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ABSTRACT 
 

Characterization of human genetic variation has focused on expression 

quantitative trait loci (eQTL) mapping; however, direct assessment of cis-regulatory 

variation requires allele-specific approaches. Measuring allelic expression (AE) on a 

genome-wide scale appears more powerful as environmental and trans-acting influences 

are minimized. Results indicate that allele-specific differences in transcript expression 

within an individual can affect up to 30% of loci. The underlying variants can be 

identified by mapping differences in AE on Illumina BeadChips. Over 50% of population 

variance in AE is explained by mapped cis-rSNPs. Studies show that these cis-rSNPs 

have been implicated in differences in transcription factor (TF) binding, suggesting that 

TF action can be further investigated using population variation as a tool. In this thesis, 

these approaches have been extended to explore allele-specific TF binding using the 

model NF-κB by monitoring the consequences of gene knockdown in a genome-wide 

manner. NF-κB has been shown to be involved in the immune response and the NF-κB 

motif is enriched in lymphoblastoid cell lines (LCLs), mainly in promoters and strong 

enhancer elements. We intersected mapped candidate cis-rSNPs detected in LCLs in our 

above experiments as well as matched control SNPs from HapMap YRI and CEU 

populations with publicly available NF-κB Chromatin Immunoprecipitation (ChIP)-seq 

experiments from the ENCODE project. Preliminary analysis of regions surrounding 

candidate cis-rSNPs were enriched in NF-κB binding sites versus matched controls, with 

39.0 % of top SNPs overlapping at least one NF-κB ChIP-seq peak. To elucidate the 

impact of candidate SNPs on AE imbalances, we performed TNF- α induction coupled to 

inhibition of NF-κB in LCLs followed by AE analysis on Illumina HumanOmni5-Quad 
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BeadChips. We used in house mapped cis-regulatory variants in the LCL population 

merged with data from the aforementioned experiment. Our data set, which consisted of 

loci associated to top 10 cis-rSNPs ranked by p-value (pv; top10= 10 most significant p-

values) that showed diminished AE upon perturbation of NF-κB were overlapped with 

publicly available data. This data consisted of ENCODE ChIP-seq peaks and 

TRANSFAC binding sites for NF-κB and known cooperative TFs of NF-κB. Loci that 

had an AE change at greater than 3 SNPs upon perturbation of NF-κB and were 

associated to top heterozygous SNPs (rank 1, 2, 3) yielded 581 cases out of ~1700. 

Analysis of top 3 cis-rSNPs described showed a significant difference of over 5-fold 

between case and control SNPs, such that 64% of loci had a top 3 heterozygous SNP that 

was found in an LCL specific TF ChIP-seq peak or TRANSFAC binding site for NF-κB 

or a known cooperative TF of NF-κB. Bioinformatics analysis suggests that identified 

SNPs are essential for NF-κB binding. A case study was also done in order to perturb the 

TF SNAI1 because we had a strong hypothesis for the association of SNAI1 and WNT4, 

as well as, evidence for its role in fibroblasts (FBs). We were not able to reproduce the 

effect of SNAI1 on WNT4 in vivo. Upon comparison of the regulatory role of NF-κB and 

SNAI1 in LCLs and FBs, respectively; we observed that NF-κB had a regulatory effect 

on approximately 33% of loci in comparison to only approximately 2% of loci for SNAI1 

in FBs. This study illustrates that key regulatory TFs, such as NF-κB in LCLs, can be 

globally studied at a single base resolution in living cells using a combination of 

perturbation and sensitive measurements with allelic resolution.  

 

 

 



7 

 

RÉSUMÉ 

La caractérisation de la variation génétique a mis l'accent sur les loci d'expression de 

caractères quantitatifs  (eLCQ); cependant, l'évaluation directe des variations régulatrices 

en cis nécessite des approches allèle-spécifique (cis-rSNPs). La mesure de l’expression 

allélique (EA) à l’échelle du génome est très efficace puisque les perturbations 

environnementales et les influences en trans sont réduites. Les résultats indiquent que les 

différences d’EA peuvent affecter jusqu'à 30% des loci chez un même individu. Les 

polymorphismes responsable de telles variations peuvent être identifiés par cartographie 

des différences d’EA en utilisant des puces de génotypage Illumina. Ainsi, plus de 50% 

de la variance en EA de la population est expliqué par la cartographie des cis-rSNPs. Des 

études ont montré que ces cis-rSNPs ont été impliqués dans des différences de liason de 

facteurs de transcription (FT). Celà suggère que l’étude du mode d’action de ces FT 

pourrait être approfondie par l’utilisation comme outil des polymorphismes présent dans 

la population. Dans cette thèse, nous avons appliqué cette approche au FT NF-κB et 

analysé les conséquences de l’inactivation de ce gène à l’échelle du genome. Des données 

récentes montrent l’implication de NF-κB dans la réponse immunitaire et son motif de 

liaison à l’ADN est retrouvé enrichi dans les cellules lymphoblastoïdes humaines (LCL), 

principalement au niveau des promoteurs et des activateurs transcriptionnels. Nous avons 

croisé les cis-rSNPs cartographiés dans des LCLs des populations HapMap YRI et CEU, 

ainsi que des SNPs de contrôles, avec des données d’immunoprécipitation de chromatine 

suivi de séquençage à haut débit (ChIP-seq) utilisant l’anticorps NF-κB du projet 

ENCODE et accessible au public. Des analyses préliminaires des régions contenant les 

cis-rSNPs candidats ont montré un enrichissement des sites de liaison pour le facteur NF-
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κB par rapport aux sites contrôles. En effet, 39% des sites candidats sont situés dans un 

site de liaison pour NF-kB. Afin d’étudier le rôle potentiel des cis-rSNPs sur l’EA 

différentielle, nous avons réalisé des expériences d’induction de TNF-α couplé à 

l'inhibition de NF-κB dans les LCLs suivie par l’analyses de l’EA sur des puces de 

génotypage Illumina 5M. Nous avons ensuite comparé ces données avec la cartographie 

de cis-rSNPs dans des LCLs générée dans notre laboratoire.  Nos données sont 

composées de cis-rSNPs associés à l’EA différentielle de loci suite à la perturbation de 

NF-κB et classés par valeur p (pv; top10= les 10 valeurs les plus significatives) et ont été 

croisées avec des données accessibles au public. Ces données sont composées des 

coordonnées de pics de ChIP-seq et des sites de liaison TRANSFAC pour le facteur NF-

κB et de ses co-régulateurs transcriptionnels connus. Les loci montrant des différences 

d’EA suite à la perturbation de NF-κB et avec 1 ou plusieurs des cis-rSNPs (« top3 » pv) 

hétérozygotes dans les individus étudiés étaient aux nombre de 581. La recherche de ces 

cis-rSNPs classés « top 3 » dans les sites de liaison (pics de ChIP-seq) dans les LCLs ou 

dans un site de liaison TRANSFAC pour NF-κB ou pour un de ses co-régulateurs 

transcriptionnels  montrent un enrichissement significatif (64% des loci) avec un ratio 

supérieur à 5 par rapport aux SNPs de contrôles. L’analyse bioinformatique suggère que 

les SNPs identifiés sont essentiels pour la liason de NF-κB. Une étude complémentaire à 

consisté à perturber le FT SNAI1 probablement associé au gène WNT4 et présentant un 

rôle important dans les fibroblastes (FB) selon des données précédemment obtenus au 

laboratoire. Cependant, nous n'avons pas été en mesure de reproduire l'effet de SNAI1 sur 

WNT4 in vivo. Nous avons ensuite comparé les rôles régulateurs de NF-κB et de SNAI1 

dans les LCLs et les FBs respectivement (par inactivation de ces gènes). Nous avons 
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observé que NF-κB a un effet régulateurs sur environ 33% des loci dans les LCLs contre 

seulement 2 % pour SNAI1 dans des FBs. Cette étude supporte l’utilisation de 

perturbations de l’expression de FT, tels que NF-κB dans LCLs, associé à un contrôle des 

différences d’EA, pour étudier le rôle clé de FTs régulateurs dans un type cellulaire 

donné. 
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Single nucleotide polymorphism: SNP 

Trans-activation domain: TD 

Transcription factor: TF 

Transcription factor binding sites: TFBS 

Transcription start site: TSS 

Transcription termination site: TTS  

Yoruban population: YRI 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



12 

 

LIST OF FIGURES 

Figure 1-1. Identification of variants for complex diseases and traits 

Figure 1-2. Allelic expression (AE) 

Figure 1-3. Global approaches to studying allele-specific function 

Figure 1-4. Targeted approaches to studying allele-specific function 

Figure 1-5. Model of cooperative TF associations  

Figure 1-6. NF-κB literature 

Figure 1-7.  Chromatin state and NF-κB Characterization 

Figure 1-8. Activation of NF-κB by TNF- 

Figure 2-1. Experimental approach to perturb NF-κB and genome-wide AE assessment   

Figure 2-2. Overlapping data sets with publicly available ENCODE ChIP-seq peaks and 

TRANSFAC data for NF-κB and cooperative TFs   

Figure 2-3. Schematic for genome-wide AE assessment (SNAI1)  

Figure 2-4. Schematic of ChIP  

Figure 3-1. TF binding for NF-κB in regions with cis-rSNPs versus control SNPs 

Figure 3-2. Chromatin classification for case cis-rSNPs and matched control SNPs 

overlapping NF-kB ChIP-seq peaks induced with TNF- α  

Figure 3-3. Validation of NF-κB perturbation 

Figure 3-4. Enrichment of top cis-rSNPs in ENCODE NF-κB chromatin ChIP-seq peaks   

Figure 3-5. Comparison of heterozygous case and control SNPs  

Figure 3-6. Top cis-rSNPs overlap functional data for NF-κB and known cooperative 

TFs 

Figure 3-7. Example of NF-κB mediated AI in the CEU trio 



13 

 

Figure 3-8. Example of SNP overlapping NF-κB ChIP-seq peak and TRANSFAC 

binding site 

Figure 3-9. Relative distribution of SNPs 

Figure 3-10. Network 2: Dermatological Disease and Conditions, Infectious Disease and 

Lipid Metabolism 

Figure 3-11. Intersection of datasets for discovery of cis-rSNP  

Figure 3-12. Validation of SNAI1 knockdown by RT-PCR 

Figure 3-13. Independent analyses of WNT4 knockdown 

Figure 3-14. SNAI1 binding site (rs6684375) enrichment assessed by ChIP and RT-PCR 

Figure 3-15. SNAI1-mediated AE change for GRIN3B on chromosome 19 

Figure 3-16. Filtered analysis of genome-wide AE data 

Figure 4-1. Comparison of NF-κB and SNAI1 effect on AE genome-wide 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

LIST OF TABLES 
 

Table 2-1. Primer sequences 

Table 3-1. Summary of total data from ENCODE NF-κB ChIP-seq peaks 

Table 3-2. Summary of data from the ENCODE NF-κB ChIP-seq peaks for samples 

induced with TNF- α 

Table 3-3.  Subset of loci implicated in the NF-κB pathway or range of immune related 

diseases.  

Table 3-4. Output of bioinformatics approach for loci of interest 

Table 3-5. Functional analysis using IPA 

Table 3-6. GWAS analysis 

Table 3-7. Implication of loci showing differential AE in the NF-κB pathway or range of 

immune related diseases 

 

 

 

 

 

 

 

 

 

 

 



15 

 

ACKNOWLEDGEMENTS 
 

First and foremost, I would like to especially thank my supervisor, Dr. Tomi Pastinen for 

all the support and dedication he provided me throughout my graduate studies. Your raw 

love for genetics is magnetic and transfers to anyone that surrounds. I would like to thank 

you immensely for guidance and feedback over the last two years. I am grateful for the 

opportunity that you provided. Lastly, I appreciate your support and encouragement in all 

my future endeavors.  

 

I would like to thank the members of my supervisory committee: Dr Anna Naumova and 

Dr. Guillaume Bourque for your help throughout my graduate studies, which greatly 

improved my work. My project could not have been possible without your constructive 

criticism, insight, and encouragement. 

 

I would like to thank the various professors that I had the privilege to encounter: Dr. Yan 

Joly, Dr. Jacek Majewski and Dr. Aimee K. Ryan for advancing my knowledge in the 

field of human genetics. In addition, I would like to thank those that provided the weekly 

Journal Clubs, which allowed me to stay up to date on current discoveries, as well as, 

enhance my skills in public speaking. 

 

I owe many thanks to the members of the Pastinen lab. To Dr. Veronique Adoue, who 

has been my mentor and mother in the laboratory. I think without your constant 

encouragement and support I would not have completed my degree. Your passion for 

science and knowledge were invaluable. To Dr. Stephan Busche, I especially appreciate 

your vast knowledgeable in the field and your ability to answer any questions. To Dr. 

Tony Kwan, I especially appreciate that I could rely on you for anything including advice 

for food options and comic relief. To Sherry Chen and Liliane Karemera, I really 

appreciate all the help on my projects. To Nicholas Light, your addition to the team was 

immediately felt. I appreciate your constant support and advice. I would like to thank 

Haig Djambazian and Bing Ge for their constant encouragement and help especially in 

terms of computer problems. I would like to especially thank Bing Ge for always taking 

the time to explain to me a concept with great detail. 

 

I would like to thank Dr. Robert Sladek and the members of his team for their help and 

ideas in terms of my project, particularly to Dr. Albena Pramatarova. In addition, thank 

you to all of my colleagues at the Genome Quebec Centre who worked on my samples 

and whom I had the pleasure to befriend.  

 

Last but not least, I would like to express my gratitude for my friends and family who 

supported me throughout my two years in graduate studies. This thesis could not have 

been possible without my friends understanding my very unreliable schedule and their 

constant encouragement. Lastly, I could not have finished my thesis without my parents 

and my brother Tim who beyond their support provided me food for fuel and many lifts 

to and from the laboratory. 

 

 



16 

 

CHAPTER 1: LITERATURE REVIEW 
 

The Evolution of Functional Genomics   

Human Genome Project (HGP) 
A new era for the field of human genomics began with the completion of the HGP in 

2003, 13 years after its initiation (1, 2). This enabled scientists to obtain the exact 

nucleotide sequence for any gene of interest and the location of the gene within the 

genome, as well as, within a particular chromosome. The international effort of the HGP 

enabled the shift from single-gene approaches to larger-scale, genome-wide “omics” 

strategies (3). As such, a surge of new analysis tools were developed, the majority of 

which used microarray technology in order to target millions of sites on the genome such 

as single nucleotide polymorphisms (SNPs) or exons. The aforementioned technologies 

allowed the potential to analyze transcript structure, gene expression and genetic markers 

on an unprecedented genome-wide scale. The impact of such analyses is evident for the 

field of human genetics including advances in the understanding of evolution, discovery 

of disease-susceptibility genes by linkage versus genome-wide association studies 

(GWAS), as well as, comprehension of both health and disease states (3, 4).  

 

Encyclopedia of DNA Elements 

The obstacle for the 21
st
 century is the interpretation of the HGP (5). Following the 

completion of the HGP, the National Human Genome Research Institute (NHGRI) 

launched a project entitled the Encyclopedia of DNA Elements (ENCODE) aiming to 

catalogue and describe all of the functional elements encoded in the human genome 

sequence. The proportion of the human genome that encodes functional elements is 

unknown; however, it has been estimated using comparative genomics that 3%-8% of 
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base pairs (bp) are under negative selection (6).The term, “functional element,” as 

described by ENCODE is used to denote a discrete region of the genome that encodes a 

defined product (e.g., protein), or a reproducible biochemical signature, such as a 

transcription factor (TF) or chromatin structure.  In 2007, the pilot phase of ENCODE 

was completed, providing identification and analysis of functional elements for 1% of the 

human genome (7). Such signatures, either alone or in combination, are now known to 

mark genomic sequences with important functions, including transcriptional regulatory 

elements such as promoters and enhancers.  The ENCODE Data Coordination Center 

(DCC) at the University of California, Santa Cruz is the central repository for ENCODE 

data, which is high-throughput, genome-wide data generated with technologies including 

Chromatin Immunoprecipitation (ChIP)-seq and RNA-sequencing (RNA-seq), (8). This 

repository is beneficial for scientists and researchers as data is publicly accessible for 

further analyses. The ENCODE project has been useful in mapping transcription factor 

binding sites (TFBS), histone marks, chromatin accessibility, DNA methylation, and 

RNA expression; however, additional analyses are still needed to deepen our 

understanding of functional elements (8). From the aforementioned ENCODE data, of 

particular interest to this project, is to identify cis-regulatory regions, including the study 

of TFBS in the human genome, in particular to understand their role with respect to 

linking genetic variation to changes in gene regulation (5). 

 

The Transition to Functional Genomics 

As described by Pevsner, functional genomics is the genome-wide study of the function 

of DNA, as well as, the nucleic acids and protein products encoded by DNA (9). This 

field is rapidly progressing towards the elucidation of elements that are crucial for the cis-
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regulatory control of gene expression, which will be a main focus of our discussion. This 

transition includes diploid or allele-insensitive analyses to haploid or allele-specific 

examination (10). As such, the identification of DNA regulatory regions is a highly 

important yet challenging problem toward the functional annotation of genomes (11). 

Fortunately, the transition to functional genomics has been aided by the advent of new 

technologies.  

Until recently, sequencing studies, including the HGP, relied on Sanger-based 

sequencing technologies (12). Since the completion of the HGP, considerable effort has 

been made in creating technologies capable of sequencing an entire human genome in a 

timely and cost-effective manner. As such, next-generation sequencing (NGS), has 

allowed for other genome studies aiming to elucidate a reference genome for organisms, 

as well as, various human populations, which are fundamental to continued research (e.g. 

1000 Genomes (13) consortiums). NGS technologies can be used for global functional 

genomics assays in general or with respect to functional data with allelic resolution (14-

16). In addition, functional data with allelic resolution can be extracted by analyzing 

variable sites (polymorphisms) using genome-wide genotyping arrays (17, 18). The 

advent of publicly available data, which can be combined together to increase the power 

of studies, has only further developed the field of functional genomics. As such, 

bioinformatics has become an intricate tool to studying functional genomics output. 

The application of the aforementioned techniques will be described in greater 

detail below. As such, in this thesis, we present an application of functional genomics in 

terms of allele-specific analyses. This will be done by combining high-throughput 

genomic data with targeted approaches to study function in living cells in order to better 
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understand cis-regulatory variation and its impact on gene expression and disease. This 

will not only provide mechanisms for individual disease and trait associated SNPs but 

also a general paradigm of how to study the effect of single-base differences in an intact 

chromatin context. 

 

Regulatory Variation in the Human Genome 

Understanding complex disease and traits  

Mendelian diseases are defined as those caused by single-gene mutations and which 

follow Mendel’s laws of inheritance. Determining genes which underlie Mendelian 

diseases have also been valuable in assigning function to genes (19). Mutations 

associated with Mendelian disorders have been historically uncovered with linkage 

studies or with the recent development of SNP arrays, with homozygosity mapping (19-

22). Advances in establishing projects for Mendelian disease are allowing a shift of the 

volume of resources onto the intricacies of complex diseases and traits (Figure 1-1).  
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Figure 1-1. Identification of variants for complex diseases and traits. Various 

methods have been developed to study complex disorders one of which is GWAS, 

which identify the common genetic factors that underlie major complex diseases and 

traits (Adapted from Lobo et al., 2008). 



21 

 

The genetic basis for common complex diseases such as asthma, osteoporosis, or 

autoimmune diseases, indicates that genetic variants or SNPs, common at the population 

level often alter disease risk in a subtle manner (23). Gene expression is one of the 

complex traits known to be influenced by cis (proximal) and trans (distal)-acting genetic, 

epigenetic (e.g., methylation and histone modifications), and environmental influences 

(10). Variation in gene expression has also been shown as one mechanism underlying 

susceptibility to complex disease (24). Evolutionary constraint indicates that most of the 

functional DNA in the human genome is non-coding (25). In parallel, over 80 % of 

complex disease variants, which have been discovered by GWAS, are located in non-

coding regions of the genome and seldom implicate common coding variants (26). 

GWAS have identified 100s of genetic variants associated with complex human diseases 

and traits also providing valuable insight into their genetic architecture (26). Furthermore, 

most of the validated disease SNPs, which are located outside the coding regions of the 

human genome (27) are presumed to impact gene regulation (24). As such, population-

based studies of disease as well as gene expression traits are demonstrating the 

widespread evidence of the impact of non-coding variants on trait variance.  

Deciphering the genetic code for regulatory DNA in our species has only recently 

begun (7) and the challenge now is to ameliorate our understanding of how and where 

non-coding variants act. Learning the relationship between genetic variation and variation 

in chromatin has the potential to bridge the gap between GWAS, which have linked 

disease to SNPs, as well as, better our understanding of how such polymorphisms, the 

majority of which are found in non coding regions, can underlie phenotypic variation 

(28).  
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Studying cis-regulatory evolution  
The concept of evolutionary change was predicted over 40 years ago due to mutations, 

which altered the regulation of gene expression (29, 30). During the past 5-10 years, 

predictions have been validated by empirical evidence and identified that regulatory loci 

are the cause of divergent phenotypes. This evidence included expression divergence that 

correlates with phenotypic divergences, manipulations of gene expression that are able to 

recreate phenotypic differences as well as genetic mapping (31, 32).  The view of 

transcriptional regulation is that cis-regulatory elements, such as promoters and 

enhancers, and proteins that bind to these elements control transcription of different 

genes (33). Cis-regulatory sequences can be clustered into cis-regulatory elements 

(CREs), which are a collection of TFBS and non-coding DNA that are sufficient to 

activate transcription in a defined spatial and/or temporal expression domain (34). There 

are long-standing questions with respect to the evolutionary process, which can be 

potentially addressed by identifying the genetic basis of divergent phenotypes (31, 32). 

The current hypothesis is that cis-regulatory sequences are thought to be the most 

prevalent cause of phenotypic divergence. As such, identifying the sites that are 

responsible for divergent activity of cis-regulatory sequences can help to resolve these 

questions (34). 

Regulatory variation is important not only in terms of evolution but there are well 

known biomedical traits caused by variation in non coding DNA that alters gene 

expression in cis (10) . There is 0.1 % heterozygosity in the human genome and there are 

a vast majority of polymorphic sites in non coding DNA (35) . Some of these differences 

contribute to risk of disease and other complex phenotypes (e.g., responses to drugs). It is 

known that a lot of functional DNA is located outside of the coding region notably by 
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looking at evolutionary conservation (27). One way to study variants underlying cis-

regulatory variation is through mapping studies using expression quantitative trait loci 

(eQTLs). 

 

Mapping regulatory variation by eQTLs 

Initial studies of genome-wide mapping of gene expression began in the 1980s and 1990s 

by Damerval and de Viennes (36, 37). Studies in humans linking genetic variation to 

gene expression primarily focused on eQTLs (10, 16). EQTLs are used to describe a 

statistically significant genotype-gene expression level correlation. Transcript level 

correlation has been used to map cis-eQTLs in immortalized and primary cell panels (38, 

39).  Methods include specific expression platforms (40), and more comprehensively 

applying NGS of the transcriptome (RNA-seq) (15, 16, 41) is used to achieve higher 

resolution mapping of eQTLs. Therefore, genotyping data can be collected at a high 

density, which is needed for association-based mapping or at a lower density in order to 

perform family based linkage or eQTL mapping (42, 43).  

EQTL data is available for a wide range of cell types and organisms. EQTL 

studies of human genes have implicated proximal regulatory variants (cis-eQTLs) as a 

prevalent cause of population variation in gene expression by co-localization of an 

associated signal with a gene of interest (17, 40, 44-48). Even though, recent studies have 

identified human eQTLs and elucidated their contribution to phenotypic variation, the list 

is still limited. Currently, only sporadic examples of causal SNPs in humans exist (49). A 

more efficient way to identify the causal variant underlying eQTLs is required since little 

is known about the regulatory mechanisms they act-by to alter gene regulation. A 

drawback of the eQTL mapping method is in the ability to specifically detect cis-
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regulatory effects, which is reduced by background trans-acting variation. As such, even 

though characterization of human genetic variation, which affects gene expression, has 

focused on eQTL mapping, direct assessment of cis-regulatory variation necessitates 

allele-specific approaches (10).   

 

Mapping regulatory variation by detecting allele-specific expression  

An alternative approach, which directly assesses cis-acting components of expression 

variation, is through the mapping of differences in allelic expression (AE). AE is the 

measure of the relative expression between two allelic transcripts (17). In order to 

directly demonstrate that a variant acts in cis requires AE measurements followed by 

mapping of AE across samples to the genetic variants in the locus (17).The principle of 

AE is as follows: it is expected that in an autosomal locus the two allelic copies of the 

transcript will have equal expression. However, it is observed in some cases, biased AE 

of one of the two allelic transcripts in which one allele is differentially expressed (Figure 

1-2). Allele-specific analyses rely on the power of using a within sample control, namely 

the other allele, which sensitively and specifically assesses the effects of genetic and/or 

epigenetic differences on cis-regulatory control in diploid genomes (10). The power of 

allele-specific analyses of gene expression (50) or transcriptional activity (51) has been 

elucidated by studying individual loci but currently it is possible to assess on a genome-

wide scale due to recent advances in genomic technologies (10). 
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Figure 1-2. Allelic Expression (AE). The principle of AE is as follows. In an 

autosomal locus the two allelic copies of the transcript are expected to have equal 

expression of the two alleles (1:1 ratio) (top). In many cases biased AE is actually 

observed and one allele is differentially expressed (1:2 ratio) (bottom).  
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Methods with allelic discrimination are more powerful as environmental and 

trans-acting influences that alter gene expression or DNA-protein interactions are 

minimized. The challenge of environmental influences on connecting variation in 

genome sequence with variation in TF binding and gene expression (52) are minimized 

since both alleles are under the same internal control (10).  This provides higher 

sensitivity for elucidating the direct influence of sequence or epigenetic variation in cis-

regulatory elements (10). Results indicate that up to 30% of RefSeq transcripts exhibit 

AE differences. These variants can be identified by mapping differences in AE on 

Illumina HumanOmni1 BeadChips. Mapped cis-rSNPs explain >50% of population 

variance in AE. The primary discovery panel for this study consisted of 53 unrelated 

HapMap Caucasian (CEU) lymphoblastoid cell lines (LCLs) (17). We were able to 

further demonstrate that use of an ethnically distinct Yoruban African (YRI) population 

allows for fine-mapping of cis-rSNPs in certain cases (17). Using genome-wide maps of 

SNPs altering gene regulation (17) in conjunction with complex disease associated SNP 

catalogs (27) we are also able to build specific hypotheses of potential causal sites for 

various complex disease and traits. Therefore, another purpose of my research is to 

extend traditional approaches for validation of these hypotheses to living human cells. 

This will not only provide mechanisms for individual disease associated SNPs but also a 

general paradigm of how to study single-base differences in an intact chromatin context. 

Global approaches to studying AE in the human genome are made possible due to 

the rapid development in sequencing technologies. This is done using NGS of the 

transcriptome (RNA-seq) or ChIP-seq (to be discussed below). RNA-seq has single 

nucleotide based resolution and it collects short sequence reads uniformly across 
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expressed transcripts and these reads correlate with the abundance of the RNA species. 

However, this technology only gives information about exonic sequences at a very high 

depth (42). This method yields information for only a small proportion of genes because 

of the unequal representation of the different RNA species and in certain cases the limited 

genetic variation in the mRNA. Therefore, the use of RNA containing unspliced primary 

transcripts in allele-specific expression analyses provides more information about a larger 

proportion of genes than if solely coding SNPs were used (10) (Figure 1-3). 

Targeted approaches to measure AE allows the opportunity to investigate 

individual variant sites for allele-specific function.  One advantage is the higher density 

of genomic data due to the fact that only sites, which are potentially informative 

(heterozygous) for allelic analyses are observed. Moreover, the sites are also targeted in 

genomic DNA (gDNA) control samples, which have an equal allelic content. The gDNA 

is used as a control for technical biases intrinsic in quantitative assessments of allele 

ratios (10). A low-cost and convenient method of assessing allele specificity of 

polymorphic sites is through the use of genome-wide genotyping arrays (17). One 

drawback is the coverage of allelic differences in terms of regulatory elements because 

standard SNP arrays encompass only a small subset of polymorphic regulatory elements 

(10) (Figure 1-4). Another consideration for study is variants underlying cis-regulatory 

variation, which affect AE, and are shown to be transmitted from parent to offspring (48, 

53). 
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Figure 1-4. Targeted approaches to studying allele-specific function. Information based 

on SNPs (green bars) can be integrated in unspliced primary transcripts or target specific 

exons (yellow). In terms of studying primary transcripts, quantitative measurements are 

taken for multiple phased polymorphisms spanning the transcripts (mean allele ratio in 

cDNA) and normalized to genomic DNA from the same samples (mean allele ratio in 

DNA), which generates information on allelic biases in transcript expression (Adapted 

from Pastinen, T., 2010). 

Figure 1-3. Global approaches to studying allele-specific function. Global approaches 

include NGS-based methods such as RNA-seq (red) and ChIP-seq (blue). These methods 

can be used to investigate allelic effects for reads which overlap a site with a high coverage 

read depth. In turn, the ratio of reads from each allele is calculated and the allelic bias at 

each site is determined if there is a deviation from the expected 50:50 ratio (Adapted from 

Pastinen, T., 2010). 
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Heritability in the genomics era 

Heritability is a population parameter, and consequently depends on population-specific 

factors, which includes allele frequency, the effects of gene variants, as well as, 

environmental factors.  This measure allows for a comparison of the relative significance 

of genes and environment to the variation of traits within and across populations (54). In 

terms of complex traits, GWAS generally only explain a few percent of the estimated 

heritability, which suggests the necessity of further analysis into contributions to 

heritability (55). 

 

Allele-specific gene expression is believed to play a role in phenotypic variation, 

but the genetic mechanisms responsible are not well understood. Heritable variants in 

gDNA include SNPs, insertions, and deletions, which may act to influence gene 

regulation (39, 48). As such, the previously mentioned heritable variations have been 

thought to affect the binding of sequence-specific TFs or to affect the conformation of 

chromatin. In earlier studies, McDaniell and colleagues analyzed the heritability of 

individual-specific and allele-specific binding of TFs CTCF and DNase I in two unrelated 

trio families (28, 53). It was shown that approximately 10% of active chromatin sites 

were individual-specific and a similar proportion were allele-specific. Both of these were 

commonly transmitted from parent to child (65%), which suggests that these are heritable 

features of the human genome. As such, it was suggested that in humans up to 11% of 

SNPs in sites involved in modulating chromatin activity demonstrate heritable allele-

specificity and could directly affect TF binding and chromatin structure (28, 53). 

Consequently, there are many applications of heritability especially in terms of the 

genomic era (54). Therefore, we will utilize our expertise at allele-specific differences in 
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the genome to carry out direct assessment of allele differences in TF binding, which can 

be transmitted from parent to offspring.  

 

 The Mechanism of Action of TFs  

TF Model 

Comprehending how genomic information is translated into gene regulation has been 

investigated for decades now (33). An important question that needs to be further 

explored in the field of gene regulation is the extent by which variation in TF binding 

influences the effect and/or the mechanism by which it regulates transcription (56). In 

order to address the above, comprehensive TF binding maps are necessary.  

A TF is a protein that binds to a sequence such as a promoter or enhancer 

element, to control different levels of transcription of genes (33). In humans, there are 

approximately 200-300 TFs that bind to core promoter elements and are components of 

the transcriptional machinery. Furthermore, there are approximately 1,400 TFs that 

contain sequence-specific DNA-binding properties. Due to the sequence specificity of 

some TFs they only regulate a subset of genes by binding to site-specific cis elements (1, 

2, 57) (Figure 1-5). 

TFs are central cellular components that control gene expression: their role is 

essential in determining how cells function and react to the surrounding environment. 

The transcriptional regulatory system also plays a major part in controlling a wide range 

of biological processes including cell progression, cellular differentiation and 

developmental time courses. Several diseases are caused in part or due to a breakdown of 

the regulatory system. Moreover, a large source of phenotypic diversity and the method 

by which organisms adapt to evolutionary changes are due to changes in the activity and 
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regulatory specificity of TFs (57).  Multicellular organisms have complex TFs most of 

which work together with co-regulators in order to form networks of cooperating and 

interacting TFs (58). 

The regulation of gene expression at the transcriptional level has become 

increasingly clear to be achieved by the complex interactions of TFs working 

cooperatively at their target genes. A necessary primary step is to better understand the 

evolution of transcriptional regulators, their relationship, as well as, their regulatory 

interactions with target genes. Although this idea has been elucidated the challenge 

remains to discover which TFs work cooperatively, the sites of cooperative action and to 

what extent does the influence of the cooperative action of TFs effect the regulation of 

target genes (Figure 1-5). In previous studies, a variety of approaches such as in vivo and 

in vitro detection of protein-protein interactions, have been used to measure TF co-

association. However, the above assays contain technical problems in terms of sensitivity 

and specificity (59, 60). 

Recently a unique approach, the Allele Binding Cooperativity (ABC) test was 

used to identify TF co-association. The ABC test examines co-variation of motifs with 

variable binding regions (BR). (56, 61). BRs are clusters of binding peaks identified by 

ChIP-seq.  The underlying concept is that variation in TF binding likely occurs because 

of sequence variation for associated TF binding sites and motifs. For instance, with 

respect to NF-κB, other associated DNA motifs, such as the STAT1 motif [previously 

associated with NF-κB (62)] and de novo searches for enriched DNA motifs in BRs 

were done. In addition, using the ABC approach, effects of genetic variation for 

each motif were analyzed. SNPs in the STAT1 motif were shown to elevate the 
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frequency of significant NF-κB binding differences (1.3 fold enrichment). 

Moreover, an improved STAT1 motif sequence increased the binding of NF-κB in 

71% of cases (56).  This suggests that there is functional interaction between 

STAT1 and NF-κB (63, 64). The ABC approach has been used to direct a 

computational and experimental pipeline to identify targets from variation data. 

The aforementioned pipeline is a large-scale process to hunt for allele binding 

interacting transcription factors (ALPHABIT) and was applied to identify novel binding 

partners of NF-κB (p65) (64).  The method successfully identified factors known to work 

with NF-κB (E2A, STAT1, IRF2), as well as, a unique association (EBF1). Furthermore, 

this approach highlighted functional information for TF coassociation indicating that 

variance in the motif of one factor correlates with the binding of the other factor (NF-κB). 

A cooperative mechanism was suggested for NF-κB and the aforementioned TFs due to 

the fact that binding of the putative coassociated factors were also shown to significantly 

predict binding of NF-κB.  However, the global coassociation and sites of cooperative 

action for  NF-κB are still relatively unknown and remain an area of further study (64). 
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Figure 1-5. Model of cooperative TF associations. The model of cooperativity of TFs 

is outlined. For instance, if a STAT1 motif is present, both STAT1 and NF-κB are bound 

(top). Due to the loss of the STAT1 motif, there is decreased binding of STAT1, as well 

as, NF-κB even though the NF-κB motif is still present (bottom).  
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Variation in TF-DNA Binding 

In higher eukaryotes, the majority of TFBS are organized into clusters called cis- 

regulatory modules (CRM), which are made up of DNA regions of up to a few hundred 

bp in length (100-900 bp) located in the neighborhood of the gene under regulation (65). 

The most prevalent cause of phenotypic divergence is currently thought to be mutations 

affecting the activity of cis-regulatory sequences, which can have a wide range of effects 

including altering TF binding (31, 32). One analysis by Kasowski and colleagues 

investigated whether BRs are population specific. Their work showed that ~ 0.1% to 

~0.4% of events were population specific, which suggests that most alleles affecting TF 

binding are shared amongst populations (56). In contrast, the extent to which TF binding 

differences occur among individuals and the overall relationship between TF binding and 

genetic variation remains largely unexplored (56, 66).  

In the past, several techniques were used to study variation in TF activity, the 

consequences on regulatory mechanisms, as well as, the effect of TF variation on gene 

expression. Assays have also analyzed TFs in terms of chromatin state for TF-DNA 

binding in order to identify active gene regulatory elements genome-wide. Widely used 

methods include DNaseI hypersensitivity sites (DHS), formaldehyde-assisted isolation of 

regulatory elements (FAIRE) and ChIP. DHSs are regions in the genome displaced by 

TFs; therefore, the regions are sensitive to DNaseI digestion. This method can identify 

different types of regulatory elements. Even though traditional DHS tools do not directly 

reveal which TFs are binding to a target region, it does uncover functional regulatory 

elements where TFs are likely to bind. In turn, FAIRE uses formaldehyde to 

biochemically separate DNA that is packaged into nucleosomes from DNA that is bound 

by non-nucleosomal proteins like TFs (28). Lastly, in order to assess TF occupancy ChIP 
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experiments can be used. Originally, the above three methods involved detection of 

specific signals using Southern blots or PCR; however, currently all the techniques have 

been adapted to use NGS technology (28).  

The widely used application of NGS, in particular for ChIP-seq, as mentioned 

above, can provide highly specific information in terms of factor location but it is limited 

by factors for which high-grade antibodies are available and only one antibody can be 

assessed per experiment (67). ChIP only gives information about specific regions bound 

by the TF of interest and not the rest of the genome (28). There is also relatively low 

coverage of polymorphic sites in NGS studies, which remains an obstacle considering 

only a small subset of sites are informative for analysis (10) (Figure 1-3). As described, 

differential allelic activity can affect the recruitment of TFs to DNA and thus alter disease 

phenotype. For instance, in a genome-wide study, SNPs were identified that correlate 

with population variation in DNA-protein interactions, which was assessed by ChIP-seq. 

This showed that cis variation has an effect on gene expression and regulatory DNA 

activity (56). In order to gain insight into the functional consequences of allelic 

differences in TF occupancy it is imperative to measure differences in AE using relevant 

cell types. Analysis of TFBS can also aid in understanding the mechanism of regulation, 

including the coordinated regulation of transcription factors acting cooperatively and as 

such, identify mutations that disrupt regulatory mechanisms. The model that will be 

further studied to better understand the aforementioned is the TF NF-κB. 
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Understanding NF-κB Function  

Background and Rational for Study 

For the past twenty five years NF-κB has been a well studied TF and thus provides a 

good model for further investigation into the intricacies of TF-DNA binding (Figure 1-6). 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. NF-κB literature. The graph demonstrates the total number of publications 

identified in PubMed using the keywords NF-κB, Rel, or IKK per year since 1986 (this 

is shown in the left axis). Also portrayed in the graph are the total publications 

identified with the aforementioned keywords as a percentage of all PubMed 

publications in the same calendar year (this is shown in the right axis) (Adapted from 

Hayden, et al., 2012).  
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NF-κB has served as a main model for evolutionarily conserved signal-activated 

TFs (68). This includes over 150 different stimuli mainly stress, cytokines, ultra violet 

light, viral and bacterial particles. Inducible activation of NF-κB plays a role in the 

control of transcription of over 150 target genes (69).The model of inducible 

regulation of gene expression enables organisms to more easily adapt to environmental, 

mechanical, microbiological, and chemical stresses (70). The NF-κB family of TFs have 

been studied due to their influence on gene expression for different biological processes 

such as maintenance of the immune system (71), epithelium, cell survival, apoptosis (72), 

differentiation, and proliferation (70). Dysregulation of NF-κB can lead to severe 

consequences including many diseases such as inflammatory diseases, autoimmune 

diseases (73), neurodegenerative diseases, diabetes, cardiovascular diseases and 

oncogenesis (70-72, 74, 75). However, the role of NF-κB is best understood in the 

context of chronic inflammatory and autoimmune diseases.  Inflammation is the 

response of vascular tissues to any harmful injury including pathogens, irritants or 

damaged cells. Inflammation is part of the non-specific immune response, which acts as a 

protective mechanism for the body to remove a particular stimuli (76). Autoimmune 

diseases occur in response to an overactive immune response of the body against tissues 

and substances present normally in the body. Autoimmune disorders tend to be either 

systemic (such as systemic lupus erythematosus) or organ-specific (such as type 1 

diabetes) and are characterized by prolonged inflammation and subsequent tissue 

destruction (77). As such, studying NF-κB can provide insight into the disease 

mechanism and pathogenesis for a wide range of diseases. 
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NF-κB is also a strong predictor of certain chromatin states. The NF-κB motif 

was most often found enriched (fold changes) in active promoters (40.7) and strong 

enhancers (49.0) (Figure 1-7a). Moreover, lymphoblastoid-specific enhancers enriched in 

the cluster “F,” which is the immune response were preferentially bound by NF-κB in 

LCLs (Figure 1-7b). Therefore, NF-κB appears to control the expression of many genes 

and is potentially one of the key regulatory TFs in LCLs (13). As such, LCLs provide an 

optimal model to study TF-variation for NF-κB. Studying NF-κB was pursued by using 

two trios of LCLs from CEU and YRI populations. This was not only done for the above 

reasons but also because the cell lines have been well characterized by projects including 

the ENCODE project (7), the HapMap (78) and 1000 Genomes (13) consortiums. In 

addition, we have an in-house generated map of cis-regulatory variants associated to AE 

for LCLs, which provides a starting point for further analysis (17). 

 Kasowski and colleagues performed another relevant study, which analyzed 

binding of the NF-κB protein (p65) in stimulated LCLs. The work revealed binding sites 

for p65 in 10 LCLs. It was shown that 7.5% of binding sites differed between individuals 

and the binding differences were frequently due to variations in SNPs (56). However, 

further analysis is still needed in order to accomplish mapping of causal variants 

underlying binding differences.  

 Lastly, NF-κB can have a global effect on gene expression by shutting down 

and/or activating a wide range of pathways (68). As such, we decided to employ 

inhibition of NF-κB coupled to induction by TNF- α, followed by AE measurements in 

order to analyze NF-κB-DNA binding. Allele-specific assessment of expression as 

compared to total expression measurements is advantageous for the following reasons. 



39 

 

AE analysis is ideal as it uses the other allele as an internal control for other influences 

such as non-cis-acting factors (e.g., environment) (10). This diminishes the background 

noise created by indirect effects of inhibiting the action of NF-κB in the cell.  
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a)                                                              b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7. Chromatin state and NF-κB characterization. The table (left) shows 

chromatin states learned jointly across cell types (by a HMM), which deciphered 15 

chromatin states.  This shows the functional enrichment of NF-κB was most often 

found in active promoter and strong enhancer elements. NF-κB was also shown to be 

a main factor binding enhancers in LCLs (right) (Adapted from Ernst et al., 2011).   
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The Mechanism of NF-κB Action 

NF-κB plays a fundamental role in two different pathways, which include the canonical 

pathway and the non-canonical pathway. NF-κB functions as a homo- or heterodimers, 

which consist of the reticuloendotheliosis (Rel)-homology domain containing monomers 

from two sub-families: p50 and p52 (Type I subunits); RELA (p65), RELB and C-Rel 

(Type II subunits). Type II subunits have trans-activations domains (TDs) and can act as 

transcriptional activators alone, where as type I subunits can only activate transcription as 

a heterodimer with a type II subunit or as a homodimer in complex with co-factors such 

as IKBZ and BCL3 (74) . Members of the NF-κB  family of TFs bind to a, “core motif,” 

that is between 10 to 11 bases and are variations of the originally described consensus, 

GGRRNNYYCC(79).  

 The canonical pathway consists mainly of dimers composed of p65:p50. This TF 

is sequestered in the cytoplasm by the inhibitor of kB  (IκB) and in order to interact with 

DNA it needs to dimerize as either homo- or heterodimers in different combinations (80). 

The Iκb kinase (IKK) complex including catalytic subunits, IKK-α and IKK-β, and the 

regulatory NEMO protein, together degrade the NF-κB sequestering complex, IκB 

through phosphorylation on its serine components. This targets IκB proteins for 

degradative Lys48 linked polyubiquitination, resulting in their proteolysis, which in turn 

frees NF-κB dimers from inhibition in the cytoplasm and the dimers can enter the nucleus 

(81) in order to bind DNA (Figure 1-8). 
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Figure 1-8. Activation of NF-B by TNF-. NF-B is activated mainly in response to 

stimuli such as stress, cytokines, free radicals, ultra violet light viral and bacterial particles. 

Upon ubiquitylation and degradation of phosphorylated ib in the proteasome, there is 

migration of NF-B into the nucleus. NF-B works cooperatively with other co-activators 

on target genes. 
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Objectives and Hypothesis 

Cis- rSNPs alter cis-regulation of gene expression. Traditional tools for studying SNPs in 

regulatory regions typically isolated from their cell type dependent chromatin context are 

crucial for appropriate and coordinated regulation of gene expression. Consequently, such 

approaches may fall short in explaining differences in gene regulation observed in intact 

human cells (82). We hypothesize that combining high-throughput genomic data with 

targeted approaches to perturb TFs in living cells can be used to better understand DNA-

protein interactions. We aim to optimize and develop a method of TF perturbation and 

apply it to NF-κB. We are specifically interested in studying the p65 subunit of the NF-

κB family of TFs in order to better understand binding differences and to accomplish 

mapping of causal variants underlying binding differences.  

In order to obtain a more in depth understanding of cis-regulatory variation and the 

impact of gene expression and consequences on disease studies a case study was also 

completed. We used the TF SNAI1 as we had a strong hypothesis for the involvement of 

SNAI1 and WNT4, as well as, evidence for its role in fibroblasts (FBs). 

We hypothesize that using the aforementioned techniques will elucidate the 

regulatory role of NF-κB suggested in LCLs. In order to explore the above hypothesis the 

following objectives will be completed:  

- Utilization of different approaches to carry out TF perturbation  

- In vivo, DNA-protein assays of chromatin after perturbation of the genome 

- Genome-wide AE assessment of genes involved  

- Applying these approaches to better understand cis-rSNPs altering disease risk 

and mechanisms of disease associated SNPs  

- Validation of allele-specific differences in TF binding in the human genome 
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CHAPTER 2: METHODS 
 

Please Note: All analyses were done by myself with the following exceptions. 

Normalization of Illumina BeadChips using complementary DNA (cDNA) and gDNA was 

done by Bing Ge (Bioinformatician). Extraction of TRANSFAC binding sites was done by 

Dr. Tony Kwan (Research Associate). Graphs using the ENCODE data were done in 

conjunction with Dr. Tony Kwan. Double stranded cDNA (dscDNA) was done by Sherry 

Chen (Laboratory Technician). 

 

Selection of Cell Lines and Mapping Datasets  

 

The identification of cis-acting components of expression variation was done by 

mapping differences in AE. We used in-house generated data in two human cell types 

(lymphoblasts and fibroblasts) in which we have mapped potential cis-regulatory SNPs 

(cis-rSNP) for several thousand loci ((17) and unpublished). The cis-rSNPs are the top 

SNPs associated with allelic differences in gene expression, which we then ranked by p-

value for each locus. AE assessment was carried out on trios from 3 different 

populations: 55 HapMap CEU LCLs and 63 HapMap YRI LCLs and 70 fibroblast (FB) 

cell lines. This was done by using Illumina BeadChips on gDNA and cDNA samples in 

order to analyze genotype and AE data in parallel. We used the genotypes and AE 

measurements to map top candidate cis-rSNPs, which control differential AE. Control 

SNPs were chosen with equivalent minor allele frequency (MAF), located at the same 

distance from the transcription start site (TSS) as the case SNPs but using another 

randomly chosen transcript with equivalent expression. Preliminary intersection of these 

variants with disease SNPs (http://www.genome.gov/26525384) indicates that there are 

http://www.genome.gov/26525384
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as many as 500 potential disease-relevant regulatory SNPs in our data. All the baseline 

data, i.e. genome-wide cis-rSNP maps and disease associated SNPs were available to me 

through our own database or public databases, respectively. Generation of the genome-

wide maps of use in this thesis will be discussed in greater detail in the results section. 

 

Normalization of Illumina BeadChip Readouts 

Normalization of readouts from Illumina BeadChips were performed as in the article by 

Grundberg and colleagues (38). GDNA genotypes were extracted using BeadStudio. The 

parallel assessment of gDNA and cDNA heterozygote ratios was carried out essentially 

as described by Bing and colleagues, (17) but signal intensity normalization at 

heterozygous sites followed a somewhat different approach. For AE analysis we utilized 

the Xraw and Yraw signal intensities, but since the variance in the two channels is not the 

same (i.e. it is a function of total intensity from both channels) this variation needed to be 

corrected through normalization in order to allow a comparison between gDNA and 

cDNA allele ratios. In this study, we only normalized β ratio (Xraw/ (Xraw+Yraw) from 

heterozygous SNPs with total intensity (Xraw +Yraw) higher than the threshold value of 

1000. The scatter plot of β ratio against the log
10

 scaled total intensity fits well with the 

polynomial regression model (quadratic regression model). The quadratic model fits 

better than the linear regression model we employed earlier for normalization (17), which 

works well for the higher intensity component, but poorly in the lower intensity 

component in many samples. The normalization process can be summarized by the 

following key steps: 1) The β ratio is calculated in conjunction with total intensity in log10 

scale for heterozygous SNPs. 2) All data points with greater than 1000 in total intensity 

are divided into 50 intensity bins. 3) A fitted curve from the median β ratio in each bin is 
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computed using a polynomial quadratic regression model, y = β 1x+ β 2x2+a, where y is 

the expected β ratio from the curve and x is the log
10 

scaled total intensity. 4) From the 

fitted curve, the expected β ratio based on total intensity is calculated. 5) The final 

normalized β ratio equals (β observed-β expected+0.5). After normalization, all median β 

ratio values in all intensity bins should be close, if not equal, to 0.5 (38).  

 

Imputation 

For the mapped list of cis-rSNPs, we used the 1000 Genomes Project as a reference set 

for imputation of genotypes from our panel of HapMap individuals. Untyped markers 

were inferred using algorithms implemented in MACH 1.0  (83, 84). The coefficient of 

determination, R
2
 was used as an imputation quality control metric and estimates the 

squared correlation between imputed and true genotypes. All poorly imputed markers 

with r
2
<0.6 were systematically removed.  

 

Cell culture  

 

The cells in which the regulatory effects were observed are cryopreserved and culturable 

in the Pastinen lab and provided me with the necessary biological samples for conducting 

much of the experiments outlined in this thesis. These cell lines were originally obtained 

from Coriell (http://www.coriell.org/). Due to the prevalent role of NF-κB in 

inflammatory disease, experiments were conducted in lymphoblastoid trios of the CEU 

and YRI populations. Lymphoblasts were grown in medium containing RPMI 

(SigmaAldrich, Suffolk, UK) supplemented with 2mmol/1 L-Glutamine, 100U/mL 

penicillin, 100U/mL streptomycin (National Veterinary Institute of Sweden, Uppsala, 

http://www.coriell.org/
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Sweden), and 15% fetal bovine serum (SigmaAldrich, Suffolk, UK) at 37°C with 5% 

CO2. FB and osteoblast cells were cultured in medium containing ∞-MEM 

(SigmaAldrich, Suffolk, UK) supplemented with 2mmol/1 L-Glutamine, 100U/mL 

penicillin, 100U/mL streptomycin (National Veterinary Institute of Sweden, Uppsala, 

Sweden), and 10% fetal bovine serum (SigmaAldrich, Suffolk, UK) at 37°C with 5% 

CO2. 

 

RNA and DNA preparation  

DNA extraction 

DNA was extracted from T75 tissue culture flasks upon confluence using the QIAGEN 

gDNA Extraction Kit for cultured cells. This was done according to the manufacturer’s 

instructions (QIAGEN, Mississauga, Ontario). Concentrations were determined using 

NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE, USA). Extracted gDNA 

was stored at -20˚ Celsius. 

 

RNA extraction  

RNA was extracted from cell lysates using either the RNAeasy Mini Kit (QIAGEN, 

Mississauga, Canada) or the TRIzol reagent protocol (Invitrogen Corporation, Carlsbad, 

CA, USA) depending on the quantity of RNA. High RNA quality was confirmed for all 

samples using the Agilent 2100 BioAnalyzer (Agilent, technologies, Palo Alto, CA, 

USA), and the concentrations were determined using NanoDrop ND-1000 (NanoDrop 

Technologies, Wilmington, DE, USA). RNA extraction, DNAse1 treatment, precipitation 

and cDNA synthesis were completed in order to perform real-time polymerase chain 
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reaction (RT-PCR).  RNA samples were annealed to 500ng of random primers 

(Invitrogen Corporation, Carlsbad, CA, USA) at 70°C for 10 minutes. 

 

 CDNA synthesis and Real-time Polymerase Chain Reaction (RT-PCR)  

First- and second-strand cDNA synthesis  

First strand cDNA synthesis was performed using SuperScriptII reverse transcriptase 

(Invitrogen Corporation, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. The target genes as well as the 18S housekeeping gene were analyzed in 

triplicates. The RT-PCR assays were performed on the Rotor-Gene
TM

 6000 real-time 

rotary analyzer (Corbett Life Sciences, Sydney, Australia) using the Platinum SYBR 

Green qPRC SuperMix-UDG (Invitrogen Corporation, Carlsbad, CA, USA) according to 

manufacturer’s recommendations. Second strand cDNA synthesis was also performed 

using SuperScriptII reverse transcriptase (Invitrogen Corporation, Carlsbad, CA, USA) 

according to the manufacturer’s instructions for the Illumina TotalPrep RNA 

Amplification Kit (Illumina Inc., San Diego, CA, US). This method required 50-500ng of 

RNA; however, approximately 3-5ug of RNA was used to ensure a sufficient quantity for 

subsequent steps. Second strand cDNA synthesis converts the single-stranded cDNA into 

a double-stranded DNA (dsDNA). This is used as a template for a reaction that employs 

DNA polymerase and RNase H to degrade the RNA and simultaneously synthesize the 

second strand of cDNA. The dscDNA was dissolved in 8-20ul DEPC treated water 

depending on the DNA microarray being used. The size distribution of the dscDNA 

samples (average 1.2–1.5kb) was confirmed using the Agilent BioAnalyzer DNA Kit 

(Agilent, Technologies, Palo Alto, CA, USA). 
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Primer design 

Primers were designed using the Primer3 v. 0.4.0 software (http://frodo.wi.mit.edu/) and 

all primer sequences used can be found in Table 2-1.   

Oligonucleotide 

name 

Sequence Amplicon 

length 

RANK_F3 TTGCAGCTCAACAAGGACAC 1756 bp 

RANK_R3 GATTTCTCTGTCCCATGATGTTC 

 BCL2_F1 AAGCATACTCGAAGGCTCCA 211bp 

BCL2_R1 GCGAGTGAGGAAAGGAGGTA 

 IL1a_F1 CCGTGAGTTTCCCAGAAGAA 189 bp 

IL1a_R1 ATCAGTACCTCACGGCTGCT 

 IL1b_F2 TCTTTCAACACGCAGGACAG 133bp 

IL1b_R2 TCCAGGGACAGGATATGGAG 

 18S_F TGTGGTGTTGAGGAAAGCAG 251 bp 

18S_R GGACCTGGCTGTATTTTCCA 

 Cox2_RTF1 GCTGTCTAGCCAGAGTTTCACC 241bp 

Cox2_RTR1 CCCTTGGGTGTCAAAGGTAA 

 Il-8_RTF1 CTCTCTTGGCAGCCTTCCT 941 bp 

Il-8_RTR1 AAATTTGGGGTGGAAAGGTT 

 Il-6_RTF1 CCACACAGACAGCCACTCAC 1227 bp 

Il-6_RTR1 TTTCAGCCATCTTTGGAAGG 

 SNAI1_rs6684375_F1 TGCTCTATTGTGCTCCCTCA 290 bp 

SNAI1_rs6684375_R1 GAAGCTCACACACCATGCAC 

 SNAI1_rs6684375_F2 TGCTCTATTGTGCTCCCTCA 225 bp 

SNAI1_rs6684375_R2 AGCCTCATCTCTCTGCATCC 

 WNT4_RTF4 CGAGTCCATGACTTCCAGGT 162bp 

WNT4_RTR4 CTCGTCTTCGCCGTCTTCT 

 WNT4_RTF5 ACCTGGAAGTCATGGACTCG 235 bp 

WNT4_RTR5 TCAGAGCATCCTGACCACTG   

 SNAI1_RTF1 GCGAGCTGCAGGACTCTAAT 135bp 

SNAI1_RTR1 GGACAGAGTCCCAGATGAGC 

 rs909685_SYNGR1_F2 GCTGCGTTCACTGCTTTAGTC 112 bp 

rs909685_SYNGR1_R2 AGGCATCAGAGGCAGAAATG 
  

 

Table 2-1. Primer sequences. The forward and reverse primer sequences are 

given for all primers used in PCR and RT-PCR reactions. The length of each 

amplicon is indicated. 
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PCR 

PCR was performed in order to ascertain that the primers worked efficiently and the 

correct amplicon length was amplified. For each PCR reaction 4-10ng of gDNA and 10-

15ng of cDNA was used. PCR product formation was assessed by electrophoresis in 2% 

agarose gel. The cycling protocol was as follows: initial denaturation was done at 95 °C 

for 15 minutes. The following steps were then repeated for 35 cycles: denaturation at 

95°C for 30 seconds, annealing of the polymerase at 58°C for 30 seconds, and extension 

of the strand at 72 °C for 45 seconds. Following completion of these cycles, final 

extension was done at 72°C for 6 minutes. 

 

RT-PCR 

Validation of perturbation studies that will be discussed below were primarily analyzed 

by RT-PCR. Aliquots of RNA for each sample were annealed to 500ng of random 

primers. First-strand cDNA synthesis was performed using SuperScriptII reverse 

transcriptase (Invitrogen Corporation, Carlsbad, CA, USA) according to manufacturer’s 

recommendations and as described above. The cycling conditions on the Rotor-Gene
TM

 

6000 real-time rotary analyzer were: 4 minutes at 95°C, 40 cycles x 20 seconds at 95°C, 

30 seconds at 58°C and 30 seconds at 72°C followed by the dissociation protocol at 72°C 

(38) (Table 2-3). Results were analyzed using the comparative CT method. The CT mean 

and standard deviation of each technical replicate was calculated and the mean CT values 

were then normalized to the 18S mean CT value. Between two CT values there is a 

twofold exponential difference in amplification.  
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Preliminary Intersection of in house and public ENCODE data 

 

In order to assess the importance of studying NF-κB we used previously generated data, 

which consisted of samples from HapMap YRI and CEU populations. Mapping 

differential AE was determined by using Illumina HumanOmni1 BeadChips (Illumina 

Inc., SanDiego, CA, US), which generated AE and genotyping data. Cis-regulatory SNPs 

showing significant association were mapped within 250kb of genes exhibiting 

differential AE. The list of candidate cis-rSNPs, as well as a MAF-matched control data 

set, were intersected with publicly available whole-genome functional data (ChIP 

experiments) from the ENCODE project. This was done in order to observe if there was a 

significant difference in TF binding in regions with cis-rSNPs versus control SNPs. 

Discussed in the results section below are graphs based on these analyses. Data from the 

ENCODE NF-κB ChIP-seq peaks for LCLs were investigated further. From our original 

list of ranked candidate cis-rSNPs, we examined the top three SNPs (by p-value) for each 

locus in both the CEU/YRI populations that overlap regions of NF-κB binding. In 

addition, we observed the number of our genetically regulated loci that have a top SNP 

overlapping an NF-κB ChIP-seq peak. We further investigated loci from the ENCODE 

NF-κB ChIP-seq peaks for a subset of samples induced with TNF- α.  Further analysis 

was done for the subset of loci, which have a top 3 SNP overlapping an NF-κB ChIP-seq 

peak for samples induced with TNF- α. Each gene was examined using a literature search 

for biological or biomedical relevance such as implications in the NF-κB pathway, in 

inflammation and/or autoimmune disease. Candidate cis-rSNPs versus control SNPs were 

also studied to determine in which chromatin states (e.g., enhancer, strong promoter, 

weak promoter). SNPs were most likely found (85). 



52 

 

Perturbation of NF-κB  

 

The next step of this project was to perturb NF-κB in order to observe the effect genome-

wide (Figure 2-1). The LCLs used included two HapMap trios one from CEU 

(GM12891, GM12892, GM12878) and one from YRI (GM19239, GM19238, 

GM19240). To gain the ability to inhibit NF-κB in LCLs, the protocol had to be 

optimized based on methods and reagents previously used in the literature. Cells were 

plated in 6-well plates one day prior to the experiment. 500, 000 cells/ mL in 2mLs was 

used based on the growing conditions required for lymphoblasts which requires >300,000 

cells/mL for proper growth. Cells were primarily transfected for one hour with a cell 

permeable small molecular compound, Helenalin (5uM) (EMD Chemicals, USA) in order 

to inhibit the activation of NF-κB (p65). Helenalin is a sesquiterpene lactone that acts as a 

specific NF-κB DNA binding inhibitor by irreversibly alkylating free sulfhydruls of the 

cysteine residues on the p65 subunit. Importantly, this compound exhibits no effect 

against cellular NF-κB activation, nuclear translocation or IκB dissociation/degradation 

(86).  Following this inhibition, cells were stimulated with TNF- α (3ng/ul) at time points 

consisting of 4, 6, 8, 12, 24 and 48 hours in order to select for the ideal time point. 

Validation of the perturbation of NF-κB and induction by TNF- α was done by RT-PCR 

for genes targeted by NF-κB including IL-6, IL-8, IL-1a, and Bcl-2. The most optimal 

time point to stop the experiment was deemed 8 hours post- transfection (Figure 3-3).   
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Figure 2-1. Experimental approach to perturb NF-κB and genome-wide AE 

assessment.  Two trios from the HapMap CEU and YRI populations were used to 

perturb NF-κB using an inhibitor of NF-κB, Helenalin for 1 hour coupled to TNF- α 

induction for 8 hours. Validation of NF-κB perturbation was done using RT-PCR on 

known NF-κB gene targets. Samples were assessed on Illumina HumanOmni5-Quad 

BeadChips in order to analyze differential AE genome-wide.   
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Genotyping and Genome-wide AE Assessment (NF-κB samples) 

The aforementioned inhibition of NF-κB was used to analyze differential AE. We were 

interested in AE differences in cells induced by TNF- α versus those induced by TNF- α 

and have inhibition of NF-κB. Genotyping and AE analysis were done using Illumina 

HumanOmni5-Quad BeadChip (Illumina Inc., SanDiego, CA, US) as per the 

manufacturer’s instructors. Approximately 100ng/ul of gDNA and 50-300ng double-

stranded cDNA was used for genotyping. Genotypes in gDNA were extracted using 

BeadStudio. The parallel assessment and normalization of gDNA and cDNA 

heterozygote ratios were carried out as described earlier (38) by genotyping of pre-

mRNA (cDNA) and gDNA samples. Illumina HumanOmni5-Quad BeadChips use 

powerful tagSNPs from the International HapMap and 1000 Genomes Project that target 

common genetic variation down to approximately 1% MAF. Gene density of the SNPs on 

this BeadChip is approximately 100 SNPs/ RefSeq gene region (including 10Kb 

surrounding the gene) (http://www.illumina.com). Consequently, the redundancy of 

independent data in a given RefSeq gene enables us to show similar allelic deviation for 

different SNPs and this is important in order to build confidence in our results.  

 

Bioinformatics Analysis of Genome-wide AE Assessment 

 

Normalized gDNA and cDNA heterozygote ratios from the Illumina HumanOmni5-Quad 

BeadChip (Illumina Inc., SanDiego, CA, US) were generated as output for analysis. The 

overview of the bioinformatics approach is as follows and will be described in more 

detail in the results section. Our data set, which consisted of loci associated to top 10 cis-

rSNPs that showed diminished AE upon perturbation of NF-κB were overlapped with 

http://www.illumina.com/
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publicly available data on the UCSC Genome Browser. Functional data consisted of 

ENCODE ChIP-seq peaks and TRANSFAC binding sites for NF-κB and cooperative TFs 

of NF-κB (E2A, STAT1, IRF2, EBF1) (Figure 2-2). Further informatics analysis was 

done as per the below.  
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Figure 2-2. Overlapping data sets with the ENCODE ChIP-seq peaks and 

TRANSFAC binding sites for NF-κB and cooperative TFs. A subset of mapped cis-

rSNPs, which showed diminished differential AE in inhibited versus induced NF-κB 

samples for associated loci were overlapped with publicly available data. This data 

includes ChIP-seq peaks and TRANSFAC binding sites for NF-κB, STAT1, E2A, EBF1, 

and IRF2.  

 



57 

 

Relative SNP distribution  

Due to the fact that the NF-κB motif was most often found enriched in active promoter 

and strong enhancer elements we decided to investigate the relative distribution of SNPs, 

which may cause differential binding of NF-κB (85). We analyzed the relative 

distribution within the genome for the top 3 heterozygous cis-rSNPs for the CEU and 

YRI population combined. The SNPs were normalized against a reference consisting of 

the total SNPs found in the region of interest. 

 

Gene network and pathway analysis  

In order to visualize our data in the context of biological networks, functions or pathways 

the data was analyzed through the use of Ingenuity Pathway Analysis (IPA) system 

(Ingenuity Systems, Mountain View, CA, USA, www.ingenuity.com). The datasets 

containing differentially expressed genes with NF-κB inhibition coupled to induction 

with TNF- α compared to TNF- α induction only were uploaded to the application. The 

reference data set consisted of all 1753 genes from our mapped list of cis-regulatory 

variation for LCLs, which did not show differential AE. Each gene identifier was mapped 

to its corresponding gene object in the Ingenuity Pathways Knowledge Base. These 

genes, called focus genes, were overlaid onto a global molecular network developed from 

information contained in the Ingenuity Pathways Knowledge Base. Furthermore, 

networks of the focus genes were subsequently generated based on an algorithm, which 

takes into account their connectivity. The functional analysis identified the biological 

functions that were most significant to the uploaded dataset. Genes from the dataset that 

met the required cutoff and were also associated with biological functions in the 

Ingenuity Pathway Knowledge Base were considered for the analysis. Finally, a score for 

http://www.ingenuity.com/
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the network was given. The score was the negative exponent of the right tail of the 

Fisher’s exact test, which calculates a p-value determining the probability that each 

biological function assigned to the dataset is only due to random chance.  

  

GWAS 

To assess the effect that mapped cis-rSNPs have for individual disease and trait 

associated SNPs we did the following analysis. Top 3 heterozygous SNPs associated to 

loci, which showed a change in AE for samples induced with TNF- α versus those with 

NF-κB inhibition were assessed for disease SNPs previously shown in the literature. This 

was done using a catalog of published GWASs (http://www.genome.gov/gwastudies/).  

 

Methods Specific to the Case Study: SNAI1  

Selection of Cell Lines 
Cell lines included in the SNAI1 case study GM2317 and WG1657 were originally 

obtained from Coriell (http://www.coriell.org/). Primary cell cultures from human 

trabecular bone from the proximal femoral shaft, such as HOB642, were obtained from 

Uppsala University Hospital, Uppsala, Sweden from patients undergoing total hip or knee 

replacement. The cell lines were included as they were heterozygous for the SNP of 

interest, rs6684375 in order to investigate the association between SNAI1 and WNT4.  

Discovery of cis-rSNP  

We possessed a great deal of support from previous studies in our laboratory, which will 

be discussed in the results section, to support the association between SNAI1 and WNT4. 

We identified a SNP that affects WNT4 cis-regulation in our FB panel and alters the risk 

for osteoporosis (87). Osteoporosis is a skeletal disorder characterized by compromised 

http://www.genome.gov/gwastudies/
http://www.coriell.org/
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bone strength and increased risk of fracture in which the regulation of bone remodeling is 

imbalanced. Clinical diagnosis of osteoporosis as well as the assessment of risk fracture 

is done using a heritable complex trait, bone mineral density (BMD).  Numerous loci 

contributing to BMD and osteoporosis risk have been recently described by GWAS (87). 

This includes four loci which encode members of the Wnt and RANK-RANKL signaling 

pathways(87). However, the underlying biological effect of many of these variants 

remains unknown. Elucidating these effects and uncovering the remaining genetic 

variation is critical to understanding this complex disease.  

SNAI1 is known for its involvement in mesenchymal cell development (88). As 

such, we decided to employ a case study in order to evaluate the association of a TF, 

SNAI1 and a SNP > 200Kb upstream of the gene WNT4. We did this by implementing 

our previously described approach to perturb TFs in order to better understand their 

relationship to DNA binding. This was done by pursuing in vivo validation of SNAI1 

binding in living cells by carrying out ChIP in addition to SNAI1 knockdown by RNA 

interference (RNAi) while monitoring its consequences in WNT4 AE phenotype, as well 

as, genome-wide AE assessment.  

 

RNAi targeting the TF SNAI1 

RNAi is a process used in vivo for mRNA degradation that is induced by dsRNA in a 

sequence–specific fashion. RNAi is a powerful technique that specifically silences the 

expression of any gene for which the sequence is available.  It is an invaluable tool in the 

field of reverse genetics. Traditional RNAi methods involve synthetic RNA duplexes 

made up of two unmodified 21mer oligonucleotides annealed to form short/small 
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interfering RNAs; however, stealth RNAi (Invitrogen Corporation, Carlsbad, CA, USA) 

was used and improves upon the aforementioned technology by using proprietary 

chemical modifications to ensure better RNAi results. This technology is advantageous in 

the following ways: providing effective knockdown, higher specificity, greater stability 

and less cellular toxicity. These small interfering RNAs make use of an endogenous 

RNAi pathway, which includes the enzymes Dicer and Argonaute, as well as, RNA-

induced silencing complex (RISC) (89).  

The reagents used included stealth RNAi targeting SNAI1, stealth RNAi targeting 

DiGeorge Syndrome chromosome region 8 (DGCR8) (negative control) (Invitrogen 

Corporation, Carlsbad, CA, USA), Opti-MEM (Invitrogen Corporation, Carlsbad, CA, 

USA) and the transfecting reagent, Lipofectamine RNAiMAX (Invitrogen Corporation, 

Carlsbad, CA, USA). Various stealth RNAi were tested in order to optimize for the 

sequence with the greatest knockdown of SNAI1. The protocol was done as per the 

manufacturer’s instructions for forward transfection with the necessary changes 

implemented per cell line. Optimization included determining a valid protocol in terms of 

number of cells used, reagents and the time course of the experiment. Optimizations were 

done in 24-well plates and scaled up accordingly. Stealth RNAi (100uM) was transfected 

and the experiments were stopped at three different time points 48, 72, and 96 hours. This 

experiment was replicated with immortalized osteoblast and FB cell lines heterozygous 

for our SNP of interest (rs6684375). After transfections were completed samples were 

analyzed by quantitative RT-PCR using the protocol mentioned above to validate SNAI1 

knockdown. 
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Genotyping and Genome-wide AE Assessment  

The aforementioned transfections of stealth RNAi targeting SNAI1 versus the negative 

control were used to analyze differential AE. Genome-wide AE assessment was done 

using Illumina HumanOmni 2.5-Quad BeadChips (Illumina Inc., SanDiego, CA, US) by 

genotyping of cDNA and gDNA samples for GM2317, WG1657 and HOB642 (Figure 2-

3). We hypothesized that there would be measurable differences in AE in cells 

transfected with stealth RNAi versus the negative control, which is used to control for the 

toxicity of using transfection reagents. Data from the high throughput experiments were 

normalized as previously explained (38) and subsequent analysis was performed, which 

will be discussed in the results section.  
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Figure 2-3. Schematic for genome-wide AE assessment (SNAI1). WG1657, 

GM02317, and HOB642 were transfected with RNAi targeting SNAI1 and a negative 

control. CDNA and gDNA from the samples were analyzed on Illumina 

HumanOmni2.5-Quad BeadChips in order to assess AE genome-wide. 
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Primer design & ChIP-RT-PCR 

The purpose of a ChIP experiment is to enrich for DNA fragments associated with a 

specific DNA-binding protein of interest (90). We used an in-house protocol in which 

optimizations were based on specific cell lines used. FB and osteoblast cells were grown 

in P15 dishes until 80 % confluent (10 dishes at a time) with 15 ml of media and 

subsequently cross-linked with 1% formaldehyde at room temperature for 10 minutes. 

After quenching with glycine for 5 minutes (125 mM glycine per mL of media), the cells 

were washed with ice-cold phosphate buffered saline (PBS). Cells were scraped with 

farnham lysis buffer (5mM PIPES pH8.0, 85mM KCl, 0.5% NP-40 and protease 

inhibitors), washed twice with PBS and subsequently collected after each wash by 

centrifugation at 2,000g for 5 minutes. Cell pellets were pooled into two cryotubes, flash 

frozen and stored at −80 °C. Frozen pellets were thawed and cells were lysed in farnham 

lysis buffer (5mM PIPES pH8.0, 85mM KCl, 0.5% NP-40 and protease inhibitors) for 10 

minutes on ice. After centrifugation and wash with 1 mL of radioimmunoprecipitation 

assay buffer (RIPA) containing 50mM Tris HCl pH8, 150mM NaCl, 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS and protease inhibitors, lysates were then diluted with 

500 μl of RIPA to proceed to the sonication step. Cells were sonicated in non-stick tubes 

under conditions optimized to yield soluble chromatin fragments in a size range of 150 to 

300 bp. Chromatin was sonicated for 5 minutes using a Branson 250 sonicator at 20% 

power amplitude (pulses: 10 s on and 30 s off). Lysates were cleared by centrifuging at 

12,000g for 10 minutes at 4 °C to eliminate cellular debris. Chromatin was then flash 

frozen and stored at -80 °C or used immediately for the next step. Before each 

immunoprecipitation, the chromatin samples were pre-cleared with 50 μl of prewashed 

ProteinA-magnetic beads (Invitrogen; 100-02D) to avoid non-specific binding. 
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Immunoprecipitation was carried out for 12 hours by rotation at 4 °C in 500 μl of 

chromatin/RIPA buffer supplemented with protease inhibitor cocktails (Roche; 04 693 

159 001) and  phenylmethylsulfonyl fluoride (PMSF). We used 10 to 100 million cells 

and 2 to 20 μg of the following antibodies for each assay: SNAI1 (Abcam, Cambridge, 

MA, 85931), H3K4me1 (Abcam, Cambridge, MA; ab8895), and Normal 

Immunoglobulin G (IgG) (Cell Signaling Technology, Danvers, MA; #2729). After 

overnight incubation, samples were rotated with 100 μl of prewashed ProteinA-magnetic 

beads at 4 °C for 1 hour. The beads were then collected by brief centrifugation at 2,000g 

following by the use of a magnetic rack. Beads were washed five times with 1 mL of 

LiCl wash buffer (100mM Tris pH7.5, 500mM LiCl, 1% NP-40, 1% sodium 

deoxycholate) by resuspending the beads and keeping them on ice for 5 minutes. Bound 

chromatin was then eluted from the beads using 200 μl of elution buffer (50 mM Tris-

HCl, pH 8.0, 10 mM EDTA, 1.0% SDS) by incubation at 65 °C for 1 hour with a vortex 

every 15 minutes. This was followed by centrifugation at 14,000g at room temperature 

for 3 minutes. The eluted chromatin and the 'input' samples were then incubated at 65 °C 

overnight with 0.2M of a 5M NaCl to remove the crosslinks. Samples were then treated 

with RNase at 37 °C for 30 minutes and digested with proteinase K at 55 °C for 1 hour. 

Immunoprecipitated DNA was then purified using QIAquick PCR Purification Kit 

(QIAGEN, Mississauga, Ontario) and eluted in 30 μl of elution buffer. Enrichments of 

relevant regions were validated using RT-PCR experiments for each antibody (Figure 2-

4).  
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Figure 2-4. Schematic of ChIP. The purpose of ChIP experiments for DNA-binding 

proteins is to enrich for DNA fragments associated with a specific protein. Firstly, the 

DNA-binding protein is cross-linked to DNA in vivo by treating the cells with 

formaldehyde. The chromatin is then sheared by sonication into small fragments of 

approximately 150-300bp. Subsequently, the cross-links are reversed and the released 

DNA is assessed to determine the sequence that is bound by the protein.  
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We included cell lines WG1657 and HOB642 in the ChIP experiments as these 

cell lines were heterozygous for the SNP of interest, rs6684375. The antibodies used 

included SNAI1, IgG (negative control) and H3K4me1 (positive control). Primers for 

ChIP- RT-PCR were designed using primer3 (http://frodo.wi.mit.edu/primer3/) with a 

desired PCR amplicon length between 150 bp and 250bp (see Table 2-1). Two primers 

used which target amplification of the SNAI1 binding site rs6684375, as well as, SYNGR, 

which is a common region enriched using the antibody H3K4me1. Also, the selected 

region, SYNGR was used as a control locus since it did not show any SNAI1 binding. All 

primers were confirmed with BLAT (S9) (http://genome.ucsc.edu/) to avoid common 

SNPs, which could influence primer hybridization. The primers were tested to yield a 

unique product using insilico PCR (http://genome.ucsc.edu/). We determined the relative 

enrichment for each target locus compared to a reference locus using the Delta-Delta-Ct-

Method (2-ΔΔCt). Results were analyzed using the comparative CT method as described 

above and compared to the regions amplified by the IgG pull down (38).  
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CHAPTER 3: RESULTS 
 

Quantitative AE Measurements and Mapping 

 

Genome-wide quantitative AE measurements were employed on Human1M-Duo 

BeadChips (17). This assay is based on the quantitative assessment of allele ratios in 

expressed heterozygous SNPs in RNA (cDNA), which are normalized to corresponding 

gDNA heterozygote ratios. The primary discovery panel for this study consisted of 53 

unrelated HapMap CEU LCLs. As before, we used both intronic and exonic SNPs, which 

passed the signal intensity threshold. Intronic SNPs present in primary transcripts 

supplied much of the information used. Analysis of differences in cDNA allele ratios 

were restricted to heterozygous sites averaged across full annotated primary transcripts 

after  allele- ratio normalization (38). Phased genotypes were then used in association 

analysis with AE quantitative trait. Our aim was to increase specificity for detection of 

allelic differences impacting full transcripts, rather than other allelic differences 

observable in cases of differential splicing or 3’ usage (17). Moreover, we included 

individuals from the YRI population to elucidate more cis-variants and to aid in fine-

mapping of variants common to both CEU and YRI populations. The final panels we 

used consisted of 55 and 63 HapMap CEU and YRI LCLs, respectively. In addition a 

number of children not used in population mapping were applied in validation tests. 

Similar AE assessments were also carried out on 70 primary FB cell lines (Caucasian 

trios) in order to map cis-regulatory variants. A comprehensive list of >4000 transcripts 

mapped to top associated SNPs was generated for FBs and was used in the below 

analyses. However, the independent validations done in LCLs as described below were 

not completed for FBs.  
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Independent Validation of Associated Loci in LCLs 

 

Our approach to isolate the maximum number of cis-regulated full-length transcripts for 

LCLs applied the power of AE mapping in primary transcripts. This was followed by 

replication in full length mature transcripts using total expression levels across all exons, 

generated independently by exon-arrays (40, 91) or RNA-seq (15, 16). Subsequently, we 

used independent AE tests that were not included in the LCL population AE mapping to 

validate our list of associations. A locus was defined as validated if it contained at least 1 

heterozygous individual for a top SNP with differential AE of the associated transcript. 

The addition of these consecutive validations allowed us to establish a core set of high-

confidence genetically regulated allelicly expressed transcripts. Overall, we mapped top 

associated SNPs to 1753 transcripts with significant AE in the YRI and/or CEU LCL 

populations.  

 

Preliminary Validation of cis-rSNPs Affecting NF-κB Binding 

 

Results from candidate cis-rSNPs showing significant association, which were mapped 

within 250kb of genes exhibiting differential AE for the LCL populations are described 

below. The list of  the top LCL ranked candidate cis-rSNPs (by p-value) per loci, as well 

as, a MAF-matched control data set, were intersected with publicly available whole-

genome functional data (ChIP experiments) from the ENCODE project. It was observed 

that there is a significant difference in TF binding for NF-κB in regions with top cis-

rSNPs versus control SNPs (Figure 3-1) (Table 3-1). In order to increase the likelihood 

of finding the causal variants we investigated top 3 SNPs, which are highly associated to 

the top SNP due to linkage disequilibrium (LD), also termed, “allelic association”. LD 
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arises due to selection or population history, which causes recombination to occur and in 

turn breaks down ancestral haplotypes. Haplotypes are the combinations of alleles, which 

are observed in a population. LD is the non-random association of alleles at two or more 

loci (92). As such, LD refers to the correlation among neighboring alleles, which reflects 

haplotypes descended from single, ancestral chromosomes (93). 

A significant number of top 3 SNPs overlapped at least one ENCODE NF-κB ChIP-

seq peak. We observed that 9.3% of top 3 SNPs overlapped at least one ENCODE NF-κB  

ChIP-seq peak (Table 3-1).  In addition, 39.0% of loci contained a top 3 ranked SNP 

which overlapped at least one ENCODE NF-κB peak. A subset of loci were further 

investigated, which include ENCODE NF-κB ChIP-seq samples induced with TNF- α 

versus control samples. We observed that 91.5% of loci induced with TNF- α had a top 

SNP associated (Table 3-2). Results from these analyses suggest that there is a strong 

genetic component of allele-specific TF binding for NF-κB. Moreover, chromatin states 

based on the Bernstein Hidden Markov Model (HMM) classifications were downloaded 

for regions in which top 3 SNPs overlapped an NF-κB ChIP-seq peak as well as for 

control SNPs for samples induced with TNF- α. We observed similar results as seen in 

the Ernst et al., 2011 article in which NF-κB binding sites for cis-rSNPs were 

significantly enriched compared to control SNPs in active promoter (Chi-squared test, 

pv= 0.004) and strong enhancer elements (Chi-squared test, pv= 0.0001) (85) (Figure 3-

2). Finally, a literature search elucidated several loci, which have been associated to the 

NF-κB pathway and/or immune related diseases (Table 3-3).  
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a)                                                                b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. TF binding for NF-κB in regions with cis-rSNPs versus control 

SNPs. Distributions of reads density (1M) +/-2000bp around candidate (blue lines) 

and control sites (red lines) as well as significance of their differences (dark lines). 

a) LCL-specific NF-κB ChIP-seq data was analyzed. Regions surrounding 

candidate cis-rSNPs are significantly enriched in NF-κB binding sites versus 

matched controls b) GM12878 NF-κB ChIP-seq from samples induced with TNF-α. 

Similar results as seen in a).  
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Total unique top 3 ranked SNPs  11,505 

Top 3 ranked SNPs overlapping an ENCODE NF-κB  peak  1073/11,505 

(9.3%)   

Total unique regulatory loci/ genes  1,753  

Loci with top 3 ranked SNPs overlapping at least one ENCODE NF-κB  

peak  

684/1,753(39.0%)  

 

 

 

Total loci found  47 

Loci with top 3 ranked SNPs overlapping at least one ENCODE 

NF-κB  peak  

43/47 (91.5%)  

 

  

 

 

 

 

 

Table 3-1. Summary of total data from ENCODE NF-κB ChIP-seq peaks. Data was 

extrapolated for top 3 SNPs (by p-value) from the original list of ranked candidate cis-

rSNPs for each locus using CEU and YRI populations. From the data, 39.0% of top 3 

SNPs overlap at least one ENCODE NF-κB ChIP-seq peak.    

Table 3-2. Summary of data from the ENCODE NF-κB ChIP-seq peaks for samples 

induced with TNF- α. A subset of loci from the ENCODE NF-κB ChIP-seq peaks were 

further assessed, which consisted of 47 loci. Data was extrapolated for samples induced 

with TNF-α versus control samples for GM12878. 91.5% of the loci induced with TNF- α 

versus control samples have a top 3 SNP, which overlaps at least one ENCODE NF-κB  

ChIP-seq peak. 
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Figure 3-2. Chromatin classification for case cis-rSNPs and matched control SNPs 

overlapping NF-kB ChIP-seq peaks induced with TNF- α. Regions that contain a 

top 3 SNP overlapping an NF-κB ChIP- seq peak as well as control SNPs for a subset 

of samples induced with TNF- α were assessed. Bernstein HMM chromatin 

classifications were given for each region in which SNP was found. Results indicate a 

strong binding bias of cis-rSNPs towards regulatory regions such as active promoter 

and strong enhancer elements. In contrast, for control SNPs results indicate a depletion 

of SNPs in regulatory regions such as active promoter and strong enhancer elements. 

Furthermore, there is a binding bias of control SNPs in inactive heterochromatin 

regions.  
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Relevant Loci  Explanation  

 Oxidative stress-responsive 1 protein 

(OXSR1)  

Target gene and activator of NF-κB (94) 

Annexin A4 (ANXA4)  Interacts with the NF-κB subunit and 

modulates NF-κB transcriptional activity in 

a Ca
2+

-dependent manner (95) 

α/ β hydrolase domain-containing 

protein 5 (ABHD5) 

Generates signaling lipids that regulate the 

balance between systemic inflammation 

and insulin action (96) 

Hypoxia-inducible factor 1, alpha 

subunit (HIF-α) inhibitor (HIF1AN) 

HIF-α is a subunit of the hypoxia inducible 

TF. Hypoxia is a regulator of angiogenesis 

and inflammation in rheumatoid arthritis.  

HIF1AN inhibits the alpha subunit of 

hypoxia factors (97). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-4.  Subset of loci implicated in the NF-κB pathway or range of immune 

related diseases. A literature review using PubMed was done in order to determine loci 

which have been previously associated to the NF-κB pathway or immune related 

diseases. The subset of loci seen above consist of  those from the preliminary analysis, 

which have a top 3 SNP overlapping an NF-κB ChIP-seq peak for samples induced with 

TNF- α (ENCODE experiment). 

http://en.wikipedia.org/wiki/HIF1A
http://en.wikipedia.org/wiki/HIF1A
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Validation of NF-κB Perturbation 

Validation of NF-κB knockdown was widely done in the literature using RT-PCR of 

known gene targets. Results show significant changes in known targets of NF-κB for 

samples induced by TNF- α versus those induced by TNF- α coupled to inhibition of NF-

κB (Figure 3-3).  
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Figure 3-3. Validation of inhibition of NF-κB. Significant changes upon 

perturbation of NF-κB on known gene targets include Il-6 (p= 0.00454), Il-8 

(p=0.0097), Il-1a (p=0.0308), and Bcl-2 (p=0.0021).  P-values were calculated using 

a one-tail Fisher’s exact test.  
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Genome-wide AE Analysis of Illumina HumanOmni5-Quad BeadChips 

 

As described above, we had AE data from Illumina HumanOmni1 BeadChips, which was 

used for mapping cis-regulatory variants for 1753 loci in LCLs. This data was merged 

with mean AI values for each transcript from the Illumina HumanOmni5-Quad 

BeadChips, which was generated for each experimental condition.  In order to obtain a 

manageable high confidence list of transcripts the following filters were implemented. 

The first criterion was to restrict loci to those showing an AE change of greater than the 

threshold of 0.05 from the Illumina HumanOmni1 BeadChip data (corresponding to 1.2-

fold difference in expression between alleles) (38). Subsequently, loci were analyzed 

only if AE was diminished in samples in which NF-κB was inhibited in comparison to 

induction by TNF- α. In addition, mean AI values were compared and only loci with 

greater than 3 SNPs showing an AI change were retained. The aforementioned approach 

to perturb the TF, NF-κB and monitor consequences of the perturbation genome-wide can 

be generically extended to other TFs in the literature. Consequently, a specific case study 

was done targeting SNAI1 for knockdown in FB cells. This was done in order to test a 

plausible hypothesis between the association of SNAI1 and WNT4, as well as, observe 

the effect of SNAI1 perturbation on a genome-wide scale. We were also able to compare 

results of the perturbation of NF-κB and SNAI1 in LCLs and FBs, respectively. The 

results from the aforementioned analyses will be discussed below.  
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Bioinformatics Approach 

Enrichment of top cis-rSNPs in ENCODE NF-κB ChIP-seq peaks 

We intersected mapped top candidate cis-rSNPs (rank 1) detected in LCLs, as well as, 

matched control SNPs from HapMap YRI and CEU populations with publicly 

available NF-κB ChIP-seq experiments from the ENCODE project. Moreover, we also 

overlapped SNPs associated with the subset of loci showing differential AE upon 

perturbation of NF-κB.  The mapped top cis-rSNPs described above were enriched in NF-

κB binding sites versus the control SNPs. However, the subset of cis-rSNPs, which 

showed a difference in AE upon perturbation of NF-κB experiments showed a significant 

enrichment in NF-κB binding sites relative to all top mapped cis-rSNPs (Chi-squared 

test, pv = 1.0E-08). Similar results were observed overlapping the subset of cis-rSNPs 

and mapped top cis-rSNPs with NF-κB LCL-specific ChIP-seq experiments using only 

samples induced with TNF- α (Chi-squared test, pv= 9.2e-06) (Figure 3-4). 
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Figure 3-4. Enrichment of the top cis-rSNPs in ENCODE NF-κB ChIP-seq peaks.  
Significant enrichment of the top cis-rSNPs at NF-κB ChIP-seq peaks (Chi-squared 

test, pv =1.9e-08) (left), as well as, NF-κB ChIP-seq peaks in which cells were treated 

with TNF-α (Chi-squared test, pv = 9.2e-06) (right). P-values were calculated using 

the chi-squared test using the counts at the SNP position. The p-values show the 

significance of enrichment between the subset of top cis-rSNPs versus all top 10 

mapped cis-rSNPs.  
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Analysis of cooperative action of TFs  

Further analysis was done in order to understand differential AE observed upon 

perturbation of NF-κB. Bioinformatics analysis was performed to identify SNPs essential 

for NF-κB binding. The factors discussed (IRF2, STAT1, E2A and EBF1) that have been 

shown to work cooperatively with NF-κB were analyzed in conjunction with NF-κB. 

This was done using publicly available ChIP-seq data on the UCSC Genome Browser, as 

well as, binding motifs using the TRANSFAC database. The above was performed for 

top SNPs, as well as, top 3 SNPs associated to loci showing diminished AE upon 

inhibition of NF-κB. Therefore, using the TRANSFAC database, we searched for 

position weight matrix (PWM) motifs for NF-κB and known cooperative TFs that 

contained SNPs associated with the aforementioned loci. There were 631 unique loci, 

which showed differential AE relative to all mapping done in LCLs. Studying the top 

associated heterozygous SNPs associated to loci that had a change in AE at greater than 3 

SNPs resulted in 581 cases. 210 cases contained a top SNP (rank 1), which overlapped 

with a ChIP-seq peak and/or disruption of a TRANSFAC binding site (using a window of 

SNP+/- 10bp) for NF-κB or one of the cooperative TFs. The same analysis was done for 

control SNPs and this yielded 29 loci associated to a control SNP, which overlapped with 

a ChIP-seq peak and/or disruption of a TRANSFAC binding site. There was significant 

enrichment of over 7-fold (Chi-squared test, p-value = 1.25E-26) between case and 

control heterozygous SNPs, which overlapped a functional element, such that 24.4% 

overlapped a functional element for NF-κB only. Functional analysis taking into 

consideration known cooperative TFs explained over 36% of loci harboring changes in 

differential AE upon perturbation.   
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Similar analysis was done for the most strongly associated candidate cis-rSNPs 

(rank 1, 2 and 3). This yielded 369 and 85 loci, containing a case or control SNP, 

respectively, which overlapped with a ChIP-seq peak and/or disruption of TRANSFAC 

binding site (using a window of SNP+/- 10bp) for NF-κB or one of the cooperative TFs. 

Bioinformatics analysis of top 3 SNPs, described above, revealed a significant difference 

of ~5-fold (Chi-squared test, p-value = 3.13E-30) between case and control SNPs, such 

that 47.5% overlapped a functional element for NF-κB. Moreover, considering the 

overlap between top 3 heterozygous cis-rSNPs and LCL-specific TF ChIP-seq peaks or 

TRANSFAC binding sites for NF-κB, as well as, known cooperative TFs, 64% of loci 

had a top 3 heterozygous cis-rSNP found in a functional element (Figure 3-5) (Table 3-

4).  

In addition, over 85% of cases that have a top 3 SNP which overlaps an NF-κB 

ChIP-seq peak or TRANSFAC binding site also overlaps or lies within 400bp of a ChIP-

seq peak or TRANSFAC binding site for the other known cooperative TFs. There are 

several specific examples from our data, which demonstrate the aforementioned and are 

displayed below (Figure 3-6) (64).  
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Figure 3-5. Comparison of top 3 heterozygous case and control SNPs. There were 

581 loci, which showed differential AE relative to all mapping done in LCLs. 

Overlapping top 3 SNPs yielded 369 unique transcripts, which overlapped with a 

ChIP-seq peak and/or disruption of TRANSFAC binding site (using a window of 

SNP+/- 10bp) for NF-κB or one of the cooperative TFs. A similar analysis was done 

for control SNPs and this yielded 85 cases associated to a control SNP, which 

overlapped with a ChIP-seq peak and/or disruption of TRANSFAC binding site. 
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 Case SNPs  Control SNPs  

(matched)  

Fold difference 

(Case 

SNPs/Control 

SNPs) 

Chi-

squared 

test p-value 

Loci with a SNP 

that overlaps a 

functional 

element for NF-

κB (top  SNP) 

24.4% 2% ~12 2.15e-20 

Loci  with a 

SNP that 

overlaps a 

functional 

element for a 

cooperative TF 

(top SNP)  

11.6% 3% ~4 

 

2.74e-09 

Summary of loci 

explained by 

overlap with a 

functional 

element (top 

SNP)  

36% 5% ~7 1.25e-26 

Loci with a SNP 

that overlaps a 

functional 

element for NF-

κB (top 3 SNP)  

47.5% 8% ~6  2.09e-26 

Loci  with a 

SNP that 

overlaps a 

functional 

element for a 

cooperative TF 

(top 3 SNP)  

16.5% 5% ~3 9.94e-07 

Summary of loci 

explained by 

overlap with a 

functional 

element (top 3 

SNP)  

64% 13% ~5 3.13e-30 

SNPs that 

overlap a 

TRANSFAC 

binding site for 

NF-κB (top 

SNP) 

22 

(corresponding 

to 21 unique 

loci) 

6 (corresponding 

to 6 unique loci)  

~4 0.007 
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SNPs that 

overlap a 

TRANSFAC 

binding site for 

a cooperative 

TF (top  SNPs) 

37 

(corresponding 

to 28 unique 

loci) 

6 (corresponding 

to 4 unique loci) 

~6 6.14e-05 

Summary of 

SNPs that 

overlap a 

TRANSFAC 

binding site (top 

SNPs) 

59 

(corresponding 

to 49 unique 

loci) 

12 (corresponding 

to 10 unique loci) 

~5 1.42e-06 

SNPs that 

overlap a 

TRANSFAC 

binding site for 

NF-κB (top 3 

SNP) 

79 

(corresponding 

to 70 unique 

loci) 

24 (corresponding 

to 20 unique loci)  

~3 6.62e-07 

SNPs that 

overlap a 

TRANSFAC 

binding site for 

a cooperative 

TF (top 3 SNPs) 

102 

(corresponding 

to 70 unique 

loci)  

30 (corresponding 

to 23 unique loci) 

~3 4.54e-06 

Summary of 

SNPs that 

overlap a 

TRANSFAC 

binding site (top 

3 SNPs) 

181 

(corresponding 

to 140 unique 

loci) 

54 (corresponding 

to 43 unique loci)  

~3 4.04e-11 

 

 

 

 

 

 

 

 

Table 3-4. Output of bioinformatics approach for loci of interest. Loci showing 

differential AE upon NF-κB perturbation associated to cis-rSNPs ranked by p-value were 

overlapped with functional data. Summary of overlap with ENCODE LCL ChIP-seq 

peaks and TRANSFAC binding sites for NF-κB and cooperative TFs is outlined.  
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a) 

 

 

b) 

 

 

 

Figure 3-6. Top cis-rSNP overlaps functional data for NF-κB and cooperative TFs. a) A 

top cis-rSNP (rs1338934) associated to the transcript MOXD1overlaps both an LCL NF-κB 

peak and a TRANSFAC binding site for IRF2. The SNP is also upstream of the promoter 

region of the transcript MOXD1, which supports the notion of NF-κB as a regulatory TF. b) 

A top cis-rSNP (rs2037213) associated to the transcript FUT10 overlaps a TRANSFAC 

binding site for the STAT1 motif and is located within a few Kb from an LCL specific NF-

κB ChIP-seq peak. Also, the SNP is observed to be upstream of the promoter region of the 

transcript FUT10, which again supports the fact of NF-κB as a regulatory TF. The 

aforementioned examples fit the model of the cooperative action of TFs for NF-κB. 
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Heritable NF-κB -mediated AE 

From the mapped list of cis-rSNPs there are several examples, which showed a decrease 

in AE upon inhibition of NF-κB in both the child and the parent compared to the samples 

induced with TNF-α. Overall, a transmission of AE from parent to child was observed in 

54% of informative cases. In many instances, bioinformatics analysis of the SNPs 

suggested essentiality for NF-κB binding. The analysis consisted of assessing publicly 

available LCL-specific ChIP-seq peaks and TRANSFAC binding sites for NF-κB and 

cooperative TFs. An example of a transmission of differential AE from parent to child is 

illustrated below (Figure 3-7, 3-8). 

Relative distribution of SNPs 

The relative distribution within the genome for top 3 heterozygous cis-rSNPs in CEU and 

YRI populations combined was assessed. It was observed that the subset of top SNPs of 

interest was enriched in regulatory regions compared to all SNPs in that region. 

Regulatory regions include around the TSS, particularly 2Kb upstream (Figure 3-9). 
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Figure 3-7. Example of NF-κB mediated AI in the African trio. Locus WDR17 

on chromosome 4 shows heritable NF-κB mediated AI for the African samples 

(GM19238 and 19240) upon perturbation of NF-κB. AI is diminished in samples in 

which NF-κB is inhibited versus stimulation with TNF-α. Left: AI is diminished for 

the locus WDR17 in the parent (GM19238) in samples upon inhibition of NF-κB 

coupled to induction by TNF- α. Right: AI is diminished for locus WDR17 for the 

child (GM19240) in samples upon inhibition of NF-κB coupled to induction by 

TNF- α 

 

Figure 3-8. Example of SNP overlapping NF-κB ChIP-seq peak and TRANSFAC 

binding site. One of the top associated SNPs (rs2170577) with locus WDR17 is also 

in a NF-κB TRANSFAC binding site. Disruption from G to T results in a loss of the 

NF-κB binding motif. In addition, this SNP is observed in a strong NF-κB LCL 

specific ChIP-seq peak (ENCODE). 
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Figure 3-9. Relative distribution of SNPs. Analysis of heterozygous top 3 SNPs 

associated to transcripts showing differential allelic expression upon inhibition of NF-

kB versus induction with TNF-α. There is significant enrichment of SNPs in 

regulatory regions including 10Kb upstream of the promoter, 2Kb upstream of the 

promoter, the first exon, and the 1
st
 intron. 
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Network Analysis 

Functional analysis of loci showing differential AE associated to top 3 heterozygous cis- 

rSNPs was done using IPA. The output was 3 networks consistent with the literature for 

NF-κB function within the cell (70-75) (Table 3-5). The first network was characterized 

by functions relating to cell death, cellular compromise and inflammatory response (p= 

10
-41

). The second network indentified in the set of loci involved functions relating to 

dermatological disease and conditions, infectious disease and lipid metabolism (p= 10
-35

). 

The second network also contained a top hub, which was NF-κB (Figure 3-10). 
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Table 3-5. Functional analysis using IPA. Loci showing differential AE were 

analyzed using IPA. This yielded three top networks consistent with NF-κB function. 

The score is based on a p-value calculation. This calculates the likelihood that the 

network eligible molecules that are part of the network are found there by random 

chance. The value is the negative exponent of the right-tailed Fisher’s exact test result.  
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Figure 3-10. Network 2: Dermatological Disease and Conditions, Infectious 

Disease and Lipid Metabolism. NF-κB was a top hub in the second network 

associated with the set of differentially expressed loci (p-value=10
-35

).  
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GWAS analysis 

We investigated whether top 3 SNPs in our list of mapped cis-regulatory variants, which 

were associated to the subset of loci that showed differential AE, were also associated to 

complex diseases based on previous GWAS results available in the literature. Top 3 cis-

rSNPs were associated to complex diseases including immune related and/or autoimmune 

diseases such as systemic lupus erythematosus, ulcerative colitis, and rheumatoid arthritis 

(Table 3-6).  
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Gene ID/ 

Accession 

SNP Association 

(p-value) 

Complex 

Disease 

(GWAS) 

Association  

(p-value)  

Popu- 

lation  

BLK 

(NM_001715) 

rs13277113 

 

7.09E-28 

 

Systemic 

lupus 

erythematosus 

 

1.0E-10 CY 

BLK 

(NM_001715) 

rs2618476 

 

1.27E-30 

 

Systemic 

lupus 

erythematosus 

 

 2.0E-8 CY 

BLK 

(NM_001715) 

rs2736340 

 

4.47E-30 

 

Systemic 

lupus 

erythematosus 

Rheumatoid 

arthritis 

 

 3.0E-7 CY 

FAM167A 

(NM_053279) 

 

rs2618476 

 

9.26E-21 

 

Systemic 

lupus 

erythematosus 

 

 2.0E-8 CY 

FAM167A 

(NM_053279) 

 

rs2736340 

 

7.12E-21 

 

Systemic 

lupus 

erythematosus 

Rheumatoid 

arthritis 

 3.0E-7 CY 

FAM167A 

(NM_053279) 

 

rs13277113 

 

9.26E-21 

 

Systemic 

lupus 

erythematosus 

 

1.0E-10 CY 

GSDMB 

(NM_001042

471) 

 

rs8067378 

 

5.59E-18 

 

Ulcerative 

colitis 

 

1.0E-7 CY 

HPCAL4             

(NM_016257) 

 

rs873917 

 

8.40E-08 

 

Amyotrophic 

lateral 

sclerosis 

 

 8.0E-6 Y 

MYO1B 

(NM_012223) 

 

rs13030978 

 

3.81E-05 

 

Liver enzyme 

levels 

(gamma-

glutamyl 

transferase) 

 

1.0E-11 C 

C8orf12  

(uc003wtu.2) 

rs2618476 

 

9.49E-20 

 

Systemic 

lupus 

 3.0E-7 CY 
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erythematosus 

 

C8orf12  

(uc003wtu.2) 

 

rs13277113 

 

9.49E-20 

 

Systemic 

lupus 

erythematosus 

 

1.0E-10 CY 

C8orf12  

(uc003wtu.2) 

rs2736340 

 

1.11E-19 

 

Systemic 

lupus 

erythematosus 

Rheumatoid 

arthritis 

3.0E-7 CY 

854  

(OTTHUMT0

0000256997) 

rs8067378 

 

7.36E-18 

 

Ulcerative 

colitis 

 

1.0E-7 CY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-3. GWAS Analysis. Candidate cis-rSNP most strongly associated (rank 1, 2 

and 3) to loci harbouring changes in differential AE were analyzed to investigate 

association to immune related and/or autoimmune diseases previously seen in the 

literature by GWAS. 
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Bernstein HMM Classifications 

We investigated chromatin states based on Bernstein HMM classifications (85) for case 

and control SNPs associated with loci showing differential AE upon perturbation of NF-

κB. Case SNPs were twice as likely to be in active promoter or strong enhancer regions 

as compared to controls SNPs.  This significant enrichment was observed when the 

investigation was restricted to top 10 SNPs (Chi-squared test, p-value = 5.3E -40), top 3 

SNPs (Chi-squared test, p-value = 2.7E-24) and also for top SNPs (Chi-squared test, p-

value = 6.8E
-17

) per loci. In addition, a similar proportion of case and control SNPs were 

seen in all of the other chromatin states (Figure 1-7). 

 

Investigation of relevant loci 

Using a literature search, transcripts were characterized by biological or biomedical 

relevance to the NF-κB pathway and implications in inflammation and/or autoimmune 

disease. Top 3 Cis-rSNPs associated to loci showing differential AE in our experiment 

composed the subset under investigation (Table 3-7).  
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Relevant Loci  Explanation  

Complement component 3 (C3) Target gene of NF-κB (69), part of the 

complement system, which contributes to 

innate immunity (98) 

 

Complement component receptor 2 

(CR2) 

Part of the complement system, which 

contributes to innate immunity and 

activates the NF-κB pathway (99) 

Interleukin 6 receptor (IL-6R) IL-6 plays a central role in vascular 

inflammation by the activation of NF-κB 

and downstream events including 

production of IL-6 by targeting the receptor 

component (100) 

 

 Gasdermin B (GSDMB) GSDMB transcript has been implicated in 

asthma studies, as well as, autoimmune 

diseases (e.g., rheumatoid arthritis, Crohns 

disease and ulcerative colitis) with SNPs 

causing opposite effects on the 

immunopathogenesis of the 

aforementioned (101) 

B lymphocyte kinase (BLK) Cis-rSNPs have been associated to BLK 

and to systemic lupus erythematosus (17)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-7. Implication of loci showing differential AE in the NF-κB pathway or 

range of immune related diseases. A literature review using the search engine, PubMed 

was done in order to determine loci previously associated to the NF-κB pathway or 

immune related diseases. The subset of loci investigated includes transcripts showing 

differential AE associated to top 3 ranked SNPs for the LCL populations.  
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Case Study: SNAI1/WNT4 Model 

Intersection of datasets for discovery of cis-rSNP  

We had a strong hypothesis for the association of SNAI1 and WNT4. We identified a SNP 

that affects WNT4 cis-regulation in our FB panel and alters the risk for osteoporosis (87). 

The signaling pathway of WNT4 has been implicated in bone development (102, 103).  

Combination of multiple GWAS datasets, eQTLs in osteoblasts, AE in primary FBs and 

DHS-seq from mesenchymal stem cell (MSC) lineage allowed determination of a single 

SNP > 200kb upstream of the WNT4 gene. Primarily, overlapping BMD detected by 

Decode (104) and our human osteoblast eQTL (21) data indicated a WNT4 5’ regulatory 

variant specific for MSC lineage, and therefore was directly relevant to bone disease (BJ 

and NHDF cells). A common variant overlapping the lineage specific DHS-site was fine-

mapped (sequencing functional sites + follow up genotyping in cell panels) in 

independent AE data explaining increased BMD association in GEFOS1 and WNT4 

expression in independent data sets. Bioinformatics analysis of the cis-rSNP indicated 

that it altered a SNAI1 binding site. Consequently, this region was thought to be cis-

regulated since it is found in a DHS region, which is a site of active chromatin (Figure 3-

11). We have shown in vitro allele-specific EMSA signals in nuclear extracts from MSC 

lineage (MG-63 cells) and we are now pursuing in vivo validation of SNAI1 binding in 

living cells. As previously mentioned, this was completed by carrying out ChIP, as well 

as SNAI1 knockdown by RNAi with monitoring of its consequences in WNT4 AE 

phenotype, as well as, genome-wide AE assessment.  
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Figure 3-11. Intersection of datasets for discovery of cis-rSNP. The combination of 

multiple datasets enabled the identification of a cis-rSNP which increases the 

expression of WNT4 and BMD in independent datasets. This cis-rSNP is >200kb 

upstream of the WNT4 gene. Bioinformatics analysis of this SNP using TRANSFAC 

showed that it altered a SNAI1 binding site.  
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Validation of SNAI1 knockdown by RNAi 

Consistent inhibition of SNAI1 using RNAi in transfection studies has been observed as 

compared to the negative control for various cell lines heterozygous for rs6684375, 

including WG1657, GM02317, HOB642 using RT-PCR (Figure 3-12). Validation of the 

effect of SNAI1 on the expression of WNT4 was also done using RT-PCR using the 

Rotor-Gene
TM

 6000 real-time rotary analyzer (Corbett Life Sciences, Sydney, Australia). 

Ambivalent results were observed in terms of verifying the knock down of WNT4 

expression. This included inconsistencies in technical replicates as per the example using 

the cell line WG1657 (Figure 3-13). In addition, the majority of the discrepancies were 

seen in replicates done in RT- PCR; consequently, many of the analysis could not be 

expressed quantitatively.   

 

 

 

 

 

 

 



99 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3-12. Validation of SNAI1 knockdown by RT-PCR. Validation of SNAI1 

knockdown versus the negative control was done by using known primers for 

SNAI1, as well as, housekeeping genes (18s ribosomal RNA and exportin-5) using 

the comparative CT method. This was done at various time points (x-axis) and the 

fold change is indicated (y-axis). Approximately 85 % inhibition of SNAI1 was 

observed for WG1657, HOB642 and GMO2317.  

Figure 3-13. Independent analyses of WNT4 knockdown. Knockdown of SNAI1 and 

its effect on the expression of WNT4 was analyzed using RT-PCR for primers that 

enriched for WNT4. Independent analysis of WNT4 in three experiments with the cell 

line WG1657 were done at 96 hours post-transfection. WNT4 knockdown was not 

consistent across technical replicates. 
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Results from assessment of SNAI1 binding at rs6684375 by ChIP 

ChIP-RT-PCR experiments show the enrichment of SNAI1-specific binding site 

(rs6684375) in MSC lineages. Enrichment of the SNAI1-specific binding region was 

demonstrated by using primers, which surround and amplify the SNP. The enrichment 

from the SNAI1 antibody was compared to that of IgG antibody. Relative enrichment 

using two different primers, as well as, two cell lines is shown in Figure 3-14. 
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Figure 3-14. SNAI1 binding site (rs6684375) enrichment assessed by ChIP-RT-

PCR. ChIP-RT-PCR was done using the antibodies SNAI1, IgG, and H3k4me1. 

Primers in which rs6684375 was amplified were used to validate the enrichment of 

SNAI1 binding. 2-3 fold enrichment was seen for SNAI1versus immunoprecipitation 

with IgG. 
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Bioinformatics analysis of genome-wide AE 

Preliminary analysis of data generated from the high-throughput experiment in which 

SNAI1 was perturbed, was analyzed as follows. Analysis consisted of determining the 

multiplicative probability of observing 3 SNPs in a row using different significant cutoff 

p-values (i.e. the likelihood of seeing 3 consecutive SNPs with high change in 

heterozygous magnitude ratio). After which we compared treated samples and control 

samples in order to observe a change in AE. The change in AE was only significant for 

values over the 90
th

 percentile. We first investigated SNPs across the WNT4 transcript, 

which did not show a consistent change in AE between treated and control samples. We 

proceeded to analyze other transcripts in our data as mentioned above and we observed in 

FBs, as per the following example, SNAI1-mediated specific AE differences in the 

transcript GRIN3B on chromosome 19 (Figure 3-15). In addition, in an independent 

analysis all overexpressed alleles were phased to the same chromosome. Phasing was 

done for all SNPs using 1M data. The independent analysis showed a similar result, 

which confirmed the differential AE seen in the transcript GRIN3B.  



103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-15. SNAI1-mediated AE change for GRIN3B on chromosome 19. There 

was diminished AE in cells transfected with RNAI targeting SNAI1 as compared to 

the control samples for GRIN3B. This was observed at 3 time points (48, 72, 96 

hours). In an independent analysis all overexpressed alleles were phased to the same 

chromosome. Phasing was done for all SNPs using data from the Illumina 

HumanOmni 1M-Quad BeadChips. 
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An alternative approach to assess AE (SNAI1) 

Due to the fact that the TF NF-κB is well understood throughout the literature than, we 

believed that the method of analysis used would provide insight into studying SNAI1. In 

addition, we observed encouraging results from the study with NF-κB, in which specific 

loci changed upon perturbation, which furthered our reasoning for analyzing SNAI1 data 

with a similar methodology. The in-house map of cis-regulatory variation for FB cells, 

which is similar to the one created for LCLs, was integrated with FB mean AE data for 

experimental samples in which SNAI1 was targeted by RNAi and the negative control. 

As can be seen in Figure 3-16, we replicated a similar approach both to perturb SNAI1 

using RNAi and genome-wide AE assessment on Illumina HumanOmni2.5-Quad 

BeadChips as for NF-κB. We were searching for loci, which showed differential AE 

upon targeting SNAI1 versus the control samples. Consequently, we observed diminished 

AE for only 63 loci in samples transfected with RNAi targeting SNAI1 versus control 

samples at 48, 72 and 96 hours post treatment.  
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Figure 3-16. Filtered analysis of genome-wide AE data. An in-house map of cis-

regulatory variation for FB cells was merged with our mean AI data from samples in 

which SNAI1 was targeted by RNAi. The first filter implemented was to use loci from 

the list showing an AE change of greater than the threshold of 0.05 from the Illumina 

HumanOmni1-Quad BeadChip data. Subsequently, loci were analyzed only if AE was 

diminished in samples in which SNAI1 was knockdown versus the control. Mean AI 

values were compared and only loci with an AE change at greater than >3 SNPs were 

retained. Moreover, loci showing differential AE at the 3 times points (48, 72 and 96 

hours) were further investigated. 
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CHAPTER 4: DISCUSSION 

Study Conclusions  

Over the preceding 25 years, major progress has been made in elucidating the ubiquitous 

yet intricate role the NF-κB family of inducible TFs play in gene regulation (70). 

However, numerous questions have remained unanswered, several of which we have 

attempted to shed light on. This thesis primarily investigated the effect of TF binding 

variation of NF-κB on differential AE. Preliminary analysis of LCL in house cis-rSNP 

data revealed enrichment in NF-κB binding sites versus control SNPs highlighting the 

potential value of an in depth study on the role of NF-κB on AE in LCLs.  Genome-wide 

AE assessment using the Illumina HumanOmni5-Quad BeadChips highlighted transcripts 

from our mapped list of cis-regulatory variants that showed differential AE upon 

perturbation experiments of NF-κB in LCLs. Cis-rSNPs (rank 1,2,3) associated with this 

subset of loci were subsequently overlapped with in-house and publicly available 

functional genomic data. The functional data included LCL-specific ChIP-seq peaks and 

TRANSFAC binding sites for the following TFs: NF-κB, E2A, STAT1, IRF2, and EBF1. 

Significant enrichment was observed for top cis-rSNPs (rank 1) at NF-κB ChIP-seq peaks 

for the subset of loci versus all mapped loci.  

 Further investigation revealed loci exhibiting differential AE were associated to a 

heterozygous top 1 or top 3 ranked cis-rSNP, which in 36% of cases and 64% of cases, 

respectively, overlapped a functional element for NF-κB or one of the known cooperative 

TFs. Results consistent with conclusions previously reported in the literature for NF-κB 

were also observed for loci, which showed differential AE upon inhibition of NF-κB 

coupled to induction by TNF- α. Cis-rSNPs were significantly enriched in active 

promoter and strong enhancer elements as compared to control SNPs. The distribution of 
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top 3 cis-rSNPs across the genome showed an increased likelihood of SNPs found in 

functional elements relative to all SNPs in the region. In addition, network analysis using 

IPA uncovered 3 top networks, which were consistent with NF-κB function within the 

cell and one of which contained NF-κB as a top hub in the network. Finally, many of the 

transcripts exhibiting differential AE upon perturbation were themselves part of the NF-

κB pathway and/or were related to inflammation and/or autoimmune disease.  

 

Challenges for the cooperative binding mechanism of NF-κB  

One challenge that remains is to discover the remaining TF coassociations at specific 

target sites since the vast majority has yet to be uncovered especially in terms of NF-κB.  

Previous studies have shown that TF coassociations are evident within about 1-2kb of the 

factor under analysis. However, distal coassociations present complex problems in part 

due to the likelihood that more nonfunctional but related motifs will be found in these 

regions, or potentially that there will be a weaker effect observed for distal compared to 

proximal regions (63). Another consideration is that the majority of previous analyses 

have focused on linear coassociations; yet, biological processes are complex and likely 

involve a thermodynamic TF coassociation model (64, 105). Investigation of 

thermodynamic models is based on the equilibrium binding of the TF to DNA as well as 

to one another and has shown promising results in eukaryotic systems. Thermodynamic 

models make use of synthetic expression libraries, which consists of a random 

combination of three to four TFBS. For instance, using a yeast genome, Saccharomyces 

cerevisiae, a synthetic promoter library was constructed and results showed a number of 

Mig1-regulated genes that lack significant binding sites for Mig1 in the promoter region 

(105). The above reasoning could in part account for the observation that some transcripts 
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associated to a cis-rSNP (rank 1, 2 ,3) do not overlap with a functional element for NF-

κB or a cooperative TF.  

 

Caveats for observed AE differences 

Limitations in explaining the observed AE differences in our experiments can be, to a 

certain extent, attributed to the publicly available ChIP-seq data used in the 

bioinformatics approach. ChIP-seq is one of the earliest applications of NGS, which 

although advantageous in many respects such as the ability to sequence thousands or 

millions of short DNA fragments per run, there are still systematic difficulties with the 

technology. Even though errors due to sequencing have decreased considerably, this is 

still an important consideration particularly, near the end of reads (90). Another challenge 

in ChIP studies, which was alluded to above, is the low coverage of polymorphic sites, 

thus decreasing the number of informative sites for study. In order to circumvent this 

problem, higher coverage is needed to provide the power to detect allelic biases (10). 

Detecting enriched regions is also challenging when there is an insufficient number of 

reads as it compromises sensitivity and specificity (90). Studies published to date have 

not yet achieved the coverage to include the comprehensive range of allelic biases in the 

genome (10).  

Future Studies 

In order to validate the differences in AE observed, high-throughput ChIP-seq 

experiments primarily using NF-κB (Santa Cruz Biotechnology; sc-372) could be done 

with samples from the experiment in which LCLs (GM19239, GM19240, GM19238, 

GM12891, GM12892, GM12878) were treated with TNF- α induction coupled to 

inhibition of NF-κB. In parallel, factors known to be coassociated to NF-κB that we 
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evaluated E2A, STAT1, IRF2, and EBF1, ChIP-seq could be done on the same samples. 

ChIP-seq would be done at a higher coverage and used in our bioinformatics approach to 

increase our understanding of the cooperative mechanism of NF-κB binding. Future 

studies may extend to include more cell lines in order to increase the power of results 

observed for NF-κB. Analysis of NF-κB and other cooperating factors may potentially 

better explain the role of such SNPs in control of regulatory variation. Combining other 

analyses will be essential for understanding differences in NF-κB binding, which will in 

turn allow for comprehensive annotations of genomic variants and developments in 

systems biology (64). This can be extended as an approach to study other transcription 

factor binding using a suitable model system.  

 

Development and Refinement of SNAI1 Approach 

Experiments were performed in order to validate the hypothesis for the association of the 

TF SNAI1 and WNT4, in which a cis-rSNP forming a SNAI1 binding site was shown to 

alter the expression of WNT4. WNT4 is relatively lowly expressed in most cell lines as 

can be observed via BioGPS (www. http://biogps.org), including in FB and osteoblast 

cell lines. Due to this, RNAi studies of expression are difficult to undertake with WNT4. 

Discordant results were observed for WNT4 expression, constituting a key reason for the 

inability to fully address our hypothesis in the case study of the association between 

SNAI1 and WNT4. Our initial genome-wide AE approach using the Illumina 

HumanOmni 2.5M-Quad BeadChips, in order to search for loci with differential AE in 

samples in which SNAI1 was inhibited versus control samples did not elucidate a large 

number of loci. Even though applying the alternative approach, based on encouraging 

results from analysis of NF-κB, resulted in an increased number of loci exhibiting 

http://biogps.org/
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changes in AE upon inhibition of SNAI1 in FB cell lines, the experiment still seemed to 

alter AE for relatively few loci.  

 

Validation of the Regulatory Role of NF-κB in LCLs 

The above point was made evident due to a parallel comparison of differential AE with 

NF-κB in LCLs, as well as, SNAI1 in FB cell lines. This comparison is shown in Figure 

3-16. There is over a 16-fold difference in the relative number of loci that were affected 

between LCLs and FBs. From our mapped list of cis-regulatory variation, NF-κB had a 

regulatory effect on approximately 33% of loci in comparison to approximately 2% of 

loci for SNAI1 in FBs using a similar approach to filter the loci. We observed a 

significant difference (Chi-squared test, pv= 1.83E-195) between perturbations of NF-κB 

versus SNAI1.  

The statistical significant difference in the perturbation studies between the two 

transcription factors provides evidence for the importance of using a specific 

transcription factor in an appropriate cell line in order to assess the TF’s control of 

regulatory variation. Even though SNAI1 is known for its involvement in mesenchymal 

stem cell development and we have in-house evidence demonstrating the role of the TF 

SNAI1 in fibroblasts; fibroblast cells may not provide an ideal system for studying 

SNAI1 (88). SNAI1 is known to play a part in epithelial-mesenchymal transition (EMT) 

and as such epithelial cells could be used to better study the regulatory role of SNAI1 

(88, 106). Conversely, the regulatory role of transcription factors SOX2 and C-MYC 

could be better elucidated in fibroblast cells (107).  
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Figure 3-16. Comparison of NF-κB and SNAI1 effect on AE genome-wide. In 

terms of the mapped list of cis-regulatory variants for LCLs and FBs, >1700 and 

>4000 loci were associated to cis-rSNPs, respectively. From the list of loci for 

LCLs, 581 were heterozygous at a top SNP and had an AE change at greater than 3 

SNPs compared to 63 loci for FBs. 
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Relevant Contributions to the Field  

The ability to not only effectively perturb NF-κB in a relevant cell type but also use a 

bioinformatics approach to narrow down on likely causal variants makes this an attractive 

method for further studies with other TFs. Integrating the parallel collection and 

assessment of allelic data at several levels of genomics is crucial to bettering our 

understanding of TF-DNA interactions.  Our results demonstrate extensive contributions 

of genetic variation on TF binding for NF-κB, as well as, SNPs underlying the allele-

specific sites, which could likely affect TF binding and chromatin structure. Furthermore, 

the majority of loci displaying changes in AE upon perturbation of NF-κB are shown to 

be associated to top cis-rSNPs overlapping functional elements. The genetic variants 

overlapping LCL-specific ChIP-seq peaks and/or TRANSFAC binding sites for NF-κB or 

a known cooperative TF can have an effect on the observed AE. As such, we have 

provided evidence that assessment of TF binding for gene regulation can be translated 

from traditional tools to the direct assessment of allele-specific TF binding.  
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APPENDIX A 
Oral Presentations 

1. Oral Presentation at Canadian Human and Statistical Genetics Meeting, White Oaks 

Conference Centre, Niagara Falls, Ontario, Monday April 30
th
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Published Abstracts 

 

1. 4th Annual Canadian Human Genetics Conference, Banff, Alberta, April 2011 

 

Validation of cis-regulatory SNPs altering disease risk for osteoporosis  

Alicia Schiavi, Veronique Adoue, Stephan Busche, Bing Ge, Tony Kwan, Tomi Pastinen 

 

Department of Human Genetics, McGill University, Montréal, Canada 

Osteoporosis is a skeletal disorder characterized by compromised bone strength and 

increased risk of fracture in which the regulation of bone remodeling is imbalanced. 

Numerous loci contributing to bone mineral density and osteoporosis risk have been 

recently described by GWAS (Rivanedeira et al. NG 2009); however, the underlying 

biological effect of many of these variants remains unknown. Elucidating these effects 

and uncovering the remaining genetic variation is critical to understanding this complex 

disease. 

Using a powerful and highly sensitive method developed in our lab to map cis-regulatory 

variants in human cells (lymphoblasts, monocytes, and fibroblasts), we identified a SNP 

that affects WNT4 cis-regulation in our fibroblast panel and alters the risk for 

osteoporosis (Rivadeneira et al. 2009). The signaling pathway of WNT4 has been 

implicated in bone development. The cis-rSNP maps >200kb upstream of the WNT4 gene 

and overlaps a site of active chromatin observed in fibroblasts. Consistent with a cell type 

restricted chromatin signal, we observed the regulatory association only in fibroblasts, 

indicating that the SNP alters gene regulation in mesenchymal stem cell (MSC) lineage 

and therefore is directly relevant to bone disease. Bioinformatics analysis of the cis-rSNP 

indicates that it alters a SNAI1 binding site. We have shown in vitro allele-specific EMSA 

signals in nuclear extracts from MSC lineage (MG-63 cells) and are now pursuing in vivo 

validation of SNAI1 binding in living cells by carrying out ChIP with allele-specific 

readouts, as well as SNAI1 knockdown by RNAi with monitoring of its consequences in 

WNT4 allelic expression phenotype. Consistent inhibition (85%) of SNAI1 using RNAi in 

transfection studies has been observed. We are pursuing on-going allelic expression 

imbalance assessment of WNT4 in cells heterozygous for this cis-rSNP and treated with 

efficient SNAI1 RNAi. 

These approaches will be generically extended to other cis-rSNPs altering osteoporosis 

disease risk and we will monitor the consequences of these gene knockdowns in a 

genome-wide manner. 
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2. Human Genetics Research Day, McGill University June 2011 

 

Validation of cis-regulatory SNPs altering disease risk for osteoporosis  

Alicia Schiavi, Veronique Adoue, Stephan Busche, Bing Ge, Tony Kwan, Tomi Pastinen 

Department of Human Genetics, McGill University, Montréal, Canada 

M.Sc.1, Tomi Pastinen (supervisor) 

 

Osteoporosis is a skeletal disorder characterized by compromised bone strength and 

increased risk of fracture in which the regulation of bone remodeling is imbalanced. 

Numerous loci contributing to bone mineral density and osteoporosis risk have been 

recently described by GWAS (Rivanedeira et al. NG 2009); however, the underlying 

biological effect of many of these variants remains unknown. Elucidating these effects 

and uncovering the remaining genetic variation is critical to understanding this complex 

disease. 

Using a powerful and highly sensitive method developed in our lab to map cis-regulatory 

variants in human cells (lymphoblasts, monocytes, and fibroblasts), we identified a SNP 

that affects WNT4 cis-regulation in our fibroblast panel and alters the risk for 

osteoporosis (Rivadeneira et al. 2009). The signaling pathway of WNT4 has been 

implicated in bone development. The cis-rSNP maps >200kb upstream of the WNT4 gene 

and overlaps a site of active chromatin observed in fibroblasts. Consistent with a cell type 

restricted chromatin signal, we observed the regulatory association only in fibroblasts, 

indicating that the SNP alters gene regulation in mesenchymal stem cell (MSC) lineage 

and therefore is directly relevant to bone disease. Bioinformatics analysis of the cis-rSNP 

indicates that it alters a SNAI1 binding site. We have shown in vitro allele-specific EMSA 

signals in nuclear extracts from MSC lineage (MG-63 cells) and are now pursuing in vivo 

validation of SNAI1 binding in living cells by carrying out ChIP with allele-specific 

readouts, as well as SNAI1 knockdown by RNAi with monitoring of its consequences in 

WNT4 allelic expression phenotype. Consistent inhibition (85%) of SNAI1 using RNAi in 

transfection studies has been observed. We are pursuing on-going allelic expression 

imbalance assessment of WNT4 in cells heterozygous for this cis-rSNP and treated with 

efficient SNAI1 RNAi. 

These approaches will be generically extended to other cis-rSNPs altering osteoporosis 

disease risk and we will monitor the consequences of these gene knockdowns in a 

genome-wide manner. 

 

3 key words/phrases 

1) cis-regulatory variants affecting allelic expression   

2) Genome-wide association studies 

3) risk of osteoporosis  
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3. ICHG/ASHG 2011, Montreal, Quebec, October 2011  

 

A. Schiavi
1,2

, V. Adoue
1,2, 

S. Busche 
1,2,

 B. Ge
2
, T. Kwan

1,2, 
T. Pastinen

1,2
 

1)Human Genetics, McGill University, Montreal, Quebec, Canada; 2) McGill University 

and Genome Quebec Innovation Centre, Montreal, Quebec,Canada 

 

Direct assessment and validation of allele-specific transcription factor binding in the 

human genome 

 

Characterization of human genetic variation, which effects gene expression, has focused 

on expression quantitative trait loci (eQTL) mapping; however, direct assessment of cis-

regulatory variation necessitates allele-specific approaches. Measuring allelic expression 

(AE) on a genome-wide scale is more powerful as environmental and trans-acting 

influences are minimized. Results indicate that allele-specific differences among 

transcripts within an individual can affect up to 30% of loci. These variants can be 

identified by mapping differences in AE on Illumina HumanOmni-1M/2.5M BeadChips. 

Over 50% of population variance in AE is explained by mapped cis-rSNPs. Studies show 

that these cis-rSNPs have been implicated in differences in transcription factor binding, 

suggesting a strong genetic component that needs to be further investigated. Combination 

of multiple GWAS datasets, eQTLs in osteoblasts, AE in primary fibroblasts and DHS-

seq from mesenchymal stem cell lineage (MSC) allowed determination of a single SNP 

>200kb upstream of the WNT4 gene. Consistent with a cell type restricted chromatin 

signal, we observed the regulatory association only in fibroblasts, indicating that the SNP 

alters gene regulation in MSC lineage and therefore is directly relevant to bone disease. 

Numerous loci contributing to bone mineral density and osteoporosis risk have been 

described by GWAS; however, the underlying biological effect of many of these variants 

remains unknown. Bioinformatic analysis of the cis-rSNP indicates that it alters a SNAI1 

binding site. We have shown in vitro allele-specific EMSA signals in nuclear extracts 

from MSC lineage and are now pursuing in vivo validation of SNAI1 binding in living 

cells by carrying out ChIP with allele-specific readouts, as well as, SNAI1 knockdown by 

RNAi with monitoring of its consequences in WNT4 allelic expression phenotype. 

Consistent inhibition (85%) of SNAI1 using RNAi in transfection studies has been 

observed. We are pursuing allelic expression imbalance assessment of WNT4 in cells 

heterozygous for this cis-rSNP and treated with efficient SNAI1 RNAi. These approaches 

will be generically extended to other allele-specific transcription factor binding and the 

consequences of these gene knockdowns will be monitored in a genome-wide 

manner. In progress is work on the NF-κB transcription factor that has been shown to be 

involved in the immune response and where the NF-κB motif is enriched in 

lymphoblastoid cell lines. 
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4. Canadian Human and Statistical Genetics Meeting, Niagara Falls, Ontario, April 2012 

 

Direct assessment and validation of allele-specific transcription factor binding in the 

human genome 

 

Alicia Schiavi, Veronique Adoue, Stephan Busche, Bing Ge, Tony Kwan, Tomi Pastinen 

Department of Human Genetics, McGill University, Montréal, Canada 

 

Characterization of human genetic variation has focused on expression quantitative trait 

loci (eQTL) mapping; however, direct assessment of cis-regulatory variation requires 

allele-specific approaches. Measuring allelic expression (AE) on a genome-wide scale 

appears more powerful as environmental and trans-acting influences are minimized 

(Pastinen, Nat. Rev. Gen., 2010). Results indicate that allele-specific differences in 

transcript expression within an individual can affect up to 30% of loci. The underlying 

variants can be identified by mapping differences in AE on Illumina BeadChips. Over 

50% of population variance in AE is explained by mapped cis-rSNPs. Studies show that 

these cis-rSNPs have been implicated in differences in transcription factor binding, 

suggesting a strong genetic component that needs to be further investigated. 

 

These approaches were extended to analyze allele-specific transcription factor binding 

by monitoring the consequences of gene knockdowns in a genome-wide manner. NF-κB 

has been shown to be involved in the immune response and the NF-κB motif is enriched 

in lymphoblastoid cell lines, mainly in promoters and strong enhancer chromatin states 

(Bernstein et al. NG 2011). We intersected mapped candidate cis-rSNPs detected in 

lymphoblastoid cells in our above experiments as well as matched control SNPs from 

HapMap YRI and CEU populations with publicly available NF-κB Chromatin 

Immunoprecipitation (ChIP)-seq experiments from the ENCODE project. We observed 

that regions surrounding candidate cis-rSNPs are enriched in NF-κB binding sites versus 

matched controls, with 37.4 % of top SNPs overlapping at least one NF-κB ChIP-seq 

peak. To elucidate the impact of candidate SNPs on AE imbalances, we performed 

TNF-a induction coupled to inhibition of NF-κB in lymphoblastoid cell lines followed by 

AE analysis on Illumina HumanOmni5-Quad BeadChips. We detected enrichment 

in NF-κB binding sites in samples induced with TNF-α versus control. On-going 

validation includes two SNPs, rs11204415 and rs2170577 associated with loci 

ALDH3A1 and WDR17, respectively, which show a decrease in AE upon inhibition of 

NF-κB. Bioinformatic analysis suggests the identified SNPs to be essential for NF-κB 

binding. 
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APPENDIX B 
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Schiavi, A., N. Light, et al. (2011). "Human genetics in full resolution." Genome Biology 

12(11): 309. 

 


