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We study a lattice model for a three-component system of water, oil, and surfactants in two

dimensions.

Large-scale Monte Carlo simulations were performed to obtain the phase equilibria

for a wide range of temperatures and surfactant concentrations. We show that this model has a
rich phase behavior, and both microemulsion and liquid crystalline phases were found. The phase
behavior is consistent with that of a real system, and is in qualitative agreement with the model of
Gompper and Schick [Phys. Rev. Lett. 62, 1647 (1989)], which is based on three-body interactions.

PACS number(s): 05.50.+q, 61.20.Gy, 68.10.—m, 82.65.Dp

Liquid mixtures of oil, water, and amphiphilic surfac-
tants have a rich phase behavior. This is due to the
molecular structure of the surfactants, which have a hy-
drophilic or polar head plus a hydrophobic tail. The
surfactants can therefore reduce the interfacial tension
by positioning themselves preferentially at oil-water in-
terfaces. The resulting phases can be identified as struc-
tured fluids [1], which are homogeneous on large length
scales but remain heterogeneous over small length scales.
The detailed structure of these phases depends on factors
such as the concentration and molecular structure of the
amphiphiles and the relative concentration of water and
oil. Since water and oil are immiscible, phase coexistence
occurs at sufficiently low surfactant concentrations. On
increasing the concentration, the system breaks up into
microdomains of water and oil separated by fluctuating
and flexible interfaces. This structure is known as a mi-
croemulsion, and the microdomain size is of the order of
several hundred angstroms. The microdomains are often
globular in shape, if, say, the concentration of water is
much larger than that of the oil, and they can form a bi-
continuous phase when the concentrations of water and
oil are comparable. Experiments on bicontinuous mi-
croemulsions show that there is a peak at a wave num-
ber ¢ > 0 in the water-water scattering intensity [2, 3]
and that the position of the peak moves to higher wave
numbers as the surfactant concentration increases. At
sufficiently high surfactant concentrations, the interfaces
become very stiff, leading to a variety of phases with
relatively long-range order, such as lamellar, hexagonal,
cubic, and other liquid-crystalline phases [4].

In this paper we present a detailed Monte Carlo study
of the phase diagram of a lattice model for water-oil-
surfactant mixtures in two dimensions. Previous theo-
retical work was based on both phenomenological mod-
els [5-9] and lattice models [13,21-23,33,34] where the
mean-field approximation was used to study the equilib-
rium phase behavior of 3D ternary water-oil-surfactant
systems. Some Monte Carlo simulations have also been
used for studies [10-12] of the phase diagram of the
Wheeler-Widom model [13]. The first extensive analy-

44

sis of the effect of fluctuations on the phase behavior
of two-dimensional ternary mixtures was due to Gomp-
per and Schick [14] using a transfer-matrix method on a
model with three-body oil-surfactant-water interactions.
They found significant deviations from mean-field behav-
ior. Recently Chowdhury and Stauffer used the Wheeler-
Widom model for Monte Carlo studies of the stability of
bilayers [15] and of microemulsions in a restricted geom-
etry [16].

We have made use of a simple two-dimensional lattice-
gas Hamiltonian, defined below, into which we expect to
incorporate much of the essential physics of the mixture.
To determine the phase boundaries as accurately as pos-
sible, we combined the Metropolis Monte Carlo method
with the finite-size analysis recently developed by Ferren-
berg and Swendsen [17], and by Lee and Kosterlitz [18].
This led to the following phase diagram as a function of
surfactant concentration: the phase coexistence of water
and oil, followed by a microemulsion region of the disor-
dered phase, a lamellar phase, and a square phase, which
is the two-dimensional analog of the experimentally ob-
served cubic phase. Structure functions were calculated
in the microemulsion region and qualitative agreement
with experimental results was found. Finally, we calcu-
lated the phase diagram in the mean-field approximation
using a local-mean-field method that involves the Monte
Carlo algorithm. This allowed us to examine the role
of fluctuations particularly in the microemulsion region
where the interfacial tension approaches zero.

In the model studied in this work, each water, oil,
or surfactant molecule occupies a single site on a two-
dimensional square lattice. This is represented by a
three-component spin variable S; that takes values of +1,
—1, and 0, respectively. Since amphiphilic surfactants
are anisotropic molecules, we represent them in terms of
a vector operator, m;, at site 2. We allow m; to have
four possible directions along the bonds of a square lat-
tice. m; equals 0 whenever the site ¢ is occupied by a
water or an oil molecule. The Hamiltonian is written as
follows:
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H=-J; Z S,'Sj — Js Z (Sjmi ST+ Silnj -rj,;)

<ij> <i,j>

~usZ|mi I2~(uw—uo)ZSz- (1)

The first term of H corresponds to the usual Blume-Capel
spin-1 model for a tricritical system [19, 20]. The second
term is crucial since it mimics the two-body interaction
between a surfactant and water or oil molecules. This
term reflects the fact that the tail of a surfactant prefers
a hydrophobic environment such as oil, and the polar
head interacts preferentially with water molecules. For
simplicity, we consider a Hamiltonian that is symmet-
ric between water and oil. This corresponds to the case
where surfactants do not induce a spontaneous curvature
in the interfaces. The last two terms of Eq. (1) represent
the chemical potentials of the three species. In this work
we are interested in systems with equal amounts of water
and oil and therefore p,, = p,. Defining

A= py— 3 (pw + po), (2

the Hamiltonian is rewritten as

H=-J, ZSiSj —Js Z(Sjmi -rij + Simj . rji)

i,j

t,J
+A ZSﬁ. (3)

This model contains the essential physics of the three-
component system, while remaining relatively uncompli-
cated. The only free parameter is the interaction ratio
J2/J1, in contrast to other models in the literature where
more interactions are usually included [9, 14, 21,22]. A
related model was studied within the mean-field approx-
imation for small temperatures by Ciah et al. [23]. More
recently, Matsen and Sullivan [21] proposed a lattice-
gas model that included interactions between surfactants,
and used it to calculate phase diagrams using mean-field
and Bethe approximations. They found that the mi-
croemulsion region was characterized by large values of
the surfactant concentration (> 68%). This is most prob-
ably due to the use of the mean-field approximation and
they indicate that a treatment that includes fluctuations
is required.

An exact evaluation of the ground state of the present
model shows that for Jo/J; < 0.5 the model reduces
to the usual Blume-Capel model, which has a region
of two-phase coexistence followed by a disordered phase
[19,20]. This corresponds to the case of weak surfac-
tants. Since both lamellar and square phases are found
for Jo/J; > 0.5, a value of J5/J; = 3 was used in our sim-
ulations. Our Monte Carlo work consisted of two parts.
First, extensive Monte Carlo simulations were performed
using the usual Metropolis Monte Carlo algorithm at
many points of the phase diagram for system sizes rang-
ing from L = 4 to 40. We then used the extrapolation
method of Ferrenberg and Swendsen [17], which requires
extremely good statistics (~ 10® Monte Carlo steps/spin)
at a point (A,T) in the phase diagram very close to the
transition line. This run is used to calculate the equi-
librium probability distribution of energy and surfactant
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concentration, which is then used to extrapolate to the
probability distribution at a neighboring point (A’,T").
This allows us to obtain thermodynamic functions such
as the specific heat and the compressibility at the neigh-
boring point in terms of (A, T’). The transition can then
be located from the position of the peak in the specific
heat or the compressibility. Finite-size scaling was then
performed on the data. For a first-order phase transi-
tion, the heat capacity scales as L? [24], whereas it scales
as L*/¥ for second-order transitions where a and v are
the usual critical exponents [25]. The order of the tran-
sition lines were checked using the method of Lee and
Kosterlitz mentioned above, which consists of calculat-
ing the free energy as a function of the order parameter
at the transition from the probability distribution at the
specific-heat peak. Good agreement with the extrapola-
tion results was found. Details of these calculations are
planned to be presented elsewhere [26].

The resultant phase diagram is shown in Fig. 1. The
transition from the phase coexistence of water and oil to
the disordered region is initially second order with a re-
gion that we believe to be first order, as we shall discuss
below. There is no phase transition between the region of
two-phase coexistence and the lamellar phase except at
T = 0. Thus the disordered phase essentially extends to
T = 0. The same behavior has been observed by Gomp-
per and Schick [14]. The lamellar phase consists of do-
mains of water and oil in the [10] or [01] directions, sepa-
rated by surfactant monolayers. These domains can have
different widths depending on temperature and chemical
potential, but the width is generally of the order of a few
lattice spacings. A typical configuration for the lamel-
lar phase is shown in Fig. 2(a). The transition from the
disordered phase to the lamellar phase is first order, as
found from the finite-size analysis. A first-order phase
boundary separates the lamellar phase from the square
phase, which corresponds to alternating regions of wa-
ter and oil in the “checkerboard” pattern, as shown in
Fig. 2(b). The transition from the square phase to the
disordered phase is also first order. In contrast to previ-
ous lattice models [22], we found that the lamellar and
square phases have quasi-long-range order.

The disordered phase has a different behavior depend-
ing on the values of 7" and A. To the left of the dotted
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FIG. 1. Phase diagram of model of Eq. (3) with J2/J1 =

3 from Monte Carlo simulations. See text for details. The
dotted line is the Lifshitz line.
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line in Fig. 1, the water-water structure function shows
the same monotonic decay plus a peak at ¢ = 0, as found
for simple fluids. However, to the right of the dotted line,
there is a peak at ¢ > 0. This implies that the disordered
phase in this region is characterized by the presence of
short-range order. This region can then be identified as
the microemulsion region. The configurations are given
in Fig. 3 and clearly show interconnected domains of wa-
ter and oil separated by surfactant monolayers. This
should be compared with the three-dimensional bicon-
tinuous microemulsions (2, 3]. It is also clear from Fig. 3
that the average domain size decreases as the surfactant
chemical potential A increases (i.e., as the surfactant con-
centration increases). Note that the domains are well
segregated and most surfactants are positioned at the
oil-water interfaces. The dotted line of Fig. 1 that sepa-
rates the two regimes of the disordered phase is a Lifshitz
line [27], and not a phase boundary, since no singularities
were detected in any thermodynamic quantity.

In order to examine the effect of fluctuations on the
phase diagram, we adapted a local mean-field theory
method, which was used by Soukoulis and co-workers
[28] to examine spin-glass systems. This method uses
the Metropolis Monte Carlo algorithm in conjunction

(a)
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(b)

FIG. 2. (a) A typical configuration in the lamellar phase
(A)J1, T/ J1) = (—0.5,0.55), the closed squares represent sur-
factants, open squares represent water, and white regions rep-
resent oil. (b) shows a typical configuration in the square
phase (A/J1,T/J1) = (4,1). In this case open squares repre-
sent surfactants.
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FIG. 3. Configurationsin the microemulsion regime of the
disordered phase at T/J; = 0.8. The values of A are —2.9,
—2.8, —2.6, and —2.5 for (a), (b), (c), and (d), respectively .
Closed squares represent surfactants, open squares represent
water, and white regions represent oil.

with the mean-field approximation. The role of fluc-
tuations is particularly important when the interfacial
tension is small since this leads to the creation of many
fluctuating interfaces. The mean-field phase diagram for
our model is shown in Fig. 4. This figure shows that
the same phases as those in Monte Carlo simulation are
found, but the phase boundaries are shifted. In partic-
ular the microemulsion region no longer extends to very
small temperatures. This is due to the lack of fluctua-
tions, which makes the lamellar phase unstable against
the microemulsion. Furthermore, the microemulsion, the
disordered phase, the lamellar phase, and the water- and
oil-rich phases all meet at a single tricritical point. We
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FIG. 4. Phase diagram of model of Eq. (3) with J;/J; =3

from the local mean-field technique. Solid lines are first-order
lines, the dashed line is a second-order line, and the dotted
line is the Lifshitz line.
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also found that the lamellar-phase domains are not only
oriented in the [10] or [01] directions, but also in the [11]
direction. Details of our version of the local mean-field
technique are planned to be presented elsewhere [26].

We were not able to determine the order of the tran-
sition between the two-phase water-oil region and the
disordered phase at low temperature in the simulations.
This is probably due to the extremely small interfacial
tension between water-rich, or oil-rich, and microemul-
sion phases. It is observed experimentally that, when
the microemulsion coexists simultaneously with water-
and oil-rich phases, the interfacial tension between any
two of the three phases is usually very small [29]. Thus
if the transition is indeed first order, it should be rather
weak. Indeed, our numerical calculation of the interfacial
tension in this regime has given a value which is about
5% of the bare water-oil interfacial tension. Therefore
the usual finite-size scaling behavior in this region will
not be observed unless extremely large systems are stud-
ied. We can, however, give some arguments suggesting
that the line separating the two-phase water-oil region
and the disordered phases is first order at low tempera-
tures. First, the ground-state calculation shows that the
transition at 7" = 0 is first order. Second, we found that
the Lifshitz line intersects the transition line, again im-
plying the existence of a first-order line [30] and therefore
a tricritical point separating the second- and first-order
lines. Finally the local mean-field theory discussed above
does indeed give such a tricritical point.

The water-water structure factor on a system of L = 64
in the microemulsion region is shown in Fig. 5. This was
obtained by Monte Carlo calculations for T/J; = 0.8
in the region between the water-oil coexistence and the
lamellar phase, and a peak at ¢ > 0 is observed. As the
chemical potential increases, the position of this peak
shifts to higher wave numbers. This corresponds to a de-
crease in the average size of the water and oil domains
consistent with Fig. 3. The inset of Fig. 3 shows that
gmax ~ Ps, Where p; is the surfactant concentration. This
can be explained as follows. Since most surfactants are
adsorbed at the interfaces, the total length of the inter-
face I ~ p,. But the average domain size R ~ 1/I, and
therefore ¢,, ~ ps. We note that a similar behavior has
been observed experimentally [31]. The tail of the struc-
ture factor decays as a power law, ¢=3 = ¢=(4+1) which is
equivalent to Porod’s law found experimentally for three-
dimensional microemulsions [32]. Finally, we have also
obtained the surfactant-surfactant structure factor and
observed a peak at nonzero q.

In conclusion, we have studied a model that captures
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FIG. 5. The water-water structure factor in the mi-

croemulsion regime of the disordered phase at T/J, = 0.8.
Inset shows the position of the maximum of structure factor
gmax as a function of surfactant concentration. Curves from
top to bottom correspond to the following values of the chem-
ical potential: A/J, = —2.85, —2.8, —2.75, —2.6, —2.5, and
—2.4.

the essential phase equilibria of a ternary surfactant mix-
ture in two dimensions. An extensive Monte Carlo simu-
lation has been performed revealing the phase diagram in
such a system, with the transition lines obtained via de-
tailed finite-size analysis. Using only one free parameter,
the phase behavior of our model is qualitatively consis-
tent with experimental results. We are currently extend-
ing our studies to three dimensions. These and other
results are planned to be reported in future publications.
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