
1 , 
i 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 , 

.. 
1 
) 

NONLlNEAR VISCOELASTIC PROPERTIES OF POL YSTYRENE SOLUTIONS 

by 

Nicole Raymonde Demarquette 

A Thesis submitted to the Faculty of Graduate Studies 

and Research in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Engineering 

Deparment of Che mie al Engineering 

McGill University 

MontI eal, Canada 

December 1990 



1 

1 
1 
1 

1 1 

1 
1 
1 
1 

J 
1 

1 
) 

1 
1 
) 

1 , , 

1 
1 

NONLlNEAR VISCOELASTIC PROPERTIES 

OF 

POL YSTYRENE SOLUTIONS 

- -----------



1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 

ABSTRACf 

Polymerie liquids are often subjecte1 to high shear rates in plastics ?rocessing 

operations. These mate rials exhibit nonlinear behavior under t!1ese conditions. The 

Bolurnann superposition principle, which goverrls linear behavior, cannot be applied and 

other constitutive equations that t'ike into accoum. nonlinear phenomena have ta be used 

to describe the flow behavior of polymers subjected ta large, rapid deformations. 

In this work the nonlinear behavior of concentrated polystyrene solution was 

examined using sliding plate rheome.er developed at McGill University. In this rheometer 

a novel transducer is used to measure the shear stress and an optical system is used to 

measure birefringence du ring flows involving high shear rates. 

A reliable technique for pr~paring concentrated polystyrene solutions in 

èiethylphthalate was developed. The importance of the parallelism of the plates of the 

sliding plate rheometer was demonstrated. The shear stress was measured directly, and the 

third normal stress difference was calclliated using the stress-optical law. 

A relaxation spectrum was inferred from small amplitude oscilla tory shear 

experiments and found ta be very narrow. Start-up of steady shear with rates ranging from 

0.01 s'\ to 70 s'\ were performed. The steady shear stress was found co be independent of 

shear rate at high shear rates. The viscosity and the thil'd normal stress coefficient were 

examined. The effect of the solution concentration on the power law parameters was 

studied. The transient behavior during these experiments was also studied. The Cox-Merz 

rule was found to be valid for concentrations less than 0.199 g.cm,l, but a deviation from 

the rule was observed for higher concentrations. Sigmoirlal damping functions, based on 

both the shear stress measurements and the birefringence measurf, •• lents, were determined. 

Exponential shear experiments were also performed. The exponential stress coefficient and 
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the third normal stress difference were calculated from experimental data for different 

values of exponential rate constant and different strain scale factor. The. exponential rate 

constant was shawn ta have a strong influence on both the exponential .\tress coefficient 

and tlle third normal s!ress difference. 

The experimental results of start-up for steady shear and exponentll1\l shear were 

compared wi~h the predictions of Wagner's model. Wagner's model cannot predict the 

nonlinear behavior of the solution used here. Wagner's model only predicts smaU deviations 

from linear behavior. 
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RESUME 

Les liquides polymèriques sont souvent soumis à de forts taux de cisaillement lors 

de la fabrication de matières plastiques. Sous ces conditions, ces matériaux montrent un 

comportement non linéaire. Le principe de supperposition de Boltzmann, qui gouverne 

les phenomènes non linéaires, ne peut ètre appliqué et d'autres équations constitutives qui 

tiennent compte de la non linéarité doivent être employées afin de pouvoir caractèriser 

les écoulements de polymères soumis à des déformatiûns fCItes et rapides. 

Dans cette étude, le comportement non linéaire de solutions concentrées de 

polystyrène a été examiné grace à un rhéomètre à plaques parallèles developpé à 

l'Université McGill. Ce rhéomètre est équippé d'un transducer, pour mesurer la contrainte 

de cisaillement, et d'un système optique, pour mesurer la biréfringence, lorsque les 

polymères sont soumis à de fortes déformations. 

Une technique fiable pour préparer des solutions concentrées de polystyrène dans 

du diéthylphthalate fut développée. L'importance du parallèlisme des plaques du rhéomètre 

à plaques parallèles fut démontrée. Les contraintes de cisaillement furent mesurées 

directement et la troisième différence de contraintes normales fut calculée grace à la loi 

optique-contrainte. 

Un spectre de relaxation fut dérivé à partir des résultats expérimentaux de 

dsaillements oscillatoires à faible amplitude. Des démarages de cisaillement à taux de 

cisaillement constant ( le taux de cisaillement étant compris entre 0.01 s·\ et 70 S·l ) furent 

exécutées. La contrainte d~ cisaillement du régime permanent fut trouvée indépendante 

du taux de cisaillement pour des taux de cisaillement élevés. La viscosité et le coefficient 

de la troisième différence de contraintes normales furent examinées. L'influence de la 
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concentration sur les paramêtres de la loi de puissance fut étudiée. Le régime transitoire 

pendant ces expériences fut aussi étudié. La règle de Cox-Merz fut trouvée valide pour des 

concentrations de moins de 0.199 g/cmJ
, mais une déviation à la règ~" fut observée pour 

des concentratiollS plus élevées. Des fonctions d'amortissement sigmoidales, basées, et sur 

les mesures de contraintes de cisaillement, et sur les mesures de troisièmes différences de 

cDr1traintes normales, furent déterminées. Des expériences à taux de cisaillement 

exponentiel furent aussi performées. Le coefficient de contrainte exponentiel et la troisième 

différence de contraint~s normales furent calculés à partir des données expérimentales 

pour différentes valeurs de la constante de cisaillement exponentiel et pour différentes 

valeurs du facteur de déformation. Il fut montré que la constante de cisaillement 

exponentiel avait une forte influence à la fois sur le coefficient de contrainte exponentiel 

et sur la troisième différence de contraintes normales. 

Les résultats expérimentaux pour le démarage de cisaillement à taux de cisaillement 

constant et ies expérience:; à taux de cisaillement exponentiel furent comparés avec les 

prédictions du modèle de Wagner. Le modèle de Wagner ne peut pas prédire le 

comportement non linéaire des solutions utilisées dans cette étude. Le modèle de Wagner 

prédit seulement les petites déviations du comportement linéaire. 
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1. INTRODUcnON 

1.1 Rheology 

Rheology is the science that studies the deformation of a material in response to 

an applied force. The development of synthetic polymers and the processing of plastics 

have raised many interesting problems for rheologists. A better understanding of the 

properties of melts and polymer solutions subjected to varia us flow histories is urgently 

needed. In rheology two major areas are of particular interest. The first is the rheological 

characterization of a particular polymer; it is necessary ta find relationships between the 

deformation (strain) and the resultant stress in the polymer. These re1ationships "Ire 

generalized in so·.-:alled "constitutive equations". The second area of interest in rheology 

is the study of the influence of various molecular parameters and of the chemistry of the 

polymer on rh:!ological béllavior. 

1.2 Presentation of the problem 

The behaviC'r of a polymerie liquid subjected to a deforming force is intermrdiate 

between that of a viscous liquid and that of an elastic soIid. For this reason, polymers are 

classified as viscoelastic materials. When the deformation is very small or very slow, the 

response is linear. Linear viscoelastic behavior, which is governed by the Boltzmann 

superposition principle, IS a very useful tool for characterizing polymer mole cules in their 

equilibrium state. In polymer processing operations, however, polymerie liquids are 

subjected ta very high rates of deformation, and linear viscoelasticity i~ no longer observee!. 

An impo:tant property of deformed polymers is the molecular orientation and its 

dependence on time and temperature. With the help of the "stress-optical" law, a 

relationship between the molecular orientation, measured by means of birefringence, and 

the components of the stress tensor, can be established. 
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A newly developed apparatus, the sliding-plate rheometer, makes it possible to 

measure simultaneously the shear stress in the polymer, using a shear-stress transducer, 

and the birefringence, during transient she~ring deformations involving high shear rates. 

Thus, it is possible to carry out experiments, such as single or multiple step strains, steady 

high shear rates, large-amplitude oscillatory shear, and exponential shear, using 

concentrated solutions of high molecular weight polymers or melts . 

The synthesis of linear, high molecular wei&ht, narrow-molecular weight distribution 

polystyrene is presently possible. Measurements are often performed on concentrated 

solutions of polystyrene because it is an amorphous pol}mer, it can be easily synthesized 

or purchased, and because it is strongly birefringent. However, preparing concentrated 

solutions is a time consuming and difficult step, and a special tec}1nique for this had ta be 

developed. 

1.3 Objectives of the work 

The objectives of the work were: 

- To develop a t'::!chnique for preparing concen~rated solutions of high molecular weight 

poly~tyrell~. The solution should be homogeneous and the molecular weight of the polymer 

should not be affected by the dissolution process. 

- Ta evaluate the sliding plate rheometer as a tool for the study of nonlinear viscoelasticity 

of ih)lymeric liquids and ta make a thorough analysis of possible sources of error. 

- Ta study the nonlinear viscoelastic behavior of concentrated polystyrene solutions 

involving the measurement of stress and birefringence. 

The experiments to be perfonned were the following: 

- Small amplitude oscillatory shear 

- Steady shear 

- Step shear 

- Exponential shear 
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- And finally to compare the experimental results with the predictions of Wagner's 

constitutive equation. 

1.4 Organization of the thesis 

Chapter II reviews existing theorles of the rheological behavior of polymerie liquids. 

TIie different models and constitutive equations are then described. Chapter III gives the 

theoretical basis of the experimental techniques used in this study. Chailter IV de scribes 

the equipment and experimental procedures. The results are reported :lnd diseussed in 

Chapter V. Predictions and computations according to Wagner's model are presented in 

Chapter VI and compared with the experimental results. Chapter VII is a summary of the 

conclusions reached during the research and recommendations for future work. An 

extensive literature review was conducted during this research, and this has been 

incorporated directIy into the appropriate chapters. A list of the nomenclature used is given 

at the end of the thesis. 
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2. 1HEORETICAL BACKGROUND 

Chauter outline 

Sorne theoretical background is given in this chapter. nIe rheological material functions 

used in this work are first defined. Then sever al constitutive equations used to describe the jlow 

of a polymer solution are presented. The chapter ends with typical results of the experiments 

performed in this study. 

21 Introduction 

21.1 Generalities 

In experirnental rheology the commonly used flows are divided into two classes: 

extensional and shear flows. The shear flows can be divided into two categories: pressure

driven flow and drag flow. The first includes capillary flow and slit flow, bath types 

occurring often in melt processing, for example in dies and in injection malding. In 

pressure-driven flows it is possible to measure the viscosity at very high shear rates. In 

drag flow are included the concentric cylinder, sliding cylinder, cone and plate, parallel 

disk and sliding plate geometries. Drag flow is easy to generate in the laboratory by means 

of rotational rheometers, but these devices are restricted to use at low shear rates t
• 

21.2 Steady simple shear 

Steady simple shear is the easiest flow to generate and the rnost commonly used 

type of deformation for measurernents in rheology. The simple st exarnple of steady simple 

flow is when the fluid that fills the gap between two parallel plates is sheared by the tinear 

motion of one plate relative to the other at constant speed. During the deformation the 

gap between the plates rernains constant. 

For the discussion given below the following coordinates are used: the direction of 

the flow is x., the direction of the velocity gradient is Xl, and Xl is the direction 

perpendicular to the shear plane (0,xt,x2) (see figure 2-1). 
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Figure 2-1 Simple shear 

The shear strain .., is defined by: 

.., = xIh 2-1 

where x is the displacement of the moving plate, and h is the gap between the plates. The 

shear rate is given by the derivative of the shear strain: 

~ = V/h 2-2 

where V is the velocity of the moving plate. The stress components generated by this 

motion have been shawn by Lodge(2, p.62) to be: 
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This tensor is obvious\y symmetric. Three independent material properties ean thus be 

measured in simple sheru.J: 

The shear stress: 0' = au = 0'11 2-4 

The first normal stress diffcrence: 2-5 

The second normal stress difference: 2-6 

Adding 2-5 and 2-6 we can define another property, the third normal stress difference: 

2-7 

According ta Criminale4 a, Nb and NI are sufficient to describe completely the 

response of any incompressible tluid to steady simple shear. 

Using the above four quantities it is possible to define four rheological mate rial 

functions: 

The viscosity: " = (J/:' 2-8 

The first normal stress coefficient: 2-9 
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The second normal stress coefficient: 

The third normal stress coefficient 

Only two of the latter three are inde pendent. 

The shear stress is relatively easy ta measure, but Nb Nz and N3 cannat be measured 

directly. In cane-plate or parallel-disk rheometers,Nh which was first discussed by 

WeissenbergS, can be measured. However, these rheometers are restricted ta use at very 

low shear rates because of secondary flows or edge effects6.7• 

Many researchers have tried ta establish a precise relationship between the viscosity 

and the first normal shear stress difference, but these attempts have not really been 

succesful1.a.lo. 

2.2 RheoloBY of yiscoelastic liguids 

2.2.1 Generalities 

The behavior of a polymeric liquid subjected ta deformation is qualitatively similar 

ta that of a "Maxwell element". This mechanical analogy consists of a linear da.:ihpot and 

a linear spring. The force resulting from an elongation x., of the assembly is given by 

F(t) = K.Xo [exp(-K.t/K.,)] 

where K. is the spring constant and Kv the dashpot constant. 

2.2.2 Unear viscoelasticity 

2.2.2.1 Relaxation modulus 

Linear viscoelasticity is the simplest viscoelastic theory. (see for example Ferryll for 

a more complete descriptiGn of linear viscoelasticity). In this theory the structure of the 

mate rial is considered ta be unaffected by deformation. This assumption is only valid for 
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defarmations that are very slow or very small. 

The relaxation modulus, for a "stress relaxation experiment" is defined as: 

G(t) = u(t)/l 

where G(t) is the stress relaxation modulus, a(t) the stress and.., the strain. During a stress 

relaxation experiment the polymer is suddenly subjected ta step strain and the stress is 

reeorded as a function of time after the deformation. 

It is possible to caleulate the stress for any kind of deformation, as long as the 

response is linear, by using the Boltzmann ::uperposition principle. This ean be written as 

follows: 

t 

a(t) - f G(t-t') ~(t') dt' 2-14 

-CIO 

22.2.2 The relaxation spectrum 

Using the Maxwell element analogy, the shear stress ean be expressed as: 

2-15 

where Go is analQgous to K and ~ is analogous to KJK.. The so-ealled "Maxwell model" 

is then defined by: 

t 

""'t) = f G.[exp(-(t-t')/~)l ~.(t') dt' 

-CIO 

and the "generalized Maxwell madel" is defined by: 

t 

alj(t) = ttGk[eXP(·(t.n/~It)] lIJ(t') dt' 
)1., 
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where C7lj is a compone nt of the stress tensor and 'Ylj is a component of the infmitesimal 

strain tt:nsor. 

The Maxwell model can be represented by an assembly of i Maxwell elements in parallel. 

The relaxation modulus is then given by: 

'" O(t) = LGI [exp(-t/ÀI)] 2-18 
.-1 

where 0 1 and li are the ilb relaxation strength and the relaxation time correspu •• ding to 

each Maxwell element. 

The set of values (Gill l) constitutes the "discrete spectrum" of the material. The 

longest relaxation time t1 is called the "terminal relaxation time". 

2.2.3 Non lin2l" viscoelastic theory 

2.2.3.1 Introduction 

The linear theory cannot be applied when large and rapid deformations occur, which 

is normally the case in tlows of industrial importance. The response to the deformation 

then depends on: 

1) The size of the deformation 

2) The rate of the de formation 

3) The kinematics of the deformation 

No general theory can predict the response for nonlinear behavior. The rheological 

constitutive equations generally used are empirical in nature. 

2.2.3.2 The Lodge network theory 

LodgeUl4 proposed a single-integral constitutive equation for nonlinear viscoelasticity 

based on ideas from the theOl"y of rubber elasticity. It can be looked upon as a 

generalization of the Maxwell model. This constitutive equation is: 
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t 

",(t) = J m(t-t')B,(t,t')dt' 2-19 

- Q) 

where BIj(t,t') is the Finger tensorl and m(t-t') is the "memory function". It can be 

demonstrated that 

which gives 

N 

m(t-t') = dG(t-t')/dt' = LG/ÀI exp[-(t-t')/ÀI] 
1-1 

t 

17lj(t) =ftGJ>.1 exp[-(t-t')/À.] B,J(t,t')dt' 
1-1 

-Q) 

2·20 

2-21 

Unfortunately, this model does not give quantitatively correct predictions. It predicts that 

the viscosity is constant and that N2=O, which contradicts experimental observationIS
'
19

• N2 

has been shawn to be negative and between 10% and 30% of the absolute value of NI' 

2.2.3.3 Wagner's model 

The Lodge network model has been modified by Wagner and others20 in order ta 

improve Its predictions. This modification takes the form: 

r t 

o,(t) = J M B,,(~t')dt' 2-22 

• Q) 

where M is a nonlinear memory function depending on time and on the two scalar 

invariants of the Finger tensor, Il and 12, Thus: 

2-23 

This equation is a special case of the well-known BKZ2I equation. 
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Wagner2l proposed the separability of the memory function, whic:h can then he 

expressed as a product of the memory function for linear beh?vior m(t-t') and a "damping 

function" h(I"lz). This rt:sults in the foIJowing constitutive equation: 

t 

.,(t) = f m(t-t') b(I.,I,)B,(t,t')dt' 

-ca 

2-24 

However, this model still predicts that the second normal stress difference is zero. To 

correct this WagnerZ3 later proposed another constitutive equation given by: 

t 

a,( t) =fm(t-tÎ b(I .. I,) [(1+,8 )C',(tÎ + pC,,( t') Jdt' 2-25 

-. 
where C; is the Cauchy tensor, and (J is the ratio of the second nonnal stress difference to 

the first normal stress difference. 

In the cases of simple shear and simple extensional Dow, Il and III the scalar 

invariants of the Finger tensor, and thus the damping function, are only funcHons of "1, the 

shear strain, and f, the Hencky strain respectively. The damping function h(-y) takes iota 

account the destruction of the polymer network when it is deformed. h( "1) deereases as the 

strain increases; at zero strain h(O)= 1. 

Wagnerll proposed a single exponential function for the damping funetion in arder 

ta fit experimental data. OsakiZoi fitted his experimental shear data with a sum of two 

exponentials. Papanastasiou2S proposed a sigmoidal form for the damping function: 

2-26 

22.3.4 Theory of entanglements 

Entanglement theories have been developed in order to explain the unique flow 

behavior of melts and concentrated polymerie solutions. In concentrated solutions and melts 

there are stcong interactions between the molecules. These local interactions result from 
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the inability of the ehains to pass through eaeh other and are often imagined as 

entanglements between the long moleeular ehains. During the flow, these entanglements 

are continuously destroyed and created. 

2.2.35 Doi-Edwards theory 

Edwards26 was the first to propose that in a dense polymerie system, entanglement 

constraints aet like an open-ended confining tube, enclosing each macromoleeular chain 

along its average contour. The relaxation of the mole eu le after a deformation is then 

restricted to reptation out of its tube. Doi and EdwardsZ7•JO introduced the concept of 

reptational motion (de GennesJ1) intc adynamie model of the nonlinear viscoelasticity of 

concentrated systems of flexible macromoleeules under maeroscopic deformations. They 

derived a rheological constitutive equation eonsidering the motion of a single polymer 

mole cule in the me an field imposed by other ehains. 

According to the Doi-Edwards thr.ory, linear behavior is governed by two relaxation 

times, l. "the equilibration time" and ld the time for "disengagement". At very short limes 

(t<l.), lhere is a reorganization of the segments between entanglements. Once this is 

finished the mole cule begins to "reptate" out of its tube. This diffusion process is very slow. 

When t>l., the Doi-Edwards the ory predicts that the relaxation modulus is given 

by: 

G( 1,t) = h( 1 )G(t) 2-27 

and that the first normal stress difference in a step strain experiment is given by: 

2-28 
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U nfortunately, the theory does not give an analytical function for h( 1), but it predicts that 

h(-y) is inde pendent of chemical structure. Equations 2-27 and 2-28 have been found to he 

valid for a low density polyethylene. 

The Doi-Edwards theory also predicts that Nz(t,1)INI(t,7) is negative and varies with 

the strain, "f, following a relationship that is valid for ail linear monodispersed entangled 

polymers. The relationship predicted by the theory depends on whether the "independent 

alignment assumption"31 is used. The independent alignment assumption states that the 

orientation of each chain segment does not change during the relaxation process. 

Osaki et al. J2 have found that for polystyrene solutions, at strain magnitudes up to 

4.0, the observations are in good agreement with ~he predictLms of the Doi-Edwards 

the ory. These researchers also observed that the ratio of the longest relaxation time tl to 

the equilibration time 1. is equal to the ratio of the molecular weight to the molecular 

weight between entanglementsJJ• The molecular weight between entanglements Me is the 

average molecular weight spacing between entanglement points (12, p. 243). 

2.3 Several rheolo&ica1 tests 

A description of the theoretical background of the rheologieal tests used in this 

work is presented here. 

23.1 Small amplitude oscillatory shear 

In order to determine a discrete relaxation spectrum, small amplitude oscillatory 

shear experiments were carried out. The strain for this test is given by: 

1(t) = 10 sin(wt) 2-29 

where 70 is the amplitude of the strain, and w the frequency. If the rate of strain is 

sufficie.ntly small the induced stress CT(t) is: 
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a(t) = ao sin (wt+s) 2-30 

where 0 0 is the stress amplitude and 6 is the mechanical loss angle. 

The results of oscillatory shear experiments are usually described using two moduli 

defined as follows: 

G'(w) = aJ.to coss 

G"(w) = oJ'Yo sins 

called respectively the "storage" and the '10ss" modulus. 

The stress a(t) can then be expressed as: 

a(t) = "'o[G'(w)sinwt +G"(w)coSwt] 

Two alternative material functions can also be defined: 

,,'(w) = crJ'Y.;,in& = G"/w 

,,"(w) = crJ'Yocoss = G'/w 

The stress a(t) can be represented as follows in terms of these functions: 

a(t) = ~.,(,,'(w)cOSwt +,,"(w)sinwt] 

From those two material functions the complex viscosity ". is defined: 

,,*(w) = ,,'(w) -i,,"(w) 

and 
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In arder to determine a discrete relaxation spectrum, Laun34 used a linear reg,ression 

procedure to determine (Gt'~k) by me ans (Jf: 

2-39 

where 
H 

G'(wt) = LG,(wtÀI)Z/[l + (wtÀ,)l] 2-40 ,-, 
N 

G"(wt) --1: G,(wtA,)/[l + (wtÀI)Z] 2-41 
1-' 

First Laun selects values of À, ta have values equal to integer powers of ten from 

lQ-4 to HP and then calculates GI from 2-39. 

However, inferring the relaxation spectrum from experimental data in this way har, 

sorne disadvantages, since there is no unique solution and sometimes the relaxation times 

are found ta be negative. B&umi)aertel and Winterl5 have developed a nonlinear regression 

method that calculates simuItaneously the values of the relaxation strengths and the 

relaxation times. 

2.3.2 Steady shear experiments 

2.3.2.1 Typical results 

During steady shear experiments the sam pIe is subjected ta a constant shear rate 

1. The shear stress and the first and second normal stress differences can in principle be 

measured du!ing such an experirnent. The shear stress growth coefficient, '7+(.y), the first 

normal shear stress coefficient, 1Itt+('1) and the second normal shear stress coefficient 1It2+( 1), 
can thus be calculated from experimental data. The strain, shear stress and first normal 

shear stress difference are shown in figure 2.2. 

From figure 2.2b it can be seen that the shear stress, after an initial overshoot, 

becomes steady. This steady value is plotted as a function of shear rate to give the viscosity 

curve which normally includes a zero shear viscosity at low shear rates and a power law 
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Figure 2.2 Steady shear experiment 

region at high shear rates. The first normal stress differenee also reaehes a steady value 

after an initial overshoot as is shown in figure 2.2e. 

The maximum value of the first normal shear stress difference Nh occurs at a time 

tN, that is larger than the time t5, at which the maximum value of the shear stress occurs. 
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OsakP' found that ts=a/-y with éV=3. Depending on the fonn of the darnping function used 

it was round accarding ta Doi-Edwards theory that 2<tJts<337
• However, the precise 

values of tN and ts arc. very difficult to determine experimentally. Sorne researchers have 

even round in sorne cases the presence of an undershoot aCter the overshoot3l
• 

2.3.2.2 The Cox-Merz rule 

A relationship between the viscosity function and the complex viscosity is the Cox

Merz rule" which is given by: 

,,(1) = ,,·(w) (,,=w) 2-42 

However, this "rule" is based only on empirical observations and is not universally valid"'41
• 

For example, Osaki4Z reported the failure of this rule for polystyrene solutions when 

cM>lO' (c=concentration in glcm3, M=Molecular weight). 

2.3.3 Single-step strain experiment 

2.3.3.1 Introduction 

Single step shear strain is the test most widely used to study nonlinear viscoelastic 

behavior. In figure 2.3 is shown the strain versus time curve for an ideal step strain and 

for a typical actual deformation. Ideally, the material is deformed instantaneously, as shown 

by curve 1 in figure 2.3. In practice, however, it is not possible to generate such a 

defonnation. The actual strain is usually a ramp during which the total strain is given by 

.,(t)= 1.,6t, followed by a steady value, as represented by curve 2 in figure 2.3. 

2.3.3.2 The rlamping fonction 

The Doi·Edwards theory can be used ta predict the relaxation modulus G(t,.,), for 

times greater than ~k. The predicted relaxation modulus is the product of the linear 

modulus and a damping function: 
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G(t'1) = h( 1)G(t) 2-43 

This equation states that for different values of 1 the relaxation modulus G( t, -y) will vary 

by a factor equal to h( -y). Unear behavior is obtained as 1" O. Osakio found that the 

behavior of polystyrene solutions is linear up to values of strain of 0.57. 

Curve 1 

Curve2 

0--------------____ __ 
o~t t 

Figure 2-3 Single-step strain experiment 

2.3.3.3 Behavior of type 1 and type II solutions under single step shear strain 

Osaki and Kurata42 proposed a classification of polystyrene solutions according to 

thelr behavior in a step shear experiment. In particular they compared their experimental 

results with the prediction of the Doi-Edwards theory. For type 1 solutions the separation 

of the relaxation modulus into two functions given by equation 2-43 was observed at times 

greater than ~t, this time being proportional to Ml. For type II solutions the separation was 
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observed only in the terminal zone of G(t). Type 1 behavior was observed by Osaki and 

Kuruta when cM < Hl' and type II behavior at higher values of cM. The critical value of 

cM corresponds to about 50 entanglernents per molecule. Einaga et al.44 and Fukuda et al.4S 

found that the relaxation times did not de pend on the strain. When separable behavior is 

not observed, i.e for t<lt, Osaki et al.46 proposed the use of two damping functions ht(-y) 

and hz(..,), expressing the relaxatioal modulus as follows: 

N 

G(t,..,) L,\,h,(..,)G,exp(-t/l,) 2-44 
1-\ 

2.3.4 Exponential shear 

The strain generated by "exponential shear" is given by: 

oCt) = A [exp(at)-l] 2-45 

where a is the exponential rate constant and A the strain scale factor. Because of its 

exponential fonn, tbis deformation is a "strong flaw" that bas a tendency ta stretch 

molecules'". 

To represent the results of this type of experiment, the "exponential viscosity" has 

been defined by Zülle et al.· as follows: 

"e(t,a,A) = o(t,a,A)/.y(t) 2-46 

Doshi and Dealt' aIse defined another material function as follows: 

'7,(t,a,A) ~,~(Nl1(t) + 4(71(t» Il 2-47 

They suggest that this is more appropriate to characterize the role of the malecular 

stretching and orientation. 
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At small times the behavior of the sample under exponential shear straÎn follows 

linear behavior. At large times, the flow generates very rapid disentanglement, und the 

behavior is very nonlinear. 

The sliding-plate rheometer has been found to be very eonvenient to generate 

exponential shea~. 
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3. THEORETICAL BASIS OF EXPERIMENTAL TECHNIQUES USED 

Chapter outline 

ln Ihis chopler the sliding-plate rheometer is discussed fiTSI. The pn'nciple of operation 

of this rheomeler, the principal sources of erroTS, and a way to avoid some of these erroTS are 

presented. In a second part the birefringence technique is discussed. 17le stress-optical /aw, and 

the derivation of the relationship between birefringence and stress are given. 

'3.1 The sliding-Qlate rheometer 

3.1.1 Introduction 

The rheometer geometries that are most used to measure viscoelastic properties 

are of three types: 

1. Cone and plate 

2. Parallel disk 

3. Concentric cylinder 

A good review of these is given by Dealyt. Unfortunately, these types of rheometer cannot 

be used by the rheologist to perform experiments at high shear rates because of secondary 

flfJws, edge and end effects and non-uniform shear rates. The errors resulting from these 

effects have been reviewed by several authors103
• In particular, Done of these rheometers 

is useful for the study of nonlinear viscoelasticity. 

However, a new sliding-plate rheometer designed at McGill3.4 which incorporates a 

shear stress transducer, makes it possible to measure simultaneously the shear stress and 

the birefringence during de formations involving high shear rates. In contrast to rotational 

rheometers, however, the total strain is li[,1ited by the length of the plates. 
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3.1.2 Principle of operation 

The sliding plate rheometer, which generates a flow with a uniform velocity gradient, 

consists of two plates: one stationary and one movable. In the gap between the plates the 

polymeric sample undergoes simple shear (as shown in figure 2.1) when the sliding plate 

moves. For this rheometer the shear stress u, the shear strain 1 and the shear rate "'( are 

given by equations 3-1, 3-2, and 3-3 respectively. 

u = FIA 

1 = X/h 

-1 = V/h 

3-1 

3-2 

3-3 

where F is the force required to MOye the sliding plate, A is the wetted area, X is the 

displacement of the sliding plate, h is the distance between the two plates, and V is the 

velocity of the moving plate. 

3.1.3 Sources of error 

Some possible errors associated with the use of the sliding-plate rheometer are 

described in the following paragraphs. 

- Gap imperfection 

If the plates are not perfectIy flat or are not parallel, the gap between them will not 

be uniform. The effect of non-uniform gap can be se en in figure 3.1. Figure 3.1a shows 

non-parallel plates with a varying gap. Figure 3.1b shows the stress obtained for start-up 

of steady shear using truly parallel plates and figure 3.lc shows the case when the plates 

are not paralleI. Comparing figures 3.lb and 3.le, it can be seen that in the case of non

parallel plates the stress does not reach a steady value. 
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Figure 3.1 Parallelism of the plates of the sliding-plate rheometer 
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- Edge and end effects 

These effects are due to surface tension and ta the difference in rheological 

properties between the sample and the surroundings. They result from a mismatch between 

the state of the stress in a homogeneously deformed sample and the hydrostatic stress in 

the surrounding fluide It has been shawn that these effects arE: larger when the material 

is subjected ta high shear ratesS-8. Edge and end effects can also induce secondary flows. 

- Shear wave propagation 

When transient tests are performed, errors can he produced as a result of shear 

wave propagation. Because of the inertia of the sample, the sudden motion of the plate 

does not result in an instantaneous acceleration of ev~ry element of the sample. This 

shear wave propagation can also result in a stress overshoot. This source of error mainly 

occurs for liquids of low viscosity and is minimized when the gap is small. In the 

experiments conducted in this work the solutions studied have a high viscosity, and the gap 

is small. Thus, errors due to shear wave propagation are assumed to be negligible. 

- Slip phenomenon 

When concentrated polymer solutions and melts are subjected ta very high shear 

stresses the no-slip boundary condition at the wall May no longer be valid, and slip May 

occur'. 

- Bubbles 

Zones of non-contact resulting from gas bubbles trapped between the sample and 

the plate can induce errors. Su ch bubbles can also promote a cohesive failure between the 

sample and the plate. 
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- Viscous beating 

The deformation of the sample causes viscous heating and this will resuIt in a 

thermal gradient in the sample. This problem is more severe for high shear rates, high 

viscosities and large gaps. 

- ErrolS associated with sample deterioration 

An additional source of error is sarnple inhomogeneity due to the loss or absorption 

of water or solvent or to degradation. 

To overcome sorne of the se problems, particularly edge and end effects, shear wave 

prol,agation and sample deterioration, Dealy and Soong4.s,to,n developed a shear-stress 

transducer. Using this device the shear stress can be measured locally, at the center of one 

page, where the flow is uniform. 

3.2 Birefringence 

3.21 Why use light? 

Matter is composed of charged partic1es. A beam of light, which can be understood 

as an oscillating electric field propagating through space, can be altered when passing 

through a mate rial. (For more details see references 12-14). Rheoptics is the science that 

uses light ta evaluate rheological properties. The advantages of using light can be 

summarized as follows: 

- No physical contact between the light and the matter and therefore no perturbation of 

the tlow field. 

- Measurements can be carried out on small samples. 

- Fast time response. 
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3.2.2 Definition of birefringence 

When a light beam passes through a material, its velocity decreases. The refractive 

index, n, is detined as the ratio between the speed of light in vacuum and the speed of 

light through the sam pIe. The birefringencelS is the difference between the refractive 

indexes in two perpendicular directions for Cl given mate ria!. 

Ward l
• describes in bis book the three types of birefringence. They are: 

- Orientation birefringence observed in anisotropic materials. 

- Deformation birefringence, which can be caused by an external defonnation in isotropie 

or anisotropic materials. 

- Form birefringence, which occurs when the medium contains more than one phase. 

3.2.3 The stress-optical law 

Brewster17 observed that the light passing through a stressed glass plate in the 

direction of applied stress was polarized into two waves: one in a direction perpendicular 

ta the stress and the other in the direction of the stress. He also noticed that the velocity 

l r the wave in the stress direction was greater than the velocity of the wave in the 

'ection perpendicular to the stress. Other researchers have proposed that if light passes 

.1rough a plate of thickness, d, of materiaJ in a direction perpendicular to a simple tension 

P applied to the plate, the two polarized waves are retarded by the factors rI and r2 given 

by: 

rI = C1Pd 3-4 

where CI and C are constants for the two polarized waves. The "relative retardation" is 

then given by: 

3-5 
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where C is the stress-optical coefficient. Later, Maxwell and Newmannl8 showed that if the 

material is subjected to two perpendicular stresses, P and Q, the two factors are given by: 

3-6 

and therefore the relative retardation is: 

3-7 

More than a hundred years later, Lodge19 suggested that birefringence could be used 

to measure stresses in polymerie solutions. He formulated the stress-optical law according 

to which the stress is proportional to the birefringence. 

oIllllj = C alj 3-8 

where C is the stress-optical coefficient, which is a function of the chemical structure of 

the polymer. Experimental values of C for polymers can be found in the tabulations of 

experimental data on polymer melts by Janeschitz-Kriegl20 (section 1.2.3.2) and by Van 

Kevelen21• 

This law does not take into account light absorption and scattering. These can result 

in a deviation from the law. Also, it has been noticed in injection molding that a change 

in the temperature affects the birefringence2Z• 

3.24 Relation between the stress and the birefringence 

If the light beam is propagated in the x) direction, perpendicular to the shear plane, 

we have: 
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(111 -On = MlrJC [(sinx)Z_(cosxYl 

= Ml1JC cos2x 3-9 

where fJlu is the birefringence, C the stress-optical coefficient and x the stress-optical 

angle. The stress-optical angle is the smaller angle between the shearing plane and the 

vibration plane of the polarizers. 

If the light is propagated in the Xz direction (direction of the velocity gradient) we have: 

3-10 

If the light is propagated in the Xl direction (direction of motion), we have: 

3-11 

Deviations from the stress opticallaw have been obselVed in high-stress, extensional, 

flows for bath polystyreneZ3 and polyethylene». It was suggested by Wales25 that the stress

opticallaw remains valid up to values of stress of 101 N/m2• 

3.2.5 Measurement of birefringence 

Birefringence is Most often measured by the light intensity method. As shown in 

figure 3.2 the optical train usually used to measure birefringence is composed of: a light 

sour\:e, a polarizer, a test sample, an analyzer and a detector. The incident beam is 

polarized in a direction perpendicular to itself. The test sample retards one component of 

the polarized light. The analyzer recombines the light. The analyzer is rotated at 9()0 with 

respect to the polarizer. More information about optical components can be found in the 

books by Azzamu or Schurcliff14. 

Bühler216 developed an apparatus to measure birefringence witn a double laser beam 

to allow a more sensitive determination of biretringence. Another method used to measure 
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birefringence is the camp" nsator method. It is reviewed in detail in the Encyclopedia of 

Polymer Science (15 p45). 

After passing through the polarizer, the two perpendicular waves of Iight are 

retarded when they pass through the birefringent medium subjected to deformation. The 

retardation is proportional to the thickness and the normal stress difference. The light is 

then recombined by the analyzer. The light intensity measured by the detector is: 

3-12 

where r., is the incident intensity measured when the polarizer and analyzer are parallel, 

a is the smaUest angle made between the direction of one of the waves and the direction 

of one of the stresses. As can be seen, 1 is proportional to the birefringence. The 

derivation of this equation is given in Jessop's bookZ7• 
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4. EQUIPMENT AND EXPER1MENTAL PROCEDURES 

Glapter outline 

This chapler describes the experimental equipment. Fint, the characleristics Dl the 

samples are given. 1hen, descriptions 01 the IWO meometers and of the optical apparatus ured 

in Ihis work are provided. The experimenlal procedures are also explained in Ihis chaptet. 

4.1 PoJystyrene solutions 

Measurements were performed on concentrated solutions of a hi!;h molecular weight 

polystyrene. A wide range of nonlinear phenomena could thus be Jbserved. 

4.1.1 The polymer 

The polystyrene used here had a molecular weight of ~.84xlO' and a polydispersity 

index, MJMn, of 1.09. The polymer was synthesized by Toyo Soda Manufacturing Company. 

It has the appearance of raw cotton. Since polystyrene w:th a high molecular weight is not 

necessarily stable the samples were stored in a refriger:ltor. 

4.1.2 The solvent 

The solvent used was diethylphthalate (Boiling point = 2% oC, vapor pre~sure at 

20 OC = O.OS mmHg). This solvent was chosen because it is relatively s;-f~ co handle 

(Chiara l
). It also had been used by other researchers, and therefore the results of the 

present work could be directly compared with those obtained elsewhere. 

4.1.3 Solution preparation 

4.1.3.1 Previous work 

It is important that the solution be homogeneous and that the molecular weight not 

be affected by thf dissolution process. Solution preparation techniques had been previously 
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investigated by Chiaral and by DoshP. Chiara proposed to make the solutions of more than 

30% by weight in three steps, adding 10% each time, heating to a temperature in the 

range of 50-70 oc, and employing a low stirrer speed (around 10-20 rpm). The dissolution 

of polystyrene occurs very slowly. Therefore, another method was used by OsakP to 

prepare an 8% polystyrene solution in chlorinated byphenyl. He added dichlaromethane 

(a solvent with a low boiling point) to the mixture of polymer and solvent ta prepare the 

solution; when the polymer was completely dissolved, the solution was heated to 50 oC 

under vacuum to eliminate the dichloromethane. The addition of dichloromethane 

accelerates the dissolution of polystyrene. 

4.1.3.2 Method used 

For the present study, solutions with concentrations ranging from 0.188 glcm3 to 

0.Z06 g/cm3 were made. Each solution was prepared using 4g of polystyrene and about 

22.8g of diethylphthalate. This provided enough mate rial for two experiments on the 

sliding-plate rheometer and one on the Rheometrics Mechanical Spectrometer. The 

polystyrene and diethylphthalate were added in four steps. In the first three steps Ig of 

polystyrene was added to 7g of diethylphthalate, and in the fourth step the remaining 

polystyrene and diethylphtalate were added to obtain a solution containing 4g of 

polystyrene and 22.4g of diethylphthalate. 

The solutions were prepared in a 150 ml beaker and stirred at a speed of 5-6 rpm. 

To obtain such a low sp:ed a rheostat was installed in series with the motor. The solutions 

were beated to about 50 <>C. The temperature should nc,t exceed 100 oC, which is the glass 

transition tempe rature of polystyrene and the temperature above which degradation may 

take place. 

Between every addition of polymer and solvent the solution loses about 0.1 g due 

to evaporation. Therefore, the final concentration had an uncertainty of 2.5%. However, 

two solutions of the same nominal concentration tested on the sliding plate rheometer gave 

good reproducibility for a steady-shear experiment (cf chapter V, section 5.2). 
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4.1.4 Solution storage 

The solutions were aIso stored in the refrigerator. It is important that aIl the 

solutions used be stored under the same conditions for the reproducibility of experiments. 

The effec.:ts of storage conditions on polystyrene solutions have been studied by Moore et 

al.4.S. 

4.2 The Rheometrics Mechanical Spectrometer 

Dynamic measurements were done on a Rheometrics Mechanical Spectrameter 

(RMS-60S). More information about this rheometer can he found in the operating manual'. 

Two paraUel dises with diameters of 25 mm were used ta shear the samples in this study. 

The torque and normal force were measured in re~ponse to the deformation imposed 

during the experiment by the "sensitive shear stress-transducer" mode 1 T-100. A 

microprocessor connected with the rheometer calculates the rheological properties from 

the torque and normal force data. 

The polystyrene solution had to be heated to 50 oC for one hour or more in arder 

ta become tluid-1ike. This operation had ta he done in an oven in order for the heating 

ta he uniforme The sam pie was then squeezed between the two dises in a slow and graduai 

manner by increments of 20 ~m until the gap between the plates was 1 mm (see figure 

4.1). Bdore starting the "squeezing operation" the sample was left at rest in the 

rheometer for twelve hours ta assure its uniformity. 

The relaxation spectrum was calculated using a commercial software package 

(IRIS') developed by Baumgaertel and Winter'. 

4.3 The slidine-plate rheometer 

Most of the experiments in this study were performed on a sliding-plate rheometer 

developed at McGiIl University. The sliding-plate rheometer is equipped with a servo

hydraulic actuator and a shear-stress transducer ta measure the local stress. The servo

hydraulic system is controlled (MTS 4132 Control) by a MTS Madel 442 contraller and 
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Figure 4-1 Parallel dise geometry 
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a DEC PDP-ll microcomputer system. The rheometer is also equipped with an optical 

set-up for birefringence measurements in the 1-3 plane of the sample. 

The rheometer consists of an upper stationary plate and a lower moving plate. The 

lower plate rides on tinear bushing bearings. A gap of either 0.365 mm or 0.65 mm was 

maintained between the plates using shims. In this gap the polymer was subjected ta simple 

shear (see figure 4.2). A shear stress transducer is mounted in a cavity in the upper plate 

(see Figure 4.3). The shear stress transducer measures the detlection of a beam in a 

direction parallel to the flow. This detlection is caused by the shear stress acting on the 

end of the beam. The face of the transducer,including the shear-sensitive end of the beam, 

is flush with the surface of the upper plate. The detlection of the beam is monitored by 

an MTI Accumeasure capacitance probe and amplifier 1023-P A. 

The optical system used to measure birefringence is described in a separate section 

( 4.3.3). 

4.3.1 Experimental procedures 

The two plates of the sliding-plate rheometer were cleaned carefully with ·acetone 

and petroleum ether to remove any remaining sample from a previous experiment. The 

glass windows used for the measurement of birefringence were polished using an optical 

c1eaning clotho Mter careful c1eaning, the transducer housing was mounted and fastened 

tightly in position. It is 'very important that the shear-sensitive surface be flush with the 

surface of the plate. Also, the capacitance probe face must be parallel to the cantilever 

beam but must not touch the beam. The hot (50 OC) polystyrene solution was then poured 

on the glass window of the lower plate. The solution was left resting for 24 hours in order 

to aHow air bubbles to escape (see figure 4.4). The upper plate and the shims fixing the 

thickness of the gap were mounted in place and carefuUy screwed down in arder for the 

pressure on the polymer to be evenly distributed. The polymer was finally left resting for 

an additional 12 hours before the beginning of an experiment. The shear stress transducer 

was calibrated using standard weights suspended by a system of pulleys and wires. 
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Figure 4.2 The sliding-plate rheometer 
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Figure 4-3 The shear-stress transducer with micrometer 
for positioning the capacitance probe 
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4.3.2 F1atnesa of the plates 

It is important that the gap he unifonn, and that the plates he parallel to avoid the 

errors described in section 3.2.2. Figure 4.5 shows the stress for a steady shear experiment 

using para Del and non-parallel plates under the same operating conditions. The importance 

of the flatness of the plates can he readily seen. Callipers were used ta evaluate the 

tlatness of the plates. 
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Figure 4-5 Experimental cvidencc of non parallelism of the plates 

- The Iower plate 

The optical glass was removed and its tlatness was checked. A variation in flatness 

of 2.56% of 0.3 mm for the whole length was found. In order to improve the tlatness, the 

lower plate was redesigned. In the new design, adjustable screws Iocated under the glass 

can be used to correct small imperfections when the glass is not parallel to the upper plate 

(s~e figure 4.6). 

- The upper plate 

The variation of tlatness of the upper plate was verified ta be Jess than 5%. 
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Figure 4-6 The lower plate 
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4.3.3 The optical system 

The sliding-plate rheometer incorporates an optical system for measurement of 

birefringence that was originally designed by Haghtalab'. 

4.3.3.1 Description 

The major components are shown in Figure 4.7 and described below: 

1. A 0.5 mW helium-ne on laser and power supply (Optikon company, LS-.5). 

2. A laser beam expander (Optikon, 16X laser beam expander with spatial fllter, 31-

4054). 

3. A polarizer and an analyzer consisting of two polarizing prisms (Oriel corporation 

of America, 2520-2). 

4. An U-V extended visible diffuser head (Oriel, 7062). 

5. A photomultiplier photometer (Oriel, 7070). 

6. A laser line filter (Oriel, 5272, 1 in diameter). 

7. Tubular optical bench, carriers, rod holders, polarizer rotators and adaptors. 

In order to measure birefringence the laser light beam is first expanded by the 

beam expander, passes through a polarizer and a filter, and is then transmitted through 

the sample. The fllter is used to prevent too much light from going into the detector. The 

transmitted light go~s through the analyzer and is measured by the photomultiplier. The 

laser line filter allows only light with the same wavelength as the laser to reach the 

detector. The diffuser is used to rcduce the influence of the angle of incidence of the light. 

The photocurrent generated in the photomultiplier is proportional ta the intensity of the 

light reaching the detector. The output voltage signal, which is digitized and stored on the 

PDP-I1, is proportional to the intensity of Iight reaching the detector. 

4.3.3.2 Experimental procedures 

The laser and the light detector were switched on 24 hours prior ta an experiment 

ta assure steady state. Before carrying out the experiment, all the optical components were 
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aligned. The experiments were conducted in a dart room to avoid interference of ambient 

light. 

At the beginning of an experiment, I.., the value of the incident light was measured. 

The sample was in the rheometer, and the polarizer and analyzer were paraJIel. This gave 

the maximum intensity. During the experiment, the polarizer was rotated to have a 45° 

angle with the flow. The analyzer was rotated to make a 90'> angle with the direction of 

the polarizer. Thus, the polarizer and analyzer were crossed. The accuracy of tbis step was 

checked by seeing if the light reaching the detector was al its minimum. The intensity, 1, 

during an experiment was then measured. The birefringence is related to the intensity by: 

4-1 

where AD is the birefringence, d is the gap between the moving plate and the stationary 

plate, t, is the incident intensity, 1 is the intensity during an experiment, and l is the 

wavelenght of the laser light. 

The results were analyzed using a microcomputer and software developed previously. 

4.3.4 Control of the tempera turc during the c:xpcriments 

A thermocouple was placed on the upper surface of the upper plate of the 

rheometer and connected to a chart recorder to measure fluctuations of the tempe rature 

during the experiments. The thermocouple was a1so necessary to check that the 

temperature of the rheometer, which was warmed by the nearhy hydraulic pump, had 

reached a steady value before starting the experiment. To study the effect of temperature 

on birefringence, tne output voltage from the light detector was also recorded on the same 

chart recorder. 

AIl the experiments performed with both the Rheometrics Mechanical Spectrometer 

and the sliding-plate rheometer were done at room temperature, because there was no 

temperature control system for these rheometers. 
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S. RœULTS AND DISCUSSION 

Chauter out/ine 

ln this chapter the results of the research are presented and discussed. ln the fiFSt pan 

the results of the smaU amplitude oscillDtory shear experiments are presented, and lhe 

relaxation spectrum is detennined. The resulls of the steady shear experiments are given in the 

second pan. The third part deals with the results of the step-shear experiment and the 

determination of the damping function. Finally, the results of the exponential shear experimenlS 

are presented in the fourth part. 

S.l. SmaD amplitude oscillatory shear qperiments 

S.1.1 Determination of the material functions 

The loss modulus Ot, the storage modulus G", and the complex viscosity '1. were 

determined for a 0.199 g/cml solution over four decades of frequency. Six measurements 

per de cade were made. ParaUel dise fixtures were used in the Rheometrics Mechanical 

Spectrometer. The radius of the dises was 25 mm and the gap between them was 1 mm. 

The experiments were performed at a temperature of 23 oC. The loss modulus, G', the 

storage modulus, G", and the complex viscosity, "., are plotted versus the frequency, w, in 

figure 5.1. The straigbt line for w > 0.316 radis was obtained by least-square linear 

regression. The equation for this line is: 

log(,,·) = 1.66 - 1.03 log(",,) 5-1 

The data points for 0.01 radis < w < 0.316 radis were simply connected by straight line 

segments. 

The curve of ".(",,) shows a power law region ("" > 0.316 radIs). In this apparatus 

the lowest possible frequency was 0.01 rad/s, which was not low enough to give the zero 
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shear viscosity '100 Osakil obtained a value for '10 of 3 10' Pa s by using frequencies of less 

than 1()'3 radis. For frequencies above 5 rad.s·l the storage modulus becomes constant. It 

can he seen there is a broad plateau. The value of the plateau modulus, GM, can th us be 

evaluated . An average of the values of the modulus for frequencies ranging from 1 radis 

ta 100 radis gives a plateau modulus GN of 3924.1 Dyne/cm1 = 392.41 Pa. At frequencies 

above 3 radis, the loss modulus is too smaD ta he measured, which indicates a very elastic 

material. A cross-over point between G' and Gn was observed at a frequency of about 0.01 

rad/s. 

5.1.2 Determination of the relaJation spectrum 

The discrete relaxation spectrum was determined from the dynamic mechanical data 

using a commercial software package (IRIS). The fundamentals of the method used have 

been descn'bed by Baumgaertel and Winter1• The results obtained from the computation 

are listed in table 5.1. 

Table 5.1 Relaxation times and strengths as detennined using IRIS 

G, .\, 

(Pa) (5) 

77 1.587 
121.5 12.01 
164.6 66.50 

5.1.3 Unear reluation modulus 

The linear relaxation modulus can he calculated from the relaxation spectrum u5ing 

equation 2-18. 

N 

G(t) = LG, exp(-t/>..) 2-18 
'-1 
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for W"I_<t<W·1 .. where w.. is the minimum frequency and w.. is the maximum frequency 

at which measurements were made. ÀI and GI are the id! relaxation time and the 

corresponding relaxation strength respectively. 

Figure 5.2 shows the linear relaxation modulus as a function of time. The longe st 

relaxation time, t1, was determined by the slope of the asymptotic straight Une in the plot 

of 10g[G(t)] versus time at long times and was found to be equal to 66.5 S. It should he 

noted that the linear relaxation modulus at smal1 times is equal to the plateau modulus at 

high frequencies. 

5.2 SteasJy sbear gperimcnts 

5.21 Raw data 

Steady shear experiments were performed for shear rates ranging from 0.01 s·t ta 

70 S"I. The 501ution tested was a 0.199 g/cm3 solution. The gap used was 0.365 mm, and the 

temperature was 25.7 "C. Figures 5Ja and 5.3b present the shear stress results for four 

shear rates. These four rates represent the four types of behavior found using 17 different 

shear rates. Each of these types of behavior is described below. 

- From 0.01 Si to 0.3 st 

The shear stress does not reach a constant value after the maximum even at long strains. 

This case is illustrated in figure 5.3a for ':'=0.01 S"I. 

- From 0.3 Si ta 0.5 st 

The shear stress as a function of shear strain shows an overshoot and becomes steady at 

higher shear strains. This case is illustrated in figure 5.3a for 1=0.3 S"I. 

- From 0.5 Si ta 5 st 

An initial overshoot (at ., = 2.5) is followed by an undershoot (at '1 = 10) and another 

overshoot (at l = 17.5) before becoming steady. This case is iIlustrated in figure 5.3b for 

7= 1 S"I. 

- Above 5~1 

Onlyone overshoot is found. This case is illustrated in figure S.3b for 1=55"1. 
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In figures 5.4a and 5.4b îs presented the intensity of light detected by the 

photomultiplier as a function of strain for four shear rates: 0.05, 0.7, 5, and 1 0s·1. Again 

among the 17 shear rates used, four types of behavior were observed: 

- From 0.01 1"1 ta 0.3 Si 

The intensity increases as a function of strain and levels off. This case is illustrated in 

figure 5.4a for 7=0.05 S·l. 

- From 0.3 1"1 to 1.5 Si 

The cur\'c of the intensity as a function of strain displays an overshoot before becoming 

steady. This case is iUustrated in figure 5.4a for ..;= 0.7 S·I. 

- From 1.5 Si ta 10 Si 

An initial overshoot (at .., = 9) is foUowed by an undershoot (at .., = 21) and a second 

overshoot (at .., = 30). This case is iUustrated in figure 5.4a for ~=5 s·t. 

- Abovc: 101"1 

Onlyone overshoot is found, and after tbis the intensity decreases continuously. This case 

is ilIustrated in figure 5.4b for ~= 10 5.1• 

5.2.2 Viscosity 

ln order ta obtain the viscosity defined by equation 2-8 

" = 0/:' 2-8 

the steady-state stress value at each shear rate was used. The steady stress value represents 

an average over the range of strains during which the value of stress fluctuated less than 

3%. 

Figure 5.5 shows the viscosity as a function of shear rate on a log log plot. It can 

be seen from this figure that the zero-shear viscosity was not reached even at very low 

shear rates. The power law constants were determined using linear regression. The 

resulting power law equation is: 
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log(,,) = 2.37 - 1.01 log(..y) 5-2 

which implies that 

,,(Pa s) = 237 (=,YOl 5-3 

The steady-state stress is thus essentially inde pendent of shear rate: 

o = ".; :::r 237 Pa 5-4 

Figure 5-6 shows the steady-state stress as a function of shear rate. For the rates 

corresponding to the power law region the stress is constant. This behavior has also been 

observed by OsakP at lower shear rates (0.4 S·I<..,< 1 S'I) for a 0.166 g/cm3 polystyrene 

solution. The molecular weight of the polystyrene was JAU)' g/mol. 

5.2.3 Third normal stress coefficient 

The third normal stress difference was calculated from: 

N, = Anule 3-15 

where C is the stress-optical coefficient measured by Philipoff4 CC = 5.S.Hi' m2/N) and Mlu 

is the birefringence given by: 

An13 = >.d/w arctan «I/L,)/Y.-(I/L,)2» 4-1 

where >. is the laser wavelength, d is the thickness of the gap, 1 is the intensity measured 

during the experiment when the polarizer and analyzer are crosse d, and 1., is the intensity 

measured at the beginning of the experiment when the polarizer and analyzer are parallel. 
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Two values of the intensity were considered in detail for each experiment at a given 

shear rate: the maximum and thc~ steady state values. In the experiments where no steady 

state value of intensity was observed only the maximum intensity was considered. The third 

normal stress difference corresponding to the maximum intensity, N., and the third normal 

stress difference corresponding to the steady value of intensity, NJ.&, were evaluated. 

The third normal shear stress coc:fficients corresponding ta N. and N lot are then given by: 

•• = N-t.yz 

.J.& = N.J~z 

5-5 

5-6 

Figures 5.7 and 5.8 show ~. and "tlot as functions of shear rate. The straight lines were 

obtained by tinear regression. The equations for these lines are: 

loge t.) = 4.02 - 1.14 log(.y) 

log(13oI) = 3.64 - 1.76 log(-;) 

where t is in Pa S2 and .y is in S·I. 

5~4 The transient behavior 

5-7 

5-8 

The curves of stress and intensity as functions of strain show overshoots at shear 

rates greater than 0.3 S·l. The time at which the maximum value of stress, t., occurs and 

the time at which the maximum value of intensity, tnt occurs are shown as functions of 

li., (inverse of the shear rate) in figure 5.9 on a log-log plot. Straight lines were obtained 

by linear regression of the data for rates from 0.3 S·l ta 10 S·l. The equations of the se lines 

are as follows: 

t. = 3.03 /:, 

ta = 8.62 Pr 
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at a temperature of 25.7 oC 
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Thus, the overshoot oceurs at constant strain inde pendent of shear rate. This is in 

agreement with the results of OsakP for polystyrene solutions and Sakai et al.' for solutions 

of poly(a-methylstyrene). At higher rates (above 10 S'I) equations 5-11 and 5-12 are no 

longer valid, and the times at which the overshoots occur are greater th an those predicted 

by equation 5-11 and 5-12. 

5.2.5 ReprodUClbility of the data 

The reproducibility of the data is better than 5% for five repeats. Ta evaluate 

reproducibility, two solutions, 1 and 2, with a nominal concentration of 0.193 g/cm3, were 

prepared simultaneously and were used in two series of steady-shear experiments with 

shear rates ranging from 0.05 s·t to 70 s·t at a temperature of 27 "C. The rheometer gap 

was 0.365 mm. 

Figures 5.10 and 5.11 show the viscosity and the third normal stress coefficient 

corresponding ta the maximum value of light intensity as functions of shear rate on a log

log plot for solutions 1 and 2. It can he se en that the results for the two solutions are 

essentially the same. The best fitting for the power law regions gave: 

Solution 1: 

log(,,) = 2.30 -1.04 log( -1 ) 

log(.:.) = 3.26 -1.17 log(.:,) 

Solution 2: 

log(,,) = 2.27 -1.03 log( -1 ) 
10g(1t3as) = 3.10 - 1.11log(~) 
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From this it can be concluded that the method of preparing the solutions as weil 

as the rheological data are qui te reproducible. 

These results can be compared with the results for the 0.199 glcml solution given 

above. The power law constants for ,,(-1) and ~3m( -1) are the same for the three solutions 

within 2% and 5% respectively. For the 0.199 glcmJ solution the ordinate values at the 

origin are larger, which results from the difference in concentration. 

5.26 Effect of concentration 

Figure 5.12 shows the viscosity as a function of shear rate for a 0.204 glcrnJ solution 

and a 0.199 glcrnJ solution. The values of viscosity in the power law region were fitted using 

linear regression. The resulting equations are: 

C = 0.204 glcmJ log( '7) = 2.45 - 1.156 log(.y) 

C = 0.199 glcmo3 loge,,) = 2.37 - 1.010 log(i) 

5-14 

5-2 

The slope for the straight line in the power law region for the 0.206 glcrn1 solution 

is greater than the one for the 0.199 glcmJ solution. OsakP also observed that when the 

concentration of the solution increases, particularly, when it is a type II solution, the power 

law index increases. 

5.27 Comparison with oscillatory shear experiments 

Figure 5.13 shows the complex viscosity as a function of angular frequency and the 

viscosity as a function of shear rate for the 0.199 glcm3 solution. The equations for the 

straight lines in the power law regions had l?een obtained previously: 

loge '7 *) = 1.66 - 1.03 loge w) 

loge '7 ) = 2.37 - 1.01 log(.y) 
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The two CUIVes are essentially the same. The horizontal shift can be explained by lhe 

difference between the temperaturl.!s at which the experiments were performed. Therefore, 

for this "olution the Cox· Me Ir rule is valid. 

Figure 5.14 shows the same curves for the 20.4 g/cm3 solution. The dynamic 

experiments for this solution were run at 22 oC. The equations for the two straight lines 

are given below: 

log(,,·) = 2.69 - 0.93 log(w) 

log( f;) = 2.45 - 1.16 log( -1) 

5-15 

5-14 

It can be seen from this figure and from equations 5-14 and 5-15 that the Cox-Merz role 

is not valid. Osaki et aU also observed deviations from the Cox-Merz role at higher 

concentrations, particularly for type II solutions. 

5.3 Ste~,..shear gperiments 

5.3.1 Results 

Stress relaxation experiments were carried out with a solution of concentration 0.199 

glcmJ• The strain varied from 0.30 ta 20 strain units. The relaxation of bath shear stress 

and birefringence were also studied for a 0.204 g/crnJ solution. In tbis case the strain varied 

from 0.1 to 15 strain units. For all these experiments, the gap used was 0.365 mm, and the 

temperature was 26 "C. 

The relaxation modulus, O(t,-y), was calculated from the shear stress according ta 

G(t,-y) = o(t,-y)/.., 2-13 

Another material function, here called the third relaxation modulus, was calculated from 

the third normal stress difference as follows: 
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5-16 

where NJ is determined from the birefringence: 

':1·15 

and the birefringence is determined from the light intensity: 

Âll = ').d/'If arctanL(I/L,)/~-(I/L,)2)1 4-1 

Figure 5.15 shows the shear stress relaxation modulus for the 0.199 g/crnJ solution 

for various strains. In this figure is also shawn the linear relaxation modulus calculated 

from the discrete spectrum according to 

/II 

G(t) = ')01 exp(-t/').I) 
f:t 

2-18 

Figures 5.16 and 5.17 show the relaxation modulus and the third relaxation modulus 

respectively as functions of time for the varia us strains. The curves were obtained by 

averaging the raw data ta eliminate noise. The sampling frequency of the data acquisition 

system was 10 samplp.s per second. The data points in figures 5.15 ta 5.17 are averages of 

20 data points. 

5.3.2 Discussion 

Tables 5.2 and 5.3 give the rise time for the t'Wo series of experiments. According 

ta Launa the influence of the rise time, âto, is negligible for measurements taken at times 

t greater than .tot.,. The largest rise time in the experiments performed here was 0.20 s. The 

first data points taken into consideration here were at t = 2 s; therefore, the influence of 

ât., was considered negligible. 
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The curve of the line(lr relaxation modulus calculated from the dlscrete spectrum 

and the curve of the relaxation madulus obtained fram the step shear experiment for small 

strain shauJd be the same. Those two curves are shawn on figure 5.15; the two curves are 

parallel but differ by 30%. This difference results from the faet that the dynamic 

experiments, from which the discrete spectrurn was mferred, were performcd at 23 "C whllc 

the step shear experiments were performed at 26 oC. Those twa curves can he hrought 

together by a time-temperature (honzontal) shift. The shift factor al was evaluated and 

found ta be equal to 3.2. No birefringence was observed for strains less than 0.82. Thus 

fa! strains of less than 0.82 the behavior of the melt can he considered linear. 

Table 5.2 Rise time for Table 5.3 Rise time for 

step-shear performed with step-shear performed with 

a 0.199 g/cm3 solution. a 0.204 g/cm3 solution. 

10 '"'(0 àt '"'(0 10 àt 

0.16 4 0.04 0.10 4 0.025 

0.36 8 0.045 0.31 8 0.038 

0.52 12 0.043 0.42 12 0.015 

0.74 16 0.046 0.62 16 0.038 

0.99 20 0.049 0.83 20 0.041 

1.41 30 0.047 1.27 30 0.042 

1.92 40 0.048 1.86 40 O.()47 

3.94 60 0.066 3.88 60 0.065 

5.96 75 0.079 5.78 75 0.071 

7.91 100 0.080 7.84 100 0.078 

9.95 100 0.099 9.75 100 0.097 

14.90 100 0.149 14.65 100 0.146 

19.88 100 0.20 

5.3.3 Superposition 

The relaxation moduli as functions of time are parullel curves for different strains. 
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This is valid bath for the relaxation function defined in terms of shear stress as weil as that 

for the third normal stress difference. The curves for the different strains could be 

superposed by means of a vertical shlft. Figures 5.18 and 5.19 show the curve:, of a(t)/-y 

and N1(t)/-yz after shi ft mg. The curves are superposabie for tt>4s wtthin expen .1ental 

error. 

According to Osaki9 the molecular weight between entanglements for polystyrene 

solutions is given by: 

if c < O.3g1cm3 5-17 

Therefore, for c = 0.199 g/cm1: 

M. = 1.18x1OS 5-18 

The ratio MIMe is then equal to 22.1 ami is comparable ta the ratio tJtt (where t l is the 

longest relaxation time and tt is the time after which the superposition of the relaxation 

modulus curves is possible) which is equal to 16.7. Osaki' also found that 

5-19 

5.3.4 Determillation of the damping function 

The values of the damping function h( l) were deterrIiined from the shift factor 

required ta superpose the curves of Figures 5.15 and 5.16. The shift factor required ta 

brbg the curves of Figure 5.17 together gave the values of another damping function, 

cé:illed here h1( l ). 

The expenmental data for the damping functions h( l) and h1( l) are plotted as 

functions of straill in Figure 5.20. The lines represent the best fit to equation 2-26. The 

subroutine used to fit the experimental data was EDLIN from the IMSL library. This 
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subroutine is based on least squares regression. Thus, the two functions h( 7) and h3( 7) for 

the 0.192 glcm3 solution are: 

h( 7) = 1/(1+0.22.,2) 

h3(-y) = 1/(1+0.lSy2) 

The shear stress damping function for the 0.199 g/cm3 solution was: 

h( 7) = 1/(1 +0.2l6-y2) 

5-20 

5-21 

5-22 

A comparison of equations 5-20 and 5-22 shows the good reproducibility of the data. 

5.3.5 Ratio of N2 to Nt 

Llnd 

According ta Wagner" we should have 

G(t,7) = h(-y) G(t) 

N1(t,-y) = ~7) G(t) ., 

The function measured here was: 

5-23 

5-24 

5-25 

If the ratio between the first and second normal stress differences is equal to {J, the 

ratio between the third and the first normal stress differences is (l-{J). From this it follows 

that: 

5-26 
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The ratio fJ can then be determined as a function of .., from the experimental data. Figure 

5.21 shows fJ as a function of strain. It can be seen that the ratio NJNI is not constant. 

This is in disagreement with the resllits of Wagner12, Christiansen and coworkers lJ, and 

Tannerl
" who found that fJ is constant, although these authors studied different solutions. 

5.4 &ponential sbear 

5.4.1 Results 

Exponential shear experiments were conducted using a 0.192 g/cmJ solution. The gap 

between the two plates was 0.365 mm. Experiments were performed for an exponential 

rate constant, a, ranging from 0.02 ta 6 (with a scale factor equal to 1) at a tempe rature 

of 27 oC and for a strain scale factor, A, ranging frorn 0.1 ta 10 (with an exponential rate 

of 0.5) at a temperature of 25 oC. For ~ll these experments the exponential shear stress 

co~ffieient and the birefringence were evaluated. The exponential shear stress coefficient 

". is defined as: 

'7.( t,Q,A) = a( t )17( t ) 

".(t,a,A) = a(t)/aAexp(at) 

using the shear rate, .y(t), given by equatïon 2·45 •. 

2-46 

5-27 

However, the exponential shear stress coefficient was not calculated according ta 5-27. ft 

was evah~ated from the measured value of the strain rate since the actual strain history 

always dt:.viates ta sorne extent from ide al strain history, so that aAexp(at) and 1(t) are not 

equal in practice. 

Figure 5.22 shows the exponential shear stress coefficient, '7., as a function of strain 

for an exponential rate constant, a, of 0.02 and a strain seale factor, A, of 1. Figures 5.23 

and 5.24 show the exponential shear stress coefficient, '7., as a function of shear strain, for 

values of the exponential rate constant, a, ranging from 0.1 to 6 and for values of the 

strain seale factor, A, ranging from 0.1 to 10 respectively. Figures 5.25 and 5.26 show the 
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normal stress difference, N), as a function of shear strain, for values of the exponential rate 

constant, QI, ranging from 0.1 ta 6 and for values of the strain scale factor, A, ranging from 

0.1 ta 10 respectively. 

The curves were obtained by averaging the raw data ta eliminate noise. The 

sampling frequency of the data acquisition system was 70 measuremen~s per second, and 

the points shown in Figures 5.22 ta 5.26 are averages of 5 data points. 

5.4.2 Discussion 

Figure 5.22 shows the b\,:h~vior of the exponential stress coefficient for a very small 

value of exponential shear rate constant, c&. In tbis case the behavior of the polymer during 

th(! flow follows linear viscoelasticity over a significant part of the experiment. The 

exponential stress coefficient, '1 .. increases monotonically as a function of shear strain. It 

can be seen from Figures 5.23 and 5.24 that '1. a! a function of strain has a maximum. The 

maximum occurs at about the same value of strain for eve:y value of the exponential rate 

constant, QI, and for every value of the strain scale factor, A It occurs at a total strain of 

6.5 strain units. After the maximum the function decrea'.ies continuously without reaching 

a steady value. It can be seen that both QI and A have a strong influente on the results. 

When QI or A increases, '1. decreases. This is not in agreement with the prediction of the 

GiesekiusLl theory discussed by Schieberl6 which is that ,,1'10 is relatively insensitive ta a 

variation in A. 

The influence of QI, the exponential shea r rate constant, and of A, the strain scale 

factor, on the third normal stress difference can be seen in figures 5.25 and 5.26 

respectively. For QI < 1, the third normal stress difference as a function of time increé'ses 

continuously until reaching a maximum value. It stays constant at this maximum value 

thereafter. For QI > 1 the maxünum in the third normal stress difference is reached at a 

higher strain. After the maximum the value of the thtrd normal stress difference decreases 

sharply. It can be seen from Figure 5.26 that A does not have a strong influence on the 

results. For 0.1 <A<4 the third nonnal stress difference increases, finally reaching a steady 
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value. For A= 10, N J as a function of strain displays a maximum and then decreases. The 

parameter a has a larger influence than A on the third normal stress difference. 

5.5 Effect of tempemture 

It was noticed that heat from the nearby hydraulic pump incrcased the temperature 

of the rheometer over long periods of time. The temperature of the upper plate was 

measured by means of a thermocouple. Before running any experiment it was established 

that this tempe,'ature had reached a steady value. During the experiments it was verified 

that the temperature of the melt varied by less than 0.1"<:. When the experiment was 

finished and the pump was stopped the temperature of the upper plate decreased until 

room temperat"Jre was reached. This temperature was ml!asured simultaneously with the 

intensity of light reaching the photodetector. Figure 5.27 shows the temperature and 

intensity of light passing through the polymer as fun ct ions ai time. It can be seen on this 

graph that a decrease in the tempe rature causes a increase in birefringence. 
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6. COMPARISON wrrn THEORETICAL MODEL 

Chapter omline 

This chepter presents a comparir;on of the experimental data for steady shear 

experiments and expmtential shear experimeltts with the predictions u[ Wagner's modeL In the 

[irst part the model is presenled. The calcu/anons neces~ary for usirzg Wagner's model are 

presented in the second part. The comparisolU of the exoerim,mtal results and predictions [rom 

the model are presented and discussed in a third part. 

6.1 Introduction 

The results of the steady shear experiments and exponential shear experiment for 

a 0.199 glcm3 solution were compared with the predictions ot Wagner's constitutive 

equation. This equation expresses the state of stress in the polymer as a function of t'ne 

flow history (kinematics of the flow) am' the material properties of the polymer. Wagner's 

constitutive equation is given below: 

t 

",(1) = J m( 1 -t')h(I"I,)[ (1+ P )B,,( 1,1') + pC,,( l, t') jdt' 

-CIl 

6-1 

Each of the functions in th..: integral are defined bellow. 

6.1.1 The memory function 

The memory function, m(t,t'), is given by: 

N 

met-t') = LGJ>', exp-(t-t')/>'I 2-18 
I-t 

with 0 1 being the id! relaxation modulus and ~I the i'" relaxation time. The relaxation 

modulus and relaxation times for the polystyrene solution considered here are given in 
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table 5.1. These parameters come from the discrete spectrum calculated using small

amplitude oscillatory shear data. 

6.1. ~ The damping fonction 

The damping function, h( 'Y), used here is given by: 

h( 'Y) = 1/(1 +O.216-yZ) 5-22 

6.1.3 The Idnematic:s 

Blj(t,t') and Clj(t,t') are the components of the Finger and Cauchy tensors 

respectively, and fJ is the ratio of the second normal stress difference to the first normal 

stress difference. 

6.2 Predictions of Waper's model 

6.21 Start-up of steady shear 

In steady shear tlow the tluid is deformed by the motion of the upper plate moving 

at a constant velocity. The flow history is given by: 

'1(t) ;;: 0 

'1(t) = ';t 

t < 0 

t > 0 

Substituting 5-22 and 2-18 into 6-1 we obtain: 

t 

6-2 

t1,,( 1) {t.GJ~1 exp( -( 1-1')/~I)[1/( 1+ 0.221'))[(1+ P )B.( 1,1')+ pC,,( 1,1')) dl' 6-3 

•• 
The components of the Finger and Cauchy tensor are as follows: 
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For t' < 0 Bu(t,t') = ";t 

Cu(t,t') = -':'t 

For t' > 0 Bu(t,t') = .y(t-t') 

Cu(t,t') = -";(t-t') 

Substitllting 6-4 into 6-3: 

t 

a,,(t) = ItGJ~1 exp("s/~I) [1/(1+0.216(1t)'») (~t) ds 

.«1 t 

+ (r.Gb.1 exp(-s/ll) [1/(1+0.216(1S)1)] (.ys) ds 
)"1.1 
-«1 

where s = t-t'. 

6-4a 

6-4b 

6-4c 

6-4d 

6-5 

In a similar way, the first normal stress difference [NI(t) = 011(t)-(112(t)] can be expressed 

as follows: 

t 

NI(t) = (tGbl exp(-s/ll) [1/(1+0.216(1t)1] (.yt)l ds 
) "181 

• «1 t 

+ FtGb.1 exp(-s/li) [1/(1+0.216(';s)2] (";S)l ds 
)_4., 
.«1 

6-6 

The second and third normal stress difference N1(t) and N3(t) are then given by: 

N1(t) = fJ NI(t) 

and N3(t) = (133(t)-012(t) = (1 +fJ) NI(t) 

6.2.2 Exponential shear 

The strain history for exponential tlow is given by: 
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..,(t) = 0 

..,(t) = A [exp(Clt) -1) 

t < 0 

t > 0 6-9 

where Cl is the exponential rate constant and A is the strain scale factor. The stress is then 

evaluated from equation 6-3 where the components of the Finger and Cauchy tensors are 

as follows: 

For t' < 0 

If t' > 0 

Substituting 6-10 in 6-3 we obtain: 

Bu(t,t') = A [exp(at)-1] 

Cu(t,t') = -A [exp(at)-l] 

Bu(t,t') = A (exp(at)-exp(Clt'» 

CIZ(t,t') = -A (exp(at)-exp(Clt'» 

t 

Uu = rA~GJ)., exp(-s/).I) (exp(at)-1) [1!(1+0.216AZ(exp(at)-1)Z)]ds 
J ~ 

6-10a 

6-10b 

6-1Oc 

6-1Od 

- CQ t 

+ f A}jsJ~, exp( -s/~,) exp ( "'1) (l-exp( ... s» [1+0.216Nexp(2..t )[l-exp( -a.S) 1'1 ds 6-11 

-CQ 

The exponential shear stress coefficient, which can he evaluated from equation 6-11, is 

defined as follows: 

",(t) = u(t)/ClAexp(at) 5-27 

In a similar way the first normal shear stress difference can also be found: 
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~t N 

NI(t) = J_Al~J.\1 exp(-s/À,) (exp(at)1)2 {1I[1 +0.216A2(exp(at)-1)1)}ds 
_co 

f
t N 

+ A2~?JÀI exp(-s/À1) exp(2at) (l-exp(-aS»Z {1+0.216A2exp(2at)[1-exp(-as)]Z}ds 6-12 

-co 

The second and third normal stress differences are given by equations 6-7 and 6-8. 

The shear stress, the third normal stress difference, and the exponential shear stress 

coefficient were computed according to Wagner's m:Jdel using an IMSL library subroutine 

(DQDAG). The programs used here are available in the Polymer Engineering Laboratory 

of McGill University. 

6.3 Results and co'1lparison with experimental data 

6.3.1 Start-up of steady shear 

Wagner's predictions were compared with the experimental data performed with a 

0.199 g/cm3 solution at a tempe rature of 25.7 "C. Figures 6.1 ta 6.4 show the stress as a 

function of strain ..,(t) for both the experimental data and the predictions of Wagner's 

mode} for four different shear rates ranging from 0.01 S·I to 5 S·I. lt can be seen from 

figures 6.1 and 6.2 that the experimental data are in good agreement with the predictions 

of Wagner's model for small shear rates ( .., < 0.3 S·I). However, for rates larger than 

0.3 S·1 the steady stress predicted by Wagner is smaller than the one obtained 

experimentally. For a shear rate of 1 S·1 the experimental stress signal displays an 

undershoot and a second overshoot that are not predicted by Wagner's model. This 

discrepancy increases as the shear rate increases. 

The steady shear stress as a function of shear rate for bath the prediction according 

to Wagner's mode} and the experimental data are shawn in figure 6.5. For shear rates 

greater than 0.2 S·1 the experimental steady stress starts to level off after reaching a 

maximum. Wagner's predictions are in good agreement with the experimental data for rates 

up to 0.3 S·I. Then the predicted stress decreases and tends toward zero for very high shear 

rates. The discrepancy between experimental data and theoretical predictions is due to the 
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very narrow relaxation spectrum of the solution. 

To illustrate the importance of the spectrum in the b~havior \If the steady shear 

stress, Figure 6.6 shows the steady stress as a function of shear rate according to Wagner's 

prediction~ ,or a high-density polyethylene melt which has a broad relaxation spectrum (the 

relaxation strengths, G" the relaxation times, '\1, are those of table 6.1) (the data are these 

of Tony Samurkas1) and the sigrnoidal damping function given below: 

Table 6.1 

Relaxation strengths and Relaxation times 
for a high-density polyethylene melt 

GI (Pa) À, (s) 

.1027 1Q6 .6816 1(f4 

.9346 HP .4106 1Q-l 

.2057 lOS .5051 100 

.4545 1Q4 .3171 101 

.9322 1Ql .7496 101 

.1001 104 .2688 lQ2 

.1922 1Ql .2787 HP 

It can be se en from figure 6.6 that the stress does not decrease. 

6-13 

Figure 6.7 shows t. (the time at which the stress overshoot C/ccl'.rs) as a function of 

the inverse of the shear rate on a log-log plot. The equations of the straight lines obtained 

by linear least square regression are: 

t.. = 3.01/:' 

t... = 2.20Ft 
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where ta. is the time at which the stress overshoot occurs for the experimental data, and 

t... is the time at which the stress overshoot oecurs acccrding to Wagner's predictions. From 

these two equations it can be seen that the strain at which the experimental stress 

overshoot occurs is not in agreement with Wagner's predicti(lns. It can also be seen in 

figure 6.7 that the deviation from equation 5-9, discussed previously and obsetved 

experimentally is not predicted by \Vagner's model. 

In Wagner's model if the memory fimction is expressed vdth a single relaxation time 

and the damping function is expressed as a single exponential as follows: 

h( 'Y) == exp( -a1t) 

the stress is predicted ta he: 

t 

CTu(t) = (Q/). exp( -(t-t')/>.) .,t exp(-a.yt) dt' 

J.~ 
+ f Oh exp( -(t-t')/l) ';(t-t') exp( -ai(t-t')) dt' 

- .. 
From equation 6-16 the time at which the stress overshoot occurs is found ta he: 

ta = 1/a1 

6-15 

6-16 

6-17 

To be in agreement with equation 5-9 "a" should be equaI to 0.34. Figure 6.8 shows the 

damping function determined experimentally, the single exponential fonn ca1culated above 

and the experimentaI data. It can he seen from this figure that this single-exponential 

fonn is also in good agreement with the experimental data. However, the calculation 

above has been done for a single relaxation time and a single relaxation strength. 

Figures 6.9 ta 6.12 show the third normal stress difference as a function of strain 

7(t) for bath the experimental data and the predictions of Wagner's model for four 
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shear rates ranging from 0.1 S·I ta 10 s·t. The presence of a third normal stress difference 

is characteristic of nonIinear behavlOf. For a rate of 0.1 s·t the measured third normal stress 

difference increases rnuch more than predicted by Wagner's model. It can be seen from 

figures 6.9 and 6.10 that Wagner's model does not predict the overshoot and undershoot 

observed experimentally, but for a rate between 0.7 s·t and 2 s'\ the measured steady value 

is in fair agreement with the predicted values. However, when the rate is increased to 10 

S·I it can be seen than even for the steady value the experimental values are much !arger 

than the predicted values. 

6.3.2 Exponential shear 

Wagner's model predictions were compared with the experimental data from an 

exponential shear experiment for a 0.192 g/cm3 solution. Figures 6-13 ta 6-16 show the 

exponential shear stress coefficient, PIc, as a function of strain for values of the exponential 

rate constant, a, ranging from 0.5 to 6 (the strain scale factor, A, is constant and equal ta 

1). The experimental data curves have the same shape as Wagner's predictions curves for 

cr ranging from 0.5 ta 6 but quantative discrepancy between experimental data and theory 

increases as cr increases. 

It can he ~een from figure 6.17 that the strain at which the exponential stress coefficient 

'1. displays a maximum is the same for every theoretical curve but is different from the one 

observed experimentally. 

Figure 6.18 shows tht~ theorctical curves of the exponential shear stress coefficient 

for a constant value of the exponential rate constant and a strain scale factor ranging 

flom 0.1 ta 10. The experimental data (See Figure 5.24) show that PIe displays a maximum 

at the sa me strain for every value of the scale factor A On figure 6.18 it can be seen that 

depending on the value of the strain scale factor the maxima occur at different shear 

strains. 

Figures 6.14, 6.19 and 6.20 show the exponential shear stress coefficient as a 

function of strain for the same exponential rate constant, a, and for A equal to 1,0.1, and 

110 



1 
1 

.. 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 

~~-------------------------, 

M 
, *', Experimental data 

- Wagner's prediction 

A = 1 

ex = 0.02 

--
2 4 6 8 10 12 14 16 18 20 

Strain 
Figure 6.13 Exponential stress coefficient versus strain (A = 1, a = 0.02), 

comparison between experimental data and Wagner's model prediction 

70~--------------------------------~ 

* Experimental data 

~ Wagner', prediction 

~* \., A= 1 

:
400F ~* <X= 0.5 

Q.., .. 

'": ~r * 
~~ * 

*** 
2 4 b 8 10 12 14 16 18 20 

Strain 
Figure 6.14 Exponential stress coefficient versus strain (A = 1, a = 0.5), 

comparison between experimental data and Wagner's model prediction 

111 



1 

\ 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

500.--------------------------------, 

400 

300 -. 
fi' 

~ 

~ 

100 

o 

"'" _ Experimental data 

*" • * Wagner'. prediction 

A = 1 

o 2 4 6 8 10 12 14 16 18 20 

Strain 

Figure 6.15 F..xponential stress coefficient versus strain (A = 1, ex = 1), 
comparison between experimental data and Wagner's model prediction 
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Figure 6.16 Exponential stress coefficient versus strain (A = 1, ex = 6), 
comparison between experimental data and Wagner's model prediction 
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for different values of the exponential rate constant 
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Figure 6.18 Wagner's prediction of the exponentiaI stress coefficierll 
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Figure 6.20 Exponential stress coefficient versus strain (A = 10, a = 0.5), 

comparison between experimental data and Wagner's model prediction 

114 



1 
1 

.. 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 

10 respectively. The discrepancy between the experimental data and the theOl"y increases 

as A increases . 

Figures 6.21 to 6.23 'ihow the third normal stress difference for values of the 

exponential rate constant ranging from 0.02 to 6 (the strain seale factor is constant and 

equal to 1). It can be seen from figure 6.21 that for a very small (linear behavior) the 

experimental data are in good agreement with the theory up to values of strain of 6 which 

corresponds to: 

t = log(6+ 1)/0.02 = 97.29 s 6-18 

and .y = 0.7 S·l 6-19 

At this shear rate the behavior of the polystyrene solution was nonlinear. For steady shear 

experiments a discrepancy between the experimental data and theoretical curves could be 

seen for':' = 0.7 S·l (see figure 6.10). 

It can be se en from figures 6.22 and 6.'Z3 that the overshoot observed expenmentally 

in the third normal stress difference is not predicted by Wagner's model. It can also be 

seen that the discrepancy between experimental data and the theory increases with 

increasing a. 

Figures 6.24 and 6.25 show a comparison between the experimental duta for 

exponential shear with A ranging from 0.1 ta 10 and an exponential rate constant of 0.5. 

It can be seen from those figures that the discrepancy between the ory and expenments 

increases as A decreases. 

To summarize, Wagner's predictions are not in good agreement with the 

experimental data for exponential shear for our solutions. 
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Figure 6.22 Exponential shear Ca = 0.5, A = 1), third normal 
shear stress difference versus shear strain, 
comparison between experimental data 
and Wagner's model prediction 
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Figure 6.24 Exponential shear (a = 0.5, A = 0.1), third normal 
shear stress difference versus shear strain, 
comparison between experimental data 
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6.3.3 Conclusions 

Wagner's model does not predict the stress for steady shear experiments performed 

at high shear rates (;'>5s· l ) for the ~olutions used here, neither does it predict the third 

normal stress difference for steady shear experiments performed at high shear rates. 

Wagner's model also fails in the prediction of the exponential stress coefficIent and the 

third normal stress difference for exponential shear. Therefore~ it can be concluded from 

t!1e results mentioned above that Wagner's model cannot predict the nonlinear behavior 

of the solutions used here. Wagner's model is only valid for small deviations from linear 

behavior. Wagner's model seems to fail for solutions of very narrow relaxation spectrum. 
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7 CONCLUSIONS 

7.1 Summmy of accomplishments and findinp 

Nonlinear viscoelastic properties of polystyrene solutions were studied with the 

sliding-plate rheometer and compared with the predictions of Wagner's mode!. 

A technique ta make polystyrene solutions was developed and was shown ta give 

good reproducibility in the measurement of rheological properties. 

The sliding-plate rheometer was evaluated as a tool to study nonlinear viscoelasticity 

of polymeric liquids. The possible sources of error were reviewed. In particular it is very 

important ta assure parallelism between the upper flXed plate and the lower moving plate 

in arder ta avoid errors in the shear-stress measurement. The lower plate was redesigned 

in order ta assure precise parallelisme 

Measurements of shear stress during transient shearing de forma tians involving high 

shear rates were made possible by using a shear stress transducer. Birefringence 

measurements in the plane perpendicular ta the direction of the velocity gradient were 

performed ta evaluate the third normal stress difference. 

Start-up of steady shear was performed with the polystyrene solutions for higher 

shear rates than any previously reported. The transie nt behavior of the fluid was studied, 

and the presence of an undershoot and a second overshoot for both the shear stress and 

birefringence were observed. The power law region in the viscosity curve had a slope of 

-1 indicating that the steady-state stress is inde pendent of shear rate. For concentrations 

of polystyrene higher than 20 g/cm' the absolute value of the slope increased ta 1.18. 

Single-step shear experiments with large step strain were performed. A damping 

function was evaluated from the measurements of the relaxation moduJus and tïtted with 

an empirical sigmoidal function. A different damping function was inferred from the 

measurement of the relaxation of the third normal shear stress difference. The ratio of the 

second normal stress difference tCl the first normal shear stress difference was estlmated 
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from these two functions and was found not to be constant as a function of strain. 

The exponential shear stress coefficient and the third nonnal stress difference were 

evaluated for exponential shear experiments. These two rheological functions were shown 

to depend strongly on the exponential rate constant. 

Small-amplitude oscillatory shear experiments were also performed. A relaxation 

spectrum was inferred from the experimental data and found to be very narrow. The 

complex viscosity was compared with the steady shear viscosity. Two types of behavior 

were observed: for low concentrations (less than 20 g/cmJ) the Cox-Merz rule was obeyed 

whereas it was not obeyed for more concentrated solutions. 

It was shown that temperature has an influence on the birefringence. A decrease 

of 7 oC in temperature doubles the light intensity signal. 

The experimental data were compared with the predictions of Wagner's constitutive 

equation. It was shown that for very high shear rates Wagner's predictions and 

experimental data were clearly distinct. The results of this comparison can be summarized 

as follows: 

1. 

2. 

Above a rate of 0.2 s·t the measured steady shear stress is constant as a function 

of shear rate. Wagner's model predicts a steady shear stress that de creas es with 

shear rate. 

The transient behavior (undershoot and second overshoot) was not predicted by 

Wagner's model. 

3. When the shear rate was further increased, the discrepancy between experimental 

data and the theOl"y became even more pronounced. 

4. For exponential shear the predictions of Wagner's model were found to be in 

complete disagreement with the experimental data. 

7.2 Recommendations for future work 

What follows are recommendations for future work based on the present research: 
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1. 

2. 

3. 

4. 

5. 

The heating used to dissolve polystyrene in diethylphthalate should be reduced to 

avoid evaporation of solvent during the preparation of solution . 

The influence of the product cM (c :..: concentration in g!cm3, M = molecular 

weight) on the results of the experiments performed at very high shear rates and 

large strains should be studied by varying either the concentration of the solution 

or the molecular weight of the polystyrene sample. 

Further study of the effect of temperature on birefringence should be done. 

Other theoretical models such as the Doi-Edwards and Phan-Thien Tanner should 

be compared with the experimental data to see if they can describe the behavior 

of solutions with a narrow relaxation spectrum. 

The sliding-plate apparatus ~hould be modified to improve the control of 

temperature. 
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NOMENCLATURE 

A = Strain scale factor 

Bii == Compone nt of the Finger tensor 

C = Stress optical coefficient 

Cl = Stress optical coefficient for the first wave 

C2 = Stress optical coefficient for the second wave 

Cil = Component of the Cauchy tensor 

F = Force 

G = Relaxation modulus 

Go = Third relaxation modulus 

G" = klll relaxation strength 

G' = Storage modulus 

G" = Loss modulus 

Ke = Spring constant 

K.. = Dashpot constant 

1 = Intensity of light 

la = Incident intensity of light 

IICBI) = First invariant of the Finger tensor 

IlCB'J) = Second Invariant of the Finger tensor 

M = Molecular weight 

M[(t-t'),II(BII),lz(Blj)] = Memory function 

M. = Molecular weight between entanglement 

NI = First normal stress difference 

Nz = Second normal stress difference 

N 3 = Third normal stress difference 

P, Q = Stresses 
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v = Velocity of the upper plate 

X = Displacement of the upper plate 

X, = Elongation 

c = Concentration of the polystyrene solution 

d = Size of the gap 

h = Gap between the plates of the sliding-plate rheometer 

h( ..,) = Damping function defined with the shear stress 

h3( ..,) = Damping function defined with third normal stress difference 

m(t-t') = Memory function 

n = Refractive index 

rh rz = Retardation paths 

t = Time 

tN = Time at which the maximum of third normal stress difference occurs during star-up 

of steady shear 

ts = Time at which the maximum of shear stress occurs during start-up of steady shear 

t1 = Terminal relaxation time 

x = Displacement 

Xl = Direction of the flow 

Xz = Direction of the velocity gradient 

X3 = Direction perpendicul?!' to plane (O,xI,x2) 

M = Birefringence 

Mil = Compone nt of the birefringence tensor 

il = First normal stress coefficient 

i 2 = Second normal stress coefficient 

i3 = Third normal stress coefficient 

i3m = Maximum of third normal stress coefficient during start-up of steady shear 
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l)3It = Steady value of the third normal stress coefficient 

QI = Exponential rate constant 

fJ = NJNI 

.., = Shear strain 

.y = Shear rate 

6 :: Mechanical 1055 angle 

( = Hencky strain 

" = Viscosity 

". = Exponential stress coefficient 

"p = Material function defined by Dealy et Doshi 

,,(.:,) = Steady viscosity 

,,*(w) = Complex viscosity 

À = Relaxation time 

À4 = Disengagement time 

À. = Equilibration time 

Àt = klb relaxation time 

a = Shear stress 

aiJ = Component of the stress tensor 

x = Stress optical angle 

w = Frequency 
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