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Abstract

Case-cohort studies are attractive for studying rare diseases where obtaining additional
expensive or hard-to-access data, such as genomic sequencing, from a subset of partici-
pants is infeasible for the entire study cohort. In analyzing such studies, individual data
points must be appropriately weighted to account for the biased case/control sampling.
The Cox proportional hazards model is a popular semi-parametric method for analyz-
ing survival data that provides step function risk estimates. A parametric alternative is
the casebase framework, which uses finite sampling of person-moments together with
logistic regression to estimate fully parametric hazard functions and smooth-in-time ab-
solute risk functions. Unlike the Cox model, where well-tested methods exist to adjust
for complex sampling designs, the casebase framework-based methods have not yet im-
plemented weighted methods. This thesis proposes a weighted casebase framework that
provides unbiased coefficient estimates and robust standard error estimates. A simulation
study compares the performance of weighted Cox and casebase models. The proposed
weighted analytic framework is then applied to model how cell-free DNA methylation
(data obtained with the cfMeDIP-seq technology) affects risk of breast cancer in a (case-
cohort) subset of individuals in the Ontario Health Study (OHS). The weighted frame-
work performs similarly to weighted Cox models, and both are sensitive to covariate

distributions and the size of the sampling fraction.



Abrégé

Les enquétes cas-cohorte sont intéressantes pour étudier les maladies rares lorsque 1’obte-
ntion de données supplémentaires cotiteuses ou difficiles d’acces, telles que le séquengage
génomique, aupres d'un sous-ensemble de participants n’est pas réalisable pour I’ensem-
ble de la cohorte étudiée. Lors de I’analyse de ces études, les points de données individu-
els doivent étre pondérés de maniere appropriée pour tenir compte de 1’échantillonnage
biaisé des cas et des témoins. Le modéle a risques proportionnels de Cox est une méthode
semiparamétrique populaire pour 'analyse des données de survie qui fournit des estima-
tions de risque en fonction en escalier. Une alternative paramétrique est le cadre de la base
de cas, qui utilise un échantillonnage fini des personnes-moments ainsi qu’une régression
logistique pour estimer des fonctions de hasard entierement paramétriques et des fonc-
tions de risque absolu lisses par rapport au temps. Contrairement au modéle de Cox, pour
lequel il existe des méthodes éprouvées permettant d’ajuster les plans d’échantillonnage
complexes, les méthodes du cadre de la base de cas n’ont pas encore mis en ceuvre de
méthodes pondérées. Cette thése propose un cadre de base de cas pondéré qui fournit
des estimations de coefficient non biaisées et des estimations d’erreur type robustes. Une
étude de simulation compare les performances des modéles pondérés de Cox et de la base
de cas. Le cadre analytique pondéré proposé est ensuite appliqué pour modeler com-
ment la méthylation de I’ADN du plasma sanguin (données obtenues avec la technologie
cfMeDIP-seq) affecte le risque de cancer du sein dans un sous-ensemble d’individus (cas-

cohorte) de I’Etude sur la santé Ontario (ESO). Le cadre pondéré fonctionne de maniere

ii



similaire aux modeles de Cox pondérés, et les deux sont sensibles aux distributions des

covariables et au choix de la fraction d’échantillonnage.
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Chapter 1

Introduction

Breast cancer continues to be the most diagnosed and second-most fatal cancer among
Canadian women (Brenner et al., 2022). Current screening guidelines recommend mam-
mograms starting at different ages and at different frequencies across provinces (Cana-
dian Partnership Against Cancer, 2018). Mammograms are used for baseline screening
with additional testing should suspicious abnormalities be found. However, cancer de-
tection is complicated by breast density. Dense breast tissues appear white on mammo-
grams, similar to tumors, potentially leading to missed tumors. At the same time, mam-
mograms have a high false positive rate (Canadian Partnership Against Cancer, 2020),
leading to unnecessary secondary testing that can be physically and mentally taxing on
patients. Overdiagnosis, where a patient is diagnosed with cancer but it would not have
resulted in any symptoms or death, leads to unnecessary interventions and is also a con-
cern (Canadian Partnership Against Cancer, 2020).

With developments in sequencing technologies, the use of genomics in providing ear-
lier cancer detection is attractive. Improvements in existing cancer screening programs
could also be made by including genomic information from individuals. Particularly, lig-
uid biopsies, where liquid biological samples like blood are analyzed for tumor deriva-
tives, are less invasive and could have great clinical potential (Poulet, Massias, and Taly,

2019). Unfortunately, it remains expensive to perform sequencing on all participants of



large study cohorts, such as the Ontario Health Study (Kirsh et al., 2022), and in the case
of studying rare diseases like cancer, it is inefficient. The case-cohort design proposed by
Prentice, 1986 provides the benefits of a cohort study but at a reduced cost by only se-
quencing breast cancer cases and a random subset of the non-cases. With such a design, it
is important to appropriately weight cases and non-cases due to the over-representation
of cases to avoid erroneous estimates and conclusions.

The Cox proportional hazards model (Cox, 1972) is a popular semi-parametric model
in survival analysis. When absolute quantities are of interest, such as absolute risk, this
model requires an additional estimation step and produces step function estimates. The
casebase framework (Bhatnagar et al., 2022) is a fully parametric method that uses lo-
gistic regression and a finite sampling of person-moments to obtain smooth-in-time ab-
solute risk estimates. Unlike the Cox model, the existing casebase framework does not
have weighted and robust methods for biased sampling study designs. Chapter 3 of this
thesis proposes a weighted casebase framework to fill this gap. Chapter 4 compares the
proposed framework to weighted Cox in a simulation study and Chapter 5 illustrates the

use of the proposed framework on data from the Ontario Health Study.



Chapter 2

Literature review

This chapter provides background material regarding survival analysis, the case-cohort
study design, the existing casebase framework, DNA methylation, high-dimensional data,

and measures of predictive model performance.

2.1 Swurvival analysis

Kleinbaum and Klein, 2012b describes survival analysis as data analysis concerned with
time, as a variable, from the start of follow-up until an outcome of interest occurs. Sur-
vival time refers to the time period that an individual is free from an event, which may
include breast cancer diagnosis, disease recurrence, and death.

Although death is an event that will occur with certainty, it may not happen during the
study period. Censoring occurs when the exact survival time is unknown. In particular,
right censoring occurs when the exact event time is unknown. An individual in a study
may have dropped out of the study, changed physicians and been lost to follow-up, or
did not have the event by the end of the study. In analysis, individuals can be coded as 0
for censored and 1 for event occurred. The risk set R(t) at time ¢ includes individuals that

have not yet experienced the event up to time ¢.



Let T be the random variable for survival time. The survival function, the probability
that an individual survives beyond time ¢, is defined as S(¢t) = P(T" > t) and the haz-

ard function, the instantaneous rate of having the event in the interval [¢,¢ + At) given

PA<T<t+AT>t)
At

that an individual has survived until time ¢, is defined as h(t) = lima; o
(Kleinbaum and Klein, 2012b). An important quantity in the medical field is the absolute
risk, the probability that the event occurs in the interval [0, ¢] (Gail, 2005). It is defined as
P(T <t)= f(f h(w)S(u)du (Pfeiffer and Gail, 2017). In particular, risk charts can provide
physicians a quick assessment of a patient’s risk of developing breast cancer based on
their age and risk factors (Woloshin, Schwartz, and Welch, 2008).

A fully non-parametric method to estimate the survival probability S(t) is the Kaplan-
Meier method. Ordering the k unique event times t(;) < t9 < ... < t@), the Kaplan-
Meier estimate S(t) = H§:1 % where n; is the number of individuals at risk between
(t(j—1), t(j)), d; is the number of events between (¢;_1), t(;)], and ¢(;) <t (Kaplan and Meier,
1958). Computing the Kaplan-Meier estimate at all event times and plotting these es-
timates across the event times results in a step function survival curve that provides a
graphical view of how survival probabilities change over follow-up time. The Kaplan-
Meier estimates can also be computed for different groups, allowing for visual compari-
son of the effect of different exposures on survival probabilities.

A popular semi-parametric model for survival analysis that incorporates covariates is
the Cox proportional hazards model h(t) = ho(t) exp(X'3), where 3 is a p x 1 vector of
regression coefficients, X = (X3, ..., X,) is a n x p matrix of covariates, and hy(t) is the
baseline hazard, the hazard function when X = 0 (Cox, 1972). The hazard function can
be separated into two components: hg(t) that only depends on time and exp(X'3) that
only involves the covariates.

The popularity of the model can be partly attributed to the unspecified nature of h(t).
The partial likelihood, conditioned on the failure times, does not involve h(t) (Cox, 1972).
The hazard ratio, defined as the ratio of two hazard functions, is often reported as a mea-

sure of intervention effect (Higgins, Li, and Deeks, 2022). The estimated hazard ratio



HR = % — exp((X* — X)T3) only requires the covariate information and the
coefficient estimates 3. The model assumes the hazard ratio is constant with respect to
time such that the hazard functions of two individuals differ by a multiplicative constant,
the hazard ratio (Kleinbaum and Klein, 2012d). If the assumption is not met, stratified
Cox models with stratum-specific hazard functions or extended Cox models allowing
for time-dependent covariates can be used (Kleinbaum and Klein, 2012e; Kleinbaum and
Klein, 2012a). Estimation of the baseline hazard is not needed to estimate the hazard ratio,

the hazard function, or the survival function (Kleinbaum and Klein, 2012d). However, if

absolute risk estimates are of interest, the h(t) will need to be separately estimated, such
d;

as with the Breslow estimator hy(t) = =
LER(t) exp(X] B)

, Where R(t) is the risk set at time ¢
(Breslow, 1972).

Parametric survival models may be desirable if the proportional hazards assumption
is not met or to obtain smooth absolute risk estimates. Examples include the exponential
model with hazard function h(t) = X and the Weibull model with hazard function A(t) =

AptP~! (Kleinbaum and Klein, 2012¢). The casebase framework, presented in section 2.3,

allows for fitting of such parametric models.

2.2 Case-cohort study design

The case-cohort study design is a prospective study design proposed in Prentice, 1986
as an alternative to cohort and nested case-control studies. In cohort studies, individu-
als with a shared characteristic, such as birth in the same period or the same occupation,
who have not yet developed the outcome of interest are recruited, obtain baseline mea-
surements of exposures and covariates, and are followed over time (Barrett and Noble,
2019; Ernster, 1994). The cohort may contain individuals with different exposures mea-
sured prior to event, allowing for testing of causal relationships between the outcome of
interest and the exposures (Ernster, 1994). Since measurements of exposures and other

covariates are obtained for the entire cohort, the same cohort can be used to study mul-



tiple outcomes. However, obtaining data for the entire cohort can be very expensive in
the context of methylation data (described in Section 2.4) and is inefficient when the out-
come of interest is rare since most of the measurements are from non-cases. Nested case-
control studies are more cost-effective, requiring covariate information on all cases from
the cohort and selected non-cases from the risk set that are matched controls for the cases
(O’Brien, Lawrence, and Keil, 2022). However, different sets of controls and cases need to
be selected to study a different outcome (O’Brien, Lawrence, and Keil, 2022). In contrast
to cohort and nested case-control studies, case-cohort studies only require exposure and
covariate information from a random sample of the cohort, the subcohort, and all inci-
dent cases (Prentice, 1986). These studies have the benefit of being less expensive than
cohort studies and the relative ease of studying multiple outcomes since the same sub-
cohort can be reused unlike nested case-control studies. Although similar designs were
proposed earlier by Kupper, McMichael, and Spirtas, 1975; O. Miettinen, 1982, Prentice,
1986 proposed a design and methods that extend beyond binary outcomes and binary
covariates.

An important consideration when analyzing case-cohort data is the use of sampling
weights. In such a design, cases are over-represented. In particular, when the outcome
of interest is diagnosis of a rare disease, cases might make up almost half of the study
population but the prevalence might be 0.1% in the general population. Figure 2.1 shows
an example of a case-cohort study with a full cohort of size N = 5,000, a subcohort of size
ns = 500, and n. = 200 cases. In this example, cases make up 4% of the full cohort but
make up almost 30% of the case-cohort subset. Thus, care must be taken to adjust for the
over-representation of the cases by including weights. Prentice, 1986 used weight at time
t w;(t) = 1 for cases or individuals in the subcohort and w;(t) = 0) otherwise. Barlow,
1994 used weight w;(t) = 1 for cases, w;(t) = (N — nc(t))/(ns — nc(t)) for non-cases in the
subcohort and n.(t) the number of cases at time ¢, and w;(t) = 0 for non-cases outside the
subcohort. If sampling weights are not included in the analysis, the model coefficients

and their associated standard errors will be incorrect since the sampling probabilities are



related to the outcome of interest (Lumley, 2011; Therneau and Grambsch, 2000; Lavallée
and Beaumont, 2015). However, including weights comes with the trade-off of increasing

the variance of the coefficient estimates (Skinner and Mason, 2012).

Full cohort (N=5,000)

Cases in subcohort
{nCS = 10)

Cases (n, = 200)

Subcohort (n_ = 500)

Figure 2.1: Schema of a case-cohort study

Adapted from Kulathinal et al., 2007.

2.3 The casebase framework

The casebase framework described in Bhatnagar et al., 2022 is an alternative to the Cox
proportional hazards model. The framework uses finite sampling of person-moments
combined with logistic regression to provide fully parametric survival and hazard func-
tions, allowing for smooth-in-time risk function estimation.

The concepts of person-time and person-moments underlie the methods of the frame-
work. Person-time is defined as the length of time an individual was observed in a study
while being at risk of developing the outcome of interest (Porta, 2016). The total person-

time of a study, often given in the unit person-years, is the sum of follow-up times of all
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individuals in a study. A person-moment is an individual’s covariate profile at a partic-
ular instant in time (Hanley and O. S. Miettinen, 2009). The casebase framework uses
two kinds of person-moments, termed the case series and the base series. The case series
consists of all person-moments at which an event occurred. The base series are a finite
sample of the infinitely many person-moments that make up the total person-time in a
study (Hanley and O. S. Miettinen, 2009). Several base series sampling mechanisms are
described in Hanley and O. S. Miettinen, 2009. The two-step sampling described as fol-
lows is the one used in this thesis and in Bhatnagar et al., 2022 and follows the notation
of Hanley and O. S. Miettinen, 2009. In order to sample b person-moments out of the total
person-time B, the first step randomly samples b individuals out of the total number of
individuals in the study n using a multinomial distribution. The probability of selecting
individual j is 7; = t;/B, where t; is the length of follow-up for individual j. Then, b
moments are selected uniformly from the b individuals” follow-up time. That is, for in-
dividual j, the moment associated with their covariate information is not their length of
follow-up time but selected uniformly from ¢/(0, ¢;). In this way, the same individual can
be included in the base series more than once but with a different moment used each time
and cases can be included in the base series since the time of event is not used as the mo-
ment. The size of the base series is defined relative to the size of the case series c¢. That is,
b = ratio x ¢, where ratio is a positive integer. Hanley and O. S. Miettinen, 2009 showed
that the b = 100c is a large enough base series that the variance of coefficient estimates is
limited by the number of cases, and not the size of the sampling.

The derivation of the logistic regression form for the casebase model is shown in
Saarela and Arjas, 2015; Saarela, 2016 and repeated here. Let Z;(t) € {0,1} be the ex-
posure status of individual i, X;. be a 1 x p vector of covariates, and Y;(t) = 1¢,>;, where
C; is individual i’s censoring time, be an indicator for individual : still being in the risk set
at time ¢. Then let N;(t) € {0,1,2,...} be a counting process for events where dN;(t) = 1
indicates an event, R;(t) € {0,1,2,...} be a non-homogeneous Poisson process where

dR;(t) = 1 indicates inclusion in the base series, and Q);(t) = N;(t) + R;(t) be a counting



process of case and base series person-moments for individual i. F;;- = {N;(u), Y;(u) :
0<u<t,Ziu):0<u<t; X, Nj- ={N;(u) : 0<u<t},and Zy- ={Z;(u) : 0 <u <t}
are the observed, observed outcome event, and observed exposure process histories, re-
spectively. Then let Fi, N i(t), and ﬁz(t) be the latent versions. The intensity function
hi(t) = limaeo P(AN;(t) = 1|Fy-)/At for N;(t), which is of interest, can also be de-
noted as h;(t)dt = E[dN(t)|F;-]. Then the observed outcome process, where censoring
may occur, is E[dN;(t)|Fi-] = Yi(t)hs(t)dt. Similarly, R;(t) also has intensity function
pit) = lima 0 P(AR;(t) = 1] Zi; X,.) /AL

Parameterizing the intensity function %,(¢; ) in terms of 6, the likelihood function to

be maximized is

_ﬁexp{—/ t@df}HHhtTdNt
i=1 =1 ¢€[0,7)

where [, ) is a product integral from 0 to 7. However, conditioning on the sampled

person-moments, a quasi-likelihood of the form

hi (t, H)dNi(t) )

P(AN,(D|dQi(t) = 1, Fp-) o (hi(t' 0) + pi(t)

can be obtained. This results in the partial likelihood

H H ( ) ANy ( )in(t)
T g \i(t:0) +pilt)
Using h;(t;0) with a logarithmic link function, the partial likelihood has the form of a
logistic likelihood with offset log(1/p;(t)). Using the base series sampling mechanism
described earlier, the appropriate offset is log(B/b).
Unlike the Cox proportional hazards model, the casebase framework does not have
weighted methods or robust standard error estimation implemented. This motivates the

proposed weighted framework described in Chapter 3, with a simulation study compar-



ing the weighted framework to a weighted Cox model in Chapter 4, and an application

to a real dataset in Chapter 5.

2.4 DNA methylation

DNA methylation is an epigenetic modification of the DNA molecule and in animals,
mainly consists of an addition of a methyl group to cytosine at CpG dinucleotides through
DNA methyltransferase (Singal and Ginder, 1999). Regions rich in CpGs, termed CpG is-
lands, tend to be unmethylated and many are found in promoter regions (Singal and
Ginder, 1999). Methylation plays an important role in development, gene regulation, and
evolution. In human evolution, dinucleotide CpGs appear at a lower frequency than ex-
pected due to methylation of CpGs, which can lead to conversion of methylated cytosine
to thymine (Singal and Ginder, 1999). When gene promoters are methylated, this acts
as a gene silencer by preventing transcription (Singal and Ginder, 1999). Hypotheses for
the mechanism underlying repressed transcription include physically blocking binding of
transcription factors to recognition sites in promoters, directing binding of transcription
repressors to methylated DNA, and formation of a complex that prevents transcription
(Singal and Ginder, 1999).

In cancer, widespread changes in methylation occur. There is a general depletion of
methylation in regions that are normally methylated, including oncogenes (Singal and
Ginder, 1999). Oncogenes are mutated forms of genes that once mutated, promote tumor
formation by promoting cell proliferation or preventing apoptosis (Croce, 2008). Due to
the loss of methylation, cells with this mutation are then able to grow rapidly and un-
controllably. While there is an overall decrease in methylation, certain CpGs undergo
hypermethylation. In particular, there is increased methylation in CpG islands of pro-
moter regions of tumor suppressor genes (Croce, 2008). More evidence of hypermethy-
lation is the increase in DNA methyltransferase activity, which is responsible for de novo

DNA methylation (Singal and Ginder, 1999). However, tumor suppressor genes are only
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a subset of de novo methylated genes. In fact, most de novo methylated genes are nor-
mally silenced (Klutstein et al., 2016). Such genes are normally controlled by the poly-
comb protein complex which acts as a transcription repressor that promotes a condensed
DNA structure by binding to CpG sites (Klutstein et al., 2016). The methylation of such
sites prevents activation even when the polycomb complex is not bound. The complex
also promotes DNA methyltransferase activity in tumors, leading to methylation nearby
(Klutstein et al., 2016). Additionally, 5-mC cytosines are frequently mutated to thymines
and many such mutations occur in the tumor-suppressor gene p53 (Singal and Ginder,
1999), thereby altering methylation patterns at this tumor suppressor. Methylation thus
plays an important role in tumor formation and could be useful in clinical applications.
When cells die from cell death mechanisms during the normal cell cycle, short DNA
fragments from these dead cells, called cell-free DNA (cfDNA), are released into the
bloodstream (Kustanovich et al., 2019). In patients with cancer, a fraction of cfDNA orig-
inates from tumor and are called circulating tumor-specific cell-free DNA (ctDNA) (Kus-
tanovich et al., 2019). Levels of ctDNA are higher in individuals with cancer compared to
individuals without, higher in individuals with advanced stages of cancer, and reflect the
size and progression of the tumor (Schwarzenbach, Hoon, and Pantel, 2011; Thierry et al.,
2016). It is known that methylation in these fragments contain molecular signatures from
their tissues of origins and these molecular signatures are different in different tissues
(Luo et al., 2021). Several studies using cfDNA have shown the ability to detect cancer
in asymptomatic or early-stage individuals, supporting their use as indicators of survival
CG(not really "survival’ - i.e. still alive, but perhaps indicators of time to cancer occur-
rence or recurrence), and detection in line with traditional testing (X. Chen et al., 2020;
Fernandez-Garcia et al., 2019; Kis et al., 2017; Shen et al., 2018). Looking at DNA methy-
lation from blood samples could be a less invasive screening tool for cancer. For example,
methylation regions could be treated as covariates in statistical models to identify cancer
cases in individuals not yet diagnosed and to predict the probabilities of developing or

recurrence of cancer in individuals.
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Many technologies exist for DNA methylation sequencing. The gold standard is whole-
genome bisulfite sequencing. Bisulfite sequencing identifies methylated cytosines at base-
level resolution by treating DNA with sodium bisulfite that converts unmethylated cy-
tosines to uracil but leaves methylated cytosines as cytosines (Frommer et al., 1992). Once
sequenced, unmethylated cytosines are read as thymines while methylated cytosines are
read as cytosines. Although this technique provides good resolution (single-base res-
olution), it is costly and the chemicals used result in DNA degradation, not ideal in the
context of ctDNA where the DNA are already short fragments and in relatively low abun-
dance (Shen et al., 2018; Luo et al., 2021). A more suitable technique for analysis of cf DNA
is cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) which can
be used for as little as 1 to 10 ng of DNA (Shen et al., 2018). Fragmented DNA, containing
some methylated regions, are added to a solution containing antibodies that recognize 5-
mC attached to beads (Thu et al., 2009). Only the methylated fragments will be bound to
the antibodies. After washing out the antibodies, the unattached DNA fragments, and the
beads, the remaining DNA fragments are amplified before being sequenced (Thu et al.,
2009). Unlike bisulfite sequencing which measures methylation at almost all CpG sites,
cfMeDIP-seq is sensitive to CpG density and provides relative enrichment in DNA methy-
lation over regions of 300 bp, and not an absolute methylation level (Galardi et al., 2020;
Pelizzola et al., 2008; Yong, Hsu, and P.-Y. Chen, 2016). After normalization to account for
low CpG density regions, absolute and relative methylation levels can be estimated using
modeling methods (Pelizzola et al., 2008).

DNA methylation

2.5 High-dimensional data

The high dimensionality of methylation data, such as the data analysed in Chapter 5,
poses statistical and computational challenges. Methylation sequencing technologies can

measure the methylation status of over 450,000 CpG sites (Dedeurwaerder et al., 2014),
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while typically the number of samples used is on the order of tens or hundreds. Perform-
ing multiple regression with all the regions is not possible since the feature matrix X is too
large, resulting in the singularity of X"X (Johnstone and Titterington, 2009). Hypothesis
testing for significance of these regions, if analyzed separately, will result in many signifi-
cant results by chance due to the high number of regions, requiring procedures for multi-
ple testing correction (Benjamini and Hochberg, 1995). Performing data analysis on such
large datasets is also computationally expensive. Instead of analyzing all the methyla-
tion sites, dimension reduction summarizes the information of X in a lower-dimensional
function of X without losing information relevant to the outcome Y (Adragni and Cook,
2009). One technique for dimension reduction is supervised principal components.

Bair et al., 2006 proposed supervised principal components, that is, principal compo-
nents with a pre-filtering step of the features in X based on correlation with Y. Let X be
a n X p matrix with p features and centered with mean 0, Y a n x 1 vector of censoring
status, 04, ...,0k a K x 1 vector of thresholds for univariate models, and m the number of
principal components. In the original principal components, using singular value decom-
position, X can be written as UDV! where U is a n x ¢ matrix with columns ug, . . ., u, the
principal components, D is a ¢ x g diagonal matrix with singular values on the diagonal,
and V is a ¢ x p matrix. The principal components uy, ..., uq are independent of each
other and are chosen in a way to minimize the amount of variability lost when reducing
X to the lower dimension U (Jolliffe and Cadima, 2016). The supervised version proceeds

as follows:

1. A univariate regression or survival model is fitted on feature j, then retain the score

statistic
U;(0)?
8]' =
I;(0)
_ (dly/dBls=s,)"
—di?/dB?|p—s,

where [; is the log-likelihood or partial likelihood and § is the regression or survival

model coefficient. This is repeated for each of the features.
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2. Singular value decomposition of the reduced feature matrix Xy, is computed, where

X, contains only the features with score statistics |s;| that exceed threshold 6;.
3. A multiple regression or survival model is fitted with the first principal component.

4. Steps 2 and 3 are repeated for all K number of thresholds (6, ..., k) and until m

principal components are included in the model.

5. Cross-validation is performed to determine the optimal threshold and the number

of principal components.

2.6 Measures of performance

The simulation study in Chapter 4 assesses the numerical properties of Cox and casebase
model estimates on simulated case-cohort data following the methods described in Mor-
ris, White, and Crowther, 2019; White, 2010. The measures used are described in Table
2.1. The mean coefficient and bias measure how close {3 is to 3 on average. The em-
pirical standard error (EmpSE) measures the precision of 3. The bootstrapped standard
error (BootSE) is the root-mean of the variance of BZ OVeT Npootrep DOOtstrap replicates.
The mean model-based (ModSE) and bootstrapped standard errors should be close to the
empirical standard error such that E(ModSE*) = EmpSE? and E(BootSE*) = EmpSE?
(Morris, White, and Crowther, 2019). Coverage is the probability that 3 is included in
a confidence interval. This thesis uses a 95% confidence interval with model-based or
bootstrapped standard error.

Chapter 5 illustrates the use of the weighted Cox and casebase models on a real
dataset. The concordance index measures how well the model discriminates between
cases and non-cases such that an individual with a smaller risk score has a longer sur-
vival time and the higher the concordance index, the better the discrimination (Harrell
etal., 1982). Let I(-) be an indicator function, w; be the sampling weight, 7; be the failure

time, x; the covariate vector, and B the coefficient vector of individual i. The weighted
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Table 2.1: Performance measures used in simulation study.

Performance measure Estimate

Mean coef o LSt 3,

Bias p— an(ﬁ )

EmpSE \/nhlm_l Znsnn( )2

Mean ModSE \/ = Var(ﬁi)

Mean BootSE \/ =Dy nbootrep - ST (B — Big)?
Coveragea . Znﬂm 1(ﬂlow K < 6 < Bupp z)

Adapted from Morris, White, and Crowther, 2019; White, 2010.
Mean coef: mean coefficient estimate. Mean ModSE: mean
model-based standard error. Mean BootSE: mean bootstrapped
standard error. EmpSE: empirical standard error.

aMonte Carlo standard error: \/ Cover x (1~Cover)

Nsim

concordance index

S wiw (T; < Ty, 1B > XIB) + 0.5 3, wow; I(T; < Tj,x1 3 = x13)
Dizy wiwi I(T; < Tj)

weights the sums by the sampling weights w;, w; and is identical to the original concor-
dance index if all sampling weights are equal to 1 (Soave and Lawless, 2023). Pairs of
individuals are included if the survival times can be ordered (Harrell et al., 1982). That is,
if both individuals experienced the event or if one experienced the event before the other
is censored. Pairs with both individuals censored are not included in the concordance
index.

The Brier score (Brier, 1950) is a measure of the accuracy of predicted probabilities and
was initially proposed in the context of weather forecast verification. Instead of assessing
whether a weather event occurs or not, a binary classification problem, the Brier score
assesses the predicted probability of the weather event. Graf et al., 1999 proposed an

empirical Brier score for right-censored survival data. A weighted and scaled Brier score
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that takes the sampling weights of the design into account is

Ci;>min(T;, T
> Wi {I(G(;T(T(Tmt))} {I(Ti < 1) = F(t}x:)}?

BS, (1) = ~w ,

where C; is the censoring time, G(min(T},t)) is the Kaplan-Meier estimate of survival
probability at time min(7},t), and F(t|x;) is the predicted probability of event by time ¢
given covariate vector x;. The Brier score above is scaled by the sum of sampling weights

to ensure the computed scores are between 0 and 1.
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Chapter 3

Methodology

This chapter presents the methodology underlying the proposed weighted casebase frame-
work. Section 3.1 proposes two methods for including weights in the existing unweighted
casebase framework. Section 3.2 proposes a standard error estimate that is appropriate
for a biased sampling study design. The simulation studies presented in this chapter are
to verify whether the estimates from the weight implementation are reasonable. The nu-
merical properties of the model estimates under various conditions will be examined in

more detail in the simulation studies in Chapter 4.

3.1 Implementation of weighted casebase framework

The casebase framework has been implemented in the R package casebase which uses
the glm package to fit a logistic regression model with offset log(B/b), where B is the total
follow-up time and b is the size of the base series, to account for the base series sam-
pling. The existing framework does not permit specification of sampling weights, which
prevents the use of the casebase framework in the case-cohort setting and other designs
with biased sampling of individuals. The sampling fraction of the case-cohort design can
be implemented by passing the inverse of the sampling fraction to the weights argument

in glm, or by upsampling non-cases in the base series sampling. For the former, this
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amounts to solving the weighted log-likelihood > | w;log(L(f,t,x;)), where w; is the
inverse of the sampling fraction and L(f, ¢, x;) is the likelihood function. For the latter, let
B, be the follow-up time of individual i. Then the total person-time of the study B can be
weighted such that B = >"" | w;B;. The offset is now log(} """, w;B;/b) and the probability
of selecting individual ¢, the first step of person-moment sampling, is weighted such that
pi = w;(B;/B). In other words, follow-up times from non-cases will be weighted to have
greater contribution to the total person-time, and non-cases are more likely to be included
in the base series.

After making this change to the casebase algorithm, a simulation study is conducted
to verify the performance of the weighting methods. A full cohort of N = 10,000 indi-
viduals is simulated, each with a single covariate + drawn from a log-normal distribu-

tion with = 0 and ¢ = 1 for 1000 individuals. Survival times are generated from a

Weibull-Cox distribution (Bender, Augustin, and Blettner, 2005): 7' = ( A}fﬁf}fﬁ)) where
U ~ Unif(0,1),8 = 1.5,A = 107® and v = 4. Censoring times are generated from an
independent Weibull distribution with A = 107° and v = 8. The Weibull distribution pa-
rameters are chosen to obtain, on average, 200 events after censoring. Simple random
sampling among the non-cases (censored) is used to select ny non-cases. All n; cases

(events) are included in the case-cohort sample. Cases have sampling weights of 1 and

non-cases have sampling weights of 1/sampling fraction where the sampling fraction is

no
N—nq*

Weighted casebase models are fitted on the case-cohort sample using either weights
in casebase sampling or in glm. The ratio parameter is set to 100, 200, and 500. This pro-
cess is repeated 1000 times. Model performance is assessed using bias, mean model-based
standard error (ModSE), empirical standard error (EmpSE), and coverage probability of
95% confidence interval.

Tables 3.1 and 3.2 show the results of the simulation study, and the consequences of
changing casebase sampling and providing weights to glm, respectively. In both Tables,
that is for both implementation methods, the coefficient estimates have low bias but the

model-based standard error estimates (Mean ModSE) underestimate the empirical stan-

18



mate is described in the next section.

dard errors (EmpSE), leading to poor coverage probabilities. A better standard error esti-

Table 3.1: casebase models with modified casebase sampling

Mean coef | Bias | Mean ModSE | EmpSE | Coverage (SE)
Ratio 100 1.54 0.04 0.103 0.147 0.85 (0.01)
Ratio 200 1.53 0.03 0.093 0.137 0.81 (0.01)
Ratio 500 1.52 0.02 0.083 0.124 0.83 (0.01)

N =10,000; oy = 200; nq = 200; pg = 0.02. Mean coef: mean coefficient for log-normal
covariate with 8 = 1.5. Mean ModSE: mean model-based standard error. EmpSE: empir-
ical standard error. Coverage: coverage of 95% confidence interval using model-based
standard error. Ratio 100, 200, 500: weighted casebase models with ratio parameter set
to 100, 200, and 500, respectively.

Table 3.2: casebase models with weights in glm

Mean coef | Bias | Mean ModSE | EmpSE | Coverage (SE)
Ratio 100 1.52 0.02 0.073 0.112 0.81 (0.01)
Ratio 200 1.52 0.02 0.071 0.109 0.80 (0.01)
Ratio 500 1.52 0.02 0.069 0.105 0.82 (0.01)

N =10,000;no = 200; nq = 200;pg = 0.02. Mean coef: mean coefficient for log-normal
covariate with 8 = 1.5. Mean ModSE: mean model-based standard error. EmpSE: empir-
ical standard error. Coverage: coverage of 95% confidence interval using model-based
standard error. Ratio 100, 200, 500: weighted casebase models with ratio parameter set
to 100, 200, and 500, respectively.

3.2 Adjustment to standard errors

The bootstrap proposed by Efron, 1979 can be used to obtain an empirical distribution
of 3, which then allows for standard error estimation, by resampling the data. To ensure
the same number of cases and non-cases are included in each bootstrap sample, stratified
bootstrapping (Bickel and Freedman, 1984) is used. Cases and non-cases are treated as
separate strata and individuals of each stratum are selected from simple random sam-
pling with replacement to create a new sample for model fitting. Bootstrap resampling

and model fitting is repeated 1000 times to obtain 1000 bootstrap replicates. The reported
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bootstrapped standard error (BootSE) is the standard deviation of 1000 coefficient esti-
mates.

A simulation study under the same conditions as in 3.1 is performed to assess the
use of bootstrapped standard errors. Tables 3.3 and 3.4 show the results of the simu-
lation study. In both implementation methods, the mean bootstrapped standard errors
are close to the empirical standard errors, improving the coverage probabilities to 93%.
With modified casebase sampling, as the size of the base series increases, both the mean
bootstrapped standard errors and the empirical standard errors decrease. With weights
in glm, the standard errors are nearly identical as the size of the base series changes. Ad-
ditionally, the standard errors are larger with modified casebase sampling compared to
including weights in glm.

Table 3.3: casebase models with modified casebase sampling and

bootstrapped standard errors

Mean coef | Bias | Mean BootSE | EmpSE | Coverage (SE)
Ratio 100 1.54 0.04 0.135 0.143 0.94 (0.01)
Ratio 200 1.53 0.03 0.124 0.135 0.94 (0.01)
Ratio 500 1.53 0.03 0.114 0.123 0.94 (0.01)

N = 10,000;n9 = 200;n; = 200;po = 0.02. Mean coef: mean coefficient for log-
normal covariate with 5 = 1.5. Mean BootSE: mean bootstrapped standard error of
1000 bootstrap replicates. EmpSE: empirical standard error. Coverage: coverage of 95%
confidence interval using bootstrapped standard error. Ratio 100, 200, 500: weighted
casebase models with ratio parameter set to 100, 200, and 500, respectively.

Table 3.4: casebase models with weights in glm and bootstrapped

standard errors

Mean coef | Bias | Mean BootSE | EmpSE | Coverage (SE)
Ratio 100 1.52 0.02 0.102 0.110 0.93 (0.01)
Ratio 200 1.52 0.02 0.099 0.105 0.93 (0.01)
Ratio 500 1.52 0.02 0.096 0.102 0.94 (0.01)

N = 10,000;n9 = 200;n; = 200;po = 0.02. Mean coef: mean coefficient for log-
normal covariate with 5 = 1.5. Mean BootSE: mean bootstrapped standard error of
1000 bootstrap replicates. EmpSE: empirical standard error. Coverage: coverage of 95%
confidence interval using bootstrapped standard error. Ratio 100, 200, 500: weighted
casebase models with ratio parameter set to 100, 200, and 500, respectively.
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Since the mean bootstrapped standard errors in Tables 3.3 and 3.4 are close to their re-
spective empirical standard errors, and the the coefficient estimates show very little bias,
we felt comfortable proceeding with the larger simulation in Chapter 4 and the applica-
tion in Chapter 5 using the proposed weighted framework. The results are similar for
both weighting methods and either implementation could have been used. The imple-

mentation with weights in glm are used in Chapters 4 and 5.

3.3 Software

The proposed weighted framework using weights in glm is implemented in the R package
casebaseweights (https://github.com/karinakwan/casebaseweights/), forked from the

original casebase package (https://github.com/sahirbhatnagar/casebase).

21



Chapter 4

Simulation study

This chapter presents a simulation study to assess the numerical properties of the esti-
mates from the proposed weighted framework in a case-cohort setting. The estimates
are also compared to those from the Cox proportional hazards model in full cohort, un-
weighted case-cohort, and weighted case-cohort settings. The simulation study is con-

ducted following the approach of Morris, White, and Crowther, 2019.

4.1 Data generation

We undertook a simulation study examining cohorts of sizes N = {5,000, 10,000, 50,000,
100,000} to study the effect of sampling fractions and weights on model stability and on
the numerical properties of the casebase parameter estimates under the weighted frame-

work. The single covariate distributions x and Weibull parameters are as described in Ta-

—log(U) ) i
N oxp(B2)

with U ~ Unif(0, 1), as described in Bender, Augustin, and Blettner, 2005, so that the pro-

ble 4.1. Survival times are generated under a Cox-Weibull distribution 7" = (

portional hazards assumption is satisfied. The true coefficient for the covariate effect is
fixed at 3 = 1.5 for all cohort sizes and covariate distributions. The generated survival
times are ordered from shortest to longest and the 200 smallest survival times are defined

as events such that there are exactly n; = 200 events in each simulation replicate. The
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remaining N — 200 survival times are right-censored. To create case-cohort samples, all
individuals with events (cases) are included. Of the remaining N — 200 censored indi-
viduals (non-cases), no = 200 are randomly sampled without replacement. This gives
sampling weights of 1 for cases and N;—?OO for non-cases. A thousand such replicate co-
horts and case-cohort samples are created for each cohort size and covariate distribution

combination.

Table 4.1: Parameters used in simulation study

Cohort Covariate Weibull | Weibull
size (V) distribution () scale () | shape (v)
5,000 B(p=03,n=N) 107 6.74
10,000 B(p =03,n=N) 105 6.75
50,000 B(p =03,1n=N) 105 6.75
100,000 B(p =03,n=N) 105 6.75
5,000 NG =0,07=1) 107 7.00
10,000 N =0,0% = 1) 1075 7.00
50,000 N =0,02=1) 10-5 7.00
100,000 N =0,0% = 1) 109 7.00
5,000 Lognormal(u = 0,0% = 1) 107° 5.00
10,000 | Lognormal(y = 0,0% = 1) 107° 5.00
50,000 | Lognormal(y = 0,0% = 1) 107° 5.00
100,000 | Lognormal(y = 0,02 = 1) 107° 5.00

4.2 Methods of Analysis

The simulation study compares weighted casebase models to weighted Cox models fitted
on case-cohort samples. The models will also be compared to unweighted casebase and
Cox models fitted on the full cohort and case-cohort samples.

Cox proportional hazards models with hazard functions of the h(t) = ho(t) exp(Bz)
are fitted on the cohort of size N and the case-cohort sample of size ny + n; = 400. Un-
weighted Cox models fit on the entire cohort and on the case-cohort sample are listed as
“Cox full” and “Cox naive”, respectively, in the results. Weighted Cox regression, which

uses weights in the partial likelihood, is used on the case-cohort sample to obtain robust
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coefficient and standard error estimates. Weighted Cox models are listed as “Cox robust”
in the results tables.

Three base series sizes are used for each of the simulation settings under the origi-
nal and proposed weighted casebase frameworks to study their effect on standard error
estimates. Ratios of case series to base series equal to 100, 200, and 500 are considered.
Casebase models of the form h(t) = exp(f8y + (1 log(t) + fox) are fitted on the cohort
of size N and the case-cohort sample of size 400. The proposed framework with strati-
tied bootstrapping to estimate standard errors is used on the case-cohort sample. Models
titted on the entire cohort and on the case-cohort sample are listed as “Ratio full” and
“Ratio naive”, respectively, with the appropriate ratio parameters. Models fitted with
the proposed weighted framework are listed as “Ratio robust” with the appropriate ratio
parameters.

The numerical properties of the model estimates are assessed on mean coefficient esti-
mate, bias, mean model-based or bootstrapped standard error, empirical standard error,
and coverage probability as defined in Chapter 2. Bias is the mean deviation of the co-
efficient estimate from the true coefficient (1.5). Empirical standard error is the standard
deviation of coefficient estimates. Mean model-based standard error is used for all Cox
and unweighted casebase models and is the root-mean of the squared standard error of
the model coefficient estimate. Mean bootstrapped standard error is used for all weighted
casebase models and is the root-mean of the variance of the bootstrapped coefficient esti-
mates.

The R package survival is used to fit all the Cox models. The R package casebase,
the implementation of the original casebase framework, is used to fit the models on the
tull cohort and the unweighted models on the case-cohort sample. The R package case-
baseweights, modified from the original package to include weights, is used to fit the

weighted models on the case-cohort sample.
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4.3 Results

Tables 4.2-4.5 show the results from 1000 simulation replicates with a single binomial
covariate. The first four rows are models fitted on the entire cohort, the middle four are
unweighted naive models fitted on the case-cohort sample, and the last four are weighted
models fitted on the case-cohort sample. The models fitted on the full cohorts, for any co-
hort size, have unbiased coefficient estimates, model-based standard errors nearly iden-
tical to empirical standard errors, and good coverage probabilities. The naive models on
the case-control samples all have biased coefficient estimates, model-based standard er-
rors and empirical standard errors nearly identical to those of the full models (i.e. too
small), and poor coverage probabilities. In contrast, all robust model coefficients have no
or small bias and good coverage probabilities. Their standard errors are larger than those
of the unweighted models. Model-based, bootstrapped, and empirical standard errors
get smaller as the casebase ratio parameter gets larger, approaching the respective Cox
standard errors.

Tables 4.6-4.9 show the results from 1000 simulation replicates with a single normal
covariate. All models fitted on the full cohort have unbiased coefficient estimates, model-
based standard errors nearly identical to empirical standard errors, and good coverage
probabilities. The naive models have biased coefficient estimates, resulting in poor cov-
erage probabilities. The robust models have coefficient estimates with small bias un-
der cohort sizes N = {5,000, 10,000} and biased coefficient estimates under cohort sizes
N = {50,000, 100,000}. These robust models underestimate the empirical standard errors,
leading to poor coverage probabilities. The standard errors are larger than the weighted
Cox robust standard errors although the bootstrapped standard errors decrease as the
ratio parameter increases. Weighted Cox and casebase models have identical bias and
nearly identical empirical standard errors and coverage probabilities.

Tables 4.10-4.13 show the results from 1000 simulation replicates with a single log-

normal covariate. Under cohort sizes N = {5,000, 10,000}, the full models have coeffi-
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Table 4.2: Binary covariate, N = 5,000

Mean coef | Bias Mearécl)\gtosds E or EmpSE | Coverage (SE)
Cox full 1.51 0.01 0.149 0.148 0.96 (0.01)
Ratio 100 full 1.51 0.01 0.152 0.150 0.96 (0.01)
Ratio 200 full 1.51 0.01 0.150 0.149 0.96 (0.01)
Ratio 500 full 1.51 0.01 0.149 0.148 0.96 (0.01)
Cox naive 1.06 -0.44 0.149 0.146 0.16 (0.01)
Ratio 100 naive 1.04 -0.46 0.152 0.146 0.14 (0.01)
Ratio 200 naive 1.04 -0.46 0.151 0.145 0.13 (0.01)
Ratio 500 naive 1.04 -0.46 0.150 0.143 0.13 (0.01)
Cox robust 1.52 0.02 0.210 0.207 0.96 (0.01)
Ratio 100 robust 1.52 0.02 0.216 0.212 0.96 (0.01)
Ratio 200 robust 1.52 0.02 0.214 0.210 0.96 (0.01)
Ratio 500 robust 1.52 0.02 0.213 0.208 0.96 (0.01)

N = 5,000;n9 = 200;n1 = 200;pp = 0.04; weight_ . = 25. Binary covariate with 3 = 1.5. Full
models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Table 4.3: Binary covariate, N = 10,000

Mean coef | Bias Mea%é\g?SdES E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.149 0.146 0.95 (0.01)
Ratio 100 full 1.50 0.00 0.152 0.148 0.96 (0.01)
Ratio 200 full 1.50 0.00 0.151 0.148 0.95 (0.01)
Ratio 500 full 1.50 0.00 0.150 0.146 0.95 (0.01)
Cox naive 104 | -046 0.150 0.144 | 0.14(0.01)
Ratio 100 naive 1.02 -0.48 0.153 0.146 0.12 (0.01)
Ratio 200 naive 1.02 -0.48 0.151 0.144 0.11 (0.01)
Ratio 500 naive 1.02 -0.48 0.150 0.142 0.11 (0.01)
Cox robust 1.51 0.01 0.213 0.208 0.94 (0.01)
Ratio 100 robust 1.51 0.01 0.218 0.214 0.95 (0.01)
Ratio 200 robust 1.51 0.01 0.216 0.210 0.95 (0.01)
Ratio 500 robust 1.51 0.01 0.215 0.208 0.95 (0.01)

N = 10,0005 79 = 200;n; = 200;po = 0.02; weight_ . = = 50. Binary covariate with 8 = 1.5. Full
models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.
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Table 4.4: Binary covariate, N = 50,000

Mean coef | Bias Mearécl)\gtosds E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.149 0.151 0.94 (0.01)
Ratio 100 full 1.50 0.00 0.152 0.155 0.94 (0.01)
Ratio 200 full 1.50 0.00 0.151 0.153 0.95 (0.01)
Ratio 500 full 1.50 0.00 0.150 0.152 0.94 (0.01)
Cox naive 1.03 -0.47 0.150 0.147 0.12 (0.01)
Ratio 100 naive 1.00 -0.50 0.153 0.147 0.09 (0.01)
Ratio 200 naive 1.01 -0.49 0.152 0.146 0.10 (0.01)
Ratio 500 naive 1.01 -0.49 0.151 0.145 0.10 (0.01)
Cox robust 1.49 -0.01 0.215 0.212 0.96 (0.01)
Ratio 100 robust 1.49 -0.01 0.220 0.215 0.96 (0.01)
Ratio 200 robust 1.50 0.00 0.218 0.214 0.96 (0.01)
Ratio 500 robust 1.49 -0.01 0.217 0.213 0.96 (0.01)

N = 50,000;n9 = 200;n1 = 200;po = 0.004; weight . = 250. Binary covariate with 3 = 1.5.
Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Table 4.5: Binary covariate, N = 100,000

Mean coef | Bias Mea%é\g?SdES E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.149 0.149 0.94 (0.01)
Ratio 100 full 1.50 0.00 0.152 0.153 0.95 (0.01)
Ratio 200 full 1.50 0.00 0.151 0.149 0.95 (0.01)
Ratio 500 full 1.50 0.00 0.150 0.150 0.95 (0.01)
Cox naive 1.03 -0.47 0.150 0.143 0.12 (0.01)
Ratio 100 naive 1.00 -0.50 0.153 0.144 0.09 (0.01)
Ratio 200 naive 1.01 -0.49 0.152 0.143 0.09 (0.01)
Ratio 500 naive 1.01 -0.49 0.151 0.141 0.09 (0.01)
Cox robust 1.50 0.00 0.215 0.206 0.96 (0.01)
Ratio 100 robust 1.50 0.00 0.221 0.210 0.96 (0.01)
Ratio 200 robust 1.50 0.00 0.219 0.208 0.96 (0.01)
Ratio 500 robust 1.50 0.00 0.217 0.205 0.96 (0.01)

N = 100,000;n9 = 200;n; = 200;po = 0.002; weight . = 500. Binary covariate with 3 = 1.5.
Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
no + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.
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Table 4.6: Normal covariate, N = 5,000

Mean coef | Bias Mearécl)\gtosds Eor EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.073 0.075 0.94 (0.01)
Ratio 100 full 1.50 0.00 0.084 0.083 0.95 (0.01)
Ratio 200 full 1.50 0.00 0.080 0.081 0.95 (0.01)
Ratio 500 full 1.50 0.00 0.076 0.078 0.94 (0.01)
Cox naive 0.84 -0.66 0.066 0.060 0.00 (0.00)
Ratio 100 naive 0.82 -0.68 0.069 0.063 0.00 (0.00)
Ratio 200 naive 0.82 -0.68 0.067 0.061 0.00 (0.00)
Ratio 500 naive 0.82 -0.68 0.066 0.060 0.00 (0.00)
Cox robust 1.53 0.03 0.137 0.162 0.86 (0.01)
Ratio 100 robust 1.53 0.03 0.146 0.164 0.88 (0.01)
Ratio 200 robust 1.53 0.03 0.144 0.164 0.88 (0.01)
Ratio 500 robust 1.53 0.03 0.142 0.163 0.87 (0.01)

N = 5,000;n9 = 200;n1 = 200;po = 0.04; weight_ . = 25. Normal covariate with 3 = 1.5. Full
models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Table 4.7: Normal covariate, N = 10,000

Mean coef | Bias Mea%é\g?SdES E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.072 0.071 0.95 (0.01)
Ratio 100 full 1.50 0.00 0.084 0.085 0.94 (0.01)
Ratio 200 full 1.50 0.00 0.079 0.079 0.96 (0.01)
Ratio 500 full 1.50 0.00 0.076 0.074 0.95 (0.01)
Cox naive 0.78 -0.72 0.063 0.057 0.00 (0.00)
Ratio 100 naive 0.76 -0.74 0.066 0.057 0.00 (0.00)
Ratio 200 naive 0.76 -0.74 0.064 0.056 0.00 (0.00)
Ratio 500 naive 0.76 -0.74 0.063 0.055 0.00 (0.00)
Cox robust 1.56 0.06 0.164 0.210 0.82 (0.01)
Ratio 100 robust 1.56 0.06 0.179 0.214 0.84 (0.01)
Ratio 200 robust 1.56 0.06 0.177 0.211 0.83 (0.01)
Ratio 500 robust 1.56 0.06 0.175 0.210 0.84 (0.01)

N = 10,000;n9 = 200511 = 200; po = 0.02; weight . . = 50. Normal covariate with § = 1.5. Full
models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
no + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.
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Table 4.8: Normal covariate, N = 50,000

Mean coef | Bias Mearécl)\gtosds Eor EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.071 0.072 0.95 (0.01)
Ratio 100 full 1.50 0.00 0.085 0.084 0.95 (0.01)
Ratio 200 full 1.50 0.00 0.080 0.081 0.96 (0.01)
Ratio 500 full 1.50 0.00 0.076 0.076 0.95 (0.01)
Cox naive 0.72 -0.78 0.060 0.057 0.00 (0.00)
Ratio 100 naive 0.71 -0.79 0.063 0.057 0.00 (0.00)
Ratio 200 naive 0.70 -0.80 0.061 0.056 0.00 (0.00)
Ratio 500 naive 0.70 -0.80 0.060 0.054 0.00 (0.00)
Cox robust 1.61 0.11 0.211 0.281 0.80 (0.01)
Ratio 100 robust 1.61 0.11 0.250 0.285 0.84 (0.01)
Ratio 200 robust 1.61 0.11 0.247 0.283 0.83 (0.01)
Ratio 500 robust 1.61 0.11 0.245 0.281 0.84 (0.01)

N = 50,000;n9 = 200;n; = 200;py = 0.004; weight

control

= 250. Normal covariate with g = 1.5.

Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Table 4.9: Normal covariate, N = 100,000

Mean coef | Bias Mea%é\g?SdES E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.072 0.073 0.95 (0.01)
Ratio 100 full 1.50 0.00 0.085 0.085 0.96 (0.01)
Ratio 200 full 1.50 0.00 0.080 0.080 0.96 (0.01)
Ratio 500 full 1.50 0.00 0.077 0.078 0.96 (0.01)
Cox naive 0.73 -0.77 0.061 0.059 0.00 (0.00)
Ratio 100 naive 0.71 -0.79 0.064 0.060 0.00 (0.00)
Ratio 200 naive 0.71 -0.79 0.062 0.059 0.00 (0.00)
Ratio 500 naive 0.71 -0.79 0.061 0.058 0.00 (0.00)
Cox robust 1.62 0.12 0.230 0.310 0.84 (0.01)
Ratio 100 robust 1.62 0.12 0.284 0.315 0.87 (0.01)
Ratio 200 robust 1.62 0.12 0.281 0.311 0.87 (0.01)
Ratio 500 robust 1.62 0.12 0.279 0.309 0.86 (0.01)

N = 100,000; ng = 200;ny = 200; py = 0.002; weight

control

= 500. Normal covariate with § = 1.5.

Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
no + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.
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cient estimates with small or no bias, nearly identical model-based and empirical stan-
dard errors, and good coverage probabilities. The robust models have coefficient esti-
mates with small bias and good coverage probabilities. In comparison, full models on
N = {50,000, 100,000} have small bias or biased coefficient estimates. Notably, the Cox
tull models have poor coverage probabilities while the casebase models have larger stan-
dard errors, both model-based and empirical, and better coverage probabilities. The ro-
bust models have standard errors that underestimate the empirical standard errors and
poor coverage probabilities. The Cox robust models have larger bias coefficient estimates
than casebase robust models and comparable standard errors, resulting in worse coverage

probabilities.

Table 4.10: Log-normal covariate, N = 5,000

Mean ModSE or

Mean coef | Bias BootSE EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.066 0.067 0.94 (0.01)
Ratio 100 full 1.51 0.01 0.084 0.086 0.95 (0.01)
Ratio 200 full 1.51 0.01 0.078 0.077 0.95 (0.01)
Ratio 500 full 1.51 0.01 0.072 0.071 0.95 (0.01)
Cox naive 1.16 -0.34 0.068 0.070 0.01 (0.00)
Ratio 100 naive 1.18 -0.32 0.072 0.074 0.02 (0.00)
Ratio 200 naive 1.19 -0.31 0.071 0.073 0.03 (0.01)
Ratio 500 naive 1.21 -0.29 0.070 0.072 0.04 (0.01)
Cox robust 1.52 0.02 0.078 0.090 0.92 (0.01)
Ratio 100 robust 1.52 0.02 0.086 0.092 0.94 (0.01)
Ratio 200 robust 1.52 0.02 0.084 0.093 0.94 (0.01)
Ratio 500 robust 1.52 0.02 0.082 0.091 0.94 (0.01)

N = 5,000;n9 = 200;n; = 200;p9 = 0.04; weight . = 25. Log-normal covariate with = 1.5.
Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
no + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Figure 4.1 summarizes the effect of cohort size and covariate distribution among the
ratio 500 robust models in terms of bias and relative difference in standard error defined

as (Mean BootSE — EmpSE)/Mean BootSE. The relative difference in standard error is
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Table 4.11: Log-normal covariate, N = 10,000

Mean coef | Bias Mearécl)\gtosds E or EmpSE | Coverage (SE)
Cox full 1.50 0.00 0.071 0.070 0.96 (0.01)
Ratio 100 full 1.52 0.02 0.107 0.110 0.96 (0.01)
Ratio 200 full 1.51 0.01 0.096 0.097 0.95 (0.01)
Ratio 500 full 1.51 0.01 0.086 0.085 0.96 (0.01)
Cox naive 1.18 -0.32 0.073 0.074 0.02 (0.00)
Ratio 100 naive 1.21 -0.29 0.078 0.078 0.06 (0.01)
Ratio 200 naive 1.22 -0.28 0.076 0.077 0.07 (0.01)
Ratio 500 naive 1.24 -0.26 0.074 0.075 0.08 (0.01)
Cox robust 1.53 0.03 0.093 0.096 0.94 (0.01)
Ratio 100 robust 1.51 0.01 0.104 0.109 0.94 (0.01)
Ratio 200 robust 1.51 0.01 0.100 0.106 0.94 (0.01)
Ratio 500 robust 1.51 0.01 0.098 0.104 0.95 (0.01)

N = 10,000;n9 = 200;n; = 200; pg = 0.02; weight_ . = 50. Log-normal covariate with 3 = 1.5.
Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

Table 4.12: Log-normal covariate, N = 50,000

Mean coef | Bias Mea%é\g?SdES E or EmpSE | Coverage (SE)
Cox full 1.43 -0.07 0.075 0.071 0.82 (0.01)
Ratio 100 full 1.55 0.05 0.185 0.199 0.95 (0.01)
Ratio 200 full 1.53 0.03 0.156 0.162 0.95 (0.01)
Ratio 500 full 1.52 0.02 0.130 0.135 0.94 (0.01)
Cox naive 1.20 -0.30 0.079 0.075 0.05 (0.01)
Ratio 100 naive 1.32 -0.18 0.088 0.091 0.44 (0.02)
Ratio 200 naive 1.33 -0.17 0.084 0.088 0.47 (0.02)
Ratio 500 naive 1.34 -0.16 0.082 0.085 0.48 (0.02)
Cox robust 1.43 -0.07 0.132 0.161 0.74 (0.01)
Ratio 100 robust 1.49 -0.01 0.136 0.190 0.79 (0.01)
Ratio 200 robust 1.49 -0.01 0.130 0.184 0.80 (0.01)
Ratio 500 robust 1.49 -0.01 0.124 0.173 0.80 (0.01)

N = 50,000;n¢ = 200; 01 = 200; po = 0.004; weight_ . = 250. Log-normal covariate with 3 = 1.5.
Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort of size
ng + n1. Robust: weighted models fitted on case-cohort of size ng + n;. Ratio 100, 200, 500: casebase
models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE: model-
based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error. SE:
standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.
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Table 4.13: Log-normal covariate, N = 100,000

Mean coef | Bias Mearl;cl)\gi)SdES E or EmpSE | Coverage (SE)
Cox full 1.42 -0.08 0.077 0.074 0.81 (0.01)
Ratio 100 full 1.59 0.09 0.239 0.258 0.96 (0.01)
Ratio 200 full 1.56 0.06 0.196 0.203 0.96 (0.01)
Ratio 500 full 1.53 0.03 0.156 0.159 0.95 (0.01)
Cox naive 1.21 -0.29 0.080 0.078 0.06 (0.01)
Ratio 100 naive 1.32 -0.18 0.088 0.090 0.45 (0.02)
Ratio 200 naive 1.34 -0.16 0.085 0.089 0.50 (0.02)
Ratio 500 naive 1.35 -0.15 0.083 0.087 0.51 (0.02)
Cox robust 1.36 -0.14 0.124 0.187 0.53 (0.02)
Ratio 100 robust 1.44 -0.06 0.127 0.203 0.66 (0.01)
Ratio 200 robust 1.44 -0.06 0.122 0.196 0.67 (0.01)
Ratio 500 robust 1.45 -0.05 0.117 0.187 0.70 (0.01)
N = 100,000;n9 = 200;n; = 200;py = 0.002; weight_ . = 500. Log-normal covariate with 3 =

1.5. Full models fitted on entire cohort of size N. Naive: unweighted models fitted on case-cohort
of size ny + n;. Robust: weighted models fitted on case-cohort of size ny + n1. Ratio 100, 200, 500:
casebase models with ratio parameter set to 100, 200, and 500, respectively. Coef: coefficient. ModSE:
model-based standard error. BootSE: bootstrapped standard error. EmpSE: empirical standard error.
SE: standard error. Mean ModSE for all full models, all naive models, and robust Cox model. Mean
BootSE for robust casebase models.

used to quantify how much the mean bootstrapped standard error differs from the em-
pirical standard error and should be close to 0. A horizontal line is drawn in red at 0.
The solid black lines indicate a binomial distribution, dashed lines indicate a log-normal
distribution, and dotted lines indicate a normal distribution. The choice of robust case-
base model is arbitrary; the same patterns hold for all robust casebase models. The bias
and relative difference in standard error are close to 0 with a binomial distribution for all
cohort sizes. As cohort size increases, the bias and relative difference in standard error
increase with normal and log-normal distributions. The bias is larger with a normal co-
variate than with a log-normal covariate. The relative difference in standard is smaller
with a log-normal covariate for cohort sizes N = {5,000, 10,000} and with a normal co-
variate for cohort sizes N = {50, 000, 100, 000}.

Various cohort sizes were used to study the effect of sampling fractions, and conse-

quently sampling weights, on the proposed framework. The resulting sampling weights
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Figure 4.1: Effect of cohort size and covariate distribution
Rel diff in SE: relative difference in standard error (Mean BootSE — EmpSE)/Mean BootSE. Bias and rel

diff in SE of casebase ratio 500 robust models fitted on case-cohort samples across cohort sizes N={5,000,
10,000, 50,000, 10,000} and binomial, log-normal, normal covariate distributions. Solid black line: binomial
distribution; dashed line: log-normal distribution; dotted line: normal distribution.

ranged from moderate to extreme in order to study how weighted casebase fares in po-
tentially challenging settings. The use of different covariate distributions also served as

potential challenges to the framework, particularly the log-normal distribution which is

skewed.
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Chapter 5

A case-cohort study of breast cancer
incidence using cell-free DNA

methylation measurements

Following the simulation study described in Chapter 4, this chapter applies the pro-
posed weighted casebase framework to study breast cancer incidence using cell-free DNA
methylation measurements obtained from the Ontario Institute for Cancer Research (OICR).
The resulting weighted casebase model is compared to a weighted Cox model using a
weighted concordance and a weighted Brier score. Absolute risk curves are used to com-

pare the resulting risk estimates to Kaplan-Meier estimates.

5.1 Ontario Health Study

The Ontario Health Study (OHS) (Kirsh et al., 2022) is an ongoing longitudinal cohort
study that follows over 225,000 adults from the general Ontario population, represent-
ing 1% of the Ontario population. The study collects baseline data on lifestyle and en-
vironmental factors, and biological samples to understand their effects on participants’

health. Participants were recruited between 2009 and 2017. At study entry (baseline),
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all participants completed a questionnaire, which includes questions regarding socio-
demographic information, self-reported health status and physical measures, family his-
tory, and lifestyle factors. Subsequent follow-up questionnaires regarding work-history
and COVID-19 were sent out more recently.

A benefit to the study is the linkage to electronic health records and databases, subject
to participant consent. As such, all participants have ecologic environmental measure-
ments through linkage to the Canadian Urban Environmental Health Research Consor-
tium. allowing for measurements of environmental exposures. Over 188,000 participants
agreed to administrative health data linkage, including to the Ontario Cancer Registry.
A subset of almost 40,000 participants provided blood samples, allowing researchers to

perform whole genome-sequencing and genomics analyses.

5.2 Methods

5.2.1 Participant selection and methylation data

This thesis uses cfMeDIP-seq and participant data obtained from the OICR. The data
collection, and sequencing and processing protocols are described in Cheng et al., 2023.
A summary is provided here.

Plasma samples were obtained from participants of the OHS: 110 with breast cancer
and 108 participants without a prior cancer diagnosis up to the end of the follow-up pe-
riod. All participants were healthy at sample collection (baseline) with no prior history of
cancer. The 110 participants with breast cancer were subsequently diagnosed with inci-
dent breast cancer during follow-up. The 108 participants were controls selected from the
participants that did not develop cancer during follow-up and matched to cases on age,
sex, date of plasma collection, ethnicity, smoking status, and alcohol consumption fre-
quency. Methylated cfDNA were isolated through immunoprecipitation and sequenced
in batches using the Novaseq platform with controls and cases included in the same

batches (total of 8 batches). Over 9 million 300-bp regions were sequenced. Following
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removal of samples with poor sequencing quality and of controls that died or had subse-
quent cancer diagnosis, data from 80 incident cancer patients and 70 cancer-free controls
were included for a total sample size of 150 and over a million regions. Biological filter-
ing of methylation regions was performed, removing regions from sex chromosomes and
regions that are frequently methylated in blood, and retaining CpG dense and regulatory
regions. This left 101,955 methylation regions to be used as predictive covariates in later

analyses.

5.2.2 Dimension reduction and model building

The data are first divided into a train set, consisting of samples from batches 1 to 7, and
a test set, consisting of samples from batch 8. The train set includes 124 samples, the test
set 26 samples. Due to the large number of potentially uninformative regions, supervised
principal components is used to reduce the dimension of the dataset. The supervised
principal components method, described in Section 2.5, calculates principal components
on a reduced dataset containing only methylation regions with score statistics greater
than a threshold 6. In the train set, weighted Cox and weighted casebase models are fit-
ted using supervised principal components as the predictors. Then the test set is projected
onto the supervised principal components space. The models fitted on the train set are
predicted in the test set using the test set supervised principal components to calculate
linear predictors and probabilities of breast cancer diagnosis by time ¢ (absolute risk). In
order to determine the optimal number of principal components npc € {1,...,5} and
the threshold 6 € [0, ..., 3| (tuning parameters), repeated 10-fold cross-validation is per-
formed. The train set is divided into 10 folds with either 5 or 6 controls and either 6 or 7
cases. The sample size of each fold ranges from 11 to 13 individuals. The test set is not
used in cross-validation and is only used once the final model has been fitted on the train
set.

First, fold i is left out as a fold test and the remaining nine folds are used for training.

Univariate Cox models, estimating the time 7" from sample collection to time of breast
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cancer diagnosis as a function of methylation level at a single region, are fitted for each of
the 101,955 methylation regions and regions with score statistics larger than 6 are used to
calculate principal components. Weighted Cox and weighted casebase models are fitted
using j principal components and the linear predictor is calculated on fold i. A ratio
of case series to base series of size 100 is used for the weighted casebase model. The
linear predictor takes the form 8,PC; + ... + 3,PC; for the weighted Cox model and the
form Intercept + alog(time) + 5, PC; + ... + 3,PC; for the weighted casebase model. A
weighted concordance is calculated on fold i using the linear predictor and the mean
is taken over all 10 concordances. This is repeated for each principal component and
threshold combination. The 10-fold cross-validation is repeated 100 times since a single
cross-validation replicate might be affected by fold partition.

The tuning parameters with the largest mean concordance in cross-validation is used
to fit the final model with the full training data set. A weighted Cox and a weighted case-
base model is fitted on the entire train set with npc. , principal components and threshold
fOcox, and npc, principal components and threshold 6, respectively, then tested on the
test set. A ratio of case series to base series of size 100 is used for the weighted casebase
model. A weighted concordance (2.6) is used to assess the model’s ability to discriminate
between cases and controls in both the train and test sets. A weighted Brier score (2.6)
is used to assess the accuracy of the predicted probabilities of breast cancer diagnosis.
The predicted probabilities of breast cancer diagnosis during follow-up are calculated in
both the train and test sets and plotted against weighted Kaplan-Meier estimates of risk

to assess calibration.

5.3 Results

The tuning parameters chosen by 10-fold cross-validation is 2 principal components and a
threshold of 1.89 for both the weighted Cox and the weighted casebase models, resulting

in a total of 24 methylation regions. Table 5.1 shows the weighted concordances from
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weighted Cox and casebase models fitted on the train set in cross-validation consisting
of samples from batches 1 to 7 and predicted on the test set consisting of samples from
batch 8. The Cox and casebase models have identical concordances in the train set and

the casebase model has a slightly larger concordance in the test set.

Table 5.1: Weighted concordances from weighted Cox and casebase models

Train! Test
Cox 0.70 0.65
casebase 0.70 0.68

1 Mean concordance from re-
peated cross-validation.

Figure 5.1 shows weighted Brier scores over follow-up time for the weighted Cox and
casebase models calculated in the train set (A) and in the test set (B). The Brier scores are
generally smaller for the Cox model than for the casebase model in the train set except for
a few time points. In the test set, the Brier scores nearly overlap for the two models. The
Brier scores in the test set are larger than those calculated in the train set, indicating again

that both models are overfitted.
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Figure 5.1: Weighted Brier score on train and test sets
(A) Train set. (B) Test set. CB = casebase.
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Figure 5.2 shows the predicted probabilities of breast cancer diagnosis calculated from
the casebase and Cox models, and Kaplan-Meier estimates. The train and test sets were
divided into two groups based on the median of the linear predictor from the weighted
Cox model, risks were estimated for the individuals of each group, and the mean proba-
bilities for each of the two groups are shown in the figure. The fitted models overestimate
risk when comparing to the Kaplan-Meier in the above median groups, especially notice-
able in the test set as shown in Figure 5.2(B). Beyond 4 years of follow-up in the train set
in Figure 5.2(A), the Kaplan-Meier curve in the above median group quickly jumps to a
risk of 1 due to the lack of censored individuals beyond that time point. Using the median
of the linear predictor from the weighted casebase model does not change Figure 5.2(A)

and does not affect conclusions drawn from 5.2(B).
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Figure 5.2: Absolute risk curves on train and test sets
(A) Train set. (B) Test set. CB = casebase. KM = Kaplan-Meier.
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5.4 Ethics approval

Ethics approval of protocols to use the plasma samples from the OHS was obtained by

Cheng et al., 2023 (protocol #34088). The full statement is included here:

Patient plasma samples were obtained from the Ontario Health Study (OHS)
with protocols approved by the University of Toronto Health Sciences research
ethics board (protocol #34088). All participants gave written informed consent
prior to participation. All samples and participant data were deidentified and
assigned unique research IDs. Original OHS participant and CCO IDs are not
known to anyone outside the research group. Supplementary tables do not

contain any information that enables identification of the original participants.
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Chapter 6

Discussion

This thesis proposed a weighted casebase framework that aimed to provide an alternative
to existing weighted and robust Cox methods in the context of case-cohort data. Although
the Cox proportional hazards model is popular due to the unspecified nature of the base-
line hazard, it requires the proportional hazards assumption which may not always be
satisfied, and for quantities like the absolute risk, will require a separate estimation of the
baseline hazard. The existing casebase framework, besides being fully parametric and
thus not needing a two-step estimation, can be easily implemented in software that sup-
port logistic models. The proposed framework is an extension of the existing one with the
addition of weights suitable for biased sampling study designs and bootstrapped stan-
dard errors for the coefficient estimates.

Chapter 3 showed that simply supplying weights to the likelihood provides coefficient
estimates with small bias but the mean standard errors of these estimates will underesti-
mate the true standard errors. Bootstrapping provides an improved standard error esti-
mate, with coverage probabilities closer to a nominal probability of 0.95. The simulations
in this chapter showed that weights can be implemented through modification of case-
base sampling or through addition of weights to glm. Both methods had similarly small
bias and good coverage probabilities. However, the weights in glm method (weighting

the likelihood) provide smaller mean bootstrapped and empirical standard errors.
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Chapter 4 showed a simulation study with generated cohort and case-cohort data un-
der varying covariate distributions and cohort sizes. The proposed framework provided
coefficient estimates with small bias and good coverage probabilities in settings with a
single binomial covariate. Although increasing the ratio parameter did not dramatically
shrink the model-based or bootstrapped standard errors, consistent with Hanley and O. S.
Miettinen, 2009 that a ratio of 100 is sufficient, the standard errors do tend towards the
Cox estimates and could potentially achieve identical estimates at the cost of computa-
tional resources and time.

Under the single normal covariate setting, the proposed framework and the robust
methods in general show poor performance as shown by the biased coefficient estimates
and/or the underestimated standard errors. Particularly, control sampling probabilities
of 0.004 and 0.002 provide both large bias and underestimated standard errors, possibly
because the sampling weights are too large which could lead to model instability.

In contrast, the single log-normal covariate setting resulted in coefficient estimates
with smaller bias than under the normal setting. Additionally, the bootstrapped standard
error estimates are close to the empirical estimates under cohort sizes of N = {5, 000, 10,000}
unlike the normal setting. While the coefficient estimates show small bias under cohort
sizes of N = {50,000, 100,000}, the standard errors are underestimated, resulting in poor
coverage probabilities. Strangely, the mean bootstrapped standard errors on the case-
cohort data are smaller than the mean model-based standard errors on the full cohort
data, indicating that there may have been issues in model fitting under these simulation
settings. The Cox model on the full cohort has poor coverage owing to the moderate
bias of the coefficient estimates, possibly due to violation of the proportional hazards as-
sumption. It is likely that the casebase models on the full cohort would have had similar
poor coverage probabilities if the associated standard errors were not so large, particu-
larly compared to those of the Cox models. The bootstrapped standard errors of the ratio
100 and 200 robust models are smaller than the standard errors of the full models under

N = 50,000 and similarly for all casebase robust models under N = 100, 000.
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The performance of the proposed framework is similar to that of robust Cox. The
bias of the coefficient estimates are nearly identical in all the simulations with slightly
smaller bias under cohort sizes of N = {10, 000, 50, 000, 100, 000} with a single log-normal
covariate. However, robust Cox provides smaller standard errors than the proposed boot-
strapped standard errors. Weighted casebase also has a longer computation time due to
the base series sampling. The bootstrapped standard errors tend towards those of the ro-
bust Cox as the ratio parameter increases. Increasing the ratio parameter from 100 to 500
only slightly decreased the standard error, indicating that a ratio parameter larger than
500 will be needed to achieve smaller standard errors than those from Cox and to achieve
narrower confidence intervals.

The simulation study also demonstrated the importance of including sampling weights
in the analysis of case-cohort data. The naive models fitted on case-cohort data but with-
out weights showed poor performance for both Cox and casebase. The coefficient esti-
mates have large bias, resulting in very poor coverage probabilities. Although the mean
model-based standard errors are close to their respective empirical standard errors, these
standard error estimates are incorrect. Without inclusion of weights, the data are treated
as if the included individuals are a representative sample of the population. This is not
the case, however, since cases were purposely over-sampled. As a result, the distributions
of the case-cohort sample and the full cohort will not be the same since selection of the
case-cohort sample depended on event status (Pfeffermann, 1996). Generalizations to the
tull cohort and the general population may be incorrect and misleading.

Overall, the simulation study shows the proposed framework works under certain
cohort sizes and covariate distributions. A major limitation of the framework is the boot-
strapped standard error. A better standard error estimate is needed, particularly for the
normal and log-normal settings. Although the stratified bootstrapping did not cause
any problems under the binomial setting, it is computationally expensive, requiring 1000
bootstrap replicates for a single standard error estimate and several days of computation.

An ideal standard error estimate would be model-based such that additional separate

43



model fitting, as in the bootstrapping method, is not necessary and will reduce computa-
tion time and memory usage.

The use of stratified bootstrapping ensured an equal number of cases and controls
were included in each bootstrap replicate. With non-stratified bootstrapping, this would
not necessarily be true and different bootstrap replicates would have more or fewer cases
and controls. It would be of interest to investigate whether the standard errors obtained
under non-stratified bootstrapping would be larger due to the increased variability in the
number of cases and controls. Survey methodology often deals with weighted analysis
to account for sampling design and non-response bias. There are variance estimators for
designs with weighting that could be adapted for the case-cohort design and further in-
vestigation of such literature is needed (Pfeffermann, 1993; Pfeffermann, 1996; Skinner
and Mason, 2012). There also exist survey resampling methods that use stratified boot-
strapping and which suggest additional scaling of sampling weights may be needed for
the currently implemented bootstrapped standard errors (Rao, Wu, and Yue, 1992; Rao
and Wu, 1988; Kovar, Rao, and Wu, 1988; Kolenikov, 2010). A better standard error esti-
mate, ideally robust to small control sampling probabilities and choice of covariate, could
be derived from methods described in survey methodology literature.

Chapter 5 of this thesis illustrated the proposed framework on high-dimensional methy-
lation data from the Ontario Health Study and incidence of breast cancer. The dataset was
reduced from almost 110,000 methylation regions to 2 principal components calculated on
24 regions. Weighted Cox and casebase models were fitted on the train set, consisting of
the first 7 batches, then tested on the test set, consisting of batch 8. Both models had
a weighted concordance of 0.70 in the train test. The weighted casebase model had a
weighted concordance of 0.68 in the test set, slightly better than the 0.65 of the weighted
Cox model. The concordances in the train set indicate good discrimination between cases
and controls but the decreases in the test set suggests model overfitting. Figure 5.1 shows
Brier scores over follow-up time calculated in (A) the train set and (B) the test set. The

Brier scores from both models overlap and are close to each other, with slightly smaller
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scores from the Cox model. Thus, the predictive accuracy of the two models are similar
with slightly better accuracy from the Cox model. The Brier scores are overall smaller
in the train set than in the test set, another sign that the models overfit the train set. A
similar conclusion can be drawn from the absolute risk figures.

Figure 5.2(A) shows the curves estimated on the train set. Both models overestimate
the risk probability in the above median group prior to 4 years of follow-up, before the
Kaplan-Meier estimates rapidly increase due to lack of censored individuals in the above
median group. If there were still censored individuals in the risk set after 4 years of
follow-up, the Kaplan-Meier estimates would not be so large. Nearly all controls were
in the below median group, showing that the median linear predictor was able to almost
perfectly separate cases from controls in the train set and another indicator of overfit-
ting. Figure 5.2(B) shows the absolute risk curves estimated on the test set. Both models
have estimates consistently larger than the Kaplan-Meier estimates but are similar to each
other. Considering the incidence rate of breast cancer in Ontarian females in 2022 is pro-
jected to be 208.1 cases per 100,000 females and 383.1 cases per 100,000 females for ages
40 to 59 and ages 60 to 79, respectively (Ontario Health (Cancer Care Ontario), 2022), the
models overestimate the risk probabilities, with predicted probabilities going up to 0.024.
In the test set, there are no large jumps in the Kaplan-Meier estimates since there are cen-
sored individuals until the end of follow-up in the above median group. Figure 5.2 shows
the benefit of using casebase to estimate the predicted probabilities compared to Cox: the
estimates are continuous over follow-up time, similar to how the theoretical probabilities
are continuous over time (Kleinbaum and Klein, 2012b). It is also easier for clinicians to
interpret continuous estimates than step function estimates. The models did not not have
good discrimination of cases and controls in the test set, based on their weighted concor-
dances. Panel B also shows the overestimation of risk in the below groups compared to
the Kaplan-Meier estimates, particularly beyond 4 years of follow-up. In short, the fitted

Cox and casebase models were overfitted to the train set, resulting in poorer performance
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in the test set. Additionally, both models greatly overestimated the risk of breast cancer
in both the train and test sets.

The somewhat poor performance and overestimation of risk in these models indicate
that improvements are necessary before conclusions and implications of the results can be
drawn. First, supervised principal components only include regions with large enough
association to the outcome. The resulting principal components may describe the train
set well but overlook regions that would otherwise be important in the test set. Since the
train set is small and the methylation data contain many zeroes, the score statistic may be
sensitive enough that removing or adding an individual could be the difference between
including a region or not in the principal components. While the cross-validation results
showed best concordance with 2 principal components, additional models could be fitted
with more than 2 principal components. Alternatively, unsupervised principal compo-
nents could be used, without considering association to the outcome of the train set. Ad-
ditionally, alternative splitting of the train and test sets could be used. Although the same
protocols were used on all the batches and no obvious differences were observed, the two
sets could be drawn from combining all the batches together. Stratified sampling could
be used to ensure the age distribution, time of diagnosis since plasma collection, length of
follow-up, and proportion of cases are similar in the two groups. Another consideration
is the small sample size of the study. There were a total of 150 individuals, much smaller
than the number of methylation regions considered. The analysis of the dataset would
greatly benefit from having more samples. However, increasing the sample size is costly

and challenging since it requires finding incident cases in a limited cohort size.
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Chapter 7

Conclusion

This thesis is primarily concerned with the proposal of a weighted casebase framework
in the context of case-cohort data. The original casebase framework, proposed as an al-
ternative to the Cox proportional hazards model, did not have any methods for weights,
unlike the Cox model. An initial simulation study in Chapter 3 showed good properties
of the method. Chapter 4 showed the results of a simulation study that showed the pro-
posed framework is comparable to weighted and robust Cox methods, and demonstrated
the importance of including weights in analyses to avoid biased and incorrect estimates.
The simulation study also showed the proposed framework is sensitive to control sam-
pling probabilities and the choice of covariate distributions. This also holds true for the
weighted Cox models. Chapter 5 applied weighted Cox and casebase models to predict
the risk of developing breast cancer using methylated regions in pre-cancer plasma sam-
ples from the Ontario Health Study. Considerable fine-tuning of these models is necessary
before making conclusions or generalizing results. However, it appears that there are sig-
nals that can be detected in an individual’s blood DNA methylation prior to diagnosis
by common screening methods. Early diagnosis would greatly benefit quality of life and
medical care with earlier intervention.

Further work is needed to obtain a better standard error estimator that is computa-

tionally inexpensive and robust to sampling weights and covariate distributions. This
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will greatly improve the proposed framework and could be an attractive alternative to

weighted Cox methods.
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