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INTRODUCTION

The new conceptual power of Cantor's set theory

has had a dynamic effect upon creafive mathematical
fhinking and, at the same time, introduced a para-
doxical element into mathematics that has shakgn

the very foundations of this discipline, A conse-
quent thorough re-examination of the nature of
mathematics has produded a wealth of ideas and a
variety of approaches to fouﬁdational studies.

Amidst the inevitable clashes between a purely
"logical", a partly '"philosophical" and a '"genuinely
mathematical' method of attack, i.e., between.the
logicists, the intuitionists, and the formalists,
Gentzen made it the aim of his mathematical investi-
gations to establish beyond doubt the reliability of
large parts of classical mathematics. This under-
taking was to be carried out in three distinct stages
according to the degree to which the concept of infinity
is invoived:

The first stage consists of elementary number theory,

into which "infinity" enters merely in the form of



(i)

the stipulation of an infinite domain of objects;
the second stage consists of analysis in which the
introduction of irrational numbers and infinite
series makes it necessary to treat an infinite set
as an individual object; the third stage consists
of general set theory in which infinite sets of

infinite sets are freely admitted,!)

Gentzen believed that elementary number theory,
analysis, and a good part of set theory were |
entirely reliable.2) 1In this view he was un-
doubtedly encouraged by Hilbert3); whose assistant
he was from 1934 until Hilbert's eventual retire-

ment,

The statement that a branch of mathematics is reli-
able is a statement about that branch of mathematics
and this leads to the distinction between the theory
to be vindicated and a meta-theory (or proof-theory)
within which the notion of reliability can be formu-
lated. 'Retiability' herg means 'freedom from
contradiction' and expresses the fact that once a

1) Gentzen (7), pp 65-66

2) Gentzen (8), p. 204 (7), p. 79
3) Gentzen (8) p. 205

L) Gentzen (5) p. 10

k)



(iii)

theory has been formalized and the concept of a
'proof! defined, it can be shown that a contradictory
statement such as 'l = 2' cannot be obtained from

true statements through the application of the logical
rules that are pérmissible in the theory. The techni-
cal term for reliability used in this paper is the
term f‘consistency!, and a proof that ends in a con-
tradiction obtained from true statements by means of
the logical rules of the theory will be referred to

as an t‘inconsistent derivation!'.,

The present translation contains two published versions
of the '"consistency" proof for '"elementary number theory".
They will be referred to by (5) and (10) as listed in

the bibliography. In (5) the consistency follows from

the non-derivability of the sequent ' —>» X yX ',5)
whilst in (10) it takes the form of the non-derivability

of the empty sequent ! 3 '6).

In proving the consistency of a formalized axiomatic

theory, the question arises whether the formalizatioh

5) Gentzen (5) p. 74
6) Gentzen (10) p. 145



(iv)

chosen actually encompasses the full range of
meaningful statements that can be made in the
informal theory. 1In this respect Gentzen took

note of Godel's Incompleteness Theorem and formu-
lated his rules flexibly enough to allow for what-
ever adaptation his formalization may require.7)
Godel's further result corncerning the impossibility
of 'internal' consistency proofs in formalized
axiomatic theories is overcome by using trans-
finite induction up to Cantor's first & -number

as the non-derivable technique in elementary number
theory. A conclusive proof of this non-derivability

is given in Gentzen's last paper pubiished in 19h2.8)

The next question that arises is what methods of

proof can be used to establish the consistency of
elementary number theory. As Gentzen point§ out,

there can be no absolute consistency prooffn'ln the
Hilbert tradition, Gentzen decided that the consistency
proof must be carried out by means of methods of proof
that are unimpeachable and he believed that such methods
7) Gentzen (5) p. 126

8) Gentzen (11) p. 140} Gentzen (10) p. (18%)
9) Gentzen (5) p. 13; Bentzen (7) p. 72 ‘



(v)

should therefore be constructive, in particular,

10) This notion is used

they should be 'finitist’,
in the sense of Hilbert and Bernays who, on page 32,

Vol. 1, of the Grundlagen der Mathematik, introduce

it in the following way:

",..die ausgefuhrte Betrachtung der Anfangsgrunde
-von Zahlentheorie und Algebra dient dazu, uns das
direkte inhaltlich, in Gedanken-Experimenten an
anschaulich vorgestelliten Objecten!!) sich voli-
ziehende und von axiomatisthen Annahmen freie
Sahliessen in seiner Anwendung und Handhabung
vorzufuhren, Diese Art des Schliessens wollen
wir, um einen kurzen Ausdruck zu haben, als das
'finite' Schliessen und ebenso auch die diesem
Schliessen zugrunde liegende methodische Ein-
stellung als die 'finite' Einstellung oder den
'finiten' Standpunkt bezeichnen. Im gleichen
Sinne wollen wir allemal mit dem Wort 'Finit!

zum Ausdruck bringen, dass die betreffende
Uberlegung, Behauptung oder Definition sich an
die Grenzen der grundsatzlichen Vorstellbarkeit
von Objekten sowie der grundsatzlichen Ausfuhr-
barkeit von Prozessen halt und sich somit im
Rahmen konkreter Betrachtung vollzieht."

Whether the natural numbers are actually 'in-
tuitively stipulated objects' in the sense of
Hilbert and Bernays is important for the consis-
tency proof and while Gentzen allowed for infinitely
many numerals 1, 2, 3, 4, 5, .......]2) in (5) he
10) Gentzen (5) p. 7 and p. 50

11) Translator's italics
12) Gentzen (5) p. 18



(vi)

introduced only the single numeral 1 in (10) together
with the successor function.]3) This change was no
doubt intended to bring out the constructive nature
of the natural numbers as generated from the axioms
of Peano.]h) This interpretation of Gentzen's inten-
tion seems reasonable in the light of the principle
which Gentzen adopted as a result of a critical
examipation of Russell's antinomy:

"An infinite totality must not be regarded as

actually existing and closed (actual infinity)

but only as something becoming which can be

extended constructively further and further

from something finite (potential infinity)."15)

The difficulties of the antinomies are thus overcome
by the rejection the 'actualist' interpretation of
infinity. ‘Actualist! is a term which the translator
has used as a rendering of Gentzen's 'an-sich Auffass-
ung' in order to preserve the philosophical neutrality
which Gentzen had adopted. In his address to the
Mathematical Congress in Paris in 1937, Gentzen
nevertheless suggested that a certain parallel might

be drawn between the 'constructivist' and the 'actualist!

13) Gentzen (10) p. 132
14) Gentzen (2) p. 1
15) Gentzen (5) p. 58
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views of mathematics and the philosophical schools
of 'idealism' and 'realism'.!®) This is the only
place in all of his writings that he ever mentions
a possible philosophical paraliel between mathe-

matical and philosophical theories.

In keeping with the principle adopted, the consistency
proof should be entirely 'constructive'. Gentzen con-
siders Brouwer's 'intuitionist' and Hilbert's 'finitist!
approach to be two examples of this technique.]7) Yet
he sees Brouwer's approach as too radical since it

leads to the banishment of the large non-constructive
part of analysis which has, for example, stood the

test in a variety of applications in physics.'s)

Gentzen thus aims at proving the consistency of certain
non-finitist branches of mathematics by means of fini-
tist (and therefore) constructivist techniques. In
order to achieve this end, paragraphs 10 and 11 of

(5) are devoted to a finitist interpretation of the
logical connectives &/, V, 7, 2, Vo 3 . The finitist

interpretation of V*g'—(l) for example, is the following:

16)Gentzen (8) p. 202
17)Gentzen (7) p. 71
18)Gentzen (7) p. 71
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x

"Iif, st;rting with 1, we substituthfor successive
natural numbers, then however far we may proceed

in the formation of numbers, in each case a true
proposition results.!9) An existential proposi=-
tion Jl Fow , in agreement with Hilbert's
'Partialurteil’20) expresses the ffnitist fact that
if the proposition 3:(1'-) has been recognized as
meaningful and valid for an individual # , we
may conclude JaF(w .21) 1n keeping with the
fiaitist point of view all predicates and functions
occurring in the formalization of elementary number
theory must furthermore be 'decidably defined', i.e.,
a rule or procedure must be specified in each case
providing a mechanical test for deciding of a predi-
cate in finitely many steps whether or not it holds
of a particular object, and which makes it possible
to calculate the value of a function for any arbi-
trary element in a specified domain. It should be
noted, incidentally, that while allowing for the
introduction of arbitrary functions in (5)?2) Gentzen
restricts himself to only one function, the successor
function, in (IO)?3) This simplifies the proof and
19) Gentzen (5) p. 60

20) Hilbert and Bernays (1) p. 32

21) Gentzen (5) pp. 62-63

22) Gentzen (5) p. 18
23; Gentzen (10) 5. 132. p. (156)



(ix)

the modifications necessary for the introduction
of arbitrary effectively calculable functions are

described later.zu)

The consistency proof falls into five sections:

Section 1 contains a general introduction to and
motivation for consistency proofs;

Section II contains the formalization of elementary
number theory as a‘formal axiomatic theory;
Section IIl deals with the finitist interpretation
of the formalized axiomatic theory and contains a
reference to Godel's discovery that intuitionist
and ciassical elementary number theory are in some
sense equivalent.25) It is of historical interest
that Gentzen had proved this result independently
in 1933, the year Godel published his result, but
that he withdrew his galley proof before final
publication when Godel's result became known;;
Section IV constitutes the core of the consistency

proof and for this section there exist three versions:

24) Gentzen (10) p. ( )
25) Gentzen (5) p. 71



(x)

The first version was never published, since Gentzen
withdrew his galley proof when he was accused of
making implicit use of the intuitionist fan theorem;26)
the second and third versions are the actually pub-
lished results in which transfinite induction on the
ordinal numbers up to &, is employed. The first
proof might be called the "natural" proof, since the
logical calculus used is Gentzen's NK-calculu527) of
natural deduction, whereas the second proof, which
might be called the "logistic" proof, is based on
Gentzen's LK-calculus,ZS) a Hilbert-type first order
predicate calculus. The equivalence of the calculi
NK, LK, and a Hilbert-type calculus LDK is actually

proved in Part 1I of the Investigations.29)

The New Version of the consistency proof contained

in the present translation is actually a new version

of Section IV of (5) while excerpts from the Galley

Proof contain those parts of Section IV of (5) that
were re-written during the proof-reading of (5).

The translator hopes that the inclusion of the

26) Personal communication from Prof. P. Bernays
27) Gentzen (5) footnote (9) and Gentzen (3) I,
Section II, pp. 4-8 (tr.) especially (5.3), p.8 (tr.)
28) Gentzen (10) p. 131 and Gentzen (3) I, Section III,
pp. 8-10 (tr.)
29) Gentzen (3) I, p. 8 (1.2) (tr.)
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Galley Proof in this thesis will help to illustrate
Gentzen's genius for assessing the value of criticism
advanced against him and will also bring out the
remarkable speed with which Gentzen's managed to
develop the radically new approach to the consis-
tency problem through transfinite induction while
correcting the first draft of his consistency proof.
The following correspondences shoulfk:nable the reader

to compare the relevant passages ofﬁfirst consistency

proof with those of the galley proof:

Articles 14.3-14.63 (pp. I§8~A206 ) correspond to
articles 13.93-15.4 (pp. g2~ 16 ) ,30)

Furthermore, pp.lo4-206: “,,., In the transformation
of the derivation in Paragraph 12 .....
and in its applications (at 14,441, 14,442
and 14 .443)"

corresponds to

p.lI& : ",... The following functions,
in particular, ceceeee' coseees "the
ordinal number of the derivation' (15.2).

Also, p.dob: ".... Complete induction ....... trans-
finite proposition"

30) Cf. footnote (20) in Gentzen (5)
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corresponds to

N eeeoeeees Furthermore, propositions
Of ¢eees to ordinal number diminishes"

(15.3), p. 114.

Also, p. 206 : "..... I hope that these reflections
ceeee Can be further diminished ..cece.

corresponds to
the entire section 16.11 on pp. .
Any other changes in the initial draft were purely

editorial and have no bearing on Gentzen's arguments.

At this point a word must be said about the terminology
adopted in translating technical terms. In most cases
the appended glossary will resolve any difficulties

that may arise in this connection; with the following
exceptions: The main difficulties that arose in trans-
lating the present papers were associated with Gentzen's
notionf of "Richtigkeit" and'"Korréktheit“ and those

of "Sinn" and 'Bedeutung®. Gentzen predicafes "Richtig-
keit" of axioms, thebrems, p}opositions, fofmuiae,
sequents, etc, as well as of inferences, iqference
figure schemata, and forms of inference. On the

other hand, he also predicates "Korrektheit" of

inferences, inference figure schemata, and forms of
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inference as well as of derivations and rules of
inference. In conformity with English usage,
"Richtigkeit" has been translated by "truth" sc that
of a given proposition constructed from objects,
functions, and predicates, together with the logical
connectives, it can be "“calculated" whether it is
"true" or "false" (p. 51). On the other hand, an
idea is lost in the translation of Article 7.3

(p. 53), where Gentzen asserts that it is easily
proven that the logical rules of inference are
"richtig" in the sense that their application to
"richtig" mathematical basic sequents leads to other
"richtig" derivable sequent#. Here the translator
speaks of "correct" logical rules of inference and
of "true!" sequents. This is justified since the
term "richtig" can stand for almost anything from
"true", "correct", 31 "well-formed", "well defined™
to "formally valid!', In fact, in the consistency
proof the notion of "truth® can in most cases be

taken as synonymous with "formal truth'" in the

31) “correct" ordinal number, Gentzen (5) p. 108
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sense of the propositional calculus (Article 7.2,

p. 52) and of the predicate calculus (Articles 7.3,
p. 53, 13.4, p. 81, 1.2, p. 134). Nevertheless,
Gentzen does think of a "formally true'" sequent as
expressing more than the fact that it is true by
definition (p. 81) when he speaks of "obviously true®
sequents, and he also seems tc feel that the number-
theoretical axjoms represent 'Yimmediately obvious"
propositions (pp. 48, 62, 125). Such asides are in
some sense Gentzen's "private" views and have no
bearing on the argument developed in the consistency
proof. The last paragraph of the first proof (p.i30)
and the remark on p. 172 concerning the definition

of the ordinal numbers make Gentzen's attitude to
this distinction amply clear. We are also forced

to speak of the "“intuitive notion of truth!" being
replaced by the '"'statability of a reduction procedure',
This is a translation of "inhaltlicher Richtigkeits«
begriff' and "Angebbarkeit einer Reduziervorschrift!.
The latter represents a technical notion and hence

its somewhat un-English translation seems justified.
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Incidentally, inferences, forms of inference,
inference figure schemata, rules of inference and
derivations will always be spoken of as "correct',
This allows us to consider a derivation, i.e., a
proof, as "correct", if it contains no error in

its construction. The view that sequents can be
"obviously true! and that number-theoretical axioms
are "immediately self-evident' leads us to the
notions of "inhaltlich" and "formal'". Since there
exists no adequate English adjective for rendering
"inhaltlich" in any literal way, it has béen trans-
lated by "“intuitive", Other writers have used
"concrete" (Kneebone) or coined the new adjective
"contensive" (Curry). If we speak of a proposition
as being "“intuitively true" we will mean that it
has a definite 'sense'" beyond its formal "meaning'.
The word ''sense" is here intended to coincide with
the intuitionists notion of 'sense" illustrated by
the following example:

"We start with the natural numbers 1, 2, 3, etc.

They are so familiar to us, that it is difficult
to reduce this notion to simpler ones. Yet I
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shall try to describe their sense in plain words,

In the perception of an object we conceive the notion
of an entity by a process of abstracting from the
particular qualities of the object. We also recog-
nize the possibility of an indefinite repetition of
the conception of entities. In these notions lies,
the source of the concept of the natural num ers. ¥
(L.E.J. Brouwer 1907, p. 3; 1948, p. 1237)32

Gentzen's "Sipn" is mostly translated by “sense' so
that a ™enseless" proposition, or a proposition
"devoid of sense', will express the fact that it

has no "sense' in Brouwer's terminology. By denying
an 'actualist infinity", for example,33) we are at

the same time robbing propositions such as Wermat's
last theorem is true or is not true" of their "sense".3%)
Consequently, according to the intuitionist view, such
propositions cannot even be asserted, A large part

of the consistency proof is thus concerned with
ascribing a "finitist sense" to actualist proposi-

tions, viz., for every provable proposition in the

formal ism developed, a reduction rule must be stated

and this rule represents the "finitist sense! of the
proposition.35) It should be noted that informally

the word "‘Bedeutung" also means "significance" and

32) Heyting (1) p. 13
33) Gentzen (5) p. 58
34) Gentzen (5) p. 57
35) Gentzen (5) p. 129
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"consequence' and it has been translated in this

way whenever appropriate. An interesting contrast

gs noticeable between Gentzen's and Frege's notions

of the "Sinn™ and the "Bedeutung" of § prdposition.
For the "Bedéutung"'of.a proposition Frege takes

its truth-value36) and for its “Sinn"™ the thought
expressed.37) ths, "The morning star is a body
iiluminated by the suh“and WThe evening star is a
Body illuminated by the sunﬁ‘are two propositions with
fhe same “Bedeutung" but wifh a different "Sjnn". This
observatién shouid suffice‘to show that thé notigns

of USinn" and “Bedeutung", or 'sense" and "meaning",

aS used by Gentzen, must not be ideﬁtified with their
counterparts in Frege's famous paper. Gentzen is concerned
rather with the hmathematical sense" and "mathematical

meaning" of a proposition.

Let us now return to the logical calculi NK and LK

used in the two consistency proofs and examine their
similarities and differences:

36) Frege, On Sense and Reference, p.lt96) (Hartman, Philosophy

J7) Frege, On Sense and Reference, p.495) of Recent Times I,
‘ McGraw-Hill 1967)
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The NK cailculus, or the classical calculus of

natural deduction, makes no explicit use of ''sequents',
It is indeed based on the idea of introducing assump-
tions and then applying logical rules to them in

order to deduce a proposition from them, But here,

in keeping with mathematical practice, the inference
propéermakes the proposition to be proved independent
of the assumptions. In sub-case 2 (4.42) p. 39 of
Euclid's proof of the non-existence of a largest

prime, for example, it is assumed that there exists

an arbitrary number d with the property that 47!&45.’.“‘"
and it is eventually inferred from this assumption

that = d lf:! +1 . I therefore holds vithout
assumption that (d >l § dEn+) > = dlal+

The intuitive meaning of the logical symbols employed
is gxplained in Article 3.12. In the NK calculus, the

structure of the above argument is formalized by the

CAl
inference figure d . Here we have of course
_ A>1S
Gentzen's version of Herbrand's famous

Deduction Theorem. In (5), the above figure takes

the form of llfp » B . The inference figure has
T U>S
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been replaced by an inference figure schema. The
rule of substitution can therefore be dispensed

with and to the "propositional" variables A and B
now correspond the "“syntactic!" variables U and fs .

This change in notation has the additional advantage

cn
A>8

of making it clear that in the inference figure
the propositibns A and B are "mentioned" but not
Wused", in the now familiar distinction.38) Normally,
valid propositions result from valid propositions

only if the symbols to be replaced are mentioned but
not used in the proposition concerned. An elaborate
system of quotation marks can also be employed to -
make this distinction clear. The use of a symbol

is thus often indicated by putting quotation marks
around the symbol: In the proposition "7 is a number",
the symbol 7 is mentioned but not used, whereas in

"7 is an Arabic numeral" it is actually used. Con-
sequently, "7 is a number" and '"VII is a number"

are true propositions, whereas in the case of "7

is an Arabic numeral" and "WII is an Arabic numeral',

the second proposition is false. Gentzen avoids

38) Beth (1) pp. 257-258
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such difficulties in the consistency proofs by
employing inference figure schemata in place of
inference figures, i.e., by introducing syntactic

variables in place of propositional variables.

The other major difference between the calculus in
(5) and the calculus NK is the explicit introduction
of sequents in (5). A sequent is an expression of
the formaq---,ﬂ/a—%ﬂ where & is a syn-
tactic variable for a proposition that depends on
the assumptions /a:, Moy -, ,Zt/“ . How such
a notion arises “naturally" from the examination of
Euclid's classical proof can be seen from «¢ 4.2,
subcase 2: The proposition‘ - d I al+ depends
on the assumptions b{lﬁ-.??lﬂgzé@) 27 \Zl ‘fl'*"]
as well as on =7 (n+1) [5-!4-' ahd d>( & dé&n+l

This dependence is symbolized by writing
Yy [Cy>! Yyen)> 7Y ab+1], = (n+0) | &1+1,
As1 545 ————> = d|al 41

i.e., a proposition of the form ﬂ,, a;, Ug-—?ﬁ?

where X, stands for%[(gﬂj/‘_yéﬁ)Dv j_j, g,’-:-/])—

ﬂl stands for "(@_4—1) {z_{!qﬁl j



(xxi)

uastands for A> 1 ‘!’-'-‘ Er;
and 73 stands for ‘7’;.‘, ‘-"{"'{ ’
195,11;)143 are éalled the antecedent formulae,
and # is called the succedent formula. It is
intuitively clear that 4? remains a valid proposi-
tion if we change the order of the assumptions made,
or if we add a further assumption on which B does
not depend, or if in the case where the same assump-
tion appears more than once, we cancel one of the
occurrences. This leads naturally to what will be
called the "structural’ rules of inference of Inter-
change, Thinning, and Contraction. 1In (5), a thin-
ning is called an "omission of an antecedent formula'
and a contraction an "adjuction of an addition antece-
dent formula",:The reason for this terminology is

precisely the fact that Gentzen considers these

rules to arise ‘'’naturaliy" and are thus part of

his "indisputable'" forms of inference. This inter-
pretations of Gentzen's motives seems reasonable,
especially since he had developed the formal calculus

of sequents before the consistency proof and had
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used the terminology of (10) in that calculus.

It is worth noting that Gentzen seems to have been

led to the formulation of his predicate logic in

terms of ''sequents" by studying a paper by P. Hertz39)
entitled “iber Axiomensysteme fur beliebige Satzsysteme".
In fact, it would appear that a critical study and
solution of the problem posed by Hertz has had a re-
markable influence on Gentzen's entire methodological
thinking. Gentzen's very first publicationuo) makes

this amply clear. The "cut", for example, which led
eventually to the famous "Hauptsatz",“l) is a generaliza-
tion a kind of syllogism found in Hertz's paper.hZ)
The "chain rule", too, which is needed in (5) in order
to change the vertical arrangement of proofs into a
horizontal one for the purpose of assigning measures

of complexity to the different proofs in number theory,

can be found in Hertz's paper.hz)

For the purpose of an easier understanding of Gentzent's

calculi NK and LK used in (5) and (10) it should be

39) Math. Ann., 89, (1923), Heft 1, 2; 101, (1929)
Lo) Gentzen (1) ,
k1) Gentzen (3) 1, p. 11 (2.5, 2.513); 1I, pp.2-3,(2.1)(tr.)
42) Math. Ann., 101 (1929) pp. 459, 462, 473 and
Gentzen (1) p. 331
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pointed out that sequents can be affordéd an intuitive
meaning in terms of the logical connectives of the

propositional calculus:

1)1!,,/1;,...,”/“——9@,3,,,...)?3,, [/a,v 21)

can be expressed by the implication

Diyu k. JUSBV-- VB, 4y

2) —> 8y, .-, By as BV VBy

3) a,)...)u/,_, as = (X4, % - ,.éz/(“)

L) The empty sequent —> as F (the false or
any false
proposition)

The discussion up to this point makes it clear that

the introductions and eliminations of the connectives

g/, [/) >, V, 3 in (5) have analogous counter-
parts in NK. The main difference between the calculi
arises in the treatment of negation due to the diffi-
culties inherent in a finitist interpretation of that
connective.uh) On the other hand, the LK-calculus
agrees in its entirety with the calculus employed

in (10). The inference of complete induction, which

is of central importance in (5) and (10), does not

of course appear among the rules of inference formalized

in NK and LK.

4L3) Gentzen (3) II, pp. 6-8 (tr.); (5) 4.56,p.35; p.43, 45-L6
LL) Gentzen (3) I, pp. 6-8 (tr.)
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It must be pointed out that the notion of a 'sequent",
as it appears above, and as it is ued in (10), is a
generalization of the 'natural' notion of a sequent
as it arises in (5). This generalization is achieved
by allowing multiple succedent formulae and thus
symmetrizing the antecedent and succedent. The
difference in (5) and (10) is the same as that
exhibited in the calculi LJ and LK of the Investiga-
tions.hS) To the introduction and elimination of a
logical connective in (5) there thus corresponds in
(10) the introduction of that connective in the suc-

cedent and antecedent of the sequent.h6)

For his initial supply of "true!" sequents, Gentzen
takes certain "logical" and “mathematical" basic
sequents. In (5)“7), a'logical'™ basic sequent is

a sequent of the form -9 , @ 'mathematical"
basic sequent a sequent of the form —>» éE .

In (10), a "logical! basic sequent is still of the
form §—> & , but a "mathematical! basic sequent
45) Gentzen (3) I, p. 10 (2.3) (tr.)

L6) Gentzen (10), 1.6, p. 142
L47) Gentzen (5), p. 38
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becomes a sequent consisting entirely of prime
formulae (i.e., formulae without logical connec-
tives) and becoming a “true" sequent with every
arbitrary substitution of numerical terms for pos-
sible occurrences of free variables.'8) The fact
that "logical" and "mathematical" basic sequénts
are to be taken as "true" follows from the "“defini-
tive form" for sequents stated at 13.4 (5) and also
the remarks made at 7.3, p. 5§ and p. [34. It must
be observed quite generally that Gentzen's nption
of the "truth" of a sequent is a generalization of
the "truth" and "falsity" of an implication

as it is customarily defined in propositional logic,
just as the sequent itself, as illustrated abowe,

can be regarded as a generalization of the implication

U > 13 toﬂ,f’---}'u/.?é',l/-“l/f]v

As far as the "truth-content!" of number-theoretical
propositions is concerned, Gentzen makes his position
quite clear in the Investigations, II p. 7 (tr.). He

considers propositions of the kind 3=3, Le525=z4, in

48) Gentzen (10), p. 139
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general, any arithmetical axiom as "true", as long
as every numerical special case is intuitively true.
He states further that

"it is almost self-evident that from such propositions
no contradictions are derivable by means of proposi-
tional logic. A proof for this would hardly be more
than a formal parapnrasing of an intuitively clear
situation of fact."™9)

This observation is of course entirely in harmony
with the finitist attitude in its literal sense as
explained in the excerpt from Hilbert and Bernays.50)
Gentzen observes further that universally quantified
arithmetic axiom formulae are also entirely reiliable

as long as each numerical special case is intuitively

true.5!)

What the consistency proof must therefore do is to
prescribe a method whereby any arbitrary derived
sequent, i.e., a number-theoretical theorem, that
is non-contradictory, can be brought into a form in
which its truth is intuitively recognizable. Here

the notion of the "intuitive truth-content" represents

L9) Gentzen (3) II, p. 7 (tr.)
50) Cf. footnote 10)
51) Gentzen (3) II, p. 7 (tr.)

-y,
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a property that is common to all non-contradictory
end-sequents but fails to hold for the sequent——)ﬂg"ﬂ
in (5) and the empty sequent in (10). This property

is furthermore invariant under the reduction of

sequents and derivations of sequents to their defini-

tive form (by the definition of a derivation and the

assumed reliability of the logical calculi employed)m

Let us take a closer look at the procedure whereby
Gentzen proves the consistency of formalized elemen-

tary number theory. We shall deal with (5) in detail.

The reader will recall that the consistency of the
propositional calculus in Hilbert-Ackermann (pp. 32-33)
is proved by assigning certain numerical vaiues to
propositicn variables and showing that the axioms of
the calculus always take the value O and that this
value is preserved by the permissible logical rules

of the calculus,

Gentzen in fact follows the method here indicated,
although the procedure is of course considerably

more complicated. All propositions of elementary
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number theory become formulae in the formalization

of elementary number theory carried out in (5)

(Section II) and each formula is in turn written

as a sequent. A sequent is either a logical basic
sequent, a mathematical basic sequent, or the end-
sequent of a derivation. Thus we must in some way
state a rule whereby the '"truth'" of the end-sequent

of a derivation can be '"calculated". This is achieved
by stating, first, a reduction rule for sequents, i.é.,
end-sequents of derivations, which reduces the sequent
in question to its '"definitive'" form in finitely many
steps so that we can decide by inspection whether or
not the sequent is "true'". It is then shown further
that nc contradiction can be derived in the theory
formatlized if we start from "“true" propositions, i.e.,‘
logical basic sequents and mathematical basic sequents,
and apply to them the rules of the logical calculus
developed. In formal language this amounts to showing,
as pointed out at the beginning of this monograph,

that the sequent —> 1([/ <22 cannot be the end-

sequent of a derivation, or, in the case of (10),
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that the empty sequent ——» cannot be derived.
The sufficiency of this demonstration can be seen
by considering the following consequences of the

two statements:

In (5): In (10):
Uy X > My —
- U -> 24 —> (=
72> M LT PR X

—_— P /=
—? (=2

Let us examine the method of reduction developed in
(5) somewhat more closely: The reduction rule is

stated in the following form:

Sequents, in general, are reduced to the definitive
form of 13.Lk by first eliminating the connectives
V,J’ > and replacing them by ¥, &, - .
This is permissible since the former connectives
can be expressed equivalently by means of the latter
without affecting the finitist interpretation of the

calculus. Next all free variables are replaced by
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arbitrary numerals and all minimal terms by their
associated "functional values", Then three cases
are distinguished depending on whether the succedent
formula is of the form Vk&'&), oru&ﬂ wTH
These are then reduced to definitive form. If the
succedent formula is false and no antecedent formula
is false, three further cases arise depending on
whether one of the antecedent formulae has the form
VaFGo L A Yy o =l . The defini-
tive form is finally reached in all cases. Special
rules form logical and mathematical basic sequents
are stated in 13.91 and 13.92, pp. 86-87 (5), so
that they too are brought into definitive form.
The next step consists in reducing an actually
derived sequent to definitive form, i.e., a sequent
that is the end-sequent of a derivation. In the
case where the end-sequent is already in definitive
form, no reduction is defined. 1In order to be able
to state his reductioh rule, Gentzen first changes
the vertical i.e., tree-like, arrangement of the
derivations into & horizontal one by modifying the

notion of a derivation and by the introducing the
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so-called™hain rule". The details of the changes
which this entails can easily be seen from the

consistency proof proper.52)

The crucial step in the argument consists in showing
that the reduction procedure leads to the definitive
form of a sequent in finitely many steps. This follows
easily if no complete induction occurrs in the proof.
The consistency of elementary number theory without
complete induction is, after all, already a conse-
quence of the Hauptsatz and was proved in the Investi-
gations II, pp. 5-7 (tr.) as an illustration of the
consequences of that important theorem. As Gentzen
points out,53) the special position of complete
induction is due to the fact that the number of
reduction steps required can become arbitrarily

large. In (5) lh.zh, the total number of steps
required for the reduction of 73 A —Oy(f) »

for exampie, depended on h  (the value of € )

and f in turn, depended on choices if z was

a free variable. Thus there exists no general bound

52) Gentzen (5) pp. 92-93
53) Gentzen (5) ps. 124
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’

for the total number of reduction steps required

for the reduction of 73 4 — 3'[%)' In (10) the
difficulty arises when a proposition with the maximal
number of connectives is proVed by completedindﬁction5h)
making necessary'the'Special'reduction step'of'a'"CJ-
reduction'., Here the difficulty is not the number of
individual complete inductions that may occur in a
derivation. They can be fused into a single induction,
as Gentzen has shown.55) Thus,

"the number of complete inductions occurring in a
number -theoretical proof is no measure of the
"complexity" of the proof in its meta-mathematical
discussion; although this number does have some
bearing on this point, it is not ke number of
inductions but their ''degree", i.e., the complexity

of the induction proposition, that counts."

In order to show that elementary number theory with
complete induction is free from contradiction, we

must therefore resort to ranking all possible proofs
according to their complexity and the measures here

required are the transfinite ordinals., Gentzen puts

it this way:56)

gh) Gentzen (10) p. 148
55) Gentzen (12)
56) Gentzen (7) pp. 77-78

il e BT 7 T
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In carrying out the consistency proof for elementary
number theory, one has to consider all conceivabble
proofs in number theory and to show that in a certain
sense, to be defined formally below, each individual
proof yields a "correct" result, in effect, no con-
tradiction. The '"'correctness'" of a proof rests on

the correctness of certain other, simpler proofs

that are contained in it as special cases or as parts.
This situation leads us to arrange the proofs in linear
order in such a way that those proofs on whose correct-
ness the correctness of another proof depends are made
to precede the latter proof in the sequence. This
arrangement of the proofs is achieved by assigning

to each proof a certain transfinite ordinal number.
The proofs preceding a given proof are precisely

those whose ordinal numbers precede its ordinal num-
ber in the sequence of ordinal numbers. At first
sight, the natural numbers might appear to suffice

as ordinal numbers for such an arrangement. Yet

in actual fact the transfinite ordinal numbers are
needed for the following reason: It may happen that
the correctness of a prcof depends on the correctness
of infinitely many simpler proofs. An example: In

a proof a proposition is proved by complete induction
for all natural numbers. In that case the correctness
of this proof obviously depends on the correctness of
the infinitely many individual proofs obtained by
spec¢ializing to a particular natural number. In such
cases it is not sufficient to use a natural number as
ordinal number, because each natural number is pre-
ceded by only finitely many other numbers in the
natural ordering. Hence we need the transfinite
ordinal numbers in order to represent the arrange-
ment of the proofs according to its complexity.

Furthermore, it now becomes apparent precisely why

the inference of transfinite induction is needed as
the crucial inference for the consistency proof:

With this infererce we prove the '"correctness'" of

each individual proof., For the proof no. 1 is
trivially correct; and if the correctness of all
proofs that precede a particular proof in the arrange-
is established, then the proof in question is also
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correct, since the arrangement was made in such a
way that the correctness of a proof depends on the
correctness of specific earlier proofs. From this
we can now obviously deduce the correctness of every
proof by means of that same transfinite induction

and have thus, in particular, established the desired

consistency."

The particular form in which the ordinal nqmbers are
defined in (5) and (10) has obviously no bearing on
the result, In footnote 21) of (5) Gentzen points
out the connection between the two methods of intro-
ducing the ordinal numbers. The difference in the
two approaches lies again in the greater emphasis

on the constructive nature of the elements of Cantor's
second number class in (10) versus their "natural™
formulation in (5) just as in the case of the dif-
ference in the introduction of the natural numbers
in the two proofs. The constructive nature of the
transfinite ordinals up to &, is brought
out very clearly in Gen;zen (7), where he points

out that57)

TLLTET S v
H'fl‘.ni- RN n._.uLL, Y

57) Gentzen (7) p. 76
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""there are really only two operations involved
through whose repeated application all these
numbers are quite automatically generated:

1) given a number, we can form its successor
(addition of 1); 2) given an infinite sequence
of numbers, we can form a new number ranking
after the whole of the sequence (formation of a
limit). This procedure may not appear to be
constructive since the formation ofw already
seems to imply the actualist conception of

the completed sequence of the natural numbers.
Yet this is not implied; it is quite possible
here to interpret the concept of infinity
potentially by saying, for instance: The num-
berd stands in the ordering relationmn<w to
every natural number # , however far one may go
in forming constructively such ordinal numbers.
The infinite sequences that occur in forming the
other ordinal numbers must be interpreted con-
structively in the same way,"

Nevertheless, it is precisely at this point that

the consistency proof goes beyond the formal frame-
work of elementary number theory and thus escapes
the limitations imposed on consistency proofs by
Godel's Theorem. As Gentzen‘remarks:58)

"The transfinite induction in the consistency proof
is now precisely that rule of inference which neces-
sarily, by the theorem of Godel, cannot be shown to

be correct by mea?s of the techniques of elementary
number theory."59

58) Gentzen (7) pp. 78-79
59) Gentzen (11)




(xxxvi)

It has been emphasized from the outset that all
methods of proof used in the consistency proof
should be entirely finitist in the sense of Hilbert
and Berpays. It now turns out that the notion of
"finitist" as quoted earlier is too narrow for the
purposes of the consistency procf., The schema of
transfinite induction contains a universally quanti-
fied premise. Hilbert and Bernays thus recognize
the necessity for extending their notion of finitist

to this new situation. To quote:éo)

"Wir wollen uns uberlegen, wie diese Schlussweise ...
als gultig einzusehen ist, und zwar auf eine Art,

bei der die Abweichung von unserem bisherigen
Verfahren der finiten Bewe1sfuhrung lediglich darin
besteht, dass Allsatze also Pramissen von Sitzen
zugelassen werden. Dabei kommen als Prémissen immer
nur solche Alls8tze vor, die sich nachtraglich auf
Grund des Ergebnisses der Uberlegung also zutreffend

erweisen, !

The fact that in the course of a proof by means of
this "restricted" transfinite induction, as it is
employed in the consistency proof, the quantified

propositions are themselves actually verified "on

60) Hilbert and Bernays II, p. 363
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the basis of the results of the arguments carried

out' would thus seem to bring this inference within
the class of intuitionistically acceptable methods

of proof. "Finitist" in the wider sense and"intui-
tionist" in the narrower sense have here in ﬁome

ways become synonymous, especially since intuitionists
tend to accept transfinite induction as long as it
ranges no further than Cantor's first & ~number,
Even E, Borel, one of the constructivist's most
staunch supporters, was prepared to accept Cantor's

second number class as constructively given.él) To

this Kleene observes that62)

"to what extent the Gentzen proof can be accepted

as securing classical number theory in the sense

of that problem formulation is in the present state
of affairs a matter of individual judgment depending
on how ready one is to accept induction up to &

as a finitary (finitist) method."

It would appear, therefore, that what must turn the
scales in favour of Gentzen is precisely the construc-

tive nature of the transfinite ordinal used in the

61) Kneebone (1) p. 246
62) Kleene (1) p. 479
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induction. We are here dealing with numbers that

can be uniquely displayed and well-ordered and

which permit a very natural arithmetical manipulation.
Gentzen himself pointed out the categorical difference
between the denumerable quantities involved in Cantor's
second number class and higher cardinalities when he

said that®3)

"in general set theory, for example, a careful proof-
theoretical investigation will eventually confirm the
view that all cardinalities that exceed the denumerable
ones have, in a very real sense, only an illusory exis~
tence and that it would be wisest to do without these
concepts. '

Nevertheless, Gentzen continued to strive for a con-
sistency proof for classical analysis/considering this
branch of mathematics as an "idealization', in the
Hilbert senseéh). He felt that this view of the
"second level" of mathematics would eventually restore
unity among méthematicians if not among philosophers.65)
Unfortunately it has not been possible to date to
realize the second stage of Hilbert's programme in

the way Gentzen had envisaged its solution. We there-

63) Gentzen (7) p. 74
64) Gentzen (9) p. 268
65) Gentzen (9) p. 266 seq.
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fore rest our case by quoting Gentzen's own words
that summarize the value of the consistency proof

for elementary number theory in the best possible

way:66)

"The proof certainly reveals that it is possible
to reason consistently "as though' everything in
the infinite domain of objects were as actualis-
tically determined as in finite domains. Yet
whether and in how far anything "real" corresponds
to the actualist sense of a transfinite proposi-
tion - apart from what its restricted finitist
sense expresses - is a question which the con-
sistency proof does not answer,"

66) Gentzen (5) p. 130



THE CONSISTENCY OF ELEMENTARY NUMBER THEORY

By "elementary number theory'", I mean the theory of the natural numbers

that does not make use of techniques from analysis.such as, e.g.,

irrational numbers or infinite series.

The aim of the-present paper is to prove the consistency of elementary
number theory or, rather, to reduce the question of consistency to

certain general fundamental principles.

How such a consistency proof can be carried out at all and for what

reasons it 1s necessary or at least very desirable to do so will be

discussed in Section I.

. N
Y

SECTION I.

REFLECTIONS ON THE PURPOSE AND

POSSIBILITY OF CONSISTENCY PROOFS

In paragraph 1, I consider the question why consistency proofs are
necessary and, in paragraph 2, how such proofs are possible.(l) In
doing so, I shall briefly restate those aspects of the problem,
already familiar to many readers; which are of particular relevance

to the remainder of this paper.
Paragraph 1

THE ANTINOMIES OF SET THEORY AND THEIR

SIGNIFICANCE FOR MATHEMATICS AS A WHOLE(Z)



1.1, Mathematics is regarded as the most certain of all the sciences.
That it could lead to results which contradict one another seems
impossible. This faith in the indubitable certainty of mathematical
proofs was sadly shaken around 1900 by the discovery of the "antinomies
(or "paradoxes") of set theory". It so happens that in this specialized
branch of mathematics contradictions arise in contexts in which no uni-

quely identifiable mistake in the iInferences used can be found.

Particularly instructive is "Russell's Antinomy' which I shall now

discuss in detail.

1.2. A set is a collection of arbitrary objects ("elements of the

set"). An "empty set'", which has no elements at all, is also admitted.
We now divide the sets into "sets of the first kind", i.e., sets which
contain themselves as an element, and '"sets of the second kind", i.e.,

sets which do not contain themselves as an element.

We now consider the set ?¥ which has for its elements the entire
collection of the sets of the second kind. Does this set itself belong
to the first or the second kind? Both alternatives are absurd: For

if the set M1 belongs to the first kind, i.e., if it contains itself
as an element, then this contradicts its definition by which all of

its elements were supposed to be sets of the second kind. Suppose,
therefore, that the set ttL belongs to the second kind, i.e., that

it does not contains itself as an element., Since it has all sets of
the second kind as elements by definition, it must in that case also

contain itself as an element and we have thus once again arrived at a



contradiction.

1.3. The result is Russell's antinomy which shows how easily an ob-

vious contradiction can result from a small number of admittedly some~

what subtle inferences.

What is the actual significance of this fact for mathematics as a whole?

We may be inclined, at first, to dismiss the entire argument as unmath-
ematical by claiming that the concept of a '"set of arbitrary objects"

is too vague to count as a mathematical concept.

Yet this objection becomes void if we restrict ourselves to quite

specific purely mathematical objects by making the following stipulation

for example: The only objects admitted as elements of a '"set" are first:
Arbitrary matural numbers (1,2,3,4 etc.); second: Arbitrary sets con-

sisting of admissible elements.

Example: The following three elements form an admissible set: First,
the number‘%; second, the set of all natural numbers; third, the set

whose two elements are the number 3 and the set of all natural numbers.

Using this purely mathematical concept of a set, we can then repeat the

above (1.2) argument and obtain the same contradiction.

1.4, The fact that we happen to have chosen the natural numbers for
our initial objects has obviously no bearing at all on the emergence
of the antinomy. It cannot, therefore, be said that a contradiction

has been revealed in the domain of the natural numbers; the fault must




be sought rather in the logical inferences employed.

1.5, It is thus natural to go back to look for a definite error in

the reasoning that has led to the antinomy. We might, for example,
argue that the set itt was defined by referring to the totality of all
sets (which was indeed subdivided into sets of the first and second
kinds, and where m was formed with sets of the second kind). The
set was then itself added to this totality, which raised the question

of whether it belongs to the first or second kind. Such a procedure is
circular; dit is illicit to define an object by means of a totality

and to add it then to that totality so that in some sense it contributes

to its own definition ("circulus vitiosus').

W

We might feel that the correct interpretation of the segashould rather

be the following:

If a definite totality of sets is given then this totality may be sub-

divided into sets of the first and second kinds. Yet if the sets of
the second kind (or alternatively, the first kind) are combined to a

new set 12L , then that set constitutes something completely new and

cannot itself be added to that totality.

1.6; The fact that the forms of inference leading to the antinomy
seem correct at first sight is based on the idea that the concept of

a "set" denotes something "actual" (and the totality of all sets,
therefore, constitutes a bredetermined closed totality); the critique

advanced against this view implies that new sets can be formed only



"constructively" so that a new set depends in its construction on

already existing sets.

1.7. If we were to think that the antinomy has thus been explained
away quite satisfactorily, we must at once face up to a new difficulty:
The form of reasoning (the circulus vitiosus) which we have just
declared to be inadmissible is already being used in_analysis in a
quite similar form in the usual proofs of some rather simple theorems,
e.g., the theorem: "A function which is continuous on a closed inter-

val and is of different sign at the endpoints has a zero in the inter-

val."

The proof of this result is essentially carried out in the following
way: The totality of points in the interval is divided into points

of the first and second kinds so that a point is of the first kind if
the function has the same sign for all points to its right up to the
end of the interval and it belongs to the second kind if this is not
the case, The limit point defined by this subdivision is then the re-
quired zero. It belongs itself to the points of the interval. Hence
we have the "circulus vitiosus": The real number concerned is defined
by referring to the totality of the real numbers (in an interval) and

is then itself added to that totality.

This form of inference is nevertheless considered correct in analysis

on the following grounds: The number concerned is, after all, not

newly created by the given definition, it already actually exists

within the totality of the real numbers and is merely singled out from



this totality by its definition.

Yet exactly the same can be said about the antinomy mentioned above:
The set w is already actually present in the totality of all sets
(defined at 1.3) and is merely singled out by its definition (at 1.2)

from this totality.

Considerable differences certainly exist between the forms of inference
used to derive the antinomy and those customary in proofs from analysis.
Yet we must ask ourselves whether these differences.are radical enough

to justify a further use of these inferences in analysis—--since no
contradictions have yet arisen--or whether their similarity with the
inferences that have let the antinomies should not prompt us to eliminate
these inferences also from analysis. Here the opinions of mathemati-

cians concerned with these questions diverge.

1.8. We can indeed challenge the correctness of other forms of in-
ference customary in mathematics because of certain remote analogies
that may be drawn between them and inferences leading to the antinomies.

Especially radical in this respect are the "intuitionists" (Brouwer),

who even object to forms of inference customary in number theory, not

only because these inferences might possibly lead to contradictions,

but because the theorems to which they lead have no actual sense and
are therefore worthless. I shall come back to this point later in

greater detail. (Paragraphs 9-11 and 17.3).

Less radical are the '"logicists' (Russell). They draw a line between

permissible and non-permissible forms of inference, and the antinomies



turn out to be a consequence of a non-permissible circulus vitiosus.
At one time the logicists had also disallowed the inference applied in
the example from analysis cited above ("ramified theory of types'),

yet this inference was later re-admitted.
1.9. Altogether we are left with the following picture:

The contradictions (antinomies) which had occurred in set theory, a

specialized branch of mathematics, had given rise to further doubts

about the correctness of certain forms of inference customary in the

rest of mathematics. Various attempts to draw a line between permis-

sible and non-permissible forms of inference have led to different

approaches to the subject.

In order to end this unsatisfactory state of affairs, Hilbert drew up

the following programme :

The consistency of the whole of mathematics, in so far as it actually
is consistent, is to be proved along exact mathematical lines. This
proof is to be carried out by means of forms of inference that are com-

pletely unimpeachable ("finitist" forms of inference.)

How such a consistency proof is conceivable at all will be discussed

more fully in Paragraph 2.

In the remainder of this paper, I shall them carry out such a consistency

proof for elementary number theory. Yet even here we shall meet forms

of inference whose closer inspection will give us cause for concern.

More about this in Section 3. One point should however be made clear



from the outset; those forms of inference which might possibly be
considered disputable occur hardly ever in actual number theoretical
proofs, (11.4); we must, therefore, not be mislead and because of

the great self-evidence of these proofs consider a consistency proof

as superfluous.



Paragraph 2

HOW ARE CONSISTENCY PROOFS POSSIBLE?

2.1. General remarks about consistency proofs.

2.11. The consistency of geometries is usually proved by appealing to
an arithmetic model. Here the consistency of arithmetic is therefore

pre-supposed. In a similar way we can also establish a correspondence

between some parts of arithmetic, e.g., the theory of the complex

numbers and that of the real numbers.

What remains to be proved ultimately is the consistency of the theory
of the natural numbers (elementary number theory) and the theory of
the real numbers (analysis) of which the former forms a part; and
finally the consistency of set theory as far as that theory is con-~

sistent.

2.12. This task is basically different and more difficult than that

of reducing the consistency of one theory to that of another theory
by mapping the objects of the former theory onto the objects of the

latter. Let us look more closely at the situation in the case of the

natural numbers:

These numbers can obviously not be mapped onto a gimpler domain of

objects. Nor are we indeed concerned with the consistency of the
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domain of numbers itself, i.e., with the consistency of the basic

relationships between the numbers as determined by the "axioms"

(e.g., the "Peano Axioms" of number theory). To prove the consistency
of these axioms without invoking other equivalent assumptions seems
inconceivable. We are concerned rather with the consistency of our

logical reasoning about the natural numbers (starting from their axioms)

as it occurs in the proofs of number theory. For it is precisely our
logical reasoning which in its unrestricted application leads to the
antinomy (1.4). Yet such general notions as that of an arbitrary set
of sets (1.3) is of course no longer considered to be part of number
theory. Elementary number theory comprises merely finite sets (of
natural numbers, for example). If infinite sets of natural numbers
are included we are already in the domain of the real numbers and

hence in analysis. This is the fundamental distinction between

elementary number theory and analysis.

From here we reach set theory by extending the concept of a "set" still

further.

How can the consistency of arithmetic be actually proved?

2.2  "Proof Theory".

2,21. The assertion that a mathematical theory is consistent consti-

tutes a proposition about the proofs possible in that theory. It says,



after all, that none of these proofs leads to a contradiction. In
order to carry out a consistency proof we must therefore make the
possible proofs in the theory themselves objects of a new "meta-
theory". The theory that has arbitrary mathematical proofs for its

objects is called "proof theory" or "meta-mathematics'.

2.22 An example of a theorem in proof theory is the '"principle of

duality" in projective geometry:

It says roughly that from a theorem about points and straight lines
(in the plane) another true theorem results if the word '"point" is
replaced by "straight line" and the word "straight line" by "point".
The theorem "for any two distinct straight lines there exists exactly
one point coinciding with both straight lines (i.e., lying on them)",
for example, has a dual counterpart in the theorem: 'For any two
distinct points there exists exactly one straight line coinciding

with both points (i.e., passing through them)".

The principle of duality is justified thus: The axioms of projective
geometry in the plane are such that the dual transformation of an
axiom always yields another axiom. If any theorem has therefore been
derived from these axioms then a uniform replacement in the proof of
the word "point'" by "straight line" and of the word "straight line"

by "point'" thus yields a proof for the dual theorem.

This justification is obviously proof-theoretical since it is about the

"proof of a theorem".
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(This example also shows that proof theory is capable of advancing

mathematics proper.)

2.23. The "formalization'" of mathematical proofs.

As the objects of our proof theory we shall take the proofs carried
out in mathematics proper. These proofs are customarily expressed in
the words of our language. These have the disadvantage that there are
many different utterances for the same proposition, that an arbitrar-
iness exists in the order of the words, sometimes even ambiguities.

In order to make an exact study of proofs possible it is therefore
desirable to begin by giving them a uniform uniquely predetermined
form, This is achieved by the "formalization' of the proofs: the
words of our language are replaced by definite gymbols, the logical
forms of inference by formal rules for the formation of new formalized

propositions from already proven ones.

In Section II, I shall carry out such a formalization for elementary

number theory.

The example of the principle of duality (2.22) shows clearly the
difficulties that are inherent in proof theory without a formalization:
the linguistic expression of the theorem "for two mutually distinct
straight lines there exists exactly one point that coincides with

both straight lines" had to be chosen artificially in such a way

that the replacement of "point" by "straight line'"-and vice versa

again resulted in a linguistically meaningful theorem. Even in
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carrying out the proof of the principle of duality we are left with
the feeling that we have not offered a really rigorous proof. In order
to make this proof rigorous, we do in fact require an exact formalization

of the propositions and proofs (for the domain of projective geometry).

2.3. The forms of inference used in the consistency proof:; the

theorem of G3de1.

2.31. How can a consistency proof (for elementary number theory, for

example) be carried out by means of proof theory?

To begin with, it will have to be made precise what is to be under-
stood by a formalized '"number-theoretical proof". Then it must be
established that among all such possible ''proofs" there can exist none
which leads to a‘%ontradiction". (This is a simple property of "procofs"

which can be verified immediately for any given '"proof".)

Such a consistency proof is once again a mathematical proof in which

certain inferences and specific concepts must be used. Their reli-

ability (especially their consistency) must already be pre-supposed.

There can be no "absolute consistency proof'". A consistency proof

can merely reduce the correctness of certain forms of inference to the

correctness of other forms of inference.

It is therefore clear that in a consistency proof one can use only
forms of inference that count as considerably more secure than the

forms of inference of the theory whose consistency is to be proved.
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2,32, Of the greatest significance at this point is the following
proof-theoretical theorem proved by K. Godel: 3) "It is not possibie
to prove the consistency of a formally given (demarcated) theory

~ which comprises elementary number theory (nor that of elementary
number theory itself) by means of the entire collection of techniques

proper to the theory concerned (given that that theory is really

consistent)"

From this it follows that the consistency of elementary number theory,
for example, cannot be established by means of a part of the methods

of proof used in elementary number theory nor indeed by all of these

methods. To what extent then is a genuine re-interpretation still

possible?

It remains actually quite conceivable that the consistency of elementary
number theory can in fact be verified by means of techniques which, in
part, no longer belong to elementary number theory, but which can

nevertheless be considered to be more reliable than the doubtful

components of elementary number theory itself.

2.4. In the following (Sections II-IV) I shall carry out a consistency
proof for elementary number theory. In doing so I shall indeed apply
techniques of proof which do not belong to elementary number theory
(16.2). Several different consistency proofs already exist in the
literature (4) all of which reach essentially the same point, vizy, the

verification of the consistency of elementary number theory with the
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exclusion of the inference of "complete induction" which, as is well
known, constitutes a very important and frequently used form of
inference in number theory. The inclusion of complete induction in

my proof presents certain difficulties (16.2).

SECTION II
THE FORMALIZATION OF ELEMENTARY NUMBER THEORY

As pointed out at 2.23, it is desirable for a proof-theoretical dis-
cussion of a mathematical theory to give that theory a precise formally
determined structure. In order to prove the consistency of elementary
number theory; I shall therefore begin by carrying out such a formal-

ization of elementary number theo;y.(s)

This task falls into two parts:

1. The formalization of the propositions occurring in elementary

number theory (Paragraph 3).

2. The formalization of the methods of proof used in elementary

number theory, i.e., forms of inference and specific concepts

(Paragraphs 4 - 6).

Paragraph 3

THE FORMALIZATION OF THE PROPOSITIONS

OCCURRING IN ELEMENTARY NUMBER THEORY
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3.1. Preparatory Remarks.

3.11, A formalization of mathematical propositions represents nothing
fundamentally new even outside of proof theory. It is indeed true to
say that mathematics has always undex;gone a successive formalization,
i.e., a réplacement of language by mathematical symbols. There are,
for example, propositions which are written entirely in symbols, e.g.,

2
(e,+£)v (6_- -‘_-) = ?_:Q - 4 , in words: '"The product of the

sum and the difference of the numbers a and b is equal to the difference

of the squares of both numbers".

The proposition "If a = b, then b = a", on the other hand, is
generally still represented by using words. Completely formalized, it

is written: a=b> b = a.

3.12. The linguistic expression "If & holds, then B holds", formally

written as Zl o 13 , 1s an example of the logical composition of propo-

sitions for the purpose of forming a new proposition. Further compo-

sitions of propositions are comstructed with the symbo]s}] s V s 7,

V and a with the following meanings: U)JS means" .74 holds
and B8 holds", u Vs :" U holds or ﬂ holds" (i.e., at

least one of the two propositions holds), 2 " U does not hold".

VxUC«:) " u(_*-) holds for all x ", 5%4’1&) : "There is a
* , so that u@b) holds".‘ |
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3.13. As an example we shall consider "Goldbach's Conjecture" ("Every

even natural number can be represented as the sum of two prime numbers"),

which can be formally written as:
Vx_{&l)}_ > 535; Ci-#z-z. X L'eu'weg-o Bum})_]i .

Here Prim a stands for " a is a prime number";gl{_. , as usual, for

"a is a divisor of b". All variables shall refer only to the natural

(= positive whole) numbers.

3.14, The symbols =, Prime and l are "predicate symbols'"; once its

argument places have been filled by numbers, such a symbol constitutes

a proposition. The symbol +is a "function symbol"; once its argument

places have been filled by numbers, it represents another number.

The formal counterpart of a proposition is generally called a "formula".
2
(Just as in mathematics, for example, (g- "’";) ‘ (ﬁ" '.‘.') = 5!- ""-

is called a "formula", although in a special sense.)

After these remarks I shall now give a precise characterization of
those formal expressions which are to be admitted into our formalized

number theory for the purpose of representing propositions.

3.2, Precise definition of a formula. (6)

3.21. The following kinds of symbol will serve for the formation of

formulae:
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3.211. Symbols for individual natural numbers: 1,2,3,4,5,6,7,8,9,

10,11,12, ...... , briefly called "numerals". (No symbols for other

numbers will be needed.)

3.212. Variables for natural numbers: These I divide into free and

bound variables (vid.seq.). Any other symbol that has not yet been
used may serve as a variable; yet it must be stated in each case

whether such a symbol is to be a free or a bound variable.

3.213. Symbols for individual functioms, briefly called "function

symbols": «f» , & , and others as needed (cf. 6.1).

3.214. Symbols for individual predicates, briefly called 'predicate

symbols": & , < ,'e“s“‘, l and others as needed (cf. 6.1).

3.215. Symbols for the logical composition (logical connectives)* of

propositions: }{, v y 2 '7,v , 3 .

3.22, Definition of a term (formal expression for a - individual or

indeterminate - number):

3.221. Numerals (3.211) and free variables (3.212) are terms.

* Translator's addition.
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3.222. If 8 and 4a are terms, then so are S+ 2  and . € H
other terms may be formed analogously by means of further function

symbols that may have been introduced (3.213).

3.223. No expressions other than those formed in accordance with

3.221 and 3.222 are terms.

3
3.224, Example of a term: [(g-f‘/) ’ f +4 ; where a and b are

free variables.

Brackets serve as usual the purpose of avoiding ambiguities in con-

nection with the grouping of the individual symbols.

3.23. I now define the notion of a formula (formal counterpart of a

number-theoretical proposition):

3.231. A predicate symbol (3.214) whose "argument places'" are filled

by arbitrary terms (3.22) yields a formula.

Example: (02"- &)0 4 < '.‘.

3.232, 1If IL is a formula, then so is "'u . If a and £ are

formulae,' then so are U, l{ ﬁ ,. U V 43 , and U o ﬂ

3.233. From a formula results another formula if all free occurrences

of a variable in the former formula are replaced by a not yet occurring
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bound variable # » and if the entire formula is at the same time pre-

fixed by V* or 3% .

3.234. No expressions other than those formed in accordance with 3,231,

3.232 and 3.233 are formulae.

3.24., As in the case of terms, brackets must be used to display

unambiguously how a formula has been constructed in accordance with

3.232 and 3.233.
Examples of Formulae: Cf. 3.13, 3.11, 3.231.

The intuitive sense of a formula follows from the remarks in 3.1. It

should be observed that a formula with free variables constitutes an

"indefinite'" proposition which becomes a "definite" proposition only

i1f all free variables in it are replaced by terms without free variables,

e.g. numerals. (7)

A minimal term is a term consisting of one function symbol with numerals

in the argument places, e.g.: 14 3.

A minimal formula is a formula consisting of one predicate symbol with

numerals in the argument places, e.g.: 4 = 12,

A transfinite formula is a formula containing at least one V or g symbol.

3.25. German and Greek letters will be used as "syntactic variables",

i.e., as variables for our proof-theoretical considerations about number
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theory.

3.3. The question arises whether our concept of formula is wide

enough for the representation of all propositions occurring in elementary

number theory.

Strictly speaking the answer is no. There certainly are propositions
in elementary number theory (examples will follow) for which no
immediate formal representation exists in terms of the methods
formalized. Yet such propositions may safely be disregarded as long
as equivalent propositions exist in each case which are representable

in our formalism.

For this a number of important examples:

3.31, As the objects of number theory I have taken into account only

the natural numbers., Yet the rest. of the integers as well as, occasionally,

the fractions are of course also needed in number theory. It is not

difficult however, to reinterpret all propositions about integers and
fractions as propositions about the natural numbers by observing that
the negative integers can be made to correspond to pairs of positive

integers and the fractions to pairs of integers; (An example:

= ¢ is interpreted as a.d = c.b.) Even in the case where finite

d
sets of natural numbers or of integers or fractions are included among

oo

the objects of number theory (e.g., the "complete systems of residues')

it is still possible to reinterpret all propositions as propositions
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about the natural numbers, although in this case such interpretations
are considerably more complicated. The same holds for propositions

in which diophantine equations etc. are taken as objects,

Here I do not intend to discuss these methods of re-interpretation
further; they present no fundamental difficulties (especially for
the consistency proof) and anyone who concerns himself somewhat more

closely with these matters will easily see their feasibility (cf. also

17.2).

If infinite sets of natural numbers, integers, or fractions are

admitted, such a reinterpretation is in general no longer possible
precisely because we are here already dealing with objects from
analysis (cf. 2.12). It is, after all, customary to define the real

numbers themselves as certain infinite sets of rational numbers.

3.32. Functions and predicates occur in number theory in a variety

of forms. In defining a formula I have taken account of this fact by
admitting at 3.213 and 3.214 "further symbols as needed'". Further
details about the introduction of arbitrary functions and predicates

follow in Paragraph 6.

3.33. As far as the logical compositions of propositions are finally

concerned, the following are for example customary utterances:

"The proposition ZL holds if and only if the proposition holds."

This composition of propositions is of course represented as follows:

(BoU) §(U >8):
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"There exists exactly one number 3 , for which the proposition

2{ C*) holds." For this we write: 5*[2‘0‘)3’ Vy [‘a{y):y g*)]’
with obviously the same meaning. (Suitable bound variables are
to be chosen for< andy s where Zé(g) is the expression resulting

from Zl(ﬂ—) by the replacement of & byj ‘)
Ulx)

"There are infinitely many numbers #€ for which the proposition/@olds."

This simply means that "For every number there exists a number greater
than the former for which a holds."; and in this form the proposition

is representable in our formalism.

"The sum total of numbers #& for which the proposition ﬂ[*)
holds, is n." This proposition - in which'_rl is left indeterminate -
can be represented in our formalism only in a considerably paraphrased
form, possibly as follows: We include the finite sets of
natural numbers among the objects of the theory and paraphrase the
above proposition thus: "There exists a set of natural numbers whose
sum total of elements is n and for which it further holds: for each
one of its elements the proposition u holds and every number for
which u holds belongs to the set." Here "sum total" is a function,
"belongs" a predicate, and both must be defined in advance. The con-

cept of a finite set can finally be paraphrased again according to 3.31.

There exists of course a variety of other linguistic expressions all

of which can be reduced to immediately formalizable utterances.
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3.34, I shall return to the question of the completeness of the formalism
in a quite general sense after the consistency proof has been carried out

(17.1).
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Paragraph 4

EXAMPLE OF A PROOF FROM ELEMENTARY NUMBER THEORY

4.1. I now proceed to the formalization of the methods of proof
used in elementary number theory. I.e., I shall have to list as

completely as possible all forms of inference and methods of

forming concepts used in proofs of elementary number theory and

assign to them a formally fixed form which avoids all the

ambiguities of their linguistic representation.

Only if a precise formal definition can then be given of what
is meant by an elementary number=theoretical "proof" can we begin

with the proof theory of elementary number theory.

I shall begin by giving an example of a numper theoretical proof
in this paragraph, and shall classify the individual forms of
inference according to definite criteria by means of examples from
this proof. 1In Paragraph 5, I shall then give a precise general

formulation to these forms of inference.

Finally, in Paragraph 6, I shall discuss the methods of forming

concepts and the here relevant number-theoretical "axioms".

4.2, As an example of a proof from elementary number theory, I

shall choose Euclid's well known proof of the theorem: "There are

infinitely many prime numbers."

I shall first carry out the proof in words in a version which has

been adapted somewhat to the purpose in hand.
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In the following (throughout Paragraph 4) I use the letters _a, _131)_‘92)

c,d, 1, m, n, as free variables, the letters 4 , ¥ as bound
—

-
-—

variables (for natural numbers).

The theorem to be proved can be formulated more precisely as follows:

"For every mnatural number there exists a larger one which is a prime

number."

Suppose now that a is an arbitrary natural number. We must therefore
show that there exists a prime number which is larger than a. We

consider the number & .’-‘" . If it is a prime number then it already

validates our assertion. If it is not a prime number then it has a
divisor 'f, (excluding 1 and itself). This divisor is larger than

a for no number from 2 to a can divide@¥/ , since any such division
leaves a remaim‘ier of 1. 1If 'fc is a prime number it validates our
assertion. If it is not a prime number then it too has a divisor fd
other than 1 and itself. This number also divides & /+/ since it
divides “_& . Hence 'f" is also larger than a. By continual repetition
of this process we obtain a sequence of numbers: 4 14 ’, é,, ’.‘.3, PRV
whose terms become smaller and smaller. Hence the sequence must

terminate at some point, i.e., its last number is a prime number which

divides‘d_._!-ll and is larger than a. Hence the existence of a prime
number which is larger than a has been verified. Since a was a quite
arbitrary natural number it follows: for every natural number there

exists a larger one which is a prime number. Q.E.D.

4.3. In the proof I have pre-supposed various simple theorems as

already known. These can be reduced to still simpler facts by further
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proofs, yet this is unimportant for our present purpose since we are

interested, above all, in the inferences which occur in the various

steps of the above proof.

Here we must keep in mind that through practice we are accustomed to

carrying out éntire sequences of proof at once without being conscious

of each individual inference contained in that step. In order to

single out the actual elementary inferences I shall therefore go

through Euclid's proof once again and bring to light all individual

inferences contained in some parts of the proof. At the same time,

I shall formalize according to Paragraph 3 the various propositions

as they occur.

4.4. Detailed Analysis of Euclid's Proof.

The proof contains a somewhat disguised "complete induction'" (cf. the
place: "by continual repetition of this process....."). The usual

normal form of the inference by complete induction is this:

The validity of a proposition is proved for the number 1; then it is
shown that if the proposition holds for an arbitrary natural number n
it also holds for n + L ; hence this proposition holds for any

arbitrary natural number.

It will also be convenient to reduce to this normal form the
disguised complete induction which here occurs; to do this I shall
choose the following proposition as the "induction proposition",
formulated for a number m: "Either there exists a prime number among

the numbers from 1 to m which is greater than a or none of these numbers,
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except 1, divides db’ 4 | . Formally:
{a,[; Sm & (%m’qpa)]j V \7{,[(771 kg‘m): 7;[(4‘-”)]

The proof now runs as follows:

4.41. The induction proposition must first be proved for m = 1.
Here its second part is satisfied automatically since there is
obviously no number which is larger than 1 and smaller than or
equal to 1. Explicitly: for an arbitrary c it holds that
("—)'&C"); this we assume as given. Then it also holds that
(C)';’ C‘l)} 2 £ l(“ "'") , and, since ¢ was arbitrary,
Vyf(y)'&gél) 2 -7? I(ﬂ""‘).’ . From this
follows, in accordance with the meaning of \/ (3.12), the entire

induction proposition for m = 1, viz:

z‘iz[zél&(au&.cj y?fg]j vV Vz [lg>l &24:)9-12’(6 !«H)J ,

4.42. Next comes the "induction step", i.e.: we assume that the

induction proposition has been proved for an arbitrary number n, so

that

[5; [‘) sn Y C'Bu'mz & §>:)]}\/ V? [(zﬂ yzsr:)p-rz ] (ﬁ!-u)]'

is valid and is now to be proven to be valid for n + 1. This is done

as follows:

On the basis of the induction assumption two cases are possible:

l. Ig[s€n & (Punagé g>a)]
L. V«,[(vw&g‘“)’"‘”("“)]
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In the first case it follows without difficulty that?} [}4&.4‘!
AS (?MM;#;M)] I shall not discuss this further. In this case
therefore the induction assumption has already been proved for n + 1,

viz.,

fﬂz[zery« & (%az ¥ ?9]}(‘# V Vz[(-,_ﬂkzégu):-rzl(g!m] .

Let us now look at the second case:
Vy[(y21 ¥ yen)>7% | (al+1)] .
It~holds that (&-H) l(é!*') V"’(_'_'v"') I(S |4 ’) . We can thus

distinguish two sub-cases:

First sub-case: (W +1) l(g,_’ +1 ) . From this it follows that
%g(ﬁ-ﬁ) k Cﬂ."'l) > a , which I shall briefly show since

the only forms of inference here used are those for which we already

have examples in the remaining parts of the proof:

n+ 1 is a prime number; for if it had a divisor other than 1 and
itself, it would be smaller than n + 1, and would then also divide
contradicting our assumption thatV,[{!7, }.7 ".E ); 77 [(:!4/)].
n + 1 is furthermore larger than. a; for t:h.; numbers Erom |
2 to a do not divide & '4-' since such a division always leaves a
remainder of 1. Hence it holds in fact that Pa: ua (g e ¥ (n+41) >4
; alson + 1 n + 1, hence it holds that nt+/ & A+ é
?Mm(e_ﬂ)k(gd;:and consequently also that
5} [3cner & C"Buo«eg ¥ 3> ;‘}_)7}

and thus
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[%['_}él}ﬂk(%; 4'_}”:)7}\/ Vg[‘!"é’iégu) > 'ﬂ_jlﬁ.’-l-l)]o

Second sub-case:-](n_-f-l) l (1’ -H). Suppose that d is an arbitrary
number with a property thatd.)’é’ ‘_" ée_LJ" . From é «ntl

followsp{,él_\ Vd,- A+l , which is to be taken as given.

Suppose first tﬁat_&é!_t ; it also holds that VJ[(]”A","'E)’ 7:2'(:"”)1'

, hence in particular that(d)[‘rd.gn):‘lé!@.,’u). From
é)l) together with _‘_é!_l.) it follows that4>l &d‘n , and

together with the preceding therefore =-p ;_(((¢l+/)

If, however, d = n + 1, then, because of -r(n-ﬂ)l(d,’-fl) , it also

follows that 7 4 ] (_4.!4")

Thus it holds in general that -14 l(ﬁ, 4”) » a consequence of the
assump tion 4_. >l &g‘é}\,-{-l . Hence we can write(g(;[&éé_}_[-‘-l)b?é’@!-ﬂ)‘l‘

and further, since d was an arbitrary number,

Vy[(g>14 yen+d > 7yl (al+0],

and thus once again

fag[iérﬁu&(?m'z 5/27‘})]}
% VJ[(?'&zér_t-H) >7Y] C:‘!-H)J '

We have therefore in all cases obtained the induction proposition

for n + 1, and this completes the induction step.
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4.43. The proof is now quickly completed:

From the complete induction follows the validity of the induction
proposition for arbitrary numbers. We require it only for the

number g.! +1

{5,[74k!+t ¥ (Me;&;;ﬂ]}
vV Vg[(y)l é(y.éA,'-J-l)D"’})l(‘-'-H)].

From the second case it follows in particular that

(4_!.,&[)] Ajl!“'l ée.’*l)g ‘7(4_{1-’) ‘(f_’—l'l) .

Yet it hélds that _4,’4-/ > | 4’ 5.’4/ £al+ , which
we assume as given; hence it follows that =7 (4,,-#/)/ (5,/-/-/)
On the other hand it holds of course that (“_,‘/4.[)/ (5!4./) , we

have thus obtained a contradiction, i.e., the second case cannot

possibly occur; formally:

W[ (1) yéals)> -y | al+n].

Only the first case remains, i.e.: 3’ [7 £ "*l B PM};/77“ )} *
Suppose thatgis such a number so that 4 éﬂ.!-ﬁl &(Z““ﬁt_(d’_(7}lmlds.
Then it holds in particular thatae"“egk é".’- , from which JJ[B“%;Q} #

37‘]f0110ws. Yet a was a quite arbitrary natural number, hence this

“result holds for all natural numbers, i.e., v:’ 32 (-B&"NQC ,41)3)
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This is the final result of Euclid's proof.

4.5. Classification of the individual forms of inference by

reference to examples from Euclid's Proof.

Let us now focus our attention on the individual inferences occurring

in the above proof. Here the following classification almost

suggests itself:

For every logical conmective & LV .2 , 7 |, V , and
3 there exists certain associated forms of inference. These may
be further divided into forms of inference by which the connective
concerned is introduced and other forms of inference by which the same
comnective is eliminated from a proposition. As examples for each

individual case I shall give an inference from Euclid's Proof:

4.51. A V-introduction occurs at the end of the proof, viz: after

a’ [?MIMC} k ’) ‘J was proved for number a, it was inferred that

Yy 32( Painat § 4 3 >4)

A Y.elimination took place at 4.42, subcase 2, where from
V” [( 37‘*5 .‘."l)) "J,(&,’-‘-')J it was inferred that
(dy1 yden)>7d [ (als1)
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4.52. A‘{,introduction (from 4.42, 2 subcase): the two propositions

and d & N\ together yielded the proposition

A>1 Yy dik.

A N=elimination (from 4.43):
From ,g 54!4—‘ &’C?Mwé 4’ ’£>e) it was inferred

that?M,'ugg 4 474}

4.53. Ag.. introduction (from 4.43):

From B.(.'utc _e 4’{75 it was inferred that JZ [&".’“c 7 J”Z >5-)

AJ-elimination (from 4.43):
The proposition |
Ja[géa+t & (Dume 3 &3>a)]
was valid. From it was inferred that € ¢ alsr & [ Reie € 4’4?5),
where __éstood for any one of the numbers which existed by virtue of the

previous proposition.

4.54. A v-introduction (from 4.41):

From V}J((ﬂ" ’{36 1)> —’J((“"*')]

it was inferred that

{33 (941 & ('Bcw.e;q;n)]}
V Vﬂ [(571 % 54!\9‘15} [4’4/)]

A v-elimlnatlon (from 4.42): the proposition

-~y
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{3’ [,‘E&émc‘z s 2’:)1} V V:,’((_?>l &-35})3 'Ig‘(f'-ﬂ)]

was valid. From it resulted the distinction of cases:

cave i Ty [34n 4 (Pansie g 4 3>
Case (ii): b&[(gn Yyéen)> 7Y |cal+n] .

This distinction of cases was terminated by the fact that the same
proposition

(13 034w (imegh palf VLo 1hyenenronglae0]
cou.ld :ventually be infe:red in both cases.

4.55. ADewintroduction (from 4.42, subcase 2):

Starting with the assumption 4 £ | 4 4 £n+l we reached the
result: -7.4 ‘ ! -’ + 1 . Hence (4)‘ 4/4_ 4 '.!-'“)’75 l(:!"")

was valid.

ADeselimination (from 4.42, subcase 2):
!
rrom deiXden aa (A7 y dsn)o> 74 [(al+)

it was inferred that '7_4 ‘ lﬂ!“") .

4.56. For negation ( =7 ) the situation is not quite as simple; for
here there exist several distinct forms of inference and these cannot
be divided clearly into =y - introductions and ey~ eliminations. I

shall come back to this later (5.26). Here I shall cite only a single

important example from Euclid's Proof, viz. a "reductio ad absurdum'" -

inference (from 4.43): ‘7V3[( Z)' kyée!'“ ) 2 "7; l(ﬁl""’)]
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was inferred from the fact that the assumption V, (('j)l }z ‘K..'“) >

7"“!“\] led to a contradiction, viz., to the proposition

1(:{.;.)‘(5.’4!) , whereas (4!4\’) l(d .,-H) is indeed provable.
Paragraph 5

THE FORMALIZATION OF THE FORMS OF INFERENCE OCCURRING

IN ELEMENTARY NUMBER THEORY

5.1, Preliminary Remarks.

My next task is to formulate the different kinds of forms of

inference, which have been introduced by means of the above examples,

in their most general form.

The determination of the individual forms of inference is not

entirely unique. Yet the sub-division into introductions and

eliminations of the individual logical connectives which I have chosen

seems to me especlally lucid and natural.

What, then, does the general form of a form of inference look like?

E.g., as the general form of the g - elimination one would be
inclined to put simply the following: 1f a proposition of the form
ﬂ é’ ﬂ is proven (where u and 13 are arbitrary formulae),

then u (or 13 ) is also valid.

Yet we must still keep in mind the following: the structure of a
mathematical proof does not in general consist merely of a passing from
valid propositions to other valid propositions by the application of the

inferences. It happens, rather, that a proposition is often assumed as



36

valid and further propositions are deduced from it whose validity
therefore depends on the validity of this assumption. Examples from

Euclid's proof: The "reductio" (4.56), the & -introduction (4.55),

the induction step in the complete induction (4.42).

In order to describe completely the meaning of any proposition

occurring in a proof we must therefore state in each case upon which

" of the assumptions that may have been made the proposition in question

depends.

I therefore make it a rule that, together with every (formalized)
proposition $ occurring in a formalized proof the (formalized)
assumptions ‘a s e s ‘tﬁk upon which the proposition depends

must also be listed in the following form:

U,)Zt,,)...)u/“'—"ﬁ

which reads: From the assumptions a, s s 2/(‘, follows

3 . Such an expression I call a "sequent'". If there are

no assumptions, we write =P 3

An example from Euclid's proof: The proposition 7! l (,Q!"" ')
from 4.42, sub-case 2, must, in order to display its dependence on

assumptions, be represented by the following sequent:

vy[ (1 ¥ genyo vyl (ai4n], 7(2+0 [tal+1),

4.713{9_{5'1.44 —_— '-rgl'(_a_.!-flj.

Since every proposition of the original proof is now represented by a
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sequent in the formalized proof we can formulate the forms of

inference directly for sequents.

Our earlier example, the 4? - elimination, would now have to be
formulated thus: "If the sequent q,--) 6’ "u"# is proven
(/L‘)o),theng;,...’gf—’u or Gg,-n:)af‘-"”

is also valid."

In the following, general schemata for the remaining forms of

inference will be given in the same way.

5.2. Precise General Formulation of the Individual Forms of Inference.

5.21. Definition of a sequent (9)(forma1 expression for the meaning

of a proposition in a proof together with its dependence on possible

assumptions):

A sequent is an expression of the form:
(&, ¥, - s ‘u/",_\

where arbitrary formulae (3.23) may take the place of! and js . The

formulae zl' , ul s s z;t‘, I call antecedent formulae of the
and BB lhe wncosdunt foiinds ) bho Ll tataet

sequenk It is permissible that no antecedent formulae occur, then the

sequent has the form: =% 13 yet there must always be a succedent

formula.

5.22. Definition of a derivation (formal counterpart of a proof):



A derivation consists of a number of consecutive sequents of
which each is either a "basic sequent" or has resulted from

certain earlier sequents by a "structural transformation" or

by the application of a "rule of inference'". The definition of

the various concepts will follow presently.

The last sequent of a derivation contains no antecedent formulae,

its succedent formula is called the end-formula of the derivation.

(It represents the proposition proved by the proof.)

5.23. Definition of a basic sequent:

I distinguish between '"logical" and "mathematical" basic sequents.

A logical basic sequent is a sequent of the form D"') D ,

where'b can be any arbitrary formula. (Such a sequent occurs in

the formalization of a proof if and when an assumption JD is

made in the proof.)

A mathematical basic sequent is a sequent of the form =P G s

where the formula ‘!! represents a "mathematical axiom". What is

to be understood by a number-theoretical "axiom'| in particular, will

be explained in Paragraph 6.

5.24. Definition of a structural transformation:

The following kinds of transformation of a sequent are called

structural transformations (because they affect only the structure

38

of a sequent, independently of the meaning of the individual formulae):
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5.241. Interchange of two antecedent formulae;

5.242. Omission of an antecedent formula equal to another antecedent

formula;
5.243. Ad junction of an arbitrary formula to the antecedent formulae;

5.244. Replacement of a bound variable within a formula throughout

the scope of a V -or 5 -symbol by another bound variable not yet

occurring in the formula.

Transformations according to 5.241, 5.242 and 5.244 obviously leave

the meaning of the sequent unchanged since it makes no difference to
the meaning of the sequent in what order the assumptions are listed or
whether one and the same assumption is listed more than once or,
finally, what symbol is used for the bound variable. All possibilities

of transformation mentioned are thus of a purely formal nature and

intuitively of no consequence; they must be stated explicitly only

because of the special character of our formalization.

A structural transformation according to 5.243 means that to a
proposition we may adjoin an arbitrary assumption upon which, besides
other possible assumptions, it is to depend. At first this may seem
somewhat strange; yet if a proposition is true, for example, we are
forced to admit thatiin that case it is also valid on the basis of an

arbitrary assumption. (If we were to stipulate that this may be

asserted only in cases where a "factual dependence" exists,
considerable difficulties would arise because of the possibility of

proofs in which only an apparent use of an assumption is made.)
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5.25. Definition of a rule of inference (formal counterpart

of a form of inference):
Altogether we require thirteen rules of inference.

5.250. The German and Greek letters used here have the following

meanings:

For u s 1’ and e-may stand arbitrary formulae; for V‘ g.(“) or
5% ?C’.’) an arbitrary formula of this form, then Y(a) or ?(1)
stands fof that formula which has resulted from 32*) by the
replacement of the bound variable 3 by an arbitrary free variable &
or an arbitrary t:erm1 ; for 7', A s @ may be put arbitrary,
possibly empty, sequences of formulae, separated by commas (as

antecedent formulae of the sequent concerned).

Now the individual rules of inference:

5.251.&5 introduction: from the sequents T .4 A> <
follows the sequent T; A - ukﬂ

4/- elimination: fromT’-’u#@ follows the 77"'92“ or T""$

V - introduction: from77-9.u follows T — UVﬂ or 71—9 ”V’d
V - elimination: from T’" uV,ﬂand %)“ “m and &@ -> @
follows T/'A)@ ""4. .
V - introduction: from 77"’}’(“) follows 7’—-)*{& 3.(“),

as long as the free variable A& does not occur in 7 and 'V* ?-[*) .
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V- elimination: from T’ - V‘ 3.(*) follows 77 -> F(f) .

5- introduction: from T’—’ gli) follows 77‘-’ gﬁ?[*) .

g- elimination: from 77-? 5’:32'” and gza)/a *a" follows
7}4 "E , as long as the free variable R does not occur in

T .4, € wa IafFlo.

- introduction: from ‘u) 7'-”7! follows 7"—" U ’ﬂ

> - elimination: from 77 4 a and A -’Z(Q?follows 7,4-93

5.252. The "reductio" rule: fromllj’ﬂ"?ﬂ and %A""ﬂ follows

7,4 >4

"Elimination of the double negation': from 77— 7"2‘ follows

7> 2U

5.253. The "complete induction" rule: from 77"’3-[1) and F/QJA “"\‘?Z’Z‘fl,

follows 7,7A -> g.a), as long és the free variable 4 does not occur

in ZA,?(1) and F(%) .

5.26. Some remarks about the rules of inference.

In general the formulation of the individual rules of inference will
be understood by referring to the appropriate examples of inferences

(4.5). Several points should however be explained:

The 71, Aand @ are required since in the most general case we must

allow for arbitrarily many assumptions.

The formulation of the @-introduction, the "reductio", and of complete

induction in which the appropriate assumptions are written down at
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the same time practically suggests itself, whereas it seems
probably somewhat artificial in the case of the V -and 5
-~elimination, if these rules are compared with the corresponding
examples of inferences (4.5). Yet the formulation is smoothest 1f

in the distinction of cases ( V -elimination) the two possibilities

that result are simply regarded as assumptions which become redundant
as soon as the same result (G') has been obtained from both; in the
case of theg—elimination the situation is similar: the proposition
g[’l) inferred from a%?(“) is an assumption only to the extent
to which it is assumed of the variable @ occurring in it that it
represents any one of the numbers with the property g which exist

according to 3% 9.(") . This assumption becomes redundant as soon

as a result ( @ ) has been deduced from it in which the variable

QA no longer occurs.

This leads me at once to a further point requiring some elaboration:

it concerns the restrictions on free variables imposed in the case of

the V-introduction, the 3 ~elimination, and complete induction.

In each case the restriction says that in all formulae involved in the
rule of inference (including the assumption formulae) the free variable
A belonging to the rule of inference may occur only in the formula
g:(&) or g(‘z'“) . It is easily seen by means of examples that
this requirement is necessary in general and actually quite obvious; in
the case of mathematical proofs it is fulfilled automatically. (By its

very purpose the variable Ol is naturally out of place in the remaining

formulae.)
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The following must be said about the rules of inference for

negation: as already mentioned at 4.56 the choice of elementary

forms of inference is here more arbitrary than in the case of the

other logical comnectives. I should like to mention the following

simple alternative rules of inference that might have been adopted:

From Z‘/T, ""13 and "”/A -> 3 follows 7}' 4->8

From 7'-"2‘ Vdg and A —~— 7“ follows 754 -’a

(Example at 4.43).

From 77 =P '7gand 2(, a4 — 73 follows 7,74"—’ 7

From 77—-’71 follows 77“'"" ‘z‘ 2 3 (Example at 4.41).

From TT—» U and A — 7 U follows 764'9 75 .

As logical basic sequents for the =y -connective we could also have

taken the following:

—l Zl V’Il » "Law of the Excluded Middle'". (Example

at 4.42); e——sp (ﬂ& 72{) , "Law of Contradiction".

Yet the two rules of inference which I have chosen (5.252) are
sufficient; the remaining rules and the basic sequents here listed are
already contained in them (if the rules of inference for the other
logical connectives are inéluded); this may be verified without any

essential difficulties..
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5.3. Are our rules of inference actually sufficient for the

representation of all inferences that occur in elementary number

theory?

5.31. The completeness of the purely logical rules of inference,

ile., the rules belonging to the connectiVigs &’ V' 3) 7 V, 7 ,
has already been proved elsewhere(IO% (completeness here means that

all correct inferences of the same type are representable by the

stated rules).

To these forms of inference we must now, for the purpose of

elementary number theory, add "complete induction'". Here the question

of the completeness of the rules of inference becomes a rather
difficult problem; I shall return to it after the consistency proof
(17.1) has been carried out. At this point I should merely like to
observe the folldéwing:

It may be considered as fairly certain that all inferences occurring
in the usual number-theoretical proofs are representable in our system
as long as they make no use of techniques from analysis. The same may
also be said of the frequently used "intuitive" inferences, even if

this 1s not immediately obvious from looking at them.

In order to verify this generally each individual proof would of course

have to be examined separately and this would be extremely laborious.

5.32. I shall contend myself with a number of particularly important

examples:

‘v
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Complete induction occurs frequently in certain modified forms which

are reducible to our normal form as follows:

5.321. First the "descending'" complete induction, which runs as

follows:

From =P 3-[4) and 3'[114/),A >F®) to110us T4 —» 3'[1) :
Again 0 must not occur in 754'?(1) and g[‘t)

It 1e transformed thus: vF(A) —> TFA) 1 . pasic sequent.

From it follows (5.243) ?[lzﬂ))"rf[a) —~ 2F(R) | and together
withg(ﬁ‘"))d -» ?(") follows by "reductio" (5.252)4,79/3)473'(0-*1,'
which equals (5.261) (@), B = 7F(R+1) . 1t ve then include

the basic sequent =79 (1) ~» 7 §(1) , ve cn apply the rule of

complete induction in the prescribed form 5.253, with TG as the

induction proposition, and obtain -r?(.‘l}' A —> 7?[\?) . By

including T =9 F(%), and thus also obtaining (5.243) 7F( 1),77-’3( £)

as valid, we deduce 194 =% 77 ¥(1) by "reductio",

and  from it, by "elimination of the double negation'" (5.252):

T4 — (1)

5.322, A further example consists of the following modified complete

induction:

Fromr-éylz) and Vﬂ[ﬁéﬂ 3#@&7,-4 —"'F(a-&l)
follows T;A -"3.[4} . Again & must not occur in 7! 4 —93.(1)

and ?14) H * designates a bound variable not occurring in ?(1) .

This induction is easily turned into a normal complete induction (5.253)
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with the following induction proposition (stated for an arbitrary
number m) : V¥ (* 4}_‘_‘. > 3_(*)] , in words possibly: "For

all numbers from 1 tom Tholds". .

5.323. The corresponding "descending" form runs: From 77—’ 3-(%) and
Fla+),8 > Ix[xca y Fu] foltows 7,4 > F(L).
This form can be reduced to the normal form of complete induction iﬁ

the same way as the two previous examples.
i

The induction in Euclid's Proof was originally of this kind (4.2) and

was then reduced to its normal form (4.4).

Paragraph 6
SPECIFIC CONCEPTS AND AXIOMS

IN ELEMENTARY NUMBER THEORY

6.1. In a proof there may also occur "specific concepts" in
addition to the actual inferences; these are introductions of new

objects, functions, or predicates.

What kinds of specific concepts are in practice used in number

theory?

The introduction of new objects such as negative numbers etc. has

already been discussed at 3.31, and it was pointed out that these

objects are basically dispensable.

The introduction of a new function or a predicate usually takes the

form of a verbal "definition'" of these concepts.
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Examples:

4

The function Q is defined as "the number a , taken b

times as factor".

The function 9! is defined as "the product of the numbers from

1 to a".

The number ( a, b') is defined as "the greatest common divisor of

and b ".

[

The predicate " is a perfect number" means the same as '"the
p & P

number a is equal to the sum of its proper divisors".
The predicate a # b means the same as -7 (a=hb).

The predicate a ll.)_ means the same as :7 .‘z_(a_t.g =b).

&

The function ( :2' ), the "Legendre Symbol" is de‘fined for the case
where b is an odd prime number a: follows: ( f) =0 if p_‘g

holds, if <y gl_a; holds, then ( : ) =1, if the number a is a
quadrai:ic residue mod b , ( "'3'" ) = -1, if a is not a quadratic

residue mod b

The function ak(g,l_),g), the "Ackermann function", a function

(11)

gsignificant for certain questions of proof theory, may be defined thus
ak ‘.‘.‘)"J 0) = 9*‘-‘."

ak(a,{4,1) = e-{;é

ak (a ¢
and further for 32 :-:f,.!) e Q

("recursively'):

4&(5,0,9,4‘) =4
ak (a, £+, Q'“‘:““‘(g") ak (‘.‘/.(') g"");f)a
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I shall not set up general formal schemata for these and other

methods of forming concepts. It will turn out that even without
such schemata these concepts may be incorporated wholesale in the

consistency proof. The same holds for the "axioms" about which I

should now like to say a few words.

6.2. In number-theoretical proofs we start from certain simple,
immediately obvious propositions for which no further proof is
offered. These are the "axioms". They are closely related to the

specific concepts in so far as these axioms state basic facts about

the predicates and functions occurring in them. Actually, a new

i3
concept may be formally introduced by merely stating a number of

axioms about it ("implicit definition"). An example: The function

( a, b) is completely characterizable by the axioms:
Vityloun [x o Cg) |9 ] ant Vet 735 [ 3 Ins 3104 3>G00)]

- The choice of the axioms is not determined uniquely. We may aim at

(12)

Yet in actually

making do with as few simple axioms as possible.
working number-theoretical proofs we usually stipulate a larger number
of axioms without concern over redundancy, independence, etc. For

my consistency proof it is fairly immaterial which axioms are chosen.

As in the case of the specific concepts, I shall contend myself with
the statement of several examples from which it can be seen what kinds

of proposition qualify as axioms:

Some axioms for the predicate = and the function + , formalized:

V_l_t (&93,‘.) V;_(.-r(g_u-!)
Vavy (x=9>4=%) Vady (X+y = y+2)
Va V&_"?[‘F,‘_ﬂi"}”i"}] ’/_:_ti{jb’g [(:994-_2: X+ (_;,4-3)].
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6.3. The concept of "the....such that".

The following special notion is still worth mentioning:

If a proposition of form
Yo, Vo, ... Va3 [3' (%, %s, .., %y, 9)¥ ¥s (F6u a0y %, §)> 5’21]}
in words possibly: "For every combination of numbers x' s esees x?

there exists one and only one number j such that g.c-l“ , ‘)'“7) y)

holds", has been proved, then a function may be introduced which
represents precisely this value ( y ) in its dependence on the
combination of numbers ( *' s seseeas s 1,) ("The... such that").
Formally: For this function one might use the expression (written
for the arguments@,, e s _49): LJ ?[ﬁl) e, 49,9) ;
for this expression the following then holds:

Ya, ... Ymy & ()., %y, Ly Fln,,. ,%5,1)) .
The *'; may also be empty in which case the [ -symbol represents a

single number.

Such specific concepts which are not generally needed in practical
elementary number theory or which can be replaced by "definitions"
of the kind mentioned above (6.1) are insignificant for the question of

consistency since they may always be eliminated from a derivation.(13)
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SECTION III

DISPUTABLE AND INDISPUTABLE FORMS OF INFERENCE

(4)

IN ELEMENTARY NUMBER THEORY

¥,

The task of the consistency proof will be (2.31) to justify the
disputable forms of inference (including specific concepts and

axioms) on the basis of indisputable inferences. For a proper

understanding of my consistency proof for elementary number theory,
which follows in Section IV, we shall therefore have to examine
precisely what forms of inference and other techniques of proof
from elementary number theory are indeed disputable and which

others can be accepted as undoubtedly correct. An unequivocal
separation is not possible (cf. 1.8); but we can certainly produce
arguments which will make the admissibility of some methods of proof
very plausible, whereas a corresponding justification fails for
other methods in cases where there exists a remote analogy to the
fallacies occurring in the antinomies of set theory which make these

techniques suspect.

We shall now develop such arguments by first considering the
mathematical theory with a finite domain of objects (Paragraph 7) and
by then discussing the peculiarities and difficulties arising from

the generalization to an infinite domain of objects (Paragraph 8-11).
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Paragraph 7

MATHEMATICS WITH FINITE DOMAINS OF OBJECTS

7.1. The mathematical treatment of a finite domain of objects

may be as follows:

The objects of the domain are enumerated; in doing so each object

receives a definite designation which applies to no other object.

A function or a predicate is defined thus: Suppose the number of
argument places is ‘9 . For every possible enumeration og‘objects
from the domain of objects, it is determined whether the object is
the associated functional value or, in the case of predicates:

whether the predicate does or does not hold for this combination of

objects.

We could also permit functions and predicates to remain undefined

for some combinations of objects, this represents an unimportant

complication.

Since there are always only finitely many enumerations of W objects,

every function and every predicate may be completely defined by such

a "definition table".

7.2. For every definite proposition (3.24) which has been constructed

in accordance with 3.22, 3.23, from the given objects, functions, and
predicates together with the logical connectives, it can furthermore

be "calculated" according to the following formal rule whether the

proposition is true or false:
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The proposition is represented by a formula without free variables.

If it contains the symbol V then the term v* g.(*) concerned

is replaced by["“[&-(g,) k?(ﬂs)]f g'(ﬂa)k ] #g’(ﬂsj]

where g' s seee g represents the entire collection of objects of
the domain. The same is done for every V that occurs ) and
each 5 is replaced by a corresponding expression with V

instead of & .

Then every term that occurs is 'calculated" on the basis of the
definition tables for the functions occurring in it, i.e., the term
is replaced by the object symbol which represents its "value". If
several function symbols are nested then the calculation is

out step by step by working from the inside to the outside.

Next we determine of every occurring minimal formula (3.24) on the

basis of the definition table of the predicate concerned whether the
formula represents a true or a false proposition. Then follows the
determination of the truth or falsity of those parts of the formula
which are made up of arbitrary logical connectives; this is done

step by step from the inside according to the followlng instructions:

MU LB is true, it & and B are both true, otherwise false.

UVIS is true, if Y is true, and also if JF is true; it is
false only if U and P are both faise. A DB is false if
Zl is true and ,73 is false; in every other case u.‘)ﬂ is

true. ‘7” is true ifa is false, but false if a is true.

The entire procedure follows at once from the actual sense which
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we associate with the formal symbols. For us it is important only
to realize that in a theory with a finite domain of objects every
well-defined proposition is decidable, i.e., that it can be
determined by a definite procedure in finitely many steps whether the

proposition is true or false.

7.3. It is easily proved that the logical rules of inference (5.2.),

applied to this theory, are correct in the sense that their application
to "true'" mathematical basic sequents leads to '"true'" derivable

sequents. Here the concept of the "truth" of a sequent is to be

determined formally in agreement with its intuitive sense as follows:
a sequent without free variables is false if all antecedent formulae
are true and the succedent formula is false; in every other case it

is true. A sequent with free variables is true if every arbitrary

replacement of object symbols yields a true sequent.

A verification of this statement would mean no more than a

confirmation of the fact that we have indeed chosen our formal rules

of inference in such a way that they are in harmony with the intuitive

sense of the logical connectives.

7.4. It should still be noted that in practice the above method of
introducing objects, functions, and predicates and of "evaluating"

the propositions is rarely used in mathematical theories with finite
domains of objects; for a large number of objects this would become
far too lengthy. In such cases the methods used are rather like those

applied in the case of an infinite domain of objects described below.
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Paragraph 8
DECIDABLE CONCEPTS AND PROPOSITIONS

IN AN INFINITE DOMAIN OF OBJECTS

8.1. What becomes different if we wish to develop the theory with

an infinite domain of objects such as the natural numbers, for

examp le?

8.11. It is then no longer possible to enumerate the objects in

order to designate them, since there are infinitely many of them.

The place of an enumeration is taken by a construction rule of the

following kind: 1 designates a.natural number. Further 1 + 1,

1+ 1+ 1, generally: From an expression representing a natural

number an expression for a further natural number is obtained by

ad joining + 1. (The symbols 2, 3, 4, etc. may be introduced

afterwards as abbreviations for 1+ 1, 1+ 141, 1+ 14+ 1+ 1, etc.;

this is of secondary importance.)

This rule which must be expressed in finitely many words generates
the infinite number sequence because it contains the possibility of
continuing this constructive process through a repetitive procedure.

("Potential infinity".)

8.12. Nor can functions and predicates, as in the case of a finite

domain, be defined by an enumeration of all individual values. If
we wanted to give a definition table for a number-theoretical function
with one argument, for example, we would have to state successively

its value for the arguments 1, 2, 3, 4, etc., hence for infinitely many
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values. This is impossible. Instead we prescribe a calculation rule;

e.g., for the function 2 . a : 2 . 11is 2; 2 . (b+ 1) is equal to

(2 . b) + 2. This rule makes it possible to calculate the associated

functional value uniquely one by one for each natural number.

Generally, a function or a predicate is considered to be decidably

defined if a decision procedure is given for it, i.e.: for every

given enumeration of natural numbers it must be possible to

calculate uniquely the associated functional value by means of this

procedure or, in the case of predicates, it must be decidable

uniquely whether the predicate concerned holds or does not hold for

this collection of numbers.

For all examples of definitions of functions and predicates given
at 6.1 such decision procedures can be stated. In the case of

specific concepts formed according to 6.3 this may at times no longer

be possible. By eliminating these specific concepts we have

transferred the doubts associated with them to the logical forms of

inference; these will be further discussed below (Paragraph$9 - 11).

8.2. Let us now consider the propositions in the theory with the

infinite domain of objects of the natural numbers.

Of every given definite proposition in which the connectives "all"

and "there is" do not occur it can be decided, as in the case of a

finite domain, whether it is true or false. The procedure is the

same as at 7.2. Instead of being determined by a definition table,

the values of the terms of a proposition as well as the truth or

falsity of the minimal formulae are now determined by the appropriate
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decision rule for the functions or predicates concerned.

The application of the logical rules of inference to propositions of

this kind can also be shown to be admissible in the same way as in

the case of a finite domain.

It should still be mentioned that a corresponding result also holds
for propositions in which the connectives "all" and "there is"

refer only to finitely many numbers. Such propositions can be

decided in the way described, ‘, and EJ must be replaced by 4{ and
\/ as at 7.2, and the appropriate forms of inference, i.e., the VL

and 57 -forms of inference (5.251) as well as complete induction

(5.253) can also be shown to be admissible in the same way as long

as the domain of the - free and bound - variables that occur is

limited to the numbers from 1 to a fixed number P4 .
Paragraph 9
THE "ACTUALIST" INTERPRETATION OF

TRANSFINITE PROPOSITIONS (15)

9.1. Let us now turn to the essentially transfinite propositions,

i.e., propositions in which the connectives "all" or "there is'" refer
to the totality of all natural numbers. Here we are confronted by

a fundamentally new state of affairs.

First we must note that the decision rule which is applicable in the

case of a finite domain (7.2, 8.2) does not transfer to such transfinite

propositions.
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In the case of a proposition about all natural numbers, for

example, we would have to test infinitely many individual cases,

which is impossible. No decision rule for arbitrary transfinite
propositions.is known and it is doubtful whether such a rule can
ever be given. If there were such a rule then it could for example
be decided of the thus far unproven last theorem of Fermat (as well

as of Goldbach's Conjecture, etc.) by calculation whether it is true

or false.

What sense then can be attributed to a proposition whose truth

cannot be verified?

9.2. The traditional view is thié: it is "actually" pre-determined
whether a transfinite proposition such as for example, Fermat's last
theorem is "true" or '"false'" independently of whether we know or
shall ever know which of the two is the case. Every transfinite

proposition is thought of as having a definite actual sense; in

particular, the sense of a \/ -proposition is thought to be this:
"For every single one of the infinitely many natural numbers the
proposition concerned holds"; the sense of a £7 -proposition:
"In the infinite totality of the natural numbers there somewhere

exists a number for which the proposition concerned holds".

From this interpretation is inferred further that for transfinite

propositions the same logical forms of inference are valid as for

the finite case since the "actualist'" sense of the logical
connectives in transfinite propositions corresponds exactly to that

in the finite case.
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9.3. At this point there now exists ample cause for criticism

as long as one has decided to draw the utmost consequences from

the insights gained in considering the antinomies of set theory.
This I will now do and shall, as a result of a critical examination

of Russell's antinomy (1.6), lay down the following principle:

An infinite totality must not be regarded as actually existing and

closed (actual infinity) but only as something becoming which can

be extended constructively further and further from something finite

(potential infinity).

9.4. The constructive methods for the introduction of objects,

functions, and predicates stated in Paragraph 8 are in line with this

principle. They were explicitly based on the idea of a gradual
progression in the number sequence, starting at the beginning, and
not on the idea of a completed totality of all natural numbers. The
same holds true for the propositions discussed at 8.2, since they
also refer to only finiteix many objects and not yet to an infinite

totality.

9.5. The "actualist" interpretation of transfinite propositions

described at 9.2, however, is no longer compatible with this principle,

for it is based on the idea of the closed infinite number sequence.

At the same time the view that the logical forms of inference can

simply be transferred from finite to infinite domains of objects must

be rejected.

I remind the reader of a similar although more trivial case of an
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inadmissible generalization from the finite to the infinite,

viz., the well-known fallacy: "Every (finite) set of natural
numbers contains a largest number; hence the (infinite) set of all
natural numbers contains a largest number." This argument leads to

contradictions since it does not in fact hold true.

9.6. Having rejected the actualist interpretation of transfinite

propositions we are still left with the possibility of ascribing

a "finitist" sense to such propositions, i.e., of interpreting

them in each case as expressions for definite finitely

characterizable states of affairs.

Once this view has been adopted the relevant logical forms of

inference must be examined for their compatibility with this

interpretation of the propositions.

Su¢h an examination will be carried out in Paragraph 10 below for
an extensive portion of the transfinite propositions and their
associated forms of inference. In Paragraph 11, I shall discuss
the remaining propositifnal forms and their forms of inference;
there our method will meet with difficulties and the significance

of the intuitionist (1.8) delimitation between permissible and

non-permissible forms of inference within number theory will become

apparent; another still stricter delimitation will also turn out to

be defensible.



60

Paragraph 10
FINITIST INTERPRETATION OF THE CONNECTIVES
V s k s 5 AND V IN

TRANSFINITE PROPOSITIONS

I imagine first a number theory whose ﬁropositions refer to only e wlee
finitely many numbers. To it I shall adjoin step by step certain

types of transfinite propositions.
10.1. The v -connective.

10.11. We shall begin with the simplest form of a transfinite
proposition: V* 3-(*) , where g- shall not yet contain a

v or ? , 80 that the truth of 3.('%’ is verifiable for each

individual number substituted for 3 (8.2).

True propositions of this form are for example:
V(2| x V2|a);  ¥a(x=2)

Such propositions will undoubtedly be regarded as meaningful and
true. After all, one need not associate the idea of a closed infinite
number of individual propositions with this V , Since its sense can

be given a "finitist" interpretation as follows: "if, starting with

1 , we substitute for * successive natural numbers, then however
far we may progress in the formation of numbers, a true proposition

results in each case."
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10.12. This interpretation may be generalized to the case where g'
is an arbitrary proposition to which a finitist sense has already
been ascribed: Vg ?(*) may be asserted meaningfully if 9.(*)
represents a meaningful and true proposition for arbitrary successive

rep lacements of* by numbers.

10.13. The forms of inference associated with the V -connective, the

V -introduction, and the V -elimination (5.251), are in

harmony with this interpretation: A ‘V is introduced if a proof is

available that on the basis of certain assumptions ( 7l7) -
transfinite assumptions are still completely meaningless and out of
the question for the time being - g-(ﬂ) is true, and from this is
inferred that on the basis of the same assumptions V* ?(*‘)
holds. This is in order, for if an arbitrary number ?£ is given
then it may be substituted for #l - in the whole proof - and a
proof for ?(‘ﬂ) results (on the same assumptions 77which, by
virtue of the restriction on variables for the V ~introduction,
do not contain & and have thus obviously remained unaffected by
this substitution). In the case of the V —elimination 7P F(f}
is deduced from 77—" y‘ g.(*) Once possible occurrences of
free variables have been replaced by numbers, the term ‘l represents
a definite number P ; in keeping with its finitist sense the

P
proposition V‘}f \'F(*) also guarantees that F(’ﬂ) holds; hence

this form of inference is also acceptable.

10.14. The usual number-theoretical axioms may be formulated in such

a way that they follow from propositions without V or s'7 by a

number of V -inferences ranging over the entire proposition (cf. 6.2.).
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The conclusion that)in terms of the finitist interpretation of the
V and on the basis of the decidable definitions of the functions
and predicates occurring in them these axioms are true is of such

self -evidence that it requires no further investigation.

It actually seems hardly possible that this conclusion could be

reduced to something basically simpler.
10.2. The g{ ~connective.

A transfinite proposition of the form ,4 uﬂ is meaningful and

may be asserted if u and Jg have already been recognized as
meaningful and valid propositions. The rules for the é’ -introduction
and k -elimination are obviously in harmony with this interpretation.

Here, as above, transfinite assumptions ( 7’, A ) are excluded for

the time being.
10.3. The 3 -connective.

The reader may so far have the impression that the "finitist
interpretation" attributes to transfinite propositions really only
the same sense as that usually associated with such propositions. That

this is not the case will emerge from the following discussion of the

J ana V' (ct.10.6).

[
What sense shall we allow a proposition of the form g* #(*)?
The actualist in interpretation: "somewhere in the infinite number
sequence there exists a number with the property F "is for us

F(n)
devoid of sense. Yet if the proposition has been recongized

as meaningful and valid for a definite number %% , we wish to be
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able to conclude ( 3 -introduction): a* ?(I‘) . There are no
objections to this; the proposition 51 ?(*) now constitutes
only a weakening of the proposition g.(‘”) ("Partialaussage" for
Hilbert, "Ur,teilsabstrakt"r for Weyl) in that it now attests merely
that we have found a number P with the property 3- although this

number itself is no longer mentioned. With this, 5‘ F[“) has a

finitist sense.

If, instead of being introduced in F(‘ﬁ) , the 3 is introduced in

a proposition ?(“’ containing an arbitrary term % , then

nothing has essentially changed. For if the free variables occurring
in ?(%) are replaced by defini.te numbers (which free variables,
after all, stand for) then ‘é becomes a definite calculable number AL
on the basis of the decidable definitions of functions. If a

5 -introduction is accompanied by the occurrence of non-transfinite

assumptions ( 7' ) the situation is not essentially altered.

Consider now how other propositions can be inferred by the 5‘ g(*)

Y

elimination of the 3 from a proven proposition of the form'on the

basis of the finitist sense of that proposition. In contrast with

the situation in the case of v and & it is obviously not possible

to reclaim the proposition 3-(“) from Jis(*, which

had provided the justification for the assertion of 'g* g (*)
precisely because the value of . 1is no longer apparent from Jﬁg.('w).
Yet we may proceed as follows: we conclude :‘F(Q} , where & is

a free variable taking the place of the number M whose value

need not be known at this time. If we then succeed in deducing from

?(ﬂ.) a certain proposition E no longer containing Q) s
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then this proposition is valid. We have thus a J -elimination

in accordance with 5.251.

This is the first rule so far in which an associated assumption,

viz.’ 3'-(“, , occurs. This assumption can be transfinite. Although
we have previously not granted a sense to transfinite propositions

as assumptions but only as proven propositions, we can here say:

the fact that a*. 3-(‘) has been proved and is meaningful means

that a number ¥ must have been l‘cnown and is reconstructible on the

basis of the proof of 7“ Ec*) so that 3'(“) also represents

a meaningful true proposition. Here the assumption szﬂ)is not

regarded as an arbitrary assumption but as the true proposition
?('n) , where 4 merely denotes the number ${ . The

proof of @U from the assumption &’(Q' thus no longer appears as

hypothetical but as an ordinary direct proof; and precisely this is

its sense.

10.4. The V -connective has an easy analogy'f to a , as did 8’
to V : a transfinite proposition of the form lll/ﬂ is meaningful
and may be asserted if one of the propositions ll and “ has been

recognized as meaningful and valid. The rule of the V ~-introduction

corresponds completely to this interpretation. A V ~elimination

is carried out thus: if A( Vﬁ is given and if the same proposition
@‘ follows from the assumption u as well as from the

assump tion 4’ , then G\' holds. This is in order since Zl VJS

entails that either u or 3 has at some point been recognized as

valid. 1In this way a proof for G‘ from u , or a proof for @'

from 15 , can be made independent of the assumption u , or JS ’

as was done in the case of the ? -elimination, and we obtain a direct
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proof. The second proof becomes redundant and it is thus

immaterial whether it has a sense or not.

10.5. At this point it should be explained briefly how the inference

of complete induction is at once compatible with the finitist

interpretation: Suppose that F{i)is a meaningful valid proposition.
The term % in the conclusion \'F[é) represents a definite number
M once possible occurrences of free variables have been replaced
by numbers. By replacing Q& successively by the numbers 1, 2, 3,
up to M - 1 in the proof of ?(ﬂm‘l) from \??4’ we have formed a
direct proof, starting from the valid proposition g.(l) via \F(l) ,

?CJ) , etc. up to g[—n) , so that finally, 3‘74;) is now a valid,

meaningful proposition.

This may sound trivial; what is essential is that the assumption

?Zn,) which may have been devoid of sense (if it was transfinite) has

been afforded a sense by the possibility of transforming the relevant

portion of the proof involved into a direct proof in which

no longer functions as an assumption.

10.6. The finitist interpretation given to the connectives%nd g

differs from the actualist interpretation not only conceptually but

also in its practical consequences as the following examples show:

The proposition "Fermat's Last Theorem is either true or not true"
is true according to the actualist interpretation. However, according

to the finitist interpretation of \/ , this proposition cannot be
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asserted. For here it would be required that one of the two
propositions has already been recognized as valid. This, however, is

so far not the case.

A corresponding example containing a E’ is the proposition

xfC¥yWhuby (7945 3¥4 37 = u¥)]
V [525239(91 J) !b g% = u;‘-)]} -

in words possibly: "There exists a number ¢ so that either Fermat's
Theorem is true or there exists a counter-example with the exponent

# ". This proposition is true according to the actualist interpretation
but may not be asserted according to the finitist interpretation of

the 51 since at this time no such number ) is known.

Consequently neither of these two propositions is provable by the

forms of inference discussed so far since it was possible to

attribute a finitist sense to these forms of inference; the additional
forms of inference associated with the =y are needed for this purpose

(c£.11.2).

10.7. The finitist interpretation of transfinite propositions
containing the connectives V s 8‘ s 3 and V attempted in these
paragraphs and the justification of the associated forms of inference
involved is in many respects incomplete; the meaning of propositions
in which a number of such connectives occur in nested form, in
particular, would still have to be discussed in greater detail. I
shall not do this since I am here concerned only with establishing

fundamentals.
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A purely formal consistency proof for this part of number theory

could be developed later on the basis of these considerations. Yet
such' a proof would be of little value since it itself would have to
make use of transfinite propositions and the same associated forms
of inference which it is intended to " justify". Such a proof would

therefore not represent an appeal to more elementary facts, although

it would still confirm the finitist character of the formalized

rules of inference. Yet we would have to have a clear idea beforehand
of what is to be considered finitist (in order to be able to carry

out the consistency proof proper with finitist methods of proof).

Paragraph 11
THE CONNECTIVES ~ AND 7 IN

TRANSFINITE PROPOSITIONS : THE INTUITIONIST VIEW

11.1. The 72 -connective.

We now intend to include transfinite propositions containing the

connective = .

What does”?” mean? Suppose, for example, that there exists

a proof in which the proposition ﬂ is proved on the basis of the
assump tion Z( by means of inferences that have already been
recognized as permissible. From this we infer by 2> -introduction:

u P 13 . This proposition is merely intended to express

the fact that a proof is available which permits aproof of the
U
proposition ﬂ from tiie proposition d once the propositionAis proven.

The inference of the 5 -elimination is in harmony with this
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interpretation: here ﬂ is inferred from& and 2( o a H

this is in order; since a > 1’ indicates precisely the existence

of a proof for .13 in the case where 2‘ is already proven.

In interpreting a > ” in this way I have presupposed that the
available proof of 3 from the assumptionaa contains merely

inferences already recognized as permissible. Yet such a proof

could itself contain other S -inferences and then our interpretation
breaks down. For it would be circular to justify the = -inferences
on the basis of a > -interpretation which itself already involves
the presupposition of the admissibility of the same form of inference.

The & -inferences which occur in the proof would in that case have

to be justified beforehand; yet this has its difficulties especially
if the assumption A has itself the form €v9 D ; if this
. happens we have actually no proof for 'D from a& on the basis of

which we could ascribe a sense to @ > O

In order to cope with this difficulty a more complicated interpretation

rule would certainly have to be formulated. This constitutes one of

the principal objectives of the consistency proof which follows in

Section IV.

11.2. The =y -connective presents even greater obstacles to a
finitist interpretation than the = . Transfinite propositions were
actually always interpreted in such a way that they could in each
cas:e be regarded as something that had previously been recognized as
valid. 1In its actualist interpretation —72‘ does not however

express the fact that something holds but rather purely negatively
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that something, viz.) the proposition Z( , does not hold.

The following positive interpretation seems nonetheless possible:

-7 z‘ is to be regarded as meaningful and true if a proof exists
to the effect that a falsehood is certain to follow from the
assumption of the validity of ﬂ . And here the *7 -commective
is re-interpreted in terms of the & -connective since ‘72
can certainly be defined as equivalent with 17 1-2 , for

example. The inference of "reductio"is in harmony with this
reductio harmony

interpretation, as may be shown quite formally: From ﬂ, 7"'" 5
andﬂ,d" 3 31'2 we wish to derive 734 —?ﬂ?l =d.

This is done as follows: By 2> -elimination we obtainz(,z'ﬂ/d"z-’-!

hence (5.242),&,7; A -> 1 = 2 , and from this by
> -introduction, 77,A -)ﬂ?i-?.!, This completes the

reduction of the "reductio" to the 2> -forms of inference.

It should be noted that in this re-interpretation of the =y

in terms of the - all doubts associated with the =2

néturally carry over to the < -~comnective to a corresponding

degree.

Now there actually arises a further difficulty: The "elimination

of the double negation' cannot at all be shown to agree with the

given -7 -interpretation. There is no compelling reason why the

validity of {u > 1 32) 2 1 2.2 should follow from the validity

of-u.

This form of inference conflicts in fact quite categorically with

the remaining forms of inference. In the case of the logical
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connectives V s & s a , V and = we had in each case an

introduction _and an elimination inference corresponding to one

another in a certain way. (cf. the discussion in Paragraphs 10 and
11.1). In the case of the "% -connective the "reductio" inference
can be regarded both as an introduction (of =p in 72‘) and an
elimination (of =»  in? ”); the "elimination of the double
negation", however, represents an additional 7 -elimination
which does not correspond to the “® -introduction by "reductio".

Double negation renders possible indirect proofs of positive

propositions ( 1{ ) from their contraries by means of

contradiction, in cases where a positive proof of the same
proposition may be completely inaccessible. In this way we can

for example prove the two propositions containing V and g

given as examples at 10.6, whereas under the finitist interpretation

of V and 3 these propositions may not even be asserted.

From this it follows that there is no way at all of including the
inference of the "elimination of the double negation" in a finitist

interpretation of the kind chosen for Vand 5 .

11.3. Here the intuitionists draw the line in number theory by

disallowing the inference of the "elimination of the double negation"
for transfinite propositions z‘ . This delimitation is often also

effected by disallowing the "law of the excluded middle",

uV"a, for transfinite u ; this comes to the same thing.(lé)

The "finitist interpretation" of the p-nop-es-rmﬂa'l' connectives

V 8.( s a and V in transfinite propositions described in
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Paragraph 10 agrees essentially with the interpretation of the

intuitionists. Yet they allow a more general use of the

=2 ~connective; the “p -connective is interpreted as at 11.2
by reducing it to 2» , and to this corresponds the expression '

)
Zl is absurd" in place of " a does not hold" for 7 & .

The "elimination of the double negation'" undoubtedly stands in
definite contrast to the remaining forms of inference to such a
degree that it might quite reasonably be disallowed. In fact, I

consider a still more radical critique, especially of the general

use of the = (11.1), as equally well justified.

[4d
A THEOREM BY GODEL ABOUT THE EQUIVALENCE OF

INTUITIONIST AND THE WHOLE OF ELEMENTARY NUMBER THEORY

As was first proven by K. Godel (17), it is possible to eliminate

the inference of the "elimination of the double negation'" involving

a transfinite a from any given elementary number-theoretical

proof by a special interpretation of transfinite propositions so
that every proof of this kind becomes intuitionalistically

acceptable.

In this way, the whole of actualist number theory becomes reduced

to intuitionist number theory. In particular, the former is

consistent if the latter is.

The interpretation involved takes the following form: the logical

connectives x( s 'V, = and “7? are assigned their intuitionist
sense. Not so in the case of V and g H 2‘ Vﬂ
is interpreted as "7 [(‘1”)‘/ 7 y .4 ] R gﬂ' 3’(“')
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that the V and 3 cannot here be assigned t;hei.r intuitionist

meaning since the examples of propositions stated at 10.6 are

provable in actualist number theory but not in intuitionist number

theory. Yet if V and 3 are replaced in these examples by * s
'V and =p in the way described then propositions result which

are also intuitionalistically provable.

In my consistency proof the "elimination of the double negation

actually presents no essential difficulties (13.93).

11.4. The forms of inference which we have not been able to
justify so far by means of a finitist interpretation and which are

therefore disputable for the time being occur very rarely in proofs

carried out in practical number  theory. It follows from our

discussion that such inferences are principally the "elimination of
the double negation" (and the "law of the excluded middle'") applied
to transfinite propositions as well as the use of transfinite

propositions containing nested =2 -and =7 -commectives.

Transfinite propositions of a more complicated structure hardly ever

occur in practice. In Euclid's proof presented in Paragraph 4, for

example, the only essentially transfinite propositions are the two
propositions occurring at the end: a’ [a‘hf’ 4’ ’)‘)

and Vj J‘[&G‘“C’J,’-?-,YJ. The whole proof is entirely finitist.
The o:her transfinite propositions which occur in it, i.e., those
containing V or a , are such that their bound variables range only

over a finite segment of the number sequence.
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As an example of a more difficult proof I have looked through
Rev. Zeller's proof of the "law of quadratic reciprocity"(ls)

and here I have also been unable to find a "disputable inference".

We are indeed justified in having the impression of an unquestionable

correctness in the case of this and similar proofs. In these
proofs we tend automatically to look more for a finitist than an

actualist interpretation of the transfinite propositions.

The task of the consistency proof for elementary number theory

is thus more a justification of theoretically possible rather

than actually occurring inferences.
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SECTION IV
THE CONSISTENCY PROOF

I shall now prove the consistency of elementary number theory as a

whole as formalized in Section II.

In carrying out this consistency proof we must make certain, as was
pointed out in 2.31, that the inferences and specific concepts used

in the proof itself are indisputable or at least considerably more

reliable than the doubtful forms of inference of elementary number
theory. It follows from our discussion in Section III that this re-
quirement can be regarded as met if the methods of proof used are
"finitist" (in the sense of Paragraphs 9 - 11). The extent of our

success in this direction will be examined more closely in Section V

(16.1).

Paragraphs 13 to 15 contain the core of the consistency proof whereas

Paragraph 12 is concerned with some relatively simple preliminaries.

Paragraph 12

THE ELIMINATION OF THE SYMBOLS ‘/ ’ E] s

AND 2 FROM A GIVEN DERIVATION.

Take any number-theoretical derivation (5.22) as given. It is to be

shown that it is consistent, 1.e., that its end~formula cannot have

the form A 4 7 U

74
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We begin by stating a rule for a transformation of the given derivation.

As a result of this transformation the connectives V , J and D

will no longer occur in the derivation,

12.1. In actualist logic, which is what we are in effect dealing

with in unrestricted number theory, the different logical connectives

can be represented by other connectives in various ways. By means of

three connectives, viz., 7 , any one of the three cénnectives X/ R V
and 2 as well as any one of the two connectives V and 5 s

all others may be expressed. I shall make use of this fact to facilitate

the consistency proof and shall retain the symbols 4’ , V and 7

and express V ’ 3 and > in terms of these.

This does not mean that the ambiguities (11.1) associated with the
are thus conjured away, they stay with us in an equivalent form in

the <7 .

The replacement takes the form:

ror A V“ we put 7 [("‘u' T;) 4/ 7 43)
For A > @B we put 7 (a ? x)
For 5* f(x-} we put 7 Va F(*)

All v-, J -~ and = -symbols occurring in the derivation are
replaced in this way. The order in which this is done is obviously

immaterial.

12.2. We must now examine to what extent the given derivation has
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remained correct after these replacements and, where this is not- the

case, modify the derivation accordingly. That such a modification is

possible 1s very plausible since the new formulations for the V ,‘:7

and O are indeed equivalent to the original ones in the actualist

interpretation. The precise formal verification is consequently not

difficult:

Logical basis sequents (5.23) have been turned into other logical

basic sequents.

The same holds true for mathematical basic sequents as long as we

presuppose that a mathematical axiom in which the V -y g - and
= -connectives occur becomes another mathematical axiom after

the replacement of these connectives by 7 , & and V . This

requirement is easily met: we simply formulate all axioms in advance

without the use of V s 5 and > .

Structural transformations (5.24) and application instances of the

rules of inference (5.25) have obviously remained correct as long as

we are not dealing with one of the rules associated with the connectives

V . a and 2 . The latter rules must be replaced by applying

other rules of inference in accordance with the following instructions:

A V —introduction "from 77-—7 XU follows T~ U VI v after

¥® ¥
the replacement takes the form: '"From 75— U follows

T’“ - "[é'a‘) 4 "’73‘ ", p/Ad designates the formula
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v
which has resulted from ,& by replacement; jj and 77 ¥

to De understood in the same way.

In words, the new version which uses the forms of inference for 4/ and
¥ ¥
~7 reads as follows: a holds on the assumptions 77 . If

¥ ¥ ¥
(-’ U } ¥y % were to hold, then so would - 4 in
4
particular, and this cannot be the case since it contradicts p/4 s loe.,

7 (("ﬂ,) i 7 ﬂ.') holds on the assumptions 7" .

To this corresponds the following formal instruction: the appropriate
place in the derivation is to be transformed thus: (" 4”j 4”’#”
——9(1,&*)4’1.7}" is a basic sequent; by 4’ —elimination we obtain
(1}‘#}4 7 4’# -— 7 z*: this together with the sequent

¥p¥ . 4
(72(')"'”; 7= X , obtained from /' s X by means of
v * 4
5.243 by "reductio", yields 777 —> ‘7([-'ﬂ j J/ 7",

The other form of the V-introduction is dealt with in the same way.

A V-elimination has the following form after the replacement: ''From
T a(~U*) ¥ & g UL —> CF

and 1‘7 @#___’ (O * follows 77“ A‘ @'—"’ @’ ". This is
transformed thus: =—7 @'v—-’ -@* yields J‘ 7 @ - 7 E
this together with AZ“‘A - E“ by "reductio" A ~ &Y ‘

¥ ¥
similarly ds/ -7 @:*—"’ 4 @ together with '«:’ @ — &

» & ¥
yields the sequent @ p -7 @ -_—> A4 s taking both results

o » L 4 ¥ L d
together we obtain A 7 @', @, 7€ (’uﬂlfﬂ by A’ -introduction,
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o ¢ ¥ 4 P ¥
hence (5.242, 5.241) "7@} A )@ —> (-'a }A, v $ ; from
7—““"> v (["ﬂ‘v}* 7 ﬁl} follows 7 e'/” 7'#’_’ "’f"ﬂ‘/& v w
¥ 4 ¥
thus, by "reductio", we obtain A J @/ 7 —> 778*, and, finally,

» ¥ 774 &
by "elimination of the double negation" A, @; 7 > @- » hence
¥, ¥ ®
s.241) 77, 47, — &7

A \7—introduction_'or J —elimination is dealt with analogously

to the V -introductior or V-elimination; a V-elimination
takes the place of a g —~elimination or a V ~introduction the
place of a X —~introduction in the appropriate place of the deri~

vation. The details are straightforward. -

A 2 -introduction after the replacement takes the form: '"From

a‘/ 77""’ 43# follows 77‘~=—9 7 (‘z(24'7¢'7‘) ".

This is transformed thus: ,ZZ”J'W“'———a ,Zl’é”’ 7.7* yields
Z{xJ"’ﬁ*——, d*‘ as well asﬂ** 703*——" - &* s
hence also ,2[ 'v/ axk 7 7@* — 747* s this together with
Z[jj T’”—-’} 43* yields 7:[[‘)”1{*———9 '7,2(“ ,
hence AL ;{4/_’ 43~: 77*‘-——-) 7 Z(* . By including
,Z('J?ﬂv-—? ”“ we obtain 7”——)'7[””4’7w,}

A 7> -elimination after the replacement takes the form: '"From

* L3 » X +
77 —> a and 4 ’ 4 [’d é -rdy ) follows

¥ AN ¥* »
77) 4 > XK ". This is transformed thus: 77'——9 b7 and

- B 5 w* yield 77:‘747*”_’ ¥y 7 BE

4 »
hence — & 2 7T w———-’ /z(k4/7 /41 ; by including
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-> ﬂi A' — 7 [ﬂ‘!”'ﬁf} we obtain 7’543—" 77#.:

¥ ¥ ' 4
and from this 7' ,A — y‘; .

12.3. We have thus succeeded in transforming the given derivation

into a derivation in which the symbols L/, :7 and > no longer

occur. It should be observed that the end-formula of the derivation

has undergone a change only if it contained a b/ s :7 or D .

12,4, It is worth noting that according to what was said at 11.3 the

given derivation is now already essentially an intuitionalistically
admissible number-~theoretical derivation; for wherever the "elimination
of the double negation" is still used it could be replaced by other

rules of inference.

Paragraph 13
THE REDUCTION OF SEQUENTS

The notion of the "statability of a reduction rule" for a sequent, to

be defined below, will serve as a formal replacement of the intuitive

concept of truth; it provides us with a special finitist interpretation

of propositions and takes the place of their actualist interpretation

(cf. Paragraphs 9 - 11).

In a sequent in which the connectives »/, 57 and 2 no longer occur,

an individual reduction step can be carried out in the following way

(13.11 to 13.53):
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13.11. Suppose that the sequent contains at least one free variable.

In that case we replace every occurrence of this free variable by one

and the same arbitrarily chosen numeral.

13.12. Suppose that the sequent contains no free variables and that

somewhere in one of its formulae a minimal term (3.24) occurs (e.g.,

as part of a longer term). In that case we replace minimal term by

its associated '"functional value'", i.e., by that numeral which represents

its value for the given numbers as arguments by virtue of the definition

of the function concerned (cf. 8.12).

Thus I am now requiring of the functions that they are decidably

defined in the sense of 8.12.

13.21. Suppose that the sequent contains no free variables and no

minimal terms and that its succeedent formula (5.21) has the form

V“ g—(*) . In that case we replace it by a formula
3'.("1) , 1.e., by a formula which results from \?-(*)

by the substitution of an arbitrarily chosen numeral #f for the

variable * .

13.22. Suppose that the sequent contains no free variables and no
minimal terms and that its succeedent formula has the form a 41@ .

In that case we replace it by the formula u or by the formula ﬂ R

as we please.

13.23. Suppose that the sequent contains no free variables and no
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minimal terms and that its succeedent formula has the form 7 2{ .
In that case we replace it by the formula 1 = 2,(19) and at the same
time adjoin the formula 22 (in the last place) to the antecedent

formulae of the sequent (cf. 11.2).

13.3. If none of the possibilities listed above applies then the

succeedent formula of the sequent must be a minimal formula (3.24).

I am now requiring of predicates, as was done for functions above,

that they are decidably defined in the sense of 8.12.

We can consequently decide of a given minimal formula on the basis of
the definition of the predicate concerned whether it represents a true

or false proposition.

13.4. Suppose that the sequent contains no free variables and no

minimal terms and that its succeedent formula is a true minimal formula;

or: that the succeedent formula is a false minimal formula (e.g., 1 = 2)

and that one of its antecedent formulae is also a false minimal formula.

For such an obviously true sequent (cf. 7.3.) no reduction step is

defined.

13.5. Suppose that the sequent contains no free variables and no
minimal terms; that its succeedent formula is a false minimal formula;
and that none of its antecedent formulae are false minimal formulae.

In that case the following three different kinds of reduction step are

permissible (counterpart to 13.2):
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13.51. Suppose that an antecedent formula has the form V* g.(*) .

To it we adjoin an antecedent formula 3—("‘) , l.e., a formula

which results from g‘(*) by the substitution of a numeral #¢

for the variable £ « In doing so we may either retain or omit the

formula V* ?(“ )

13.52. Suppose that an antecedent formula has the form 2( J/d?
In that case we adjoin to it either the formula ,Z(, or the formula

d\? « In doing so we may omit or also retain the formula /ué 6

13.53. Suppose that an antecedent formula has the form -72( . We
replace it by the succeedent formula ﬂ . In doing so we may either

omit or retain the formula =7 a .

13.6. A reduction rule for a sequent in which the connectives V s

;7 and 2 do not occur is a rule which renders possible in each

case the "reduction'" of a sequent in finitely many individual reduction

steps (in accordance with 13.11 to 13.53) to one of the correct

definitive forms (13.4) regardless of how we may choose the numeral #

involved, or which of the two formulae a and ﬂ (in the case of
13,22) we may choose when carrying out a reduction step in which there

exists a "choice", i.e., one of the steps described at 13.11, 13.21 and

13.22,

13.7. If several possibilities arise in any other reduction step
(e.g., in the case of 13.5) no choice exists since we shall require

the reduction rule to be such that it determines what kind of reduction
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step 1s to take place. Also e.g., what numeral 7 is to be used when

r
adjoining an antecedent formula j[@) and whether the affected formula

V# F(ﬁ) is to be omitted or not.

13.8. Illustration of the Reduction Concept.

13.81. The Reduction of True Sequents containing no Variables.

In order to illustrate the reduction concept I shall begin by showing
that for sequents without variables and without the symbols V s g

and 2 , the concept of the statability of a reduction rule coincides

with the concept of truth in the sense of a calculation procedure

(7.2, 7.3):

Such a "true" sequent 1s to be reduced to its definitive form according
to the following rule: First, all terms that may occur are to be
replaced by their '"numerical values" (13.12). If the definitive form
(13.4) has not yet been reached, a reduction step is to be carried out
by which the sequent is transformed into another '"true" sequent in

which fewer logical connectives occur than before. This is always

possible. For reductions according to 13.22 and 13.23 certainly fulfil
this requirement. In the case of 13.5 the following reduction step

among the different ones possible is to be applied:

If a false antecedent formula of the form Zt 4/43 occurs, then either
lt or J5 must be false; in that case the formula ,Z(4’/‘U is

replaced by 1( or 73 . If a false antecedent formula of the form
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‘7421 occurs it is omitted and the succeedent formula is replaced

by 4Zl .

Each one of the given reduction steps obviously leads to another true

sequent, in particular to one with fewer logical comnectives than

before. The continuation of this procedure obviously leads to the

definitive form of the sequent in finitely many steps.

That, conversely, every sequent without variables for which a reduction
rule is available is true follows from the fact that a false sequent,
as is easily verified, would be transformed into another false sequent
by every permissible reduction step, or that in the case of a reduction
step according to 13.22, the choice of U or 13 could be made in

such a way that this is the case.

13.82. These considerations can be extended without difficulty to the
case of sequents containing V -symbols ranging over only finitely

many numbers. The reduction of the b/ here corresponds to that of

the AP .

13.82. 1If we proceed to the infinite domain of objects of all natural
numbers the statement of a reduction rule for an arbitrary derivable
sequent is in general no longer as simple. Since it is here no

longer true that all formulae are decidable we may, for example, be
forced at times to make use of the permission to retain the transformed
antecedent formula in reduction steps according to 13.51 to 13.53,
whereas this formula could always be omitted in the case of a finite

domain (13.81, 13.82).



85

As an example I shall give a reduction rule for the proposition
mentioned at 10.6: '"Fermat's last theorem is either true or not true"
which, according to its finitist interpretation at that point, is not

a true proposition: after the replacement of the and written as a

sequent, this proposition has the form: )]

—-)-rf[-v b&#\’yijb’«,-r[axz; x,—- Z
K
§ [~ V&*{;V;Vw(we&& “eg Uf
This is reduced as follows: First we obtain (13.23): |
1727 ‘/§:£47 *ﬁz b@g 7 ('@:> 2 4, 4E£:4'£7£!==';¥‘£'):7M;
&["’" V}V]V’Vt&v(@>2 ér,!,‘-‘-f-z-‘-‘- Zﬁ)]__, /=2

By two reductions according to 13.52 we obtain
U
S nyzy,yu-.(w.z yx¥+y*=3%),
77 VaVybg¥e 7 (4>2 prtegis 32)—> 1=,

Further (13 53):

- YadybyVu v (4>4 yaey¥=3%)
> o Yalyly Va7 (> ¥ “sy%=3%)

The reduction of this logical basic sequent must now be completed

along the lines described in general at 13.92.

13.90. In the following I shall prove that reduction rules can be
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given for all sequents occurring in an arbitrarily given derivation

once the derivation has been transformed according to Paragraph 12.

From this the consistency will then follow at once:

For if a sequent of the form a3 ,l( J’ ",ZI were derivable, then

—> =2 , for example, would also be derivable. This is so

since —3» M  as well as -— =7 4 follow from
—-)1{4’1 p/4 by & -elimination, hence also (5.243)
2/t —3 U and +» /o 3 —» T X ; by "reductio"

we obtain ~—% 77 /=2 | and by "elimination of the double

negation" -—> /= 2 . (In the same way any arbitrary propo-

sition can be derived from a contradiction.) Yet no reduction rule can
be stated for the sequent —%» /=2 | since there is no reduction step
that might possibly be applied to 1t, nor is it in definitive form

(13.4) since 1 = 2 is false.

13.91. Of the mathematical basic sequents I am requiring that reduction

rules have been given for them and that these rules do not make use of
the permission, which exists for reduction steps carried out according

to 13.5, to retain the transformed antecedent formula.

For all customary number-theoretical axioms such rules are easily
stated. Let us look at the examples mentioned at 6-.2 in particular;
these must first be written as sequents and the 2 replaced by 4/
and = ; the resulting sequent can then be reduced by first

eliminating the V -gymbols according to 13.1 and by replacing
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their associated variables by arbitrary numerals and by then proceeding

as described at 13.81. After all, the formulae which result are indeed

"true",

13.92. Logical basic sequents are to be reduced according to the fol-

lowing simple rule:

Suppose that a sequent of the form 42‘ -> ll is given. We first
replace the free variables by arbitrary numerals (13.11), then the
minimal terms by those numerals that represent their values (13.12).
The latter procedure must be repeated until no further minimal terms
occur - for it can certainly happen that new minimal terms arise during

4 ¥
the computation. The sequent finally has the form AZ "’Z .

The succeedent formula d‘ is then reduced by means of reduction

steps according to 13.21, 13.22 and, if necessary, 13.12 until it has
the form =¥ a‘ or is a minimal formula. In the case of reductions
according to 13.21 or 13.-22 the replacement numerals or formulae may

be chosen arbitrarily.

If the succeedent formula has now become a true minimal formula then

the reduction procedure is already at an end (13.4).

If the succeedent formula has become a false minimal formula then

further reduction steps must be carried out according to 13.51, 13.52
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a”

and 13.12 in such a way that the antecedent formul:j‘undergoes pre-

cisely the same transformations, in the same order, as the succeedent

¥
formula Z{ did earlier. If the antecedent formula has taken on
the form V“ ?(t) , for example, it must be replaced by a formula

? ( ®) and for the replacement numeral #¢ the same numeral

must be taken that was chosen in the corresponding reduction of the

succeedent formula. Reduction steps according to 13.52 are dealt

with correspondingly. The antecedent formula thus eventually becomes

equal to the succeedent formula and the procedure is once again at an

end since the definitive form (13.4) has been reached.

If thé-succeedent formula has taken on the form =7 E, a reduction
according to 13,23 must first be carried out. The sequent then runs:
,d’: @' —> /=2 . As iIn the previous case, this sequent is
reduced‘,\ in such a way that the antecedent formula d‘ is transformed

in the same way as was the succeedent formula u s so that finally

- a. appears in its place. Then the sequent runs "6', E‘_’
/‘-'-' <2 . By means of 13.53 it is reduced to a&— & . This

is another logical basic sequent; the formula é. contains at least

&
one logical connective less than Zé , and this procedure will con-
sequently end after finitely many steps. A reduction rule has thus

been given for arbitrary logical basic sequents.

13.93. In a similar way arbitrary sequents of the formﬂ*ﬂ U

or l(,g'ﬁ-? 45 or ,Zl/ﬂ-——’-,th{flz or %?{?}—-”'?/{}
or ,Zl/-rl{—’ I=z2 or ~=2 H —> U may be reduced,

a fact which will be used later.
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Here, too, the free variables and minimal terms are first replaced
¥ 4 ¥
according to 13.11 and 13.12, The sequent 1( J ﬂ -_> u

then has a form which also occurred in the reduction of the logical

¥
basic sequent u '8’ 43* -_—> J( xJ.ﬁ according to 13.92; hence

the reduction of the sequent in question can be completed in the same

¥ 4
way as that of the latter. The same holds true ford’*x ﬂ
"% [ §
and, correspondingly, for (’b’* ?(')) —_— (F(é)}

; here the basic sequent ( V!s?[ﬁ))'—’ ['Kt ﬂ‘)}v

must be used. In the case of 42(', 3‘—” y/4 'J'ﬂ“
a reduction step according to 13.22 must be carried out; from it either
u: 15’——" Zl” or l“; t"-——" ﬂv follows, whichever we wish.
The reduction is then continued in exactly the same way as that of the
basic sequent ﬂ#'—’ﬂ'or $“-—"’ 7 cfad ; the additional
antecedent formula is disregarded and presents no problem. 1In the
case of at "ﬂ‘—" /22 2 reduction step according to 13.53 yields

¥ L
a — a » hence another basic sequent.

In the case of =77 a*’—’ 4&‘ “ reduction steps are carried out
on the succeedent formula according to 13.21, 13.22 and 13.12 uantil
it has the form 7 6' or is a minimal formula. If it has become

a true minimal formula, then the reduction is at an end. If it has
assumed the form 7 @ then it dis reduced according to 13.23 to
A 4 4&8; @—‘"’ /=2 , further (13.53) to

G' —»-’u”then (13.23) to @;U ¥ > /= 2 . The same
procedure is followed iIn the case where the succeedent formula has

4
become a false minimal formula; in the case Y ,Zl is
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%
obtained first and then 1L —_y (22 .

In both cases we have obtained a sequent which has also occurred in

a'.—»u'

the reduction of the logical basic sequent

according to the procedure stated at 13.92 (or by a procedure that is
not essentially different). Once again we need only follow the

procedure stated there in order to complete the reduction of the

sequent in hand.

It should be noted that in any reduction steps according to 13.5 in
the reductilon procedures at 13.92 and 13.93 the antecedent formula

involved was never retained.

Paragraph 14

- REDUCTION STEPS ON DERIVATIONS(ZO)

In order to reduce arbitrary derived sequents we shall state a procedure
by which certain reduction steps are carried out on the entire
derivation‘of the sequent concerned. For this purpose I shall modify
somewhat the notion of a derivation used so far (14.1) and shall then

explain how an individual reduction step is to be carried out on such

a derivation (14.2).

14.1. Modification of the Notion of a Derivation.

The new notion of a derivation results from the old one (5.2) as follows:
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5.22 continues to apply even though the "end-sequent" of the derivation

may now also contain antecedent formulae (so that we can speak of a

"derivation for a sequent"). The symbols V , a and =D must
not occur in the derivation. No sequent of the derivation may be

used to obtain more than one further sequent (by the application of a

rule of inference).

It is easily seen that a derilvation in the old sense can be transformed
into a derdivation with the same end-sequent which also satisfies this
condition. We need merely work backwards from the end-sequent and
write down correspondingly often those sequents which have been used

more than once together with the sequents used for their derivation.

Mathematical basic sequents must fulfil the requirement 13.91;

together with these all their '"reduction instances", i.e., all
sequents which may occur in the course of a given reduction procedure,

are also admitted as mathematical basic sequents.

As logical basic sequents we may take arbitrary sequents of the form

lu o }u or ,Zl 4’43 — azz or P4 4?1?"_4,‘2?
x L, B—o2UIB o YxFey —> F(O
ﬂ/‘lu —> =2 or =17 U —=>U , as well as all

sequents which may occur in the reduction of one of these sequents

according to 13.92, 13,93,

Structural transformations in their old form are no longer permissible.




92

Among the rules of inference we retain the rule of the b/ =introduction
and of "complete induction" with the following modification: a

%l -introduction or a "complete induction' in whose sequents no
free variables other than @ occur, remains permissible if in all
associated sequents not containing the variable R the minimal terms
which occur are replaced by their '"ncmerical values" until all minimal

terms have been eliminated (for motivation cf. 14.22).

The following new "rule of the *7 ~introduction" is added: From

73” - /22 results 77—"_'” .

One further rule of inference is still added - the 'chain rule™ -:

From a sequence of sequents (at least one) of arbitrary form a

sequent of the following kind results: for its succeedent formula
we take the succeedent formula of any ode of the sequents of the

sequence. If this formula 1s a false minimal formula, any other

false minimal formula may be taken. For its antecedent formulae we
write down, in arbitrary order, all antecedent formulae of the sequent
concerned, together with all antecedent formulae of earlier sequents
in the sequence. In carrying out this inference we may omit formulae
for which the following holds: the same formula occurs already among
the formulae written down (i.e. those not omitted); or: the formula

is the same as the succeedent formuia of a sequent occurring earlier

in the sequence than the sequent from whose antecedent formulae it is

taken. Other antecedent formulae may be inserted among the formulae

already written down. Finally, the completed sequent may be transformed
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further by replacing any one of its bound variables one or more times

by another variable according to 5.244.

The "chain rule" has thus been formulated flexibly enough to allow
for the transformation of a derivation in th‘e old sense, which we
assume to be already‘ freed of the symbols V s g and =@

by the method described in Paragraph 12 (and which we also suppose to
fulfil the conditions for functions, predicates and axioms in 13.12,
13.3, 13.91), dinto a derivation in the new sense without any change

in its end-sequent.

Reason: All structural transformations are special cases of the "chain

rule". The omitted rules of inference may be replaced by the new

basic sequents that have taken their place, together with the 'chain

rule", e.g., the 4/ ~introduction: T-»U and 4- ﬂ and

ll, " — U 4}43 by the '"chain rule" yields 75 4—

U "43 . The V -elimination: [J' ~—m ¥ 3.(") and

¥» Ftnr - g(‘) by the "chain rule" yields 7 —> f[f) . The

}/ -elimination and the '"elimination of the double negation" are

replaced correspondingly. Finally the "reductio: from ﬂ/ 77— 3
and l‘,A "71] and ﬁ/ 23— /=2  ve obtain by the "chain

rule" 77, A, U —> /=2 , and by “7 -introduction

tinaty 7,4 —> 7 4

The new notion of a derivation is thus not narrower than the old

one and for the purpose of stating a reduction rule for any one of
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the sequents occurring in a derivation we can without loss of generality

assume as given a derivation in the new sense for the sequent concerned.

In applying a rule of inference below I shall label as "gremisses" those

sequents from which a new sequent, the "conclusion'", results.

That the '"chain rule'" in its intuitive meaning constitutes a "correct"
inference is fairly obvious. It can after all be shown that this

rule is replaceable by the old rules of inference and the structural

transformations.

In formulating the "chain rule" it was permitted that no actual use
was made of some premisses. This proves to be of practical value
for the reduction procedure. The extensive replacement of the
rules bf inference by combinations of basic sequents and the ''chain
rule" is also motivated by convenience; it has the virtue of
changing the original vertical arrangement of inferences into a

horizontal arrangement,

Finally, I shall also pre~suppose that it has been stated for each

sequent of a given derivation whether it is a basic sequent and of

what kind or from what preceding sequents and by what rules of

inference it has been obtained; I assume in general that it has

been stated how the individual sequents, formulae, etc., involved

in an application of a rule of inference, correspond to the designations
used in the associated general schema: in this way the need for

resolving possible ambiguities does not arise.
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14.2. Reduction steps on derivations.

I shall now define the notion of a reduction step on a derivation (14.1)
and at the same time prove the following: 1in such a step the derivation
concerned is transformed into another derivation and its end-sequent is

hereby modified in the following way:

The possible occurrences of free variables are replaced by arbitrarily
chosen numerals; then any minimal terms that may be present are replaced
by their "numerical values'" until all minimal terms have been eliminated;
and, furthermore, at most one reduction step according to 13.2 or 13.5
is carried out on the sequent. (It may thus happen that an end-sequent

without free variables or terms remains entirely unchanged.)

The reduction step on derivations is unambiguous except in the cases

in which the end-sequent undergoes one or more transformations accofding
to a reduction step on sequents involving a choice (13.11, 13.21, 13.22);
here the choice may be made arbitrarily; if this has been done the

reduction step is then also unambiguous.

If the end-sequent of the derivation is in definitive form according to
13.4, then no reduction step is defined for this derivation. In other
cases we carry out a reduction step whose definition now follows
(recursively). 1In the following we therefore assume that the end-sequent

is not in definitive form.

14.21. If the end-sequent of the derivation is a basic sequent then the
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reduction step on it is carried out according to the reduction rules
13.91 - 13.93, which clearly also cover all basic sequents in their
present sense: a replacement of all possible occurrences of free
variables and terms must here take place, followed merely by precisely
one step according to 13.2 or 13.5 (or none at all if the definitive form
has already been reached). The claims made above concerning the

reduction step on derivations are then obviously fulfilled.

14.22. We now consider the case where the end-sequent is the result

of the application of a rule of inference and we presuppose that for

the derivations of the premisses the notion of a reduction step is
already defined and the validity of the associated assertions

demonstrated.

The reduction step on the entire derivation begins with the following

~

preliminary (replacement of free variables and minimal terms):

We begin by replacing all occurrences of free variables in the end-
sequent by arbitrarily chosen numerals. Then we replace the same
variables (i.e. the variables that were replaced in the end-sequent)

in the entire derivation by the same numerals and replace the remaining
free variébles by 1, with one important exception: the free variable
occurring in a \, -introduction or "complete induction" and designated
by M  at 5.25 must not be replaced in the premises 77—) F[a) or

*F(M/ A—> \'f'(a +1) , nor in any sequent belonging to the

derivation of that sequent.
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Next we replace all minimal terms occurring in the derivation one

by one by their '"numerical values'", with one important exception:
no replacement takes place in the premises of a \{ ~introduction or
"complete induction'" containing A , nor in any sequent belonging to

the derivation of that sequent.

Both of these replacement procedures obviously leave the derivation
correct. Essential to this in the replacement of free variables is,
?irst, the special condition for the variable N in the case of

a b/ -introduction and a "complete induction'" as formulated at 5.25,
further the requirement (14.1) that every derivational sequent serves
as a premise for at most one application of a rule of inference. These
two facts make it actually possible to separate completely from the
rest of the variables the variables to be replaced so that by this
distinction no error is introduced into any application of a rule of

inference.

In the case of a term replacement the special requirement formulated
at 14.1 for the kl -introduction and the '"complete induction" is
important (which is why it was introduced); for the original normal
form of these rules of inference (5.25) may be destroyed by the

replacement.

After this "preliminary" comes the actual reduction step according to

the following rules. Yet if the end-sequent is now already in definitive

form the reduction step terminates at this point.
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14.23. Suppose that the end-sequent is the result of a V -introduction

or a "7 -introduction. It is then eliminated and its premise taken

for the new end-sequent, where, in the case of a V -introduction,
every occurrence of the free variable #V must be replaced throughout
the derivation of this premise by an arbitrarily chosen numeral and
every minimal term by its "numerical value'", subject to the same

restrictions as at 14.22; not to be replaced, however, are terms in which

the variable @& occurred earlier.

The derivation has obviously remained correct and the end-sequent has

become a reduced end-sequent in the sense of 13.21 or 13.23.

14.24. Suppose that the end-sequent is the result of a '"complete induction".

The numerical value of the term ﬁ will be denoted by the numeral 7¢ H

1% shall be the numeral for the number smaller by 1 (if 4¢
”
is not equal to 1). The free variableAin the derivation of the premise

5{4}15 e g{ﬂ-ﬂ) is the replaced successively by the numerals 1, 2, 3,

etc. up to ¢4 , subject to the same restriction as at 14.22, and all

minimal terms that may have resulted are then replaced by their "numerical

values", also subject to the same restriction as at 14.22. The
derivation as a whole is then completed by the application of the “chain

»
rule" which makes it possible to derive the end-sequent 734 - (f(ﬂ»

once again from 71 — Cg(i’) ’ »
and the newly derives sequents (Fc1” ‘, A —> ['Fa))

and (?(‘,)ﬂ) A - CF(‘»‘ etc. up to
(§F(men®, 8 —> (§(10)*
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The asterisk denotes in each case the changes that have occurred through
the replacement of minimal terms. By virtue of the preparatory
replacement of terms (14.22) and the further replacement of terms here

carried out all occurrences of minimal terms have finally been eliminated

"
so that the related .3: -expressions have indeed become equal to one
another, even if they had not been equal before. If M equals 1, then

we merely put 1 for & and by the "chain rule" the end—sequentzd-’[ylj))#

from TT—> (FCIN ™ aa (F12)" 8 — (FL)* .

14.25, The last case to be considered is that where the end-sequent is
the conclusion of a "chain rule" inference. This is the most difficult

reduction since the chain rule in some sense amasses the difficulties

of all inferences.

That premise whose succedent formula provides the succedent formula of

the end-sequent I shall call the "major premise'". If the succedent

formula of the end-sequent is a false minimal formula we choose as

ma jor premise the first premise (in the given order) whose succedent
formula is also a false minimal formula. This does not change the
correctness of the '"chain rule", even if a later premise was the major
premise before; it may merely happen that certain antecedent formulae

of the end-sequent can no longer be regarded as taken from the premisses

but rather as newly adjoined.

From these preliminaries-it follows that the major premise can in no
case be in definitive form (13.4), for otherwise the end-sequent would

obviously also have to be in definitive form and this was assumed not
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to be the case. Hence a reduction step can be carried out on the
derivation of the major premise. In this respect I shall distinguish

four cases which will be dealt with in ®émwm (14.251 - 14.254).

14.251.Suppose that the major premise undergoes a change according to
13.2 in the reduction step on its derivation. In that case the end-
sequent is subjected to the appropriate reduction step for sequents
according to 13.2; any choice that arises is to be made arbitrarily.

The reduction step for derivations is then carried out on the derivation
of the major premise and wherever a choice exists the same choice is to
be made as before. The succedent formulae of both sequents are now the
same once again (up to possible re-designations of bound variables)

and the "chain rule" is once again correct. In this case ther eduction

step for the whole derivation is thus completed.

14.252. Suppose that the major premise undergoes a change according
to 13.5 in the reduction step on its derivation and that the affected
antecedent formula is one of the formulae that has been included among
the antecedent formulae of the end-sequent (when the latter was formed
by the "chain rule") or that it was omitted because an equal formula
had already occurred among the antecedent formulae. In that case the
reduction step is carried out on the derivation of the major premise
and, so that the "chain rule" becomes again correct, the end-sequent

is modified according to the corresponding reduction step on sequents

(13.5). I.e., if the affected antecedent formula was itself absorbed

into the end-sequent then the same reduction step is here carried out
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on that formula; but if it was omitted because it agreed with an
already existing formula then the reduction step is carried out on
the latter formula and it is retained regardless of whether' the
corresponding formula in the reduction of the premise is omitted or

retained.

14.253. (Principal Case.) Suppose that the major premise, say
A —p E , undergoes a change according to 13.5 in the reduction
step on its derivation and that the affected antecedent formula ( V' )
is a formula that was not included among the antecedent formulae of the
end -sequent because it agreed with the succedent formula of an earlier
premise; suppose further that this premise, call it T' -5 (4 ,
undergoes a change during the reduction step on its derivation which,
in that case, must necessarily be a change according to 13.2. (Since
V cannot be a minimal formula.) - Suppose that the end-sequent of
the whole derivation has the form @-)\D I shall distinguish three

individual cases depending on whether v has the form VQ$C*) s

a *4‘ or -1,2( . The treatment of the three cases is not

essentially different.

Suppose first that v has the form V“ \F(*) . In that case an
antecedent formula F(»ﬂ.) is adjoined in the reduction step according to

13.51 on AQ@, and Vﬁg.(ﬁ) is either retained or omitted; in the

reduction step on Ji—> 'y“'y.a) , which must be carried out
according to 13.21, the same symbol #€ may be chosen for the numeral

to be substituted so that 77-’ %)results. We now form three '"chain rule"
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inferences: the first one contains for its premisses those of the
original "chain rule'" inference, but with T’ —_— y[ﬂ')

in place of 7 —» ﬁﬁﬁ) ; its conclusion: @ — 3'.[")

A correct result. The second "chain rule" inference contains for its
premisses those of the original "chain rule" inference, but with the
sequent that was reduced according to 13.51 in place of A -— E 5
its conclusion: @ F[‘ﬂ) — A . This is also a correct "chain
rule" inference. The third '"chain rule" inference again yields the
end-sequent Sumem @9 ﬁﬂu &> F[ﬂ) and @ F[ﬂv) — D
- Together with each one of the sequents used we must of course write
down the complete derivation of each one of them so that now an

altogether correct derivation again results.

If v has the form /&4’6 , then an antecedent formula a or ﬂ
is adjoined in carrying out a reduction step on A—) E’ according to
13.52. T’-—’Z‘*ﬁ becomes either r——)u or 738 "
as desired; the choice should be made so that the same formula occurs

as in A -—> E . The procedure is the continued exactly as in

the previous case.

If v‘ has the form -Vﬂ » then A—Pa'is reduced to

A[?—-)ﬂ and 77-—-)'7.2( to 7;4 —> [ =2 . We

now form, as before, two "chain rule'" inferences with the conc lusions
@u -—_p (=] and ® —y/ . With their order interchanged,
these two inferences again yield @ —_ O by a third "chain rule"

inference. This is so since O , like E and 1---2 , 1s a false
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minimal formula.

14.254. We are still left with the following possibilities: the major
premise remains unchanged in the reducticn step on its derivation; or:
its change is of the kind assumed at 14,253 and the premise 7’—’  d
remains unchanged in the reduction step on its derivation. -In both
cases we carry out the reduction step on the derivation of the premisses
that have remained unchanged and this completes the r eduction. Yet

in the particular case of a reduction step on the derivation of the

premisses according to 14.253 (where the end-sequent, i.e., the premise,

remains unchanged) we proceed somewhat differently, viz.: this reduction

step is to be carried out yet without forming the "third chain rule
inference" presented for this purpose; in its place we put rather the
two premisses of that "chain rule" inference in place of the conclusion
of that inference in the sequence of the premisses of that "chain rule"
inference which terminates the derivation as a whole. This obviously

leaves the "chain rule inference" correct. The end-sequent is not changed.

The definition of a reduction step on a derivation is thus completed.

Paragraph 15

ORDINAL NUMBERS AND PROOF OF FINITENESS

It remains to show that a successive application of a reduction step

on a given derivation always leads to the definitive form (of the end-

sequent) in finitely many steps regardless of the choices made in

—ghy
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those cases in which a choice exists. In doing so, we shall at the
same time have given a reduction ruel (13.6) for arbitrary derived
sequents, since the reduction of the derivation of the sequent
(according to Paragraph 14) automatically involves the reduction of the

sequent (according to Paragraph 13).

In order to prove the finiteness of the procedure we shall have to

show that each reduction step in a definite sense "simplifies" a

derivation. For this purpose I shall correlate with each derivation

an "ordinal number'" representing a measure for the "complexity" of the

derivation (15.1, 15.2). It can then indeed be shown that with every
reduction step on a derivation the ordinal number of that derivation

(in general) diminishes (15.3). However, the finiteness of the reduction
procedure is hereby not immediately guaranteed; for the ordering of the
derivations (corresponding to the well-ordering of their ordinal numbers)
is of a special kind since it may happen that in terms of its complexity

a derivation ranks above infinitely many other derivations. E.g., a

derivation whose end-sequent has taken on the form —3 V* ?(g) s

as a result of a "complete induction" and a k/ -introduction, must
be regarded as more complex than any one of the infinitely many special
instances obtained by substituting individual numerals for ¢ and
resolving the "complete induction'" (14.23, 14.24). The situation may
be complicated still further by a multiple resting of such instances.,
Thus the "ordinal numbers" here have the nature of “transfinite ordinal
numbers'" (cf. footnote 21) and the inductive comprehension of their

totality is not possible by ordinary complete induction but only by
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"transfinite induction" whose validity requires a special verification

(15.4).

15.1. Definition of ordinal numbers (recursive).

As "ordinal numbers" I shall use certain positive finite decimal fractions

formed according to the following rule:

Ordinal numbers with the characteristic O are precisely the following
numbers: 0.1, 0.11], 0.111, 0.1111, ... i.e. in general: every number
with the characteristic O whose mantissa consists of finitely many

1's; also the number 0.2.

Zeros may not be appended to these expressions, neither here nor below;"
this achieves uniqueness of notation. - I shall call one mantissa
smaller than another mantissa if this relationship holds between the

numbers that result from the prefixing of these mantissae by "O".

The mantissa of an ordinal number with the characteristic ‘g + 1

( 5325 O ) is obtained by taking several mutually distinct ordinal
numbers (at least one) with the characteristic g s
ordering their mantissae according to size, so that the largest occurs
first, the smallest last, and by then writing them down in that order
from left to right, separating any two successive mantissae by g +1
zeros. All numberé obtainable in- this way from ordinal numbers with
the characteristic g , and no others, are ordinal numbers with the

characteristic g + 1.

Examples of ordinal numbers:
Olt, 10t /-2, 211, 2:20100110/00/l, &-20/002000 /



106 .

It can be determined uniquely of a given number with the characteristic
3 + 1 from what numbers with the characteristic 5 it has been
generated by the above rule..For a number with the characteristic &

can obviously have no more than € consecutive zeros in any one place.

Further details about the ordering of the ordinal numbers follow at

15.4.

15.2. The correlation of ordinal numbers with derivations.

With every given derivation (in the sense of 14.1) we can correlate a
unique appropriate ordinal number calculated according to the following

recursive rule:

The following observation must here be kept in mind: the maximum
number ( ) of consecutive zeros in the mantissa is larger than 1 and
all of its sections that are separated by successions of =9 zeros, except

for the last one, begin with the numeral 2, the last section consists

only of 1's.

If the end-sequent of the derivation is a basic sequent, the derivation
receives an ordinal number of the form 2.2001 ... 1, where the number
of 1's must be chosen to be larger by one than the total number of logical

connectives occurring in the sequent.

Now suppose that the end-sequent is the conclusion of the application of

a rule of inference and that for the derivation of the premisses their

associated ordinal numbers are already known. From these the ordinal
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number of the whole derivation is calculated as follows:

If the end-sequent is the conclusion of a b/- or =y -introduction
then the numeral 1 is adjoined to the ordinal number for the
derivation of the premise. By virtue of the stated properties of
arbitrary ordinal numbers for derivations we have obviously another

correct ordinal number in accordance with 15.1.

If the end-sequent is the conclusion of a "chain rule" inference, we
focus our attention on the mantissae of the ordinal numbers of the
derivations for the premisses; suppose that = is the maximum number

of consecutive zeros in all of these mantissae. Should there be equal
mantissae among them, we distinguish these by adjoining to one of them
N + 1 zeros and one 1, to another ~) + 1 zeros and two ones, etc.;
this principle is to be applied to every occurrence of equal mantissae.
The mantissae thus obtained are mutually distinct; they are then written
down from left to right according to size (tﬁe largest one first) and two
successive mantissae are in each case to be separated by ¥ + 2 zeros;
finally 4 + 2 zeros and one 1 are adjoined at the end. The result

is the mantissa of the ordinal numbers for the whole derivation. For

its characteristic we take the smallest natural number which exceeds

the maximum number of consecutive zeros in the mantissa by O or more
and which, first, exceeds by at least two the maximum number of
consecutive zeros in any one of the ordinal numbers for the derivations
of the premisses and which, second, is no smaller than twice the total

number of logical connectives in the succedent formula of any one of the
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premisses preceding the major premise (14.25).

If the end-sequent is the conclusion of a "complete induction', then

the ordinal number of the whole derivation receives a mantissa of the
form 201..10..01; where the number of consecutive 1l's is to be chosen
greater by one than the total number of consecutive 1's in the

corresponding place in the larger one of the mantissae of the ordinal

numbers for the derivations of both premisses (or either one of them,

if both are equal); i.e., if the latter mantissa begins with 200,

one 1 is to be chosen; in every other case it must begin with 201 ..
10, in which case one more 1 than here is to be chosen. The total
number of consecutive zeros must be N + 2, where ~) is the maximum
number of consecutive zeros in the two mantissae mentioned. As

characteristic we take the smallest natural number that exceeds the

maximum number of consecutive zeros in the mantissa by zero or more
and which first is not smaller by two than the corresponding maximum
number of zeros in any one of the two ordinal numbers used and which

second is not smaller than twice the total number of logical connectives

in the formula ? (1) .

It is easily seen that this newly formed number is another correct

ordinal number (15.1) and possesses moreover the special properties

stated above.

15.3. A reduction step diminishes the ordinal number of a derivation.

We must now prove that with every reduction step on a derivation
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according to 14.2 the ordinal number of the newly resulting derivation
becomes in general smaller than that of the old derivation. I shall

show: the characteristic does not increase; the mantissa decreases

in all cases in which the end-sequent is not already in definition form
after the replacement of the free variables and terms (14.21, 14.22);
the maximum number of consecutive zeros in the mantissa furthermore

remains unchanged except in the case of a reduction according to

14.253 where it increases by exactly two.

I shall again proceed recursively, i.e., I shall prove the assertion

by complete induction.

For derivations whose end-sequent is a basic sequent the result

follows from the method of correlating ordinal numbers with such
derivations together with the fact that in the reduction step the
sequent undergoes a change according to 13.2 or 13.5, and here the
total number of occurring logical connectives is diminished. (If the
definition form of the derivation is achieved earlier then the ordinal
number remains unchanged.) What is important here is that in changes
according to 13.5, the altered antecedent formula is always omitted,

c.f. 13.91 - 13.93.

Suppose now that the end-sequent is the result of the application of

a rule of inference and that the assertion has already been proved

for the derivations of the premisses.

The preliminary step (14.22) has obviously no influence on the ordinal
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number of the derivation. If the definition form of the end-sequent
results already with this step then the ordinal number therefore.

remains unchanged. If this is not the case then the following holds:

If the end-sequent is the conclusion of a ‘{ - or =7 -~introduction
then the assertion follows at once from the method of correlating

ordinal numbers with such a derivation.

Even if the end-sequent is the conclusion of a "complete induction"

the truth of the assertion follows easily. The "complete induction"
is, after all, transformed into a "chain rule" inference; this does
not lead to an.increase in the characteristic of the ordinal number;
although the mantissa may become much longer, it nevertheless diminishes
since the mantissa of tpe ordinal number of one of the two original
derivations of the premisses must always occur at the beginning of that

mantissa. The maximum number of consecutive zeros ( ~ + 2) remains

unchanged.

Suppose finally that the end-sequent is the conclusion of a '"chain rule"
inference. The selection of the premise of an earlier sequent as major
premise (14.25) does not alter the mantissa of the ordinal number; the

characteristic may on the other hand diminish because certain succedent

formulae of the premisses no longer contribute to its calculation.

The reduction step now takes the form of either 14.251 or 14.252. Here
one of the mantissae of the ordinal numbers for the derivations of

premisses is diminished without a change in the maximum number of
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consecutive zeros occurring in it. This has obviously a simultaneous

diminishing effect of the mantissa for the ordinal number of the total o,
derivation. The number of zeros is after all still ) + 2; the

diminished mantissa may conceivably occur in a later place of the

sequence, which is ordered by size; if the mantissa was one of several
equal mantissae then one less 1 1is adjoined to the remaining mantissae;

yet in all cases the first mantissa in the sequence of mantissae

separated byV + 2 zeros which has not remained the same must be smaller
than before; consequently the total mantissa has certainly also been

diminished. The characteristic does not increase.

In a reduction step according to 14.253 the ordinal number of the
derivation is altered as follows: 1let us first consider the ordinal
numbers for the two derivations which conclude with the newly formed
first or second '"chain rule" inference. For these two derivations

the situation is the same as that in the previous éase, i.e.: the

two mantissae are smaller than the mantissa of the ordinal number of

the original derivation; the maximum number of consecutive zeros

(- Y + 2) has remained the same; the characteristics have not increased.
We now introduce the third "chain rule" inference and form the ordinal
number of the new total derivation: 1Its mantissa begins with one of

the two earlier mantissae followed by N + 3 zeros (usually ) + 4);

it is consequently smaller than the mantissa of the original ordinalAnumber;
the maximum number of consecutive zeros is 9 + 4, hence larger by two

than before; the characteristic of the total derivation, finally, cannot

have increased, for the total number of logical connectives in the
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succedent formula F(«') , Or a or 46 y O Zé , 1s smaller than
that in the formula v' , i.e., in V& 3”0"! , or ﬂkﬂ s Or
"’lu ; hence the sum of twice the number of logical connectives in

the former formulae with V + 4 zeros, which determines the new

characteristic, is not larger than the sum of twice the number of

logical connectives in the latter formulae with v +2 Zeros; nor

could the characteristic of the original derivation be smaller than

the latter sum since ?’ was one of the succedent formulae which

contributed to its calculation.

In a reduction step according to 14.254 the situation is the same as
in the case of 14.251 and 14.252 unless we are dealing with an

exceptional case. Yet even a special case can be dealt with without

difficulty on the basis of our previous considerations; here one of
themantissae of the ordinal numbers for the derivations of the
premisses is no longer replaced by one smaller mantissa, as was done
above, but by two; yet the effect is the same in every desired respect.
The characteristic is not increased; its‘maximum number of consecutive
zeros before the reduction was not smaller by two than twif:e the total
number of logical connectives in so that the contributions of g"(ﬂ) s

or Z( or 43 , Or ,a, , after the reduction, cannot lead to an increase.

It has thus been proved that in a reduction step the ordinal number

(usually) diminishes. The most important point was our consideration

concerning the characteristic of the ordinal number in discussing the

reduction steps 14.253 and 14.254; this is the idea which enables us
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to recognize a simplification of the derivation in such a reduction
step in spite of the apparent increase in complexity. The

simplification consists precisely in the fact that the premisses of

the "third chain rule" inference are "interwoven'" to a lesser degree

(viz., to a degree corresponding to the total number of logical
connectives in the succedent formula of the first premise which is
also the antecedent formula of the second premise) than the premisses
of the first and second and the premisses of the original "chain rule"
inference. The method of correlating an ordinal number with a

"chain rule" inference (15.2) is formulated from the above point of

view; all other details follow more or less automatically.

15.4 Demonstration of the finiteness of the reduction procedure.

Some facts - needed below - about the ordering according to size of the

ordinal numbers:

With every number o with the characteristic g (g»?« 0) I correlate
the system 6(“" of those ordinal numbers with the characteristic
g + 1 in whose formation according to 15.1 the numbersd was the
largest of the ordinal numbers with the characteristic ’ that were
used. Every ordinal number with the characteristicf + 1 belongs
uniquely to one such system 6("") . If of) is smaller than ey
then every number of G(‘(t) is also smaller than every number of
6("") . The ordering of the systems 6('() corresponds
therefore to the ordering of the numbers o€ . The following holds

for the ordering of the numbers (with the characteristic g + 1)
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within a system 6; é" : the smallest number within é;é() is the
number ¢o¢ + 1. The remaining numbers of 6(“'] correspond order-
isomorphically to the totality of those numbers with the characteristic
4+ 1 which are smaller than ¢ + 1 in the following way: Every
number of 6(0‘) , except for o + 1, results from K+l through
the adjunction of f + 1 zeros followed by the mantissa of any one of
the numbers with the characteristic f 4+ 1 which is smaller than & + 1.

The ordering of this mantissa is hereby carried over.

‘The correctness of all these assertions follows easily from the
definition of the ordinal numbers. The reader may find it beneficial
to examine the ordering of the ordinal numbers with the characteristics

1, as well as 2 and 3, for example, using this definition.(zn

I now assert (theorem of "transfinite induction"):

All ordinal numbers (15.1) are "accessible" in the following sense by
running through them in the order of increasing magnitude: the first
number, 0.1, is considered as "accessible'; if all numbers smaller than
a number (S have furthermore been recognized as "accessible" then /}

is also considered as "accessible".

Proof. 0.1 is accessible by hypothesis, hence also 0.11, hence
also 0.111, etc., and it follows in general by complete induction that
every number smaller than 0.2 is accessible. Hence 0.2 is also

accessible, and thus all numbers with the characteristic O.



115

I now apply a complete induction, i.e., I assume that the accessibility

of all numbers up to and including those with the characteristic ’

( ’), 0 ) has already been proven and that it is now to be proved

for numbers with the characteristic ’ + 1. The first of these

numbers, i.e., the number with the mantissa 1, is provable. Now note
that we have already run through the numbers with the characteristic ; .

of

To every such numbelr/‘corresponds a system Gé(’ of numbers with the

characteristic § + 1; this system consists of the number ¢ + 1

and a system order-isomorphic with those numbers with the characteristic
’ + 1 that are smaller than & + 1. To run through the numbers with

the characteristic g + 1 now amounts merely to a running through of

the systems 6(‘) in the same way in which we ran through the numbers

o with the characteristic f ; for if a number O + 1 has been

recognized as accessible then all remaining numbers of the system

G“) obviously become accessible at the same time; we need merely

run through this system in exactly the same way in which we have already

run through the isomorphic system of the numbers (with the characteristic
¢ +.1) smaller than ol + 1. 1In this way we can run through all

numbers with the characteristic ’ + 1 by virtue of having run through

the numbers with the characteristic gﬁ . To the totality of numbers

o/ (with the characteristic g ) smaller than a number o(°

corresponds, in the case of the number g/o + 1 (with the characteristic

f + 1), the totality of numbers belonging to the systems 6(")

(where d(“' ).
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Conclusion. By means of the "theorem of transfinite induction" the

finiteness of the reduction procedure for arbitrary derivations now

follows at once. If the finiteness of the reduction procedure has
already been proven for all derivations whose ordinal number is
smaller than a number ‘S then this also holds for every

derivation with the ordinal number P ; for by a single reduction

step the latter derivation is transformed into a derivation with a

smaller ordinal number or a derivation in definitive form. If the

derivation was already in definitive form then there was nothing more

to prove.) Thus the property of the finiteness of the reduction
procedure carries over from the totality of the derivations with :the
ordinal numbers smaller than f to the derivations with the ordinal
number P ; by the theorem of transfinite induction it therefore
holds for all derivations with arbitrary ordinal numbers. This

concludes the consistency proof.

116
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SECTION V.
REFLECTIONS ON THE CONSISTENCY PROOF
Paragraph 16

THE FORME OF INFERENCE USED IN THE CONSISTENCY PROOF

I shall review in the following the inferences and specific concepts

used in the consistency proof from two aspects: First I shall

examine to what extent they can be considered as indisputable (16.1)

second, in connection with the theorem of Godel (2.32), to what

extent they correspond to the methods of proof contained in
formalized elementary number theory and in what way they go beyond

these methods (16.2);

16.1 In terms of the indisputability of the methods of proof used,

the critical point is the proof of the finiteness of the reduction

procedure (15.4). We shall come back to this point later. All other
techniques of proof used in the consistency proof can certainly be
considered as "finitist" in the sense outlined in detail in Sectiom III.
This cannot be '"proved" if for no other reason than the fact that the
notion of "finitist" is not unequivocally formally defined and cannot
in fact be delineated in this way. All we can do is to examine every
individual inference from this point of view and try to assess whether
that inference is in harmony with the finitist sense of the concepts
that occur and make sure that it does not rest on a possibly
inadmissible "actualist" interpretation of these concepts. I shall
discuss briefly the here most relevant passages of the consistency

proof:
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The objects of the consistency proof, as of proof theory in

general, are certain symbols and expressions, such as terms,
formulae, sequents, derivations, ordinal numbers, not to forget the
natural numbers. All these objects are defined (3.2, 5.2, 14.1, 15.1)

by construction rules analogously to the definition of the natural

numbers (8.11); in each case such a rule indicates how more and more
such objects can be constructed step by step. -~ It must here be
presupposed that in formalized elementary number theory certain specific
"functions", "predicates" and "axioms" have been stipulated which
satisfy the conditions laid down for these objects (13.12, 13.3, 13.91).
Strictly speaking, this presupposition introduces a transfinitely

used "if - then’ into the consistency proof; yet this "if - then'" is
obviously harmless since the proof need not be regarded as meaningful

at all until that presupposition has actually been made and its

conditions have been shown to_be satisfied.

A number of functions and predicates were furthermore applied to

these objects and they were decidably defined in the sense of 8.12.

E.g., the function "the end-formula of a derivation", the predicate
"containing at least ome V- o 7 -symbol"  and many others.

The following functions, in particular, were also decidably defined,

as is easily verified: '"the derivation resulting from a derivation

by a transformation according to Paragraph 12", "the derivation

resulting from a derivation by a reduction step in which the conditions

of a possible choice were unequivocally specified" (14.2), "the ordinal

number of a derivation" (15.2).

e S e
[ e e ——— m——
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Furthermore, propositions of the following kind were proved by

complete induction: '"for all sequents", "for all derivations" etc.,

whose validity for each individual sequent or derivation was decidable.
E.g.: '"The figure resulting from a derivation by a reduction step is
another derivation and the transformation of the end-sequent fulfils
certain conditions" (14.2); "in carrying out a reduction stép we

diminish the ordinal number" (15.3).

In applying the concept "all" in the consistency proof, I have not
used the clumsy finitist expression given in 10.11 for it; here the
distinction between. the actualist finitist interpretations has no

bearing on our reasoning in any case.

The negation of a transfinite proposition occurs only once in the
entire proof (at 13.90) and only in a harmless form in which the
proposition concerned leads to a quite elementary contradiction. The
negation can actually be avoided altogether if for "consistency" the
following positive expression is used: "every derivation has an end-
formula which does not have the form AU "'12L " Here the "not" is

-

no longer transfinite.

16.11. What can be said, finally, about the proof of the finiteness

of the reduction procedure (15.4)?

The notion of "accessibility" in the "theorem of transfinite induction"

is of a very special kind. It is certainly not decidable in advance
whether it is going to apply to an arbitrary given number; from the
point of view explained in Paragraph 9, this concept therefore has

no immediate sense since an "actualist sense" has after all been rejected.
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It gains a sense merely by being predicated of an individual number

for which its validity is simultaneously proved. It is quite

permissible to introduce concepts in this way; the same situation

arises, after all, in the case of all transfinite propositions if a

finitist sense is to be ascribed to them, c.f. Paragraph 10. With
the statement that "if all numbers smaller than (5 have already been
recognized as accessible then l§ is also accessible" the definition
of the notion of "accessibility" is already formulated in conformity
with this interpretation. No circularity is of course involved in
this formulation; the defimition is, on the contrary, entirely

constructive; for l‘ is counted as accessible only when all numbers

smaller than é have previously been recognized as accessible.

The "all" occurring here is of course to be interpreted finitistically

(10.11); in each case we are after all dealing with a totality with a

constructive rule for generating all elements.

About the proof of the theorem of transfinite induction the following
must be said: From the way the notion of "accessibility" was defined

it follows that in proving this theorem a "running through" of all

" ordinal numbers in ascending magnitude must take place. In dealing with
the numbers with the characteristic O the following is to be observed:
the infinite totality of the numbers smaller than 0.2 is overcome by

one single idea: the proof can be carried out arbitrarily far into

this totality; hence it may be considered as completed for the entire
totality. This "potential" interpretation of the "running through" of

an infinite totality must be applied throughout the entire proof.

The occurrence of a transfinite induction hypothesis in the complete
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induction on ‘r is to be interpreted in the sense of 10.5 and is
therefore unquestionable. In the inference: "if the number o/

+ 1 has been recognized as accessible then all remaining numbers of the
system 6(‘{) are accessible'" a transfinite "if - then" occurs.
Objections were raised against this concept at 11.1; yet these do not
apply to the present case for the very reason that the hypothesis is

here not to be interpreted hypothetically but rather as follows:

only after having reached ¢/ +1 can we successfully run through the

numbers of G(J) (viz., in exact correspondence with the way in

which we ran through the numbers up to ol + 1).

Now let us consider the induction step as a whole, i.e., the re-
interpretation of the running through of the f-+ 1 -systems in terms
of the running through of the f -systems, This is undoubtedly the
most critical point of the argument. Yet I believe that if we think about
it deeply enough we cannot dispute the remarkable plausibility of the
argument here used. We might for example visualize the initial cases
with the characteristics 1, 2, 3 in detail. After all, as the
characteristic grows nothing new is basically added; the method of
progression always remains the same. It must of course be admitted that
the complexity of the multiply nested infinities which must be "run
through" grows considerably; this running through must always be regarded
as "potential", as was done in the case of the characteristic 0. The

difficulty lies in the fact that although the precise finitist sense of

the "runniﬁg through'" of the ’ -numbers 1s reasonably perspicuous in
the initial cases it becomes of such great complexity in the general case

that it is only remotely visualizable; yet this must be regarded as
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sufficient for an acceptable basis upon which the possibility

of the running through of the ’ + 1 -numbers can be convincingly

justified.

The "conclusion', finally, adds nothing essentially new. The
proposition that the reduction procedure for a derivation is finite
regardless of how possible choices may be made, contains a transfinite

"there is", viz., with respect to the total number of reduction steps.

‘This proposition is of the same kind as the proposition conceiving the

"accessibility"; in each special case it receives its definite sense
only through the proof of its validity for this case; this corresponds
to the finitist interpretation (10.3). For the purpose of the

consigtency proof alone, incidentally, the notion of a "choice" is

dispensable since we are here dealing only with the reduction of a
derivation with the end-sequent ~» 1352 and since here all reduction
steps are unequivocal and do not depend on choices. The total number of
steps is not specified in advance; we can merely make certain statements

about it and these become more and more indefinite as the ordinal number

of the derivation increases. (The place of a direct statement of such
¥ gbudately "
a number is taken by its "eLabiskdsell) . This can undoubtedly still be

regarded as being in harmony with the finitist view.

Altogether I am inclined to believe that in terms of the fundamental
distinction between disputable and indisputable methods of proof

(Paragraph 9), the proof of the finiteness of the reduction procedure

(15.4) can still be considered as indisputable so that the consistency

proof represents a real vindication of the disputable parts of elementary

number theory.
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16.2. In order to examine the extent to which the consistency proof

coincides with the theorem of Godel (2.32) we would first have

to correlate natural numbers with the objects of proof theory (formulae,

derivations, etc.) corresponding to the way in which it was done in
Godel's paper cited in footnote 3, and would also have to introduce the
required functions and predicates for these objects as functions and
predicates for the corresponding natural numbers. Then the consistency
proof becomes a proof with the natural numbers as objects. In order to
obtain a formally delineated formalism we would have to limit the
possibilities of definition provided for above to definite schemata
which can easily be chosen general enough to allow for the definition
of all functions and predicates required in proof theory; cf., for

example, Godel's version.

The forms of inference in the consistency proof are then none others
than those presented in our formalization of number theory; only the
proof of finiteness (15.4) occupies again a special position. It is
impossible to see how the latter proof could be carried out with the
techniques of elementary number theory. For this reason the consistency

proof is in harmony with Godel's theorem.

In this connection the following two facts are of interest whose proof

will not be given since it would lead too far afield:

1. If the inference of complete induction is omitted from formalized

elementary number theory then the consistency proof can be formulated
without essential change in such a way that - after having carried out the
mentioned re-interpretation into a proof about natural numbers - the

techniques of elementary number theory (including complete induction)
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suffice completely.

2. The consistency proof for the whole of elementary number theory,

reinterpreted with the natural numbers as objects, can be carried out

with techniques from analzsis.(zz)

The special position of the inference of complete induction is due to

the following fact: if this inference is omitted then a definite upper

bound can be given for the total number of reduction steps required for
the reduction of a given sequent. Yet if the inference of complete
induction is included then this number in its dependence on choices,

can become arbitrarily large. This is so since in the re-interpretation

of this rule of inference (14.24) the total number of required reduction

steps for the sequent 7: A > ?[Z') obviously depended on the number

M (the value of % ) and this number may depend on a choice, as is the

case if i is a free variable, and must therefore first be replaced by

an arbitrarily chosen numeral #% . In this case it may happen that
there exists no general bound for the total number of reduction steps

required in the reduction of the sequent 73 A —— 3'[{} .

This fact must be the reason why in the earlier consistency proofs the

rule of complete induction could not be included (2.4).

Paragraph 17

CONSEQUENCES OF THE CONSISTENCY PROOF

First I shall discuss the question to what extent the consistency proof
remains applicable if the "elementary number theory" formulated in
Section II is extended by the addition of new concepts and methods (17.1),

then I shall point out its transferability to other branches of mathematics
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(17.2), and shalllfinally examine certain objections by the

"intuitionists" against the significance of consistency proofs as

such (17.3).

17.1. For the value of a consistency proof it is very significant
whether the stipulated formalism for the particular mathematical theory
involved, in our case elementary number theory, really fully contains
that theory (cf. 3.3, 5.3). Yét in practice elementary number theory
is not subject to any formal restrictions; it can always be extended
further by new kinds of specific concepts, possibly also by the
application of new kinds of forms of inference. How does this affect

the consistency proof? Well, whenever the present framework is exceeded

an _extension of the consistency proof to the newly incorporated techniques

is required. The consistency proof is already designed in such a way

that this is possible to a very large degree without difficulties.

If new functions or predicates for natural numbers are introduced, for

example, then a decision rule in accordance with 8.12 must be given for
them; if additional mathematical axioms are introduced then a reduction
rule must be given for them in accordance with 13.91 (cf. Paragraph 6

and 10.14). Specific non-decidable concepts in the sense of 6.3 present

no difficulties either since they can be eliminated by the method

described at that point. All these requirements are easily fulfilled as
long as the introductions are, in some customary sense, "correct", and

the axioms "true".

Even new kinds of inferences may be carried out which are not representable

in the present formalism. In fact every formally defined system contained
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in elementary number theory is necessarily incomplete in the sense

that there are number-theoretical theorems of an elementary character
whose truth can be proven by plausible finitist inferences yet not by
means of methods of proof of the system proper.(23) This fact was
advanced as an argument against the value of consistency proofs.(24)
Yet my consistency proof remains unaffected by it; quite generally

it can here be said: 1if an elementary number-theoretical theorem can

be proved by means of inferences not belorging to my formalism, then

the statement of a reduction rule for this theorem according to 13.91

will include the theorem in the consistency proof. The theorem given

as aﬁ example by Godel has the quite elementary form V* ]j(*) s

where Jb represents a decidable predicate about the natural numbers;
the fact that the finitist truth of this theorem has been recognized

means that $’(7&) is true for each individual # , and from this

the reducibility of the sequent =—> Vﬁ ﬂ[t} according to 13.21, 13.4

follows at once.

The concept of the reduction rule has in fact been kept general enough

so that it is not tied to any definite logical formalism but corresponds
rather to the general concept of "truth", certainly to the extent to

which that concept has any clear meaning at all (cf. 13.8).

If a new form of inference is to be included as such in elementary number

theory as formulated so far, it must be suitably included in the reduction
procedure. (An example might be a "‘Eansfinite induction" up to a

fixed "number of the second number class".)

Yet if specific concepts and forms of inference from analysis, which are
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after all also used in proofs of number-theoretical theorems, are to
be included in elementary number theory then the comsistency proof
can in general not be extended to these additions in a straightforward

way; here difficulties arise whose resolutions are still outstanding.

17.2. The consistency proof for elementary number theory can never-

theless be transferred without difficulty to a number of other

branches of mathematics. This can be done quite generally in the case

of such mathematical theories whose objects are given by a construction

rule corresponding to that for the natural numbers (8.11). A particularly
simple and in all cases applicable kind of such a rule is this: first

a definite number of primitive symbols is given and it is then stated

that each one of these symbols designates an object; if a primitive symbol
is adjoined to the designation of an object then this results in another
designation of an object. (In short: "Every finite sequence of primitive

symbols designates an object of the theory".)

In such theories functions and predicates are then introduced by decidable

definitions (8.12) and the same logical forms of inference are used as

those in elementary number theory. The consistency proof carries over

at once with the only difference that the place of the "numerals" is
taken by the "object symbols" of the theory and this changes nothing

in essence.

Such branches of mathematics are, for example, extensive parts of

algebra (polynomials as objects are indeed finite combinations of symbols);

from the realm of geometry, e.g., combinatorial topology; even large

parts of analysis may be represented in this way if the concept of a real

number is not used in its most general form. Finally important parts
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of proof theory also belong here (cf. 16.1).

The addition of negative numbers, fractional numbers, diophantine
equations, etc., to the natural numbers as objects in elementary
number theory proper (3.31) can be incorporated in the consistency

proof in the same way. All propositions about these objects can of

course also be re-interpreted as propositions about the natural

numbers, as mentioned at 3.31, by correlating these new objects in an
appropriate way with the natural numbers. The same is also true of
all other theories of the kind mentioned; a one-to-one correspondence
can after all always be established between "finite combinations of
symbols" and the natural numbers (''denumerability'"). Yet this is.
unnecessarily cumbersome and unnatural for the requirements of the

consistency proof.

17.3. ({(Cf. Paragraph 9). On the part of the intuitionists the following
objection is raised against the significance of consistency proofs:(zs)
even if it had been demonstrated that the disputable forms of inference
cannot lead to mutually contradictory results, these results would

nevertheless be propositions without sense and their investigation therefore

an idle pastime; real knowledge could be gained only by means of
indisputable intuitionist (or finitist, as the case may be) forms of

inference.

Let us, for example, consider the existential proposition cited at 10.6,
for which the statement of a number whose existence is asserted is not
possible. According to the intuitionist view this proposition is therefore

without sense; an existential proposition can after all be sensibly asserted

only if an numerical example is available.
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What can we say to this?

Does such a proposition have any cognitive value? To be sure, a certain

practical value of propositions of this kind lies first of all in the

following possibility of application advanced by opponents of the

intuitionist interpretation:

They might possibly serve as a source for the derivation of simple
propositions, possibly representable by minimal formulae (3.24), which
are themselves finitist and intuitionalistically meaningful and which

must be true by virtue of the consistency proof.

Furthermore, an existential proposition g! ?(ﬁ) » €.g., for
which no example is given, nevertheless serves the purpose of making a
search for a proof for the proposition V# 7 3—(*’

unnecessary; for there can be no such proof since a contradiction would

otherwise result.

These are certainly reasons which make proofs of theorems by means of

"actualist" forms of inference seem not entirely useless, apart from the

"aesthetic value" of mathematical research as such.

Thus propositions of actualist mathematics seem to have a certain utility
yet still no sense. The major part of my consistency proof, however,

consists precisely in ascribing a finitist semnse to actualist propositions,

viz.: for every arbitrary proposition, as long as it is provable, a

reduction rule according to 13.6 can be stated and this fact represents the

finitist sense of the proposition concerned and this is gained precisely

through the consistency proof.
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This "finitist sense'" can admittedly be rather complicated for even

simply formed propositions and has in general a looser connection with
the (actualistically determined) form of the proposition than is the case

in the realm of finitist reasoning.

In this way the above mentioned existential proposition, e.g., also
receives a finitist sense, yet this sense is weaker than that of a
finitistically proven existential proposition, since it does not assert

that an example can be given.

A quite different question is what significance can still be attached to

the actualist sense of the propositions. The proof certainly reveals

that it is possible to reason consistently "as though" everything in the
infinite domain of objects were as actualistically determined as in
finite domains (cf. Paragraph 9). Yet whether and in how  far
anything '"'real" corresponds to the actualist sense of a transfinite
proposition - apart from what its restricted finitistAsense expresses -

is a question which the consistency proof does not answer.

{

NEW VERSION OF THE CONSISTENCY PROOF

FOR ELEMENTARY NUMBER THEORY

In the following I shall present a new version of the consistency proof
contained in Section IV of an earlier paper;(26)only this time the main

emphasis will be placed on developing the fundamental ideas and on making

every single step of the proof as lucid as possible. For this purpose
I shall in places dispense with the explicit exposition of all details;
viz., in those places where this is unimportant for the understanding of

the context as a whole and where it can furthermore be supplied by the
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reader himself without much difficulty.

Sections I and III of the earlier paper contained deliberations the
knowledge of which need not be presupposed for an appreciation of the
logic of the consistency proof, even though they are indispensable for
the understanding of its purpose. In Section II, I had developed quite
a detalled formalization of elementary number theory which preserved a
close affinity with mathematical practice. This formalization is of
great value now as ever; although a complete formal system could have
been written down from the start it seems to me that by doing so an

esgential part of the context as a whole would have fallen by the wayside.

Added to this must be the fact that the formal representation of the

forms of inference (Paragraph 5 of the earlier paper), which was directly
assimilated to mathematical practice, with the characteristic notion of
the "sequent", proves already quite suitable for meta-mathematical
investigations, in fact, judging by my own experience, it is better suited
to most purposes than the methods of representation generally customary

to date.

Nevertheless it can not be said that the "most natural" logical calculus,
simply because it corresponds most closely to real reasoning, is also the
most suitable calculus for proof theoretical investigations. For the
consistency proof, in particular, a somewhat different version has proved
to be even more suitable and will therefore be adopted in this paper. I
am referring to that formalization of the logical forms of inference which
I had already developed in my dissertati$%7)as the "LK-calculus". A
knowledge of that paper is not however presupposed. I shall furthermore

adopt only few basic concepts from Section II of the earlier comsistency
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proof and shall refer to them as such.

The constructivist proof of the "theorem of transfinite induction'"
(up to &, ), article 15.4 of the earlier paper, is retained unchanged
as the conclusion of the consistency proof and will not be revised for

the time being; cf. the concluding remarks at the end of the present paper.

Paragraph 1
NEW FORMALIZATION OF

NUMBER-THEORETICAL PROOFS.

I shall formulate the concepts involved and in each case add some

explanatory remarks.
1.1. "Formula".

The definition of a formula is adopted from the earlier paper

(Article 3.2), yet with the following simplification:

Only 1 is used as a numeral. Functions are not admitted (cf. however the
concluding remarks) with the exception of a single one, the successor
function, which is denoted by a prime: 0’ has the same intuitive
meaning as M +1. By means of this function symbol the natural numbers
can now be represented by 1, 1' , 1" , 1''' etc. Terms are therefore
now always of the form 1 or 1' or 1" etc. or A or &' or dl,”etc., where
01 stands for an arbitrary free variable. The former we call numerical
terms and they therefore correspond to the earlier numerals; the latter

variable terms. Predicate symbols are admitted as before according to

need; it is required only (Article 13.3 of the earlier paper) that they

are decidably defined, i.e., that it can be decided of every individual
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natural number whether the predicate does or does not hold. On the basis
of these concepts of terms and predicates tﬁe old definition of a”
formula (Article 3.23) is now preserved, yet the logical connective
will no longer Be used. This represents no significant restriction

since it is well known that 2> can be replaced by é’ and =y or 4

and =7 . In addition we could still eliminate V and 3 , as was
done in the earlier paper (Paragraph 12); yet this is unnecessary since
by being in exact correspondence with y and V these conmectives

cause no difficulties whatever in the "LK-calculus'.

Example of a formula:

Wy (x>0 87y (y" =4))

where & 1is a free variable and X and § are bound variables.

-~

Three simple auxiliary concepts will still be needed below:

A prime formula is a formula containing no logical connectives.

Example: a =1

The terminal connective of a formula which is not a prime formula is that

logical connective which is added last in the construction of that formula

(according to Article 3.23 of the earlier paper).

The degree of a formula is the total number of logical connectives

occurring in it.

Examples: A prime formula has degree O. The formula

u
V!- (!7‘ X g’ (ﬁm =4 )1 has degree 3 and its terminal connective

is the V
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1.2. "Sequent".

A sequent is an expression of the form
u"u‘,--o’ﬂ/“ ’ ﬂ/,ﬂ" ] ,#v
where arbitrary formulae may take the place of

Uty oy la, B, 8, B, -

The & 's are called the antecedent formulae, the ﬂB *s the

succedent formulae of the sequent. Both the antecedent and the succedent

parts of the sequent may be empty.

Suppose that it is known of each antecedent and succedent formula of a
sequent without free variables whether it is "true" or "false". Then
the sequent is "false" if all of its antecedent formulae are true and
all of its succedent formulae are false. (Moreover, a sequent which
has neither antecedent nor succedent formulae is also false.) In every

case the sequent is "true".

Explanatory Remarks. We shall make use of the definition of "true" and

"false" only in connection with the concept of the '"basic sequent" and
here the 21 and 13 will be prime formulae without free variables and
therefore immediately decidable. In general the comcept of the "truth" of
a formula is of course not formally defined at all. The definition can
nevertheless serve quite generally to explain the intuitive meaning of

a sequent, but it should still be added that a sequent with free variables
is considered to be true if and only if every arbitrary substitution of
numerals for free variables yields a true sequent. The intuitive meaning

of a sequent without free variables can be expressed briefly as follows:
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"If the assumptions "“;", crtreaaceacnae," 1Z“|' -

hold then at least one of the propositions " 1‘ sevseeascesnssaansy

" ﬂvn holds."

In the earlier paper I had introduced the concept of a sequent with
only one succedent formula for the immediate purpose of providing a
natural representation of mathematical proofs (Paragraph 5). Considerations
of this kind may in fact also lead to the new symmetric concept of a
sequent in situations where the aim is a particularly natural representation

of case distinctions (cf. Paragraph 4 of the earlier paper and 5.26 in

particular). For a \/ -elimination can how be represented simply as follows:
From o= ﬂVﬁ we infer e3P »a, l‘ , which reads: ''There exists

the two possibilities Zl as well as 13 "' Yet it must be admitted that

this new concept of a sequent in general already constitutes a departure

from the "natural" and that its introduction is primarily justified by

the considerable formal advantages exhibited by the representation of

the forms of inference following below which this concept makes possible.

It should still be pointed out that the intuitive sense of a sequent is

to. be considered to coincide with the given definition in those cases in
which the sequent possesses no antecedent formulae or no succedent

formulae: if there are no antecedent formulae, the sequent expresses the
fact that any one of the propositions " 1” M iy "'Ilv"

holds, this time independently of any assumptions. If there are no succedent

formulae, the sequent expresses the fact that on the basis of the

assumptions l.l, s sesssessavesans ,Z/(‘. no possibility remains open, i.e.:

the assumptions are incompatible, they lead to a contradiction.
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A sequent without antecedent and succedent formulae, the "empty sequent',
therefore indicates that without any assumptions at all a contradiction
results, i.e.: 1if this sequent is derivable in a system then that

system itself is inconsistent.

Example of a sequent.

Vx (2'>() —=—> a>(Vas=l, 1's 1, 11 =4

where a and b are free variables and X a bound variable.

1.3. "Inference Figure."

An inference figure (the formal counterpart of an inference) consists of

a line of inference, a lower sequent, written below the line, and

upper sequents (one or more), written above the line. The lower sequent

here stands for the conclusion of the inference which has been drawn from

the premises represented by the upper sequents.

The only inference figures admitted into our formalism are those

obtainable from one of the following twenty inference figure schemata

by a substitution of the following kind:

Any formulae may be put in place of 2( s 1} s \D s é ;

V* 'TC*) or .'7! g(*’ may be replaced by any formula of this
form; furthermore T(‘U or 3'-[%’ may be replaced by that formula
which results from 3.(*) by the substitution of an arbitrary free
variable M or an arbitrary term 1 for the bound variable %

T' s A s @ and A may be replaced by arbitrary, possibly empty

sequences of formulae, separated by camas. (gMMAS .
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The following restriction on variables is to be observed: the free

variable designated by M -which we call the eigen-variable of the

inference figure concerned - may not occur in the lower sequent of

this inference figure.

The Inference Figure Schemata:

1.31. Schemata for Structural Inference Figures:

| T— @ N— ®
Thinning:
= J?—> 0 T— 0,0
, 0,0,7'—'_’ 9 77——-—’ @,-O,D
Contraction:
77— @ T—» @ 0
| 4,9, T— @ r— ®,0&, 4
Interchange:
T TA RS T 6 T— @& 9,1

m— @D 4 — N
7-’/0 ] @,A

Cut:

The two formulae in the last schema designated by J> are called

cut formulae, their degree the degree of the cut.

1.32. Schemata for Operational Inference Figures:

&,. 7‘-"'&‘/ 72"‘“"*’ 4%.71._’ ®@ 4057ML9 @
T—@ Ui Uy, T— & U}, 7 - 0
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4,796 8,7 p 70, U T7->0,%

UV, T —> ® T O, UVH 7~ @, V48

77— @, Ve F(w) Ve F(e), 77— @

Fla), 7 —>» & 77—~ 6 FE)
JaF(0), T —> @ 7 —s B IxFlv

U, T —> @ 77— B u

77— @ U U T @

V~{ 7 — 0, F(a Fl),T— &

That formula in the schema which contains the logical connective is

called the principal formula of the operational inference figure concerned.

1.33. Schema for CJ - Inference Figures (the formal counterpart of

complete inductions):

(), 7T— B, Fa
¥, 7—> @ F(2/

The degree of the CJ - Inference Figure is the degree of that formula in

the schema which is designated by ?[1/ -and which is, of course, the same

as that of ?(’l) , F[ﬂ’) and F[“)
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Example of an Inference Figure:
M
— alwl, (<1 Yy A=

—> a'=1!, Jg (1<¢5 hami")

where a 1is a free, and z a bound variable.

Explanatory remarks about the inference figure schemata will follow

below in connection with the concept of a derivation.

1.4. "Basic Sequents."

We shall distinguish "logical' and "mathematical" basic sequents.

A logical basic sequent is a sequent of the form H — lD ,

where an arbitrary formula may stand for J)

A mathematical basic sequent is a sequent consisting entirely of prime

formulae and becoming a "true" sequent with every arbitrary substitution

of numerical terms for possible occurrences of free variables.

The "truth" of a prime formula without free variables is, according to
our assumption of the decidability of all predicates, always verifiable.
Whether or not a sequent with free variables is a mathematical basic
sequent is of course not generally decidable; nor is this actually

essential.

Examples of Basic Sequents:
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V)_t 37 (1_:"- a k!)g) —> V_&Jl(’.l_”sa. 42?&)

‘1"f/ ‘9" ¢ —> 4&=¢

aédl —»
) — 1'> 1
4= 4 -—» 4= 'f
—s a'> 4
_— /M a| (el (")

1.5. "Derivation."

A derivation is a figure in tree form consisting of a number of sequents

(at least one) with one lowest sequent, the end-sequent, and certain

uppermost sequents which must be basic sequents; the connection between

the uppermost sequents and the end-sequent is established by inference

figures.

It should be intuitively obvious how this is meant; yet let me paraphrase
it again as follows: suppose that an end-sequent is given. This sequent
is either already an uppermost sequent - in which case it alone constitutes
at once the entire derivation - or it is the lower sequent of an inference
Every upper sequent of this inference figure is in turn either an

figure.

uppermost sequent of the derivation or the lower sequent of a further

inference figure, etc.

The reader should always visualize a derivation quite intuitively as a
tree-like structure, then the transformations on a derivation to be

performed in Paragraph 3 become most easily intelligible.
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Example of a Derivation:

£ - CJLbﬂﬂvuuu fYure

—_ [ = l= 1 & e
Gt
-—_ .&:é e (1 _g (% 0
— Ve (x=x) Ve (xeR) —» [/n (M V- cifune fgure
" /4 ol
—_— [ T=

For a further example, cf. 1.6.
Another auxiliary concept which will be needed later:

A path in a derivation is, briefly speaking, a sequence of sequents which
must be followed in descending from an individual uppermost sequent to
the end-sequent. At each step the path leads via one of the upper sequents

of an inference figure to the lower sequent of that inference figure.

It is furthermore immediately obvious what is meant by the following:

a sequent in the derivation stands above or below another sequent

occurring in the same path (i.e. not only immediately above or below it,
but any number of steps apart). It is understood that wherever the notion
of "above" or "below" is used, the sequents concerned belong to a common

path; otherwise the concept is meaningless.

1.6. Explanatory Remarks about the new Formalization of Number-

Theoretical Proofs.
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As a result of the revised concept of a derivation a formalization of ...
number -theoretical proofs is given which distinguishes itself from my

earlier "natural" version mainly in two points. First: the rules of

inference belonging to the logicdl connectives, i.e. the "introduction"
and "elimination" of a logical connective, have now been re-formulated

throughout in such a way that the lower sequent always contains the

"principal formula" whereas the upper sequents contain the associated
side formulae. To the earlier "introduction" of a logical connective
now corresponds the occurrence of that connective in a succedent
formula of the lower sequent, to the "elimination" of a logical
connective corresponds the occurrence of that connective in an

antecedent formula of the lower sequent. The reader should convince

himself of the equivalence of the o0ld and new versions by examining,
for éaxample, the \{ ~-rules of inference (disregarding, for the time
being, the occurrence of several succedent formulae). The "cut" and
the logical basic sequents must be used in the proof of equivalence.
Cf. the derivation with the V -introduction on the left and the

subsequent " \{ -elimination", given as an example in 1.5.

This part of the conversion from the former to the new rules of

inference amounts to an abandoning of the natural succession of the

propositions in number-theoretical proofs and to the introduction in

its place of an artificial arrangement of the propositions along special
lines with the result that in operational inferences the simpler
proposition now always comes first and is followed by the more complex

proposition, viz., the proposition with the additional connective.
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This re-arrangement proves of practical value for the consistency
proof because of the essential role which the concept of the

complexity of a derivation and, with it, the complexity of a particular
formula (which increases as the degree of the formula increases) plays

in the consistency proof.

The second important distinction vis-a-vis the old concept of a
derivation consists in the symmetrization of the sequents by the
admission of arbitrarily many succedent formulae. This makes it
unfortunately more difficult to grasp the intuitive meaning of the
various inference schemata and to persuade oneself of their "correctness'".
To overcome this difficulty the reader should first conceive of the
presence of only one succedent formula and should then convince himself
that the inference remains correct even if several succedent formulae
occur and also if no succedent formula occurs. As the reader becomes
more familiar with this concept of a derivation he should be able to
realize that transformations of derivations and other proof-theoretical
investigations can be carried out particularly simply and elegantly

with this concept. The decisive advantages are these:

There exists a complete symmetry between 4’ and V , V and \7

All of the connectives )f s V , V s '5' and 7 have, to a great
extent, equal status in the system; no connective ramks notably above

any other connective. The special position of the negation, in particular,
which constituted a troublesome exception in the natural calculus (cf.
Articles 4.56 and 5.26 of the earlier paper), has been completely

removed in a seemingly magical way. The manner in which this observation
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is expressed is undoubtedly justified since I myself was completely
surprised by this property of the "LK-calculus" when first formulating
that calculus. The "law of the excluded middle" and the "elimination
of the double negation'" are implicit in the new inference schemata -
the reader may convince himself of this by deriving both of them from
the new calculus - yet they have become completely harmless and no

longer play the least special role in the consistency proof that follows.

If we think of the T, s A s @ s A as removed from the inference
figure schemata we see that the schemata are of the greatest simplicity
ana likeness in the sense that none of them any longer contains anything
that is not absolutely essential; the 77 , A s @ s A constitute
an appendage which signifies merely that additiomal antecedent and
succedent formulae are carried forward unchanged from the upper sequent

to the lower sequent.

The new formulation of the concept of the "mathematical basic sequent"
still requires an explanation. In the earlier paper this concept was
defined differently (Articles 5.23 and 10.14). It turns out however
that the former basic sequents are derivable in the new system. An
example which typifies the general aspects of the situation may make

this clear:

The following "mathematical basic sequent" in the old sense
—> ¥aby~(t=g¥~g=%)

is derivable thus:
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a=t — t=2
bkodXrA4ca—> 4=
Thsn, Axt frdaa—
Azl 1420, 43§ 14 z00 —>
Asb hrt=a =

- ng[:=!*7‘z=a-)
- b? 22'7(?!-22 4’7:?4955)

All usual "mathematical basic sequents'" in the old sense are derivable
in the same way from intuitively synonymous mathematical basic sequents
. (28) e

in the new sense. 'The fact that the new concept of a derivation is
actually equivalent with that of the earlier paper - apart from the
restriction which results from the initially limited admission of
functions in the new system - can be verified without great difficulty

from the observations made above and I shall discuss it no further.(zg)
Paragraph 2
SURVEY OF THE CONSISTENCY PROOF

It is to be shown that every derivation is consisten\(.?o) this may be

paraphrased by saying that no derivation has an empty end-sequent.

For from a contradiction, —9,& and —-"7'2‘ we can first of all
derive the sequents ~——s» - U and =7 # —» and from them, by
means of a cut, the empty sequent. (Conversely, from the empty sequent

every arbitrary sequent can be derived by "thinnings".)
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It makes sense that we should begin by proving the consistency of

simple derivations, then of more complex ones, using the consistency

of the simpler derivations, and so forth. We thus proceed "inductively".
It is furthermore not implausible that this procedure repeatedly requires
the examination of an already infinite sequence of derivations before

a more complex class can be tackled; for example, first all derivations
consisting of only one sequent, then all derivations consisting of

two sequents, etc. Yet this means actually that we are applying a

"transfinite induction'. The pattern of this analysis is in practice of

course considerably more involved than in the case of the given example.

The proof is carried out in three stages:

1. The consistency of an arbitrary derivation is reduced to the
consistency of all "simpler" derivations. This is done by defining an -

unequivocal - reduction step for arbitrary "inconsistent derivations",

i.e, derivations with the empty sequent as end-sequent; this step
transforms such a derivation into a "“simpler" derivation with the same

end-sequent. The definition of this reduction step forms the contents

of Paragraph 3.

2. Then a transfinite ordinal number is correlated with every

derivation and it is shown that in a reduction step the inconsistent

derivation concerned is turned into a derivation with a smaller ordinal

number. In this way the so far only loosely determined concept of

"simplicity" receives its precise sense: the larger the ordinal number

of a derivation the greater is its "complexity" in the context of this

consistency proof. This is the contents of Paragraph 4.
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3. From this the consistency of all derivations then obviously
follows by "transfinite induction". The inference of transfinite
induction, which is still a rather "“disputable" inference up to this
point, may not be presupposed in the consistency proof nor proved as

in set theory. This inference requires rather a separate justification
by means of indisputable "constructive' forms of inference. At the

end of Paragraph 4 the reader is at this time referred to the earlier

paper in this connection.

Paragraph 3

A REDUCTION STEP ON AN INCONSISTENT DERIVATION

3.1. Undexrlying Ideas.

Suppose that a derivation is given whose end-sequent is the empty
sequent. This derivation is to be transformed into a (in some sense)
simpler derivation with the same end-sequent. What is here meant by
"simpler" can at present only be stated roughly and will be made precise

later through the ordinal numbers.

What are the considerations that make us suspect at all that, given a
proof for a contradiction, there already exists an even simpler way of
proving such a contradiction? By a contradiction is meant a proposition
of a quite simple structure, for example " 1=2'" . If such a simple
proposition can be proved by means of a complex proof it is reasonable
ﬁo suspect that the proof can be simplified. The following argument
might conceivably be used: Somewhere in the proof there must after all

occur a proposition of maximal complexity. In that case it must be
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assumed that this "complexity extremum" (in the formalization of the
proof this might be a formula with the highest degree occurring in

the derivation) must somehow be "reducible". The occurrence of this
proposition is in the general caée conceivable only in this way that

the proposition is introduced into the proof by the inference of the
"introduction" of its terminal connective and is then used again through
the inference of the "elimination" of precisely this connective. Yet

if a connective is first introduced and then again eliminated it can

be left out altogether by direct passage from the preceding sub-

propositions to the corresponding succeeding sub-propositions.(31)

This is the basic idea underlying the "operational reduction" to be
outlined below. In actual fact, however, the situation will turn out
not to be quite as simple as assumed in the argument just sketched.

One of the difficulties that may arise is the occurrence of a complete
induction in the proof; viz., in the case where the proposition with
the maximal number of connectives in question is not directly proved by
an "introduction" inference but rather by a complete induction. This
requires a further special kind of reduction step which will be called
a "CJ-reduction". The form of this reduction step is extremely simple
and preciseiy what we would expect: if the term in the schema of

the CJ-inference figure is a numerical term, thus denoting an individual

number, the complete induction can naturally be replaced by a number of
ordinary inferences - in our formalization a number of "cuts". This

constitutes the "CJ-reduction'.

If a CJ-inference figure occurs in the derivation whose é is a variable



149

term - and this is in fact normally the case - then this figure cannot
of course be reduced immediately in this way. Yet the reduction
procedure may be arranged in such a way that with successive reduction
steps more and more variable terms are gradually replaced by numerical
terms so that eventually even initially irreducible CJ-inference figures

become in turn reducible. This remark is incidental. Here we are

actually concerned only with the definition of one single reduction step
so that regardless of the nature of the given inconsistent derivation

at least one place can be found in it to which a reduction can be applied.

Let us suppose therefore that there is no place in the derivation in
which a CJ-reduction can be carried out. Then, as will be shown in
detail below, a '"operational reduction'" is always feasible. On the
wéggér hand, it cannot be expected that a formula of highest degree in
the entire derivation is always amenable to reduction. As mentioned
before, this formula may have been introduced by a CJ-inference figure
and this figure can contain a variable é . It is nonetheless possible
in each case to locate a formula in the derivation which represents a
"relative extremum'", viz., a formula which is introduced by the
introduction of its terminal connective and whose further use in the
derivation then consists in the elimination of that connective, and
which is therefore reducible. Why such a formula must always exist is

best seen within the context of the proof following below (3.43).

The following phenomenon should still be pointed out: it may for
examp le happen that the formula which is intended to form the starting

point of the operational reduction is used again in the derivation not
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only once but several times. (An example: suppose that the formula

has the form V% g(*’ , and from it are inferred :'I-"[I) and
?Cim) or in another place perhaps even V*g(”) VJZ‘ )

In the general case all that can be achieved is that in one place of

application the formula is used in the form of an elimination of its

terminal commective. About the remaining places nothing can be said.

In this general case the formula can therefore not be reduced away

completely; we can merely bring about a simplification of this one place

of application which at this point makes the passage via the formula

redundant. The occurrence of this formula in the remaining places must

nevertheless remain unaffected. It turns out that this is sufficient.

These preliminaries have been carried out against the background of the

"natural proof" with the natural succession of the individual propositions.

For their application to our formalism developed in Paragraph 1, a
corresponding translation must be made: To the "introduction" of a
connective here corresponds its occurrence in a succedent formula of

the lower sequent, to the "elimination'" of that connective its occurrence
in an antecedent formula of the lower sequent of the operational inference
figure. All other details will follow from the precise formal
development now to-be carried out; the preliminaries ought not and cannot
of course do more than indicate to the reader in a superficial way the

main ideas of the procedure and in doing so facilitate the understanding

of the actual presentation.

3.2, Elimination of redundant free variables in preparation of the

reduction step. - The "ending".
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We begin with the definition of the "reduction step on an inconsistent
derivation" by stipulating: before the reduction step proper the

following simple transformation must be carried out;

All free variables in the derivation are replaced by the numeral 1;
excepted from this is however every eigen-variable (1.3.) of an
inference figure in all derivation sequents occurring above the lower

sequent of the inference figure concerned.

What is the effect of this preliminary step? Actually, a free
variable normally serves as eigen-variable of an inference figure and
may here occur only above the lower sequent of this inference figure;
its occurrence in the lower sequent itself is of course also expressly
forbidden by the restriction on variables (1.3). Wherever else free
variables may thus still occur they are campletely redundant and can
equally well be replaced by 1. It is fairly obvious that this leaves
the derivation correct. The empty end-sequent remains of course

unchanged.

We furthermore require a simple auxiliary concept - the ending of a
derivation - which is defined thus: the ending consists of all those
derivation sequents that are encountered if we ascend each individual path
(1.5) from the end-sequent and stop as soon as we arrive at the line of
inference of an operational inference figure. Thus the lower sequent

of this inference figure in each case still belongs to the ending but its
upper sequents do so no longer. If a path crosses no line of inference

of an operational inference figure at all thenAit is of course completely

included in the ending.

Heo), T — @, Fa*)
(1), T—> @, Ftr)
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Among the inference figures, the ending obviously contains only

structural and CJ-inference figures.

We now distinguish two cases:

1. The ending of our inconsistent derivation contains at least one

CJ-inference figure. In that case a CJ-reduction is carried out, Cf. 3.3.

2. The ending contains no CJ-inference figure. 1In that case an

operational reduction is carried out (3.5) after a further preparatory

step (3.4).
3.3. The CJ-reduction.

If the ending of the given inconsistent derivation contains at least
one CJ-inference figure after the stated preparatory step, then the

reduction step proper consists in the transformation of the derivation

described next.

We select a CJ-inference figure in the ending which is such that it occurs
above no other CJ-inference figure. (i.e.: the derivational path which
goes through the lower sequent of the selected CJ-inference figure must
not cross the line of inference of any CJ-inference figure between that
sequent and the end-sequent.) In order to make the reduction step
unambiguous an abpropriate procedure for the unique determination of the
CJ-inference figure to be selected must still be given; there is a simple

way in which this can be done.

The CJ-inference figure has the form:
Flo), T —> @, ¥(a')
F(1), T —> @, F(xn)
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where 4 designates a numerical term. For by virtue of the preparations

made no varilable term could here possibly occur; in fact the lower sequent
cannot contain a single freé variable: after the preparatory step free
variables can occur only above inference figures with one eigen-variable
and no such figure occurs below our CJ-inference figure. Indeed, the
sectlion of the derivational path between the lower sequent and the end-

sequent of this figure from here on crosses only lines of inference of

structural inference figures.

This CJ-inference figure is now replaced by a system of structural

inference figures of the following kind:
§4,7-> ®,¥(1) F(L'), 7 @, F(1")
¥, ", 7 —> ®,6, $(1")
T F1),T —>®, ¥(17) FaY, T F(1")
Fu),7 > 0,0, F(17
¥, T— @, Fam

"
¢
L]
"
)

rbove i ) ¥(1),T-»@ ¥ ;
ove the sequents an
q F(1), 7 s ®, $‘,(1’)
3’(1‘)’77 —_— @) _F'(z’l) etc. we write in each case that

o~
section of the derivation which precedes R&),T——D ®, d’@l@
where we replace the free variable M in the entire section - except

in the case where it at the same time happens to be the eigen-variable
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of an inference figure occurring in that section, in all sequents
occurring above the lower sequent of that inference figure - by the
numerical terms 1 or 1' or 1" etc. From the sequent

.‘7“-(1)/ 71—-’}'(1‘) downwards the ending is finally continued by
ad joining the unchanged remainder of the old derivation. To put it
precisely: All derivational paths which did not go through this sequent
have been preserved unchanged and those which did go through it remain

unchanged from the end-sequent up to this point.

If ¢ is equal to 1, then the reduction proceeds somewhat differently:

in that case the lower sequent of the CJ-inference figure runs

FCﬂ, 7’-—) @,\Fz.i) . This sequent is derived from the logical basic
sequent 9'[1) — d‘?[j,) by thinnings and interchanges, as required.

Whatever preceded this lower sequent in the derivation is omitted;

everything else is retained unchanged, as in the general case.

It is easily seen that in the CJ-reduction step the given inconsistent
derivation is in all parts transformed into another correct inconsistent
derivation. All we need to realize here in essence is that the replacement
of UL by a numerical term turns every inference figure into another

correct inference figure.

Comments about the nature of the reduction step should no longer be
required; as stated at 3.1,its intuitive meaning is exceedingly simple:

a complete induction up to a definite number is replaced by a corresponding

number of ordinary inferences.

3.4, Preliminaries and preparatory step for an operational reduction.
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We must now deal with the case where the inconsistent.derivatior contains

no CJ~inference figure in its ending after the preparatory step 3.2.

The "operational reduction" to be carried out in this case is initiated
by a further preparatory step (3.42) whose purpose it is to eliminate all

possible occurrences of thinnings and logical basic sequents from the

ending since these would otherwise give rise to bothersome exceptions in

the actual operational reduction.

For this purpose and also for the sake of its further use we must first

examine the structure of the ending more closely.

3.41. The_ending of our derivation contains only structural inference
figures. Its uppermost sequents are the uppermost sequents of the
entire derivation or the lower sequents of operational inference figures.
The ending contains no free variables (since it contains no inference

figures with eigen-variables). This is all quite obvious.
We now introduce two simple auxiliary concepts:

Equal sequent formulae in the upper sequents and the lower sequent of a

structural inference figure corresponding to one another according to the

inference figure schema will be called clustered.

Clustered are, for example, the three formulae designated by D in
the schema of a contraction, likewise the first of the formulae
designated by 71 in the upper sequent and the first of the formulae
designated by 77 in the lower sequent, the second formula and the second

formula, etc.; the two cut formulae of a cut are clustered; etc.
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The totality of all formulae in the ending of the derivation obtained

by starting with a particular formula and collecting all of its

clustered formulae, then all formulae clustered with these etc. is

called a formula cluster; we can also say: the cluster associated with

the relevant first formula.
About the form of this cluster we can say the following:

With every cluster is associated a cut in the sense that its cut formulae

belong to the cluster. This is so since every formula which occurs
somewhere in the ending, as is evident from the structural inference

figure schemata, is always clustered with a formula in the sequent standing
immediately below it, except when it is a cut formula. Since the end-
sequent of our derivation is empty, we must at some point reach such a

cut in tracing a cluster downwards towards the end-sequent.

We now start with this cut and trace the location of the cluster upwards
from the two cut formulae belonging to the cluster. With the following
result: That portion of the cluster which is obtained by starting with

the left cut formula - we call it the left side of the cluster - is in

tree-form; a branching takes place if in coming from below we reach a
contraction whose ‘> belongs to the cluster; a branch may terminate at
some point if the 9 of a thinning or the uppermost sequent

of the ending is reached; in that case we speak of an uppermost formula

of the cluster. All formulae of the left side of the cluster are

succedent formulae of the sequents concerned. Exactly analogous remarks

apply to the right side of the cluster obtained by starting with the right

cut formula; it too is in tree-form, etc., all its formulae are antecedent
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formulae. It follows further that no cut formulae other than the two
formulae from which we started belong to the cluster; hence the cut

associated with a cluster is uniquely determined and so are therefore

the concepts of the left side and the right side of the cluster. No

formulae of the cut other than the cut formulae belong to the cluster.
All formulae belonging to the cluster occur above the lower sequent of
the cut. (i.e.: all sequents containing cluster formulae occur above

that sequent.) The left and right sides together therefore constitute

the whole cluster.

The correctness of all these assertions is easily seen by tracing the
cluster mentally from the cut formulae upwards and by visualizing with
the help of the schemata of the structural inference figures the kinds

of procedure which alone lead to new clustered formulae.

3.42. We can now turn to the preparatory step for the operational

reduction which, as said earlier, is intended to accomplish the elimination

of all thinnings and logical basic sequents from the ending. This can

clearly be done. After all, a '"thinning" represents only a weakening of
the intuitive sense of a sequent; if a contradiction can be derived from
the weakened sequent the same can obviously also be derived from the
stronger upper sequent alone; and a logical basic sequent, being a pure
tautology, is also dispensible in the context of mere structural

transformations.

The procedure almost suggests itself. Let us begin with the thinnings:

We select a thinning above which - in the ending - no other thinning
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occurs. We then simply cancel its lower sequent and then use the upper
sequent in its place. In order to leave the derivation correct we
continue downwards and in the next lower sequent cancel the formula
clustered with the formula ‘) in the thinning as well as the formula
clustered with the latter in the subsequent lower sequent, etc. Can this
procedure lead to new difficulties? Actually, a contraction may arise
in which a J> of the upper sequent is to be cancelled. All the better,
the upper sequent becomes then equal with the lower sequent; the
contraction becomes redundant and we have finished. There may be other
occasions in the procedure in which the upper and lower sequents of an
inference figure become equal; in that case we simply omit the inference
figure and write the sequent down only once. If we encounter a cut in
which the formula to be cancelled is a cut formula we cancel the other
upper sequent of the cut together with whatever stands above it and
derive the lower sequent from the remaining upper sequent alone by

thinnings and interchanges (as far as necessary).

The new thinnings which arise are again eliminated by the same procedure.
That this procedure terminates, thus ridding the ending of thinnings
completely, follows from the fact that with each reduction step we find
ourselves lower down in the derivation (measured in terms of the total

number of cuts up to the end-sequent, for example).

We leave it to the reader to give an exact demonstration of the feasibility
of the indicated procedure as well as to formulate it unambiguously; this

presents no essential difficulties.
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Next we eliminate the logical basic sequents: In the ending such a
sequent can now occur only as the upper sequent of a cut since no
contractions and interchanges are applicable to it; the lower sequent

of the cut is therefore, as is easily seen, equal to the other upper

sequent. We therefore simply omit the cut and have thus finished.

As a result we finally obtain an inconsistent derivation whose ending
has the same properties as those stated above with the additional

property of containing no thinnings and no logical basic sequents (as

uppermost derivation sequents).

3.43. PFurther Preliminaries to the Operational Reduction.

I now assert: There exists at least one formula cluster in the ending
of our derivation, with at least one uppermost formula both on its left

side and on its right side, which is the principal formula of an

operational inference figure.

At this point the connection between our formal procedure and the
fundamental ideas sketched in 3.1 becomes apparent: the concept of the

formula cluster makes it possible for us to grasp in its entirety the

collection of all occurrences of a "proposition" in the "proof" (i.e.:

formula in the derivation). A principal formula as the uppermost formula

on _the left side corresponds to an introduction instance of the terminal

connective of the proposition concerned; a principal formula on the right

side - which is, after all, an antecedent formula - corresponds to a

subsequent elimination instance of that comnective. The cut associated

with the cluster represents nothing more than the formal establishment
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of the connection between the two instances made necessary by the
particular structure of our formalism. The fact that branchings
of a cluster occur corresponds to the difficulty discussed at the
end of 3.1; branchings on the right side, for example, represent a

multiple application of the proposition. That branchings can appear

both on the left and the right is due to the general symmetry of our
formalism and renders more difficult a transfer of the fundamental

ideas to each individual detail of the reduction. Yet it suffices if

we have a reasonable conception of the fundamental ideas and continue

to let ourselves be guided simply by formal analogies; this is precisely

what I have done in formulating the consistency proof.

We must now prove the above assertion which can be interpreted as

asserting the existence of a suitable place for an operational reduction

in our derivation.

In this connection we first observe that our derivation must contain at
least one operational inference figure. If this were not the cése the
ending would represent the entire derivation. This would mean that a
"false" sequent has been derived from mathematical basic sequents which
contain no free variables, and are therefore '"true" sequents, by means
of the application of structural inference figures alone and without
thinnings. At the same time the only formulae occurring in the whole
derivation are prime formulae without free variables, thus decidable
fbrmulae, so that it can be decided of each sequent whether it is true
or false. (A formula with logical connectives cannot occur because no

such connective occurs in the basic sequents and because none could
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have been introduced by the possible inference figures.) This would mean
that at least one inference figure occurs whose lower sequent is "false"
whereas its upper sequents are "true". This is easily seen to be

impossible.

In order to prove the above assertion we now examine all those paths
of the ending whose uppermost sequent is the lower sequent of an
operational inference figure. We follow these paths from the top down
and record whether in the sequents which we encounter a formula occurs

which belongs to the same cluster as one of the principal formulae

standing immediately above it (or whether it itself is a principal
formula). This is usually so in the case of the uppermost sequents of

our paths and as we continue downwards in a path this property is generally
inherited. It is preserved trivially in passing through contractions and
interchanges ( by the definition of cluster ). If we reach a cut in which
two paths of the considered type meet it may however happen that this
property is not transferred to the lower sequent; yet this can arise at

most in the case where the cluster belonging to the cut formulae contains

a principal formula on both sides. This is precisely the case specified

in the assertion. Since the .empty end-sequent does not possess the
mentioned property in any case, the assertion is proved as long as this
case really is the only possible one in which the property under discussion
may fail to be passed on invtracing out the paths under examination. To
this needs to be added only one more case, viz., the case in which, coming
from above, a cut is encountered whose other upper sequent belongs to none

of the paths examined and can therefore occur only in paths of the ending
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that are bordered above by mathematical basic sequents. This upper

sequent can then contain only prime formulae and the cut formulae are

therefore also prime; indeed, a formula occurring in the traced upper
sequent and belonging to the same cluster as a principal formula cannot
be a cut formula since its degree is greater than O and it is therefore

clustered with a formula with the same property in the lower sequent.

This concludes the proof of the existence of a formula cluster suitable

for an operational reduction.

Now one last auxiliary concept that will be of central importance for

the definition of the "measure of complexity' of a derivation:

By the level of a derivational sequent we mean the highest degree of

any cut or of a CJ-inference figure whose lower sequent stands below
the sequent concerned. If there is no such inference figure then the

level is equal to O.

Comments about the importance of this concept will follow further below.

3.5. The Operational Reduction.

Now the operational reduction proper can be defined. Given is an
inconsistent derivation whose ending includes at least one formula
cluster containing on each side at least one principal formula of an
operational inference figure. We select such a formula cluster and
from each of its sides one uppermost formula of the kind mentioned. 1In
order to make this step unambiguous a certain procedure concerning the

type of choice to be made must be specified; this is not difficult.
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We shall first deal with the case in which the terminal connective of
the clustered formulae is a \/ . The remaining cases are dealt with

almost in the same way and can be disposed of later in a few words.

The derivation therefore looks like this:

(&) ;
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Explanatory remarks:

The dots are intended to indicate that further paths may enter from

both sides in arbitrary fashion into the traced paths. In addition
entire derivational sections of any form whatever may stand above the
operational inference figures. The term # can only be a numerical
term since no inference figure with an eigen-variable can occur below

it (3.2, 3.41). Suppose that z; -> é?’ is the first sequent encountered
in tracing the path from 7,4 "@/A to the end-sequent which is of a
lower level than the upper sequent of the cut belonging to the cluster.
(Such a sequent must always exist since the level of the end-sequent
equals 0, yet that of the upper séquent of the cut in question at least

1 since the degree of the cut itself is at least equal to 1.) It may
happen that the sequent 7; A — @,A is already the desired
sequent; the above diagram must then be interpreted correspondingly.

It may of course equally well happen that an upper sequent of the cut is
itself already the lower sequent of the operational inference figure; and,
finally, the sequent 7; —-P@’ may be identical with the end-sequent;

all of this makes no difference to the reduction.

The reduction step consists now in the transformation of the derivation

into the form indicated by the following diagram:
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How the diagram is intended should basically be obvious. The old
derivation for 7} — (2’ is written down twice side by side and

the first instance is modified in such a way that the left operational

inference figure vanishes; in the section of the derivation standing

immediately above it every occurrence of the free variable & is here
replaced by the numerical term # - except again where it happens to be
used simultaneously as the eigen-variable of an occurring inference figure
in the sequents standing above the lower sequent of that inference figure -;
the formula bégffé*) is then nevertheless re-introduced, but

this time by a thinning; everything else is left exactly as it was before



166

with the single exception that in the path going through

7,7 — 5-("‘& e) V“ \;EC*) the formula \F['ﬂ-/ is carried

along as an additional succedent formula. It can be seen at once by
reference to the inference figure schemata that this leaves all inference
figures correct; the same is true of the replacement of U by ¢

In the second instance of the old derivation of 7.1’ —p @J the
procedure is analogous. Here the right operational inference figure
vanishes without necessitating the replacement of a variable; and the

formula \T[ft) is carried along down as an additional antecedent formula,

From the two sequents 7.7’ —_— \F[ﬂ), @3 and
7}’ F(ﬂ) ——p @, the old sequent 7; ——p @’

is then obtained by a new cut together with the applications of

interchanges and contractions and the rest of the old derivation is taken

over unchanged.

The reader can convince himself without difficulty that the reduction
step here defined turns the given derivation into another entirely

correct derivation in the sense of our formalism.

Remarks about the significance of this reduction step.

Let us recall the fundamental ideas of the operational reduction (3.1) and
compare with it the formal presentation just given. The two operational
inference figures represent an introduction and elimination of the V

in V* g.(*) . According to the original fundamental idea the two
inference figures should have been omitted and the 'b/* \?(ﬂ rep laced by

the "simplex" g(’“’ -whose degree is smaller by 1 -; the place of the
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cut with the cut formulag Vl F( %) should have been taken by a

new cut with the cut formulag 3‘(1‘) . Yet there exists the

already mentioned difficulty that the formula V* F(‘) may have
several application instances, even several introduction instances -

i.e., the formula cluster may have branchings on both sides and contain

several uppermost formulae. It is therefore actually necessary, both
in connection with the cancellation of the left operational inference

figure and that of the right operational inference figure, to retain

also the old cut with V‘ FC*) ; a "simplification" has nevertheless

been achieved in each case by the omission of an operational inference

figure above this cut. (Although interchanges and a thinning have taken
the place of this figure, these "do not count" in the determination of
the "complexity" of the derivation.- The fact that Vi’?’[‘)

is reintroduced by a thinning is motivated only by convenience since its
reappearance further down in the derivation must be expected in any

case and since this is the most convenient way of obtaining the new form

of the derivation from the old one.)

Further down in the new derivation then follows the "new cut" with the
cut formulae }'(‘n) . Precisely why has this cut been placed below
the "level line"? (Basically it could have been introduced at any stage
below the two V’e F(“’ - cuts up to the end of the derivation;
we would merely also have had to write down twice the section of the
derivation from these cuts up to the new cut with g[ﬂ) as an

additional antecedent or succedent formula and to leave unchanged the

section below the new cut.)
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This leads us to the purpose of the notion of a level in general.

What actually matters here is that in the reduction a "simplification"

of the derivation is achieved in a sense to be made precise in the next

paragraph through the ordinal numbers. Yet at first glance the new

form of the derivation looks more complex than the old form: one and

the same section of the derivation now occurs twice, although in each
case somewhat simpler than before because jof the omission of an operational
inference figure. In defining a measure of complexity for derivations it

will therefore be easy to achieve that each individual section standing

above the new cut 1s valued somewhat lower than the corresponding section

of the old derivation. Yet how is it to be accomplished, once the new

cut has been added, that the entire section of the derivation up to 7;"’ é?,
is valued lower than the old derivation up to the same sequent? The

new cut has a lower degree than the old cut; it is this feature to which

we must cling. The new cut is thus placed below the collection of all |
cuts whose degree is equal to that of the old cut so that after the
reduction the collection of cuts above any one of these cuts of high

degree is no larger than before, but is at most the same or a "simplified"

collection. On the other hand, the new cut and everything below it now
extend over a larger collection than before. This is compensated for,

however, by the fact that all of these cuts are of lower degree than the

old cut. Our success in achieving a lowering of the ordinal number of
the derivation through the reduction will depend merely on our exploiting

these facts properly when assigning ordinal numbers below.

An exceeding importance will thus have to be attached to the degree of a
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cut in this connection.

In this discussion it was tacitly assumed as normal that the cut of
larger degree generally occur above the cuts of smaller degree in the
derivation. Since in reality this may of course not be the case the
"degree" is replaced by the concept of the "level", and all this means
is that cuts of a lower degree above cuts of a higher degree are treated

as though they also possessed the higher degree; once this is done the

main ideas stated above carry over without difficulty.

In determining the level of arbitrary derivation sequents, the CJ-
inference figures are furthermore treated like cuts since in the course

of their reduction they would be resolved into cuts of the same degree

in any case.
The form of the reduction step for other connectives.

We must still specify how the reduction step is to be modified if the
terminal connective of the cluster formulae is not a V , as in the
explicitly presented case, but a * » 5 s 4 or =y . The

differences are only minor:

If the cluster formulae have the form p 4’“ , we imagine the above

diagrams suitably modified; in place of V* ﬁ”) stands p/4 ldf ’

and the operational inference figures run thus:

T"__’@'/u 71—0,,% U T >0, n7, -0,

and ov
—~ 8,8y 8T8 ujoT 6,
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In the new derivation 4“* 1’ now also takes the place

of V‘ 3’(‘) ,in place of g'[ﬂ) occurs z‘ or d ’
depending on which of the two possible forms the right operational
inference figure (the " J’ -elimination) has had. Above the place
from which the left operational inference figure is omitted we retain
only the derivation of 77"’07, A or of 7.,' -—> @, ] ’

the other derivation is omitted. (This corresponds to the replacement
of & by $¢ in the b, -case.) The rest of the procedure is exactly

the same as above; even the indicated differences completely suggest

themselves.

If the terminal connective of the cluster formulae is a J or V

the reduction proceeds completely symmetrically to the cases/\and A’ .

Right and left are here interchanged.

If the cluster formulae finally have the form - U , nothing
changes essentially: the formula \F(“} in the new derivation then
corresponds to the formula a » except that, as a consequence of

the omission of the left operational inference figure, the latter formula
occurs as an additional antecedent formula and, correspondingly, as a
consequence of the omission of the right operational inference figure,

as a succedent formula. In both cases the formula is carried
forward up to the sequent 7; —i@’ as usual; the only difference is

the fact that now the left and the right upper sequent of the "new cut",
i.e., the complete derivational sections standing above it, must be

interchanged with one another.
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This completes the definition of a reduction step on an inconsistent

derivation.
Paragraph 4

THE ORDINAL NUMBERS

CONCLUDING REMARKS

4.1. The Transfinite Ordinal Numbers below J;’ .

I shall now define the ordinal numbers to be used. These will not be
written as decimal fractions, as in the earlier paper; this time I
shall adopt the notation customary in set theory. (In spite of this
all definitions and.proofs given in the following paragraphs are
entirely "finitist" and are of an especially elementary nature in this
respect as were the corresponding sections in the earlier proof. Here

we are not really concerned with a study of transfinite induction,

cf. below.)

Recursive definition of the ordinal numbers, also of equality and the

order relation ( 4: ) among these:

The system <§° consists of the number O. We define: O =0

and not 0 < 0.

Suppose that the numbers of the system 6; (where [ 4 is

a natural number or 0) are already defined, as well as == and the
4: -relation among these. An arbitrary number of the system é%;41

then has the form

Y
w“‘-‘- wo‘t.‘. « & o wb CQ
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where the @ ‘3 are the numbers of the system G’ , with
o) 2y 2. o - o B oKy ; ~) designates

a natural number. The number O also once again belongs to the system

Gy

A G:’," ~number P is equal or smaller or larger than a
G ) -number 7 if their representations coincide or if the
first non-coinciding "exponent" o€ in the representation of (3

is smaller or larger than the corresponding exponent in the representation

of T . Iflllr-#-"‘ o thenf)T . 0 is considered
to be smaller than any other number. [J> r means of course the same as

T<p
This completes the definition. It is easily seen that each system
includes all preceding systems and that the relations of "smaller than"
and "equal" between two numbers are independent of the system to which
these numbers are considered to belong. It also follows quite clearly
that of a given expression it can always be decided whether it is an
ordinal number or not and that of two given ordinal numbers it can be
decided (in a simple way) whether they are equal or which is the smaller

one. (These concepts are therefore indeed "finitist".)

baf 0, !
For present purposes the symbols () ’ '-0" and (7] , as

well as the "exponentiation" occurring in the representation of numbers
are to be interpreted quite formally and no particular sense needs to
be associated with them such as regarding Y as "an infinite number"

and the '+ ' -symbol as corresponding to "addition'". Such
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visualizations are of use merely for the understandiﬁg of the context

as a whole. Solely for the purpose of comparing the size of the

individual systems the following might still be said by using concepts

and results from set theory:

G > © e
The system i consists of the numbers: O, W , W +W , . . -

i.e., in the usual notation: O, 1, 2, ......... )

M of the O and the natural numbers.

The limit number of the system is ¢

[\)
G contains already all numbers below & , viz:

o ° w’ w
o w o
o ,0, . Lo v, W +w,
O,Ww,w+w, ..., y W P)
® 'y ®
° ® W+ +
W 4+ W w RN

¢ °
+w’-00)w ’..'.) ,

[ ]
““4 w"’

thll . D ‘ ‘A* .9 “02 *‘ Y w qu’ ’ o @0
S: ", "O Db’w, ‘ .o.,“ ) ,. , p ‘A’

N Vg
in general all polynomials (A '/‘, b oI B A AL & T '/M‘ ;

the 8§ and /q, designate natural numbers or O; \)‘ > ‘\"&> e D> .06'

Lo
G contains all numbers below iy (i.e., ; in the
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following, multiple exponentiations are to be interpreted

correspondingly).

w
w
w»

64 contains all numbers below & , etc.

The limit number of all systems taken together is the number £° s

the "first § -number".

°
We shall use the symbol 1, as an abbreviation for O . We

also need the concept of the '"matural sum"of two (non-zero) ordinal
P natura’ sum

numbers which is defined as follows:(32)

3 1.

L
!
Suppose that A=W 40 40+ 4 W

§
(}zw'-‘-w&-‘---- -0‘;0‘o (/A)l,‘\??l ).

and

The "natural sum o ¢ P " is then obtained by arranging
the /A + = constituents and &0 by size and joining them
back together again by '4+ ' -symbols, the largest comnstituent

first, the smallest last, with equal constituents of course side by side.

In this way another correct ordina. number obviously results.

An example: 1If At ! |
w'-u ‘ow -+ o v ,
L= w  + ok p= +~ e 4
(e
[ | i '
W Q) /! (
Chas B = oY L w RRL
In all cases of #(l ='P o/ . The natural sum of even

arbitrarily many ordinal numbers is independent of the order of the

individual summations. of #-[J > oL
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If <“”<d then "'#P < "*l‘ . These facts

are easily proven.

4.2, The Correlation of Ordinal Numbers with Derivations.

Suppose that an arbitrary derivation is given. 1Its ordinal number

is calculated by passing downward from the uppermost sequents and
assigning to each individual derivational sequent as well as to each
line of inference an ordinal number ( :} 0) on the basis of the

following stipulations:

°
Each uppermost sequent receives the ordinal number 1 (i.e., & ).

Suppose that the ordinal numbers of the upper sequents of an inference
figure have already been determined. The ordinal number of the line of

inference is then obtained as follows:

If the inference figure is structural then the ordinal number of the

upper sequent is adopted unchanged, or, in the case of a cut, the natural

sum of the ordinal numbers of the two upper sequents is formed.

If the inference figure is operational then 4+ 1 is adjoined to the

ordinal number of the upper sequent; yet if the figure has two upper

sequents, the larger of the two ordinal numbers is selected and +1

is ad joined to it.

If a CJ-inference figure is finally encountered - whose upper sequent

ol ol
has the ordinal number N '+ A, Y 7\ " (‘92 / ) -
oly |

then (73 is taken as the ordinal number of the line of
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l
inference. 1If d.: ©® then this number is of course (o) .

From the ordinal number of a line of inference - call it o€ -

the ordinal number of the lower sequent of the inference figure

concerned is obtained in the following way:

If the level of the lower sequent is the same as that of the upper
sequent then the ordinal. number of the lower sequent is equal to e¢
If its level is lower by 1, then the ordinal number of the lower

o w*
sequent 1is w u“ If lower by 2, the ordinal number is & o

lower by 3: uf“, , etc.

The ordinal number which is finally obtained for the end-sequent of

the derivation is the ordinal number of the derivation. -

The reader can easily convince himself that the mentioned operations
always yield new genuine ordinal nuﬁbers in accordance with their
definition. -For the time being I shall not comment on this method

of correlating ordinal numbers; it is really quite simple; of special
interest is only the evaluation of the CJ-inference figures and
that of the different levels; in both cases this wvaluation will be most

easily understood through its effect later on.

4.3. The Decrease of the Ordinal Number in the Course of a Reduction

Step on an Inconsistent Derivation.

It still remains to show that in the course of a reduction step according

to Paragraph 3 the ordinal number of an inconsistent derivation decreases.
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This no longer presents any special difficulties; all we need to do is
to examine the correctness of this assertion carefully for each

individual case.

The preparatory step 3.2. obviously leaves the ordinal number entirely

unaffected. What is the situation in the case of a CJ-reduction (3.3.)?

Suppose that the ordinal number of the upper sequent of the CJ-inference
figure is cod'-l--- . e _*w“’v ( o 21 )
that of the line of inference therefore w’l't‘ . This is also
at once the ordinal number of the lower sequent whose level cannot be
lower than that of the upper sequent since the cluster cuts associated
with 3-( 1) and 3'—[1‘) and which have the same degree as the CJ-
inference figure, must still occur further down in the derivation. Let
us now examine the figure which has replaced _the CJ-inference figu're

in the reduction (first for 44 not equal to 1 ). In the new

derivation each one of its uppermost sequents obviously receives the

ol ol
same ordinal number ) "(' e e = o 4 0) v .  Furthermore,

all sequents of the replacement figure have the same level, viz., that
level which the two sequents of the CJ-inference figures had before.
(The newly occurring cuts have of course the same degree as that of
the CJ-inference figure). The ordinal number of the lowest sequent of

this figure is therefore obviously equal to the natural sum of all

of
' .. v
numbers w - - - + W .
o)
Consequently it begins: W = - = ~ .
. ol | . oL
It is therefore smaller than (¢ » according to the definition of

"smaller than'' for the ordinal numbers.
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From this it now follows easily that the ordinal number of the
entire derivation has also been decreased. Aftev all, from the
CJ-inference figure downwards nothing has changed in the derivation,
in fact, all levels have here also remined the same. The decrease
which has occurred at one place is preserved in calculating the
ordinal number further up to the end-sequent; what is essential is

that in proceeding downwards only structural inference figures are

encountered and that the following holds: If ol * < < »
then (0‘/“< ‘4‘( and of “#(l < J*‘P . (Suppose that
a( , J“ and ($ *O.) Both requirements are satisfied at once
by definition.

o, +)

Now the purpose of the &) ' in the evaluation of a CJ-inference
figure also becomes clear: in the reduction the figure breaks up

into a number of cuts; and in some sense the n-fold multiple of one
and the same derivational section occurs. In order to achieve a
decrease in the ordinal number we must therefore choose as the ordinal
number of the original devivational section up to the CJ-inference

figure the '"limit number" of all "n-fold multiples" of the ordinal

oy 41 1,00, N
St =28

number of the upper sequent, i.e.,

The expressions in " " gerve of course only as illustrations;
Xp y

after all they are not even defined in this context.)

Now there remains only the case where M equals 1l: in the new
derivation the sequent F(i), 71 -'——-"@, *9-[1) receives the
ordinal number 1. In the old derivation its ordinal number was at

]
least equal to . Here we have an obvious decrease which is at
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the same time inherited by the ordinal number of the entire derivation.

This proves the decrease of the ordinal number of an inconsistent
derivation in a CJ-reduction. There still remains the case of the

operational reduction. Here it must first be observed that through

the further preparatory step (3.42) no increase in the ordinal number

can occur. The proof of this fact presents certain difficulties in
spite of the obvious external simplification of the derivation in
this step. I shall sketch only briefly what kind of reasoning is
here required - the reader interested only in bare essentials may

skip this paragraph -:

r

The omission or ad junction of formulae and other transformations
within structural inference figures except cuts have no influence
whatever on the ordinal number. This is different in the case of
the cancellation of a cut through the omission of an upper sequent
together with everything standing above it. If we disregard for

the time being the change in level which this cancellation entails

then a decrease in the ordinal number results from the replacement of
the natural sum of two numbers by only one of these two numbers.

Added to this must be the fact that through the omission of a cut the
level of a whole collection of sequents above this cut may be reduced
to a greater or lesser éxtent (not only in the ending but in the entire
derivation). In order to recognize that this rather entangled
transformation cannot affect an increase in the ordinal number of the
entire derivation we argue thus: we imagine that we can fix the level

quite arbitrarily. We begin with the old derivation, omit the cut and,
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at first, leave all levels untouched. Then we gradually adjust

these levels to the values which the transformed derivation really

should have according to the definition of a level, by carrying out

a succession of single steps of the following kind: the level of

the upper sequents of one 'inference figure whose lower sequent has

a lower . level than tﬁe upper sequent is in each case diminished by 1.

It is easily seen that the entire adjustment of levels can in fact be

made up of such operations. (We begin from below.) What exactly

happens to the ordinal numbers in such a single adjustment of level?

Suppose that before the adjustment the ordinal numbers of the upper

sequents are D" and P (if there is only one such number we simply

think of the second number below as not being present). After the

ad justment they then take the form w“ and &) (' . (Except if

one upper sequent is an uppermost sequent of the derivation, in which

case its ordinal number was and remains equal to 1 and this simplifies

the following discuésion further.) Before the adjustment, the ordinal

number of the line of inference was thus either o or ¢X #ﬁ or

ofy -4\ e

p(+l,or{s+‘ or (N (where ol=s ) -+ - - °

in the case of a CJ-inference figure), depending on the kind of

inference figure involved. After the adjustment, the ordinal number
) o o ‘5 oL

takes the form of either W or &) ¢ or W 4 | |

W

or w""" , or Now to the lower sequent: If the

difference in level between it and the upper sequent was equal to 1
before and is therefore now equal to O, then the adjustment has
brought abdut a change in the ordinal number of this sequent from

ol : o
W to UA“ , or from Cod*ls to t# “p or from
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A+l o +
(7] to W <41 , or from w P to “p*l ,

o +1 '
o wuc"-o-.‘-Ol

or finally from (uw t . In each case the

ordinal number has either remained the same or has become smaller

and this should be verified by the reader from case to case by means
of the definition of "smaller than'". If the difference in level
between the upper and lower sequents was greater than 1 nothing has
essentially changed: in each case the mentioned numbers are augmented
by an equal number of exponentiations with O . This property of

non-increasing transfers to the ordinal number of the entire derivation

and this number can therefore rise neither in a single step of the
described adjustment of level nor, quite generally, in the preparatory

step for the operational reduction as a whole.

We now come to the operational reduction proper (3.5) in which we must

demonstrate a decrease of the ordinal number. We shall again base our

discussion upon the case presented in detail above (with as the

connective to be reduced). The ordinal number of each of the two lines

of inference standing immediately above the sequents Zg’—"’ F(ﬂ)) @3
P

and 773) ‘7‘(1‘) @3

in the new derivation - which we denote by a/, and ofy - is smaller

than the ordinal number @¢ of the "level line" in the old
derivation. This is so since the derivational sections standing above
the lines.of inference essentially correspond to one another; all
levels in particular are the same as those in the old derivation -
the levels of the sequents standing immediately above the mentioned

lines of inference are equal to g throughout -; in each
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case only one operational inference figure has disappeared and been

replaced by structural inference figures which have no influence on
the ordinal number. At this point a decrease in the ordinal number ~

has therefore taken place which is preserved throughout the subsequent

structural inference figures up to the mentioned lines of inference.
1 ﬂ )

Also: the sequent /3 _— @J has of course the same level &

in the new derivation as in the old one; 6'<g . The sequent

6)73’ —’@Jl@,’ has of course the level O . The level z of

the upper sequents of the "new cut" satisfies ; >T 206 . The

inequality on the right is trivial; and that S » T is recognized
thus:‘ by the definition of a level the & 1is equal to the larger
of the two numbers O and the "degree of Jr:[“) ", If Te & then

T <7 , Since O‘(g . I1If T equals the degree of F{”) s
then T <f since the degree of 3:(1‘) is smaller than the

degree of V*. g:C*’ and since S is at least equal to the

latter.

Let us first suppose that the differences between the levels
3 s U and €& -are minimal, i.e., that ; = T +/ and
T =6 .| 1In this case our demonstration is completed as follows:
In the old derivation the level line had the ordinal number o< ,

the sequent 7} D @3 therefore the ordinal number &)

In the new derivation the lines of inference corresponding to this level

o4y
line have the ordinal numbersAand oy » both are smaller than o
and the upper sequents of the new cut therefore have the ordinal numbers

oy olar
«w and (¢ ; the sequent 7; —p @3 receives the ordinal
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ol ol
number W € W . (Without loss of generality we may
assume that 0‘, 2 .} The latter number is obviously smaller

than wd ; and we have thus finished. For on the basis of an
already repeatedly applied argument this decrease transfers to the
ordinal number of the end-sequent and therefore to the derivation as

a whole. (Below 7,3 -—p @_‘ nothing has of course changed.)

If the distances between the levels 3 », ¥ and O are greater,

our argument is not essentially changed. The place of the inequality

oty
W™ > W S (wlan wpu)20,)
is then simply taken by the inequality
ol oLy ola
PX) .(A (7\)
LR ‘W + W
w > W

and the latter inequality is also easily seen to be valid.

It now becomes apparent how thr cugh the method of definition of

the ordinal numbers in connection with the notion of level the
difficulties associated with the apparent increase in complexity of
a derivation as a result of the operational reduction have been
overcome. The main idea is: in the reduction the same derivational
section occurs twice, although both times somewhat simplified. 1In

the general case, however, 0( (c(. 4oy , where we suppose o/‘

and "(L to be smaller than &f . Yet for the expomnential
( 0(' d\-
expression holds: W P W~ + W . (precisely as in the

case of the natural numbers, for (O we can put any number > 3.)
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The "simplification" of the figure as a whole has thus been

achieved as long as it is always possible to insert an expo-
nentiation; and this is made possible by the fact that the degree

of the new cut is smaller than the degree of the old V* ?(ﬂ)
-cut. It was for the purpose of exploiting this fact that the general
concept of a level was introduced and applied in the correlation of

ordinal numbers.

The cases where the connective to be reduced is a A{ s g, V .
or 7 are so similar that a special discussion of them becomes

superfluous.

The decrease of the ordinal number of an inconsistent derivation in

the reduction step has thus been proved.
4.4. Concluding Remarks.

If we had not admitted CJ-inference figures into our formalism it

would be possible to make do with the natural numbers as ordinal numbers.

In order to realize this the reader should omit 4.1 and in 4.2 replace
) by 3 throughout and "natural sum" simply by "sum". Sums and powers
are to be understood in the way customary for the natural numbers.

4.3 then remains valid throughout, as is easily verified; the CJ-
reduction would here of course have to be left out. The consistency
proof could then be concluded by an ordinary complete induction instead

of a transfinite induction.

As a result of the admission of the CJ-inference figures, and therefore
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for our formalism, the following remarkable connection between

the magnitude of the ordinal number of a derivation and the highest

degree of the formulae occurring in the derivation holds: the ordinal

number of a derivation in which only formulae of degree O occur is

“0

w
smaller than @ (i.e., W in our notation). If the highest
degree of a formula equals 1 then its ordinal number is smaller than
(7]
609. , Lf the degree equals 2, then the ordinal number is smaller

“
than ®@ , etc. This is not difficult to prove.

These theorems are of course meaningful only relative to our special
correlation of ordinal numbers. Yet it is reasonable to assume that
by and large this correlation is already fairly optimal, i.e., that

we could not make do with essentially lower ordinal numbers. In

particular the totality of all our derivations cannot be handled by
means of ordinal numbers of which all lie below a number which is
smaller than ‘e; . For transfinite induction up to such a number is
itself provable in our formalism; a consistency proof carried out by
means of this induction would therefore contradict Godel's theorem
(given, of coursé, that the other techniques of proof used, especially
the correlation of ordinal numbers, have not assumed forms that are non-
representable in our number-theoretical formalism). By the same
round-about argument we can presumably also show that certain sub-classes
of derivations cannot be handled by ordinal numbers below certain
numbers of the form oa".w . It is quite likely that one day a

direct approach to the proof of such impossibility theorems will be

found.
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If we include arbitrary functions in our formalism then the

consistency proof remains valid with minor modifications: all

that needs to be shown is that at some point in the reduction,
following the first preparatory step, for example, all terms without
free variables can be evaluated and replaced by their numerical
values. It is presupposed that all functions can be effectively
calculated for all given numerical values. There still arise certain
formal difficulties from the fact that although term may be calculable,
a corresponding term in another place in the same inference figure

may still contain a variable (cf. Article 14.22 of the earlier paper);

yet these difficulties do not affect the main ideas here involved.

In principle the contents of Section V of the earlier paper also

remain valid for the new version of the consistency proof. I have
not given a new proof of the "reducibility" of arbitrary derivable
sequents; nor do I attach any special impoftance to this. (I had
previously advanced it as an argument against radical intuitionism -

article 17.3 - , but it is not particularly essential for this purpose.)

Transfinite Induction.

I have not given a new proof of the tramnsfinite induction which
concludes the consistency proof since I intend to discuss the
questions involved at this point separately at some later date. For
the conclusion of the present proof the earlier proof of the "theorem
of transfinite induction'" (Articles 15.4 and 15.1) is therefore to be

adopted for the time being. For this purpose the new ordinal numbers
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must be made to correspond with the decimal fractions used in the
earlier paper; this presents no special difficulties. (Both

systems are after all of the same "order type &, '".)

The transfinite induction occupies quite a special position within
the consistency proof. Whereas all other forms of inference used are
of a rather quite elementary kind from the point of view of being
"finitist" - this applies to the new proof as much as it does to old

one - this cannot be maintained of the transfinite induction. Here

we therefore have a task of é different kind: we are not merely
required to prove transfinite induction - this is not particularly
difficult and possible in various ways - but rather to prove it on
a finitist basis, i.e., to establish clearly that it is a foirm of
inference which is in harmony with the principle of the

constructivist interpretation of infinity; an undertaking which is

no longer purely mathematical but which nevertheless forms part of

a consistency proof.

We might be inclined to doubt the finitist character of the "trans-
finite" induction, even if only because of its suspect name. In its
defense it should here merely be pointed out that most somehow
constructivist orientated authors place special emphasis on building

. W .
up constructively (up to & , for example) an initial segment

of the transfinite number sequence (within the "second number class").
And in the consistency proof and in possible future extensions of it
we are certainly dealing only with an initial segment, a "section"

of the second number class, even though this is an already comparatively
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extensive segment, and which must probably be extended still
considerably further for a consistency proof for analysis. Yet

I fail to see at what "place' constructive certainty is here

supposed to end and where a further extension of transfinite induction
is therefore thought to become disputable. I think rather that the
reliability of the transfinite numbers required for the consistency
proof compares with that of the early segment, up to , for
example, in the same way as the reliability of a numerical calculation
extending over a hundred pages with that of a calculation of a few
lines: it is merely a considerably vaster undertaking to convince
oneself of this certainty from beginning to end! A detailed
discussion of these matters (whose exposition in the earlier paper -
Article 16.11 - seems to me now to be somewhat too sketchy) will,

as said before, follow at a later date.

GALLEY PROOF

14.3. If a reduction rule is known for a sequent then a reduction

rule can also be stated for every sequent which has resulted from

the former by a structural transformation. Viz.: An interchange of
antecedent formulae (5.241) does not affect the reduction procedure.

If an antecedent formula was omitted which was equal to another antecedent
formula (5.242) we reduce the newly arisen sequent in the same way as

the old one, yet if the omitted formula would have been subject to a
reduction step according to 13.5, we apply this reduction step to the
formula equal to the omitted formula and then retain the latter formula;

this is after all permissible.
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If a formula was adjoined to the antecedent formulae (5.243), we
first carry out the required reductions on it according to 13.11
and 13.12 and continue the rest of the reduction up to the definitive

form as if this formula were not even present.

A re-designating of a bound variable (5.244) does not necessitate a

change in the reduction rule.

In the following I shall repeatedly make tacit use of the fact
that a reduction rule for a sequent which results from another sequent
by a structural transformation can be obtained from the reduction rule

or the former sequent.

144 Now it still remains to show that a reduction rule can always
be given for a sequent which results from those sequents by the
ai)plication of a rule of inference for which reduction rules are
already known. After the transformation according to Paragraph 12
the following rules of inference can still be applied in the
derivation: V -introduction, V - elimination, &
-introduction, 4’ ~elimination, "reductio", "elimination of
the double negation' and "complete induction". I shall deal with

them in that order.

14.41. Suppose that we are given a V -introduction: "From 7' -=> ?(c)
. follows r - > W*) ". Assume a reduction rule to

'y
be known for the sequent 7’—) \f(‘) . The reduction of 7’—’ Vt?&)
must begin with the replacement of (possible) occurrences of free

variables by arbitrarily chosen numerals (13.11). Suppose that
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T"..; v*‘;‘-*(*) results. If no free variables occurred then
7’“—-’ Vﬁ F‘(*) stands again for T’——’ V” \?(t)

(A corresponding argument is to apply below.) Then all (possible)
minimal terms must be replaced by their numerical values (13.12)
resulting in 71 ol —> V” F"(") . This sequent is
reduced according to 13.21 to T'"‘—’ }-"[n) , where %%

is to be chosen arbitrarily. Now any minimal terms that may have

newly arisen must still be replaced by their numerical values in

[ 1.2 4
accordance with 13.12, resulting in T““‘ -—> F ("’) .

The reduction of the sequent 7> ?{ﬂ, must also begin with the
replacement of the free variables. For this replacement we may in
particular use the same numerals that were chosen in the reduction
of 77 — V* \77*) , as well as the symbol:‘for the replacement
of O so that the sequent > \?'*[ﬂ) results. Now
must follow the replécement of possible minimal terms and from this
;"”vf‘) 'F“:;ﬂ) obviously results, i.e., the same sequent as above.
By virtue of the reduction rule for 77—" \?-[ﬂ) a reduction
rule must now be statable for this sequent; hence a reduction rule

7 — Va JF(»*)

has also been obtained for

14.42. Suppose we are given a V—elimination: "From 719 vaﬁ*)
results T’"“'a Flé) ", 7 —> J—({) is again first

subjected to (possibly) necessary reduction steps according to 13.11
—-7 ~k
and 13.12; suppose that [/ “-—-’ | (1!-) results. In the

reduction of 7_' -_ V* \7.(*) , which must begin with reduction

steps according to 13.11 (if necessary), 13.12 (if necessary), and



then a step according to 13.21, possibly followed by further steps
according to 13.12, the numerals to be substituted may obviously

* P
be chosen so that these steps also yield the sequent 77 - (‘ﬂ)

We therefore have a reduction rule for that sequent and hence also

7 - 5"(.1:).

for

14.43. The & -introduction and the & ~elimination are
dealt with quite analogously to the V -introduction and V
~elimination. Here the reduction step according to 13.21 is replaced

by a step according to 13.22,

14.44, In dealing with the three rules of inference still remaining
I make use of the following lemma: "If reduction rules are known
for two sequents of the form T & and -D,A - @ in

which no free variables and no minimal terms occur then a reduction
rule can also be given for the sequent 7'/ A -> CJ: ' (The
meaning of the symbols 7' s A s a.' and 0 is the same as
that defined at 5.250, 0 also stands for an arbitrary formula.)
The proof of this lemma which represents the major part of the

consistency proof follows at 14.6. Here I shall first show how the
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lemma is to be applied to the rules of the '"reductio", the "eliminatio

of the double negation'" and the "complete induction".

14.441. Suppose that a "reductio" is given: "From ﬂ, 7""3 and

a; 4 — 784 follows 73 4 _971‘ M We first reduce
7; 4 — 7 A (if required) according to 13.11 and 13.12;
» - o
suppose that the result is 7”) A ->» 74 . This we

L 4 y # -
reduce according to 13.23 to T )A ) a —> =2 . In the
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reduction of 4&, 77"" 1’ , on the other hand, we can choose
the numerals to be substituted in the reduction steps according to
13.11 and 13.12, which are carried out first, so that from these
steps a sequent of the form a’ 7,"""’ #‘ results. 1In the
same way it can be achieved that ﬂu,d _— 7 7

assumes the form a:d .‘—, v “‘ after the appropriate
reduction steps. This then yields the sequent “; A., ”“—’ =2

by 13.23. Reduction rules are therefore known for the sequents

¥ 4
I.L”, T’ —_— B and 1‘74, 6”-—‘" (=2 and,
L 2 »
by the lemma, therefore also for u“) T”: d/ 47 5 I=2 ,
i.e., (14.3) also for 7' ) A; U —> /=2 . We have

thus a reducﬁion rule for 73 A - -

14.442. Suppose that we are given an "elimination of the double

negation": "From P—>77U 4o obtain I"—> Z v The
reductions of T>n according to 13.11 and 13.12 which may first

be necessary can be carried out analogously on V> -7 %

We must therefore still reduce a sequent 77*-—’&” in which free

variables and minimal terms no longer occur and this will simultaneously

*
yield a reduction rule for 7 -—3 ~77 ¥/

It is sufficient to state a reduction rule for the sequent

¥ ¥ )
7 U — U . For we can then apply the lemma and from the

: ¥ 4
availability of reduction rules for 7-’ —y w7 U and

& ¥ ¥
7145 u¥ conclude the statability of a reduction rule for 77 —>U" .

2% — 4
=7 -> can be reduced easily according to the



p—

193

following rule (cf. 1l4.1): We reduce the succeedent formula
according to 13.21, 13.22, and 13.12 until it has the form -7 C':
or is a minimal formula. If it has become a correct minimal
formula the reduction is finished.- If it has assumed the form

~r @' we continue the reduction according to 13.23 and obtain
-7 ﬂf a'_’ /=2 , further (by 13.53) we obtain

G—-’D -y u‘ , then (by 13.23) we obtain C;lt’—? (=2

In the case where the succeedent formula has become a false minimal

formula we proceed in the same way; in the latter case we first

¥ ¥
obtain —» + U , and then UA'— Ii=2

In both cases we have now obtained a sequent which also occurs in
¥ ¥
the reduction of the logical basic sequent a — .Z‘
according to the procedure stated at 14.1. We need therefore merely

follow the procedure stated at that point in order to complete the

reduction of the sequent.

14.443. Suppose that a "complete induction" is given: "From r—” g[tl
and FC“‘); 4 —> ‘?‘CQ"") we obtain n 4 — 3'(?} M
In 7') A -—> 3.['?) we first replace all (possible) occurrences
of free variables by arbitrarily chosen numerals (13.11) and obtain

Vid ') A ¥ -—> 3—’ (‘Z‘ ') . Then (if necessary) we carry
out reduction steps according to 13.12 and achieve in this way that
finally every occurrence of 'é * has been replaced by the numeral

7
M vwhich represents the value of the term (which no longer contains )(

— T ¥ (%)

| g
a variable). The sequent has thus become 7’,4

Now we carry out further reduction steps according to 13.12 (if necessary)
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until all minimal terms have been eliminated. The sequent then has

the form 77““, A‘v' —_— (‘Fy[”))l‘

In the reduction of ™= \?.[1) and \?[@),A > 3—(‘2"")

which must begin with the replacement of possible occurrences of

free variables, we can actually choose the numerals to be

substituted so that they agree with the numerals chosen previously
and can replace the variable d¥ , which after all did not occur in
]7, A -5 3-(%) s, by any one of the numerals from 1 to % ,
where ##¢  denotes the number 1 smaller than ¢ . It then
follows that for each one of the sequents 77*.——’ g‘(1) and
Féy, 8% — F(1+3)  na FYO, 8% F(2+)
etc. up to \?—v[ﬂ“)/ Av—’ 5"'[1« *!) reduction rules are
statable. If these sequents are then reduced by the reduction steps
prescribed in 13.12, there result obviously sequents of the following
form for which reduction rules are therefore also statable:

7% > (Fr(1)* aa (FX()% A¥% s (FHC)*
and (FX2N% A% (F¥(3)¥ ctc. w o (B D"~ (Fa)*

' -p &
We now apply the lemma: From the reduction rules for /!

] »
71#:!_,(3:&[1)) and (\7"[1))’/4*'——? (g-v[a.))
»
we obtain a reduction rule for the sequent 77¥:4 i -’C‘?”ﬁ)},
&
from it and from the reduction rule for (3"'[‘-))4; 4% — [P[‘))

¥ ¥ ¥, ¥
we obtain a reduction rule for /7° ) A“ -> (\?(J’)) etc.;
finally it follows that a reduction rule is statable for the sequent

77*¥, A “x—9 (“'7' (%) * hence also for T’, 4- F[?/,

since this sequent had actually already been reduced above to the s

3
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form of the former sequent.

14.5. Now the proof of the "lemma'" is still outstanding. At this
point I should like to add a few remarks which may contribute to an

easier understanding of the proof.

What is the reason for the special position of the "lemma'"? Let us
examine the kind of finitist interpretation that takes the place of
the "actualist truth" through the reduction concept: the concepts

V and 8 are interpreted in a quite natural way ("reduced",
13.21 and 13.22), and the associated rules of inference (14.41 -
14.43) are dealt with in a correspondingly effortless manner. Not
so for ~» ; =7 ,ﬂ, is interpreted as ZL -» (=2 (13.23) and
in order to reduce this form further the reduction steps on antecedent
formulae (13.5) are necessary. To the intuitive sense of the ewg»
there thefefore corresponds a .comparatively artificial and less
immediately comparable reduction procedure. The difficulties which
the & and =7 present to a finitist interpretation (Paragraph 11)

make it indeed impossible to state a '"'matural" procedure.

A typical form of inference exhauting the intuitive meaning of the
w—p is in fact the following: '"From the assumptions 7

follows ~0 . From the assumption D and further

assumptions A follows G . Then @. also follows from
the assumptions r' s A " This form of inference is
implicit both in the "reductio"™ and in the “complete induction. Hence
the reliance on the lemma (14.44) in dealing with these two rules of

inference.
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In the proof of the lemma the difficulty now consists in bridging
the gap between the actualist meaning of the -=—3» according to
which the mentioned form of inference is trivially "true" and
the dissimilar finitist interpretation given by the reduction
concept. The fundamental idea of the proof is this: in reducing
T.—’ o the ¢D is referred back to "something simpler"
(13.21 - 13.23). The same is done with the antecedent formula cD
in the reduction of co, A—f’ @ (13.51 - 13.53). From this
we generally obtain two new sequents 7’—? !D“ and J‘,A"’ < 3
this method can be continued (complete induction on the number of
logical connectives in D ) until a minimal formula takes the
place of ’D , and we have thus a trivial case. Yet this method
does not suffice if in the reduction of the antecedent formula 00
that formula is retained. The consideration of this'possibility

requires a further reduction argument of a special kind (14.63).

14.6. Proof of the Lemma.

The lemma runs: '"If reduction rules are known for two sequents of
the form {7 —% 0 and 0/ A > in which no free

variables and no minimal terms occur then a reduction rule can also

be given for the sequent T’, a ? & M

The latter sequent will be called the mix sequent of the two other

sequents; the formula 0 its mix formula.

In order to prove the lemma I apply a complete induction on the

number of logical connectives occurring in the mix formula. I
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therefore assume that the total number >f these connectives is
equal to a definite number ; and that the lemma has already

been proven for smaller g or that f is equal to O,

14.60. Suppose therefore that two definite sequents 71—’ .0 and
'b, A — @‘ without free variables and minimal terms, with @
logical connectives in the formula ~D , are given and that for

each sequent a reduction rule is known. It must then be shown that

a reduction rule can also be given for the mix sequent 7: A -» @.
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14.61. I shall first deal with the case where the sequent .D, 4 ->&

is already in definitive form. I£ e. is a true minimal formula

then T’, a d: & is also already in definitive form. The
same holds ifAis a false minimal formula and if in A - a false

minimal formula occurs. The case remains where e. and D are
false minimai formulae. In that case 71, a4— & is reduced
according to precisely the same rule as that provided for 7-'-" 0
Since C'r and D are both false minimal formulae their
difference is here immaterial; and the formulae designated by A

may be ignored altogether in the reduction (cf. 14.3).

14.62. Suppose that the sequent 0, A — & is not yet
in definitive form. In relation to the first reduction step to be

carried out on the sequent I then distinguish three cases:

1. Suppose that G‘ is no minimal formula.
2. Suppose that G’ is a false minimal formula and that the

first prescribed reduction step for the sequent
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0’ A —P @ (according to 13.5) does not affect the

antecedent formula o
3. Suppose that a' is a false minimal formula and that

the mentioned reduction step (according to 13.5) affects the

antecedent formula o
I shall now deal with each of the three cases separately.

14.621. Suppose that the first case arises. The first reduction step
to be carried out on the mix sequent 7; A—’ @" is then the
step which alone is applicable according to 13.21, 13.22, 13.23,

where the choice of M  or il or ﬁ is free ifﬁas

the form v*g"*) or Al *43 . Suppose that after

this reduction step (and, if necessary, successive steps according

to 13.12 until no further minimal terms occur) the sequent runs

7; Av"’ e.‘. The first reduction step on the sequent D/A"’ e.
must necessarily be of the same kind, and in the case of a choice,

the same choice may be made as above so that after the first reduction
step (and possibly further necessary éteps according to 13.12) this
sequent assumes the form n; A"‘_—’ @x . Now the
following assertion still remains to be proved which is again a
special case of the lemma: "On the basis of the known reduction
rules for the sequents 77— O and 0, A‘_’ e:’

a reduction rule for their mix sequent 7’, A' — a" is
also statable." I shall postpone the proof of this assertion for

the time being.
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.14.622. Suppose that the second case arises. After its first
reduction step (according to 13.5) (and possibly successive steps

. according to 13.12 until no further minimal terms occur) the sequent
ad -’a" runs b, Au_’ r . The reduction procedure
of n A -»C must then begin with the steps required to yield
TS Av—’ Cv ' from the former sequent. 1In that case the
following assertion still remains to be proved, which once again is
a special case of the lemma: "On the basis of the known reduction

»
rules for the sequents F'— b and .D, A’-—’ (g

a reduction rule for their mix sequent

¥ »
7’/ A - 6. is also statable."

14.623. Suppose that the third case arises. I distinguish three
sub-cases depending on whether 0 has the form V* F‘*)

l(. & 4‘5 or -7 ﬂ , 1.e., depending on whether the first
prescribed reduction step on 0, 4- E"' takes the form of
13.51, 13.52 or 13.53. The treatment of these three éases is not

essentially different.

14.623. 1. Suppose that 0 has the form %3’?“) . In that

case the first reduction step turns the sequent b, 4 — E

e, YV2Fm, 4 — @& L F(m, FW, 8> &

or g“‘)' A — @ . The sequent T—> 0

is equal to 7' e V*‘g.‘*) and its first reduction

step must therefore yield T’"'—’ 3'-('“‘) (according to 13.215,
with arbitrarily chosen "t . In particular, we can choose the

numeral 4¢ for 9% and obtain mn— F(“)
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If ¥(“) contains minimal terms we subject it, and the sequent
dealt with before, to furthér reductions according to 13.12, as
prgscribed, until no further minimal terms occur. The two sequents
then run J!=% (?['h))* and (9-(1'-)[:‘ %ﬁ*’, A - &
or Cf[f‘)) “, A — au . If no minimal terms had occurred
(F[«)>¥ shall stand for the formula y[‘ﬂ/ . Now I first
consider the case where ,0/4—’ a has assumed the second form,
viz., [y[‘ff””) 4 — & . Here reduction rules for the
sequents 77— CF['“’)* and (F[ﬂ”', A-_’ a

are known; I now apply the induction hypothesis, according to which
the lemma is assumed to be already proven for mix formulae with
fewer logical connectives than those contained in 0 ; from this
it follows that a reduction rule is also statable for the mix sequent
of the two given sequents, i.e., for the sequent 77} 4 — @

For the mix formula (F[ﬁ))* obviously contains one logical
connective less, viz., the V , than the formula \D which,

as we know, equals V* \9'.( z') . This completes the present case.

If 0, A-»& should have assumed the more complex form
¥
(F["‘” s {/3..?(;)) 4 > & , however, the
following assertion still remains to be proved: "On the basis of the

known reduction rules for the sequents T —> V*\F(“')

¥ 4
and ‘V*F(*), CF(“” ,4"" ¢ 2 reduction rule is also

4
statable for their mix sequent 77; [\9-(4‘)) y) 4 > & R

The proof for this will be postponed for the time being; once it
has been carried out the induction hypothesis can be applied as

before and from the fact that reduction rules are known for the sequents
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» ]
P (F1e))¥ ana (F(2), 7, 8 — G- it
can be inferred that a reduction rule is also statable for their

mix sequent 75 7/74“’ & and hence for 7’/ 4— &

14.623. 2. Suppose that O has the form ﬂd’ﬂ . Then the"
first reduction step <;n the sequent .0, a4 — (C yields
AU L8 84— & or B, UEB, 84— & ;

or .ZJ,A - & (or ﬂ,d—% & Y. In the first
reduction step on the sequent 7 — ﬂ.&ﬂ a choice can be

made in such a way that T— L (ox 77=—» 15 )

results (according to 13.22).

If '-0, 4 —» & has assumed the form without ”4’6

we apply the induction hypothesis at once: Since reduction rules
are known for the sequents 77—91( (or 7> F& 4 ) and

4J-’ &' (or 3,5-9&') and since the mix formula X (or <4 )
contains fewer 1"c;gica1 connectives than ¢ 84’ » a reduction

rule is also statable for the mix sequent 7’) 4 -

In the other case the following assertion is still to be proved:
"On the basis of the known reduction rules for the sequents
7’-——’2&!43 and ﬂl“ljf)dﬂ’e
(or_dla, ﬂ, 4—-= & ) a reduction rule is also statable for
their mix sequent 73 2[1 4 - & (or 77/6/ 44— @ H.»
For if this has been proven it follows once again tﬁrough the
application of the induction hypothesis that given reduction rules
for PT2U (x 7578 )anda X, 74— &

(or 13/ 77) A - & ) a reduction rule is also statable for the
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q
mix sequent 7{ 7,, 4 — @ and hence for // 4 &

14.623. 3. Suppose that qD has the form <7H . The
first reduction step then turns the sequent J,d—’ G’ into 71‘/4_’2(
or A —> U . In its first reduction step (according to

13.23) the sequent 77— 7 U then becomes 4, T— [=2

If .D, A-> a has assumed the form 4 = 2L then we apply
the induction hypothesis at once: since reduction rules are known
for the sequents 4 U and ”) /=2 and since the
mix formula /6 contains fewer logical connectives than

T U , a reduction rule is also statable for the mix sequent

A)r = [22 | The same therefore also holds for 74— a

for a. like 1 = 2 , is a false minimal formula.

’

In the other case the following assertion is still to be proved:
"On the basis of the reduction rules known for the sequents

I'—p 7 U and &, 4 — U a reduction rule is also
statable for their mix sequent 77/ 4 — y/] M If this has
been proven it follows again by the use of the induction hypothesis
that given the reduction rules for 77/ 4> 4 |
and z{, - (=2 a reduction rule is also statable

for the mix sequent 7;‘4) = /= 2 and hence also for 734"9 .

14.63. Conclusion of the Proof. 1In several of the cases discussed
an assertion was made whose proof had been postponed. In each case
this assertion had the following form: '"On the basis of the known

reduction rules for the sequent 77"9 J and a sequent of the form
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J,A#"’ @‘" which has resulted from J/ 4- & by one or
several reduction steps carried out according to the appropriate
reduction rule, a reduction rule is also statable for their mix
sequent 71, A'"‘” @* . Here the sequents 77-» D

» » ‘
and sA, A -_ C contained no free variables and no

minimal terms.

This assertion is quite obviously of the same kind as that made at
14.60 and for which the entire proof was intended. The mix formula

0 is the same as that in the earlier assertion; the sequent
77"".0 plays the same role; in place of \0) A o 4 @ s
however, there now occurs a sequent obtained from the latter by one

or several reduction steps.

In order to prove the new assertion we now apply precisely the same
inferences as before (14.61 to 14.623.3.); hence there (possibly)
remains to be proved another assertion of the same kind, where the
second sequent once again results from \0, A” -—p @-3’

by at least one reduction step.

Continuing in this way we must reach the end in finitely many steps,
i.e., the completion of the proof. This is so since the continual
reduction of the sequent oo/ 4"’ &  which after all, proceeds
according to the reduction rule stated for that sequent, must (13.6)
lead to definitive form in finitely many steps so that here no
further re-interpretation is required (14.61) (as long as the case

in which no re-interpretation in terms of a new assertion is required
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did not arise even earlier).

In the transformation of the derivation in Paragraph 12 only quite .

harmless, entirely finitist concepts and inferences were required.

Of a special kind is the concept of the "reduction rule" which

is central to the consistency proof. The proposition: '"for a
certain sequent a reduction rule is known" contains the concepts
"all" and "there exists" to the extent to which it asserts that

the reduction rule concerned exists and that the reduction procedure
to be carried out according to the rule is defined for all possible
choices of numerals to be substituted in the case where a choice
arises in the reduction (13.6), and that the procedure terminates

in finiteiy many steps, i.e., that once again there exists a natural
number in each case which indicates the total number of steps. (This

number generally depends on the choices:made;)

The two "there exist" -concepts in the reducibility proof have
actually always been used finitistically in the sense of 10.3. Hence
the expressions: '"a rule is known, given that a rule is statable".
At 14.2, e.g., the reduction.rule for logical basic sequents was
stated precisely and the total number of required reduction steps

can be inferred at once. In 14.3 - 14.44 it was stated in each

case how an already existing reduction rule must be modified in order
to obtain from it a reduction rule for a further sequent. In the
remaining proof the transfinite "there exists", in connection with

"there exists a reduction rule" has always been used in the finitist
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sense of such a rule being given or (in the case of "introduction"

~-inferences) a new rule being stated.

Corresponding remarks hold for the '"there exist" in relation to

the total number of reduction steps; with the formulation of a
reduction rule on the basis of already known reduction rules is
always connected the possibility of determining the total number of

newly arising (or disappearing) reduction steps.

In the lemma an essentially novel element is added by the

transfinite use of the concept "follows" in expressions of the form
"if.a certain proposition holds then a certain other proposition
also holds". Here we must recall the objections which were raised

in 11.1 against the quite general use of this concept. It turns

out however that in the consistency proof the "follows" occurs only
in one connection: "If reduction rules are known for two particular
sequents then a reduction rule is also statable for a certain third
sequent formed from the former sequent." From the finitist standpoint
this use of "follows" is unobjectioﬁable; aftér all, no nesting
whatever of "follows" -concepts occurs; here the "follows" is to be
understood simply as an expression for the fact that by means of
finitistically correct inferences the validity of a proposition (free
from "follows" -concepts) is derivable from the validity of another
proposition (also free from "follows" -concepts). (The "follows"

is interpreted "meta-theoretically", as it were.) The forms of
inference of the "follows" -introduction and "follows" -elimination

are in harmony with this interpretation (cf. 11.1), and these are
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precisely the inferences occurring in the proof of the lemma

(14.6) and in its applications (at 14.441, 14.442 and 14.443).

Complete inductions occurred repeatedly in the consistency proof

(at 14.6, 14.63, 14.443, and in still other places). These are to
be interpreted according to 10.5 and in this sense they are quite

unobjectionable even in the case where the induction hypothesis

is a transfinite proposition.

I hope that these reflections have helped to make the finitist

character of the methods of proof used in the consistency proof

sufficiently credible.

15.11. I consider it not impossible that the inferences used in
the consistency proof can be re-interpreted in terms of still more
elementary ones so that the methods of proof that have to be

presupposed as correct and which are no longer justified can be

further diminished.




FOOTNOTES

1) A detailed and very readable discussion of these questions
is contained in D. Hilbert's paper: Uber das Unendliche,
Math. Annalen 95 (1926), pp. 161-190.

2) In this connexion cf. also:
H. Weyl, Uber die neue Grundlagenkrise der Mathematik,
Math. Zeitschrift 10 (1921), pp. 39-79; and
A. Fraenkel, Zehn Vorlesungen uber die Grundlegung der
Mengenlehre (or the relevant sections in Fraenkel's
textbook on set theory). '

1}
3) K. Godel, ﬁber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme I, Monatsh. £. Math. u.
Phys. 38 (131), pp. 173-198.

4) W. Ackermann, Begrﬂndung des "™tertium non datur" mittels
der Hilbertschen Theorie der Widerspruchsfreiheit, Math.
Annalen 93 (1925), pp. 1-36;

J. von Neumann, Zur Hilbertschen Beweistheorie, Math.
Zeitschrift 26 (1927), pp. 1-46;

J. Herbrand, Sur la non—-contradiction de 1l 'Arithmetique,
Journ. f. d. reine u. angew. Math. 166 (1932), pp. 1-8;

G. Gentzen, Untersuchungen uber das logsche Schliessen,

Math. Zeitschrift 39 (1935), pp. 176-210, 405-431 (or

the English translation by M.E. Szabo, Investigations into
Logical Deduction, American Philosophical Quarterly,

Vol. I, Number 4, Oct. 1964 and Vol. II, Number 3, July 1965)

5) There already exist several such formalizations and the
present one follows more or less the established lines.

6) Since the notion of a "formula™ is used quite generally for
formalized propositions, the special case defined here should
really be called a "number-theoretical formula®™. However,
since no other "formulae™ occur in this paper, this modifier
may be omitted. Coreesponding remarks apply to the notions of
Yterm”, ™function symbol™ etc.



7) I shall not interpret such a formula as "valid for
arbitrary substitutions of numbers", as is usually
customary in formal logic, since free variables are
used in a more general sense in mathematical proofs;
for example, cf. 4.53. Here, as in the case of bound

g ~variables, we should more appropriately speak of
"indeterminates"” instead of "variables", yet, for '
better or worse, M™variable" has become the generally
accepted expression.

8) For this we could write a single formula of the form
(oo (U B2h)y ) JULIDTS
However, this would obscure the or1g1na1 structure of
the mathematical proof; after all, in the proof the
proposition Mif A, and .U;... ‘Jlﬁ‘. hold, then
43 holds™ neverimccurred explicitly, the various

propositions ﬂ,/ag) e u,«. occurred rather as
assumptions and the propooltlon 73 as a
consequence of these assumptions.

95 In my *Investigations into Logical Deduction" I used
the word "sequent'" in a more general sense which is
here not necessary. For the benefit of the readers of
that paper it should be pointed out that the logical
formalism developed here corresponds essentially to the
"NK-calculus” of the "Investigations™. The "LK-calculus”
is also suitable for the consistency proof. In fact,
the proof then becomes even simpler in parts, although
less '"natural™.

10) For "propositional loglc" (& V,2,7) cf.
Hilbert-Ackermann, Grundzuge der theoretlschen Logik, p. 33;
for "predlcate logic™ (¥/,J added) Cf.:
K. Godel Die Vollstandigkeit der Axiome des logischen
Funktlonenkalkuls, Monatsh. £. Math. u. Phys. 37 (1930), pp. 349-360.
The formalizatbns of the forms of ;inference used there can
easily be shown to be equivalent with the formalization
which I have chosen. (Cf. the proofs of equivalence in
Section V of my "Investigations into Logical Deduction".)

11) Cf. W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen,
Math. Annalen 99 (1928), pp. 118-133.




12) The '"Peano Axioms™ for the natural numbers are the

13)

14)

15)

16)

17)

18)

19)

20)

result of such efforts. (For example, cf. E. Landau,
Grundlagen der Analysis, 1930) These axioms also contain
complete induction, which I have included in the forms
of inference. There is no fundamental difference between
forms of inference and axioms, since logical forms of
inference can also be formulated as "logical axioms"
such as U J 43 —» J{ for the &-elimination, etc.

A proof for the "redundancy of the & ™ can be found in
the book:

Hilbert-Bernays, Grundlagen der Mathematik, I (1934),
pp. 422-457,

Cf. the papers by Hilbert and Weyl cited in footnotes
1) and 2).

’
Cf. D. Hilbert, hber das Unendliche, Math. Annalen 95
(1926), pp. 161-190.

Cf. A. Heyting, Die formalen Regeln der intuitionistischen
Logik, Sitzungsberichte d. Preuss. Akad. d. Wiss.,
phys.-math. K1. (1930), pp. 42-56.

K. ngel, Zur intuitionistischen Arithmetik und Zahlentheorie,
Ergebnisse eines math. Koll., Heft 4 (1933), pp. 34-38. -

The result mentioned above was also discovered somewhat later
by P. Bernays and myself independently of G8del. GOdel also
replaces & O¥ by w(td§+¥8) , this is unnecessary
in my system of rules of inference since I do not use
propositional Yariables.

For example, cf. P. Bachmann, Die Elemente der Zahlentheorie,
I1I, 10.

I could here also use an& other false minimal formula.

Footnote added during the correction of the galley proof:
Articles 14.1 to 16.11 have been inserted in February 1936
in place of an earlier text.



21) Readers acquainted with set theory should note: The
system of "ordinal numbers" here used is well-ordered
by the 4: -relation, and the numbers with the
characteristies 0, 1, 2, 3, 4, 5, etc. correspond, in
that, order, to the transfinite ordinal numbers L'J“P)] Cw(““’]
L L] .yt . gla W) (). .
wﬁ,z -ucw,l. L LT =Wy L P ) =l
etc.; the entire system corresponds “to the "first &€ -number".
(In order to prove this the reader need merely consider the
fact that the transition from the numbers with the
characteristic to the numbers with the characteristic
+) described above correspond to the definition rule
of the power of 2, and then apply the rules of transfinite
arithmetic.) The "theorem of transfinite induction" asserts
nothing but the validity of transfinite induction for this
segment of the second number class. The disputable aspects
of general set theory do not, of course, enter into the
consistency proof, since the corresponding concepts and
theorems are here developed quite independently in a more
elementary form then in set theory, where they are used in
a much greater generality. =~ Similar connections between
mathematical proofs or theorems and the theory of well-
ordering, especially of the numbers of the second number
class, are established in a paper by A. Church, A proof of
freedom from contradiction, Proc. Nat. Acad. of Sc. (1935),
pp. 275-281; and: E. Zermelo, Grundlagen einer allgemeinen
Theorie der mathematischen Satzsysteme I. Fund. Math. 25
(1935), pp. 136-146.

22) Also cf. K. Gddel, Uber Vollstindigkeit und Widerspruchs-
freiheit, Ergebnisse eines math. Koll., Heft 3 (1932]),
pp. 12-13.

23) Cf. P. Finsler, Formale Beweise und die Entscheidbarkeit,
Math. Zeitschr. 25 (1926), pp. 676-682, and the paper by
K. Godel cited in footnote 3).

24) C£. the paper by P. Finsler cited in footnote 23).

25) For example, cf.: L.E.J. Brouwer, Intuitionistische
Betrachtungen uber den Formalismus, Sitzungsber. d. Preuss.
Akad. d. Wiss., phys.-math. Kl1. (1928), pp. 48-52; and
A. Heyting, Mathematische Grundlagenforschung - Intuitionismus -
Bewistheorie, Ergebnisse d. Math. und ihrer Grenzgebiete 3
(1935), Heft 4.

26) G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie,
Math. Ann. 112 (1936), pp. 493-565.

27) G. Gentzen, Untersuchungen uUber das logische Schliessen,
Math. Z. 39 (1935), pp. 176-210 and 405-431. 1In the paper
cited in footnote 26), a formalism was introduced in Section
IV that differs somewhat from the formalism developed in
Section II. It was specifically designed for the proof in
question and has no general significance.




28)

29)

30)

31)

32)

It should be mentioned, incidentally, that all logical
basic sequents are also derivable in the new system and I
therefore do not really have to admit such sequents any
longer. Their retehtionrhas of course certain formal
advantages. '

The proof of equivalence is to a large extent already given
by the proof for the equivalence of the calculi NK and LK
carried out in Section V of my dissertation.

In the earlier paper I have proved more generally the
"reducibility" of the end-sequent of arbitrary derivations.
Here I shall confine myself to consistency; this makes
certain simplifications possible.

The same reasoning, incidentally, underlies the proof of
the "Hauptsatz" of my dissertation.

Cf. G. Hessenberg, Grundbegriffe der Mengenlehre, Sonderdruck
a. d. Abh. d. griesschen Schule, N.F., I. Bd., Heft 4;
pp. 479-706, Gottingen 1906.
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GLOSSARY

Abbild

Abgrenzung

Aneinanderreihung
Anfangsstiick
Anordnung

An-sich
Auffassung
Aussagenverknﬁpfung~

Aussagenverknupfiingszeichen
Ausserstes Verkniipfungszeichen
Bedenklich

Bedeutung
Begriff

Begriffsbildung
Beilegen
Bestimmt

Beweismittel

Bund

counterpart
demarcation
delineation
delimitation
enumeration
initial segment

ordering

actual
actualist

.interpretation

view

logical composition
of propositions

logical connective
terminal connective
disputable

meaning
significance

concept
notion

specific concept
ascribe
individual
definite

determinate

method
technique

cluster



Durchlaufung
Eigenvariable
Endform
Endformel
Endlichkeit
Endsequenz
Endstuck
Entscheidbar
Ergebnis
Erkenntniswert
Erreichbar
Faden

Finit

Formel bund
Gipfelpunkt

Grenzziehung

Grundsequenz
Herleitung
Hilfsmittel
Hilf£sbegriff
Hinterformel
Hohe

Inhaltlicher Sinn

running through
eigen-variable
definitive form
end-formula
finiteness
end-sequent
ending

decidable
conclusion
cognitive value
accessiblg

path

finitist

formula cluster
extremum
demarcation
delimitation
delineation
basic sequent
derivation
technique of proof
auxiliary concept
succedent formula
level

intuitive sense
intuitive meaning



Kettenschluss chain rule (inference)

Korrekt correct

true

valid

well-formed
Mischsequenz mix-sequent
Métteilungszeichen syntactic variable
Nacheinander vertical
Nebeneinander horizontal
Numerus characteristic
Obersequenz upper sequent
Oberste Sequenz uppermost sequent
Reine Zahlentheorie elementary number theory
Richtig true

correct

valid

well-formed
well defined

Schluss inference
Schlussstrich line of inference
Schlussweise form of inference
Schniti cut
Sequenz sequent
Sinn sense
meaning
Stammbaumformig in tree form
Strukturdnderung structural transformation

Struktur-Schlussfigur structural inference figure



Transfinit
Gbereinandergeschachtelt
Verbundene Formeln
Verdannung
Verknupfungsschlussfigur
Vertauschung
Verzweigung

Vorderformel
Wahlfreiheit

Widerspruch
Widerspruchsfreiheit
Widerspruchsherleitung
Zahlzeichen

zugehorig

Zuordnung

Zusammenziehung

transfinite
nested
clustered formulae

thinning

operational inference figure

interchange
branching
antecedent formula
choice
contradiction
consistency
inconsistent derivation
numeral

associated
relevant
appropriate
correlation

contraction



