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Abstract

In this work, we examine the literature on coverage planning problem aiming to gen-

erate an inspection plan that ensures complete coverage of the intended spatial field.

We discuss cellular decomposition, grid-based, and sampling-based approaches to the

coverage planning problem. We present a novel off-line sampling-based method for an

autonomous underwater vehicle imaging the ocean floor. The proposed algorithm gen-

erates view configurations, differentiating between elongated areas and wide areas using

the Voronoi skeleton, to achieve complete observability in the regions of interest. Next,

we optimize the coverage route through the arranged viewpoints by solving a variant

of the traveling salesman problem. The proposed algorithm is validated in simulation

experiments and is proven to outperform previous approaches by improving coverage

while reducing the number of scanning locations.

We also survey terrain identification and gait adaptation approaches in order to iden-

tify the surface characterizations and select the most adequate walking behavior. Our

goal is to autonomously identify the environment in which the robot is maneuvering by

capturing the pattern of sensors’ data and enabling a legged robot to switch gaits accord-

ingly. We present a classification algorithm to classify the environment based on inertial

measurements and leg actuator feedback such that the system can decide between swim-

ming or walking modes when the amphibious Aqua robot is autonomously entering or

exiting a body of water. Our model is trained and tested on labeled real-world data,

gathered during field trials with the Aqua robot at the lake and the ocean.
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Abrégé

Dans ce travail, nous examinons la littérature sur le problème de planification de la cou-

verture visant à générer un plan d’inspection qui assure une couverture complète du

champ spatial visé. Nous discutons des approches de décomposition cellulaire, basées

sur la grille et basées sur l’échantillonnage pour le problème de planification de la cou-

verture. Nous présentons une nouvelle méthode basée sur l’échantillonnage hors ligne

pour un véhicule sous-marin autonome imageant le fond de l’océan. L’algorithme pro-

posé génère des configurations de vue, en différenciant les zones allongées et les zones

larges à l’aide du squelette de Voronoi, pour obtenir une observabilité complète dans

les régions d’intérêt. Ensuite, nous optimisons le parcours de couverture à travers les

points de vue aménagés en résolvant une variante du problème du voyageur de com-

merce. L’algorithme proposé est validé dans des expériences de simulation et il est prouvé

qu’il surpasse les approches précédentes en améliorant la couverture tout en réduisant le

nombre d’emplacements de balayage.

Nous étudions également les approches d’identification du terrain et d’adaptation à

la marche afin d’identifier les caractéristiques de surface et de sélectionner le comporte-

ment de marche le plus adéquat. Notre objectif est d’identifier de manière autonome

l’environnement dans lequel le robot manœuvre en capturant le schéma des données des

capteurs et en permettant à un robot à pattes de changer d’allure en conséquence. Nous

présentons un algorithme de classification pour classer l’environnement en fonction des

mesures inertielles et de la rétroaction de l’actionneur des jambes de sorte que le système

puisse décider entre les modes de nage ou de marche lorsque le robot amphibie Aqua
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entre ou sort de manière autonome d’un plan d’eau. Notre modèle est formé et testé sur

des données du monde réel étiquetées, recueillies lors d’essais sur le terrain avec le robot

Aqua au lac et à l’océan.
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Chapter 1

Introduction

In the last decade, autonomous inspection and environment monitoring has gained great

attention for various applications. Imagine a robot which is asked to periodically carry

out a complete inspection in an environment and document the variations along the time.

Such a fully automated monitoring mission by robots arises a variety of different chal-

lenges including coverage planning, motion planning, gait planning, localization, obsta-

cle avoidance, data capturing, image processing, model construction, etc. In this thesis,

we address two of the fundamental challenges in autonomous outdoor environment ex-

ploration with a focus on mobility challenges that might arise on a shoreline.

The first problem is coverage planning for robotic platforms to efficiently inspect a

spatial field. We explore coverage planning tasks that are intended to generate mission

plans in order to collect data from two-dimensional spatial fields. The objective is to pre-

pare a detailed survey mission plan consisting of the sensing locations and the overall

robot traveling path, such that the intended survey area is fully observed by the robot’s

sensor. Our ultimate goal is to survey the seabed and monitor the environmental pro-

cesses in the ocean.

The second problem tackled in this thesis is gait planning for an amphibious robot.

While performing a survey mission, a robot is inevitably required to traverse a variety of

environments. For a walking robot, different terrains imply different walking behavior
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to enhance stability and facilitate locomotion. Similarly, for legged amphibious robots,

environment-specific gait changes are necessary to adapt their gait to the particular en-

vironment in which they are operating. For example, an amphibious robot should learn

to differentiate sand from water to effectively switch between swimming and walking

when entering or exiting the water. Our goal is to enable an amphibious robot to identify

its environments and switch gaits on its own.

1.1 Motivation

Our emphasis on efficient coverage planning is motivated by the growing importance of

the health of marine environments which need to be monitored repeatedly and consis-

tently. In marine environments, coral reefs have great environmental and scientific value

as they are essential pieces of a balanced ecosystem and home to diverse species of marine

organisms. However, the coral reefs are threatened by local and global risks such as water

temperature increase, solar radiation, ocean acidification, chemical pollution, destructive

fishing, etc. [13, 45]. Scientists believe that global warming has caused the mass extinc-

tion of coral reefs, a phenomenon also known as coral bleaching, at an ever-increasing

rate. They argue that corals could dramatically disappear if we do not act quickly [46].

Hence, researchers are highly interested in persistently monitoring the response of these

ecosystems to climate change and the remediation efforts.

Conducting coral reef surveys is critical to understand and analyze the impact of dif-

ferent factors on this phenomenon. however, repeated manual data collection by human

operators is expensive and risk-prone, especially in open oceans. Therefore, deploying

underwater robots to perform exploration missions and collect effective and efficient

data from the reefs substantially facilitates marine environment monitoring. There has

been extensive research on automating seabed exploration and navigation in the litera-

ture [36, 61, 63, 67, 114].
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Our work addresses the automated collection of survey data to efficiently cover the

area of interest. We explore complete coverage planning algorithms to generate a survey

plan for seabed inspection by an Autonomous Underwater Vehicle (AUV). The task is to

determine an optimal path that allows the robot to cover the entirety of the target area.

In these applications, usually a known map of the environment is available [28, 30] that

may contain the bathymetric map, location, size, etc. In a similar work [67], bathymet-

ric mapping of the sea floor is performed on-site using an Autonomous Surface Vehicle

(ASV) to provide the surveyor AUV with a depth map of the environment. We seek of-

fline coverage algorithms to generate a mission plan for an already mapped underwater

environment. The area where we are interested in covering is where the coral reefs ex-

ist. For our experiments, the reefs are annotated on the map by an expert, indicating the

area to be surveyed. The AUV navigates at a constant altitude above the seafloor surface,

carrying a down-looking sensor, to capture as much data as possible from the marine

environment.

We examine recent coverage planner algorithms in the literature and propose a novel

method for generating a survey plan. Considering that data collection by precise sensors

on the AUV can not be done while the robot is moving, we focus on stationary sensor

placement methods. We aim to determine the best set of viewpoints that fully covers the

target area and find the optimal robot path that visits all the viewpoints and covers the

entirety of the area. Our goal is to perform the survey with a shorter trajectory and fewer

sample points while ensuring full coverage.

In this thesis, we also address the problem of environment identification and gait

adaptation for a legged robot. Legged robots that possess a variety of potential gait pat-

terns are usually able to navigate over different terrains and environments. Humans in-

tuitively know how to adjust their walking behavior to the surface, they are walking on,

in order to walk more stable and efficient. For example, we tend to bend slightly for-

ward and take smaller steps on the ice, compared to when we walk on the ground. Sim-

ilarly, legged robots should utilize different gait patterns to ensure stability and energy-

3



efficiency. For an amphibious robot, it is even more critical to select the appropriate gaits

for its environment to navigate safely. For example, a robot that moves from a sand beach

to deep water should have the ability to switch from walking to swimming as it enters the

water. Failure to switch gaits in response to environmental changes may cause destructive

damage to the robot.

We believe that in order for the robots to perform smooth transitions between different

gaits, they need to first differentiate various types of environments and terrains. With

the ability to identify its surrounding, the robot can select the most adequate gait for

its current environment. Hence, we explore terrain classification algorithms focusing on

gait adaptation to the environment. We then propose a gait controller to decide on the

desire to switch gaits by analyzing the inertial and actuator information. We argue that

interaction forces between the robot legs and the ground are a promising indicator of the

surface mechanical properties. Therefore, we utilize inertial sensor and actuator feedback

to probe and estimate the environment and switch gaits accordingly when entering and

exiting the body of water.

Figure 1.1: Schematic overview of the robotic exploration mission and the two sub-

problems in hand: gait adaptation and coverage planning.
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Figure 1.1 illustrates a schematic overview of the robotic exploration mission on land

and water, that we wish our amphibious robot to carry out autonomously. Such an au-

tonomous monitoring task involves numerous components and challenges. The schematic

demonstrates the steps related to the two sub-problems addressed in this thesis and clar-

ifies how the two sub-problems are connected and contribute to our ultimate goal.

1.2 Overview of thesis

In this thesis, we present two novel algorithms to overcome two of the challenges in fully

automated outdoor environment exploration. We explore complete coverage planning

and autonomous gait adaptation with a focus on mobility challenges on a shoreline for

the amphibious Aqua robot [24]. Due to the differences in the two domains, in every

chapter, we include relevant sections for each of the two main objectives.

Chapter 1 provides a brief insight into the main objective of this thesis and discusses

the two challenges that we tackle to achieve the overreaching goal. Section 1.1 further

describes the motivation behind the project, the importance of marine environment mon-

itoring, and the necessity of gait adaption for fully automated outdoor missions by legged

robots.

Chapter 2 is dedicated to a discussion of related literature. The background on cover-

age planning algorithms is provided in Section 2.1, exploring different techniques used in

exact, approximate, room decomposition, and sensor placement coverage. We review the

requirements and applications of each of the presented algorithms and decide on the most

suitable approaches for our specific robotic platform and environment. In Section 2.2, we

study the earlier publications on gait learning and transition. We demonstrate how gait

adaptation algorithms are closely related to terrain classification problem. Section 2.2.2

lists and compares various sensing techniques and learning techniques for autonomous

gait switching.
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Chapter 3 presents the methods that we proposed for each of the two problems. In

Section 3.1, we explain our coverage path planning algorithm to completely explore an

arbitrary shape target area and the algorithm’s constraints and requirements for our spe-

cific application. The viewpoint generation and route generation steps are discussed in

detail with illustrations of the maps. The proposed method for automatic gait switching

is provided in Section 3.2. We discuss the robot’s gaits, the sensory data, and the deep

learning model to detect the desire to transition gaits at the time of entry and exit on the

beach.

We validate the effectiveness of the proposed methods in Chapter 4. The implemen-

tation details, simulator details, and the comparative results for our coverage planner

algorithm are reported in Section 4.1. In Section 4.2, the data collection process, our ex-

perimental testbed, and the evaluation findings for the proposed gait switch controller

are explained.

Finally, Chapter 5 concludes the thesis with discussions about exploration and gait

adaptation strategies and potential future directions.
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Chapter 2

Literature Review

In this chapter, we explore the existing literature that addresses the two main problems

which we are tackling, namely coverage planning and gait adaptation, for our ultimate

goal of a fully autonomous environmental monitoring mission. We will start by briefly

describing different solutions to the coverage planning problem, along with their use-

cases, strength, and limitations, and outlining their suitability for our specific problem.

The subsequent section reviews the previous research on terrain identification and gait

adaptation techniques to approach our second problem of autonomous gait switching for

legged robots. We study various sensing and learning strategies to come up with an idea

of the most suitable approach for our robot.

2.1 Coverage path planner

This section presents a summarized description of various coverage planning algorithms

in the literature, aiming to provide an insight into the features, suitability, and applica-

tions of each method.

Coverage Path Planning (CPP) in robotics aims to generate a route that allows a robot

to entirely cover all the reachable points in an area of interest while avoiding obstacles.

With the growing number of applications of automation and robotics, the application of
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CPP algorithms has extended to the ground, aerial, and underwater robotics. This task is

fundamental to many applications including floor cleaning robots [47], seabed inspection

[44], farming [41], and demining [3]. Various CPP algorithms have been studied in the

literature and discussed in the surveys of Choset [20] and Galceran and Carreras [31].

The Coverage Path Planning problem has several variants to satisfy various require-

ments and conditions such as finding the shortest path, having prior information, cov-

ering with the robot’s footprint or the sensor’s Field of View (FoV), and dealing with

stationary or mobile sensors. One of the problem variants is the Art Gallery Problem [91]

which aims to place a minimum number of stationary sensors in an area in a way that

every point in the specified area is observable from at least one of the sensors. It is also re-

lated to the Zookeeper problem [104] and Watchman Tour Problem [16] which try to find

the minimum length round tour for a watchman to guard an entire area with maximum

observability. These two are most suitable for surveillance and inspection tasks such as

gas leak sensing [4] and guarding a museum.

The coverage problem is also closely related to Traveling Salesman Problem (TSP)

[109] which tries to find the shortest possible closed route that visits all the cities in a

given set exactly once, knowing the distance between every pair of cities. The Covering

Salesman Problem (CSP) [22], a generalization of TSP, is the problem of identifying the

minimum cost tour of a subset of cities such that each not visited city is within a predeter-

mined covering distance of at least one visited city. The CSP is also a common approach to

solving the CPP problems. In Coverage algorithms, TSP and CSP are usually employed to

find the efficient visiting order of the room segments or stationary sensor locations. Faigl

et al. [27] decompose the mobile robot inspection planning problem into a sensor place-

ment problem and a multi-goal path planning problem, and utilize TSP to discover the

optimal route through arranged viewpoints. This decoupled approach is more applicable

when the view cost is greater than the travel cost, for example in scenarios where high-

quality measurements cannot be taken while the robot is moving or the image processing,

image registration and model construction for each viewpoint are expensive. Although
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Wang [101] argues that solving the two sub-problems independently may not lead us to

the globally optimum solution, it’s a common feasible approach for inspection planning.

Literature classifies coverage algorithms as either heuristic or complete [56]. Heuristic

algorithms do not provably guarantee to cover the entirety of the space, however, com-

plete algorithms ensure finding a path that passes through all the points in the region

of interest [20]. Provably complete coverage has significant importance for some appli-

cations such as mine clearance where clearing the whole minefield is necessary. How-

ever, complete approaches require more sensor measurements and higher computational

power and can be impractical for large outdoor environments. Adaptive sampling ap-

proaches, on the other hand, consider a trade-off between completeness and efficiency.

These approaches are more suitable for coverage tasks in environments where not all the

target area is uniformly important; however, the desired features are concentrated in a

few hot-spot regions [63]. Low et al. [59] presents an adaptive multi-robot exploration

strategy for both wide-area coverage and hotspot sampling using non-myopic path plan-

ning. Manjanna et al. [65] also address adaptive coverage of a spatial field without prior

knowledge by following a multi-scale path to produce a variable resolution map of the

field.

Independently, Coverage Planning algorithms are also categorized as offline and on-

line depending on having a priori knowledge about the area such as the layout of the

environment. Since online algorithms rely on real-time sensor measurements to cover

the target area, they are also called sensor-based coverage algorithms. The focus of the

present work is on complete offline algorithms, generating a complete coverage path for

a 2D known workspace.

For a coverage task, introducing multiple robots usually provides more efficiency and

robustness at the cost of complexity [83]. Rekleitis et al. [85] have presented multi-robot

approaches to complete coverage. They introduced distributed coverage algorithms for

a team of robots exploring an unknown environment with unlimited communication be-

tween the robots. They have also tackled the coverage task with multi robots that have

9



limited communication, restricted to the line-of-sight. Later, Shkurti et al. [94] expanded

the environment monitoring task to a multi-domain task performed by a team of an aerial

vehicle, an autonomous airboat, and an agile legged underwater robot.

Many coverage path planners partition the target environment into multiple non-

overlapping cells to reduce the problem for complex areas, where determining the opti-

mal coverage path is infeasible due to NP-Hardness of the problem [5]. Cellular decompo-

sition methods are classified as exact, approximate, and semi-approximate by Choset [20].

2.1.1 Exact cellular decomposition

Exact cellular decomposition methods divide the free space within the environment into

non-overlapping regions called cells which can be covered using simple motions such

as back-and-forth motion or spiral motion. The union of all the cells completely fills

the free space in the target environment. An adjacency graph represents the decomposed

environment where the nodes represent the regions to be covered and the edges represent

whether they share a common boundary. The planner utilizes the adjacency graph to

generate an exhaustive walk through nodes and compute the sequence in which cells

are visited. A major limitation of exact cellular decomposition is that it can result in

unnecessary small cells that could be merged with other cells and still be covered with the

simple in-cell motions [52]. Next, we discuss three popular exact cellular decomposition

approaches and summarize the pros and cons for each.

Trapezoidal decomposition

One of the most popular exact cellular decomposition methods for offline coverage plan-

ning is the trapezoidal decomposition [7], which breaks the free space into trapezoidal

shape cells. Within each trapezoidal cell, coverage can be achieved with back and forth

motions over lines parallel to one of the edges, and the coverage is shown to be provably

complete.
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Trapezoidal decomposition is applicable to a 2D polygonal environment consisting of

non-intersecting polygonal obstacles and a polygonal boundary. Considering the vertex

points of polygons, an edge segment is drawn at each vertex and is extended to the upper

and lower in a vertical line to create trapezoidal cells. One can think of it as sweeping a

vertical line in the environment and placing an edge every time the sweep line meets a

vertex point. See Figure 2.1.

However, sweep direction highly influences the optimality of the generated cells by

creating regions of different shapes and sizes and is a challenging criterion in trapezoidal

decomposition. In order to optimize the coverage for an agricultural field machine, Ok-

sanen et al. [75] proposed applying decomposition with six sweep lines inclined at 30◦

intervals and repeating the process for half-size intervals around the most favorable di-

rections. The process continues until reaching a certain threshold of the path cost function

or reaching 1◦ accuracy. Another drawback of trapezoidal decomposition is that it creates

only convex cells, resulting in a larger number of cells that could be merged together.

Allowing non-convex cells, that can still be covered by simple motions, creates fewer

numbers of cells and therefore shortens the final coverage path.

Figure 2.1: Comparison between the two exact cellular decomposition methods: (a) trape-

zoidal decomposition, (b) Boustrophedon decomposition. From [71] with permission of

owner.
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Boustrophedon decomposition

Similar to trapezoidal decomposition, boustrophedon decomposition, also known as the

lawn mover algorithm, uses a sweep line to determine the breakpoints. As opposed to

trapezoidal, it partitions the environment by inserting an edge only on vertices where

the extension can be made both above and below the vertex, rather than every ver-

tex [19]. These vertices are called critical points. Hence, the boustrophedon decompo-

sition method reduces the number of cells by only opening and closing a cell only when

an obstacle is encountered or is passed over when sweeping the line. See Figure 2.1. In ad-

dition to the decomposition of known environments, the boustrophedon decomposition

method can be adapted to online applications for which the obstacle map is not known in

advance [1]. Rekleitis et al. [84] presented a multi-robot coverage algorithm, with limited

within line-of-sight communication between robots, that uses online cell-based Boustro-

phedon decomposition for complete coverage.

Visiting the achieved polygonal non-convex cells in an order obtained from the adja-

cency graph, and covering each cell with back and forth motions, named boustrophedon

motions, guarantees complete coverage. However, the sweep line-based methods have

several limitations. First, it is difficult to determine an optimal sweep direction. Second,

it can not handle more than one vertex intersecting the sweep line [71].

Morse decomposition

Acar et al. [2] introduced the Morse decomposition method which is a generalization of

the boustrophedon method and uses the Morse function to determine the critical points

instead of using vertices. It is inspired by Canny’s roadmap method for start to goal

path planning [15]. Unlike previous methods, Morse decomposition is not limited to

polygonal obstacles and moreover, it can generate different cell shapes such as spiked,

spiral, or square cells by utilizing different Morse functions. Theoretically, it can handle

any n-dimensional space.
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Figure 2.2: Morse cellular decomposition with various Morse functions result in different

slice and cell patterns: (a) spiral cell pattern, (b) spiked cell pattern and (c) square cell

pattern. From [2] with permission of owner.

From calculus, for a real-valued function h : Rm → R the differential at a point p ∈ Rm

is dhp = [ ∂h
∂x1

(p)... ∂h
∂xm

(p)]. A point p ∈ Rm is called a critical point of h where either the

function is not differentiable or all its partial derivatives are ∂h
∂x1

(p) = ... = ∂h
∂xm

(p) = 0. If

all the critical points of a function are non-degenerate, meaning it’s Hessian ( ∂2h
∂xi∂xj

(p)) is

non-singular, then the function h is a Morse function.

Acar et al. [2] define a slice function as the pre-image of a real-valued function. To

create the Morse cells, the connectivity changes of the slice, swept in the workspace, are

analyzed. They showed that connectivity changes happen at critical points of the Morse

function restricted to the obstacle boundaries. In other words, the sweep line is perpen-

dicular to the surface normal of the obstacle at the critical point [31]. The cell decompo-

sition is constructed by splitting or merging the cells when the slice intersects with the

obstacle or leaves the obstacle at the critical point.

In Morse decomposition, different cell shapes can be obtained by utilizing different

Morse functions and hence different slice functions. For instance, in a planar case where

the robot’s workspace is W = R2, the pre-image of the Morse function h(x, y) = x defines

the slice function as a vertical line Wy = h−1(λ) and is effectively a boustrophedon de-

composition. λ is the parameter that specifies the location of the slice in the workspace

while sweeping. To illustrate a few other patterns, a spiral decomposition can be achieved

with the Morse function h(x, y) =
√
x2 + y2, a spiked decomposition with the function

h(x) = tan(x2

x1
) and a square cell pattern with h(x) = |x|, demonstrated in Figure 2.2.
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Figure 2.3: Motion along the slice and motion along the obstacle to generate complete

coverage path within a cell in Morse cellular decomposition. From [2] with permission of

owner.

Once the cells are constructed, the planner determines the order in which cells are

visited and the explicit coverage path within each cell. The former is achieved by plan-

ning an exhaustive walk through the cells using its associated adjacency graph. A com-

plete coverage path within each cell desires moving along the slice and moving along the

boundary of obstacles. As shown in Figure 2.3, the robot moves along one slice until it

encounters an obstacle, then follows the obstacle’s boundary until it has moved by an

inter-lap distance equal to the robot’s sensor range, and repeats the process along a new

slice to accomplish complete coverage.

Galceran [31] noted that a limitation of Morse decomposition is its inability to handle

rectilinear environments where the critical points are degenerate.

2.1.2 Approximate cellular decomposition

Approximate cellular decomposition, also called grid-based cellular decomposition, rep-

resents the environment as a set of uniform cells and was first proposed by Moravec et

al. [69]. As opposed to the exact cellular decomposition, all the cells are of the same size

and shape and the union of cells only approximates the shape of the target environment

and its obstacles. Grid cells can have any shape, although square and hexagonal cells are

the most popular types of grid-based decomposition in the literature. The environment

can then be represented as an array where the associated value to each cell contains the
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occupancy information for that cell. However, exponential growth in memory with size

of the map makes it inefficient for relatively large size environments [52], thus grid-based

approaches to coverage tasks are more suitable for indoor coverage operations.

Typically the cells are the size of the robot’s footprint or its visibility polygon such that

when the robot enters a cell, the whole cell area can be marked as covered. Hence, the

complete coverage path planning problem can be described as finding a path that visits

all the cells in the decomposition [20].

Wavefront algorithm

The Wavefront algorithm was introduced by Zelinsky et al. [111] to find a path of com-

plete coverage from a start cell to a goal cell with minimal secondary visits to grid cells.

The algorithm propagates a wavefront from the goal position throughout the entire free

space, calculating the distance transform by assigning integer values to each grid cell. The

wavefront assigns 0 to the goal, and 1 to the unmarked neighboring cells and repeats with

incremental values until reaching the start. The robot can then perform pseudo-gradient

ascent on the computed numeric potential function to find a path from start to goal, vis-

iting the highest value unvisited neighboring cell at each step. A remarkable advantage

of this approach is that the distance transform can be modified to impose different robot

navigation behaviors; such as reducing turns or considering path safety.

Spanning trees

Another approach to finding optimal coverage paths in a grid- based representation of

the area was proposed by Gabriely et al. [29], known as Spiral Spanning Tree Cover-

ing (Spiral-STC). Their approach splits each grid cell into four smaller cells that are the

same size as the robot. Recursively at each step, the robot selects the first cell in an anti-

clockwise direction in the space [31], following the spanning tree of the grid map. Upon

reaching the end of the tree, the robot turns around and crosses over to the other side of

the tree until arriving at the start cell.
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Later, Lee et al. [57] extended the spiral path tracking algorithm with wall following

and a new path linking method, coarse-to-fine CIDT, to generate smoother and cheaper

coverage paths for mobile robots.

Traveling salesman problem

Once the target area is decomposed into grid cells which are the same size as the robot or

its end effector, the solution to the coverage path planning problem is a path that visits all

the grid cells in the free space. The Traveling Salesman Problem (TSP) seeks the globally

shortest route that passes through all the accessible grid cells. A distance graph G is com-

puted where the nodes are the grid cells to be visited and the edges represent the distance

between each two pairs of cells. The TSP is a combinatorial optimization problem and

has proven to be NP-hard, hence a heuristic sub-optimal solution is usually acceptable

for coverage tasks. Concorde TSP solver [21] can generate the exact optimal solution to

the problem. There are also several other approximate solvers such as greedy algorithm,

genetic algorithm [81], ant colony optimization [95], 2-opt moves, and Lin-Kernighan-

Helsgaun [43] algorithm.

Lin-Kernighan is a heuristic approach, first proposed by Lin and Kernighan [58], to

find the shortest tour in the graph using 2-opt and 3-opt moves with exceptions. A k-

opt move in a distance graph is defined as selecting up to k nodes in a tour and finding k

better edges to form a better tour. The idea behind Lin-Kernighan-Helsgaun, an extension

of the Lin-Kernighan algorithm, is that any k-optimal solution is also l-optimal for l < k.

Therefore, the authors suggested every time we find a promising k-opt move, we try

to extend it to a (k + 1)-opt move by finding another edge to exclude. Lin-Kernighan-

Helsgaun tries to find k-opt moves for ascending values of k until finding the highest

possible value that gives promising improvement. Lin-Kernighan-Helsgaun uses 5-opt

moves as its basis for optimization. This approach is one of the most successful methods

for generating optimal or near-optimal solutions for the symmetric traveling salesman

problem.
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2.1.3 Room decomposition

There are a number of indoor coverage tasks where we might prefer the robot to fully

perform coverage in one room before traversing to the next room for the sake of robot

scheduling or warehouse management. In these cases, environment decomposition re-

quires breaking the free space into rooms considering walls and edges. In the literature,

room decomposition approaches are categorized as automatic and interactive segmenta-

tion [10]. Interactive methods such as [72] require some degree of human input, while

automatic methods such as [26] solely rely on the provided environment layout to seg-

ment the space.

2.1.4 Sensor placement coverage

The sensor placement coverage planner, also known as sampling-based coverage, is an-

other approach to the coverage planning problem that generally consists of two steps.

First a set of view configurations is generated that completely covers the target environ-

ment. The sensor placement problem is related to the famous art gallery problem which

tries to select as few guards as possible to completely observe a known area. The sec-

ond step seeks the optimal path that goes through every viewpoint with a minimum total

length of the path. The multi-goal path planning problem, usually referred to as the Trav-

eling Salesman Problem, is a combinatorial optimization problem. Both problems are

proven to be NP-hard, hence, the algorithms attempt to find an approximate sub-optimal

solution.

The decoupled approach is mostly beneficial for inspection planning problems where

sensor measurements cannot be taken during the robot movement, such as 3D image ac-

quisition, hence requires determining a set of stationary sensing locations from where

we observe the whole area. Therefore, the sensor placement coverage approaches aim

to cover the target area with visibility polygons of the sensor, considering the visibility

constraints such as field of view and sensor range, rather than covering with the robot’s

17



footprint. Gas sensing with a mobile robot [4], surveillance with distributed sensor net-

works [17,23] and inspection of the surfaces of an object [102] are among the applications

of sensor placement coverage in the literature.

Polygon partitioning

Kazazakis et al. [50] proposed a polygon partitioning algorithm to select a sufficient num-

ber of viewpoints for inspecting a non-convex polygonal workspace with polygonal ob-

stacles. He assumes the robot is equipped with a panoramic camera with 360◦ field of

view, therefore it is capable of covering a convex polygon with only one viewpoint if the

distance of the point to the vertices is no larger than the visibility range. The algorithm

decomposes the original non-convex polygon into a set of convex polygons and divides

them into smaller sub-polygons successively until each of them can be completely cov-

ered by one viewpoint.

Randomized sampling

Another sensor placement algorithm, proposed by Gonzalez-Banos et al. [39], positions

the viewpoints based on sampling random points and selecting a subset of minimum

cardinality to fully inspect the boundary of the environment. The algorithm is extended

by Faigl [27] to address the covering of the interior.

The randomized sampling is demonstrated in figure 2.4. First, a point p is sampled

from the boundary of the workspace W and the visibility polygon V from the point p is

computed. Then, m number of points are sampled from within the visibility polygon and

the one which has the largest intersection between its visibility polygon and V is selected

as a new viewpoint. The uncovered space is updated according to the new set of view-

points and the process is repeated until complete coverage is achieved. [27] proves that

the overall complexity is O(mnvnglog(nvng)) where m, nv, and ng are the number of sam-

ples, the number of vertices of the original polygon and the number of found viewpoints

respectively.
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Figure 2.4: Randomized sampling approach to sensor placement problem from [27]. (a)

initial random point in green at the border and a set of random candidate points, (b)

The covered area in white after placing the first point in green, (c) coverage map after 12

iterations of placing points. From [27] with permission of owner.

Boundary placement

Faigl et al. [27] argue that the previous algorithms do not benefit from as much area as

possible of the sensor’s visibility polygon because they may place viewpoints close to

boundaries or obstacles, occluding the sensor’s visibility, thus leading to a larger number

of guards. They believe that it is unnecessary to place guards or viewpoints closer to

obstacles than the visibility range of the sensor.

Figure 2.5: Boundary placement approach to sensor placement problem from [27]. (a)

coverage map for the points placed on the boundary of shrunk space, (b) coverage map

after placing additional points in uncovered areas with randomized sampling method, (c)

The final set of points after optimization procedure. From [27] with permission of owner.

Therefore, they suggest positioning the viewpoints in three phases: First, the algo-

rithm places viewpoints at a specified distance from the obstacles by shrinking the free
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Category Approach Environment Ref. on/off-
line

Notes

Exact cellular
decomposition

Trapezoidal decom-
position

Polygonal [7] off-line Breaks the free space into trapezoidal
shape cells; creates only convex cells,
resulting in a larger number of cells

Boustrophedon de-
composition

Polygonal [19, 71] off-line Reduces the number of cells and the
length of the overall coverage path in
comparison with Trapezoidal decom-
position

Morse decomposi-
tion

Differentiable
boundaries (non-
rectilinear)

[2, 31] on-line Capable of generating different cell
shapes by utilizing different Morse
functions; unable to handle rectilinear
environments

Approximate
cellular decom-
position

Wavefront algorithm Grid-discretized [111] off-line Minimize secondary visits to grid
cells; Modify distance transform to
impose different navigation con-
straints

Spanning trees Grid-discretized [29, 57] on-line Smoother and shorter coverage path

Traveling salesman
problem

Grid-discretized [43] off-line A heuristic approach that seeks the
globally shortest route that visits all
the grid cells

Room decom-
position

Automatic and Inter-
active segmentation

Indoor environments [10] off-line Breaks the free space into rooms con-
sidering walls and edges

Sensor place-
ment

Polygon partitioning Non-convex polygo-
nal workspace

[50] off-line Decomposes the original non-convex
polygon into a set of convex poly-
gons, each covered by one viewpoint

Randomized sam-
pling

Non-convex 2D
workspace

[27, 39] off-line sampling random points and select-
ing a subset of minimum viewpoints
for complete coverage

Boundary placement Non-convex 2D
workspace

[27] off-line Reduces the number of viewpoints by
considering occlusions and visibility
constraints

Multi-robot
coverage

Efficient Boustro-
phedon Multi-Robot
Coverage

Unstructured
arbitrary-shaped
environment

[85] on-line Performs task allocation among the
robots which operate under the line-
of-sight communication restriction

Multi-domain moni-
toring using a team of
robots

Marine environmen-
tal fields

[94] on-line Generates multi-domain coverage
performed by a team of an aerial
vehicle, an autonomous airboat, and
an underwater robot

Adaptive cover-
age

Multi-robot Adaptive
Sampling Problem
(MASP)

Wide-area explo-
ration with dynamic
hotspots

[59] on-line Performs wide-area coverage and
hotspot sampling using non-myopic
path planning.

Data-driven selective
sampling

Marine environmen-
tal fields

[65] on-line Generates adaptive coverage plan to
produce a variable resolution map of
the field

Table 2.1: Tabular summary of coverage planning algorithms.

space with a distance equal to the sensor range. Second, it selects additional points to

observe the remaining uncovered area with a randomized approach similar to the algo-

rithm described above. The uncovered regions are addressed one by one, differentiating

between small and large regions. They select a random point pu at the border of the un-

covered area and place a new viewpoint pn at a certain distance from pu to cover as much

20



area as possible from the uncovered area. Third, an optimization procedure tries to re-

place two very close points with one point in order to reduce the number of viewpoints.

The performance of the boundary placement algorithm is shown in Figure 2.5.

2.1.5 Summary

Table 2.1 summarizes different categories of coverage planning approaches which we dis-

cussed. The inspection planning problem in hand for our autonomous underwater robot,

requires an off-line coverage path planner to fully inspect an arbitrary shape non-convex

2D field. For our case, the cost of data capturing and post-processing the acquired data is

greater than the cost of travelling. We require the robot to stay stationary when triggering

the scanner and capture the images required for building a model of the coral reefs on the

seafloor. Hence, the sensor placement-based approaches are the most suitable for our sur-

vey mission planning. We aim to place as few viewpoints as possible in the environment

that generates full coverage of the areas of interest and find the shortest path through the

arranged viewpoints by solving a variant of the Traveling Salesman Problem (TSP).

2.2 Autonomous gait switching

In this section, we review the literature on terrain identification and gait adaptation tech-

niques to address our second challenge in a fully autonomous exploration mission on

both land and water using an amphibious legged robot.

One of the strengths of legged robots is their ability to traverse a variety of terrains.

They often possess a collection of gait patterns to ensure stability and adaptability over

a wide range of surfaces such as rocky terrain, a snowy road, a muddy area, a sandy

beach, or underwater. A gait is a sequence of periodic leg movements for the purpose of

generating locomotion from one place to another. The selection of an appropriate gait and

a safe transition between different gait patterns is a critical task for autonomous robots

that are designed to navigate over different kinds of challenging terrains.
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For a legged robot, each gait pattern is usually tuned for a specific environment and

working conditions. For example, different walking behaviors are required for walking

on soil or on an icy surface. Similarly, the movement patterns vary when changing speed

or performing a turn even in the same environment. The goal of gait transition is to adapt

the gait pattern to the environment and working conditions in order to achieve a desired

performance such as achieving energy efficiency [64], stability [105], maximum speed,

turning [80], or obstacle avoidance [62].

The problem of autonomously adapting gaits to an environment has been explored

previously in the literature. There are various challenges in converting among different

gaits with flexibility and efficiency. Optimizing gait patterns, smooth transition between

gaits, detecting the need to adapt gaits, and determining the perfect time to perform the

gait switching have great significance in accomplishing autonomous gait planning for

legged robots.

2.2.1 Gait planning and gait transition parameters

A great body of work has discussed the generation of different types of gaits and a me-

chanically stable locomotion controller to achieve a smooth and continuous transition

from one gait to another or change of speed. Santos et al. [90] studied the mechanism for

controlling the velocity and generating transition movement patterns for switching gaits

inspired by biological concepts of quadruped walking animals such as horses or cats.

Weingarten et al. [106] examined the effect of gait parameters on speed and energy effi-

ciency and proposed a gait adaptation system based on the Nelder-Mead algorithm [70].

Kong et al. [53] explored the problem of determining the optimal time to switch gaits

within a gait cycle while keeping on moving, considering different phases in a cycle such

as the support phase and aerial phase. Although robots are able to perform various gait

pattern and safely transition between gaits, detection of the urge to switch gaits is still not

necessarily explicit.

22



2.2.2 Terrain classification

Another challenge in adapting the robot’s gait patterns to its environment in real-time

is the problem of identifying the surface characterization and selecting the most ade-

quate gait. Therefore, the gait switching problem is closely related to the terrain clas-

sification problem which aims to identify the environment in which the robot is func-

tioning. The legged robot utilizes the extracted information from sensor data to assess

terrain properties and make a reliable interpretation of its surroundings in order to adapt

the walking behavior [64, 103]. In other applications, the robot may require to examine

terrain traversability and infer how safe it is to drive over different patches of the envi-

ronment [79]. Sancho-Pradel et al. [89] presented a survey of the sensing techniques and

learning techniques for terrain assessment focusing on its application for autonomous

planetary robots.

Sensing techniques

In order for the robots to adjust the gait characteristics to the terrain, they benefit from

perception systems to obtain information about the environment for classification pur-

poses. This knowledge can be gathered using various sensors. In this section we review

the most common perception methods for a mobile robot to identify its environment, in

order to determine the most suitable data sources for our use case.

A common approach to the terrain classification problem is to rely on the visual ap-

pearance of the scene to decide on the environment’s class. Visual information such as

color or texture can provide valuable data for terrain assessment. Manduchi et al. [62]

discussed surface classification techniques using color images and presented a Maximum

Likelihood strategy using a Mixture of Gaussians to discriminate between various ter-

rains for an off-road vehicle. A semantic segmentation approach was also proposed by

Masahiro et al. [76] to categorize every pixel in the image based on gray intensity and

image gradients channels, aiming to build a traversability map and identify potential

hazards for the robotic exploration of Mars. Otsu et al. [77] argued that vision sensors

23



are sensitive to environmental conditions such as illumination and hence require a large

amount of labeled data. Therefore, some researchers presented co-training approaches to

use another source of data besides the color images, such as vibration data [77] or point

cloud depth information [103].

There are other researches that aim to classify the terrain based on the LIDAR data.

Kragh et al. [54] presents a classification approach for classifying individual points from

3D point clouds acquired using single multi-beam LIDAR scans to identify different ter-

rains in agricultural fields. McDaniel at al. [68] also utilizes a LIDAR scanner for classifi-

cation and modeling of forested terrain.

Audio signal has also been shown to be a good indicator for material and ground

identification. Roy et al. [86] argues that similar to how a blind person might tap his cane

on different floor materials, we can tap a a boom-mounted microphone on the surface and

classify the floor type based on the acoustic signature arising from the contact. A tapping

mechanism-based material mapping system for a mobile robot was also proposed in [49].

They identify the material of different objects by recording and processing the sound

produced by the tap of a solenoid.

Another promising approach to effectively sense a surface is by considering the in-

ertial information of the robot’s body while traversing over different terrains such as

in [9, 11, 48, 87]. The idea is that the robot’s dynamics highly depend on the terrain’s me-

chanical properties. The physical interactions between the walking robot and the ground

cause various acceleration and rotation patterns induced in the robot’s structure. Hence,

one can probe and analyze the vibration of the system during locomotion in order to iden-

tify the surface and adjust the gait selection based on the gathered information. Manjanna

et al. [64] proposed a semi-supervised algorithm to obtain a mapping between terrain

type and gait parameters, based on the inertial responses of a hexapod robot. Once the

terrain type is recognized, they alter the gait cycle frequency, aiming to enhance walking

speed and energy efficiency when transitioning between two terrains. Khalili et al. [51]

studied inertial measurements to distinguish between various indoor and outdoor ter-
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rains for a wheelchair. More interestingly, some work [55, 66] has been done to present

frameworks for evolving gaits and changing interactions with the terrain in order to make

the robot act as an active sensor and improve its terrain discrimination ability.

Terrain classification algorithms can also use actuator data to identify the environment

[73]. Similar to how terrain properties affect vibrations, mechanical interactions between

the robot’s legs and the ground result in varying current consumption for the leg motors.

Since legs directly interact with the surface, it is more intuitive to measure the effect on

actuators and leg motor currents. Giguere et al. [37] analyzed both actuator data and

inertial sensor information to identify the environment of the amphibious Aqua robot

[24] for the purpose of autonomously switching from walking gait to swimming gait.

They proposed the idea of synchronizing the sensor information with the leg angle and

distinguishing the leg angle at which the motor current or acceleration has the largest

discrimination and environment types are well separable. Manjanna et al. [66] extended

their work and applied a similar approach aiming to enhance walking performance by

identifying the terrain type and adjusting the leg cycle frequency.

Tactile feedback has also been considered a good indicator for surface identification in

robotics literature [12, 99, 107]. In contrast with indirect measurements made by vehicle-

mounted sensors, tactile sensors come into immediate contact with the surface and mea-

sure the terrain properties directly. Therefore, they usually tend to be more precise ap-

proach than inertial sensing approaches [32]. Giguere et al. [34, 35] proposed the idea of

analyzing the tip acceleration patterns induced in a metallic rod dragged along a surface

to probe terrain properties. Shill et al. [93] presented a terrain identification approach

based on the pressure images generated with pressure sensor arrays that come into direct

contact with the terrain surface for a one-legged hopping robot. They believed that as

opposed to vibration-based classifiers, their approach is independent of the robot’s op-

erating conditions such as gait and speed. Walas [98] mounted a force torque sensor on

the robot foot to capture surface properties. They utilized tactile perception in combina-

tion with visual and depth perception to adjust gait parameters for a walking robot. Wu
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et al. [108] performed surface identification based on the magnitude and distribution of

ground reaction forces on the legs of a running robot using an array of capacitive tactile

sensors.

Learning techniques

Terrain identification begins with the analysis of raw sensory information. Various tools

and data processing methods can be employed for characterizing terrains. This section

summarizes a number of the most widely-used learning techniques in the literature for

categorizing terrain types based on the captured sensor data.

A well-known machine learning tool for classification that has been used for terrain

assessment in research papers is Support Vector Machines (SVM). Bajracharya et al. [6]

used a self-supervised method with a linear SVM for traversability classification pur-

poses. A multi-sensor data classification, fusing visual data and vibration signals, using

SVM classifier and maximum likelihood estimation is presented in [40]. The authors also

exercised Baysian fusion and meta-classifier fusion techniques to merge the results of the

two classifiers for a more accurate terrain classification. In [82], the average values of

motion resistance and slippage alongside root mean square and standard deviation of

vertical acceleration were combined as input to a proprioceptive SVM classifier. Shi et

al. [92] investigated semi-supervised learning approaches to tackle the issue of lack of

sufficient labeled data. They proposed a modified Laplacian SVM to utilize unlabeled

data for better performance in vibration-based terrain identification. Results presented

in [113] suggest SVM is better suited for online terrain classification compared to the

other algorithms.

Artificial Neural Networks can provide an accurate and robust solution to the terrain

classification problem. Ojeda et al. [74] compared the performance of Neural Networks

for 15 different sensor modalities of 5 different terrain types. Convolutional Neural Net-

works (CNNs) have also been effective for terrain identification due to their excellent

feature extraction capabilities. Yan et al. [110] utilized CNN models to derive represen-
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tative deep features for a region-based classification problem, followed by a subsequent

SVM classifier to assign pixel-level labels. A comparative study of traditional machine

learning methods against Deep Neural Networks (DNNs) and CNNs for classifying ter-

rain and estimating wheel slip is provided in [38]. The authors highlight the advantages

of deep learning algorithms for being able to perform accurately with raw data without

necessarily requiring an expert feature extraction or pre-processing filter.

Among deep learning approaches, Recurrent Neural Networks (RNNs) have been

shown to be effective for terrain assessment due to their recurrent structure and ability to

process and predict sequence data. Otte et al. [78] presented a visual terrain classification

algorithm by generating feature sequences on repeatedly mutated image patches learned

with standard RNNs, Long Short Term Memory networks (LSTMs), and Dynamic Cor-

tex Memory networks (DCMs). A model consisting of CNN architecture that learns deep

spatial features, complemented with long-short term memory units that learn complex

temporal dynamics was proposed in [96] to categorize surfaces based on vehicle-terrain

interaction sound. Bednarek et al. [8] also presented a classification approach based on

LSTM architecture that performs on the force and torque signals in the time domain from

the interaction of a legged robot foot with the ground. Vulpi et al. [97] argued that self-

learned features from deep learning may include temporal information from the data

that are not captured by the manually designed features. Hence, they suggested a terrain

identification model based on Convolutional Long Short-Term Memory recurrent neural

network (C-LSTM) to autonomously search relationships between features and categorize

sensory signals as time series.

Besides supervised learning techniques, clustering of terrain-specific sensor data is a

common approach to distinguish between different surface types. The advantage of unsu-

pervised learning methods is that labeling of data samples is no longer required. Hence,

they can incorporate raw new information as they explore unknown environments and

discover new terrains by identifying outliers of a trained model [14]. Giguere et al. [33]

introduced a clustering algorithm for time-series sensor measurements that exploits tem-
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poral coherence between samples and evaluated the effectiveness of their approach using

three different classifiers (linear separator, mixture of Gaussians, and k-Nearest Neigh-

bor).

2.2.3 Summary

In this work, our goal is to enable the amphibious Aqua robot [24] to alter its gait au-

tonomously. The robot is capable of walking on the ground and swimming under the

water. We would like the robot to switch between walk and swim modes when entering

and exiting a body of water. We seek the terrain identification approaches to determine

the robot’s environment and decide on the desired gait.

Among the discussed sensing techniques, we rely on the idea that mechanical interac-

tions between the robot’s legs and the surface in the two environments produce different

vibrational signatures in the robot’s body. Furthermore, we study the motor current for

the robot’s legs as an indicator of the current environment. Considering that the visual

appearance of the scene is highly dependant on the illumination and our experiments are

conducted in the evening, the images are poorly lit and usually occluded by lots of air

bubbles caused by rapid leg rotations in the water. Hence, we do not consider the robot’s

camera view a promising indicator of the environment for our problem. In terms of learn-

ing technique, we build a Neural Network model to predict the most appropriate gait for

our problem.

In the following chapters, we discuss the proposed terrain identification and gait al-

ternation approach and report the performance of our method on real-world data.
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Chapter 3

Methodology

This chapter details the proposed approaches to each of our sub-problems, clarifying the

components of our methods including the problem definition, the terminology, the as-

sumptions, the steps of the algorithm, and finally the desired outcome. We first describe

our solution to the problem of generating the coverage plan for monitoring an area of

interest, considering the requirements and specifications of our task. Then moving on to

the second problem in hand, we explain our methodology for the gait alternation problem

including the choice of sensing space, the prediction model, and details of our network

architecture.

3.1 Coverage path planner

Our objective is to generate an efficient coverage plan to image the annotated areas of in-

terest, where coral reefs exist, on the seafloor with an autonomous amphibious robot. We

present a coverage algorithm to determine an optimal set of observation points such that

the union of their visibility polygon covers the entirety of the target area and generate

the coverage path to visit all the observation points. The robot navigates on the gener-

ated path and captures data while staying stationary on each of the arranged observation

points.
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Our algorithm is developed to operate on a planar surface. We assume the surveyor

robot navigates at a constant altitude above the surface of interest. It is equipped with a

down-looking sensor with a certain FOV able to image the seafloor from the navigating

altitude. While a marine robot is navigating underwater at a constant depth, the sensor’s

FOV varies along the sea surface depending on the height of the target surface. In this

work the assumed sensor’s FOV is adapted to the imaging requirements for each region

and the robot is instructed to keep a certain altitude from the seafloor based on the re-

quired FOV: the higher the altitude is, the wider the FOV becomes. In our case, because

the sensor is operated at a constant altitude, its visibility disk is approximately constant

in each region. Let ”survey radius” be the radius of the visibility disk from the speci-

fied altitude. In the navigating plane, any protruding region of the seafloor intersecting

the robot’s horizontal plane is considered to be an obstacle and must be avoided. Figure

3.1 illustrates a sample map of the seafloor where the coral reefs’ location is annotated

in white, named ”free space” hereafter. The gray areas are either obstacles or sandy ar-

eas which we are not interested in. Purple polygons indicate different regions of interest

(ROI) in which we perform the coverage path planning task.

Figure 3.1: A sample map of the seafloor environment. White area is the area of interest to

be inspected. The gray area is either obstacles or sandy area which we are not interested

in. Purple plygons indicate different regions of interest.
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In our task of inspecting the coral reefs, the cost of sensing, including image segmenta-

tion and classification, is greater than the cost of moving, and high-quality measurements

can not be taken during robot movement. Hence, as described in Section 2.1.4, a sen-

sor placement coverage algorithm is the most suitable to generate a survey plan for the

AUV. The proposed coverage planner consists of two decoupled steps. The first is to de-

termine a list of geographical locations or waypoints such that every point in the target

area is observable from at least one of the waypoints. The second is to plan a minimum

length route that visits all the waypoints while avoiding obstacles. The following sections

describe each step of our algorithm.

3.1.1 Viewpoint generation

We aim to place as few viewpoints as possible to cover the entire free space in the region

of interest. Obviously, it is unnecessary to place viewpoints closer to obstacles and region

boundaries than the survey radius, as in that case, a considerable portion of the visibility

disk would become worthless. Furthermore, in the narrow elongated areas where the

width of the free space is roughly the same as the perimeter of the visibility disk, it is the

most reasonable to place the viewpoints at equal distance from the two sides. Therefore,

we suggest first placing the viewpoints near the boundaries and in the narrow spaces and

then filling in the remaining area. In order to achieve that, we segment the free space into

narrow space and wide space and treat each differently.

We believe that Faigl’s approach to placing sensors at a pre-specified distance from

the boundaries [27] has limitations in handling the areas where its width is smaller than

four times the survey radius. In such areas, their approach ends up placing viewpoints

on two very close parallel lines and results in unnecessary overlapping visibility disks.

To overcome this issue, we propose segmenting the map and computing the skeleton of

the area to decide on efficient sensor placements.

We assume we are given a Portable Gray Map (PGM) of the environment in advance

to generate the covering plan. In order to segment the free space in the ROI, we convolve
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Figure 3.2: An illustration of 2D skeletonization. In each image, the black curve is the

morphological skeleton of the gray shape. From [88] with permission of owner.

the original map with a Gaussian filter whose kernel size and kernel standard deviation

are proportional to the survey radius, rs. This expands the boundaries into the free space

and then a binary threshold on the free space differentiates between the so-called narrow

area and wide area in the ROI. One could think of it as shrinking the free space by a dis-

tance roughly the same as the survey radius. To cover the narrow area, we compute the

morphological skeleton of the narrow area which appears to be the best for viewpoint

placements. The skeleton of an area is a thin one-pixel width version of it that is equidis-

tant to its boundaries. In other words, the boundary of the object is approximated by a

continuous curve, known as the skeletal curve of the object [88]. Figure 3.2 provides an

illustration of the skeleton of 2D binary shapes. Thinning algorithms extract the skeleton

of a shape by iterative erosion and dilation of the original shape while ensuring the con-

nectivity of the curve. We apply the Zhang-Suen thinning algorithm [18, 112] to generate

the skeletal curve. The formed curve is at a survey radius distance to the boundaries, and

at the mid-line in narrow areas that are roughly the width of two survey radii. Figure 3.3
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illustrates the segmentation and skeletonization. The blue polygon indicates the region of

interest in which we require full coverage. The white area and bright gray area represent

the wide and narrow space respectively and the red curve is the generated skeleton.

Figure 3.3: An illustration of free space segmentation and skeletonization.The blue poly-

gon indicates the region of interest in which we require full coverage. The white area and

bright gray area represent the wide and narrow space respectively and the red curve is

the generated skeleton.

The primary viewpoints are placed on the skeletal curve at a constant distance d from

each other, where d = 2αrs and 0.7 < α < 1. The constant α controls the amount of

overlap of visibility disks which ensures a full coverage, and facilitates image registration

to build a model of the environment. Once the viewpoints are placed at the boundary of

the free space, the remainder of the area is covered with additional viewpoints arranged

on a square grid in the free space. We allow tweaking the viewpoints at a distance of half

of the survey radius, in case a grid point is too close to an obstacle and hence inaccessible.

The last step in viewpoint generation is a post-processing algorithm in order to opti-

mize coverage in the region of interest. We build a binary coverage image that indicates

the uncovered regions in the free space. We find contours in the coverage image cor-

responding to the gaps in coverage and resolve the gaps iteratively. Depending on the

area of the uncovered contour, we rearrange the viewpoints in three different ways to
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locally optimize coverage. First, for larger gaps, we approximate the bounding rectangle

of the contour and apply Simplicial Homology Global Optimization (SHGO) to find the

optimal position for an additional viewpoint within the bounding rectangle. The SHGO

technique [25] determines the global minimum to the loss function which is defined as

the total area in the scan that was previously seen or is occluded. The solution to the

optimization problem is the location where a new observation point results in maximum

additional coverage. A viewpoint is then placed at this optimal location. Second, for

smaller gaps, we select the set of viewpoints whose visibility disks surround the contour.

We improve the coverage in that area by rearranging the selected neighboring viewpoints.

These viewpoints are moved toward the skeleton or the centroid of the gap depending on

the shape of the contour. Thus, the coverage in the gap is improved while reducing the

intersection between selected disks with their neighbors. Third, reasonably small gaps

whose area is below a certain threshold are disregarded. The threshold is dependent on

the gap tolerance. Obviously, since the area is covered with the same size circles that

represent the observable surface from each viewpoint, there is a trade-off between the

amount of gap and overlap of the disks: the lower the gap tolerance is, the higher the

doubly scanned area becomes.

3.1.2 Route generation

The last step of any sensor placement-based coverage path planner is to connect the obser-

vation points in a way that the traversal cost is minimized. The traversal cost can include

the length of the inspection path, the cost of turns, the power consumption, or the time

to complete. We pose the problem as a traveling salesman problem (TSP) which is one of

the most widely studied problems in combinatorial optimization. We use graph notation

and build a complete edge-weighted graph G = (N,E) where N is the set of nodes each

representing a viewpoint and E = {(i, j)|i ∈ N, j ∈ N} is the set of edges. The associated

weight of each edge c(i, j) represents the cost to traverse from one viewpoint to another.

The problem is then formulated as the problem of finding a Hamiltonian cycle of min-

34



imum cost in the edge-weighted graph [43]. The resulting cycle is the cheapest way of

visiting all the waypoints and returning to the start point.

We aim to minimize the total length of the continuous and collision-free path survey-

ing the region of interest. Therefore, the associated cost to each edge would be the length

of the robot path connecting the two nodes. We first compute the trajectory between pairs

of nodes and estimate the length of the generated trajectory. Considering that path plan-

ning between every pair of nodes is expensive and time-consuming, we only generate

the navigational path for neighboring pairs and assign a penalized cost to the remaining

pairs. The assigned penalized cost is proportional to the Euclidean distance between the

two waypoints on an edge.

The Lin-Kernighan heuristic [58] is generally considered to be one of the most effec-

tive methods for generating optimal or near-optimal solutions for the symmetric traveling

salesman problem. The Lin-Kernighan algorithm is based on the k-opt heuristic method,

which is a tour improvement algorithm. The k-opt operator improves the tour by swap-

ping k of its edges with k new edges if the new edges provide a reduction in the length

of the tour. We rely on the Lin-Kernighan algorithm to discover the near-optimal order of

waypoints to be visited for an efficient coverage path.

For a graph of n vertices, the tour is optimal if there does not exist an n-opt improving

move. However, It has been shown that the complexity would be O(nn) and it is not an

applicable approach. We also know that any k-opt move also covers l-opt moves for l < k.

Hence, Lin-Kernighan aims to provide a more flexible approach by increasing k as long

as improving moves are found to achieve a near-optimal solution.

Having the weighted graph, we generate a greedy nearest neighbor tour as the initial

seed for the Lin-Kernighan heuristic algorithm. At each step, we select a node from where

we start the tour t1, and select either its predecessor or successor t2 to form an edge to

remove. Then we select a node t3 to connect to t2 and add an edge that does not belong to

the original tour and has a positive gain. We examine connecting either the predecessor

or successor of the last node t4 to shape a more efficient tour. If the new tour is of smaller
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cost, we accept the tour and restart the algorithm with the new tour. Otherwise, if the gain

is still positive, we search for another node t5 to add an edge and repeat the steps. The

algorithm is based off of 2-opt moves because it is the most efficient local search. Hence,

it always performs all the 2-opt moves by exhausting the search over all the possibilities

in the selection of the first two edges. The Lin-Kernighan algorithm was first proposed

by Lin and Kernighan [58]; later [60] and [42] discussed the approach in more detail for

implementation which we used as the basis of our work.

The origin of the TSP was devoted to a complete closed Hamiltonian cycle where the

salesman is supposed to visit all the cities and return to the starting point with a minimum

total distance. However, in our application, we do not require the robot to drive back to its

initial position and restrict the algorithm to make a closed-loop tour. Hence, the solution

to our problem is instead the minimum length Hamiltonian path which has a fixed start

node nrobot, corresponding to the robot’s initial position. In order to achieve that, we create

two additional imaginary nodes to the graph nstart and nend. The cost from nend to all the

nodes is zero and the cost from nstart to all the nodes is extremely large except from the

nrobot and nend. Therefore, the path {nend, nstart, nrobot} with zero cost would be the bridge

to traverse back to the starting node from any of the nodes in order to close the loop.

This reduces the problem to a normal TSP. Once the minimum cost Hamiltonian cycle is

generated, removing the imaginary nodes results in the intended optimal Hamiltonian

path.

3.2 Autonomous gait switching

During an automated exploration mission, we require the robot to traverse a variety of en-

vironments including sandy beach, rocky beach and underwater to be able to reach every

point in the target space. Our inspection missions usually start by walking on the land,

leads the robot into the body of water, explores the seabed while swimming, and directs

the robot back to the seashore. The amphibious legged robot utilizes several modes that
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determine the legs’ movement pattern when given target trajectories. Each mode, corre-

sponding to a gait pattern, is adjusted for a specific environment or terrain. Therefore, the

robot should be capable of transitioning between gaits across a changing environment. In

this section, we present an environment identification and gait adaptation approach to

enable such autonomous gait transitions.

Our robot, Aqua shown in Figure 3.4, is a hexapod with six independently-controlled

leg actuators that are designed for amphibious locomotion [24]. We aim to enable the

Aqua robot to switch gaits autonomously. The Aqua robot is usually given inspection

tasks that require the robot to go from land to the water and from water back to the land.

We should be able to give it a couple of waypoints or tasks in both land and water and be

sure that it can switch modes and transition between the two environments safely when

needed.

Figure 3.4: The amphibious Aqua robot walking on the shoreline.

The modes relating to this experiment are walking and swimming. A critical parameter

for switching gaits is determining when to perform the transition. It is critical to switch

gaits at the right time. An early switch from walking to swimming when the robot is still

navigating on land or shallow water causes destructive damage and may lead to broken

legs or over current in the motors.
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We propose a method to identify the environment based on vibrations of the robot’s

body and select the appropriate gait. We present a model which determines on its own

whether the Aqua robot should transfer to swimming or walking mode in real-time while

navigating autonomously. With an effective gait planning system, it can safely maneuver

on any specified trajectory over land and water.

3.2.1 Robot gaits

Legged robots possess a variety of gaits. A gait is a periodic pattern of movement for

locomotion. Gait planning determines how to effectively lift off and place each foot in

a sequence in order to move the robot forward. The motion of a hexapod is usually

categorized as tripod gait, tetrapod gait, wave gait, and swimming gait depending on the

minimum number of legs touching the surface at every moment [53]. The Aqua robot has

six arch-shaped legs. It walks in the tripod gait, leaving at least three legs on the ground

every second, to ensure stability and optimized speed. At each gait cycle in walking

mode, the legs perform a full rotation in two groups of three legs, two on one side and

one on the other, to form a stable tripod in contact with the ground while the rotation

of the other three legs moves the robot forward. Similarly, a gait cycle in the swimming

mode is a periodic rotating motion, where the legs rotate back and forth around some

target leg angle.

3.2.2 Sensory data

We rely on the idea that the acceleration of the robot’s body is a decent indicator of the

environment. We require to distinguish between walking on the ground and walking

in shallow water in order to switch from walking to swimming, and distinguish between

swimming in deep water and swimming in shallow water to switch back. Locomotion

in each of these environments generates different mechanical interactions between the

robot’s legs and the surface. These interactions lead to different patterns in the robot’s
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perturbation, producing different vibrational signatures in the robot’s body when travers-

ing in each environment. Hence, the acceleration and rotation of the robot’s body are

measured and used to estimate the dynamics of the environment and decide on the ap-

propriate gait.

Furthermore, the external resistance against legs’ rotation varies in different environ-

ments, especially in and out of water. In addition, the varying current consumption for

the legs’ motors is an indicator of the generated torque. Hence, we also study the motor

current for the robot’s legs which enables us to assess the dynamics of the surface and

determine the current environment.

The Aqua robot is equipped with a 3-axis Inertial Measurement Unit (IMU), measur-

ing ax, ay, az. We are also tracing the rotation of the robot’s body with a 3-rate gyroscope

measuring roll ϕr , pitchϕp and yaw ϕy. The six legs’ motor current and the six legs’ angle

encoder also provide useful information for our task. For the purpose of our particular

experiment, the sensor space is reduced to the acceleration measurements along 3 axes

and the motor current estimators for six legs. This simplifies the classification dataset to

better fit a predictive model. The proposed model is responsible for identifying the map-

ping relationship in order to detect the environment using the aforementioned sensory

data and transition the gaits accordingly.

3.2.3 Deep learning model

We build a model that is capable of predicting whether the robot should switch its gait

based on input sensory data. The model is required to determine the appropriate gait for

the near future given the sensory data captured in the recent past.

The input to our model is a window of past states. It takes the acceleration along each

of the 3 axis, leg motor currents, and the current gait identifier for the last T1 seconds and

predicts what is the gait that the robot will be using in some time in the future. Basically,

the output is the mode that the robot will have switched to T2 seconds in the future. The

predictor is a fully-connected neural network with Relu activation functions. By assessing
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Figure 3.5: Overview flowchart of the gait switching algorithm consisting of two phases:

offline supervised training phase and online execution phase.

the patterns in the input data in a recent time interval, and knowing the gait the robot is

currently using, the model predicts the appropriate gait for the next steps. This way,

the Aqua robot is able to determine the desired mode for the next few seconds and can

transition its gaits at the right time to prevent any damage to the robot.

The proposed approach consists of two phases. In the offline supervised training

phase, the model learns to identify the environment, which the robot is approaching, and

the appropriate gait related to environment class based on the labeled sensory data. The

training labeled data is gathered when navigating in each of the two environments while

manually controlling the gait selection. The classifier parameters are stored in memory for

use in real-time autonomous gait switching. During the online execution phase, sensory

data is recorded and classified as one of the labeled environments and its corresponding

40



Figure 3.6: The gait selection Neural Network architecture consisting of fully connected

layers and Relu activation function. The input to the model is a block of sensory data for

the past T1 seconds, predicting the gait in the next T2 seconds.

gait. The selected gait is fed back into the robot to adapt the robot’s behavior in real-time.

Figure 3.5 depicts the flowchart of the algorithm.

At each timestamp during the online execution phase, a block of sensory data from the

last T1 interval is formed. The block of sensory data for the past T1 seconds, corresponding

to n1 data-points is fed into the classifier. The Neural Network’s architecture is shown in

Figure 3.6. We train the model on the real-world dataset in 400 epochs. We consider

cross entropy loss as our evaluation criterion and apply Adam optimizer to update the

network parameters. The model identifies the environment that the robot is approaching

by analyzing the sequence of recent past data. Once we have identified the terrain, the

model determines the necessity to adapt gaits and signals the robot to switch accordingly

if required. Hence, we ensure the adaptability of the robot’s gait to its environment in real-

time. In our experiments, the training and testing data contain gait switches in similar

environmental conditions and locations. An advantageous future direction would be to

41



attempt generalizing the model in order to make it more robust to the environment’s

conditions, such as steeper water and rougher wave conditions.
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Chapter 4

Results and Discussion

In this chapter, we describe our experimental testbed and report the results from our

analysis to show a performance comparison of our method to that in the existing litera-

ture. Similar to previous chapters, we start with presenting the details about the coverage

planning problem and continue with the gait switching problem.

4.1 Coverage path planner

To validate our proposed algorithm in Section 3.1, and more importantly, as the first step

toward deployment on real robot systems, we test our methodology in simulation. We are

interested in assessing if the proposed coverage planning approach can quickly generate

a coverage plan, the sensing configurations and the inspection path, for a mobile robot in

complex and arbitrary shape environments.

The coverage planner algorithm is implemented in Python and runs on Robot Op-

erating System (ROS). The algorithm is validated on a Gazebo simulator by Clearpath

Robotics Inc1. Our focus is on offline coverage planner where the map of the environ-

ment is already known in advance. In our simulator, the user defines the region of in-

terest (ROI) by drawing a polygon within which we perform full coverage over the free

1Clearpath Robotics Inc. https://clearpathrobotics.com/
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space. Therefore, the area of interest can be any arbitrary shape area with holes as can be

seen in Figure 3.1. The user may also set the desired visibility constraints or the survey

radius for each ROI depending on the altitude of the robot’s navigating plane. Then, our

ROS package is responsible for computing the observation points and the coverage path

to visit all the points in order to fully inspect the annotated region.

We use the ROS action server and client interface to communicate with the rest of the

stack. Hence, we are able to provide periodic feedback during execution or preempt the

callback if necessary. Upon receiving an action goal, defining the region of interest and the

survey radius, we first determine survey point placement to fully cover the survey area

for the given parameters. We start by segmenting the free space into so-called wide space

and narrow space in order to treat each differently as discussed in 3.1.1. The skeleton

of the narrow space is generated using the implementation of the Zhang-Suen thinning

algorithm [18] in OpenCV. Figure 4.1 illustrates a map of the environment where the blue

polygon is the user defined region of interest, the white area is the wide space, and the

light gray area is the narrow space whose skeletal curve is marked in red. The image

clearly shows how a region will be regarded differently depending on the survey radius.

The image on the left is the segmentation and skeletonization outcome when the survey

radius is set to 3 meters, while the survey radius for the image on the right is set to 6

meters.

The observation points are first placed on the skeletal curve which is proposed to be

the most efficient place to capture as much area as possible near the obstacles and in

narrow elongated areas. The points are placed at a constant distance from each other

to allow some degree of overlap for image registration purposes once we are required

to build a model of the environment. The distance is proportional to the survey radius

and is configurable from the globally viewable ROS parameter server. Then the wide

area is filled with observation points placed on a square grid, allowing a displacement by

half a survey radius for inaccessible viewpoints. The points which are close to obstacles

where the robot’s footprint will not fit are called inaccessible points. Two instances of the
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Figure 4.1: The effect of survey radius on segmentation and skeletonization of the free

space. Survey radius is (a) 3 meters and (b) 6 meters in this experiments. In each map, the

blue polygon is the user defined region of interest, the white area is the wide space, the

light gray area is the narrow space whose skeletal curve is marked in red

generated viewpoints for two different regions of interest are provided in Figure 4.2. At

each row, (a) is the free space segments and skeleton for the desired ROI, represented with

a blue polygon. Point placements on the skeleton and on the relaxed grid are marked with

blue and red dots respectively in (b). Image (c) shows the coverage disks of the generated

viewpoints.

The optimization procedure relies on findContours function of OpenCV to detect any

gaps in the coverage plan that are not negligible. We base our decision about the signifi-

cance of the gap on the area of detected contours. Figure 4.3 demonstrates how rearrang-

ing the viewpoints surrounding the gap enhances the coverage in the intended areas.

Gray circles are the coverage disks with a survey radius of 4 meters and (a) shows the

coverage before optimization. In (b), (c) and (d) , each representing one step in iterative

optimization, the bounding rectangle of each detected contour is shown in red. The big
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Figure 4.2: Observation point placements on environment segments before optimisation.

(i) and (ii) illustrate the results for two different regions of interest. At each run, (a) rep-

resents the segmentation and skeletonization of the environment. (b) marks the point

placement on the curve and in wide space with blue and red dots, respectively. Finally,

(c) shows the coverage disks.

red dots are where additional viewpoints are required. The small red and pink dots in-

dicate the rearranged viewpoints which are displaced from the pink dot position to the

red dot position in order to cover the missing area. The rightmost image, (e) is the disk

placements after optimizing the coverage plan. It has been observed that the optimiza-

tion procedure significantly improves the total coverage while avoiding an unreasonable
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increase in the number of viewpoints, and at the same time reduces the total overlap of

coverage disks by eliminating redundant viewpoints.

Figure 4.3: Coverage enhancements in missing areas with optimisation procedure.(a) is

the generated coverage before optimisation. (b), (c) and (d) represent iterative coverage

enhancement steps. (e) shows coverage density map after optimisation.

Once the ROS action result for placing observation points is received, a subsequent

ROS action server is responsible for connecting the desired waypoints in a minimum-

length tour. We rely on the Lin-Kernighan algorithm and perform k-opt moves in the

edge-weighted graph of the waypoints, in order to heuristically solve an instance of Trav-

eling Salesman Problem as described in Section 3.1.2. We do not restrict the path to return

to the initial position. In case of multiple regions of interest, we encourage visiting all

the waypoints within an ROI before traversing to the next, by penalizing inter ROI travel

costs.

To demonstrate the capabilities of the proposed algorithm, we evaluated the algo-

rithm within 4 environments and 20 regions of interest for the set of visibility disk radii

2, 4, 6, 10 meters. Our implementation handles range constraints and sight constraints by

considering the occluded areas from each of the observation points. Figure 4.4 shows the

coverage plan for three survey missions in ROS visualization tool, rviz. At each run, var-

ious visibility constraints are applied to each ROI, represented by purple polygons. The

images on the left, displaying coverage disks in gray, serve as a coverage density map
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showing how many times has every point on the workspace been covered. The images

on the left provide the complete inspection path through all the waypoints, marked with

green dots, for full coverage of the target surface. The robot starts from point S at the

bottom left corner of the image.

Figure 4.4: Final inspection path of the environment for several regions of interest. Each

row represents one trial run. (a) depicts coverage density with gray coverage disks and

the visiting order. (b) shows the coverage path for the robot to follow in order to fully

inspect the area.
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We examined two qualities of the coverage planner solution. We computed the total

covered area from the generated viewpoint configuration and expressed the coverage ra-

tio as the percentage of observed area to the total free area. The most efficient survey plan

is when we cover each point in the environment exactly once. Hence, we also examine the

amount of unnecessary coverage overlapping and define overlap ratio as the percentage

of total repeatedly covered area to the total free area. Table 4.1 summarizes the average of

coverage ratio and overlap ratio over 20 runs for 4 different visibility ranges for our algo-

rithm. The results confirm that smaller survey radii lead to a higher coverage ratio at the

expense of small-scale overlap. There is an unavoidable trade-off between overlapping

area and missing area when covering a region with same-size circles; the smaller the over-

lap is, the larger the gaps become. This threshold is adjustable with the user’s preference

from ROS parameter server. We compare our algorithm with the boundary placement

algorithm presented by Faigl et al [27] described in Section 2.1.4. Their approach, having

similar conditions and constraints to us, tries to place a number of waypoints at which

the mobile robot performs scanning while staying stationary. Looking at the scores of

the two approaches (Table 4.1), our algorithm outperforms the boundary placement algo-

rithm. This is because the boundary placement algorithm does not take narrow areas into

account and ends up having larger overlaps by placing the viewpoints too close to each

other.

algorithm visibility range(meters) coverage ratio overlap ratio

Our algorithm

2 93.6% 19.2%
4 92.3% 14.8%
6 92.7% 13.0%
10 85.5% 9.5%

Boundary placement [27] 2 86.4% 22.6%
6 80.3% 18.6%

Table 4.1: Quantitative performance of the coverage planner algorithm. Our algorithm

outperforms the boundary placement algorithm by improving coverage while reducing

the repeatedly scanned area at the same time.
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We also performed time tracking and obtained traces for each scope of the algorithm

during the run-time in order to investigate where the most time is spent in the program.

We used the Scalopus system [100] to view traces in Chrome Tracing API. An example

is provided in Figure 4.5 for coverage planning for two regions of interest yielding 153

observation points which indicates that the duration of point generation and route gener-

ation pieces are 5.49s and 15.65s respectively. These include the time it takes to interpret

the action client’s request, repeatedly build and publish the action feedback messages,

publish the result and terminate the connection. Exploring the traces for several runs, we

figured out that skeletonization in point generation and path planning between pairs of

nodes in route generation are the most time-consuming parts of the algorithm.

Figure 4.5: Computational time of the algorithm for an experiment with two ROIs and 153

observation points. The horizontal axis is the run-time and each color block represents a

block of the algorithm. Skeletonization in point generation and path planning between

pairs of nodes in route generation are the most time consuming parts of the algorithm.

Based on the experimental results, the presented algorithm appears to perform very

well for any arbitrary shape environment with holes. The number of viewpoints is at

an acceptable level and suitable locations while achieving more than 90% coverage in

the target area. The results indicate that our algorithm performs better compared to the

previous similar sensor placement-based approaches. When the sensors’ visibility area is

round-shaped and we require covering the space with same size disks, it is acknowledged

that some coverage overlap is inevitable; and even necessary for image post-processing

steps. The algorithm is shown to be able to completely inspect the area and reduce the

coverage overlap at the same time. The idea of placing the viewpoints on the skeletal

curve close to boundaries and in corridors has also benefited route generation to reduce

the length of the inspection tour.
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4.2 Autonomous gait switching

In order to validate the effectiveness of the proposed gait controller algorithm, we per-

formed experiments on real-world data to evaluate whether our technique can success-

fully determine the right time to switch the robot’s gaits. We carried out several experi-

ments with the Aqua robot and collected sensory information while the robot navigates

on different terrains and switches gaits. In this section, we present the gait transition

results in order to demonstrate the capability of our algorithm.

The Aqua robot operates on Robot Operating System (ROS) and the proposed algo-

rithm is implemented in python. The gait selection model is trained and tested on the

gathered real-world data sources on a ROS server. Due to the restrictions on social gath-

erings during the Covid-19 pandemic, we were unable to test the proposed model on the

robot in the field. However, we have validated the efficacy of our algorithm on simulation

using real-world data from the robot running in the field.

4.2.1 Data collection

We have collected about 5 to 6 hours of data during the field trials conducted in Quebec,

Ontario and Barbados on sandy and rocky beaches. In the data collection phase, the Aqua

robot is teleoperated and receives the signal for mode change from a human operator.

We have collected about 40 trial runs for entries and exits. At each run, the Aqua robot

walks on the beach for a few seconds, approaches the water while in walking mode, and

switches to swim mode when the water is deep enough. The robot navigates around the

water for a short while and transitions back to walk mode when it has hit the shore. Figure

4.6 demonstrates two of the trial runs: 4.6a the Aqua robot transitions from the ground

to the lake on a rocky beach and 4.6b transitions from the lake to the ground on a sandy

beach.

The collected ROS bag files contain the linear accelerations, leg motor currents, for-

ward and downward view images along with the manual mode change information. A
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(a)

(b)

Figure 4.6: Gait transition experiments in the field. (a) transition from swim to walk when

approaching to the shore on a rocky beach. (b) transition from walk to swim when entering

the lake on a sandy beach.

rosbag or bag is a file format in ROS for storing ROS message data. Images are stored at

10 FPS and IMU data is published at 50Hz. We applied a time synchronization between

data nodes and did data segmentation to create a reliable dataset for gait adaptation ex-

periments.

Furthermore, we have collected about an hour and a half of inopportune data, aiming

to capture the data patterns in abnormal conditions when the Aqua robot switches gaits

too early or too late. For example, the Aqua is in walk mode while in deep water when it
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should be swimming. The ROS bag data files are accompanied by CSV files containing the

timestamps in which the robot has switched gaits and the timestamps in which it should

have switched gaits instead. The interval between the two timestamps would have been

the right time to transition. We can benefit from the inopportune data sources to study

the data patterns in this time interval and detect faults in gait selection. For example,

we can learn how the peak in leg motor currents would change if the robot is struggling

in swim mode although it has reached the shore. We believe this is a promising future

direction to utilize the inopportune data, in order to recognize an improper gait selection

and determine the necessity of a gait transition.

4.2.2 Evaluation

We built a fully-connected neural network and trained on the gathered dataset as de-

scribed in Section 3.2.3. The model takes a window of the sensory data points, accelera-

tion, and leg currents, during the last T1 seconds and outputs the desired gait in T2 sec-

onds in the future. There are multiple choices for T1, T2, and for smoothing the gait mode

signal. We evaluate different choices for the parameters of the model using accuracy on

the validation set as the benchmarking metric.

Figure 4.7 shows the gait selection results on a model for which T1 = 10 and T2 = 5

with low-pass filtering applied to the mode predictions. In each sub-figure from top to

bottom, the line graphs visualize the algorithm-selected gait, the actual gait, and linear

acceleration versus time for one trial run. Sample 4.7a starts with the Aqua walking on

the beach, entering the water, swimming around, and switching back to walking when

exiting the lake. Sample 4.7b demonstrates one entrance to the water, alternating gait

from walking to swimming. The actual gait is the mode that was manually controlled by

a human user.

The graphs indicate that a switch signal has occurred several times in the entrance

and exit intervals. We argue that repetition of the switch command in those intervals is

not because of a missclassification error. The validation experiments were conducted by
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(a)

(b)

Figure 4.7: Results of gait adaptation to environment with multiple transitions ( two entry

and one exit). The line graphs visualize the algorithm-selected gait, the actual gait and

linear acceleration versus time for one trial run.

playing back the recorded ROS bag files from field trials to replicate a sample entry and

exit run. Although the switch command has been delivered several times once the robot

has reached the shallow water area, the robot was not changing gaits. Hence, the ground

truth mode was consistently fed to the classifier as the current gait pattern and made the

algorithm signal for changing gaits multiple times.
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The gait adaptation algorithm performs efficiently well, and the switch decision was

made at the correct time intervals when the robot is close to the seashore. We observe that

there is a small classification error such as in time slots E1, E2, E3 in Figure 4.7. Neverthe-

less, these misclassifications are a minor part of the data and most of the data is correctly

identified. The proposed algorithm achieved success and the results prove its ability to

distinguish between environments and switch gaits accordingly.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis we addressed two of the many challenges in automated outdoor environ-

ment exploration, particularly aiming for marine environment monitoring using an am-

phibious autonomous robot. First, we discussed coverage planning to generate an effi-

cient inspection path. Second, we studied autonomous gait switching to ensure walking

behavior adaptability for a fully autonomous coverage mission on both land and water.

We explored outdoor coverage path planning algorithms and presented a novel sen-

sor placement-based coverage planner algorithm that outperforms a previous method.

We demonstrated the process of generating a route that can be used to survey a region

of interest with a complex shape. Our algorithm notably reduces the number of view-

points, where the robot performs scanning, by considering occlusions, redundant areas,

and undesirable repeated scans. The proposed coverage planner differentiates between

narrow and wide areas and estimates the skeletal curve of the area of interest in order to

determine the best set of sensor placements which ensures complete coverage while min-

imizing the overall route length. We verified the effectiveness of our algorithm through

simulation.
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Having in mind the necessity of locomotion in both ground and underwater environ-

ments for a fully autonomous robotic mission, we examined gait adaptation algorithms

for legged robots. We aimed to enable the amphibious Aqua robot to identify the surface

and adapt its leg movement patterns to its environment. Our algorithm relies on iner-

tial measurements and leg actuator feedback to decide on the gait switching command.

We performed validation on real-world data collected with the Aqua robot walking and

swimming on sandy and rocky beaches.

In Chapter 1, we presented the problem description and the motivation behind our

research. Our ultimate goal is to protect marine life and conserve coral reefs from destruc-

tion which necessitates frequent reef inspection missions. Automating seabed monitoring

arises different challenges. Our research tackled coverage planning and gait adaptation

problems described in Section 1.1. Chapter 2 provided an overview of previous research

on coverage planning algorithms and gait adaptation techniques in Sections 2.1 and 2.2

respectively. Details of our proposed methods were explained in Chapter 3. Section 3.1

described our two-staged approach that intends to generate a coverage mission plan to

capture data from a two-dimensional spatial field. We obtained the best set of sensing

locations to fully observe the desired area and solved a Traveling Salesman Problem to

determine the most efficient overall robot trajectory. In Section 3.2 we proposed a real-

time terrain identification approach to distinguish between ground and water and switch

the robot’s gait accordingly. Chapter 4 reported implementation details, our experimental

testbed, and evaluation findings.

5.2 Future directions

Here, we briefly discuss some extensions and additional research directions that we be-

lieve are promising.

We presented an offline coverage planner that creates the survey plan for an already

known environment. Currently, if an unexpected obstacle is encountered along the tra-
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jectory, the system updates the environment’s map with the location and shape of the

obstacle, annotates the already covered areas on the map, and then generates a new com-

plementary survey plan to resume inspection of the remaining area. To make this ap-

proach more robust to dynamically changing environments with moving obstacles, the

planner could be extended to a Next Best View (NBW) planner where the best sensing lo-

cations are determined during the survey execution. The idea is that at each step, the most

informative sensing location with the highest information gain is selected locally instead

of planning all the viewpoints prior to commencing the mission. Another direction to

expand this research would be to deploy multiple data-sampling robots for environment

exploration. The research question that we would like to answer in the future is how the

team of robots can collaborate to achieve effective coverage with minimal communication

between the robots.

The gait alternation algorithm currently identifies the robot’s environment based on

IMU measurements and leg motor currents. In order to further improve the autonomous

gait switching results, we would like to experiment with other sources of data discussed

in Section 2.2.2 and combine several sets of sensory information such as body rotation,

tactile information, or visual appearance. Considering the fact that the input data to

our model is time series, we would like to experiment with Recurrent Neural Networks

(RNN) that are known to be successful in sequential data analysis. An RNN retains a

memory of the its recent past steps through temporal feedback loops. In the future, we

would also examine clustering techniques for terrain classification. This could enable us

to discover new environments as they appear; for instance when the robot faces oysters

or muddy beaches that it has never experienced before. We believe this should be benefi-

cial because a more reliable and extensive identification could protect the robot from false

gait selection and destructive damage to its legs.
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