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RESUME

T ————
H
—
——

Nous proposons un model pour étudier un méchanisme de relaxation des contraintes
a une interface libre d’'un solide sous contraintes non-hydrostatique, communement
observé dans la croissance de films minces. Nous utilisons une approche Ginzburg-
Landau. Cette instabilité évoluante dans le temps. connue sous le nom d’instabilité
de Grinfeld, est d'une grande importance technologique. Elle peut étre associée au
mode de croissance par epitaxy d'ilots sur couche sans dislocation, un procédé essentiel
utilisé dans I'industrie de semi-conducteurs.

Dans notre model, le champ élastique est couplé & un parametre d’ordre de telle
fagon que le solide puisse supporter les forces de cisaillement tandis que le liquide ne
le puisse pas. Ainsi, le parametre d’ordre est défini clairement dans le contexte de la
transition entre les phases liquide et solide.

Nous montrons que, dans les limites appropriées, notre model est réduit a ’équation
d’interface droite, ce qui est la formulation traditionelle du probleme. Le traitement
des non-linéarités est inhérent a notre description. Il évite les déficiences numériques
des approches précédentes et permet des études numériques en deux et trois dimen-
sions.

Pour tester notre model, nous faisons une analyse numérique de la stabilité linéaire
et obtenons une relation de dispersion qui est en accord avec les résultats analytiques.
Nous étudions le régime non-linéaire en mesurant la transformé de Fourier de la
fonction de corrélation de créte a créte. Lorsque la contrainte est levée, nous observons
que les structures interfaciale correspondant a différents nombres d’onde deviennent
plus grossieres. Nous nous attendons & ce que nos résultats sur les phénomenes
transitoires de diminution des fréquences spatiales soient mesurables par microscopie
ou par la diffraction de rayons X.

vi



ABSTRACT

——
——

i

We propose a model based on a Ginzburg-Landau approach to study a strain re-
lief mechanism at a free interface of a non-hydrostatically stressed solid, commonly
observed in thin-film growth. The evolving instability, known as the Grinfeld instabil-
ity, is of high technological importance. It can be associated with the dislocation-free
island-on-layer growth mode in epitaxy which is an essential process used in the semi-
conductor industry.

In our model, the elastic field is coupled to a scalar order parameter in such a
way that the solid supports shear whereas the liquid phase does not. Thus, the order
parameter has a transparent meaning in the context of liquid-solid phase transitions.

We show that our model reduces in the appropriate limits to the sharp-interface
equation, which is the traditional formulation of the problem. Inherent in our descrip-
tion is the proper treatment of non-linearities which avoids the numerical deficiencies
of previous approaches and allows numerical studies in two and three dimensions.

To test our model, we perform a numerical linear stability analysis and obtain
a dispersion relation which agrees with analytical results. We study the non-linear
regime by measuring the Fourier transform of the height-height correlation function.
We observe that, as strain is relieved, interfacial structures. corresponding to different
wave numbers, coarsen. Furthermore. we find that the structure factor shows scale
invariance. We expect that our result on transient coarsening phenomena can be
measured through microscopy or x-ray diffraction.

vii
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1

INTRODUCTION

It has long been realized that mechanical and optical properties, as well as electronic
performances of many materials, are strongly influenced by their micro-structure.
This micro-structure includes features such as the atomic and crystallographic ar-
rangements, the nature and density of defects, as well as the degree of chemical
homogeneity. Understanding the basic mechanisms responsible for micro-structural
changes is therefore of technological and scientific interest. It is, and has been, an
active field of research, which comprises different disciplines, such as chemistry, met-

allurgy, crystal growth, material science and physics.

Traditional studies have been focused primarily on symmetries of atomic arrange-
ments, surface anisotropies, and, more generally, on those near-equilibrium properties
which are dominated by atomic and crystallographic effects. However, the formation
of complex solidification patterns is intrinsically a non-equilibrium phenomena, and
hence has a dynamical origin. The reason is that diffusion coefficients in solids are
very small: at room temperature they are typically of order 10~!' — 10~ '3¢m?/s, im-
plying that only crystals of small dimensions, i.e., in the micron range, can evolve on
run-of-the-mill time scales of no more than the order of a few hours to their equilib-
rium shape, which minimizes the thermodynamic potential. A typical example is a
dendrite, which is a tree-like or snowflake-like micro-structure. Its characteristics are
quasi-periodic branches, which. as they grow, emit secondary branches. Another ex-
ample is directional solidification, in which a dilute alloy is pulled at a given velocity
in an externally imposed temperature gradient. If the pulling velocity v exceeds a
threshold velocity v, cellular structures emerge. The threshold velocity depends on
the thermal gradient and the impurity concentration, and is typically v. > lum/s.

As a consequence, the solid alloy becomes inhomogeneous and periodic patterns per-
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pendicular to the growth front appear whose typical scales are in the 50 — 100um
. range.

For practical reasons, metallurgists would like to be able to predict how dynamical
growth conditions influence the structure of the growing solids. Then one would know
what kind of growth method and condition should be chosen to either avoid as much
as possible deformations of the solidification front, which results in inhomogeneity,
or to control conditions to grow structure with desired properties. Hence, one must
understand the underlying mechanisms for the growth of these self-organized struc-
tures. Also, geologists and geophysicists are interested in these issues, although from
a slightly different perspective. They are less interested in controlling the growth
process, since this is impractical in geophysics. However, they may be able to obtain,
at least qualitatively, information from some rock structures about the conditions

.which prevailed when they grew.

More recently, solidification has become a subject of interest for condensed mat-
ter physicists and statistical physicists due to its non-equilibrium character. Growth
. front morphologies are a subclass of the general problem of pattern formation in dis-
sipative systems. Other well studied examples! are found, in hydrodynamics such as
Rayleigh-Bénard convection, in chemistry with the Belousov-Zhabotinsky reactions
as prototypes, in laser physics, and so on. These examples have the common char-
acteristics that their final state is a non-equilibrium one, and the evolving pattern is
a consequence of their non-equilibrium boundary conditions. However, the systems
we shall study evolve towards thermodynamic equilibrium, implying that a well de-
fined free energy functional exists, which provides the driving force for the dynamical
evolution. A central question in pattern formation is to understand how patterns
emerge from a structureless environment and what determines the selection, if any,
of the observed structures. One would like to find a general selection principle for
out-of-equilibrium systems which would play the same role as the free-energy min-
imization principle for systems in equilibrium. Although no general scheme for the
behavior of out-of-equilibrium processes has been identified, some phenomena appear

to be “generic”’, while some are controlled by microscopic properties of the system

. !Cross and Hohenberg [93].



under study. Generally growth patterns evolve on long length scales, typically, in the

. 10 — 100pm range, and long time scales, implying a “mesoscopic”or continuum de-
scription. On this scale, which is large enough that the details of atomic organization
and motion do not appear explicitly, it is sufficient to describe solidification simply
as a first-order transition.

The basic model of solidification is a phenomenological, minimal model which is
based on the release of latent heat at the transition. The moving solid-liquid interface
can therefore be viewed as a source (or sink) of heat which, once produced, diffuses
to the adjacent phase. If transport did not take place, heat would accumulate close
to the front and the temperature would rise so that the liquid would become locally
stable again and the solidification process would stop. Thus, there is a dynamical
balance between production and transport of heat. This is responsible for the growth
modes for given external conditions. This basic model of solidification usually gives
rise to a morphological instability, the Mullins-Sekerka instability, which drives a
pattern-forming process and characteristically produces dendrites.

Many features of the solidification process are generic to first-order transitions

. and hence are also observed in micro-structures. thermodynamically metastable states
which evolve with time. The driving force for their temporal evolution usually consists

of one or more of the following:
e A reduction in the bulk-chemical free energy.

e A decrease of the total interfacial energy between different phases or between

different orientation domains or grains of the same phase.

e Relaxation of elastic-strain energy generated by the lattice mismatch between

different phases or different orientation domains.

e External fields such as applied stress, electrical, temperature, and magnetic
fields.

Asaro and Tiller {72] predicted a different morphological instability which is in-
duced by stress. Like the Mullins-Sekerka instability, it is a long wavelength insta-
. bility. Experimentally it was observed for the first time by Torii and Balibar [92].



4 1 INTRODUCTION

It is also associated with the dislocation-free island-on-layer growth, a growth mode
. which is encountered in epitaxy. The instability is technologically relevant, since the
stability of strained epitaxial films is of fundamental importance to the fabrication of
modern electronic devices. Although much research! has been dedicated to the study
of this stress-induced morphological instability in the last decade, it is much less well
understood than the Mullins-Sekerka instability. Little is known about the non-linear
regime. An analytical treatment is intricate since the elastic fields are tensorial quan-
tities which are of long range. A systematic numerical study has been impossible
due to numerical instabilities which are encountered at very early times?. Hence,
basic questions, such as whether the instability eventually settles to a steady state or
coarsens indefinitely have not been answered yet. We will propose another model to
study this stress-induced instability, or Grinfeld instability as it is often referred to,
which is based on a Ginzburg-Landau approach. Such an approach has previously
been used very successfully to study dendritic growth and other manifestations of the

Mullins-Sekerka instability.

Different methods have been employed to study the basic model of solidification
. and the dynamics of phase transformations. They are either based on a kinetic in-
terface equation with appropriate boundary conditions, or on a Ginzburg-Landau
approach, which is a field theoretical description. Both formulations have their mer-
its and drawbacks. The interface formulation, being the conventional method for
the treatment of phase changes, is often the most convenient form for analytical
calculations. In this formalism, a multi-phase and/or muliti-domain heterogeneous
micro-structure is characterized solely by the geometry of sharp interfacial boundaries
between structural domains of different orientations. These boundaries are mathe-
matical interfaces of zero thickness. The phases and domains are assumed to have
fixed composition and structure. The dynamical evolution of a micro-structure is
then obtained by solving a set of differential equations in each phase and/or domain
with boundary conditions specified at the interfaces that are moving with time. How-

ever, for complicated micro-structures, such as a moving-boundary or free-boundary

! Nozieres [93]; Spencer, Voorhees and Davis [93]; Spencer, Davis and Voorhees [93]; Spencer and
Meiron [94]; Kassner and Misbah [94].
. 2Spencer, Davis and Voorhees [93]; Spencer and Meiron [94].



problem, it is impossible to solve analytically and very difficult to solve numerically.
Moreover, different processes (e.g. phase transformations, grain growth, and Ost-
wald ripening) have usually been treated separately using different physical models.
The field theoretical description, referred to as a phase-field or diffuse-interface model,
overcomes the numerical difficulties and hence is a convenient method to model solidi-
fication processes and micro-structural evolution. The basic idea behind this approach
is to replace the dynamics of the boundary by an equation of motion for a phase-field
which is constant in the bulk phases but changes smoothly but quickly across a thin
interfacial region. Thus, the explicit interfacial motion is described by, for exam-
ple, two coupled partial differential equations, one for the temperature and the other
for the phase-field. The phase-field model is closely related to mode!l C introduced
by Halperin, Hohenberg and Ma [74] in their study of non-equilibrium phenomena.
We will briefly review model C together with two other dynamical models, namely
model A and model B, that are often encountered in the study of critical phenomena.
They also describe dynamical properties near a first-order transitions such as nucle-
ation, spinodal decomposition, late stage growth and coarsening. A typical situation
is a rapid quench from a one-phase, thermal equilibrium state to a two-phase, non-
equilibrium state within a coexistence curve. Once initiated by spatial fluctuations,
such a quenched system gradually evolves from this non-equilibrium state through
a sequence of highly inhomogeneous states, which are far-from-equilibrium, to an

equilibrium thermodynamic state which consists of two coexisting phases.

One might criticize the phenomenological level of description, and wonder if a mi-
croscopic description derived from first principles combined with a numerical simula-
tion method is not a more rigorous approach. However, the pattern and instabilities
we are interested in evolve on time and length scales which are not accessible by
molecular dynamics methods. State-of-the-art molecular dynamics simulations allow
systems sizes of up to 10° particles, which translates to 500 Angstrém for three di-
mensions and up to 0.5 um for two dimensions. The time scale they may achieve
is 1077 s. Furthermore, we expect details at the microscopic level to be irrelevant,
and hence it does not seem promising that such a microscopic approach will help

understand the underlying physical mechanism.
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o ,, |
\ :\. /

/ o- | /
// \/ /\\//
0_' o 1 -0.5_1 ry 1
(] L]
Figure 1.1: Sketch of double-well porential: f(¢) = —£¢* + £4%. On the left, where, r < 0 and only

one stable minimum exists at ¢ 2= 0, the system is disordered. On the right, where » > 0 and two
stable minima exist at ¢ = +./r/u, the system is ordered.

1.1 Field Theoretical Models

The field theoretical description of non-equilibrium dynamics is a semi-phenomenological
approach in which one focuses attention on a small set of semi-macroscopic variables,
whose dynamical evolution is slow compared to the remaining microscopic degrees
of freedom. Using either phenomenological arguments, or formal projection-operator
techniques, dynamical equations of motion for the slow variables are obtained in which
the remaining microscopic fast variables enter only in the form of random forces. Cen-
tral to this approach is the coarse-grained Ginzburg-Landau free energy functional F

of the order parameter ¢:
~[loyo 12 ,
Flo} = [d | 21Vol + f(9)] (1.1)
where [, is a positive constant and the function f(¢) is
__Ta U ;
f(9) = —56* + 76", (1.2)

where u is a positive constant. If r > 0, f(¢) has a double well structure with two de-
generate stable minima which correspond to the two phases coexisting at equilibrium.
For r < 0 only one stable minimum exists. Hence, r is a control parameter determin-
ing whether the system is disordered (¢ = 0) or in an ordered phase (¢ = :i:\/r/_u)
Figure 1.1 shows a sketch of the two cases.

Model A, in Hohenberg and Halperin [77] notation, describes the dynamics of

a non-conserved order parameter ¢, which reflects the degree of local order in the
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system. Its equation of motion is given by:

d9(7,t) _ _p OF
a ()

+ &(7, t), (1.3)

where I is a mobility, and £ is thermal noise. By replacing F by equation (1.1) we

obtain

do

which describes relaxational dynamics driven by a thermodynamic force @f/d¢ and

a¢g:, . [a—f - zgv'zqs] + £(7)t), (1.4)

a noise term £(7,t). The noise is assumed to be Gaussian and white, generated by

the fast microscopic variables. Its mean < £(F,t) >= 0, and its correlation function
< E(F)EF, ') >= D(F— 7)ot - '), (1.3)

where D is a constant, which is related to the temperature T and the strength of the

dissipation I via the fluctuation-dissipation relation:
D=2TkgT, (1.6)

where kg is the Boltzmann constant. Typically. model A is used to describe the
dynamics of binary alloys undergoing order-disorder transitions as well as magnetic
phase transitions. Equation (1.4) without the noise term is known as the Allen-Cahn
equation. Contrary to the dynamics of critical phenomena, where thermal fluctuations
are essential to understand the basic physics of second order phase transitions, thermal
noise often plays a minor role in pattern forming systems. since the length and energy
scales of interest are normally very large.

[f the order parameter is conserved, its dynamics is more constrained. A typical ex-
ample is the phase separation of a binary alloy, after a quench from a high temperature
homogeneous phase to a two phase system at lower temperature. The concentration

of one alloy component is the order parameter ¢. The continuity equation

0% _ o - _
Fri V. ji(F,t), (1.7)

describes the conservation of material. The diffusion current j(7,t) is given by:

OF

) = TV g,

(1.8)
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where I" is a kinetic coefficient. The functional derivative on the right hand side of
the equation describes a local chemical potential. The free energy functional is again
given by equation (1.1). Upon substituting equation (1.1) in equation (1.8) we obtain
a dynamical equation of motion for the conserved order parameter:

Bigt_,_t_)_ =IVv? [-zgv% + g—“g] . (1.9)
This equation was studied by Cahn and Hilliard [58] and is called the Cahn-Hilliard
equation. Cook [70] realized that to achieve the correct statistical description of the
alloy dynamics a noise term had to be added:

8¢(F* t) — 2 22 af -
2 =1V [—zwv 0+ 55| +E(RL). (1.10)

This equation is known as Cahn-Hilliard-Cook equation, or, within the classification
scheme of Hohenberg and Halperin [77], as model B. £(7, t) is a Gaussian white noise

with zero mean and the correlation function:
< E(F E(F, t') >= =2TkgTV5(F - 7) d(t — /). (1.11)

Model C describes the dynamics of a svstem with two coupled dynamical variables,

a non-conserved order parameter ¢ and a conserved variable c:

ao(r,t) Of o0 P 2

5 =-T [04) 2V + & (7. t), (1.12)
and

dc(F, t) 2 |Of 22 -
= - = , .

5 v [8c Vel +&.(F.t), (1.13)
where £,(7. t) and &.(F, t) are Gaussian white noise with zero mean and the correlation
functions:

< (T )Ep(T, ') >= 2T kg To(F — 7)o(t = t'), (1.14)
and
< E(F )T ') >= =2 kgTV3(F — 7)d(t — t'). (1.15)

The variable ¢ and ¢ are coupled through a term in the free energy which has to be
motivated in much the same way as the other terms of the free energy. A typical

example is:

_ 1, 1. 2
f(¢) = 5¢ +4¢ + co + 5 (1.16)
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1.2 Overview of thesis

In the following three chapters we introduce and review the main concepts and no-
tions which are going to be used to study and analyze the stress-induced morpho-
logical instability in chapter 6, the main subject of original research in this thesis.
This instability was first predicted by Asaro and Tiller [72]. However, since its redis-
covery by Grinfeld [86], it is often called the Grinfeld instability. We will follow this
nomenclature.

In chapter 2 the Mullins-Sekerka instability is summarized. An understanding of
the physical mechanism underlying the Mullins-Sekerka instability will be helpful in
understanding the Grinfeld instability. Further, concepts and methods being success-
fully employed in the study of the Mullins-Sekerka instability, such as linear stability
analysis, can be used to investigate the Grinfeld instability. We will also give some
typical examples of where the Mullins-Sekerka instability is encountered.

Chapter 3 outlines and discusses the phase-field model in the context of dendritic
growth, where it has been studied intensively. We show how the phase-field model is
related to the sharp-interface equations.

Chapter - introduces the structure factor as a convenient measure to study coars-
ening, a late stage phenomena characteristic of first-order transitions. During this
stage the dynamics of a phase-ordering or phase separating system is highly non-
linear and mainly driven by interfacial energy. The concept of dynamical scaling and
its application is also presented.

In chapter 5 we explain the basic mechanism of the Grinfeld instability and pro-
vide experimental evidence. Traditional approaches and formulations of the Grinfeld
instability and their results are summarized.

In chapter 6 we propose a new model for the Grinfeld instability which is based
on a Ginzburg-Landau approach!. The model is first motivated and discussed. An
asymptotic expansion is performed which shows that in the sharp-interface limit, the
sharp-interface equation of the traditional approach are recovered. The model is then
analyzed numerically in two and three dimensions. The thesis ends with a conclusion

in chapter 7.

'Miiller and Grant [98).
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2

MULLINS-SEKERKA INSTABILITY

The Mullins-Sekerka instability is a thermally induced morphological instability which
can be observed during the solidification of a pure substance from its undercooled
melt. Since it is the simplest model which comprises an interfacial (morphological)
instability which drives a pattern-forming process, it is a prototype of pattern forming
systems. It has has been intensively studied in the last three decades. Good intro-
ductions and review articles have been written by Langer'. Mullins and Sekerka [63]
were the first to perform linear stability analyses which characterized the instability

and pointed out the underlying kinetic nature of the process.

2.1 Basic Model of Solidification

The basic model of solidification describes the propagation of a solid into an under-
cooled liquid. During this process. latent heat is generated at the solidification front.
This heat must diffuse away before further solidification can take place. Hence, the
rate limiting process is the propagation of heat, which is described by the following

diffusion equation:

% =DV, (2.1)

where u = CP%L denotes the dimensionless temperature field. Ty, is the mel-

ting temperature, L is the latent heat of melting, cp is the specific heat at constant
pressure, and D is the thermal diffusion coefficient, which in the simplest limit, the
symmetric model, is the same in the liquid and solid phases. To complete the spec-

ification of the model, the following boundary conditions at the solidification front

'Langer [80]; Langer [87]; Langer [89]; Langer [92].

11
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z A LIQUID
w
SOLID

X

Figure 2.1: Sketch of the solid-liquid interface.

have to be introduced:

Up = D[(Vu)* = (Vu)'] - 7, (2.2)

which implies that the normal velocity component v, is determined by the condition
of conservation of heat. Here, 7 is the unit normal pointing from the solid (s) towards
the liquid (1) as shown in figure 2.1. The temperature at the interface is determined
by:

u; = —doke — B(va) (2.3)

which is the dynamical Gibbs-Thomson condition. The first term on the right hand
side describes the Gibbs-Thomson condition which assumes local mechanical equilib-
rium at the interface. It accounts for the change in temperature due to a surface char-
acterized by the curvature k., being defined positive for a convex solid. dy = ’-7%#11
is the capillary length, which is proportional to the surface tension v and tyvpically
of the order of a few Angstrom. The second term corrects for the departure from
local equilibrium associated with the motion of the interface. Often a linear law is
assumed, 3(v,) = Jovn. Jo = 0 would describe the limit of pure diffusion control.
which is the case of rough interfaces, in which the attachment of molecules of the li-
quid onto the solid-liquid interface can be assumed as quasi-instantaneous, i.e., much
faster (~ 107!%s) than the time the interface requires to grow by one atomic layer
(typically the velocity of the interface is of the order of 10um/s, which implies a time
of the order of 10*s). The above equations, supplemented by initial conditions and
boundary conditions far from the solidification front, constitute a closed mathemat-
ical model of moving-boundary or free-boundary type. It is known as the modified
Stefan model which has been studied extensively by mathematicians.

Figure 2.2 illustrates schematically why the solidification model develops a mor-

phological instability. Comparing a planar solidification front with a deformed in-
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Figure 2.2: Schematic illustration of Mullins-Sekerka instability. The solid line marks the solid-liquid
interface, whereas the dashed lines mark isotherms.

terface shows that a forward bulge steepens the thermal gradient ahead in the fluid,
implying that heat can diffuse away more rapidly in front of the bulge. Hence, the
bulge grows faster and faster. This instability is compensated by the stabilizing effect
of surface tension. which tries to minimize the surface area. A way to quantita-
tively characterize the instability is via a dispersion relation which is obtained from

a systematic linear stability analysis.

2.2 Linear Stability Analysis

Linear stability analysis determines whether a small perturbation of wavelength A
of the steady-state planar interface will grow in time, in which case the interface is
unstable, or whether it will decay, in which case it will be stable. First, the planar
steady-state solution has to be determined. In the reference frame moving in the z
direction with the interfacial velocity v, the steady-state diffusion equation has the

following form:
2
Viu+-=— =0, (2.4)

2

where [ = —UD- is the diffusion length. Its solution for the boundary conditions (2.2)

and (2.3) is given by:

exp(—%) -1 for z > 0 (liquid)
for z < 0 (solid),
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where the flat interface has been placed at 2 = 0. Note that the steady-state solution
exists for any positive v, but requires a unit undercooling at infinity; that is, u —» -1
as z — —oo. This implies that the latent heat released at the solidification front is
equal to the heat necessary to bring the temperature of the liquid from T, to Th,.
However, if the undercooling at infinity is smaller than unity, only a fraction of the
latent heat is absorbed by the solid, and hence heat builds up in front of the interface
and no planar steady-state solution exists.

The linear stability analysis can be performed in complete generality'. However,
here the “quasi-stationary approximation”, a valid approximation in most situations
of interest, is used. In that case it is assumed that the relaxation of the diffusion field
is much faster than the motion of the interface. Hence, the problem can be solved
approximately by first solving the time-independent diffusion equation (2.4), subject
to the thermodynamic boundary condition (2.3) on the quasi-stationary interface
&(z,t), and then inserting this result into the continuity condition (2.2) to find an

explicit expression for d€/0t. The solidification front is given by:

§(F,t) = &(r) + 9§(7. 1), (2.5)

where & (7) = 0 describes the planar steady-state solidification front and 7 the posi-
tion in the plane perpendicular to 7. d&(F,t) describes a small amplitude sinusoidal
perturbation:

E(7.t) = E(k) exp(ik - T + wt) . (2.6)

where k is a two-dimensional wave vector perpendicular to 7, and w;, is the amplifica-
tion rate whose sign determines stability. The corresponding solution of the diffusion
equation (2.4) u! and u* for the liquid and solid, respectively, yields:

2z

u(Z.z,t) = exp(—T) — 1+ 8W(F, 5, ¢), (2.7)

and

©(Z, 2, t) = 6u*(E, 2, 1), (2.8)

where the perturbations are expressed in Fourier components:

-

oul(, 2, t) = i (k) exp(ik - £ — gz + wt), (2.9)
!Caroli, Caroli and Roulet [92].
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and
Sus(E, 2, t) = @*(k) exp(ik - £ + §z + wt) , (2.10)

where ¢ and § are the positive solutions of the stationary diffusion equation (2.4):

2 . .
_%q-i-qz—k‘zzo, (211)

and

~|

G+ -k =0. (2.12)

The amplitudes @' and 4* are small, of order &, and can therefore be obtained from

linearizing the Gibbs-Thomson condition (2.3) with 3 = 0:

(k) + &' (k) = a*(K) = —dok®E(k) . (2.13)

E(k) + D [qi(k) + ga* (k)] (2.14)

By expressing i and &@* by € using equation (2.13), £, &' and @* can be eliminated in
equation (2.14), which reduces to:

2 s i
w=v(@=7) =D+ dok’. (2.15)

Assuming that kl > 1, which implies that the diffusion length { is much larger than
the wavelength of perturbation A = 27/q, equation (2.15) reduces to the dispersion

relation:

wr kvl =dolk?, (2.16)

which is shown in figure 2.3. The interface is unstabie for w > 0, which is true
for sufficiently long wavelength perturbations. Perturbations with wavelengths for
which w < 0 are stabilized. The term &3, which is stabilizing, has the capillary
length dy as a prefactor. Hence, diffusion destabilizes the planar solidificajion front
whereas capillarity acts as stabilizing agent. The wavelength A, = 27/l d, at which
w vanishes is called the neutral or critical stability point. It sets the length scale
for the problem. The diffusion length [ is usually macroscopic, while A, is of the

order of microns, so that {/A. > 1. This is just the condition that was needed in
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| Figure 2.3: Dispersion relation

. / for Mullins-Sekerka instability.k.

? / is the critical wave number. Per-

w turbations with k < k. are unsta-

ble, whereas perturbations with

/\ k > ke are stabilized by surface
tension.

order to justify the “quasi-stationary approximation”. Another way of motivating
the approximation is by realizing that the dominant instabilities have growth rates
of order wp,r ~ kc.v. The relaxation rates for corresponding perturbations of the
diffusion field are wy;;; ~ D k2. Thus, the ratio wyifs/wmes is of order k.l > 1, as

required.

2.3 Examples

There are different manifestations of the Mullins-Sekerka instability. The most stud-
ied one is the dendrite. [t evolves from an initially featureless seed, which is immersed
in an undercooled melt. Bulges then start to develop in crystallographically preferred
directions. The bulges grow into needle-shaped arms whose tips move outward at
constant speed. These primary arms are unstable against side-branching. The side-
branches, in turn, are unstable against further side-branching, so that each outward
growing tip leaves behind itself a complicated dendritic structure. See figure 2.4 as
an example. Neglecting the surface tension 7 altogether in the problem, Ivantsov
[47] found a continuous family of needle-like steady states for a fixed undercooling
A. However, these solutions fixed only the product of the tip radius and the growth
speed, and not their values individually, as required by experiments. Including the
effect of surface tension excluded Ivantsov’s needle-like solutions. Instead, the exis-
tence of a steady state solution required a non-vanishing anisotropy in the surface
tension, which then provided a discrete set of solutions for the problem. A selection
mechanism proposed that the selected dendrite is the one for which a stable solution

exists. This hypothesis has been supported by numerical simulations and is known
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Figure 2.4: STM of den-
drites in a single-crystal
weld David, DebRoy and
Vitek [94].

as “solvability theory”. A good explanatory monograph is given by Pomeau and Ben
Amar [92].

The Mullins-Sekerka instability is not limited to the diffusion of heat but has
an analog in alloys, where the diffusion of chemical species controls the motion of
the solidification front. Since thermal diffusion is always much faster than chemical
diffusion!, we assume it to be instantaneous. This implies that the solidification
of alloys is effectively isothermal. To see the analogy between the thermal and the
chemical cases, consider a typical phase diagram of a binary alloy, a portion of which is
illustrated schematically in figure 2.5. Here, ¢ denotes the concentration of the solute,
and T is the local temperature which is assumed to be constant over a large region
of the sample. In a two-phase equilibrium, the solute concentration in the liquid is
appreciably greater than in the solid. Thus an advancing solidification front rejects
solute molecules in much the same way as, in the pure thermal case, it releases latent
heat. Hence, the diffusion of the excess solute away from the interface determines how
fast the interface can move. The analogy to the thermal case becomes even clearer
if we write down the equation of motion in terms of chemical potentials of the solute

relative to that of the solvent:

~3 S a : S

i =t — po(To) = 5‘6{ sc*, (2.17)
and [

. a

i =i - po(Ty) = 3 o, (2.18)

1Typical diffusion constant of a solute are D ~ 10~5¢m?/s whereas the thermal diffusion constants
range from 10~!cm?2/s for metals to 10~3cm? /s for organic materials.
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Figure 2.5: Section of phase dia-
gram of dilute alloys.

hot contact A Figure 2.6: Sketch of set-up for
directional solidification. A sam-
liquid ple is pulled at a constant veloc-
‘ ity v through a fixed temperature

gradient established by hot and
I S~—— x cold contacts, which are at tem-
peratures above and below the
solid liquidus and solidus line, respec-
tively.

vuld contuet lv B

where & measures the difference of the chemical potential from its equilibrium value
and c is the concentration. The diffusion equation then yields:

‘;—’: = D.V?p, (2.19)
with D, being the chemical diffusion constant. The latent heat is replaced by the
miscibility gap Ac shown in figure 2.5. The boundary conditions are then given by
equation (2.2) and equation (2.3).

The last example of a Mullins-Sekerka-like instability presented here, is in direc-
tional solidification, a well known technique in metallurgy to purify solids or prepare
materials with specific properties. As above, chemical diffusion is the dominant kinetic
effect. However, in addition, a temperature gradient G is imposed which controls the
orientation and velocity of the solidification front. The basic features of the system
are shown in figure 2.6. A sample is pulled at a constant velocity v through a fixed

temperature gradient established by hot and cold contacts, which are at temperatures

above and below the liquidus and solidus line, respectively. Hence, the problem is
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Figure 2.7: Dispersion relation
for directional solidification.

described by the diffusion equation for the solute or impurity concentration, and the
modified boundary conditions incorporating the imposed thermal gradient. A linear
stability analysis for the modified problem yields the following dispersion relation':

wik) = .‘Ii [\/1 + (k1)2(1 - li — dolk?) — 1| , (2.20)

T

which is shown in figure 2.7. Three different length scales are involved: the diffusion
length { = 2D /v, the thermal length [ = AT/G, and the chemical capillary length dq.
The velocity v and G are two control parameters which control the complex behavior
of the instability. Keeping G fixed and varying v, one observes that, for small pulling
velocities, the flat interface is stable for all wavelength. This implies that the thermal
gradient is stabilizing. As the pulling velocity is increased beyond v, the velocity
at which the planar front becomes unstable, a finite band of unstable wavelength
appears which eventually evolves to a characteristic cellular pattern®. Increasing the

velocity further causes a dendritic pattern to appear.

!The partition coefficient K, which is the ratio between the liquidus and solidus slope, was set to 1.
*Weeks, van Saarloos and Grant [91].
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PHASE-FIELD MODEL

The basic model of solidification belongs to the class of moving or free boundary
tvpe problems. These problems are inherently non-linear since they include curva-
ture contributions and thus are difficult to solve analytically. Even numerically, they
turn out to be challenging problems since they involve explicit tracking of the phase
boundaries. The phase-field approach, which is rooted in continuum models of phase
transitions, avoids these problems by replacing the equation of motion of the macro-
scopically sharp phase boundaries by an equation of motion for a phase-field. which
is definite in the whole domain. The phase variable, or order parameter, is constant
in the bulk phases and changes smoothly but rapidly across the phase boundary. im-
plying a diffuse phase boundary. Hence. the problem of simulating the advance of a
sharp boundary is converted to solving a system of partial differential equations that
governs the evolution of the phase and diffusion field. Langer introduced the phase-
field model to describe the solidification of a pure melt, by reinterpreting “model
C" of Halperin, Hohenberg and Ma [74] which was introduced in chapter 1.1. Fix!
was the first who called the model the phase-field “approach”, and implemented it
numerically. Also, Collins and Levine (85] have proposed independently phase-field
equations and analyzed one-dimensional steady-states. Since then, the original model
has been modified and reformulated to address issues of thermodynamic consistency?.
It has also been extended to model the solidification of binary? and eutectic alloys* as

well as to polymorphous crystallization®. It has been also employed to study elastic

IFix (82]; Fix [83].
2Wang et al. [93].
3Wheeler, Boettinger and McFadden [92).
iElder et al. [94].
5Morin et al. [95].

21
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effects in phase separating solids'. However, most of the numerical work has been fo-
cused on the simulation of dendritic growth? which provides a non-trivial test case for
the phase-field method. One drawback of the phase-field approach is that, in order to
obtain quantitative results, the simulations have to be independent of computational
parameters. This implies that the interfacial region has to be resolved sufficiently
and fixes the grid size, which then constrains the length scale being simulated. Due
to this constraint, it is only recently that three-dimensional simulations have been
performed. One way of circumventing this constraint is by applying adaptive grid
methods® and using the fact that only the interfacial region changes during time.
The other approach is based on a reinterpretation of the “sharp-interface limit” by

Karma and Rappel® and will be discussed in chapter 3.2 and appendix A.1.

3.1 Model
The basic equation of the phase-field model is given by:
09  OF
i r 36 (3.1)

where [ is the kinetic coefficient and F is a Ginzburg-Landau free energy functional:

) - r._ .
F(@) = [ d2lf(9) + IVol + Ag(s)u]. (3.2
Here, f(9) is a free energy density with a double well structure in ¢

fl9) = M, (3.3)

a

whose minima ¢ = 0,1 determine the bulk phases, such as liquid and solid. The
parameter a measures the potential depth, and will be related to the surface tension
and interfacial width. Figure 3.1 shows the double well structure of the free energy
density for g(¢) = ¢ — % The dimensionless diffusion field is © = cPZ:E’:*L, as in
chapter 2.1. It is coupled to the phase-field ¢ by g(#). The gradient term |V¢|2 is the

contribution due to the interface. The interpretation of the different contributions

'Onuki (89a]; Onuki [89b]; Nishimori and Onuki [90]; Onuki and Nishimori [91); Sagui, Somoza and
Desai [94].

?Kobayashi [93]; McFadden et al. [93]; Wang and Sekerka [96]; Karma and Rappel [98].

3Provatas, Goldenfeld and Dantazig [98].

iKarma and Rappel [96b]; Karma and Rappel [96a]; Karma and Rappel [98].
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Figure 3.1: Double well structure of the free energy density f(¢) coupled to g(¢)u = (¢ — 1/2)u.

will become more transparent by considering a one-dimensional system at equilibrium

for u = 0. The equation of motion (3.1) reduces to:

— ¢z + 96 =0. (3.4)
or
2,

2

where the subscript z denotes a derivative. The solution is given by the hyperbolic

tangent, which describes the diffuse interfacial region between the two bulk phases:

¢o(:z:)=%l1—tanh( ad )]. (3.6)

2¢l

Figure 3.2 shows the interfacial profile. The interfacial width, being the range in
which ¢ changes from 0.05 to 0.95, can be deduced from equation (3.6) to be

w =~ 3v/2al. (3.7)

The surface tension, which is defined as the additional free energy per unit area

generated by an interface between the two bulk phases in equilibrium, is given by:
oo 2.
v=[ ds [f(¢,0)+ §¢§] . (3.8)
-0
Using equation (3.5) and the fact that f(¢,0) =0 in the bulk phases, we obtain:
2 [ 2 l
y=1 dz ¢, =

~09 32

Hence, parameter [, together with parameter a, determines the surface tension v as

(3.9)
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Figure 3.2: Equilibrium interfa-
cial profile.

well as the interfacial thickness w.

The term )\ g(¢)u in equation (3.2) causes a bulk free energy difference between
the two phases, and thus provides a thermodynamic driving force. Depending on
the sign of u, one or the other phase is favored (see figure 3.1). To describe the full

problem of solidification the heat diffusion equation has to be added:

du _ 2 1 3¢

The first part is the diffusion equation as described in chapter 2.1. The second term
on the right side represents the interfacial source term with A = 4* — ¢ being related

to the release of latent heat. Substituting equation (3.2) in equation (3.1) results in:

%t‘?i = =T [£o(6) - 2926 + Ago(@)u] , (3.11)

for which different choices of g(¢) have been proposed. In order to keep ¢ fixed in
the bulk phases, meaning that the latent heat is only released at the interface, g(¢)

has to fulfill the following condition:
dg
=], =0. 12
Sl =0 (3.12)

This can be fulfilled by choosing:
99 _
8¢

where n is a positive integer. For n = 1, the model proposed by Kobayashi [93] is

[o(6 — 1), (3.13)

recovered. This will be discussed in chapter 3.3. Models for n = 2 have also been
studied!.
!Wang et al. [93]; Umantsev and Roitburd [88].
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3.2 Sharp Interface Limit

The connection between the sharp interface formulation of the problem and the phase-
field model is established via the sharp interface limit. In the sharp interface limit the
phase-field model, consisting of a system of two non-linear coupled equations of motion
for the temperature (3.10) and the order parameter (3.11), reduces to the basic model
of solidification (equations (2.1) - (2.3)). The sharp interface limit is obtained by an
asymptotic multiple-scale analysis, also often referred to as matching asymptotics.
Caginalp and Fife [88] and Caginalp [89] showed that the different sharp interface
models can all arise as particular scaling limits of the phase-field equations. The
results are summarized in table 3.1. To obtain these limits, the phase-field equations

have to be rescaled:

sz = Dt ,
r=—, t' = 1 (3.14)
and,
) D -
E—E’ a—ﬁ (3.10)

where w is a mesoscopic length scale such as the diffusion length l4. Omitting the

primes we obtain:

06, |
ae-g‘ﬁ = V%0 — £,(6) = Aga(9) u, (3.16)

and
du 9 1 d¢ -
a:‘DV“+;\at‘ (3.17)

We are left with three parameters ¢, @ and A, whose scaling behavior determines
the different results of the sharp interface limit. € is a small expansion parameter,
a is related to a microscopic relaxation time, and A is a dimensionless parameter
that controls the strength of the coupling between the phase and diffusion fields.
Two physical parameters are involved: dy, the capillary length. and 3, the kinetic
coefficient.

Caginalp [89)] fixed one parameter by requiring that the surface tension v, being a
physical parameter, be independent of the scaling. Dividing equation (3.16) by A we

obtain:
Jd¢

afza

—evie- 29 g g, (3.19
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where £ = €2/A. The surface tension in the phase-field model was determined by
equation (3.9) to be proportional to the ratio £/v/A. Hence, the requirement of con-
stant surface tension implies:

£ = const. , (3.19)

VA

which reduces the number of free parameters to two. With this assumption, the first
three scaling limits in table 3.1 can be derived (Caginalp [89]). In order to use the
phase-field approach for the study of dendritic growth, and other problems involving
the Mullins-Sekerka instability, the convergence of the phase-field approach has to be
studied. This was done by Wheeler, Murray and Schaefer [93], as well as by Wang
and Sekerka [96], who observed that the lattice spacing Az had to be chosen very
small compared to the scale of the dendritic pattern. This permits convergence to
a reliable quantitative solution of the sharp interface equations. It turns out that
only the regime of a dimensionless undercooling of the order of one, in which the
interfacial undercooling u; is dominated by interfacial kinetics, is computational on a
quantitative level. This constraint is a consequence of the scaling ansatz that £ — 0,
which implies that the temperature is not allowed to change across the interfacial
thickness. However, the magnitude of a variation of u across the interface scales
as du ~ &v/D, since u varies locally on a scale ~ D/v in the direction normal
to the interface, where v is the local normal velocity of the interface. Therefore,
neglecting this variation is equivalent to assuming that du <« Gv, which yields, using

equation (3.19), the constraint:
§&r
D

Since Ax ~ &, the constraint implies a very small grid spacing and restricts the system

do > (3.20)

sizes which can be simulated.

However, considering the phase-field equation as a mathematical tool to solve the
sharp interface limit, one has only to demand that, in the sharp interface limit, the
sharp interface equations have to be recovered. Dropping the constraint (3.19), we are
left with three model parameters and two physical parameters. Karma and Rappel!
realized that using another scaling approach, A can be used as a free parameter, which

can be chosen for computational convenience. In their scaling limit, the interfacial

!Karma and Rappel [96b]; Karma and Rappel [96a]; Karma and Rappel [98].
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thickness is small compared to the mesoscale of the diffusion field, but it remains finite.
They refer to it as the “thin-interface limit”, since its limit includes corrections for

variation of the temperature field across the interface:

ﬁ:—[1+,\w},

™, (3.21)

where I, J, K and F are integration constants which depend on the precise form
of g(¢) and f{¢). They are determined in appendix A.l. The thin-interface limit
is closely related to a limit derived by Caginalp and Fife [88], as will be shown in
appendix A.1. This allows the constraint on dy (3.20) to be lifted, which greatly
enhances computational efficiency, and makes three-dimensional simulations possible
without adaptive grid methods. However, at very low undercoolings adaptive grid

methods have to be employed'.

- Stefan model | scaling limit | sharp interface limit
ME=O % = DV*u
1 classical | a - fixed v=D(Vu* - Vi) 7t
éi -0 u; =0
\E—O & = pV2u
2| modified | a - fixed v=D(Vu* - Vi) 7
éx - fixed u; = —dok — adyv
alternative | \,§,a =0 | % =DV
3| modified A | 5= -fixed |v=D(Ve'-Vd)- 7
u; = —dgk
alternative | £ — 0 & = DV
4| modified B | A\,a- fixed |v=D(Vu*'-Vd)- 7
u; = —dgk + Ov

Table 3.1: Scaling relations between phase-field equation and sharp interface equations.

!Provatas, Goldenfeld and Dantzig [98].
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3.3 Dendritic Growth

Dendritic growth is the problem for which the phase-field approach was created. Here

it was first introduced, here different questions of interpretation and thermodynamical
consistency were discussed, as well as its numerical appeal and limitations. Since
some analytical results are available, it is a good system to study all the questions
mentioned above. We will present the phase-field model of Kobayashi [93], which
was the first model which reproduced qualitatively distinct features characteristic of
dendritic growth, such as tertiary side arms and the coarsening of side arms away
from the tip. Since then, many contributions have been concerned with changing
the model to obtain quantitative results. As the free energy functional, Kobayashi

proposed:

L, 0 )

F= / dF [f(ab u) + 2L v (3.22)

with an anisotropy in € = én(6) which will result in an anisotropy in the surface

tension. The energy density is:
1.
f@,u) = 166 = 1)* - g(@)m(u) , (3.23)

where u = (T — T)/(Tu — Tws) and |m(u)| < 1/2, so that together with the choice
of g(o):
9(¢) = %cﬁz - %qb“, (3.24)
the minima of the free energy stay at ¢ = 0 and ¢ =1 as discussed in chapter 3.1.
One possible choice for m is m(u) = a/7arctan(—vyu) with a < 1. To study the
effect of the anisotropy in € we consider a planar interface. For the isothermal case

the solution is:

o=t [1 ~ tanh(=— )] | (3.25)

2\/—5(0)

implying that the width of the interface is proportional to ¢(f). The surface energy
as defined in equation (3.9) yields:
€(6)

e [T a2 _ o)

which motivates the choice of anisotropy. The dynamics of the order parameter is

(3.26)

given by:

—-a 2 [ioio %] +e 2 [i0r0 E] + 2760wy
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N
w G

Figure 3.3: Growth of a dendrite in an undercoocled melt for 6-fold anisotropy in two dimensions.
From left to right the number of times steps are: N; = 500, N, = 1500 and N, = 4000.

+o(L-9)[o— 5 +m)] +as - o), (3.27)

and the equation of diffusion of heat is

< T— 1 d¢ 5
with
A= cp@ : (3.29)

denoting the dimensionless undercooling, which is an important control parameter.
The last term in equation (3.27) describes a noise with strength a which acts only at
the interface to stimulate side branching. x is a random number uniformly distributed
in the interval [—1,3]. An example of a dendritic growth simulation is shown in
figure 3.3 for the parameters: n =1 + J cos(6 ) where § = 0.04, € = 0.01, 7 = 0.003,
a=0.9, vy=10, ¢ = 0.01, A = 0.6, a mesh size of 0.03 and system size N, = N, =
300. We start with a small solid disk at the center of the system. At the beginning
of the simulations, the system is at the undercooling temperature u = —1. Because
of the boundary conditions used, the whole liquid will transform to a crystal for A
greater than 1. If A is less that 1, a fraction A of the whole region will solidify and

the system will lose all its supercooling.
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3.4 Criticism

The basic model of solidification is a minimal model. It only considers the thermal
aspect of the phase transition, namely, the release of latent heat at the solidification
front and its diffusion into the solid and liquid phase. Due to non-linearities, which
come into play via the curvature x. and the normal vector 7, the mathematical
problem is non-trivial and many interesting, complex patterns evolve, as can be seen
in dendritic growth. Nevertheless, it is a crude simplification, which does not include
flow in the liquid phase, nor does it include elastic effects in the solid phase. Indeed,
the main distinction between a solid and a liquid is the shear modulus. Solids support
shear, implying that their shear modulus is finite, whereas the shear modulus of a
liquid is zero, implying that they do not support shear. One might expect that the
basic model of solidification should capture this main distinction. However, it does
not. The same criticism applies to the phase-field model. Here, although rooted in
the continuum description of phase transition, indicating that the phase ¢ is an order
parameter, ¢ does not have any physical content. It is merely a label to distinguish
the solid from the liquid phase.

Below, we will propose a solidification model in which the order parameter is
proportional to the shear modulus. Hence, it captures the main difference between
the solid and liquid phase. That is, the shear modulus of the liquid phase will vanish,
whereas the shear modulus of the solid will be finite. Thus, the phase-field obtains a

physical meaning in the context of liquid-solid phase transition.
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COARSENING

Apart from the morphological instability discussed in the last two chapters, the first-
order phase transition shows other interesting dynamical properties which involve
such phenomena as nucleation, spinodal decomposition, late stage growth, and coars-
ening. In the classical theory of first-order phase transitions, one distinguishes be-
tween two different types of instabilities which characterize the early stages of phase
separation. The first is an instability against finite amplitude perturbations in which
localized (droplet-like) fluctuations lead to the initial decay of a metastable state. The
rate of birth of such droplets is described by homogeneous nucleation theory. The
second is an instability against infinitesimal amplitude perturbations, non-localized
{(long wavelength) fluctuations which lead to the initial decay of an unstable state.
This latter instability is termed spinodal decomposition. It should be noted that this
sharp distinction between metastable and unstable states, put forward by the classical
theory of first-order phase transitions, is not supported by modern field theoretical
approaches. We now review the long wavelength instability observed in systems un-
dergoing spinodal decomposition, and in the late-stage growth and coarsening regime
as it is needed for the further discussion in chapter 6. We follow here the reviews by
Gunton, San Miguel and Sahni [83] and Bray [94].

4.1 Linear Theory

The starting point for the analysis of the early stages of spinodal decomposition is

the Cahn-Hillard equation (1.9), or model B without noise:

99(r t)
ot

of

— P2
=Iv [6¢

- z2v2¢] . (4.1)
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Cahn linearized this non-linear equation about the averaged concentration ¢g to ob-

tain: ,
om(rt) o2 [0f o » ;
5 = ['v [atbﬁ °v ] m(F,t), (4.2)
where
m(F) = ¢(¥) — o (4.3)

The Fourier transform of equation (4.2) yields:

Qﬁ—;t@ = —w(k) m(k), (4.4)

where -rh(E) is the Fourier transform of m(7) and

. 10%f
k) =Tk k2 + =25 | 5
w(k) =Tk k+l?6¢5 (4.5)
Thus, inside the spinodal regime, where 8%f/3¢3 < 0, w(k) is negative for k < k.,
where
s 1]0°%f

k: = E|3a3| (4.6)

Hence, long wavelengths grow exponentially
m(k, t) = m(k,0)e k. (4.7)

The quantity of experimental interest is the structure function S(k, t) =< [m(k)[2 >,
which is proportional to the small angle, diffuse scattering intensity. Linear theory
therefore predicts

- -

S(k,t) = S(k,0) e 2wtklt (4.8)

This implies an exponential growth in the scattering intensity for k < k., with a peak
at a time-independent wave number k. = k./v/2. The behavior predicted by the
linear theory, equation (4.8), is usually not observed in Monte-Carlo studies nor in
experimental studies of alloys and fluids. However, Binder [84] studied the effect of
a long-range force on the dynamics of first order phase transitions and found that
the time regime in which the linear theory of spinodal decomposition holds increases
logarithmically with the range of interaction. This prediction can be confirmed by

numerically simulation of the Cahn-Hillard-Cook equation. See, for example, Laradji,



4.2 Non-linear Theory: Early Stage 33

Grant and Zuckermann [90] and references therein. They studied the effect of long-
range interactions on the dynamics on first order transitions in two dimensional Ising
models via Monte-Carlo simulations with Glauber' (spin-flip) and Kawasaki? (spin-
exchange) dynamics. They observed in both cases an agreement with the linear theory

at early times.

4.2 Non-linear Theory: FEarly Stage

Although the linear theory predicts correctly the long wavelength instability, it is
clear from its prediction of exponential growth of the fluctuations that it will be
valid at most at very early times. However, it cannot account for non-linear effects
such as coarsening, which stabilizes the system before it finally reaches its two-phase
equilibrium. Many attempts have been made to incorporate non-linear effects into a
theory of spinodal decomposition. The starting point is the dvnamical equation of

the correlation function of model B. Using equation (1.2) we obtain:

;’t < O(F 1) (1) > = =20 V2 [r + BV < 6(7,t) &(7, £) > + (4.9)
+ 20 u V2 < ¢*(F\t) o(r' . t) > — 2T kgTV26(F ~ ') ,

which is formally exact. However, < (7, t) ¢(r, t) > is coupled to < ¢3(7. t) o(+, t) >
implying that equation (4.9) is the first of a hierarchy of coupled equations of mo-
tion. This is a common problem in many-body physics, however with the difference
here that one is dealing with two-phase phenomena, far-from equilibrium. Hence, the
standard techniques, such as factorizing the non-linear term by a single peaked Gaus-
sian approximation, are difficult to justify. However, coarsening does result from the
Gaussian approximation done by Langer. The Fourier transform of equation (4.9) is

55(Eat) 2252 & 0°f
S = -2k [(lk B%)S(kt)

1 P (k,t) — kBT]. (4.10)

+
Z (n—1)d¢z "
The first higher order structure factor in the Gaussian approximation is given by:

Su(k,t) =3 < $2(t) > S(k, t), (4.11)

!Ising model with Glauber dynamics is a microscopic formulation of model A.
2Ising model with Kawasaki dynamics is a microscopic formulation of model B.
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with
< $(t) >= (5717?" [ dR Sk ). (4.12)
Hence, the equation of motion for the structure factor is given by:
ng_:', ) = —-2Tk? [l2k2 + A(t)] S(k,t) + 2TkaTk?, (4.13)
with 62f oy
Al =z + 3551 < 2(t) > . (4.14)

As a consequence, the characteristic wave number k. now decreases with time, since
< s%(t) > is a positive, increasing function of time. The most important result of this
approximation, however, is a qualitative explanation of coarsening.

Langer, Bar-on and Miller {75] suggested a physical approximation which is based
on the assumption that the spatial dependence of the higher-order correlation func-
tions is the same as that of the two-point correlation function S(7,t). This leads

to
< s"(t) >

< s3(t) >
This approximation seems reasonable for large length scales, but is less accurate for

Sa(7t) = S(F ). (4.15)

short length scales. Its biggest drawback lies in the fact that it is an uncontrolled
approximation. Using this approximation in the dynamical equation of the structure

factor with

i 1 o°f <s"(t) > (4.16)

(n—1)!19¢", < s3(t) >
) (E, t) can be obtained numerically. For a critical quench, the theory is in qualitative
agreement with Monte Carlo and experimental studies. It shows a “crossing of the
tails” of the structure factor for different times which has been observed in numerical
and experimental studies of phase separation.

Grant et al. [85] have developed a systematic perturbation theory for the early
stages of spinodal decomposition for a system with long range interaction in which
the small parameter of the theory is proportional to the inverse of the range of the
force. The first order perturbative correction acts to substantially slow down the
evolution predicted by the linear theory and shifts the effective critical wave number

with time to small wave numbers which implies coarsening. The “crossing of tails”
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of the structure factor is also observed. However, perturbation calculations were
performed to order €2, in which the probability distribution function corresponded to

a time-dependent Gaussian form, not to a bimodal one.

4.3 Non-linear Theory: Late Stage

Whereas the early stage is characterized by the formation of interfaces, separating
regions of space where the system approaches one of the final coexisting states, the
late stages are dominated by the motion of these interfaces as the system acts to
minimize its surface free energy. During this time, the size of the domains grow,
while the total amount of interface decreases.

Much of the theoretical framework for understanding the dynamics of phase sep-
aration has arisen from of the pioneering work of Lifshitz and Slyosov, and Wagner,
hereafter called LSW-theory. It describes the asymptotic (¢ — oo) growth of droplets
of a minority phase of small volume fraction in a slightly supersaturated phase of a
solid solution. They calculated analytically the asymptotic behavior of the droplet
distribution function, f(R,t), where R denotes the radius of a given droplet of the
minority phase. In particular, they showed that the average droplet size obeys the
growth law:

R~ 3, (4.17)
They also derived an expression for the droplet distribution function f(R,t) which

showed dynamical scaling namely,

FIR.1) = 29(55). (118)
where

a=—(d+1)8, (4.19)
and, - -:],; (4.20)

The physical mechanism behind the coarsening process is that larger droplets grow at
the expense of smaller droplets by evaporation-condensation. Particles of the minority
phase diffuse through the majority phase from smaller droplets that are dissolving,
to larger droplets that are growing. This late stage growth is called Ostwald ripening

and is characteristic for the dynamics of systems with conserved order parameters.
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A. Scaling approach to late-stage coarsening

. Much progress in understanding the late stage growth regime is based on a dynamical
scaling hypothesis! which states that, at late times, there exists a single characteristic
length scale L(t) such that the domain structure is (in a statistical sense) independent
of time when lengths are scaled by L(t). Hence, the evolution of the system in the
late stage regime is self-similar. The hypothesis is supported by many experimental
studies of, for example, binary alloys, binary fluids, and polymer blends. It is also
supported by the LSW-theory, as well as by numerical work.

An important quantity to characterize the domain structure is the equal time pair
correlation function:

C(Ft) =< (T + 7, t) o(T,t) >, (4.21)

and its Fourier transform, the equal time structure factor:

S(q,t) =< ¢4(t) 9-4(t) >, (4.22)

where the angular brackets indicate an average over initial condition. Experimentally,
. the evolution of the structure factor can be monitored using small angle scattering of
X-rays or neutrons, whereas the evolution of the correlation function can be obtained
by microscopy. The existence of a single characteristic length scale, implies that the
pair correlation function and the structure factor have, after some transient time £,

the following scaling form:

C(rt) = f(x), (4.23)
with z= ’L%t? (4.24)

Hence, the Fourier transform satisfies

S(q,t) = L4(t) g(v), (4.25)
with y=qL(t), (4.26)

where d is the spatial dimension, and g(y) is the Fourier transform of f(z). It should

be noted that, various choices for the definition of this length exists. For example, one

. 1t should be noted that scaling has not been proven, except in some simple models and the LSW-
theory.
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could define L(t) as g7}, the first moment of S(q,t), as well as g5', the peak position
. of S(g,t). Many attempts have been made to predict the scaling forms f(z) and g(y)
as well as the dynamical behavior of L(t). The determination of the growth law for
L(t) has been done by examining interface dynamics of phase-ordering systems. The
determination of the scaling forms f(z) and g(y) turns out to be very challenging. A
number of approximate scaling functions for non-conserved fields have been proposed.
None of them seem to be completely satisfactory. For conserved fields the theory is

even less well understood.

B. Interface Dynamics

The interface dynamics approach has been used to analyze late stage phenomena
and to obtain growth laws for L(t). Depending on whether the order parameter is
conserved or not, the growth mechanisms are quite different. The interfacial motion
for the different cases can be studied using the field theoretical description discussed
in chapter 1.1. An order-disorder transition, in which the order parameter is not
conserved, can be described by the Allen-Cahn equation (1.4) or model A without

. noise. As shown in appendix A.1' the interface dynamics yields:
V= —Ke, (4.27)

where v is the velocity of the interface (normal to itself) and x. is the curvature.
Hence, the growth of a non-conserved field during coarsening proceeds through an
independent motion of the interface driven by curvature forces. From this Allen-

Cahn result we obtain an equation for a characteristic scale L(t):

oL 1
which yields the growth law:
L(t) ~ t?2, (4.29)

In the presence of a conservation law the motion of the interface is slower, and

a coupling between the bulk phases and the interface exists. Numerical studies and

!There, the more complex case is discussed. However, if one sets the temperature u to zero, model

. A is obtained.
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analytical investigations' have shown that in the symmetrical as well as highly asym-

metric quenches the late stage grows is described by:
L(t) ~ 73, (4.30)

which generalizes the result by the LSW-theory.

!Bray [{94].
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GRINFELD INSTABILITY

Elastic effects can strongly influence the morphology of materials and consequently
influence material properties. Their effect on phase transformation has been studied
intensively by metallurgists (Khachaturyan [83]). The micro-structure of even simple
binary alloys involves an intricate system of domains of distinct compositions, sep-
arated by phase and grain boundaries. Included are defects such as impurities and
vacancies, as well as dislocations. Each of these components influences the elastic
state of the solid. Work by Cahn and Larché' has been dedicated to the study of
the thermodynamics of multi-phase solids under stress. A good introduction to the
thermodynamics of inhomogeneous solids, in the presence of stress, has been given by
Nozigres [92]. More recently, the influence of elasticity on phase-separating alloys has
been studied?. Elasticity always provides a positive energy contribution. Thus, solids
try to release their elastic energy in the process of energy minimization. There are
different ways for solids to release that elastic energy. One is by plastic deformation,
which involves dislocations, the other is by elastic deformation, which is commonly
seen in thin-film growth. A non-hydrostatically, i.e. uni-axially, strained solid, which
is in contact with its own melt or vapor, can release its elastic energy by a morpho-
logical instability at the interface. This strain release mechanism was first predicted
by Asaro and Tiller [72]. They performed a linear stability analysis, and obtained a
dispersion relation which showed a long-wavelength instability. The instability was
driven by elastic stress, and stabilized by surface tension at short wavelengths. As
background for our investigation, we now introduce the basic quantities and concepts

of elasticity® which are needed for the study of the Grinfeld instability. Since the

'Larché and Cahn (78); Larché and Cahn [85]; Cahn [89).
2Sagui, Somoza and Desai [94]; Onuki [89b]; Léonard and Desai [97].
3Landau and Lifshitz [83].

39
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Grinfeld instability is a long length scale effect, a continuum description is appropri-

ate,

5.1 Basic quantities and concepts of elasticity

[n contrast to liquids, solids sustain shear, which implies that solids respond to an
external force with a deformation. The external force can either act on the whole
volume, such as in the case of gravity, or on the surface of the solid. The deformation

is characterized by a strain:

1 3u,~ Buj -
tij = 3 (5;] + 6_1,) : (5.1)

with u; being the displacements of the atoms from a reference state, which can be a
stress-free or pre-stressed state.

The most fundamental condition of elasticity is the mechanical equilibrium con-
dition, which states that, at equilibrium, all forces per unit volume in the solid, f;,
vanish:

fi= G gt=0, (5.2
where o;; is the stress tensorand f? are external body forces. A summation convention
over repeated indices is implicit. Solving this system of partial differential equations
for appropriate boundary conditions, which are either given in terms of externally
applied surface forces F;, or in terms of displacements, determines the stress state of
the solid.

The deformation of the solid is then determined using Hooke’s law, which describes

the linear relationship between the stress o;; and the strain u;;:
Oij = IN\jjkiUki (5.3)

where Kjj is a tensor of rank four, whose components are elastic constants. In the
case of an isotropic solid, Kj;x reduces to a tensor with only two components, so that
Hooke’s law can be written as:

1
0y = Kupdi; + 24 (uij - Eaijull) ) (5.4)
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where « is the bulk modulus, which accounts for volume changes, p is the shear
modulus, which accounts for shape changes without volume changes, and d is the

dimension of space. Hooke’s law can also be expressed in the following form:

E v
0ij = — | uij + ——————uydij| , 5.5
i 1+u(" l—(d-1)p * ]) (5:5)
where E is the Young’s modulus, and v is the Poisson ratio. The motivation for the
choice of these coefficients is based on considering homogeneous deformation. The

relation between both sets of coefficients is given by:

2d?
= i (5.6)
2u+d(d - 1)k
and
dk — 2
r_ ok (5.7)

YT uvdd- e

Depending on the particular problem, one or the other formulation is more appropri-
ate.

Often it is more convenient to express the mechanical equilibrium condition (5.2)

in terms of displacements. This can be achieved using Hooke's law:
V(V-@)+(1-22)(V3) =0, (5.8)

which is known as the Lamé equation. As will be seen in appendix A.2, equation (5.8)
can be solved in a straightforward way for two-dimensional systems. In many cases
an elastic problem can be posed by assuming that the displacement field in the y-
dimension vanishes, and that the displacement fields in the remaining two directions
do not dependent on y. This implies that uz, = uy, = u., = 0, and reduces the
three-dimensional problem to a two-dimensional one. It is called the plane strain

case.

5.2 Stress relief mechanism

To understand the physical mechanism for the stress-driven morphological instabil-
ity, we consider an uni-axially and uniformly stressed semi-infinite solid as shown
in figure 5.1. If the surface is flat, the solid will be strained uniformly. Then the

elastic energy density, being proportional to the product of strain and stress, will
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also be uniform and always positive, since the applied stress and the resultant strain
always have the same sign. If, however, the surface is perturbed, the applied stress
results in a non-uniform stress distribution throughout the solid. Independent of
the sign of the applied stress, stress relaxation occurs at the peaks which are less
constrained, whereas a high stress concentration is observed in the valleys which are
more constrained. The resulting stress gradient along the surface drives a mass flow
from the valleys to the peaks. Thus, valleys will grow deeper and increase the stress
gradient even more. This positive feedback will sustain the mass flow and drive the
instability. However, the instability is balanced by the surface tension which tries to
minimize the surface area. The competition between the destabilizing effect due to
the stress relief mechanism, and the stabilizing effect due to surface tension, is char-
acterized by a dispersion relation which can be obtained by a linear stability analysis.
Like the Mullins-Sekerka instability, where during solidification the temperature can
overcome the surface free energy and destabilize a planar solidification front at long
wavelengths, a stress in a solid is capable of destabilizing an otherwise flat surface at
long wavelengths. Before continuing with a quantitative approach, we would like to
emphasize that the buckling of the surface is due to the fact that surface corrugation
reduces the stored elastic energy. It should not be confused with the bending of a
solid when one applies a longitutional stress to a thin rod.

Noziéres [92] explains the above-described stress relief mechanism in more quanti-

tative terms. Consider a two dimensional, uni-axially stressed solid where

o) =0g—p#0, (5.9)
o9 =0, (5.10)
and, 0% = —p,. (5.11)

The solid is in contact with its liquid phase at a planar interface along z = 0 and
pressure p;. Figure 5.1 shows a sketch of the set-up. The two phases have equal
enthalpies per unit mass, so

9 _ ﬂ’ (5.12)

PP
where f is the free energy per unit volume and p the mass density. We assume now

that the solid grows locally, so that the interface gets displaced by an amount h(z) =
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Figure 5.1: Sketch of Grinfeld
instability.A stress agq is applied
to the edges of a semi-infinite,
isotropic solid which is in free
contact with its own melt or va-
por at pressure p.

hocosqz. If we ignore capillarity, the total enthalpy is unchanged as long as the
growth occurs at constant stress g;;. However, the mechanical matching conditions

at the interface are violated. To first order, a shear component appears:
dh dh

0 =
US.:) = n,0i;t; = [Ug) - U:(r(;)z)] dr = "GOE, (5.13)

where n; and ¢; are components of the normal and tangential vector on the interface.
To maintain mechanical equilibrium, an extra tangential force has to be applied to

the interface in order to compensate for the bulk stress:
dF, = o\Vds, (5.14)

where ds is an infinitesimal surface element. If not, the solid relaxes elastically,
thereby lowering its enthalpy. The change in elastic enthalpy due to an infinitesimal

deformation is

G = / dF[o,,0u;; + pduy) - (5.15)
Using the fact that p; = —c!%, we expand the stress as:
Oij = US)) + AO’;’_«,’ . (516)

where Ag;; is the additional stress due to relaxation. Hence, the change in elastic

enthalpy for a finite deformation is:
1
A6 = [ dr"'[(croun + 3A05uy) | (5.17)

where Aog;; can be calculated, as pointed out above and see appendix A.2. Using
Hooke’s law, the strains u;; are known as well and one obtains:
1 -2
E
This is only the elastic contribution to the free enthalpy, which is destabilizing. How-

AG = - olh%q. (5.18)

ever, the contribution due to capillarity will stabilize the interface at large q.
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5.3 Experimental Evidence

There are different experimental systems in which the Grinfeld instability has been

observed and studied.

‘He

The first quantitative experiment on the equilibrium shape of crystals under non-
hydrostatic stress were performed by Torii and Balibar [92] in 1992 using solid *He in
contact with its own melt. *He is often used to study theories of crystal growth, since
one can obtain large single crystals, free of grain boundaries and defects. Since it also
grows and melts rapidly, experiments can be performed in a reasonable amount of
time. However, it has the drawback of being difficult to cool without leaks. Torii and
Balibar [92] grew a very pure *He crystal in a glass box, in which from one side the
crystal could be strained via a piezoelectric ceramic. This allowed a straining up to
uzz = £3.2-107%, The strain was measured using a Fabry-Perot interferometer as was
the height of the interface. Due to the slight difference in the refractive index between
solid and liquid helium, An = 0.0034, melting or growth, i.e., displacement of the
interface, produces a phase shift and, hence, a fringe pattern. They first observed
macroscopic melting. At a critical strain of duc = £7 - 1075, grooves appeared with
a critical wavelength of 8mm. Since the onset of the instability was sudden, and the
disappearance for decreasing strain showed strong hysteresis, the instability was of
first order. The shape of the grooves was independent of the sign of the applied strain,
i.e., cusps were always pointing towards the solid. Further, it was observed that the
corrugations vanished with time, implying that other relaxation mechanisms were
present which showed a clear temperature dependence. The typical relaxation time
varied from tenths of seconds at 1.2K to an hour at 0.9K. Additional experiments

on *He liquid-solid interfaces were also performed by Bowley [92].

Polymer crystal

Another interesting quantitative study of the Grinfeld instability was performed by
Berréhar et al. [92]. Their experimental system is a single-crystal film of polymerized
polydiacetylene, growu in epitaxy with a monomer substrate. The polymerization is

initiated by low-energy electrons and induces a uniaxial stress in the polymerized film,
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which is generated by the difference in the chain parameter between the monomer
and the polymer. The polymer chains grow along the binary axis 5. The relative
lattice mismatch in the chain direction varies continuously with the polymer content.
Polymer content as well as the film thickness can be controlled by the electron dose
and electron energy, respectively. The thicknesses of the film studied ranged from 50
to 500nm. The surface profile was analyzed with an AFM (atomic force microscope).
For films up to 150nm the surface was covered with a wavy parallel wrinkle pattern
perpendicular to the chain direction b. The surface height variations were typically
5nm and the spacing A in the range of 150 — 350nm. The pattern was independent
of the film thickness and the polymer content .X for X > 10%. For films thicker
than 200nm, the whole sample surface showed rather regular patterns of long parallel
cracks, again perpendicular to the chain direction b, with fairly regular spacings in
the range of a few um. The cracks were straight and ran straight through steps,
implying that they were not preferentially initiated by surface defects. For the crack
depth, a lower limit of 100nm could be obtained, comparable to the film thickness.
By comparing the spacing of the wrinkles with the predicted wavelength derived
from the linear stability analysis of the Grinfeld instability, and the time scale of
the appearance of the wrinkle pattern which was consistent with surface diffusion, it
was argued that the wrinkle pattern is due to the Grinfeld instability, and that the
cracking was a secondary instability initiated by the Grinfeld instability, which also

determines the crack spacing.

Dislocation-free Stranski-Krastanov growth

The Grinfeld instability is also associated with the dislocation-free Stranski-Krastanov
growth, which describes the island-on-layer growth mode in epitaxy. Typically, one

distinguishes three growth modes in epitaxy:
e Frank-van der Merwe growth (layer-by-layer growth),
e Stranski-Krastanov growth (island-on-layer growth),

e Volmer-Weber growth (island-growth).
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! ] / NS N
{ | | ] LN TN

Figure 5.2: Different growth modes in epitaxy. From left to right: Frank-van der Merwe growth
(layer-by-layer growth), Stransky-Krastanov growth (island-on-layer growth), Volmer-Weber growth
(island growth).

Which growth mode will be adopted in a given system will depend on the interfacial
free energy terms and on the lattice mismatch. In lattice matched systems, only the
first two growth modes can ocenr. Whether the film wets the substrate (layer-by-layer
growth) or does not (island-on-layer growth) depends then only on three energies: the
interfacial energies 7;,, the film surface energy 7, and the substrate surface energy -,.
If v¢s + vf < 7, island growth occurs. Otherwise layer-by-layer growth happens. By
adding a surfactant, vy, + ¥ can be changed, and island growth can be suppressed.
If film and substrate have different lattice constants, a coherently growing film will
be strained. As the film thickness increases, so does the elastic energy stored within
the film. At some thickness, it becomes energetically favorable to relieve this misfit
strain. This happens either elastically by the dislocation-free Stranski-Krastanov
mode or plastically by the formation of dislocatioas, or both.

For a long time it was assumed that dislocations provided the only stress relief
mechanism. However, in 1990, Eaglesham and Cerullo [90] showed that the islands
formed in Stranski-Krastanov growth of Ge on Si(100) are initially dislocation-free.
Since then, many more systems have been found which show dislocation-free Stranski-
Krastanov growth!. Two examples are shown in figure 5.3 and figure 5.4. In both
cases Ge is grown coherently on Si and shows an undulating surface structure. In
figure 5.3, the surfactant Sb was present. It should be noted that there is some ev-
idence that the dislocation-free Stranski-Krastanov mode is only a transient stage
towards the plastic relaxation. It has been realized that surface morphology plays
an important role in the dislocation nucleation process. As we will see in chapter 6,
inhomogeneities in the surface morphology imply regions of high stress concentrations
which may provide enough energy to nucleate dislocations. Traditional theories of

stress relaxation via dislocations are based on the above mentioned energy balance

1LeGoues, Copel and Tromp [90]; Guha, Madhukar and Rajkumar [90]; Tersoff and LeGoues [94];
Okada, Weatherly and McComb {97].
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Figure 5.3: STM image of 8 mono-layers Ge on Si(100) deposited at 700°C with Sb as a surfactant
(Horn von Hoegen [97]).

between elastic energy and surface free energy. They do not include the nucleation
process. The earliest treatment was the continuum theory of Frank and van der Merwe
for an array of non-interacting dislocation at the film-substrate interface. Matthews
and Blakeslee [74] assumed pre-existing dislocations in the substrate, which were as-
sumed to move into the film once the mean stress caused by the misfit exceeded the
dislocation line tension. However, these approaches do not consider the mechanism
by which the dislocations nucleate. Dong et al. [98] performed a two-dimensional
molecular dynamics simulation in which they studied the temporal evolution of the
surface morphology and the mechanisms for misfit dislocation nucleation and stress
relaxation. Their results show that the critical thickness depends sensitively on the
film morphology. Tersoff and LeGoues (94] indicated, by calculating the nucleation
rate of dislocations, that strain-induced surface “roughening” is the dominant mech-
anism for the introduction of dislocations in strained layers at high misfit. It is there-
fore important to study the pre-dislocation morphological changes, though ultimately

dislocations must be included for complete understanding.
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Figure 5.4: TEM micrograph of a section of Ge grown on Si(100). The 8 mono-layers of Ge on Si
are pseudomorphic, i.e. have the same lattice-spacing (LeGoues, Copel and Tromp [90]).

5.4 'Traditional Approach

The Grinfeld instability has been studied theoretically quite intensively in the last
decade. There have been basically two approaches. The first uses a variational prin-
ciple, in which the the analysis of the second variation determines whether the system
under consideration is stable or unstable. Grinfeld! used this approach to study vari-
ous configurations. However, these thermodynamic energy minimization calculations
are static and do not permit a description of the evolution of the instability, nor can
they describe the morphology and stability of a growing film. The other approach
being used by Asaro and Tiller [72], Srolovitz [89], Spencer, Voorhees and Davis [91],
Spencer, Voorhees and Davis [93], Spencer. Davis and Voorhees [93], Spencer and
Meiron [94], Grilhé [93], Yang and Srolovitz [93] and Kassner and Misbah [94] is
based on a dynamical continuum model, in which mass transport mechanisms, such
as condensation-evaporation or surface diffusion, are driven by the chemical potential
or the gradient of the chemical potential which comprises surface free energy as well
as elastic energy. We will present here the second approach, which is at the same time
the sharp-interface formulation of the problem. It can be related to our phase-field
formulation, as will be seen later.

It has been seen in the experimental set-ups described above that the solid can
be strained uni-axially in different ways. In the experiment by Torii and Balibar
[92] a He' crystal was strained by applying an external force at the edges of the

sample. In the case of epitaxial strained films, the film is attached coherently to the

'Grinfeld [82]; Grinfeld [86]; Grinfeld {89).
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substrate. The difference between the lattice constant of the film a; and the substrate
as generated a lattice mismatch € = 5%“' and strained the film. If the lattice constant
of the film is greater than that of the substrate, € > 0, the film is compressed in the

horizontal directions in order to match with the substrate.

A. Model

To be more precise, let us consider the set-up shown in figure 5.5. A stress o,; = 0y is
applied to the vertical sides of a semi-infinite, isotropic solid which is in free contact
with its own melt or vapor in z-direction, constrained in z-direction and infinite in y-
direction. Initially the surface lies along z = 0. In addition, the system is assumed to
be isothermal and the pressure of the vapor or melt is assumed to be small compared
to stress in the solid. The solid responds to the applied stress through a deformation,
which can easily be determined if the surface of the solid is flat. Since the solid is
constrained in the z-direction, it is convenient to use a reference frame for which

u, = 0 in the stressed state. Hooke's law is then given by:

E

v 1+v =
= 1—+—; (uu + -l'T-’u.u (5,']' - —_— 65,']') , (019)

am
I 2w 1 -2

where ¢ is the strain of the reference frame. Due to that choice:
Uy, =0. (5.20)
Since the surface is flat, the boundary condition (5.24) reads:

0..=0. (5.

(4]
(3]
—
h

v
-2

u. however will be uniformly strained due to Poisson relaxation:

1+v
= €

¢ T1-v

(5.22)

P
ce

This can be seen by replacing equation (5.20) and equation (5.21) in Hooke’s law
(5.19). Hence, the stressed state is uniform. However, if the surface is not flat, the
stress field will not be uniform. To determine the stress state then, one has to solve
the mechanical equilibrium condition (5.2):

Boij

5 = 0, (5.23)
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Figure 5.5: Sketch of Grinfeld in-
stability. A stress og is applied
to the edges of a semi-infinite,
isotropic solid which is in free
contact with its own melt or va-
por.

with the appropriate boundary condition at the surface:
U"]"n.j =0 , (524)

on the surface z = h(x), where n; is the normal vector to the surface pointing towards

the liquid or vapor. The other boundary conditions at = — —oc are:

0. =0 (5.25)

and, Orr =0g. (5.26)

With equation (5.23) and boundary conditions (5.24), (5.25) and (5.26), the stress
state of the solid for a given configuration of the free surface z = h(z) is defined. The
equation is solved in appendix A.2. Knowing the stress state at the surface of the

film, the chemical potential along the surface can be calculated:

1+ ; :
W) = o + () @ + S [0F - vlon)?] 2, (5.27)

where g is the chemical potential for the flat interface, v is the surface tension,  is

an atomic volume, and k. the curvature:
Ke = ——=Fee . (5.28)

Since g,, = o0ne = 0 are zero along the surface due to the mechanical equilibrium
condition (5.24), the only non-zero stress contribution at the interface is ogy,:

p(z) = po + 7K Q+ l;—;aﬁﬂ. (5.29)

Essential for the development of the instability is mass transport, through which

the solid can reach its equilibrium state. There are mainly two mass transport mech-

anisms: evaporation-condensation, or melting-freezing, and surface diffusion. In the
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case of evaporation-condensation the mass transport occurs through an attachment-
detachment process at the front. We assume that the system is above the roughening
transition, without facets, so that the attachment kinetics are fast. This implies that
the growth velocity of the surface v, (normal to itself) is proportional to the difference

in the chemical potential between the solid and liquid:
v = =T (p* = 1), (5.30)

where [ is a kinetic coefficient. Since we assumed that the planar solid is in equilib-
rium with the liquid phase, and further assumed that the liquid pressure p; is very

small, we obtain

]. - U2 9 -

Ap=p —pt =760+ Ta,}ﬂ. (5.31)

Hence, equation (5.30) yields:
1-02 .
vy = =T [7 Ke + —2E—Uaﬂ , (5.32)

or in terms of the surface profile h(z):

ah 1 1-02,

a = F—m Y Ke + 2—0’“] . (5.33)

If the transport mechanism is surface diffusion, the total amount of material is con-
served:

Un = =Vyjs, (5.34)
where V, is the Laplace-Beltrani operator, which ensures that diffusion occurs only
along the surface, and _-7, is the material current at the surface which is proportional

to the gradient in the chemical potential of the solid:
.;s =-DVu', (5.35)

where D = D,Q4/kgT, D, is the surface diffusivity, é is the number of atoms per
unit area, and kgT is the thermal energy. The equation of motion for the interface
becomes:

vp = DV3y*, (5.36)

and in terms of the surface profile h(z):
oh _ D 1 &
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B. Linear Stability Analyses

Linear stability analysis characterizes the instability. To do so, we study the dynamics

of a small amplitude sinusoidal surface profile,
h{z) = hgsingz, (5.38)

which implies that the stress field in the film is no longer uniform. To calculate
the equation of motion of the interface, the stress state at the interface has to be
known. This can be achicved by solving the mechanical equilibrium condition with
the boundary conditions (5.24) and (5.25). The algebra is done in appendix A.2. The

stress in the infinitely thick solid is given by

O:r = 0g [l — hog(qz + 2)e* sin(qz)| , (5.39)
0. = Oohog’ze% sin(qz) , (5.40)
and 0:: = oghoq* (1 — qz)e* cos(qz) . (5.41)

This shows that the perturbation of the uniform stress field due to the sinusoidal
surface profile decays exponentially into the film (2 < 0) with a decay length pro-
portional to the wavelength of the surface profile. At the surface only the tangential

stress component gy, is non-zero. To lowest order in ghy it is given by:
O = 0y [1 - Qqh] . (5.42)

The first term is a zeroth-order contribution which accounts for the fact that stress
increases the chemical potential, and melts even a planar front. This term should be
subtracted from the chemical potential in equation (5.29). The second term is the
first order term which shows that the stress in the peaks is the lowest, whereas in the
valleys it is the highest.

Replacing equation {5.42) in the linearized equation of motion for the surface, in the

case of evaporation-condensation, results in

Oh I 1 -2

a = —F 'yq2 -2 E Ug‘]:l h'1 (5'43)
and in the case of surface diffusion,

oh [ 1-02

5= -D |vqg* -2 5 agqu h. (5.44)
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Figure 5.6: Dispersion relations for Grinfeld instability for evaporation-condenstion on the left and
for surface diffusion on the right. gq. is the critical wave number. Perturbations with ¢ < ¢. are
unstable, whereas perturbations with ¢ > q. are stabilized by surface tension.

These linearized equations can be solved by:
h(t) = hgexp (wt), (5.43)

where w describes the normal-mode growth rate, which is determined by a dispersion

relation. In the case of evaporation-condensation. or melting-freezing, we obtain

w=T [2 L —Eu- osq — ‘yq2] , (5.46)

and in the case of surface diffusion,

1-2 4, 4 =
w=D]|2 %4 —q - (5.47)

Figure 5.6 shows the dispersion relation for both cases. In both cases, modes ¢ > ¢,
are stable. whereas modes g < ¢, are linearly unstable to small perturbations of the
surface. The neutral or critical wave number is in both cases given by:

2 .2
L~ v}

E

ge=2 (5.48)

As can be seen from the sign in both equations, the elastic field destabilizes the surface
at long wavelength, whereas surface tension stabilizes short wavelength perturbations.
Therefore, the stress-induced morphological instability is also a long-wavelength in-
stability. Note that the dispersion relation passes through the origin, meaning that

the flat interface is marginally stable to linear order.
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C. Summary of other Results

Spencer, Voorhees and Davis [93] extended the linear stability analyses to a three-
dimensional epitaxially strained film with surface diffusion. They included the sub-
strate as well as an external flux. For the static film they observed that the neutral
wave number ¢, was a function of the film thickness, dy, and the stiffness ratio g = "“—f,
pf and p* being the shear modulus of the film and substrate, respectively. o = 1 rep-
resents the case where film and substrate have the same shear moduli, and hence
are not distinguishable elastically. In this case, the system is equivalent to the semi-
infinite solid discussed above. For g > 1 the substrate is softer than the film. The
neutral wave number ¢, starts off larger than for a semi-infinite solid, decreases with
increasing film thickness, and finally approaches the semi-infinite neutral wave num-
ber curve. For 0 < g < 1, the substrate is stiffer than the film, and reduces the range
of unstable modes compared to the semi-infinite solid. With increasing film thickness,
the critical wave number increases and finally also approaches the semi-infinite solid
curve. For a rigid substrate with ¢ = 0, the stabilizing effect of the substrate is so
pronounced that the instability is completely suppressed for film thicknesses less than
a critical value. The effect of a constant deposition of particles on the film results in
a growth rate change with time, since the growth rate depends on the film thickness
as discussed above. Thus, there is no simple way of measuring the stability. However,
since both the perturbation and the film are growing, the growth of the perturbation
is only observable if the perturbation growth is faster than the rate at which the film

-

thickens. The competition is quantified by a relative growth rate Q = w(d) - :i%;_)'
Since the growth rate w is extremely sensitive to temperature, due to the temperature

dependence of the surface diffusivity, low temperatures can suppress the instability.

By exploiting the long-wave nature of the instability Spencer, Davis and Voorhees
[93] derived a non-linear evolution equation for the film surface of an epitaxially
strained film on a rigid substrate (¢ = 0), in the absence of particle deposition. As
discussed above, linear stability analysis shows that for a rigid substrate there is a
critical thickness d. below which the film is stable, and that with increasing film
thickness the range of unstable wave numbers extends from zero. Hence, in the vicin-

ity of this critical thickness the unstable wave numbers are near zero. Introducing
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the film thickness d as the characteristic length scale, they assume that the length
scale in the lateral directions A is much larger, so that @ = d/X << 1 is a small
parameter. Hence, the displacement fields as well as the Lamé equation {5.8) can
be expanded in «, and solved to lowest order. They obtain a non-linear evolution
equation for the surface and examine its two-dimensional steady states. They find
sub-critical spatially periodic finite-amplitude rounded-cusp steady solutions, as well
as near-critical spatially periodic small-amplitude steady state solutions. However,
the stability analysis they performed showed that all these solutions are unstable.
The absence of stable two-dimensional steady states leaves the eventual fate of the
evolution of the instability unresolved. To gain insight into whether additional steady
solution branches exist, or a type of coarsening occurs, they studied the time depen-
dent behavior of their long-wave evolution equation. However, the equation breaks

down before any of these issues are resolved.

By calculating the chemical potential of an uni-axially stressed, semi-infinite solid,
and incorporating higher-order terms in the interfacial height h, Noziéres [93] deter-
mined the instability to be first order (sub-critical). He also showed that the interface
flattens on the liquid side and develops grooves on the solid side. He also found that

gravity acts as a stabilizing influence.

Spencer and Meiron {94] studied numerically the non-linear evolution of the stress-
driven morphological instability on the surface of a two-dimensional semi-infinite
solid as a function of amplitude and wave number. They found that the solution
branch of the steady states terminates with a cusp singularity which is numerically
not accessible. At small amplitudes, the steady state solution had a sinusoidal shape,
whereas at larger amplitudes the peaks were broader and the valleys sharper. They
also studied the time dependent evolution of different small sinusoidal perturbation

which also evolved to cusp singularities.

Another numerical study was performed by Yang and Srolovitz [93]. They used
boundary integral equation methods to solve the elastic equations, and integrated the
sharp interface equation for the case of surface diffusion. They observed deep crack-
like grooves appearing, in which the growth rate for the grooves rapidly accelerated,

and the time dependence of the groove depth became faster than exponential. They
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argued their observations were related to fracture.

D. Discussion

Experiments as well as simulations indicate that the Grinfeld instability might be
transient and will ultimately lead either to fracture and/or to dislocation nucleation.
By that stage the sharp-interface approach must have broken down since the problem
can no longer be described by considering surface tension and linear elastic strain
onlv. However, numerical simulations' encounter numerical instabilities already at
much earlier times. Also three-dimensional simulations have proven impractically
large using the sharp-interface equations.

The phase-field approach on the other hand is very robust against numerical insta-
bilities. Also, since non-linearities are inherent in the description numerical simula-
tions in two and three dimensions can easily be performed. Furthermore, the phase-
field approach can easily be extended by coupling additional fields to the phase-field.
Hence the nucleation of dislocations can be included by coupling a dislocation density
field to the phase-field. Thus the formulation of the Grinfeld instability based on a
Ginzburg-Landau approach is the first step towards a complete description of stress

relaxation mechanisms in evolving structures.

1Spencer, Davis and Voorhees [93]; Spencer and Meiron [94].
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MODEL OF SURFACE INSTABILITIES INDUCED BY STRESS

We propose a new model to describe the Grinfeld instability which is based on a
Ginzburg-Landau approach!. As discussed in chapter 3, the phase-field approach
is a convenient way to simulate free-boundary or moving-boundary type problems.
Since it has been employed successfully to study the Mullins-Sekerka instability, it
seems also an appropriate formulation to study the Grinfeld instability. In the con-
text of elasticity, it was first introduced by Nishimori® to analyze elastic effects in
phase-separating alloys by coupling the elastic field to model B. In that scheme, the
elastic strain is a subsidiary tensor which can be eliminated by assuming mechanical
equilibrium. Thus it yielded a closed description for the equation of motion of the
concentration. Sagui, Somoza and Desai [94] applied this formalism to model C, cou-
pling the elastic field to both the concentration and the order parameter, in order to
study the effect of an elastic field on an order-disorder transition. The approach has
also been used by Aguenaou, Miiller and Grant {98] to study quasidendritic growth
due to elastic fields.

We modify that approach by coupling the elastic field to a non-conserved scalar
order parameter field ¢(7) which determines whether one is in a hard solid phase
which supports shear, or in a soft disordered phase, hereafter called the liquid phase,
which does not. The position of the interface coincides with the rapid variation of this
field. Coupled to the order parameter is the elastic strain u;; which is a subsidiary

tensor. The coarse-grained Ginzburg-Landau free energy is:
- 12 .
F(o, u,-j) = /dT [f(¢, ‘U.,'j) + 5|V¢|2 y (61)

where u;; is the strain and u; is the displacement field.

'Miiller and Grant [98).
2Onuki [89a}; Onuki [89b}; Onuki and Nishimori [91}; Nishimori and Onuki [90].
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Figure 6.1: Sketch of three-well potential, # = 0 is the liquid and ¢ = +1 is the solid phase. There
is no difference between the two solid phases. On the left solid and liquid are at coexistence, on the
right the solid is meta-stable and will eventually melt.

The dimensionless bulk free energy density f(¢, u;;) is given by:

n2
F@.u5) = 2648 = 02+ Bg(oP +10 g0V T+ ful6,uy). (62

where the first part describes a three-well potential with ¢ = 0 being the liquid and
¢ = %1 the solid phase, ensuring that the liquid-solid phase transition is first order.
The potential depths a together with the parameter [ fixes the interfacial thickness.
The second term shifts the energy, so that, for constant elastic coefficients, solid and
liquid are at coexistence. The coupling constant ry is related to the externally applied
stress. The trace of the strain tensor is V - &, and f.(9, u;;) is the isotropic elastic

free energy for a d-dimensional system!:

L 2 Sig -\
fu(®, uij) = ;N(V Fw)° + #z Uij — FV uy o, (6.3)
2 5

where « is the bulk modulus and u the shear modulus which is ¢ dependent:

p=mg(9) (6.4)

The convenient choice
1

4
guarantees that both bulk phases keep their equilibrium values at ¢ = 0 (liquid) and

9(¢) = %fb’z - —¢*, (6.5)

¢ = £1 (solid). By construction, the shear modulus in the soft liquid phase is zero,

whereas it stays non-zero and constant in the hard solid phase. Since the solid phase

'Landau and Lifshitz [83].
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supports shear, whereas the liquid phase does not, our phase-field order parameter
has a transparent meaning in the context of liquid-solid transition.

Since elastic forces propagate with the speed of sound, it is reasonable to suppose
that the elastic field relaxes much faster than ¢. Thus, the elastic field can be solved

in terms of the order parameter using the condition of mechanical equilibrium:

IF 30,,

fi= du; c?:l:J =0. (66)
The stress tensor o;; is then given by:
oF dijg -
o = G = (a(e) + 67 00 + o) (wy = 29 -7) . (6
ij

Note, that the first term on the right hand side corresponds to a pre-strained refer-
ence frame and is proportional to the externally applied stress. The solution of the

mechanical equilibrium condition, to first order in the shear modulus, is:

..,ul—/dr /d"' (7, F) 01 o F o) My (P g™)], (68)

and
a'u,- _ a'll,' 4 I]o - -;
dr; Oz; Ay K ax,ax, /d G(F.r) g(r), (6.9)
where
V2G(F,7) = 8(F, 1) (6.10)
and
~ ? -~ 04 -
AL (F 1) = -~ AN Y I Y -
Mi;(F,r') 31‘,32:,G(r r') P o(rF—r'). (6.11)

Equation (6.8) justifies the coupling term in equation (6.2), since in the absence of
external strain, that is 4;; = 0, the solid will be stressed whereas the liquid is stress-
free. For a flat surface, i.e., ¢ = ¢(z) being a function of z only, the solution of

equation (6.8) in two dimension is:

Uzz(F) = uz.(F) =0, (6.12)
and, () = ~Rg() (1 - u@) . (6.13)
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Hence, the solid will be uni-axially strained, as discussed in chapter 5.4, with 7q

determining the strength. The stress can be determined using Hooke's law (6.7):

Ore = 211 g () — W3 56" (), (6.14)
and, C.: =0, =0. (6.15)

Hence o, determines the stress which is externally applied.
The elastic field can now be expressed in terms of the order parameter. Substituting
the strain from equation (6.8) and equation (6.9) in equation (6.3) leaves the total

free energy to first order in u as function of ¢ only:

, G R
#0)= [ ar| X2 4 Sywr
a 2
+ 1 Bg(?) [ ar [[driMy (7,7 () My, ) g(r")] . (616)
The long-range character of the elastic field appears now in the non-local Green’s
function in ¢. One should also note that 7y enters quadratically in the free energy,

implying that compressive as well as tensile stresses contribute equally to the energy.

Assuming that the dynamics of ¢ is relaxational. the equation of motion is given by:

00 OF _ _[fol®) o2, . T
at rdqb - ['{ a )
where the index ¢ means differentiation by ¢. " is the mobility and

-

ho)=2 [ar [ dr"l G(7, 1) alM,,(r ) + My, (F, ) M,-,-(r"'.ﬁ')] g(7) g(r).
J

(6.18)
Rescaling length and time scales:
A=l (6.19)
w
and, t = %, (6.20)

where w is a characteristic length scale such as the wavelength of the perturbation,

rescales the parameters to:

m
and, c= /.Lla;z' . (6.23)
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Omitting the primes we obtain as equation of motion:

a
¢ = —B[f'(¢) — €V?¢ +c ¢'(¢) h(9)], (6.24)
with three parameters (3, ¢,c), giving the mobility, capillarity, and shear strength,

respectively.

6.1 Sharp Interface Limit

It has been argued in chapter 3 that the sharp interface equations and the phase-
field formulation are equivalent if, in the sharp- or thin-interface limit, the phase-field
equations converge to the sharp-interface equations. To obtain the sharp-interface
limit, we will not integrate out the strain field, but instead we will keep the mechanical
equilibrium condition explicitly. We obtain a system of coupled partial differential
equations:

do .

o =T % - *V*¢

2 ‘ 6 2
+ 1—°g(¢)g¢(¢) + 109s()V - T + p194(0) (u,j - Y. ) (6.25)

and

doi; 0 9 S
_—l T — i 9 _ M. o _ll e — "
o = ng(0) + 9 -+ 2 o) (s - 9 -3)| 0. 020

J

To obtain a dimensionless equation, we rescale space as in equation (6.19) and time
as:

t = —t, (6.27)
and obtain as parameter:
§=—. (6.28)
This yields a dimensionless equation for ¢:

0¢ f¢>

2
-g8 2 = 2 - 202 + Hg(g)g,(9)

Sic )’
0 Go(B)V T+ p134(6) (Uij—?JV-u)  (629)
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To perform the formal multiple-expansion we rescale the phase-field equation as:

€= €2, (6.30)
=&
c= Ja’ (6.31)
and, fo=02fs, (6.32)

with ¢ being fixed in the limit ¢ — 0 as discussed by Caginalp {89]. The phase-field

equation (6.29) vields:

oa‘p r 27 0 )
—E 5 = fo— V20 +¢ 1—°g(¢)go(¢)

. 2
+ €M go(9)V - T + € f1194(8) (uu' - %V ' ﬁ) : (6.33)

Here we follow a formal expansion, as worked out in the appendix A.1 for the
Mullins-Sekerka instability. The idea of the multiple-scale expansion, or matched
asymptotics as it is often called, is to divide the total space into an outer region
given by the bulk phases, and an inner region which contains the diffuse interface. In
the inner region we define a local orthogonal set of curvilinear coordinates (r, s} that
moves with the instantaneous velocity of the interface. Here, r measures the length
along the normal direction, and s measures the arc length along the interface, defined

by ¢ = 1/2. Furthermore, we rescale the inner variable r to = = £ and expand the

outer solution in powers of e:
¢=0(z,y.t.€) = ¢!z, y, t) + bV (z,y,t) + 26PNz y, t) + -+, (6.34)
and,
oi; = 0ii(z,y,t,€) = a,(?)(x, v, t) + eaf})(x, y, t) + ezog) (z,y,t)+---. (6.35)
For the inner solution, we obtain:
o(z,y,t,€) = B(z,s,t,¢) = 8 (z,5,t) + edV(z,5,t) +---, (6.36)

and,

oij(z,y,t,€) = (2, s, t,€) = Zg) (z,8,t) + eZE;)(z, S, t)+---. (6.37)
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Outer Solution

Replacing the outer expansion in the equation of motion of ¢, we obtain to zeroth

order in e:

fo#®) =0, (6.38)

which determines the bulk phases to be ¢© = +1,0. The mechanical equilibrium

condition, to zeroth order, results in:

aa";” d (0) d 0 A
—L == Ny —o (0) %o =\ 2
dr, ~ D, [0 9(6®) + xV - @] +2 15, |9 9(¢ )(\u. >V u) 0 (6.39)

which is the known mechanical equilibrium condition for the liquid:

L@
dz (kY - @ ]-T” 0, (6.40)

t

where p = p; is the liquid pressure, which is constant in the liquid phase. For the
solid phase we have:
a . a dij -
a‘— [‘I}o 9(0(0)) +kV. u] + 2[.1.1 g(il)g [U.ij - #V . U:| =0. (641)
t ] -

Since
o = (10 g0) + 9 -0y + 25 uy - 23] (6.42)
is the stress tensor, equation (6.41) is the mechanical equilibrium condition (5.2).

Inner Solution

Rewriting the equation of motion for ¢ in terms of z, and the expanded quantities,

yields:

—ev @, = fo(®) - ¢ [¢,

2 - S5 A2
+ € [%Q(Q)ga(q’) + 10 9o(®)V - U + 11 g4(®) (Uij - —2J‘V . U) ] » (6.43)
where v = 7. Note, that x is the compressibility and &, is the curvature. Hence, O(1)
is given by:
fo(@%) - 20 =0, (6.44)
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which determines ®(®.

To first order in ¢ we have:

. 2
v = foo(@ )0 - &) — kB + %%(‘I’(o)) (@)

2
+ gs(@9)7 - 00 + 1 (@) (U - B9.00) , (6ut)

which can be rewritten:

2 Y I
Lo = — [k, — v] O + %)-g‘p((b(o') g(@9)

5;

+%%@mW“mm+mw@m%w9—7VIW0. (6.46)

As explained in appendix A.1, this implies a solvability condition:

o= ol [ dz (@) = [~ dzo® [%g,,(@“”) 9(@9) + o go( @)V - O
- -0

. 2
d;j = -
+ 11190(9%) (U.-‘f’ - -.)—JV : D(O)) (6.47)

The strain however will be determined, giving the inner mechanical equilibrium con-

dition to leading order. To do so, we use

b _,05,.,19
Oz,  70s  edz’

(6.48)
where n; is the normal vector and t; is the tangential vector to the interface. Replacing
d/0z; in the mechanical equilibrium condition (6.26) and keeping only the zeroth

order terms yields:

2 {n,- [0 9() + 6V - 0O + 2puam, [g(@“”) (U!;” -y ﬁ‘“’)” =0. (6.49)

Integrating equation (6.49) over the interfacial region yields:

§ii
nkV - #9 — p; (g, + KV - ﬁ(o)) - 2p1n;g, (u,(g) - %’V . &'(0)) =0, (6.50)

where the matching conditions determine ® to be the bulk values ¢ = +1,0 and
g(0) = 0 and g(x1) = g,. The above equation is simply the boundary condition at
the interface:

nipl” —njof) =0, (6.51)
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where p; = kV - @ is the pressure in the liquid, which was assumed to be negligible,

and o;; is the stress:
0is .
ol = (o gy + £V - 89)d;; + 21, g, ( o _ SV ﬂ(‘”) , (6.52)

as defined by equation (6.7). To determine the stress state at the interface we multiply

equation (6.51) by the normal n; and tangential vector ¢;:
oc® = nyg, + &V - B + 2, g,n; ( ©_ ijV . ?7(0)) n; =0, (6.53)
and, 053) = 21,950, (ufg) ijV . 17(0)) t;=10. (6.54)

Hence, oy is not determined by the mechanical equilibrium condition (6.26). The
mechanical equilibrium condition in the inner region is given by equation (6.49) and
implies:

niZ = a;, (6.55)

with
3 N 6:' = -
<O = [0 g(@®) + rV - 0] 8, + 201, [g(é‘“’) (U}}” -%v. U‘“’)] . (636)

Using the matching condition for £ and T determines the constant a; = 0 and,

hence
@ =9, (6.57)
and, 2@ 9. (6.58)

The strain terms in equation (6.47) can be expressed in terms of the stress:

73(0) 1 Ef?) {0) -
v.-U" = “l5 - ng(®™) ], (6.59)
and,
(0) _ 5: - 1 5(0) L@

which, replaced in the solvablllty condition (6.47), yields:

o0 L 94(2) 1 2
(Kc b U) [ = [-m dZ (I)E_,O) [g,,(@“”)%i)f?} 4_;:;92_@)(—0)) (E(O) - -zﬁ))(sij) [}
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where we have introduced:

1
(0)
I= / dz (80 = == (6.62)

Replacing eqnation (6.57) and equation (6.58) in the solvability condition (6.61), we

obtain:

i = [T 2.5, (a0 | 10 5@ l 02
(Ke U)I—/_md~@: go(® )[2'{—41 +8u192(‘1>‘°’)2" ] . (6.63)

To obtain the linearized equation, we use the linearized expression for £, in terms of

the externally applied stress o, as is given by equation (5.42):

_ o o 90(®)
(ke —v) [ = —/0 do [:gu,,(qi))crJm + Wou] gh (6.64)

Substituting the externally applied stress o, by equation {6.15) we obtain:
L o 2y
(ke —v) I = —/0 d¢4m;_—9;9¢(¢)9“(¢)qh, (6.65)

which after integration yields:

1 2
ulﬂ%qh. (6.66)

- I =
(KC U) 48

Rewriting this results. we obtain the dimensionless sharp-interface equation (5.30):

b= [‘Cm”gq q ] h. (6.67)

where we have replaced [ by its value equation (6.62) and the curvature k. by its
Fourier representation. Hence, we recover the sharp-interface equation (5.43) for the

case of evaporation-condensation with:

A= _mn_2 ’ (668)
determined by the elastic parameters and

B=1. (6.69)
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6.2 Numerical Implementation

To study our model, numerical simulations on a discrete square and simple cubic
lattice with lattice constants Ar = Ay = Az were performed in two and three di-
mensions. We will discuss the implementation for the two-dimensional case. However,
it is straightforward to generalize it to three dimensions. Euler’s method was used to
integrate equation (6.24) in time. The Green’s function was solved in Fourier space,

where we used the isotropic form of the Laplacian:

_ cos(gzAz) cos(g:Az) + cos(g Az) + cos(g:Az) - 3

sin(g.Az)sin(q.Az) -
v, () = - 222D (6.71)
and,
” 4 cos(g.Ar) cos(g.Az) — 4 cos(q:Az) + 2 cos(g; Ar) — 2 -
V) = (g:Az) cos(g:Az2) le_\(? ) . (6.72)
The discretized forms of ¢, and q. are
21y
q:t - Lz ? (673)
1) ~
and, g = ‘L—Wf , (6.74)

where ¢ and j are the index for row and column, respectively, and L, = N;Azr and
L. = N.Az give the system size.

The point § = 0 has to be treated carefully. Since only the quotients ¢2/¢* and
q?/q® appear in the equation of motion (6.24), and we also know that for the flat

interface u.. = 2g(¢) and uz; = uz: = 0, the quotients are determined to be:

2
g _ T2, (6.75)
¢ q
q2
and, ==1. (6.76)
q

Periodic boundary conditions were employed in all directions. Thus, the solid was in
contact with its liquid phase at the bottom and at the top. It was ensured that the
solid was sufficiently thick that the interfaces at the top and bottom acted indepen-

dently. Determining the appropriate mesh size and time step requires a compromise
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between numerical efficiency, which is enhanced by big mesh sizes and time steps,
and accuracy, which demands the smallest possible time step and mesh size. The von
Neumann stability analysis, being a linear stability analysis of the discretized equa-
tion of motion, puts an upper bound on the time step At for a given mesh size Az.
For bigger time steps, the code is numerically unstable. The discretized, linearized

form of equation (6.24) is

(i, ji t + At) = { [AzAz (6.77)

Az ._\..
+ € (3 cos 21 cos 2m cos —= 2m) cos Zﬂ)]} (4, j; t)
‘ N, N, N, NAVATRAEAE

where we have used that ¢, = 27/L; and q. = 2r/L.. A numerical instability will

occur if the term in curly brackets is greater than —1. Thus, to ensure numerical

stability the following inequality has to be fulfilled:

At / 2 2w 2nj 2mi 273 -
1 - VY [A.E_L + € (3 A N, ‘V: - cos T.)] > -1, (6.78)
or
2(Ax)?
Al € ——"—, .79
(Az)? + 6€2 (6.79)
where Azr = Az was used as in all simulations being presented. Az was chosen in

such a way that the surface was resolved by at least 8 points. In any case, it was
always tested that a decrease in mesh size and time step did not change our results.
For all simulations presented here, the mesh size Az = 0.01 or 0.005, the time step
At =0.10r 0.05, 3 = 1.0, and € = 0.01. The parameter set, (N, Ny, N., hq, c) will
be specified below, where hy gives the initial amplitude of the surface. Length scales

will be measured in units of Az.

6.3 Numerical Simulation

A typical time evolution of the Grinfeld instability is shown in figure 6.2. We prepare
the system initially with a small undulation at the upper interface, and let it evolve in
time. We observe that the valleys start to grow deeper and deeper. At the same time,
we observe that the elastic field relaxes in the hills, whereas it increases in the valleys.
Note that it seems that, in the liquid, the thermodynamic driving force h(¢) close

to the valleys has a finite value. However, h(¢) represents only the strain field due
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to the geometry of the boundary. It still has to be multiplied by the shear modulus
to contribute to the free energy as well as the driving force. The shear modulus is
zero in the liquid phase. Thus, hA(¢) in the liquid phase does not contribute to the
equation of motion of the phase field (6.24).

6.4 Numerical Linear Stability Analysis

To analyze the Grinfeld instability and test our model, we perform a numerical linear
stability analysis in two dimensions. To do so, we prepare the system initially with
a small amplitude sinusoidal surface profile h(z,t = 0) = hgcos(qz), where q is the
wavenumber, and monitor its subsequent evolution. Figure 6.3 shows the time evo-
lution of the amplitude of one Fourier mode as well as the evolution of the interfacial
profile in real space. Initially the Fourier mode grows independently and exponen-
tially obeying exp(w(q)t). Later it follows a slower growth regime, which can be seen
in figure 6.3. By fitting an exponential through the initial regime, w was determined
for different Fourier modes gq. The obtained dispersion relation is shown in figure 6.4.

It is consistent with

w=Aq—-Bgq*, (6.80)
where

428, (6.81)
and, B~a~1l. (6.82)

Perturbations with wavenumber larger than a critical wavenumber g. are stabilized
by surface tension, whereas wave numbers smaller than the critical wavenumber are
unstable. Thus, we recover the long wavelength instability discussed in chapter 5.4.
The flat interface however is stable. This result agrees with the linear stability analy-
sis' which was performed in chapter 5.4 for the case where evaporation-condensation
is the material transport mechanism, which is appropriate for our model.

In the sharp-interface limit the coefficients A and B are related to the model parame-

ter via the linearized dimensionless sharp-interface equation (6.67). The prefactor in

1Srolovitz [89)].
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Figure 6.2: Time evolution of the phase field (on the left) and the thermodynamic driving force (on
the right). The pictures shown correspond to ¢t = 1, t = 50, and ¢ = 100 from top to bottom.
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Figure 6.3: Growth of Fourier mode: On the left in Fourier space for N, =
¢=6.2,p =6, Ar =0.01 and At = 0.1. On the right in real space for N; = N,
c=6.2, p=4, Az =0.005, At = 0.05 for equal distant time steps of 400.

front of the linear term A is given by equation (6.68) and comprises the elastic contri-
bution. For the set of parameter of the simulation (7 = 1.0,k = 0.9, 4, = 600,a = 1)
it yields:

A =2345. (6.83)

The prefactor in front of the quadratic term B is given by equation (6.69) and yields:
B=1. (6.84)

Hence, the simulations are in agreement with the sharp-interface equation.

[t is interesting to note that the observability of the linear regime, which corresponds
to the exponential growth mode, may be due to the long-range character of the
elastic field. Binder [84] predicted that the linear regime increases with the range of
interaction. It is interesting to note that the observability of the linear regime, which
corresponds to the exponential growth mode, may be due to the long-range character
of the elastic field. Binder [84] predicted that the linear regime increases with the

range of interaction.

6.5 Non-linear Effects

Linear stability analysis predicts only the condition of onset of instability. To study
the later-stage morphology and to compare with experiments, a complete non-linear

description has to be employed. Further, the question of whether a steady state
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Figure 6.4: Dispersion relation obtained from numerical linear stability analyses for different p and
N, =N, =256, hg = 4, and ¢ = 6.2. The inset shows a linear fit through the data which are plotted
as w/q vs. q.

exists or asymptotic coarsening occurs has to be resolved. Neither Spencer, Davis
and Voorhees [93] with their long-wave approach, nor Spencer and Meiron [94],
could resolve that issue. Numerical instabilities and singularities limited their study,
as grooves formed. We did not encounter numerical instabilities, and hence could
study the groove formation. An advantage of the phase-field description is that non-
linearities are taken into account implicitly so that the non-linear regime does not

provide any additional numerical problems.

A. Interfacial Profile

A typical set of interfacial configurations is shown in figure 6.2 and figure 6.3. The
nonlinear effect gives rise to a clear asymmetry between peaks and valleys, wherein
deep grooves appear in the valleys. This behavior has been observed experimentally,

as well as in previous theoretical studies’. It is interesting to note that in the early

!Noziéres [92]; Spencer, Davis and Voorhees [93]; Spencer and Meiron [94}; Yang and Srolovitz [93)].
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stages of the instability we can fit the interfacial profile with a simple function
ke =Y a;(t)R (6.85)

where the curvature . given by equation (5.28) is a low-order polynomial function of
the height h(x) of the interface. The order of the polynomial is increasing with time.
To estimate these dependences, the interfacial profile was smoothed by a low frequency
pass to filter out high frequencies due to discretization of space. A typical profile with
a fit is shown in figure 6.5. From this fit the curvature was calculated. Figure 6.6
shows the curvature versus the height at different times, together with higher order
polynominal fits. The above described relationship between the curvature and the
height variable can be understood by considering the sharp-interface equation (5.32):
. 2

=2, (6.86)

As we have discussed before, and worked out in appendix A.2, gy, is a function of the

interfacial profile h(z). Hence, o, can be expressed in terms of a polynomial in the

amplitude of h:

O = Z bihi . (687)

For very early times we showed that both the velocity (5.43), and the stress (5.42), are
linear in h. As time progresses, the amplitude of h grows and non-linear terms become

relevant, and must be considered in equation (6.86), which then yields equation (6.85).
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Figure 6.6: Curvature versus high dependence of interfacial profile at different time steps. The data
are represented by markers. Through the different data sets a polynominal was fitted. The order of
the polynominal increased with time. At ¢t = 100 the polynominal was of 5‘* order, at ¢ = 200 of
6" order, at t = 300 of 8* order and at ¢ = 400 of 10** order.

B. Coarsening and Scaling

Experimentally, random fluctuations in the interface will give rise to the competitive
growth of different structures corresponding to different wave numbers. To study this,
we prepared the system with an interfacial profile consisting of a superposition of p

linearly unstable modes,

h(z) = ho XP: cos(¢;T + ¢;) (6.88)

i=1
with ¢; < ¢. and ¢ being a uniformly distributed random variable in the interval
[0,27]. A typical realization is shown in figure 6.7.

We averaged 100 runs over 500 time steps of a two-dimensional system with 100 un-
stable modes, where (N;, Ny, V;, ¢, hg) = (1024, 512, 0, 12.3, 0.24). Figure 6.8 shows
the Fourier transform of the equal-time height-height correlation function, which we
shall call the structure factor S(q,t), in different regimes. Note that the structure
factor vanishes for ¢ — 0 due to elasticity, not a conservation law. For very early
times, in which the linear regime is valid, the structure factor can be derived from

the dispersion relation by a Cahn-Hilliard-type theory. Figure 6.8 shows the data
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Figure 6.7: Time evolution of the phase field in two dimension in the case of coarsening. The pictures
shown correspond to t = 0.3, ¢t = 5.0, t = 15.0 and ¢ = 30.0 from left to right and top to bottom.
The parameters were N; = N. =256, ¢ =12.3 and hg =04 .
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Figure 6.8: Structure factor of interfacial profile at equal time intervals. Solid lines show the structure
factor derived from a linear Cahn-Hilliard-type theory, which only describes the data for early times.

together with the results of a linear theory. There is a strong similarity between this
behavior and early-stage spinodal decomposition in long-range force systems!. For
later times, when the non-linear effects come into play, the linear theory no longer
describes the data. It is evident that the system coarsens. The location of the peak
of the structure factor gma(t) moves to smaller wave numbers, as the peak height

increases and sharpens. The peak height follows
$(gmax, t) ~ t7, (6.89)

where o = 3, as can be seen in figure 6.9. This indicates that the interfacial length
increases linearly with time for any unstable wavenumber, as expected from the linear
analysis. As discussed in chapter 4.3, if a system displays dynamical scaling the
structure factor scales as (4.25), which explains the exponent a = 3, one for each
height variable and one for the dimension. As shown in figure 6.10, the peak width
sharpens with time as

Ay ~1t77, (6.90)

!Laradji, Grant and Zuckermann [90].
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Figure 6.9: Scaling of peak height of structure factor with time. As seen in the inset the peak height
grows with time as S(¢mqz,t) ~ t® with a = 3.
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Figure 6.10: Scaling of width of structure factor with time. As seen in the inset the peak width
sharpens with time as &, ~ t~7 with v = 0.5.
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where v = 0.5. This dependence is due to competitive ordering between different wave
numbers, analogous to phase ordering systems with non-conserved order parameters,
as discussed in chapter 4.3. Note however that the interfacial length increases linearly
with time, while the peak width indicates a slower coarsening length ~ t!/2. This is
quite different from model A or B where only one characteristic length is observed.
Even more interesting is figure 6.11, which shows that within the accuracy of our

study, the structure factor shows scale invariance:

S(g,t) = $*(q")

= 6.91
S(Qma.xy t) ( )
where ¢* is the scaled wave number ¢* = (q — gmax)/2,.
Fitting S* to
S~ (¢ (6.92)
for small g* gives d ~ 1 - 2 and,
S* ~(1/q")", (6.93)

for large q* gives w ~ 5 — 6 as is seen in figure 6.12. We do not yet understand
the origins of these exponents. We expect that our results on transient coarsening
phenomena can be observed through microscopy or by x-ray diffraction (Sinha et al.
[88]).

6.6 Three dimensional Growth

Since the elastic equations are much easier to solve in two dimensions, or in the plane
strain case for which the elastic equations reduce to effectively two dimensions, almost
all studies have been performed for these cases. Only Spencer, Voorhees and Davis
(93] have performed a linear stability analysis for the full three-dimensional problem.
All nonlinear approaches as well as all numerical studies had been limited to two
dimensions. There has been speculation as to whether the third dimension will have
an effect on the stress relief mechanism.

To study this, we simulated a system with N, = N, = N:; = 128, with z be-
ing the direction normal to the surface. Starting with a small amplitude sinusoidal

perturbation in z, trenches with sharp deep grooves form, while a small amplitude
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Figure 6.11: Scaling of structure factor. The structure factor shows scaling: S(q,t}/S(gmaz.t) =
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Figure 6.12: Fit of tails of structure factor. The rescaled structure factor is fitted to S* ~ (¢*)* and
small ¢, which gives § = 1.4 and to $* ~ (1/q)® which gives ¢ = 5.9. The inset is a magnification
of the tail region and its fit.
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sinusoidal perturbation in the r and y directions resulted in islands. The instability
is qualitatively the same as in two dimensions. If we start with a superposition of
unstable modes, coarsening was again observed. Figure 6.13 shows a typical time
evolution of the interfacial profile while coarsening is taking place. Figure 6.14 shows
the corresponding side views of the interfacial profile, cut along the z = N/2 axis.
The similarity to figure 6.7 which showed the interfacial profile of a two dimensional
coarsening system is evident. We could not probe scaling for the three-dimensional

systeni, since it required too much computer time. However, it is in principle possible.
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Figure 6.13: Time evolution of the surface profile of the phase field in three dimension. The pictures
shown correspond to t = 4.5, ¢t = 7.5, t = 10.5 and ¢t = 15.0 from left to right and top to bottom with
the parameters N; = Ny, = N; = 128, hy = 1.0, and c = 18.5. Figure 6.14 shows the corresponding
side view.
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Figure 6.14: Side view of coarsening in three dimensions. The pictures shown correspond to t = 4.5,
t =75, ¢t=10.5 and t = 15.0 from left to right and top to bottom with the parameters N, = ¥, =
N. = 128, hg = 1.0, and ¢ = 18.5. Figure 6.13 shows the corresponding top view.
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CONCLUSION

We have proposed a new model based on a Ginzburg-Landau approach to study a
stress-induced morphological instability, commonly known as the Grinfeld instabil-
ity. The instability has been observed experimentally and is often associated with
the dislocation-free Stranski-Krastanov growth in epitaxy. Due to the technological
relevance of epitaxial grown films in the semiconductor industry, understanding the
instability is of fundamental importance.

In our approach, the elastic field is coupled to an order parameter in such a way
that the solid supports shear, whereas the liquid phase does not. Hence, the order
parameter obtains a transparent meaning in the context of liquid-solid phase transi-
tions.

We have shown that our model reduces in the appropriate limit to the sharp-
interface equation which have been used traditionally to study the instability. How-
ever, numerical studies using the sharp-interface equations had been limited to two
dimensions and were constrained by numerical instabilities appearing at very early
times. Hence, a systematic study of the non-linear regime was not possible. Impor-
tant questions, such as whether the system moves towards a steady state or coarsens
had not been answered yet.

In our description, the proper treatment of non-linearities is inherent. We also did
not encounter any numerical instabilities, and could perform numerical simulations in
two and three dimensions. To test our model, we first performed a numerical stability
analysis and found that the growth of the amplitude of the Fourier modes was initially
independent and exponential, obeying exp(w(q)t), followed by a slower growth. The
fitted dispersion relation w(q) is consistent with w = Aq — Bq? and agrees with the

linear stability analysis carried out by Srolovitz [89].

83
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We also observed that in the early stages of the instability, the interfacial profile
could be fitted with a simple function k. = ¥; a;(t)h?, where the curvature . is a low-
order polynomial function of the height h(z) of the interface. This observation could

be explained by analyzing different contributions to the sharp-interface equation.

We studied the non-linear regime, which is characterized by competitive growth
of different structures corresponding to different wave numbers by measuring the
Fourier transform of the equal-time height-height correlation function. For early
times we observed a strong similarity between its behavior and early-stage spinodal
decomposition in long-range systems. For later times coarsening was evident: The
location of the peak of the structure factor gn.-(t) moves to smaller wave numbers,
as the height increased and sharpened. The peak height followed S(gmqz) ~ t®, where
a = 3, while the peak width sharpened with time as A, ~ ¢t77, where v = 0.5. The
former dependence was due to the interface length increasing linearly with time. The
latter dependence was due to competitive ordering between different wave numbers,
analogous to phase ordering. Within the accuracy of our study, we found that the
structure factor showed scale invariance: S(q.t)/S(gmaz.t) = S*(q"), with the scaled
wave number ¢* = (¢ — gmaz)/2,. Fitting to S* ~ (¢°)% and S* ~ (1/¢")¥, for small
and large q* respectively, gave § ~ 1 —2, and ¥ ~ 5 — 6. We expect that these results

can be observed through microscopy or by x-ray diffraction.

In our three-dimensional study we observed the same qualitative behavior as was
observed in two dimensions. Starting with a small amplitude sinusoidal perturbation
in one direction, trenches with sharp deep grooves form, while a small amplitude sinu-
soidal perturbation in two directions resulted in islands. Starting with a superposition

of unstable modes, coarsening was again observed.

One advantage of cur model is that it can be easily extended. Anisotropic ef-
fects can be studied by including anisotropy through the surface tension, the elastic
coefficients, or the external stress. The effect of phase separation, or of impurities,
can be analyzed by coupling an additional field to the phase-field. Also, instead of
evaporation-condensation, surface diffusion can be chosen as the material transport
mechanism. In addition, the influence of a constant flux can be studied. Furthermore,

as has been discussed in the thesis, the stress field near the groove can become so
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high that dislocations might be nucleated. To study this, one can extend our model
by coupling the phase-field to a dislocation density field. This latter extension is

currently under investigation.
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7 CONCLUSION




APPENDICES

A.l1 Sharp-interface limit

The starting point is the rescaled, generalized phase field equations from chapter 3.2:

50 9 ,
o e-a—‘f = V2 — f,(6) + Ago(d)u, (A1)
and, 5 50(0)
ou 2. l p(o |
s = DVu+ B2 (A.2)
For
(9) = 22 (A3)
p(9) = 3 A.

we recover equation (3.16) and equation (3.17). Depending on the scaling of the
parameters, four different sharp interface limits can be obtained, which describe dif-
ferent physical systems with distinct stability characteristics. We will show, for one
particular scaling, how the sharp or thin interface interface limit is obtained using
the method of matched asymptotic expansions. We will show that the scaling Karma
and Rappel' have recently proposed, is equivalent to the scaling Caginalp and Fife
[88] worked out previously. With this scaling ansatz, much larger systems can be
simulated, including three-dimensional systems. An asymptotic analysis for e << 1
will be carried out for a layered solution of the system (A.1) and (A.2), under the
assumption that « is of the order unity.

The interfacial curve is defined as the set of points at which ¢(z,y,t) = 1/2. A

local orthogonal coordinate (r, s) system near the surface is introduced by:
r(z,y,t,e) =0 (A4)

at the interface and
|IVrl=1, and V% =k, (A.5)
'Karma and Rappel {96b}; Karma and Rappel [96a]; Karma and Rappel [98].
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with x being the curvature. Hence, r measures the distance along the normal, and s
is the arclength.
The idea behind the matched asymptotic expansion is to divide the system into

two subregions:

1. An inner region in the vicinity of the interface, where the gradient of the order

parameter is large and

2. the outer region in the bulk phases where the order parameter is approximatively

constant.

A. Outer expansion

We formally expand the variables in their original coordinates in powers of e,

¢ = o(x,y.t.€) = ¢z, y,t) + ¢!z, y, 1) + 9Pz, y,t) + -+ (A.6)
and,

w=u(z,y t.e) =u(z y t)+ ez y t)+Eu® (T oy t) + . (A.7)
The leading order of the phase field equations (A.1) and (A.2) gives respectively,

f¢(¢(°)) + /\u(o)g¢(¢(°)) =0, (A.8)

and,

ul® 2. (0) 1dp(¢')
—at—-Vu +§_dt—— (A.g)

The leading order solutions are given by ¢(® = 1 and ¢® = 0 in the solid and the

liquid, respectively. For the temperature, we find the usual diffusion equation

%ﬁ:ﬁ — 2O (A.10)
To first order in e:
Foo(32)8) + Agup(6@)d M1l + Agy(¢)ulV =0, (A.11)
and,
3_2%1 = w2 4+ %% [pf(¢(0))¢(1)] . (A.12)
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B. Inner expansion

Here, we use the local curvilinear coordinate system defined above. It implies that

the Laplacian and the time derivative take the following form:
V2u = Uy + Viru, + |Vs|2uy + Vs u,, (A.13)

and,
Uy = U + T Uy + Sp U . . (A.14)

We also introduce the scaled coordinate : = r/e and write

u(z,y,t,€) = U(z, s, t,€) (A.15)
= UO(z,5,t) + UM (z,8.8) + -, (A.16)
and,
&z, y,t,€) = B(z,s,t,¢) (A.17)
= &0 (z,5,t) + e®V(2,5,8) +--- . (A.18)

Now. the equations (A.1) and (A.2) can be written in the following form:
B:: + fo®) + Augy(®) + € {8.Vr — ad.i } (A.19)
+ & {8, Vs + €,V%s — ad - ad,s} =0,
and,

U.: + € {U:vzr + %p,f' - U,f} (A.20)

+ €2 {Usslvs|2 + brsv2s + % (%te + psé) - - U‘.,.S.‘} =0.

Therefore the equations of ¢ and U to zeroth order in € are:
DY + £,(2?) + AuVgy (9 =0, (A.21)
and,
vl =o. (A.22)
To first order in €:
L)+ 20 (D) RN + AtV gy (BD) + A g, (2@) 2V + 3OV r — 07 = 0, (A.23)

and,
U + UOVr + 2p (@)~ U7 =0, (A.24)
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1. Matching conditions

. Matching conditions provide the far-field boundary condition for the inner solution®.
The outer solution is written as a function of the inner variables, and the resulting
expressions are expanded in e. We drop the s variable, since the matching conditions
are with respect to only the coordinate orthogonal to the interface layer. Near the

layer, we formally equate the two expansions
Uz, t,e) = u(T(t, €) + ez, t,€), (A.25)

where z = (x—I'(t, €)) /e is the scaled coordinate. The right hand side of equation (A.25)

can be expanded in a Taylor series in €

N
Uletie) = 3 € Pa(z ) + €' Ry | (A.26)
n=0
where
Paet) = 2L (D(te) + et ) (A27)
n(2:8) = == €} + €2t €)|e=g - A.27

Matching is accomplished by letting ¢ — 0 and z — +oo provided that ezV*! — 0.
. With this constraint, the remainder term in equation (A.27) is of lower order than
any of the preceding terms.

The two first matching conditions are

UO(£o0,t) = PO(+00,t) = u (TP, ¢), (A.28)
and,
UV (z,t) = (D, t) + 2T, t) + TV ()T, 1), (A.29)

with 2z = +oc.

2. Leading order solution

The leading order solutions for U takes the form
U® =az+0b, (A.30)
with the matching condition:

U®(+o0,t) = @D, ). (A.31)

. !Caginalp and Fife [88].
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This implies that:
a=0, (A.32)
and,
U®=p, (A.33)
and the leading order solution for ¢ takes the form:
O + fo(@) + Abg,s(3?) =0. (A.34)
with the matching condition:
®(+o0) =¢(I'*) =0 and 1. (A.35)
For further convenience, we define:
Uz, t) = (2, t), (A.36)
and,
R(®) = fo(P9) + \bg, (9, (A.37)
so that equation (A.34) vields:
V.. (z,t) + h(¥) =0. (A.38)
3. First-order solution
The first-order inner equation for U has the form
vl + ép;(\ll)f' =0. (A.39)
Integrating once yields:
Ul = %p(\v)v“” +Ch, (A.40)
where v(® = —, and C, is a integration constant.
The matching condition implies:
ul9|yp = %p(il)v(o) +C,. (A.41)
Choosing p(¢) = ¢ results in:
[uio)]ﬂ, = lv(o) . (A.42)

2
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Integrating once more:

(0)
UV = S-P(z) + Ciz + C, (A.43)
with
2)= | d7 A4

P(z) = [ d'p(w), (A44)

and C, being another integration constant, so

‘U(O) z ‘U(O)

U“) = — ) dz' [sgn(z') - p(‘I’)] - —;—IZ’I + C[Z' + Cg . (.'\45)

Using the matching condition:
U(l) ame u(l)([‘r) + :U‘S‘u)([‘(io)) + F(l)us.o)([‘(*_(_))) (:\.46)

results in:
U(O) oQ
uMp, = —;‘/0 dz{sgn(z) — p(¥)] + C:. (A.47)

The first order inner equation for ¢ takes the form:

LY = —(k + @)V = AuMg, (), (A.48)
where,
92
= — +h(¥). (A.49)

The Fredholm alternative states that the linear inhomogeneous equation (A.48) is
only solvable, if the r.h.s is orthogonal to the null space of the adjoint operator L'.
Because L is self adjoint. £1® = 0 is solved by ¥’ = & which is the Goldstone
mode. This can easily be seen by differentiating equation (A.38). We are left with

the following solvability condition:
[ " d2¥ [(s + v ) + ()] =0, (A.50)

and,

(% + av®) [ ® dz(W)? + / ¥ Az uWg(¥) = 0. (A.51)
-0 -0

Replacing u(!) by equation (A.45) and defining:

I= /_ * dz(W)2, (A.52)
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we obtain:
o0 v(o)
m+aM%I=~A/ a[jqﬁa+cﬂ+czwywy (A.53)
—00

In the case that f(®) is an odd function of @, i.e., f(—®) = —f(P), ¥ will be an

even in z. Then, if g(®) is even function of z, the integral:
[ dzW'g()Cyz = 0. (A.54)
-0

Rewriting equation (A.33) determines C, to be:

1 [+ & + av®
=== | — K+ ——I]| . ASb
Cg 7 [ 3 K+ h :| (*\ 05)
where
J=/ dz ¥'(z) g(¥) (A.36)
-0
and,
o0 2
C = dz¥'(z dz' p(¥). A5T
K= [ d:¥()99) [ d'p(¥) (A7)
Hence, u!V) at the interface is given by:
1 K+JF «alf
W, = — . - (0) =
SV ( 27 +AJ)U ‘ (4.58)
where,
+0o0
F = | dz (p(¥) — sgnz). (A.59)
This is the generalized Gibbs-Thomson condition in which the kinetic coefficient 3 is
given by:
al K+ JF
,3-X7[1+A - ] (A.60)
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A.2 Solution of elastic equations

Many problems related to elasticity reduce to solving partial differential equations
with fixed boundary values. In the case of the Grinfeld instability, we are dealing
with a semi-infinite, isotropic, uni-axially stressed solid which is in contact with its
own melt or vapor. The interface between the solid and the liquid is free. Since
the elastic equations (5.2) are linear, it is useful to decompose the free interface into
Fourier modes:

h(z) = hgsingz. (A.61)
The condition of mechanical equilibrium provides us, in two-dimensions, with two

partial differential equations:

ag: ag =0, (A.62)
dg;’ %"-— =0. (A.63)
A general solution for the stresses are given by:
Orz(x,2) = 0.¥ (1, 2), (A.64)
0z:(z.2) = -0, ¥;(z,2), (A.65)
0.:(z,2) = -0,¥.(z,z2), (A.66)
and. o.:(z,2) =3, ¥, (z,2). (A.67)

Since the stress tensor is symmetric. o;: = 0,2, an additional constraint is imposed
on ¥, and ¥_:

0.V (z,2) =0,V (z,z), (A.68)
which is solved by:

V. (z,z) = d:x(z, 2), (A.69)
and, U.(z,z2) = 0cx(z,2). (A.70)

Hence, the stress field can be derived from only one scalar field x, which is called the

Airy stress function:
Oerlz, 2) = Fox(z, 2), (A7)
02:(2, 2) = =92, x(z, 2), (A.72)
and, 0::(z, 2) = B x(z, 2). (A.73)



A.2 Solution of elastic equations 95

Since the free interface has a sinusoidal profile, the following Ansatz for x is justified:
x(z, z) = ®(z) exp(igz) . (A.74)

Hence, the stress fields have a functional dependence as follows:

0z(z, 2) = ®"(2) exp(igz), (A.75)
0z:(2,2) = —iq®'(z) exp(igz), (A.76)
and, 0::(1,2) = —¢°®(z) exp(igz) (A.77)

where the prime means differentiation with respect to z. Now, only ®(z) has to be
determined, which is a function of z only. To do so, we take the divergence of the

Lamé equation (5.8) and obtain:
ViV i) =0. (A.78)
Using Hooke’s law (5.5), we obtain an expression for the stress field:
Vioy =0. (A.79)

Replacing oy by equation (A.75) and equation (A.77) results in an ordinary differen-

tial equation of fourth order for ®(z):
d* )
(@ - 2) [‘b”(Z) - q-(I)(Z)] =0. (‘ASO)
[ts solution is given by:
®(z) = (a, + b12)e"™ + (az + baz)e™ ¥, (A.81)

where a, b;,a; and b, are constants which have to be determined by the boundary
conditions. Since the stress field should vanish at (z,z =& —00), it follows that a; =
and b, = 0.

Hence, x(z, z) is then:

2

x(z,2) = UOTZ + (a1 + by 2) sin(qz) €%, (A.82)
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Figure A.l: Sketch of local coordinate system at the liquid-solid interface.

where we have used only the sine part.

Now, the stress field can be determined:

Orz(2,2) = 0 + ¢ [2b+ g(a + bz)] sin(qz) €, (A.83)
Op:(2,2) = — [(12(a +b2)+ bq] cos(qz) e?*, (A.84)
and, 0::(x,2) = —q*[a + bz] sin(qz) e*, (A.85)

where we have dropped the index 1. Now we must determine the two constants a and

b from the boundary conditions (5.24), (5.25) and (5.26):

Onn =0, {A.86)
and, one =0. (A.87)

First, we have to express the stress tensor in the local coordinate system of the

interface, which is given by the normal 7 and tangential ¢ of the interface:

- sin @
n= , (A.88)
cosf
and,
- —cosf
=] 7 (A.89)
sinf

where 6 is the angle between the normal 7 and the z-axis as shown in figure A.1.

Since the stress field is a tensor of rank two, it is transformed as:

Onn Ot sinf@ cos@ Opz Oz sinf@ —cos@
nn L = . pr £ . '(.‘\'90)
Ont Oun —cosf siné Or: Oz cos@ sin@

-
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Hence o,,, 0n, and oy are:

Opn = Oz Sin°> @ + 20,.sinfcosd + 0., cos® 8, (A.91)
Ont = (0,2 — 0zz) sinfcos b + o, (sin% @ — cos? ), (A.92)
and, Ou = 0zzc0s2 @ — 20,.sinfcosd + o,.sin’ 8. (A.93)

In addition, we have:

sinf  oh
t = = —= : . A
ané wosd = 72 ho ¢ cos(gz) (A.94)
Hence:
sinf = hyq cos{gz)cosf. (A.95)

[nserting equation (A.95) in equation (A.91) and equation (A.92), and using the

boundary conditions (A.86) and (A.87), we can eliminate o.., and are left with:

<3

2

0z: [1 = 3h3q° cos®(qz)] — 0z [ + A 07 cos’(qz)] ho g cos(qz) =0.  (A.96)
At the interface, = = hgsin(qr), o, and o, are given by:

Orr = 00+ q[20+ q(a + bhgsin(gz))]sin(gz) exp(hogsin(gz)), (A.97)
and, Op: = — [bq + ¢*(a +bho sin(qx))] cos(gz) exp(hogsin(gz)) (A.98)

Considering only terms up to order ¢*:

Oz = Og + [2 bg+ 2bhog’sin(qz) + aq® + bho ¢* sin(qx)] sin(qz), (A.99)

and, 0z: = —bg — bhg¢*sin(qz) ~ aq® — bhg¢*sin(qz) . (A.100)

Substituting equation (A.99) and equation (A.100) in equation (A.96), and consider-

ing terms only up to second order in g, we obtain:
oohoq — bq + 4 bheg® sin(gz) + a ¢*sin(qz) + O(¢*) = 0. (A.101)
Hence,

a=—d4bhy =40eh2, (A.102)
and, b= —O’oho . (.‘\103)
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Since we are only interested in contributions up to linear order in hg:
a=0. (A.104)

The stress fields 0,;, 0., and 0., are now completely determined:

Orr(Z,2) = 09 [1 — qho(2 + g2) sin(gz) e**] , (A.105)

Oz:(Z,2) = 0oq ho [1 + q 2] cos(qz) e®, (A.106)

and, 0::(Z, 2) = 0oq° ho z sin(qz) e** . (A.107)
Since

Ou = [an + hiq*0.. cos’ gz + 2 ho g 0. cos q;r] cos?8, (A.108)

we can substitute equation (A.105), equation (A.106), and equation (A.107) for the

stress fields. Keeping only terms up to first order in hgq, we obtain:
ou(z,z) = 0o [l — hog (2 + g2) sin(qz) €%] + O((hoq)*) , (A.109)
and at the interface:

on = 0o [l — 2qhgsin(qz)] + O((h04)2) . (A.110)
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