
ABSTRACT 

This work deals with the deagglomeration process in viscous 

fluids. The~Dro~ is that in which aggregates of particles 

suspended in ~ are brOken when the flu id is sheared. 

A mathematical model is proposed to predict the size 

distribution of agglomerates (i.e. the degree of breakage) 

as a function of the shear stress in the fluid, the init ial 

agglomerate size distribution and the agglomerate strength dis­

tribut ion. The most general form of the model allm"s the 

shear stress to be an arbitrary function of time. Two restrict­

ed forms of the model have also been derived. The simplest 

form gives the size distribution, at a given shear stress, 

that obtains at equil ibrium when all the agglomerates, de­

gradable at that stress level, have been broken. The third form 

of the model predicts the time-varying change of the size dis­

tribution in response to a step-change in the fluid shear 

stress. 

Experimental work was performed to test the val idity of 

the model. A concentric-cyl inder apparatus was built to pro­

vide the shear stress field and an analysis technique was 

devised to obtain the aggl8merate size distributions. Artifi­

cial agglomerates made by a novel method were used in this 

study. 

, \ 



Data were obtained for the equil ibrium and the step­

change in shear stress cases. Within the limitations imposed 

by experimental and sampl ing errors the theoretical calcula­

t ions ag ree w i th the exper imental resul ts. 1 n all instances 

the predictions of the model were qual itatively correct. 
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CHAPT ER l 

1 NTRODUCT ION 

1.1 GENERAL INTRODUCTION 

Almost from the first use of polymers, additives have 

been ineorporated in them to render the combinat ions more 

suitable for the designated end use. A 1 ist of the addi­

tives most frequently found in commercial formulations would 

include pigments, thermal stabil izers, fillers, lubricants, 

ult~aviolet stabil izers, antioxidants, impact modifiers and 

flame-retarding agents. Often, a small quantity of a dif-

fe rent type 0 f po l yme r will be added to p roduce a "po l yb l end tt 

that has the optimum combination of desired characteristics. 

ln eaeh case, it is essent ial that the add it ives are d is­

persed uniformly throughout the polymerie matrix. Further­

more, it is important to achieve an optimum particle size 

or size distribution of the minor components. In sorne 

instances, the additives may have an opposite effect to that 

desired if they are non-uniform1y distributed or if they 

possess the improper size distributions (1). Thus, it is 

desirable to quantatively understand the variables, both 

material and operational, which govern the incorporation pro­

cess. Such Knowledge should ultimately lead to improved 

processes and products. 
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It was the discovery of the reinforcing effect of 

carbon blacK in rubber at the beginning of this century 

(2) that gave the incorporation process added importance. 

At first, the incorporation of the car~on blacK was 

accomplished on a two-roll mill as pûrt of the mill ing 

step in rubber processing. Later, closed mixers of var­

ious designs, such as the Banbury (3,4), were employed. 

The effectiveness of these techniques led to the extension 

of their use by the plastics industry where they play a 

major role at this time. 

50 fa r, we have refe r red, in gene ra 1 te rms, to the 

process of incorporating additives into plastics and 

rubber. This process is rather complex because it in­

volves a number of operations occurring simultaneously. 

As a consequence, some contradictions and misnomers have 

appeared in the l iterature concerned with these opera­

tions. To avoid ambiguities and misunderstanding, a 1 ist 

of the relevant terms and their corresponding definitions, 

as used in this worK, are given in the next section. 

1.2 DEFINITION OF TERM5 

1.2a Agglomerates are particles containing a finite 

number of smaller particles which are aggre­

gated. The smal1er particles, referred to as 
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the ultimate particles, are distinct from one 

another and do not necessarily have the same 

size, composition or structure. The ultimate 

particles are bound together in the agglomerate 

by Van der Waals' forces or some binder sub­

stance or adhesive. 

1.2b Aggregates: are identical with agglomerates. 

1.2c Deagglomeration: is the process in which 

agglomerates are broken down into smaller 

aggregates or into ultimate particles. Deagglo­

meration does not involve the breakdown of the 

ultimate particles themselves as in the process 

of comminution. 

1.2d Mixing: is the process whereby material, usually 

a minor component, is redistributed in a matrix, 

which is usually the major component, in order 

to increase the homogeneity of the resulting 

combination. For the purposes of this work the 

additive will be considered as the minor compo­

nent since it is usual1y employed in a smal1 

proportion relative to the polymer which is con­

sidered to be the major component. 

1.2e Blending: is synonymous with mixing. 



1.2f Dispersion: is the process that combines both 
deagglomeration and mixing simultaneously. 

1.3 GENERAL OBJECTIVE OF THE PRESENT WORK 

The objective of this work is to examine the deagglo­
meration process as it relates to 1 iquids of high viscosity. 
As far as is practical, an attempt will be made to deter­
mine the fundamental process and material variables which 
govern this process. Specifically, it is desired to formu­
late a model that will predict the behaviour of agglomerates 
during deagglomeration, given the process conditions and 
material properties. In addition, experiments and suitable 
apparatus will be designed and employed to obtain data that 
will be used to test the proposed model. 



CHAPTER 2 

SURVEY OF PREVIOUS AND RELATED WORK 

2.1 GENERAL CONSIDERATIONS 

Deagg1omeration, during dispersion, is the result of 

three separate actions (5). These are: breaKdown due to 

impact, breaKdown caused by attrition and shear breaKdown. 

Shear breaKdown occurs when the hydrodynamic forces acting 

on the agg10merate overcome the mechanica1 strength of the 

agg1omerate, i.e. the strength of the weaKest bond or 

combination of bonds 1 inKing the components of the agg1o­

merate. Both attrition and impact breaKdown resu1t from 

coll is ions of agglomerates trave1l ing at h igh veloc it ies. 

ln the case of attrition, agglomerates coll ide with each 

other, while impact breaKdown is due to coll isions of the 

particles with the impeller and walls of the apparatus. 

As the viscosity of the fluid is increased, shear breaK­

down becomes more dominant while impact and attrition be­

come less important. When the fluid is very viscous, 1 iKe a 

polymer melt, the flow is usually laminar, and small part­

icles tend to travel in a StoKesian manner along stream-

l ines (6). When, in th is case, an agglomerate coll ides with 

another or with the equipment, the relative velocity is very 



low and, accordingly, the kinetic energy available to cause 

breakdown will be low. Thus, it is expected that deagglo­

meration will proceed by shear forces with the other two 

mechanisms playing a negl igible role. 

A search of the l iterature for work that is relevant 

to the objectives of this resGarch shows findings that fall 

roughly into the following four categories: 

2.1a Research related to the dispersion of sOI ids 

2. lb 

in rubber and plastics. The rubber industry 

has been primarily concerned with the rubber­

carbon blaCk system which is of a complex and 

special ized nature. Most of the work conducted 

on plastics only relates to the understanding 

of the mixing of sol id particles in very viscous 

liquids. 

Research related to the study of forces exerted 

by a shear field on suspended particles. Most 

of this work has been devoted to the behaviour 

of single particles of wel'-defined shape. How­

ever, some recent work has been concerned with 

systems involving many particles of irregular 

geometry. 



2.1c Research relating to the comminution of sol ids. 

Comminution and deagglomeration have many fea­

tures in common, and a close examination of the 

worK in this field will be made. 

2.1d Research relating to the mechanical degradation 

of large molecules by shear fields. In sorne 

respects, the problem of describing the change 

of mo1ecular weight distribution due to shear 

degradation is very similar to the prob1em of 

describing the change of particle size distri­

bution caused by deagglomeration. 

The relevant results from each of the above areas will be 

described in detai1 in the fol10wing sections. 

2.2 DISPERSION OF SOL IDS IN RUBBER AND PLASTICS 

2.2.1 Rubber 

WorK in the rubber industry has concentrated on rubber­

carbon blacK interactions. progress in this area has been 

l imited by the extreme complexity of the system. Carbon 

blacK is a compl icated substance that is not well understood 

and its interaction with elastomers is far from simple. In 

addition, it exists with a very wide range of particle 

sizes (approx. 0.1 to 10011) (7,8). 
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Literature reports recognize the two-step nature of the 

dispersion process which has been treated only qual itatively 

(9,10). It is thought that when the rubber is sheared in 

the presence of carbon black, agglomerates are formed with 

the rubber acting as a binder. These rubber-carbon black 

agglomerates are then broken up and mixed throughout the 

mater ial (9,10). In addit ion to th is type of agglomerate 

breakdown, there is also experimental evidence of breakage 

of the carbon black particle structure itself (11,12,13). 

This evidence is quite recent and will probably result in 

a re-examination of the carbon black deagglomeration pro­

cess in rubber. 

A further problem is the lack of a rel iable and mean­

ingful measure of the extent of carbon black dispersion. 

No dependable test exists that will directly give the size 

distribution of the deagglomerated particles. The enormous 

range of agglomerate sizes precludes the easy development 

of such a measurement. A few attempts have been made to 

put the measurement of breakdown on a quantitative basis. 

A microscopic method has been proposed by Leigh-Dugmore (14) 

but sometimes gave values less than zero, which is physically 

impossible. A revised procedure has been developed by 

Medal ia (15) but his method only considers agglomerates 

larger than 6.5 microns in diameter and, l ike all microscopie 
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.. 
methods, is tedious and time consuming. The use of elect-

rical resistivity measurements has been described (11,12) 

but only as a relative measure of the breaKdown and mixing. 

The most common test used to measure carbon blacK dis-

pers ion in rubber is the oil adsorption test. As mixing 

proceeds, it is found that less oil will be adsorbed into 

the rubber-carbon blacK system. It is thought that this 

is due to the breaK-up of the agg10merates which is accom­

panied by the 10ss of voids. Prior to breaKdown, these 

voids are available to ho1d the oil. Obvious1y, this is a 

h ighly relat ive test, depending not only on the agglomerate 

size, but on structure and other variables. 

It seems fitting to conclude this brief survey with a 

quotation from reference 10 - "The process of mixing 

[carbon blacK and rubber] is not on1y one of the most im­

portant but also one of the most variable and intangible 

in the rubber industryll. 

2.2.2 Plastics 

From the concepts of DanCKwerts (16) and Lacey (17), 

worKers in the plastics industry developed equations des­

cribing the mixing portion of the dispersion process. The 

basic description, as developed by Spencer and Wiley (18) 



1.0 

and Mohr (19), app1 ied to the mixing of two very viscous 

fluids. Mohr considered deformab1e, randomly placed cubes 

of the minor component and showed that the scale of segre-

gation is given by (19)= 

where: 

s 

s = sca1e of segregation 

2 length of a side of the original cube 

y total amount of shear deformation 

v f volume fraction of the minor component 

2-1 

Phys ically, s is interpreted as the average distance from 

the point of maximum concentration of one component (usually 

the minor one) to thenearest point of maximum concentration 

of the same component, for a large number of measurements 

(20). If the scale of segregation is less than the scale 

of scrutiny, no variation in the mixture can be detected. 

The intensity of segregation is a measure of the var-

iation of the scale of segregation and is defined, for this 

process, as the standard deviation of the concentration 

(measured randomly at points throughout the system) of one 

component divided by its average concentration. The qual ity 

of the mixture can th us be described by specifying the scale 

and intensity of segregation in the mixture. 

-, 
\ 



These concepts have been appl ied to the additive-polymer 

system by assuming that the additive particles are so small 

that the minor component appears to behave as a continuous 

medium. If this assumption is correct, then the ultimate 

particles must be very much smaller th an the scale of segre­

gation and the binding forces negl igibly weaK. Thus, the 

dispersion process, by this assumption, reduces to one of 

simple mixing. 

Equations describing mixing have been derived for 

several geometries. Spencer and Wiley (18) have discussed 

a coaxial cyl inder geometry, and experiments performed by 

Bergen et al (21) have confirmed the val idity of this 

approach to mixing. The extruder geometry, a hel ical chan­

nel, has been the subject of a number of investigations 

(4,22,23,24-,25,26), but only qual itat ive agreement has been 

obtained for non-Newtonian fluids such as polymer melts 

(22,26). Bergan (25), assuming Newtonian behaviour, has 

obtained good agreement between experiment and theory for a 

coaxial cyl inder mixer having a hel ical flow. 

GasKell (27) analyzed the shearing action in a two-roll 

mill with equa1 roll speeds and his analysis was extended 

to unequa 1 ro 11 speed s by Be rgen (4). The re does not appea r 

to be any experimental confirmation of the predicted mixing 

a c t ion in a two - ro 11 mil l • 

1 



The deagglomeration portion of the dispersion process 

has been recognized by many authors (19,21,22,25,26,28,29) 

but has received 1 ittle more than recognition of the pro­

blem. Solen and Colwell (30) examined the deagglomeration 

of pigment particles by high shear stresses. Theyassumed 

that adequate mix1ng would be obtained and related the par­

ticle creation rate to shear stress and time by the fol1owing 

equation: 

where 

dn 
dt" 

N 

N (T -r) 
CX) a p [1 -exp(-kct)] 

Ta 

n = number of particles per unit volume 

t time 

particle creation rate at long times, 

co 
= 1 im 

t ..... CX) 

dn 
dt N 

T average shear stress a 

fp minimum shear stress required to cause 

particle rupture 

K = rate constant c 

2-2 

The justification given for equation 2-2 is the observation 

that Iimixing tends to approach an equil ibrium state [thus] 

the rate of approach is apt to be an exponentia1 function 

of time". The term ('T'a - 'T'p) arises because it is expected 
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that there is a minimum stress required to cause rupture. 
dn A problem with the proposed equation is that it gives dt 0 

when t = o. This difficulty is explained by suggesting 

that the agglomerates undergo twisting and stretching before 

rupture, and thus there is no instantaneous breakage. 

It is assumed that the average shear stress, 'ra' is 

constant in a steady-state process and equation 2-2 is 

integrated to obtain: 

where 

= 

no = number of particles per unit volume at 

time, t = o. 

A minor difficulty in the appl ication of equation 2-3 

is that the average shear stress, 'ra' is not further defined 

or explained. A more serious problem is the use of the para-

co 
According to the just ificat ion for the form of meter N • 

equation 2-3, ~~ must approach zero as t - co. Therefore, either 

N
co 

or ('ra - 'rp) must be zero, but it does not make sense for 

('ra - 'rp) to be zero. The alternative, that N
co 

= 0, makes 

the equations useless. A way out of the difficulty is to 

postulate that reagglomeration is occurring, but the authors 

make no mention of this possibil ity, which raises other 



problems. The val idity of the analysis has not been tested 

experimentally, but it is stated that since there are three 

independently adjustable parameters (Tp ' N
ro

, Kc)' the equa­

tions should correlate the dispersion process adequately. 

More recently, Smith (31) investigated pigment disper­

sion in polymer melts using a Brabender Plastograph. (This 

is a mixer of complex geometry described in reference (4), 

p. 314). The procedure consisted of blending 1% by weight 

of various pigments with low density polyethylene for varying 

lengths of time. Samples were sectioned and examined micro­

scopically, and the area under a portion of the integral 

size distribution curve was determined. The 1 imits for the 

area determination were identical for each sample but were 

not specified. The areas, thus found, were plotted against 

dispersion time (range 10 seconds to 30 minutes). This plot 

was found to be l inear according to: 

where 

= const. + 2-4 

area under the integral distribution 

curve, between arbitrarily selected l imits, 

corresponding to time t 

Kd = a rate constant 

t = dispersion time 

1 
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The constant corresponding to the intercept was found 

not to vary, although k exhibited a range of 3:1 from the 

most quiCKly dispersed pigment to the slowest. A further, 

interesting result was that for the 1:4 range of rotational 

speeds examined some pigments gave a kd independent of speed 

(roughly equiva1ent to shear rate) while others showed as 

mu ch as a 1:4 change. Smith did not attempt to explain his 

data in terms of any deagg1omeration mechanisms, but devoted 

his discussion to the problems of sampl ing technique and 

determining the true integral size distribution. 

Similar procedures and equipment were used by Hess 

and Garret (32) to evaluate the degree of pigment (carbon 

black) agglomeration in printing inks. Using microscopie 

examination of thin films, an agglomeration index, A. 1., 

was def i ned: 

where 

A. 1 • 100 2-5 

A = fraction of area in the microscopic field a 

of view covered by agglomerates 

v = volume fraction concentration of pigment 
p 

An agglomerate was defined as a particle having a maximum 

chord of three microns or more. Some eighteen different 
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carbon blacks were examined and compared via their agglomer­

ation index values, but no information about breakdown other than 

agglomerate index values was presented. 

A more fundamental approach was taken by McKelvey (22) 

who attempted to develop a simple model for deagglomeration. 

He considered two spherical particles in a uniform simple 
. 

shear field of magnitude Y. The particles have radius, r, 

and a centre to centre distance of d. It is postulated 

that there is a critical separation, dc' such that when 

2r ~ d ~ d , the force acting to hold the particles in pro-
c 

ximity to each other is a constant, and acts along the di-

rection joining the particle centres. When d > dc the 

force is zero and there is no interaction. It is assumed 

that the hydrodynamic force acting on each sphere is given 

by Stokes· law. Using a cartesian co-ordinate system with 

its origin coincident with one sphere centre, a force bal-

ance gives: 

where 

dx 
ëiY 

x 
y 

the force acting to hold the particles 

in proximity 

u fluid viscosity 

x,y = the co-ordinates of the second particle, 

related by d = (x2 + y2)! 

2-6 
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Because equation 2-6 is nonl inear, the approximation 

d (x + y) is introduced, and the equat ion is integrated 

with the condition that the second sphere has its centre 

initially at (xo ' Yo): 

= 2-7 

The approximation for the centre to centre distance 

introduced to solve the equation has the effect of making 

the attractive forcebetween the particles a function of 

position varying from Fa to Fa /J2, but is justified by the 

rough nature of the analysis. . 
Examining particle paths for various values of (6~rY~) 

Fa 
and initial orientations of the agglomerate leads to the 

following conclusions: 

1. There is a critical shear stress below which 

deagglomeration will not occur. 

2. At shear stresses only sl ightly greater than 

the critical stress only those agglomerates 

initially perpendicular to the flow will de­

agglomerate, all others will rotate to al ign 

with the flow and remain in this orientation. 

3. High shear stresses promote deagglomeration. 

4. If the attractive force, Fa' is independent 

of particle size (r) larger particles will de­

agglomerate at lower shear stresses. 
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The analysis, described as a crude approximation, is open 

to some severe criticisms. It is suggested that the nature 

Thus the of the force Fa is intermolecular attraction. 
o 

force operates only over very small distances (~100 A or 

less), and the two spheres in the agglomerate must be close 

together. Given this situation, it is not correct to apply 

Stokes' law and the lubrication approximation should be used. 

Also, the motion predicted for the non-deagglomerating si­

tuat ion (concl us ion 2) is incorrect as shown by BartoK and 

Mason (33); the particle will continue to rotate in the flow 

in a well-defined orbit determined by its initial orienta­

tion. Finally, the analys is is l imited to agglomerates of 

two spherical particles, and it is not obvious how it could 

be easily extended to multi-sphere agglomerates. To this 

writer's Knowledge there has been no experimental evidence 

to support this deagglomeration hypothesis. 

Investigations into the behaviour of particles in shear 

fields have been made, particularly by Mason and coworKers, 

and the relevant results are described in the next section. 

2.3 PART ICLE BEHAVIOUR IN SHEAR FIELDS 

The breaKdown of agglomerates by hydrodynamic forces is 

a small portion of the present Knowledge of particle motion 

in sheared fluids. An excellent summary of this field has 
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been written byGoldsmith and Mason (34), and much of what 

follows has been abstracted from this reference. Although 

most of the worK has been done with particles of well de­

fined geometry which exist rarely, if at all, in a practical 

system, many general conclusions are useful. An example 

is the result used in the previous section 2-2 where it has 

been found that axisymmetric particles do not al ign them­

selves with the flow, but rotate in orbits. The particles 

undergo varying, but periodic, forces depending on their 

initial orientation, which determines the orbite Thus, even 

if the initial orientation is unfavourable to particle de­

agglomeration it may rotate to a favourable position at a 

later time. 

The behaviour of l inear agglomerates of spheres has been 

examined and the forces acting on long, rod-l iKe particles 

has been der ived (33, pp. 137-144). In simple shear flow, 

the partic1e alternately experiences tension and compression 

as it rotates. The forces are at a maximum when the particle 

is al igned with the principal axes of the stress field, and 

the maximum tensile force is given by: 

2-8 



20 

where Fx = the force at point x from the midpoint 

of the rod 

l-l = viscosity 

y = shear rate 

,er l ength of rod 

x r = distance from the midpoint of the rod 

d = diameter of rod 

re equivalent axis ratio = 0.78 ,e/d 

Equat ion 2-8 appl ies only when the part icle lies in 

the plane of shear and has ,e/d »,. More general equations 

for particles of arbitrary orientation and low ,e/d are given 

in reference (33), but the features of a parabol ic force 

distribution with the maximum at the centre and a l inear 

dependence on the product l-l~ are unchanged. Forgacs and 

Mason (35) have experimentally confirmed the appl icabil ity 

of equation 2-8. 

ln any flowing system containing a concentration of 

particles, there will be particle collisions. If the flow 

is reversible, i.e. the creeping flow equations apply (36), 

the coll isions of two spheres form a transient doublet 

which exists for a finite time. Thus an equil ibrium will 

be reached with a certain fraction of the particle existing 

as doublets. The concentration of these doublets may be 

calculated from (37): 
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= 2-9 

where volume concentration of doublets 

c volume concentration of single spheres s 

i nit i a l l yin the s ys t em 

Equation 2-9 appl ies only for uniform spheres at low con­

centrations where the change in Cs due to the formation of 

doublets is negl igible. The effect of a finite l ifetime 

is appreciable. When Cs = 0.02 fifteen percent of the 

spheres ex ist as doubl ets. A m Inor ity of the coll is ions 

give doublets that are not transient but assume a captive 

orbit, each describing a spherically ell ipsoidal path. 

The frequency of coll isions for two particle inter­

actions in a system containing different sized spheres has 

been derived (37): 

Ns Ns 
L, I: )' (r. + r.)3 n.n. 

2 i = l j ~'l 1 J 1 J 
2-10 

where total number of coll isions per unit volume 

per unit time 

y shear rate, constant over the volume in 

wh ich coll is ions taKe place 

r.,r. = radi i of spheres of species 
1 J 

respectively 

and j, 
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n.,n. = number concentration of species 
1 J 

respectively 

N = total number of species present s 

and j, 

For axisymmetric particles at an arbitrary orientation to 

the shear field, Manley and Mason (38) have shown how the 

mean effective volume may be calculated, if the distribution 

of orientations is Known. This mean effective volume is 

the volume swept out as the particle orbits in a manner 

s imilar to a precess ing top. The calculat ion of coll is ion 

frequencies is not simple because the particle does not 

spend equal time in all portions of its orbit. Recent1y, 

Gauthier (39) has determined the distribution of orbits for 

rods in both Newtonian and non-Newtonian Couette flow. 

Zia and coworKers (40,41) have examined the behaviour 

and breaKdown of chains of rigid spheres. The polystyrene 

spheres used had a th in metal coat ing and were al igned 

along a common axis by the appl ication of a high strength 

electric field. It was found that when the field was re-

moved and the suspending fluid sheared, the chain rotated 

as a rigid rod as predicted by the creeping motion equations. 

As the shear rate was increased to a large enough value, 

breaKage occurred. This could not be explained by the 

creeping motion equations which do not allow breaKdown for 

1 
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any value of shear. Further, it was found that the breaKing 

was not reversibte whereas the creeping motion Equations 

demand reversibil ity of the flow. 

Very recently Vadas (42) examined the behaviour of aggre­

gations of 2~ sized polyvinyltoluene spheres in Poiseuille 

flow. The aggregates were very "flexible", showing marKedly 

different relative orientations of parts of the agglomerate 

as they rotated in the shear field. It was also found that 

Brownian effects were not negl igible, but caused a shortening 

of the period of rotation of the agglomerate. Size distri­

bution of agglomerates were also measured with NaOH intro­

duced as a coagulant. Higher shear rates tended to form 

agglomerates of four or more spheres into a cluster con­

figuration rather than a chain. The distribution also 

shifted towards larger agglomerates as sections further away 

from the capillary entrance were examined. This was ascribed 

to shear-induced coll isions, which caused the larger aggre­

gates to grow at the expense of the smaller ones. 

ln a related worK, van den Tempel (43) derived an equa­

tion for agglomerate size distributions and used it to pre­

dict the viscosity of Emulsions. This Equation, given 

below, appl ied to the steady-state distributions of agglo­

merates composed of monodisperse, spherical particles. A 

mass balance on the i th species yields: 

l 
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1. )' 47rD jK d jK )' 47r D .. d .. n. 2 nKn j - n . 
L~ 1 L...J J 1 J 1 J 

j+K= i j = l 

4 3 4 3 . 
+ 1- )' '>' 2 3 d jK Y njn K n . 3 d j i y n. 

~ 1 L J 
j+K=l j=l 

+ )' 2 nm y B 

m=i+1 

n • 
1 

number of agg10merates of species 

volume 

2-11 

per unit 

DK,D j = diffusion coefficients of K-particle and j­

partic1e agglomerates, respectively 

DjK=Dj+DK 

djK = distance between j-partic1e and K-partic1e 

agglomerate centres after they have coll ided 

y = shear rate, assumed uniform everywhere 

B constant 

t = time 

The first and third terms give the rate of production of 

i th species agglomerates due to coll isions caused by Brownian 

motion and the shear fie1d, respectively. The second and 

fourth terms give the corresponding rates of 1055. The 1055 

terms appear when sma1l agg10merates coll ide to form larger 
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agglomerates. It is assumed that the coll isions are in-

l . Th f·f h h .. h .th e ast IC. e 1 t term represents t e ga ln ln tel 

particle due to the breaKdown of .larger agglomerates by the 

shear field. The 1055 of i-particle agglomerates by the 

same process is given by the 1ast terme With respect to 

the present worK, where it is assumed that agglomeration 

does not occur, only the last two terms will be discussed, 

and equation 2-11 reduces to: 

dn. 
1 

dt = )' 2nm yB 
L.J 

m=i+l 
ni yB (i - 1) 2-12 

The rate of breaKdown, as given in equation 2-12, in-

corporates a number of inherent assumpt ions. Fi rst, it is 

assumed that the agglomerates are l inear in form 50 that an 

i-particle agglomerate has (i-l) bonds. Further, it is 

assumed that the probabil ity of breaKing a bond is proport ional 

to the shear rate. The proportional ity is adjusted by the 

constant B, which depends on the strength of the bonds. 

Impl icit, although not stated by the author, are the assump­

tions that all the bonds are of equal strength, and that the 

probability of disruption is the same for each bond. 

If the restriction as to l inearity of configuration is 

accepted, then the force distribution within the agglomerates 

would not give an equal probabil ity of breaKing for each bond. 

ln addition, as shown by equation 2-8, the force is a function 
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of the product of shear rate and viscosity (i.e. shear stress), 

and hence it would be more reasonable to expect the rate of 

breakage to be a function of the shear stress rather than 

the shear rate. 

A further objection to this mode1 (equation 2-12) is that 

it does not predict an equil ibrium distribution, other than 

single particles, as t ~ 00. The model also predicts that 

this Ifdistribution lf will obtain for any finite value of shear 

rate or shear rate-viscosity combinat ion. 

Experimentally, the theory was tested by substituting: 

Djk djk 
kT 2-13 
37Tu 

where k Boltzmann's constant 

T = temperature 

Il = viscosity 

in equation 2-11 and calculating the viscosity as a function 

of the shear rate. The predictions were made to fit experi­

mentally determined resu1ts on a system of natural rubber 

latex in water by allowing B to vary with the shear rate. 

The results showed that B exhibited a minimum at shear rates 

l sec- l . The value of B varied about 20:1 over five decades 

of shear rate variation. These findings cou1d not be used 

to either confirm or inva1 idate the shear rate breakdown 
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te rms s i nce they we re not tes ted i ndependent 1 y of the co 11 i­

sion terms. Although steady state distributions of agglo­

merates for i ~ 3 were calculated, there were no experimental 

results for comparison. 

2.4 COMMINUTION 

Comminution can be defined as the breaKing of a sol id, 

usually but not necessarily homogeneous, by mechanically 

appl ied stresses. Thus,operations such as crushing, grinding 

and mill ing are comminution processes. 

Epstein (44) is generally credited with the first theor­

etical derivation of a breaKage process that yields a 

logarithmico-normal size dïstribution of the products, although 

he cites an earlier Russian paper. Prior to Epsteinls worK, 

the logarithmico-normal size distribution had been found to 

hold experimentally for a wide range of substances but no 

satisfactory theoretical explanation had been advanced. 

Briefly, Epsteinls concepts are as follows. The com­

minution process may be viewed as one composed of a large 

number of d iscrete events or steps. 1 t may then be descr i bed 

in terms of two functions, PN(y) and F(x,y). The function 

PN( y) descr ibes the probab il ity of breaKage of s ize y in the 

Nth step, and F(x,y) gives the weight fraction distribution 

of particles of size x, x ~ y, resulting from the breaKage of 

1 
1 
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a unit mass of particles of size y. These two functions 

have become Known as the selection function, PN(Y)' and the 

breaKage function, F(x,y). With the assumption that PN(y) 

is a constant, independent of y, and that F(x,y) norm~l ized 

over the interval, 0 to y, is al 50 independent of y, it can 

be shown that the distribution of sizes at the nth step tends 

to a logarithmico-normal distribution as n ~ 00. This occurs, 

regardless of the initial size distribution. 

Bass (45) has derived the mass balance for a comminu­

tion process using Epstein's concepts of a breaKage function 

and a selection function. His result,Known as the funda-

mental equation of comminution, is: 

where 

o2 f (x,t) = 
oxot 

-K(X) of(x,t) 
ox + 

xm 
\" aB(x.rt) K(o.) qf(g.t) d 
j ax oX 0. 
x 

2-14 

f(x,t) = weight fraction of material smaller than 

size x, when a feed with distribution 

f(x,o) is ground for a t ime, t 

K(X) = is the selection function defined as the 

B(x,a.) 

fract iona1 rate or breaKage or mater ial 

ofsizex 

is the breaKage function giving the frac­

tion of material smaller than size x 

resulting from breaKing material of size o., 

and which does not breaKdown further. 

1 
1 
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Xm = the 1argest size in the feed. 

The first term on the right hand side of equation 2-14 

gives the rate of 10ss of materia1 of size x and the inte­

gra1 gives the rate of gain due to breaKage of material 

greater than size x. 

Reid (46) has pointed out that the definition of the 

function K(X) as given above 1eads to a rate of breaKage 

that is independent of time and hence is equivalent to a 

first-order reaction description of the breaKage process. 

ln the same paper he discusses three degenerate cases of 

equation 2-14. Each case has an ana1ytic solution. 

The first case is where K(a.) is zero, giving the resu1t 

that there is no breaKage and the distribution remains at 

its initial (feed) value. The second case is when ~ = 0, 

hence B = constant. This corresponds to breaKage From any 

size to an infinitisimally small product (a powder). The 

fractional rate of breaKage of size x is a constant equal 

to K(X), giving an exponentia1 decay. The third case is 

when the following equation is true: 

2-15 

where C = constant 

This gives: 
K(a.) = Ca. 2-16 

l 
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B(x,ct) x 
ct 
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2-17 

The solution to equation 2-14 for this case is: 

[l-f(x,t)] [l-f(x,o) Je-Cxt 2-18 

This solution states that all the material above size x 

decays exponentially as if it were of size x. This can be 

seen by real izing that [l-f(x,t)] is the fraction of mater­

ial larger than size x. 

ln practice it has been found that none of the above 

degenerate cases are useful in descr ib ing real systems. 

Instead, the continuous size distribution is divided into 

small discrete intervals, and the mass balance is formul­

ated for the i th interval (46,47,48,49). 

where fractional weight of the ith interval 

at time t 

2-19 

b.. the weight fraction of material in the 
1 ,J 

jth interval that breaKs to the size in 

the i th interval 

the fractional weight of breaKage of the 

amount in interval i at t ime t 
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By maKing the assumption that K.(t) 

. 1 dw i ( t) . 1 

tlme, Ki = witt) dt ,Reid (46) was 

is independent of 

able to obtain an 

analytical solution to equation 2-19: 

-K t 
w i (t) = ~ a e n 

n, i 
2-20 

n=l 

where 
i-1 K.b .. a . 

a = \' 1 1 ! 1 n! 1 
n, i Il 

K. - K 
j=n 1 n 

n -1 2-20a 

i -1 

a· . w i (0) - y an,i l , 1 '-' 

n = 2-20b 

n=l 

The assumption of K. -1 K. ( t) i s jus tif i ed if K. = K. 1 = 
1 1 1 dw i ( t) 1 

1+ 

for all i since then K. = wj(t) dt ,a constant for all 
1 

intervals and a 11 species degrade at the same rate. A second 

case where the assumption is justified is when one K (K=Kn) 

is contro11 ing, and all other K1S (K=Ki' i-ln) satisfy the 

criterion Ki « Kn (i-ln). 

Reid cites some worK where it has been found experiment­

ally that the time-independence of Ki is justified but con­

cl udes that, in general, the assumpt ion cannot be made a 

priori. Using experimental results to obtain the breaKage 

function, b .. , Reid calculated the selection function and ob-
IJ 

tained good agreement between the predicted and actual size 

distributions. 

K 
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Herbst and Fuerstenau (49) were able to show that, 

using the same assumptions as Reid (46), it is not necessary 

to have the complete breakage function to estimate the se­

lection function if a single-sized feed is used. The se­

lection function for the largest interval must be known and 

it is assumed that the size distribution is of a particular 

type with sorne, but not all, of the distribution parameters 

specified. The size distributions produced by ball-mill ing 

dolomite were closely predicted by Herbst and Fuerstenau 

using the above treatment of the comminution equation. 

Using the same practica1 equation (2-19) as Reid, and 

Herbst and Fuerstenau but without the assumption of time­

independence of the selection function, Kl impe1 and Austin 

(48) obtained numerical solutions. Like Reid, they obtained 

the breakage function direct1y from experimental results. 

The selection functions were then determined by curve fitting. 

The curve fitting was complex because the selection function 

is now variable with both time and size interval, i.e. 

k = ki(t). The problem was s impl ified by assuming either a 

logarithmic or polynomial dependence of k on size with on1y 

the appropriate coefficients to be determined. The two 

materials examined,anthracite coal and l imestone, were found 

to have selection functions that were strongly dependent 

on time. 
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The work done on comminution has been, thus far, tested 

with results obtained in commercial equipment. In these 

circumstances it does not appear possible to theoretically 

der ive relationships for the breakage functions. The one 

exception is Herbst and Fuerstenau, who have been able to do 

50 because of the restrictive assumptions of single-sized 

feed and functional form of product distributions. Thus the 

solution of the comminution problem, with respect to obtain­

ing a completely predictive mode1, does not seem close. 

2.5 SHEAR DEGRADATION OF MACROMOLECULES 

The mechanical degradation of polymer molecules has been 

studied by a number of workers (50-60). The shear stresses 

required to cause mo1ecular breakage have been generated either 

by high speed stirring or by an ultrasonic source. In ultra­

sonic degradation, frequencies in the neighbourhood of one 

megahertz are usually employed. As shown by Gooberman (51), 

the length of the cavitation pressure wavefront is roughly 

of the same order of magnitude as the molecular dimensions. 

Further, the wavefront passes before appreciab1e flow of the 

solvent occurs (51). Thus there is l ittle or no orientat ion 

of the molecu1e before it is presented to the stress gradient. 

This is in contrast to degradation caused by high shear rate 

stirring as studied by Minowa et al (50) and others (57-59). 
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ln this case, the evidence is that the molecular configura­

tion is altered by the flow that also generates the breaK­

down fo rces • 

There has been no attempt to elucidate the mechanism 

of breaKdown for high speed stirring (50) although Mostafa 

(61) and Gooberman (51) have tried to relate the shear 

stresses developed in ultrasonically induced degradation 

to molecular bond strengths. Forms of the rate equations 

which have been used include: 

and 

where 

2-21 

= 2-22 

t = time measured from initiation of shear 

Mt weight average molecular weight at time, t 

Ml 1 imiting molecular weight, below which de­

gradation does not occur 

kl,K2 rate constants 

Minowa et al (50) have concluded that neither of the above 

equations apply for breaKdown induced by high speed stirring. 

Ovenall and coworKers (53) postulated a breakdown of the 

fol1owing form: 

-.) 
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dB. 
1 

dt 

dB. 
1 

ëit 
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k3 ( P i - P ) n . for P . ) Pe e 1 1 

2-23 
0 for P . 

1 ~ P e 

rate of breakage of molecu1es of degree 

of polymerization (OP), Pi' per unit volume 

Pe = degree of polymerization be10w which mole-

n. 
1 

= 

cules will not break 

number of molecules of OP p. 
1 

k3 = a rate constant independent of OP of i and 

n. but a function of the experimenta1 con-
1 

dit ions, e.g. polymer, solvent, intensity 

of shea r etc. 

Assuming that only fragments larger than Pe/2 are formed and 

that all bonds are equally 1 ikely to break, equation 2-23 

yields upon integration: 

exp (- .3. k tP ) 
2 3 e 

[
ps 1J l - -- - - exp (- - k tP ) Pe 2 2 3 0 

2-24 

where number of bonds brOken after shearing for 

a t ime, t 

t = time of shearing 
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no original number of molecules present 

Po degree of polymerization of starting 

material 

If the starting material is polydisperse, then equation 2-24 

can be appl ied with Po equal to the number average OP., 

where 

(Xl 

\' P . n . L 1 1 

(Po)polydisperse 
i=l 2-25 

(Xl 

L n . 
1 

i=l 

Jell ineK and White (64) derived an equation of the form: 

dB. 
1 

dt = 

K4 = rate constant 

2-26 

assuming that any bond could be broKen at random. Because the 

integration of equation 2-26 gave mathematical difficulties, 

it was modified to the form: 

dB. 
1 1 

(P i 1) n i P . Pe dt K4 - > 1 

2-27 
= 0 p. :5: Pe 1 

The integrated form, analogous to equation 2-24 i 5 : 

= [::0 -1J - [(::0 -1) + k4(Po-P e)tJ exp(-k4Pet) 

2-28 



37 

Minowa et al (50) compared calculated results from both 

equations 2-24 and 2-27 with experimentally determined 

results for shear degradation, and found that a choice be­

tween them was impossible. Ovenall (62) made the same com­

parison for ultrasonically degraded materials and arrived at 

the same conclusion. 

Jell ineK and White (55) have also integrated equation 

2-27 in a form that allowed them to calculate the molecular 

weight distribution if the starting material was monodisperse. 

They tested this experimentally with ultrasonically degraded 

polystyrene and found satisfactory agreement. 

Two items are worthy of note in the worK in shear de­

gradation. First, no experimental or theoretical attempt has 

been made to relnte the degradation due to fluid shear with 

the shear stress developed. The effect of shear stress is 

included in the rate constant which becomes a function of 

the stress. This is caused by the'difficulties inherent in 

calculating the shear stress in the equipment used due to 

its complex geometry (e.g. see ref. 50). Minowa et al (50) 

report a rate constant that varie~ l inearly over a 3:1 range 

of impeller speeds. The use of the rate constants found by 

these worKers is l imited to the particular equipment which 

they have used. This criticism also impl ies that such para­

meters are l imited in value, when it is attempted to gain 

some insight into the degradation process. 
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The second finding of significance is that it appears 

that both equations 2-24 and 2-28 apply equally well to fluid 

shear or ultrasonically caused degradation. It has been 

found that both the solvent and temperature at which the 

degradation is performed affect the degree of degradation 

(59,50), indicating that the molecular configuration is im­

portant. Degradation levels do not necessarily increase when 

the solvency is increased. Most worK has been carried out 

at weight or volume concentrations in the range of 1-2%, so 

that this variable which could give information regarding 

molecular configuration during breaKdown has not been invest-

igated. If there were appreciable straightening of the 

molecules under the influence of the solvent flow, the para­

bol ic force distrïbution found by Mason and co-worKers (34) 

could be appl ied, at least as an approximation. The de­

graded molecular weight distribution would be different from 

that based on the random breaK assumption. In fact, it seems 

that breaKdown proceeds in the same manner for both shear and 

ultrasonically induced degradation, insofar as distribution 

of breaKS is concerned. Thus it may be concluded that the 

degradation of long-chain flexible molecules is not compar­

able to the breaKdown of rigid particles. 

-, 
\ 
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2.6 SUMMARY OF THE RELEVANT LITERATURE 

The fin d i n 9 s a va i l ab lei n the lit e rat ure and r e po rte d 

in detail in sections 2.2 to 2.5 are briefly given, in 

summary, below. 

2.6a The dispersion of carbon black in rubber has re­

ceived much attention but all results have been 

qual itative in nature. This stems from the ex­

treme complexity of the rubber-carbon blaCk 

system, and more knowledge is required about the 

nature of the carbon black structure and its 

interaction with the rubber. progress in solving 

the dispersion problem has been retarded by the 

lack of a quantitative,unambiguous measure of the 

deagglomeration achieved in the dispersion process .. 

2.6b Work in conjunction with the dispersion of addi­

tives in plastics has been concentrated on the 

mixing process. The achievements in this area 

have been considerable, particularly where simple 

mixer geometries are concerned. In contrast, de­

agglomeration has received l ittle attention and 

the reported work either lackS experimental con­

firmation of the proposed theory or is strictly 

empirical. McKelvey (22) has performed a simple 

analysis of deagglomeration in which an agglomerate 
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composed of two, equal-sized spheres is examined. 

His model yields behaviour of the agglomerate that 

is at variance with the Known behaviour of two­

sphere interactions, probably due to sorne question­

able assumptions. Bolen and Colwell (30) "developed 

a semi-empirical model for the deagglomeration 

process. They did not provide any experimental 

evidence, and an examination of the proposed equa­

tion reveals sorne apparent inconsistencies. Smith 

(31) publ ished sorne semi-quantitative results for 

the deagglomeration of different pigments. He 

found that breaKdown proceeded l inearly with time, 

but that the rate depended on the particular pig­

ment. There was no theoretical justification for 

his data. 

2.6c The worK reported, primarily by Mason and co­

worKers, on the behaviour of simple, wel'-defined 

particles and agglomerates during shear has 

yielded many significant results. The determina­

tion of the distribution of hydrodynamic forces, 

as well as the descriptions of particle-particle 

interact ions and'orb its is of part icular interest, 

although not directly appl icable to agglomerates 

of arbitrary shape and structure. Nevertheless, 



insight is gained into particle behaviour and the 

results provide a starting point for the analysis 

o f l i mit i n 9 cas e s, suc h a s a 1 i ne a r a 9 9 l om e rat e • 

2.6d Work on the comminution process has resulted in 

some fundamental relationships based on the deri­

vat ion of the mas s-ba lance equat ion fo r the sy s t,em. 

The impetus for this work was provided by Epstein 

(44) who proposed the concepts of a breakage func-

tion and a selection function to determine how 

and when a particle degrades. However, the models, 

thus far have been tested with results obtained in 

complex, industrial-type equipment. Under these 

circumstances it has not been possible to derive 

the breakage function theoretically. In every 

instance reported, the breakage function has been 

found experimentally using a portion of the data. 

The model is then tested on the rema in ing data for 

that particular system. This difficulty can be 

avoided by making some restrictive assumptions 

about the breakage function or the product distri­

butions, but the general appl icabil ityof these 

assumptions has not been demonstrated. 

2.6e The work done on the mechanical degradation of 

pol ymer mol ecul es has not establ ished a quant it-

ative relationship between shear stresses and 
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kinetic parameters. There is considerab'e doubt 

about the degradation mechanism, and models for 

the process are general1y proposed on a semi­

empirical basis. progress has been hampered by 

conducting experiments in devices of complex geo­

metry, thus precluding the determination of the 

shear field. Jel1 inek and White (55) have suc­

cessfully predicted the change in size distribution 

of an initially monodisperse polymer as a result 

of shear degradation, but they have not related it 

quantitively to the shear conditions. 

2.7 OBJECTIVE OF THE PRESENT WORK 

The present work attempts to deal with the deagglomera­

tion process as occurs during the dispersionof sol ids in 

plastic melts. An effort is made to avoid those difficulties 

and comp) ications which other worKers have encountered, and 

to achieve results that are of practical interest. Emphasis 

is put on the study of systems that can be treated theoretic­

al'y, although thls may result in analyzing systems that 

are simpl istic compared with commercial practice. The main 

components of this worK are outl ined below. 



43 

2.7a Definition of the problem: As stated above it 

has been decided to worK mainly on the problem 

of deagglomeration. As stated in previous sec­

tions, mixing has received much successful study 

and,so far as possible, it will not be treated 

here. 

2.7b Selection of the System: It is desirable to choose 

a system that involves simple experimental tech­

niques and analytical procedures. In addition it 

must be amenable to reasonable theoretical analy­

sis. For reasons that will be given later, it 

has been found that a system of artificially-

made agglomerates of glass beads in a matrix of 

polyethylene glycol satisfies the above criteria. 

The shear field produced in circular Couette flow 

has been found to be suitable for the purpose. 

of th i s worK. (Chapter 3) . 

2.7c Theoretical Analysis: A model for the process 

should be as simple as possible, consistent with 

providing an accurate description. The proposed 

model allows the calculation of agglomerate size 

distribution as a function of time and shear 

stress. (Chapter 4). 

_ . .J 
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2.7d Analysis of the Results and Testing of the 

Proposed Model: The results are analyzed from 

the points of view of experimental error and 

techniques. Experimental data are compared with 

predictions obtained from the proposed model. 

A brief comparison is made between this work 

and previously cited work on deagglomeration. 

Finally, some comments are made regarding the 

model 's util ity and possible extension to com­

mercial systems. (Chapters 5 and 6). 

Each of the above components will be dealt with in detail in 

the following chapters. 



CHAPTER 3 

EXPERIMENTAL 

3.1 GENERAL CONSIDERATIONS 

It is apparent from the discussion in Chapter 2, that 

previous experimenta1 worK on the deagg1omeration process 

is difficult to interpret except in a qual itative or semi­

qua1 itative manner. This is due to the complex f10ws found 

in the commercial types of mixers emp10yed and has resu1ted 

in the absence of any meaningful model for the process. To 

avoid this difficulty three flows for which the appl ied 

shear stresses could be determined were considered for this 

worK. These flows are: Poiseuille flow in a tube, plane 

Couette f1ow, and circular Couette flow. poiseulle flow 

was rejected because the shear stress is non-uniform across 

the tube cross-section. Plane Couette f1ow, although attrac­

tive because of its uniform shear stress field, is difficult 

to real ize experimentally and was not used for this reason. 

Cïrcu1ar Couette flow was chosen as a compromise between 

the Poiseuille and plane Couette flows. 

It has the disadvantage that the shear field is inher­

ently non-uniform across the gap between the two cyl inders, 

but th is var iat ion can be made sma1l if the gap width is 

s ma l lin r e '1 a t ion t 0 the cyl i n der rad i i.. Van Wa z e r (4 ) 
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recommends a gap-to-radius ratio of about 0005. The cup­

and-bob implementation of circular Couette flow is unsatis­

factory for this worK. prel iminary calculations show that 

if a small clearance between the end of cup and the bob is 

used, then the power requirements would be unreasonably 

large for high viscosity fluidso A small clearance is 

desirable to minimize the amount of polymer and agglomerates 

used. The second disadvantage is a practical one - with hot 

viscous fluids, such as polymer melts, cleaning the appara­

tus would be difficult. 

Thus, the alternative of seal ing one end of the gap 

was considered. This, however, introduced an unKnown end 

effect. To estimate the magnitude of this end effect, the 

Equations of motion and energy were solved for the proposed 

apparatus using appropriate boundary conditions and material 

characteristics. It was necessary to solve the Equations 

numerical'y, and the method is given in Appendix 1. The 

calculations showed that, for the anticipated apparatus 

dimensions, the end effects were negl igible for 80% of the 

gap height. 

Based on the above arguments, a circular Couette flow 

apparatus was designed and constructed as detailed in the 

following two sections. 
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3.2 DESIGN CRITERIA AND DIMENSIONS OF THE APPARATUS 

The following constraints were appl ied to the design of 

the concentric cyl inder apparatus with one sealed end: 

3.2a The gap should be as large as possible to give 

3.2b 

a large gap width/agglomerate size ratio and 

to minimize wall effects. 
h The gap height/gap width ratio, w' should be 

large so that a uniform flow field exists over 

a large proportion of the gap. 

3.2c The cyl inder diameter/gap width ratio should be 

large to achieve a good approximation to a 

l inear velocity profile. 

3.2d Consistent with meeting the above requirements, 

all dimensions should be as small as possible 

to minimize the power requirements and the cost. 

Since it was anticipated that the largest agglomerate dia-

meter would be of the order of 100~, a gap width of 0.150 

inches was chosen. This gave a minimum gap width to agglo­

merate diameter ratio of about 40. The choice was based on 

the following considerations of possible wall effects. 

ln the context of the present work, the walls can play 

two roles. The first is the "classical" wall effect where 

the flow is disturbed by the presence of the wall. The 

second effect is the modification of the deagglomeration 

l 
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process due to deagglomeration by coll ision with the walls. 

As pointed out in section 2.1, this latter effect is ex­

pected to be negl igible in the polymer agglomerate systems to 

be studied. A comprehensive review of the classical wall 

effect for single particles and suspensions is found in 

reference (34) ~ The behaviour of single particles at various 

distances from the w.all is well characterized, but this is 

not true for suspensions of particles. For dilute suspen­

sions, however, the work of Karnis et al (63) shows that under 

certain conditions the distortion of the velocity profile 

is negl igible. These conditions are quite close to those 

contemplated for this work, viz. a gap width to agglomerate 

diameter ratio of 40 and a volume concentration of one 

percent or less. 

On the basis of the numerical solutions to the motion 

and energy equations, it was decided to make the gap height 

to width ratio equal to twelve. This gave a depth of ten 

gap widths where the end effect was negl igible. For the 

chosen gap width, the height would be 1.8 inches, a practical 

value. 
Ro - R. . 

Choos ing ( R ') = 0.05, where Ro and Ri are the 
o 

outer and inner cyl inder rad i i, respect ivel y, resul ts in an 

outer cyl inder diameter of six inches if (R o - Ri) = 0.15 
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. R - R • 
inches. The proposed value of ( 0 R. 1) ::: 0.05 gives a 

1 

calculated variation of shear rate across the gap of the 

order of 5% of the mean value, which was considered accept­

able. For example, with an inner cyl inder rotational speed 

of 100 RPM, the shear rate (for a Newtonian fluid) is 

204 sec- l at the inner wall, decreasing to 195 sec-l at 

the outer wall. 

Using the conditions given above, the Taylor Number, 

NTa , was calculated to be less than 10-2 for a fluid of 105 

poises. Thus no problem was anticipated with Taylor in­

stab il ity s ince the trans it ion from orderly flow occurs at 

N
Ta 
~ 41.3 (64). 

The final apparatus design was based on the preceding 

estimates, and the dimensions for the cyl inders selected were: 

R . ::: 2.85 inches, 
1 

radius of inner cyl inder 

Ro ::: 3.00 inches, radius of outer cyl inder 

w o. 15 inches, gap width 

H 2.50 inches, gap height 

3.3 DESCRIPTION OF THE APPARATUS 

3.3.1 Mechanical Arrangement 

A schematic diagram of the equipment is shown in Figure 

3-1 and ~ photograph is given in Figure 3-2. 

T r. e 0 u ter cyl i n der wa s fa b rie a t e d f rom mil d ste e lin 

three identical pieces, each being a 1200 arc of the circle. 



FIGURE 3-1: Schematic Diagram of the Apparatus 
Showing the Heat Transfer F1uid 
Circuit 
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FIGURE 3-2: Photograph of the Concentric Cyl inders 
with the Outer Cyl inder Partially Dis­
assembled. Sorne Sol idified Polyethylene 
Glycol is Vis ible in the Gap 
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FIGURE 3-2: Photogr'aph of the Concentric Cylinders 
with the Outel- Cy'l inder Partial Iy Dis-
assembled. Sorne Sol idified Polyethylene 
G l Y co 1 ; s Vis i b 1 e in the Gap 
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These pieces were bolted together to form the complete cy-

l inder, but were easily disassembled to remove the sol idified 

sample and clean the apparatus. 

The complete cyl inder was clamped to a thicK base plate 

and accurately positioned relative to the inner cyl inder by 

three bolts. The bolts were stationed at 1200 intervals 

around the cyl inder and travelled in a radial direction. The 

bolts and their carriers had differential threads that 

allowed very small increments of travel. By th is means the 

concentricity of the two cyl inders could be adjusted to less 

than 0.0003 inches. The concentricity was verified by a 

dia l gauge accu rate to 0.0001 inch. 1 t was found that the 

adjustments had to be carefully done after the apparatus 

was at the temperature sel ected for the exper iment. 1 f the 

adjustment was done at room temperature, the concentricity 

changed due to the differential thermal expansion of the 

base plate. 

The inner cyl inder was positioned by the drive shaft, 

which extended downwards through the base plate. The base 

plate was provided with both radial and axial bearings. 

There was no measurable play in these bearings. 

The worKing surface of each cyl inder was hard chrome 

plated to resist abrasion and to a!d in removal of the 

sample. To ensure roundness, each cylinder was precision 
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ground after all other machining was finished. The maximum 

deviation from roundness was measured as 0.0004 inches for 

the inner cyl inder and 0.0005 inches for the outer cyl inder. 

The outer cyl inder was fabricated with an integral 

step that formed the bottom of the gapo (See Figure 3-3). 

The resulting clearance of 0.010 inches between the step 

and the inner cyl inder was sealed with a polytetrafluoro­

ethylene (PTFE) pacKing material. The pressure in the pacKing 

could be adjusted by a wedge-shaped ring which was threaded 

onto the inner cyl inder. A hole in the base plate allowed 

access to the ring. 

3.3.2 Temperature Control 

Temperature control was effected by a heat transfer 

fluid and reservoir system. The fluid used was a sil icone 

type (Dow Corning 2l0H) that allowed operation to a maximum 

temperature of 600oF. Total system capacity was approximately 

five litres, with the reservoir (ten inch diameter by sixteen 

inches high) accounting for four litres. The fluid was 

pumped in two independent streams, one for each cyl inder, 

at the rate of about three litres per minute for each stream. 

The reservoir contained three heaters of l KW each 

(Chromolox? rod type) and a 3/8 inch copper cool ing coil. 

A four inch diameter, variable speed (0-60 RPM) turbine 



FIGURE 3-3: Cross-sectional View of the Concentric 
Cyl inders Showing the Heat Transfer 
Fluid Flow and Disposition of the 
Sheared Suspension 
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stirrer was installed to aid heat transfer and minimize tem­

perature non-uniformities. 

The reservoir fluid temperature was measured by an iron­

constantin thermocouple immersed in the fluide This thermo­

couple was connected to a West model J controller (range 

0-8000 F). This unit appl ied simple on-off control and was 

connected to two of the l kW heaters and to a solenoid 

valve in the water l ine feeding the cool ing coil. Control 

action was such that when the two controlled heaters were 

on, the valve shut off cool ing water flow, and vice versa. 

The third heater was connected directly to the power l ine 

through a variable voltage transformer (Powerstat). Power 

to this heater was adjusted manually and was not switched 

by the control 1er. 

The temperature stabi1 ity ach ieved was ~ 0.50 F short 

term (approximate1y 30 minutes) and ~ lOF for periods up 

to eight hours. To obtain cyl inder temperatures greater 

than 300oF, it was necessary to insulate the apparatus as 

completely as possible. The reservoir and the piping were 

permanently insulated. The cyl inder and base plate portion 

of the apparatus had removab1e insulation. The insulation 

was required because of the large heat transfer area which 

produced large heat losses. 
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3.3.3 Cyl inder Wall Temperature Measurement 

Fou r the rmocoup les we re i nsta 11 ed, in both the i nne r 

and outer cyl inders, at dimensionless heights (referred to 

the gap width) of 3.3, 6.7, 10.0 and 13.3 above the bottom 

of the gap. The thermocouples were insulated from the 

cyl inder by two-hole ceramic tubing, and they were held in 

place by copper oxide cement. After the cement was dry, 

the the rmocoup 1 es we re 9 round fl ush w i th the cy l inder wa 11 

(see Figure 3-4). 

3.3.4 Measurement of Cyl inder Rotational Speed 

The inner cyl inder speed was measured by means of a 

magnetic piCKUp and tachometer. 

The steel coupl ing that connected the inner cyl inder 

driveshaft to the motor driveshaft had fifty equally 

spaced teeth mil'ed into it. A magnetic piCKUp of the 

variable reluctance type produced a pulse as each tooth ro­

tated past it. The pulses were fed to a tachometer that 

gave a direct reading in revolutions per minute (RPM). 

The number of teeth and the tachometer were such that a 

frequency of 60 Hz was equa l to 72 rpm. S i nce the power 

l ine frequency is accurately contro"ed at 60 Hz, the cal i­

brations could be readily checKed by coupl ing the tacho­

meter input to the power l ine. 



FIGURE 3-4: Thermocouple Installation in the Cyl in­
der Wall s 
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3.4 CHO ICE OF POLYMER 

The original intent of this worK was to use commercially 

available thermoplastic resins such as polyethylene, poly­

propylene and polystyrene. However, flow instabil ities 

were encountered with this type of polymer and the idea was 

abandoned. A description of the difficulties and results 

obtained with polyethylene is given in Appendix Il. 

Following the failure to achieve a satisfactory flow 

with high molecular weight polymer melts, other materials 

were examined. It was desired to have as high a viscosity 

as possible consistent with small viscoelastic effects 

(these two requirements are usually contradictory in nature). 

Further, the polymer had to be available in, or easily con­

vertible to, a sol id, powder form at room temperature. 

Additional desirable properties were; 

1. a melting temperature less than 4000 F, and 

2. the material should have good thermal stabil ity 

at the melt and experimental temperatures. 

possible candidates that were considered for this study 

were the polyvinyl alcohols, polyvinyl acetates, polyethylene 

waxes, crystall ine petroleum~based waxes, and the poly­

ethylene glycols. Of these it was found that only the high 

molecular weight polyethylene glycols were suitable. 
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The low molecular weight polyethylene glycols are low-

viscosity l iquids at room temperature. Commerciallyavail-

able sol id polyethylene glycols (at room temperature) have 

nominal molecular weights of 4000, 6000 and 20,000. These 

substances which are suppl ied in flaKe form, are white and 

crystall rne. They melt in the range 130-1500 F and exhibit 

Newtonian behaviour in the shear rate range of interest 

(see Appendix fil). The material selected for this study 

is a blended polyethylene glycol of approximately 14,000 

weight average molecular weight suppl ied by Union Carbide 

Canada Ltd. under the trade name "CARBOWAXIf. 

A prel iminary trial run with the chosen material in­

dicated that the flow was stable. The flow pattern was 

examined by placing small (approx. mm3) packets of carbon 

blacK particles at various points in the gap. Except for a 

small area in the corner where the seal was located, the 

flow was orderly and laminar, as determined by examination 

of different cross-sections after varying amounts of shear 

strain (RPM x time) had been appl ied. ft was found that 

the tracer particles remained at the point where they had 

been placed, except for displacement in the circumferential 

direction. ft should be noted that all of the foregoing 

runs were conducted with the top of the gap open to the 

atmosphere. 
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The results showed no evidence of Taylor instabil ity 

for the largest Taylor number employed (N Ta ~ 0.24; viscos ity 

3.5 x 103 cp, RPM = 120). This is well below the trans ition 

point (N Ta = 41.3) at which viscous instabil ity occurs. 

A useful property of polyethylene glycol was its water 

solubil ity. This property. not only made apparatus cleaning 

easy, but also allowed the development of a unique method 

of deagglomeration analysis, as described in section 3.8. 

A disadvantage of polyethylene glycol (for this worK) 

was the need to operate the apparatus with wall temperatures 

within 3-4°F of the freezing temperature of the polymer. 

Operation in this manner was required to obtain a suitably 

high viscosity of the melt. 

3.5 CHOICE OF AGGLOMERAT ES 

Brief reference has been made in Chapter 2 to the com­

plexity of carbon blacKs. This complexity is due, in large 

measure, to the very small ultimate particle s ize and broad 

agglomerate s ize distribution. These characteristics require 

the use of an electron microscope, preferab1y of the scanning 

type to completely analyze a carbon blacK size distribution. 

Unfortunately, the electron microscope is not suited to the 

analysis of a large number of samples and is costly to use. 
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As previously mentioned (section 2.2), the oil absorption 

test for carbon blacks does not yield a satisfactory measure 

of deagglomeration. For a prel iminary study of the deagglo­

meration process, it has been decided to avoid the complexi­

ties introduced by the use of carbon black. 

Other commonly used pigments include the metal oxides, 

of which titanium dioxide and zinc oxide are the most impor­

tant. Little work has been publ ished on the particle and 

agglomerate structures of these materials. Publ is~ed infor­

mation is very meagre for other pigments such as ferric 

oxide, cadmium oxides, etc. (65). In the metallurgical 

field~ some embryonic work has been reported on agglomerates 

formed by the sintering process (66,67). 

ln view of the above findings, it was determined to 

produce artificial agglomerates. Other workers have produced 

controlled agglomerates. Medal ia (15) formed closely sized 

agglomerates of carbon black using a styrene-butadiene resin 

as a binder. After forming the agglomerates the binder was 

cured to produce non-degradable aggregates which had dia­

meters in the range 30-50u. These agglomerates wereofvery high 

complexity because the agglomerate size was at least two orders 

of magnitude larger than the ultimate particle size, and hence, 

each agglomerate contained very large numbers of the particles. 

The object of that worK was not to disperse the agglomerates, 
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but to introduce a contro"ed agglomerate to the system under 

study. Lewis and Nielsen (68) produced artificial agglomer­

ates from soda-l ime glass beads. These beads were fused 

together to give a permanent, strong agglomerate. Such agglo­

merates are unsuited to this worK due to their high strength. 

Also, the highly ordered, deformable agglomerates produced by 

Zia et al (40,41) are not suitable for the purposes of the 

current deagglomeration study. 

The method used in this worK was an amalgamation of 

Medalia's (15) method and thatof Lewis and Nielsen (68). 

Soda-l ime glass beads of a nominal size range of 10-53u 

manufactured by Microbeads Division of Cataphote Corporation 

were selected as the starting material. Polystyrene molding 

compound, Dow Canada 683C, was chosen as the binder to join 

the glass beads together in the agglomerate. This compound 

has a glass transition temperature of 1000C which is above 

the melting temperature of polyethylene glycol (approx. 60oc). 

This ensures that the binder will remain rigid at the ex­

perimental temperatures. 

3.6 PREPARATION OF AGGLOMERATES 

The glass beads ~sed in this study were obtained by 

f ra c t ion a t ion 0 f the s ta r tin 9 ma ter i a lin an 1 n f ras i z e r (69), 

aproprietryair elutriation device. The fraction collected 

for use contained more than 90% (by number) of beads in the 

j 
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size range 30-35u diameter. Attempts to produce monodisperse 
beads by sieving (both normally and ultrasonically agitated) 
were unsuccessful. Ten runs of the Infrasizer, of three 
hours duration each, yielded a total of 300 grams in the 
required size range. This materia1 was b1ended together 
and was used as the source of u1timate particles for the arti­
ficia1 agg10merates. 

About 125 grams of the ultimate particles were placed 
in a tall 150 ml. beaker. A 3% (by weight) solution of poly­
styrene in methylene chloride was added slowly with stirring. 
ln order to achieve even wetting of the beads, a small excess 
of the solution was used. When the beads had settled, the 
excess l iquid was siphoned off 50 that just sufficient solu­
tion to fill the interstices remained. The methylene 
chloride was allowed to evaporate slowly at ambient condi­
tions for three days. Then the beads were p1aced under 
vacuum, and the vacuum was slowly increased from 0 to 2911 

Hg over a l~ hour periode When the maximum vacuum level 
was reached, the sample was kept under these conditions for 
a further 36 hours. 

The beaker was th en spl it by a hot wire glass cutter 
1eaving a monol ithic cyl inder of beads bound together by 
the polystyrene. A stack of sieves with the following stand­
ard meshes was assembled - 120/170/200/230/270. The mono-

1 
--' 
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l ithic cyl inder was placed on the top sieve and the stack 

was gently tapped and moved circularly. The 120 mesh sieve 

had a rough surface that tended to knock off agglomerates. 

The subsequent screens not only sized the agglomerates, but 

al so tended to deg rade them. Thus, i t was neces sa ry to 

stop after approximately o~)e minute of sieving to collect 

the agglomerates. previous experience showed that the 

fraction that passed the 200 mesh and was retained on the 

230 mesh sieve (-200,+230) gave agglomerates of one to ten 

beads. This was the fraction that was collected. Care 

was taken to keep the sieving operation as constant as 

possible with regard to sieve motion and time between 

collections. A total of 250 grams of the glass bead­

polystyrene mixture yielded about fifteen grams of agglo-

merates. 

Sorne idea of the nature of these agglomerates can be 

gained from the photomicrographs in Figures 3-5 and 3-6. 

Figure 3-6 was obtained by a scanning electron microscope, 

and clearly shows the sol id polystyrene bridges holding 

the beads together. It was calculated that the amount of 

polystyrene added, if spread uniformly over the beads would 

increase the diameter by O.14~. Obviously most of the poly­

styrene was in the bridges and the diameter increase was 

n eg l i 9 i b le. 

'1 

\ 

, 
-) 
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FIGURE 3-5: Photomicrograph of a Random Sample of 
the Artificial Agglomerates Depict ing 
Various Configurations 
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FIGURE 3-5: Photomicrograph of a Random Sample of 
the Artificial Agglomerates Depicting 
Various Configurations 
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FIGURE 3-6: Scanning Electron Micrographs of the 
Art if icially made Agglomerates. The 
Polystyrene Bridges Between the Glass 
Beads are Clearly Visible 



FIGURE 3-6: Scanning Electron Micrographs of the 
Artific~lly made Agglomerates. The 
Polystyrene Bridges Between the Glass 
Beads are Clearly Visib1e 
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3.7 SAMPLE PROBE 

The sample probe shown in Figure 3-7, \l'Jas developed 

to permit the withdrawal of representative samples of the 

sol id-l iquid dispersion. 

The probe was constructed from two pieces of telescoping~ 

square brass tubing. The two pieces of tubing were oper-

ated as a syringe to extract a sample from the polymer melt­

agglomerate suspension. The smaller tube was blocKed at 

both ends to form the plunger with the larger tube acting 

a s the bo d y 0 f the s y r i n 9 e . A pp r 0 p ria tes top s we r e fa b rie a t e d 

and attached to the tubes ta l imit the travel of the 

plunger and to give samples of a reproducible size. 

Operation of the probe was as follows; with the plunger 

in the fully forward position the probe was inserted into 

the melt to a chosen depth. The plunger was then slowly 

retracted to the l imit of its travel. The probe was then 

withdrawn from the melt and put aside to cool. After one 

minute, the polyethylene glycol had crystall ized and the 

sample was ejected by pushing the plunger to the other l imit 

of its travelo The sol id sample, approximately 3/32" x 

3/32" x 5/32", was conveniently stored for analysis at a 

later time and the probe was ready for reuse. 
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FIGURE 3-7: Photograph of the Sampl ing Probes Used. 
An Assembled Probe is Shown Above a 
Second, Disassembled, Probe 
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3.8 METHOD OF ANALYSIS 

A water-tight cell was constructed, as shown in 

Figure 3.8, from polymethylmethacrylate. Openings were 

machined into the top and bottom and with glass in~ta1led 

in them, functioned as windows for the celle A small U­

shaped, open-ended cage was fabricated from 60 mesh brass 

screen. This was attached to the inside of the bottom glass 

near the centre. A fill tube and a vent tube was installed 

as shown. 

Sample analysis proceeded as follows; the sample to be 

analyzed was placed in the cage and sil icone stopcOCk 

grease appl ied to the mating surfaces of the cell halves. 

The cell was then assembled and degassed water was trans­

ferred to the cell using a squeeze bott1e. This was done 

as quiCkly as possible with care being taken to completely 

fill the cell. When fill ing was complete, both fill and 

vent tubes were sealed and the ce11 was inverted. 

As the polyethylene glycol dissolved, the agglomerates 

were released and precipitated to the lower (top) glass 

surface. If the glass surface was 51 ightly dirty, it was 

found that the agglomerates would stiCK and remain at the 

point of contact with the surface. While the sample was 

dissolving, it was necessary to manipulate the cell at 
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FIGURE 3-8: Photograph of the Cell Used for Dis­
solving the Sample. The Wire Mesh 
Cage Can be SeeM Attached to the 
Lower Glass ·Surface. The Cell is 
shown in the Fin ing or "Normal" 
position 
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different angles up to thirty degrees from the horizontal 

to distribute the agglomerates evenly over the surface. If 

this was not done, the agglomerates tended to precipitate 

on top of each other and could not be distinguished as 

separate agglomerates on examination. Viewing the cell 

against a darK background with a l ight source directed 

obliquely towards the observer allowed the precipitating 

agglomerates to be seen with the naked eye. Depending on 

the size of the sample, the t ime required for complete 

dissolution was about twenty-five to thirty minutes. 

Ten minutes after dissolution had started, it was necessary 

to tap the cell gently to dislodge any agglomerates that 

were adhering to the mesh cage. This tapping was continued 

at one to two minute intervals until the polyethylene glycol 

was completely dissolved. 

Sample size was important but not critical. If the 

sample was too large, it was difficult to prevent some 

agglomerates from precipitating on top of others. If the 

sample was too smal', th en more samples had to be analyzed 

to get a significant number of agglomerates. The optimum 
. 

sample contained about 2000 to 2500 beads. 

After precipitation was complete, the cel', still in 

the inverted position, was transferred to a microscope 

stage. The microscope used had a travell ing stage with one 

inch of travel in both the lateral and longitudinal 



72 

directions. A jig attached to the stage positioned the cell 

so that it was square with the axes of travel. With the 

stage at the extremes of its travel, the cell was l ined up 

so that the edge of the field of view coincided with one 

corner of the celle The cell was then scanned from one 

side to the other in the longitudinal direction. As each 

agglomerate crossed the centre of the field of view, the 

number of beads in it was counted and a tally made in the 

appropriate category. Thus, the number fraction versus 

beads per agglomerate distribution was found for this scan. 

When the other side of the cell was reached the stage 

was stepped, in the lateral direction, a distance equal to 

the diameter of the field of view and the next scan com­

menced. At the end of the one inch travel in the lateral 

direction the cell was shifted one inch and the process re­

peated. Two cell shifts were required to scan the whole 

surface and obtain the number fraction vs. beads per agglo­

merate distribution for the whole sample. Since the pre­

cipitation process was not completely random, it was neces­

sary to count all the agglomerates from a given sample. 

A combinat ion of transmitted and incident illumination 

was normally used. By manipulating the relative intensities 

of each illumination type, it was possible to detect beads 

that would normal'y be hidden underneath the agglomerate. 
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A magnificat ion of seventy-five diameters was found to 

be convenient for the counting. The counting procedure tOoK 

between two and one half to three hours depending somewhat 

on the nature and size of the sample. 

3.9 DESCRIPT ION OF THE DEAGGLOMERATION EXPERIMENTS 

Initially, the polyethylene glycol was converted to a 

powder by ball mill ing in a one litre Abb€ mill. One half 

inch steel balls were used, and the mill ing time was three 

hours. The powder was sieved, and the fraction that passed 

sixt Y mesh was used. ) 

Sufficient powder to fill the gap to a depth of two 

inches was weighed into a container sl ightly larger than 

the volume of powder. A Known weight of the agglomerates 

was added slowly to the powder in small portions. After 

the addition of each portion, it was mixed with the powder 

using a spatula. When the addition was complete the con­

tainer was tightly capped. Further blending was carried 

out by manually manipulating the container in a tumbl ing 

motion about all three axes. These operations were performed 

gently to avoid, as much as possible, the mechanical breaK­

down of the agglomerates. 
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The mixture was then transferred to the heated appara­

tus via a funnel. When the gap was fi"ed and all the polymer 

was melted, three samples were taKen at each of three 

different, equally spaced circumferential positions. 

Generally, samples were only taKen at one depth, although, 

in someruns, additional samples were taKen at different 

depths. The purpose of these samples was twofold. Samples 

were taKen at different positions to checK how well the 

blending operations succeeded in evenly distributing the 

agglomerates. Secondly, it was necessary to establ ish the 

initial number fraction distribution after the blending and 

fill ing operatfons but prior to the appl ication of any shear. 

The inner and outer wall temperatures were measured 

and recorded. All runs were made in the range 140 to l47°F, 

with the inner wall temperature being about 3.50 F higher 

than the outer wall. 

ln the runs having shear stress as the independent var­

iable, the available RPM range was dividèd into six steps 

of twenty RPM and the sample was sheared for two minutes 

at each speed. For the runs with time as the independent 

variable the speed was selected and the sample was sheared 

for varying periods of time. 

At the end of each step the apparatus was stopped. 

Samples were then taKen at a depth of one-hal f the depth of 

the polymer in the gap. Six samples, two each at three 
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equally spaced circumferential positions, were taKen. Prior 

to the next step, cyl inder wall temperatures were again mea­

sured and recorded. The maximum shift occurred during the 

120 RPM runs and was no more than 20 F. 

If the largest agglomerate is estimated to behave as 

a 100~ diameter sphere, then the settl ing velocity (Stokes 

region) is 1.3 x 10-2 in/min. This agglomerate will settle 

about 0.2 inch during a typical run which lasts twenty 

minutes. Because the velocity is proportional to the square 

of the radius, the smaller agglomerates will settle less 

in a given time. If the spatial distribution of agglomerates 

in the gap is random, there will be a shift in the distri­

bution only in the top 0.2 inch and bottom 0.2 inch of the 

gap during the rune 

The samples were analyzed as previously described. 

Usually only three samples at each condition were analyzed, 

the extra samples being taKen as a safeguard against 

accidental loss of the sample during analysis. The excep­

tion to this was the zero shear (initial) samples of which 

a total of eight were normal'y counted. Each run gave 

between thirty to fort y samples. Each sample tOOK between 

three and one-half to four hours to analyze including cell 

preparation, sample dissolution-and counting. Each run 

thus represents three to four weeKs of worK. 



76 

Since a substant ial portion of the experimental worK 

was consumed by the visual counting of the agglomerates, 

sorne effort was expended in investigating automated counting 

techniques. Attempts to use a Quantimet (70) lIimage 

ana l yz i ng compu ter ll we re uns uccess fu l becaus e of re fl ect ions 

from the beads which gave false counts. A further diffi-

cult y resulted from the concepts involved in the operation 

of the instrument. The Quantimet operates on a two­

dimensional projected image. Thus, for the machine, a 

tetrahedrally arranged four bead agg10merate is indistinguish­

able from a triangularly arranged three bead agglomerate. 

Both of these types were frequent1y found in the present 

worK. 

A type of particle ana1yzer that is almost ideally 

suited for the present app1 ication is the Cou1ter partic1e 

counter. This instrument measures partic1e volume. A 

description of its use in counting aggregates of latex par­

tic1es is given by KubitscheK (71). Unfortunately, the 

particular configuration of the instrument required for this 

worK was not available to the author. 

Many partic1e sizing methods are based on sedimentation 

in the StoKes 1 l aw reg ion. These, and othe r methods are 

reviewed by Herdan (72). In general, these methods require 

the production of a uniform dispersion in the suspending 
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medium. Because the agglomerates under study are fragile, 

it is doubtful that a uniform dispersion could be obtained 

without altering the size distribution. 

3.10 MEASUREMENT OF TEMPERATURE PROFILES 

The temperature profile across the gap was measured 

with a probe so as to have a checK on the numerical solu­

tions of the equations of motion and energy. The probe, 

manufactured by Victory Engineering Corp., was in the form 

of a hypodermicneedlewith a thermistor embedded at the 

tip. The needle had a diameter of 0.018 inch (26 gaug~ and a 

length of two inches. 

The probe was inserted from the top of the gap. A 

simple fixture was devised to support the needle and to posi­

tion it at various locations within the gap. It was neces­

sary ta support the needle as close as possible to the point 

where it entered the polymer melt because of the needle's 

flexibil ity. Even 50, it was found that the profiles at 

higher speeds () 60 RPM) were irregular, probably due to 

bending of the probe. 

The supporting and positioning arrangement is shown 

in Figure 3~9. The supporting cyl inder that also acts as a 

positioning device was made from polyacetal rather than 

metal. Polyacetal is preferred because of its lower thermal 

conductivity and self-lubricating qual ities. This support/ 



FIGURE 3-9: A Diagram Showing the Fixture Used to 
Mount and Position the Thermistor 
Probe. The Drawing is Approximately 
to Scale 
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positioning cylinder extended down into the gap and stopped 

about 1/32 inch above the polymer melt surface. The probe 

position was read by means of a protractor. 

The probe comprised one arm in a Wheatstone bridge and 

the unbalanced bridge voltage fed to a DC ampl ifier with a 

gain of, approximately, twelve. Provision was made for 

adjusting the output of the ampl ifier to zero volts for any 

probe temperature in the range l30-1550 F. The ampl ifier 

and Wheatstone bridge thus converted the change of the 

resistance of thermistor with temperature to a corresponding 

voltage change with temperature. Because the temperature 

coefficient of resistance is non-l inear, the voltage change 

with temperature is also non-l inear. 

The thermistor-ampl ifier combinat ion was cal ibrated 

with a precision laboratory mercury-in-glass thermometer with 

O.loF divisions. Using a magnifier, temperature differences 

on the order of O.02oF could be estimated. The cal ibration, 

plotted as the ampl ifier output voltage coefficient of 

dV • h • F· temperature, dt' versus temperature,T, 15 5 own ln Igure 

3-10. 

The probe was used by establ ishing one cyl inder wall 

as the reference tempe rature as measured by the thermocouples 

embedded in it. With the probe in position against this 

wall, the output voltage was adjusted to zero. The voltage 



FIGURE 3-10: Determination of the Thermistor Probe 
Temperature Coefficient. The Open 
Circles Represent Experfmental Points 
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change for other positions of the probe was recorded as it 

traversed the gap. By using the appropriate va1ue of the 

temperature coefficient, these readings were converted to 

accurate temperature differences, referenced to the wa11 

temperature. 

The operation of the probe and the positioning fixture 

was verified by estab1 ishing a temperature difference 

between the two cy1 inders, which were stationary with po1y­

ethy1ene g1yco1 in the gap. A temperature profne was then 

taKen with the cy1 inders remaining stationary. A profi1e 

obtained under these conditions shou1d be 1 inear. The 

experimenta11y obtained profile (Figure 3-11) shows only 

sma11 deviations from 1inearity indicating the correct func­

tioning of the probe and its positioning device. 



FIGURE 3-11: Verification of Correct Probe Position­
ing in the Gap. A Temperature Differ­
ence, T. - T = 4.30 F, Existed Across 
the Gap! 0 The Points Represent 
Measured Temperatures While the Curve 
is the Computed Temperature Profile. 
The Fluid was Stationary 
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CHAPTER 4 

THEORY 

4.1 GENERAL FEATURES OF THE MODEl 

The identification of the important parameters in a pro-

cess is often aided by a clear physical picture of the process. 

ln this chapter, a model using equations developed from a pro­

posed mechanism of the deagglomeration process will be pre­

sented. 

We consider an agglomerate composed of a number of par­

ticles bonded together and having one of a large number of 

possible configurations. It is assumed that deagglomeration 

is caused by the hydrodynamic forces acting upon the agglomerate 

and that coll isions between aggregates make only a minor con­

tribution. This assumption is reasonable because of the small 

agglomerate sizes and large viscosities involved. It is also 

assumed that there will exist a certain orientation of the 

agglomerate (with respect to the shear stress field) such that 

the magnitude of the field required to cause breakdown is a 

minimum. This orientation will be called the "most favourab1e 

or ientat ion". 

ln addition it is assumed that the breaking strengths are 

randomly distributed throughout all the bond positions in all 

agglomerates. Thus, for a large agglomerate population, different 
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spec ies of agglomerates possess equal fract ionsof bonds of 

a 9 iven strength,and these fract ions are the same as the 

fraction of all bonds of that strength for the total popula-

tion. This assumption relates to the appearance of a bond 

of given strength in a specified position in the agglomerate. 

It is distinct from the breaKing strength distribution, which 

is discussed later. 

The minimum breaKing force, which is associated with 

the most favourable orientation, will depend on the structure 

of the agglomerate. Structure involves both configuration, 

which is the spatial arrangement of the particles in the agglo­

merate, and the distribution of bond strengths within the 

particle. The structure is expected to be dependent on the 

method of production of the agglomerates. 

If the agglomerate is placed in a fluid undergoing simple 

shear flow, then the magnitude of the shear stress will be the 

variable determining whether the agglomerate will degrade. 

Given a certain value of shear stress, T, and agglomerate 

population, there will be a fraction of the population that 

will degrade. This fraction is specified as having a minimum 

breaKing strength of cr, or less, where cr is associated with 

the appl ied shear stress, 'T. 

Initially, when shearing is commenced, not all of this 

degradable fraction will be in an orientation that is favour­

able for breaKage. It is assumed, however, that if shearing 

--. 
1 
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is continued for a sufficientlY long time all the agglomerates 

will rotate to the orientation that causes breaKdown. Thus, 

eventually, a11 of the fraction wi11 be broKen and an equil i­

brium related to the magnitude of the shear stress will be 

establ ished. If the shear stress is increased, a new equi1 i­

brium will be achieved after an additiona1 time. 

ln this manner, the equil ibrium breaKdown distribution 

is associated with the magnitude of the shear stress field 

and the approach to equi1 ibrium is associated with the amount 

of shear strain that has occurred. The rate of approach to 

equil ibrium is thus determined by the shear rate. 

For the purposes of simpl ifying the analysis, the model 

will be presented in three parts. The first part, section 4.2, 

wi11 develop equations to predict the.distribution of sizes 

at equi1 ibrium, and the second part, secti~n 4.3, is con­

cerned with the approach to equil ibrium for a step change in 

shear stres~. The third part, section 4.4, wi11 present 

equations that permit the calculation of the size distributions 

for a shear stress that is an arbitrary function of time. 

For the purposes of this study the size of an agglomerate 

is determined solely by the number of beads it contains. 
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4.2 EQUILIBRIUM SIZE DISTRIBUTION 

4.2.1 Gain and Loss Functions 

The objective of this section is to present a modei that 

will predict the equil ibrium agglomerate size distribution 

corresponding to a constant appl ied shear stress. It is 

necessary to Know the initial distribution (before the appli­

cation of shear) and the magnitude of the shear stress. As 

indicated earl ier, it will be assumed that sufficient time has 

elapsed to ensure the deagglomeration of all breaKable agglo­

merates by the prevailing shear stress. 

Let n. be the number of agglomerates containing i part­
I 

icles (hereafter referred to as an i-particle agglomerate). 

As a result of the appl ied shear stress, agglomerates con­

taining more than one bead will be broKen down to smaller 

agglomerates. This leads, generally, to a gain in the number 

of the smaller agglomerates and a loss of the agglomerates of 

larger size. Define a gain function, Gi , such that: 

( dn . ) 
1 9 

4-1 

where (dn.) is the number of i-partic1e agglomerates gained 
1 9 

in the incremental shear stress range between T and T + dT, per 

unit volume. The remainder of this discussion appl ies to unit 

volume of the sample. Rewriting equation 4-1 in the form: 
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(dn .) 
1 9 

dT = 4-2 

it is apparent that Gi(T) may be considered as the gain in Î­

particle agg10merates per unit shear stress in the range of 

shear stress between T and T + dT. This gain is provided by 

the breaKdown of j-partic1e agg1omerates, where j > i. 

Simi1ar1y, a 10ss function, L., may be defined: 
1 

L . 
1 

= 4-3 

where L. is the 10ss in i-part icle agglomerates per un it shear 
1 

stress in the range of shear stress between T and T + dT. This 

10ss represents the breaKdown of i-particle agglomerates to 

sma11er, K-particle, agglomerates where K < i. 

The quantity Gi(T), hereafter called Gi for brevity, is 

the sum of the gain of the i-particle agglomerates from al1 

the j-particle agg10merates (j > i) breaKing down. A quantity, 

g .. , is defined to represent the gain by the i th species due 
I,J 

to breaKdown of a particular j-species. Consistent with Gi 
and L.

I
, g .. is defined per unit stress over shear stress range 

l ,J 

between T and T + dT. 

Thus, a mass balance for the gains and losses gives the 

following: 
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N 

G. = L g. . 
1 l ,J 

4-4 

j= i+1 

and i -1 

L . L K 
i gK . 

1 , 1 
4-5 

k=l 

where N is the number of particles in the 1argest agg10merate 

in the system. In this worK the 1argest agglomerate is taKen 

as that which contains the largest number of beads. 

A mass balance for each species and for the who1e system 

yie1ds: 

D . = G . L • 1 :::; :::; N 4-6 
1 1 1 

and N 

L D . 
1 

0 4-7 

i=l 

where D . 
1 

is the net difference between gain and loss for 

each species. 

If equations 4-4 and 4-5 are substituted into equat ion 

4-6, the resulting system is as shown in Table 4-1. This 

N2+ l 
system contains N equations and ---2- unKnowns. 

It is now assumed that when an agg10merate spl its it will 

yield on1y two portions. For example, a five-part icle agglo­

merate may break to simultaneously yield, two agglomerates 

with two and three partic1es each or two agglomerates of one 

and four partic1es each. However, it is forbidden for a five-



TABLE 4-1 

MASS BALANCE EQUATIONS 

Dl = 0 + 91,2 + 9 1,3 + · · · , . , . · · · · · 91,N 

°2 = 1 + 0 + + - 2" 9 1,2 92 ,3 · · · . . · · · · · 92 ,N 

°3 
l + 2 + 0 

- "3 9 1 ,3 "3 92 ,3 + · · · . . · · · · · 93,N 

ON -1 = 
l 2 ~ 9 - • + 0 + 9N -1 ,N - N-1 9, ,N-1 - N-1 92 ,N-1 N-1 3,N-1 • . . . . . . . 

ON 
1 2 .1 N-1 = - N 91,N N 92 ,N N 93,N . . . . . . . . • - --N- 9N- 1 ,N + 0 

<-. -----_._---_ .... -1 
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particle agglomerate to breaKdown so as to give, simultaneously 

a single particle and two two-particle agglomerates. On the 

other hand, sequential breaKdown is allowed - e.g. a five-

particle agglomerate may degrade to give a two-particle and a 

three ..... particle agglomerate. Each of these Ifdegradation 

products" may spl it at some value of the shear stress higher 

than that which caused the five-particle agglomerate to spl it. 

Further, it is assumed that the agglomerates acquired via 

breaKdown and entering a particular species, i, are indisting­

uishable from the undegraded agglomerates remaining in the 

species i. This assumption follows from the assumption of 

random distribution of breaKing strengths over all positions 

in all agglomerates. 

These assumptions result in the following equation 4-8, 

which is demonstrated numerically in Table 4-2. 

gi-j,i = g. . 
J , 1 

3 ~ i ~ N 4-8 

The gains of different species may be related by using 

a parameter, cKi ' defined as follows: 

= 4 ~ i ~ N 4-9 

The factor cKi represents the relative frequency in which 

the breaKdown of species i yielœK-particle agglomerates in 

preference to (K + l)-particle agglomerates. As an example, 
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TABLE 4-2 

RELAT IONSHIPS BETWEEN DEGRADED PORTIONS 
OF AGGLOMERATES 

Poss ibl e S~I its Relationshi~s 

None 

1 : 1 

1 : 2 

1 :3 91,4 = 93,4 91 4 
c l 4 = --!-L.!.. 

1: 2 92 ,4 

1: 4 91,5 94,5 91 ~ 
c 15 

= .:..!..J...:d. 

2:3 92,5 = 93,5 92,5 

1: 5 96= 95,6 9 1 6 l , 
c -~ 

2:4 9 6 = 94 6 
16 - 92 ,6 

2, , 
92 6 

c26 = ....::::.J.:::: 

3:3 93,6 

1 : 6 91 ,7 = 96,7 
c = 91 ,7 

17 92,7 
2:5 92 ,7 = 95,7 

92 7 c27 
= --!::...%..l.. 

93,7 3:4 93,7 = 94,7 

1: 7 91,8 = 97,8 91 8 
c l 8 =~ 92,8 

2:6 92,8 = 96,8 
92 8 

c28 =~ 
93 ,8 

3:5 93,8 95,8 
=~ c38 94 8 

4:4 , 
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consider that .the five-particle agglomerates sp1 it in the 

ratio 2:3 twice as often as they spl it in the ratio 1:4. 

Then c = ~ = 0.5. 
15 g2,5 

Wh en equations 4-8 and 4-9 are substituted into equation 

4-6 along with equations 4-4 and 4-5 the following is obtained 

(see Appendix IV): 

where 

N 

~ c .. 9 l . 
1 J , J 

j=i+l 

C.. = l, 
1 J 

c .. g, . 
1 l ,1 

Ci (i+1) = 1, 2 ~ 

j -( k+ 1) 1 C •• = 'TT" 
IJ k=l ckj 

j -1 _,_ 
C .. = 'TT IJ ckj 

, 
k=l 

C .. = 0 
1 1 

j -1 
C .. = ~ 

i 
C ij' ..... 

Il J 
i=l 

= D . 
1 

:;; (N-l) 

i+2 :;; j :;; 2 i 

2i+l :;; j :;; N 

2 :;; :;; N 

~ N 4-10 

4-10a 

4-10b 

4-10c 

4-10d 

4-10e 

4-10f 

l 
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ln equation 4-10 the first term on the left hand side 

represents the gains and the second term represents the 

losses. The relationship 4-10 contains N equations and 

(2N 1) unknowns, which are g •. , 2 ~ i ~ N, and DI.' l ~ 
l ,J 

The N equat ions are not all independent s ince the overall 

mass balance, equation 4-7, must be satisfied. 

~ N. 

ln order to find the distributions, an additional (N - 1) 

relationships must be found. From a physical point of view, 

equation 4-9 specifies the relative frequency of the types 

of breakdown. What is needed, is a knowledge of the fraction 

of each species that will deagglomerate for a differential 

increase in the shear stress. The necessary relationships 

are developed in the next two subsections. 

4.2.2 Balance on the Original Agglomerates 

Prior to the appl ication of any shear stress, it is 

assumed that there is an initial breaking distribution for 

the agglomerates in the ith species given by the fo1lowing 

form: 

dQ. 
10 

= A i oP i CT da 4-11 

where dQ. represents the incremental number of i-particle 
10 

agglomerates that have a breaking strength in the range be-

tween cr and 0' + da. The parameter Ajo may be considered a 
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scal ing factor and Pi~ is a strength distribution function 

depending on i and a. The total number of i-particle aggre­

gates initially present is given by: 

= ~ o 
A" p" da 

10 la 
4-12 

For the purposes of the present treatment, where equil­

ibrium conditions prevail and the agglomerates breaK in their 

most favourable orientation, the breaKing strength, a, 

corresponds to sorne level of the appl ied shear stress, r, 

and is equal to it. At any appl ied shear stress, r, the num­

ber of the original (initial) agglomerates remaining is de­

fined as Qior" Therefore, at this arbitrary shear stress 

value, the differential amount lost, dQior = (dnio)~' of 

the remaining original agglomerates is given by: 

dQ " = (dn") n = A" p" dr 
lor 10 XI 10 Ir 4-13 

and the amount of the original agglomerates remaining is: 

= 
0) 

\ A ioP i r dr 
,. 

4-14 
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Since all the agglomerates with a strength cr ~ r will break 

at the appl ied shear stress, r. The differential fraction 

lost of original remaining agglomerates is: 

= 4-15 

r 

4.2.3 Balance on Original and Gained Agglomerates 

As the appl ied shear stress is increased from zero to the 

final value, Tf' agglomerates will break down at intermediate 

values of shear stress corresponding to the breaking strengths 

of the weaker agglomerates. Thus, the number of original 

agglomerates is gradually depleted and new, smaller agglomer­

ates are formed at these intermediate stress levels. These 

new, gained, agglomerates will undergo breakage at the stress 

levels corresponding to their breaking strengths. 

According to the assumption stated earl ier, agglomerates 

gained at a given stress level are indistinguishabn~ from those 

already presente It follows that the normal ized breaking 

strength distribution over the same range of breaking strengths 

must be the same for both the gained agglomerates and the ori­

ginal agglomerates. It is noted that the distribution of agglo­

merate strengths commences at the shear stress magnitude, r, 

for which the portion of gained aggregates under consideration 

has been produced. 
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Thus, if the total number of i-particle agglomerates 

that are present when the shear stress has a value, ,., is 

Qi' the fraction of these that will be broken at ,. is iden­

tical with that given by equation 4-15 and is: 

and 

L • 
1 

= 

p. d,. 
IT 

co 

," p. d,. j 1,. 

= 

4-16 

where Qi is the total number of i-particle agglomerates and 

is equal to the sum of the gained and the original remaining 

i-particle agglomerates. 

4.2.4 Differential Equations for Eguilibrium Size Distribution 

It follows from the assumption of a random distribution 

of breaking strengths over all positions in all the agglomer­

ates that the strength distribution function Gannot vary with 

the species, hence: 

= 4-18 
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The subscript referring te the species, i, is thus emitted 

from the distribution function and equation 4-17 becomes: 

L • 
1 

'1" 

P d'l" 
'1" 

Combining equations 4-10 and 4-19 gives: 

L . 
1 

= C •• g.. • 
" 1, 1 

= 

For convenience and brevity, define: 

, 
'T' 

= 

Then from equations 4-20 and 4-21 

gl . , 1 

Q . 
1 = c:-: 

1 1 

, 
'1" 

Substituting from equation 4-22 into 
N C .. 

L ..:.JJ. Q . , - Q. , o . C .. J '1" l '1" 1 

j=i+1 JJ 

Since 
(dnj)g (dni),e 

o . = d'T' I 

Substituting for D. 
1 

in equat ion 4-23 

equation 

1 :0;; i 

dQ. 
1 = cr,:-

gives: 

4-19 

4-20 

4-21 

4-22 

4-10 yie1ds: 

:0;; N 4-23 

4-24 
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N 

Y 
w 

j = i + l 

c .. 
~Cl Q. 1 

• • J 'T" 
JJ 

Q .1 
l 'T" 

dQ. 
1 

dT"" ~ N 4-25 

which is the required system of differential equations describ-

ing the equil ibrium size distribution variation with shear 

stress. 

4.2.5 Determination of c .. and p 
IJ 'T" 

It remains to determine the relative frequency parameters, 

c .. ,and the strength distribution function, p • The factors 
1 J 'T" 

affecting the breaKdown of a given agglomerate can be con-

sidered in the two categories of bond strength and structure. 

ln the present instance bond strength is primarily a function 

of the manufacturing technique. Some control was exerted over 

this variable, but it should be expected that a distribution 

of strengths was produce~. The configuration of the agglo­

merate affects the breaKdown in two ways. First, the config-

uration determines the internal stresses because the hydro-

dynamic forces depend directly on the shape of the agglomerates. 

Secondly, the structure determines the number of bonds to be 

broKen. For example, a l inear three-particle agglomerate needs 

only one bond to be broKen, but a three particle agglomerate 

with the particles at the vertices of a triangle and each par­

ticle bonded to the other two requires two broKen bonds to 

deagglomerate. 
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No attempt will be made to handle bond strength and 

configuration separately. To do so would require sorne quant­

itative data about the agglomerate structure. The minimum 

data would probably be a knowledge of "effective agglomerate 

diameter" and "shape factor" distributions. These data were 

not determined due to experimental difficulties. Instead, 

sorne assumptions will be made about the minimum breaking 

strength required for deagglomeration. 

It has been assumed that breaking strengths are randomly 

distributed throughout all the agglomerates. This impl ies 

that the relative frequencies of the spl its will not be a 

function of the shear stress. That is, in a four-particle 

agglomerate the ratio of 1:3 spl its to 2:2 spl its will be 

the same at a low shear stress as at a high magnitude of the 

stress. Thus 

c .. 
IJ 

and C .. 
IJ 

c .. ('1") 
IJ 

4-26 

4-27 

since C .. values depend only on the values of c.· (equations 
IJ IJ 

4-10a-f) . 

It is assumed that, as a first approximation, the ease 

with which an i-particle agglomerate is spl it from a j-particle 

agglomerate will not depend on the size of the j-particle 

agglomerate. For example, the assumption states that a single 
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bead spI its from 'a five-bead agglomerate as readily as it 

splits from a six or eight-bead agglomerate. Simi1arly, the 

same assumpt ion appl ies to a two-bead agglomerate spI itt ing 
9 . 

away, and thus c .. = ~ ~ c .. (j). Extending the situation 
1 J g2, j 1 J 

to any two adjacently sized agglomerates, i and i + l, being 

split away leads to c.· ~ c .. (j); i.e. the relative fre-
IJ IJ 

quencies, c .. , are independent of the size, j, of the parent 
1 J 

agglomerate. 

It is proposed that the c .. is a function of i (i is the 
IJ 

number of particles in the smaller of the two portions formed 

by the spl it). This is easy to visual ize when the agglomerate 

is a l inear st ring of part icl es. Then the force var ies as 

the square of the distance from the end as discussed in 

section 2.3 (33,35). The result is that the agglomerate will 

always tend to breaK closer to the midpoint than towards the 
g. . 

end. Since c.. .~ and if the particles are of uniform 
1 J 9 i +l,j 

diameter with i proportional to the distance from the end then, 

for a 1 inear agglomerate: 

1 ::;; 
j-2 j even ::;; 2 , 

l ~ 1::3. j odd 4-28 ::;; 2 , 

4 ::;; j ::;; N 
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Estimating the variation of c .. for other configurations 
IJ 

is more difficult. As the agglomerate becomes larger closed 

forms dominate over the l inear, open configurations. Com-

paring an open form agglomerate with a closed typ~, both 

with the same number of particles, the closed form agglomerate 

not only has less force act ing upon it but, in general, has 

more bonds between the particles to be brOKen. In addition, 

it is l iKely that when a large port ion is spl it fram a closed 

type agglomerate the number of bonds to be broKen, and hence 

the force required to breaK them will increase faster than 

the force acting to cause the spl it. The result is that 

as the configuration becomes more closed the tendancy will 

be for small portions of the agglomerate to breaK off. Thus 

c .. is greater than one and tends to decrease as i is in­
IJ 

creased. This is in contrast to the l inear agglomerate where 

c .. is less than one and tends to increase as i is Încreased. 
IJ 

At large i both types of agglomerate tend to c·· = 1. 
IJ 

Because no data are available on the distribution of config-

urations it is assumed that the effects of each type are 

roughly equal and tend to cancel so that c ij R::: 1 for all i. 

Due to the laCk of configurational data and the qual ita­

tive nature of the agglomerate production it is not possible 

to deduce the strength distribution function theoretically. 

Two alternatives are possible. The first is to adapt some 
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independent measurement of bond strength to the agglomerates 

used in the present worK. A method, such as that used by 

Rumpf (66) for sintered agglomerates might be tried. The 

second alternative is to use part of the experimental data 

to find the strength distribution. One method is as follows. 

For the largest agglomerates, i = N, there is only loss and 

no gain. Thus, for any shear stress, T, the aggregates pre­

sent are all remaining original agglomerates, QN = QNgr. The 

fractional cumulative loss, L ,for any shear stress, T, cum 
may be found directly from: 

Lcum = 4-29 

If the scal ing factor ANo is chosen such that the distribution 

of strengths is normal ized; 

4-30 

Then, from equation 4-12, the fractional cumulative loss is 

given by: 

T 

~ 
o 

at any shear stress, T. 

P dT 
T 

4-31 

l 
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Differentiating equation 4-31 yie1ds: 

-dQN P'l' 
dT 4-32 

or, rearranging: 

P'l' 
= -

dQN 
~ 

4-33 

The advantages and difficulties of each method of deter­

mining PT are discussed in detai1 in Chapter 6. 

4.2.6 Solution of the Differential Equations 

Equations 4-25 may or may not have an analytical solution 

depend ing on the funct ional forms of c .. and p. 1 n e i ther 
IJ 'l' 

case, the simultaneous solution of the equations is avoided 

by solving the set in reverse, starting with i = N and pro­

ceed ing through i = N-l, i = N-2 etc. to i = 1. In the present 

worK, the solution has been obtained numerically, and the 

computer program for the condition c ij = l, and assuming an 

exponential distribution of breaKing strengths, is given in 

Appendix V. 
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4.3 srZE DISTRIBUTIONSDURING NON-EQUILIBRIUM 
DEAGGLOMERATION - STEP CHANGE IN SHEAR STRESS 

4.3.1 General Considerations 

The breaKdown model proposed in the previous sections 

allows the determination of the distributions at equil ibrium 

(i.e. at lo~g times after the initiation of shearing) for a 

constant shear stress. Equivalently, the shear stress must 

change so slowly that the agglomerates will only degrade when 

the most favourable orientation is reached. In this case the 

amount of any species that breaKS down is determined only by 

the magnitude of the shear stress. Thus it is possible to 

give the equil ibrium distribution as a function of the shear 

stress. 

When the stress is suddenly changed, not all of the por­

tion that will be broKen when equil ibrium is reached degrades 

at the instant of stress change. There will be a gradual 

approach to the new equil ibrium distributions which will be 

determined by the new shear stress magnitude. This gradual 

approach is a result of the random orientations of the agglo-

merates J most of which need to rotate towards their most 

favourable orientations before they degrade. 

We consider a number distribution of the agglomerate 

strengths as shown in figure 4-1. The shear stress is stepped 

from a value Tl to a new value T5 at time, t = O. Before 



FIGURE 4-1: The Change of the Agglomerate Size 
Distribution for a Species i, in 
Response to a Step Change of the 
Fluid Shear Stress 
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s h e a r i n g, a t t < 0, the a 9 9 l om e rat e s h a v e a s t r en 9 th dis tri -

but ion that corresponds to the equil ibrium distribution ~ 

shear stress Tl. Referring to the strength distribution it 

is seen that the total number of agglomerates in the i th 

species, Q., at any time, t, is given by the area under the 
1 

curve. Further, these agglomerates, Q., may be divided into 
1 

two portions. The first portion is Q~, the agglomerates that 

are sufficiently weaK that they will degrade at the appl ied 

stress. 
1 • 

Qi IS represented by the area under the curve be-

tween the l imits or al and a5. The second portion comprises 
Il 

the agglomerates, Qi' that will not breaK down for any orien-

tation of the appl ied shear stress. This portion corresponds 

to the area under the curve with l imits of a
5 

and 00. 

4.3.2 Mass Balances on the ith-Particle Agglomerates 

For reasons that are given below, separate mass balances 

are made for the breaKable agglomerates (those with strengths 

::;; a5) and the stable agglomerates (strengths > a5). The mass 

balances are performed in a manner similar to that for the 

equilibrium situation. 

ln the derivation of the equil ibrium equations it was 

assumed that agglomerates which broKe did not degrade further 

at the value of the shear stress at which they broKe. With a non-

equil ibrium step-change in shear stress, there is the possibil ity 
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of an "apparent sequential breaKdown" at the same value of 

shear stress. This occurs because the aggregate does not 

have to be in its most favourable orientation to experience 

breaKage. As an example, consider the step shear stress 

change as shown in figure 4-3 and an agglomerate of strength 

a. Under equil ibrium conditions this agglomerate would de­

grade at a shear stress T where Tl ( T (T5. This agglomerate 

will breaK before it attains its most favourable orientation 

producing two smaller agglomerates that have strengths greater 

than a, the strength of the parent agglomerate. Either one 

or both of the new agglomerates must then have strengths 

between a and a5 or between a
5 

and 00. 1 f the strength is 

between a and a5' the product agglomerate will undergo further 

breakdown. The product(s) with strength(s) greater than Œ5 

are stable and do not degrade further*. Thus the breakable 

l . h . th . QI d agg omerates ln t e J specles, j' pro uce agglomerates 

entering the i-species, i (j that contribute to both Q~, 

which are breaKable, and Qi, which are stable. Letting fj 

be the instantaneous fraction of the degrading jth-species 

agglomerates that produce breaKable i-species agglomerates, 

and maKing the mass balances in the same manner as for the 

equil ibrium case yields: 

*Hereafter, if an agglomerate has a strength a, al S cr s ah' 
it will be referred to as "breakable" . If the strengtli 

cr, cr > cr5 obtains, the agglomerate is cal1ed "stable". 
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N 

\' f. C .. 9 1 • C .. 9 1 • D ~ 1 ~ ~ N 4-34 
.-.J J IJ ,J 1 1 , 1 1 

j= i+l 

N 

\' ( l - f.) C .. gl . D'~ l ~ ~ N 4-35 
LI J IJ ,J 1 

j=i+l 

Where equations 4-34 and 4-35 are for the breakable and stable 

agglomerates respectively. 
1 Il 

D. and D. represent the net rates 
1 1 

of change in the number of breakable and stable agglomerates 

respectively. The coefficients, Cij and Cii , are as in the 

equilibrium mass balance, and are given by equations 4-10a-b. 

4.3.3 Differential Equations for the Step-Change 
in Shear-Stress Case 

Analogously with the equil ibrium case, the term C .. gl . 
1 1 , 1 

is identified with the rate of loss of agglomerates in the 

i th species. It is assumed that the random orientation assump­

tion appl ies and that the agglomerate breaks as soon as it 

orbits to a position where the hydrodynamic forces exceed the 

breaking strength. That is, the agglomerate tends to orbit 

towards its most favourable orientation, but breaks before 

thi~ orientation is achieved. Then, the rate at which it or­

bits towards the most favourable orientation depends on the 

shear rate and a reasonable approximation to the rate of loss, 

1 h' Lia' of i-agglomerate particles, Qia' of strengt a, IS: 



L . 
10' 

1.09 

• 1 
= K Y Q. 

10' 
4-36 

where K is a rate constant, assumed to be independent of 

agg10merate structure. From equation 4-36 it is seen that 

the fractiona1 10ss per unit 
. l ( dQ 19) ,e 

is constant tlme, 'Q': dt 
10' 

for constant shear rate. Thus, the fractional rate of 10ss 

the same for agglomerates of any strength and the subscript 

0' may be omitted and equation 4-36 rewritten as: 

L • 
1 

= = 4-37 

i s 

Equating the rate of 10ss given by equation 4-37 with the term 

C .• g 1 • and rearranging gives: 
1 l ,1 

• 1 

9 1 • , 1 

K Y Qi 
C •• 

Il 

4-38 

Subst itut ing for g, . in equat ions 4-34 and 4-35 and not ing 
dQ ~ l ,1 dQ'~ 

h D I 1 d 0 1•1 1. t at i = --at an 1 = --at 9 1 ves: 

N C •• dQ ~ . 
Q ~ \' f. ---L.l. K K Q~ 1 

L J C •• y 
J Y 1 dt 

j = i+ l JJ 
l ~ ~ N 4-39 

N C •• 
1 

dQI! 
( l-f . ) -1.J.. K Q • 1 

L c .. y dt J 
JJ 

J 
l ~ ~ N 4-40 

j = i+ l 
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To facil itate comparison of equations 4-39 and 4-40 with cer­

tain presumed aspects of the agglomerates ' physical behaviour 

to be discussed in Chapter 6. it is useful to rewrite them in 

terms of the shear strain, y, rather than shear rate and time. 

Substituting for y 

N 

~ 
j=i+l 

C • • 1 

f. -=-u. K Q. Je. . J 
JJ 

=.9.Y. 
dt and rearranging yields; 

K Q ~ 
1 

= 
dQ ~ 

1 

ëiY ~ N 4-39a 

dQ'! 
1 

ëfY ~ N 4-40a 

Equations 4-39 and 4-40, for the breakable and stable agglo­

merates respectively, correspond to equation 4-25 in the 

equil ibrium situation. 

The value of the rate constant, K, is determined from ex­

perimental data and is discussed more fully in Chapter 6. An 

expression for the fraction, f j , of the gained agglomerates 

that are breaKable is derived in the following subsection. 

4.3.4 Determination of the BreaKable Fraction 
of Gained Agglomerates 

Th b d d . h .th. f e reak own pro ucts enterlng tel -specles come rom 

the j-species, j > i. The breakdown products will have a cer­

tain strength distribution. If this distribution is Known then 

the fraction that is breakable is found by applying the l imits 



of crl and crs to the integration of the produet distribution 

funetion, and dividing by the total amount of produet. In 

general, the strength distribution of the produets will depend 

on the strength distribution of the breaKable agglomerates 

produeing the produets. Aeeordingly, the following strength 

distributions are defined. In .general the distributions are 

funetions of time and are defined as the instantaneous distri-

butions of the agglomerates present at time t. First, the 
(( 1 

stable and breaKable i-partiele agglomerates, Qi and Qi 

respeetively, are subdivided sueh that: 

where 

Q~ 
1 

QI! 
1 

= 

QI! 
10 

+ 4-41 

+ QI! 
Ig 4-42 

1 
Qior the breaKable i-partiele agglomerates remaining, 

at time t, of those orlginally present before 

shearing. 
1 Qig = the breaKable i-partiele agglomerates gained by 

the breaKdown of j-part iel e agglomerates, j > i, 

at time t. 

QI! the stable i-partiele agglomerates originally 
10 

Il 

present, Qio is independent of time. 
Il 

Qig the stable i-partiele agglomerates gained by 

the breaKdown of j-partiele agglomerates, j > i, 

present at time t. 



Now def ine: 

= 

= 

= 

1.:12 

Il 

Qio; the strength distribution of the agglo-
Il 

merates comprising Qio" This distribution Is 

time-independent. 

QI;g; the instantaneous strength distribution, 

at t ime t, of the agglomerates in QI~ • Ig 

Q~g; the instantaneous strength distribution, 

at time t, of the agglomerates in Qlg" 

Q~or; the instantaneous strength distribution, 
° 1 at time t, of the agglomerates ln Qior" 

the instantaneous strength distribution of the 

products being produced,' at time t, by the 
1 

in Q ° • Ig breaking of agglomerates 

= the instantaneous strength distribution of the 

products being produced, at time t, by the 
1 

breaking of the agglomerates in Qioro 

= the instantaneous strength distribution, at time 

t, of the products being produced by the break-
1 

lng of agglomerates in QtO 

s ° d:r 
1')" 

+ 



The relationship between the various agglomerate subdivisions, 

their strength distributions and the agglomerate IIflow" is 

illustrated in figure 4-4. From the definitions and figure 

4-4 it is seen that the instantaneous strength distribution 
CX) 

of the products produced by the i th 5pecies i5 \" 5. da. Thu5, 
J la 
al 

the fraction, fi' can be found: 

~a5 s . da la 
f. = 

al 4-43 
1 CX) 

~ 5 . da la 
al 

when the distribution function, 5. , i5 Known. The function 
'a 

can be found by writing a maS5 balance for a differential 

st rength range. Th i 5 i 5 done in the next sect ion. 

4.3.5 MaS5 Balance on a Differential strength Range 

Let the amount in the gained, breaKable i-particle agglo-
1 

merates, Qig' within the strength range from a to a + da be Eia" 

Then: 

E • la e. da la 

(dEicr).e 
From equation 4-36, the rate of 105s, dt ' will be 

( dE. ) n 
1 cr XI 

dt K Y E. la = K Y e. da la 

4-44 

4-45 
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FIGURE 4-2: Relationships Between the Various Port­
ions of the Agglomerates Comprising 
Species i and their Response ta a Step 
Change in the Fluid Shear Stress 
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The gain into the strength range results from the breaK­

age of all j-species, j ) i. Each j-species produces agglo-

merates with the strength distribution function s. and the J(j 
amount in the range (j to (j + d(j is s. d(j. J(j From the mass 

balance (equation 4-39) the amount of s. d(j that enters the J(j 
',th spec',es, (QI) ',s i j g' : 

= 
C •• 
.:...u d 
C s. (j 

. . J (j 
JJ 

4-46 

where the coefficients Cij and Cjj are defined by Equations 

4-10a-f. The total amount gained in the i th species due to 

breakdown in all 

The 

The 

1 

Qig 

rate at which 

dQ ~ 
~ 

dt 

mass balance 

de. 
~ d(j 

dt 

the j-species, 
1 

Qig' is 

N C •• 

~ .:...u s . d(j C •• J(j 
j=i+l JJ 

they are gained i s : 

N C •• ds. 

L -Li --Lcr. d(j 
C •• dt 

j=i+l JJ 

i s now wr itten: 

N 

L 
C • • ds . 
.:...u ~ d(j - K Y e. d(j 
C.· dt l(j 

j=i+l JJ 

4-47 

4-48 

4-49 
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Examinat ion of equat ions 4-49 shows that d istr ibut ion funct ion 

for the i th species, e. ,is in terms of the distribut ion funct ion la 
of the degradat ion products of the j-spec ies, s. , j > i. 1 f 

JO' 
the relationship between the breaKing j-species distribution 

function, e. , and its product's distribution function Îs 
JO' 

Known th en equations 4-49 can be solved in reverse order. 

Referring to figure 4-4 and the definitions given earl ier it 

is seen that: 

s . 
JO' 

= h. + b. 
JO' JO' 

4-50 

The relationships between breaKing species distribution func­

tions, e. and A.tp , and product distribution functions, h. 
JO' J a JO' 

and b. respectively are derived in Appendix VI and are: 
JO' 

~a* e . 
h. Pa* 

IQ: da a l ~ 0'* ~ 0'5 Ja* 00 

al [~ Pa da] 
al 

4-51 

Sas e . 
= Pa* 

la da 0'5 ~ 0'* ~ CI:) 
00 

al [~ Pa da] 
'al 

4-51a 



b. * 'a 

1.1L7 

da 

al::;: a* ::;: aS 4-S2 

4-S2a 

Since the balance is being made only on the breaKable agglo­

merates with al ::;: a ::;: aS equation 4-50 becomes after substit­

ution from equation 4-S1 and 4-52: 

a e. + A ItP a s . Pa 
\al 

la da ::;: a ::;: aS 4-53 
Ja 00 al 

[\ Pa da] 
"0' l 

ds. 
Differentiating to obtain ~ and substituting into the mass 

balance, equation 4-49 yields: 

N de. dA jt 
de . C •• a -----1Œ. + P 
--1.a.. L ~ ~ 

dt a dt da - K e . dt C •• Pa 00 
y 

'a 
j=i+l JJ al [~ P da] 

0' 
al 

4-54 

Equations 4-54 are only val id for 0'1 ::;: a ~ crS. They may be 

solved in reverse order start ing with i = N, i = N-l, i = N-2 
dA jt etc. The term PO' dt is known since: 

l 
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= P dA jt = 
dt - K Y A't P cr J cr 4-55 

from the definitions and equation 4-36. Solving 4-55 with 

the initial condition, Ajt = Ajo when t = 0, gives Ajt , 

which is also required: 

. 
• -Kyt 

- K Y Ajo e 4-56 

4.3.6 Solution of the Eguations 

The components necessary to find f. are now Known and the 
1 

following scheme may be used to calculate it: 

1. Solve equations 4-54 in reverse order to obtain 

e . fo r a 11 i. Icr 
2. Using the relationship derived in Appendix VI the 

instaMtaneous distribution function of the degrada­

tion products, s. , may be found from e. and A.tp , Icr Icr 1 cr 
the distribution functions of the agglomerates pro-

ducing the products. The relationships are given 

in this chapter as equations 4-51, 4-51a, 4-52 and 

4-52a. 

3. The requ i red fract ion, fi' is thus found by equa­

tion 4-43: 
~(J5 

5 • dcr Icr 
f. = 

crl 
4-43 

1 (Xl 

S crl 
5 • Icr dcr 

l 



119 

The appropr iate funct ion for f. = f.( t) is subst ituted 
1 1 

in the mass balance, equations 4-39 and 4-40, 

N c .. L fj c:: K y Qj 
j=i+l JJ 

= 
dQ ~ 

1 

dt 4-39 

= 
dQ'! 

1 

dt 4-40 

which are for the breaKable and stable deagglomerates, respect­

ively. Wh en the equations are solved numerically, as in this 

worK, the program used for the equilibrium case are easily modi-

fied to solve equations 4-39 and 4-40. The calculation of f. 
1 

was also performed numerically. The appropriate scheme is 

shown in Appendix V. 

An alternative method to calculatethe size distributions 

can be discerned. In the scheme described above it is necessary 

to find e.. However, if e. , the distribution function for 
la la 

1 1 
the gained breaKable agglomerates, Qig' is Known, then Qig may 

be found from the definition: 

= e. da Ig 4-56 

It is also necessary to find a. , the distribution function 
la 

Il Il 

for the stable gained agglomerates, Qig' so that Qig may be 

computed 
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a. d(T 
la 4-57 

The distribution function, a. , is found from a mass balance 
la 

in the differential strength range from cr to cr + da for the 

• QII h • agglomerates ln ., testable galned agglomerates. Ig Th is is 
1 

done in the same manner, as for the agglomerates Qig' detailed 

in section 4.3.5. The mass balance yields: 

N 

L' 
j=i+l 

c .. 
-LJ... 
C •• 

JJ 
4-58 

1 Il 

It remains to determine Q Q being Known from the initial ior' io 
condition and is time-invariant. From the definitions in 

section 4.3.4: 

1 ~CJ5 
Qior Ait Pa da 

al 
4-59 

and Ait = - K y Aio e -Kyt 4-56 

as previously shown. The amount of agglomerates in the i th 

species, Qi' is available from 

1 
Q. 

1 = 4-60 

where all the right hand side terms of the equation can be 

computed asoutl ined above. 



The choice between the two methods depends on the ease 

of solution. The amount of computation involved in each case 

is about the same when the equations are solved numerically. 

If a program exists for the solution of the equil ibrium case, 

it is easily converted to do some of the computation for the 

step-change in stress case. This situation obtained in this 

work, and the first scheme presented was used to find the 

size distributions. 

4.4 SIZE DISTRIBUTIONS FOR A TIME­
DEPENDENT SHEAR STRESS 

4.4.1 Mass Balances 

ln this section, the equations describing the size distri­

butions obtained when the shear stress is an arbitrary function 

of time will be derived. The derivation follows that given in 

the previous section for the step-change of shear stress modi­

fied to account for the varying shear stress. When the modifi­

cation is obvious, the equations are not derived in detail. The 

same nomenclature has been retained insofar as possible. The 

function relating shear stress to time is: 

g( t) 4-61 

where TS is directly comparable to TS for the step-change case 

and is now a funct ion of t ime, instead of be ing constant for 

.) 
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t ) O. It is assumed that T5 = T5 at t = to and that the 
o 

equil ibrium distribution for T5 has been obtained when 
o 

t = to. 

The derivation begins with mass balances on the stable, 

QII d b 1 i' an breaKa le, Qi' agglomerates. As in the previous 

section the stable and breaKable agglomerates are further 

subdivided into IIgained" and IIremaining original ll categories. 

The same symbols are used to denote the appropriate distri­

bution functions except in the case of Qior' the remaining 

original agglomerates that are breaKable. The new distri­

bution function for these aggregates is defined by: 

o.. da 
la 

= 4-62 

The relationship between the distributions and the agglomerate 

Iiflow" for this case is illustrated in figure 4-3. It will 

be seen that there are two add it ional Il flows" due to the t ime-

varying nature of the shear stress. These flows are explained 

as follows: consider the agglomerates in the strength range 

from O'a to O'a + da. At t ime t = t the shea r stress T5 is 
0: 

such that T5 < O'a and the agglomerates belong to the stable 

division. At time t = t(3 , t(3 ) t the shear stress has in-
a' 

creased to a new value such that T5 ) 0'0: and the agglomerates 

now belong to the breaKable division. ln particular the agglo-

QI! Il 

merates in the strength range from 0'5 to 0' 5 + da for and Q. 
10 Ig 



FIGURE 4-3: Relationships Between the Various Por­
tions of the Agglomerates in Species i 
and their Response to a Time-Varying 
Fluid Shear Stress 
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are given by AioP da and a. da, respectively, and these are 
a5 la5 

the agg10merates being transferred. The rate at which they 
11 1 

will disappear from Qi and reappear in Qi is: 

A. p 
10 cr 5 

~ dt da 

~ dt da 

= 
= 

= 

1 

rate of loss from Q. 
10 

rate of gain by Qior 

Il 

rate of loss from Q. 
1 Ig 

rate of gain by Qior 

4-63 

4-64 

The mass balances for the breaKable and stable agglomerates 

may now be performed and they will be ide~tical with the step­

change case except for the two additional terms given by equa­

tions 4-63 and 4-64. The mass balance yields: 
N 

\' 
,1...., 

j=i+l 

c . . . 1 dT h dT ~ 1 

f ---Ll. K Q A -.Jo ---!. K Q . y. + • P dt + a. d - Y • 
J C j j J 10 a 5 la 5 t 1 

Il 

dQ. 
1 

= dt 

1 
dQ. 

1 
= dt 

4-65 

4-66 

for the breaKable and stable agglomerates respectively. The 

shear rate, y, is not constant but is now a funct ion of t ime. 

The function is obtained through the constitutive equation re-

1ating shear stress and shear rate and the Known time dependency 

of shear stress, equation 4-61. If the f1uid is Newtonian with 

a viscosity, u, then: 

y 4-67 

-.,J' 
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is the required expression for shear rate. In the same manner 

as for the step-change case, f., is found from the agglomerate 
J 

distribution function, s. , which is, in turn obtained by 
Ja 

Il 

solving 
1 

the equations for differential mass balances for Q. , Ig 

Qig and 
1 

Qior· ln order to maKe a differential mass balance 
1 

on Qior the distribution, function, ~ia must be Known. This 

distribution function is derived in the next subsection. 

4.4.2 Distribution Function of the BreaKable 
Remaining Original Agglomerates 

For the general case of a time varying shear stress the 

length of time that the original agglomerates, in a strength 

range of a to a + da, have been breaKing down depends on the 

relationship between t'ime and shear stress, equation 4-61. Re­

ferring to figure 4-4, the agglomerates in the range from a5 
l 

to a5 + da have only been degrading for a differential amount 
l 

of time when 

= 4-68 

However, at some later time, t*, the length of time that they 

will have been subject to breaKage shear stresses is (t* - t 1). 

For the general strength range, a to a + da, the amount of 

agglomerates is~. da and from equation 4-36 the rate of breaK-
la 

age is: 



FIGURE 4-4: The Change in the Size Distribution of 
the Original Agglomerates in Species i 
in Response to a Time-Varying Fluid 
Shear Stress 
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= K Y o.. 
la 

4-69 

At the time when T5 becomes equal to a~ these agglomerates are 
Il 1 

transferred from Qio to Qior- The amount is AfoPada and they 

begin breaKing at the rate given by equatfon 4-69_ The time 

at which the transfer occurs, t 
a 

t 
a 

= 4-70 

4 6 -1 ) and thus equation - 9 does not apply for t < ta = 9 (T5cr • 

The initial condition for equation 4-69 is thus o.. = A.op 
1 a 1 a 

-1 
when t = ta = 9 (T5a)-

For a Newtonian fluid, substituting for y from equation 

4-67 and integrating equation 4-69 gives the required expression 

for the distribution function: 

o.. 
la 

= exp [~ ~ g(t)dt] x constant 4-71 

where the constant is evaluated from the initial condition 

o.. 
la 

A. P 
10 0' 

4.4.3 Mass Balances on the Differential 
Strength Range cr to cr + da 

4-72 

The mass balances are identical with those for the step­

change case except for the term added due to agglomerate trans­

fer caused by the time change of shear stress. From equation 



4-49, the balance for 

de. N C •• 

Tt- = L ~ C .. 
j=i+l JJ 
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1 

Qig yields. 

0'5 ds. 
~----1.<L dt da 
al 

K Y e. 
la 

+ 

4-73 

1 

The balance on the remaining original agglomerates, Qior' 

gives: 

= K Y cr.. 
la 

4-74 

Finally, the instantaneous distribution of the gained unbreaK-
Il 

able agglomerates, Qig' is found from 

N 

= ~ 
j=i+l 

c .. -=-u c .. 
JJ 

~ 
dt 4-75 

The relationship between the distribution function of the de­

grading species and the distribution function of the agglomerates 

produced is as derived in Appendix VI and given below, except 

that it is noted that the l imit, 0'5 is now a function of time, 

given by equation 4-61. 

h. * JO' 
= 

a* e. 
,. _..;.Ilo'.q __ 

JO' l [~ a:J P a da] 
al 

4-51 
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1.29 

e. S(J5 
h. * Pa* 

IQ: da a5 ~ a* ~ 0) 4-5la Ja 0) 

[~ Pa 

b. * 'a 

b. * 'a 
= 

al 

a* 

Pa* ~ al 

da J 
al 

0,. 
10; da al ~ a* 

(XI 

[~ 
al 

Pa da] 

da 

4.4.4 Scheme for the Solution of the Eguations 

~ a5 4-76 

4-76a 

The scheme for solution of the equations is very similar 

to the one detailed for the step change in shear stress case. 

As previously, all equations are solved in reverse order, 

starting with i = N and proceeding to i = 1. 

1. Solve equation 4-74 to obtain the distribution 

function, a. , which is required for the next step. 
'a 

2. Solve equation 4-73 to obtain the distribution 
1 

fun c t ion, e. , fo r Q. • 
la Ig 

3. Solve equation 4-75 to get the distribution func-

t ion, (l. • 
'a 

4. Apply equations 4-5la and 4-76a to find the distri-

but ion functions of the degradation products, s. • 
'a 
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5. Use the relationship, equation 4-43 

S(]5 s . da la 
f. = 

al 4-43 
1 Q) 

S S • da la 
al 

6. Finally the overall mass balances, equations 4-65 

and 4-66 may now be solved, resulting in the 

desired size distributions of the agglomerates. 



CHAPTER 5 

RESULTS 

5.1 VARIATION OF SHEAR STRESS AND TEMPERATURE 
IN THE EXPERIMENTAL APPARATUS 

It was explained in section 3.1 that the direct mea­

surement of the shear stress (or shear rate) in the exper i­

mental apparatus would be very difficult. Instead, these 

parameters were computed by numerically solving the equations 

of motion and energy with the appropriate boundary conditions 

(the equations and the computer program are given in Appendix 

1). The computed results are presented in this section. 

The numerical solution was verified indirectly by comparing 

computed and measured temperature profiles. These results 

are given in the next subsection. 

Wall curvature and temperature differences caused the 

shear stress to vary sl ightly across the gap, hence the 

stress appl ied to an agglomerate depended on its position 

in the gap. The sample analysis procedure did not determine 

the agglomerates' positions in the gap and thus introduced 

a small error (which is discussed in section 5.3.2). For the 

above reason the deagglomeration results are presented in 

terms of the mean shear stress in the gap, ~m' defined by: 

--r 
1 



where 

R* 

R 

R. 
1 

Ro 

'T"R* 

= 

= 

= 

= 

= 

1.32 

= 5-1 

R - R. 
dimensionless radial gap position = ~R-----R~I-. 

o 1 

radial position in the gap 

inner cyl inder radius 

outer cyl inder radius 

shear stress at position R* 

The calculated mean shear stress as a function of inner cy­

l inder speed is given in figure 5-1 for the condition of the 

inner cyl inder wall 4.30 F hotter than the outer cyl inder. 

This condition obtained during the experimental runs. The 

case of ident ical inner and outer cyl inder wall temperatures 

i s shown fo r compa r i son. 1 t i s seen that both cond i t ions 

lead to small deviations from l inearity at the higher speeds. 

These deviations are caused by shear heating of the fluide 

It was observed experimentally that the temperature dif­

ference between the two cyl inders remained almost constant 

(with in O.loF) although the wall temperatures varied by as much 

as + 0.50 F from the set point temperature. The effect of 

this temperature variation on the shear stress was investigated, 

and the computed profiles are plotted in figure 5-2 for an 

inner cyl inder speed of 50 RPM. Figure 5-2 shows that a change 



FIGURE 5-1: Computed Mean Shear Stress as a Function 
of Inner Cyl inder Rotational Speed. 
Curves are Shown for Equa1 Inner and 
Outer Cyl inder Wall Temperatures and 
for the Case with the Inner Cyl inder 
Wall Temperature 4.30 F Higher than the 
Outer Cyl inder Wall Temperature 
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FIGURE 5-2: Computed Shear Stresses as a Function 
of Dimensionless Position in the Gap 
are Shown for Four Different Condi­
tions of Inner and Outer Cyl inder Wall 
Temperatures 
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of 0.50 F in the wall temperatures causes the shear stress pro­

file (and hence the mean shear stress) to shift by about 1%. 

Also included in figure 5-2 is the profile calculated for 

equal wall temperatures. Examining the profiles it is seen 

that the case of unequal wall temperatures has an inflection 

point at R* ~ 0.8 and a minimum at R* ~ 0.96 while the isother­

mal case has neither of these features. The minimum is due to 

the competing effects of the temperature gradient and the 

shear rate variation across the gap. The fall ing temperature, 

as R* increases, tends to raise the fluid viscosity, and 

thus increase the shear stress. However, due to wall curva-

ture, the shear rate, and hence the shear stress, decreases 

with increasing R*. The two effects together cause the mini­

mum and the inflection points. 

5.2 ESTIMATION OF ERRORS 

5.2.1 Temperature Profiles as a Verification 
of Computed Values 

It was decided that measured tempe rature profiles could be 

used to check the numerical solution of the motion and energy 

equations. This avoids the very difficult problem of deter­

mining the shear stress or shear rate in the experimental appar­

atus. The check is possible because of the coupl ing of the 

equations through the viscosity and its temperature dependence. 
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The experimental meaSUïements and computed profiles 

are shown in figures 5-3 to 5-8. The range of measured 

temperatures at each position is indicated by the I-shaped 

vertical l ines. Computed profiles are shown as a continuous 

curve. The agreement is good up to an inner cyl inder speed 

of 50 RPM. Above this speed the deviation of the experimental 

values becomes more pronounced and irregular. The disagtee­

ment worsens as the speed increases. 

The disagreement could be caused by both frictional 

heating of the probe and probe bending and movement. The 

effect of frictional heating is difficult to estimate quantit­

ively and the irregular nature of the deviations suggests 

that they are primarily caused by the probe bending and moving 

away from its nominal position. The bending would be caused 

by the drag force acting on the probe. No probe movement could 

be observed, but the maximum deviation required to explain the 

discrepancy at 80 RPM would be 0.015 inches at the probe tip. 

Since the probe was submerged to about two-thirds of its 

length, the visible movèment would be somewhat smaller th an 

0.005 inches, hence the difficulty of visually detecting the 

presumed movement. 

The agreement between computed and Experimental values 

for temperature gives confidence that the numerical solution 

of the Equations is correct. This suggests that the calculated 
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FIGURE 5-3: Dimensionless Temperature, T* ~ T. _ ~ , 
1 0 

as a Function of Dimensionless Position, 
R - R. 

R* ~ R _ ~.' at an Inner Cyl inder 
o 1 

Rotational Speed of 20 RPM. The Sol id 
Curve is a Computed Result. The Vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials 
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T - T 
FIGURE 5-4: Dimensionless Temperature, T* = T. _ ~ , 

1 0 

as a Function of Dimensionless Position, 
R - R. 

R* = R _ ~., at an Inner Cyl inder Ro-
o 1 

tational Speed of 30 RPM. The Sol id 
Curve is a Computed Result. The vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials 
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FIGURE 5-5: 
T - T 

Dimensionless Temperature, T* = T. _~ , 
1 0 

as a Function of Dimensionless Position, 
R - R. 

R* = R _ ~.' at an Inner Cyl inder Ro-
o 1 

tational Speed of 40 RPM. The 501 id 
Curve is a Computed Result. The Vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials 
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T - T 
FIGURE 5-6: Dimensionless Temperature, T* = T. _~ , 

1 0 

as a Function of Dimensionless Position, 
R - R. 

R* = R _ ~.' at an Inner Cyl inder Ro-
o 1 

tational 5peed of 50 RPM. The Sol id 
Curve is a Computed Result. The Vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials 
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FIGURE 5-7: Dimensionless Temperature, T* = T. _~ , 
1 0 

as a Function of Dimensionless Position, 
R - R. 

R* = R _ ~.' at an Inner Cylinder Ro-
o 1 

tational Speed of 60 RPM. The SOlid 
Curve is a Computed Result. The Vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials . 
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FIGURE 5-8: Dimensionless Temperature, T* = T. _~ , 
1 0 

as a Function of Dimensionless Position, 
R - R. 

R* = R _ ~.' at an ·Inner Cyl inder Ro-
o 1 

tational Speed of 80 RPM. The Sol id 
Curve is a Computed Result. The Vertical 
Bars Indicate the Range of Temperatures 
Measured in Three Trials 
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shear stress should be close to the actual experimental shear 

stress. An estimate of the error due to this indirect veri-

fication of the shear stress values is given in the next sub-

section. 

5.2.2 Est imate of Error in the Shear Stress 

Errors may be caused by uncertainties in the values of 

thermal conductivity, fluid viscosity and cyl inder wall temper­

atures. Theseerrors and their contribution to the error in the 

computed shear stress values are summarized in Table 5-1. The 

errors in viscosity and thermal conductivity were estimated 

to be ~2% and ~6% respectively. These estimates were obtained 

by considering the scatter of the measured values (see Appendix 

III). The error in the thermal conductivity measurements is 

similar to that reported by Shoulberg (74). He estimated the 

accuracy of the experimental technique employed in this worK 

to measure thermal conductivity to be 7%. The computed effects 

of a 6% change in thermal conductivity and a 1% change in 

viscosity are shown in figures 5-9 and 5-,,10, respectively. The 
f; 

change in shear stress due to the estimated errors in viscosity 

and thermal conductivity are, respectively, ~2% and ~l%. 

The effect of errors in wall temperature measurement can 

be found by reference to figure 5-2. An indeterminancy of 

0.50 F in both wall temperatures produces a shift in the shear 

stress profile of about 1.1%. 



PARAMETER 

viscosity 

TABLE 5-1 

SUMMARY OF ERROR CONTRIBUTIONS TO THE ERROR 
IN THE COMPUTED SHEAR STRESS 

EST IMATED ERROR IN 
PARAMETER ERROR SHEAR STRESS 

.±. 2% .±. 2% 

thermal conductivity .:!:. 6% .:!:. 1% 

wall temperatures .±.O.50F Ct. .35%) .:!:. 1. 1 % 

TOTAL .:!:. 4. 1% 

~ 
~ 
~, 

_1 
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FIGURE 5-9: Dimensionless Temperature, T* = T. _~ , 

1 0 

Versus Dimensionless Gap Position 
R - R. 

R* ~ R _ ~.' for an Inner Cyl inder Ro-
o 1 

tat ional Speed of 50 RPM. Two Computed 
Results for a Fluid Thermal Conductivity 
of Six Percent Larger and Six Percent Smal-
1er than the Nominal Value are Shown as 
Continuous Curves. The Measured Temper­
ature Ranges are Shown as Vertical Bars 
and are the Resul t of Three Trials 

_. ) 



1. 

..E..E 
1 1.8 

Il 

~I-

LIJ 
cc: 
:) .6 
~ cc: 
lIJ a. 
~ w 
l-

CI) .4 
en 
lIJ 
-l 
Z 
o 
en z w 
~ .2 
o 

o 
o . 2 

~: H*: 0.75 
H 

RPM : 50 

Î k =O.94X knominal 

thermal conductivity, k, 
= 1.06 x knominal 

.4 .6 .8 
R - R· 

DIMENSIONLESS GAP POSITION, R*: 1 

Ra-Ri 

1 • 



FIGURE 5-10: Computed Shear Stress Profiles Showing 
the Change Due to a Fluid Thermal 
Conductivity that is Six Percent 
Larger, or Smaller, than the Nominal 
Value 

~ 

\ 



N • 
. 5 -.c .... 

.070 

.069 

.068 

.067 

.066 

.065 

.064 

H*!: 0.2 

RPM= 50 

Î k = 1.06 x knominal 

thermal conductivity. k.J 
= 0.94 x knominal 

.063~------~ ________________ ~~ ______ ~ ______ ~ 
o • 2 .4 .6 .8 1 • 

* R - R· DIMENSIONLESS GAP POSITION, R : 1 

Ra-Ri 



:147 

A reasonable estimate for the overall maximum possible 

error for the computed shear stress is thus about 4%. The 

error introduced by the use of the mean shear stress to 

correlate the deagglomeration results is discussed in section 

5.3.2. 

5.3 DEAGGLOMERATION RESULTS 

5.3.1 Experimental Data and Comparison with Theory 

A total of eight runs were conducted using the synthetic 

agglomerates. The results of the five equil ibrium runs are 

presented in figures 5-11 to 5-15 and the step change in 

shear stress runs are plotted in figures 5-16 to 5-18. Experi­

mental data are indicated by the points corresponding to the 

appropriate agglomerate size. Theoretically calculated re-

sults are represented by the continuous curves. In each case 

the shear stress used has been the mean shear stress as defined 

by equation 5-1. To avoid crowding of the larger agglomerates' 

data the results are plotted in terms of weight percent instead 

of the number percent derived in the theory. Number and weight 

percent are defined as: 

i th 
n . 

number percent of the species 1 100% 5-2 - x 

L ni 

. th in . 
weight percent of the species 1 x 100% 5-3 1 -

)' in. 
L 1 



FIGURE 5-11: The Change in Weight Percent, for Species 
i = l to i = 8, Versus F1uid Shear Stress 
for the Equil ibrium Case. Values Com­
puted from the Model are Shown as Contin­
uous Curves; Experimental Results are In­
dicated by the Appropriate Symbol. The 
Agglomerate Concentration was One Per­
cent by Weight 
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FIGURE 5-12: Similar to Figure 5-11 Except for a Dif­
ferent Initia) Size Distribution. The 
Change in Weight Percent, for Species 
i ~ l to i ~ 8, Versus Fluid Shear 
Stress for the Equil ibrium Case. Values 
Computed from the Model are Shown as 
Continuous Curves; Experimental Results 
are Indicated by the Appropriate Symbol. 
The Agglomerate Concentration was One 
Percent by Weight 
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FIGURE 5-13: Similar to Figures 5-11 and 5-12 Except 
for a Different Initial Size Distribu­
tion. The Change in Weight Percent, 
for Species i = 1 to i = 8, Versus Fluid 
Shear Stress for the Equil ibrium Case. 
Values Computed from the Model are Shown 
as Continuous Curves; Experimental Re­
sults are Indicated by the Appropriate 
Symbole The Agglomerate Concentration 
was One Percent by Weight 
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FIGURE 5-14: The Change in Weight Percent, For 
Species i = 1 to i = 8, Versus F1uid 
Shear Stress for the Equil ibrium Case. 
Values Computed from the Model are 
Shown as Continuous Curves; Experi­
mental Results are Indicated by the 
Appropriate Symbole The Agglomerate 
Concentration was Two Percent by 
Weight 

1 -, 



en 
w 
~ a::: 
w 
::E 
9 
(!) 
(!) 
<{ 

t-z 
w 
u 
a::: 
w a.. 

~ 
(!) 

w 
~ 

30 

20 

10 

0 

species 
i : 1 

2 
3 
4 
5 
6 
1 
8 

.05 

2% CONCENTRATION (wt) 

symbol 
o 
o 
6 
I!I • e 
o 
• 

0 

SHEAR 

o 

8 

6 

() 

0 

0 

.10 

STRESS, lbf in-2 

i: 1 

0 

3 

2 

4 

5 

0 
6 

7 
0 

8 

.15 



FIGURE 5-15: The Change in Weight Percent, for 
Species i = 1 to i = 8, Versus F1uid 
Shear Stress for the Equil ibrium 
Case. Values Computed from the Model 
are Shown as Continuous Curves; 
Experimental Results are Indicated 
by the Appropriate Symbole The Agg­
lomerate Concentration was One-Half 
Percent by Weight 
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FIGURE 5-16: The Change in Weight Percent for Species 
i = 1 to i = 8 Versus the Shear Strain 
Imported to the Fluid. The Shear 
Stress of .074 lb lin2 was appl ied in 
a Step-LiKe Mannef. Results predicted 
from the Model are Shown as Continuous 
Curves. Experimental Data for each 
Species are Indicated by the Appropriate 
Symbols 
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FIGURE 5-17: The Change in Weight Percent for Species 
i = l to i = 8 Versus the Shear Strain 
Imported to the Fluid~ The Shear 
Stress of 0.11 lb f /in2 was Appl ied in a 
Step-LiKe Manner. Results predicted 
from the Model are Shown as Continuous 
Curves. Experimental Data for Each 
Species are Indicated by the Appropriate 
Symbols 
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FIGURE 5-18: The Change in Weight Percent for Species 
i = 1 to i = 8 Versus the Shear Strain 
Imparted to the Fluid. The Shear Stresses 
of 0.074 and 0.15 lb f /in2 Were Appl ied 
in a Step-Like Manner. Results predicted 
from the Model are Shown as Continuous 
Curves. Experimental Data for Each Species 
are Indicated by the Appropriate Symbols 
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where 

number of beads in the agglomerate 

n. = number of agglomerates containing i beads 
1 

in the sample 

ln three of the five equil ibrium runs the concentration 

of agglomerates was one percent by weight. The other two 

equil ibrium runs had weight concentrations of one-half 

percent and two percent. The three step-change runs had 

a concentration of one percent by weight. The initial dis­

tribution was different for each run, although all runs 

employed aggregates from the same batch. Some breaKdown 

occurred when the polymer-agglomerate mixture was prepared 

for each run, and unavoidable small differences in prepara­

tion caused the initial distributions to vary slightly. 

The three step-change runs were conducted at different 

levels of mean shear stress: 0.074 1b f /in2 , 0.11 Ib f /in2 and 

The distributions are plotted versus Ym which is the 

total mean shear strain imparted to the fluid, where y is given 
m 

by: 

where 

Ym 

t 

= 

= 

= 
t 

~O Ym dt 
5-4 

mean shear rate, defined in equation 5-5 

t ime of shea ring 

-- ) 



j.~ 

The mean shear rate is defined in the same manner as mean 

shear stress: 

Ym 

where 

= l 
R* 

YR* shear rate at radial position R*. 

5-5 

A note of explanation is in order concerning the run con­

ducted at 0.15 lb f /in2 (figure 5-18). At the beginning of 

this run the motor speed control was inadvertantly set at a 

speed that was one-half the desired value. This was not 

corrected until after the fourth set of samples was col1ected, 

thus giving the unusual curves shown in figure 5-18. This was 

the last run of the program and insufficient agg10merates 

remained to al10w a repetition. 

It is seen from figures 5-11 to 5-18 that there is con­

siderable scatter in the experimental results but that there 

is genera1 agreement between theory and experiment. The 

scatter tends to be random, indicating that more samples shou1d 

be taken, rather than showing a basic disagreement between the 

proposed model and the experimenta1 system. An exception to 

the above statement is noticeable for the two-bead agg10merates 

at high stress 1eve1s in the equi1 ibrium runs. The mode1 seems 
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to consistent1y underestimate the amount of these agglomerates 

compared with the experimental results. In the development 

of the model it has been assumed that agglomerate concentration 

does not influence deagg1omeration. The resu1ts in figures 

5-11 to 5-16 seem to indicate that this assumption is val id 

for the range of concentrations employed in this study. 

Finally, it should be noted that this system is parti­

cularly sensitive to statistical variations if a small number 

of samples are taKen. This is due to the interdependence of 

the weight fractions, via the overall mass balance. If the 

value obtained for a given species has a large error due to 

a sampl ing fluctuation, it will affect al1 the values for 

the other species at that stress level. The amount of scatter 

that may result from such errors is examined in the next 

section. 

5.3.2 Errors in the Experimental Deagglomeration Data 

The scatter in the deagglomeration data may be attributed 

to three types of error. The first of these is uncertainty in 

the value of the appl ied shear stress as previously discussed 

and amounts to ±4% maximum of the stress value. The second 

type is caused by employing a mean value of the shear stress 

to characterize the data. In fact, each sample contained 
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material obtained from almost the whole gap, hence, at least 

some agglomerates were subjected to shear stresses that 

differed as much as 4% from the average value. The third 

type of error is related to statistical factors. As fewer 

agglomerates of a given species appear in the sample, the scat­

ter becomes worse. This is particularly true as the agg10-

merates become larger because a small error in counting could 

lead to a large error in weight percent. 

ln the experimental work, an attempt has been made to re-

duce this scatter by taking three samples at each condition. 

It is the average of the three analyses that is plotted in 

figures 5-11 to 5-18. Unfortunately no significant statis-

t ical tests can be appl ied to only three resul ts, but a crude 

estimate of the deviation can be obtained from a scatter 

diagram such as figure 5-19. The ordinate is the average 

percent deviation defined as: 

AVERAGE PERCENT DEVIATION = 
I€i - €avg 1 5-6 

where 
n = number of results 

€i value of repl ication 



FIGURE 5-19: Scatter Diagram of Average Percent De­
viation P10tted Against the Weight 
Percent of the Determination. The 
Fitted Curve Shows the Trend of the 
Average Deviation 
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The standard deviation of three results is almost meaningless 

and has been avoided for this reason. 

Figure 5-19 shows very high average deviations of 

twenty to fort y percent for agglomerates accounting for 1% 

to 4% by weight of the agglomerate population. This corre­

sponds to species with seven and eight beads per agglomerate 

of which there are generally less than ten per sample. As 

the number fraction of the agglomerates increases, the mean 

average deviation, as estimated by the sol id curve, decreases 

until it becomes approximately constant at 6% for agglomerates 

accounting for weight fractions of 0.16 and higher. The 

overall error is, on the average, about ten percent for 

agglomerates representing more than fifteen weight percent. 

Agglomerates representing less than fifteen weight percent 

show errors gradual1y increasing until they reach about fort y 

percent for weight fractions of two percent. 

The average percent deviation reflects the statistical 

error in the sampl ing process in as much as systematic err@rs· 

(e.g. a viscosity error) will shift the average and do not 

appear in the deviations from the average. 



CHAPTER 6 

DISCUSSION 

6.1 EFFECT OF NON-UNIFORM TEMPERATURE 
AND SHEAR STRESS IN THE GAP 

The two effects of variable fluid temperature and shear 

stress in the gap are not independent and, therefore, not easily 

separated from each other. One possible effect of a very 

large temperature gradient mi~ht be to vary the binding mat­

erial's strength by softening the binder exposed to the high 

temperature reg ion. In the present instance the temperature 

range in the gap is quite small, of the order of 4 to 50 F, 

and about 700 F below the glass transition temperature of the 

binder (Tg of polystyrene ~ 2100 F) (65). It is thus ex­

pected that the main effect of the temperature gradient in 

the gap will be its influence on the shear stress. In the pre­

vious chapter (section 5.1), it was shown that the effect of 

decreasing temperature from the inner to the outer cyl inder 

on shear rate is partly offset by the effect of gap curvature. 

Thus the temperature gradient might be considered beneficial 

as it tends to produce a more uniform shear stress across the 

gap. 

The effect of the non-uniform shear stress in the gap is 

to increase the scatter in the data. The uncertainty in the 

mean shear stress, as shown in the previous chapter, is about 
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+ 4%. The variation about the mean amounts to, approximately, 

an additional ~ 4% as can be seen from figure 5-2. Thus, the real 

shear stress wh ich a 9 iven agglomerate exper iences can dev iate + 8% 

from the nominal mean value used in the theoretical calculations. 

Referring to the equil ibrium data in figures 5-11 to 5-18, 

it is seen that the discrepancy between the theoretical and 

the experimental results is not explained by the estimated 

error in the mean shear stress. The shear stress error causes 

a horizontal shift in the experimental data points, but due 

to the flatness of the weight percent versus shear stress 

curve, this shift reduces the discrepancy by a very small 

amount. The curves for the single and two-bead agglomerates 

have steeper slopes and the possible + 8% error in shear stress 

can provide a partial explanation for the deviation of these 

species. It is thus concluded that the possible error in the 

shear stress values is not, in general, the pr ime explanat ion 

for the discrepancy between calculated and measured results. 

It seems l iKely fhat errors of a statistica1 nature are im­

portant and these errors are discussed later. 

6.2 EQUILIBRIUM DEAGGLOMERATION RUNS 

It was noted in the previous chapter that the agreement 

between theoretical and experimental values of the size distri­

bution is good in a qual itative sense. That is, examining the 

results (figures 5-11 to 5-15) shows that the model predicts 
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the genera1 trend of the distribution shift without error. 

The degree of quantitative agreement is 1ess satisfactory. In 

figures 5-11 to 5-15 it is seen that in some cases the ex­

perimenta1 points are more or 1ess evenly distributed about 

the theoretical prediction. Examp1es of this behaviour are 

the four-bead agglomerates in figure 5-12 and the single and 

seven-bead agglomerates in figure 5-13. In other instances, 

the experimental data tend to be displaced by an approximately 

constant amount above or below the theoretica1 values. The 

three bead agglomerates in figure 5-12 and the single bead 

agglomerates of figure 5-15 are examp1es. ft is bel ieved 

that this type of disagreement is caused by variable error 

in the determination of the initial distribution. The model 

requires that the initial distribution be Known since this 

provides the initial conditions necessary to solve the differ­

ential equations 4-25 relating to the distributions to the 

shear stress. The system and procedures used in this worK 

have resulted in measuring the different initial distributions 

for each run, although the agglomerates came from the same 

batch. The reasons for th is var iat ion are outl ined in Chapter 

3, and the magnitudes of the statistical errors involved are 

discussed in section 5.3 The fact that the different types 

of error (random or systematic) occur at random and are not 

confined to a particular species of agglomerates tends to con­

firm that there is no basic error in the mode1. 

-, 
\ 
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It has been mentioned in the previous chapter that, at 

high shear stresses, the theory generally gives values which 

are lower than the experimental results for the two-bead 

agglomerates. Below shear stresses of about 0.07 lb f /in2 

experimental results are scattered both above and below the theor­

et ical val ues. At shear stresses above 0.07 lb f / in 2 the exper i­

mental values are consistent1y greater than the theoretical 

predictions, and the deviation increases with increasing 

shear stress. It may be that the coefficients, Cij' which 

determine the distribution of the breaKage products have not 

been chosen correctly or that the strength distribution 

funct ion, p , i s not the same for al1 spec i es, as has been 
(j 

assumed. The effects of varying the coefficients C .. , 
1 J 

and the strength distribution function are discussed in 

later sections of this chapter. 

6.3 NON-EQUILIBRIUM DEAGGLOMERATION SIZE DISTRIBUTIONS 

Figures 5-16 to 5-18 show the results obtained by fo11owing 

the shift in the distributions with time for deagg1omeration 

occurring when a constant shear stress is appl ied in a step 

from zero stress at zero time. The change is plotted as a 

function of total mean shear strain, y , rather than time on 
m 

the abscissa. The mean shear strain (at constant shear stress, 

hence constant shear rate) is obtained from the relationship: 



166 

Ymean = Ymean t 6-1 

where t is the time e1apsed since commencement of shearing. 

ln the proposed model, it is assumed that the rate of breaK­

down is proportional to the shear rate. Thus, if the strength 

distribution is random, equal fractional breaKages will occur 

at equal shear strains regardless of the rate of strain, as 

shown in equation 4-36. Of course, from a time point of view 

equal breaKages will occur in a shorter time for the system 

with a higher shear rate. Figures 5-16 to 5-18 show that, 

within the accuracy of the scatter of the data, equa1 fractiona1 

breaKages occur at the same shear strain. Unfortunately, due 

to the large amount of scatter, the data is not a severe test 

of this assumption. 

A comparison between the experimental and calculated 

results for the step change case suggest that these results 

are subject to the same errors encountered in the equil ibrium 

case. Also, the actual app1 icat ion of the shear stress is not 

a true step function. This departure from a true step change 

is important at short times (sma1l shear strains), and amounts 

to an additional shear strain of about 400. Therefore, the 

data have been adjusted by adding this amount to the calculated 

shear strain. 
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As with the equil ibrium case, the scatter of the experi­

mental data is generally distributed evenly about the theore­

tical predictions. In some instances, the data for a particular 

species tends to lie wholly above or below the theoretical 

values (e.g. the six-bead agglomerates in figure 5-17 or the 

five-bead agglomerates in figure 5-18) but the occurrence 

is random, ind icat ing that the probable cause is a relat ively 

large error in the determinat ion of the in it ial values. 

6.4 EFFECT OF AGGLOMERATE CONCENTRATION 

Three different concentrations of agglomerates were em­

ployed in the equil ibrium runs to ascertain if the effect 

of concentration is not negl igible. The proposed model assumes 

that concentration effects may be neglected. There are two 

possible mechanisms whereby the agglomerate concentration could 

affect the deagglomeration process. The first of these is 

due to the increased frequency of coll is ions. This possibil ity 

is discussed in detail in a later section devoted to coll ision 

effects. The second mechanism becomes important at very high 

agglomerate concentrations (50% and more) where the large 

volume fraction of agglomerates leads to physical contact be­

tween many particles and the formation of particle "bridges" . 

These contacts may serve to transmit forces directly from one 

particle to another. It is not expected that the proposed model 



would be appl icable in this case since it postulates that the 

only forces on the agglomerates are hydrodynamic in origine 

When the 2% and 1/2% concentration results (figures 5-14 

and 5-15 respectively) are compared with the 1% resu1ts 

(figures 5-11 to 5-13), it is seen that the discrepancies 

between experimental and predicted values do not form any 

pattern. It is thus concluded that, within the accuracy 

al10wed by the data, the assumption of the non-existence of 

a concentration effect is justified for concentrations less 

than 2% by weight. 

6.5 DETERMINATION OF AGGLOMERATE STRENGTH DISTRIBUT ION 

Ideal1y, the agglomerate strength distribution shou1d be 

ascertained independently of the deagglomeration results. 

ln the present instance this was not practical and the fol­

lowing procedure was used. The results for the largest species, 

N, which underwent only breaKdown and no gain (N = 8, for 

this wor~) were manipulated to give the fractional cumulative 

loss, Loss ,with respect to shear stress: 
cum 

Loss cum 
6-2 



where 

= 

169 

the original number of N-particle agglomerates 

before shearing has begun. 

QNT the number of N-particle agglomerates at shear 

stress T. 

From the definition of fractional cumulative loss and equation 

4-12: 

Loss cum = 6-3 

where 

ANo scal ing factor 

Pa strength distribution functions; Pa = P(a) only. 

and the strength distribution is found directly by different­

iation of equation 6-3: 

d(Loss cum) 
= 

ANo 
dT QNO Pa 6-4 

Substituting from equation 6-2: 

dQNT 
ANo - er.;:- Pa 6-5 

where the shear stress, T, has been substituted for agglomerate 

strength, cr, as suggested by earl ier d iscuss ion. Thus a plot 
dQ 

of - ~ against T (= a) yields the strength distribution. 
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The difficulty with this method is that, for practical 

size distributions, the largest species has the fewest number 

of agglomerates. Thus, unless a large number of samples have 

been analyzed, statistical scattering of the data is quite 

large. The method requires that such data be differentiated 

which accentuates the scatter unless the data are smoothed 

before differentiation. 

A possible approach for reducing the effect of scatter 

associated with the least abundant agglomerates would be to 

base the calculations on the population of agglomerates with 

fewer than N-beads per agglomerate. The criterion for choosing 

the expanded population is that the species gain due to break­

down of la rger aggl ome rates i s sma 11 and can be neg l ected • 

The reduction in variabil ity of the data must be great enough 

to yield a worthwhile decrease in the uncertainty of the dis-

tribut ion function. 

ln this work the data were smoothed, but the alternative 

presented in the previous paragraph gave no imp r ovemen t and 

used. A plot of -
dQN'l" 

strength, Ij, i 5 shown was not --a:r- against 

in figure 6-1 for the data of figure 5-11 . Also shown are 

two possible distributions; a 1inear and an exponential func­

tion. It is seen that both distributions could be considered 

to fit the data equal1y welle The results of the other runs 

fol1owa similar pattern. 

1 



FIGURE 6-1: 
dQ 

The Differentia1, d~T, Versus F1uid 
Shear Stress for the Data from Figure 
5-11. The Assumed Exponentia1 Distri­
bution Function is Fitted to the Data. 
A Linear Distribution Function is 
Shown for Comparison 
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Intuitively, the linear distribution is not satisfactory 

because it impl ies the existence of a maximum agg10merate 

strength beyond which al1 agglomerateswi1l be brokene The 

exponential distribution does not have this deficiency, and 

it exhibits a monotonically decreasing IltaÎlII that is close 

to most experimentally determined distributions. The explana­

tion for the apparent1y good fit of the l inear distribution 

may be related to the fact that only a small portion of the 

whole distribution is examined in figure 6-1 and this small 

portion can be approximated with a straight l ine. The ex­

ponential function; 

= e -IXT 6-6 

was chosen to represent the strength distribution function, 

where ~ = 3.5 psi-1 gave the best overa1l fit to the data. 

The complete distribution for any"species, i, is given by 

equation 4-12: 

4-12 

thus, when 
P(J 

is known, the scal i ng factor, Ajo' which is not 

a function of (J is found from: 

Aio 
Qio 

~Qio 6-7 
0:> 

-~ \- e dJ 
..JO 
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where Qio is the original amount in each species, i, before 

shearing, and is Known from the initial distribution. 

6.6 DETERMINATION OF THE DEAGGLOMERATION RATE CONSTANT. K 

ln the course of the derivation of the equations for the 

non-equilibrium conditions, it was assumed that the rate of 

breakdown, Li' was specified by the rate constant, K: 

where 

L • 
1 

= 
• 1 

K Y Q. 
1 

y the shear rate 

4-37 

Q~ number of breaKable agglomerates in species i. 
1 

As discussed in section 4.3 it was not possible to determine 

K theoretically. Instead the value of Kwas determined, for 

each step change run , by a trial and error procedure in which 

the value of Kwas adjusted to yield the best agreement between 

the experimental and calculated results. It was found that the 

value of Kwas almost constant, varying from 5.3 x 10-4 to 

5.7 x 10-4 . 

ln terms of the physical model, K corresponds to the rate 

at which the particle orbit shifts towards the orbit that pro-

vides the orientation having maximum stress on the particle. 

It has been demonstrated by Gauthier et al (76) that the effect 

of inertial forces is to slow down the rate at which the equil i-

l 
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brium distribution of orbits is attained, the rate slowing 

as the Reynol ds 1 number, Res' is increased. A t a constant 

shear rate, Res varies as the square of the particle char­

acteristic dimension, and for the agglomerates studied it 

is estimated that the size distribution gives a variation 

somewhat less than one decade in Res. From the results of 

Gauthier et al, a change in Res from 10-1 to 10-3 causes 

the number of orbits required to reach equil ibrium to decrease 

by about 60%. Interpolat ing for a single decade of shear is 

risky since there are no data relating the dependence of 

the number of orbits on Res other than the two points men­

tioned above. 

On the basis of the preceding discussion it is expected 

that K will vary with Res' which is a function of agglomerate 

size. Res is proportional to i2 for a l inear (straight 

chain) agglomerate and proportional to i2/ 3 for a spherical 

agglomerate. The average Res for the agglomerates employed 

in this work will lie somewhere between these extremes. 

Calculations were made, as described earl ier, but with K 

varying l inearly with i. Allowing K to vary in this manner did 

not yield a significantly better fit, between computed and 

experimental results, than the constant K. This may be attri­

butable to the scatter in the data and it must be concluded 

that the data neither confirms nor rejects the assumption for 

the rate of breakdown as proposed in equation 4-37. 
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6.7 EFFECTS OF SOME OF THE ASSUMPTIONS IN THE MODEl 

6.7. l The Values of c .. 
IJ 

ln Chapter 4 arguments were presented to evaluate c ij ' 

the coefficients determining the distribution of the breaKdown 

products. It was shown that c .. = l for all i and j would be IJ 
a reasonable first approximation for the agglomerate-polymer 

system studied. 

An attempt was made to determine how a variation in c ij 
would alter the calculated distributions. Towards this end, 

the equations were solved using c .. = i and, also, with 
IJ 

c.· = ~I. In both cases, the results differ by less than 2% IJ 
from those obtained by assuming c.· = 1. 

1 J 
qu ite insens it ive to c ... 

IJ The reason is 

The system is thus 

found by more careful 

examination of the interaction between c .. and the initial 
1 J 

particle size distribution. For this, it is important to note 

that c .. affects only products from species having four or 
IJ 

more beads since the two-bead and three-bead species can only 

giveone typeofproduct. But, initially, theagglomerates 

containing four or more beads represent less than 25% of the 

total on a number basis. Further, the four-bead species can 

only degrade in two possible ways, both of which are estimated 

to be about equal in probab il ity. Thus, exclud ing the four­

bead agglomerates which account for about 10% of the total, 

c .. will affect the breakdown distribution of only 15% of 
1 J 

the total initial agglomerates. 
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To test the arguments resul t ing in c .. = l, an in it ial 
1 J 

"inverted" agglomerate population is needed. In such a distri-

bution the largest agglomerates would account for the largest 

number fraction, or a relatively large number fraction,of the 

initial undegraded sample. 

6.7.2 Reagglomeration 

It is not anticipated that significant reagglomeration 

took place. At any instant there would be a population of 

transient agglomerates resulting from the close approach of 

two distinct aggregates undergoing coll ision. However, it 

seems unl ikely that these would form a permanent, larger 

agglomerate. For reagglomeration to occur, the binding forces 

acting on the two previously distinct agglomerates would have 

to be greater than the hydrodynamic forces tending to break 

them apart. The two most likely binding forces are electro-

static attraction and van der Waals' forces. In rare instances, 

it can be imagined that two irregularly shaped agglomerates 

might coll ide in such a fashion as to become mechanically 

locked together. 

Electrostatic forces are an improbable agent for causing 

permanent reagglomeration since the resistivity of polyethylene 

glycol is not high enough to prevent the migration of electrical 

charges. This fact is exploited industrially where polyethylene 
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glycol is used as an ant i-stat ic agent. 

The effect of van der Waals' forces is more difficult to 

dismiss. For parallel, plane surfaces these forces are only 

effective at very small distances of the order of a few 

hundred angstroms or less. For the curved agglom~rate sur­

faces involved a much closer approach of the coll iding par­

ticles is implied, perhaps on the order of tens of angstroms. 

Further, there is some doubt that coll iding particles in 

irreversible flows actually maKe contact (34,42). 

The proposed model maKes no provision for reagglomeration. 

Since, in this worK, the strength distribution is derived 

from the deagglomeration results,the effect of reagglomeration 

is not visible. Rather, the true strength distribution is 

distorted 50 as to produce the experimentally determined 

distribution. A possible test for reagglomeration would be 

to determine the strength distribution independently of the 

deagglomeration experiments and to compare it with the distri­

bution found from deagglomeration runs. 

6.7.3 Effect of Coll isions 

It was noted briefly in Chapter 4 that deagglomeration 

could possibly taKe place by forces resulting from agglomerate 

coll isions. On the basis of estimates of relative particle 

velocities and sizes, it was decided that coll isions should not 

contribute significantly to agglomerate breaKdown. If coll isions 

1 
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were important, then the distributions at different concentra­

tions should show considerable variation because, for unequally 

sized agglomerates, the frequency of coll isions increases as 

the square of the volume concentrations (37). Unless a very 

small fraction of the collisions result in deagglomeration, it 

would be expected that the 16:1 range in frequency (4:1 range 

in concentration) would result in a proportionate range of 

coll isions causing deagglomeration. In fact, the data show 

virtually no dependence on concentration, but only random scat­

tering. The effect of coll isions would produce a systematic 

shift in the data as concentration is varied. It is tentatively 

concluded that, for weight concentrations less than 2%, coll i­

sions have a negl igible role in causing breaKdown. The con­

clusion is tentative since the effect of coll isions may be 

small, and hence masKed by the scatter of the data. 

6.8 COMPARISON WITH RESULTS FROM SUSPENS IONS 

It is Known that particles in a sheared fluid describe 

definite orbits in response to the flow (34) 0 It is assumed 

in the proposed model that these orbits would shift (with re­

spect to the flow) so as to maximize the forces on the particle. 

Karniset al (77) have shown that single rods and discs in 

Newtonian fluids drift to orbits of maximum stress, if the 

particle shear Reynolds number is greater thanlO-2 . The 

particle shear Reynolds number is given by: 



where 

= 
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2 . 
4~ Pf y 

~f 

~ characteristic particle dimens~on; diameter for 

discs, length for rods 

y shear rate 

Pf = density of the fluid 

~f = viscosity of the fluid 

Conversely values of Res ( 10-3 cause the orbits to drift so 

as to minimize the forces acting on the particle. 

For the experimental system examined in this worK, the 

characteristic length of the agglomerates varies from approxi­

mately 70~ for a doublet to about 200~ for the eight and nine­

bead aggregates. The average shear rate in the gap varies 

from 40 sec- l to 250 sec- l depending on operating conditions. 

3 -1 These extreme values give a range 10- ~ Res ~ 10 • Thus, the 

direction of orbit drift is uncertain for doublets at low shear 

rates but all other species tend to assume the orbits of maxi-

mum stress. 

More recently, Gauthier st al (76) have determined that the 

tendency of single, isolated particles to drift towards orbits 

of maximum or minimum stress is altered when the particles com-

prise a suspension. Instead of all the orbits shifting towards 

the extremes of maximum or minimum stress, there is a definite 

number fraction distribution of orbit types. The distribution 
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is such that the greater fraction of the orbits are displaced 

in the direction of maximum stress when Res )~10-2. As expect­

ed from the results with single particles, suspensions with 

Res (~10-3 give distributions with the larger fraction of the 

orbits displaced towards minimum stress. The same worKers 

have found that the distribution of the orbit types is essent­

ially independent of the suspension concentration up to a 

particle content of about 10% by volume. 

The distribution is thought to result from particle 

interactions. In the absence of interactions, the particles 

would all drift to orbits of maximum stress at a uniform rate 

(Res >~10-2). The coll isions, however, alter the orbits of 

the coll iding particles. After coll ision, some of the altered 

orbits will be closer to the maximum stress orbit than they 

were previously while others will be further away. Thus the 

distribution of orbit types is dynamic but,given sufficient 

time, all agglomerates will pass through orbits of maximum 

stress, which is the condit ion required for deagglomeration. 

It was found by Gauthier et al (76) that for rod-liKe 

particles a variable number of orbits was required before the 

stable distribution of orbit types was attained. The number 

of orbits ranged from 600 at Res ~ 10-3 to 1500 at Res ~ 0.1. 

ln this worK it is possible to estimate the number of orbits 

traversed by the agglomerates before reaching equil ibrium. 
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The time for an orbit i s 9 iven by (34) : 

torbit = 27r (r + t-) ....--
y e e 

6-8 

where 

r = equivalent en ipsoidal axis ratio. e 
The equivalent ell ipsoidal axis ratio, r e , may be obtained 

from the actual partic1e axis ratio, rp ' from figure 7 in 

reference 34. The relationship between re and rp is, strictly, 

only val id for cyl indrical particles. 

ln this worK, partic1es with .5 < rp < 5 were observed, 

giving .75 < re < 4.5. Rearranging the above equation to 

give the amount of fluid shear strain per orbit, Yorbit: 

y orb i t 27r( re + _1 ) 
re 

6-9 

The number of orbits the partic1e has undergone is then: 

where 

Yegu il 

Yorbit 
6-10 

Yequ i1 = the mean shear strain in the f1uid when equi1-

ibrium is reached 

From figures 5-16 to 5-18 the f1uid shear strain at which 

equi1 ibrium is reached is, approximate1y, Yequ il ~ 5 x 103 

for each rune This gives 150 <~Norbit <~600 depending on the 



j.82 

value of r. The number of orbits required to reach breakdown p 

is not necessarily the same as the number of orbits needed 
to establ ish the final distribution of orbit types. Further, 
the use of the r - r relationship cited above for the un-e p 
symmetrical agglomerates employed in this work is only a first-
order approximation. Thus, agreement to within only an order 
of magnitude, for equil ibrium in the two different systems, 
is not wholly unreasonable and indicates that the agglomerate 
behaviour is not far removed from that found for regularly 
shaped particles. 

6.9 COMPARISON WITH COMMINUT/ON THEORIES 

The most direct method of comparison is to compare the 
equations for each situation. 

dw. 
1 

dt 

dQ. 
1 -a;-

= 

= 

i -1 

L b .. k. w. 
l ,J J J 

j=l 

N C •• 
)~ 

L, C •• 
j=i+l JJ 

1 Q. 
r J 

k.W. 
1 1 

1 Q. 
r 1 

COMMINUTION 
GRIND ING EQUATION 

EQUILIBRIUM 
DEAGGLOMERATION 

( 2-19) 

( 4-25) 

The similarity between the equations is not surprising. They 
are both derived from mass balances over a small increment -
in time for comminution and shear stress for deagglomeration. 
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C •• 
The breakage function b .. is directly comparable to ~C' in 

, ,j j j 
that they both determine the distribution of the breakdown 

products. S imilarly k. has a role identical with that of 
j 

p. In th is work 1 is defined by equat ion 4-21 in terms of 
T T 

PT' the agglomerate strength distribution with respect to 

shear stress, while k. is known as the selection function , 
in comminution theory. Both specify the value of the inde-

pendent variable at which a given particle (or group of 

particles) will break. 

Reid (46), Herbst and Fuerstanau (49) and Kelsall and 
, 

Reid (47) all solve the grinding equation by assuming that k i 
is not a function of time. Using experimentally determined 

b .. , they predict the size distribution as a function of 
, ,j 

time for varying systems with good results. As reported in 

Chapter 2, Reid (46) has demonstrated the three possible 

conditions under which the assumption that k i ~ ki(t) holds. 

These conditions are i) all k i = k, independent of i; ii) k i = 

constant x d., and b .. = d./d. (d = particle diameter); 
, ,j 'j 

iii) a particular k, kn is such that kn » Ki' i~ n. Reid 

states that the assumption of k i ~ ki(t) holds reasonably 

well for some situations such as ball mill ing, but is probably 

exact only for a few systems. In fact, it can never be exact 

since then the comminution equation will not predict a stable 

size distribution for long times. A possible solution is to 

allow b .. , which is a function of time, to become zero at 
, ,j 



long times. 
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This is not logical, however, because b .. indi-
1 , J 

cates the manner in which the degradation products are distri­

buted while k. gives the rate of breakdown. At equil ibrium, 
1 

it is the rate, Ki' that should tend to zero. 

Kl impel and Austin (48) used experimental results to first 

calculate the breakage function and then, using an optimization 

techn ique, found k. as a funct ion of part icle s ize, i. S ince 
1 

k i decreased with particle size, and particle size decreases 

with time, an equilibrium could be reached. In this context, 

the relationships k = k( i) and k k(t) are equivalent. Re­

ferring to Reidls criteria for k f:. k(t), it is observed that 

th is is sat isfied when k f:. k i ( i). 

The deagg1omeration equations do not suffer from the above 

problem since the time variation of the rate of breakdown is 

incorporated in such a manner as to ensure that the rate 

approaches zero at long times. 

The deagglomeration equation for the step change in shear 

stress is more direct1y comparable to the batch grinding 

equation: 

dw. 
1 

dt 

1 
dQ. 

1 

dt 

i-l 

L b .. k. w. 
1 , J J J 

k.w. 
1 1 

j=l 

N C •• 
\' f.~KYQ.-KYQ· L.. J C.· J 1 

j=i+l JJ 

COMMINUTION 
GRINDING EQUAT ION 

( 2-19) 

DEAGGLOMERATION 
STEP CHANGE (4-39) 
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Like the batch grinding equation, the step change in shear 
1 

stress equations for deagglomeration predict that Qi will 

approach zero at long times. This is consistent with the 

concept of an equil ibrium distribution since Q~ refers to 
1 

agglomerates that will break down at the specified shear 

st r e s s l ev el. The use of the compan ion .. equat ion for Ql~ allows 
1 

the number fraction of agglomerates to be calculated at any 
1 Il 

time since Q. = Q. + Q .• This method of spl itting ·any species 
1 l , 

into degradable and non-degradable portions is only possible 

because the strength distribution with respect to the shear 

stress is assumed to be known. It does, however, allow an 

equilibrium distribution to be reached while retaining the 

description of breakdown as a first order process. This 

seems desirable since, as reported by Reid (80), most systems 

exhibit this behaviour. 

The general case where the breakdown stress is a function 

of time does not appear to have been treated in the l iterature. 

ln grinding or ball mill ing, this would amount to varying the 

drive speed continuously with time - a practice that is evid­

ently not followed in the industry. This type of analysis 

might be useful in a gr ind ing cycle where the part icles are 

alternately subjected to high and low comminution forces. 
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6.10 COMPARISON WITH PREVIOUS WORK ON DEAGGLOMERATION 

It was mentioned in Chapter 2 that previous work on 

the deagglomeration process is very sparse. McKelvey (22) 

modelled the deagglomeration process for the simpl istic case 

of a two particle agglomerate. His model, which is discussed 

in detail in section 2.3, 1ed to the following conclusions: 

1. there is a critical shear stress, below which 

deagglomeration will not occur. 

2. at shear stresses on1y sl ightly greater than the 

critica1 only those agglomerates initially perpen­

dicular to the flow will deagglomerate. 

3. high shear stresses promote deagglomeration. 

4. if the attractive force between particles is inde­

pendent of particle size larger particles will de­

agglomerate at lower shear stresses. 

Each conclusion is examined in comparison with the present work. 

The first conclusion is true for the proposed model if, the 

strength distribution is such that it has a sharply defined 

lower l imite For most rea1 system.s, experience counsels that 

this is not true unless the agg10merates have been specially 

fabricated or selected. Most commercial agglomerates possess 

a distribution that has both a low-strength and a high-strength 

"tai1 1l in the manner of a normal distribution. If the critical 
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shear stress does not exist, then the second conclusion is 

meaningless. If the critical shear stress does exist the 

second conclusion is at variance with known particle behaviour 

in a shear field. On the other hand, the proposed model taKes 

such behaviour into consideration. 

Both models predict, correctly, that high shear' stresses 

promote deagglomeration, which is McKelvey's third conclusion. 

The fourth conclusion is true in both instances if the 

present model is reduced to the state where the strength dis-

tribut ion is unimodal. This is, as in the first conclusion, 

a highly idealized state which is even further removed from 

real ity than the critical shear stress condition. In summary, 

the two models agree qual itat ively for the very restrictive 

assumptions made by the McKelvey model. The predictive capacity 

of McKelvey's model has not been tested by experiment, whereas 

the proposed model has been shown to give results in agreement 

with experimental data within the l imits of experimental error. 

Bolen and Colwell (30) have proposed an equation to pre­

dict the rate of increase in the number of particles due to 

the breakage of agglomerates. The form of the equation has 

been chosen a priori to be an exponential functiono The model 

has been shown in section 2.3, to suffer from some serious 

deficiencies. The choice of an exponential function is probably 

correct since there is accumulating evidence (including this 

work) that breakage of agglomerates is a first-order process. 

-., 
\ 
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However, the authors who proposed the equation on purely em­

pirical grounds have not compared calculated predictions with 

experimental data. Furthermore, Bolen and Colwell's approach 

is only useful for the prediction of the variation of the total 

number of agglomerates with t ime. It does not offer any in­

formation about the particle size distribution during the de­

agglomeration process 

Finally, Smith (31) investigated the breaKdown of verious 

pigments in polyethylene. He found that the rate of breaKdown was 

constant over the rang~ of times (up to 30 minutes) examined. 

This is in contrast with the results of the present worK where 

equil ibrium had been reached in about three minutes for the 

slowest run. The findings are also not in harmony with in­

dustrial practice where dispersion is achieved in similar 

but larger-scale equipment in three to ten minutes. In addi­

tion, the rate of breaKdown cannot be independent of time, but 

must eventually tend to zero. Smith gives no theoretical 

basis for his findings, but merely fits a straight l ine, re­

presenting a constant decrease in average particle size, 

through his data. This type of relationship does not yield 

information about the size distribution unless the distribution 

type is invariant as the deagglomeration proceeds, and only 

one parameter of the distribution (e.g. mean particle size) is 

var i ab le. Par t 0 f the d i f fic u l t yin j u d gin 9 the mo de lis the 

lacK of theory and the fact that deagglomeration parameters 
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(particu1arly shear stress) have not been characterized due to 

the complex shear field in the apparatus. 

6.11 EXTENSION OF THE MODEL TO MORE COMPLEX SYSTEMS 

The proposed model has been appl ied to a simple system 

involving a Newtonian fluid and artificially produced glass 

bead agglomerates with a size range of 30 to l20~. 

Real polymer-pigment systems exhibit two major departures 

from the ideal ized arrangement that has been studied in this 

work. Firstly, the suspending fluid is usually non-Newtonian 

(pseudoplastic) and viscoelastic in nature. The fluid, 

usually a polymer melt, has a viscosity two to three orders 

of magnitude larger than that of polyethylene glycol. In 

addition the agglomerates found in commercial pigments have 

a very large range of sizes, typically 0.1 to 200~. It is 

expected that the effect of the viscoelastic nature of many 

commercial polymer melts on the deagglomeration process will 

be smal'. Chen (73) has measured the recoverable shear strain, 

SR' for some commercial polyethylene melts. The recoverable 

shear strain is the ratio of the fïrst normal stress difference 

to the shear stress; i.e. for viscometric nows: 

6-11 
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He found that SR varied from about 0.2 to 2.0 depending on 

the polymer and the shear rate. From the viewpoint of the 

forces exerted on the particle the nature of the deagglomera­

tion process is not altered even when the normal stress dif­

ference is of the same order of magnitude as the shear stress. 

The orientation, relative to fixed axes, at which the agglo­

merate will degrade will be different for the viscoelastic 

fluid than for the Newtonian one. This is due to the rotation 

of the principal axes by the normal stress difference, but is 

unimportant if the assumption of random particle orientations 

is val id. Also, the particle will breakdown at a lower value 

of T1 2 in the viscoelastic fluide This occurs only because 

T12 is not the sole contribution to the degrading force and 

does not signify a different deagglomeration process. 

The effect of the pseudoplasticity of the suspending 

fluid on the particle orientation, as found by Gauthier et 

al (76) 1s more important. They report that, unl ike Newtonian 

l iquids, the particles tend to assume orbits of minimum stress 

when the sheared fluid has a pseudoplastic nature. This behav-

iour is observed for flow regimes of 10-1 <~Res <~10-3. Fur­

thermore, the particles drift to the orbits of minimum stress 

at a rate that is one order of magnitude faster than they drift 

in the Newtonian fluide Thus, it appears that an independent 

test of the proposed model will be necessary for the case of 

pseudoplastic melts. 



Considering typical processing conditions for polyethylene 

in a Boll ing type mixer gives 

Shear rate, y, about 350 sec- l (60 RPM, 1211 diameter 

blade, 0.1" clearance blade to wall). 

Melt viscosity, ~, about 105 cps. 

Shear Reynolds', number, Res' ~10-'6 for a 10~ diameter 

agglomerate, ~ 10-4 for a 100~ d iameter. 

The flow is in a range where inertia effects are negl igible 

and the creeping flow equations apply. Zia et al (40,41) 

have shown that in this regime aggregates of spheres in con­

tact behave as rigid bodies and will not breaK. Nevertheless, 

the Bol1 ing mixer is widely used to produce deagglomeration 

(15,17,20). The explanation may 1 ie in the fact that the 

processing conditions are such' that the shear stress is very 

high (about 100 psi) and close to the region where melt frac­

ture or instabilities occur (17). The behaviour of molten 

polymers in this region is poorly characterized and the results 

obtained by Zia and coworKers may not be appl icable. 

The proposed model is based on a Known shear stress field 

that is orderly in the sense of laminar flow. If commercial 

processing is accompl ished under turbulent conditions, it may, 

or may not, be possible to extend the model to cover such a 

case. In either event more basic Knowledge about polymer melt 

behaviour at high shear stresses close to the flow instabil ity 

reg ion i s requ i red. 



CHAPTER 7 

CONCLUSIONS 

7.1 SUMMARY AND CONCLUSIONS 

ln the preceding chapters, an effort was made to study 

a simpl ified deagglomeration process and to develop a 

mathematical model for such a process. Agglomerates were 

artificially produced from spherical glass beads and sus­

pended in a polyethylene glycol melt, which was subsequently 

sheared in a concentric cyl inder Couette apparatus to effect 

the deagglomeration. The analyses of the agglomerate size 

distributions were performed microscopically using a techn ique 

developed during this study. The experimental data thus ob­

tained were used to test the proposed model of the deagglo­

meration process o 

The testing of the model is l imited by the errors and 

scatter of the experimental data. The uncertainty in the 

data ranges from about + 10%, in the region where statistically 

caused scatter is small, to about ~ 50% when on1y a fewagglo­

merates of the species are present in the sample. The un­

certainty not due to statistical causes comes primarily from 

the variation in shear stress across the gap and from errors 

in measuring the wall temperatures of the apparatus. Each 

variable contributes about equally to the error. 
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The model was tested with data representing equil ibrium 

conditions as was the time variation of the size distributions 

due to a step-change in the shear stress. The equil ibrium 

results were also tested at different agglomerate concentra­

tions. In most cases the mode1 correctly predicted the size 

distribution to within the estimated experimenta1 error. When 

the predictions fell outside the estimated error, they did 50 

in a random fashion except for the two-bead agglomerates at 

high shear stress. In all cases the qua1 itative prediction 

of the direction of change of size distribution was correct. 

No effect of concentration was predicted by the model and 

within the error l inlits and 4:1 range of concentrations tested 

no concentration effect was found experimentally. 

It has been found that the strength distribution function 

of the artificial agglomerates employed could be represented 

equally well by either a 1 inear or exponential function of 

strength. The l inear representation was rejected on the 

physica1 grounds that it impl ied that no agg10merates would 

have a strength greater than a wel1 defined, arbitrary value. 

The following exponential form was used 

where 

-[30" e 6-6 



It has been found that the experimental data do not pro­

vide a satisfactory test to determine the val idity of the 

assumed values of c.·. This is attributed to the fact that 
IJ 

the initial size distributions of the experimental agglomerates 

contained only a small fraction « 25%) of the degradable 

agglomerates for which the values of c .. are fixed a priori. 
IJ 

For these initial distributions the model predicts less than 

a + 2% change in the distributions for the range 1 ~ C ij ~ i. 

The invariance of the results with differentconcentrations 

led to the tentative conclusion that coll isions played only a 

minor role in deagglomerat ion, if at all. The effect of re-

agglomeration was also consigned to a minor role for the same 

reason. The direct detect ion of rea9910merat ion was 

not possible due to the method of analysis used. 

The known behaviour of well-defined, regularly shaped 

particles in shear fields and in suspensions was extended to 

obtain a crude estimate of the expected behaviour of the agglo­

merates in this system. It was concluded that the behaviour 

of the agglomerates in the shear field was in qual itative agree­

ment with the behaviour expected from such extrapolation. 

This gives a more sound basis for the model since it incorporates 

some features of the behaviour of single particles provided by 

this independent work. 

The proposed model was compared with models derived to ex­

plain the comminution process. Although the equations are 
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similar in many respects there are important differences. 

The most important of these differences is that the proposed 

model naturally leads to an equil ibrium distribution at a 

given shear stress, while the comminution model achieves this 

only by forcing the breaking rate constant to be a function 

of time. There is no equivalent comminution model that cor­

responds to the equations giving the distributions for a time­

varying shear stress. 

The model was also compared with two models specifically 

proposed to describe deagglomeration. One of these models 

(McKelvey's) employed extreme simpl ifying assumptions, and 

under these restrictive conditions, agreement between it and 

the proposed model 1s qua11tative. McKelvey's model had not 

been tested experimentally. The second model (Bolen and 

Colwell's) was purely empirical, with three adjustable con­

stants to enable it to fit almost any data. In both cases a 

rigorous comparison was not possible since the earl ier models 

did not predict size distributions. 

Finally, a brief attempt was made to evaluate the appl ic­

abil ity of this work to the conditions prevail ing in commercial, 

comp"ex mixers. Rough considerations suggest that the severe 

conditions employed in commercial dispersion processes might 

lead to melt flow instabil ities, which in turn may significantly 

affect the dispersion process. At the present time, lacking 

knowledge of the polymer melt behaviour under these extreme 
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conditions, it is not possible to determine if the model might 

be extended to such situations. 

7.2 SUGGESTIONS FOR FURTHER WORK 

The worK reported here is one of the first studies to 

inquire into the nature of the breaKing of randomly shaped 

agglomerates in a shear field. As a result, there are numerous 

questions which remain to be answered, and the author sugests 

the following areas for future investigation: 

1. In the interests of more rel iable data, an automatic 

counting technique should be developed or adapted 

from existing techniques. If such a technique were 

available it would allow more extensive sampl ing, 

thus reducing that portion of the uncertainty which 

is due to statistical fluctuations. 

2. The agglomerate production technique should be re­

fined or modified to allow agglomerates of con­

trolled size distribution to be made. It would then 

be possible to produce agglomerates where the larger 

species contribute a major fraction of the total. 

This would allow a more severe test of the assump-

tiens regarding Cij' the breaKdown product distri­

bution coefficients. 
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3. The degree of deagglomeration should be extended 

so that almost complete degradation is obtained. 

This would confirm or negate the val idity of the 

proposed model for the complete deagglomeration 

process. 

4. There is a need for an experimental technique to 

measure the strength distribution of the agglo­

merates independently of the deagglomeration data. 

The direct, independent determ inat ion of the 

strength distribution would allow testing of the 

assumption that the distribution is invariant 

with agglomerate size. 

5. In view of the results reported for the behaviour 

of single particles and suspensions, using particles 

of well-defined geometry, in pseudoplastic and 

viscoelastic fluids it is not certain that the 

proposed model may be directly appl ied to these 

systems. An incentive for examining these systems 

is that they are similar to those found in com-

mercial dispersion processes. 

6. Time-dependent (constant shear stress) experiments 

with varying agglomerate concentrations are required. 

These results would confirm, or reject, the model 's 

assumption that the time-dependent size distribution 

is independent of agglomerate concentration. 
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7. The independence of concentration for the size 

distributions at equil ibrium is not expected to 

hold for concentrated suspensions. There is a 

need to determine the critical concentration at 

which the mechanism changes and to develop equa­

tions for the new situationo 

8. The equations that have been derived to predict 

the size distributions when the shear stress is 

an arbitrary function of time need to be tested 

since no data have been obtained for this 

condition. 

9. The possible effect of bead size needs to be in­

vestigated since all results reported in this work 

have dealt with a single, relatively large, bead 

size. 

100 Finally, the effect of using agglomerates made 

from irregularly shaped particles should be in­

vestigated. 

7.3 CLAIMS FOR ORIGINAL WORK 

1. Derivation of a model for the deagglomeration pro­

cess, due to hydrodynamic forces in a sheared 

fluid, that predicts the size distribution of the 

agglomerates. 
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2. The presentation of equations giving the time­

dependent size distributions due to a time-

varying shear stress field. 

3. Experimental measurements of agglomerate size 

distributions; 

a) at equil ibrium, when all degradable agglo-

merates corresponding to a given shear stress 

have b roKen , and, 

b) the variation with time of size distributions 

resulting from a step change in the shear 

stress. 

4. The results obtained indicate that, at low con­

centrations between 1/2% and 2% by weight, the 

distributions at equil ibrium are independent of 

the concentration. 

5. A new method for the preparation of artificial 

agglomerates has been developed. 

6. The numerical solution of the equations for the 

non-isothermal, Newtonian flow contained between 

rotating coaxial cyl inders with end effects and 

temperature-dependent fluid properties. 

7. Experimental confirmation of the temperature pro­

files predicted for the flow described in 6) above. 

-...., 
1 
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LIST OF SYMBOLS 

a s qua r e ma tri x 

fractional area covered by agglomerates 

area under the integral size distribution 
curve, equation 2-4 

coefficient in finite difference form of 
equations of change 

agglomeration index (equation 2-5) 

scal ing factors for strength d istr ibut ion 
functions 

strength distribution function of gained, 
stable agglomerates 

coefficient defined by equations 2-20a 
and 2-20b 

empirical constant, equation 2-11 

number of bonds broKen at time, t 

breaKage function 

amount of breaKage of species 

coefficient in finite difference form of 
equations of change 

strength distribution function of original 
1 agglomerate, Qior' breaKage products 

empirical constant 

variable coefficient defined by equation 1-24 

coefficient in finite difference form of 
equations of change 

specifie heat at constant volume 

specifie heat at constant pressure 

coefficients in agglomerate mass balance 



c 0 ° 
IJ 

D 

DoK;Do 
J J 

D ° 
1 

e ;é' 

f( x, t) 

20:1 

relative frequency of types of agglomerate 
breaKage 

volume concentration of doublets 

volume concentration of single spheres 

diagonal of a matrix 

diffusion coefficients 

net difference in the number of agglomerates 
in the i th species 

coefficient in the finite difference form of 
the equations of change 

distance between a j-particle agglomerate and 
a k-particle agglomerate after coll ision 

distance between two agglomerates 

particle diameter 

amount of gained, breakable agglomerates of 
st rength (J in the i tl-1 spec i es 

coefficient in the finite difference form 
of the equations of change 

iteration error; maximum iteration error 

attractive force between agglomerates 

number of collisions per unit time per 
unit volume 

force at point x in a rod-l ike particle 

instantaneous fraction of i th species that 
is breaKable 

temperature dependent form of powerlaw 
model for viscosity 

weight fraction of material smaller than size 
x after grinding for a time, t 



g(t) 

g. . , ,J 

H 

h 

h. 
'cr 

K 

k(X) 
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gain function for the i th species 

coefficient in the finite difference form 
of the equations of change 

time dependent function of shear stress 

gain of agglomerates by the i th species due 
to breakage in the jth species 

height of gap 

distance between mesh points 

strength distribution function, at any in­
stant, of the i th species agglomerates~ break­
age products 

integral defined by equation 4-21 

rate constant 

ratio of inner to outer cyl inder diameters 

Boltzmann's constant 

Rate constants 

selection function given by fractional rate 
of breakage of material smaller than size x 

selection function for i th species 

thermal conductivity 

lower triangular matrix 

loss function for the i th species 

length 

l ength of rod-l i ke part i cl e 

weight average molecular weight at time, t 



n 

p 

Q. 
1 

R* 

r 

re 
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l imiting molecular weight 

largest agglomerate species initially 
present in the system 

total number of spheres 

particle creation rate at long time 

number of agglomerates per unit volume 

number of particles per unit volume at 
t ime, t = 0 

pressure; degree of polymerization 

l imiting degree of polymerization, below 
which degradatlon does not occur 

number of agglomerates, per unit volume, 
in the i th species 

heat fl ux 

radius of inner cyl inder 

radius of outer cylinder 

radial position in the gap 

dimensionless radial position in the gap 

shear Reynolds' number 

radius of particle 

equivalent axis ratio for a particle, 
equat ion 2-8 

axis ratio of an ell ipsoidal particle 

scale of segregation 

strength distribution function of the gained 
agglomerate, Qrg' breakage products 



T* 

t 

u 
V 

v 

v* 

w· 
1 

x 
x 

y 

y 

z 

z* 

recoverable shear strain 

tempe rature of fluid, at a point in the gap 

dimensionless temperature of fluid in the gap 

temperature of inner cylinder wall 

Taylor number 

t ime 

upper triangular matrix 

velocity 

vector of the unKnown variable in a system 
of simultaneous equations 

tangential velocity at the inner cyl inder wall 

dimensionless velocity 

volume fraction of dispersed component 

volume fraction of pigment 

width of gap between the concentric cyl inders 

weight fraction of the i th species 

arbitrary dependent variable 

cartesian co-ordinate 

largest of particles or agglomerates 

arbitrary independent variable 

cartesian co-ordinate 

axial position 

dimensionless axial position 



G reeK 

a. 

o.g 

a opt 

a. i (j 

(3 

y 

y 

Ym 

Ym 
!::, 

ÔK 

E: • 
1 

'Il 

'Il 0 

I.e 

j~m 

I.l 

P 

Pa 

.I. 

Ta 

Letters 

thermal diffusivity 

over-relaxation factor 

optimum over-relaxation factor 

distribution function of original remaining 
breaKable agglomerates, Q~ , in the i th species 

lor 

empirical constant, equation 6-6 

shear strain (deformation) 

shear rate 

mean shear strain, equation 5-5 

mean shea r rate 

rate of deformation tensor 

Kth element of the displacement vector 
between two iteration matrices 

value of a repl icated result, 

non-Newtonian viscosity 

reference, non-Newtonian, viscosity 

estimated largest eigenvalue of the iteration 
matr ix 

largest eigenvalue of the iteration matrix 

Newtonian viscosity 

density 

strength distribution function of initial 
(unsheared) agglomerates 

shear stress tensor 

average shear stress 
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minimum shear stress to cause particle 
rupture 

mean shear stress 

agglomerate strength, defined as the minimum 
shear stress in the fluid required to cause 
breaKage when the agglomerate is in its most 
favourable orientation 

Rayleigh quotient 

angular velocity of the inner cyl inder 

Subscripts and Superscripts 

The usage indicated here for subscripts and superscripts 
is generally followed; exceptions are defined in the texte 

9 

j 

K 

m 

m 

N 

o 

r 

subscript, indicates the gain por t ion of 
the subscripted variable 

subscript, refers to the i th species 

subscript, refers to the ·th J species 

subscript, refers to the Kth species 

subscr ipt, ind icates the loss port ion of 
the subscripted variable 

subscript, summation index 

superscript, refers to the mth iteration 

subscript, indicates the N-particle species 

subscript, original (initial) value of the 
variable at time, t = 0 

subscript, value of the remaining portion of 
the original variable value 



t 

cr 

Il 
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subscript, the subscripted variable is a 
function of time 

subscript, the subscripted variable is a 
funct ion of cr 

superscript, indicates breaKable agglomerates 

superscr ipt, ind icates stable agglomerates 
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APPEND IX 1 

NUMERICAL SOLUTION OF THE EQUATIONS 
OF ENERGY AND MOTION 

To have a rational basis for design of the equipment 

and, also, to Know the shear field throughout the sample 

the numerical solution of the equations of energy and 

motion for the apparatus shown in figures 3-2 and 3-3 was 

undertaKen. 

1-1 EQUATION OF MOTION 

The assumptions made in setting up the equation of 

motion are: 

1. steady state f1ow; 

.L 
ct o 

2. uniform flow around the annulus; 

o 

3. the normal stress differences are negl ibible; 

= o 

1-1 

1-2 

1-3 

for vertical cyl inders the r-compbnent is zero and the z­

component contains only hydrostatic pressure, thus the 

equation, in component form, reduces to: 



_ ore Z = 
oZ 

2t4 

l .L 
R2 oR 

1-4 

now, despite its shortcomings, the power law representation 

for viscosity is used: 

n-l 
!::':!::' -2-

11 = 110 / 2- 1 1-5 

and for the system of interest: 

!::,:!::, 

R [}p; (~e) r [ :~er ~ 
y = + 1-6 

The temperature effects for viscosity will be included as: 

and n 

Tlo(T) 

n(T) 

it is convenient to compute the viscosity separately 

11 = f (/!::,:!::, 1, T) p 

For the z-component of r, using equation 1-9, 

orez = ~ oVe 
èZ oZ oZ 

s imilarly 

1-7 

1-8 

1-9 

1-10 
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_.0- 2 (2rfp 
oVe Ve 

aR (R TRe) = (ar) - "R) 

R2f 
a2V loVe Ve 

+ (_8 - - -- + -) 
P è)R 2 R aR R2 

+ 
2 ~ -;'Ve Ve 

R -;,R (-aR - "R) 1-11 

Substituting equations 1-10 and 1-11 into equation 1-4 and 

collecting terms: 

fpVe 
2 + 

R 
+ o 

1-12 

Equation 1-12 is the governing differential equation of motion 

for the system. The equation is changed to dimensionless 

fo rm as fo 11 ow s : 

1. for gap width (radial direction) 

R - KrRo 
R - K R oro 

R* = 1-13 

where Ro = radius of outside cyl inder 

Kr R ;lRo' Ri = rad ius of ins ide cyl inder 

R radius at any point in the gap 
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2. for non-dimensionalized height 

z* 

where 

z 
H 

H = total height of the gap 

1-14 

z = perpendicular distance from any point 

in the gap to the bot tom of the gap 

3. for velocity, Ve 

v * e 

where 

= 

w = inner cyl inder speed in radians/sec 

1-15 

Ve = tangentia1 velocity at any point in the 

gap 

ln terms of the non-dimensional variables, the boundary condi­

t ions for equat ion 1-12 are: 

Ve *( O,z*) = l 1-16 

Ve*(R*,O) 0 1-17 

Ve *( l , z*) ° 1-18 

~ [Ve(R*,l)] 0 1-19 

ln order to solve equation 1-12 numerically it was converted 

to a finite difference approximation, with the gap divided 

into a square mesh by the usual technique (78,79). The 

following representations were chosen for the first and second 

-i 
i 
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derivatives, respectively, of a function U U(X,Y): 

where 

ML' aY r 5 , 

2U 1 ~ r s , 

U 

y 

= 

= 

= 
X r+ l z 5 -

2h 
X r-1 z 5 1-20 

X r+ 1 z 5 - 2X r z s + Xr - 1 zS 
= 

h2 1-21 

dependent variable, e.g. Ve in equation 1-12 

independent variable, e.g. R in equation 1-12 

h the distance between two mesh 1 ines, a 

constant 

r,s indices, locating the point on the mesh at 

which the derivatives are being represented. 

Equation 1-12 is first converted to dimensionless form,using 

equations 1-13 to 1-15: 

fpVe a2V * A of aV * f P Ve~ à2V * e + ~ e + e 
H2 a z*2 H2 az* à Z* R;( l - Kr) 2 aR*2 

1 ~ f Va~ àV * 
+ (Ro{ l-K r ) + p ) e 

aR* R* R (l-K )+KR R;(l-K r) 2 à R* oro 

a f f * 
l Ve K Ve 

- (Ro(1-K r) 
~ + p ) 
aR* R* Ro(l-Kr)+KrRo R*Ro{ l-Kr)+KrRo 

o 1-22 
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Now, transforming 1-22 to finite difference form: 

[2f r ,5 

H2h2 + 

+ 

+ 

+ 

where 

r = 

s 

2f rzs 
R;(1-Kr)2h2 

.+ Cl ] 
R*Ro(l-Kr)+KrRo Vr,s 

[f f rzs +l -f ] ~ + rzs-l 
V r ,s+ l H2h2 4H2h2 

r~ f - f ] rzs+l . r 2 s-l 
Vr,s-l LH 2h

2 4H 2h2 

[R~( ~ :~>h2 + Cl ] 
2hRo(1-K r ) V r+ l , s 

[R~( ~:~>h2 
.., 

Cl J V r-l s 2hRo{l-Kr) , 

= 

refers 

of the 

refers 

of the 

f - f r+ l • s r-l • s 
2h 

o position in the 

mesh 

+ 

1-23 

f r.s 
C*R( l-Kr)+KrR 

1-24 

radial direction 

to position in the axial direction 

mesh 

The subscr ipt e in Ve has been dropped and the subscript p 

has been dropped from fp to avoid confusion. 



Equation 1-23 may be rewritten as 

= Br sV r s+ l + C r sV r s -1 + D r sV r+ l s 
" " " 

1-25 

where A, B, C, D and E are the appropriate coefficients 

from equation 1-25 and are functions of position (r,s), 

device geometry and viscosity. Vr,s is th us known in terms 

of the coefficients, Vr+1,s' Vr-l,s' Vr,S+l and Vr,s-l. 

However, since the equation holds for each point, (r,s) on 

the grid it may be written for each point yie1ding n2 

equations with n2 unknowns for an n by n mesh. 

ln the simple relaxation scheme for solving this pro­

blem an initial estimate of V is made for each point. Then 

equation 1-25 is appl ied to calculate a new value of V 

working systematically around the grid. This process is 

continued until, on the (m+l)th iteration, Vm+sl calculated r, 
agrees with the previous value V~ s to within sorne predeter-, 
mined criterion for each point. 

Faster convergence of this scheme is obtainable if 

the Gauss-Seidel modification is usedo ln this modification, 

as soon as a new value of V is computed it is used in the 

next equation. Thus for increasing rand s. 

= m m+l m 
Br, sV r ,s+ l + Cr, sV r ,s -1 + Dr, sV r+ l, s 

m+l 
+ E r sV r-l s , , 1-26 

-, 
\ 
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where m refers to the nth iteration and m+l refers to the 

n+ l th i terat ion. 

An additional modification is to use the over-relaxation 

scheme,or accelerated Gauss-Seidel method: 

vm+l 
r,s 

m ~ m + C Vm+1 
V r s (l-a. ) + A ( B r sV r s+ l r s r s-l 

, 9 r,S " " 

where Ct is called the over-relaxation factor. A correct 
9 

choice of Ct gives faster convergence than the use of the 
9 

simple Gauss Seidel method. Different methods of choosing 

Ct are outl ined later in this appendix. 
9 

It can be noted that finding a solution to equation 1-26 

is the same as solving n simultaneous algebraic equations 

and the system may be written in the matrix form 

AV = b 1-28 

for n points in the grid there are n2 equations and A is an 

n2 x n2 matr!x. For the second order finite difference scheme 

used, the matrix is of the bloCk tridiagonal form: 

A 1-29 
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The solution of equation 1-27 is: 

v 1-30 

and the problem is now finding the inverse of A. The over­

relaxation (or accelerated Gauss-Seidel) method has a strong 

recommendation when A is of the above forme This advantage 

is that convergence is guaranteed regardless of the value 

of det 1 A 1 (80). 

There is a problem occurring with the use of all relaxa­

tion schemes. The problem is the estimation of the error 

at any time during the iterationso Consider the usual 

criterion used, where the iterations are continued until the 

difference between successive values of the dependent variable, 

is less than some arbitrary value, ° . This does not guar­e 

antee that the error is less than ° but only that the rate e 

of convergence is less than ce' Until recently the problem 

was solved by continuing the iterations until 0e was two or 

three orders of magnitude smaller than the accuracy required. 

A more rel iable test has been suggested by Carre (81). 

He suggests that the largest error in the mth iteration, 

is bounded by 

,gITl 1 1-31 
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where Igm 1 is the arithmetically largest element of the 

displacement vector (the displacement vector is the differ-

K K-l) ence between all elements, Xi,j - Xi,j . Àe is the estimated 

largest eigenvalue of the matrix A. It may be estimated 

from the relation 

ex. - l opt 1-32 

where ex. t is the optimum relaxation factor. The optimum op 
relaxation factor is the one that gives the fastest, stable 

convergence. 

1-2 EQUATION OF ENERGY 

Starting with the form: 

- (v·pC TV) - .sz:.9. - T(.af.) (v.v) v- ~Tp -

+ 
DC v 

pT ift 1-33 

since = 1-34 

the energy equation reduces to 

o = 1-35 

and only the viscous dissipation and heat conduction terms 

are left. WorKing in terms of components 



I:Y1- "re [R ~ (~e) + ~ (:~R)] + "zB [t :~Z + :~e] 

since Tre and Tze are the only non-zero shear stresses. 

Substituting for Tre and Tze: 

:r.: st{ = - f R2 [L Ve r f [<lVe ]2 
p oR (R") p oZ 

also, s ince ~ = 0; 

= l ~ (rqR) + 
oqz 

2".9. R oZ 

qR = - K al. 
T ~R 

qz - KT al. 
~z 

If KT is allowed to be a function of temperature, KT 

then maKing the substitutions 

.aI. ~ KT] 
à Z 0 z 

The energy equation becomes: 

1-36 

1-37 

1-38 

1-39 

1-40 

1-41 
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a
2

T T oKT KT .al. 2 QI ôKT 
0 KT + 

.aJ.. _ 
+ + K .LI. + 

oR2 oR 0R R oR T oz2 oZ oZ 

f R2 [ l ,Ve 
V r f [~r + G + -
R

2 P R :4R P () Z 

1-42 

w ith boundary conditions: 

T(Ri'z) = Tw 1-43 

T(R*,O) = Tw 1-44 

T(Ro'z) Tw 1-45 

!z [T (R* ,H) ] = 0 1-46 

Using the previously described methods of obtaining the 

finite-difference equation and dimensionless variables the 

following equation is obtained: 

o = 

ove*) 
aR* 

1-47 
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where T* T 
Tw 

and 
VG K 

tU KrRo 

and the finite difference form i5 

K T r,5 w 

+ 

+ 

( r+ l .5 

[

T - 2T r ,5 + T l 
r-1 'S)J 

+ Kr, 5 T w [( T r .5+ l - 2T r. 5 + T r t 5 -1 ~ 
H2 2h ~ 

+ Tw ~Kr,5+1 - Kr'S_l)(T r,s+l - T r.S-1~ 
H2 L 2h 2h ~ 

+ f [(VGK Vr •5+ 1 - Vrt5 - 1 )J 
r,5 H 2h ~ 

o 

1-48 

1-49 

GK V r s V j2 

1-50 
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Equation 1-50 may be expanded and the terms co11ected to 

give a form such as 

Sr, sT r , s+ 1 + Cr, sT r, s -1 + Dr, sT r+ 1 , s 

+ E r sT r-1 s + Gr s 1-51 , , , 

where the coefficients A, S, C etc. are functions of posi­

t ion, T w and V. 

Equation 1-51 can be rewritten for the Gauss-Seidel 

method of accelerated relaxation and gives 

Tm+ l 
r,s = 

+ D Tm + E Tm+l 
r, s r+ l , sr, s r -1 , s + Gr, s ] 

1-52 

where Cl is the over-relaxat ion factor, and the superscr ipt 
9 

m refers to the mth iteration. 

As before, it is necessary to make in it ial guesses for 

all Tr s to start the iteration process; the values of V , r,s 
are estimated from the previous solution of the equation 

of motion. 

The flow chart depicting the computation scheme for 

the simultaneous solution of the two equations is shown in 

figure 1-1. The program, wr itten in Fortran IV, is 9 iven 

at the end of this appendix. 



READ 
WALL TEMPS, RPM, GAP 
DIMENSIONS, NO. OF 
STEPS, EXIT CRITERIONS 

ASSUME 
ISOTHERMAL; T* = T r,s W 

VELOCITY PROFILE 

COMPUTE RATES OF . 
DEFORMATION YR' YZ 

CALCULATE VISCOS ITY 

fr,s:<: f(T, YR' YZ) 

COMPUTE NEW V* SY r,s 
ACC'D GAUSS-SEIDEL 
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COMPUTE NEW T~ s BY , 
,,-~~ ACC 1 D GAUSS -S E 1 DEL 

EQ'NS 1-47,1-50,1-51 

---YES -----

iIlIJ---ooI' 

EQ 1 NS 1-22, 1-23, 1-27 

COMPUTE THE ERROR 
VECTORS AND 
EUCUDIAN NORMS 

FOR Vt s AND Tt 5 

NO 

, , 

NO 

COMPUTE NEW RATES 
OF DEFORMATION YR'YZ 

FIGURE 1-1: Flow Chart of program for Numerical Solution 
of Equations of Motion and Energy 

--, 
\ 
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1-3 ESTIMATION OF THE OVER-RELAXATION PARAMETER 
FOR THE GAUSS-SEIDEL METHOD 

As shown earl ier, the finite difference equations give 

a set of algebraic equations that can be written in 

mat r ix form: 

AV b 1-28 

with solution 

v 1-30 

and the problem is one of inverting matrix A. For the two 

equations (motion and energy) with the second order finite 

difference, A is of the bloCK tridiagonal form, (equation 

1-29) and can be decomposed to 

A D - L - U 1-53 

where D is the diagonal and Land U are the upper and lower 

triangular matrices. If L + U can be rearranged to give 

the form [g ~] where 0 i s a null squa re submat r ix, then 

the Gauss-Seidel method for inverting A will always converge 

(80). The problem is that the convergence is sometimes 

slow. This occurs when A is ill-conditioned. (i.e. det lA 1 

is not large and positive, or, equivalently, the largest real 

eigenvalue of A is close to unit y) • It is therefore desirable 

to use the over-relaxation or accelerated Gauss-Seidel methods. 

-( 



229 

The difficu1ty arises in choosing the optimum over­
relaxation factor, Œopt. Carre (81) has given one method 
for estimating Œopt. He maKes one iteration with Œg = 1 
an~ then 12 iterations with Œ = 1.375. The disp1acement 9 
vector, ô(m) = X(m) - X(m-l) is ca1culated and its norm, 
n(m), is found. /t is then poss ib1e to est imate the largest 
eigenva1ue since 

1 im 
n(m) 

Àmax /-54 n(m-l) = 
m ..... c:o 

and Œopt may be computed from À-max· However, this gives a 
poor estimate for À when m is smal1. Carre overcomes max 
this by forming the ratios: 

n (m-2) 

n (m-l) 
n (m-2) 

n( m) 
n (m-l) 

and then using AitKen extrapolation 

= P (m-2) 
P m-2) + P (m) _ 2P ( m-1) 

/-55 

/-56 

/-57 

/-58 
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The optimum value of a g may th en be found from 

"opt ~ 2 [1 + [ 1 - (l'max + "g - 1)2/Àmax"~J]-1 
1-59 

provided ag < ao ' 

To maKe optimum use of this method a new value of a g 
should be estimated after each iteration, and then there is 

a danger that a g may become larger than the true optimum. 

Wh en this occurs the numerical solution still converges but 

in an oscillatory manner. It is desirable to be near optimum 

value since the rate of convergence increases rapidly as a g 
approaches aoptO The advantages of the method are that it 

is easy to apply and taKes a moderate amount of storage 

space. 

A better method is due to Reid (82). The maximum eigen-

value, ~max' is est imated from the ratio of the norms of the 

displacement vectors as in Carre's method. From this, a 

matrix of the form: 

= 
ql/2 

diag(~ max 

q2/2 qn/2 
~max ' .• 0 •• 0. ~max ) 1-60 

is constructed where ql' q2 ••• qn are chosen from a set 

dictated by the matrix A. The eigenvectors are then esti­

mated from 

z . 
1 

G- l ô i 
~ 

1-61 
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and they are used to form a Rayleigh quotient: 

cp = 
z 1 (L + LT) Z i 

T z. 0 z. 
1 1 

The optimum relaxation factor is then calculated from: 

2 = 
l + (1 _ cp2) 1/2 

1-62 

1-63 

This method assures that Œopt will never become greater than 

the true optimum but suffers from the disadvantage that much 

more computation is required. 

The choice of eiLher Reidls or Carrels method depends 

on whether the matrix A is ill-conditioned or not, and its 

size. If the matrix is ill-conditioned Reid's method is 

better because it will not over-estimate the value of Œopt. 

When the matrix is large, Carrels method is better since it 

requires much less computation and storage space. The choice 

of Carrels method for large matrices is not automatic since, 

if the matrix is both large and ill-conditioned, Reid's 

method is recommended. Unfortunately, a large amount of com­

putation is required to ascertain whether a large matrix is 

ill-conditioned. 

ln the present worK Reid's method was used for a number 

of different sets of parameter values and the smallest Œopt 

found, Œopt = 1.4, used in all subsequent computations. 

l 
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1-4 COMPUTER PROGRAM 

The followfng variables appear in the program. 

A 

ALPHA 

B 

BRINK 

C 

array of coefficients for the finite difference 
equations 

over-relaxation factor 

array of coefficients for the finite dffference 
equations 

a subroutine to compute the Brinkman number 
array of coefficients for the finite difference 
equations 

CRIT criterion for exiting from the iteration loop 
D array of coefficients for the finite difference 

equa t ions 

DHT mesh point 

E array of coefficients for the ffnite difference 

ENT 1 ) 

ENT2 

ENZ l ) 

ENZ2 

F 

G 

equatfons 

eucl idian norms of the temperature matrix 

eucl idian norms of the velocity matrix 

array containing the viscosities at the mesh points 
array of coefficients for the finite difference 
equations 



GDOT 

H 

HT 

IPRNTC 

IPRNTR 

ITNP 

K 

LINE 

NO 

NS 

NPRNTC 

NPRNTR 

PI 

PRNT 

R 

RGAM 

RI 

RPS 

SHATE 

T 

TAU 

TC 

array of rates of deformation 

distance between mesh points 

dimensionless height of fluid in the gap 

printing control variable 

printing control variable 

iteration counter 

ratio of inner to outer cyl inder radii 

printing control variable 

number of mesh points 

number of mesh steps = ND-l 

printing control variable 

printing control variable 

3.141592 

subroutine to print results 

outer cyl inder radius 

tangential component of the rate of deformation 

inner cyl inder radius 

rotat ional speed of the inner cyl inder 

subprogram to compute the rate of deformation 

array containing the dimensionless temperatures 

at the mesh points 

array containing the shear stresses at the mesh 

points 

array containing the thermal conductivities at 

the mesh points 



TEMPRO 

TOW 

TW 

VELPRO 

VISK 

VTKR 

Z 

SGAM 
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subprogram that solves the energy equation by the 

accelerated Gauss-Seidel method 

wall temperature of the outer cylinder 

wall temperature of the inner cyl inder 

subprogram that solves the equation of motion by 

the accelerated Gauss-Seidel method 

subprogram that computes the viscosity and thermal 

conductivity at each point 

tangential velocity at the inner cyl inder wall 

array containing the dimensionless velocit ies 

of the mesh points 

array containing the z-component of the rate of 

deformation at the mesh points 
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FORTRAN IV G L~VrL LO MI\n DI\Tf .. 71335 1213A/15 

0001 
0002 

0003 
0004 
0005 
0006 
0001 
0008 
0:>09 
0010 
0011 
0012 

0013 

0014 
0:>15 
0016 

0017 

0018 

0019 

0020 

0021 

0022 
0023 
0~)24 

0025 
0026 
on1 
0028 
0:>29 
0030 
0031 
0032 
0033 
0:>34 
0035 
0036 
0031 
0038 
0039 

0040 

371 
looe 
1('·01 
1e02 
toO~ 
1004 
te05 
1012 

1(113 

la l" 
1015 
101n 

1017 

1018 

1020 

1021 

11)22 

5 

10 

20 

c 

REAL K 
CCMMON l!51,Sl), GD8Tt51,511, T(51,511, TC(~l,~ll, FeSl,511, 

1 rHl(511, H.U(51,?), H, HT, R, FI, 1<, VHF, pps, n;, PI; ~RI'T, 
2 ~'D, ~:S, Ll!'E, ~IPIHITC~ t'f'RNTR, rrPNTC, JPRt:Tp,TrI-: 
DIMENSJO~ OFL'~1,511 
DIMFNSlnM STRES(5J,511 
FnRMAT (lX,12(~X,E9.3» 
Ff.lRr:AT (7F1r.41 
FOR"'AT (515) 
F~Rf'I\T (l,n) 
FORf-IAT (111 1 
F:JR~~AT (!i-lOl 
Fr;R~'AT (l'~-l 
FDRMAT !3X, 'otHEi\;SIr1"lLESS',6X, 'DIMENSIOt:LESS VELDCITY V':'THETA/V-TH 

tETA-RK AT Dl~ENS!nNLESS RAOIUS') 
FnRHAT (5X,IHE!~HT',8X,'R c ,,'O.0',bX,IC,1'lbX,'O,21,6X,'O,3'/6X, 

llC'.41,bX,10.SI,bx;'n.61,bX,'0,7'/6X,'0,1l,,!)X,'0.9I,6X,11,0 11 
FORMAT (5X,F6.,;aX,11(2X,F1~41) 
FeRMAT (5X,F6,4,OX,lle2X/F7.3') 
FDRI1AT ClO)(,lTiJ I1RTtdN TdE' SHEAR RATE Pl RECIPROCAL SF.CmmS MULTIP 

1LY IW TPE THE I~FVS/SEC' l 
r-ORtlAT (.3X,' oIt1E:~S 1'1:~LESS' ,6X,' [)IME~IS IOt~LES5 TE,...PERATlJRF .. T ITW liT 

IJIMENSlnNLESS aIlUIYS') 
CORMAT (3X .. 'EIJCU[)IA'~ N[J~MS .=OR THE ERRrj~ l,eCTORS ARE VELl'"E10,4, 

l' VEL2',E10.4,' rr:Io1P1',E10,I.,I TEMPZ'/EIO~/tI' ITERATIf1N NO. IS',lè 
ï.1 
FD~MAT (JX,IOIMENSlnNLESS',6X,'SHEAR RAT~ AT OIMENSJONLF5S RAnIUS' 

Il 
FORMAT (3X/'DYME~ISlnNLES5',6X,'SHEAR STRESS AT DIME~SInNLES5 RAnlU 

1 S' l 
FDR~lAT (lOX, Il.1 :1BT!Il~' T,~E SHEAR STRESS I~J L8F/lN**2 '1IJLTI~LY Sv T 

IHE REVS/SEC 1 l 
R~An (5,1000) K,RI,HT,RP~/TW,TOW .. CRIT 
IF(R) SOO,,500 .. 1~ 
RE Ar (5,10011 NS,NPRNTC,hPRNTR .. IPRNTC,IPR~TR 
;~r. = NS + 1 
III " 3.t'tlS92 
~P5 = RP~,/h(\. 
K .. llt/F' 
VTKR = RI*2~*PI~~PS 
!~ = 1./~!" 
'H) l .. Nr + 1 
'J(1?O J=l,Nnl 
') 4 T ! JI" (J -1 1 * ~l 
1 T'l .. 0 
WRITE (61l0f)2l 
~TNP " r, 
(/ILL PR~·rr 
CAL L BR l '" K (TlJ .. R P 11.1 fi. Il 
lvRITE (6,1002) 

c 9fJIINr.ARv Cr1~:nITH'I\JS FflR IIELùClTV 
C 

L:l,ll c.') 

29 
29 
2~ 

29 
29 

21} 
29 
29 
29 
29 
29 
29 
29 
29 
29 
19 

29 
29 
29 
2f'1 
29 
29 
29 
29 

29 
29 
~9 

7.9 
7.9 
29 
29 
19 
29 

7.~ 

7.9 

29 
2e) 
ê.!'l 
'-Cl 

?AC,F l')OIH 
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FORTRAN Iv G ~EV~L 20 MAIH 

0041 
0042 
0::143 
0044 

0045 
0046 
0347 
0048 
0049 
0050 
0051 
0052 
0053 
0:>54 
0055 
0056 
0051 
005~ 

005 9 
OobO 
0061 
0062 
Q063 
0064 
OObS 
QOM 
0061 
0068 

'Jll '30 ~! .. 2,~:1) 

L!N.ll " O.r. 
Ltl,rn = l.!') 

30 l('In,r:) c 0.0 

C 
C HIJTII-\L r.uFS5E5 F[l\<. I;FLOClTY 

C 

40 

46 

51 

5~ 

t:G = '15/, 
~;:a " ~IG + 
rm 40 N " 2,IJGl 
[)[1 40 1 c 2,ND 
7.! ti, 1 l " V. 8 

1,'G2 " NC:1 + NG 
N2 " tJGl + l 
(H, 46 N u':2,NG2 
DO 46 1 J: 2,~Jn 

t,) = ~IG? + l 
Z 1 tl, 1) = ').6 
t'<G3 = Nr.2 + NG 
DD 51 N " N3,NG3 
li:) 'H l " 2,NO 
ZllII,Il .. :1.4 
NG4 " NG3 + I~G 
1,,4 = ~,IG3 l- l 
DQ 56 N c N4,NG4 
O'J ,'io l " 2,ND 
Z. (N, Il " 0.2 
N5 .. :,IG4 + l 
QIJ "1 tl .. N5,NS 
D'J "1 1 = 2,j'lf} 
Z,Ndl = 0.0 
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DI\TE .. 71335 1213111\5 

~t 

C 
C 8nU~~ARY ceNDITIONS AMD INITIAL GUESSES FOR lEMPERATURE + S~EAR RATE 

0069 
0070 
0071 
0072 
0073 
On4 
0075 
0076 
0071 
00711 
0079 
OOBO 
0081 
0082 
0083 
OOFl4 
0085 
0:>86 
Q'JIl1 
O'lIlB 

C 

7(1 

71 

74 
75 

Be 

[l"J 70 I::l,rl[\ 
[JO 10 J::l,ND 
'T,I,J) :: 1.('1 
(, ~ (' T lI, J j .. 10 li • 

[ID 71 J=2,IIn 
TU!(l,.J) = T'1vl/ L J 

T , J , 11 = Tt ~I 0 ~ .: 1 
CN!T IrJUE 
f;t-.!Z2 = C).() 
ENZ l () • (1 

f.NTl = '1.l' 

H:T2 0.(\ 
IH!P ,. 1 
ITN c lTl\ + 
0:' ~O 1"11'4() 
no 80 J=l,'~O 

o F.L t l 1 J) = Z ( l 1 .1 l 
lflLl III SI< 
(!oL:. I/f'_Pll[ 

(. ,\ L L :, rl,\ l L 

PIIGF. 0002 

29 
29 
29 
7.9 
29 
29 
29 
2r:> 
29 
Ze) 

2') 
29 
29 

29 
29 
2? 
2? 

29 
29 
29 
29 

29 
29 
29 

29 
29 
29 
21:1 
29 
21:1 
29 
29 

21:1 

29 
29 
21:1 
29 

21:1 
29 
29 
29 
29 
29 
29 

_J 
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0009 
0090 
0091 
0092 
0093 
0094 
0:>95 
OJ96 
0097 
0:>98 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
010b 
0107 
0106 
0109 
OltO 
0111 
0112 
0113 
0114 
OU5 
0116 
0117 
OllS 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
Ol2b 
0127 
0128 
012 9 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 

:'UMZ = 1),0 
on 90 1=13 t1 f) 

üQ 90 J=1, tlD 
TERlIZ" (Z(l3Jl - nrUl,J»*(Z(I,,11 - I:'EUJ/Jl) 

90 S~li~Z = 'iU'~Z + TFP.r'l. 
Et\Zl = r.i~Z.2 
PIZ2 = S"RT(St;lIZ.1 
DO 100 1:1,1'0 
:'1(1 100 JlOl,t!D 

100 i'lfUIJJ1" T!I1JI 
r.t>LL TEt',PRO 
Sl:~IT = n, n 
1) rJ 11 () 1" l, 'ID 
,)0 110 Jel,NO 
TEKMT = (T(I,J) - OEL~I,J))*(T(l,J) - OFL(y,J» 

110 SUMT = SUMT + TERMT 
El\iT1 " hIT2 
E~T2 = SQRT (SU~T) 
IF (lTN - 5n) 120;1?O;115 

1]5 WPITECb,lOOZ) 
ITN .. 0 

lZ0 WRITE(6,lf11AI HILll ENZ2JENTl,ENTZ/ITNP 
1 TNP = ITtlP + 1 
IF(ENZ2/2. - [RTl) tZ~/125,74 

1?5 IF(ENT2/2. - fRTT) 15~/l?O,74 
t~O CALL PRNT 

~PITE(6,1012) 
~JRITEU,,1013) 
\>JR lTE (6,1003) 
00 155 JlIl/tID/NPg.~ITR 
WnTl<61i.(14) nl"T(J), (l(I/J)/I=l,NOINPr.t~TC) 
LltlE .. L1NE + 1 
IF (LINt • ~51 155/1551154 

154 ::t.LL PRI! r 
',o!PITE (611012) 
I/RITE(ô,1013) 
{/RITE(6,lO()~1 

P5 CONTI~IUE 
HO CALL rR~!T 

IJR!TE (6110171 
WPlTE(6,10131 
wPITEC6,10031 
[l0 165 ,J=1,r:o,NPRI-'T" 
(lFITE (6,1014) r~T(J), (T(I,JI,I .. tl~D,NPR~TC) 
Ll:"olE = l.JI~E + 1 
IF (LI~F - 55: Ib5,t65,164 

1"4 CtLL PR'I; 
J/P!TEC6,lOlï) 
·.~fJlTE(6,101~1 
\~fllTE(6,10ü31 

U5 crNTI:lUE 
170 CHI. PR'!T 

v/RITE (",tOlô) 
WP!TEet,,1')04) 

29 
29 
29 
29 
21) 
20 
29 
29 
2r; 
29 
29 
2Q 
29 
29 
2<:1 
29 
29 
29 
29 
29 
7.9 
29 

29 

29 
29 
29 
n 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 

29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
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\~P. ITE (6,1020) 
,oIPlTE(o;1013) 

MIIP, 

-238-

'D/lTF '" 71335 

0143 
0144 
0145 
0146 
0141 
0148 
0149 
0150 
0151 
0152 
0153 
0154 

ù(' 175 J=l)t'OI~~PR~'r!'. 
,1~I1E(6,1()1'" OHf'CJ), (r.OilT( I,J), l=t,Ni)"lPili'1CI 

0155 
0156 
0151 

0158 
0159 
0160 
0161 
01b2 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 

LlNE = UNE + 1 
TF (LINE - 55) ,75,,75,1/4 

174 (;ALL PR'lf 
~P.lTE(6, 1016) 
~Rln.:(6.1004) 

wR IrE(01'02") 
,jRITE(0,1 0 13) 

175 C QNT PlUE 
C 
C SdEAR STRESS CALr'Jl~ATInN 
C 

:J r 180 t" 1 , tl 0 
:l:J t80 J=l/~I[) 

l!lO STRES(l,J) = F(t,.JI*r.OOT{I,J) 
C 
C SHEhR SH.ESS PK HITL'lIT 

C. 
19CJ CALL PRtn 

'iR!TE (0,10221 
"/RITE (f,,1004) 
WR IrE (6" 1021 ) 
"jRlTE (611013) 
00 195 J=l,MO,,~P~NTR 
IjRITE (!H101't) nHTC,II; ISTRES(I,J,.I=l,t'(I;t,'PIêNTC) 
UNE = Lli'lE + l 
IF (LINE - 55) 195,195,194 

1 ~ 4 (; ~ l. L P R ~I T 
l'I~lTE (6110221 
WRITE (0,1004) 
..,RITE (011021) 
\~RITE (6,L013) 

195 CJNTI NUE 
C" TO 5 

500 STUP 
E ~~ [; 

*OPTIONS IN ~FFEC'. ID,EB(DJc.SnLRC~,~OLIST,NnDECK,LOAD;~Q~hP 
*OPTIUNS IN EFFEtT* NAME a ~IIIN ; LINECNT = Sb 
*STATISTICS* SOURrE STATEMENTS c 175,PROG~AM SIZF: 26184 
*STATISTICS* NO ~lAGHOSTtrS GE~FPA'FD 

t:'i;;>'~ 

12l3~/15 ·-----PAGF 00'0'4-----·-·--·-- .. ·-

29 
29 
29 
zC] 
29 
29 
29 
29 
29 
2q 
2q 
29 

29 
2q 
29 

_1 
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FORTRAN IV v LrVrL ~u l'f'NT LI,",I' - 121381\5 

0301 
0::>02 
0:103 

OJ04 
0:105 
0:1(\6 
031)7 
OJ08 
0009 
0010 
0011 
On2 
0::>13 
001 4 

0015 

0:>16 
0317 
ona 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0021 
onS 
0029 
0030 
0031 
0032 
0033 
0::134 
0::135 

l()(j;;> 

1003 
1004 
10Clr; 
10(16 
10(17 
l(')(l~ 

In09 
1010 
Inii 

1012 

1nlC) 

SUBP,[JIIT l,,)f. PR~JT 

f'Efll. '< 
r~MMO~ 7(51,511, G nT(51,511, T(51,51', TCl51,51l, F(Sl.5l" 

1 rllf(5111 L\lI(51,2 , H, HT, RI RI, K, VTI<R, RPS, TW. pL CRtT. 
7 'JII, ,.IS, LI t,lE, Nf R TC, ~IPRrlT~, IPRNTC, IPRNTR,Tl1\~ 

t<I'M " RPS*oC',n 
rnRtlAT (1H11 
f '1 R "1 A T (1 ~I 1 
f'JR'1AT (tHOI 
FORMAT (1"-1 
l''R~IAT <11X,ITfll:: 'll;r'\RER [IF liISTIINCE STEPS 15 ',151 
F'J"~~AT Clnx, t Tflf- If,~\EP CYUNOER RADIUS l ~ " Fb, 3, t INCHES t 1 
~~RtIAT (11l+.T70,fT l iE rJUHR CVLINDER RADIUS IS ',Fo , 3,' INCHEStl 
FQROIAT (!OX;tTfIl: r,AP HEIC,HT IS "Fo.3/' INCHES') 
F CHH1 AT (] H +. 1'7 (\, t CYL HI D E P. R PMI S ' , F 5 • 11 
F:lR'IAT /l'lX,ITHr: T'i'JER WALL HMPERATURb T\4, IS ',Fb.l,' DEGRHS 

IF. t 1 
F::JRrIAT Ilil+.T70;'Tl-iF OUTtR ~IALL TEMPERATlJRF~ TOW, IS '"F6.1,,' nEC 

lflEES F,') 
r:1;~'~AT IIH+,T70J I(,W!VERGnICE CRlTERION SET AT CRIT " '/FS.o, 
~,~,ITE (6,lOr.2) 
.... r.l TE (0.1004) 
''';RITE(b,1005) 
~~ITE(6,lOOo) ~~ 
~~ITE(6,1019) C~IT 
WQ,ITE(6,1IJ04) 
~~tTE(~,l007) RI 
W~ITE(6Jl008) P 
rlRITE(o,lOQ4) 
f.~ITE(é,1009) HT 
WRITE(6,tlltOI ";>/0' 

\\R !TE (b,t 'lU '>1 
~RITE(6Il01l) T~ 
WRITE (0,1012) T['I" 

\\,RITE(o,l005) 
~1::lITE(tHl('l(l,) 

LI ~:E = 17 
" F:TlJR~: 
p'o 

* (] P T ION S It 1 E FF E CHI (), For, 0 r C , S [1 L; r( ( F , NOL 1 S T,N '1 D E CI(, LI) A 0" ~m ~i Il P 
*on t ONS III 0 FfC1 ~ NIIMF" PfJ.N1 , L PileNT :: 56 
O:<STATISTICS* S(',JRCE STATP1EN'T:; " 35,PROGRAM SIZE " 1096 
o:<srATISTICS* '1[' (ITA:-;H[ISTI';S GPJFP'!\T~D 

29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 

29 
2~ 

29 
21) 
29 
21) 
29 
29 
29 
29 
29 
'(9 

29 
29 

29 
29 
29 
29 
2~ 

:j 
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0001 
0:>02 
0003 

oa04 
0005 
OOQtI 
0007 
0008 
00(19 

anD 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
on8 
001 9 
0020 
0021 
0022 
0023 

0024 
ons 
0026 
on7 
0028 
0029 
0030 
0031 

0032 
0033 
0034 
0035 
0036 
0037 
0038 
003 Q 

0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 

SUBRDUTINE VEL~RU 
P.l'AL 1< 
C~MMON ZI51,511; ~onTt51,511, TI5t,511, TCl5t,511, F151,51l, 

l DHTI51l, TAUI'I.,2l; H, HT, R, RI' K, VTKR, RPS, TW, PI, CRIT, 
2 ~D, NS, LIME, ~ppNTC; NPRNTR, IPRNTC, IPRNTR,TOW 
UIM~N5InN AIS1,511/RI51,51),C(51,51I,D(51,51),Et51,51) 

321 ~ORMAr (lX,1212X,f 9 .3)) 
A~PHA = 1.4 

4r; DD 50 Ic2.NS 
DO 50 J=2/ tW 
E ( 1, J) = (F 1 1 + 1 .. J 1 ~F t 1 -1,J 1 1/ 12. *H*R* ( 1 ... 1' 1 1 +F ( ! 1 J ) 1 (11* 1 1 w 1 )'I<R * 1 1 ~ 

1 .. K) + K*R) 
50 tll,J) 0: 2.*FIl,Jl*tl:/IH<lH*HT*HTl + 1./IP*R*(1.-")*(1.~I')*H*H)1 

l + E(I,JI/(H*II~ll*R*tl.~K) + K*Rl 
DO 60 1=2,NS 
llO 60 ,1= 2,NS 
li (1, JI" (F 11,.1+1 )1'4.*F (I,J l';F (I,J",,1) 1 (4·.*HIQIH*HT*HTl 

bD ctl,J)" IFII,J .. 11+4 •• F(1.JJ)~F(I,J+11)/(4~*H*H*HT*HT) 
[JO 70 1 ., 2, N S 
(1[1 70 J = l.ND 
Il(I.J) = F(l,Jl/IRIlIR*il.-K)*(l ... I(I*H*H) + E(I,JI/CR*<l .... KI*Z.>I<H) 

70 E(X,J) = F(J,JI/(R*R*~l.~KI*(l.-K)*H*H). E(I/J)/(R*(1.~K)*2.*~1 
75 DELK = 0.0 

110 8(1 l " 2,NS 
DO 80 J D l,NS 
Tl .. Z(I,J) 
ZCI,JI = Z(I,JI*(lt~ACPHAI+ALPHA*lBCI,J)*Z(I,J+l)+C(J,J)*l(I/J·1). 

1011,JI*Zll+l,J)+EiI;JI*ZCI-l,J)/A(I,JI 
oz = ZIT,J)-TZ 
IF (ABSlrELKl-AAS~OZll 79,80,80 

79 rJEI.,K a nz 
60 CD~TINUE 

O'J 90 1 = 2,'15 
Tl " Z(I,NDI 
til l,ND) Il 2.*F( I,N[)IIIH*11*HT*IH) 
l·CI,NO) Il ZtI.lND)*(l.':'ALPIIAI + f1LPHMCO(J/NOI*Z(I+l,~D) + BII,NOI* 

1 Z(I,NSI + F.(I,NT)*Z(t-l,~IOI)/A(IIND) 
DZ = ABS(Z(I,NDI ; TZ) 
lF(ABS(OtLK) ~ OZ) 89,90,90 

89 Of:LK., OZ 
9r. CONTPIUE 

ERRZ .. nELK*CALPHA ~ 1.1/(2. - ALPHA) 
rF(CRIT - EPRZ) 40,\00,lDO 

100 IF IIPR~TCl 101,110;tnl 
101 CONTINUE 

wRITE (~,3211 (GHT(Jl,( A(I,JI,I;I,NOI,J=l,NO) 
WRITE (6,321) (nHT(J)~( B(l,JI,I;l,NOI,J a l,NOI 
WIlITE (0,3211 (DHT!.Jl;( C(I~JI,I"1,tjOI,J=lINnl 
WRITE 16,321) (DHT(J)~( U(I,Jl,y.,l,HOI,J=l,NOl 
WIl ITE If" 37.11 (DHT C J l.d E CI, JI, I=I,NO) IJ=l,:IDI 
WRITE 16,3211 (OHT(J),( F(!,JI,Ial,NO),J=l,ND) 
14PYTE 16,321) (DHT!.I);( ZII,J).d=l,NDl.oJ=l,Nul 

1 lO Rr-TIIP'~J 
E ~ID 

29 
29 
29 
29 zq 
29 

29 
29 
2<) 
29 
29 
29 

29 
29 
7.9 
?9 
?9 
29 
7.9 
29 
29 
29 
2q 
29 
29 
29 
29 
2? 
29 
29 
29 
29 
29 
29 
29 
2q 
2<) 
29 
29 
29 
29 
29 
29 

29 
29 

t ..... .,"'·::4 

._----_.----_._._._ .. _ .. - . __ . --
PAGE 0001 



- 241-

FORTRAN IV G LFVEL 20 VTS\< DATE a 71335 

0001 
c 
c 

SiJAROUTPlE VIS\< 
TIIIS SUBROUTINE FOR VISCOSITY AND THERMAL CCNDUCTIVITY OF 

POLYETHYLENE GLVCOI PFG hoon 

12/3fl/l!i 

0002 
ooe3 

REAL K. LGtl 
r.CMi~OII z<'i11511, r,r)"T(5l~511, TI51,511" TC151,511, F(~1,5111 

l nHT(511, TAUIS1,,?), H, HT, R, RI, K, VTKR, RPS, TW, Pli CRIT, 

;> ND. ~IS, Ll~!EI NpptiTC; ~I'RNTR .. IPRNTC, IPRNTR,TOW 

0004 
0:)05 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
001 4 
0015 
0016 
0017 
0018 
0019 
00,0 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 

321 FORMAT (lX,lZ(2X/[9~31) 
['0 40 l:r:l/~!S 

J=l 
Ç(I,J) = l./IT(I;J)*TW + 459.0) 

IF (F(I,J) - 1.6351"-31 35/36,37 

35 SLP D 2.52E+3 
GO Tn 38 

36 F(I,J) c 0.0742 
GO TO 40 

37 5LP a 3.90E+3 
36 LGN a_SLP~(1.b3~~-3 - F(I,Jll - 1,130 

F(I,Jl = EXP(Z~303~LGNI/144.~ 
4 n COtiTINUE 

\'lD 50 r=l,NQ 
0(1 50 J=2/t~[l 

F(I,J) .. l./(lll,Jl*TW + 459.0) 
Y~ (F(l,J) - J .(,~5F-3) 45,46,47 

45 SLP .. 2.52E+3 
GO TrJ 48 

46 F(I,Jl :: 0~o742/144.0 
GO TD 50 

47 SLP c 3.90E+3 
4A LGN =-SLP~(1.635~-3 ~ FIY,J» - 1.130 

F(I,Jl : EXP(2.3~3~LGN)/144.~ 

5n TC<I,J) = 0.024 
1)0 l"n I .. l,~!D 
J .. l 

60 TCll,J)" 0.024 
RETURN 
END 

~OPTIONS lM EFFECT~ Ir~EBcnICJsnURc~,NOLIST,NODECK/LOAD,NOMAP 

*OPTIONS IN EFF~CT* NAME = VISK , CI~ECNT .. 56 

*STATlSTICS* SOURCE STATE~E~TS : 33,PRQGRAM SIZE .. 1094 

*STATISTICS~ ~o DYAGNnSTICS GENERATED 

PAGF nont 
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FORTRAN IV G lEVEl 20 TEMPRO DATE '" 11335 12/31\/15 

0001 
0002 
00Q3 

0004 

0005 
0006 
0007 
0008 
0009 
OOlO 
0011 
0012 
0013 
0014 
OJ15 
0016 
0017 
OOl8 
0019 
OOZO 
0021 
0022 
00Z3 
0024 
0025 

0026 
0027 
00Z8 

0:129 
0030 
0031 
00:;2 
0033 

0:J34 
0:J35 
00:;6 
0031 
0~38 
0039 
0040 

0041 
0042 
OD43 
0:>44 

SUBROUTINF TEMPRO 
REAL K 
C~MMON ZI51,Sl). GGnTI51,51l, TI51,51l, TC(51,511, FI51,51)1 

1 DHTISll, TflUI:)1,2), H, HT, RI RI, K, VTKP, RPS. T'II; Pl; CRIT" 
2 ~O, NS. LP'j;, ~lPR"'TC~ NPRNTR,· IPRNTC, IPP.~,TR.TfJtI 

DIMENSION AI51,51l, 6(51,51), CI51,51), 015l,51l, EC51,51), G(~I, 
lHl 

j21 fORMAT IIX,12(2X,F9~311 
TWR = TW/14~*R*R*~I.~KI*(1.-K)*H*HI 
ALPHA = 1.4 
DO 40 I=2,NS 
DO 40 J=2JNO 
DII,J) = TW*TCII,ll/IHT*HT*H*Hl 
E(J,J) ~ TW*TeII,JI/IR*R*ll.~K)*ll.-KI*H*H) 

40 AIlJJI:: 2.>:QOII,J) + EII,Jl) 
on 50 I::2"NS 
DO 50 J=t:.NS 
CII,JI = TW*ITCII~J+l) - TCII,J-1»/14,*HT*HT*H*Hl 
OII,JI = eCI,J) + C"tI;JI 

50 C!l,JI '" DII,J) - cn;J) 
DO 60 I=2,NS 
DO 60 J=2,NO 
GII,Jl '" TCII,JI*TW/IR*ll~-K)*IH*II-l)*R*ll.-KI +K*RI*2.*H) 
L)II,J) :: EII,J) + TWK*ITCII+lJIJ) - TCtI .. I,JI) + G(J,JI 

60 EII;J) '" EII,JI ~ TWR*ITCII+liJ) ~ TC(lel;J)1 - Gll;JI 
DO 70 Ia2,NS 
DO 70 J=2,NS 

10 GII,JI = FII,JI*IIH*II~ll*R*ll.-K) + K*Rl*tVTKR*IZI!+l,J' e 
1 ZII~l,JII/IIH*ll~L)*R*ll~~KI + K$R'*R*(1~~V)*2~*Hl " VTKR*Z(!,JI 
2 1(IH*IY~l)*R*lt.-Kl + K*R)**21)1**2 + F(!,JI*(VTKR*IZI!+l,J) ~ 
3 Z(I .. l,J)I/IZ.*HTIloHI)**2 

no 74 1=2"NS 
~II,Nnl = 2~*TW*TCI!IND)/IH*H*HT*HTI 

74 GII,NDI = F(I,NO)*I~H*llgl)*R*ll •• KI + K~R)$IVTKR*(ZI!+l,NDl • 
1 ZII-l,ND)I/I(H*(Y-1I*R*ll.-KI + K*RI*R*ll.-KI*2.*HI - VTK~* 
2 ZII,~ID'/IIH*II-lI*R*H ... K) + KIloR)**21) 1**2 

75 DELT a 0.0 
Dn !:l0 !=2,N5 
DO 8Q J=2.t llS 
TT :: Tlt~JI 
Tlt,J) = TII,J)*ll.-ALPHAI + ALPHA*IB(I,JI*TII,J+l) + Ccr,JI* 

lTlI,J-ll + ')(!,Jl*TII+l"JI + EII,JI*TII .. l,JI + C;(I,J)lIAClIJI 
DT = ABS(T(I,JI - TT) 
!FIA8SIOELTl - nTI 19,80,80 

79 DElT = DT 
dl') CONTINUE 

1.)[" 90 1=2.1NS 
TT :: T(l.lNDI 
TcI,NDl " r"lI,NDI*I1 ... ALPHAI ... AlPHA*IB<I,NOI*TtI,NSI + ncI"NOl* 

1 TII+l;ND) + EII,NDIOTII-l,NDI + G(I,NOII/IA(I,ND») 
DT '" .hBS(ZII,'lü) ;. TTI 
IF(A~S(n~LT - DTII A9;90,I)O 

flq UrlT:: rH 
9'1 C'JiHINUE 
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29 
29 
29 
29 
29 
29 

29 

29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
21) 
29 
29 
29 
29 
29 
29 
29 

29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
29 
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29 
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29 
29 
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FORTRAN IV G LEV~L 20 TEfWRfl DATE" 71335 

0045 
004b 
0!)47 
0048 
0049 
0:)50 
0:>!l1 
0052 
OJ53 
0054 
0:155 
0:>56 
0057 
0058 
0059 

100 
10 l 

110 

ERRT D DELT*CALPHfI - 1.1/(2, 
IF(CRIT ~ ERRT) 751100~lOO 

IF (IPRNTCl l,.,ldlO,lOl 

- ALPHfll 

Cf'1'1T INUE 
"HU TE (F'1321) 
WRITE (6/3211 
~!RITE (6,3211 
,~RITE (6,321 1 
~jRlTE (6.321) 
.~ p [ 1'1:; (6, 32 l 1 
.~IlITE (6,3211 
WRITE (6,3211 
\~RITE (fu3211 
RFTIJRN 
END 

(I)HT(Jl, 
(f1HTIJ), 
(rlHT (,)) i 
i (iHT (,J) ~ 
( L'rlT(.1l ~ 
(nHT(Jl, 
(r.HT ( J ), 
(I)HTCJl~ 
(DHT(.J), 

AII,Jl,I a l.ND),J a l,ND) 
B(I,J),lD1,NDl.J~1,NO) 

CIl.J).1=1,ND1.J=J,NOl 
D(I,J),l"l.NDl,J=l/~n) 

ECI,Jl,l"l.NDl.J=l,NOl 
F(I~Jl,l=1,~Dl,JG1.NOl 

( GII,Jl,ID1,NOl,JD1,~D) 
(TClt,~l,l"l;ND),J=l/ND) 

e TII,Jl,Icl,ND),JD1,ND) 

FORTRAN IV G LEVfL 20 VISKR DATE II: 71335 

5UBRDUTtNE VISKR(COnTR,TW,V,TCl 
DTMENSION GDDTIl,l) 
DTMENSIO~ F(l,l) 
J .. 1 
t D 1 
GOUTII,Jl " GnUTR 

12138/15 

121311/15 

0001 
0002 
0003 
0004 
0005 
OOOb 
OOQ7 
0:>011 

Fel,J) = eTW - 32.0)*5,/9. 
FeI/J) " 10.**«-3.5613 + 2.B193E~2*Fel,Jl -B.7b73E~5*F(1;J'**2' 

1 + IR.250E-1 +t,lb70E-2~F(I,Jl ~1,5085E~4*Fll/jl*.2 +3~9~53E-7 

2 ~'F (1, J l**3l*( tl\~o('ane GDIlT( I,J») l + ( .. 9,QlbOE-l +8',1741 F..3*F (1" J, 
3 _t,91R1E-S*F(I/J1**2l*(ALnGIO(GDCTII/Jll)**Z) 

0009 
0010 
0:>11 
0012 

V"F(I,Jl 
TC G 0,0516 .. 7.7~-~*TW 
RETIIRN 
ENU 

*UPTIONS IN EfFECT* In,EUCDIC,SCU~CF,MOLIST,NODECK/LOAD,NnMAP 

*OPTIUNS IN FFFECT* NAME '" VISKP J LINFCNT ~ 5b 

*STATISTIGS* SOURCE STATEMENTS ~ 12,PRDGRAM SIZE = 932 

*STATlSTICS* ~n ~TAGNQSTICS GENE~ATFO 

*STATISTICS* t,fi OIf\GNQSTlCS nHS STrP 0 

29 
29 
29 
29 
2Q 
7.9 
2Q 
,? 
2«> 
29 
7. Q 

29 
29 
29 
29 

PACi~ 00(12 

PAGE 0001 

li 

-1 
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FORTRAN IV G LEUEL 20 SHAH DATI; .. 71335 t2/3A/1S 

0:>01 
0002 
0003 

0::>04 
0105 
0 1 06 
O~07 
0108 

OJ09 
0010 
0011 
0012 

0:>13 
0014 
0015 
0016 

0017 
0018 
001 9 
0020 

OOZ1 
0022 
0.)23 
0024 
0025 
002b 
0027 
0::128 
0029 

~UBROUTINE S~ATF 
REAL K 
cnt,lt'lntl Z{Sldll, r;onT'C51"Sll, TC511511, TCCSl,5U, FI5l,5ll, 

l nHT(511" HU(51"ZI, Il,, HT, R, RI, \(, VTKR, RPS, TIi, Pl, CRIT, 
2 ND, N5, LI~!E, t,ppl,TC, ~IPRf'.ITRI IPRNH, rPRNTR"Tnw 

OIMENSlnN R~AM(51;51l~ ZGAMCS1,5l) 
321 FORMAT CIX,l2(2X,EY.3l 1 

0[1 l" I=2iNS 
flO 10 J=r.,HS 
~ GAl'1( 1, J l = 2 .I!<P I:/t ( C KI!< ( Z ( 1 + 1, J l - Z ( 1 .. 1, J 1 )1 ( ? *H* ( 1.'OK 1 , 1 .. 

l cK*Z(I,Jl/(H*(I-ll*C!.-K) + Klll*RPS 
lGAMCl,J) = 2~*PI*~T*(Z(I,J+l) - Z(I,J-11l/(2.*~T*H' 

ln &OOT(I,J) = SQRT(Rr,A~(I,J)*RGAM(I"J) + ZGAM(I,J)*ZGAMtl,J)1 
Dé! ZO J=l,NO 
RGAM(l,J) = 2.*PI*«K*(Z(2,J) - Z/l,JI)/(H*(l.-K))) 

l ~ (K*Z(l,J,/(O.*(l.~KI + K"l*RPS 
GDOT(l,Jl = AAS(Rr;A~(i,J)' 

20 ZGAM(l,J) = 0.0 
no 30 Ic2,NS 
RGAMCI,~W) = ?*pi*'c CK*CZct+l,NOl .. Z(l_lINOll/IH*2.*ct':'Kl) 1 

1 • CK*ZCI,ND1/1~*cI-1)*(1.-Kl + KI,)*RPS 
lGAH(I,,~l[jl .. 2.*Pt*~1*(Z(I,t.lD) - !CI"NSI,/C fl f'4lH) 

30 GOOT(l,~D) = SQRT(RGAM(I,HD)*RGAM(I,NDI + ZGAM(l,ND,.ZGAMII"ND)1 
DO 40 J.,2"tH:l 

RGAM(HO,JI = 2.*PI*(K*~1(N06J) 0 ZINS,J)I/lH*(l.-KI») 
1 p (K*ZCNO"J,/(H*ND*ll.-Kl + K",*RPS 

ZGAH(ND"J) = n.o 
40 GOGT(ND,J) = ABS(RGAM(NO,J») 

DO 50 lc2,NS 
RGAtH l, 1) = 0.0 
ZGAMCI,l) = 2.*PI*RI*Z(I,2)/(~T*HI 

50 GDUT(I"l) = AASIZGA4(I,11' 
GOOTIND"ll = 0.0 
RFTIJRr~ 

(~lO 

*[lPTIO~S IN EFF~CT* rO,EBCDIc,SnURCF"NOLIST,NODECK"LOAD"WnHAP 
*OPTION~ IN EFFEtr* NAME = 5HATE , LINECNT = 56 
*STATI5TICS* SUURCE STATEtlENTS = Z9,pqOGRAM SIZE ., 2Z7H6 

*STATI5TICS* NO OIAGNOSTICS GENERAT~D 

29 
29 
29 
29 
29 
29 

29 
29 
29 
29 
29 
29 
29 

29 
29 
29 
29 
29 
29 
29 
29 

29 

29 
29 
29 
29 
29 
29 
29 
29 
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APPENDIX Il 

EXPERIMENTS WITH POLYETHYLENE 

The initial trials of the concentric cyl inder apparatus 

were made with a 1 inear, high density polyethylene (Sclair 

8107, DuPont of Canada, Sarnia). The flow characteristics 

of the polymer, shown in Figure 11-1, were determined by an 

Instron Capillary Rheometer. A primary reason for choosing 

this material was that it was available in powder forme This 

minimized 10ading problems, particularly air inclusion, that 

occurred with pel1etized polymers. 

These prel iminary runs showed that shortly after starting, 

the surface of the polymer melt was no longer planar but 

had developed a wavel ike appearance. It could be seen, at 

10w speeds, that the crest of this "wavell travel1ed with the 

same approximate velocity as the inner cyl inder. 

Fo1lowïng the crest was a trough that was not quite 1800 

behind the crest. As the run progressed the wave became more 

pronounced and, after about seven minutes had elapsed, the 

po1ymer coinciding with the troughwas noticed to have stopped 

shearing. Thereafter the non-sheared portion grew until 

finally only an arc of about 200 of the circumference showed 

evidence of shear. The sequence of events is il1ustrated in 

figure 11-2. Throughout the run no evidence of the "Weissenberg 

effect .. could be detected visually. 



FIG UR E 1 1-1 : L0910 Viscosity Versus 10910 Shear Rate 
for the Polyethylene Used. The Data 
was Obtained from a Capillary Rheometer 
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FIGURE 11-2: The Progressive Loss of Shearing of the 
Melt Encountered During the Runs with 
Polyethylene is 111ustrated in This 
Sequence of SKetches 
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A number of runs were made at different temperatures and 

inner cyl inder speeds. It was found that only at the highest 

temperatures (about 4250 F and above) and the lowest RPMs 

(less than 15 RPM) could continuousshearing conditions be 

maintained throughout the gap. Even these runs developed the 

wavel iKe appearance, arousing the suspicion that cyl indrical 

Couette flow was not obtained. The effect was dependent on 

temperature and rotational sp~ed. Low temperatures (ie. 

high melt viscosities) and high speeds produced the effects in 

less time after startup. 

It was suspected that laCK of concentricity of the cyl in­

ders might be the cause of the lIinstabilïtyl6. The two cylin­

ders were careful1y adjusted for the best possible concent­

ricity at 400oF. The apparatus was at this temperature for 

six hours before the adjustment was made to allow temperature 

equil ibrium to be reached. After adjustment the apparatus 

was not allowed to cool, but was filled with polymer and the 

run made at the same temperature. Continuous shear operation 

was possible up to approximately 30 RPM. Beyond that speed, 

varying amounts of unsheared arc appeared, depending on the 

speed. As before, the wavel iKe surface was noticed, but 

diminished in magnitude. 

The apparatus was then, disassembled and cleaned, and 

the inner cyl inder was checKed for roundness. It was found 

that the deviation from roundness was primarily a high spot 
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on the inner cyl inder that corresponded roughly with the loca­

tion of the wave crest. A superficial explanation would be 

that the high spot on the inner cyl inder was acting l iKe a 

hole on the inner cyl inder and because of the free surface 

the polymer deformed in the vertical direction. When it had 

been deformed it did not flow bacK immediately when the lobe 

had passed because of the very high melt viscosity. Obviously, 

either efforts could be made to reduce out-of-roundness and 

eccentricity to a negl igible level (such that the problem 

would not occur) or the free surface could be el iminated. 

Since the sum of roundness errors and eccentricity was on the 

order of 10-3 .inches in an apparatus whose basic dimension 

(diameter) was approximately 6 inches reducing these further 

would be costly and difficult. 

The alternative of el iminating the free surface was ex­

plored. After numerous unsuccessful attempts, the following 

device was evolved to close the gap and el iminate the free 

surface. The seal was made from a one-eighth inch thicK 

strip of polytetrafluorethylene (PTFE) of a length equal to 

the gap circumference. The edge of the strip inserted into 

the gap had a fishtail slot mi"ed into it. A steel support 

ring was fitted over the edge strip that extended out of the 

gap. The supporting ring had three pivoted bars attached to 

it that were secured to other pivots attached to the outer 

cyl inder. The drag exerted on the seal caused it to rotate 



a small amount, and this rotation, in turn, forced the 

seal down further into the gap exerting a moderate pressure 

on the-melt. The pressure caused the milled slot to open, 

effecting the seal with the cyl inder walls. The apparatus 

was operated for periods of an hour or more without any 

leakage. Monitoring the driving motor torque by observing 

the armature current, gave Evidence that there was no loss 

of shearing as was previously observed. 

An immediate consequence of the use of the sealing 

ring was that an additional end effect was introduced. This 

meant that the region of uniform shear would be smaller 

than planned. Although the sealing ring solved one flow 

problem a second difficulty was discovered. This is 

described in the next section. 

11-2 TEMPERATURE PROFILES 

The Equations of motion and energy were written for 

the apparatus and solved numerically (see Appendix 1) 0 The 

viscosity was allowed to be a function of: shear rate and 

temperature, and thermal conductivity was a function of tem­

perature. To test the val idity of the solutions it had 

been planned to determine velocity profiles using tracer par­

ticles. With the addition of the upper seal ing ring this 

scheme was no longer feasible. However, because the 



equations of energy and motion are coupled through the viscosity, 

it is possible to compare theoretical and experimental temper­

ature profiles and from this, infer the correctness of the ve'J­

oc ity profile. 

The Tempil Corporation marKets a range of temperature sen­

sitive products in the form of pellets and stiCKS. These 

materials are crystall ine waxes with sharply defined (~20F) 

melting points and are colour coded as to temperature. A 

number of different melting point waxes in the range of in­

terest were procured and their me1ting points verified. The 

pellets were ground to a powder and tumb1e blended with the 

polyethylene powder. The concentration used was about 1% by 

volume. 

At t cmp t s t 0 de te rm in eth e t emp e rat ure pro fil e b y us in 9 

a number of these waxes simultaneous1y in the polyethylene 

were not successful due to diffusion of the dyes in the waxes. 

into the mixture. Accordingly, a blend of a single wax and 

the polymer was made and used. Conditions for the run were: 

RPM = 40 

inner wall tempe ratu re 3250 F initially 

outer wall tempe rature 3200 F initially 

depth of po1ymer in gap, H = 2. l inches 

wax melting point = 



Five minutes after the run commenced the inner and 

outer wall temperatures had risen to 3350 F and 3300 F, 

respectively. These temperatures did not change appreciably 

in the next six minutes and at the end of this time the 

apparatus was stopped and cooled to room tempe rature. After 

sectioning, the microscope revealed the pattern reproduced 

in figure 11-3. In the outside cool area, the particles 

were sharp and angular showing no evidence of melting. 

ln the central portion of the cross-section no particles 

could be found. At the interface of the particle-containing 

and particle-free areas the particles appeared rounded and 

smooth. The demarcation between the two areas was sharp 

and well-defined. Further, the rounded smooth particles 

showing evidence of melting were contained in a narrow 

band of about two particle diameters in width (approx: .004 

inches) • 

Unfortunately, although the method seemed satisfactory, 

there was indication of IIsecondaryll flows in the apparatus. 

The existance of a circulatory flow superimposed on the main 

Couette flow and originating at each end of the gap was in­

dicated by the pattern of unmelted particles. 

It is hypothesized that this circulatory flow is caused 

by the normal stress differences originating in the visco­

elasticity of the melt. The shear rate in the two corners 

where the moving wall meets the seals is high and can conceivably 



FIGURE 11-3: The Distribution of the Unmelted Wax 

Particles in a Cross-Section of the 
Pol yethyl ene. 
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generate appreciable normal stress differences. Further, the 

shear rate gradient is large in these corners. This flow 

is not predicted by the numerical solution because the con­

stitutive equation used for the fluid does not allow for the 

viscoelastic nature of the polyethylene melt. This flow 

may be of a similar nature to that observed by Ginn and Denn 

for viscoelastic fluids (83,84). 
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APPENDIX III 

DETERMINATION OF THE PROPERTIES OF 
POLYETHYLENE GLYCOL 

111-1 VISCOSITY 

The viscosity of the polyethylene glycol used was deter-

mined with three viscometers: a BrooKfield Viscometer, 

model with temperature controlled cup and bob accessory 

and the Ferranti-Shirley and Rheometics Mechanical Spectro­

meter cone and plate instruments. The latter two viscometers 

were used in the steady shear mode of operation. The vis­

cosity was measured from shear rates of 1 sec-l to 270 sec-l 

and was found to be constant over this range. The viscosity 

change with temperature was also measured and found to follow 

an Arrhenius relationship. The results are shown in figure 

111-1. The Mechanical Spectrometer was also used to estimate 

the normal stress difference for polyethylene glycol. No 

normal stress difference was observed within the sensitivity 

l imit of the instrument, which is about 2 x 104 dynes/cm2 . 

111-2 THERMAL CONDUCTIV ITY 

ln addition to viscosity, it was necessary to Know the 

thermal conductivity for the purposes of solving the energy 

equationo There are only l imited measurements of the thermal 



FIGURE 111-1: Viscosity Versus the Reciprocal of 
Temperature for the Polyethylene 
Glycol Used in This WorK 
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conduct iv ity of polymer melts reported in l iterature. Lohe 

(85) has measured the thermal conductivity of polyethylene 

glycol as a function of temperature and degree of polymer­

ization (molecular weight). Since the molecular weight of 

the material used in this work was not known accurately, and 

an apparatus to measure thermal diffusivity was available, 

it was decided to determine the thermal properties experi­

mentally. The apparatus and method used closely followed 

that of Shoulberg (86). 

The melt density was found by standard pycnometer tech­

niques and the specifie heat data were provided by the manu­

facturer. The thermal conductivity was then calculated from: 

k = Il 1-1 

where 

k = thermal conductivity 

a. thermal diffusivity 

p = density 

Cp specifie heat at constant pressure 

The experimental results are shown in figure 111-2. 



FIGURE 111-2: Thermal Conductivity Versus Temperature 
for Polyethylene Glycol 
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APPENDIX IV 

DERIVAT ION OF THE MASS BALANCE EQUAT ION 

IV -1 INTRODUCT ION 

The final, worKing form of the mass balance equation 

is obtained by substituting the relationships resulting 

from the two-particle spl it assumpt ion and the distribution 

of degradation products into the basic mass balance. The 

appropriate equations are: 

basic balance D . = G. - L . 1 :5: :5: N 
1 1 1 

IV -1 

two-partic1e gj-i,j = g. . < j :5: N 
sp 1 i t assumption 1 , J 

IV-2 

distribution gk . = cki gk+1,i > K+ 1 
relation ' 1 

IV-3 

The derivation first substitutes equations IV-2 and IV-3 into 

the ga in term, G i' in equat ion IY-l. The subst itut ion into 

the loss term, Li' is then done and the simplified expressions 

combined to get the working form of the mass balance. 

IV-2 SUBSTITUTION INTO THE GAIN TERM 

The gain term, G i' in equation IY-l may be written as: 

N 
G . = L g. . 

1 I,J :5: N Iv-4 
j=i+l 
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where g .. can be substituted from equations IV-2 and IV-3. 
l ,j 

Working first with equation IV-2, this equation states that 

g .. may be replaced by g ... if j ) i. However, allowing 
I,j j-I,j 

i and j to range through all values results in a dupl ication 

of relationships as well as trivial ones (e.g. if j = 6 and 

i = 3, equation IV-2 yields g3,6 = g3,6). The trivial 

equations and the dupl ication can be el iminated by placing 

restrictions on the range of i such that: 

gj-i,j = g. . 
I,J 

B 
2 IV-2 

Turning to the distribution relation, equation IV-3, 

and rewriting it in terms of i and j and rearranging yields: 

gi+l,j = 1 
c· . Ij 

g. . 
I,j 

j ) i+l IV-5 

For values of i+l > 2 equation IV-5 can be written in terms 

of gl . and the appropriate coefficients, c. This is 
,j 

done by repeated substitution to give: 

1 g. . 
I,j 

= 2 ::; i::;l 
2 

Iv-6 

where the 1 imits have been changed for the reasons given above. 

Equation Iv-6 is more compactly written as: 

g. . 
I,j 

= c .' 9 1 • Ij ,j 
2 ~ i ::; l 

2 IV-7a 



where 

e ' , IJ 
= 

i-l 
TI" 

K=l 

261. 

Now, equation IV-2a states that for the range of g2 " 
,J 

IV-7b 

'-1 
1 ~ 2 < j, g2,j may be substituted for gj-2,j if 1 ~ 2 ~ 7 . 
Thus, for values of 1 ~ i ~ i;l equation IV-7a is substituted 

'-1 
directly into equation IV-4. Values of i (or 2) > T' 
g, n ' are first substituted into equation IV-7a (and IV-7b) 

J -XI , J 

and the result substituted into equation IV-4. The equation 

for G, then becomes: 
1 

N 

G ' 
1 ~ 

j=i+l 

where 

e, , 
IJ 9 1 . ,J 

j-(i+l) _l_ e .. = TI" 
IJ K=l c . 

KJ 

i -1 _l_ e .. TI" 
1 J K=l cKj 

IV-8 

i+2 ~ j ~ 2 i Iv-8a 

2i+l ~ j ~ N Iv-8b 

The range of coefficients e can be completed from the defini­

tion of the coefficients c and gives: 

e ., = 1.0 
1 J 

e i( i+l) 1.0 2 ~ 

Iv-8c 

~ N-l Iv-8d 



'
JlC2 ,~u. 

IV-3 SUBSTITUTION INTO THE LOSS TERM 

The 1055 term, L., is handled in a manner similar to 
1 

G .• L. is first written in the form: 
1 1 

i -1 

L. = ~ 
l 

1 i g. . 
J , 1 

2 ~ ~ N 

j=l 

Examining equations IV-4 and Iv-8 shows that, 

g. . 
l, J 

= e .. 9 1 • 
IJ ,J 

Thus, from equations IV-9 and IV-l0 

i -1 

L· = ~ .1- e •. gl . 
1 1 J 1 , 1 

2 ~ ~ N 

j=l 

Because j is a dummy index in equation IV -11 it 

to define 

i-l 
e .. ~ 

m emi 2 ~ ~ N - i Il 

m=l 

and 
e .. - 0 = 1 

Il 

Equation IV-ll is now 

L . e .. gl • 1 :5: i ~ N 
1 Il , 1 

where e .. 
Il 

is given by equations IV-12 and IV-13. 

IV-9 

IV-l0 

IV-ll 

is convenient 

IV-12 

IV-13 

IV-14 
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IV-4 SUMMARY 

The final mass balance equation is obtained by substi­

tuting for Li and G i in equation IV-l to yield: 

where 

N 

L C •• gl . 
IJ ,J 

j=i+l 

= 1 • 

- C •• gl . 
1 l , 1 

D . 
1 

Cj(j+l) = 1. 2 ~ j ~ N-l 

j-( i+l) 
-L i+2 j C .. = 1T ~ 

IJ CKj 
K=l 

i-l _1_ 
C .. = 1T 2i+l ~ j ~ 

IJ K=l cKj 

C .. 0 = 1 
1 1 

i-l 

C .. L 
K 2 N = i CK i ~ ~ 

Il 
K=l 

1 ~ ~ N IV-15 

IV-1Sa 

IV -15b 

~ 2 i IV -15c 

N IV -15d 

IV-15e 

IV-15f 

Although this form of the mass balance seems cumbersome, 

it has the advantages that the essential equation IV-15 can 

be manipulated easily and the definitions of the coefficients, 

C, are well suited to machine computation. If the coefficients 

are presumed Known, then there are N equat ions and 2N-l 



unKnowns (g, , = 0). The equat ions IV-15 are not all inde-
, 

pendent since it is possible to write an overall mass 

balance on the ultimate particles: 

N 

L 
i=l 

o . 
1 

= o IV-16 

but if IV-16 is included the number of equations and unKnowns 

is unchanged. 
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APPENDIX V 

NUMERICAL SOLUTION OF THE EQUATIONS FOR THE 
EQUILIBRIUM AND STEP-CHANGE CASES 

V-l EQUILIBRIUM CASE 

The set of differentia1 equations to be solved is: 

N 
\' 
~ 

j=i+1 

C •• 
--.!.l. Q. 1 
C • • J T 

JJ 
- Q. 1 

1 T 

dQ. 
1 = cr.r- :5: N 4-25 

where the coefficients C .. are given by equations 4-10a-f 
IJ 

and 1 is defined by: 
T 

1 4-21 
T 

For the purposes of this work an exponentia1 re1ationship 

was chosen for the strength distribution function, p : 
T 

6-6 

so that, substituting equation 6-6 into equation 4-21 and 

integrating yie1ds: 

1 V-1 
T 



Equations 4-25, after substituting for 1 
T' 

become: 

N C .. dQ. 

L ~ ~Q . f3Q . 1 l N V-2 C· . -a:r s;; ~ 
J 1 

j=i+l JJ 

The equations, as indicated in Chapter 4, are most easily 

solved in reverse order by starting with i = N. Euler's 

method of solution (78) was chosen. This simple method some­

times suffers from accumulation of errors as the solution 

proceeds, but this difficulty is easily overcome if computa­

t ion t ime is not important. In the present instance 

acceptable accuracy was obtained. 

The following symbols are used in the computer program. 

c 
cc 
COEFF 

COEFR 

D 

DTAU 

FTERM 

ITCT 

N 

array containing the coefficients c .. 
1 J 

array containing the coefficients C .. 
1 J 

a subprogram for computing the coefficients C.· 
IJ 

a subprogram for computing the coefficients c.· 
IJ 

array containing the rate of change of the number 

of agglomerates per species per unit change in 

shear stress 

incremental change in shear stress 

variable for intermediate results 

iteration counter 

number of beads contained in the largest 

agglomerate 



P 

pp 

PC 

PNl 

PN2 

S 1 Dl 

SID2 

SID3 

T 

TA 

TAU 

TAUI 

TAUMX 

267 

different forms of the rate constant, ~ 

variables used for intermediate results 

array containing the number of beads per 

species of agglomerate 

array containing the number of agglomerates 

per spec ies 

shear stress 

initial shear stress 

final (maximum) shear stress 



-268-

FORTRAN IV G LEVEL 20 MAIN DATE a 71287 -14;34/20 

OOQl 

0002 
0003 
0004 
0005 
OOOb 
000" 
0008 
0009 
0\)10 
0011 
0012 
OOL3 
001 4 
0015 
00l b 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
002ft 
002; 
002b 
0021 
0026 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
003b 
0031 
0038 
00~9 

0040 
0041 
0042 
004~ 
0044 
0045 
004b 
004' 
0048 
0049 
0050 
0051 
0052 
005~ 

DIMENSION TelS), CI15,1'), Cce1 5,15), Pel'" PPC1'" PCelSI, 
1 0(15), TA(15) 

REAO (5 .. 10) N 
lQ FORMAT (12) 

UO 12 1=1,"1 
READ (5,111 nI) 

11 FORMAT (FIO.41 
12 CONTINUE 

~EAD (5,1~) TAUI, UTAU .. TAUMX 
15 FORMAT 13F10.4) 

CALL COEFR(r:,N) 
CALL COEFF cc,ce,N, 
TAU" TAUI 
ueT :: 0 

20 CALL SBPP (P,PP,TAU,N' 
IF ( ITCT ) 75, 7s, 25 

25 N1 .. N .. l 
00 26 I=L,N 

2b TACI) .. TCIIII 
00 31 I=Z,N1 
PCI!) a 1.0 
LlO 30 J=I,Nl 

30 PCCI) a PCCI)*ppeJ' 
31 CONTINUE 

l'CCN) " 1.0 
00 36 la2,N1 
FTERM .. O. 
n=I+l 
00 35 IS=I1,N 

35 FTERM a FTERM + PCeISIOTA(lS'*CCII,IS'/CCIIS,lSl 
36 0(1' .. FTERM • PC(II$TA(l' 

HERM " 00 
DO 40 ISc2,N 

40 FTERM .. FTERM + PCelS,*TAIIS,*CCel,tSl/CCIIS,IS) 
DILI .. FTERM 
QCNI = _TA(N) 
PNl '" 0.1 
i'N2 a 0.05 

45 SIOl c O. 
SID2 ,. C. 
DO 50 K=l .. N 
SIol = SIOI + K*PN1*OIK) 

50 SIOl = 510Z + K*PN2*D~KI 
~1 PN3 c PN2 .. 5102*1(5101 .. SI02)/(PNl • PN21) 

5103 " 0.0 
DO 52 K=l,N 

52 5103 " 5103 + K*PN3*0(K) 
IF CAKSISID3I.L~.n.OOOlOO) Ga TO 55 
Slnl :: 51112 
Sl02 •• 5103 
pNl .. PN? 
l'N2 .. PN3 
<..iJ TO 51 

55 r'(.n = rN3 

~ ':>,,-/ 

PAGE 0001 

-J 
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rOKTRÀN IV G LEVEL 20 MAIN DATE 1\ 71287 

0054 DC 60 K"l,N 
0055 DIK) .. PN3>:10(K) 
0056 60 TIK) = T(K) + K>:IDIK>*OTAU 
0057 65 N2 = N ~ 2 
0058 DO 70 K=l,N2 
0059 KI( ~ N - K 
0060 70 PIKK) .. PP(KK>~PIKK+l) 

0061 GD TO 90 
0062 75 WRITE (6,1000) 
0063 1000 FJR~AT I1H1) 
0064 DJ 80 K=l,N 
0065 D(K) = O. 
0066 80 P(K) a O. 
0067 90 W~ITE (6,1001> 
0068 1001 FJRMAT (lH ) 
0069 W~ IrE (6,1002) rTCT, TAU, DTAU .. (T( J Il J-'l,N) 

0070 10~2 FaRMAT I1X,I3,15(1X,F7,511 
0071 ItIR lTE (6,1003) (0 ( 1" I=1,N) 
00"/2 10~3 FaRMAT 120X,15(1X,F7 g 3» 
0073 WQ,lTE (6,1004) (P 111, I=lIN) 
0074 10~4 F~RHAT IZOX,15(lX,F7.S» 
0075 IF(TAU,GE.TAUMX) Ga TO 1CO' 
0076 TAU = TAU + DTAU 
0077 If CT .. nCT + 1 
0078 GO TO 20 
0079 100 STOP 
0080 END 

FORTRAN IV G LeVEL 70 eOEFR 

0001 
oooz 
0003 
0004 
0005 
0000 
OOOT 
0006 
000 9 
0010 
001L 
0012 

S~JBROUTINE COEFR (t,N) 
DIMENSION C(15,15) 
0:1 50 I .. 4,N 
IF (IFIX(I/2.).EQ~'I/2') GO TO 20 
LIM .. (1 .. ~)/2 
Gel TO 30 

20 LIM = 11 0 2'/2 
30 De ~o K=l,LIM 
40 eIK/I) ::& SQRTI1.0/~LOAT(K» 
50 CONTINUE 

RI:TURN 
Et-OO 

DATF. " 71287 

~OPTIONS IN fFrECT~ ID,EBCDIC/snUR~F/NO~IST,NOOEeK,LOAD,NOMAP 
~OPTIONS IN EFFEt'. NAMF::& COEFR ~ LINECNT p 56 
*STATlSTICS* SOl.RCE STATEHENTS = 12,PROGRAM SIZE ::& 634 
*STATISTICS* NO D!AGNUSTICS GENERATED 

14/34/20 PAGE -0002 

14/34/20 PAGE 0001 

-1 
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FQRTRAN IV G LEVEL 20 cnEFF DATE l'I 71287 

0001 

0002 
000 3 
0004 
0005 
OOOb 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
001 4 
001; 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
OOZI) 
0027 
00Z6 
002 9 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0036 
0039 
0040 
0041 
0042 
0043 
0044 

SUBROIITINE coHF IA,C6 N) 
c SuB~aUTINE CALCULbTES THE COEFFICIENTS EXPReSSING THE 
C RELATIVE FREQUENCV OF THE TYPE OF SPLIT, 

OIME~SION AI15115l1 CI15,\5) 
00 20 IR"l,N 
00 20 ITall N 

20 CIIR,ITI = 0,0 
0::1 50 IR .. 1, N 

0:1 50 IT=2,N 
IFIIR.GT.ITIGO TO 78 
IFIIR.EQ.ll CIIR/ITl " 1,0 
IFCIR.EQ,ITI CIIR,IT+l) D 1,0 
IFCIT.GT,CIR+l).ANO.IT.LE,Z*IR) GO TU ZOO 
IFIIR.LT,21 GO TU 50 
IFIIT.GT.2*IR.ANO~lT,LE.NI GO TO 250 
GO TO 50 

200 IXaIT-IR .. l 
CCIR/ITlal. 
DO 100 IV=lIIX 
CI IR, IT)mCC IR, lTP',l/A( IVI nI 

100 C~NTItlUE 
GJ Ta 50 

250 IZ"IR ... 1 
ClIR/IT)=l. 
00 300 IVal,IZ 
CCIR,IT)"CII~,IT)*l/ACIV,IT) 

300 CONTINUE 
GD TO 50 

78 CCIRIIT)"O, 
50 CONTINUE 

00 60 ITal,N 
tF(ITtEO,l) CIIT,lr)01.0 
IFIIT,EO.l) GO TO bO 
ly=n .. l 
SUM=O. 
:) 0 90 1 R Il 1,.1 V 
SUM:_ABSISUMI-IFLOATCIR)/FLOAT(IT»~C(IR,IT) 
IFIIR.EQ.IY) C(Jl,IT)=-SUM 

90 CONTINUE 
60 CONTINUE 

03 81 IR:;b~l 
HRITE (6,1111) IR~ TT, (CIIR,ITI, ITalIN) 

1111 FORMAT I;X,7.15115IF7,411 
81 C:JtITINUE 

RETURN 
E"'D 

FORTRAN [V G LFVEL 20 sa PP DATE Il 71287 

0001 
0302 
0303 
0004 
O"O!l 
0006 
0001 

SUBRDUTINE SBPP (P,PP,TAU,NI 
OIMF.~SIrN PIl5), PP(15) 
~H :: "l - 1 
;):; 10 [::l,Nl 

10 PP( Il = 1.0 
R.ETlJRN 
E~O 

14/34/20 PAGE 0001 

14134/Z0 PAGE 0001 

_ 1 
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V-2 STEP-CHANGE CASE 

The numerical solution for this case was divided into 

two parts. The first part computes f. as a function of the 
J 

shear deformation (which is proportional to time for a 

constant shear rate). The second part solves the overall 

mass balance equations which are identical to those for the 

equil ibrium case except for the inclusion of the variable fj. 

The equations to be sOlved to determine f. are: 
J 

N 
de. dA jt 

de. C .. .(J T + Pg: dt 
--tL \' ~ 

j(J 
da - Kye. 

dt w C .. Pa 00 'cr 
j = i+ 1 JJ l S P(J da 

(J 1 4-54 

(J 

s . = ~ 
e. + A. t P 

Ja P(J la , cr d(J 4-53 
cc 0"1 

S Pcr da 
0" ' 

0"5 1 

jO" 
s . ch JO" 

f. = 1 4-43 
J 00 

jO" 
s . da 

JO" 
l 

ln this worK only the specific case of an exponential strength 

distribution function was sOlved, so that the additional re­

lationships required are: 

PO" e -(30 6-6 
. . -Kyt 4-56 

Ajt = - K Y Ajo e 

dA jt . 4-55 
PO" dt = - Ky Ajt PO" 
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The computational scheme used is given in the flow chart 

shown in figure V-l. The computat ions were done by us ing 

subprograms available in the IBM Scientific Subroutine 

PacKage (87) to solve the differential equations and perform 

the required integrations. These subprograms are not re­

produced here, but a brief description of each is given below 

to relate it to its position in the flow chart. 

â~~[Q~~lu~_ÇQ~EE - This subroutine computes the coef­

ficients Cij given the values of the coefficients c ij • 

A listing of this subroutine is given with the equil i­

brium case program listing. This subprogram is not 

part of the IBM pacKage. 

â~~~Q~!lŒ~_QIEQ - This subroutine integrates a numer­

ically tabulated function using the trapezoidal rule. 

~~~~Q~!lu~_tlEÇ~ - is a subroutine to solve ordinary 

first-order differential equations. It uses Hamming's 

modified predictor-corrector method, which is noted 

for its accuracy and minimal amount of computation. 

~~~~Q~!!Œ~_Q!~1 - is a subroutine to calculate to the 

resulting distribution of agglomerates after f. has 
J 

been computed. It is the equil ibrium case program 

modified to a subprogram and with the parameter fj 

inserted into the mass-balance equations. 
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READ 
INITIAL SIZE DISTRIBUTION, 

r,N,NSTEP,tMAx,Cij 
INCREMENT cr~' f---< 

CALL COEFF 
COMPUTES C .. FROM c .. 

1 J 1 J 

SET 
= N 

CALL QTFG 
COMPUTES INTEGRAL 

IN RHS OF EQUATIONS 
4-54 AND 4-53a 

YES 

CALL HPCG 

STORE VALUE 
THE INTEGRAL 
FROM QTFG 

SOLVES EQUAT IONS Kl--....!J 

4-54 AND 4-53a 

STORE VALUES 
de. 
-.!Q.. 

dt ' t, cr 

NO 

NO 

t = 0 

CALL DIST 
SOLVES EQUATION 

4-39 AND 4-40 

PRINT RESULTS 
FOR THIS 

T IME STEP 

FIGURE V-l Flow Chart of Numerical SOlution for Step­
Change in Shear Stress Case 



It was found that a worthwhile saving in computation time was 

obtained by differentiating equation 4-53 to obtain: 

de. dA . i-
ds. a Tt + PQ: -af-
--1Q.. = 

\a 
da 4-53a 

dt Pa co 

1 ~a l P da 
fj 

The integral on the right-hand side of equation 4-53a is 

identical with the integral in equation 4-54 requiring only 

one integration for both equations. Further, due to the 

nature of the subprogram HPCG, both equations 4-53a and 4-54 

can be solved with one call to this subprogram which then 

returns the appropriate e. 
la 

and s . 
Ja 

. 
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APPENDIX VI 

RELATIONSHIP BETWEEN THE DISTRIBUTION OF BREAKING 
AGGLOMERATES AND THE DISTRIBUTION OF PRODUCTS 

DURING NON-EOUILIBRIUM DEAGGLOMERATION 

VI-l BREAKAGE OF GAINED AGGLOMERATES 0ig 

The derivation begins by examining the agglomerates, Eio ' 

in the strength range from 0 to a + da, of the gained i-
• 1 

partlcle agglomerates, Qig' that are breaKing (refer to 

figure 4-4). These agglomerates have an instantaneous dis­

tribution function e. = e. (a,t) such that la la 

E. = e. cb la 10' 
V 1-1 

It follows from the assumption of a random distribution of 

breaKing strengths throughout all positions of all agglomerates 

that the breakage products entering the species k, k < i, must 

have the same strength distribution, regardless of the value 

of k. Thus, there is only one distribution function for the 

products which is the same for the sum of all the products, 

or for an individual species contained in the products. 

It also follows from the above stated assumption that 

when the agglomerates, designated by E. ,degrade the products la 
will have a fractional strength distribution which is identical 

with the fractional strength distribution of the original 
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(initial) agglomerates based on the range from a to~. The 

process is illustrated in figure VI-l, where the breakdown 

of agglomerates contained in the range from Œ2 to a2 + da 

is shown. These agglomerates, when broken, generate products 

that have a distribution function, B. p da, where the 
la2 a 

distribution function satisfies: 

V 1-2 

Because the agglomerates conta ined in the d ifferent ial incre­

ment froma
2 

tO a2 + da, E. ,produced the distribution 
1-0- 2 

(Xl 

" B'
I 

P der, the scaling factor, B. ,must be differentially 
Ja a2 a la2 

small, and 

= V 1-3 

S ince the scal ing factor B. 
la 2 

is independent of the agglomerate 

strength, a, equation VI-3 can be written: 

p da 
a 

V 1-4 

It is obvious that some of the breakdown products have 

strengths less than the shear stress in the fluid and that 

these products contributed to the number of breakable agglo­

merates in the species to which the y belong. 



FIGURE V 1-1: The Strength Distribution of the BreaK­
down products of Agglomerates Having a 
Strength Œ2 in Species i 
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ln the preceding discussion only agglomerates of 

strength, 0'2 were considered, but aIl agglomerates of 

strengths from al to aS degrade to give breaKdown products. 

The resulting strength distribution function of all the 

products from i-particle breaKdown is hi = hi(a,t). It is 

the sum (integration) of the contribution of each strength 

increment in the breaKing (i-particle) agglomerates. The 

formation of the products' strength distribution from the 

breaKing species is depicted in figure VI-2. 

The number of i-particle agglomerates in the strength 

range between a and Œ + da is E. and produce a distribution 
1 

in the products given by: 

E • 
la 

VI-5 

Thus, in figure V 1-2, each IOSS in the ranges 0'2 to 0'2 + ch, 

0'3 tO a
3 

+ da, 0'4 tOa4 + d::r •••• etc produces a gain which 
0) 

has a distribution of the form B. 
10'2 

B. " p da, ••• etc. Each ga in maKes a cont r ibut ion of 
10'4 j 0' 

0'4 

dh. * to the overall value of the distribution function, h. *' 
'cr la 

at a breaKing strength 0'*, thus 

dh. * 'a 
VI-6 



FIGURE VI-2: The Overall Strength Distribution of the 
BreaKdown Products in the Strength Range 
f rom (J l to (J 5 
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From equations VI-l and VI-5 

E. = e. da la Icr 

Rearranging equation VI-7 

B • Icr = 

ae. 
---.!.cr.. e. da' 

aq Icr 
CIO 

\' P d a 
Jcr cr 

VI-7 

VI-8 

and substituting for B. into equation VI-6 and integrating Icr 
from al to the breaKing strength IJ'*, ".* < cr5' gives the 

value of h. for that breaKing strength, h. *: Icr Icr 

".* e . 
h. * = P * ~(Y 

IQ: cb Icr 'j co 

l [j PadcrJ 
crl 

f'J l ~ cr* ~ cr 5 

VI-9 

It is noted that the upper l imit for cr* in equation VI-9 is 

!J'5. The integration cannot be carried beyond cr5 since the 

i-particle agglomerates do not degrade for strengths greater 

than cr5. The deagglomerating particles produce products in 

the strength range cr, 0'5 < 0' ~ co ,as shown in figure V 1-3. 

The value for h. *' 0'5 ~ 0'* ~ co, can be obtained by carrying la 
the integration in equation VI-9 to a5 and inserting the 

appropriate value of 0'* in the function P *; 
cr 



FIGURE VI-3: The Overall Strength Distribution of the 
BreaKdown Products in the Strength 
Range (J ~ (J 5 
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h. * la '" 
e· la da 

1 

VI-2 BREAKAGE OF REMAINING ORIGINAL AGGLOMERATES. Qior 

These agglomerates, which are breaking simultaneously with 

the gained breaKable agglomerates, have an instananeous strength 

distribution function such that: 

D . 
Icr 

= A . t P da 
1 0' 

V 1-11 

where D. is the amount contained in the strength range between la 
fJ' and fJ' + da. 

Now, comparing equat ions V 1-11 and V 1-1 it is obvious 

that A.tp is equivalent to e .• Thus from equations VI-9 
1 0' la 

and V 1-10 the distribution function, b. , for the breaKage la 
products of Q;or is: 

ry* 
A • t P b. * = P * ~ 1 0: da- ~ 0'* ~ 0' 5 la fJ' co 0'1 0'1 

[~ PO'da-J 
0'1 V 1-12 

and 

~" 5 
A . t P 

b. * = 
P'J'* 

1 Q: da 0' 5 ~ 0'* ~ co la co 

0'1 Lj P da J 0' 
0'1 V 1-13 


