without free variables whether it is "true" or "false". Then 

the sequent is "false" if aIl of its antecedent formulae are true and 

aIl of its succedent formulae are false. (Moreover, a sequent which 

has neither antecedent nor succedent formulae is also false.) In every 

case the sequent is "true". 

Explanatory Remarks. We shall make use of the definition of "true" and 

"false" only in connection with the concept of the "basic sequent" and 

here the li. and 1'J will be prime formulae wi thout free variables and 

therefore immediately decidable. In general the concept of the "truth" of 

a formula is of course not formally defined at aIl. The definition can 

nevertheless serve quite generally to explain the intuitive meaning of 

a sequent, but it should still be added that a sequent with free variables 

is considered to be true if and only if every arbitrary substitution of 

numerals for free variables yields a true sequent. The intuitive meaning 

of a sequent without free variables can be expressed briefly as follows: 
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" l f th t . "jL " " ' 1 
Il e assump 10ns l , •••••••••••••• , M,.,.. 

ho1d then at 1east one of the propositions" 1S, ", ................. , 
" 1$.," ho1ds." 

In the ear1ier paper l had introduced the concept of a sequent with 

on1y ~ succedent formula for the immediate purpose of providing a 

natura1 representation of mathematica1 proofs (Paragraph 5). Considerations 

of this kind may in fact a1so 1ead to the new symmetric concept of a 

sequent in situations where the aim is a particu1ar1y natura1 representation 

of case distinctions (cf. Paragraph 4 of the ear1ier paper and 5.26 in 

particu1ar). For a V -elimination can how be represented simp1y as follows: 

From --. JI. V1$ we infer ---. JJ ~ il , which reads: "There exists 

the two possibilities ~ as we11 as ts " Yet it must be admitted that 

this new concept of a sequent in genera1 already constitutes a departure 

from the "natural" and that its introduction is primari1y justified by 

the considerable formaI advantages exhibited by the representation of 

the forms of inference fo110wing be10w which this concept makes possible. 

It should still be pointed out that the intuitive sense of a sequent is 

to. be considered to coincide with the given definition in those cases in 

which the sequent possesses no antecedent formu1ae or no succedent 

formu1ae: if there are no antecedent formulae, the sequent expresses the 

fact that any one of the propositions" 1'1, ", ............ , "11.," 
ho1ds, this time independent1y of any assumptions. If there are no succedent 

formu1ae, the sequent expresses the fact that on the basis of the 

assumptions ~, ' ....•.......... ,~no possibi1ity remains open, i.e.: 

the assumptions are incompatible, they lead to a contradiction. 
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A sequent without antecedent and succedent formu1ae, the "empty sequent", 

therefore indicates that without any assumptions at a11 a contradiction 

resu1ts, i.e.: if this sequent is derivab1e in a system then that 

system itse1f is inconsistent. 

Examp1e of a sequent. 

-) A>tV ... ' , - .. l '> 1 .' Il,..-f 
;J 

where a and b are free variables and X a bound variable. -
1.3. "Inference Figure." 

An inference figure (the forma1 counterpart of an inference) consists of 

a 1ine of inference, a lower sequent, written be10w the 1ine, and 

upper sequents (one or more), written above the 1ine. The lower sequent 

here stands for the conclusion of the inference which has been drawn from 

the premises represented by the upper sequents. 

The on1y inference figures admitted into our forma1ism are those 

obtainab1e from one of the fo11owing twenty inference figure schemata 

by a substitution of the fo11owing kind: 

Any formu1ae may be put in p lace of ZI. ,1' ,J , ce ; 
or a. 1c., may be rep1aced by any formula of this 

form; furthermore rC"" or fi t J may be replaced by that formula 

which results from Jrl*, by the substitution of an arbitrary free 

variable ~ or an arbitrary term f for the bound variable .If 

r , fi and 1\ may be rep1aced by arbitrary, possibly empty 

sequences of formulae, separated by ~. ~~S • 



The following restriction on variables is to be observed: the free 

variable designated by ~ -which we call the eigen-variable of the 

inference figure concerned - may not occur in the lower seguent of 

this inference figure. 

The Inference Figure Schemata: 

1.31. Schemata for Structural Inference Figures: 

7' .... (1 1'~ (II) 
Thinning: 

J, 7' .... (fi .,.,~ (S, .b 

Contraction: ", " l' ---. e .,,~ (1), J)~ J) 

.DJ T'--. (ID "---JJ el IJ 

Interchange: 
4, J), rJ=, "f7~ œ T'---. ®/~ te, LI 
/J, fi, J) J 1" ~ ct 71-:, œ e, J)" il 

Cut: 
rr--. ~ b J)".1 ..... A 

." 1 /J -+ (;, A 

The two formulae in the last schema designated by J) are called 

cut formulae, their degree the degree of the cut. 

1.32. Schemata for Qperational Inference Figures: 

." .... • ,1.1 T'~., 11 

." -+ fi), .li ~ -If 
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11,,1..... ", 1'.-, (1) 

J,l V 4f 1 ." --* (1 

T' ~ (), Ft", 
7'~ œ J v~ ~!11) 

1 {4., 1 .,., ,. (j) 

111 ~(II) 1 1'--+ (1 

Ji 71 • ) 
.. (j 

'f' --.,. ()~ -, ~ 

That formula in the schema which contains the logical connective is 

called the principal formula of the operational inference figure concerned. 

1.33. Schema for CJ - Inference Figures (the formal counterpart of 

complete inductions): 

Il1)17' ,. ~, 9'{~) 

The degree of the CJ - Inference Figure is the degree of that formula in 

the schema which is designated by 1{;l) -and which is, of course, the same 

as that of t ( I&J and 

-



Examp1e of an Inference Figure: 

..... A'. l' 
- 1 -
.,'. l' 
- 1 

1, (I < J .t A .. l") - ..-
where a is a free, and z a bound variable. 

Explanatory remarks about the inference figure schemata will follow 

be10w in connection with the concept of a derivation. 

1.4. "Basic Sequents." 

We shall distinguish "logical" and "mathematica1" basic sequents. 

A logical basic seguent is a sequent of the form D ~ J) 

where an arbitrary formula may stand for J) 

139 

A mathematical basic sequent is a sequent consisting entirely of prime 

formulae and becoming a "true" sequent with every arbitrary substitution 

of numerical terms for possible occurrences of free variables. 

The "truth" of a prime formula without free variables is, according to 

our assumption of the decidability of all predicates, always verifiable. 

Whether or not a sequent with free variables is a mathematical basic 

sequent is of course not generally decidable; nor is this actually 

essentia1. 

Examples of Basic Sequents: 
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• ~J, (,,-"S'" ~ ~>~) -.,,~~,(~".':. ~2>~) -
~ 4 :4 -

• 

----- l' > 1 

---. 4 '::. ~ ----. Il. '> ~ - -- ~ 1'11 t:II 1 ( .... HlI") 

1.5. "Deri va tion. Il 

A derivation is a figure in tree form consisting of a number of sequents 

(at least one) with one lowest sequent, the end-sequent, and certain 

uppermost sequents which must be basic sequents; the connection between 

the uppermost sequents and the end-sequent is established by inference 

figures. 

It should be intuitively obvious how this is meant; yet let me paraphrase 

it again as follows: suppose that an end-sequent is given. This sequent 

is either already an uppermost sequent - in which case it alone constitutes 

at once the entire derivation - or it is the lower sequent of an inference 

figure. Every upper sequent of this inference figure is in turn either an 

uppermost sequent of the derivation or the lower sequent of a further 

inference figure, etc. 

The reader should always visualize a derivation quite intuitively as a 

tree-like structure, then the transformations on a derivation to be 

performed in Paragraph 3 become most easily intelligible. 
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} Examp1e of a Derivation: 

«.:4. ~ a' c:A' 
- - - - (..7· 14.~ fcJ~ 

-4/"='( 1=/ ~,,:#.~ 

----------------------~---~ --.. -!f.Ar 

-... ~)( (JI. • '" ) - - -
--. /'" C' 1'11 

For a further examp1e, cf. 1.6. 

Another auxi1iary concept which will be needed 1ater: 

A path in a derivation is, brief1y speaking, a sequence of sequents which 

must be fo11owed in descending from an individua1 uppermost sequent to 

the end-sequent. At each step the path 1eads via one of the upper sequents 

of an inference figure to the lower sequent of that inference figure. 

It is furthermore immediate1y obvious what is meant by the fo11owing: 

a sequent in the derivation stands ab ove or be10w another sequent 

occurring in the same path (i.e. not on1y immediate1y ab ove or be10w it, 

but any number of steps apart). It is understood that wherever the notion 

of "above" or Ibe1ow" is used, the sequents concerned be10ng to a common 

path; otherwise the concept is meaning1ess. 

1.6. Exp1anatory Remarks about the new Forma1ization of Number-

Theoretica1 Proofs. 
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As a result of the revised concept of a derivation a formalization of 

number-theoretical proofs is given which distinguishes itself from my 

earlier "natural" version mainly in two points. First: the rules of 

inference belonging to the logicàl connectives, Le. the "introduction" 

and "elimination" of a logical connective, have now been re-formulated 

throughout in such a way th~t the lower sequent always contains the 

"principal formula" whereas the upper sequents contain the associated 

side formulae. To the earlier "introduction" of a logical connective 

now corresponds the occurrence of that connective in a succedent 

formula of the lower sequent, to the "elimination" of a logical 

connective corresponds the occurrence of that connective in an 

antecedent formula of the lower sequent. The reader should convince 

himself of the equivalence of the oli and new versions by examining, 

for example, the ~ -rules of inference (disregarding, for the time 

being, the occurrence of several succedent formulae). The "cut" and 

the logical basic sequents must be used in the proof of equivalence. 

Cf. the derivation with the ~ -introduction on the left and the 

subsequent " V -elimination", given as an example in 1.5. 

This part of the conversion from the former to the new rules of 

inference amounts to an abandoning of the natural succession of the 

propositions in number-theoretical proofs and to the introduction in 

its place of an artificial arrangement of the propositions along special 

lines with the result that in operational inferences the simpler 

proposition now always comes first and is followed by the more complex 

proposition, viz., the proposition with the additional connective. 
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This re-arrangement proves of practical value for the consistency 

proof because of the essential role which the concept of the 

complexity of a derivation and, with it, the complexity of a particular 

formula (which increases as the degree of the formula increases) plays 

in the consistency proof. 

The second important distinction vis-à-vis the old concept of a 

derivation consists in the symmetrization of the sequents by the 

admission of arbitrarily many succedent formulae. This makes it 

unfortunately more difficult to grasp the intuitive meaning of the 

various inference schemata and to persuade oneself of their "correctness". 

To overcome this difficulty the reader should first conceive of the 

presence of only one succedent formula and should then convince himself 

that the inference remains correct even if several succedent formulae 

occur and also if no succedent formula occurs. As the reader becomes 

more familiar with this concept of a derivation he should be able to 

realize that transformations of derivations and other proof-theoretical 

investigations can be carried out particularly simply and elegantly 

with this concept. The decisive advantages are these: 

There exists a complete synnnetry between k and V ,\7 and 3 
AlI of the connectives ~ , V ,Irj ,~ and .., have, to a great 

extent, equal status in the system; no connective ranks notably above 

any other connective. The special position of the negation, in particular, 

which constituted a troublesome exception in the natural calculus (cf. 

Articles 4.56 and 5.26 of the earlier paper), has been completely 

removed in a seemingly magical way. The manner in which this observation 
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is expressed is undoubtedly justified since l myself was completely 

surprised bi this property of the "LK-calculus" when first formulating 

that calculus. The "law of the excluded middle" and the "elimination 

of the double negation" are implicit in the new inference schemata -

the reader may convince himself of this by deriving both of them from 

the new calculus - yet the y have become completely harmless and no 

longer play the least special role in the consistency proof that follows. 

If we think of the T' ,.A , (Jj) ,.1\. as removed from the inference 

figure schemata we see that the schemata are of the greatest simplicity 

and likeness in the sense that none of them any longer con tains anything 

that is not absolutely essential; the 7', ~, éiP , A consti tute 

an appendage which signifies merely that additional antecedent and 

succedent formulae are carried forward unchanged from the upper sequent 

to the lower sequent. 

The new formulation of the concept of the "mathematical basic sequent" 

still requires an explanation. In the earlier paper this concept was 

defined differently (Articles 5.23 and 10.14). It turns out however 

that the former basic sequents are derivable in the new system. An 

example which typifies the general aspects of the situation may make 

this clear: 

The following "mathematical basic sequent" in the old sense 

~ V~ fi; ~ ( Y:;oa' ~..., J' G ~) - - -
is derivable thus: 



A r:: ~ ---a "" = A - -- .. -

~'=.-tA' 7t=~J ~:r~., -r-f:::. ~ ~ 
A :r'" A' .., .,. • 4. -'t - - --
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AlI usual "mathematical basic sequents" in the old sense are derivable 

in the same way from intuitively synonymous mathematical basic sequents 

in the new sens~~8)The fact that the new concept of a derivation is 

actually equivalent with that of the earlier paper - apart from the 

restriction which results from the initially limited admission of 

functions in the new system - can be verified without great difficulty 

from the observations made above and l shall discuss it no further.(29) 

Paragraph 2 

SURVEY OF THE CONSISTENCY PROOF 

It is to be shown that every derivation is consistenftO)this may be 

paraphrasedby saying that no derivation has an empty end-sequent. 

For from a contradiction, -. U and --....., fll we can first of aIl 

derive the sequents ~ 7/l1. and -, Ji --- and from them, by 

means of a cut, the empty sequent. (Conversely, from the empty sequent 

every arbitrary sequent can be derived by"thinnings".) 
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It makes sense that we shou1d begin by proving the consistency of 

simple derivations, then of more complex ones, using the consistency 

of the simpler derivations, and so forth. We thus proceed "inductively". 

It is furthermore not implausible that this procedure repeat~dly requires 

the examination of an already infinite sequence of derivations before 

a more complex class can be tackled; for example, first aIl derivations 

consisting of only one sequent, then aIl derivations consisting of 

two sequents, etc. Yet this means actuaUy that we are applying a 

"transfinite induction". The pattern of this analysis is in practice of 

course considerably more involved than in the case of the given example. 

The proof is carried out in three stages: 

1. The consistency of an arbitrary derivation is reduced to the 

consistency of aU "simp 1er" derivations. This is done by defining an -

unequivocal - reduction ste.E,. for arbitrary "inconsistent derivations", 

i.e. derivations with the empty sequent as end-seguent; this step 

transforms such a derivation into a "simpler" derivation with the same 

end-sequent. The definition of this reduction step forms the contents 

of Paragrap h 3. 

2. Then a transfinite ordinal number is correlated with every 

derivation and it is shown that in a reduction step the inconsistent 

derivation concerned is turned into a derivation with a smaller ordinal 

number. In this way the so far only loosely determined concept of 

"simplicity" receives its precise sense: the larger the ordinal number 

of a derivation the greater is its "complexity" in the context of this 

consistency proof. This is the contents of Paragraph 4. 

... 
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follows by "transfinite induction". The inference of transfinite 

induction, which is still a rather "disputable" inference up to this 

point, may not be presupposed in the consistency proof nor proved as 
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in set theory. This inference requires rather a separate justification 

by means of indisputable UconstructiveU forms of inference. At the 

end of Paragraph 4 the reader is at this time referred to the earlier 

paper in this connection. 

Paragraph 3 

A REDUCTION STEP ON AN INCONSISTENT DERIVATION 

3.1. Underlying Ideas. 

Suppose that a derivation is given whose end-sequent is the empty 

sequent. This derivation is to be transformed into a (in some sense) 

simpler derivation with the same end-sequent. What is here meant by 

"simpleru can at present only be stated roughly and will be made precise 

later through the ordinal numbers. 

What are the considerations that make us suspect at aIl that, given a 

proof for a contradiction, there already exists an even simpler way of 

proving such a contradiction? By a contradiction is meant a proposition 

of a quite simple structure, for example "1=2 If If su ch a sirop le 

proposition can be proved by means of a complex proof it is reasonable 

to suspect that the proof can be simplified. The following argument 

might conceivably be used: Somewhere in the proof there must after aIl 

occur a proposition of maximal compl~xity. In that case it must be 



assumed that this "Comp lexity extremumll (in the formalization of the 

proof this might be a formula with the highest degree occurring in 

the derivation) must somehow be "reducible". The occurrence of this 

proposition is in the general case conceivable only in this way that 
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the proposition is introduced into the proof by the inference of the 

"introduction" of its terminal connective and is then used again thr ough 

the inference of the lIelimination" of precisely this connective. Yet 

if a connective is first introduced and then again eliminated it can 

be left out altogether by direct passage from the preceding sub­

propositions to the corresponding succeeding sub-propositions.(3l) 

This is the basic idea underlying the lIoperational reduction" to be 

outlined below. In actual fact, however, the situation will turn out 

not to be quite as simple as assumed in the argument just sketched. 

One of the difficulties that may arise is the occurrence of a complete 

induction in the proof; viz., in the case where the proposition with 

the maximal number of connectives in question is not directly proved by 

an "introduction" inference but rather by a complete induction. This 

requires a further special kind of reduction step which will be called 

a IICJ-reduction". The form of this reduction step is extremely simple 

and precisely what we would expect: if the term in the schema of 

the CJ-inference figure is a numerical term, thus denoting an individual 

number, the complete induction can naturally be replaced by a number of 

ordinary inferences - in our formalization a number of "cuts". This 

constitutes the "CJ-reduction". 

If a CJ-inference figure occurs in the derivation whose t is a variable 
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term - and this is in fact normally the case - then this :Ùgure cannot 

of course be reduced immediately in this way. Yet the reduction 

procedure may be arranged in such a way that with successive reduction 

steps more and more variable terms are gradually replaced by numerical 

terms so that eventually even initially irreducible CJ-inference figures 

become in turn reducible. This remark is incidental. Here we are 

actually concerned only with the definition of one single reduction step 

so that regardless of the nature of the given inconsistent derivation 

at least one place can be found in it to which a reduction can be applied. 

Let us suppose therefore that there is no place in the derivation in 

which a CJ-reduction can be carried out. Then, as will be shown in 

detail below, a "operational reduction" is always feasible. On the 

other hand, it cannot be expected that a formula of highest degree in 

the entire derivation is always amenable to reduction. As mentioned 

before, this formula may have been introduced by a CJ-inference figure 

and this figure can contain a variable t It is nonetheless possible 

in each case to locate a formula in the derivation which represents a 

"relative extremum", viz., a formula which is introduced by the 

introduction of its terminal connective and whose further use in the 

derivation then consists in the elimination of that connective, and 

which is therefore reducible. Why such a formula must always exist is 

best seen within the context of the proof following below (3.43). 

The following phenomenon should still be pointed out: it may for 

example happen that the formula which is intended to form the starting 

point of the operational reduction is used again in the derivation not 
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only once but several times. (An example: suppose that the formula 

has the form V. fCJt, ,and fram it are inferred 1{t) and 

r c 1'") or in another place perhaps even fil. 1(11) V JL 
In the general case aIl that can be achieved is that in one place of 

application the formula is used in the form of an elimination of its 

terminal connective. About the remaining places nothing can be said. 

In this general case the formula can therefore not be reduced away 
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completely; we can merely bring about a simplification of this one place 

of application which at this point makes the passage via the formula 

redundant. The occurrence of this formula in the remaining places must 

nevertheless remain unaffected. It turns out that this is sufficient. 

These preliminaries have been carried out against the background of the 

"natural proof" with the natural succession of the individual propositions. 

For their application to our formalism developed in Paragraph 1, a 

corresponding translation must be made: To the "introduction" of a 

connective here corresponds its occurrence in a succedent formula of 

the lower sequent, to the "elimination" of that connective its occurrence 

in an antecedent formula of the lower sequent of the operational inference 

figure. AlI other details will follow from the precise formaI 

development now tobe carried out; the preliminaries ought not and cannot 

of course do more than indicate to the reader in a superficial way the 

main ideas of the procedure and in doing so facilitate the understanding 

of the actual presentation. 

3.2. Elimination of redundant free variables in preparation of the 

reduction step. - The "ending". 
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) We begin with the definition of the "reduction step on an inconsistent 

derivation" by stipulating: before the reduction step proper the 

following simple transformation must be carried out: 

All free variables in the derivation are replaced by the numeral 1; 

excepted from this is however every eigen-variable (1.3.) of an 

inference figure in all derivation sequents occurring above the lower 

sequent of the inference figure concerned. 

What is the effect of this preliminary step? Actually, a free 

variable normallY serves as eigen-variable of an inference figure and 

may here occur only above the lower sequent of this inference figure; 

its occurrence in the lower sequent itself is of course also expressly 

forbidden by the restriction on variables (1.3). Wherever else free 

variables may thus still occur they are c anp letely redundant and can 

equally well be rep laced by 1. l t is fairly obvious that this leaves 

the derivation correct. The empty end-sequent remains of course 

unchanged. 

We furthermore require a simple auxiliary concept - the ending of a 

derivation - which is defined thus: the ending consists of all those 

derivation sequents that are encountered if we ascend each individual path 

(1.5) from the end-sequent and stop as soon as we arrive at the line of ._-

inference of an operational inference figure. Thus the lower sequent 

of this inference figure in each case still belongs to the ending but its 

upper sequents do so no longer. If a path crosses no line of inference 

of an operational inference figure at all then it is of course completely 

included in the ending. 

J(",)) 7' ~ ®, 1'{1IL1) 
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Among the inference figures, the ending obviously contains only 

structural and CJ-inference figures. 

We now distinguish two cases: 

1. The ending of our inconsistent derivation contains .at least one 

CJ-inference figure. In that case a CJ-reduction is carried out, Cf. 3.3. 

2. The ending contains no CJ-inference figure. In that case an 

operational reduction is carried out (3.5) after a further preparatory 

step (3.4). 

3.3. The CJ-reduction. 

If the ending of the given inconsistent derivation contains at least 

one CJ-inference figure after the stated preparatory step, then the 

reduction step proper consists in the transformation of the derivation 

described next. 

We select a CJ-inference figure in the ending which is such that it occurs 

above no other CJ-inference figure. (i.e.: the derivational path which 

goes through the lower sequent of the selected CJ-inference figure must 

not cross the line of inference of any CJ-inference figure between that 

sequent and the end-sequent.) In order to make the reduction step 

unambiguous an appropriate procedure for the unique determination of the 

CJ-inference figure to be selected must still be given; there is a simple 

way in which this can be done. 

The CJ-inference figure has the form: 
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where 1fI designates a numerica1 term. For by virtue of the preparations 

made no variable term could here possibly occur; in fact the lower sequent 

cannot contain a single free variable: after the preparatory step free 

variables can occur only above inference figures with one eigen-variable 

and no such figure occurs below our CJ-inference figure. Indeed, the 

section of the derivational path between the lower sequent and the end-

sequent of this figure from here on crosses only lines of inference of 

structural inference figures: 

This CJ-inference figure is now replaced by a system of structural 

inference figures of the following kind: 

1(1J/I'...,. (9/'(1.) :FC!.')., 71-. .,'(1/) 
:FCt" 7',"" ~ $,1>1 ~(J.'I) 
"',1.), l' ~ el 3'{~I1) 1"1.~/7'-+el FeJ.ul) 

"'Cl)1 7', 71 ...... c!>,., 1{Jl') 

t'lS)} l' ---. (i)' f{l'") , 

Above the sequents y,t, 1 71 ---." 

, 
" 

1 , 
• , 

1 (t" l' ~ ~ ,. ( .... , 
œ) "~:I.') and 

-~~ Q)I F{1 '1) etc. we write in each case that 

section of the derivation which precedes S(AJ, l' -+ 0" a-~~ 
where we rep lace the free variable Of, in the entire section - except 

in the case where it at the same time happens to be the eigen-variable 



of an inference figure occurring in that section, in a11 sequents 

occurring above the 10wer sequent of that inference figure - by the 

numerica1 terms 1 or l'or 1" etc. From the sequent 

JCt}) 1'--",1'{"H) downwards the ending is finally continued by 

adjoining the unchanged remainder of the old derivation. To put it 

154 

precise1y: A11 derivational paths which did not go through this sequent 

have been preserved unchanged and those which did go through it remain 

unchanged from the end-sequent up to this point. 

If ft is equa1 to 1, then the reduction proceeds somewhat different1y: 

in that case the 10wer sequent of the CJ-inference figure runs 

!F(1.'1 7' -..l) ~ F(1). This sequent is derived from the 10gica1 basic 

sequent !F(:f.) ) 1 Ct) by thinnings and interchanges, as required. 

Whatever preceded this 10wer sequent in the derivation is omitted; 

everything e1se is retained unchanged, as in the genera1 case. 

It is easi1y seen that in the CJ-reduction step the given inconsistent 

derivation is in a11 parts transformed into another correct inconsistent 

derivation. A11 we need to rea1ize here in essence is that the replacement 

of ~ by a numerica1 term turns every inference figure into another 

correct inference figure. 

Comments about the nature of the reduction step shou1d no longer be 

required; as stated at 3.1,its intuitive meaning is exceeding1y simple: 

a complete induction up to a definite number is rep1aced by a corresponding 

number of ordinary inferences. 

3.4. Pre1iminaries and preparatory step for an operationa1 reduction. 

--
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We must now deal with the case where the inconsistent.derivatiop contains 

no CJ-inference figure in its ending after the preparatory step 3.2. 

The "operational reduction" to be carried out in this case is initiated 

by a further prepara tory step (3.42) whose purpose it is to eliminate all 

possible occurrences of thinnings and logical basic sequents from the 

ending since these would otherwise give rise to bothersome exceptions in 

the actual operational reduction. 

For this purpose and also for the sake of its further use we must first 

examine the structure of the endin~ more closely. 

3.41. The ending of our derivation contains only structural inference 

figures. Its uppermost sequents are the uppermost sequents of the 

entire derivation or the lower sequents of operational inference figures. 

The ending contains no free variables (since it contains no inference 

figures with eigen-variables). This is all quite obvious. 

We now introduce two simple auxiliary concepts: 

Egual sequent formulae in the upper sequents and the lower sequent of a 

structural inference figure corresponding to one another according to the 

inference figure schema will be called clustered. 

Clustered are, for example, the three formulae designated by ~ in 

the schema of a contraction, likewise the first of the formulae 

designated by in the upper sequent and the first of the formulae 

designated by 71 in the lower sequent, the second formula and the second 

formula, etc.; the two cut formulae of a cut are clustered; etc. 
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The tota1ity of a11 formu1ae in the ending of the derivation obtained 

by starting with a particu1ar formula and co11ecting aIl of its 

c1ustered formu1ae, then a11 formu1ae clustered with these etc. is 

ca11ed a formula c1uster; we can a1so say: the c1uster associated with 

the relevant first formula. 

About the form of this c1uster we can say the fo110wing: 

With every cluster is associated a cut in the sense that its cut formu1ae 

be10ng to the cluster. This is so since every formula which occurs 

somewhere in the ending, as is evident fram the structural Inference 

figure schemata, is always c1ustered with a formula in the sequent standing 

immediate1y below it, except when it is a cut formula. Since the end­

sequent of our derivation is empty, we must at sorne point reach such a 

cut in tracing a cluster downwards towards the end-sequent. 

We now start with this cut and trace the location of the c1uster upwards 

from the two cut formulae belonging to the cluster. With the fo1lowing 

resu1t: That portion of the c1uster which is obtained by starting with 

the left cut formula - we caU it the 1eft side of the c1uster - is in 

tree-form; a branching takes place if in coming from below we reach a 

contraction whose l) be10ngs to the cluster; a branch may terminate at 

sorne point if the .Q of a thinning or the uppermost sequent 

of the ending is reached; in that case we speak of an uppermost formula 

of the c1uster. AlI formulae of the left side of the cluster are 

succedent formulae of the sequents concerned. Exactly analogous remarks 

app1y to the right side of the cluster obtained by starting with the right 

cut formula; it too is in tree-form, etc., aIl its formulae are antecedent 
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formulae. It follows further that no cut formulae other than the two 

formulae from which we started belong to the cluster; hence the cut 

associated with a cluster is uniquely determined and so are therefore 

the concepts of the left side and the right side of the cluster. No 

formulae of the cut other than the cut formulae belong to the cluster. 

AlI formulae belonging to the cluster occur above the lower sequent of 

the cut. ( . . 
1. e .. aIl sequents containing cluster formulae occur above 

that sequent.) The left and right sides together therefore constitute 

the whole cluster. 

The correctness of aIl these assertions is easily seen by tracing the 

cluster mentally from the cut formulae upwards and by visualizing with 

the help of the schemata of the structural inference figures the kinds 

of procedure which alone lead to new clustered formulae. 

3.42. We can now turn to the prepara tory step for the operational 

reduction which, as said earlier, is intended to accomplish the elimination 

of aIl thinnings and logical basic seguents from the ending. This can 

clearly be done. After aIl, a "thinning" represents only a weakening of 

the intuitive sense of a sequent; if a contradiction can be derived from 

the weakened sequent the same can obviously also be derived from the 

stronger upper sequent alone; and a logical basic sequent, being a pure 

tautology, is also dispensible in the context of mere structural 

transformations. 

The procedure almost suggests itself. Let us begin with the thinnings: 

We select a thinning above which - in the ending - no other thinning 
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occurs. We then simply cancel its lower sequent and then use the upper 

sequent in its place. In order to leave the derivation correct we 

continue downwards and in the next lower sequent cancel the formula 

clustered with the formula ~ in the thinning as well as the formula 

clustered with the latter in the subsequent lower sequent, etc. Can this 

procedure lead to new difficulties? Actually, a contraction may arise 

in which a of the upper sequent i8 to be cancelled. All the better, 

the upper sequent becomes then equal with the lower sequent; the 

contraction becomes redundant and we have finished. There may be other 

occasions in the procedure in which the upper and lower sequents of an 

inference figure become egual; in that case we simply omit the inference 

figure and write the sequent down only once. If we encounter a cut in 

which the formula to be cancelled is a cut formula we cancel the other 

upper sequent of the cut together with whatever stands above it and 

derive the lower sequent from the remaining upper sequent alone by 

thinnings and interchanges (as far as necessary). 

The new thinnings which arise are again eliminat~d by the same procedure. 

That this procedure terminates, thus ridding the ending of thinnings 

completely, follows from the fact that with each reduction step we find 

ourselves lower down in the derivation (measured in terms of the total 

number of cuts up to the end-sequent, for example). 

We leave it to the reader to give an exact demonstration of the feasibility 

of the indicated procedure as weIl as to formulate it unambiguously; this 

presents no essential difficulties. 
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Next we eliminate the logica.l basic seguents: In the ending such a 

sequent can now occur only as the upper sequent of a cut since no 

contractions and interchanges are applicable to it; the lower sequent 

of the cut is therefore, as is easily seen, equal to the other upper 

sequent. We therefore sirnply omit the cut and have thus finished. 

As a result we finally obtain an inconsistent derivation whose ending 

has the same properties as those stated above with the additional 

property of containing no thinnings and no logical basic sequents (as 

uppermost derivation sequents). 

3.43. Further Preliminaries to the Operational Reduction. 
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l now assert: There exists at least one formula cluster in the ending 

of our derivation, with at least one uppermost formula both on its left 

side and on its right side, which is the principal formula of an 

operational inference figure. 

At this point the connection between our formaI procedure and the 

fundamental ideas sketched in 3.1 becomes apparent: the concept of the 

formula cluster makes it possible for us to grasp iIl its entirety the 

collection of aIl occurrences of a "propositionn in the "proof" (Le.: 

formula in the derivation). A principal formula as the uppermost formula 

on the left side corresponds to an introduction instance of the terminal 

connective of the proposition concerned; a principal formula on the right 

side - which is, after aIl, an antecedent formula - corresponds to a 

subsequent elimination instance of that connective. The ~ associated 

with the cluster represents nothing more than the formaI establishment 



(\ 

" ! 

160 

of the connection between the two instances made necessary by the 

particu1ar structure of our formalism. The fact that branchings 

of a c1uster occur corresponds to the difficu1ty discussed at the 

end of 3.1; branchings on the right side, for examp1e, represent a 

multiple application of the proposition. That branchings can appear 

both on the 1eft and the right is due to the genera1 symmetry of our 

forma1ism and renders more difficu1t a transfer of the fundamenta1 

ideas to each individua1 detai1 of the reduction. Yet it suffices if 

we have a reasonab1e conception of the fundamenta1 ideas and continue 

to let ourse1ves be guided simp1y by forma1 analogies; this is precise1y 

what l have done in formu1ating the consistency proof. 

We must now prove the ab ove assertion which can be interpreted as 

asserting the existence of a suitab1e place for an operationa1 reduction 

in our derivation. 

In this connection we first observe that our derivation must contain at 

1east one operationa1 inference figure. If this were not the case the 

ending wou1d represent the entire derivation. This wou1d mean that a 

"fa1se" sequent has been derived fram mathematica1 basic sequents which 

contain no free variables, and are therefore "t:rue" sequents, by means 

of the application of structural inference figures a10ne and without 

thinnings. At the same time the on1y formu1ae occurring in the who1e 

derivation are prime formu1ae without free variables, thus decidab1e 

formu1ae, so that it can be decided of each sequent whether it is true 

or fa1se. (A formula with 10gica1 connectives cannot occur because no 

such connective occurs in the basic sequents and because none cou1d 

, 

1 
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have been introduced by the possible Inference figures.) This would mean 

that at least one Inference figure occurs whose lower sequent is "false" 

whereas its upper sequents are "truelt
• This is easily seen to be 

impossible. 

In order to prove the above assertion we now examine aIl those paths 

of the ending whose uppermost sequent is the lower sequent of an 

operational i.nference figure. We follow these paths from the top down 

and record whether in the sequents which we encounter a formula occurs 

which belongs to the same cluster as one of the principal formulae 

standing immediately above it (or whether it itself is a principal 

formula). This is usually so in the case of the uppermost sequents of 

our paths and as we continue downwards in a path this property is generally 

inherited. It is preserved trivially in passing through contractions and 

interchanges ( by the definition of cluster). If we reach a cut in which 

two paths of the considered type meet it may however happen that this 

property is not transferred to the lower sequent; yet this can arise at 

MOSt in the case where the cluster belonging to the cut formulae contains 

a principal formula on both sides. This is precisely the case specifi.ed 

in the assertion. Since the empty end-sequent does not possess the 

mentioned property in any case, the assertion is proved as long as this 

case really is the only possible one in which the property under discussion 

may fail to be passed on in tracing out the paths under examination. To 

this needs to be added only one more case, viz., the case in which, coming 

from above, a cut is encountered whose other upper sequent belongs to none 

of the paths examined and can therefore occur only in paths of the ending 
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that are bordered above by mathematical basic sequents. This upper 

sequent can then contain only prime formulae and the cut formulae are 

therefore also prime; indeed, a formula occurring in the traced upper 

sequent and belonging to the same cluster as a principal formula cannot 

be a cut formula since its degree is greater than 0 a.nd it is therefore 

clustered with a formula with the same property in the lower seguent. 

This concludes the proof of the existence of a formula cluster suitable 

for an operational reduction. 

Now one last auxiliary concept that will be of central importance for 

the definition of the "measure of complexity" of a derivation: 

By the level of a derivational seguent we mean the highest degree of 

any cut or of a CJ-inference figure whose lower sequent stands below 

the sequent concerned. If there is no su ch inference figure then the 

level is equal to O. 

Comments about the importance of this concept will follow further below. 

3.5. The Operational Reduction. 

Now the operational reduction proper can be defined. Given is an 

inconsistent derivation whose ending includes at least one formula 

cluster containing on each side at least one principal formula of an 

operational inference figure. We select such a formula cluster and 

from each of its sides ~ uppermost formula of the kind mentioned. In 

order to make this step unambiguous a certain procedure concerning the 

type of choice to be made must be specified; this is not difficult. 
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We shall first deal with the case in which the terminal connective of 

the clustered formulae is a V The remaining cases are dealt with 

almost in the same way and can be disposed of la ter in a few words. 

The deri.vation therefore looks like this: 
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Explanatory remarks: 

The dots are intended to indicate that further paths may enter from 

both sides in arbitrary fashion into the traced paths. In addition 

entire derivational sections of any form whatever may stand above the 

operational inference figures. The term "" can only be a numerical 

term since no inference figure with an eigen-variable can occur below 

it (3.2, 3.41). Suppose that '3 -+ ~J is the first sequent encountered 

in tracing the path from 7'.,A -l'QI) A to the end-sequent which is of a 
1 -

lower level th an the upper sequent of the cut belonging to the cluster. 

(Such a sequent must always exist since the level of the end-sequent 

equals 0, yet that of the upper sequent of the cut in question at least 

1 since the degree of the cut itself is at least equal to 1.) l t may 

happen that the sequent 1j L1 -+ (j) "A is already the desired 

sequent; the above diagram must then be interpreted correspondingly. 

It may of course equally weIl happen that an upper sequent of the cut is 

itself already the lower sequent of the operational inference figure; and, 

finally, the sequent r; .-. {l3 may be identical with the end-sequent; 

aIl of this makes no difference to the reduction. 

The reduction step consists now in the transformation of the derivation 

into the form indicated by the following diagram: 
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How the diagram is intended should basically be obvious. The old 

derivation for 1I ~ ®J is written down twice side by side and 

the first instance is modified in such a way that the left operational 

inference figure vanishes; in the section of the derivation standing 

immediately above it every occurrence of the free variable ~ is here 

replaced by the numerical term .,., - except again where it happens to be 

used simultaneously as the eigen-variable of an occurring inference figure 

in the sequents standing above the lower sequent of that inference figure -

the formula is then nevertheless re-introduced, but 

this time by a thinning; everything else is left exactly as it was before 
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with the single exception that in the path going through 

1! -+ Y{fC~ ~) VM je.> the formula /F{ 1f,J is carried 

a10ng as an additiona1 succedent formula. It can be seen at once by 

reference to the inference figure schemata that this 1eaves a11 inference 

figures correct; the same is true of the replacement of Ir, by of(, 

In the second instance of the old derivation of ~ ~ (i).1 the 

procedure is ana1ogous. Here the right operationa1 inference figure 

vanishes without necessitating the replacement of a variable; and the 

formula ~(1C) is carried a10ng down as an additiona1 alltecedent formula. 

From the two sequents and 

the old sequent 1/ ~ (!JI 

is th en obtained by a new cut together with the applications of 

interchanges and contractions and the rest of the old derivation is taken 

over unchanged. 

The reader can convince himse1f without difficu1ty that the reduction 

step here defined turns the given derivation into another entire1y 

correct derivation in the sense of our forma li sm. 

Remarks about the significance of this reduction step. 

Let us reca11 the fundatnenta1 ideas of the operationa1 reduction (3.1) and 

compare with it the forma1 presentation just given. The two operationa1 

inference figures represent an introduction and e1imination of the v 
in VI: :;CI) According to the original fundamenta1 idea the two 

inference figures shou1d have been omitted and the -trf ~(II) rep 1aced by 

the "simp1er" 1{1ff,) -whose degree is smaller by 1 -; the place of the 



) cut with the cut formula, VI F( J-J 

new cut with the cut formu1ae Jrl~) 

shou1d have been taken by a 

Yet there exists the 

a1ready mentioned difficu1ty that the formula rnay have 

severa1 application instances, even severa1 introduction instances -
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i.e., the formula c1uster rnay have branchings on both sides and contain 

severa1 uppermost forrnu1ae. It is therefore actua11y necessary, both 

in connection with the cance11ation of the 1eft operationa1 inference 

figure and that of the right operationa1 inference figure, to retain 

a1so the old cut with ; a If s imp1ificationlf has neverthe1ess 

been achieved in each case by the omission of an operationa1 inference 

figure above this cut. (A1though interchanges and a thinning have taken 

the place of this figure, these Ifdo not count" in the determination of 

the If comp 1exitylf of the derivation. - The fact that 

is reintroduced by a thinning is motivated on1y by convenience since its 

reappearance further down in the derivation must be expected in any 

case and since this is the most convenient way of obtaining the new form 

of the derivation from the old one.) 

Further down in the new derivation then fo110ws the "new cut" with the 

cut forrnu1ae Jr(1') Precise1y why has this cut been p1aced be10w 

the 1f1eve1 1ine"? (Basica11y it cou1d have been introduced at any stage 

be10w the two VJt 1(14.) - cuts up to the end of the derivation; 

we wou1d mere1y a1so have had to write down twice the section of the 

derivation from these cuts up to the new cut with Y(1f,) as an 

additiona1 antecedent or succedent formula and to 1eave unchanged the 

section be10w the new cut.) 
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) This leads us to the purpose of the notion of a level in general. 

What actually matters here is that in the reduction a "simplification" 

of the derivation is achieved in a sense to be made precise in the next 

paragraph through the ordinal numbers. Yet at first glance the new 

form of the derivation looks more cOmplex than the old form: one and 

the same section of the derivation now occurs twice, although in each 

case somewhat simpler than before becausejof the omission of an operational 

inference figure. In defining a measure of complexity for derivations it 

will therefore be easy to achieve that each individual section standing 

above the new cut is valued somewhat lower than the corresponding section 

of the old derivation. Yet how is it to be accomplished, once the new 

cut has been added, that the entire section of the derivation up to 7; ~ ~4 
is valued lower than the old derivation up to the same sequent7 The 

new cut has a lower degree than the old cut; it is this feature to which 

we must cling. The new cut is thus placed below the collection of aIl -- --, 
cuts whose degree is equal to that of the old cut so that after the 

reduction the collection of cuts above any one of these cuts of high 

degree is no larger than before, but is at most the same or a IIsimplified" 

collection. On the other hand, the new cut and everything below it now 

extend over a larger collection than before. This is compensated for, 

however, by the fact that aIl of these cuts are of lower degree than the 

old cut. Our success in achieving a lowering of the ordinal number of 

the derivation through the reduction will depend merely on our exploiting 

these facts properly when assigning ordinal numbers below. 

An exceeding importance will thus have to be attached to the degree of a 
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cut in this connection. 

In this discussion it was tacitly assumed as normal that the cut of 

larger degree generally occur ab ove the cuts of smaller degree in the 

derivation. Since in reality this may of course not be the case the 

"degree" is rep1aced by the concept of the "level", and aU this means 

is that cuts of a lower degree above cuts of a higher degree are treated 

as though they also possessed the higher degree; once this is done the 

main ideas stated above carry over without difficulty. 

In determining the level of arbitrary derivation sequents, the CJ-

inference figures are furthermore treated like cuts since in the course 

of their reduction they would be resolved into cuts of the same degree 

in any case. 

The fOl~ of the reduction step for other connectives. 

We must still specify how the reduction step is to be modified if the 

terminal connective of the cluster formulae is not a ~ ,as in the 

explicitly presented case, but a ~ v or The 

differences are only minor: 

If the clusterformulae have the form ,tJ, 4'1S ,we imagine the above 

diagrams suitably modified; in place of V. lé",) stands ~ '" h 

and the operational inference figures run thus: 

U, 71 .... 4?, 
Ji/II, 'lI ~ ~ .. 

_/~ 4&1 .. 

U4'.,~ ... li, 
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In the new derivation now also takes the place 

of ,in place of occurs or '# 
depending on which of the two possible forms the right operational 

inference figure (the Il ~ -e limina tion) has had. Above the place 

from which the left operational inference figure is omitted we retain 

only the derivation of 7J~_I'u or of 7J -.. Cil", 11 
the other derivation is omitted. (This corresponds to the replacement 

of tt by 1f, in the V -case.) The rest of the procedure is exactly 

the same as above; even the indicated differences completely suggest 

themselves. 

If the terminal connective of the cluster formulae is a or 
~ 

the reduction proceeds cOmpletely syrnmetrically to the cases and 
A 

Right and left are here interchanged. 

, nothing If the cluster formulae finally have the form 

changes essentially: the formula ~(~) in the new derivation then 

corresponds to the formula Ji, , except that, as a consequence of 

the omission of the left operational inference figure, the latter formula 

occurs as an additional antecedent formula and, correspondingly, as a 

consequence of the omission of the right operational inference figure, 

as a succedent formula. In both cases the formula is carried 

forward up to the sequent ~ -.. ~ as usual; the only difference is 

the fact that now the left and the right upper sequent of the " new eut", 

i.e., the complete derivational sections standing above it, must be 

interchanged with one another. 
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This completes the definition of a reduction step on an inconsistent 

derivation. 

Paragraph 4 

THE ORDINAL NUMBERS 

CONCLUDING REMARKS 

4.1. The Transfinite Ordinal Numbers below ~ 

l shall now define the ordinal numbers to be used. These will not be 

written as decimal fractions, as in the earlier paper; this time l 

shall adopt the notation customary in set theory. (In spite of this 

aIl definitions and proofs given in the following paragraphs are 

entirely "finitist't and are of an especially elementary nature in this 

respect as were the corresponding sections in the earlier proof. Here 

we are not really concerned with a study of transfinite induction, 

cf. below.) 

Recursive definition of the ordinal numbers, also of equality and the 

order relation ( < ) among these: 

The system consists of the number o. We define: 0 = 0 

and not (> ~ o. 

Suppose thatthe numbers of the system ~ (where r is 

a natural number or 0) are already defined, as weIl as :s and the 

< -relation among these. An arbitrary number of the system S'of 1 

then has the form 
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where the 0( '5 are the numbers of the system ~ , with 

designates 

a natural number. The number 0 also once again belongs to the system 

6., .. , . 

A s:, .. , -number ~ is equal or smaller or larger than a 

G, ... -number 1 if their representations coincide or if the 

first non-coinciding "exponent" DI- in the representation of f5 
is smaller or larger than the corresponding exponent in the representation 

of t If f • r'" · . . . .' then f > t 0 is considered 

to be smaller than any other number. f > t means of course the same as 

T<f 
This completes the definition. It is easily seen that each system 

includes aU preceding systems and that the relations of "smaller than" 

and "equal" between two numbers are independent of the system to which 

these numbers are considered to belong. It also follows quite clearly 

that of a given expression it can always be decided whether it is an 

ordinal number or not and that of two given ordinal numbers it can be 

decided (in a simple way) whether they are equal or which is the smaller 

one. (These concepts are therefore indeed "finitist".) 

For present purposes the symbols • 0' 1 .... and 
, , 

(0 , as 

weIl as the "exponentiation" occurring in the representation of numbers 

are to be interpreted quite formally and no particular sense needs to 

be associated with them such as regarding tA) as "an infinite number" 

and the '+ -symbol as corresponding to "addition". Such 
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visua1izations are of use mere1y for the understanding of the context 

as a whole. Solely for the purpose of comparing the size of the 

individua1 systems the fo1lowing might still be said by using concepts 

and results from set theory: 

The system G, .0 0 
consists of the numbers: 01 ~ , W + W,l • • • 

i.e., in the usual notation: 0, 1, 2, ......... ) 
~u. of the 0 and the na tura 1 number s • 

The limit number of the system is ~ 

Ct-) 
contains already all nu~bers below ~ 

o I.~O ~ ,~ .. 0, 0, L\) , - .. - ••• 1 

• • 0 W W 
-40 W

W 
+ W '" .• ) 

, viz: 

• • • lA +W .. Coti) 

(..A) , . .. ) 

A J 
,_ ... ~c 1-..1 ~ . .a"""")~I···)~'·"· 

~ _ ...... " ... ,- J 
thus: 0, 1 ) J" •• • • »' , 

in general all polynomials . . 
the" and r designate natural numbers or 0; ~,> 000& > ... > ...::J tS 

c.-. ("'W) 
W 

contains a11 numbers below W (Le., W in the 
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fo110wing, multiple exponentiations are to be interpreted 

corresponding1y). 

(;~ contains a11 numbers be10w , etc. 

The 1imit number of a11 systems taken together is the number .0 
the Itfirst t -numberlt. 

We sha11 use the symbo1 1 as an abbreviation for • CA) We 

a1so need the concept of the Itna tura1 sumltof two (non-zero) ordinal 

numbers which is defined as fo110ws:(32) 

1, 11. 
Suppose that ri. = lN + tII3 -4>... 
P = IA)S,,,, 1/,)&" + •• .... I»r~ 
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The "natura1 sum &JI. *p It is then obtained by arranging 

the ,.+~ constituents ~1 and by size and joining them 

back together again by '+ -symbo1s, the 1argest constituent 

first, the sma11est 1ast, with equa1 constituents of course side by side. 

In this way another correct ordina~ number obvious1y resu1ts. 

An examp1e: If 
1 

lA) "" • ols CA) .... 

. ....... ' 
~IAJW '+' .... IA~I .... , .... w~'+' .... ~' ... , 

~~f1-

In a11 cases ~:tt ~ ::II' ~ The natura1 sum of even 

arbitrari1y Many ordinal numbers is independent of the order of the 

individua1 summations. 
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l foC JI ~ " then These facts 

are easi1y proven. 

4.2. The Correlation of Ordinal Numbers with Derivations. 

Suppose that an arbitrary derivation is given. Its ordinal number 

is ca1cu1ated by passing downward from the uppermost sequents and 

assigning to each individua1 derivationa1 sequent as we11 as to each 

1ine of inference an ordinal number ( > 0) on the basis of the 

fo110wing stipulations: 

• Each uppermost sequent receives the ordinal number 1 (i.e., ~ ). 

Suppose that the ordinal numbers of the upper sequents of an inference 

figure have a1ready been determined. The ordinal number of the 1ine of 

inference is then obtained as fo110ws: 

If the inference figure is structural then the ordinal number of the 

upper sequent is adopted unchanged, or, in the case of a cut, the natura1 

sum of the ordinal numbers of the two upper sequents is formed. 

If the inference figure is operationa1 then + 1 is adjoined to the 

ordinal number of the upper sequent; yet if the figure has two upper 

sequents, the 1arger of the two ordinal numbers is se1ected and +1 

is adjoined to it. 

If a CJ-inference figure is fina11y encountered - whose upper sequent 

~ ~~ 
has the ordinal number W + · . ." · + (Al 

then 
-'. +. 
~ is taken as the ordinal number of the 1ine of 



) inference. If 0(,:= 0 then this number is of course 
, 

W 

From the ordinal number of a line of inference - calI it 0( 

the ordinal number of the lower sequent of the inference figure 

concerned is obtained in the following way: 

If the level of the lower sequent is the same as that of the upper 

sequent then the ordinalnumber of the lower sequent is equal to 0( 

If its level is lower by l, then the ordinal number of the lower 
~ w~ 

sequent is ~ ut. If lower by 2, the ordinal number is ~ 

lower by 3: tI{IlJJ , etc. 

The ordinal number which is finally obtained for the end-sequent of 

the derivation is the ordinal number of the derivation. 

The reader can easily convince himself that the mentioned operations 

always yield new genuine ordinal numbers in accordance with their 

definition. -For the time being l shall not comment on this method 

of correlating ordinal numbers; it is really quite simple; of special 
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interest is only the evaluation of the CJ-inference figures and 

that of the different levels; in both cases this valuation will be most 

easily understood through its effect later on. 

4.3. The Decrease of the Ordinal Number in the Course of a Reduction 

Step on an Inconsistent Derivation. 

It still remains to show that in the course of a reduction step according 

to Paragraph 3 the ordinal number of an inconsistent derivation decreases. 



This no longer presents any special difficulties; aIl we need to do is 

to examine the correctness of this assertion carefully for each 

individual case. 

The preparatory step 3.2. obviously leaves the ordinal number entirely 

unaffected. What is the situation in the case of a CJ-reduction (3.3.)? 

Suppose that the ordinal number of the upper sequent of the CJ-inference 
~, ~~ 

figure is '" +.,. .... W ) , 

that of the line of Inference therefore This is also 

at once the ordinal number of the lower sequent whose level cannot be 

lower than that of the upper sequent since the cluster cuts associated 

with !(1.) and !F{",) and y,'hich have the same degree as the CJ-

Inference figure, must still occur further down in the derivation. Let 

us 110W examine the figure which has replaced the CJ-inference figure 

in the reduction (first for ~ not equal to 1 ). In the new 

derivation each one of its uppermost sequents obviously recaives the 

same ordinal number w'" + . .. - . -t- Al".., Furthermore, 

aIl sequents of the replacement figure have the same level, viz., that 

level which the two sequents of the CJ-inference figures had before. 

(The newly occurring cuts have of course the same degree as that of 

the CJ-inference figure). The ordinal number of the lowest sequent of 

this figure is therefore obviously equal to the natural sum of aIl 

, .• ~. + . -+ W""'" numbers -

Consequently it begins: .. .. - .. 

It is therefore smaller than , according to the definition of 

"smaller than" for the ordinal numbers. 
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From this it now follows easily that the ordinal number of the 

entire derivation has also been decreased. Aftel..' aIl, from the 

CJ-inference figure downwards nothing has changed in the derivation, 

in fact, aIl levels have here also remained the same. The decrease 

which has occurred at one place is preserved in calculating the 

ordinal number further up to the end-sequent; what is essential is 

that in proceeding downwards only structural inference figures are 

encountered and that the following holds: If 01. " <. <' 
,/11 < ~ ot-*,~ < eI:ft"~ then C4j '" and (Suppose that 

01 \IC 

~ ~O.) , .1 and Both requirements are satisfied at once 

by definition. 

«',+' 
Now the purpose of the ~ in the evaluation of a CJ-inference 

figure also becomes clear: in the reduction the figure breaks up 

into a number of cuts; and in some sense the n-fold multiple of one 

and the same derivational section occurs. In order to achieve a 

decrease in the ordinal number we must therefore choose as the ordinal 

number of the original derivational section up to the CJ-inference 

figure the "limit number" of aIl "n-fold multiples" of the ordinal 

/.-f',.1 ~ Il f-4'i • ~., 
number of the upper sequent, i.e., ~ --

(The expressions in " " serve of course only as illustrations; 

after aIl they are not even defined in this context.) 

Now there remains only the case where 1(., equals 1: in the new 

derivation the sequent f(1) 1 l' - ~ ®I !F{ 1) receives the 

ordinal number 1. In the old derivation its ordinal number was at 

• least equal to (.0 Here we have an obvious decrease which is at 
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the same time inherited by the ordinal number of the entire derivation. 

This proves the decrease of the ordinal number of an inconsistent 

derivation in a CJ-reduction. There still remains the case of the 

operationa1 reduction. Here it must first be observed that through 

the further ereearatory stee (3.42) no increase in the ordinal number 

can occur. The proof of this fact presents certain difficu1ties in 

spite of the obvious externa1 simplification of the derivation in 

this step. l sha11 sketch on1y brief1y what kind of reasoning is 

here required - the reader interested on1y in bare essentia1s may 

skip this paragraph -

The omission or adjunction of formu1ae and other transformations 

within structural inference figures except cuts have no influence 

whatever on the ordinal number. This is different in the case of 

the cance11ation of a cut through the omission of an upper sequent 

together with everything standing above it. If we disregard for 

the time being the change in 1eve1 which this cance11ation entai1s 

then a decrease in the ordinal number resu1ts from the replacement of 

the natura1 sum of two numbers by on1y one of these two numbers. 

Added to this must be the fact that through the omission of a cut the 

1eve1 of a who1e collection of sequents above this cut may be reduced 

to a greatér or 1esser extent (not on1y in the ending but in the entire 

derivation). In order to recognize that this rather entang1ed 

transformation cannot affect an increase in the ordinal number of the 

entire derivation we argue thus: we imagine that we can fix the 1eve1 

quite arbitrari1y. We begin with the old derivation, omit the cut and, 



at first, leave all levels untouched. Then we gradually adjust 

these levels to the values which the transformed derivation really 

should have according to the definition of a level, by carrying out 

a succession of single steps of the following kind: the level of 

the upper sequents of one 'inference figure whose lower sequent has 

a lowerlevel than the upper sequent is in each case diminished by 1. 

It is easily seen that the entire adjustment of levels can in fact be 

made up of such operations. (We begin from below.) What exactly 

happens to the ordinal numbers in such a single adjustment of level? 

Suppose that before the adjustment the ordinal numbers of the upper 

sequents are ~ and f (if there is only one such number we simply 

think of the second number below as not being present). After the 

adjustment they then take the form ~oé and GJ ~. (Except if 

one upper sequent is an uppermost sequent of the derivation, in which 

case its ordinal number was and remains equal to 1 and this simplifies 

the following discussion further.) Before the adjustment, the ordinal 

number of the line of inference was thus either al or 0< ~ ~ or 

.1, ... ' -". 
t>< + 1 , or ~..f-' or iAJ (where oL:= tA) -+ 
in the case of a CJ-inference figure), depending on the kind of 

inference figure involved. After the adjustment, the ordinal number 

" "" J 
takes the form of either W or"" .CA) or '" .... 

or W P ... , , or fA'" +8 Now to the lower seguent: If the 

difference in level between it and the upper sequent was equal to 1 

before and is therefore now equal to 0, then the adjustment has 

brought about a change in the ordinal number of this sequent from 

fA) 01. to lA'" , or from ~.~ to ("J~ #' lAI" or from 
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~ ... , ~ (1-+' 
Co (' +. lA to '" +1 , or from '-0 to 

'" "". ~utfl+ . , 
eot4 . ... 

or finally from to In each case the 

ordinal number has either remained the same or has become sma11er 

and this shou1d be verified by the reader from case to case by means 

of the definition of "smaller than". If the difference in 1eve1 

between the upper and 10wer sequents was gre,ater than 1 nothing has 

essentia11y changed: in each case the mentioned numbers are augmented 

by an equa1 number of exponentiations with l4 This property of 

non-increasing transfers to the ordinal number of the entire derivation 

and this number can therefore ri se neither in a single step of the 

described adjustment of 1eve1 nor, quite genera11y, in the prepara tory 

step for the operationa1 reduction as a who le. 

We now come to the operationa1 reduction proper (3.5) in which we must 

demonstrate a decrease of the ordinal number. We sha11 again base our 

discussion upon the case presented in detai1. above (with as the 

connective to be reduced). The ordinal number of each of the two 1ines 

of inference standing innnediately above the sequents 7J ~ !F{1t)) @.3 

and 

in the new derivation which we denote by M', and «'. - is sma1ler 

than the ordinal number Dt of the "leve1 line" in the old 

derivation. This is so since the derivationa1 sections standing above 

the 1ine~.of inference essentia11y correspond to one another; a11 

1eve1s in particular are the same as those in the old derivation -

the 1eve1s of the sequents standing innnediately above the mentioned 

1ines of inference are equal to , throughout -; in each 
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case on1y one operationa1 inference figure has disappeared and been 

rep1aced by structural inference figures which have no influence on 

the ordinal number. At this point a decrease in the ordinal number ~ 

has therefore taken place which is preserved throughout the subsequent 

structural inference figures up to the mentioned 1ines of inference. 

A1so: the sequent iJ ~ ~ has of course the same 1eve1 tF 

in the new derivation as in the old one; G < f The sequent 

~, 71 ~ (jJ, ~' has of course the 1eve1 (5' The 1eve1 of 

the upper seguents of the "new cut" satisfies , > r ~ IT The 

inequality on the right is trivial; and that r > r is recognized 

thus: by the definition of a' 1eve1 the r is equal to the 1arger 

of the two numbers tF and the "degree of ft,") ". If t'al rthen 

'& <: f ' si nc e 6" < ~ If t; equa1s the degree of :t{1f,) 

then 1: t( f 
degree of 

since the degree of 

!lnd since 

sr(~) is sma11er than the 

~ is at 1east equa1 to the 

latter. 

Let us first suppose that the differences between the 1eve1s 

and (S" are minimal, 1. e., tha t J =- 't + 1 and 

In this case our demonstration is comp1eted as fo11ows: 

In the old cl~rivation the 1eve1 1ine had the ordinal number 

the sequent ~ therefore the ordinal number 

In the new derivation the 1ines of inference corresponding to this 1eve1 
~I 

1ine have the ordinal numbersAand Dt~ , both are sma11er than ~ 

and the upper sequents of the new cut therefore have the ordinal numbers 
.l, 01,.,. 

(A) and ûo the sequent ~ ~ dJ)3 receives the ordinal 
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,I, .J ... 

number (,0 ... ~ (Without loss of generality we may 

assume that ott ~ J" .) The latter number is obviously smaller 

than l.J,)ol ; and we have thus finished. For on the basis of an 

already repeatedly applied argument this decrease transfers to the 

ordinal number of the end-sequent and therefore to the derivation as 

a whole. (Below 7', --. ®J nothing has of course changed.) 

If the distances between the levels 1 1:' and cs- are greater, 

our argument is not essentially changed. The place of the inequality 

,-~:> .~ ..... ,-~" ( .... ' - -~ -~ ~ -~ ) MI W-"'T _ _.....,.. R' ~ ~, __ " 

is then simply taken by the inequality 

> 
and the latter inequality is also easily seen to be valid. 

It now becomes apparent how through the method of definition of 

the ordinal numbers in connection with the notion of level the 

difficulties associated with the apparent increase in complexity of 

a derivation as a result of the operational reduction have been 

overcome. The main idea is: in the reduction the same derivational 

section occurs twice, although both times somewhat simplified. In 

the general case, however, t>l (~. +.,1" ,where we suppose .l, 

and Dl \. to be smaller than Yet for the exponential 

expression holds: (precisely as in the 

case of the natural numbers, for ~ we can put any number ~ 3.) 
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) The "simp lification" of the figure as a who1e has thus been 

achieved as long as it is a1ways possible to insert an expo-

nentiation; and this is made possible by the fact that the degree 

of the new cut is sma11er than the degree of the old 

-cut. It was for the purpose of exp10iting this fact that the genera1 

concept of a 1eve1 was introduced and app1ied in the correlation of 

ordinal numbers. 

The cases where the connective to be reduced is a k, a 1 v , 
or ~ are so simi1ar that a special discussion of them becomes 

superf1uous. 

The decrease of the ordinal number of an inconsistent derivation in 

the reduction step has thus been proved. 

4.4. Conc1uding Remarks. 

If we had not admitted CJ-inference figures into our formalism ;i..t 

wou1d be possible to make do with the natura1 numbers as ordinal numbers. 

In order to rea1ize this the reader shou1d omit 4.1 and in 4.2 replace 

W by 3 throughout and "na tura1 sum" simp 1y by "sum". Sums and powers 

are to be understood in the way customary for the na tu ra 1 numbers. 

4.3 then remains va1id throughout, as is easi1y verified; the CJ-

reduction wou1d here of course have to be 1eft out. The consistency 

proof cou1d then be conc1uded by an ordinary complete induction instead 

of a transfinite induction. 

As a resu1t of the admission of the CJ-inference figures, and therefore 



) for our forrna1ism, the fo11owing rernarkab1e connection between 

the magnitude of the ordinal number of a derivation and the highest 

degree of the formu1ae occurring in the derivation ho1ds: the ordinal 

number of a derivation in which on1y formu1ae of degree 0 occur is 

~ ~ 
sma11er than ~ (i.e., ~ in our notation). If the highest 

degree of a formula equa1s 1 then its ordinal number is sma11er than 
w 

~w , if the degree equa1s 2, then the ordinal number is sma11er 

than 
~~ 
~ , etc. This is not difficu1t to prove. 

These theorems are of course meaningfu1 on1y relative to our special 

correlation of ordinal numbers. Yet it is reasonab1e to assume that 

byand large this correlation is a1ready fair1y optimal, i.e., that 

we cou1d not make do with essentia11y lower ordinal numbers. In 

particular the tota1ity of a11 our derivations cannot be hand1ed by 

means of ordinal numbers of which a11 lie be10w a number which is 

sma11er than • ~o For transfinite induction up to such a number is 

itse1f provab1e in our forma1ism; a consistency proof carried out by 

means of this induction wou1d therefore contradict G;de1's theorem 

(given, of course, that the other techniques of proof used, especia11y 
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the correlation of ordinal numbers, have not assumed forms that are non-

representab1e in our number-theoretica1 forma1ism). By the same 

round-about argument we can presumab1y a1so show that certain sub-c1asses 

of derivations cannot be hand1ed by ordinal numbers be10w certain 
.W 

numbers of the form ~., It is quite like1y that one day a 

direct approach to the proof of such impossibi1ity theorems will be 

found. 



If we inc1ude arbitrary functions in our forma1ism then the 

consistency proof remains va1id with minor modifications: a11 
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that needs to be shown is that at some point in the reduction, 

fo110wing the first preparatory step, for examp1e, a11 terms without 

free variables can be eva1uated and rep1aced by their numerica1 

values. It is presupposed that a11 functions can be effective1y 

ca1cu1ated for a11 given numerica1 values. There still arise certain 

forma1 difficu1ties from the fact that a1though term may be calculable, 

a corresponding term in another place in the same inference figure 

may still contain a variable (cf. Article 14.22 of the ear1ier paper); 

yet these difficu1ties do not affect the main ideas here invo1ved. 

In princip1e the contents of Section V of the ear1ier paper a1so 

remain va1id for the new version of the consistency proof. l have 

not given a new proof of the "reducibi1ity" of arbitrary derivab1e 

sequents; nor do l attach any special importance to this. (1 had 

previous1y advanced it as an argument against radical intuitionism -

article 17.3 - , but it is not particu1ar1y essentia1 for this purpose.) 

Transfinite Induction. 

l have not given a new proof of the transfinite induction which 

conc1udes the consistency proof since l intend to discuss the 

questions invo1ved at this point separate1y at some 1ater date. For 

the conclusion of the present proof the ear1ier proof of the "theorem 

of transfinite induction" (Articles 15.4 and 15.1) is therefore to be 

adopted for the time being. For this purpose the new ordinal numbers 



must be made to correspond with the decimal fractions used in the 

earlier paper; this presents no special difficulties. (Both 

systems are after all of the same "order type .tP. ".) 

The transfinite induction occupies quite a special position within 

the consistency proof. Whereas all other forms of inference used are 

of a rather quite elementary kind from the point of view of being 

"finitist" - this applies to the new proof as much as it does to old 

one - this cannot be maintained of the transfinite induction. Here 

we therefore have a task of a different kind: we are not merely 

required to prove transfinite induction - this i8 not particularly 

difficult and possible in various ways - but rather to prove it on 

a finitist basis, i.e., to establish clearly that it is a fOl1m of 

inference which is in harmony with the principle of the 

constructivist interpretation of infinity; an undertaking which is 

no longer purely mathematical but which nevertheless forms part of 

a consistency proof. 

We might be inclined to doubt the finitist character of the "trans-

finite" induction, even if only because of its suspect name. In its 

defense it should here merely be pointed out that most somehow 

constructivist orientated authors place special emphasis on building 

CIJ 
up constructively (up to ~ ,for example) an initial segment 

of the transfinite number sequence (.within the Itsecond number classlt
). 

And in the consistency proof and in possible future extensions of it 

we are certainly dealing only with an initial segment, a "sectionlt 
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of the second number class, even though this is an already comparatively 
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) extensive segment, and which must probably be extended still 

considerably further for a consistency proof for analysis. Yet 

l fail to see at what "place" constructive certainty is here 

supposed to end and where a further extension of transfinite induction 

is therefore thought to become disputable. l think rather that the 

reliability of the transfinite numbers required for the consistency 

proof compares with that of the early segment, up to ~A. , for 

example, in the same way as the reliability of a numerical calculation 

extending over a hundred pages with that of a calculation of a few 

lines: it is merely a considerably vas ter undertaking to convince 

oneself of this certainty from beginning to end! A detailed 

discussion of these matters (whose exposition in the earlier paper -

Article 16.11 - seems to me now to be somewhat too sketchy) will, 

as said before, follow at a later date. 

GALLEY PROOF 

14.3. If a reduction rule is known for a sequent then a reduction 

rule can also be stated for every sequent which has resulted from 

the former bya structural transformation. Viz.: An interchange of 

antecedent formulae (5.241) does not affect the reduction procedure. 

If an antecedent formula was omitted which was equal to another antecedent 

formula (5.242) we reduce the newly arisen sequent in the same way as 

the old one, yet if the omitted formula would have been subject to a 

reduction step according to 13.5, we apply this reduction step to the 

formula equal to the omitted formula and then retain the latter formula; 

this is after aIl permissible. 
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) 
If a formula was adjoined to the antecedent formu1ae (5.243), we 

first carry out the required reductions on it according to 13.11 

and 13.12 and continue the rest of the reduction up to the definitive 

form as if this formula were not even present. 

A re-designating of a bound variable (5.244) does not necessitate a 

change in the reduction ru1e. 

In the fo11owing l sha11 repeated1y make tacit use of the fact 

that a reduction ru1e for a sequent which resu1ts from another sequent 

by a structural transformation can be obtained from the reduction ru1e 

or the former sequent. 

14.4. Now it still remains to show that a reduction ru1e can a1ways 

be given for a sequent which resu1ts from those sequents by the 

application of a ru1e of inference for which reduction ru1es are 

a1ready known. After the transformation according to Paragraph 12 

the fo11owing ru1es of inference can still be app1ied in the 

derivation: -introduction, v - elimination, 

-introduction, ~. -e1imination, Ifreductiolf
, "e1imination of 

the double negation" and " comp 1ete induction". l sha11 dea1 with 

them in that order. 

14.41. Suppose that we are given a -introduction: "From l' ~ f{c) 

follows l' " Assume a reduction ru1e to 

be known for the sequent 7'~ ~(~). The reduction of j?~ iI~Jr6f) 

must begin with the replacement of (possible) occurrences of free 

variables by arbitrari1y chosen numera1s (13.11). Suppose that 



p'l~ V~f-(f) resu1ts. If no free variables occurred then 

7''1~ v. fliC.} stands again for 7' -4 Vtt -Fil) 

(A corresponding argument is to app1y be10w.) Then a11 (possible) 

minimal terms must be rep 1aced by their numerica1 va lues (13.12) 

7' ~II ~ Vit T·· (.JJ re sul ting in This sequent is 

reduced according to 13.21 to T' 1111 ~ F""{tt.) , where ",. 

is to be chosen arbitrari1y. Now any minimal terms that may have 

new1y arisen must still be rep1aced by their numerica1 values in 

accordance with 13.12, resu1ting in 

The reduction of the sequent 7' ~ ~{~J must a1so begin with the 

replacement of the free variables. For this replacement we may in 

particu1ar use the same numera1s that were chosen in the reduction 
'1(, 

of P ~ V* {fl1l-) , as well as the symbo~for the replacement 

of (Jl.. so that the sequent 71-~ q-"{1t) resu1ts. Now 

must fo110w the replacement of possible minimal terms and from this 

-nt/fi !T~~ 
1 ~ fi L'11) obvious1y resu1ts, i. e., the same sequent as above. 

By virtue of the reduction ru1e for T' ----* S:-ttlt) a reduction 

ru1e must now be statab1e for this sequent; hence a reduction ru1e 

bas a1so been obtained for 

14.42. Suppose we are given a 

resu1ts ï' ~ ~(~) " 

7' ~ tlif: -TC.) 

V -e1imination: "From 

is again first 

subjected to (possib1y) necessary reduction steps according to 13.11 

and 13.12; suppose that 7' tI-. 1"("1&.) resu1ts. In the 

reduction of '171. !(if) , which must begin with reduction 

steps according to 13.11 (if necessary), 13.12 (if necessary), and 
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then a step according to 13.21, possib1y fo110wed by further steps 

according to 13.12, the numera1s to be substituted may obvious1y 

be chosen so that these steps a1so yie1d the sequent 7''''.-.1'''(1t). 

We therefore have a reduction ru1e for that sequent and hence a1so 

for 7' ~ 6'(.-1:) 

14.43. The ~ -introduction and the ~ -e1imination are 

dea1t with quite ana10gous1y to the if -introduction and " 

-e1imination. Here the reduction step according to 13.21 is rep1aced 

by a step according to 13.22. 

14.44. In dea1ing with the three ru1es of inference still remaining 

l make use of the fo110wing 1emma: Itlf reduction ru1es are known 

for two sequents of the form 7' ..... ~ and J)J li -. tE in 

which no free variables and no minimal terms occur then a reduction 

ru1e can a1so be given for the sequent ~1J~e- It (The 

meaning of the symbo1s 7' ~ (!:* and JJ is the same as 

that defined at 5.250, .J) a1so stands for an arbitrary formula.) 

The proof of this 1emma which represents the major part of the 

consistency proof fo110ws at 14.6. Here l sha11 first show how the 

1emma is to be app1ied to the ru1es of the Itreductiolt
, the "eliminatioo 

of the double negationlt and the "complete induction". 

Suppose that a "reductio" is given: ItFrom J/J 1' ... 11 and 

---- ...,:IS follows ~.4 ~., Jl "We first reduce 

(if required) according to 13.11 and 13.12; 

suppose that the resu1t is 7' "1 41-~ .., A ft Thi s we 

reduce according to 13.23 to l' fi) J1 ~ IL fi ~ 1 = Jl. In the 
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reduc tion of 1J", T'...., tJ , on the other hand, we can choose 

the numerals to be substituted in the reduction steps according to 

13.11 and 13.12, which are carried out first, so that from these 

steps a sequent of the forro JI, - 7' fi --* J 13 ft 
results. In the 

same way it can be achieved that JI/A ---. ..,11 
assumes the forro Jt4fA4f~ ~ 

., C· after the appropriate 

reduction steps. This th en yields the sequent A.~ 1,", 18" ... I.~ 

Reduction rules are therefore known for the sequents 

and, 

by the lemma, therefore 

i.e., (14.3) also for We have 

thus a reduction rule for ~ Ll .... -'7 ~ 

14.442. Suppose that we are given an "elimination of the double 

negation": we obtain " The 

reductions of ~~Jl according to 13.11 and 13.12 which may first 

be necessary can be carried out analogously on 77~ ~7 ~ 

We must therefore still reduce a sequent 7"1( ~ LI. 1/ in which free 
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variables and minimal terros no longer occur and this will simultaneously 

yield a reduction rule for 

It is sufficient to state a reduction rule for the sequent 

For we can then apply the lemma and from the 

77 i' -, _ "1-11' 
availability of reduction rules for 1 --9 , ~ and 

"7"Ji, * .... 11. 11 
conclude the statabi.lity of a reduction rule for 

can be reduced easily according to the 



) following rule (cf. 14.1): We reduce the succeedent formula 

according to 13.21, 13.22, and 13.12 until it has the form .-, ~ 

or is a minimal formula. If it has become a correct minimal 

formula the reduction is finished." If it has assumed the form 

-? ~ we continue the reduction according to 13.23 and obtain 

~.." JI, ~ (!' ~ 1- JI ,further (by 13.53) we obtain 

e --. ...., u If ,then (by 13.23) we obtain e; JI, II-.I=- ~ . 

In the case where the succeedent formula has become a false minimal 

formula we proceed in the same way; in the latter case we first 

obtain , and then 

In both cases we have now obtained a sequent which also occurs in 

the reduction of the logical basic sequent JI, IF --. 2t tI 

according to the procedure stated at 14.1. We need therefore merely 

follow the procedure stated at that point in order to complete the 

reduction of the sequent. 
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14.443. Suppose that. a "complete induction" is given: 7-..!f{l) 

and Fla) i t\ we obtain ~ l1 --9 J (t) 
In 7').d -4 ~ ( f) we first replace all (possible) occurrences 

of free variables by arbitrarily chosen numerals (13.11) and obtain 

Then (if necessary) we carry 

out reduction steps according to 13.12 and achieve in this way that 

finally every occurrence of -i,'" has been replaced by the numeral 
? 

1\ 

l' which represents the value of the term-(which no longer contains ~ 

7' ~ A"' ___ glfC1t.) 
a variable). The sequent has thus become , ~ ~ J 

Now we carry out further reduction steps according to 13.12 (if necessary) 



unti1 a11 minimal terms have been e1iminated. The sequent then bas 

the form - ( ~"{ fr.)) tI 

In the reduction of T'~ 9'(1) and ~{",J,1l --. ~(Il. -1-1) 

which must begin with the replacement of possible occurrences of 

free variables, we can actua11y choose the numera1s to be 

substituted so that they agree with the numera1s chosen previous1y 

and can replace the variable ~ , which after a11 did not occur in 

~ .4 ~ ~{fJ ,by any one of the numera1s from 1 to -fffr 

where ftI,. denotes the number 1 smaller than 'If, It then 

follows that for .each one of the sequents plt-" ~"(1) and 

111 (tJ) Ji JI ~ ~II (1. + 3. ) and~" (J.J 1 L1 li --1» ~tI ( ,1.+1) 

etc. up to ~/(1n)1 Ll"-.... !F1I{'Ift..,./) reduction ru1es are 

statab1e. If these sequents are then reduced by the reduction steps 

prescribed in 13.12, there resu1t obvious1y sequents of the fo110wing 

form for which reduction ru1es are therefore a1so statab1e: 

Tif/JI ~ (:Tl' (1.) 1/ and (~II (1.)) ~ ~"~ (:F"(.t.)Jll 
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and (a:"{~))~ Il tllI~ (FII{Z)) " etc. up to (~(fft))~ L1"1f~ (~~))~ 

We now app1y the lemma: 

T'V tI -.1) (~fI.( 1J) ~ 

-)/ If tf 
From the reduction ru1es for , 

and (~II Ct)) li" Ji "'v ---. ((TV (1.)) li' 

we obtain: a reduction ru1e for the sequent 7'*~ A "V -9 C ;rll{i.)), Il 

from it and from the reduction ru1e for (""'(&.J)~ .llll'tl -9 {"" (~)) li 
"T7 tl ~ A Il)1 --!!lIa {D:'Ir/.l' ~ we obtain a reduction ru1e for 1 , (J ~ ~,uJ.I etc.; 

fina11y it fo110ws that a reduction ru1e is statab1e for the sequent 

T' tlJI. A ttJl (~w/ JI\ 'If 7' Il IL.(d 
J . ~ (J- ~ 'ft. '.1 ,hence a lso for J (J ~ 'H Tf), 

since this sequent had actua11y a1ready been reduced above to the 



form of the former sequent. 

14.5. Now the proof of the "lennna" is still outstanding. At this 

point l shou1d 1ike to add a few rematks which may cantribute to an 

easier understanding of the proof. 

What is the reason for the special position of the "lennna"? Let us 

examine the kind of finitist interpretation that takes the place of 

the "actualist truthlt through the reduction concept: the concepts 

V and ~ are interpreted in a quite natura1 way ("reduced", 

13.21 and 13.22), and the associated ru1es of inference (14.41 -

14.43) are dea1t with in a corresponding1y effort1ess manner. Not 

so for "7 ; -,.JI., is interpreted as JI" ~ I=..t (13.23) and 

in order to reduce this form further the reduction steps on antecedent 

formu1ae (13.5) are necessary. To the intuitive sense of the ~ 

there therefore corresponds a comparative1y artificia1 and less 

immediately comparable reduction procedure. The difficu1ties which 

the ::> and -, present to a finitist interpretation (Paragraph 11) 

make it indeed impossible to state a "natura1" procedure. 

A typica1 form of inference exhauting the intuitive ~eaning of the 

~ is in fact the following: "From the assumptions 1" 
follows ,f) From the assumption and further 

assumptions follows Then a1so fo110ws from 

the assumptions T', " This form of inference is 

implicit both in the "reductio" and in the "complete induction". Rence 

the reliance on the lemma (14.44) in dea1ing with these two rules of 

inference. 
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In the proof of the 1emma the difficu1ty now consists in bridging 

the gap between the actualist meaning of the .~ according to 

which the mentioned form of inference is trivia11y "true" and 

the dissimi1ar finitist interpretation given by the reduction 

concept. The fundamenta1 idea of the proof is this: in reducing 

the .fj is referred back to "something simp1er" 

(13.21 - 13.23). The same is done with the antecedent formula ~ , 
in the reduction of 1.), A --. Œ 
we genera11y obtain two new sequents 

(13.51 - 13.53). From this 

7'4 J" and JII, A!1 ~ e 
this method can be continued (complete induction on the number of 

logica1 connectives in J) ) until a minimal formula takes the 

place of J) , and we have thus a trivial case. Yet this method 

does not suffice if in the reduction of the antecedent formula J) 

that formula is retained. The consideration of this possibi1ity 

requires afurther reduction argument of a special kind (14.63). 

14.6. Proof of the Lemma. 

The 1emma runs: "If reduction ru1es are known for two sequents of 

the form in which no free 

variables and no minimal terms occur then a reduction ru1e can a1so 

be given for the sequent " 

The latter sequent will be ca11ed the mix sequent of the two other 

sequents; the formula its mix formula. 

In order to prove the 1emma l app1y a complete induction on the 

number of logica1 connectives occurring in the mix formula. l 
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therefore assume that the total number )f these connectives is 

equa1 to a definite number )r and that the 1emma has a1ready 

been proven for smaller Jr or that j' is equal to O. 

14.60. Suppose therefore that two definite sequents ]7 ... J) and 

without free variables and minimal terms, with 1 

logical connectives in the formula IJ , are given and that for 

each sequent a reduction rule is known. It must then be shown that 

a reduction rule can also be given for the mix sequent 0 A -- t!:. 
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14.61. l shall first deal with the case where the sequent /)~ 4 --li* ~ 

is already in definitive form. If is a true minimal formula 

then is also already in definitive form. The 

same holds if is a false minimal formula and if in ,. a false 

minimal formula occurs. The case remains where and are 

taIse minimal formulae. In that case ~ L1'-" (f" is reduced 

according to precisely the same rule as that provided for ~~ ~ 

Since and ,f) are both false minimal formulae their 

difference is here immaterial; and the formulae designated by ~ 

may be ignored altogether in the reduction (cf. 14.3). 

14.62. Suppose that the sequent ./JI 4 --..-. e- is not yet 

in definitive form. In relation to the first reduction step to be 

carried out on the sequent l then distinguish three cases: 

1. Suppose that is no minimal formula. 

2. Suppose that is a false minimal formula and that the 

first prescribed reduction step for the sequent 



(according to 13.5) does not affect the 

antecedent formula 

3. Suppose that ~ is a fa1se minimal formula and that 

the mentioned reduction step (according to 13.5) affects the 

antecedent formula J) 

l sha11 now dea1 with each of the three cases separate1y. 
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14.621. Suppose that the first case arises. The first reduction step 

to be carried out on the mix sequent ~ Lt-- f!:' is then the 

step which a10ne is applicable according to 13.21, 13.22, 13.23, 
e: 

where the choice of or is free ifAhas 

the form or Suppose that after 

this reduction step (and, if necessary, successive steps according 

to 13.12 unti1 no further minimal terms occur) the sequent runs 

The first reduction step on the sequent /)/ /J .. ~ 
must necessari1y be of the same kind, and in the case of a choice, 

the same choice may be made as above so that after the first reduction 

step (and possib1y further necessary steps according to 13.12) this 

sequent assumes the form Now the -
following assertJ,on still remains to be proved which is again a 

special case of the 1ennna: "On the basis of the known reduction 

ru1es for the sequents 

a reduction ru1e for their mix sequent 

a1so statab1e." l shall postpone the proof of this assertion for 

the Ume being. 



'. 
<' 

... 

14.622. Suppose that the second case arises. After its first 

reduction step (according to 13.5) (and possib1y successive steps 

according to 13.12 unti1 no further minimal terms occur) the sequent 

runs The reduction procedure 

of ~ li ... U- must then begin with the steps required to yie1d 

~ A" __ A-" Ij" ~ ~ from the former sequent. In that case the 

fo110wing assertion still remains to be proved, which once again is 

a special case of the 1ennna: "On the basis of the known reduction 

ru1es for the sequents 

a reduction ru1e for their mix sequent 

~ IJ" .... (/*"iS a1so statab1e." 

14.623. Suppose that the third case arises. l distinguish three 

has the form V. S:C-.) sub-cases depending on whether 

or , i.e., depending on whether the first 

prescribed reduction step on', 4 -t e- takes the form of 

13.51, 13.52 or 13.53. The treatment of these three cases is not 

essentia11y different. 

14.623. 1. Suppose that J) has the form V. Il ... , In that 

case the first reduction step turns the sequent J)) A --- Ir 
i. e., -V.a:-C.,..,) A ~ œ- into f{.lJ \Yft,.,) 4 ~ 6,-

or. S:C.)J ~ ..,. ~ The sequent 1" .... .() 

is equa1 to 7' , V,.f"C1t) and its first reduction 

step must therefore yie1d (according to 13.21), 

with arbitrari1y chosen In particu1ar, we can choose the 

numera1 1c. for '* and obtain l' -----. s: ( 1-1, ) 
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If cantains minimal terms we subject it, and the sequent 

dea1t with before, to furthér reductions according to 13.12, as 

pr~scribed, unti1 no further minimal terms occur. The two sequents 

then run 71 ... (~{",»)fI and Cf'{1f,)J: /llt9(*JJ LI ~ tr 
or C :F{te» ", A --ooS)o e If no minimal terms had occurred 

( .f{1() ~ shall stand for the formula ~{ft} Now l first 

consider the case where J)/A~ ~ 

viz " C 9ft 'If" JI, .4 ~ (!:" 

has assumed the second form, 

Here reduction ru1es for the 

sequents ." ~ C. 5='(<<J) Jto and 

are known; l now app1y the induction hypothesis, according to which 

the 1emma is assumed to be a1ready proven for mix formu1ae with 

fewer logica1 connectives th an those contained in i) from this 

it fo11ows that a reduction ru1e is a1so statab1e for the mix sequent 

of the two given sequents, Le., for the sequent 1'" .4 ~ d:'" 

For the mix formula (q:{1;» 1# obvious1y contains one logica1 

connective 1ess, viz., the v , than the formula JJ which, 

as we know, equa1s This completes the present case. 

If J)I/.l~~ shou1d have assumed the more comp1ex form 

C ~(",) JI, V.~{1f)) li , however, the 

following assertion still remains to be'proved: "On the basis of the 

known reductian ru1es for the sequents 

and -v';tfC*) J (.!'(1CJ}~A -. (!'- a reduction ru1e is a1so 

statab1e for their mix sequent ~ (lIt-H») VJ /.f ~ ~ " 
The proof for this will be postponed for the time being; once it 

has been carried out the induction hypothesis can be app1ied as 
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before and from the fact that reduction ru1es are known for the sequents 
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it 

can be inferred that a reduction ru1e is a1so statab1e for their 

mix sequent ~ ~ 4 -4 e and hence for 7'.1 4 ~ fi:" 

14.623. 2. Suppose that ~ has the form .It 'fi' f.1 
IJJ LI .....;. a:-

Then the"" 

first reduction step on the sequent yie1ds 

) 

(or ts ~IJ ~ (E' ). In the first 

reduction step on the sequent r ~ "-' l' 11 a choice can be 

made in such a way that 77-* k (or 71-* 15 ) 

resu1ts (according to 13.22). 

has assumed the form without LI 1'11 
we app1y the induction hypothesis at once: Since reduction ru1es 

are known for the sequents 7'...:, k (or 7'~ 13 

~A ... (J' (or '/~"'(J') and since the mix formula 

) and 

.tt (or-t.r 

contains fewer 10gica1 connectives than 1J IdS ,a reduction 

ru1e is a1so statab1e for the mix sequent ~ ~ ~ ~ 

In the other case the fo110wing assertion is still to be proved: 

"On the basis of the known reduction ru1es for the sequents 

(orit./~ $, 4 ~ e ) a reduction ru1e is a1so statab1e for 

) 

their mix sequent ~ 11, A. -. &- (or ~ flJ 4 -9 ~ )." 

For if this has been proven it fo110ws once again through the 

application of the induction hypothesis that given reduction ru1es 

for r ~ /J. (or 7'-+ 1$ ) and 11 J ~ LI ~ tr-

(or 13, P, LI -- (!'" ) a reduction ru1e is a1so statab1e for the 
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mix sequent 71, 7J li ~ tr and hence for 7', ~ -.lit ~ 

14.623. 3. Suppose that ~ has the form .., JI. The 

first reduction step then turns the sequent "&,11-. tr into .,11" 4f ~ ~ 

or In its first reduction step (according to 

13.23) the sequent ." --. ., lJ. then becomes 11., 71-. / .. ~ 

If .1>,,4-., rr has assumed the form A -4 U then we app1y 

the induction hypothesis at once: since reduction ru1es are known 

for the sequents L1 ~ JI, and ", l' ~ / .. .l and since the 

mix formula ~ contains fewer 10gica1 connectives than 

-, ~ , a reduction ru1e is a1so statab1e for the mix sequent 

The same therefore a1so ho1ds for ~ 11 ~ C 

for , lUte 1 = 2 , is a fa1se minimal fornu1a. 

In the other case the fo110wing assertion is still to be proved: 

"On the basis of the reduction ru1es known for the sequents 

and U,.1 --. ,u a reduction ru1e is a1so 

statab1e for their mix sequent 1'" li ~ .Ji. " If this has 

been proven it fo110ws again by the use of the induction hypothesis 

that given the reduction ru1es for 

and 21., l' -., 1 == !Z a reduction ru1e is a1so statab1e 

for the mix sequent r; 4, 1" ~ 1- ~ and hence a1so for ~ A. ... é!'. 

14.63. Conclusion of the Proof. In severa1 of the cases discussed 

an assertion was made whose proof had been postponed. In each case 

this assertion had the following form: "On the basis of the known 

reduction ru1es for the sequent 7'~ J'and a sequent of the form 
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#1 ~II ., ,.li -"' 0 which has resu1ted from .DI 4..:, ~ by one or 

severa1 reduction steps carried out according to the appropriate 

reduction ru1e, a reduction ru1e is a1so statab1e for their mix 

" Here the sequents 7'.-. J) 

contained no free variables and no 

minimal terms. 

This assertion is quite obvious1y of the same kind as that made at 

14.60 and for which the entire proof was intended. The mix formula 

JO is the same as that in the ear1ier assertion; the sequent 

7'..., Il p 1ays the same ro1e; in p lace of .J, l1 ~ t1'* 
however, there now occurs a sequent obtained from the latter by one 

or severa1 reduction steps. 

In order to prove the new assertion we now app1y precise1y the same 

inferences as before (14.61 to 14.623.3.); hence there (possib1y) 

remains to be proved another assertion of the same kind, where the 

second sequent once again resu1ts from 

by at 1east one reduction step. 

Continuing in this way we must reach the end in finite1y many steps, 

i.e., the comp1etion of the proof. This is so since the continua1 

reduction of the sequent ~ 1 A ~ tE' which after a11, proceeds 

according to the reduction ru1e stated for that sequent, must (13.6) 

1ead to definitive form in finite1y many steps so that here no 

further re-interpretation is required (14.61) (as long as the case 

in which no re-interpretation in terms of a new assertion is required 
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did not arise even e,"lrlier). 

In the transformation of the derivation in Paragraph 12 only quite ... " 

harmless, entirely finitist concepts and inferences were required. 

Of a special kind is the concept of the "reduction rule" which 

is central to the consistency proof. The proposition: "for a 

certain sequent a reduction ru le is known" contains the concepts 

"aIl" and "there exists" to the extent to which it asserts that 

the reduction rule concerned exists and that the reduction procedure 

to be carried out according to the rule is defined for aIl possible 

choices of numerals to be substituted in the case where a choice 

arises in the reduction (13.6), and that the procedure terminates 

in finitely many steps, i.e., that once again there exists a natural 

number in each case which indicates the total number of steps. (This 

number generally depends on the choices,made.) 

The two "there exist" -concepts in the reducibility proof have 

actually always been used finitistically in the sense of 10.3. Rence 

the expressions: "a rule is known, given that a rule is statable". 

At 14.2, e.g., the reduction rule for logical basic sequents was 

stated p:recisely and the total number of required reductioll steps 

can be inferred at once. In 14.3 - 1L~.44 it was stated in each 

case how an already existing reduction rule must be modified in order 

to ob tain fram it a reduction rule for a further sequent. In the 

remaining proof the transfinite "there exists", in connection with 

"there exists a reduction rule" has always been used in the finitist 



sense of such a ru1e being given or (in the case of "introduction" 

-inferences) a new ru1e being stated. 

Corresponding rernarks ho1d for the "there exist" in relation to 

the total number of reduction steps; with the formulation of a 

reducticn ru1e on the basis of a1ready known reduction ru1es is 

a1ways connected the possibi1ity of determining the total number of 

new1y arising (or disappearing) reduction steps. 

In the'lemma an essentia11y nove1 e1ement is added by the 

transfinite use of the concept "fo11ows" in expressions of the form 

"if 'a certain proposition ho1ds then a certain other proposition 

a1so ho1ds". Here we must reca11 the objections which were raised 

in 11.1 against the quite genera1 use of this concept. It turns 

out however that in the consistency proof the "fo11ows" occurs on1y 

in one connection: "If reduction ru1es are known for two particu1ar 

sequents then a reduction ru1e is a1so statab1e for a certain third 

sequent formed from the former sequent." From the finitist standpoint 

this use of "fo11ows" is unobjectionab1e; after a11, no nesting 

whatever of "fo11ows" -concepts occurs; here the "fo11ows" is to be 

understood simp1y as an expression for the fact that by means of 

finitistica11y correct inferences the va1idity of a proposition (free 

from "fo11ows" -concepts) is derivab1e from the validity of another 

proposition (a1so free from "fo11ows" -concepts). (The "fo11ows" 

is interpreted "meta-theoretically", as it were.) The forms of 

inference of the "fo11ows" -introduction and "fo11ows" -e1imi.nation 

are in harmony with this interpretation (cf. 11.1), and these are 
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precise1y the inferences occurring in the proof of the 1emma 

(14.6) and in its applications (at 14.441, 14.442 and 14.443). 

COmplete inductions occurred repeated1y in the consistency proof 

(at 14.6, 14.63, 14.443, and in still other places). These are to 

be interpreted according to 10.5 and in this sense they are quite 

unobjectionab1e even in the case where the induction hypothesis 

is a transfinite proposition. 

l hope that these ref1ections have he1ped to make the finitist 

character of the methods of proof used in the consistency proof 

sufficient1y credible. 

15.11. l consider it not impossible that the inferences used in 

the consistency proof can be re-interpreted in terms of still more 

e1ementary ones so that the methods of proof that have to be 

presupposed as correct and which are no longer justified can be 

further diminished. 
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roOTNOTES 

1) A detai1ed and very readab1e discussion of these questions .-is contained in D. Hi1bert's paper: Uber das Unend1iche, 
Math. Anna1en 95 (1926), pp. 161-190. 

2) In this connexion cf. a1so: 
" H. Weyl, Uber die neue Grund1agenkrise der Mathematik, 

Math. Zeitschrift 10 (1921), pp. 39-79; and 
A. Fraenkel, Zehn Vor1esungen uber die Grund1egung der 
Mengen1ehre (or the relevant sections in Fraenke1's 
textbook on set theory). 

" 3) K. Gode1, Uber formaI unentscheidbare Satze der Principia 
Mathematica und verwandter Systeme l, Monatsh. f. Math. u. 
Phys. 38 (1311, pp. 173-198. 

4) W. Ackermann, Begründung des "tertium non datur" mitte1s 
der Hi1bertschen Theorie der Widerspruchsfreiheit, Math. 
Anna1en 93 (1925), pp. 1-36; 
J. von Neumann, Zur Hi1bertschen Beweistheorie, Math. 
Zeitschrift 26 (1927), pp. 1-46; 
J. Herbrand, Sur la non-contradiction de l'Arithmetique, 
Journ. f. d. reine u. angew. Math. 166 (1932), pp. 1-8; 
G. Gentzen, Untersuchungen über das logBche Sch1iessen, 
Math. Zeitschrift 39 (1935), pp. 176-210, 405-431 (or 
the Eng1ish translation by M.E. Szabo, Investigations into 
Logica1 Deduction, American Philosophica1 Quarter1y, 
Vol. 1; Number 4, Oct. 1964 and Vol. II, Number 3, Ju1y 1965) 

5) There a1ready exist severa1 such forma1izations and the 
present one fo110ws more or 1ess the estab1ished 1ines. 

6) Since the notion of a "formula" is used quite generally for 
forma1ized propositions, the special case defined here shou1d 
rea11y be ca11ed a "number-theoretica1 formula". However, 
since no other "formu1ae" occur in this paper, this modifier 
may be omitted. Coreesponding remarks app1y to the notions of 
"term", "function symbo1" etc. 
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7) l shall not interpret such a formula as '~alid for 
arbitratf, substitutions of numbers", as is usually 
customary in formaI logic, since free variables are 
used in a more general sense in mathematical proofs; 
for example, cf. 4.53. Here, as in the case of bound 

S -variabl es, we should more appropriately speak of 
"indeterminates" instead of "variabl es", yet, for ' 
better or worse, "variable" has become the generally 
accepted expression. 

8) For this we could write a single formula of the form 
C··, (c,u, , "'" )t· .. ) Ill..- ) !:) 15 

However, this would obscure the original strùcture of 
the mathematical proof; after aIl, in the proof the 
proposition "if JJ., and JJ, ... 1UrJl.u",. hold,then 

·11 holds" never~.ccurred e?,plicitlYt the various 
propos itions Jt"IJ..} ... . ".u.,.. occurred rather as 
assumptions and the proposition 'IS as a 
consequence of these assumptions. 

9) :Cn my "'Investigations into Logica1 Deduction" l used 
the word "sequent" in a more general sense which is 
here not necessary. For the benefit of the readers of 
that paper it should be pointed out that the logical 
formalism developed here corresponds essentially to the 
"NK-calculus" of the "Investigations". The "LK-calculus" 
is also suitable for the consistency proof. In fact, 
the proof then becomes even simpler in parts, although 
less "natural". 

10) For "propositional logic" (&,V.~,.,) cf.: 
Hilbert-Ackermann, Grundzü e der theoretischen Lo ik, p. 33; 
for "predicate logic" ( ,1 added) Cf.: 
K. G~del, Die Vollstandigkeit der Axiome des logischen 
Funktionenka1ku1s, Monatsh. f. Math. u. Phys. 37 (1930), pp. 349-360. 
The formalizatiOns of the forms of ;inference used there can 
easily be shown to be equivalent with the formalization 
which l have chosen. (Cf. the proofs of equivalence in 
Section V of my "Investigations into Logical Deduction".) 

Il) Cf. W. Ackermann, Zum Hi1bertschen Aufbau der ree11en Zahlen, 
Math. Annalen 99 (1928), pp. 118-133. 



12) The "Peano Axioms" for the natural numbers are the 
result of such efforts. (For example, cf. E. Landau, 
Grundlagen der Analysis, 1930) These axioms also contain 
complete induction, which I have included in the forms 
of inference. There is no fundamental difference between 
forms of inference and axioms, since logical forms of 
inference can also be formulated as "logical axioms" 
such as ~ h ~J ~ ~ for the &-elimination, etc. 

13) A proof for the "redundancy of the "" can be found in 
the book: 
Hilbert-Bernays, Grundlagen der Mathematik, l (1934), 
pp. 422-457. 

14) Cf. the papers by Hilbert and Weyl cited in foot notes 
1) and 2). 

" 15) Cf. D. Hilbert, Uber das Unendliche. Math. Annalen 95 
(1926), pp. 161-190. 

16) Cf. A. Heyting, Die formalen Regeln der intuitionistischen 
Logik, Sitzungsberichte d. Preuss. Akad. d. Wiss., 
phys.-math. KI. (1930), pp. 42-56. 

17) K. G~del, Zur intuitionistischen Arithmetik und Zahlentheorie, 
Ergebnisse eines math. KOll., Heft 4 (1933), pp. 34-38. -
The result mentioned above was also discovèred somewhat later 
by P. Bernays and myself independently of Godel. GOdel also 
repl aces lI,::> 11 by., (.eJ, ".., f.I) , this is unneces sary 
in my system of rules of inference since l do not use 
propositional variables. 

18)· For example, cf. P. Bachmann, Die Elemente der Zahlentheorie, 
III, 10. 

19) l could here also use any other false minimal formula. 

20) Footnote added during the correction of the galley proof: 
Articles 14.1 to 16.11 have been inserted in February 1936 
in place of an earlier texte 



21) Readers acquainted with set theory shou1d note: The 
system of "ordinal numbers" here used is we11-ordered 
by the < -relation, and the numbers with the 
characteristics 0, 1, 2, 3, 4, 5, etc. correspond, in} 1 ""1 
thatl order, to the transfinite ordinal numbers W) eJJ',l [wL'" 
w ... jl .... '.,.. ... ""iJ,MI+CII. W.C.4;J .. ·W.w"j l.'ww's,.P,j ; 1 .W j 
etc.; the entire system corresponds to the "first E -number". 
(In order to prove this the reader need mere1y consider the 
fact that the transition from the numbers with the 
characteristic, to the numbers with the characteristic $.' descrioed above correspond to the definition ru1e 
of the power of 2, and then app1y the ru1es of transfinite 
arithmetic.) The "theorem of transfinite induction" asserts 
nothing but the va1idity of transfinite induction for this 
segment of the second number c1ass. The disputab1e aspects 
of genera1 set theory do not, of course, enter into the 
conàistency proof, since the corresponding concepts and 
theorems are here deve10ped quite independent1y in a more 
e1ementary form then in set theory, where they are used in 
a much greater genera1ity. - Simi1ar connections between 
mathematica1 proofs or theorems and the theory of we11-
ordering, especia11y of the numbers of the second number 
c1ass, are estab1ished in a paper by A. Church, A proof of 
freedom from contradiction, Proc. Nat. Acad. of Sc. (1935), 
pp. 275-281; and: E. Zermelo, Grundlagen einer a11gemeinen 
Theorie der mathematischen Satzsysteme 1: Fund. Math. 25 
(1935), pp. 136-146. 

ff .-

22) A1so cf. K. Gode1, Uber Vo11standigkeit und Widerspruchs-
freiheit, Ergebnisse eines math. Kol1., Heft 3 (1932}~ 
pp. 12-13. 

23) Cf. P. Finsler, Forma1e Beweise und die Entscheidbarkeit, 
Math. Zeitschr. 25 (1926), pp. 676-682, and the paper by 
K. Gode1 cited in footnote 3). 

24) Cf. the paper by P. Finsler cited in footnote 23). 

25) For examp1e, cf.: L.E.J. Brouwer, Intuitionistische 
Betrachtungen uber den Formalismus, Sitzungsber. d. Preuss. 
Akad. d. Wiss., phys. -math. KI. (1928), pp. 48-52; and 
A. Heyting, Mathematische Grund1agenforschung - Intuitionismus -
Be~stheorie, Ergebnisse d. Math. und ihrer Grenzgebiete 3 
(1~35), Heft 4. 

26) G. Gentzen, Die Widerspruchsfreiheit der reinen Zah1entheorie, 
Math. Ann. 112 (1936), pp. 493-565. 

27) G. Gentzen, Untersuchungen über das 10gische Sch1iessen, 
Math. Z. 39 (1935), pp. 176-210 and 405-431. In the paper 
cited in foot note 26); a forma1ism was introduced in Section 
IV that differs somewhat from the forma1ism deve10ped in 
Section II. It was specifica11y designed for the proof in 
question and has no genera1 significance. 



28) It should be mentioned, incidentally, that aIl logical 
basic sequents are also derivable in the new system and l 
therefore do not really have to admit such sequents any 
longer. Their refehti6n'-has of course certain formaI 
advantages. 

29) The proof of equivalence is to a large extent already given 
by the proof for the equivalence of the calculi NK and LK 
carried out in Section V of my dissertation. 

30) In the earlier paper l have proved more generally the 
"reducibil ity" of the end-sequent of arbitrary derivations. 
Here l shall confine myself to consistency; this makes 
certain simplifications possible. 

31) The same reasoning, incidentally, underlies the proof of 
the "Hauptsatz" of my dissertation. 

32) Cf. G. Hessenberg, Grundbegriffe der Mengenlehre, Sonderdruck 
a. d. Abh. d. Friesschen Schule, N.F., I. Bd., Heft 4; 
pp. 479-706, Ggttingen 1906. 



BIBLIOGRAPHY 

Benacerraf, P. and H. Putnam 

(1) Phi1osophy of Mathematics 
Prentice-Ha11, Inc., 1964 

Beth, E.W. 

(1) The Foundations of Mathematics 
North-Ho11and Pub1ishing Company, Amsterdam, 1965 

Heyting, A. 

(1) Intuitionism 
North-Ho11and Pub1ishing Company, Amsterdam, 1956 

Hilbert, D. and W. Ackermann 

(1) Grundzüge der theoretischen Logik 
Springer-Ver1ag, Berlin, 1928 

Hilbert, D. and P. Bernays 

(1) lGrundlagen der Mathematik, Volume l 
Springer-Verlag, Berlin, 1934 

(2) Grund1agen der Mathematik, Volume II 
Springer-Verlag, Berlin$ 1939 

Gentzen, G. 

(1) 
t' 
Uber die Existenz unabhangiger Axiomsysteme zu 
unendlichen Satzsystemen 
Mathematische Annalen, CVII, 1932 

(2) 
.. 
Uber das Verha1tnis zwischen intuitionistischer 
und k1assischer Arithmetik 
Unpub1ished ga1ley proof, Math. Ann., 1933 

(3) Untersuchungen ~ber das logische Schliessen, l & II 
Mathematische Zeitschrift, 39, 1935 

(trans1ated by M.E. Szabo under the title: 
Investigations into Logica1 Deduction, l & II 
American Philosophica1 Quarter1y, 
Vol. l, No. 4, Oct. 1964, and Vol. II, No. 3, July 1965) 



(4) Anfang1iche Fassung des Widerspruchsfreiheitsbeweises 
Unpub1ished ga11ey proof, Math. Ann., 1935 

(5) DieWiderspruchsfreiheit der reinen Zah1entheorie 
Mathematische Anna1en, CXII, 1936 

(6) Die Widerspruchsfreiheit der Stufen10gik 
Mathematische Zeitschrift, XLI, Vol. 3, 1936 

(7) Der Unend1ichkeitsbegriff in der Mathematik 
Semester-Berichte, Munster iq/W., 9. Semester, 
Winter 1936-37 

(8) Unend1ichkeitsbegriff und Widerspruchsfreiheit der 
Mathematik 
IXe Congrès Int. d. Phil. VI, Logique et Mathématique, 
Paris, 1937 

.. 
(9) Die gegenwartige Lage in der math. Grund1agen-

forschung 
Forschungen zur Logik und zur Grund1egung der 
exakten Wissenschaften, New Series, No. 4, 
Leipzig, Rirze1, 1938 

(10) Neue Fassung des Widerspruchsfreiheitsbeweises., 
f~r die reine Zah1entheorie 
Forschungen zur Logik und zur Grund1egung der 
exakten Wissenschaft.en, New Series, No. 4, 1938, 
Leipzig, Rirzel. 

(11) Beweisbarkeit und Unbeweisbarkeit von Anfangsfa11en 
der transfiniten Induktion in der reinen Zah1entheorie 

(12) Zusammenfassung von mehreren vo11standigen Induktionen 
zu einer einzigen 
Unpub1ished and un~àted 

K1eene, S.C. 

(1) Introduction to Metamathematics 
North-Rolland Pub1ishing Co~pany, Amsterdam, 1952 

Kneebone, G.T. 

(1) Mathematica1 Logic and the Foundations of Mathematics 
~. Van Nostrand Co. Ltd., Toronto, 1963. 



GLOSSARY 

Abbild 

Abgrenzung 

Aneinanderreihung 

Anfangsstûck 

Anordnung 

An-sich 

Auffassung 

Aussagenverkn~pfung 

Aussagenverknupfüngszeichen .. . 
Ausserstes Verknüpfüngszeichen 

Bedenkl ich 

Bedeutung 

Begriff 

Begriffsbildung 

Beilegen 

Bestimmt 

Beweismittel 

Bund 

counterpart 

demarcation 
delineation 
delimitation 

enumeration 

initial segment 

ordering 

actual 
actualist 

. interpretation 
view 

logical composition 
of propositions 

logical connective 

terminal connective 

disputable 

meaning 
significance 

concept 
notion 

specific concept 

ascribe 

individual 
definite 
determinate 

method 
technique 

cluster 



Durchlaufung 

Eigenvariabl e 

Endform 

Endformel 

Endl ichkeit 

Endsequenz 

Endstùck 

Entscheidbar 

Ergebnis 

Erkenntniswert 

Erreichbar 

Faden 

Finit 

Formelbund 

Gipfelpunkt 

Grenzziehung 

Grundsequenz 

Herleitung 

Hilfsmittel 

Hil fsbegriff 

Hinterformel 
.. 

Hohe 

lnhaltlicher Sinn 

running through 

eigen-variable 

definitive form 

end-formula 

finiteness 

end-sequent 

ending 

decidable 

conclusion 

cognitive value 

accessible 

path 

finitist 

formula cluster 

extremÙlll 

demarcation 
delimitation 
delineation 

basic sequent 

derivation 

technique of proof 

auxiliarj concept 

succedent formula 

level 

intuitive sense 
intuitive meaning 



Kettenschluss 

Korrekt 

Mischsequenz 

M~tteilungszeichen 

Nacheinander 

Nebeneinander 

Numerus 

Obersequenz 

Oberste Sequenz 

Reine Zahlentheorie 

Richtig 

Schluss 

Schlussstrich 

Schlussweise 

Schniti. 

Sequenz 

Sinn 

Stammbaumformig 

Struktudinderung 

Struktur-Schlussfigur 

chain rule (inference) 

correct 
,true 
val id 
well-formed 

mix-sequent 

syntactic variable 

vertical 

horizontal 

characteristic 

upper sequent 

uppermost sequent 

elementary number theory 

true 
correct 
val id 
well-formed 
well defined 

inference 

line of inference 

form of inference 

cut 

sequent 

sense 
meaning 

in tree form 

structural transformation 

structural inference figure 



"'", 

~J 

Transfinit 

~bereinandergeschachtelt 

Ve.rbundene Formel n 
.. 

Verdunnung 

Verknüpfungsschlussfigur 

Vertauschung 

Verzweigung 

Vorderformel 

Wahlfreiheit 

Widerspruch 

Widerspruchsfreiheit 

Widerspruchsherleitung 

Zahlzeichen 

zugeh'orig 

Zuordnung 

Zusammenziehung 

transfinite 

nested 

clustered formulae 

thinning 

operational inference figure 

interchange 

branching 

antecedent formula 

choice 

contradiction 

consistency 

inconsistent derivation 

numeral 

associated 
relevant 
appropriate 

correlation 

contraction 


