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ABSTRACT

Polymeric liquids are often subjected to high shear rates in plastics processing
operations. These materials exhibit nonlinear behavior under these conditions. The
Boltzmann superposition principle, which goverrs linear behavior, cannot be applied and
other constitutive equations that {ake into accoum nonlinear phenomena have to be used

to describe the flow behavior of polymers subjected to large, rapid deformations.

In this work the nonlinear behavior of concentrated polystyrene solution was
examined using sliding plate rheome.er developed at McGill University. In this rheometer
a novel transducer is used to measure the shear stress and an optical system is used to

measure birefringence during flows involving high shear rates.

A reliable technique for preparing concentrated polystyrene solutions in
ciethylphthalate was developed. The importance of the parallelism of tae plates of the
sliding plate rheometer was demonstrated. The shear stress was measured directly, and the

third normal stress difference was calculated using the stress-optical law.

A relaxation spectrum was inferred from small amplitude oscillatory shear
experiments and found to be very narrow. Start-up of steady shear with rates ranging from
0.01 s* to 70 s were performed. The steady shear stress was found o be independent of
shear rate at high shear rates. The viscosity and the third normal stress coefficient were
examined. The effect of the solution concentration on the power law parameters was
studied. The transient behavior during these experiments was also studied. The Cox-Merz
rule was found to be valid for concentiations less than 0.199 g.cm?, bui a deviation from
the rule was observed for higher concentrations. Sigmoidal damping functions, based on
both the shear stress measurements and the birefringence measure...ents, were determined.

Exponential shear experiments were also performed. The exponential stress coefficient and
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the third normal stress difference were calculated from experimental data for different
values of exponential rate constant and different strain scale factor. The exponential rate
constant was shown to have a strong influence on both the exponential stress coefficient

and thie third normal stress difference.

The experimental results of start-up for steady shear and exponent:al shear were
compared with the predictions of Wagner’s model. Wagner’s model cannot predict the
nonlinear behavior of the solution used here. Wagner’s model only predicts small deviations

from linear behavior.
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Les liquides polymeriques sont souvent soumis a de forts taux de cisaillement lors
de la fabrication de matieres plastiques. Sous ces conditions, ces matériaux montrent un
comportement non linéaire. Le principe de supperposition de Boltzmann, qui gouverne
les phenoménes non linéaires, ne peut étre appliqué et d’autres équations constitutives qui
tiennent compte de la non linéarité doivent étre employées afin de pouvoir caracteériser

les écoulements de polymeres soumis a des déformations fcrtes et rapides.

Dans cette étude, le comportement non linéaire de solutions concentrées de
polystyréne a été examiné grace & un rhéométre A plaques paralleles developpé a
I'Université McGill. Ce rhéométre est équippé d'un transducer, pour mesurer la contrainte
de cisaillement, et d'un systéme optique , pour mesurer la biréfringence, lorsque les

polymeres sont soumis & de fortes déformations.

Une technique fiable pour préparer des solutions concentrées de polystyréne dans
dudiéthylphthalate fut développée. L’'importance du parallelisme des plaques du rheométre
a plaques paralleles fut déemontrée. Les contraintes de cisaillement furent mesurées
directement et la troisieme différence de contraintes normales fut calculée grace a la loi

optique-contrainte.

Un spectre de relaxation fut dérivé a partir des résultats expérimentaux de
cisaillements oscillatoires a faible amplitude. Des démarages de cisaillement a taux de
cisaillement constant ( le taux de cisaillement étant compris entre 0.01 s et 70 s ) furent
exécutées. La contrainte de cisaillement du régime permanent fut trouvée indépendante
du taux de cisaillerment pour des taux de cisaillement élevés. La viscosité et le coefficient

de la troisieme Jdifférence de contraintes normales furent examinées. L'influence de la




concentration sur les paramétres de la loi de puissance fut étudiée. Le régime transitoire
pendant ces expériences fut aussi étudié. La regle de Cox-Merz fut trouvée valide pour des
concentrations de moins de 0.199 g/cm’, mais une déviation a la rég!~ fut observée pour
des concentrations plus élevées. Des fonctions d’amortissement sigmoaidales, basées, et sur
ies mesures de contraintcs de cisaillement, et sur les mesures de troisiémes différences de
contraintes normales, furent déterminées. Des expériences a taux de cisaillement
exponentiei furent aussi performées. Le coefficient de contrainte exponentiel et la troisieme
différence de contraintes normales furent calculés a partir des données expérimentales
pour différentes valeurs de la constante de cisaillement exponentiel et pour différentes
valeurs du facteur de déformation. Il fut montré que la constante de cisaillement
exponentiel avait une forte influence a la fois sur le coefficient de contrainte exponentiel

et sur la troisieme différence de contraintes normales.

Les résultats expérimentaux pour le démarage de cisaillement a taux de cisaillement
constant et i1es expériences a taux de cisaillement exponentiel furent comparés avec les
prédictions du modele de Wagner. Le modele de Wagner ne peut pas prédire le
comportement non linéaire des solutions utilisées dans cette étude. Le modéle de Wagner

prédit seulement les petites déviations du comportement linéaire.
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IMAGINE

Imagine there’s no heaven
It’s easy if you try

NO hell below us

Above us, only skies
Imagine all the people

Living for today

Imagine there’s no countries
It isn’t hard to do

Nothing to kill or die for
And no religion too
Imagine all the people
Living life peace

You may say I'm a dreamer
But I'm not the only one
Hope some day you'll join us
And the world will be one

Imagine no possession

I wonder if I can

No need for greed or hunger
A family of men

Imagine all the people
Sharing all the world

You may say I'm a dreamer
But I'm not the only one
Hope some day you'll join us
And the world will be one

John Lennon
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1. INTRODUCTION

1.1 Rheology

Rheology is the science that studies the deformation of a material in response to
an applied force. The development of synthetic polymers and the processing of plastics
have raised many interesting problems for rheologists. A better understanding of the
properties of melts and polymer solutions subjected to various flow histories is urgently
needed. In rheology two major areas are of particular interest. The first is the rheological
characterization of a particular polymer; it is necessary to find relationships between the
deformation (strain) and the resultant stress in the polymer. These relationships are
generalized in so-called "constitutive equations”. The second area of interest in rheology
is the study of the influence of various molecular parameters and of the chemistry of the

polymer on rhzological beaavior.

1.2 Presentation of the problem

The behavicr of a polymeric liquid subjected 10 a deforming force is intermediate
between that of a viscous liquid and that of an elastic solid. For this reason, polymers are
classified as viscoelastic materials. When the deformation is very small or very slow, the
response is linear. Linear viscoelastic behavior, which is governed by the Boltzmann
superposition principle, 1s a very useful tool for characterizing polymer molecules in their
equilibrium state. In polymer processing operations, however, polymeric liquids are
subjected to very high rates of deformation, and linear viscoe!lasticity is no longer observed.

An important property of deformed polymers is the molecular orientation and its
dependence on time and temperature. With the help of the "stress-optical' law, a
relationship between the molecular orientation, measured by means of birefringence, and

the components of the stress tensor, can be established.
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A newly developed apparatus, the sliding-plate rheometer, makes it possible to
measure simultaneously the shear stress in the polymer, using a shear-stress transducer,
and the birefringence, during transient shearing deformations involving high shear rates.
Thus, it is possible to carry out experiments, such as single or multiple step strains, steady
high shear rates, large-amplitude oscillatory shear, and exponential shear, using
concentrated solutions of high molecular weight polymers or melts .

The synthesis of linear, high molecular weight, narrow-molecular weight distribution
polystyrene is presently possible. Measurements are often performed on concentrated
solutions of polystyrene because it is an amorphous polymer, it can be easily synthesized
or purchased, and because it is strongly birefringent. However, preparing concentrated
solutions is a time consuming and difficult step, and a special technique for this had to be

developed.

1.3 Objectives of the work

The objectives of the work were:
- To develop a tz=chnique for preparing concentrated solutions of high molecular weight
polystyrene. The solution should be homogeneous and the molecular weight of the polymer
should not be affected by the dissolution process.
- To evaluate the sliding plate rheometer as a tool for the study of nonlinear viscoelasticity
of polymeric liquids and to make a thorough analysis of possible sources of error.
- To study the nonlinear viscoelastic behavior of concentrated polystyrene solutions
involving the measurzment of stress and birefringence.
The experiments to be performed were the following:

- Small amplitude oscillatory shear

- Steady shear

- Step shear

- Exponential shear



- And finally to compare the experimental results with the predictions of Wagner’s

constitutive equation.

1.4 Organization of the thesis

Chapter II reviews existing thecries of the rheological behavior of polymeric liquids.
Tlie different models and constitutive equations are then described. Chapter Il gives the
theoretical basis of the experimental techniques used in this study. Chapter IV describes
the equipment and experimental procedures. The results are reported and discussed in
Chapter V. Predictions and computations according to Wagner’s model are presented in
Chapter VI and compared with the experimental results. Chapter VII is a summary of the
conclusions reached during the research and recommendations for future work. An
extensive literature review was conducted during this research, and this has been
incorporated directly into the appropriate chapters. A list of the nomenclature used is given

at the end of the thesis.
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2. THEORETICAL BACKGROUND

Chapter gutline
Some theoretical background is given in this chapter. The rheological material functions

used in this work are first defined. Then several constitutive equations used to describe the flow
of a polymer solution are presented. The chapter ends with typical results of the experiments
performed in this study.

2.1 Introduction
2.1.1 Generalities

In experimental rheology the commonly used flows are divided into two classes:
extensional and shear flows. The shear flows can be divided into two categories: pressure-
driven flow and drag flow. The first includes capillary flow and slit flow, both types
occurring often in melt processing, for example in dies and in injection molding. In
pressure-driven flows it is possible to measure the viscosity at very high shear rates. In
drag flow are included the concentric cylinder, sliding cylinder, cone and plate, parallel
disk and sliding plate geometries. Drag flow is easy to generate in the laboratory by means

of rotational rheometers, but these devices are restricted to use at low shear rates'.

2.1.2 Steady simple shear

Steady simple shear is the easiest flow to generate and the most commonly used
type of deformation for measurements in rheology. The simplest example of steady simple
flow is when the fluid that fills the gap between two parallel plates is sheared by the linear
motion of one plate relative to the other at constant speed. During the deformation the
gap between the plates remains constant.

For the discussion given below the following coordinates are used: the direction of
the flow is x, the direction of the velocity gradient is x,, and x, is the direction

perpendicular to the shear plane (Ox,x;) (see figure 2-1).
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Figure 2-1 Simple shear
The shear strain v is defined by:
v =x/h 2-1

where x is the displacement of the moving plate, and h is the gap between the plates. The

shear rate is given by the derivative of the shear strain:
1= Vh 2.2

where V is the velocity of the moving plate. The stress components generated by this

motion have been shown by Lodge(2, p.62) to be:
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This tensor is obviously symmetric. Three independent material properties can thus be

measured in simple sheai:

The shear stress: o =0y = on 2-4
The first normal stress diffcrence: Ni=oy- o2 2-5
The second normal stress difference: N, =o0p-0n 2-6

Adding 2-5 and 2-6 we can define another property, the third normal stress ditference:
N;=oy-on 2-7
According to Criminale* o, N, and N, are sufficient to describe completely the

response of any incompressible fluid to steady simple shear.

Using the above four quantities it is possible to define four rheological material

functions:
The viscosity: n = ol 2-8
The first normal stress coefficient: ¥ = NJ/+* 2-9




The second normal stress coefficient: ¥, = Nofy? 2-10
The third normal stress coefficient ¥ = Ny/y? 2-11

Only two of the latter three are independent.

The shear stress is relatively easy to measure, but N,, N; and N, cannot be measured
directly. In cone-plate or parallel-disk rheometers,N,, which was firsi discussed by
Weissenberg®, can be measured. However, these rheometers are restricted to use at very
low shear rates because of secondary flows or edge effects*’.

Many researchers have tried to establish a precise relationship between the viscosity
and the first normal shear stress difference, but these attempts have not really been

succesfu]*,

2.2 Rheology of viscoelastic liquids
2.2.1 Generalities

The behavior of a polymeric liquid subjected to deformation is qualitatively similar
to that of a "Maxwell element". This mechanical analogy consists of a linear dashpot and

a linear spring. The force resulting from an elongation X, of the assembly is given by

F(t) = KX, [exp(-Kt/K.)] 2-12

where K, is the spring constant and K, the dashpot constant.

2.2.2 Linear viscoelasticity
2.2.2.1 Relaxation modulus

Linear viscoelasticity is the simplest viscoelastic theory. (see for example Ferry" for
a more complete descripticn of linear viscoelasticity). In this theory the structure of the

material is considered to be unaffected by deformation. This assumption is only valid for




.——--—-—-——-————-‘-_-—m-hﬂ-

deformations that are very slow or very small.

The relaxation modulus, for a "stress relaxation experiment” is defined as:

G(t) = o(D/ 2-13

where G(t) is the stress relaxation modulus, o(t) the stress and v the strain. During a stress
relaxation experiment the polymer is suddenly subjected to step strain and the stress is
recorded as a function of time after the deformation.

It is possible to calculate the stress for any kind of deformation, as long as the

response is linear, by using the Boltzmann cuperposition principle. This can be written as

follows:
t
oft) = f G(t-t') v(t") dt’ 2-14
2.2.2.2 The relaxation spectrum

Using the Maxwell element analogy, the shear stress can be expressed as:
o(t) = Gavi[exp(-t/x)] 2-15
where G, is analogous to K. and A is analogous to KJK.. The so-called "Maxwell model"

is then defined by:
t

ai(t) = f Glexp(-(t-t)/\)] 7(t) d¥ 2-16
and the "generalized Maxwell model" is defined by:
t
N
at) = [ Gulexp(-(t)/A)] w(t) dt’ 217

ke}
-
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where o, is a component of the stress tensor and +; is a component of the infinitesimal
strain tensor.
‘The Maxwell model can be represented by an assembly of i Maxwell elements in parallel.

The relaxation modulus is then given by:

G(t) =ZNGl [exp(-t/a)] 2-18

where G, and A are the i* relaxation strength and the relaxation time correspu..ding to
each Maxwell element.
The set of values (G,)) constitutes the "discrete spectrum” of the material. The

longest relaxation time t, is called the "terminal relaxation time".

2.2.3 Non lin=ar viscoelastic theory
2.2.3.1 Introduction
The linear theory cannot be applied when large and rapid deformations occur, which
is normally the case in flows of industrial importance. The response to the deformation
then depends on:
1) The size of the deformation
2) The rate of the deformation
3) The kinematics of the deformation
No general theory can predict the response for nonlinear behavior. The rheological

constitutive equations generally used are empirical in nature.

2.2.3.2 The Lodge network theory
Lodge®™* proposed a single-integral constitutive equation for nonlinear viscoelasticity
based on ideas from the theory of rubber elasticity. It can be looked upon as a

generalization of the Maxwell model. This constitutive equation is:
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t
ay(t) = f m(t-t")B,(t,)dt’ 2-19

where By(tt) is the Finger tensor’ and m(t-t’) is the "memory function. It can be

demonstrated that

m(t-t') = dG(t-t)/dt’ =) G/x exp[-(t-t)A] 2-20
which gives
t
N
oy(t) =] D Gi/x exp[-(t-t')/n] By(t,t)dt’ 221

Unfortunately, this model does not give quantitatively correct predictions. It predicts that
the viscosity is constant and that N,=0, which contradicts experimental observation®*. N,

has been shown to be negative and between 10% and 30% of the absolute value of N..

2.2.3.3 Wagner’s model
The Lodge network model has been modified by Wagner and others” in order to
improve 1its predictions. This modification takes the form:
t

R
oy(t) = j M B,(t,t)dt’ 2-22

where M is a nonlinear memory function depending on time and on the two scalar

invariants of the Finger tensor, I, and I,. Thus:
M = M[(t-t"),1.(By),](B,)] 2-23

This equation is a special case of the well-known BKZ* equation.

10
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Wagner? proposed the separability of the memory function, which can then be
expressed as a product of the memory function for linear behevior m(t-t’) and a "damping
function”" h(I, ;). This results in the following constitutive equation:

t

ai(t) = f m(t") h(L,L)B,(t,t")dt’ 2-24

However, this model still predicts that the second normal stress difference is zero. To
correct this Wagner® later proposed another constitutive equation given by:
t
o) = f m(t-') h(L, L) [(1+8)C(t)+8C,(1))dr 2.25
where Cyis the Cauchy tensor, and g is the ratio of the second normal stress difference to
the first normal stress difference.

In the cases of simple shear and simple extensional flow, I, and I, the scalar
invariants of the Finger tensor, and thus the damping function, are only functions of v, the
shear strain, and ¢, the Hencky strain respectively. The damping function h(y) takes into
account the destruction of the polymer network when it is deformed. h(y) decreases as the
strain increases; at zero strain h(0)=1.

Wagner proposed a single exponential function for the damping function in order
to fit experimental data. Osaki* fitted his experimental shear data with a sum of two

exponentials. Papanastasiou® proposed a sigmoidal form for the damping function:
h(y) = 1/(1+ay?) : 2-26
2.2.3.4 Theory of entanglements
Entanglement theories have been developed in order to explain the unique flow

behavior of melts and concentrated polymeric solutions. In concentrated solutions and melts

there are strong interactions between the molecules. These local interactions result from

11
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the inability of the chains to pass through each other and are often imagined as
entanglements between the long molecular chains. During the flow, these entanglements

are continuously destroyed and created.

2.2.3.5 Doi-Edwards theory

Edwards* was the first to propose that in a dense polymeric system, entanglement
constraints act like an open-ended confining tube, enclosing each macromolecular chain
along its average contour. The relaxation of the molecule after a deformation is then
restricted to reptation out of its tube. Doi and Edwards®*® introduced the concept of
reptational motion (de Gennes") intc a dypamic model of the nonlinear viscoelasticity of
concentrated systems of flexible macromolecules under macroscopic deformations. They
derived a rheological constitutive equation considering the motion of a single polymer
molecule in the mean field imposed by other chains.

According to the Doi-Edwards theory, linear behavior is governed by two relaxation
times, A, "the equilibration time" and i, the time for "disengagement”. At very short times
(t<x,), there is a reorganization of the segments between entanglements. Once this is
finished the molecule begins to "reptate” out of its tube. This diffusion process is very slow.

When t>),, the Doi-Edwards theory predicts that the relaxation modulus is given
by:

G(vt) = h(7)G(t) 2-27

and that the first normal stress difference in a step strain experiment is given by:

N1 = ';a 2'28

12
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Unfortunately, the theory does not give an analytical function for h(y), but it predicts that
h(y) is independent of chemical structure. Equations 2-27 and 2-28 have been found to be
valid for a low density polyethylene.

The Doi-Edwards theory also predicts that Ny(t,v)/N\(t,v) is negative and varies with
the strain, +, following a relationship that is valid for all linear monodispersed entangled
polymers. The relationship predicted by the theory depends on whether the "independent
alignment assumption™ is used. The independent alignment assumption states that the
orientation of each chain segment does not change during the relaxation process.

Osaki et al.? have found that for polystyrene solutions, at strain magnitudes up to
4.0, the observations are in good agreement with the predictisns of the Doi-Edwards
theory. These researchers also observed that the ratio of the longest relaxation time t, to
the equilibration time t, is equal to the ratio of the molecular weight to the molecular
weight between entanglements®. The molecular weight between entanglements M. is the

average molecular weight spacing between entanglement points (12, p. 243).

2.3 Several rheological tests
A description of the theoretical background of the rheological tests used in this

work is presented here.

2.3.1 Small amplitude oscillatory shear
In order to determine a discrete relaxation spectrum, small amplitude oscillatory
shear experiments were carried out. The strain for this test is given by:

7(t) = v, sin(wt) 2-29

where -, is the amplitude of the strain, and » the frequency. If the rate of strain is

sufficiently small the induced stress o(t) is:

13
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a(t) = g, sin (wt+5)

where g, is the stress amplitude and s is the mechanical loss angle.

2-30

The results of oscillatory shear experiments are usually described using two moduli

defined as follows:

G’(w) = ad/v. €OSS
G’(w) = ad/7. SiNé

called respectively the "storage" and the “loss” modulus.

The stress o(t) can then be expressed as:

a(t) = 1[G'(w)sinwt +G"(w)coswt]

Two alternative material functions can also be defined:

n’(w) = g /y.sing = G’lw

n"(u) = aJ'y.,COSS = 'l

The stress o(t) can be represented as follows in terms of these functions:

o(t) = 1on’(w)coswt +n"(w)sinwt]
From those two material functions the complex viscosity n* is defined:
n*() = n'(w) -in”(w)

n* =/} (0" = odve

and

14
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In order to determine a discrete relaxation spectrum, Laun* used a linear regression

procedure to determine (Gy,A:) by means of:

{[G’(x)-G"J+ [G"()-G"J*} = minimun 239
where N

G'(w) =Z‘_I,G.(“A.)2/[l+(w\.)‘] 2.40

G”(wx) =) Gwa)[1+(wh)] 2-41

im1

First Laun selects values of A, to have values equal to integer powers of ten from
10# to 10° and then calculates G, from 2-39.

However, inferring the refaxation spectrum from experimental data in this way has
some disadvantages, since there is no unique solution and sometimes the relaxation tirnes
are found to be negative. Baumgaertel and Winter* have developed a nonlinear regression
method that calculates simultaneously the values of the relaxation strengths and the

relaxation times.

2.3.2 Steady shear experiments
2.3.2.1 Typical results

During steady shear experiments the sample is subjected to a constant shear rate
7. The shear stress and the first and second normal stress differences can in principle be
measured during such an experiment. The shear stress growth coefficient, n*(7), the first
normal shear stress coefficient, ¥,*(7) and the second normal shear stress coefficient ¥,*(y),
can thus be calculated from experimental data. The strain, shear stress and first normal
shear stress difference are shown in figure 2.2.

From figure 2.2b it can be seen that the shear stress, after an initial overshoot,
becomes steady. This steady value is plotted as a function of shear rate to give the viscosity

curve which normally includes a zero shear viscosity at low shear rates and a power law

15
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Figure 2.2 Steady shear experiment

region at high shear rates. The first normal stress difference also reaches a steady value
after an initial overshoot as is shown in figure 2.2c.
The maximum value of the first normal shear stress difference N,, occurs at a time

ty, that is larger than the time ts, at which the maximum value of the shear stress occurs.

16
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Osaki* found that t;=a/y with a=3. Depending on the form of the damping function used
it was found according to Doi-Edwards theory that 2<ty/ts<3¥. However, the precise
values of ty and t; are very difficult to determine experimentally. Some researchers have

even found in some cases the presence of an undershoot after the overshoot®.

2.3.2.2 The Cox-Merz rule
A relationship between the viscosity function and the complex viscosity is the Cox-

Merz rule® which is given by:

n(7) = n*(w) (v=w) 2-42

However, this "rule” is based only on empirical observations and is not universally valid,
For example, Osaki® reported the failure of this rule for polystyrene solutions when

cM>10* (c=concentration in g/cm’, M=Molecular weight).

2.3.3 Single-step strain experiment
2.3.3.1 Introduction

Single step shear strain is the test most widely used to study nonlinear viscoelastic
behavior. In figure 2.3 is shown the strain versus time curve for an ideal step strain and
for a typical actual deformation. Ideally, the material is deformed instantaneously, as shown
by curve 1 in figure 2.3. In practice, however, it is not possible to generate such a
deformation. The actual strain is usually a ramp during which the total strain is given by

v(t)= +.t, followed by a steady value, as represented by curve 2 in figure 2.3,

2.3.3.2 The damping function
The Doi-Edwards theory can be used to predict the relaxation modulus G(t,vy), for
times greater than A.. The predicted relaxation modulus is the product of the linear

modulus and a damping function:

17




G(t;v) = h(+)G() 2-43
This equation states that for different values of y the relaxation modulus G(t,v) will vary

by a factor equal to h(y). Linear behavior is obtained as y-0. Osaki® found that the

behavior of polystyrene solutions is linear up to values of strain of 0.57.

Curve 1

Curve 2

oat t

Figure 2-3 Single-step strain experiment

2.3.3.3 Behavior of type I and type II solutions under single step shear strain

Osaki and Kurata® proposed a classification of polystyrene solutions according to
their behavior in a step shear experiment. In particular they compared their experimental
results with the prediction of the Doi-Edwards theory. For type I solutions the separation
of the relaxation modulus into two functions given by equation 2-43 was observed at times

greater than ), this time being proportional to M. For type II solutions the separation was

18
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observed only in the terminal zone of G(t). Type I behavior was observed by Osaki and
Kuruta when cM<10¢ and type II behavior at higher values of cM. The critical value of
cM corresponds to about 50 entanglements per molecule. Einaga et al.“ and Fukuda et al.*
found that the relaxation times did not depend on the strain. When separable behavior is
not observed, i.e for t<, Osaki et al.* proposed the use of two damping functions h,(v)

and hy(vy), expressing the relaxatio, modulus as follows:

G(t,y) =ZNA.h.(-y)G.exp(-t/,\;) 2.44

im

2.3.4 Exponential shear

The strain generated by "exponential shear" is given by:
o(t) = A [exp(at)-1] 2-45

where a is the exponential rate constant and A the strain scale factor. Because of its
exponential form, this deformation is a "strong flow" that has a tendency to stretch
molecules?”.

To represent the results of this type of experiment, the "exponential viscosity" has
been defined by Zalle et al.® as follows:

n'(ta,A) = o(t,a,A)(t) 246

Doshi and Dealy” also defined another material function as follows:

mtmA) = J(NK) + 40%1)) /3 247

They suggest that this is more appropriate to characterize the role of the molecular

stretching and orientation.

19




At small times the behavior of the sample under exponential shear strain follows

linear behavior. At large times, the flow generates very rapid disentanglement, and the

behavior is very nonlinear.

The sliding-plate rheometer has been found to be very convenient to generate

exponential shear®®,

REFERENCES

1 Dealy J.M., "Rheometers for molten plastics, a practical guide to testing and
property measurements”, Van Nostrand Reinhold, New York, (1982).

2 Lodge A.S, "Elastic liquids", Academic Press, New York.
Dealy J.M., Wissbrun K.F., "Melt rheology and its role in plastic processing, theory
and application”, Van Nostrand Reinhold, New York, (1990).

4 Criminale W.O., Ericksen J.L., Filkey G.L., Arch. Rat. Mech. Anal. 1:410, (1957).
Weissenberg K., Proc. 1st Intern. Congr. Rheology, Vol 3, p 36, Amsterdam, (1949).

6 Kimura 8., Osaki K., Kuruta M,, Journal of Polym. Sc., Polym Physics Ed., V 19:151-
163, (1981).
Meissner J., J. Appl. polym. Sci, 16:2877, (1982).
Bird R.B,, Tassager O., Abdal Khalik S.I, A.I.Ch.E.J., 20(6): 1041, (1974).
Bird R.B,, Tassager O., Abdal Khalik S.I, A.L.Ch.E.], 14(12): 854, (1974).

10  Wagner M.H,, Rheol. Acta., 16:43, (1977).

11 Gleissle W., Proc. VII Int. Congr. Rheol,, Plenum NY, (1968).

12 Ferry D.J, "Viscoelastic properties of polymers", second edition, (1970).

20




¥ g

s AN

-

13
14
15
16
17
18
19

20
21
22
23

2
25
26
27
28
29
30
31

33
34
35
36

37

Lodge A.S., "Elastic liquids", (London N-Y 1964).

Lodge A.S., "Body tensor Fields in continuum mechanics”, (London N-Y 1974).
Lodge A.S. and Meissner J., Rheol. Acta, 12:41, (1973).

Osaki K., Kurata M., J. Polym. Sci., Polym. Phy., vol. 20, 623-632, (1982).
Kimura S., Osaki K., Kurata M., J. Polym. Sci., Polym. Phy., (1981).

Besho N., Osaki K., Kurata M., J. Soc. Rheol. Ipn, 5:68, (1975).

Doi M,, Edwards S.F., "Theory of polymer dynamics", Oxford University Press,
(1986).

Wagner M.H.,, Rheol. Acta, 15:136, (1976).

Bernstein B., Kearsley A., Zapas L.J,, Trans. soc. rheol,, 7:931, (1963).

Wagner M.H.,, Rheol. Acta, 16:43, (1977).

Wagner M.H., Desmarels A, "A constitutive analysis of multiaxial elongation of
polyethylene". (To be published).

Osaki K., Proc. VII* Intern. Congr. Rheol., p 104, Gothenburg, (1976).
Papanastasiou A.C., Scriven L.E., Macosho, J. Rheol., 27:387, (1983).

Edwards S.F., Proc. Phys. Soc., 92 (1967)9.

Doi M., Edwards S., J. Chem. Soc. Faraday Trans., II 7/4, 1789, (1978).

Doi M., Edwards S., J. Chem. Soc. Faraday Trans., II 7/4, 1802, (1978).

Doi M., Edwards S., J. Chem. Soc. Faraday Trans., IT 7/4, 1818, (1978).

Doi M., Edwards S., J. Chem. Soc. Faraday Trans., II 7/4, 38, (1979).

De Gennes P.G., J. Chem. Phys., 55:572, (1971).

Osaki K., Kimura S., Kurata M., J. Polym. Sci., 19:517, (1981).

Osaki K., Kuruta M., Macromolecules, 13:671, (1980).

Laun H.M,, J. Rheol., 30:459, (1986).

Baumgaertel, Winter H.H., Rheological Acta, 28:511-519, (1989).

Osaki K., Ohta S., Fukuda M., Kurita M., J. Polymer Sci. Polym. Phys., 14:1701,
(1976).

Laun H.M., Rheol. Acta, 17:1, (1978).

21




m*—-_-*-~_-__h_-

38
39
40
41
42
43

45

46

47

48

49
50

Ganani E., Powell R.L,, J. Rheol,, 28(6):931-941, (1985).

Cox W.P, Merz E.H,, J. Polym. Sci. 28:619, (1958).

Utracki L.A., Gendron R., J Rireol., 28:601, (1984).

Venhabaman S., Ohano M., Nixon A., Polym. Eng. Sc., 30:308,(1990).

Osaki K., Kurata M., Macromolecules, 20:168, (1987).

Osaki K., Nishizawa K., Kurata M., Macromolecules, 15:1068, (1982).

Einaga Y., Osaki K., Kuruta M,, Kimara S., Yamada N. and Tamira M., Polym. J,,
5:91, (1973).

Fukuda M., Osaki K. and Kuruta M., J. Polym. Sci. Polym. Phys., 13:1563, (1975).
Osaki K., Ohta S., Fukuda M. and Kurata M., J. Polym. Sci. Polym. Phys., 14:170,
(1976).

Zille B, Linster J.J., Meissner J. and Huerliman H.P, J. Rheol., 31:583, (1987).
Zille D., Linster J.J., Huerlimann, and Meissner J. "deformation hardening and
thinning in elongation as well as in shear of low density polyethylene melt", Intl.
Conf. on Visc. of Polym. Lig,, Grenoble, France, (January 1986).

Doshi S.R. and Dealy J.M., J. Rheol,, 31:563, (1987).

Sivashinsky N., Tsai A.T., Moon T.J. and Soong D.S., J. Rheol., 28:287, (1984).

22




3. THEORETICAL BASIS OF EXPERIMENTAL TECHNIQUES USED

;
\
|
I
i
|
x
1
i
1
1
1
1
1

1




-u-——--—-_-_--§-

3. THEORETICAL BASIS OF EXPERIMENTAL TECHNIQUES USED

Chapter outline

In this chapter the sliding-plate rheometer is discussed first. The principle of operation
of this rheometer, the principal sources of errors, and a way to avoid some of these errors are
presented. In a second part the birefringence technique is discussed. The stress-optical law, and

the derivation of the relationship between birefringence and stress are given.

3.1 The sliding-plate rheometer
3.1.1 Introduction

The rheometer geometries that are most used to measure viscoelastic properties
are of three types:

1. Cone and plate

2. Parallel disk

3. Concentric cylinder
A good review of these is given by Dealy'. Unfortunately, these types of rheometer cannot
be used by the rheologist to perform experiments at high shear rates because of secondary
flows, edge and end effects and non-uniform shear rates. The errors resulting from these
effects have been reviewed by several authors'?. In particular, pone of these rheometers
is useful for the study of nonlinear viscoelasticity.

However, a new sliding-plate rheometer designed at McGill** which incorporates a
shear stress transducer, makes it possible to measure simultaneously the shear siress and
the birefringence during deformations involving high shear rates. In contrast to rotational

rheometers, however, the total strain is liraited by the length of the plates.
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3.1.2 Principle of operation
The sliding plate rheometer, which generates a flow with a uniform velocity gradient,

consists of two plates: one stationary and one movable. In the gap between the plates the
polymeric sample undergoes simple shear (as shown in figure 2.1) when the sliding plate
moves. For this rheometer the shear stress o, the shear strain v and the shear rate v are

given by equations 3-1, 3-2, and 3-3 respectively.

o =F/A 3-1
v =X/ 3-2
y=Vh 3-3

where F is the force required to move the sliding plate, A is the wetted area, X is the
displacement of the sliding plate, h is the distance between the two plates, and V is the

velocity of the moving plate.

3.1.3 Sources of error

Some possible errors associated with the use of the sliding-plate rheometer are

described in the following paragraphs.

- Gap imperfection

If the plates are not perfectly flat or are not parallel, the gap between them will not
be uniform. The effect of non-uniform gap can be seen in figure 3.1. Figure 3.1a shows
non-parallel plates with a varying gap. Figure 3.1b shows the stress obtained for start-up
of steady shear using truly parallel plates and figure 3.1c shows the case when the plates
are not parallel. Comparing figures 3.1b and 3.1c, it can be seen that in the case of non-

parallel plates the stress does not reach a steady value.
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Figure 3.1 Parallelism of the plates of the sliding-plate rheometer
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- Edge and end effects

These effects are due to surface tension and to the difference in rheological
properties between the sample and the surroundings. They result from a mismatch between
the state of the stress in a homogeneously deformed sample and the hydrostatic stress in
the surrounding fluid. It has been shown that these effects are larger when the material

is subjected to high shear rates**. Edge and end effects can also induce secondary flows.

- Shear wave propagation

When transient tests are performed, errors can be produced as a result of shear
wave propagation. Because of th;a inertia of the sample, the sudden motion of the plate
does not result in an instantaneous acceleration of every element of the sample. This
shear wave propagation can also result in a stress overshoot. This source of error mainly
occurs for liquids of low viscosity and is minimized when the gap is smell. In the
experiments conducted in this work the solutions studied have a high viscosity, and the gap

is small. Thus, errors due to shear wave propagation are assumed to be negligible.

- Slip phenomenon
When concentrated polymer solutions and melts are subjected to very high shear
stresses the no-slip boundary condition at the wall may no longer be valid, and slip may

occur®.

- Bubbles
Zones of non-contact resulting from gas bubbles trapped between the sample and
the plate can induce errors. Such bubbles can also promote a cohesive failure between the

sample and the plate.
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- Viscous heating
The deformation of the sample causes viscous heating and this will result in a

thermal gradient in the sample. This problem is more severe for high shear rates, high

viscosities and large gaps.

- Errors associated with sample deterioration
An additional source of error is sample inhomogeneity due to the loss or absorption

of water or solvent or to degradation.

To overcome some of these problems, particularly edge and end effects, shear wave
propagation and sample deterioration, Dealy and Soong*"" developed a shear-stress
transducer. Using this device the shear stress can be measured locally, at the center of one

page, where the flow is uniform.

3.2 Birefringence
3.2.1 Why use light?

Matter is composed of charged particles. A beam of light, which can be understood
as an oscillating electric field propagating through space, can be altered when passing
through a material. (For more details see references 12-14). Rheoptics is the science that
uses light to evaluate rheological properties. The advantages of using light can be
summarized as follows:

- No physical contact between the light and the matter and therefore no perturbation of
the flow field.
- Measurements can be carried out on small samples.

- Fast time response.
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3.2.2 Definition of birefringence

When a light beam passes through a material, its velocity decreases. The refractive
index, n, is defined as the ratio between the speed of light in vacuum and the speed of
light through the sample. The birefringence® is the difference between the refractive
indexes in two perpendicular directions for a given material.

Ward* describes in his book the three types of birefringence. They are:
- Orientation birefringence observed in anisotropic materials.
- Deformation birefringence, which can be caused by an external deformation in isotropic

or anisotropic materials.

- Form birefringence, which occurs when the medium contains more than one phase.

3.2.3 The stress-optical iaw
Brewster'” observed that the light passing through a stressed glass plate in the
direction of applied stress was polarized into two waves: one in a direction perpendicular
to the stress and the other in the direction of the stress. He also noticed that the velocity
(¥ the wave in the stress direction was greater than the velocity of the wave in the
ection perpendicular to the stress. Other researchers have proposed that if light passes
arough a plate of thickness, d, of material in a direction perpendicular to a simple tension
P applied to the plate, the two polarized waves are retarded by the factors r, and r, given

by:
In = C1Pd I =C;Pd 3'4

where C, and C, are constants for the two polarized waves. The "relative retardation” is

then given by:

I-r; = CPd 3.5

28



m-—-—:-——-—-ﬁﬂ__-l-—_-—-“,ﬂ-

where C is the stress-optical coefficient. Later, Maxwell and Newmann® showed that if the

material is subjected to two perpendicular stresses, P and Q, the two factors are given by:

n= (C1P+C;Q)d I = (CzP+CgQ)d 3-6

and therefore the relative retardation is:

ren = (C-C))(P-Q)d = C(P-Q)d 3.7

More than a hundred years later, Lodge® suggested that birefringence could be used
to measure stresses in polymeric solutions. He formulated the stress-optical law according

to which the stress is proportional to the birefringence.

an; = C o 3.8

where C is the stress-optical coefficient, which is a function of the chemical structure of
the polymer. Experimental values of C for polymers can be found in the tabulations of
experimental data on polymer melts by Janeschitz-Kriegl® (section 1.2.3.2) and by Van
Kevelen®.

This law does not take into account light absorption and scattering. These can result
in a deviation from the law. Also, it has been noticed in injection molding that a change

in the temperature affects the birefringence?z.
3.2.4 Relation between the stress and the birefringence

If the light beam is propagated in the x, direction, perpendicular to the shear plane,

we have:
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where an,, is the birefringence, C the stress-optical coefficient and x the stress-optical
angle. The stress-optical angle is the smaller angle between the shearing plane and the
vibration plane of the polarizers.

If the light is propagated in the x, direction (direction of the velocity gradient) we have:

(du '033) C = Ally 3"10

If the light is propagated in the x, direction (direction of motion), we have:

(dzz 'U”) C = Allp 3'11

Deviations from the stress optical law have been observed in high-stress, extensional,
flows for both polystyrene® and polyethylene®. It was suggested by Wales® that the stress-

optical law remains valid up to values of stress of 10" N/m?

3.2.5 Measurement of birefringence

Birefringence is most often measured by the light intensity method. As shown in
figure 3.2 the optical train usually used to measure birefringence is composed of: a light
source, a polarizer, a test sample, an analyzer and a detector. The incident beam is
polarized in a direction perpendicular to itself. The test sample retards one component of
the polarized light. The analyzer recombines the light. The analyzer is rotated at 90° with
respect to the polarizer. More information about optical components can be found in the
books by Azzam® or Schurcliff*.

Bahler* developed an apparatus to measure birefringence witn a double laser beam

to allow a more sensitive determination of birefringence. Another method used to measure
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birefringence is the comr-nsator method. It is reviewed in detail in the Encyclopedia of
Polymer Science (15 p45).

After passing through the polarizer, the two perpendicular waves of light are
retarded when they pass through the birefringent medium subjected to deformation. The
retardation is proportional to the thickness and the normal stress difference. The light is

then recombined by the analyzer. The light intensity measured by the detector is:
I = L, sin2a? sinar/» 3-12

where I, is the incident intensity measured when the polarizer and analyzer are parallel,
a is the smallest angle made between the direction of one of the waves and the direction
of one of the stresses. As can be seen, I is proportional to the birefringence. The

derivation of this equation is given in Jessop’s book?.
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4. EQUIPMENT AND EXPERIMENTAL PROCEDURES

Chapter outline

This chapter describes the experimental equipment. First, the characteristics of the
samples are given. Then, descriptions of the two rheometers and of the optical apparatus used

in this work are provided. The experimental procedures are also explained in this chapter.

4.1 Polystyrene solutions

Measurements were performed on concentrated solutions of a higiu molecular weight

polystyrene. A wide range of nonlinear phenomena could thus be observed.

4.1.1 The polymer
The polystyrene used here had a molecular weight of 2.84x10¢ and a polydispersity

index, M.J/M,, of 1.09. The polymer was synthesized by Toyo Soda Manufacturing Company.
It has the appearance of raw cotton. Since polystyrene with a high molecular weight is not

necessarily stable the samples were stored in a refrigerator.

4.1.2 The solvent

The solvent used was diethylphthalate (Boiling point = 296 °C, vapor pressure at
20 °C = 0.05 mmHg). This solvent was chosen because it is relatively safc o handle
(Chiara'). It also had been used by other researchers, and therefore the resuits of the

present work could be directly compared with those obtained elsewhere.

4.1.3 Solution preparation
4.1.3.1 Previous work
It is important that the solution be homogeneous and that the molecular weight not

be affected by the dissolution process. Solution preparation techniques had been previously
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investigated by Chiara' and by Doshi®. Chiara proposed to make the solutions of more than
30% by weight in three steps, adding 10% each time, heating to a temperature in the
range of 50-70 °C, and employing a low stirrer speed (around 10-20 rpm). The dissolution
of polystyrene occurs very slowly. Therefore, another method was used by Osaki’ to
prepare an 8% polystyrene solution in chlorinated byphenyl. He added dichloromethane
(a solvent with a low boiling point) to the mixture of polymer and solvent to prepare the
solution; when the polymer was completely dissolved, the solution was heated to 50 °C
under vacuum to eliminate the dichloromethane. The addition of dichloromethane

accelerates the dissolution of polystyrene.

4.1.3.2 Method used

For the present study, solutions with concentrations ranging from 0.188 g/cm® to
0.206 g/cm’ were made. Each solution was prepared using 4g of polystyrene and about
22.8g of diethylphthalate. This provided enough material for two experiments on the
sliding-plate rheometer and one on the Rheometrics Mechanical Spectrometer. The
polystyrene and diethylphthalate were added in four steps. In the first three steps 1g of
polystyrene was added to 7g of diethylphthalate, and in the fourth step the remaining
polystyrene and diethylphtalate were added to obtain a solution containing 4g of
polystyrene and 22.4g of diethylphthalate.

The solutions were prepared in a 150 ml beaker and stirred at a speed of 5-6 rpm.
To obtain such a low szced a rheostat was installed in series with the motor. The solutions
were heated to about 50 °C. The temperature should nct exceed 100 °C, which is the glass
transition temperature of polystyrene and the temperature above which degradation may
take place.

Between every addition of polymer and solvent the solution loses about 0.1 g due
to evaporation. Therefore, the final concentration had an uncertainty of 2.5%. However,
two solutions of the same nominal concentration tested on the sliding plate rheometer gave

good reproducibility for a steady-shear experiment (cf chapter V, section 5.2).
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4.1.4 Solution storage

The solutions were also stored in the refrigerator. It is important that all the
solutions used be stored under the same conditions for the reproducibility of experiments.
The effects of storage conditions on polystyrene solutions have been studied by Moore et

al.4s,

4.2 The Rheometrics Mechanical S omete

Dynamic measurements were done on a Rheometrics Mechanical Spectrometer
(RMS-605). More information about this rheometer can be found in the operating manual®.
Two parallel discs with diameters of 25 mm were used to shear the samples in this study.
The torque and normal force were measured in response to the deformation imposed
during the experiment by the "sensitive shear stress-transducer’ model T-100. A
microprocessor connected with the rheometer calculates the rheological properties from
the torque and normal force data.

The polystyrene solution had to be heated to SO °C for one hour or more in order
to become fluid-like. This operation had to be done in an oven in order for the heating
to be uniform. The sample was then squeezed between the two discs in a slow and gradual
manner by increments of 20 um until the gap between the plates was 1 mm (see figure
4.1). Before starting the "squeezing operation" the sample was left at rest in the
rheometer for twelve hours to assure its uniformity.

The relaxation spectrum was calculated using a commercial software package

(IRIS") developed by Baumgaertel and Winter®.

4.3 The sliding-plate rheometer
Most of the experiments in this study were performed on a sliding-plate rheometer

developed at McGill University. The sliding-plate rheometer is equipped with a servo-
hydraulic actuator and a shear-stress transducer to measure the local stress. The servo-

hydraulic system is controlled (MTS 4132 Centrol) by a MTS Model 442 controller and
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Figure 4-1 Parallel disc geometry
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a DEC PDP-11 microcomputer system. The rheometer is also equipped with an optical
set-up for birefringence measurements in the 1-3 plane of the sample.

The rheometer consists of an upper stationary plate and a lower moving plate. The
lower plate rides on linear bushing bearings. A gap of either 0.365 mm or 0.65 mm was
maintained between the plates using shims. In this gap the polymer was subjected to simple
shear (see figure 4.2). A shear stress transducer is mounted in a cavity in the upper plate
(see Figure 4.3). The shear stress transducer measures the deflection of a beam in a
direction parallel to the flow. This deflection is caused by the shear stress acting on the
end of the beam. The face of the transducer,including the shear-sensitive end of the beam,
is flush with the surface of the upper plate. The deflection of the beam is monitored by
an MTI Accumeasure capacitance probe and amplifier 1023-PA.

The optical system used to measure birefringence is described in a separate section

(4.3.3).

4.3.1 Experimental procedures

The two plates of the sliding-plate rheometer were cleaned carefully with-acetone
and petroleum ether to remove any remaining sample from a previous experiment. The
glass windows used for the measurement of birefringence were polished using an optical
cleaning cloth. After careful cleaning, the transducer housing was mounted and fastened
tightly in position. It is very important that the shear-sensitive surface be flush with the
surface of the plate. Also, the capacitance probe face must be parallel to the cantilever
beam but must not touch the beam. The hot (50 °C) polystyrene solution was then poured
on the glass window of the lower plate. The solution was left resting for 24 hours in order
to allow air bubbles to escape (see figure 4.4). The upper plate and the shims fixing the
thickness of the gap were mounted in place and carefully screwed down in order for the
pressure on the polymer to be evenly distributed. The polymer was finally left resting for
an additional 12 hours before the beginning of an experiment. The shear stress transducer

was calibrated using standard weights suspended by a system of pulleys and wires.
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Figure 4.2 The sliding-plate rheometer
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Figure 4-3 The shear-stress transducer with micrometer
for positioning the capacitance probe
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Figure 4-4 Polystyrene solution resting

-
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4.3.2 Flatness of the plates
It is important that the gap be uniform, and that the plates be parallel to avoid the

errors described in section 3.2.2. Figure 4.5 shows the stress for a steady shear experiment
using parallel and non-parallel plates under the same operating conditions. The importance

of the flatness of the plates can be readily seen. Callipers were used to evaluate the

flatness of the plates.
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Figure 4-5 Experimental evidence of non parallelism of the plites

- The lower plate

The optical glass was removed and its flatness was checked. A variation in flatness
of 2.56% of 0.3 mm for the whole length was found. In order to improve the flatness, the
lower plate was redesigned. In the new design, adjustable screws located under the glass
can be used to correct small imperfections when the glass is not parallel te the upper plate
(see figure 4.6).
- The upper plate

The variation of flatness of the upper plate was verified to be less than 5%.
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Figure 4-6 The lower plate
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4.3.3 The optical system
The sliding-plate rheometer incorporates an optical system for measurement of

birefringence that was originally designed by Haghtalab®.

4.3.3.1 Description

The major components are shown in Figure 4.7 and described below:

1. A 0.5 mW helium-neon laser and power supply (Optikon company, LS-.5).

2. A laser beam expander (Optikon, 16X laser beam expander with spatial filter, 31-

4054).

3. A polarizer and an analyzer consisting of two polarizing prisms (Oriel corporation

of America, 2520-2).

4. An U-V extended visible diffuser head (Oriel, 7062).

5. A photomultiplier photometer (Oriel, 7070).

6. A laser line filter (Oriel, 5272, 1 in diameter).

7. Tubular optical bench, carriers, rod holders, polarizer rotators and adaptors.

In order to measure birefringence the laser light beam is first expanded by the
beam expander, passes through a polarizer and a filter, and is then transmitted through
the sample. The filter is used to prevent too much light from going into the detector. The
transmitted light goes through the analyzer and is measured by the photomultiplier. The
laser line filter allows only light with the same wavelength as the laser to reach the
detector. The diffuser is used to reduce the influence of the angle of incidence of the light.
The photocurrent generated in the photomultiplier is proportional to the intensity of the
light reaching the detector. The output voltage signal, which is digitized and stored on the
PDP-11, is proportional to the intensity of light reaching the detector.

4.3.3.2 Experimental procedures

The laser and the light detector were switched on 24 hours prior to an experiment

to assure steady state. Before carrying out the experiment, all the optical components were
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aligned. The experiments were conducted in a dark room to avoid interference of ambient
light.

At the beginning of an experiment, I, the value of the incident light was measured.
The sample was in the rheometer, and the polarizer and analyzer were parallel. This gave
the maximum intensity. During the experiment, the polarizer was rotated to have a 45°
angle with the flow. The analyzer was rotated to make a 90° angle with the direction of
the polarizer. Thus, the polarizer and analyzer were crossed. The accuracy of this step was
checked by seeing if the light reaching the detector was at its minimum. The intensity, I,

during an experiment was then measured. The birefringence is related to the intensity by:

an = d/x arctan[(l/L)/,/l-(ﬁT:i’] 4-1

where an is the birefringence, d is the gap between the moving plate and the stationary
plate, L, is the incident intensity, I is the intensity during an experiment, and A is the

wavelenght of the laser light.
The results were analyzed using a microcomputer and software developed previously.

4.3.4 Control of the temperature during the experiments

A thermocouple was placed on the upper surface of the upper plate of the
rheometer and connected to a chart recorder to measure fluctuations of the temperature
during the experiments. The thermocouple was also necessary to check that the
temperature of the rheometer, which was warmed by the nearby hydraulic pump, had
reached a steady value before starting the experiment. To study the effect of temperature
on birefringence, the output voltage from the light detector was also recorded on the same
chart recorder.

All the experiments performed with both the Rheometrics Mechanical Spectrometer
and the sliding-plate rheometer were done at room temperature, because there was no

temperature control system for these rheometers.
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5. RESULTS AND DISCUSSION

Chapter outline
In this chapter the results of the research are presented and discussed. In the first part

the results of the small amplitude oscillatory shear experiments are presented, and the
relaxation spectrum is determined. The results of the steady shear experiments are given in the
second parnt. The third part deals with the results of the step-shear experiment and the
determination of the damping function. Finally, the results of the exponential shear experiments
are presented in the fourth part.

3.1, Small amplitude oscillatory shear experiments
5.1.1 Determination of the material functions

The loss modulus G’, the storage modulus G”, and the complex viscosity n* were
determined for a 0.199 g/cm? soluticn over four decades of frequency. Six measurements
per decade were made. Paralle] disc fixtures were used in the Rheometrics Mechanical
Spectrometer. The radius of the discs was 25 mm and the gap between them was 1 mm.
The experiments were performed at a temperature of 23 °C. The loss modulus, G’, the
storage modulus, G”, and the complex viscosity, n*, are plotted versus the frequency, w, in
figure 5.1. The straight line for w > 0.316 rad/s was obtained by least-square linear

regression. The equation for this line is:

log(n*) = 1.66 - 1.03 log(w) 5-1
The data points for 0.01 rad/s < v < 0.316 rad/s were simply connected by straight line
segments.

The curve of n*(w) shows a power law region (w > 0.316 rad/s). In this apparatus

the lowest possible frequency was 0.01 rad/s, which was not low enough to give the zero
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for a 0.199 g/cm’ solution, at a temperature of 23 °C
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shear viscosity n.. Osaki' obtained a value for 5, of 3 10* Pa s by using frequencies of less
than 10° rad/s. For frequencies above S rad.s' the storage modulus becomes constant. It
can be seen there is a broad plateau. The value of the plateau modulus, Gy, can thus be
evaluated . An average of the values of the modulus for frequencies ranging from 1 rad/s
to 100 rad/s gives a plateau modulus Gy of 3924.1 Dyne/cm? = 392.41 Pa. At frequencies
above 3 rad/s, the loss modulus is too small to be measured, which indicates a very elastic
material. A cross-over point between G’ and G” was observed at a frequency of about 0.01
rad/s.

5.1.2 Determination of the relaxation spectrum

The discrete relaxation spectrum was determined from the dynamic mechanical data
using a commercial software package (IRIS). The fundamentals of the method used have
been described by Baumgaertel and Winter?. The results obtained from the computation
are listed in table 5.1.

Table 5.1 Relaxation times and strengths as determined using IRIS

G, A
(Pa) (s)
77 1.587
121.5 12.01
164.6 66.50

5.1.3 Linear relaxation modulus
The linear relaxation modulus can be calculated from the relaxation spectrum using

equation 2-18.

G(t) =) G exp(-t/r) 218

jwl
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Figure 5.2 Linear relaxation modulus versus time for a
0.199 g/cm® solution
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fOr w'a<t<w'w Where wy, is the minimum frequency and we, is the maximum frequency
at which measurements were made. » and G, are the i* relaxation time and the
corresponding relaxation strength respectively.

Figure 5.2 shows the linear relaxation modulus as a function of time. The longest
relaxation time, t,, was determined by the slope of the asymptotic straight line in the plot
of log[G(t)] versus time at long times and was found to be equal to 66.5 s. It should be
noted that the linear relaxation modulus at small times is equal to the plateau modulus at
high frequencies.

5.2 Steady shear experiments
5.2.1 Raw data

Steady shear experiments were performed for shear rates ranging from 0.01 s* to
70 s*. The solution tested was a 0.199 g/cm® solution. The gap used was 0.365 mm, and the
temperature was 25.7 °C. Figures 5.3a and 5.3b present the shear stress results for four
shear rates. These four rates represent the four types of behavior found using 17 different
shear rates. Each of these types of behavior is described below.
- From 0.01 s' to 03 s*
The shear stress does not reach a constant value after the maximum even at long strains.
This case is illustrated in figure 5.3a for y=0.01 s*,
- From 03 s to 05 s*
The shear stress as a function of shear strain shows an overshoot and becomes steady at
higher shear strains. This case is illustrated in figure 5.3a for y=0.3 s*.,
- From 0.5 s' to 5 s!
An initial overshoot (at y = 2.5) is followed by an undershoot (at y = 10) and another
overshoot (at y = 17.5) before becoming steady. This case is illustrated in figure 5.3b for
¥y=1sL
- Above 5s?

Only one overshoot is found. This case is illustrated in figure 5.3b for y=>3s".
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Figure 5.3a Start-up of steady shear; shear stress versus strain
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Figure 5.3b Start-up of steady shear; shear stress versus strain
for a 0.199 g/cm’ solution at two shear rates: 1 s?, § s
at a temperature of 25.7 °C
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In figures 5.4a and 5.4b is presented the intensity of light detected by the
photomultiplier as a function of strain for four shear rates: 0.05, 0.7, 5, and 10s". Again
among the 17 shear rates used, four types of behavior were observed:

- From 0.01 s* to 0.3 s*

The intensity increases as a function of strain and levels off. This case is illustrated in
figure 5.4a for y=0.05 s.

- From 03 s' to 1.5 s*

The curve of the intensity as a function of strain displays an overshoot before becoming
steady. This case is illustrated in figure 5.4a for y= 0.7 s.

- From 1.5 s* to 10 s*

An initial overshoot (at v = 9) is followed by an undershoot (at v = 21) and a second
overshoot (at y = 30). This case is illustrated in figure 5.4a for y=5 s*.

- Above 10s!

Only one overshoot is found, and after this the intensity decreases continuously. This case

is illustrated in figure 5.4b for y=10 s*,

5.2.2 Viscosity

In order to obtain the viscosity defined by equation 2-8

n = aly 2-8

the steady-state stress value at each shear rate was used. The steady stress value represents
an average over the range of strains during which the value of stress fluctuated less than
3%.

Figure 5.5 shows the viscosity as a function of shear rate on a log log plot. It can
be seen from this figure that the zero-shear viscosity was not reached even at very low
shear rates. The power law constants were determined using linear regression. The

resulting power law equation is:
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log(n) = 2.37 - 1.01 log(7) 52
which implies that

n(Pa s) = 237 () 5-3
The steady-state stress is thus essentially independent of shear rate:

o = ny=237 Pa 5-4

Figure 5-6 shows the steady-state stress as a function of shear rate. For the rates
corresponding to the power law region the stress is constant. This behavior has also been
observed by Osaki® at lower shear rates (0.4 s'<y<1 s') for a 0.166 g/cm’ polystyrene

solution. The molecular weight of the polystyrene was 3«10¢ g/mol.

5.2.3 Third normal stress coefficient

The third normal stress difference was calculated from:
N; = an,y/C 3-15

where C is the stress-optical coefficient measured by Philipoff* (C = 5.8.10° m*/N) and any

is the birefringence given by:

Any = Ad/x arctan ((I/L,)/(‘ﬁ-(I/L)’)) 4-1
where A is the laser wavelength, d is the thickness of the gap, I is the intensity measured

during the experiment when the polarizer and analyzer are crossed, and L is the intensity

measured at the beginning of the experiment when the polarizer and analyzer are parallel.
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Two values of the intensity were considered in detail for each experiment at a given
shear rate: the maximum and the steady state values. In the experiments where no steady
state value of intensity was observed only the maximum intensity was considered. The third
normal stress difference corresponding to the maximum intensity, N,,, and the third normal
stress difference corresponding to the steady value of intensity, N, were evaluated.

The third normal shear stress coefficients corresponding to Ny, and Ny, are then given by:

¥ = Nu/¥* 5-5
¥ = Nav? 5-6

Figures 5.7 and 5.8 show ¥, and ¥, as functions of shear rate. The straight lines were

obtained by linear regression. The equations for these lines are:

log(¥.) = 4.02 - 1.14 log(}) 5-7
log(¥) = 3.64 - 1.76 log(7) 5-8

where ¥ is in Pa s* and v is in s".

5.2.4 The transient behavior

The curves of stress and intensity as functions of strain show overshoots at shear
rates greater than 0.3 s*. The time at which the maximum value of stress, t,, occurs and
the time at which the maximum value of intensity, t,, occurs are shown as functions of
1/5 (inverse of the shear rate) in figure 5.9 on a log-log plot. Straight lines were obtained
by linear regression of the data for rates from 0.3 s* to 10 s™. The equations of these lines

are as follows:

t, = 3.03 /v 5-9
t. = 8.62 /4 5-10
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Figure 5.7 Maximum value of the third normal stress coefficient
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Thus, the overshoot occurs at constant strain independent of shear rate. This is in
agreement with the results of Osaki’ for polystyrene solutions and Sakai et al.’ for solutions
of poly(a-methylstyrene). At higher rates (above 10 s') equations 5-11 and 5-12 are no
longer valid, and the times at which the overshoots occur are greater than those predicted

by equation 5-11 and 5-12.

5.2.5 Reproducibility of the data

The reproducibility of the data is better than 5% for five repeats. To evaluate
reproducibility, two solutions, 1 and 2, with a nominal concentration of 0.193 g/cm?, were
prepared simultaneously and were used in two series of steady-shear experiments with
shear rates ranging from 0.05 s to 70 s at a temperature of 27 °C. The rheometer gap
was 0.365 mm.

Figures 5.10 and 5.11 show the viscosity and the third normal stress coefficient
corresponding to the maximum value of light intensity as functions of shear rate on a log-
log plot for solutions 1 and 2. It can be seen that the results for the two solutions are

essentially the same. The best fitting for the power law regions gave:

Solution 1:
log(n) = 2.30 -1.04 log() 5-11a
log(¥:a) = 3.26 -1.17 log(3) 5-11b
Solution 2:
log(n) = 2.27 -1.03 log(v) 5-12a
log(¥ss) = 3.10 - 1.11 log(+) 5-12b
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From this it can be concluded that the method of preparing the solutions as well
as the rheological data are quite reproducible.

These results can be compared with the results for the 0.199 g/cm’® solution given
above. The power law constants for () and ¥s.(3) are the same for the three solutions
within 2% and 5% respectively. For the 0.199 g/cm’® solution the ordinate values at the

origin are larger, which results from the difference in concentration.

5.2.6 Effect of concentration
Figure 5.12 shows the viscosity as a function of shear rate for a 0.204 g/cm’ solution
and a 0.199 g/cm’® solution. The values of viscosity in the power law region were fitted using

linear regression. The resulting equations are:

C = 0.204 gcm®  log(n) = 2.45 - 1.156 log(+) 5-14
C = 0.199 glem®  log(n) = 2.37 - 1.010 log(¥) 5-2

The slope for the straight line in the power law region for the 0.206 g/cm’ solution
is greater than the one for the 0.199 g/cm® solution. Osaki® also observed that when the
concentration of the solution increases, particularly, when it is a type Il solution, the power

law index increases.

5.2.7 Comparison with oscillatory shear experiments
Figure 5.13 shows the complex viscosity as a function of angular frequency and the
viscosity as a function of shear rate for the 0.199 g/cm’ solution. The equations for the

straight lines in the power law regions had been obtained previously:

log(n*) = 1.66 - 1.03 log(w) 5-1
log(n) = 2.37 - 1.01 log(+) 52
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The two curves are essentially the same. The horizontal shift can be explained by e
difference between the temperatures at which the experiments were performed. Therefore,
for this <olution the Cox-Merz* rule is valid.

Figure 5.14 shows the same curves for the 20.4 g/cm® solution. The dynamic
experiments for this solution were run at 22 °C, The equations for the two straight lines

are given below:

log(n*) = 2.69 - 0.93 log() 5-15
log(r) = 2.45 - 1.16 log(}) 5-14

It can be seen from this figure and from equations 5-14 and 5-15 that the Cox-Merz rule
is not valid. Osaki et al.” also observed deviations from the Cox-Merz rule at higher

concentrations, particularly for type II solutions.

3.3 Step-shear experiments
5.3.1 Results

Stress relaxation experiments were carried out with a solution of concentration 0.199
g/cm’. The strain varied from 0.30 to 20 strain units. The relaxation of both shear stress
and birefringence were also studied for a 0.204 g/cm’® solution. In this case the strain varied
from 0.1 to 15 strain units. For all these experiments, the gap used was 0.365 mm, and the
temperature was 26 °C.

The relaxation modulus, G(t,y), was calculated from the shear stress according to

G(tyy) = o(t)l 2-13

Another material function, here called the third relaxation modulus, was calculated from

the third normal stress difference as follows:
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*

GJ(tv'Y) = NJ(t,'Y)/'Yz 5-16
where N, is determined from the birefringence:
Ni(t,y) = an/C 2.15

and the birefringence is determined from the light intensity:

an = d/x arctan[(l,’lo)/(‘ﬁ-(l/lo)z)] 4-1

Figure 5.15 shows the shear stress relaxation modulus for the 0.199 g/cm? solution
for various strains. In this figure is also shown the linear relaxation modulus calculated

from the discrete spectrum according to

G(t) =ZG. exp(-t/x) 218

Figures 5.16 and 5.17 show the relaxation modulus and the third relaxation modulus
respectively as functions of time for the various strains. The curves were obtained by
averaging the raw data to eliminate noise. The sampling frequency of the data acquisition
system was 10 samples per second. The data points in figures 5.15 to 5.17 are averages of

20 data points.

3.3.2 Discussion

Tables 5.2 and 5.3 give the rise time for the two series oi experiments. According
to Laun® the influence of the rise time, at,, is negligible for measurements taken at times
t greater than At,. The largest rise time in the experiments performed here was (.20 s. The
first data points taken into consideration here were at t = 2 s; therefore, the influence of

at, was considered negligible.
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Figure 5.15 Relaxation modulus versus time
for a 0.199 g/cm?® solution
at a temperature of 26 °C
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The curve of the linear relaxation modulus calculated from the discrete spectrum
and the curve of the relaxation modulus obtained from the step shear experiment for small
strain should be the same. Those two curves are shown on figure 5.15; the two curves are
parallel but differ by 30%. This difference results from the fact that the dynamic
experiments, from which the discrete spectrum was inferred, were performed at 23 °C while
the step shear experiments were performed at 26 °C. Those two curves can be brought
together by a time-temperature (horizontal) shift. The shift factor a, was evaluated and
found to be equal to 3.2. No birefringence was observed for strains less than 0.82. Thus

for strains of less than 0.82 the behavior of the melt can be considered linear.

Table 5.2 Rise time for Table 5.3 Rise time for
step-shear performed with step-shear performed with
a 0.199 g/cm? solution. a 0.204 g/cm’® solution.

0.16 4 0.04 0.10 4 0.025
0.36 8 0.045 0.31 8 0.038
052 12 0.043 0.42 12 0.035
0.74 16 0.046 0.62 16 0.038
0.99 20 0.049 0.83 20 0.041
141 30 0.047 1.27 30 0.042
1.92 40 0.048 1.86 40 0.047
3.94 60 0.066 3.88 60 0.065
5.96 75 0.079 5.78 15 0.071
197 160 0.080 7.84 100 0.078
9.95 100 0.099 9.75 100 0.097
14.90 100 0.149 14.65 100 0.146
19.88 100 0.20

5.3.3 Superposition

The relaxation moduli as functions of time are parallel curves for different strains.
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This is valid both for the relaxation function defined in terms of shear stress as well as that
for the third normal stress difference. The curves for the different strains could be
superposed by means of a vertical shift. Figures 5.18 and 5.19 show the curves of o(t)/y
and Ny(t)/y* after shifing. The curves are superposabie for t,>4s within expern aental
error.

According to Osaki® the molecular weight between entanglements for polystyrene

solutions is given by:

cH M, = 1.23*10* (g/cm?) if c < 0.3g/cm? 5-17
Therefore, for ¢ = 0.199 g/cm*

M, = 1.18x10° 5-18

The ratio M/M, is then equal to 22.1 and is comparable to the ratio t/t, (where t, is the
longest relaxation time and t, is the time after which the superposition of the relaxation

modulus curves is possible) which is equal to 16.7. Osaki’ also found that

MM = t/t, 5-19

5.3.4 Detcrmination of the damping function

The values of the damping function h(y) were determined from the shift factor
required to superpose the curves of Figures 5.15 and 5.16. The shift factor required to
bring the curves of Figure 5.17 together gave the values of another damping function,
called here hy(v).

The expenmental data for the damping functions h(y) and hy(y) are plotted as
functions of strain in Figure 5.20. The lines represent the best fit to equation 2-26. The

subroutine used to fit the experimental data was EDLIN from the IMSL library. This
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Figure 5.18 Relaxation modulus curves superposed
for a 0.199 g/cm’ solution, at a temperature of 26 °C
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Figure 5.20 Damping function of polystyrene solution. The solid curve is for
Equation 5.20, while the dashed curve is from Equation 5.21

at a temperature of 26 °C
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subroutine is based on least squares regression. Thus, the two functions h(~) and hy(+) for

the 0.192 g/cm’ solutior. are:

h(vy) 1/(1+ 0.22+4%) 5-20
h(y) = 1/(1+0.18y) 5.21

The shear stress damping function for the 0.199 g/cm’ solution was:
h(y) = 1/(1+0.2164) 5-22
A comparison of equations 5-20 and 5-22 shows the good reproducibility of the data.

5.3.5 Ratio of Nz to Ng
According to Wagner" we should have

G(t,y) = h(v) G(t) 5.23
and Ni(tr) = h(r) G() v 5-24

The function measured here was:
h(y) = Ny(t)/y G(t) 5-25
If the ratio between the first and second normal stress differences is equal to g, the
ratio between the third and the first normal stress differences is (1-g). From this it follows

that:

hy(y) = h(v)(1-8) 5-26
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The ratio g can then be determined as a function of 4 from the experimental data. Figure
5.21 shows g as a function of strain. It can be seen that the ratio NyN, is not constant.
This is in disagreement with the results of Wagner2, Christiansen and coworkers®, and

Tanner", who found that g is constant, although these authors studied different solutions.

5.4 nential shear
5.4.1 Results

Exponential shear experiments were conducted using a 0.192 g/cm’ solution. The gap
between the two plates was 0.365 mm. Experiments were performed for an exponential
rate constant, a, ranging from 0.02 to 6 (with a scale factor equal to 1) at a temperature
of 27 °C and for a strain scale factor, A, ranging from 0.1 to 10 (with an exponential rate
of 0.5) at a temperature of 25 °C. For all these experments the exponential shear stress
coefficient and the birefringence were evaluated. The exponential shear stress coefficient

n. is defined as:

rp.(t,o,A) = a(t)/';(t) 2-46
n(t,a,A) = o(t)/aAexp(at) 5-27

using the shear rate, v(t), given by equation 2-45, .
However, the exponential shear stress coefficient was not calculated according to 5-27. It
was evajvated from the measured value of the strain rate since the actual strain history
always deviates to some extent from ideal strain history, so that aAexp(at) and +(t) are not
equal in practice.

Figure 5.22 shows the exponential shear stress coefficient, n., as a function of strain
for an exponential rate constant, a, of 0.02 and a sirain scale factor, A, of 1. Figures 5.23
and 5.24 show the exponential shear stress coefficient, 5., as a function of shear strain, for
values of the exponential rate constant, a, ranging from 0.1 to 6 and for values of the

strain scale factor, A, ranging from 0.1 to 10 respectively. Figures 5.25 and 5.26 show the
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Figure 521 N;'N, versus strain for a 0.204 g/cm® solution,
at a temperature of 26 °C
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Figure 5.22 Exponential shear coefficient versus strain
(@ = 0.02, A = 1) for a 0.192 g/cm’ solution

at a temperature of 27 °C
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on the exponential stress coefficient
for a 0.192 g/cm® solution, at a temperature of 27 °C
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on the exponential stress coefficient
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Figure 5.26 Influence of the strain scale factor
on the third normal stress coefficient
for a 0.192 g/cm’ solution, at a temperature of 25 °C
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normal stress difference, N,, as a function of shear strain, for values of the exponential rate
constant, a, ranging from 0.1 to 6 and for values of the strain scale factor, A, ranging from
0.1 to 10 respectively.

The curves were obtained by averaging the raw data to eliminate noise. The
sampling frequency of the data acquisition system was 70 measurements per second, and

the points shown in Figures 5.22 to 5.26 are averages of 5 data points.

5.4.2 Discussion

Figure 5.22 shows the behavior of the exponential stress coefficient for a very small
value of exponential shear rate constant, . In this case the behavior of the polymer during
the flow follows linear viscoelasticity over a significant part of the experiment. The
exponential stress coefficient, 5, increases monotonically as a function of shear strain. It
can be seen from Figures 5.23 and 5.24 that 5, ac a function of strain has a maximum. The
maximum occurs at about the same value of strain for every value of the exponential rate
constant, a, and for every value of the strain scale factor, A. It occurs at a total strain of
6.5 strain units. After the maximum the function decreases continuously without reaching
a steady value. It can be seen that both a and A have a strong influence on the results.
When a or A increases, n. decreases. This is not in agreement with the prediction of the
Giesekius® theory discussed by Schieber® which is that n./n, is relatively insensitive to a
variation in A.

The influence of a, the exponential shear rate constant, and of A, the strain scale
factor, on the third normal stress difference can be seen in figures 5.25 and 5.26
respectively. For a < 1, the third normal stress difference as a function of time increases
continuously until reaching 2 maximum value. It stays constant at this maximum value
thereafter. For a > 1 the maxiinum in the third normal stress difference is reached at a
higher strain. After the maximum the value of the third normal stress difference decreases
sharply. It can be seen from Figure 5.26 that A does not have a strong influence on the

results. For 0.1<A<4 the third norinal stress difference increases, finally reaching a steady
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value. For A=10, N; as a function of strain displays a maximum and then decreases. The

parameter o has a larger influence than A on the third normal stress difference.

5.5 Effect of temperature

It was noticed that heat from the nearby hydraulic pump increased the temperature
of the rheometer over long periods of time. The temperature of the upper plate was
measured by means of a thermocouple. Before running any experiment it was established
that this tempe.ature had reached a steady value. During the experiments it was verified
that the temperature of the melt varied by less than 0.1°C. When the experiment was
finished and the pump was stopped the temperature of the upper plate decreased until
room temperature was reached. This temperature was measurec simultaneously with the
intensity of light reaching the photodetector. Figure 5.27 shows the temperature and
intensity of light passing through the polymer as functions of time. It can be seen on this

graph that a decrease in the temperature causes a increase in birefringence.
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Figure 5.27 Influence of temperature on light intensity
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6. COMPARISON WITH THEORETICAL MODEL

Chapter outline
This chapter presents a comparison of the experimental data for steady shear

experiments and exponential shear experiments with the predictions of Wagner’s model. In the
first part the model is presented. The calculations necessary for using Wagner’'s model are
presented in the second part. The comparisons of the exnerim:ntal results and predictions from

the model are presented and discussed in a third part.

6.1 Introduction

The results of the steady shear experiments and exponential shear experiment for
a 0.199 g/cm® solution were compared with the predictions ot Wagner’s constitutive
equation. This equation expresses the state of stress in the polymer as a function of the
flow history (kinematics of the flow) anc the material properties of the polymer. Wagner’s
constitutive equation is given below:

t

ay(t) = f m(t-t)h(l, L)[(1+8)B,(t,t) +pC,(t,t)]dY 6-1

Each of the functions in the integral are defined bellow.

6.1.1 The mewmory function
The memory function, m(tt’), is given by:

m(t-t) = ) GJ/x exp-(t-t)/x 2.18

1

with G; being the i* relaxation modulus and A the i* relaxation time. The relaxation

modulus and relaxation times for the polystyrene solution considered here are given in

95



Bsed mEsm MM TEES NS AN WS SEm s A e AN SRR N

SN  kesia ot

MR N,

table 5.1. These parameters come from the discrete spectrum calculated using small-

amplitude oscillatory shear data.

6.1.” The damping function
The damping function, h(y), used here is given by:

h(y) = 1/(1+0.216+%) 5-22
6.1.3 The kinematics
B,(t,t) and Cy(tt’) are the components of the Finger and Cauchy tensors

respectively, and g is the ratio of the second normal stress difference to the first normal

stress difference.

6.2 Predictions of Wagner’s model
6.2.1 Start-up of steady shear
In steady shear flow the fluid is deformed by the motion of the upper plate moving

at a constant velocity. The flow history is given by:

~(t) = 0 t<0
y(t) = 1t t>0 6-2

Substituting 5-22 and 2-18 into 6-1 we obtain:

t
on(t) = f;GJA. exp(-(t-t)/A)[1/(1+0.22)]{(1+8)Bu(t,t")+8Cu(t,t)] dt’  6-3

The components of the Finger and Cauchy tensor are as follows:

96




Fort’ < 0 By(tt) = 4t 6-da
Cu(t,t) = -4t 6-4b
Fort' >0 By(tt) = (t-t") 6-4c
Cu(tt) = -y(t-t) 6-4d

Substituting 6-4 into 6-3:
t

au(t) = fi{‘e/xi exp(-s/a) [1/(1+0.216(3t)3)] (4t) ds

-Ot

N
+ | Gux exp(-s/x) [1/(1+0.216(3s))] (3s) ds 6-5
imt
where s = t-t’.
In a similar way, the first normal stress difference [Ni(t) = ou(t)-oz(t)] can be expressed
as follows:

t
Ny(t) = f icm. exp(-s/x) [1/(1+0.216(3t)7] (4t)* ds

=l
- O t

+ iG./A. exp(-s/x) [1/(1+0.216(ys)?]) (s)* ds 6-6

im]
]

The second and third normal stress difference Ny(t) and Ny(t) are then given by:

Ni(t) = 8 Ny(t) 6-7
and Ny(t) = ou(t)-on(t) = (1+5) Ni(t) 6-8

6.2.2 Exponential shear

The strain history for exponential flow is given by:

97




-‘i‘mmmmmﬁﬂm—i—mmm-w-

21(t) =0 t<0
+(t) = A [exp(at) -1] t>0 69

where a is the exponential rate constant and A is the strain scale factor. The stress is then
evaluated from equation 6-3 where the components of the Finger and Cauchy tensors are

as follows:

For t"' <0 Bu(t,t) = A [exp(at)-1] 6-10a
Cu(t,t) = -A [exp(at)-1] 6-10b
If t’>0 Bu(t,t') = A (exp(at)-exp(at’)) 6-10c
Cu(t,t’) = -A (exp(at)-exp(at’)) 6-10d

Substituting 6-10 in 6-3 we obtain:

t
on = [ AZ;G./A. exp(-s/x) (exp(at)-1) [1/(1+0.216A%(exp(at)-1)?)]ds

-Qt

+ f AiGJA. exp(-s/x) exp(at) (1-exp(-as)) [1+0.216A%xp(2at)[1-exp(-as)]¥] ds  6-11

The exponential shear stress coefficient, which can be evaluated from equation 6-11, is

defined as follows:
n°'(t) = o(t)aAexp(at) 5-27

In a similar way the first normal shear stress difference can also be found:
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t oy
Ny(t) = fA{g‘}A. exp(-s/A) (exp(at)1)? {1/[1+0.216A%(exp(at)-1)]}ds

=]
-

t ~
+ f A Gy, exp(-s/x) exp(2at) (1-exp(-as))? {1+0.216A%xp(2at)[1-exp(-as)]*}ds 6-12

=]
-~

The second and third normal stress differences are given by equations 6-7 and 6-8.

The shear stress, the third normal stress difference, and the exponential shear stress
coefficient were computed according to Wagner’s model using an IMSL library subroutine
(DQDAG). The programs used here are available in the Polymer Engineering Laboratory
of McGill University.

6.3 Results and_comparison with experimental data
6.3.1 Start-up of steady shear

Wagner’s predictions were compared with the experimental data performed with a
0.199 g/cm’ solution at a temperature of 25.7 °C. Figures 6.1 to 6.4 show the stress as a
function of strain y(t) for both the experimental data and the predictions of Wagner’s
model for four different shear rates ranging from 0.01 s to 5§ s'. It can be seen from
figures 6.1 and 6.2 that the experimental data are in good agreement with the predictions
of Wagner’s model for small shear rates ( y < 0.3 s'). However, for rates larger than
0.3 s' the steady stress predicted by Wagner is smaller than the one obtained
experimentally. For a shear rate of 1 s' the experimental stress signal displays an
undershoot and a second overshoot that are not predicted by Wagner’s model. This
discrepancy increases as the shear rate increases.

The steady shear stress as a function of shear rate for both the prediction according
to Wagner’s model and the experimental data are shown in figure 6.5. For shear rates
greater than 0.2 s' the experimental steady stress starts to level off after reaching a
maximum. Wagner’s predictions are in good agreement with the experimental data for rates
up to 0.3 st. Then the predicted stress decreases and tends toward zero for very high shear

rates. The discrepancy between experimental data and theoretical predictions is due to the
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very narrow relaxation spectrum of the solution.

To illustrate the importance of the spectrum in the behavior uf the steady shear
stress, Figure 6.6 shows the steady stress as a function of shear rate according to Wagner’s
predictions .or a high-density polyethylene melt which has a broad relaxation spectrum (the
relaxation strengths, G, the relaxation times, ), are those of table 6.1) (the data are these

of Tony Samurkas') and the sigmoidal damping function given below:

h(y) = 1/(1+0.15+?) 6-13

Table 6.1

Relaxation strengths and Relaxation times
for a high-density polyethylene melt

G, (Pa) A (8)
1027 100 6816 10*
9346 10° 4106 10
2057 108 5051 10°
.4545 10 3171 100
9322 10° .7496 10!
.1001 10* .2688 10
1922 10° 2787 10°

It can be seen from figure 6.6 that the stress does not decrease.
Figure 6.7 shows t, (the time at which the stress overshoot cccurs) as a function of
the inverse of the shear rate on a log-log plot. The equations of the straight lines obtained

by linear least square regression are:

t. = 3.01/5 5-9
t, = 220/ 6-14
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where t, is the time at which the stress overshoot occurs for the experimental data, and
t,, is the time at which the stress overshoot occurs acccrding to Wagner’s predictions. From
these two equations it can be seen that the strain at which the experimental stress
overshoot occurs is not in agreement with Wagner’s predictions. It can also be seen in
figure 6.7 that the deviation from equation 5-9, discussed previously and observed
experimentally is not predicted by Wagner’s model.

In Wagner’s model if the memory function is expressed vath a single relaxation time

and the damping function is expressed as a single exponential as follows:

h(y) = exp(-ayt) 6-15

the stress is predicted to be:
t
oun(t) = f G/x exp(-(t-t')/») 4t exp(-ayt) dt’
2t
+ f G/x exp(-(t-t)/x) v(t-t") exp(-ay(t-t’)) dt’ 6-16

From equation 6-16 the time at which the stress overshoot occurs is found to be:
t. = l/ay 6-17

To be in agreement with equation 5-9 "a" should be equal to 0.34. Figure 6.8 shows the
damping function determined experimentally, the single exponential form calculated above
and the experimental data. It can be seen from this figure that this single-exponential
form is also in good agreement with the experimental data. However, the calculation
above has been done for a single relaxation time and a single relaxation strength.
Figures 6.9 to 6.12 show the third normal stress difference as a function of strain

v(t) for both the experimental data and the predictions of Wagner’s model for four

106




-

0.80F" w Exporentlial form
0.80F —~Sigmoidal form
0.70r O hCY) C = 0.108 g.cm’
.60
A 0.50F
?.
£ 0.40
0.0
g.20r
g.10t
0 . . 1 ‘ . e AT — e _ d
"0.00 1.50 3.00 450 6.00 7.50 9.00 10.50 12.00 13.50 16.00

Strain

Figure 6.8 Exponential and sigmoidal damping function.
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shear rates ranging from 0.1 s* to 10 s*. The presence of a third normal stress difference
is characteristic of nonlinear behavior. For a rate of 0.1 s? the measured third normal stress
difference increases much more than predicted by Wagner’s model. 1t can be seen from
figures 6.9 and 5.10 that Wagner’s model does not predict the overshoot and undershoot
observed experimentally, but for a rate between 0.7 s* and 2 s the measured steady value
is in fair agreement with the predicted values. However, when the rate is increased to 10
st it can be seen than even for the steady value the experimental values are much larger

than the predicted values.

6.3.2 Exponential shear

Wagner’s model predictions were compared with the experimental data from an
exponential shear experiment for a 0.192 g/cm® solution. Figures 6-13 to 6-16 show the
exponential shear stress coefficient, n¢, as a function of strain for values of the exponential
rate constant, o, ranging from 0.5 to 6 (the strain scale factor, A, is constant and equal to
1). The experimental data curves have the same shape as Wagner’s predictions curves for
a ranging from 0.5 to 6 but guantative discrepancy between experimental data and theory
increases as a increases.

It can be seen from figure 6.17 that the strain at which the exponential stress coefficient
n® displays a maximum is the same for every theoretical curve but is different from the one
observed experimentally.

Figure 6.18 shows the theoretical curves of the exponential shear stress coefficient
for a constant value of the exponential rate constant and a strain scale factor ranging
from 0.1 to 10. The experimental data (See Figure 5.24) show that n° displays a maximum
at the same strain for every value of the scale factor A. On figure 6.18 it can be seen that
depending on the value of the strain scale factor the maxima occur at different shear
strains.

Figures 6.14, 6.19 and 6.20 show the exponential shear stress coefficient as a

function of strain for the same exponential rate constant, «, and for A equal to 1, 0.1, and
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Figure 6.20 Exponential stress coefficient versus strain (A = 10, « = 0.5),
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10 respectively. The discrepancy between the experimental data and the theory increases
as A increases.

Figures 6.21 to 6.23 show the third normal stress difference for values of the
exponential rate constant ranging from 0.02 to 6 (the strain scale factor is constant and
equal to 1). It can be seen from figure 6.21 that for « very small (linear behavior) the
experimental data are in good agreement with the theory up to values of strain of 6 which

corresponds to:

t = log(6+1)/0.02 = 97.29 s 6-18

and ¥ =07 st 6-19

At this shear rate the behavior of the polystyrene solution was nonlinear. For steady shear
experiments a discrepancy between the experimental data and theoretical curves could be
seen for y = 0.7 s* (see figure 6.10).

It can be seen from figures 6.22 and 6.23 that the overshoot observed experimentally
in the third normal stress difference is not predicted by Wagner’s model. It can also be
seen that the discrepancy between experimental data and the theory increases with
increasing a.

Figures 6.24 and 6.25 show a comparison between the experimental data for
exponential shear with A ranging from 0.1 to 10 and an exponential rate constant of 0.5.
It can be seen from those figures that the discrepancy between theory and expenments
increases as A decreases.

To summarize, Wagner’s predictions are not in good agreement with the

experimental data for exponential shear for our solutions.
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6.3.3 Conclusions

Wagner’s model does not predict the stress for steady shear experiments performed
at high shear rates (y>5s') for the solutions used here, neither does it predict the third
normal stress difference for steady shear experiments performed at high shear rates.
Wagner’s model also fails in the prediction of the exponential stress coefficient and the
third normal stress difference for exponential shear. Therefore, it can be concluded from
*he results mentioned above that Wagner’s model cannot predict the nonlinear behavior
of the solutions used here. Wagner’s model is only valid for small deviations from linear

behavior. Wagner’s model seems to fail for solutions of very narrow relaxation spectrum.
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7 CONCLUSIONS

7.1 Summary of accomplishments and findings

Nonlinear viscoelastic properties of polystyrene solutions were studied with the
sliding-plate rheometer and compared with the predictions of Wagner’s model.

A technique to make polystyrene solutions was developed and was shown to give
good reproducibility in the measurement of rheological properties.

The sliding-plate rheometer was evaluated as a tool to study nonlinear viscoelasticity
of polymeric liquids. The possible sources of error were reviewed. In particular it is very
important to assure parallelism between the upper fixed plate and the lower moving plate
in order to avoid errors in the shear-stress measurement. The iower plate was redesigned
in order to assure precise parallelism.

Measurements of shear stress during transient shearing deformations involving high
shear rates were made possible by using a shear stress transducer. Birefringence
measurements in the plane perpendicular to the direction of the velocity gradient were
performed to evaluate the third normal stress difference.

Start-up of steady shear was performed with the polystyrene solutions for higher
shear rates than any previously reported. The transient behavior of the fluid was studied,
and the presence of an undershoot and a second overshoot for both the shear stress and
birefringence were observed. The power law region in the viscosity curve had a slope of
-1 indicating that the steady-state stress is independent of shear rate. For concentrations
of polystyrene higher than 20 g/cm® the absolute value of the slope increased to 1.18.

Single-step shear experiments with large step strain were performed. A damping
function was evaluated from the measurements of the relaxation modulus and fitted with
an empirical sigmoidal function. A different damping function was inferred from the
measurement of the relaxation of the third normal shear stress difference. The ratio of the

second normal stress difference to the first normal shear stress difference was estimated
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from these two functions and was found not to be constant as a function of strain.

The exponential shear stress coefficient and the third normal stress difference were
evaluated for exponential shear experiments. These two rheological functions were shown
to depend strongly on the exponential rate constant.

Small-amplitude oscillatory shear experiments were also performed. A relaxation
spectrum was inferred from the experimental data and found to be very narrow. The
complex viscosity was compared with the steady shear viscosity. Two types of behavior
were observed: for low concentrations (less than 20 g/cm’®) the Cox-Merz rule was obeyed
whereas it was not obeyed for more concentrated solutions.

It was shown that temperature has an influence on the birefringence. A decrease
of 7 °C in temperature doubles the light intensity signal.

The experimental data were compared with the predictions of Wagner’s constitutive
equation. It was shown that for very high shear rates Wagner’s predictions and
experimental data were clearly distinct. The results of this comparison can be summarized
as follows:

1. Above a rate of 0.2 s*' the measured steady shear stress is constant as a function
of shear rate. Wagner’s model predicts a steady shear stress that decreases with
shear rate.

2. The transient behavior (undershoot and second overshoot) was not predicted by
Wagner’s model.

3. When the shear rate was further increased, the discrepancy between experimental
data and the theory became even more pronounced.

4, For exponential shear the predictions of Wagner’s model were found to be in

complete disagreement with the experimental data.

7.2 Recommendations for future work

What follows are recommendations for future work based on the present research:
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The heating used to dissolve polystyrene in diethylphthalate should be reduced to
avoid evaporation of solvent during the preparation of solution.

The influence of the product ¢cM (¢ = concentration in g/cm’, M = molecular
weight) on the results of the experiments performed at very high shear rates and
large strains should be studied by varying either the concentration of the solution
or the molecular weight of the polystyrene sample.

Further study of the effect of temperature on birefringence should be done.
Other theoretical models such as the Doi-Edwards and Phan-Thien Tanner should
be compared with the experimental data to see if they can describe the behavior
of solutions with a narrow relaxation spectrum.

The sliding-plate apparatus should be modified to improve the control of

temperature.
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A = Strain scale factor

B, = Component of the Finger tensor

C = Stress optical coefficient

C, = Stress optical coefficient for the first wave
C, = Stress optical coefficient for the second wave
C, = Component of the Cauchy tensor

F = Force

G = Relaxation modulus

G, = Third relaxation modulus

G, = k* relaxation strength

G’ = Storage modulus

G” = Loss modulus

K. = Spring constant

K. = Dashpot constant

I = Intensity of light

I, = Incident intensity of light

I(B,) = First invariant of the Finger tensor
I,(B,) = Second Invariant of the Finger tensor
M = Molecular weight

M[(t-t),1i(B;),I:(B;)] = Memory function

M. = Molecular weight between entanglement
N, = First normal stress difference

N, = Second normal stress difference

N, = Third normal stress difference

P, Q = Stresses
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V = Velocity of the upper plate
X = Displacement of the upper piate
X, = Elongation

¢ = Concentration of the polystyrene solution
d

Size of the gap

h = Gap between the plates of the sliding-plate rheometer

h(y) = Damping function defined with the shear stress

hy(y) = Damping function defined with third normal stress difference

m(t-t") = Memory function

n = Refractive index

r, I = Retardation paths

t = Time

ty = Time at which the maximum of third normal stress difference occurs during star-up
of steady shear

ts = Time at which the maximum of shear stress occurs during start-up of steady shear

t, = Terminal relaxation time

x = Displacement

x, = Direction of the flow

x; = Direction of the velocity gradient

x; = Direction perpendicular to plane (Ox,x;)

an = Birefringence

an; = Component of the birefringence tensor
¥, = First normal stress coefficient

¥, = Second normal stress coefficient

¥, = Third normal stress coefficient

¥, = Maximum of third normal stress coefficient during start-up of steady shear




e

G TR aes e o e B S M e e

l

¥ = Steady value of the third normal stress coefficient

a = Exponential rate constant
B = NJN,

+ = Shear strain

= Shear rate

== Mechanical loss angle

¢ = Hencky strain

o -~

n = Viscosity

n. = Exponential stress coefficient
n, = Material function defined by Dealy et Doshi
n(y) = Steady viscosity

n*(w) = Complex viscosity

A = Relaxation time

As = Disengagement time

A, = Equilibration time

A = k® relaxation time

o = Shear stress

oy = Component of the stress tensor
x = Stress optical angle

w = Frequency
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