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Abstract

Cancer develops when cells lose their ability to control division and form a tumor. Malignant
tumor cells can invade nearby tissues or spread (metastasize) to other parts of the body. Bone
is one of the most common sites for cancer to metastasize to. Bone Metastases (BM) can
result in inflammation, structural damage, and severe pain. 70 to 90% of patients with BM
suffer from severe pain. Therefore, detecting and controlling BM-associated pain has the
potential to improve the quality of life of BM patients.

This thesis project aimed to develop and evaluate an Artificial Intelligence (AI) pipeline
for detecting pain in cancer patients with BM by combining information from clinical texts
and radiographic images. The project fits within an ultimate research goal of enabling
early prediction and management of BM pain before it becomes distressing. It addressed
three specific objectives in three studies: 1) Construction of a Natural Language Processing
(NLP) pipeline to extract pain scores from consultation notes, 2) Construction of a radiomics
pipeline to extract BM lesion features from radiographic images, and 3) Development of a
radiomics-based machine-learning model of pain in patients with BM by combining NLP-
quantified pain scores with radiomic features.

In the first study, we trained and tested an NLP pipeline using publicly-available hospital
discharge notes and achieved a precision and recall of 0.86 and 0.83 in detecting sentence
level pain scores. The pipeline was then used to automatically extract and classify note-level
pain from clinical notes at our institution with 0.925 F1 score.

In the second study, a radiomics model was generated based on a novel
lesion-centerpoint-based geometric Regions Of Interest (ROIs). The geometric ROIs were
automatically delineated around lesion centerpoints that were manually pinpointed by
radiation oncologists on CT images. This allowed us to greatly simplify the data
preparation process. We demonstrated that, the introduced pipeline was successful in
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differentiating BM from healthy bones.
In the third study, a Machine Learning (ML) pipeline was developed to detect pain in

cancer patients with thoracic spinal BM. The study used data from 176 patients treated at
Cedar Cancer Center between January 2016 and September 2019. Our NLP pipeline was
used to extract pain scores from radiation oncology consultation notes. Radiomics features
were extracted from each ROI, and various ML classifiers were evaluated using precision,
recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (ROC-AUC).
The results showed that the pipeline was successful in differentiating between painful and
painless BM lesions with an accuracy, specificity, and ROC-AUC of 0.82, 0.85, and 0.83,
respectively.

Overall in this thesis, we developed a robust radiomics pipeline to identify painful BM
lesions in CT images. Our pipeline is fast and scalable as it is trained using NLP-extracted
pain scores from clinical notes and it requires just centerpoints to identify BM lesions in CT
images. This work represents the first step in building a clinically-practical pain detection
pipeline and is consistent with the ultimate goal of better managing pain in patients with
BM.
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Abrégé

Le cancer se développe lorsque les cellules perdent leur capacité à contrôler la division et
forment une tumeur. Les cellules de tumeur maligne peuvent envahir les tissus voisins ou
se propager (métastaser) à d’autres parties du corps. Les os sont l’un des sites les plus
courants pour les métastases cancéreuses. Les Métastases Osseuses (MO) peuvent entrâıner
une inflammation, des dommages structurels et une douleur intense. De 70 à 90% des patients
atteints de MO souffrent de douleur intense. Par conséquent, détecter et contrôler la douleur
associée à la MO a le potentiel d’améliorer la qualité de vie des patients atteints de MO.

Ce projet de thèse visait à développer et à évaluer un pipeline IA pour détecter la
douleur chez les patients atteints de MO en combinant des informations provenant de notes
cliniques et d’images radiographiques. Le projet s’inscrit dans un objectif de recherche qui
permettra ultimement la prédiction et la gestion précoce de la douleur MO avant qu’elle ne
devienne angoissante. Il comporte trois objectifs spécifiques dans trois études: 1)
Construction d’un pipeline du traitement du langage naturel (NLP) pour extraire les scores
de douleur à partir des notes de consultation, 2) Construction d’un pipeline radiomique
pour extraire les caractéristiques de lésion MO à partir d’images radiographiques, et 3)
Développement d’un modèle d’apprentissage machine basé sur la radiomique pour prédire
la douleur chez les patients atteints de MO en combinant les scores de douleur quantifiés
par NLP et les caractéristiques radiomiques.

Dans la première étude, nous avons formé et testé un pipeline NLP à l’aide de notes de
congé d’hôpital disponibles publiquement. Globalement, nous avons obtenu une précision et
un rappel de 0.86 est 0.83 dans la détection de la douleur. Le pipeline a ensuite été utilisé
pour extraire et classer automatiquement la douleur à partir des notes cliniques de notre
institution.

Dans la seconde étude, un modèle radiomique a été généré sur la base de régions
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d’intérêt (ROIs) géométriques originales, basées sur le centre de la lésion. Les ROIs
géométriques ont été délimitées automatiquement autour des centres des lésions ayant été
repérées manuellement par des radiothérapeutes à partir des images CT. Cela nous a
permis de simplifier considérablement le processus de préparation des données. Nous avons
démontré que le pipeline a pu différencier le MO des os sains avec succès.

Dans la troisième étude, un pipeline d’apprentissage automatique a été développé pour
détecter la douleur chez les patients atteints de cancer avec MO de la colonne thoracique.
L’étude a utilisé les données de 176 patients traités au centre de cancer des Cèdres entre
janvier 2016 et septembre 2019. Notre pipeline NLP a été utilisé pour extraire les scores de
douleur des notes de consultation en radiothérapie. Des caractéristiques radiomiques ont été
extraites de chaque ROI, et utilisées par divers classificateurs d’apprentissage automatique
qui ont été évalués en utilisant la précision, le rappel, le score F1 et l’aire sous la courbe
(AUC) des courbes d’efficacité du récepteur. Les résultats ont montré que le pipeline a réussi
à différencier les lésions BM douloureuses et indolores avec une précision, une spécificité et
une AUC de 0.82, 0.85 et 0.83, respectivement.

Dans l’ensemble, nous avons développé dans cette thèse un pipeline radiomique robuste
pour identifier les lésions MO douloureuses à partir d’images CT. Notre pipeline est rapide
et évolutif, car il est construit en utilisant des scores de douleur extraits du NLP des notes
cliniques et qu’il nécessite simplement des points centraux pour identifier les lésions MO dans
les images CT. Ce travail représente la première étape dans la construction d’un pipeline
de détection de la douleur pratique en clinique et est cohérent avec le but ultime qui est de
mieux gérer la douleur chez les patients avec MO.
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Preface and Contribution of Authors

The idea for this project was initiated by my supervisor, John Kildea, in 2015, when he
was doing the medical physics chart check of a patient receiving palliative radiotherapy for
bone metastases. While checking the CT simulation image of the patient, who an obviously
painful metastatic bone lesion, it occurred to him that maybe we can quantify and predict
pain by just looking at patients’ radiographic images. We sat down together and devised
a project to use artificial intelligence to analyze radiographic images of patients with bone
metastasis and quantify their pain scores.

This project has resulted in two published and one submitted original manuscripts
(Chapters 3, 4 & 5) that are integrated to this thesis. To the best of the authors’
knowledge, we were the first group who: 1) developed a lesion-centerpoint-based radiomics
pipeline to separate metastatic and healthy bone lesions; 2) developed a generalizable
Natural Language Processing (NLP) pipeline to detect pain from consultation notes of
cancer patients; and 3) combined NLP extracted pain scores with lesion-centerpoint-based
radiomics features to build a predictive model of cancer pain for patients with spinal bone
metastasis. The contributions of each author to the manuscripts are detailed below.

Journal publications

1. Chapter 3: Naseri H, Kafi K, Skamene S, Tolba M, Faye MD, Ramia P, Khriguian
J, Kildea J. “Development of a generalizable natural language processing pipeline to
extract physician-reported pain from clinical reports: Generated using
publicly-available datasets and tested on institutional clinical reports for cancer
patients with bone metastases”. J Biomed Inform. 120:103864 (2021)

I designed this study based on the idea presented by Dr. John Kildea. I gathered

https://doi.org/10.1016/j.jbi.2021.103864
https://doi.org/10.1016/j.jbi.2021.103864
https://doi.org/10.1016/j.jbi.2021.103864
https://doi.org/10.1016/j.jbi.2021.103864
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information from publicly-available sources and our institution and developed an
application for labeling “ground truth” pain scores. I created the natural language
processing approach, performed the tests, and wrote the manuscript. Throughout the
study, Dr. Kamran Kafi,Dr. Sonia Skamene, Marwan Tolba, Mame Daro Faye, Paul
Ramia, and Julia Khriguian supplied expert-identified pain scores as well as expert
knowledge and counseling. Dr. John Kildea served as the study’s director and
contributed both financial and computational resources to the project. He also edited
the manuscript. All authors reviewed the paper and approved the final manuscript.

2. Chapter 4: Naseri H, Skamene S, Tolba M, Faye MD, Ramia P, Khriguian J, Patrick
H, Andrade Hernandez AX, David M, Kildea J “Radiomics-based machine learning
models to distinguish between metastatic and healthy bone using lesion-center-based
geometric regions of interest”. Scientific Reports. 12: 9866 (2022)

I designed this study in consultation with Dr. John Kildea. Under an approved
Research Ethics Board protocol, I gathered CT images of patients from our
institution and developed an application for labeling ground truth bone lesion-centers
in images. I created the Radiomics and machine learning pipelines, conducted the
analysis, and wrote the manuscript. Dr. Marc David participated in project
conceptualization and methodology planning. Dr. Sonia Skamene, Marwan Tolba,
Mame Daro Faye, Paul Ramia, and Julia Khriguian supplied expert-identified
metastatic bone lesion-center points as well as expert knowledge throughout this
study. Haley Patrick and Aixa Andrade Hernandez participated in data collection
and identified the center points of healthy bones in CT images. Dr. John Kildea
contributed to the conceptualization, investigation, supervision, funding acquisition,
and editing of the original draft. The final manuscript was reviewed and approved by
all of the authors.

3. Chapter 5: Naseri H, Skamene S, Tolba M, Faye MD, Ramia P, Khriguian J, David
M, Kildea J “A scalable radiomics- and NLP- based machine learning pipeline to
distinguish between painful and painless thoracic spinal bone metastases: Algorithm
Development and Validation” (Accepted for publication in JMIR-AI - in press)

Dr. John Kildea and I collaborated on the design of this study. I gathered CT scans
and patient consultation records from our institution’s database. I developed the

https://doi.org/10.1038/s41598-022-13379-8
https://doi.org/10.1038/s41598-022-13379-8
https://doi.org/10.1038/s41598-022-13379-8
https://doi.org/10.2196/44779
https://doi.org/10.2196/44779
https://doi.org/10.2196/44779
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pipelines for machine learning, radiomics, and natural language processing, carried
out the analysis, and wrote the manuscript. Dr. Marc David was involved in the
conceptualization of the idea. Dr. Sonia Skamene, Marwan Tolba, Mame Daro Faye,
Paul Ramia, and Julia Khriguian contributed their expertise to this study by
providing expert-identified metastatic bone lesion centers and expert-extracted pain
scores. Dr. John Kildea helped with the draft’s conception, investigation, supervision,
funding procurement, and editing. All of the writers reviewed and approved the final
manuscript.

Open source code contribution

During my Ph.D. research I developed three open-source software applications.

1. Naseri, H., “texTRACTOR; physician-reported pain scoring tool” (2020)

texTRACTOR (https://github.com/hn617/texTRACTOR) is a Python Flask-based
web application that allows users to annotate physician-reported pain scores in selected
patients’ consultation notes. This tool was utilized in the studies described in Chapters
3 and 5.

1. Naseri, H., “diCOMBINE; 3D DICOM visualization and annotation tool” (2021)

diCOMBINE (https://github.com/hn617/diCOMBINE) is a web application for 3D
DICOM visualization and lesion segmentation that allows users to review 3D DICOM
images of selected patients and label their lesion centerpoints. It also enables users to
cross-validate lesions that have been annotated by other users. This tool was used in
the research described in Chapters 4 and 5.

3. Naseri, H., “paINDICATOR; a pain detection pipeline” (2021)

paINDICATOR (https://github.com/hn617/paINDICATOR) is a python-based
radiomics pipeline for identifying pain in cancer patients using consultation notes and
radiographic images. Chapters 4 and 5 explain the pipeline.

https://github.com/hn617/texTRACTOR
https://github.com/hn617/diCOMBINE
https://github.com/hn617/paINDICATOR
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Chapter 1

Introduction

1.1 Cancer

If any of the cells in our body lose their ability to control cell division, they may disrupt
homeostasis and can form a tumor (also called a neoplasm). A tumor is called benign (non-
cancerous) if it grows in a single location and does not have the ability to spread into nearby
tissues. Cancerous or malignant tumors, on the other hand, can invade nearby tissues or
spread to other parts of the body [1]. As a malignant tumor grows, it requires more oxygen
and nutrients. Therefore, it creates new blood vessels. These blood vessels allow cancer cells
to enter the bloodstream or lymph system and spread to other parts of the body [2]. Cancer
that has spread to another part of the body is referred to as metastatic cancer, whereas the
original cancer is referred to as the primary tumor.

The pathological examination of a tumor’s histology, along with a physical exam, and
imaging, are used to determine the type of the cancer as well as its potential spread. This
process is called cancer staging [3]. Staging is an essential step in deciding which anti-cancer
treatment to pursue and in providing a preliminary evaluation of the patient’s prognosis
(such as their chance of survival). The “TNM staging” system, which classifies the size of
the primary tumor (T), the absence or presence of regional lymph node invasion (N), and
the absence or presence of distant metastases (M), is the most widely used system in cancer
evaluation [3].

Almost all kinds of cancer have the potential to metastasize anywhere in the body. The
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lungs, liver, bones, and brain are the most common sites for cancer metastasis [2, 4, 5].
Figure 1.1 illustrates some of the common cancers and their most common metastasis sites.
Cancer that spreads to the bones is referred to as Bone Metastases (BM) or metastatic bone
disease.

Figure 1.1: Major cancers and their most common metastasis sites. Figure reprinted
from [6] under a Creative Commons license.

1.2 Bone metastases

The Canadian Cancer Society predicts that one in every two Canadians will be diagnosed
with cancer during their lifetime [7]. Unfortunately, more than 50% of cancers are diagnosed
at the stage when they have already metastasized to another part of the body [8]. It is
estimated that up to 70% of cancers metastasize to the bone in their metastatic stage [9].



6 1. Introduction

Breast and prostate cancers are the most common types of cancer that spread to the bones,
followed by lung and kidney cancers [10, 11]. BM can result in inflammation, structural
damage, and more frequently, excruciating pain.

1.3 Cancer pain

Pain is the most common symptom of metastatic cancers. Various studies have shown that
70-90% of patients with metastatic cancer suffer from severe pain [12–14]. Cancer pain is
multifaceted, with biological, psychological, social, and cultural factors all playing a role in
how it is experienced [15].

Tumors induce pain in a number of different ways. They can press on or invade healthy
innervated tissue, create inflammation or infection, or release chemicals that amplify the
sensation of pain in response to stimuli that would otherwise be painless [16]. In metastatic
cancers, pain can be caused by a more than one mechanism. A patient with metastatic
breast cancer, for instance, may suffer from neuropathic pain from chemotherapy in addition
to abdominal pain from liver metastases and back pain from spinal metastases. In such a
circumstance, pain management would be insufficient unless each potential source of pain is
carefully explored and evaluated

[17]. In Section 1.7 I will go into more detail about pain assessment.

1.4 Pain management in bone metastases

The clinical treatment of cancer pain is typically based on one or more of the following
three modalities: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), opioid therapy, and
Radiation Therapy (RT) [18]. NSAIDs are the primary method of pain control in many
diseases, including cancer. They provide significant pain relief for patients with mild to
moderate pain. In addition, the anti-inflammatory effect of NSAIDs make them the ideal
treatment for bone pain caused by inflammation during extensive tissue invasion and
destruction. However, NSAIDs are ineffective for treating severe BM pain due to the lack
of long-lasting effects and potential side effects of their prolonged use. Opioids are the
second-most frequently prescribed medication for treating cancer pain. Since opioids
provide longer-lasting pain relief than NSAIDs, more than 80% of BM patients use them to
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manage moderate to severe BM pain [13]. Significant adverse effects of opioids include
physiological dependence and addiction. Another significant issue is sensitization, which
reduces opioids’ effectiveness when used for extended periods of time. RT is considered the
most effective method of pain management for metastatic cancer patients. Several studies
have reported that RT of painful BM can provide 60-90% of patients with either partial or
complete pain relief [19–22].

1.5 Radiation therapy

RT (also known as radiotherapy) is regarded as one of the most effective cancer treatments,
alongside chemotherapy and surgery [21]. It can be used to cure cancer (curative-intent RT)
and/or control symptoms by slowing down tumor growth (palliative-intent RT). Curative-
intent RT is a cancer treatment that uses high doses of radiation to destroy cancer cells while
causing minimal harm to healthy cells and surrounding tissues. Over 50% of cancer patients
undergo RT in specialized cancer centers over the course of their treatments [23].

RT can be delivered from within the body by positioning a radioactive source in or near
the tumor (brachytherapy) or from outside the body by employing a device to direct the
beam at the tumor (External Beam Radiation Therapy, or EBRT). High-energy photon
EBRT is by far the most common form of RT. High-energy X-ray photons (MeV range) are
generated in a linear accelerator, or linac, by accelerating electrons and then colliding them
with a tungsten target to produce bremsstrahlung X-ray photons. The X-ray beam is then
focused on the area of the tumor, where it can cause DNA damage and ultimately kill the
rapidly-dividing cancer cells.

To minimize the likelihood of causing long-term collateral damage to normal cells,
curative RT is typically administered as multiple daily fractions of small doses. Moreover,
several beam delivery techniques have been developed to match the shape of the external
beam to the tumor and minimize the radiation dose to normal tissue. The most commonly
used technique is called three-dimensional conformal RT (3D-CRT) which uses radiation
beams that are collimated and combined from different directions to match the shape of
the tumor. Another commonly-used technique is Intensity-Modulated Radiation Therapy
(IMRT), which modifies both the intensities and the directions of multiple beams to closely
match the shape of the tumor. IMRT may be delivered with multiple static beams or as
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one or more arcs of radiation delivered continuously as the beam delivery device (head of
the linac) rotates around the patient [24].

1.6 Radiotherapy for palliative care

The goal of palliative RT, unlike curative RT, is not to cure the cancer per se, but rather to
alleviate or eliminate their symptoms and improve the patient’s quality of life [25]. Therefore,
a single large dose of radiation can be utilized safely without causing significant side effects.
It has been demonstrated that palliative RT is an effective, time-efficient, well-tolerated, and
cost-effective method for managing cancer symptoms [26]. About 35%-40% of all palliative
RTs are intended for palliation of painful BM [20, 27] and over 60% of patients with BM
report significant pain alleviation after palliative RT [28].

Despite the fact that RT is an effective treatment option for palliation of BM pain,
some studies suggest that RT is frequently administered too late in the progression of the
disease [29, 30]. A study by Rosen et al. (2020) [31], showed that up to 60% of patients
treated for painful BM had evidence of their lesions being visible on images taken within
the four months prior to their RT. Multiple studies have shown that providing BM patients
with early palliative care improves both their overall survival and quality of life [31–33]. One
study showed that the likelihood of experiencing severe pain was reduced by at least 30%
in patients who received early palliative care [34]. An early palliation approach begins with
the identification and prioritization of patients who would benefit from such care.

1.7 Pain assessment in bone metastases

A number of measures have been developed to assess pain in cancer patients [35, 36]. The
11-point numeric rating scale, a verbal rating scale (mild, moderate, or severe), or a visual
analogue scale [37] that uses drawings of faces are examples of uni-dimensional pain intensity
scales. They can be used to validate the presence of pain, learn some basic details about
it, track its progression over time, and assess how well pain management is working [38].
Multidimensional pain assessment tools, such as the Brief Pain Inventory and the McGill
Pain Questionnaire Haefeli2006PainAssessment, can be used to measure the location and
intensity of pain in cancer patients as well as any disability or associated symptoms brought
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on by it. These tools can help in the identification of symptom clusters as well as the
systematic assessment of the psychological and physiological aspects of pain [37].

Due to the subjective nature of these assessment methodologies, there is considerable
variation in the objective measure of pain recorded by healthcare practitioners [39].
Moreover, there has been a documented lack of sufficient recording of pain evaluation using
these methods, which leads to inappropriate pain monitoring and pain treatment [40].
Several clinician-driven tools and recommendations have been proposed to resolve these
deficiencies [17]. Adapting standardized assessment methods, more frequent and systematic
collection of patient-reported pain outcomes, and improved communication between
patients and healthcare providers (doctors, nurses, and other healthcare workers) are
among the proposed solutions [41–43].

While standard pain assessment techniques can capture current and historical pain
patterns in cancer patients, they have very limited and inconsistent predictive potential for
future pain [44–46]. As a result, they are ineffective in identifying and prioritizing patients
who would benefit from early palliative care. To alleviate this burden, numerous tools and
guidelines for early palliative care have been proposed in recent years. [47–54]. However,
recent studies have drawn attention to the limitations of these tools and proposed
data-driven methods to find indicators predictive of cancer outcomes that can then be used
to identify patients who would benefit from early palliative care [55, 56]. The abundance of
patient-centric cancer data stored in routinely-recorded Electronic Health Records (EHRs)
in conjunction with the availability of modern Artificial Intelligence (AI) technologies make
it conceivably possible to build data-driven tools to predict cancer outcomes such as
survival, pain, and distress.

1.8 Artificial intelligence for outcome prediction

The vast majority of the cancer-related data contained within EHRs, such as oncology
consultation notes and radiographic images, are, unfortunately, stored in an unstructured
formats. However, by utilizing AI techniques, it is possible to process these unstructured
data and extract structured information from them. In addition to this, AI models are able
to “learn” from the data in order to recognize statistical trends, which in turn can be used
to draw certain conclusions, predict outcomes, and improve treatment procedures. For
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instance as is the subject of this thesis, Natural Language Processing (NLP) techniques can
extract quantifiable information from clinical texts, radiomics technologies can extract
tumor phenotype information from radiographic images, and machine-learning techniques
can learn from both text and radiomic data and predict future events such as tumor
growth, survival, and distress. The next chapter of this thesis provides a more in-depth
explanation of these strategies. Although various authors have developed NLP and
radiomics strategies and have demonstrated their potential in predicting patient outcomes,
as yet no group has reported a strategy to combine these AI technologies in order to detect
pain in cancer patients with BM. This thesis reports the development and implementation
of such a combined NLP and radiomics machine-learning pipeline.

1.9 Thesis objectives

The hypothesis of this thesis research project is that by combining cancer symptoms
(extracted from clinical texts) with tumor imaging phenotypes (extracted from
radiographic images), it is possible to radiographically detect pain in cancer patients with
BM using AI. The ultimate goal of this line of research is to enable the early prediction
and management of BM pain in patients before it becomes distressing. This project had
three main objectives (each with respective sub-objectives) that built towards the
overarching objective of developing, implementing, and evaluating an AI pipeline to detect
pain in the simulation-CT images of cancer patients with BM.

Objective 1: Construct an NLP pipeline to extract pain scores from the consultation
notes of patients: a) Use a publically-available de-identified clinical note database to
develop a generalizable NLP pipeline to process unstructured clinical notes and quantify
physician-reported pain scores. b) Verify the generalizability of the developed NLP pipeline
by processing retrospectively-collected radiation oncology consultation notes of cancer
patients with BM and extracting physician-reported pain scores from them.

Objective 2: Construct a radiomics pipeline to extract BM lesion features from
radiographic images of patients: a) Build a novel tool for fast labeling of BM
lesion-centerpoints in radiographic images (CT scans) and generate lesion-center-based
geometric Regions Of Interest (ROIs). b) Develop a methodology to analyzesimulation CT
images and extract radiomics imaging phenotypes using lesion-center-based geometric ROIs
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(Chapter 4). c) Verify the feasibility of building a radiomics-based machine learning
pipeline to distinguish between healthy and metastatic bone lesions using the methodology
developed in objective 2.a.

Objective 3: Combine the NLP-quantified pain scores extracted in objective 1 with
the radiomic features extracted in objective 2, to develop and evaluate a radiomics-based
machine-learning model of pain in patients with BM.

1.10 Thesis organization

This thesis consists of six chapters and one appendix. Because it is a manuscript-based
thesis, each chapter is self-contained, and there is some overlap of concepts and references
between chapters.

Chapter 2 is broken into four sections that describe the methods employed to
accomplish the objectives of this thesis: NLP, radiomics, and machine learning, and
performance evaluation. Each section discusses the relevant mathematical and
computational foundations as well as actual and potential clinical applications, challenges,
and best practices.

Chapter 3 describes the first original manuscript based on objective 1. Two independent
publicly-available de-identified hospital discharge summary corpora were used to build a
generalizable NLP pipeline for pain extraction from clinical notes. Following that, the NLP
pipeline was validated by analyzing and scoring pain in radiation oncology consultation notes
of cancer patients treated at our institution.

Chapter 4 describes the second original manuscript, which is based on objective 2. In
this study, a novel lesion-centerpoint labeling application was introduced, and then the
feasibility of using it for radiomics-based studies was investigated. Using the introduced
lesion-centerpoint-based geometric ROIs, a radiomics-based machine-learning pipeline was
developed to separate metastatic bone lesions from healthy bone.

Chapter 5 describes the third original manuscript. In this study, methods from chapters
3 and 4 were combined to build an NLP-radiomics pipeline to detect pain in the simulation-
CT images of patients with spinal BM treated using RT at our institution. The pipeline
took into account the normalization of images as well as the imbalance in the proportion of
patients who experience different levels of pain.
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Chapter 6 summarizes the scientific originality of each manuscript and how they were
integrated to meet the thesis’s overarching objective. In addition, it discusses the significance
of our findings for future prediction and management of BM pain, as well as some of the
clinical limitations and potential research opportunities that are associated with them.
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Chapter 2

An introduction to artificial
intelligence tools in medicine

2.1 Natural Language Processing

NLP is a computational strategy that synthesizes large databases of free-text data and
extracts meaningful quantitative data from them. This chapter focuses on the workflow and
application of NLP algorithms to medical text documents for precision medicine.

2.1.1 Electronic health records

Electronic Health Records (EHRs) are digitized medical records of patients that are used in
daily healthcare administration, delivery, and research. These records include tabular data
(such as administrative and billing data, patient demographics, and lab and test results),
unstructured data (such as clinician-written medical histories, consultation notes, and
discharge summary notes), and imaging data (like radiology images).

More than half of all EHRs and up to 70% of patient data utilized by doctors and outcome
researchers are unstructured data (primarily in the form of free-text) [1]. Because they have
little to no content, organization, or quality standardization, these unstructured notes are
rarely used to improve clinical decision support at the point of care, rather than before or
after it. Thus, to this end, it would be extremely beneficial if such abundance of free-text
data could be converted to quantitative data.
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NLP combined with Machine Learning (ML) provides a computational means for
synthesizing massive databases of free-text data and extracting quantitative structured
data from them. The NLP algorithms have the potential to be used to improve clinical
decision support by drawing conclusions from EHRs at the point of care when tabular or
patient-reported structured data are not available [2].

2.1.2 Natural language processing for clinical decision support

For over 20 years, NLP algorithms have been utilized on clinical notes for a variety of clinical
point of care decision support applications including outcome prediction, keyword searches,
diagnosis categorization, and cancer phenotyping extraction [3–8].

For information extraction, there are two basic NLP approaches: rule-based, and ML-
based. Each method’s success is determined by the nature of the problem. In a rule-
based approach, predefined sets of rules are used to process text and extract information.
This method works well when the desired goal can be attained with a small set of rules.
A rule-based strategy, for example, is the best choice for extracting a given symptom or
outcome from a particular sort of semi-organized clinical note [9]. However, when the target
information appears in a wide variety of contexts within the free text and cannot be extracted
with a small number of rules, the rule-based approach fails [10]. In this thesis, we will discuss
several strategies for addressing this challenge to construct generalizable rule-based NLP
algorithms for symptom extraction.

In ML-based methods, supervised computer algorithms are trained to discover patterns
from a labeled set of free text notes. Models based on ML are often trained on a large
dataset of labeled data. In general, ML-based approaches perform worse than rule-based
approaches despite their better generalizability [9]. As a result, these models are better
suited to projects with a lot of data variance or where the NLP rules are not easily applied.
For example, ML-based natural language processing has been used to extract tumor features
and event distribution [7, 11].

2.1.3 Thesaurus of biomedical vocabulary

To improve the effectiveness of medical information retrieval, NLP pipelines are normally
combined with standard thesauri of biomedical vocabulary. Such thesauri are designed to
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categorize clinical terminologies into standardized tables with a unique code for each
medical concept. Several studies have proved that the use of a medical thesaurus can
significantly improve the retrieval efficiency of an NLP pipeline for data mining, keyword
search, abbreviation mapping, and extracting hierarchical relationships between medical
terminologies [12]. The Unified Medical Language System (UMLS) Metathesaurus® [13],
maintained by the US National Library of Medicine (NLM), is the largest and the most
commonly used thesaurus in the biomedical domain.

Metathesaurus aggregates more than 200 biomedical databases containing over two
million terms, 900,000 biomedical concepts, and 12 million relationships. Metathesaurus
includes vocabulary from various databases, including ICD [14], SNOMED CT [15],
MeSH [16], and Gene Ontology [17]. The majority of them are updated on a weekly basis.
Figure 2.1 illustrates some of the databases that are included in Metathesaurus. It provides
medical definitions for each concept, together with its lexical variants, synonyms,
hierarchical relationships with other concepts, and semantic tags. Semantic tags, assigned
by Metathesaurus editors, are used to categorize each concept to one of the 135 high-level
categories
[https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html].
Examples of semantic tags are “Pharmacologic Substance”, “Clinical Drug”, “Sign or
Symptom”, and “Disease or Syndrome”. Metathesaurus is a freely accessible database
(under the UMLS user agreement and license https:
//www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html)
that may be downloaded to local repositories or queried using SQL, XML, and APIs.

2.1.4 MetaMap NLP tool

In addition to the UMLS Metathesaurus, the NLM offers the MetaMap NLP tool [18, 19],
which extracts biomedical terms from clinical text and maps them to the UMLS concepts.
MetaMap is widely used in medical NLP applications [20]. The MetaMap’s processing
workflow is represented in Figure 2.2. First, MetaMap breaks the text into tokens using
“space delimiters” and maps user defined acronyms. Then, it uses the SPECIALIST Lexicon
[21] algorithm to find and parse the sentences, and extract all the phrases. Next, MetaMap
finds all the possible variants of each phrase and maps them to the UMLS Metathesaurus and

https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
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Figure 2.1: Some of the UMLS Metathesaurus vocabulary databases. Full
list of the databases is available at (https://www.nlm.nih.gov/research/umls/

sourcereleasedocs/index.html).

extract biomedical concepts. Finally, as explained in [22, 23], MetaMap assesses the concept’s
relevance to the original text and assigns a similarity score for all matching Metathesaurus
concepts. MetaMap has a number of add-on packages that can be enabled or disabled.
For example, Word Sense Disambiguation (WSD) is a tool that evaluates the semantic
consistency of each mapped concept with its neighbors and removes disambiguation [24],
and the NegEx, negation detection, algorithm is a tool for determining whether or not
medical phrases in the corpus have been negated.

MetaMap is highly configurable in its processing and output options. The default human
readable output includes parsed phrases as well as all Metathesaurus concepts that map
some or all of the phrases, preferred names for concepts, negation indexes, similarity scores,
and UMLS semantic tags (see Figure 2.3). Since MetaMap is a phrase-by-phrase processor
and generates many potential mappings for each phrase, it is relatively slow. For example,

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
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Figure 2.2: MetaMap text processing system. SBP, sentence boundary disambiguation;
WSD word sense disambiguation. Figure is created based on [18, 21]

it might take a few minutes to process a two-page consultation note.

2.2 Radiomics

RT relies heavily on radiologic images. They have been utilized by clinicians as noninvasive
tools for tumor assessment and treatment planning for decades, providing biological and
functional information about tumors and the microenvironment around them. Thanks to
recent advances in medical image processing techniques, radiography images have advanced
well beyond simplistic tumor viewing tools. Image processing (texture analysis) techniques
made it possible to extract hundreds of quantitative and minable imaging phenotype data
(called radiomic features) from radiography images. Lambin et al. [25, 26] introduced
radiomics in 2012, and thousands of studies have subsequently demonstrated itspotential
application in point of care clinical decision support systems [27] and precision
medicine [28]. Radiomics has been shown to be an effective tool for evaluating therapy
efficiency and responsiveness [29], assisting with early diagnosis [30], and predicting
treatment outcomes [31].
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Figure 2.3: An example of an unprocessed note (left) and a MetaMap-processed note
(right). For better visualization, some parts of the text have been eliminated and replaced
with “[...]”.

Our focus in this thesis project was on the application of radiomics in palliative RT cancer
pain detection.

2.2.1 Radiomics workflow

Figure 2.4 illustrates the six essential steps in the training phase of a typical radiomics-
ML study for outcome prediction: (1) image acquisition, (2) manual or semi-automated
segmentation of Regions Of Interest (ROIs) on patient images, (3) feature extraction from
the segmented ROIs, (4) Feature Selection (FS), (5) building of a classification model to
correlate extracted features to each patient’s endpoint outcome data, and (6) performance
evaluation.

While, first three steps are exclusive to radiomics-based research, steps four through six
are standard in any ML process.

This section goes through the first four steps described above, as well as their clinical
challenges and applications. Sections 2.3 and 2.4 are devoted to delving deeper into the last
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Figure 2.4: A typical workflow of a radiomics-based study. Following the acquisition of the
images and the segmentation of the tumor, radiomic features are retrieved with the use of
standard libraries. Then, statistical modeling incorporating Feature Selection (FS) and ML is
used for outcome prediction, disease categorization, patient clustering, or risk stratification.
Using an independent test set, the model’s ability to achieve the desired performance is then
tested. ROI: region of interest.

two steps.

2.2.2 Image acquisition

Any 2D or 3D medical image can be utilized as a source of radiomic features. However,
practically all radiomics models are based on one or more of the three main 3D image
acquisition modalities: Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
and Positron Emission Tomography (PET). This thesis focuses on the use of CT images
to extract radiomic features because CT images are often the only source of imaging for
palliative RT patients.

The accuracy and reproducibility of radiomic features are determined by the quality and
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consistency of image acquisition procedures. Changes in image acquisition parameters (like
tube voltage, tube current, and slice thickness) can cause variations in the image texture.
Prior to radiomic feature extraction, intensity normalization is often used to standardize
pixel values and eliminate data acquisition-induced image texture fluctuations. The pixel
intensities in CT scans are proportional to tissue attenuation. As a result, by converting
pixel values to Hounsfield Units (HU), data acquisition variations can be minimized. When it
comes to imaging modalities where pixel values do not have any physical meaning, histogram
matching is commonly utilized for image normalization.

Hounsfield Units conversion

CT scans are conducted by rotating X-ray fan beams around the object of interest (see Figure
2.5). As an X-ray beam passes through the body, it is attenuated by tissues according to
their electron densities.

The pixel intensity (I) at each angle is determined by the mean attenuation of the tissues
that the X-rays pass through and can be described mathematically as follows:

I = I0 × e−
∫ s

0 µ(s′)ds′ (2.1)

where I0 is the background intensity and µ(s′) is the attenuation of the tissue at location
s′ along the path s. After the X-ray source completes one full rotation, the CT computer
uses a mathematical back-projection algorithm to produce a 2D image slice. CT attenuation
values can be represented as HU on a linear density scale. Water is given a value of 0 on the
HU scale and all other CT values are calculated using the following expression:

HU = 1000× µ− µwater

µwater − µair

(2.2)

where µwater, µair, and µ are the CT linear attenuation coefficients of water, air, and tissue,
respectively. The approximate HU values for tissues commonly detected on CT scans are
listed in Table 2.1.
Contrast enhancement is one application of HU, which is used to highlight specific structures
in an image. It can also be used to generate masks to filter specific structures. For example,
HU > 0 removes pixels associated with fat and air.
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Figure 2.5: Basic principles of a fan beam CT scanner. Figure is generated based on [32].

Substance Hounsfield Unit

Air -1000
Lung -400 → -600
Fat -60 → -100
Water 0
Soft tissue 40 → 80
Bone 400 → 3000

Table 2.1: Approximate HU values for common tissues in a chest CT scan [33].
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2.2.3 Segmentation of regions of interest

The image voxels (3D pixels) that are contained within the tumor ROI are used to
calculate radiomic features. Therefore, ROI segmentation is another critical stage that has
a direct impact on the quality and reproducibility of radiomics-based investigations. For
radiomics research, ROI segmentation is usually done manually or semi-automatically. The
most prevalent form of ROI segmentation is manual segmentation by trained physicians.
Although manual segmentation is more reliable and benefits from expert knowledge, it has
the disadvantage of being time-consuming and exhibiting high intraobserver
variability [34, 35].

While fully automated segmentation of brain tumor from multiparametric MRI images
has been recently developed [36–38], to the best of our knowledge, there is currently no CT-
based fully automated segmentation technique that can detect tumor locations and properly
distinguish them from adjacent tissues. Therefore, some manual intervention is required
to assure the tumor location and accuracy of segmentation. Semi-automated segmentation
combines the benefits of both human intervention and software automation, making it a
desirable option for radiomics studies.

Computer-aided segmentation algorithms

There are three types of computer-aided segmentation algorithms: threshold-based,
texture-based, and ML-based. The most basic algorithms are threshold-based algorithms,
which are commonly employed as a starting point for subsequent segmentation techniques.
The most widely utilized threshold-based ROI segmentation criteria are gray level and
histogram thresholds [39]. Texture-based segmentation algorithms, such as boundary
detection, region expanding, and homogeneity mapping, are typically less generalizable
than other segmentation algorithms. In recent years, ML-based segmentation methods like
supervised pattern recognition and neural network classifiers have gained popularity [40].
In Chapter 4, we demonstrate that threshold-based ROI segmentation may be sufficient for
palliative-intent radiomics modeling of BM pain.
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2.2.4 Radiomic features extraction

Radiomic features are imaging phenotype data that are derived mathematically from ROIs
in radiography images. These macroscopic features provide insight into disease processes at
the molecular level and have relationships with tumor diagnostics and prognosis. Despite
the growing interest in radiomics, the majority of published radiomics models are not yet
repeatable or generalizable or in clinical use [41, 42]. This is due to the lack of established
definitions of radiomic features with verifiable reference values as well as inconsistent
implementation of the image processing algorithms required to compute features [43]. In
2016, the Image Biomarker Standardization Initiative (IBSI) was established to create
radiomic feature definitions as well as an image processing scheme for calculating
standardized radiomic features from images [44]. Since then, most radiomics software
packages have been updated to comply with IBSI [45, 46]. ISBI-compliant software include
IBEX [47], PyRadiomics [48], RaCaT [49], SERA [50], and ROdiomiX [51]. Radiomic
features can be calculated on either the original image or a derived image generated by
applying one of various filters to the original image. In this thesis, we used PyRadiomics
and extracted 107 standard radiomic features from the original CT images, which are
divided into the following categories:

• First Order (19 features),

• Shape-based (26 features),

• Gray Level Co-occurrence Matrix (24 features),

• Gray Level Run Length Matrix (16 features),

• Gray Level Size Zone Matrix (16 features),

• Neighboring Gray Tone Difference Matrix (5 features), and

• Gray Level Dependence Matrix (14 features).

Feature definitions are available in the PyRadiomics documentation [48]
(https://pyradiomics.readthedocs.io/en/latest/index.html).

https://pyradiomics.readthedocs.io/en/latest/index.html
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Feature-Label space

Extracted features can be presented in the form of a matrix, X, which consists of n rows
(patients in our case) and p columns (radiomic features in our case),

X =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

... ... . . . ...
xn,1 xn,2 . . . xn,p

 (2.3)

in which xi,j is the numerical value of the imaging feature j, (j = 1, 2, ..., p) calculated for
patient, i, (i = 1, 2, ..., n). In this notation, each row is a vector presenting imaging features
for a given patient i;

xi =
(
xi,1 xi,2 . . . xi,p

)
(2.4)

Each column is a vector presenting the numerical values of a given feature, j, over all patients.

xj =


x1,j

x2,j

...
xn,j

 (2.5)

The goal of a typical radiomics-based outcome prediction model is to find a correlation
between the extracted radiomic features and the desired tumor outcome. For example,
one of the goals of this thesis is to construct a radiomics-based model that can distinguish
between painful and painless BM lesions. In this case, we can encode outcomes as binary
labels, with 1 indicating a patient with “pain” and 0 indicating a patient with “no pain”.
Then, outcomes can be represented as a vector, y, with yi representing the outcome label
for patient i (yi ∈ {0, 1}).

y =


y1

y2
...

yn

 (2.6)
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Given examples of {xi, yi} (i = 1, 2, . . . , n), am ML model can determine the optimum
function, f , that satisfies

y ≈ f(x). (2.7)

Section 2.3 will go over some of the ML models, as well as the metrics that each uses to
determine the “best” f .

2.2.5 Re-sampling techniques

Because of the nature of medical datasets, it is common to experience a significant
imbalance in the number of samples for each outcome label class. In our BM cancer patient
data collection, for instance, 86 % of patients reported “pain” (y = 1) while only 14 %
reported “no pain” (y = 0). In these kinds of situation, ML models are normally biased in
favor of the majority class. This is due to the fact that they disregard the relative
distribution of each class in favor of maximizing the overall accuracy. One strategy to
address the class imbalance problem is to perform a re-sampling of the training dataset.
Re-sampling balances the quantity of samples in each label class, by either ignoring
samples from the majority class (undersampling), or duplicating samples from the minority
class, (oversampling). Four main re-sampling techniques that we will examine in this thesis
are random under-sampling, TomekLinks undersampling [52], Random over-sampling, and
Synthetic Minority Oversampling Technique (SMOTE) [53]. Random under-sampling
randomly deletes samples in the majority class, and Random over-sampling randomly
duplicates samples in the minority class. The TomekLinks technique deletes samples from
the majority class that are in closest distance to samples in the minority class. SMOTE
generates synthetic samples by averaging the features from k (k = 5 in our case)
neighbouring samples of randomly selected samples in the minority class.

2.2.6 Feature selection techniques

Radiomics calculates hundreds of features from images, most of which are redundant or
irrelevant to the particular outcome. FS techniques are used to identify the most unique,
reproducible, and predictive subset of radiomics features. Unfortunately, there is rarely a
single best-performing strategy for FS. The same FS technique can result in models
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performing differently across various studies [54].
In this thesis, we investigated the effects of numerous widely used FS techniques, including

Variance Threshold (VT) [55], Principal Component Analysis (PCA) [56], Fast Independent
Component Analysis (ICA) [57], Least Absolute Shrinkage and Selection Operator logistic
regression algorithm (LASSO) [58, 59], Decision-Tree-Based (TREE) FS [60], and Recursive
Feature Elimination with Cross-Validation (RFECV) [61]. Minimum redundancy maximum
relevance (MRMRe) [62], mutual information [63], and Kendall rank correlation [64] are
some of the less widely utilized FS techniques that we did not include in this thesis. The FS
techniques we used are explained in the following subsections.

Variance threshold

VT is a simple baseline thresholding technique for FS. For a feature space X with n as the
number of samples and p as the number of features (as defined by Eq. 2.3), the variance of
feature j is defined as

S2
j = Σn

i (xij − µj)2

n− 1 (2.8)

where µj is the mean value of feature j over all samples. The variance of a feature is zero
when it has the same value (xij) across all samples. Therefore, a zero-variance threshold
(VT0) filters out constant features. A near zero VT removes features with variance below
a set threshold. For instance, a near zero VT of 0.2 removes features with variance smaller
than 0.2.

Principal component analysis

PCA is one of the most commonly used dimensionality reduction approaches. PCA is used in
FS to project the feature space to a new coordinate system based on the variance of feature
values. As a result, the first coordinate (called the first principal component) is formed by
the projection of the data with the greatest variation. The second component is made up
of the second-largest variance. A schematic representation of a 2D feature space with its
principal components is shown in Figure 2.6.

For the feature space X (Eq. 2.3), the PCA decomposition (T) of X is T = XW, where
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Figure 2.6: A schematic 2D feature space representation with its principal components.
PCA is first introduced in [56].

W is the weight vector obtained from the maximum variance expressed as

w(k) = argmax
∥W ∥=1

{
∥X̂kw∥2

}
(2.9)

in which X̂1 = X and X̂k = X−∑k−1
s=1 Xw(s)wT

(s).
T = XW transforms a feature space X from an initial space of p variables to a new

space with p principal components where components are sorted based on their variance.
This new space allows us to keep the first k principal components and reduce the dimension
of the feature space. Hence, TL = XWL returns a reduced feature space with L features
and n samples.

Independent component analysis

The goal of ICA is to find L statistically independent features (also referred to as components)
that maximize non-Gaussianity. One of the most widely used ICA algorithms is Fast ICA.
Fast ICA uses a nonquadratic nonlinear function f(u), its first derivative g(u), and its second
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derivative g′(u) to measure non-Gaussianity as

f(u) = −e−u2/2

g(u) = ue−u2/2

g′(u) = (1− u2)e−u2/2

To implement Fast ICA, the first step is to center each feature j (j = 1, 2, ..., p) for each
sample i (i = 1, 2, ..., n) in the feature space (X), as

xij ←− xij −
1
p

Σp
j′xij′ (2.10)

The centered matrix X is then given a linear transformation (called whitening) to make
its components uncorrelated and with a variance of one. The eigenvalue decomposition of
the covariance matrix can be used to perform the whitening of the centered data as

X← D−1/2ETX (2.11)

where E is the eigenvector matrix and D is the diagonal matrix of eigenvalues. Finally, L

linearly independent components are obtained by an iterative procedure as
for j in 1 to L:

wj = Random vector of length n

while wj changes:
wj = 1/p ∗X ∗ g(wj ∗X)

The output is a reduced matrix, with n samples and L independent components.

Least absolute shrinkage and selection operator logistic regression

LASSO is a regression analysis approach based on variable selection and regularization. The
regularization is accomplished by adding a “penalty” term to the best linear fit produced
from the trained data to achieve a lower variance. The penalty is the absolute value of the
coefficient of the best fit line (βj) to the training data. The goal of LASSO regression is to
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find βj values to minimize the following expression:

Σn
i=1(yi − Σjxijβj)2 + αΣp

i=1|βj| (2.12)

where the first term is the sum of squared residuals over the number of samples (i = 1, 2, ..., n)
and the second term is the scaled sum of the absolute value of the magnitude of coefficients
over the number of features (j = 1, 2, ..., p). α is called the least-squares penalty and defines
the number of features to be eliminated. The bigger the α, the more the variance is reduced
and, therefore, the more features are eliminated. α = 0 reduces the expression to rigid
regression, which generates the orthogonal projection of the features with no feature being
eliminated.

Decision-tree-based feature selection

Impurity-based feature importance can be computed using a tree-based classifier, which can
then be used to filter out irrelevant features. Impurity is defined as the number of times
a feature is used in a node of a classifier, weighted by the number of samples split by that
note. Features having a high impurity level are considered to be more important [65].

2.3 Machine learning classifiers

Depending on the availability of desired outputs available, ML algorithms are typically
classified into two major categories: unsupervised learning and supervised learning.
Unsupervised learning is employed when there are no desired outputs, therefore, the goal of
these algorithms is to discover patterns in the input data and produce outputs (referred to
as labels). On the other hand, supervised learning is used when there is a set of desired
outputs. In this thesis we will be using supervised ML algorithms since we have the desired
labels. The goal of a supervised ML model is to find a function, f(X), that maps the
feature space, X, (Eq. 2.3) to the label vector, y, (Eq. 2.6) as closely as possible.
Depending on the algorithm, there are different ways to define the function f , and there
are also different ways to map it to y. For example, a linear regression model finds the best
fit line (f = aX + b) by minimizing the squared residual:
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E(f) = (y − f(X))2 (2.13)

Many factors influence the success of a particular classifier on a given task, including
sample size, the quality of acquired data, and the dimensionality of the feature space. An
algorithm that performs well on one task may not perform well on another. Therefore,
there is no one-size-fits-all learning classifier that can solve all supervised learning problems.
As a result, it is common in each study to evaluate multiple classifiers and discover the
best performing ones. In this thesis, we investigated the performance of several widely-
used ML classifiers, including Support Vector Machine (SVM) [66], Gaussian Naive Bayes
(NB) [67], k-Nearest Neighbors (kNN) [68], Quadratic Discriminant Analysis (QDA) [69],
Gaussian Process Regression (GPR) [70], Decision Tree (DT) [71], Random Forest (RF) [72],
Bagging [72], AdaBoost [72], and Neural Networks (NNet) [73]. These ML classifiers are
explained in the following subsections.

2.3.1 Support Vector Machine

SVM is one of the most robust, effective, memory-efficient, and widely used ML algorithms.
The SVM’s purpose is to find a p − 1 dimensional hyperplane (where p is the number of
features) that maximizes the separation between samples with different labels. The
separation can be done by linear classifiers (L-SVM) or by non-linear kernels (such as the
radial basis function kernel). Schematics of decision boundaries with linear and non-linear
kernels are presented in Figures 2.7 and 2.8.

A linear hyperplane can be defined as wx− b = 0, where x is the feature space, w is the
slope (normal vector to the hyperplane), and b is intercept of the hyperplane. The algorithm
computes the vectors between the hyperplane and each data point. These vectors are called
the support vectors. The sum of the lengths of the support vectors is called the margin. The
goal is to find w and b such that the margin is maximized. The maximum-margin hyperplane
can be achieved by minimizing the cost equation:

λ ∥ w ∥2 +
[ 1
n

Σn
i=1max(0, 1− yi(wT xi − b))

]
(2.14)

The parameter λ defines the trade-off between increasing the margin size and ensuring that
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Figure 2.7: A schematic 2D feature space with (a) an example on a linear hyperplane, and
(b) a hyperplane that maximizes the margin between two classes. The support vectors are
plotted as violet vectors and red and green are used to present two classes.

the samples fall on the correct side of the margin. Figure 2.7 shows a schematic of a
hyperplane with small (a) and maximal (b) margins.

Kernel functions can be used to create non-linear decision boundaries for features that are
not linearly separable. Non-linear feature spaces are mapped to linear spaces using kernels.
Figure 2.8 illustrates an example of a non-linear feature space that can be transformed to a
linear space with the help of a radial kernel.

The Radial Basis Function (RBF) kernel is one of the most widely used kernels for feature
clustering in SVM. The RBF kernel is defined as

K(x, x′) = exp(−γ ∥ x− x′ ∥2), (2.15)

where x− x′ is the distance between all pairs of features, and γ > 0 is a parameter defining
the importance of the neighboring pairs when calculating the support vector for each point
in the feature space. A very large γ causes the decision boundary to be formed around every
sample with no influence from the neighboring points (this is called over-fitting). On the
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x1
Figure 2.8: A schematic 2D feature space with an example on a non-linear (in this case,
radial) hyperplane. The support vectors are plotted in violet.

other hand, a very small γ reduces the decision boundary to a linear hyperplane (K → 1).
The optimum value of gamma is normally found iteratively.

2.3.2 Gaussian Naive Bayes

NB is a simple and scalable ML technique based on Bayes’ theorem [74] and the premise that
features are equally important and are highly independent of each other. Bayes’ theorem is
a mathematical formula for determining the likelihood of one event occurring after another
has occurred. This is known as a posterior probability, and it is written as follows:

P (A|B) = P (B|A).P (A)
P (B) , (2.16)

where the conditional probability P (B|A) is the probability of event B occurring given that
A is true. P (A) and P (B) are the probabilities of events A and B, respectively.

In the continuous feature space, the conditional probability of independent variables can
be modeled by a Gaussian distribution:

P (xi|y) = 1√
2πσ2

y

exp

(
−

Z2
y

2

)
, (2.17)
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in which µ and σ are the mean and standard deviation of the points within each class y, and
Zy (called the z-score) is the normalized distance between each data point xi and the mean
of each class:

Zy = xi − µy

σy

(2.18)

Figure 2.9 depicts an example of two distributions and their conditional probabilities for
a given point xi. A NB model fits the best Gaussian distribution to each of the classes during
the training phase. Then, a new point xi is assigned to a given class based on the highest
conditional probability.

x
xi

𝑥! − 𝜇"
𝜎"

𝑥! − 𝜇#
𝜎#

𝜇" 𝜇#

𝑃(𝑥!|𝐵)𝑃(𝑥!|𝐴)

Figure 2.9: An example of two Gaussian distributions and their conditional probabilities
for a given point xi. P (xi|A) and P (xi|B) are the likelihoods of obtaining xi if xi belongs
to the class A and B, respectively. The z-scores for each distribution are presented in the
graph.

2.3.3 Gaussian Process Regression

GPR is an ML process that is also based on posterior probability in the form of a Gaussian
distribution (Eq. 2.17). Therefore, probability for each class y can be expressed as:

P (y = k|x) = P (x|y = k).P (y = k)
P (x) = P (x|y = k).P (y = k)∑

l P (x|y = l).P (y = l) . (2.19)
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However, unlike NB, GPR assumes that features are correlated with each other. The
correlation is modeled by a multivariate normal distribution:

P (x|y = k, Σ) = 1
(2π)d/2|Σk|1/2 exp

(
−1

2(x− µk)tΣ−1
k (x− µk)

)
, (2.20)

where Σ is a covariance kernel defining the correlation between features. One of the most
commonly used kernels in GPR is RBF (See equation 2.15).

Σ = cov(xi, xj) = exp

(
−(xi − xj)2

2

)
(2.21)

GPR assumes samples of the same class are closer to each other in feature space. The
drawback of the GPR is that it loses efficiency in high dimensional spaces as shown in
Chapter 4.

2.3.4 Quadratic Discriminant Analysis

Similar to the NB and GPR, QDA is also driven by the posterior probability (Eq. 2.19) for
each class y as:

P (y = k|x) = P (x|y = k).P (y = k)
P (x) = P (x|y = k).P (y = k)∑

l P (x|y = l).P (y = l) . (2.22)

QDA also assumes that features are correlated with each other and the correlation can be
modeled by a multivariate normal distribution as Eq. 2.20, in which the covariance kernel
(Σ) defined as:

Σk = 1
n− 1XT

k Xk (2.23)

The decision boundary is defined by the logarithm of the posterior probability (log-posterior
for short):

log P (y = k|x) = log P (x|y = k + log P (y = k)) + Constant

= −1
2 log |Σk| −

1
2(x− µk)tΣ−1

k (x− µk)

+ log P (y = k) + Constant

(2.24)
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An unlabeled sample is assigned to a class that maximizes the log-posterior. QDA algorithms
use singular value decomposition to calculate log-posterior values. To avoid the explicit
calculation of Σ−1 the solver directly computes the coefficients which makes it faster than
GPR.

2.3.5 k-nearest neighbor

kNN is another well-known supervised classifier. Similar to GPR, kNN is also based on the
assumption that members of the same class are closer to each other in feature space. For
a given unlabeled sample, x0, the kNN algorithm first finds k (where k is a user-defined
parameter) samples from the training set that are closest to x0 based on their Euclidean
distance. Then, within these k samples, it assigns x0 to the class with the largest population.
An example of a kNN classifier is illustrated in Figure 2.10, where the unlabeled gray point
is classified as either green or red, depending on the majority of its neighbors. It is assigned
to the green class if we consider the five closest neighbors (k = 5; dotted circle), and to the
red class if we consider ten closest neighbors (k = 10; dashed circle).

The drawback of simple kNN is the “majority voting” when the number of samples in
both classes is not equal. To avoid this problem, the generalized kNN uses the inverse
distance between points as well as 1/k as a weighing factor when calculating the conditional
probability for class j.

P (Y = j|X = x0) = 1
k

∑
i∈N

(wi × I(yi=j)) , (2.25)

where I = 0 when yi ̸= j and wi = 1/(x0 − xi).

2.3.6 Decision Trees

A DT is a classification algorithm that works based on the yes-or-no answers that can be
extracted from training data. A DT, illustrated in Figure 2.11, consists of nodes (questions
that are driven by data), branches (yes-or-no answers to the questions), and leaves (the class
labels that are assigned to data points based on the answers to corresponding questions).
For instance, a DT node might be Age > 65? condition. Passing via this node, samples with
Age > 65 are routed to the left (yes) branch, while all other samples are routed to the right
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x 2

x1
Figure 2.10: Representation of the kNN classification algorithm. The new (unlabeled) point
is assigned to the class with the largest number of samples among its k nearest neighbours.
In this example, considering five nearest neighbours (k = 5) the unlabeled point (grey)
must be allocated to the class green, which has the majority of samples (three out of five).
Considering k = 10, the point must be allocated to class red, which contains six out of ten
samples.

(no) branch.
A DT is constructed by finding the best feature and condition (the best question) in

each tree’s node to split the data set into branches. The splitting and optimization are done
iteratively based on a series of rules that are extracted from the features. This process is
called recursive partitioning. Recursive partitioning ends when all the samples in a node
belong to the same class or further iteration does not result in better classification results.
The algorithm starts from the root node and finds the best feature that can split the data
into two groups. A variety of measures (such as true positive rate, variance, impurity, or
information gain) can be used to evaluate the quality of the split and to determine the “best”
feature. One basic measure is the True Positive Rate (TPR),

TPR = TP

TP + FN
,

where TP and FP are the total true positives and false positives in each subset, respectively.
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Figure 2.11: A decision tree classifier diagram. Each node (blue box) specifies a condition
based on a certain attribute. Each branch is a response to the condition. Leaf nodes (green
boxes) represent class labels.

DT divides the data into potential subsets based on each feature on each node and calculates
the TPR for each subset. Then, based on the TPR values, the model ranks the features and
selects the feature with the highest TPR measure for that specific node. The performance of
the DT classifier is highly dependent on the evaluation measure. As a result, the majority of
recent DT classifiers use more robust measures such as “information gain”. Information gain
is defined as a change in the uncertainty of a random variable before and after classification.
The uncertainty of a random variable before classification is defined by the entropy equation:

H(X) = −
∑

i

P (xi)log(P (xi)) (2.26)

The uncertainty of variable X after learning (assigning value to Y ) is reduced. This is
measured by conditional entropy:

H(X|Y ) = −
∑

i

P (xi)
∑

i

P (xi|yi)log(P (xi|yi)) (2.27)

Information gain, then, is defined as

IG(X|Y ) = H(X|Y )−H(X) (2.28)
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In each node, the DT classifier chooses a feature that maximizes the information gain.

2.3.7 Random Forest

In radiomics studies, RF is one of the most frequently utilized classification methods. It
belongs to the category of ensemble learning methods. Ensemble methods employ multiple
learning algorithms to improve the predictive performance of the classification. RF is made
up of an ensemble of trained decision trees. Each tree classifies data independently, and
labels are assigned by average across all of the decision trees. Since RF employs an ensemble
of unbiased DT classifiers, it produces accurate predictions across a wide range of data.

2.3.8 Bagging

Bootstrap aggregation, also known as bagging, is an ensemble learning method that is often
used to reduce variance when working with a noisy dataset. Bagging is the process of
generating bootstrapped datasets from a training set. A bootstrapped set is generated by
randomly selecting data from the training set and duplicating part of the points. Thus, it
has the same number of samples as the training set but can contain zero, one, or more of
each sample. Once bootstrapped sets are generated, each set is used to train an instance
of an ensemble model (such as a DT). Finally, the classification probabilities of individual
assessments are aggregated to calculate the overall label of a sample.

2.3.9 Adaptive Boosting

AdaBoost, short for “Adaptive Boosting”, is an ensemble learning method that uses the
weighted outputs of multiple classifiers to represent the final output of the “boosted”
classifier. AdaBoost is called “adaptive” since it modifies the outputs of classifiers in favour
of examples that were incorrectly categorised by earlier classifiers.

The AdaBoost error function is defined (compare to Eq. 2.13) as

E(f) = e−y(X)f(X) (2.29)

In this definition, for a given sample xi, as −y(xi)f(xi) grows larger, the error grows at an
exponential rate. Thus, this results in outliers being given higher importance.
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2.3.10 Neural Networks

NNets are among the most complex ML techniques that attempt to replicate the human
brain by learning from training samples to complete a given task. A basic architecture of
a NNet is presented in Figure 2.12. A typical NNet is made up of thousands of processing
nodes that are closely coupled and stacked in layers. It is possible for a single node to
have several connections to other nodes on both the preceding layer below it (from which it
receives data) and the succeeding layer above it (to which it transmits data). The first layer
(called the input layer) is made up of p nodes, each of which corresponds to a single feature
xj. The last layer, which is called the output layer, usually has the same number of nodes
as there are labels in the data set. All of the layers in between are called hidden layers. The
number of hidden layers depends on the complexity of the problem, the size of the training
dataset, and the number of classes therein.
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Figure 2.12: Representation of a simple neural network.

In a NNet, each node gives each incoming connection a numerical value, called a “weight”.
During normal operation of the network, each connection brings the node a unique piece of
information in the form of a number, which is then multiplied by the connection’s weight.
A single number is then obtained by summing all of the individual weights. For example, in
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Figure 2.12, the value on node 5, can be calculated as

Σ5 = w1x1 + w2x2 + w3x3

If the resulting number, Σ, on each node is less than a certain threshold, the node doesn’t
send any value to the next layer. If the value is greater than the threshold, the node sends the
value (the sum of the weighted inputs) to the next layer via all of its outgoing connections.
The threshold is defined by an activation function.

There are two widely use activation functions for NNet classifiers, Sigmoid and ReLU
(Rectified Linear Unit) [75]. The Sigmoid function is defined as

ϕ(Σ) = 1
1 + e−Σ , (2.30)

and ReLU is defined as
ϕ(Σ) = max(0, Σ). (2.31)

ReLU has been shown to be faster and have better gradient propagation compared to
sigmoidal activation functions [76].

2.4 Performance evaluation

After training an ML model, the final step is to test its performance against a set of ground
truth data. This section defines and discusses statistical tools that we used throughout this
thesis to evaluate performance of various segments of our pipelines.

2.4.1 k-fold Cross-Validation

It is typical practice in ML tasks to divide the initial data set into training and test data
sets. The training set is used to train the model, whereas the test set is utilised to provide an
objective evaluation. In situations where the initial data set is small, splitting it into training
and test sets may result in skewed data sets. Moreover, training and testing a model on a
single small data set can significantly diminish its stability and accuracy. Cross-validation
allows us to overcome this issue by training and evaluating the model on multiple subsets of
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an initial data set.
K-fold cross-validation divides the initial sample into a k sub samples of equal sizes.

Then, k-1 of the sub samples are used to train the model, while keeping the remaining sub
sample as validation (test) data. Then, the procedure of cross-validation is repeated k times
until each of the k sub sets is utilised once as the validation set. This process is illustrated in
Figure 2.13. The performance of the model is reported based on the average of all iterations.

FOLD 5FOLD 4FOLD 3FOLD 2FOLD 1

FOLD 5FOLD 4FOLD 3FOLD 2FOLD 1

FOLD 5FOLD 4FOLD 3FOLD 2FOLD 1

FOLD 5FOLD 4FOLD 3FOLD 2FOLD 1

FOLD 5FOLD 4FOLD 3FOLD 2FOLD 1

ITERATION 1

ITERATION 2

ITERATION 3

ITERATION 4

ITERATION 5

TESTTRAIN

Figure 2.13: A schematic representation of a five-fold (k-fold) cross validation.

2.4.2 Confusion Matrix

A confusion matrix is a type of table used to visualise the performance of a supervised
ML classifier. Each row represents the number of samples in a given actual class (ground
truth), whereas each column represents the number of the samples assigned to each class
by the classifier (predicted class). For example, assume a binary classifier that distinguishes
between painful and painless BM (as we will see in chapter 5). We can label painful samples
as class 1 (positive) and painless samples as class 0 (negative).

In this example, there are four possible outcomes when comparing a sample’s predicted
class to its actual class. One, true positive (TP), is the case when sample’s actual class
is positive (i.e., painful) and the model correctly identified it as belonging to the positive
class. Two, false negative (FN), occurs when the sample actually belongs to the positive
(painful) class, but the model mistakenly assigned it to the negative (painful) class. Third,
false positive (FP), occurs when the sample’s actual class is negative (painless), but the



52 2. An introduction to artificial intelligence tools in medicine

model mistakenly classified it as positive (painful). Fourth, true negative (TN), occurs when
a sample’s actual class is negative (painless) and it is correctly classified as negative by the
model. Therefore, the confusion matrix of this classifier is a two-by-two table as shown in
Table 2.2. An example of a confusion matrix for a multi-class classifier is presented in Table
3.4.

Predicted Label

POSITIVE NEGATIVE

Tr
ue

La
be

l

POSITIVE TP FN

NEGATIVE FP TN

Table 2.2: The confusion matrix for a binary (two-label) classifier contains 2 correctly-
predicted labels and 2 incorrectly-predicted labels. true positive (TP), and true negative
(TN), are numbers of sentences that are correctly predicted and false negative (FN) and
false positive (FP), are numbers of mislabeled sentences.

Elements of the confusion matrix are utilised to generate four fundamental statistical
measures (accuracy, sensitivity, specificity, and F1 score) for evaluating the performance of
an ML classifier [77].

Accuracy is the overall measure of the performance. It measures how well the predicted
values are close to their true values. It is defined as the total number of correctly classified
samples (both TP and TN) divided by the total number of samples as shown in Eq. 2.32.

Accuracy = TP + TN

TP + FN + FP + TN
(2.32)

Precision (also known as the positive predictive rate) is the rate of correct prediction
within a given predicted class. It is defined as the number of correctly classified samples in
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each class divided by the total number of predicted samples in that class (both correctly and
incorrectly classified) as shown in Eq. 2.33.

Precision = TP

TP + FP
(2.33)

Recall, also known as the sensitivity or TPR, is the number of the correctly detected terms
in each class divided by the total number of the true cases in that class (both correctly
classified by algorithm and missed). Sensitivity is defined as,

Sensitivity = TPR = TP

TP + FN
(2.34)

Finally, F1-Score is calculated for each class using Eq. 2.35 as the weighted average of
precision and recall.

F1−Score = 2× Precision×Recall

Precision + Recall
(2.35)

2.4.3 Receiver operating characteristic curve

A Receiver Operating Characteristic (ROC) curve is a plot that represents how well the
model can separate two classes. It is a plot of sensitivity (TPR) (Eq. 2.34) against False
positive Rate (FPR). FPR is defined as

FPR = FP

FP + TN
(2.36)

For example, assume we have a classifier that produced a decision boundary as Figure 2.14
that best separates positive (green) and negative (red) samples. Even with a best classifier,
it is common for some samples to fall on the wrong side of the decision boundary. In
this example two positive samples and two negative samples are classified incorrectly which
results in FPR = 0.2 and TPR = 0.8. Shifting the decision boundary to the left leads to
the correct classification of more positive samples (increase in TPR) at the expense of the
incorrect classification of more negative samples (increase in FPR). In contrast, moving the
decision border to the right reduces both TPR and FPR.

The ROC curve illustrates how moving the decision boundary affects FPR and TPR.



54 2. An introduction to artificial intelligence tools in medicine

Decision Boundary

Figure 2.14: An example of a simple decision boundary that best divides samples into
positive (green) and negative (red) classes. Even with a best decision boundary, it is common
for some samples to be incorrectly classified.

Figure 1 shows the ROC curve for the classifier shown in Figure 2.15. The Area Under the
Receiver Operating Characteristic Curve (ROC-AUC) is a metric that measures a model’s
ability to correctly distinguish between two classes. ROC-AUC = 0.5 (blue dashed line in
Figure 2.15) indicates a completely random model, whereas ROC-AUC = 1 indicates a model
with perfect prediction ability.

ROC curves and ROC-AUC values are used to evaluate the performance of the classifiers
that we developed throughout this thesis. Also, we report accuracy, precision, Sensitivity,
and F-1 score of all of our models.

2.4.4 Precision-recall curve

A precision-recall curve is another frequently used metric in applied machine learning for
evaluating binary classification models. The precision-recall curve illustrates the tradeoff
between precision and recall at various thresholds. This is especially beneficial when there
is an imbalance between the two classes’ observations.
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Figure 2.15: A Receiver Operating Characteristic (ROC) curve (green line) is constructed
by comparing True positive Rate (TPR) against False positive Rate (FPR) at various decision
thresholds for the example binary classifier shown in Figure 2.14. The optimal decision
boundary yielded FPR=0.2 and TPR=0.8 (blue dot).

2.4.5 Reliability measurement

Reliability is defined as the capability to replicate measurements [78]. Several well-known
mathematical and statistical measures of reliability exist. For instance, the intraclass
correlation coefficient (ICC) is a statistical method commonly used to assess interrater
reliability and measurement reproducibility [79, 80]. ICC has been used to measure feature
reliability in radiomics investigations [81]. Fleiss’ kappa is another statistical measure used
to determine how well a set number of raters agree on the ratings or classifications of a set
number of items [82].

In this thesis, Fleiss’ kappa is used to assess the interobserver agreement in the extraction
of gold standard labels from clinical notes.
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3.1 Preface

This chapter describes the study that was undertaken to meet objective 1 of this thesis:
Construction of an NLP pipeline to extract pain scores from the consultation notes of
patients. In this study, a generalizable NLP pipeline was built utilizing methods introduced
in Chapter 2 to process unstructured text and extract sentence-level pain scores from
patients’ clinical notes. Then, these sentence-level pain score were averaged to define
note-level physician-reported pain scores. Publicly-available clinical notes were used for
training and the pipeline’s generalizability was validated by analyzing
retrospectively-collected radiation oncology consultation notes of cancer patients with BM
at our centre and extracting physician-reported pain scores from them.

3.2 Abstract

Objective The majority of cancer patients suffer from severe pain at the advanced stage of
their illness. In most cases, cancer pain is underestimated by clinical staff and is not properly
managed until it reaches a critical stage. Therefore, detecting and addressing cancer pain
early can potentially improve the quality of life of cancer patients.

The objective of this research project was to develop a generalizable Natural Language
Processing (NLP) pipeline to find and classify physician-reported pain in the radiation
oncology consultation notes of cancer patients with bone metastases.

Materials and Methods: The texts of 1,249 publicly-available hospital discharge notes
in the i2b2 database were used as a training and validation set. The MetaMap and NegEx
algorithms were implemented for medical terms extraction. Sets of NLP rules were developed
to score pain terms in each note. By averaging pain scores, each note was assigned to
one of the three Verbally-Declared Pain (VDP) labels, including no pain, pain, and no
mention of pain. Without further training, the generalizability of our pipeline in scoring
individual pain terms was tested independently using 30 hospital discharge notes from the
MIMIC-III database and 30 consultation notes of cancer patients with bone metastasis from
our institution’s radiation oncology electronic health record. Finally, 150 notes from our
institution were used to assess the pipeline’s performance at assigning VDP.
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Results: Our NLP pipeline successfully detected and quantified pain in the i2b2 summary
notes with 93% overall precision and 92% overall recall. Testing on the MIMIC-III database
achieved precision and recall of 91% and 86% respectively. The pipeline successfully detected
pain with 89% precision and 82% recall on our institutional radiation oncology corpus.
Finally, our pipeline assigned a VDP to each note in our institutional corpus with 84% and
82% precision and recall, respectively.

Conclusion: Our NLP pipeline enables the detection and classification of
physician-reported pain in our radiation oncology corpus.This portable and ready-to-use
pipeline can be used to automatically extract and classify physician-reported pain from
clinical notes where the pain is not otherwise documented through structured data entry.

3.3 Introduction

Two-thirds of cancer patients with advanced metastatic disease experience pain [1], and
nearly 50% of these patients identify pain as a significant problem that deteriorates their
quality of life [2, 3]. Pain can also induce stress that may suppress the immune system. For
instance, it has been demonstrated that pain in metastatic patients can suppress the natural
killer cells that control tumor growth and metastasis [4]. Because of these issues, several
organizations such as the World Health Organization (WHO) and the American Pain Society
recommend that physicians properly document pain in Electronic Health Records (EHRs)
to facilitate best practice pain management, follow up, and quality assurance [1, 5–7].

Consultation notes in EHRs represent a wealth of useful information on patients’ health
and outcomes. But, due to their largely unstructured nature and typically
non-standardized formatting, extracting useful information from these unstructured
free-text documents efficiently, is a challenging task [8]. This may result in consultation
notes being ignored or not optimally used in clinical cancer management and outcomes
research.

One potential approach to meet this challenge is to adopt NLP pipeline to parse
consultation notes. This approach is the subject of our presently-reported study with a
focus on pain mentions.
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3.3.1 NLP for pain assessment

Natural Language Processing (NLP) is a branch of Computer Science that utilizes
statistical functions and computational algorithms to analyze unstructured free text and
extract quantitative information from it [9]. Algorithms can be trained to process large
corpora of clinical narratives and extract relevant biomedical information from them. To
extract biomedical concepts from clinical texts, one approach is to use pre-trained NLP
models such as bidirectional encoder representations from transformers (BERT) [10].
Another approach is to combine the NLP technique with structured databases of clinical
terminologies. Such structured databases are designed to categorize and classify medical
terms and clinical information into standardized tables with a unique code for each medical
concept.

There are several well-known databases of clinical terminologies in-use worldwide. The
International Classification of Diseases (ICD) [11] is one of them, maintained by the WHO.
ICD-11 is the latest available update of the ICD database. The SNOMED CT is the next
one that has encoded over 340,000 multilingual clinical healthcare terminologies [12]. This
database is maintained by the SNOMED International association. The Unified Medical
Language System (UMLS) [13] is another database maintained by the US National Library
of Medicine (NLM). The UMLS provides standard codes for thousands of biomedical
concepts and it includes both the ICD and SNOMED CT vocabularies [14]. The NLM also
provides the MetaMap NLP tool [15, 16] to extract biomedical concepts from clinical notes
and map them to the UMLS database. MetaMap, which is widely utilized in medical NLP
applications [17, 18], has built-in libraries for sentence segmentation, concept tokenization
and abbreviation/acronym identification [19]. MetaMap uses the NegEx [20] negation
detection algorithm to determine whether mentions of medical terms in the corpus were
negated. NegEx has a superior performance in negation detection compared to other
algorithms [21].

NLP techniques have been used for medical keyword searches, classification of diagnoses,
and extraction of cancer phenotype and symptom-related information from clinical notes [22–
28]. In some studies, NLP has been used to extract mentions of chest pain and back pain [29,
30]. NLP has also been deployed to identify and classify chronic pain [31, 32], and to extract
cancer-related pain scores [33]. Eisman et al. [34] successfully implemented the pre-trained
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BERT model to extract angina symptoms from patients’ clinical notes. Bui and Zeng [35]
developed an NLP algorithm using regular expression analyzes to extract pain terminologies
from clinical texts. Then, the authors classified each note into “pain” and “no pain” groups
using supervised ML method. However, their algorithm was limited to explicit indications
of “pain” and did not achieve accuracy higher than 79% in identifying and assigning pain
scores. Heintzelman et al. [33] developed a more robust rules-based NLP technique to process
clinical notes and detect all pain terms and their severity scores in each note in their cancer
dataset with an accuracy of 96%. Then, for each note they considered the pain term with the
maximum severity as the “pain index” and used it to evaluate the correlation between the
cancer pain severity and survival rate in metastatic prostate cancer patients. However, upon
testing on a publicly-available hospital discharge summary corpus, the accuracy of their NLP
algorithm dropped to 64%. Also, the authors of Ref. [33] found that their algorithm needed
to be trained on the new pain description patterns that they found in the publicly-available
corpora. The authors argued that this lack of generalizability was attributed to more complex
hypothetical wordings and past tense descriptions in publicly-available corpora compared to
cancer data sets. It has been shown that more generalizable text classification models can
be achieved by exploiting word embedding techniques [36, 37]. In study by Tao et al. [38],
integration of the GloVe word embedding resulted in a significant performance improvement
in the generalizability of extracting prescription information (medication names, dosages and
frequencies) from clinical notes. Testing on the i2b2 dataset, authors showed that F-1 score
of their algorithm increased from 0.78 to 0.83 when they integrated GloVe word embedding.

The objective of our study was to develop a generalizable (i.e. dataset independent)
NLP pipeline to retrospectively process patients’ medical notes and identify all pain terms
and their severity scores in each note and assign a single Verbally-Declared Pain (VDP)
to each note, representing the overall pain of the patient at the time of the consultation.
For each note, our VDP was obtained by averaging over the pain scores detected in the
note. For generalizability, unlike Heintzelman et al. [33], we first trained our pipeline on a
publicly-available dataset, and afterward applied our trained pipeline on another publicly-
available dataset and on our institutional radiation oncology dataset. Moreover, motivated
by the findings of Tao et al. [38], and in order to provide a more generalizable solution,
we used distributed word vectorization methods and word similarity features (GloVe word
embedding). Also, unlike Heintzelman et al. [33], that used pain term with the highest
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pain-score as their pain index, we averaged the pain scores to assign a VDP to each note.
We showed that these methods enabled building a database-independent pipeline to identify
pain description patterns, exclude irrelevant mentions of pain, and calculate the physician-
reported VDP at the time of the hospital visit. This is important as it now allows pain to
be reliably extracted from radiation oncology consultation notes in a way that can facilitate
further pain-related studies.

The pain-related terms used in this paper are defined in Table 3.1.

Term Definition
Pain terms The pain-related medical terms that were collected in Table 3.2.

Each note might contain multiple pain terms.
Pain concepts The UMLS medical concepts that which were obtained by mapping

the pain terms to the UMLS metathesaurus (Table 3.19). Multiple
pain concepts might be mapped to one pain term.

Pain score A pain term in a phrase that explicitly indicates an experience
(score 1) or denial (score 0) of pain at the time of the hospital
visit. Pain terms that were not related to the time of the visit were
assigned as irrelevant pain. (See Fig. 3.4) Each note might contain
multiple pain scores.

VDP A three-point Verbally-Declared Pain (VDP) (no mention of pain,
pain, no pain) that was assigned to each note by averaging valid
pain scores. (See Section 3.4.3)

Table 3.1: Definitions of the terms used in this paper

3.4 Materials and Methods

3.4.1 Corpora

In this study we used three independent corpora to develop and test our NLP pipeline: (i)
1,249 discharge summaries from the Informatics for Integrating Biology & the Bedside
(i2b2) #1A Smoking challenge database [39, 40], (ii) 30 discharge summaries from the
Medical Information Mart for Intensive Care III (MIMIC-III) database [41], and (iii) 788
consultation notes from the EHRs of 462 metastatic cancer patients previously treated at
our institution. Consultation notes for metastatic cancer patients from our institution were
extracted from the ARIA database for Radiation Oncology (Varian Medical Systems, Palo
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Alto, CA). All patients in our institutional corpus received palliative radiotherapy for a
secondary malignant neoplasm of bone at our cancer centre between January 2016 and
September 2019. The textual data from our institutional corpus were extracted from
Microsoft Word (.doc) documents using the Python textract package [42].

Detailed descriptions of the three corpora are presented in Appendix 3.9.1, and details
of the number of characters and words in each corpus are presented in Table 3.15.

All three corpora had similar mean numbers of characters per clinical note (between 7,000
to 9,000, which is equivalent to two or three pages of single-spaced text).

As presented in Figure 3.2, of the 1,249 i2b2 notes, 1,099 randomly-selected notes were
used for concept extraction and training the NLP pipeline, 120 notes (4 sets of 30 notes)
were used for validation, and the remaining 30 randomly-selected notes were reserved for
testing. In each iteration of training, we did a performance evaluation on one set (30 notes)
from the validation corpus. The test corpus was used for final performance evaluation once
the pipeline was completely developed. Later, 30 notes from the MIMIC-III and 30 notes
from ARIA corpora were used for testing of the generalizability of the fully-developed NLP
pipeline. It should be noted that the MIMIC-III and ARIA corpora were not used in any of
the iterations of the training and validation. Another set of 150 notes from ARIA corpora
were used for testing the performance of our NLP pipeline in assigning a VDP label to each
note. Cochran’s [43] sample size formula was used to determine the confidence interval of
the selected sample sizes, as presented in Section 3.9.4, in the Supplementary Information.

3.4.2 Preparation of the validation and test corpora

The notes from the validation corpus were annotated by developers and were used to evaluate
the performance of our NLP pipeline in four iterations of the training. The final performance
of the pipeline to detect and score pain was evaluated against an expert-annotated (gold-
standard) test corpus from each dataset (Figure 3.2).

We extracted all the sentences from each set in the validation and test corpus. The
sentences from validation set 1, set 2 and set 3 (2,310, 2,332, 2,075 sentences, respectively)
were manually annotated by the primary developer. Validation set 4 (1,012 sentences) was
manually annotated by an independent developer. The sentences from the i2b2 (2,361
sentences) and MIMIC-III (2,717 sentences) test corpora were manually annotated by an
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Figure 3.1: Normalized distributions of the number of characters (top panel) and number
of the words (bottom panel) in the i2b2 (shown by orange color), MIMIC-III (green), and
ARIA (blue) corpora.

MD physician. The sentences from the ARIA test corpus (1,132 sentences) were manually
annotated by a radiation oncologist at our institution. The selected sample size resulted in
95% confidence level with less than 1% margin of error (the sample size calculation is
presented in Section 3.9.4 in the Supplementary Information).
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i2b2 MIMIC-III ARIA

1249 hospital discharge 
summaries

877 hospital discharge 
summaries

788 consultation notes for 
cancer patients

30 Notes 

Training
1099 Notes

Set 1
30 Notes

Validation 

Testing 
Pain Score 30 Notes 30 Notes 

Set 2
30 Notes

Set 3
30 Notes

Set 4
30 Notes

Testing 
Verbally Declared Pain

Set 1
50 Notes

Set 2
50 Notes

Set 3
50 Notes

Set 4
50 Notes

Set 5
50 Notes

Set 6
50 Notes Overlap*

30 Notes

* Overlapping 30 notes were used for the inter-annotator measurement

Figure 3.2: The corpora used in this paper. From 1,249 hospital discharge summaries form
i2b2 corpora, 1,099 notes were used for concept extraction and training of our NLP pipeline,
120 annotated notes were used for validation of our NLP pipeline in four iterations and 30
notes were reserved for testing of the fully-developed pipeline. The MIMIC-III and ARIA
corpora were used only for testing of our NLP pipeline (these two corpora were never used
for training). 150 notes from the ARIA corpora were used for testing the Verbally-Declared
Pain (VDP) classification method.

Following Heintzelman et al.’s [33] example, sentences from the test sets were annotated
by our NLP pipeline. The domain experts (MD physician, radiation oncologist) were then
asked to compare their manually-annotated sentences against the NLP annotation results
to produce the gold-standard test sets. The rational for this step was to ensure that the
experts did not accidentally miss or mislabel any pain term.

To evaluate the accuracy of our VDP classification method, another independent set
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of 150 notes from the ARIA corpus was annotated by six annotators (one oncologist, one
medical physicist, and four oncology residents). Each annotator was asked to annotate a
set of 50 notes consisting of 20 unique notes and 30 notes that were shared among all six
annotators. These 30 notes were used to report inter-annotator agreement using Fleiss’
kappa statistical measure [44]. Each annotator was asked to review each note and assign it
to one of the five-grade verbal rating scales; no mention of pain (when pain was not reported
in the note or pain was not reflecting the current state of the illness), no pain (if the pain was
explicitly denied), mild (pain score 1-3), moderate (pain score 4-6) and severe (pain score
7-10). However, since we found that pain scores were not consistently documented in the
radiation oncology consultation notes, which led to poor kappa measures for inter-annotator
agreement, we instead defined a three-grade VDP incorporating ‘no mention of pain’, ‘no
pain’, and ‘pain’ (by grouping mild, moderate and severe pain scales as ‘pain’). The 150
VDP-annotated notes provided a gold-standard for evaluation of the accuracy of our VDP
classification method. The selected sample size resulted in 0.026 standard error within a
95% confidence interval. The detailed sample size calculation can be found in Section 3.9.4
of the Supplementary Information.

Because the aim of this project was classifying cancer pain in radiation oncology clinical
notes, the accuracy of our VDP classification method was only tested on the ARIA corpus.
Given the effort required, we did not ask the radiation oncologists to spend their time
annotating i2b2 and MIMIC-III corpora.

3.4.3 Pain detection pipeline

Our pain detection pipeline consisted of three parts: (1) an NLP pipeline to extract all UMLS
medical concepts from the text documents, (2) a rules-based classifier to identify pain terms
and extract valid pain scores, and (3) a method to calculate an average pain intensity and
assign a physician-reported VDP to each note. The terms used in this paper are defined in
Table 3.1.

Step 1: UMLS medical concept extraction

A flowchart describing our medical concept extraction pipeline, is provided in Figure 3.3.
The NLP algorithm was constructed in Python 3.7 using the spaCy toolkit [45]. The
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Figure 3.3: Our pipeline for medical concept extraction using MetaMap and NegEx. Text
from each clinical note was exported as a text document. The Python spaCy package was
used for the NLP of patients’ consultation notes for text cleaning. The cleaned medical
notes were divided into discrete pages (pagination) and passed to the MetaMap and NegEx
algorithms via a Java API [16] for the medical name entity tagging and negation detection,
respectively. Then, the processed corpora were passed to the pain classifier (Fig. 3.4) to
extract the pain scores. Selection rules were adjusted by evaluating extracted pain scores
against the manually annotated pain scores. Finally, the extracted pain scores were stored
in the database for VDP calculation, statistical analyses, and performance evaluation.

MetaMap-14 [15, 16] engine was installed on our Ubuntu server and accessed from our
custom-written Python code using its Java API. We have made our NLP pipeline and the
annotation tool publicly available on GitHub [46].

As shown in Figure 3.3, clinical notes were read by our custom-written Python scripts [47]
for pre-processing. Pre-processing was performed using the Python spaCy package to remove
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white spaces, special characters, and to convert all characters to lowercase. We also used
a custom-built lookup table to map pain-related medical acronyms (including “cp”: chest
pain,“lbp”: lower back pain, and “akp” : anterior knee pain). Our pipeline did not handle
spelling errors. However, in our training and validation we did not see any mislabeling due to
spelling errors. After pre-processing, larger documents were divided into discrete pages with
a maximum character limit of 8,000 to fit the character limit of MetaMap’s batch processing
software. Truncated notes were passed page-by-page to MetaMap via MetaMap’s Java API.
MetaMap compiled each file as a ‘freetext’ and segmented it into ‘sentences’. Then, each
sentence was processed phrase-by-phrase and was mapped to all possible UMLS concepts.
Metamap also, assigned a confidence score for each concept indicating how much each UMLS
concept was relevant to the phrase [46]. The NegEx [20] algorithm inside MetaMap was
used for negation detection to determine whether mentions of pain terms in the corpus were
negated.

Each phrase, together with its assigned clinical concepts, their negation statuses,
confidence scores, and ICD codes were stored in a temporary text file. Then, these
temporary files were read and the clinical concepts from all phrases of a note were
concatenated into a single text file. A sample annotated text is presented in Table 3.14 in
the Supplementary Information. Finally, the program read the processed temporary files
phrase by phrase and identified all medical concepts with the ‘signs and symptoms’ UMLS
tag. If multiple medical concepts mapped to a phrase, the program selected the concept
with the highest confidence score. The program also extracted medical concepts with a
UMLS ‘pharmacologic substance’ semantic tag in order to identify drug-related phrases.
These tags were used to remove drug-related phrases such as “take Tylenol for your back
pain”. All identified clinical concepts were organized into a data table together with ICD
concept IDs, UMLS confidence scores, and negation indices. These data tables were passed
to the pain classifier for pain analysis.

Step 2: Pain classification

Our rules-based classifier for detecting pain scores is presented in Figure 3.4. A lookup
table containing Heintzelman et al.’s [33] 66 pain-related medical terminologies was used to
determine which ‘signs and symptoms’, detected by the program, were pain-related (Table
3.2).
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Figure 3.4: Our NLP pain classification pipeline to extract the physician-reported pain
scores from patients’ clinical notes. Annotated files were processed phrase by phrase to filter
UMLS ‘signs and symptoms’ tags and identify pain-related biomedical concepts according
to Table 3.2. Then, sets of rules were developed to remove hypothetical, historical and drug
related mentions of the pain and keep the pain term associated to the state of the pain at
the time of the hospital visit. Finally, a pain score was assigned to the detected pain term
based on the negation status of the phrase.

In order to obtain the pain score at the time of the consultation/ hospitalization, we
excluded irrelevant mentions of pain. For example, we excluded mentions of pain when the
patient talked about the history of pain that was not actually presented at the time of the
consultation/hospital visit. For this purpose, we trained our pipeline in four iterations by
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ache coccygalgia glossalgias myodynia pressure
aching coccygodynia glossodynia myosalgia proctalgia
angina coccyodynia glossodynias neuralgia rectalgia
arthralgia coccyxdynia gonalgia neuralgias retrosternal
arthrodynia coxalgia inguinodynia odynophagia scapulalgia
burning cp lbp orchialgia scapulodynia
cephalalgia cramp low back syndrome orchidalgia sciatica
cephalgia discomfort lumbago orchidodynia sore
cephalodynia dolor lumbalgia osteodynia tender
cervicalgia dorsalgia meralgia otalgia tightness
cervicodynia dorsodynia metatarsalgia pain
claudication dysuria muscle weakness pancreatalgia
coccyalgia esophagodynia myalgia postherpetic
coccydynia glossalgia myalgias neuralgia

Table 3.2: Pain-related medical terminologies taken from Heintzelman et. al. [33]. These
definitions were used to determine pain-related ‘signs and symptoms’ in the clinical notes by
our pain classifier.

manually auditing 5,138 randomly-selected sentences from the training corpora:
1) By randomly examining the training corpora, we created a lookup table containing

regular expressions related to conditional, hypothetical, and historical terms. These regular
expressions were used to search and exclude any pain term used in a conditional, hypothetical,
or historical context (Table 3.3). We used the first validation set to evaluate the performance
of the NLP pipeline in correctly detecting valid pain terms.

2) By examining the training corpora, we created a lookup table containing regular
expressions describing current events or ongoing situations such as ‘present’, ‘where’, and
‘control’. This table (called exceptions) is used to avoid the removal of pain terms related to
the current state of the illness. Improvements in the performance of our NLP pipeline was
evaluated using the validation set 2.

3) We used the Global Vectors Word Representation (GloVe) algorithm [48] to generate
semantic embedding vectors for all keywords (regular expressions) in the above-mentioned
lookup tables. Then, for each keyword, we found five nearest GloVe words in semantic space
and added them into the corresponding lookup tables (Table 3.3). The validation set 3 was
used to check the performance of the NLP pipeline at this iteration.
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4) We removed pain terms associated with pain medications by excluding phrases
containing the UMLS ‘pharmacologic substance’ and ‘clinical drug’ semantic type. Also, by
randomly examining the training corpus, we created an exception lookup table to avoid
removing pain terms associated with non-pain-related or ambiguous pharmacologic
substances like ‘dob’, ‘his’, and ‘lead’. We used the validation set 4 to evaluate how this
iteration improved the the performance of the NLP pipeline.

In each iteration of the training, depending on the performance of our NLP pipeline
on the validation corpora, we either added more keywords to each of the four lookup tables
(Table 3.3) or removed some keywords from the tables. For example, the keyword ‘since’ was
initially in the conditionals lookup table. But after iteration 1, we moved this keyword to
the exceptions lookup table, because, we found that most of the sentences with the keyword
‘since’ were indicating an ongoing event. We added the keyword ‘p.r.n’ to the conditionals
lookup table, since we found that sentences that includes the ‘p.r.n’ keyword were most
likely talking about a prescription drug. Another example was ambiguous drug names. For
instance, we found that the MetaMap classified keyword ‘his’ as Histidine [Pharmacologic
Substance] and keyword ‘dob’ as Dimethoxybromoamphetamine [Pharmacologic Substance].
We added both these terms to the exception look up table.

Once satisfied with the training and validation, we did no more development on our
NLP pipeline and used gold-standard corpora to evaluate the final performance of the NLP
pipeline. Table 3 contains the final versions of the lookup tables. Our NLP pipeline is
available as open-source in Ref. [46]

As illustrated in Figure 3.4, after passing through the selection rules each phrase was
assigned to one of the three scores: valid mention of experienced pain (pain score = 1), valid
explicit denial of pain (pain score = 0), and no/irrelevant mention of pain (score = nan) by
our pipeline. The third label was primarily used for NLP performance evaluation. Examples
of NLP extracted pain scores from i2b2 corpora are provided in Tables 3.5 and 3.6.

Step 3: VDP classification method

Valid pain scores were averaged for each note using Eq. 3.1 to obtain the average pain
intensity at the time of the consultation.
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Conditionals If, whether, when, in case of, in case, as needed,
return,

Hypothetical might, would, could, should, seek, as needed, call,
return, possibly, possible, please, because of, p.r.n.

Historical History, historical, in the past, previous, before,
previously, in the last, prior, recent years

Exceptions since, present, current, now, where, because of,
prevent, manage, diagnosis, control, found, lasted,
treated, resolved, comfort, diagnosis, severe,
worsening, aggravated, diffuse, severity, increased,
score, high, mild, moderate

Drug mentioned clinical drug, pharmacologic substance
Drug Exceptions f-, his, lead, histidine, prevent, wake, level, helium,

dob

Table 3.3: The lookup tables were formed by examining the training corpus and using
the GloVe semantic embedding system. These tables were used to exclude phrases with
conditional, hypothetical, historical, and drug-related mentions of pain, and to keep sentences
with mentions of the patient’s current state of pain in our analysis.

Average Pain Intensity =
∑(score 1 pains)−∑(score 0 pains)∑(score 1 pains) +∑(score 0 pains) (3.1)

To the best of our knowledge, there are no clinical guidelines to assign a VDP score for
overall pain [49]. Our rationale for using a weighted average was to take into account the
effect of the number of pain mentions. Also, using a weighted average made it easier for us
to map average intensity to VDP. Such a weighted averaging has been previously proposed
in the literature for the evaluation of multi-site pain [49–51].

A weighted average pain intensity can range from -1 (when 100% of the valid pain
mentions were negated) to 1 (if none of the valid pain mentions was negated). We grouped
the average pain intensities in two VDPs by setting the intensity threshold at zero as ‘no
pain’ (average pain intensity ≤ 0), and ‘pain’ (average pain intensity ≥ 0). We used the
Receiver Operating Characteristic (ROC) curve and the Area Under the Receiver
Operating Characteristic Curve (ROC-AUC) value [52] to examine the performance of a
VDP assignment at various intensity thresholds.
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3.4.4 Assessment of the pipeline’s performance

Annotated notes from the validation corpora were used to check and tune our NLP pipeline
at each iteration of the training. The gold-standard corpora, explained earlier, were used
to check the performance of our fully developed NLP pipeline. Confusion matrices were
produced to compare the pipeline’s performance against expert-annotated gold-standard
corpora. To avoid bias, NLP developers were kept blinded to the test corpora throughout
the entire process.

The confusion matrix for our three-label pain classifier is a 3 × 3 matrix, as presented in
Table 3.4. This matrix includes 3 TRUE labels for correctly-scored sentences, and 6 FALSE
labels for incorrectly-scored sentences (more details are provided in section 3.9.5).

Predicted Label

Tr
ue

La
be

l

Score 1 Score 0 Irrelevant

Score 1 TP P FP N TP I

Score 0 FNP TNN FNI

Irrelevant FIP FIN TII

Table 3.4: The confusion matrix for the three-label pain classifiers contains 3 correctly-
predicted labels and 6 incorrectly-predicted labels. TP P , TNN , and TII are numbers of
sentences that are correctly predicted as score 1, score 0, and irreverent pains, respectively.
FNP , FP N , FP I , FNI , FIP , and FIN are numbers of mislabeled sentences.

We evaluated the performance of our NLP pipeline for pain scoring and VDP assignment
by calculating the precision, recall, and F1-score (F1) from the confusion matrices [52].
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3.5 Results

3.5.1 Pain classifier

We tested our NLP pipeline’s ability to extract pain terms from notes in the i2b2, MIMIC-
III, and ARIA corpora. By processing all the available corpora, we found 19,851, 12,071,
and 1,883 suggested pain concepts, respectively. Note that these pain concepts include all
the UMLS concepts that were extracted from the clinical notes. This means that multiple
pain concepts may have been mapped to one phrase as described earlier.

The result of our rule-based pain detection pipeline (shown in Figure 3.4) for detecting the
pain score is presented in Table 3.7. Using the UMLS confidence score to remove duplicate
concepts, we obtained uniquely-mapped experienced pain terms and explicitly denied pain
terms from the i2b2, MIMIC-III, and ARIA corpora. Finally, by removing conditional,
hypothetical, and drug-related pain terms, we obtained 2,845, 1,682, and 2,013 relevant
terms presenting the pain score 1 as well as 1,540, 1,427, and 559 score 0 pain terms in
the i2b2, MIMIC-III, and ARIA corpora, respectively. Table 3.5 contains a few example
sentences from i2b2 corpora in which pain scores were correctly labeled by our NLP pipeline.
Examples of pain terms that were not labeled correctly by our NLP pipeline are provided in
Table 3.6.

On averaging over the pain scores in each note using Eq. 3.1, we obtained the VDP
at the time of consultation/hospitalization in the three corpora. Distribution of the VDP
is presented in Table 3.8. Based on our VDP calculations, we found that pain was not
documented in 22% of the cancer notes, 13% of our cancer patients denied the experience of
pain and at least 65% of cancer patients experienced some level of pain. These results were
in agreement with the results reported in the other papers [53].

3.5.2 inter-annotator agreement

Inter-annotator agreement among 6 annotators in assigning notes to a 5-grade pain scale is
provided in Table 3.18 (Supplementary Information). We calculated Fleiss’ kappa measure
and obtained a moderate agreement among 6 annotators (κ = 0.43). This indicated that
pain scores were not sufficiently documented in the consultation notes. Therefore, we
instead defined a 3-grade pain scale (called VDP status) by merging ‘mild’, ‘moderate’ and
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Sentence Manual
pain
score

NLP
pain
score

he states the feeling returned and then persisted, took a 2nd nitro
but it only decreased the pain to a [**2192-2-16**].

1 1

per notes, her abdominal exam was significant for epitastric and
right upper quadrant tenderness;

1 1

the patient took one sublingual nitro at home with some relief , but
the pain came back as she walking around her home looking for her
hospital identification care.

1 1

He had no chest pain but did have diaphoresis and mild nausea and
vomiting as well as lightheadedness and some palpitations lasting
approximately one hour in duration. ia.

0 0

he had no further episodes of chest pain while in the hospital. 0 0
patient denies shortness of breath , chest pressure , or syncope. 0 0
he denies fevers or chills, shortness of breath or abdominal pain. 0 0
in july , 1989 , he developed chest pain and suffered an inferior
myocardial infarction.

- -

one week prior to admission , the patient had chest pain , which
was quickly relieved by one sublingual nitroglycerin.

- -

morphine 15 mg tablet sustained release sig: one (1) tablet
sustained release po every 4-6 hours as needed for pain.

- -

if you develop chest pain, nausea, vomiting, throat tightness,
clamminess or shortness of breath, call your pcp or go to the
emergency room.

- -

Table 3.5: Examples of the sentences from i2b2 corpora that were labeled correctly.

‘severe pain’ assignments into a single category as ‘pain’. We measured the inter-annotator
agreement again and we obtained substantial agreement between six annotators in
assigning VDP with Fleiss’ kappa measure of κ = 0.66.

3.5.3 Performance of the pain classifier

The confusion matrices, generated by comparing NLP-extracted pain scores against
expert-annotated gold-standard from each corpus, are presented in Table 3.9. Based on
these confusion matrices, we calculated precision, recall and F1-score. These results are
summarized in Table 3.10. To compare the performance of our NLP pipeline with the prior
studies, we provided the performances of the pain extraction NLP algorithms presented by
Heintzelman et al. [33] and Bui and Zeng-Treitler [35].
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Sentence Manual
pain
score

NLP
pain
score

she refused any consultation at this time by the [*** ****] hospital
pain service.

- 1

his left groin was not accessed given his c/o left leg pain post surgery
2 months ago.

- 0

the surgical sites were without any exudate or signs of infection and
his tenderness in his right upper extremity was markedly decreased.

1 0

in the ambulance , the patient continued to have the pain and
she received one more sublingual nitroglycerin and nasal cannula
oxygen.

1 -

the patients abdominal pain could be related to intestinal angina. 1 -
asa , o2 , bb , 1 inch of nitropaste for elev bpof note , pt c/o pain on
the r mid-lower back which has been present x 1 wk , reproducible
on light palpation.

1 -

history of present illness: 74 y/o female with pmh significant for
copd, cad, and hypertension admitted to [**hospital1 18**] on [**6-
14**] to the surgery service with two days of epigastric and right
upper quadrant pain.

1 -

she does however complain of some urinary frequency ( on lasix )
in the last few days with out any dysuria or urgency.

0 -

Table 3.6: Examples of the mislabeled sentences from i2b2 corpora.

i2b2 MIMIC-III ARIA
% (n=4385) % (n=3109) % (n=2572)

Score 1 pain 64.9 54.1 78.3
Score 0 pain 35.1 45.9 21.7

Table 3.7: The frequency of score 0 and score 1 pain terms labeled by the NLP pipeline in
each of the three corpora. Total number of valid pain terms are provided inside the brackets.

3.5.4 Performance of the VDP classifier

The performance of the VDP classification method was evaluated using the 3-grade VDP
gold-standard corpora. A 3 × 3 confusion matrix was formed for the three-grade VDP, as
explained in the section 3.4.4. Table 3.11 shows the confusion matrix for NLP extracted
VDP. The ROC curve is plotted in Figure 3.5 for various intensity thresholds. The ROC-
AUC is calculated to be 0.86.

Of the 150 notes selected for the performance evaluation, 14 notes did not have any valid
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i2b2 MIMIC-III ARIA
Pain 706 (56.5%) 442 (50.4%) 511 (64.9%)
No pain 305 (24.4%) 262 (29.9%) 104 (13.2%)
No mention of pain 238 (19.1%) 173 (19.7 %) 173 (21.9%)

Table 3.8: Verbally-Declared Pain (VDP) at the time of the consultation using all available
notes from each corpora. The VDP was obtained by averaging over all pain scores in each
note. Percentile values are presented inside the brackets.

Predicted Label

Tr
ue

La
be

l i2b2 Pain score 1 Pain score 0 Irrelevant
Pain score 1 78 1 11
Pain score 0 0 22 1
Irrelevant 5 1 2241

Predicted Label

Tr
ue

La
be

l MIMIC-III Pain score 1 Pain score 0 Irrelevant
Pain score 1 51 1 6
Pain score 0 0 15 3
Irrelevant 3 1 2635

Predicted Label

Tr
ue

La
be

l ARIA Pain score 1 Pain score 0 Irrelevant
Pain score 1 70 1 13
Pain score 0 1 24 5
Irrelevant 10 1 1007

Table 3.9: Following the approach described in Table 3.4, for each corpus a three-class
confusion matrix was obtained. The name of the corresponding corpus is mentioned in the
top left cell of the matrix.

mention of pain (no mention of pain), 112 notes had ‘pain’, and 24 had ‘no pain’ (denied
pain) VDP. Among the 112 notes with the mentions of experienced pain, our VDP extraction
method correctly classified 104 of them while five were misclassified as no pain and the other
three were misclassified as no mention of pain. Among the 24 notes with no pain VDP, our
pipeline correctly classified 16 of them and incorrectly labeled seven as pain and one as no
mention of pain.

Based on these results, we calculated the precision, recall, and F1-score for the VDP
extraction method that are shown in Table 3.12. We achieved 92%, 76%, and 75% precision
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Author Pain Score 1 Pain Score 0
P R F P R F

Present Study (i2b2) 94.0 86.7 90.2 91.7 95.7 93.6
Present Study (MIMIC-III) 94.4 88.0 91.1 88.2 83.3 85.7
Present Study (ARIA) 86.4 83.3 84.8 92.3 80.0 85.7
Heintzelman et al. [33] a 86 95 90 82 95 88
Bui and Zeng-Treitler [35] b 73.2 56.6 63.8 78.8 74.2 76.4

a Calculated based on the manual annotation of 111 pain mentions that were extracted from 30 discharge
summaries from i2b2 database.

b Calculated based on manual annotation of 702 pain mentions that were extracted from 100 documents
from the US Department of Veterans Affairs’ (VA) electronic medical records.

Table 3.10: The precision (P), recall (R) and F1-score (F) of the pain detection pipeline
calculated based on the confusion matrices presented in Table 3.9. The performances of the
NLP pipelines from prior studies are provided for a comparison.

Predicted VDP

Tr
ue

V
D

P ARIA Pain No pain No mention of pain
Pain 104 5 3
No pain 7 16 1
No mention of pain 2 0 12

Table 3.11: Following the approach described in section 3.4.4, a three-point VDP confusion
matrix was formed based on the manual audit of 120 randomly-selected notes from the ARIA
corpora.

ARIA Precision Recall F1-score
Pain 92.0% 92.9% 92.4%
No pain 76.2% 66.7% 71.4%
No mention of
pain

75.0% 85.7% 80.4%

Table 3.12: The precision, recall and F1-score of the VDP extraction method has been
calculated using Table 3.11.

in classifying the notes into the ‘pain’, ‘no pain’, and ‘no mention of pain’ VDP, respectively.
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Figure 3.5: The ROC curve was generated to investigate the performance of a VDP
classification method at various intensity thresholds. The ROC-AUC is calculated to be
0.86.

3.6 Discussion

3.6.1 Quality of corpora

Comparing the number of words and sentences in Figure 3.1, we found that the consultation
notes from the ARIA corpus contained noticeably fewer words and sentences compared to
the discharge summaries from the i2b2 and MIMIC-III corpora. Since notes from the i2b2
and MIMIC-III corpora were pre-processed and de-identified for public use, they contained
more broken sentences. Nonetheless, we found that the distribution of the length of words
and sentences were similar across all three corpora. Therefore, the similarity of the datasets
was not very affected by the pre-processing and de-identification steps. This suggests that
notes from various resources are similar enough to be used together in a study such as this.
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3.6.2 Distribution of the pain terms in the notes

Distribution of the pain terms in the notes from three corpora, presented in Table 3.19 in
the Supplementary Information, revealed that pain distribution from the ARIA corpus was
notably different from the other two corpora. As expected, the ARIA corpus included only
patients with bone metastases,hence, there were more mentions of bone-related pain terms
such as back pain and pelvic pain. We also observed that almost 58% of the experienced
pain was reported as generic pain without specifying the pain site in the ARIA corpus while
this was only 34% and 38% in the other two corpora. We suspect that it was because the
consultation notes in ARIA were prepared by radiation oncologists who solely examined
cancer patients, while discharge summaries were prepared by general physicians who visited
patients with a variety of conditions.

Comparing the experienced pain with the total pain mentions, we detected that pain
was experienced in 65% and 54% of the cases in the i2b2 and MIMIC-III corpora
respectively, while this number increased to 78% in the ARIA corpus. Again, we assume
that the explanation for this might be due to the nature of these three corpora with i2b2
and MIMIC-III containing notes for patients visiting general hospitals while our ARIA
database included exclusively notes for cancer patients with bone metastases. Remarkably,
the 78% experienced pain for metastatic cancer patients agrees with the results reported in
several other studies [54, 55].

3.6.3 Accuracy of the pain score measurements

Performance of our NLP pipeline was evaluated using the gold-standard test sets explained in
the section 3.4.4. As presented in table 3.10, our pipeline outperformed prior pain detection
pipelines developed by Heintzelman et al. [33] and Bui and Zeng-Treitler [35].

Once we fully trained and tested our pipeline using the i2b2 training corpus, we examined
the generalizability of our NLP pain detection pipeline using independent corpora from
MIMIC-III and ARIA. Note that our NLP pipeline was used on the MIMIC-III and ARIA
corpora without further training on these corpora. The precision of our NLP pipeline in
detecting score 1 pain did not change when we applied it to the MIMIC-III corpora. However,
it dropped to 86% when we applied our pipeline to the ARIA corpora. The reason for having
more mislabeled score 1 pain in the ARIA corpus can be attributed to the difference in the
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corpus type. The i2b2 and MIMIC-III corpora were general hospital discharge summary
notes, while the ARIA corpus comprises radiation oncology consultation notes. As stated
previously, up to 50% reduction in the precision is commonly expected when moving from
public corpora to private corpora. Therefore, a 12% drop in the precision of our NLP pipeline
was reasonable. This suggests that NLP pipelines that are trained on one type of documents
(i.e. hospital discharge summaries in this case) can be successfully transferred to analyze
patients’ other clinical notes (such as cancer consultation notes in this study).

The precision in detecting score 0 pain reduced from 92% to 88% when the MIMIC-III
corpus was analyzed. The decrease in precision might be as a result of more diverse negation
terms in the MIMIC-III, which includes notes from more diverse sources compared to the
i2b2 database. The precision of our pipeline in detecting score 0 pain terms was 92% when
analyzing the ARIA corpus. The main reason for such a high precision was because of better
sentence segmentation in ARIA corpus compared to i2b2 and MIMIC-III corpora. Both the
i2b2 and MIMIC-III were de-identified corpora with a lot of broken sentences. Therefore, it
was much harder for our NLP pipeline to detect negation (score 0 pain terms). Examples of
mislabeled pain terms are presented in Table 3.6.

The recall parameter provided more information about the behavior of our NLP system.
Recall was the measure of how well our pipeline correctly identified all true labels. In the
i2b2 and MIMIC-III corpora, we achieved 87% and 88% recall in detecting score 1 pain,
respectively. The recall decreased to 83% for the ARIA corpus. As shown in Table 3.9,
in the ARIA corpus, a notable number of the score 1 pain was assigned as irrelevant pain.
We believe this noticeable mislabeling were related to the pain terms that were describing
patient’s previous experience of having pain. As expected, most of cancer patients had a
history of long term chronic pain which presumably made it difficult for our pipeline to
separate them from pain at the time of the consultation.

The recall values for detecting all mentions of score 0 pain were 96%, 83%, and 80%
for the i2b2, MIMIC-III, and ARIA corpora, respectively. We believe that this variation in
the recall values of score 0 pain was partially due to the layout of the notes in each corpus.
For example, in the i2b2 corpus that was used to train our NLP pipeline, each note had
a separate section for prescription drugs. Therefore, the drug-related pain terms could be
filtered much easier than in the MIMIC-III corpus in which the prescription drugs were
mentioned within the notes in an unstructured format. It should be noted that , as we
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explained in section 3.9.1, we did not cut any segment of the notes in any of the corpora to
assure the generalizability of our pipeline.

Having fewer score 0 pain terms might also influence the calculated recall values. Table
3.9 shows that there were only 23, 18 and 30 score 0 pain terms in i2b2, MIMIC-III and ARIA
validation corpora, respectively. This means that any mislabeled score 0 pain, introduced a
large uncertainty to the recall values.

The overall performance of our NLP pipeline on various corpora was also evaluated using
F1-scores. The F1-score did not vary much among the three corpora. F1-score of score 1
pain only decreased from 0.90 in i2b2 to 0.85 in ARIA corpus. Similarly, F1-score of score 0
pain changed from 0.94 in i2b2 to 0.86 in ARIA corpus.

3.6.4 Accuracy of the VDP extraction

Based on the ROC curve with an ROC-AUC value of 0.86 (Figure 3.5), our VDP extraction
method had good performance in distinguishing between patients with and without pain.
As presented in Table 3.12, our VDP extraction method successfully detected ‘pain’ with
92.0% precision and 92.9% recall. However, it showed fundamental limitations in detecting
‘no pain’, with 76.2% precision and 66.7% recall. The main reason for such a high recall and
low precision in detecting no pain VDP was that ARIA was an imbalanced corpus, where
the classes were not represented equally (i.e. there was ∼ 5x more experienced pain than no
pain cases, as shown in Table 3.11.)

In addition, investigating the notes in the i2b2 training set, we noticed that when patients
reported pain at multiple sites in their body, our classification method was not able to extract
VDP precisely. Our method of measuring VDP was confounded by the reality of the notes of
metastatic cancer patients, because, for these patients, it is expected to have multiple pain
sites with different pain scores in each site.

One possible solution is to add functionality to obtain pain severity from patients’
consultation notes by analyzing the pain assessment terminologies (such as severe, mild,
controlled) and by capturing numerical pain scores for each identified pain site directly
from the consultation notes.
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3.7 Conclusion

Our database-independent NLP pipeline, trained using i2b2 hospital discharge summary
corpora, was successfully implemented to detect and classify pain from the publicly-available
MIMIC-III hospital discharge summary corpus, and our institutional radiation oncology
ARIA consultation note database for cancer patients with bone metastases. The pipeline’s
performance was evaluated against physician-annotated gold standard corpora. Our pipeline
achieved a precision and a recall of 89% and 82% in detecting physician-reported pain,
respectively, demonstrating successful and state-of-the-art extraction and classification of
pain from radiation oncology clinical notes. It also automatically assigned a VDP for each
clinical note with 84% and 80% overall precision and recall.

An important and intended application of our NLP tool is that it can be used to reliably
extract physician-reported cancer pain from clinical notes in radiation oncology, where the
pain is not otherwise documented through structured data entry. Having access to this
database-independent NLP pain-extraction pipeline will facilitate further informatics and
data-mining studies in radiation oncology that require access to pain information that is
typically very difficult to obtain.
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3.9 Appendix: Supplementary Information

3.9.1 i2b2 discharge summaries as the training and test corpora:

The publicly-available de-identified i2b2 discharge summaries were used for primary training
and testing of our NLP algorithm. The selected corpora, which included 1,249 discharge
summary records, were collected from ‘Partners Healthcare hospitals and physicians network’
[1]. Unfortunately, there was no structured information about the diversity of the providers
of the notes. Each record was a de-identified text file (.txt format) [2]. Clinical notes varied
between 600 to 23,000 characters in length, with an average of 6886 characters per note.
The minimum, maximum, mean, median, and standard deviation of the distributions of the
number of characters and words in the corpora are presented in Table 3.15. The normalized
distribution of the number of characters per note is plotted in Figure 3.1. As it can be seen
in the sample note that presented in Table 3.13, each note included ‘Admission Date’ and
‘Discharge date’, and was organized into several sections with a heading for each. Headings
were all written in capital letters, ending with a colon. Sections and section headings were not
consistent in the entire corpora. This meant that not only was it possible for each note to have
a different set of sections, but also, it was possible for section headings to change from one
note to another. For example, a section including the results of the physical examination was
labeled as ‘PHYSICAL EXAMINATION:’ in one note, and ‘PHYSICAL EXAMINATION
ON ADMISSION:’ in another note. Table 3.16 includes the list of section headings for a
sample note. To ensure the generalizability of our algorithm (to be a database-independent
tool), we excluded heading information, and used only the descriptive text information for
the analysis with our NLP pipeline. From the 1,249 notes, we randomly-selected 150 notes
for validation and testing and used the remaining 1099 notes for training our NLP algorithm
in different iterations of its development.
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RECORD #000000 123456789 — ABCDEFG — 123456789 — — 123456789 —
1/1/2500 00:00:00 AM — Discharge Summary — Signed — ABC —
Admission Date: 1/1/2500
Discharge Date: 1/1/2500
HISTORY OF PRESENT ILLNESS: The patient is [...] He had no chest pain
but did have diaphoresis and mild nausea and vomiting as well as lightheadedness
and some palpitations lasting approximately one hour in duration. On the day of
admission after taking a shower in the morning , he had increasing shortness of
breath gradually at rest with epigastric tightness without radiation but he did have
nausea , vomiting and diaphoresis. [...]
HOSPITAL COURSE: The patient developed left arm pain with inflation and slow
flow after PTCA [...]. The patient was treated with nitroglycerin , heparin and
aspirin.
DISPOSITION: The patient was discharged to home in stable condition.
MEDICATIONS: On discharge included aspirin , one po q day; [...].
The patient will follow-up with Dr. XX .
Dictated By: XX D. YY , M.D. ABC123 Attending: A B. CDEFGE , M.D. QAA
DD000/0000
Batch: 0000 Index No. ABCABCABC D: 30/20/10 T: 1/2/3
[report end]

Table 3.13: A sample de-identified hospital discharge summary from i2b2 database.
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Processing 00000000.tx.01: He had no chest pain but did have diaphoresis and
mild nausea and vomiting as well as lightheadedness and some palpitations lasting
approximately one hour in duration.
Phrase: He had
Phrase: no chest pain
Meta Mapping (1000): 1000 N C0008031:Chest Pain [Sign or Symptom]
Meta Mapping (1000): 1000 C2926613:Chest pain (Chest pain:Finding:Point in
time:Patient:Ordinal) [Clinical Attribute]
Phrase: but did have
Phrase: diaphoresis
Meta Mapping (1000): 1000 C0700590:Diaphoresis (Increased sweating) [Sign or
Symptom]
Meta Mapping (1000): 1000 C0038990:Diaphoresis (Sweating) [Finding]
Phrase: mild nausea
Meta Mapping (888): 694 C2945599:Mild (Mild (qualifier value)) [Qualitative
Concept]
Meta Mapping (888): 861 C0027497:Nausea [Sign or Symptom]
Phrase: vomiting
Meta Mapping (1000): 1000 C0042963:Vomiting [Sign or Symptom]
Meta Mapping (1000): 1000 C1963281:Vomiting (Vomiting Adverse Event) [Finding]
Phrase: as well as
Phrase: lightheadedness
Meta Mapping (1000): 1000 C0220870:Light-Headedness (Lightheadedness) [Sign
or Symptom]
[...]
Processing 00000000.tx.2: On the day of admission after taking a shower in the
morning , he had increasing shortness of breath gradually at rest with epigastric
tightness without radiation but he did have nausea , vomiting and diaphoresis.
[...]

Table 3.14: An example of the annotated text file exported using MetaMap. Each detected
medical concept associated with a confidence score, negation status, UMLS id, description
and a UMLS semantic type.
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Number of characters in the notes.
minimum maximum mean median standard

deviation
ARIA 1822 12132 7382 7344 1992
i2b2 318 25875 6882 6414 2984
MIMIC-III 54 55728 9619 8878 5540

Number of words in the notes.
minimum maximum mean median standard

dev
ARIA 266 1381 719 705 207
i2b2 16 4283 1168 1082 510
MIMIC-III 9 7980 1435 1328 828

Table 3.15: The minimum, maximum, mean, median, and standard deviation of the
distributions of the number of characters and words, in the notes from the ARIA, i2b2
and MIMIC-III data sets.

Section Heading
1- RECORD #: 2- ADMISSION DIAGNOSIS:
3- ALLERGIES: 4- DISCHARGE DIAGNOSES:
5- DISPOSITION: 6- HISTORY OF PRESENT ILLNESS
7- HOSPITAL COURSE: 8- MEDICATIONS ON DISCHARGE:
9- LABORATORY DATA: 10- MEDICATIONS ON ADMISSION:
11- PAST MEDICAL HISTORY: 12- PHYSICAL EXAMINATION:

Table 3.16: Each note in the i2b2 database discharge summary was structured into several
sections with the following headings. Each heading started with a new line and ended with
a colon as shown here.

3.9.2 MIMIC-III clinical documents as the validation data set:

The publicly accessible de-identified health data from MIMIC-III database were used to
validate our NLP algorithm [3]. MIMIC-III included a total of 2,083,180 clinical text
documents in various categories, as specified in the first line of each document. Table 3.17
shows the number of notes in each category. We found 59,652 notes that were categorized
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as‘discharge summary’ and only these were used in our study. The normalized distribution
of the number of characters per discharge summary is plotted in Figure 3.1, overlaid on the
distribution observed in the i2b2 database.

For the purpose of this research, the MIMIC-III database was only used for validation of
our NLP algorithm. Therefore, we randomly-selected 30 notes to test the accuracy of the
pain detection algorithm. Similar to the i2b2 corpus, MIMIC-III notes were also structured
into sections with varying headings, and we used the entire contents of each note in the NLP
algorithm for pain extraction.

Category # of notes Category # of notes
1- Nursing/other 822,497 9- Nutrition 9,418
2- Radiology 522,279 10- General 8,301
3- Nursing 223,556 11- Rehab Services 5,431
4- ECG 209,051 12- Social Work 2,670
5- Physician 141,624 13- Case Management 967
6- Discharge summary 59,652 14- Pharmacy 103
7- Echo 45,794 15- Consult 98
8- Respiratory 31,739 Total 2,083,180

Table 3.17: Number of notes in each category in the MIMIC-III database which included
2,083,180 clinical text documents, arranged into 15 categories.

3.9.3 Institutional radiation oncology consultation notes as the
metastatic cancer corpora for cancer pain study:

From the VARIAN Radiation oncology (Varian Medical Systems, Palo Alto, CA) ARIA
database at our institution, we searched for the patients that received palliative radiotherapy
for a secondary malignant neoplasm of bone between January 2016 and September 2019.
From the total of 462 patients who fall within the search criteria we extracted a total of 788
Microsoft word document named as consultation notes. The plain text was extracted from
Microsoft Word (.doc) documents using the Python textract package [4].

The normalized distribution of the number of characters per consultation note is displayed
in Figure 3.1 along with the i2b2 and MIMIC-III data sets.
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We processed notes from all three corpora and found 358 unique pain-related UMLS
concepts. These pain concepts are summarized in Table 3.19 together with the frequency of
the mentions of each concept.

3.9.4 Determining test set size

By auditing our training corpora, we found that pain is indicated in a 5% (p=0.05) of the
sentences. We used Cochran’s sample size formula [5] to determine the minimum sample
size required to evaluate the study. To ensure that the pain-score detection is precise within
a 95% confidence level (Z1−α/2 = 1.96), and a 1% margin of error (e=0.01), the minimum
sample size was determined as,

N = p(1− p)
(

Z1−α/2

e

)2

= 0.05× 0.95×
(1.96

0.01

)2
= 1824. (3.2)

Therefore, we analyzed about 2000 sentences in each of our validation and the test sets
satisfied the minimum sample size requirement.

150 notes (N = 150) from the ARIA dataset were used to test our VDP classification
method. Cochran’s formula was used to determine the confidence level for the selected
sample size. According to Table 3.8, probabilities of finding a note in the ARIA corpus
with the ‘pain’ VDP was 64.9% (ppain = 0.65) and with the ‘no pain’ VDP was 13.2%
(pno pain = 0.13). Allowing a 95% confidence interval (Z1−α/2 = 1.96), the standard error
was calculated as:

SE =
√

p(1− p)
N

= 0.05×
√

0.13(1− 0.13)
150 = 0.026 (3.3)

This sample size gave us a standard error of 0.027.
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3.9.5 Three-label confusion matrix

The confusion matrix for our three-label pain classifier is a 3 × 3 matrix, as presented in
Table 3.4. This matrix includes three TRUE labels for correctly assigned labels, and six
FALSE labels for incorrectly assigned labels. The TRUE assignments are: TP P (A phrase
was correctly labeled as score 1 pain), TNN (A phrase was correctly labeled as score 0 pain),
and TII (A phrase was correctly labeled as irreverent pain). The six FALSE labels are as
follows: FNP (Score 0 pain was labeled as Score 1 pain), FP N (Score 1 pain was labeled as
Score 0 pain), FP I (Score 1 pain was labeled as irrelevant pain), FNI (Score 0 pain was labeled
as irrelevant pain), FIP (irrelevant pain was labeled as Score 1 pain), and FIN (irrelevant
pain was labeled as Score 0 pain).

We evaluated the performance of our NLP algorithm at detecting pain by calculating the
precision, recall, and F1-score (F1) from the confusion matrices [6]. Precision is the measure
of how well our model labeled the score 0, score 1, and irrelevant pain terms. Precision
is defined as the number of occasions that a given label was assigned correctly correctly
divided by the total number of assigned labels. The recall (also known as the sensitivity) is
the number of the correctly labeled pain terms divided by the total number of true cases.
Finally, F1 Score is calculated for each class as the weighted average of precision and recall.

The performance of our NLP algorithm in assigning VDP was evaluated using a manual
audit of 150 randomly-selected consultation notes from the ARIA corpus that were reserved
for this purpose (Figure 3.2). Inter-annotator agreement calculated based on the 30 notes
that scored by all 6 annotators as provided in table 3.18. Similar to what we presented in
Table 3.4, a 3 × 3 confusion matrix was constructed for VDP, including ‘no mention of pain’,
‘no pain’, and ‘pain’.
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Note ID No mention on pain No pain Pain NLP exported API
Mild Moderate Severe

1 0 0 0 1 5 0.82
2 0 1 0 1 4 0.71
3 0 0 1 1 4 1.00
4 0 3 1 1 1 0.67
5 0 0 0 0 6 1.00
6 0 0 0 2 4 0.71
7 1 5 0 0 0 -1.00
8 0 0 1 5 0 1.00
9 1 5 0 0 0 -1.00
10 0 0 2 1 3 0.50
11 0 0 0 4 2 1.00
12 0 6 0 0 0 -1.00
13 0 0 1 5 0 -0.33
14 0 0 1 5 0 1.00
15 0 0 1 5 0 1.00
16 0 0 0 4 2 1.00
17 0 6 0 0 0 -1.00
18 0 0 3 2 1 0.75
19 0 0 0 3 3 1.00
20 0 4 2 0 0 0.25
21 0 0 2 4 0 1.00
22 0 0 2 4 0 0.75
23 0 0 6 0 0 1.00
24 0 0 2 4 0 -0.14
25 0 1 4 1 0 0.00
26 5 1 0 0 0
27 0 0 1 2 3 0.71
28 0 0 0 5 1 0.33
29 0 1 4 1 0 1.00
30 0 6 0 0 0 -1.00

Table 3.18: Inter-annotator agreement between six annotators that labeled verbal pain
score in 30 notes. The labels are presented in the columns, while the notes are presented in
the rows. Each cell lists the number of annotators who assigned the indicated label (column)
note to the indicated note (row). We defined VDP by grouping ‘mild’, ‘moderate’ and ‘severe’
pain scales as ‘pain’. The NLP exported average pain intensity (API) is presented in the last
column. API was calculated using Eq.3.1. As explained in section 3.4.3, API was used in
our VDP classification method as; VDP = ‘no pain’ (if API < 0), and VDP = ‘pain’ (if API
≥ 0).

Table 3.19: List of 358 unique pain concepts that were extracted from all the notes from
three corpora using MetaMap. The frequency of mentions of each concept is provided in the
table.



110 BIBLIOGRAPHY

Pain concept i2b2 MIMIC-III ARIA
Frequency (%) Frequency (%) Frequency (%)
(n= 40,787) (n= 13,300) (n= 20,377)

1 abdominal and pelvic pain 0.00 0.01 0.00
2 abdominal angina 0.13 0.02 0.00
3 abdominal cramps 0.17 0.02 0.01
4 abdominal discomfort 0.18 0.17 0.09
5 abdominal pain 2.45 7.85 0.73
6 abdominal pain through to back 0.01 0.00 0.00
7 abdominal tenderness 0.04 0.12 0.08
8 abdominal wind pain 0.01 0.02 0.00
9 absence of pain sensation 0.05 0.07 0.00
10 ache 0.28 0.06 0.37
11 acromioclavicular joint pain 0.00 0.00 0.03
12 acute abdominal pain 0.02 0.03 0.00
13 acute back pain 0.00 0.00 0.10
14 acute chest pain 0.04 0.03 0.00
15 acute headache 0.00 0.00 0.04
16 acute low back pain 0.00 0.00 0.01
17 acute onset pain 0.23 0.17 1.25
18 acute thoracic back pain 0.02 0.00 0.00
19 after pains 0.03 0.18 0.03
20 anal pain 0.00 0.00 0.01
21 angina equivalent 0.32 0.05 0.00
22 angina pectoris 5.50 0.78 0.00
23 angina symptom 0.46 0.13 0.00
24 ankle pain 0.12 0.18 0.04
25 anterior chest wall pain 0.04 0.00 0.17
26 anterior pleuritic pain 0.00 0.00 0.21
27 arm discomfort 0.01 0.06 0.04
28 arm pain 0.13 0.16 0.12
29 arthralgia 0.87 0.85 0.03
30 arthritic pains 0.03 0.01 0.00
31 arthritis pain 0.00 0.00 0.03
32 atypical chest pain 1.60 0.12 0.00
33 back discomfort 0.00 0.00 0.07
34 back pain 0.91 0.95 5.98
35 back pain mid back 0.00 0.05 1.12
36 back pain with radiation 0.01 0.00 0.10
37 back pain, severe 0.03 0.00 0.00
38 back tenderness 0.00 0.03 0.12
39 bilateral headache 0.01 0.02 0.00
40 bladder pain 0.01 0.02 0.00
41 bodily pain 0.00 0.00 0.04
42 body ache 0.00 0.00 0.04
43 body pain 0.13 0.02 0.00
44 bone pain 0.02 0.02 1.36
45 bone tenderness 0.02 0.00 0.43
46 breakthrough pain 0.14 0.23 0.00
47 breast discomfort 0.00 0.00 0.03
48 breast tenderness 0.03 0.00 0.03
49 burning epigastric pain 0.01 0.02 0.00
50 burning feet 0.02 0.00 0.00
51 burning sensation 0.40 0.33 0.41
52 burning sensation of skin 0.00 0.00 0.01
53 bursal pain 0.01 0.00 0.00
54 cachexia 0.11 0.60 0.31
55 calf tenderness 0.41 0.09 0.00
56 cancer pain 0.00 0.00 0.83
57 cardiac pain 0.16 0.00 0.00
58 catch - finding of sensory dimension of pain 0.07 0.10 0.04
59 central pain 0.00 0.02 0.00
60 chest burning 0.16 0.99 0.00
61 chest burning pain of 0.04 0.21 0.00
62 chest discomfort 1.06 0.59 0.07
63 chest pain 17.88 9.25 2.06
64 chest pain angina 0.08 0.03 0.00
65 chest pain at rest 0.14 0.00 0.00
66 chest pain on breathing 0.00 0.12 0.00
67 chest pain on exertion 0.09 0.14 0.00
68 chest pain, sharp 0.06 0.02 0.00
69 chest pressure 1.27 0.50 0.00
70 chest tightness 0.77 0.09 0.00
71 chest tightness or pressure 0.01 0.00 0.00
72 chest wall pain 0.07 0.03 0.22
73 chronic abdominal pain 0.11 0.72 0.00
74 chronic back pain 0.08 0.48 0.47
75 chronic chest pain 0.01 0.02 0.00
76 chronic pain 0.00 0.00 0.18
77 chronic pelvic pain of female 0.03 0.03 0.00
78 clavicle pain 0.00 0.00 0.04
79 cramping sensation quality 0.07 0.06 0.01
80 crushing chest pain 0.02 0.01 0.00
81 deep pain 0.01 0.01 0.01
82 deltoid pain 0.01 0.00 0.00
83 diffuse abdominal pain 0.05 0.29 0.00
84 diffuse pain 0.06 0.13 0.62
85 discomfort 0.00 0.00 3.57
86 discomfort rectal 0.00 0.08 0.00
87 dull chest pain 0.02 0.00 0.00
88 dull pain 0.01 0.00 0.18
89 dysuria 0.80 1.56 0.20
90 ear tenderness 0.00 0.02 0.00
91 earache 0.05 0.46 0.05
92 epigastric burning 0.06 0.01 0.00
93 epigastric discomfort 0.14 0.00 0.03
94 epigastric pain 1.11 0.63 0.05
95 epigastric tenderness 0.05 0.07 0.00
96 esophageal chest pain 0.01 0.00 0.00
97 excruciating pain 0.01 0.00 0.04
98 exercise-induced angina 0.47 0.30 0.00
99 eye pain 0.04 0.08 0.08
100 eye pain, severe 0.00 0.01 0.00
101 facial pain 0.01 0.11 0.04
102 flank pain 0.14 0.14 0.00

Continued on next page
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Table 3.19 – Continued from previous page
Pain concept i2b2 MIMIC-III ARIA

Frequency (%) Frequency (%) Frequency (%)
(n= 40,787) (n= 13,300) (n= 20,377)

103 foot pain 0.42 0.51 0.03
104 frequent headaches 0.01 0.01 0.00
105 frontal headache 0.02 0.02 0.04
106 gastrointestinal pain 0.17 0.00 0.00
107 generalized abdominal pain 0.00 0.02 0.00
108 generalized aches and pains 0.07 0.02 0.03
109 generalized chest pain 0.00 0.00 0.01
110 great toe pain 0.01 0.00 0.00
111 groin discomfort 0.01 0.00 0.01
112 groin tenderness 0.00 0.00 0.01
113 hand pain 0.13 0.00 0.00
114 head pressure 0.00 0.00 0.01
115 head pressure sensation 0.02 0.00 0.00
116 headache 3.40 2.90 2.19
117 headache associated with sexual activity 0.01 0.00 0.00
118 headache fullness 0.01 0.00 0.00
119 headache persistent 0.01 0.01 0.00
120 headache recurrent 0.01 0.01 0.01
121 headache severe 0.04 0.21 0.05
122 headache worsening 0.00 0.00 0.03
123 heel pain 0.02 0.00 0.00
124 hernia pain 0.01 0.00 0.00
125 hip joint pain 0.00 0.00 1.71
126 hip pain 0.56 0.23 1.65
127 incisional pain 0.06 0.25 0.04
128 inguinal pain 0.19 0.03 0.59
129 injection site pain 0.02 0.00 0.00
130 intermittent abdominal pain 0.01 0.05 0.00
131 intermittent headache 0.00 0.02 0.01
132 intermittent pain 0.35 0.11 0.14
133 intestinal pain 0.01 0.00 0.03
134 ischemic pain 0.01 0.00 0.00
135 ischial tuberosity tenderness 0.01 0.00 0.00
136 jaw pain 0.25 0.02 0.08
137 joint tenderness 0.05 0.00 0.09
138 knee pain 0.94 0.39 0.03
139 left flank pain 0.01 0.00 0.03
140 left lower quadrant pain 0.06 0.15 0.25
141 left sided abdominal pain 0.00 0.02 0.00
142 left sided chest pain 0.25 0.09 0.10
143 left upper quadrant pain 0.02 0.05 0.00
144 leg discomfort 0.00 0.04 0.00
145 liver tender 0.00 0.00 0.01
146 localized pain 0.00 0.02 0.04
147 low back pain 0.45 0.31 1.90
148 lower abdominal pain 0.02 0.03 0.00
149 lower extremity pain 0.25 0.06 0.05
150 lower ribs pain 0.00 0.06 0.00
151 lumbo-sacral pain 0.00 0.00 0.03
152 malaise 0.68 0.87 5.79
153 mandibular pain 0.00 0.00 0.04
154 mastodynia 5.88 2.35 0.12
155 mastodynia of bilateral breasts 0.00 0.00 0.01
156 mastodynia of left breast 0.00 0.00 0.01
157 mastodynia of right breast 0.00 0.00 0.03
158 mechanical pain 0.00 0.32 0.14
159 metastatic bone pain 0.00 0.00 0.49
160 mild pain 0.43 0.37 0.00
161 miserable pain 0.01 0.00 0.00
162 moderate pain 0.01 0.04 0.13
163 morning headache 0.01 0.00 0.00
164 muscle cramp 0.12 0.11 0.09
165 muscle cramps in leg 0.03 0.02 0.00
166 muscle cramps in the calf 0.00 0.01 0.00
167 muscle tenderness 0.01 0.00 0.00
168 musculoskeletal chest pain 0.03 0.00 0.00
169 myalgia 0.38 2.79 0.10
170 nausea or abdominal pain 0.01 0.02 0.00
171 neck cramps 0.00 0.03 0.00
172 neck discomfort 0.02 0.01 0.03
173 neck pain 0.19 0.25 0.60
174 neck tightness 0.01 0.00 0.00
175 nerve pain 0.00 0.02 0.05
176 neuralgia 0.12 0.27 0.34
177 neurological pain 0.00 0.00 0.05
178 night pain 0.01 0.19 0.03
179 non-cardiac chest pain 0.48 0.01 0.00
180 nonspecific abdominal pain 0.01 0.00 0.00
181 occipital headache 0.02 0.02 0.05
182 oral pain 0.11 1.24 0.00
183 other chest pain 0.02 0.00 0.00
184 pain 24.21 20.70 40.00
185 pain aggravated 0.24 0.10 0.55
186 pain and tenderness 0.32 0.02 0.00
187 pain around eye 0.00 0.00 0.04
188 pain characterized by provoking factor 0.00 0.00 0.01
189 pain during injection 0.00 0.13 0.00
190 pain from metastases 0.00 0.02 0.08
191 pain in axilla 0.01 0.00 0.05
192 pain in body part 0.00 0.00 0.01
193 pain in buttock 0.02 0.02 0.14
194 pain in calf 0.21 0.18 0.00
195 pain in cervical spine 0.00 0.00 0.09
196 pain in cheek 0.00 0.02 0.00
197 pain in elbow 0.07 0.02 0.00
198 pain in esophagus (finding 0.01 0.01 0.00
199 pain in femur 0.00 0.00 0.05
200 pain in finger 0.14 0.00 0.00
201 pain in forearm 0.01 0.00 0.00
202 pain in left arm 0.35 0.23 0.07
203 pain in left foot 0.02 0.00 0.00

Continued on next page
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Table 3.19 – Continued from previous page
Pain concept i2b2 MIMIC-III ARIA

Frequency (%) Frequency (%) Frequency (%)
(n= 40,787) (n= 13,300) (n= 20,377)

204 pain in left hand 0.01 0.00 0.00
205 pain in left hip 0.01 0.00 0.00
206 pain in left knee 0.01 0.00 0.00
207 pain in left leg 0.15 0.26 0.00
208 pain in left lower limb 0.00 0.00 0.54
209 pain in left shoulder 0.07 0.05 0.00
210 pain in limb 0.13 0.18 0.00
211 pain in limb, lower leg 0.01 0.03 0.21
212 pain in lower limb 2.00 0.43 0.91
213 pain in lumbar spine 0.00 0.03 0.08
214 pain in right arm 0.04 0.10 0.18
215 pain in right elbow 0.00 0.00 0.01
216 pain in right hand 0.01 0.00 0.00
217 pain in right hip 0.40 0.00 0.00
218 pain in right hip joint 0.00 0.00 1.74
219 pain in right knee 0.07 0.00 0.00
220 pain in right leg 0.37 0.02 0.00
221 pain in right lower limb 0.00 0.00 0.49
222 pain in right lower limb nos 0.00 0.00 0.08
223 pain in right shoulder 0.14 0.18 0.00
224 pain in scrotum 0.01 0.00 0.00
225 pain in spine 0.01 0.00 1.77
226 pain in the coccyx 0.00 0.00 0.03
227 pain in thoracic spine 0.00 0.00 1.57
228 pain in thumb 0.02 0.00 0.00
229 pain in toe 0.01 0.03 0.00
230 pain in wrist 0.06 0.02 0.00
231 pain lower ribs 0.00 0.00 0.04
232 pain neck/shoulder 0.00 0.05 0.00
233 pain of digit 0.11 0.00 0.00
234 pain of ear structure 0.00 0.00 0.01
235 pain of front foot of quadraped 0.01 0.00 0.00
236 pain of left elbow joint 0.00 0.00 0.10
237 pain of left hip joint 0.00 0.00 0.12
238 pain of left shoulder joint 0.00 0.00 0.08
239 pain of left thigh 0.00 0.00 0.20
240 pain of oral cavity structure 0.08 1.24 0.00
241 pain of right arm only 0.04 0.02 0.00
242 pain of right forearm 0.00 0.00 0.01
243 pain of right shoulder joint 0.00 0.00 0.68
244 pain of right thigh 0.00 0.00 0.09
245 pain of skin 0.01 0.00 0.00
246 pain radiating to jaw 0.04 0.00 0.00
247 pain radiating to left arm 0.12 0.00 0.00
248 pain radiating to left leg 0.00 0.00 0.03
249 pain radiating to left shoulder 0.01 0.00 0.00
250 pain radiating to neck 0.02 0.00 0.00
251 pain radiating to right arm 0.03 0.00 0.00
252 pain radiating to right leg 0.01 0.00 0.00
253 pain radiating to right shoulder 0.01 0.00 0.00
254 pain uncontrolled 0.04 0.00 0.00
255 pain with eating 0.01 0.02 0.03
256 pain, burning 0.15 0.00 0.03
257 pain, intractable 0.00 0.03 0.00
258 pain, migratory 0.00 0.00 0.03
259 pain, postoperative 0.27 0.04 0.00
260 pain, referred 0.00 0.02 0.51
261 painful paresthesias 0.01 0.00 0.00
262 painless hematuria 0.00 0.01 0.00
263 pelvic pain 0.05 0.06 1.71
264 pelvic pain female 0.04 0.05 0.77
265 peripheral neuropathic pain 0.00 0.01 0.00
266 persistent mastalgia 0.02 0.02 0.00
267 pleuritic pain 0.23 0.21 0.07
268 posterior cervical pain 0.01 0.05 0.08
269 post-procedural pain 0.01 0.10 0.00
270 precordial pain 0.02 0.00 0.00
271 pubic pain 0.06 0.00 0.31
272 radiating back pain 0.00 0.00 0.26
273 radiating chest pain 0.06 0.13 0.00
274 radiating pain 0.06 0.02 0.71
275 radicular pain 0.01 0.06 0.14
276 rebound tenderness 0.06 0.44 0.01
277 rectal pain 0.00 0.21 0.01
278 recurrent abdominal pain 0.02 0.01 0.00
279 recurrent chest pains 0.00 0.00 0.01
280 recurrent low back pain 0.00 0.00 0.03
281 renal angle tenderness 0.32 0.39 0.00
282 renal pain 0.02 0.00 0.00
283 rest pain 0.41 0.08 0.01
284 retrosternal pain 2.34 0.49 0.00
285 rib pain 0.04 0.12 0.58
286 rib tenderness, lower 0.00 0.00 0.03
287 right flank pain 0.00 0.09 0.08
288 right lower quadrant pain 0.22 0.05 0.03
289 right sided abdominal pain 0.01 0.21 0.04
290 right sided chest pain 0.13 0.09 0.24
291 right upper quadrant abdominal tenderness 0.02 0.00 0.00
292 right upper quadrant pain 0.26 0.35 0.41
293 sacral pain 0.01 0.00 0.25
294 sacroiliac pain 0.00 0.00 0.12
295 scalding pain on urination 0.02 0.03 0.00
296 scalp tenderness 0.02 0.00 0.00
297 scapulalgia 0.17 0.00 0.46
298 sciatic nerve pain 0.00 0.02 0.00
299 sciatica 0.75 0.10 0.31
300 sciatica, bilateral 0.00 0.00 0.01
301 scrotal tenderness 0.01 0.00 0.00
302 sensory discomfort 0.68 0.87 0.00
303 severe back pain 0.00 0.00 0.54
304 severe low backache 0.00 0.00 0.03
305 severe pain 0.62 0.69 0.00

Continued on next page
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Table 3.19 – Continued from previous page
Pain concept i2b2 MIMIC-III ARIA

Frequency (%) Frequency (%) Frequency (%)
(n= 40,787) (n= 13,300) (n= 20,377)

306 sharp chest pain 0.00 0.00 0.01
307 sharp headache 0.00 0.01 0.00
308 sharp pain 0.11 0.06 0.12
309 shooting pain 0.00 0.10 0.03
310 shoulder discomfort 0.02 0.05 0.12
311 shoulder pain 0.62 0.88 0.24
312 shoulder tenderness 0.03 0.00 0.00
313 side pain 0.03 0.01 0.10
314 sinus headache 0.01 0.03 0.00
315 sinus pain 0.02 0.02 0.00
316 sinus pressure 0.01 0.03 0.00
317 skin tenderness 0.00 0.00 0.03
318 sore mouth 0.00 0.01 0.00
319 sore skin 0.04 0.02 0.01
320 sore throat 0.35 0.56 0.04
321 sore to touch 4.44 22.95 0.01
322 spleen pain 0.00 0.00 0.01
323 stabbing pain 0.03 0.06 0.01
324 stomach ache 0.01 0.02 0.00
325 subcostal pain 0.01 0.00 0.00
326 subtalar joint pain 0.02 0.00 0.00
327 superficial pain 0.01 0.19 0.00
328 suprapubic pain 0.00 0.07 0.07
329 swallowing painful 0.06 0.07 0.18
330 tender mouth 0.00 0.00 0.03
331 tenderness of gums 0.04 0.00 0.00
332 tenderness of tendon 0.01 0.00 0.00
333 tenderness of upper limb 0.00 0.02 0.00
334 thigh pain 0.06 0.04 0.26
335 thigh pain anterior 0.01 0.00 0.31
336 thoracic back pain 0.01 0.01 0.00
337 throbbing headache 0.00 0.01 0.00
338 throbbing pain 0.01 0.14 0.00
339 tibia pain 0.00 0.00 0.05
340 tightness in arm 0.03 0.00 0.00
341 tightness sensation 0.00 0.00 0.01
342 toothache 0.06 0.05 0.00
343 total body pain syndrome 0.02 0.01 0.00
344 transplant pain 0.04 0.00 0.00
345 typical angina 0.42 0.01 0.00
346 umbilical pain 0.00 0.01 0.00
347 unbearable pain 0.00 0.00 0.01
348 uncontrolled pain 0.00 0.00 0.16
349 upper abdominal pain 0.01 0.05 0.00
350 upper back pain 0.01 0.03 0.51
351 upper chest pain 0.03 0.05 0.16
352 upset stomach 0.04 0.00 0.01
353 vascular pain 0.01 0.00 0.00
354 vertex headache 0.00 0.01 0.00
355 very mild pain 0.00 0.00 0.03
356 walking pain 0.03 0.00 0.03
357 wound pain 0.03 0.00 0.00
358 wound tenderness 0.00 0.06 0.00

Continued on next page
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4.1 Preface

This chapter describes how we met the second thesis objective: Construction of a radiomics
pipeline to extract BM lesion features from radiographic images. In this study, a radiomics
pipeline was built to extract BM lesion features from patients’ radiography images. To enable

https://doi.org/10.1038/s41598-022-13379-8
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rapid labeling of BM lesions, a novel lesion-center-based geometric ROI methodology was
introduced. Then, utilizing lesion-center-based geometric ROIs, a pipeline was developed to
process simulation-CT images and obtain radiomics imaging phenotypes. The pipeline was
tested for its ability to differentiate between healthy and metastatic bone lesions.

4.2 Abstract

Radiomics-based Machine Learning (ML) classifiers have shown potential for detecting Bone
Metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current
radiomics models require large datasets of images with expert-segmented 3D Regions Of
Interest (ROIs). Full ROI segmentation is time consuming and oncologists often outline just
RT treatment fields in clinical practice. This presents a challenge for real-world radiomics
research. As such, a method that simplifies BM identification but does not compromise the
power of radiomics is needed.

The objective of this study was to investigate the feasibility of radiomics models for BM
detection using lesion-center-based geometric ROIs. The planning-CT images of 170 patients
with non-metastatic lung cancer and 189 patients with spinal BM were used. The point
locations of 631 BM and 674 healthy bone (HB) regions were identified by experts. ROIs
with various geometric shapes were centered and automatically delineated on the identified
locations, and 107 radiomics features were extracted. Various feature selection methods and
ML classifiers were evaluated.

Our point-based radiomics pipeline was successful in differentiating BM from HB. Lesion-
center-based segmentation approach greatly simplifies the process of preparing images for
use in radiomics studies and avoids the bottleneck of full ROIs segmentation.

4.3 Introduction

In recent years, radiomics-based Machine Learning (ML) classifiers have shown great
potential for use in the early detection of Bone Metastases (BM) and in assessing response
of BM to radiotherapy (RT) [1–20]. However, in order to be clinically acceptable, radiomics
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models must be trained on large data sets of real-world images. This is challenging as the
full 3D segmentation of BM on planning-CT images is time-consuming for radiation
oncologists in the clinical context. Often, in the interest of time and given the low doses
used in palliative RT, radiation oncologists only delineate treatment field boundaries when
treating BM, and they do not fully contour individual BM lesions. As a result, most of the
published BM radiomics studies to date were trained and tested with relatively small
sample sizes (see Table 4.1), which diminishes their generalizability and their applicability
to clinical RT planning. Motivated by the need for large real-world BM data sets, the
objective of this study was to determine if a radiomics model can be trained to distinguish
BM from healthy bone (HB) using BM lesions denoted as points on planning-CT images
rather than using full 3D segmentation.

4.3.1 Radiomics for metastases detection

Radiomics is an automated feature generation method for the extraction of hundreds of
quantitative phenotype (radiomics features) from radiology images [21, 22]. ML algorithms
can be trained to find relationships between radiomics features and cancer outcomes if
provided with sufficient and appropriate data. There are three main steps in the training
phase of a typical radiomics study. These include: (1) manual or semi-automated
segmentation of Regions Of Interest (ROIs) on patients’ images, (2) feature extraction from
the segmented ROIs, and (3) generation of a statistical or ML model to correlate extracted
features to each patient’s endpoint data such as their cancer outcome or other
clinically-measured biomarkers [8].

In addition to the need for adequate sample sizes, which is the main motivation behind
this study, a radiomics model must overcome two important challenges in order to be reliable
in a clinical context. First, it must be clinically reproducible. This is challenging because
different radiomics studies use different subsets of radiomics features to achieve optimal
models. The variations in published feature selection approaches make radiomics models less
clinically reproducible [23, 24]. Therefore, to achieve a clinically-reliable radiomics model, it
is important to study and account for the effect of the variation in Feature Selection (FS)
methods [25–27].

Depending on the endpoint of interest, various ML classifiers may be used in a radiomics
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model. Support vector machine, Bayesian network, multivariate logistic regression, k-nearest
neighbor, decision trees, random forests, neural network, and convolutional neural networks
are among the ML classifiers that are most commonly used in radiomics-based ML models
[8–20]. The feasibility of using radiomics-based ML models to distinguish between benign
and malignant bone lesions has been reported in previous studies [1–4, 6, 7]. The main
details of these studies are summarized in Table 4.1.

Ref Sample Imaging ROI labels Classifier Performance
size∗ Modality (ROC-AUC, A, P, R)†

[1] 36 PET/CT Manual benign and RF 0.95, 0.88, 0.88, 0.89
metastatic

[2] 74 Diagnostic-CT Semi- benign and RF 0.90, 0.92, 0.92, 0.91
automated‡ malignant

[3] 75 PET/CT Manual responded and kNN 0.76, 0.74, 0.74, 0.74
metastatic

[4] 100 Diagnostic-CT Semi- benign and SVM 0.86, -, 0.85, 0.88
automated‡ malignant

[5] 103 Dual-Energy CT Semi- benign and RF 0.79, 0.78, 0.72, 0.79
automated‡ malignant

[6] 177 CT Manual bone island RF 0.96, 0.80, 0.96, 0.86
and metastases

[7] 206 Diagnostic-CT Manual benign and MLR 0.82, 0.86, 0.93, 0.77
malignant

Table 4.1: Radiomics-based ML models reported in the literature for distinguishing bone
lesions. ∗Sample size is the total number of samples. †A: Accuracy, P: precision (Specificity),
R: Recall (sensitivity). ‡In the semi-automated segmentation methods an expert was required
to check and modify the computer-segmented ROIs slice-by-slice.

The radiomics-based ML models listed in Table 4.1 are not readily applicable to our
clinical context, palliative RT for BM, for three reasons. First, they have relatively small
sample sizes, an inherent problem for generalizability. Second, they require full 3D lesion
segmentation, which is challenging to achieve clinically when planning palliative RT for
BM. Finally, they were trained on images acquired using diagnostic-CTs or hybrid imaging
modalities, whereas palliative RT planning is mostly done on planning-CT (simulation-CT)
images alone.

With the above limitations in mind, in this study, we investigated the feasibility of
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developing a fast and reliable radiomics-based ML pipeline capable of differentiating between
BM and HB in RT planning-CT images of cancer patients using just geometric ROIs centered
on expert-identified lesion point locations. We investigated the effect of using ROIs with
different sizes and geometric shapes. We also examined the performance of different FS
methods and ML classifiers in achieving the optimal BM detection pipeline.

4.4 Materials and Methods

4.4.1 Ethics declarations

This retrospective study was approved by the Research Ethics Board of the McGill
University Health Centre, Montreal, Quebec, Canada, with the waiver of informed consent.
We confirmed that all research were performed in accordance with the relevant guidelines
and regulations.

Oncology Information System

Secondary malignant 
neoplasm of bone

(462 patients)

Non-metastatic lung 
cancer

(1474 patients)

Thoracic spinal BM
(189 patients)

Random selection
(170 patients)

Manual HB point 
identification
(690 points)

Manual BM point 
identification 
(676 points)

Validated HB points
(674 valid points)

Validated BM points
(631 valid points)

Figure 4.1: Flow chart of patient selection.
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4.4.2 Patient selection

The planning-CT images of BM and HB patients used in this study were collected from
the Oncology Information System at our institution. Our patient selection procedure is
presented in Figure 4.1.

BM samples were from patients who received palliative RT for a secondary malignant
neoplasm of bone in the thoracic spine between January 2016 and September 2019. HB
samples were from individuals who received curative RT for non-metastatic lung cancer (as
their CT images covered the same anatomy) during this period.

In total, we found 189 BM patients (96 male and 93 female; mean age± standard deviation
(SD), 69 ± 13 y) and 1474 HB patients in our database. To reduce the large imbalance
between the number of BM and HB patients, we randomly shuffled the HB sample (in a
Microsoft Excel file) and selected the first 170 patients (86 male and 84 female; mean age 71
± 12 y) to include in our study (see Figure 4.1).

4.4.3 Planning-CT images

All planning-CT images were generated using one of three Philips’ Brilliance Big Bore RT CT
scanners at our institution with the acquisition parameters provided in Table 4.2. Planning-
CT DICOM files were manually de-identified and exported to a secured hard drive from the
Eclipse radiation therapy treatment planning software (Varian Medical Systems, Palo Alto,
California), into which they had been previously imported for RT planning.

Tube Tube exposure Field of Matrix Slice Pixel
voltage current exposure view size thickness spacing
(kV) (mA) (mm) (pixel) (mm) (mm)
120 165-366 240-450 600 512×512 3.0 0.77-1.37

Table 4.2: Planning-CT image acquisition parameters.

4.4.4 Lesion identification

The planning-CT images of the BM patients were randomly divided into five sets using
the Python random.shuffle module and were loaded into our custom-written 3D DICOM
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Figure 4.2: Screenshots of our diCOMBINE 3D lesion labeling web application showing
expert-labeled points. (a) A BM lesion, and (b) a HB point. Cross sections of 50 mm,
30 mm, 20 mm, and 15 mm spherical ROIs are visualized with yellow dashed lines on each
CT plane.

visualization web application (diCOMBINE [28]) for lesion identifying. diCOMBINE is an
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open-source software developed by our group using the Python Flask [29] framework for
DICOM 3D visualization and lesion point location labeling. The center points of BM lesions
were labeled by an expert team comprising one staff radiation oncologist and four radiation
oncology fellows. Each expert was asked to label BM center points in one of the five data sets,
and a peer expert was tasked with reviewing them and validating the labels. A total of 631
validated BM center points were thus identified in the BM data set. Similarly, the planning-
CT images of the HB patients were randomly divided into three sets and were loaded into
diCOMBINE for HB labeling. One staff medical physicist and two medical physics graduate
students were asked to identify HB points in one of the data sets each. When identifying HB
points, the medical physicists were instructed to avoid non-metastatic skeletal complications
(such as surgically-treated bone lesions). An average of four HB points were identified in
each planning-CT image. Then, we asked each physicist to independently review and confirm
the HB points that one of their peers had labeled. A total of 674 validated HB points were
identified in this way. Screenshots of our diCOMBINE 3D lesion labeling web application
are presented in Figure 4.2. These BM and HB points were used as center points for our
automated ROIs delineation.

4.4.5 Delineation of regions of interest

ROIs were automatically delineated in the planning-CT images using geometric shapes
centered on the expert-identified point locations. We used four spherical (SP) and five
cylindrical along the z-axis (CY) ROIs of various sizes. The characteristics of the ROIs
used are specified in Table 4.3. The size ranges were defined to extend from the size of a
large bone lesion (∼15 mm) [30] to the maximum size of a spinal vertebra (∼50
mm) [31, 32].

4.4.6 Radiomics feature extraction

The pydicom package (https://pydicom.github.io/pydicom/stable/) was used to read
DICOM CT images and normalize pixel data to Hounsfield Units. Then, the normalized
CT slices were stored as 3D raster data using the pynrrd package (version 0.4.2)
(https://pypi.org/project/pynrrd/0.4.2/). The pynrrd package was also used to generate
3D binary masks from each of the nine ROIs listed in Table 4.3. Finally, The open-source



4.4. MATERIALS AND METHODS 123

Spherical
Abbreviation SP50 SP30 SP20 SP15
Diameter (mm) 50 30 20 15

Cylindrical along the z-axis
Abbreviation CY50 CY30 CY20 CY15 CY5030
Width (mm) ×
Height (mm)

50×50 30×30 20×20 15×15 50×30

Ensemble
Abbreviation E4SP E4CY E5CY E9SC
ROIs SP50 CY50 CY50 SP50+SP30

+SP30 +CY30 +CY30 +SP20+SP15
+SP20 +CY20 +CY20 +CY50+CY30
+SP15 +CY15 +CY15 +CY20+CY15

+CY5030 +CY5030

Table 4.3: The characteristics of the ROIs used in this study. ROIs from the planning-CT
images were segmented using cylindrical and spherical ROIs with various sizes around the
expert-labeled BM and HB points.

PyRadiomics package (version 3.0.1) [33] was used to calculate the 3D quantitative
radiomics features. For each of the nine ROIs listed in Table 4.3, we extracted 107
radiomics features from each of the planning-CT images. We did not apply any filters prior
to feature extraction. These 107 features include 18 First Order, 14 Shape, 24 Gray Level
Co-occurrence Matrix (GLCM), 16 Gray Level Size Zone Matrix (GLSZM), 16 Gray Level
Run Length Matrix (GLRLM), 14 Gray Level Dependence Matrix (GLDM), and five
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  1- Spherical    2- Cylindrical  3- Ensemble

GEOMETRIC ROIs SEGMENTATION

RADIOMICS FEATURE CALCULATION 
(PYRADIOMICS)

MANUAL 
LESION CENTER IDENTIFICATION

FEATURE SCALING

TRAIN & 
VALIDATION (70%)

TEST (30%)

  1-    ICA      2-    LASSO
  3-    NONE 4-    NZV 
  5-    PCA      6-   RFECV
  7-    TREE 8-    ZV

FEATURE SELECTION

  1-   Adaboost 2-   Bagging
  3-    DT 4-   GPR
  5-    kNN 6-   L_SVM
  7-    NB 8-    NNet
  9-    QDA 10-  RF
 11-   SVM   

ML CLASSIFIERS

PERFORMANCE 
EVALUATION 
(AUC-ROC)

FEATURE-LABEL
SPACE

IMAGE NORMALIZATION

HEALTHY METASTATIC

Figure 4.3: The exploration workflow for developing our radiomics-based ML models for
classifying metastatic (BM) and healthy (HB) spinal bones. The best performing pipeline,
as described in the Results, is highlighted in green.

Neighbouring Gray Tone Difference Matrix (NGTDM) features [34, 35]. We also
aggregated radiomics features from multiple ROIs to define four ensemble ROIs, including;
1) E4SP: 428 features extracted from all four spherical ROIs, 2) E4CY: 428 features
extracted from the first four cylindrical ROIs, 3) E5CY: 535 features extracted from all five
cylindrical ROIs, and 4) E9SC: 963 features extracted from all nine ROIs combined. Our
rationale for this approach was that by aggregating features extracted from ROIs with
various sizes around the BM centers, we could extract sufficient information about the
BMs’ shape, size, and other characteristics and distinguish them from HBs using ML
classifiers. Similar feature aggregation approaches were used in other studies [36, 37].
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4.4.7 Radiomics workflow

Our complete radiomics-based ML workflow is presented in Figure 4.3. After extracting
radiomics features for each ROI, we scaled the feature space using z-score normalization [38].
Then, we randomly divided the data set into 70% and 30% stratified training and testing
sets, respectively. Each stratified set contained approximately the same BM/HB samples
ratio as the initial data set. The training set was used for FS, and ML model development
using 5-fold cross-validation [39]. The test set was used for the final performance evaluation.
In the present study, we examined the performance of 13 FS methods and 12 ML classifiers
as shown in Figure 4.3 and described in the following sections.

4.4.8 Feature selection methods

Radiomics calculates hundreds of features from images and some of them are redundant or
are not useful for detecting BM [40]. To identify the most useful radiomics features for
differentiating BM and HB, we investigated several supervised and unsupervised FS
methods, Principal Component Analysis (PCA) [41], Fast Independent Component
Analysis (ICA) [42], zero variance threshold [43] (VT 0), near-zero variance threshold [43],
Least Absolute Shrinkage and Selection Operator logistic regression algorithm
(LASSO) [44], Recursive Feature Elimination with Cross-Validation (RFECV) r [45], and
Decision-Tree-Based (TREE) [46] feature selection. For the LASSO, motivated by Zack et
al. [9] we used 20, 24, and 30 features. For the LASSO method, we examined least-squares
penalty (α) values of 0.1, 0.5 and 1.0. α controls the stability of the selected features. A
LASSO method with a larger α keeps fewer features (the most stable ones) [44]. For
near-zero variance, we selected the variance threshold of 0.8 (VT 0.8) as used by Zack et
al. [9]. FS techniques were implemented using Python scikit-learn [47] (version 0.24.2)
feature selection module (https://scikit-learn.org/stable/modules/feature selection.html).
The performance of these FS methods, along with no FS, was then evaluated using 12
supervised ML classifiers.
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4.4.9 Machine learning classifiers

The Python scikit-learn ML package (version 0.20.4) [48] was used to implement our ML
classifiers. We used 12 supervised classification models, including the Linear Support Vector
Machine [49] (L-SVM), SVM with Radial-basis function kernel [49], Gaussian Naive Bayes
(NB) [50], k-Nearest Neighbors (kNN) [51], Quadratic Discriminant Analysis (QDA) [52],
Gaussian Process Regression (GPR) [53], Decision Tree (DT) [54], Random Forest (RF)
[55], Bagging [55], AdaBoost [55], Neural Networks with stochastic gradient-based solver
[56, 57] (NNet) and NNet with Limited-memory Broyden–Fletcher–Goldfarb–Shanno solver
[58] (NNet-LBFGS). For both NNet classifiers, we used the rectified linear unit activation
function [59] (ReLU).

4.4.10 Performance evaluation

The performance of our radiomics-based ML models were measured using the test data
set. The standard error of calculations was reported using 5-fold cross-validation on the
training data set. We used the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) [60] for performance evaluation. Also, we reported precision and recall for our
best-performing pipeline. Matplotlib (version 3.4.3) [61] was used to generate figures.

4.5 Results

4.5.1 Radiomics feature space

A JSON file of the metadata of extracted radiomics features is available in the supplementary
dataset in our public repository [62]. The predictive performance of the different FS methods
and ML classifiers was evaluated for each ROI on the test set using the ROC-AUC, precision,
recall, and F-1 scores. Examples of Receiver Operating Characteristic (ROC) curves are
presented in Figure 4.4 for the a) NB (a poor performance), b) RF (a good performance),
and c) GPR (the best performance) ML classifiers on the test data set (red squares) and 5-fold
validation set (pink lines) using 20 mm spherical ROI (SP20) with no FS. Note that 20 mm SP
ROI was selected for visualization purposes throughout this paper for no particular reason.
The effect of using the various geometric ROIs will be presented later in this paper. Raw
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data values, including confusion matrices, ROC graphs, and performance tables (precision,
recall, F-1, values on training, validation, and test sets) for all ML classifiers on all ROIs are
provided in the output data folder in our public repository [62].

(a)             NB         (b)                     RF        (c)                  GPR

We used 20 mm spherical ROIs (SP20) with no FS for this example. ROC-AUC values are
presented in the legends. The 20 mm SP ROI was used for visualization purposes. Full

data is available in the supplementary dataset [62].

Figure 4.4: Example ROC curves for our radiomics-based ML models with the a) NB,
b) RF, and c) GPR ML classifiers Example ROC curves for our radiomics-based ML
models with the a) NB, b) RF, and c) GPR ML classifiers on the training set (black
lines) and on the test set (red squares). The gray range represents the mean ROC ±
SD of the 5-fold cross-validation used on the training set. Matplotlib (version 3.4.3)
(https://pypi.org/project/matplotlib/3.4.3/) is used for visualizing the data.

4.5.2 Effect of feature selection

An example of an ROC-AUC grid for different combinations of ML classifiers and FS methods
is presented in Figure 4.5 for the 20 mm SP ROI. As can be seen in Figure 4.5, the best results
were achieved by the GPR and NNet classifiers with LASSO FS methods. The RFECV, VT,
LASSO, and TREE FS methods outperformed PCA and ICA FS methods. Overall, FS did
not have much effect on the performance of the models for the 20 mm ROI. For example,
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Figure 4.5: The ROC-AUC grid for different ML (x-axis) classifiers and FS methods (y-axis)
combinations. The number in front of each PCA or ICA method is the number of selected
features used. The number in front of each LASSO method corresponds to the α penalty
value (the default value is 0.5). The number in front of each VT method is its variance
threshold value. Matplotlib (version 3.4.3) (https://pypi.org/project/matplotlib/3.4.3/) is
used for visualizing the data.

for the GPR ML classifier, the performance of our model increased only 2% (from 93% to
95%) with the LASSO method compared to with no FS (NONE).

4.5.3 Effect of geometric ROIs

Two examples of the effect of using geometric ROIs with different sizes and shapes are
presented in Figures 4.6. For plot (a), we used no FS. For plot (b), we used the best
performing FS method (LASSO). As can be seen in Figure 4.6, the size of the ROI had
a significant effect on the performance of our radiomics-based ML models. In general, a
smaller ROI resulted in superior performance of models. For example, for the GPR classifier
with no FS (the rightmost column of Figure 4.6-a), the ROC-AUC was improved from 86%
to 94% when we moved from the SP50 to the SP15 ROI. SP15 resulted in the best overall
performance when no FS was used. When we employed FS methods, the ensemble ROIs
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(a)

(b)

Figure 4.6: The ROC-AUC grid for different combinations of ML classifiers (x-axis) and
geometric ROIs (y-axis) with various sizes and shapes (a) with no FS method and (b) with
LASSO as the FS method.

(like E4SP and E9SC) out-performed the single-size ROIs. This was most pronounced for
the LASSO method, which is presented in Figure 4.6-b. The ROC-AUC grids for other FS
methods are provided in the output data folder in our public repository [62].

Comparing Figure 4.6-a and 4.6-b revealed that some ML classifiers (like SVM or GPR)
were more sensitive to the use of FS than others (like NNet or RF). Also, we noticed that
FS was more important when using large ROIs (such as SP50 or CY50) or ensemble ROIs
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(such as E4SP or E9SC).

(a)

ROI

A
U

C

0.5

0.6

0.7

0.8

0.9

1.0

CY15
SP15

SP20
CY20

SP30
CY30

CY5030
CY50

SP50

GPR without FS GPR with LASSO FS

(b)

ROI

0.5

0.6

0.7

0.8

0.9

1.0

E4SP E4CY
E5CY

E9SC

Figure 4.7: An example of ROC-AUCs versus the volume of the ROI for (a) single geometric
ROIs and (b) for ensemble ROIs (Ref. Table 4.3). For this graph, we used our best
performing ML classifier (GPR), with our best performing FS method (LASSO), and without
FS method.

To visualize the effect of the size of ROI on the performance of our models, in Figure 4.7
we show the ROC-AUCs of our best performing ML classifier (GPR) for (a) single geometric
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ROIs (sorted by volume), and (b) for ensemble ROIs (sorted by total volume). To show the
effect of the use of FS, we plotted the results without FS (blue circles), and with our best-
performing FS method (LASSO) (red squares). It can be seen that a smaller ROI resulted in
a better performance. Also, FS was more important for larger ROIs (like SP50 and CY50)
and ensemble ROIs (like E9SC).

Figure 4.8: The F-1 score grid for different combinations of ML classifiers (x-axis) and
ROIs (y-axis) with different sizes and shapes with LASSO FS method.

The grid of the F-1 scores for the best performing FS method (LASSO) is presented
if Figure 4.8. The GPR, NNet, and L-SVM classifiers achieved 0.9 F-1 score in detecting
BM using the ensemble ROIs. The ROC-AUC, precision, recall, and F1 score of our best
performing pipeline, corresponding to the E9SC ROI, LASSO FS method, and GPR ML
classifier, were 96%, 92%, 91%, and 0.9, respectively. The performance of our models for all
combinations of FS methods, ML classifiers, and ROIs are provided in the supplementary
dataset [62].

4.6 Discussion

In this study, we investigated the feasibility of using a single-point-based geometric ROI to
develop a radiomics pipeline to distinguish BM and HB locations in planning-CT images
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of cancer patients with BM. We investigated various FS methods, and ML classifiers using
point-based geometric ROIs with various shapes and sizes.

The time and effort needed for manual 3D segmentation of ROI are significant
limitations to achieving large real-world image data sets. This, in turn, hinders the
generation of generalizable radiomics-based prognostic ML models [63] for use in the clinic.
Another limitation of manual lesion segmentation is inter-observer variability, which has
been shown to have a significant impact on the performance and reproducibility of
radiomics-based pipelines [64]. Furthermore, manual segmentation tools, designed for
radiation therapy treatment planning, intend to load one patient at a time. Therefore,
switching between patients is another time-consuming process that slows down the lesion
delineation for multiple patients in the research context [65].

Our in-house-developed open-source 3D DICOM visualization and lesion identification
tool (diCOMBINE [28]) allowed our collaborating radiation oncologists to quickly review
planning-CT images of several hundred patients and efficiently identify 676 BM centers.
They found diCOMBINE fast and easy to use, allowing each expert to label around 150
lesions per hour. Based on our experts’ anecdotal experience, single-point-based geometric
ROI delineation was 10 to 15 times faster than full manual 3D segmentation. These lesion
centers were used to generate ROIs automatically. Defining point-based geometric ROIs,
instead of full 3D manual segmentation of the ROIs, allowed us to rapidly generate a large
sample set, minimize expert imposed uncertainties, and investigate the effect of the size
and shape of the ROIs in the performance of our radiomics models. Besides, our point-
based radiomics models will allow us to study the feasibility of building an automated BM-
identifying pipeline. To the best of our knowledge, no studies on automated BM delineation
have been published previously.

Radiomics extracts hundreds of features from an ROI. However, these features are
generally highly correlated and contain much noise. Therefore, it is essential to apply
proper FS methods to achieve a robust radiomics-based ML pipeline. Among the seven FS
methods we examined in this study, we found that PCA and ICA resulted in lower
ROC-AUC values than the VT, LASSO, and TREE FS methods. One reason for this
difference was that VT, LASSO, and TREE methods automatically defined the optimal
number of features, while in PCA and ICA, the number of features was predefined. For
highly-correlated features, the optimal number of features (f) is roughly proportional to the
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square root of the sample size (n) [66]. Accordingly, 30 features would appear to be less
than the optimal number of features for our sample size (f =

√
n =

√
1305 = 36). For

studies with small sample sizes, such as Zhang et al. [9], that used 112 samples, PCA with
10 features seems to be a suitable FS method. We also noticed that the effect of the FS
method depends on the selected ML classifier. For ML classifiers that had built-in FS
methods (i.e., RF and NNet), applying FS methods in some cases worsened the overall
performance of the model. Inversely, for ML classifiers that did not have built-in FS
methods (i.e., GPR), adding FS had a significant effect on the performance of the ML
classifier. The effect of the FS method was more significant when working with ensemble
ROIs that had many more features. For example, the ROC-AUC value for the GPR ML
classifier using the E9SC ROI (963 features) improved from 0.52 to 0.97 when the LASSO
FS method was used, as shown in Figure 4.6.

Among the ML methods we examined in this study, we found that GPR, NNet, SVM,
and RF resulted in the highest ROC-AUC values and F-1 scores. We showed that the
GPR classifier outperformed the NNet classifier for most ROIs. However, for the ensemble
ROIs (in which the number of features was large), GPR required a proper FS method (i.e.,
LASSO). The dimensionality issue of GPR classifiers and their requirement for FS was also
discussed in the literature [67, 68].

We found that our radiomics-based ML models performed slightly better on spherical
ROIs compared to cylindrical ROIs of similar volumes. More significantly, we found that the
smaller ROIs (15 and 20 mm) resulted in better performance compared to the larger ROIs
(30 and 50 mm) (Figure 4.6). This might be due to the fact that in larger ROIs there are
probably more outlier features captured from bone or organs/tissue surrounding the lesion
of interest. Performances of our models did not improve considerably by decreasing the size
of ROI below 20 mm, which is roughly the size of a large BM lesion [30]. As can be seen in
Figure 4.7, our models performed better on the ensemble ROIs compared to the single ROI
when used with FS methods. This could be due to having many features in the ensemble
ROIs. For example, the E9SC ROI contains 9×107 = 963 features. For such a prominent
feature space, FS methods become very important.

Although various radiomics pipelines have been previously developed and reported to
classify bone lesions, our radiomics-based ML pipeline, reported here, offers several
advantages compared to preceding efforts, mainly in the context of palliative radiotherapy
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planning. First, we, pragmatically, used planning-CT images of cancer patients for
extracting radiomics features, whereas prior studies used hybrid modalities or
diagnostic-CT images (as listed in Table 4.1). Hybrid modalities allow the development of
high-quality prognostic pipelines. However, these pipelines are less clinically applicable in
palliative radiotherapy treatment planning for BM, which is often primarily based on a
patient’s planning-CT scan. Second, all ML classifiers presented in the prior studies were
restricted to full 3D segmentation of the lesion volumes. In the real-world clinical workflow
for palliative radiotherapy of BM, it is common to use single-slice or lesion-center-based
treatment planning with radiation oncologists often defining treatment field limits rather
than lesion contours. Therefore, pipelines that require full 3D segmentation of ROI have
limited application in real-world palliative radiotherapy [65]. Moreover, 3D segmentation of
the ROI is a time-consuming bottleneck that likely compelled all the prior studies to train
and test their radiomics pipelines with limited sample sizes. Training on a small sample
size diminishes the generalizability and clinical applicability of a radiomics pipeline. In
comparison, our point-based pipeline allowed us to avoid the labor-intensive manual
segmentation step and train and test our pipeline on a large data set. Finally, in this study,
we investigated the effects of FS methods, and ML classifiers in achieving the optimal
prognostic model using geometric ROIs. To the best of our knowledge, no prior study
performed such a comprehensive optimization.

Our study had some limitations. First, we selected BM and HB from two sets of separate
patients. This selection might drive the risk of potential susceptibility to bias if there is
a systematic difference between the two sets of images. However, our rationale for using
non-metastatic cancer patients to select HBs was to eliminate the possibility of error in
labeling HBs by our medical physicists. Second, our collaborating medical physicists could
not identify non-metastatic skeletal complications from metastatic bone lesions. Therefore,
the non-metastatic skeletal complications (i.e., surgically-removed lesions or bone islands)
were ignored when labeling HB points. A solution for this problem would be using pathology
data to identify non-metastatic and metastatic lesions but this would significantly increase
the required effort. Third, we used a nearly balanced data set of HB and BM patients in
this study. However, having an imbalanced sample ratio is common in many real-world
radiation oncology outcome data sets [69, 70]. A study with an imbalanced data set is
required to evaluate the effect of sample imbalance when building high-performance real-
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world radiomics-based ML models [71–73]. Forth, while using geometric ROIs significantly
simplified the lesion delineation procedure, it ignored some lesion details such as size and
shape. One alternative that can be explored as future work is to use deep-learning-based ROI
segmentation. Finally, we used single-center planning-CT images from 359 patients in this
retrospective study. A multi-center study with a more extensive data set is required to test
the generalizability of our radiomics pipeline. Such a big data set would allow us to try more
robust deep learning ML classifiers [74, 75] to build an AI tool to scan patients’ planning-CT
images and identify BM lesions automatically. The present work provides strong motivation
to pursue such a multi-center study.

4.7 Conclusion

We demonstrated that our radiomics-based ML models can successfully distinguish
between metastatic and healthy bones in planning-CT images using lesion-center-based
geometric ROIs. Our results suggest that the GPR classifier with ensemble ROIs is
particularly promising for the differentiation of BM and HB. Optimum pipeline
performance was obtained using elimination-based FS methods such as LASSO. Our
results demonstrate that radiomics features obtained from a lesion-center-based
geometrical ROI may be sufficient to train radiomics-based ML classifiers to distinguish
between bone lesions when full 3D segmented ROIs are not available. This opens the door
to big data artificial intelligence research for cancer patients with BM.

4.8 Data availability

The supporting dataset is provided as a figshare repository [62]. This repository contains
three files: 1) “featurespace metadata.json.zip” file that includes radiomics features extracted
from 1273 spinal lesions (healthy or metastatic) from radiotherapy planning-ct images using
geometrical Regions Of Interest (ROIs). 2) “output.zip” folder that contains the results of
our radiomics-based ML models that were validated and tested using several FS, and ML
on single-point-based geometric ROIs with various shapes and sizes. 3) A README.md
file that is provided to explain the information about the data structure and file naming
patterns.



136 4. A lesion-centerpoint based radiomics model to identify BM

4.9 Acknowledgements

This research was supported by the startup grant of Dr. John Kildea at Research Institute
of the McGill University Health Centre (RI-MUHC), the Ruth and Alex Dworkin
scholarship award from the Faculty of Medicine and Health Sciences at McGill University,
an RI-MUHC studentship award, a Grad Excellence Award-00293 from the Department of
Physics at McGill University, and from the CREATE Responsible Health and Healthcare
Data Science (SDRDS) grant of the Natural Sciences and Engineering Research Council.
The authors would like to thank Dr. Luc Galarneau for his help with statistical analysis.

4.10 Competing interests

The authors declare no competing interests.

4.11 Author contributions statement

H.N. contributed to the methodology, literature review, software, formal analysis,
investigation, visualization, and writing the original draft. S.S. participated in data
collection, interpretation, and validation. M.T. participated in data collection,
interpretation, and validation. M.F. participated in data collection, interpretation, and
validation. P.R. participated in data collection, interpretation, and validation. J.Kh.
participated in data collection, interpretation, and validation. H.P. participated in data
collection, interpretation, and validation. A.X.A.H. participated in data collection,
interpretation, and validation. M.D. participated in conceptualization and methodology.
J.Ki. participated in data collection and contributed to the conceptualization,
investigation, supervision, funding acquisition, and editing of the original draft. All authors
contributed to the review of the paper and approved the final manuscript.



137

Bibliography

[1] T. Perk, T. Bradshaw, S. Chen, H. J. Im, S. Cho, S. Perlman, G. Liu, R. Jeraj,
Automated classification of benign and malignant lesions in 18 F-NaF PET/CT
images using machine learning, Physics in medicine and biology 63 (22) (11 2018).
doi:10.1088/1361-6560/AAEBD0.
URL https://pubmed.ncbi.nlm.nih.gov/30457118/

[2] M. V. Suhas, A. Mishra, Classification of benign and malignant bone lesions on CT
images using random forest, 2016 IEEE International Conference on Recent Trends in
Electronics, Information and Communication Technology, RTEICT 2016 - Proceedings
(2017) 1807–1810doi:10.1109/RTEICT.2016.7808146.
URL https://manipal.pure.elsevier.com/en/publications/
classification-of-benign-and-malignant-bone-lesions-on-ct-images-

[3] E. Acar, A. Leblebici, B. E. Ellidokuz, Y. Başbinar, G. C. Kaya, Machine learning for
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M. Götz, M. Guckenberger, S. M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger,
R. T. Leijenaar, J. Lenkowicz, F. Lippert, A. Losneg̊ard, K. H. Maier-Hein, O. Morin,
H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. A. Pfaehler, A. Rahmim, A. U.
Rao, J. Scherer, M. M. Siddique, N. M. Sijtsema, J. Socarras Fernandez, E. Spezi,
R. J. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. G. Troost, T. Upadhaya,
V. Valentini, L. V. van Dijk, J. van Griethuysen, F. H. van Velden, P. Whybra,
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5.1 Preface

This chapter describes the third objective of this thesis: Combining the NLP-quantified
pain scores extracted in objective 1 with the radiomic features extracted in objective 2, to

https://doi.org/10.2196/44779
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develop and evaluate a radiomics-based machine-learning model of pain in patients with BM.
In this study, the NLP-quantified patient-level pain scores retrieved using the methodology
described in Chapter 3 were combined with the lesion-level radiomic features extracted in
Chapter 4 to create a radiomics-based machine-learning model to distinguish between painful
and painless BM lesions.

5.2 Abstract

Background The identification of objective pain biomarkers can contribute to an improved
understanding of pain, as well as its prognosis and better management. Hence, it has the
potential to improve the quality of life of cancer patients. Artificial intelligence can aid in
the extraction of objective pain biomarkers for cancer patients with bone metastases.

Purpose To develop and evaluate a scalable Natural Language Processing (NLP) and
radiomics-based Machine Learning (ML) pipeline to differentiate between painless and
painful Bone Metastases (BM) lesions in simulation-CT images using imaging features
(biomarkers) extracted from lesion-centerpoint-based Regions Of Interest (ROIs).

Materials and Methods Patients treated at our comprehensive cancer center who
received palliative radiotherapy for thoracic spine BM between January 2016 and
September 2019 were included in this retrospective study. Physician-reported pain scores
were extracted automatically from radiation oncology consultation notes using an NLP
pipeline. BM centerpoints were manually pinpointed on CT images by radiation
oncologists. Nested ROIs with various diameters were automatically delineated around
these expert-identified BM centerpoints, and radiomics features were extracted from each
ROI. The Synthetic Minority Oversampling Technique re-sampling technique, the Least
Absolute Shrinkage and Selection Operator logistic regression algorithm (LASSO) feature
selection method, and various ML classifiers were evaluated using precision, recall,
F1-score, and Area Under the Receiver Operating Characteristic Curve (ROC-AUC).

Results Radiation therapy consultation notes and simulation-CT images of 176 (mean age
± SD, 66 ± 14 y; 95 male) thoracic spine BM patients were used in this study. After BM
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centerpoint identification, 107 radiomics features were extracted from each spherical ROI
using pyradiomics. Data were divided into 70% and 30% training and hold-out test sets,
respectively. In the test set, the accuracy, sensitivity, specificity, and ROC-AUC of our best
performing model (Neural Network classifier on an ensemble ROI) were 0.82 (132 of 163),
0.59 (16 of 27), 0.85 (116 of 136), and 0.83, respectively.

Conclusion Our NLP and radiomics-based ML pipeline was successful in differentiating
between painful and painless BM lesions. It is intrinsically scalable by using NLP to extract
pain scores from clinical notes and by requiring just center points to identify BM lesions in
CT images.

5.3 Introduction

5.3.1 Overview

Most cancer patients with Bone Metastases (BM) suffer from pain [1] and most receive
radiotherapy to control it [2]. But it has been shown that clinicians often underestimate
pain [3] and, as a result, many patients with BM receive radiotherapy after their pain has
already become debilitating [4].

Although patient-reported outcomes can be used to obtain pain scores directly from
patients themselves, the efficacy of these pain scores is limited due to the fact that these
ratings are highly qualitative and subjective. Because of this, it is desirable to have pain
scoring systems that are more objective. The goal of this study was to explore ways to
automatically and objectively quantify pain associated with BMs using CT images.

We hypothesized that tumor features extracted from CT images of BMs contain
imaging biomarkers that may be used to objectively identify BM-associated pain. These
pain biomarkers may provide the opportunity to develop objective pain-scoring tools to aid
in the diagnosis, treatment, understanding, and prognosis of BM pain.
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5.4 Background

The search for imaging and non-imaging pain biomarkers has been the focus of numerous
studies [5–12]. Various groups have shown how Machine Learning (ML) including Machine
Learning (ML) and radiomics, can be used to understand and quantify pain [13–21]. For
example, Mashayekhia et al. [22] showed that radiomic features extracted from the pancreas
on CT images can help to identify patients with functional abdominal pain. Vedantam et
al. [23] explored the viability of employing radiomics features extracted from MRI images
to detect pain following percutaneous cordotomy. At least one paper [20] has reported
using radiomics to identify painful metastatic lesions in radiographic images. However, we
found no reports in the literature of a scalable approach that can be used efficiently on a
large set of unlabeled patient data. To the best of our knowledge, our work is the first to
combine Natural Language Processing and radiomics to enable an efficient and scalable pain
identification pipeline using unstructured data.

A fundamental challenge in developing any AI model for use in medicine is the need to
obtain sufficient patient data for training and testing. For example, the dataset used by
Wakabayashi et al. [20], in the study that we mentioned earlier, was limited to 69 patients.
One limiting factor is obtaining standard patient-reported pain scores for use as ground
truth data, and another is obtaining segmented images from which to extract tumor
biomarkers. For the work reported in this paper, we overcame the dataset size limitation
by employing two novel strategies. First, by combining NLP with radiomics, we quickly
mined pain scores from clinical notes and used these NLP-extracted scores to label our
radiomics features for supervised learning. Second, by asking our clinical colleagues to
pinpoint just the centerpoints of BM lesions in radiotherapy simulation-CT images we
maximized the number of lesions identified in the time available. In the medical field, NLP
has shown promising results in extracting biomedical information and clinical outcomes
such as pain from unstructured text data [24–26]. Moreover, as we reported previously [21],
by automatically delineating geometrical regions around BM lesion centerpoints, it is
possible to successfully extract radiomics features for robust BM lesion detection. In the
present study, we report how our combined radiomics-NLP ML pipeline can successfully
identify pain in radiotherapy simulation-CT images of cancer patients with BMs.
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5.5 Methods and Materials

This retrospective study was approved by the Research Ethics Board (REB) of our institution
with the waiver of informed consent. We confirm that the entire research was performed in
accordance with REB guidelines and regulations.

5.5.1 Data selection

Our patient-selection process is outlined in Figure 5.1. The initial number of 200 pairs
of radiation oncology consultation notes and CT images of patients with spinal BM were
included in this study based on the minimum sample size calculation as explained in section
A.1 of the supplementary information. 120 of the notes and all 200 of the CT images from
this study were independently used in two studies we previously reported on [21, 25]. The
first of these studies [25] showed the feasibility of extracting pain from consultation notes
of cancer patients using NLP. The second [21] demonstrated the feasibility of using lesion-
centerpoint based radiomics models to differentiate healthy and metastatic bone lesions in
CT scans of patients with BMs. The current study combined the data and results from these
two prior studies and expanded upon them to build an NLP- and radiomics-based model to
detect pain using the CT scans of patients.

We searched our institution’s Oncology Information System for the radiotherapy plans of
patients diagnosed with a “secondary malignant neoplasm of bone” between January 2016
and September 2019. From the retrieved list, we selected those that treated thoracic spinal
BM. Then, we retrieved the corresponding consultation notes and simulation-CT images. A
note-image pair was included if (a) the note was in English, (b) pain was documented, (c) the
simulation-CT image was taken up to 10 days post-consultation, and (d) the simulation-CT
had BM lesions in the thoracic spine. Patients with multiple but non-overlapping note-image
pairs were considered independent samples. Note that we only considered the same patients
as new subjects if they had CT scans and associated consultation notes for BM lesions in
different areas of their spines. As a result, each BM lesion was included only once in our
study. Also, it should be noted that palliative patients normally have their simulation CT
scan (for treatment planning) done the same day or within a few days after the consultation,
and RT is delivered on the same day or within a few days after treatment planning. To
assure that there is no change in the BM lesion structure or pain status, we did not allow
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more than a 10-day gap between the two. Figure 5.5 in the supporting information displays
the distribution of the time interval between the RT consultation and CT acquisition dates.

 RT plan for secondary malignant neoplasm of bone
n=2077 plans (1342 patients)

RT plan for thoracic spine, n=343 plans (306 patients)

● RT consultation note, n=326 notes (306 patients)
● Simulation-CT images, n=343 images (306 patients)

Included: 
n=176 pairs (161 patients)

Excluded:
- No documented pain: n=15
- Note in French; n=6
- No T-spine BMs; n=2
- Corrupted DICOM file; n=1

Train/Validate
n=121 pairs (112 patients*)  

Test
n=55 pairs (53 patients*)  

Radiation Oncology Information System

 CT images with matching notes  [CT acquisition date <= 10 + 
consultation appointment date], n=239 pairs (205 patients) 

Randomly selected for this study n=200 pairs (185 patients)

 *  Four patients had pairs in both the train and test sets.

Figure 5.1: The patient selection criteria used to obtain the radiotherapy consultation notes
and simulation-CT images that formed our training and test datasets. The initial number of
200 note-image pairs included in this study was based on the minimum sample size calculation
as explained in Section A.1 in the supplementary information. RT: radiotherapy.
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We randomly assigned note-image pairs to the training/cross-validation set
(approximately 70%) or the hold-out test set (approximately 30%). We used stratified
randomization to preserve the original sample ratio between pain labels in each sample set.
In addition, we performed a t-test and a chi-square analysis [27] to ensure that there was
no systematic bias in any of our sample sets regarding gender, age, or primary cancer type.
Patient demographics are presented in Table 5.1.

5.5.2 NLP-extracted pain labels

Due to the absence of patient-reported pain scores in our oncology information system, we
extracted physician-reported pain scores from patients’ radiation oncology consultation notes
using our previously-reported NLP pipeline [25]. While pain scores were typically reported
as part of the “history of the present illness” in our hospital, for the sake of generalizability,
we extracted pain scores from the entire note.

Our NLP pipeline first processed the text with MetaMap [28] and mapped it to the UMLS
metathesaurus [29] in order to identify pain terminologies and their severity scores. Next, it
applied rules to filter out hypothetical, conditional, and historical references to pain in order
to focus solely on references to pain at the time of the consultation. Then, it calculated the
average pain intensity (API) in each note by averaging the pain scores therein. Finally, it
assigned each note a Verbally-Declared Pain (VDP) label, as VDP=‘no pain’ (if API < 0),
and VDP=‘pain’ (if API > 0). These pain labels were used to train, validate, and test our
radiomics model.

5.5.3 Expert-extracted pain scores

To evaluate the effect of NLP-extracted pain labels on the performance of our pipeline, we
also generated best-available ground-truth pain labels using expert-annotated pain scores.
To do so, our radiation oncologists used the texTRACTOR [30] pain labeling application to
manually read consultation notes and label valid pain scores in our training and test datasets
using a 4-grade verbal rating scale (no pain, mild, moderate, severe). A mention of pain was
regarded as valid if it reflected the status of pain at the metastatic sites for which treatment
was planned at the time of the consultation. Table A1, in the supplementary information,
contains all the NLP- and expert-extracted pain scores, and Figure 5.6 illustrates the level
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VARIABLE TRAIN/VALIDATE TEST P-VALUE

Number of samples (n) 121 55
Female 56 (46%) 25 (45%)
Male 65 (54%) 30 (55%)
AGE (Mean±SD), years
Female 63±14 64±12 0.99
Male 67±14 64±13 0.72
p-value 0.2 0.5
PRIMARY CANCER 0.06
Lung 32 (26%) 20 (36%)
Breast 23 (19%) 11 (20%)
Prostate 19 (16%) 5 (9%)
Multiple Myeloma 8 (7%) 6 (11%)
Renal Cell Carcinoma 7 (6%) 2 (4%)
Other and Unknown 64 (53%) 31 (56%)
BM LESIONS 0.42
Lytic 220 (52%) 76 (47%)
Blastic 122 (29%) 57 (35%)
Mix 81 (19%) 30 (18%)
PAIN LABEL
Pain 357 (84%) 136 (83%)
No pain 66 (16%) 27 (17%)

Table 5.1: Patient demographics in the training and test sets. P-values for numerical values
(age) and categorical features (primary cancer site and BM lesion type) are calculated using
a two-tailed heteroscedastic t-test and a chi-square test, respectively.

of agreement between them. Due to the quality of the documented pain scores and lack of
inter-rater agreement among experts (Fleiss’ κ = 0.43), as explained in [25], we subsequently
defined a binary pain score as ‘no-pain’ and ‘pain’ in order to establish satisfactory inter-
rater agreement (κ = 0.66) [25]. To create binary ground-truth pain labels comparable to
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the NLP-extracted labels, we assigned notes scored as ‘no pain’ to ‘no pain’ and notes scored
as ‘mild’, ‘moderate’ and ‘severe’ pain to ‘pain’.

These expert-extracted pain scores were used to measure how well the NLP pipeline
works.

5.5.4 Centerpoint identification of BM lesions

BM lesion centerpoints were identified by a team comprising one staff radiation oncologist
with 10 years’ experience, one radiation oncology fellow, and three 3rd-year radiation
oncology residents. Simulation-CT DICOM files were exported from the radiotherapy
treatment planning software and de-identified. Then, the CTs were randomly divided into
five sets and loaded into the diCOMBINE [31] application for BM lesion centerpoint
identification. Our experts were blinded to patients’ pain statuses and identities. We
requested each to label centerpoints for all visually identifiable BM lesions in all CTs
within one of the five sets, and another expert was assigned to validate their labels. A key
benefit of this radiomics pipeline [21] is that it does not require full lesion segmentation,
making it feasible to engage busy clinicians.

5.5.5 Segmentation of regions of interest

Using our previously-reported methodology [21], we automatically segmented
lesion-centerpoint-based nested spherical ROIs. To do this, we first delineated nested
spherical (SP) ROIs around the identified BM lesion centerpoints (see Table 5.2, top
panel). ROI diameters ranged from 7 mm (3x3 voxels) to 50 mm (average size of the
vertebral body [32]). Then, in addition to what was done by Naseri et al. [21], we used
Hounsfield units thresholding to exclude fat and air regions from the delineated ROIs . For
this, motivated by [33, 34], we applied a threshold to remove voxels with negative
Hounsfield units from our ROIs . Hounsfield units less than zero are associated with fat
and air [33]. We used OpenCV (version 4.4.0) [35] for Hounsfield units thresholding and
applied a Gaussian filter to reduce noise. Then, we used pynrrd (version 0.4.2) [36] to
export each ROI as a 3D binary mask and store it as a .nrrd [37] file. Finally, we
aggregated these nested ROI masks to form ensemble ROIs . In this study, we examined
two contrasting ensemble ROIs as shown in Table 5.2 (bottom panel), one with small size
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and three layers (EN3) and the other with large size and six layers (EN6). Prior
studies [20, 21] have shown that radiomics-based ML models trained on ensemble ROIs
have better classification performance compared to single ROI-based models.

Nested spherical ROIs
with Hounsfield units intensity threshold (HU>0)

Name SP7 SP10 SP15 SP20 SP30 SP50
Diameter (mm) 7 10 15 20 30 50

Ensemble ROIs

Name EN3 EN6
Aggrigated ROIs SP7+SP10+SP15 SP7+SP10+SP15

+SP20+SP30+SP50

Table 5.2: The characteristics of the spherical and ensemble Regions Of Interest (ROIs)
used in this study. HU, Hounsfield units; SP, spherical; EN, ensemble.

5.5.6 Radiomics models

Our radiomics pipeline is illustrated in Figure 5.2. We essentially used our previously-
reported pipeline [21] but with our NLP- and expert-extracted pain labels to train and test
it. We made one improvement to the pipeline by incorporating Imbalanced-learn (version
0.7.0) [38] as a re-sampling step to account for imbalance (see below).

Radiomics features were extracted from each CT image using masks composed of the
ensemble ROIs listed in Table 5.2. Then, the feature space was scaled using z-score
normalization [39], and the associated NLP-extracted binary pain labels (pain=1, no
pain=0) were incorporated. A single NLP-extracted pain score was assigned to all the
lesions extracted from a given paired CT image.

Due to the nature of BM pain [40], there was a large imbalance between the number
of painful and painless lesions (493 pain: 93 no pain). Therefore, we used the Synthetic
Minority Oversampling Technique (SMOTE) in the training phase as it has been shown
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NESTED ROIs SEGMENTATION

RADIOMICS FEATURE 
CALCULATION (PYRADIOMICS)

MANUAL LESION 
CENTER IDENTIFICATION

FEATURE SCALING

TRAIN & 
VALIDATION 

(70%)

TEST (30%)

RE-SAMPLING
SMOTE

FEATURE SELECTION
LASSO

ML CLASSIFIERS
    1-    RF 2-    GPR
    3-    NNet    4-    L_SVM

PERFORMANCE 
EVALUATION 
(AUC-ROC)

CT-IMAGES NOTES

NLP EXTRACTED 
PAIN SCORE

IMAGE NORMALIZATION

FEATURE-
LABEL
SPACE

Figure 5.2: The radiomics-based pipeline that we used to select and train a ML model
to separate painful and painless BM lesions. Our pipeline is the same as that published by
Naseri et al. [21] but using NLP-extracted pain labels and modified to account for sample
imbalance.

to be the best-performing re-sampling method for radiomics [41]. We did not apply re-
sampling to our test set in order to maintain the original sample imbalance. Then, the
Least Absolute Shrinkage and Selection Operator logistic regression algorithm (LASSO) [42]
feature selection method was applied to the feature space to remove non-informative features.
LASSO is a commonly-used feature selection method in radiomics studies [43, 44]. Finally,
we examined the Gaussian Process Regression, Linear Support Vector Machine, Random
Forest and Neural Networks classifiers, as they were the best performing ML classifiers in
our previous work [21]. We evaluated the performance of our models on the training set using
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5-fold cross-validation. Final evaluation was performed on the test set. The Area Under the
Receiver Operating Characteristic Curve (ROC-AUC), precision, sensitivity, specificity, and
F1-score metrics were used to report the performance of our models on the training and test
sets. We also trained and tested our best performing pipeline using the expert-extracted pain
scores (best available ground truth) to evaluate the impact of NLP-extracted pain labels.

5.6 Results

5.6.1 Patient demographics

A total of 176 pairs of radiotherapy consultation notes and simulation-CT images of thoracic
spinal BM patients were included in this study. As summarized in Table 5.1, 121 sample
pairs (mean patient age±SD, female: 63±14y; male: 67±14y; p=0.2, 56 male) were used for
training and cross-validation, and 55 sample pairs (mean patient age±SD, female: 64±12y;
male 64±13y; p=0.5, 25 male) were used as the test set. The sample selection procedure
and data quantities are presented in Figure 5.1. The demographics of the patients in the
training and test sets are presented in Table 5.1. The most common primary cancer sites
were lung (n=52), breast (n=34), and prostate (n=24).

A total of 586 BM centerpoints were identified by our experts on the training (n=423
lesions) and test (n=163 lesions) datasets. In the training set, 357 (84%) lesions were labeled
by the NLP pipeline as painful and 66 lesions were labeled as painless. In the test set, 136
(83%) lesions were identified by the NLP pipeline as painful, and 27 lesions were labeled as
painless. This represented a significant but equal imbalance in our training and test sets.

5.6.2 Segmented ROIs

Examples of segmented ROIs with the Hounsfield units threshold applied are presented in
Figure 5.3 for painful and painless BMs.

5.6.3 Testing our radiomics models

107 radiomics features were extracted from each of the six nested ROIs . Then, they were
aggregated to form feature spaces for the EN3 (with 321 features) and EN6 (with 642
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a b

c d

Figure 5.3: Examples of segmented nested spherical Regions Of Interest (ROIs) with the
Hounsfield units threshold applied on CT images of patients with painful (a, b) and painless
(c, d) bone metastases lesions. Nested ROIs with diameters of 50, 30, 20, 15, 10, and 7 mm
are shown in the insets as different hues.

features) ensemble ROIs . Figure 5.4 shows the ROC curve of each model in the training
(black lines) and test (red squares) datasets using the EN3 and EN6 ensemble ROIs . On
the training set, the gray range represents the mean ROC ± SD of the 5-fold
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cross-validation. The ROC-AUC and F1-score grids are presented in Table 5.3.

ROC-AUC grid F1-score grid
Train Train

EN3 98.3% 98.1% 84.7% 94.6% EN3 90.0% 89.9% 79.4% 90.5%
EN6 98.1% 98.3% 89.8% 94.0% EN6 93.0% 93.0% 84.7% 91.6%

RF GPR L-SVM NNet RF GPR L-SVM NNet

Test Test
EN3 67.3% 72.1% 75.2% 73.3% EN3 60.9% 64.7% 65.4% 63.6%
EN6 74.1% 80.6% 82.4% 82.5% EN6 63.8% 66.9% 67.4% 69.5%

RF GPR L-SVM NNet RF GPR L-SVM NNet

Table 5.3: The ROC-AUCs and F1-scores of our ML classifiers in the training and test
datasets using the EN3 and EN6 ensemble ROIs for each of the RF (Random Forest); GPR
(Gaussian Process Regression); L-SVM (Linear Support Vector Machine); NNet (Neural
Networks) classifiers.

The precision, accuracy, sensitivity, specificity, F1 score, and ROC-AUC values of our
best performing pipeline (neural networks with EN6 ROI) are presented in Table 5.4. The
performance of this pipeline (trained and tested) on the dataset of expert-extracted pain
labels (best-available ground truth) is provided as a quality measurement. The performance
of the model from the previously-described prior study by Wakabayashi et al. [20] is also
provided for comparison.

5.7 Discussion

Underestimation and under-treatment of cancer pain can significantly diminish cancer
patients’ quality of life. Accordingly, systems that can objectively measure cancer pain
have the potential to improve quality of life. In this study, we created an scalable
NLP-radiomics pain identification pipeline. Our pipeline is designed for palliative intent
cancer patients undergoing RT therapy, for whom there are typically just two
contemporaneous sources of relevant medical information at the time of the treatment:
consultation notes and simulation-CT images. We used an NLP pipeline to extract
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RF (EN3)       GPR (EN3) L-SVM (EN3)       NNet (EN3)

RF (EN6)       GPR (EN6) L-SVM (EN6)       NNet (EN6)

Figure 5.4: ROC curves for our classifiers using three-layer (EN3) (top row) and six-layer
(EN6) (bottom row) lesion-centerpoint-based ensemble ROIs in training (black lines) and
test (dark red squares) datasets.

physician-reported pain scores from radiotherapy consultation notes. NLP-extracted pain
scores are appropriate, whenever structured patient-reported pain scores are unavailable
(as is the case for at least 25% to 35% of all cancer patients [20, 45] and for all of the
palliative cancer patients treated with RT at our institution at the time the data used in
this study). Our lesion-centerpoint-based spherical ROI delineation method significantly
sped up the ROI segmentation procedure, enabling us to rapidly delineate BM centerpoints
in 176 images for this study. For comparison, the radiomics pipeline that was developed by
Wakabayashi et al. [20] required full 3D segmentation of each ROI (69 images).

Due to the unbalanced nature of BM pain, our dataset contained significantly fewer
painless samples. In order to better train our models, we applied the SMOTE re-sampling
technique to the training set to balance the number of samples with the NLP-extracted ‘pain’
and ‘no pain’ labels. We did not apply any re-sampling techniques to our test (hold out) set
to maintain the original sample imbalance. Therefore, while our training set was balanced,
our test set had five times more ‘pain’ cases than ‘no pain’ cases (136 pain versus 27 no pain).
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Accuracy Precision Sensitivity Specificity F1 ROC-
AUC

Current Study (Train) 92.4% 93.2% 92.4% 86.4% 91.6% 94.0%
Current Study (Test) 81.0% 67.9% 59.2% 85.3% 69.5% 82.5%
Current Study (Train),
Using Manual Pain Scores 94.2% 94.8% 98.7% 89.7% 94.4% 98.1%

Current Study (Test),
Using Manual Pain Scores 83.5% 64.9% 64.7% 85.7% 68.0% 82.3%

Wakabayashi et al. [20]
(Train-only) 73.9% 71.0% 86.0% 82.0%

Table 5.4: The performance of our best performing NLP-radiomics pipeline (neural
networks with the EN6 ROI) on the training and test sets. The results of the same radiomics
model (neural networks with EN6 ROI) when trained and tested using the best-available
ground-truth expert-extracted (EE) pain labels, together with the results from a prior study
by Wakabayashi et al. [20] are provided for comparison. The reason for having high specificity
and low sensitivity in our test set is explained in the Discussion.

This caused a significant change in the pipeline’s performance between training and test sets.
It has been shown that oversampling improves the overall performance of ML models, but
the effect is stronger on the training set due to the inclusion of replicated samples in the
cross-validation subsets [46]. Moreover, the imbalance in our test set led to high specificity
(ability to properly identify pain instances) and low sensitivity (ability to correctly identify
no pain cases) in the performance evaluation. For comparison, the sample imbalance in the
study conducted by Wakabayashi et al. was 2:1, resulting in a more balanced relationship
between the sensitivity and specificity of their model.

The performance of our pipeline did not improve much when we trained and tested it
using expert-extracted pain labels (best-available ground truth). This might be because,
in the first experiment, we both trained and tested our pipeline using NLP-extracted pain
labels, and in the second experiment, we both trained and tested our pipeline using expert-
extracted pain labels. Consequently, after being trained with one set of labels (NLP- or
expert-extracted), our pipeline performed well on the test set that was labeled using the
same method (NLP or expert). We also demonstrated that our pipeline’s performance is
comparable to that of Wakabayashi et al., [20] who achieved their results using patient-
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reported pain labels.
Our pipeline performed significantly better on the EN6 ensemble ROIs compared to the

EN3 ROIs . This could be because, in comparison to EN3, our EN6 ensemble ROIs include
additional ROIs with sizes of 20, 30, and 50 mm. From visual inspection, we suspect that, in
addition to the characteristics of the BM lesion itself, its location (for example, its proximity
to the spinal cord) may be a significant contributor to the BM pain. As a result, larger ROIs
enable our algorithm to extract characteristics from outside the BM lesion. Wakabayashi et
al. also demonstrated the effectiveness of using ROIs outside of the BM lesion.

We are unable to offer a convincing explanation as to why neural networks outperformed
random forest and support vector machine classifiers in our analysis. Notwithstanding, it
has been demonstrated that neural network classifiers perform better when applied to more
difficult problems and larger datasets, while random forest and support vector machine
classifiers typically perform well with smaller datasets [44, 47, 48].

Our pipeline was successful in extracting radiomics biomarkers capable of distinguishing
between painful and painless BM lesions. These biomarkers potentially provide the
opportunity to objectively identify clinical pain-related indicators that may aid in the
diagnosis, treatment, and understanding of BM pain.

Our work has several limitations. In the first place, we used data from a single center
for this retrospective study. A multicenter study with a larger dataset is necessary to assess
the generalizability of our radiomics pipeline for pain quantification. We anticipate that
the performance of our NLP-radiomics pipeline will vary based on the pain scoring systems
of the cohorts tested. Second, by utilizing lesion-centerpoint-based geometrical ROIs , we
ignored lesion characteristics such as size and shape, which may be important in the
context of pain. Although we employed Hounsfield units intensity thresholding to preserve
some tumor information, we are considering implementing deep-learning-based ROI
segmentation in the future as it may better account for full tumor and surrounding tissue
characteristics. Lastly, we utilized SMOTE oversampling to address the issue of class
imbalance. An alternative solution might be to develop cost-sensitive ML classifiers that
account for the cost of misclassifying minority samples [49]. However, there is no clear
consensus in the literature on whether cost-sensitive learning outperforms
re-sampling [50].A model that can differentiate between painful and painless lesions from
medical imaging is a critical component of any possible radiomics-based pain quantification
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pipeline. The current work not only shows the feasibility of developing a pain
quantification tool, but it also removes some of the barriers to its development. As a result,
our future work will be to apply our pipeline to patients’ past and current CT images and
consultation notes in order to develop a longitudinal model of pain. Such a model should
take into account not only images (taken before, during, and after delivering RT) but also
other internal and external parameters that can influence how pain evolves over time (such
as primary cancer type, radiation dose, other treatments, and pain medications). Also it
will include patient-reported pain scores to provide more accurate ground-truth pain labels
in order to develop a more robust deep learning-based NLP pipeline [26, 51]. This,
however, is outside the scope of the current investigation.

In conclusion, we demonstrated that our NLP and radiomics-based ML pipeline can
effectively differentiate between painful and painless BM lesions in simulation-CT images
using ensemble lesion-centerpoint-based geometrical ROIs . Using NLP-extracted pain labels
in conjunction with lesion-centerpoint-based radiomics features is time efficient. This helps to
pave the way for the development of quickly-trained and efficient clinical artificial intelligence-
based decision-making tools that can objectively measure cancer pain. Such a tool that may
help alleviate the burden of pain management and improve the quality of life of patients
with BMs.
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5.8 Appendix: Supplemental Information

5.8.1 Sample size calculation

We used Cochran’s sample size formula [52] to determine the minimum sample size required
to evaluate the performance of the pipeline. An initial audit of our data set showed that the
probabilities of finding a patient in our data set with ‘pain’ was 85% (ppain=0.85) and with
‘no pain’ was 15% (pno-pain=0.15). To ensure that the pain-score detection is precise within
a 95% confidence level (Z1−α/2 = 1.96), and a 5% margin of error (e=0.05), the minimum
sample size was determined as,

N = ppain ∗ pno−pain

(
Z1−α/2

e

)2

= 0.85 ∗ 0.15 ∗ (1.96/0.05)(2) = 196

Therefore, we included 200 patients in this study to satisfy the minimum sample size
requirement.

5.8.2 Time gap between the consultation note and CT acquisition
dates
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Figure 5.5: The distribution of the time interval between the CT acquisition date and RT
consultation date (n = 239 pairs).

5.8.3 Pain labels

NLP-extracted APIs and VDP values, and expert-extracted pain scores in our database are
presented in Table 5.5. The box plot comparing the distribution of NLP-extracted API
values versus expert-extracted pain scores is shown in Figure 5.6.

id api vdp
pain
score

id api vdp
pain
score

id api vdp
pain
score

p1 -1 no pain none p67 1 pain severe p133 0.14 pain moderate
p2 -0.5 no pain none p68 1 pain severe p134 1 pain moderate
p3 -0.33 no pain none p69 0.5 pain severe p135 1 pain moderate
p4 -0.33 no pain none p70 0.5 pain severe p136 0.82 pain moderate
p5 -1 no pain none p71 1 pain severe p137 1 pain moderate
p6 -1 no pain none p72 0.43 pain severe p138 1 pain moderate
p7 -1 no pain none p73 0.33 pain severe p139 0.45 pain moderate
p8 -0.5 no pain none p74 1 pain severe p140 1 pain moderate
p9 -1 no pain none p75 0.67 pain severe p141 0.33 pain moderate
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p10 -0.33 no pain none p76 0.2 pain none p142 0.47 pain moderate
p11 -1 no pain none p77 1 pain none p143 0.6 pain moderate
p12 -0.5 no pain none p78 0 pain none p144 1 pain moderate
p13 -1 no pain none p79 0.6 pain none p145 0.14 pain moderate
p14 -1 no pain none p80 0.5 pain none p146 1 pain moderate
p15 -1 no pain na p81 0 pain none p147 0 pain moderate
p16 -1 no pain na p82 1 pain na p148 1 pain moderate
p17 -1 no pain na p83 1 pain na p149 0.67 pain mild
p18 -1 no pain na p84 1 pain na p150 0.6 pain mild
p19 -0.14 no pain na p85 1 pain na p151 1 pain mild
p20 -1 no pain moderate p86 1 pain na p152 1 pain mild
p21 -0.43 no pain moderate p87 0.5 pain moderate p153 0 pain mild
p22 -0.33 no pain mild p88 0 pain moderate p154 0.5 pain mild
p23 -1 no pain mild p89 0.87 pain moderate p155 0.11 pain mild
p24 -1 no pain mild p90 0.5 pain moderate p156 0.33 pain mild
p25 0.33 pain severe p91 0.14 pain moderate p157 0.5 pain mild
p26 1 pain severe p92 1 pain moderate p158 1 pain mild
p27 0.67 pain severe p93 0.2 pain moderate p159 0 pain mild
p28 0.33 pain severe p94 1 pain moderate p160 0.45 pain mild
p29 1 pain severe p95 0.2 pain moderate p161 1 pain mild
p30 1 pain severe p96 0 pain moderate p162 1 pain mild
p31 0.5 pain severe p97 1 pain moderate p163 0 pain mild
p32 1 pain severe p98 1 pain moderate p164 0 pain mild
p33 0.33 pain severe p99 1 pain moderate p165 0.33 pain mild
p34 0 pain severe p100 0.6 pain moderate p166 0.14 pain mild
p35 0.5 pain severe p101 0.5 pain moderate p167 1 pain mild
p36 0.67 pain severe p102 0.2 pain moderate p168 1 pain mild
p37 0.33 pain severe p103 1 pain moderate p169 0.33 pain mild
p38 0.71 pain severe p104 1 pain moderate p170 0.14 pain mild
p39 1 pain severe p105 1 pain moderate p171 0.33 pain mild
p40 0.75 pain severe p106 1 pain moderate p172 1 pain mild
p41 0.67 pain severe p107 0.5 pain moderate p173 1 pain mild
p42 1 pain severe p108 1 pain moderate p174 0.64 pain mild
p43 1 pain severe p109 1 pain moderate p175 1 pain mild



5.8. APPENDIX: SUPPLEMENTAL INFORMATION 179

p44 0.5 pain severe p110 0.33 pain moderate p176 0.67 pain mild
p45 0.75 pain severe p111 1 pain moderate p177 na mild
p46 0.56 pain severe p112 1 pain moderate p178 na mild
p47 1 pain severe p113 1 pain moderate p179 na mild
p48 1 pain severe p114 1 pain moderate p180 na moderate
p49 0.11 pain severe p115 0.78 pain moderate p181 na moderate
p50 0.6 pain severe p116 0 pain moderate p182 na moderate
p51 0.6 pain severe p117 1 pain moderate p183 na moderate
p52 1 pain severe p118 1 pain moderate p184 na moderate
p53 0.67 pain severe p119 0.5 pain moderate p185 na moderate
p54 1 pain severe p120 0.6 pain moderate p186 na moderate
p55 1 pain severe p121 1 pain moderate p187 na na
p56 1 pain severe p122 1 pain moderate p188 na na
p57 1 pain severe p123 0.5 pain moderate p189 na na
p58 0.71 pain severe p124 0.33 pain moderate p190 na na
p59 0 pain severe p125 0.56 pain moderate p191 na na
p60 0 pain severe p126 0.67 pain moderate p192 na na
p61 0.33 pain severe p127 1 pain moderate p193 na na
p62 0 pain severe p128 0.67 pain moderate p194 na none
p63 0.33 pain severe p129 1 pain moderate p195 na severe
p64 1 pain severe p130 0.33 pain moderate p196 na severe
p65 0.2 pain severe p131 0.33 pain moderate p197 na severe
p66 0.43 pain severe p132 1 pain moderate

Table 5.5: The performance of our best performing NLP-radiomics pipeline (neural
networks with the EN6 ROI) on the training and test sets. The results of the same radiomics
model (neural networks with EN6 ROI) when trained and tested using expert-extracted pain
labels, together with the results from a prior study by Wakabayashi et al. [20] are provided
for comparison. The reason for having high specificity and low sensitivity in our test set is
explained in the discussion section.
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Figure 5.6: Relation between expert-extracted pain scores and NLP-extracted average pain
intensities (API). The box plot is generated using the pyplot package.



181

Chapter 6

Conclusions

6.1 Summary and novelty of work

6.1.1 Objectives

The ability to objectively measure and predict cancer pain has the potential to play a role
in personalized care and improve the quality of life for cancer patients. Motivated by this
potential, the overarching objective of this thesis project was to develop, implement, and
evaluate an AI pipeline to detect pain in the simulation-CT images of cancer patients with
BM.

In working towards our overarching objective, we demonstrated that NLP applied to
radiation oncology consultation notes and radiomics analysis of simulation-CT scans can be
combined to find imaging biomarkers (features) that can be used to identify pain caused
by BM. This thesis not only made progress toward objectively detecting BM pain using
radiographic images, but it also demonstrated the use of a generalizable and scalable pain
detection pipeline that can potentially be applied to different study contexts in the future
and, ultimately, translated into the clinic.

This chapter provides a summary of the thesis project, highlighting the main results of
each of the three objectives that went into achieving the overarching objective.
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6.1.2 Objective 1: Construct an NLP pipeline to extract pain
scores from the consultation notes of patients

Patients with BM receiving palliative RT are not always asked to fill out standardized pain
screening questionnaires. This was the case at our institution. Accordingly, in this study, we
made use of pain scores that physicians recorded in radiation oncology consultation notes. To
automatically extract these pain scores, we developed and trained a database-independent
NLP pipeline using the publicly-accessible i2b2 and MIMIC-III hospital discharge summary
corpora. Then, we used our pipeline to extract pain scores for cancer patients with BM from
the consultation notes in our institutional radiation oncology information system.

The performance of our NLP pipeline was evaluated using pain scores in physician-
annotated best-available gold standard corpora. We obtained these physician-annotated pain
scores with the help of clinicians who used our in-house developed manual pain annotation
and scoring tool (texTRACTOR).

Our work demonstrated that pain is poorly documented in consultation notes and that
physician-reported pain ratings lack sufficient resolution to extract high resolution numerical
or verbal pain scores; yet, they can still be used to extract binary pain scores as “pain” and
“no-pain”. We also showed that a generalizable NLP pipeline can be trained on publicly-
available data to extract these binary pain labels. Our pipeline successfully extracted and
identified physician-reported binary pain labels from our radiation oncology clinical notes,
with 80% recall and 84% precision.

6.1.3 Objective 2: Construct a radiomics pipeline to extract BM
lesion features from radiographic images of patients

Radiomics-based ML models have demonstrated the potential to detect BM, evaluate BM
response to RT, and predict outcomes. However, current radiomics models require large
imaging datasets with 3D ROIs that have been segmented by experts. Full ROI
segmentation is time-consuming for clinicians, posing a difficulty for large-scale real-world
radiomics research. Consequently, a method to facilitate simple BM identification without
compromising the efficacy of radiomics is desired. The purpose of this objective was to
investigate the viability of constructing a rapid pipeline for radiomics research employing
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geometric ROIs based on just lesion centerpoints.
To achieve this objective, we created a custom-written 3D DICOM visualization web

application (diCOMBINE) for radiation oncologists to quickly identify lesion centerpoints.
Then, folowing BM lesion centerpoint identification by our radiation oncologist colleagues,
radiomic features were calculated using spherical and cylindrical ROIs automatically
delineated around each centerpoint.

We evaluated and demonstrated the efficacy of our centerpoint-based radiomics pipeline
for discriminating between healthy and metastatic bone lesions. Using ensemble ROIs, we
showed that the GPR, NNet, and L-SVM classifiers achieved an F-1 score of 0.9 in
detecting BM. The ROC-AUC, precision, recall, and F1 score of our best performing
pipeline, which corresponded to the E9SC ROI, LASSO FS technique, and GPR ML
classifier, were 96%, 92%, 91%, and 0.9, respectively. These results are comparable to those
of other studies utilizing full 3D segmented ROIs. Our lesion-centerpoint-based
segmentation technique significantly simplifies the preparation of images for radiomics
research and eliminates the bottleneck of obtaining full 3D ROI segmentation.

6.1.4 Objective 3: Combine the NLP-quantified pain scores
extracted in objective 1 with the radiomic features
extracted in objective 2, to develop a radiomics-based
machine-learning model of pain in patients with BM

In this objective, we combined the tools that we developed in our earlier objectives to evaluate
the viability of utilizing radiomics-based ML models trained using NLP-extracted pain scores
to assist in the identification of pain using the simulation-CT images of cancer patients with
BM.

First, we extracted radiomics features from simulation-CT images of BM patients using
the ensemble lesion-centerpoint-based geometrical ROIs introduced in Objective 2 (Chapter
4). Second, we merged these features with pain scores extracted from patient consultation
notes using the NLP pipeline we developed for Objective 1 (Chapter 3). Finally, we created
a ML model to differentiate between painful and painless BM lesions.

We showed that our NLP- and radiomics-based neural network model was able to
differentiate between painful and painless BM lesions on simulation CT scans. The
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accuracy, sensitivity, specificity, and ROC-AUC scores of our top-performing model (Neural
Network classifier on the EN6 ensemble ROI) in the test set were 0.82 (132 of 163), 0.59
(16 of 27), 0.85 (116 of 136) and 0.82, respectively.

Our radiomics-based neural network model that was trained on NLP-extracted pain scores
showed comparable diagnostic performance (ROC-AUC, 82.5%) to the same radiomics-based
model trained using expert-extracted pain scores (ROC-AUC, 82.3%). It is also consistent
with similar work reported in the literature [1] that used patient-reported pain scores and full
3D segmented ROIs (ROC-AUC, 82.0%). However, according to our collaborating radiation
oncology experts, data preparation for our pipeline, which uses NLP to extract pain scores
and just lesion centerpoints for lesion segmentation, is 15 times more time-efficient due to
the need for minimal expert involvement. This paves the way for the development of scalable
“Big Data” ML pipelines with semi-automated data curation via NLP and centerpoint-based
radiomics.

6.2 Future directions

The following subsections detail possible extensions of the present project to build upon its
findings and address some of its limitations.

6.2.1 NLP for extracting pain scores

Our NLP pipeline outputs a single VDP score for each consultation note. As explained in
Chapter 3 when we investigated the i2b2 training set, we discovered that our classification
algorithm struggled to extract VDP when patients reported pain in multiple sites in their
bodies. Patients with BM often have multiple pain sites with different pain scores on each
site, which confounds our VDP measurement approach for effective BM pain extraction.

Future work should incorporate a pipeline to obtain pain severity from the consultation
notes of patients by extracting numerical pain scores and pain assessment terms (such as
severe, mild, and controlled). In addition, the pipeline should attempt to identify and
extract pain sites so that pain scores can be localized for patients with multiple cancer sites.
The evaluation of such a high-resolution pain scoring pipeline necessitates the collection of
patient-reported pain scores via standard pain questionnaires and graphical tools for patients
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to indicate the location of their pain. Using electronic questionnaires accessible through
patient engagement tools such as the Opal patient portal developed by our research group
(https://www.opalmedapps.com/) [2], we believe it will be possible to collect location-
identified gold-standard pain scores directly from patients.

6.2.2 Automated BM detection pipeline

Future work in constructing an automatic BM detection pipeline should acquire a much larger
dataset of images with lesion centerpoint labels to better train a ML model, as explained in
Chapter 4. PET scans and pathology reports may be utilized to better identify and classify
healthy bones, metastatic lesions, and non-metastatic skeletal complications (e.g., surgically-
removed lesions or bone islands). Also, although the use of geometric ROIs considerably
simplified the lesion delineation method in our work, it ignored some potentially useful
lesion features such as size and shape. Future work should thus consider the use of deep-
learning-based ROI segmentation methods.

Such a deep-learning-based application will require training on a large collection of images
that generally requires collecting data from multiple centers. A large multicenter dataset
would also allow for testing of our radiomics pipeline’s generalizability and its broader clinical
acceptability.

6.2.3 Identifying imaging biomarkers for pain quantification

Although our results demonstrated that it is possible to use radiomics features to
distinguish between painful and painless BM lesions, more research is required to figure out
the connections between these radiomics features and subjective sensations of pain. As we
explained in Chapter 5, future work should attempt to improve upon our pain detection
pipeline by using more reliable pain data. For example, patient-reported pain scores could
be used, allowing for more accurate ground-truth pain labeling.

Using such granular pain data, it will be possible to assess the stability, pain dependence,
and predictive capability of each radiomics feature. Additionally, it will be possible to
examine the impact of the number and type of BM lesions on the intensity of pain. Due to
the lack of granularity of the extracted pain scores, these investigations were not feasible for
this thesis [3].

https://www.opalmedapps.com/
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Finally, our pipeline may be applied to past and present CT images of patients, as well
as consultation notes, in order to develop a longitudinal model of pain.

6.2.4 Pain prediction in clinical radiation oncology

Medical practitioners and patients can benefit from pain prediction models when making
treatment choices. An effective pain prediction model should provide quantitative prognostic
information to facilitate personalized clinical decision-making, with the end goal of improving
patient outcomes, such as quality of life. While outcome prediction models have the potential
to greatly improve patient care, as introduced in this thesis, the vast majority of these models
have not yet been implemented into clinical practice.

In order for a model to be used in the clinic, it must first be tested and validated on large,
multi-center databases that have been standardized and have labels that can be trusted (gold
standard data).

The minimum number of samples necessary for clinically verifying an end-to-end outcome
prediction model is highly dependent on parameters such as the outcome’s characteristics
and the quality of the collected data. With many types of data (images, pathology reports,
genetic sequencing results, etc.), it may be sufficient to validate a typical outcome prediction
model using just a minimum of one thousand patients. However, in hospital settings, it can
be difficult to find even this many patients with complete data. The problem stems from the
complexity of obtaining patient information from unstructured health records and the lack
of standardized data warehouses in hospitals. Obtaining multi-center data is an even greater
challenge. The main barriers are differences in standardization among healthcare systems,
non-uniform record-keeping processes, and the necessity to preserve patients’ privacy and
confidentiality.

In recent years, several initiatives have been launched to address these issues. The
implementation of unified data repositories and application programming interfaces (API)
for medical systems will faciliate access to anonymized patient data within a hospital. The
implementation of standardized data transfer protocols such as HL7-FHIR and mCODE
will allow for uniform information flow between various health care systems. The
development of multi-institution patient portals, such as Opal, that permit patients to
access their medical data from various centers, will enable secure and patient-consented
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acquisition of multi-center data. Finally, the availability of publicly-available multi-center
datasets of de-identified patient data, such as the Cancer Imaging Archive and MIMIC-III
clinical databases, will allow new AI algorithms to be tested for generalizability and
scalability.

Any data included in a ML-based outcome prediction model must be preprocessed to
ensure that the data are comprehensive, non-sparse, cleaned, standardized, and correctly
labeled. In the majority of existing ML pipelines, preprocessing is performed manually
or semi-automatically with minimal or no standardization, resulting in a bottleneck for
preparing standard data for large-scale ML models. Some of these challenges can be overcome
by using automated data collection pipelines and standardized data preparation techniques.
For example, collecting patient-reported pain data using automatically-scheduled standard
electronic pain questionnaires sent to the patient using the Opal patient portal will enable
access to large-scale non-sparse ground truth data at our institution. Furthermore, the
image processing tools created for this thesis adhere to the protocols specified by the Image
Biomarker Standardization Initiative (IBSI), enabling multi-center research.

While the work presented in this thesis does not include a clinically applicable model for
predicting pain in patients with BM, it does represent a step towards this vision and helps
pave the way for the development of rapidly-trained and efficient clinical AI-based decision-
making tools that may help reduce the burden of pain management and improve the quality
of life for patients with BM.
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