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Abstract

In this thesis, the problem of fast identification is formulated in the framework of
the theory of metric compiexity. Several complexity issues of fast identification are
investigated.

Experiment design and model selection, two important components for achiev-
ing fast identification, are scparated by splitting the estimation error into inherent
and representation errors, which are functions of the experiment and the model sets
respectively. The optimal inherent errvor, a measure of the time complexity of identi-
fication, is introduced as a notion of n-width (time n-width) related to the Gel’fand
n-width. The optimal repiesentation error is related to the Kolmogorov n-width. Es-
timates of the various n-widths are obtained systematically for a class of data sets
covering many cases encountered in practical control problems.

The input design problem is further explored in cases where the input can be
designed only to the extent of modifying its ensemble properties. The identifying
capability of an input ensemble is characterized in general in terms of the gap metric.
This general characterization is reduced to a certain spectrum flatness property of
the input in the case of finite impulse response models. Bounds on the inherent error
are given in Lerms of the n-width and spectrum flatness. Several robust identification
algorithms are proposed as well.

It is.shown that in the continuous-time case, although it is possible to identify a

system arbitrarily accurately on an arbitrarily short time interval by increasing the
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sampling rate and signal-to-noise ratio, the identification speed is Hiited for a tixed
signal-to-noise ratio. An asymptotically accurate lower bound on the optimal iden-
tification speed is given, again in terms of Gel'fand n-width. A logarvithmic iwtegral
characterization for the optimal inputs is obtained via the theory ol quasianalytic
functions. The representation and estimation problems for continuons-time systems
are reduced to a discrete-time case. A causal reconstruction procedure is given, Lo-
gether with an crror estimate.

Finally, the results on fast identification are applied to systems in which the law
governing the evolution of the uncertain elements is not. time invariant. Such systems
can notl be identified accurately. The inherent error is hounded in the case of slow

time-variation and shown to increase with the variation rate.



Résumé

Dans cette thése, le probleme d’idendification rapide est formulé dans le cadre de la
théorie de complexité métrique. Quelques problemes de complexitéreliés a I'identification
rapide sont étudiés.

La conception d’expériences et la sélection de modéles, deux composantes impor-
tantes pour arriver & une identification rapide, sont séparées en décomposant 'erreur

. d’estimation en 'erreur inhérente et celle de représentation qui sont respectivement
des fonction de ’expérience et du modeéle. L’erreur inhérente optimale, une mesure de
la complexité en temps d'identification, est introduite comme une notion de n-ieme
épaisseur (n-ieme épaisseur temporelle) relié au n-iéme épaisseur de Gel’fand. L’erreur
de représentation optimale est reliée au n-ieme épaisseur de Kolmogorov. Les estima-
tions de divers n-iémes épaisseurs sont obtenues systématiquement pour une classe
d’ensemble de données qui couvrent plusieurs problemes pratiques de commande.

Le probleme de conception d’entrée est étudié pour les cas ou la conception est
limitée & la modification des propriétés des ensembles. La capacité d’identification
d’un ensemble d’entrées est en général caractérisée par la mesure de distance. Lorsque
le modéle & réponse impulsionnelle finie est utilise, cette caractérisation générale est
réduite & la propriété d’aplatissement spectral de I’entrée. Les bornes de P’erreur
inhérente sont données en termes du n-ieme épaisseur et de 1’aplatissement spectral.
En outre, quelques algorithmes stables sont proposés pour I'identification.

. Il est démontré dans ce travail que la vitesse d’identification est limitée pour un
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rapport signal sur bruit donné, bien qu'il soit possible didentifier un systéme avee
n'importe quelle précision en un temps arbitrairement court en augmentant la vitesse
d’échantuonnage et le rapport signal sur bruit. 1In terme du v-ieme épaisseur de
Gel'fand, une borne inféricure, qui est précise asymptotiquement pour la vitesse opti-
male d'identification, est obtenue. Viala théorie des fonctions quasi-analytiques, nous
avons obtenu une caractérisation en intégral logarithmique pour les entrées optimales,
Les problémes de représentation et d’estimation pour les systémes en temps continu
sont réduits & ceux des systéms en temps discret. Une procédure de reconstruction
causale est donnée avec une estimation d’erreur.

Finalement, les résultats obtenus sur I'identification rapide sont appliqués aux
systémes dans lesquels les lois réagissant I'évolution des éléments incertains varient
avec le temps. De tels systemes ne peuvent pas étre identifics d’'une fagon précise.
L’erreur inhérente est limité~ dans le cas ou la variation temporelle est lente et elle

est démontrée de s’accroitre avec la vitesse de variation.
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Claim of Originality

o The fast identification problem is posed. A link between identilication and the
metric complexity theory is established. T'wo notious of time n-width, related
to the Gel’fand n-width, are introduced to characterize the time complexity of

identification. The optimal estimation error is related to the maxinmm of the

time and Kolmogorov n-widths.

o The various n-widihs are estimated for a class of data scts and shown to be
derivable from a commeon principle. For these data sets, the n-widths coincide,
and the optimal estimation error equals the maximnm of the n-widths in the

sense of Gel’fand and Kolmogorov.

¢ Ensemble input design is investigated for fast identification. A general char-
acterization of the identifying capability of the input is obtained. Upper and
lower bounds on the inherent error are given in terms of a certain spectrum
flatness property of the inpui in the case where a finite impulse response model

is used.

¢ Two robust identification algorithms are proposed on the hasis of the analytic

cenfer.

o It is shown that, in the noise-free case, it is possible lo identify a stable LTI

system exactly on an arbitrarily short continuous-time interval. A logarithmic

viii



integral characterization of the optimal inputs is obtained via the theory of

quasianalytic functions.

In the case where only corrupted output samples are available, an arbitrarily
accurate identification for a system in a compact set can be achicved on an
arbitrarily short interval by increasing the sampling rate and signal-to-noise
ratio. This compactness condition is not dispensable. For a fixed sampling
rate and signal to noise ratio, an asymptotically accurate lower bound on the

inherent error is given in terms of the Gel'fand n-width.

The representation and estimation problems for continuous-time systems are
reduced to a discrete-time case. A causal reconstruction procedure is given

wilk error estimation.

Uncertainty principles for time varying system identification are obtained by

using the resuits on fast identification.
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Notation

C, R, Z and Z, denote the complexes, reals, integers and non-negative integers.

Plabl, 1 £ p < o0, —0 < a < b < oo, denotes the space of sequences of
real numbers f(t), ¢ being an integer in the interval a < ¢ < b, satisfying ||f]], :=
[Sea FOFI? < 00 for 1< p < 00, and | = supiggeg |/(1)] < co.

L?[a,b], 1 £ p < 00, —o0 < a < b < oo, denotes the space of the real Lebesgue
measurable functions on [a, b], f(t), for which ||, := [[? |£(1)[")/? < oo for 1 < p <
00, and || flle 1= 55 suprggesy F(2)] < o0.

fPla, b} and LP[a, b] are extended in the usual way to the cases where the interval
has one (or both) end points missing, such as [a,b), or is (semi) infinite, such as
[a, o0).

H? (D,) denotes the Hardy space on D, := {2z €C: |z|]<r}, 7> 0. |
sup.ep, |K(z)| is the norm defined on H* (D,).

H= (D) := H® (D,) .

H?(1) denotes the Hardy space on the right half complex plane Q. |[K||lH~ :=
Sup.eq | K (z)| is the norm defined on H*(f2).

Pj.m) is the truncation operator on &, defined by (P[,,rm] f ) (t) ;== f(t) for t €
[n,m], and 0 otherwise.

K

v —
oo,r

IS|ir. is the norm of the largest function in the subset S of a normed spacc L, i.e.,
iSllx := sup {|[]|L : k€ S}.

S|tz 1) is the subset of functions of S mapping Z to IR with support in the interval
[tl,tz) of Z, i.e., S|[th¢2) = SﬂP[h'h)S

Ini(:) : IR — Z is defined as the smallest integer strictly greater than an argu-
ment,.

o(+) and @(-) denote the minimum and the maximum singular values of a matrix.

xiv



Null(+) denotes the null space of an operator, i.e., Null (®):= {k € X : ®(k)=0}.
U~ is the dual space of U.

p(+) denotes the variation rate of a time-varying system.

Xv



Chapter 1

Introduction

The essential property of an adapiive system is that it sell-adjusts its parameters
and structure to adapt to a changing environment and to improve its perlormance,
using the information collected while it is evolving. How well the system can adapt
to the changing environment is limited by how quickly it can identify these changes.
Therefo;c, fast identification is of crucial importance to all adaptive systems.
Despite the long history of research on adaptive control and identification, and
various adaptive control and identification theories and algorithms associaled with
the names of Astrom [2], Caines |5], Goodwin [11], Ljung [26], Morse [33, 34}, cte,
fast identification has received little attention in the past. It is the objective of this
thesis to formulate and solve the fast identification problem using metric complexity

theory introduced into conirol by Zames {51, 52].

1.1 What Is Involved in Fast Identification?

An identification procedure can be divided into two stages consisling of information
acquisition and information processing. In the first stage, an input-outpul experimen,

is carried oul and input-output data is collected. After the experiment, uncerlainty
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\

Figure 1.1: A priori information locales & belween two exponential envelopes

about the system is reduced. In the second stage, a representation of the available in-
formation is obtained. For robust coniroller design, the information is represented by
a nominal system with a surrounding ball in a suitable normed space, e.g., H® or {!.
"To achieve fast identification, an identification procedure should acquire information
quickly in the first stage and process information promptly in the second stage.

In the following we will use a typical example to illustrate how an experiment
should be designed to maximize the amount of information contained in each obser-
vation, and how a nominal model should be chosen to reduce the complexity of an
algorithm,

Consider the identification of a discrete-time stable LTI system. The system is
considered as an operator on (*°(—c0,00). Its impulse response k is in £'[0,00). The
objective of identification is to obtain an estimate k., of k, and a bound on the
estimation error in the £! norm.

Assume that the a priori information locates the impulse response & in a given

subset Sppior of {1,

Sprior 1= {k € £'(0,00) :

Holscrvrem,), 7
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Figure 1.2: An identification experiment

as shown in Figure 1.1. An identification experiment as shown in Figure 1.2 s per-
formed. A known input nis applied to the system and the output observations start at
time {p. For simplicity, assume there is no additive noise on the output ohservations,

i.e.,

= i Ar)u(t — 7).

r=0
After T — 1 sampling periods, all we know is that the true system k., must he

in the set
. ST(U) = {k € Sprior H Zk( Tl(f - T) ( Vl‘ € [lu‘fu + T )}
=0
Since all the systems in ST(u) are consistent with the a priori information and the
input-output observations, they are not distinguishable from cach other. Therelore,
ST(u) represents the a posteriori uncertainty aboul the system al lime ly+1' = 1. Por
fast identification, the input should be designed so that S (u) shnnk.s quuklr] as L

——

progresses.

The most accurate nomlnal ball type representation of the information al time
to+T —=1(.e., ke €87 (ui) is given by the smallest ball in €' covering S¥ (), with
its center as the nominal and its radius as the estimation error. Unfortunately, in
general this most accurate representation is impossible to realize in practice, as the
nominal model can be any function in &' which is an infinite dimensional space, and

therefore an infinite number of parameters might have to be identified lo determine

the nominal or to represent it.
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This raises the question: how shonld a nominal be chosen to balance the trade-oll
hetween its accuracy and the clficiency of the algorithm? lere, the complexity of
an algorithm is measured by the number of parameters it has to identily. For fast
idenlification, an algorithim should identify the least number of paramelers possible
while keeping the representation within a given error fo[c-i‘a;;;._mﬂ

Il the nominal is to be chosent in a given n-parameter model set X, C €'[0, o0),
the most accurate nominal-ball representation of 8% (x) is given by the smallest ball
centered in X, covering 87(u). For such a nominal, an algorithm only needs to

identily n parameters and the estimation error is

in{ sup ||k = kgl
kear€Xy kES"!(u) ” cﬂ”f!

Note that since ST(u) also depends on the true system, this minimum error is also
a function of the true system Ky, which is unknown before the identification. To
study the effects of the input and model set on the estimation error, we consider the
worst-case crror

¢ (u,X,):=  sup inf sup ||k — Kest]|er-
k!ru:espn‘or kesr€Xn keST (u)

Given an inpul u and a model set X,, e (u,X,) is the optimal worst-case
cstimation error an algorithm can achieve at time tg + T — 1. It is a measure of
identification speed. For fast identification, the input and the model set should be
cl(:signm.l to minimize the estimati~n error e¥. In this thesis, we will devise a general
theory of design for the input and the model set so as to minimize eT for both
the discrete-time and continuous-time cases. The system is assumed to be stable

throughout the thesis.
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1.2 Thesis Organization and Outline of Results

1.2.1 Thesis Organization

In the first half of the thesis, Chapter 2 to Chapter 5, the fast identification problem
is studied feor the discrete-time case. In Chapter 2, the problem is formulated as an
input and model design problem, with the worst-case estimation error e as the design
criterion. This design problem is reduced to two stamdard optimization problems
in the metric complexity theory, and the estimation crror e, optimized over all
bounded inputs and all n-parameter afline modcls, is related to the n-widths in the
sense of Gel'fand and Kolmogorov, two standard notions in metric complexity theory.
In Chapter 3, the optimal estimation error and several related notions of n-widlhs
are computed for a class of data sets, and shown to be derivable from a common
principle. For these data sets, the optimal estimation error is shown to be equal
to the maximum of the Gel'fand and Kolmogorov n-widtihs of the data sets. The
input design problem is further explored in Chapter 4 for the case where the input
properties that are allowed to vary are constrained to be certain ensemble propertics.
A spectral characterization of the identifying capability of an input is obtained. In
Chapter 5, several robust identification algorithms are proposed on the basis of convex
optimization.

In Chapter 6 and 7, the fast identification problem is studied for the continuons-
time case. It is shown that although it is possible to identify a continuous-time
system arbitrarily accurately on an arbitrarily short time interval by increasing the
sampling rate and the signal-to-noise ratio, identification speed is limited in practical
control problems. The optimal estimation error is again rclated to the Gel’fand and
Kolmogorov n-widths. This shows that, in both the discrete and continuous time

cases, the time needed to identify an LTI system to certain accuracy increases with
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the metric complexity of the a priori data set. In other words, the identification speed
is limited by the metric complexity of the a priori data set.

In the case where the system is not known to be time-invariant beforehand, it is
shown in Chapter 8 that there is an irreducible uncertainty in identification if the
system changes quickly in comparison with the optimal identification speed.

These results provide tools for input design and model selection for fast identifi-
cation in practical control problems. More importantly, the establishment of the link
between identification and metric complexity theory paves the way for unified the-
orics of identification and feedback and of information-based adaptive control. (See
the overview by Zames [57] for details.) The results on time-varying system identi-
fication (uncertainty principles) indicate the necessity of robust adaptive control for

time-varying systems.

1.2.2 A More Detailed Outline of the Results

As shown in Section 1.1, the fast identification problem can be formulated as an input
design and model selection problem, with the worst-case estimation error 7 (u,X,)
as the design criterion. With such a formulation in hand, the first question one
may ask is: how should this rather complicated input and model design problem
be solved? In Chapter 2, we answer this question by reducing the design problem
to one of several standard optimization problems in the metric complexity theory.
First, the input design and model selection are decoupled by splitting the worst-case
estimation error eT(u,X,) into two parts, the inherent and representation errors,
which depend on the input and the model set respectively. Next, the optimal inherent
error over all bounded inputs is introduccd as a notion of n-width, called the time
n-width, which is similar to the Gel'fand n-width; and the optimal representation

error over all n-parameter affine models is related to the Kolmogorov n-width. Then,
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the optimal worst-case estimation error is related to the maximum ol the Gme aud
Nolmogorov n-widths of the a priori data set. The establishinent of the link between
the optimal worst-case estimation error and the n-widths not only reduces the fast
identification problem to the estimation of the n-widths, but also shows that it is the
metric complexity of the data sets that Timits the optimal identilication speed. These
results arve illustrated by several examples, in which the optimal worst-case estimation
crror equals the maximum of the two n-widths,

Siuce, the resolution of the fast identilication problem involves the estimation of
the various n-widths of the a priori data set, the problem would be substantially
simplified if these n-widths could be obtained [rom a common principle. Tn Chapter
3, we estimate these n-widths and the optimal worst-case estimation error for a class
of data sets, and show that they can be obtained from a common principle which
captures a monotone decreasing property of these dala sets. For such data sets, the
optimal worst-case estimation error equals the maximum of the n-widths in Gel'fand
and Kolmogorov senses; the optimal input is an impulse al the start of the observation
interval; and the optimal affine model is an FIR model. If the observation location
cannot be positioned advantageously, there is a loss of optimal identilication speed,
but the 'loss never exceeds a factor of 7.

In practical on-line identification, the input is seldom {ree to be optimized; it can
only be modified to the extent of having certain desirable ensemble propertics, e.g.,
flat spectrum, by introduction of a a:ther signal. In Chapter 4, we will study how the
input should be modified to be suitable for fast identification. First, a characterization
of the identifying capability of an input is given in the gap metric. Then it is shown
that this characterization is related to certain “spectrum flatness” properties of the
input, in the case where an FIR (finite impulse response) model is used. In this
case, the worst-case inherent error is bounded hoth above and helow by functions

of the spectrum flatness. The hounds hecome large when the spectrum is far from
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Hat, which implies the necessity of a not-far-from- flat spectrim in nonparametric
identification,

Several identification algorithms are proposed in Chapter 5. 1t is shown that
the choice of the analytic center of the a posteriorl uncertainty set as a nominal
has @ certain robustness property with respect to the inaccuracies in the a prior
tnformation.

In Chapter 6, we study the fast identification problem in the continnous-time case,
which is dilferent from its discrete-time counterpart. On a continuous-time interval, it
is possible 1o collect an unlimited amount of sampled data, provided the sampling can
be made arbitrarily fast. It remains unclear, however, whether arbitrarily accurate
identification can be achieved on the basis of this large amount of data. In Section
6.3, it is shown, that in the noise frec case, one can identify a stable continuous-
time LTI system exactly on an arbitrarily short time interval, provided the entire
seginent. of the output on the interval is available and the input is chosen properly.
tHere, the only a priori information is that the system is BIBO stable. No structural
information or quantitative information about the system is required. A logarithmic
integral condition on the inputs involved is obtained via quasianalyticity theory.

In such a case, however, accurate identification becomes impossible when the
measurements are even slightly corrupted by noise. Similarly, the inherent error can
be large il only samples of the output on a interval are available. An example is given
where the inherent error is the same as the a priori uncertainty no matter how fast
the sampling. Nevertheless, it is shown in Section 6.4 that, if the system is known to
be in a compact set, (in either the H* norm or L! norm,) then the inherent error can
be made arbitrarily small provided there are enough sampling points in an interval
in which the noise-lo-signal ratio is small enough.

With the above results in mind, one can ask: is identification speed still restricted?

Is the metric complexity still a factor limiting identification speed? The answer
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to these questions is aflirmative. It is shown in Section 6.5 that for a fixed noise
level, even if the sampling rate is infinitely high, there is an irreducible uncertainty
whenever the a priori uncertainty set contains a smooti subset (c.g. a set of low-pass
functions,) of positive Gel'fand n-width. The higher the metric complexity, the slower
the identification. Finally, the irreducible identification error is obtained for a set of
approximately band-limited and time-limited systems in an example,

In Chapter 7. we study the problem of representation and estimation of contintous-
time systems by sampling. One of the key questions we consider there is: once a
model set and estimate are obtained for the sampled data systems, how should their
continuous-time counterparts be constructed? A causal procedure is given for the
construction of a continuous-time model set and estimate from the discrete ones.
Representation and estimation errors are given in the L; norm which is an upper
bound on the H* norm.

In Chapter 8, the results on fast identification are extended to obtain uncertainty
principles for the identification of slowly varying systems. Slowly varying lincar sys-
tem are of interest in adaptive conirel because from a certain point of view they arc
the most general ones for which an input-output theory is useful. In particular, iden-
tification of uncertain elements has predictive value only if their future behavior is like
their past or, at worst, approximately like their past. However, if a “black-box™ sys-
tem changes substantially in relation to the length of time needed to identify it, then
accurate identification is inherently impossible. This fact is expressed through un-
certainty principles, which relate the inherent uncertainty to the n-widths mentioned

above.
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1.3 Literature Review

System identification is a well established arca of research. Indeed, there is a large
hody of literature on system identification. Many impressive results have been ob-
tatned and effective identification algorithms have been developed. There are several
excellent books on this subject which describe the accomplishments during the last
decades. Sce, for example, the books by Caines {5] and Ljung [26].

System identification has been traditionally formulated as a parameter estimation
problem in a stochastic setting. The quality of an estimated model is given in terms
of estimated standard deviations for the parameters or alternatively, confidence inter-
vals {or them. These parametric error estimations can be obtained even in the case
where the true system model is not included in the identification model set by using
techniques such as prediction error ( see Chapter 5, 6, and 8 of Cainse [5] for details).

In the robust control theory developed in the past fifteen years, however, the
starting point for control system analysis and design is a nominal plant model and an
operator norm bound on the model uncertainty, which is different from what is given
by classical identification. This has fueled an renewed interest in identification in the
conirol community, aiming at developing a theory of identification that is compatible
with robust control. Its objective is to find system identification techniques which
provide guaranteed error bounds in the operator norm in addition to 2 nominal system
model. Such identification schemes have been labeled as worst-case deterministic
approaches.

Scveral early papers on this subject appeared in the late 80’s and early 90’s.
Inspired by a plenary lecture by Zames [56], Helmickiet al [17, 18, 19] derived robustly
convergent algorithms which give estimates of the system with error bounds in the H*
norm from a set of corrupted frequency response measurements. These algorithms are

related the work of Parker and Bitmead [37]. A study of asymptotic identification in
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the £!' norm was given by Tse et al in [45]. Gu et al [15] and Makila [28] approached
this problem from the system approximation point of view. Since then, the problem
has atiracted a lot of atiention, e.g., [22, 47, 14, 38] and the references therein, Some
of these results are closely related to those on set membership identification, a well
studied subject, where identification is formulated as a parameter estimation problem
under the assumption that the observations are corrupted by unknown but bounded
noise. Several survey papers are available on this subject, c.g., [32, 36, 8].

Other efforts in developing an identification theory for robust control also appeared
in the last few years, notably, the model validation approach by Smith and Doyle [44]
and Poolla et al [40], the stochastic embedding approach by Goodwin ct al [12], and
the iterative estimation and control approach by Zang et al [61] and Schrama and
Van den Hof [43].

The complexity issue of worst-case identification, the main topic of this thesis, was
first posed by Zames using metric complexity theory [53, 54, 55, 56]. Based on the
observation that both feedback and identification can be used as agents in uncertainty
reduction, he pointed out that a unified theory for feedback and identification and a
theory of information based adaptive control can be developed on the basis of metric
complexity theory. It is this point of view led 1o the recent work of Zames and Wang
[60, 51], and their joint work with the author [58, 24, 25, 23, 48, 50, 49]. The metric
complexity of some data sets are also studied in [59, 29 in the context of control.
The books by Vitushkin [46] and Pinkus [39] are good references on metric cornplexity
theory.

The time complexity of worst-case identification was also studicd by Poolla and
Tikku [41] and Kacewicz and Milanese {20]. They showed that in the case where
the observations are subject to unknown but bounded noise, the number of samples
needed to identify a system of impulse response of length = is of the order 2*, Tse et

al [45] studied the limitation of worst-case identification in the asymptotic case.
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The model selection problem in the stochastic setting have been studied by many

people. References can be found in the hook by Rissanen [42].



Chapter 2

Fast Identification and Metric
Complexity

As shown in Section 1.1, the fast identification problem can be formulated as an input
design and model selection problem, with the worst-case estimation error ¢’ (u, X,,)
as the design criterion. In this Chapter the problem is formulated in a similar way in
a general setting. With such a formulation in hand, the first question one may ask
is: how should this rather complicated input and model design problem be solved?
Right after the formulation, we answer the question by reducing the design problem
to one of several standard optimization problems in the metric complexity theory.
First, we decouple the inputl design and model selection by splitting the worst-case
estimation error ¢’ (u,X,) inlo two parts, the inhereni and representalion crrors,
which depend on the input and the model set respectively. Next, the oplitmal inherent,
error over all bounded inputs is introduced as a notion of n-width, called the time
n-width, which is similar to the Gel'fand n-width; and the optimal representation
error over all n-parameter affine models is related to the Kolmogorov n-width. Then,
the optimal worst-case estimation error is related to the maximum of the time and

Kolmogorov n-widths of the a priori data set. The establishment of the link hetween
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the optimal worst-case estimation error and the n-widths not only reduces the fast
identification problem to the estimation of the n-widths, but also shows that it is the
metric complexity of the data sets that limits the optimal identification speed. These
results are illustrated by several examples, in which the optimal worst-case estimation
crror equals the maximum of the Gel’fand and Kolmogorov n-widths.

The malerial in this chapter has been published in [24, 58, 23].

2.1 Fast Identification in Operator-Normed Spaces

We will consider discrete-time systems represented by convolution operators of

theformK: U—>Y,

y(t)= 3 Krult =), e, (21)

=0

where k(-) € L, under the assumptions that:

(i) U, Y are normed linear spaces of functions Z — IR representing inputs and
outputs respectively. We assume that the sets U and Y are contained in
£°({—00,00). Inputs start at —oo to allow situations in which the system is

running before observations begin.

(ii) L is a normed linear space consisting of causal weighting functions Z, — IR
acting on input pasts. The set L is contained in £![0, 00), ensuring that (2.1)
is well defined. The norm || - ||, can be the €' norm of the weighting functions,
or the H* norm of their Fourier transforms. Since £![0,00) is a subspace of

£%[0, ), the £2 norm is also well defined for this class of systems.

For fixed u € U, the map

®,:L-oY, ®,(k):=Ku=y
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is a linear map from kernels to outputs.

In general, the observations will be contaminated by noise, i.c.,

y(t) = EA Ju(t — 1) +v(t), t€x, (2.2)

=0

where v € Y is the measurement noise. Sometimes relation (2.2) will be written in a
more compact form as
y=®,(k) +v. (2.3)

We are given the a priori information that the true kernel lies in a set S, C L and
the noise liesin a set V.C Y. S, and V will be assumed to satisfy the following:
Assumption 1 S, end V are conver symmelric (i.c., k € 8, = —k € S, and
vEV = —v € V) subsets of L and Y respectively.

Unlike in the case of parametric system identification, we do not assume any a
priori knowledge on the system structure. S, is in general a scl containing infinite
dimensional systems. Since the structure of the true system is not known, the accu-
racy of an estimate will be measured by its distance from the truc system in the L
norm. In fact, this is exactly the right measure to use if the estimate is to be used
for robust controller design. (See comments in Section 1.3.)

The objective of identification is to estimate a system in S, from the
noise corrupted output observations on a finite length interval.

Given an input u € U, on the basis of the observations, y(lo),y{lo +1),...,y{lo+

T — 1), the location of the true kernel ki, is narrowed down from the a priori data

set S, to a smaller set,
S(r)i={k€Sa:  TZok(r)ult — ) = () +o(1)
Vit € [to,to+ T) for somev €V}, (2.4)

(which depends on y, V and S,,) or in a more compact form

= {k € Sa 1 Plo,047) (Bulk) — ¥) = Pl o41)(v) for some v € V} (2.5)
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where Pjy,. 47 denotes the truncation operator on £, defined by (P{,.,,,,]f) (f) :=
f(1) for t € [n,m], and 0 otherwise. S(y) represents the a posteriori information
about the true system.

I'or robust, controller design, it is desirable to represent the true system by a nom-
nal sysl..mn (i.c., an estimate) and describe the uncertainty by the distance between
the nominal and the true system. Sinee all the systems in S(y) are consistent with
the a priori information and the observations, any system in S(y) could be the true
system. llence the worst-case error between an estimate and the true system in the

L norm is

Cyke (W) 1= LZLSII())“k — kest|L- (2.6)
‘€5(y

The true system can be represented by the estimate k. and a ball centered at ks
with radius ey, (%), We call this a nominal-ball type representation.

To obtain the most accurate nominal-ball type representation of the system with
the available information, it has been suggested (e.g. in [43, 6]) that the nominal sys-
tem should be chosen to minimize the above worst-case error. For such an optimally
chosen estimated kernel, k. € L, the minimum error is

ey{u) := kci.l,léL :.-?s'ﬁ,y Ik = kese|lL.- (2.7)

Although an algorithm based on choice would give the most accurate nominal-ball
Lype representation of the available information, it is in general impossible to imple-
menl, as the set of possible nominals is infinite dimensional. An infinite number of
parameters might have to be identified to determine the nominal system or to rep-
resent i, In some special cases as shown in [6], it might be possible to implement
such an algorithim by exploiting certain special properties of the a priori data set, but
the computational complexity of these algorithms increases combinatorically with the

amount of data, and the representation complexity also increases with the amount of
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data.

To achieve fast identification, we minimize the identification error (2.6) by choos-
ing an estimate in a finite parameter model set, such as a finite dimensional subspace
of L, an ARMA model or a state space model. Then, an algorithin only needs to

identify and store or print out a finite number of parameters,

Definition 2.1 A subset X,, of L is called a n-parameter model set if il is in the

range of a mapping from IR® to the sct of real sequences.

Il a n-parameter set X, is chosen to be the model set, the minimum identification
error becomes

T . )
e; (u,X,):= inf sup ||k = A . 2.8
. v (4 Xx) Kest €Xn keS}y} | exllL (2:5)

This minimum error depends on the actual measurement y, which in turn depends
on the true system and the true disturbance, as ¥ = Kprpett + g Which, however,
are not known beforehand. To study the effects of the input and the model set on
the identification, we consider the worst-case idenlificalion crror
el (u,X,):= sup sup inf sup ||k = AeatllL,s (2.9)
ktruc€Sa  wvtruc€V  Fent€Xn  keS(y)
as a function of the input and the model set.

Several algorithms for worst-case identification under an operator norm have heep
developed in the past few years (19, 43, 14, 28]. It is related to the usual sel-
membership identification [32, 36, 8] in the sense that uncertainty is described by
sets. What is new and important in our formulation is that the finite parameter set
in which the nominal is chosen is itself a design variable.

For 'a. fixed input, the worst-case identification error ¢’ (u,X,) also depends on
the location of the observation interval to. If the probing capability of the input is

not persistent, one may obtain more information on one interval than another of the

same length. In the case where the identified model is to be continuously updated on
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the basis of data from the recent past, as in adaptive control [60, 51], we consider the
worst-case of the identification error over all shifts of the observation interval relative

Lo the input:

el (u, X,) = sup e¥(u, Xy), (2.10)
toEZ

which is a shift-invariant quantity. We call it the shift-invariant worst-case identifi-
calion error. Obviously, eT > eT.

el (u,X,) and &7 (u,X,) are the two key quantities we will study in this thesis.
"They are the identification errors given by the input and model set pair (u,X,), when
the observations are constrained on a interval of length T'. They represent the speed
of an identification procedure. Clearly, to achieve fast identification, the model set

and input have to be designed properly to minimize these errors.

2.2 Separation of Input Design and Model Selec-
tion

To separate input design from model selection, we split the worst-case identification
error e (u, X, ) into two parts. One part depends on the input. For this we introduce

the notion of inherent error (which depends on u, S, and V)

6T(w) = sup{|lk|lL: k € Sa, Bu(k)(t) =v(t)VEE [to,to+T), v € V},(2.11)
= [IS(0)[lr. (2.12)

The second part will be called the representation error, which is defined as

dist(S,, X,.) := su inf ||k — . 2.13
(Sa, Xn) sup gler;{nll gliv (2.13)

It depends on the model set only.
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The next proposition gives upper amd lower bounds on ¢ (0. X,)) in terms of
inherent and representation errors, with the lower bound being greater than one

third of the upper hound.
Proposition 2.1 Under Assumplion 1,
max {6"'(11),(lis!(S..._X..)} <t (1, X)) < Jmax {67'(“),(!!.-:!(8‘..X,,)} (2.10)

Remark The worst-case identification error ¢ can be decomposed into two ters,
i.e., inherent error and representation cerror. The inherent error is generated in the
information collecting stage of identification, due to lack of data and inaccurate mea-
surements; it is irreducible no matter what identificalion algovithm is used in the
second stage. The representation error is due to inaccurate representation of the a
priori uncertainty set; it represents the loss of information in the information process-
ing stage.

If a model set X,, o and an input up are chosen to minimize the representation
error and the inherent error respectively, then the worst-case identification error
eT (ug, Xno) is within a factor of threc of the optimal one. It will be shown later
that in many cases such a model set and input pair are also optimal for mintmizing
the worst-case identification error e. This implies that model selection and input
design can be done independently. Moreover, the model selection is not aflected by
the experiment conditions, e.g., noise, observalion interval, elc. Also input design is
independent of the model set. Nevertheless, the optimal madel set and the optimal
input, or the minimum representation and inherent errors obtained from these two
independent procedures, are related as they are determined by the a priori set. This
will be shown in Section 2.6 and Chapter 3. When an optimal model set is chosen,
the input design can be done for the optimal model set with the unmodeled dynamics

in consideration. This will be discussed in detail in Chapter 4.
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To prove the proposition we will need the following lemma which can be shown

using similar devices as in [43] (see Appendix A).

Lemma 2.1 Under the Assumplion |,

inl sup |k = kel 2 1[S(0)|L (2.15)
kest€L  reS(0)
sup sup sup [k — &2l £ 2|IS(0)]|L- (2.16)

ku-...-ESu "u—-u:EV ky ,k:ES(y)

Proof of Proposition 2.1 Since 0 € §, and 0 € V, by setting kyye = 0 and

Ve = 0, we goel.

T . 917
e’ (1, X,) =2 inl sup ||& — kestll L, 217
( ) iy, Sap l el (2.17)
> il sup ||k — ks 2.18

2 il swp | tllx (2.18)

> 6%(u). (by Lemma 2.1) (2.19)

On the other hand, since ki € S(7), by (2.9),
el (u,X,) > sup il kirue = kestlin = dist(Sq, Xa). (2.20)
birue€8a  Kess€Xn
Combining (2.19) and (2.20), we get the lower bound in (2.14).
To show the upper bound, assume & € S(y). Since ke S, by definition of
dist(S,,X,), Ve > 0, k., € X,, such that

£ = kegellr, € dist(Sa, X)) + €

—
!.\)
b
—

—

[t follows that

inf sup flk =k < sup ||k—§
keat€Xy keS(y) " EMHL kESI(:;) “ cst"Ls

< sup (lIk = Bl + Ik = Fealln) ,
keS(y)

< sup [k — ki + dist(Se, Xa) + ¢
kkeS(y)
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Since the above inequalities hold for all ¢ > 0, we have
inf sup [ = kwllL £ sup ||k - AHL + dist(S,. X, ). (2.20)
keat€Xor keS(y) kb€S(1)
Therefore, by (2.9),
e (u, X)) < sup sup sup ||k — kL + dist(S.. X..). (2.21)
ktr'ucesu Ulrurev A‘.LES(}J)
By Lemma 2.1,

sup sup sup |k = &L < 207 (). 2.21)
kirue€Sa  mru-€EV k.l:-eS(y)

It is easy to verily that

267 (1) + dist(Sq, X, ) € 3max {67‘(u), dist(S,, X, )} . (2.25)

Similarly, the shift-invariant worst-case identification error ¢’ (u, X,,) can be ex-

pressed in terms of shifl-invariant inherenl crrov
6T (w) 1= sup 6T (u). (2.26)
to€Z
and the representation error.
Corollary 2.1 Under Assumption I,
max {ST(u),diSi(Su,X")} <él (u,X,) < Jmax {5""(u),di.~;£(5mX,.)} (2.27)
Proof Take the supremum of the quantities in (2.14) over all i, € Z.

]

Between the two sources ol the inherent error, namely, lack of data and mea-

surement noise, it is the former that usually puts the more severe constraint on fas,
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identification. ‘The measurement noise can be overcome by increasing the power of
the input, a measure feasible on a short-time interval. On the other hand collection
of more data can only be done by prolonging the observation interval, i.e.. slowing
down the identilication. To isolate the effects of lack of data, we will concentrate
on the optimal input design problem in the noise-free case. In the case where the
observations are corrupted by bounded but unknown neise, bounds on the minimum
inherent error have heen recently obtained for certain data sets by Poolla and Tikku
[10] and: Kacewicz and Milanese [20]. These bounds are not accurate in the noise free
case. Therefore, better hounds can be derived for the noisy case by combining the
bounds in [10, 20] and the vesults in the thesis,

In the noise [ree case, the inherent error and the shift-invariant inherent ervor will

he denoted by 8¢ and 88 respectively, i.e.,

dl(n) = sup{|lkliL: k€S, and ®,(K)(t) =0V € [to.to+ 1)} (2.28)
= sup{JlkllL : k€ Sa(\Null (Pyoroem®u)}- (2.29)

They are equivalent to the limiting case inherent errors when the signal Lo noise ratio

tends to infinity.

2.3 Gel'fand n-Width and Time n-Width

-

In the noise-free case, the inherent error optimized over all inputs depends on the
length of the interval, and corresponds to a notion of n-width which we introduce

here as follows.

Definition 2.2 For any n € Z, and arbitrary lg € Z, the time n-width is defined
as

inf,cu 83 ,
0" (S, L) i inf,eudi(u) n>0 (2.30)
l1Salle, n=0
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Awoptimal inputl is the one for which the infimum in (2.50) is altained, ic., 8 Ge) -

0" (S..L).

(Since the input is optimizes over a subspace, its magnitude may be unbounded.

0" is equivalent to the optimal inherent error with bounded noise.)

I the definition of fime n-width 6", the output ohservation interval [fu fy -+ n) is

viewed as being fixed, and the inputl as being optimized for that interval. The input

is allowerl to start prior to the observation interval for the following three reasons

(i)

(ii)

In ou-line identification of a time-invariant system, the input past prior ta the
start of the identification is usually unknown. In this case, the outpat can he
split into two parts. The first part is the lree response of the system cansed
by the initial condition at {5. The second is the output produced by the input
after {g. Since the initial condition is not known, the free response affects the
observation as a disturbance, which can be quite large at the heginning of the
identification. However, if the impulse response of the system decays with time,
this disturbance eventually becomes small. [n this case, there is the freedom to
design the input prior to the start of the observations of (the second part. of)

the output.

In adaptive control, there is frequently the option of adding deterministic com-
ponents, such as almost periodic functions, to the input to facilitate wdentifica-
tion. Observations of such components on a time interval [lg, [ +7T') completely
determine their past prior 1o o, which can be considered as “known” for the
purpose of the experiment. The question arises as to whether an appropriate
choice of such a prior excitation can improve identification speed. 'To resolve

this question, we allow the inputs to start prior to the observation inlerval,
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(ii1) Inputs which start prior to the observations will play a role in *moving window™

adaptive control of time varying systems (sce Chapter 8 for details).

Actually, in on line identification the input is scldom completely {ree to be opti-
mized. The point of finding optimal inputs for fast identification is, rather, to provide
lower bounds and an ideal against which actual input ensembles can be compared,
and towards which they can eventually be modified, e.g., by the introduction of a
dither signal.

The time n-width characterizes the time complexity of the data acquisition pro-
cess, It s the best achievable inherent error with n consecutive output observations.
‘I'he inverse of the time n-width function gives the least time needed to reduce the
inherent error Lo any specified level.

The optimal input for 0" typically loses its optimality when shifted in relation

' to the observation interval. When the observation interval is not fixed in relation to
the input, 0" gives a lower bound which may be unattainable. In particular, in the
adaptive control of slowly time-varying systems, the identified model is periodically
updated on the basis of measurcments from the recent past, and the model is then
used to update the feedback law as in [58]. The observation interval lies in a “moving
window” of constant length which advances in relation to the input, and a single
input must Ltherefore be effective for many intervals. For such cases, we introduce the
second n-width, 0", which is the optimized shift-invariant inherent error. It provides

a benchmark for the comparison of suboptimal input ensembles, whether free or fixed.

Definition 2.3 The shift invariant time n-width is defined as

infueu 83(u) n>0
[1SaflL, n=0

0" (S,,L) :=

. Obviously, 0" (S,,L) < 0" (S,, L).
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0™ is the best achievable inherent ervor on an interval of length n when the loca-
tion of the interval is not fixed. It describes the global time-complexity of the data
acquisition process.

The time n-width is bounded below by the Gel'fand n-width under mild couditions

(sce Chapter 3 for details). In many cases these lwo n-widths coalesce,

Definition 2.4 Lel L be a normed linear space and S, a subsel of L. The (el'fund
n-width of Sq in L is given by

d" (Sq, L) :=inf  sup ||&ljL. (2.32)
L" res.L~
where the infimum is laken over all subspaces L* of L of codimension n. A subspaee
is said lo be of codimension n if there cxist n independent bounded linear funciionals
Niseeonfn such that L = {keL: fi(k)=0,7i=1,...,n}. If L* is a subspuce of
codimension al most n for which d" (Sq,L) = sup {||4]|L : & € S. N L*}, then L" s

called an optimal subspace for the Gel’fand n-width d" (8,,L).

The Gel'fand n-width can be seen as the optimized inherent error when identifica-
tion is based on n arbitrary linear measurements, whereas in the case of Lthe n-width
0" these measurements are restricted to be n consecutive output values, The Gel'fand
n-width characterizes the experimental complexity of an identiflication problem. The
inverse of the Gel'fand n-width gives the least number of measurements needed lo
reduce the, uncertainty to a predetermined value.

The properties of the time and Gel’fand n-widths and the relation between the
two will be delineated in Chapter 3. Estimates of these n-widths for a elass of a priori

data sets will be given there.
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2.4 Optimal Affine Representation and Kolmogorov
n-Width

Generally speaking, model set optimization over all n-parameter models is a difficult
problem. In this thesis, we restrict ourselves to afline models, i.c., finite dimensional
subspaces of L. Afline models, particularly Laguerre models, have been used in both
idlentification and adaptive control. See, for example the papers by Belanger et al [60]
and Gununarsson and Wahlberg [16].

By the definition of representation error (2.13), the minimum representation error
of S, by a n-dimensional subspace is

dy (8., L) := _inl_ dist(Sg, X,). (2.33)

XncL

This is exactly the Kolinogorov n-width of the a priori uncertainty set S,.
Definition 2.5 The n-width, in the sense of Kolmogorov, of S, in L is given by
d,(S,,L):=1inf su inf k- gL, 2.34
(S, L):=ipf sup  inf Ik - glle (2.34)
where the infimum is taken over all n-dimensional subspaces of L. If

1,(Sq,L) := s inl ||k -
o ) sup  inf & - gllL

T

Jor some subspuce X, of dimension at most n, then X, is said to be an optimal
stbspace for d,(S,,L).

The oplimal subspace gives the optimal n-dimensional affine model for the uncer-
tainty set S,.
The Kolmogorov n-width characterizes the representation complexity of an identi-

fication problem. The inverse function of d,, was called the metric dimension function
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re
-1

by Zames [52] and viewed as an appropriate measure of metric complexity of uneer-
tainty sets in feedback systems. It is the dimension of the smallest subspace whose
clements are capable of approximating arbitrary points of the a priort data set § to
a specified tolerance.

Each one of the three notions of n-width, ic., Kolmogorov, Gel'fand, and time
n-widths, describes the complexity of a distinet aspect of an identification problem.
None of them describes the complexity of an identification problem completely. How-
ever, it will be shown in Chaptler 3 that in many special cases, they coincide and

therelore can used interchangeably.

2.5 The Optimal Worst-Case Identification Error

Using Proposition 2.1, we can get upper and lower bounds of the optimal worst-
case identification error in terms of time n-width and Kolmogorov n-width, with the

bounds different from each other only by a factor of three.

Proposition 2.2 Under Assumption {, the optimal noisc-free worsi-case idenlifica-

tion error has the following lower and upper bounds,

T < 1 i ’T <. & * " llu ]
max {07 (S, L), dn(Ss, L) < inf nf T (u,X,) < Bmax {07(S0, L), du(S0, L)}
(2.35)

Proof Take the infimum of the quantities in {2.14) over all w € U and X, in L.

O

If d¥ (S,,L) < 07(S,,L), then the optimal worst-case identification error is
bounded below by max {JT(SU,L),dﬂ(Su,L)}. It will be shown in Chapter 3 that

if the a priori identification error set has a certain property of monotone decrease,
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then the maximum of the two n-widths is also an upper bound, i.c.,

inf _inf_e” = max {d"(S, . 2.36
inf o nf " (1, Xo) max {d"(8,, L), du(S., L)} (2.36)

Similarly, the optimal shift-invariant worst-case identification error can be ex-
pressed in ters of the shift-invariant time n-width and Kolinogorov n-width as fol-
lows

max {07(Su, L), du(S0, L)} < inf - inf & (u,X,) < 3max {07(S0, L), du(Sa, L)}
(2.37)

Proposition 2.2 establishes the relation between identification speed and metric
complexity of the a priori data sel measured in the Gel'fand, Kolmogorov, and time
n-widths. It implies that the length of time needed to identify a system to a given
tolerance is proportional to the metric complexity of the a priori data set. These
n-widths have been computed by the author and others [57, 48, 29, 38] for certain
special cases of the a priori data set using various ad hoc methods. These results
are summarized in the following examples. In Chapter 3 they will be derived from a

single monotonicity principle, which will lead to exact estimates for some new data

sets,

2.6 Several Examples

Example 2.1 Let U=Y ={*,n>0,C >0, and 0 < r < 1. It can be shown that
(1) if
' Su, = {k € £0,00): |k(r)| < Cr", Vr € By}, (2.38)

then
C

1—r

dn (801, ') = d* (Sa,, ) = 0" (S,,, ") =
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(i) if
8., = {A‘ el Z k(r)r~ " < (-‘} . (2.1
r=0
then
o (Sups ') = d" (Suy () = 0" (S, 0"} = (™ (2.41)

In (i} and (ii) L = €'[0,00). In the next two cases L is the Wiener algebra, i,
the H®-normed algebra of functions in H™ (1) with Fourier coellicients (restricted)

in £'[0, o0).

(iii) if
Su, = {H(2)e H™ (D) | H|oor— S C} (2.42)

then
o (Suy L) = d* (Sug, L) = 0" (S, L) = €17 (2.43)

(iv) if
Su, ={H(z) e H*(D): ||H'||~ £C}, (2.44)

where f'(z) denotes the derivative of I, then

dn (Sa,, L) = d" (S,,,L) = 0" (S,,,L) = C/n. (2.45)

In each of these examples, the optimal affine model is the FIR model L, :=
sp{l,z,...,2""1}, the' optimal subspace of codimension n for the Gel’fand n-widths
is L = {k € L: k(r) =0V € [0,n)}, and the optimal inpul is a unit impulse
applied at the start of the ohservation interval. Moreover, this FIR meodel and the
impulse input form an optimal model-set-input pair for minimizing the worsl-casce
identification error e” (u,X,), and for cach S,,, i = 1,...,4.

inf _inf_e” (u,X,) = max {d"(S,,,L), du(S4, L) } . (2.16)

uelU XqeL

!By the usual abuse of notation, z' denotes the i-th power function in H™,
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Example 2.2 Under the assumptions of Example 2.1,
07(Sa,, L) < 07(Sq,, L) £ 0;07(S,,, L), (2.47)
where oy =y =y =2 and g = 7. Forcach §,,i = 1,...,4,

max {d"(8,,,L),d\(S.,, L)} < inf xi'..gLe"'(u.x,l) (2.48)

< 3max {ad"(S,,,L),du(Su,.L)}.  (249)

In these examples, there is a loss of accuracy whenever there is no freedom to
posilion the observation interval advantageously, but the loss never exceeds a factor

ol 7.



Chapter 3

Estimation of Time, Gel’fand, and

Kolmogorov n-Widths

As shown in Chapter 2, the resolution of the fast identification problem involves the
estimation of the various n-widths of the a priori data set. All of the cases in Example
2.1 have certain properties in common, e.g., that the optimal input is an impulse at
the start of the observation interval, that the n-widths equal the norm of a truncated
impulse response, and that the impulse responses in the a priori data set drop off
with time. It seems natural, therefore, to seek a common principle from which these
n-widths could be derived, which is what we propose to do next. We will obtain a
principle based on a property of monotone decrease of these data sets. For such data
sets, the optimal worst-case estimation error equals the maximum of the n-widths in
Gel'fand and Kolmogorov senses, the optimal input is an impulse at the start of the
observation interval, and the optimal affine model is an FIR model. The claims as to
the shift-invariant time n-width in Example 2.2 will also be proved.

The material in this chapter have been published in [24, 58, 23].
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3.1 Generalization of Time n-Width

The n-width 0 can be extended to more general classes of operators as follows. Let
E be a normed linear space of the functions [+ Z — IR which is invariant under
the bilateral shift T : E — E,; (Tf) (1) := f(t = 1), and invariant under the time-
reversal involution f*(¢) := f(—t}). Let L be any subspace of (E)°, the dual space
ol E, i.c., L consists of bounded lincar functionals on E. Suppose furthermore that
L is a normed space of functions from Z; to IR. If U is a subspace of E, then for
S, C L our previous definitions of the n-widths 0" (S,, L) and #* (S,, L) remain valid.
It should he noted that the norm on L may be different from the norm on the dual
of E, and U can be any subspace ol E, e.g., E = (*(—c0,00), || - lx = || - ||z, and
U = sp{uy, ttg,..., 1.} C €¥(—00,00).

The next proposition gives a shift invariant property of §".

Proposition 3.1 IfU is invariant under the bilateral shift and time-reversal involu-
tion, (i.c., w € U= T(u) € U and (u)* € U) then 0" is independent of the location

of the observalion inlerval, lg.

Proof o express the dependency of 9" and 65 on ¢y explicitly, we denote them by
0" (ty) and 6f(u, to) respectively. It will be shown that 0™(te) = 0™(0) Vip € Z.
By definition of 8"*(tp), Ve > 0, u € U such that

0"(u,to) < 0"(to) +e. (3.1)

Since 8"(u, to) = {|S. N Null (P[,D_,D.,.,,)‘I’u) I, and

=0

o0
Null (P[,u',”n)‘l’u) = {k €L: Y kr)u(t — 1) =0Vt € [to,lo+ n)} ,

{kEL: ik(r)u(tg—{-t—r) =0Vie [U,R)},

=0

= Null (P[o.n)‘I'T"'D(u)) ’
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we have
8" (u, ty) = 6" (T~ (u),0). (3.2)

Since U is invariant under shifting and time reversal, © € U = T *(u) € U.

Therefore,

0"(0) < & (T7"(u),0),
= &§(u,to)

< 0'(k) + e (by 3.1)).

This implies that "(0) < 0™(lo) as ¢ is arbitrary. The proof is completed by showing

6"(0) > 67 (L), using a similar argument.
O

It should be noted that, although 8® is shift invariant under the conditions of the
Proposition 3.1, it can not replace 8" as a measure of the time complexity when the
time location of the observation is not fixed. The invariance of #" only means thal
if an input is optimal for one fixed interval, then when the interval is shifled, the
optimal input for the shifted interval is the shifted input, which will stay in the set

U of admissible inputs if U is invariant under shifting and time reversal.

3.2 Relation Between Time n-Width and Gel’fand
n-Width

The n-width " is related to the Gel'fand n-width, a standard notion in metric com-

plexity theory, and with some restrictions 0" is bounded below by the Gel’fand n-width

as follows.
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Proposition 3.2 If there crists A > 0 such thal ||k, = A
Jor ot U C E,

klgs forallk €S, then,

d" (Sm L) < o (Srn L) (};)

Proof For any u € U, write u; = 1'%, which is in E under our assumption that
U C B and E is closed under T and time-reversal (+)7. [t will be shown later that
under the hypotheses of the proposition, there exists a subspace 8 C L containing
the a priori uncertainty set S, and with the property that, for cach « € U, the sum
oy k(D) defines a linear functional bounded in the L norm on S. Now, let £%(u)
be the space consisting of those & € 8 which lie in the intersection of the null spaces
of the functionals determined by the uw;, 2 = 0,...,n — 1. L*(u) is a subspace of
codimension n in S. As d" is by definition an infimum over all spaces of codimension
",

||s,, N L“(u)”L > d"(S.,S), (3.4)

Since (3.4) holds for all u € U, the infimum 0" of the left side of (3.4) over u, satisfies
0" (S,,L) 2 d" (S.,8). (3.5)

Now, using the fact that every bounded linear functional on 8 can be extended to
a bounded linear functional on L with preservation of norm, (by the Hahn-Banach
Theorem,) it is not hard to show that d"(S,,S) = d* (S,,L) [38]. The proposition
follows.

It remains to show the existence of such a subspace S. Put
S:={keL: ckeS,, for someccIR}. (3.6)
As S, is a convex set which contains the origin, 8 is a subspace. Because S ¢ L C E*,

k]

u; € E defines a linear functional on 8 bounded in the E* norm. Since ||&||r, = Al

Ec
for all & € S by hypothesis,

|aei &)] |eea ()}
sup ——— < sup - 3.7
ke}:‘» [11)3 kesp Alkig. (3.7)
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Therefore. the functional on 8§ delined by v is also bounded in the Lonornr, and S has

the properties claimed.,

The following examples indicate that the condition in Proposition 3.2 is wild,

Example 3.1 (i) I BE = ™(—o0,00) and L = ('[0,00). then the condition
in Proposition 3.2 is satisficd for all convex and symmetrie subsets of L, as

h-fle 211 |

£,

(ii). If S, is contained in a finite dimensional subspace ol L. then the condition
in Proposition 3.2 is satisfied for all E and L. as all the norms are equivalent,
on a finite dimensional space. Oue typical example of this is the case when

U=E=(%(-o0,00), || llL =l llg~, and 8, = sp{l,z.....="}.

3.3 A Set of Monotone Decreasing Systems

All the data sets introduced in Example 2.1 are monotone decreasing in a certain
sense which will now be made more precise.

By the norm ||S||r, of any sebset S of L we mean ||S|l, := sup{||k]|L : & € S}.
A subset 8 of L will be called monolone decreasing il given any fixed interval [lo, 1)),
the norm of S intersected with any subspace of functions of L having support. on
a (variable) subinterval (¢}, ! + 1) of [lg, 1)) is monotone decreasing as ff, increases.
A somewhat more general property than monotonicity of S requires the previous
statement to he true only for subintervals of length i < ¢, in which case S will he
called g-monotone decreasing. We will now deline these notions of monotonicity more
formally after introducing some nolation.

For sets S C L, we shall wish to consider subsets of funciions with suppor!,

restricted to an interval, and introduce the
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Notation For any subsct S of L, S|y, 1y denotes the subset of functions of S with
support in the inlerval [t ty) of By ico., Sy gy := SO Py S, Fora st of the form
Slouy. 1 p-seelion is ils inlerseclion with any p-dimensional subspace of Ligmy. -

=

tail p-scelion of Sl i the inlerseetion of S with thel spun sp{z""r ..., st}

Definition 3.1 S, will be called g-monotone deereasing, | < ¢ < o, if ceery p-

seelion Xy in S.,l{u.,,,) salisfles

”‘YPHL > ”Su l[m—p.m)“L

wheneoer | K p<m < oo, pLg<oo. (Here 'S 5 smaller than S, means that
ISillL < ISzt

In other words, in any subset of the form 8,[jp ). the smallest p-section is the tail

p-section and this is true for all p up to some ¢.

3.4 .Estimation of Gel’fand n-Width

In this section, we estimate the Gel'fand n-width of a g-monotone decreasing data set

and give several corollaries which cover the results given in Example 2.1.

Theorem 3.1 If the a priori set S, is g-monolone decreasing, (1 € ¢ < oc.) then

the Gel'fand n-width d" has bounds

ISeliememllL < d"(Sa, L) < ||SulpnoyllL, (P <. p <o) (3.8)

Morcover, if
lim [1SalinnemllL = 1SalimoellL, (3.9)
then d" (S, L) = ||Salin.co)llL, and the subspace L2, = {k: k{i)=0, i=0,1,...,n—

1} is optimal for d".

'8y the usual abuse of notation, = denotes the i-th power function in H®,



Chapter 3. Estimation of Time, Gel'Tand, and Kolmogoros n-Widths R

Proof To show the lower bound in (3.8), fix p < ¢. p < a0, By definition of ",

d* (8,.L) inf|IS, ML (3 10)

2 11“,!‘ ”Suhll.nﬂ') ﬂ L |[lhrl+1')“L (3 1H)
It will be shown that for any L". L™ |jonap is a subspace of Ljg g, with dimen
sion greater or equal to p. Therefore, by delinition of psection, the bonndary ol
Sulpnem N L"

monotonicity of 8,, that the last term in (3.11) is not less than [|Sy|(n.nsp)

oty 15 CILher a p-section or contains a p-section. I will follow, by the
[9.n+p) A

L. miving
the lower bound of (3.8) for all linite p, p < q.

To show that dim (L"|[g|,.+,,)) > p, we ratice that

ntpe1
L"l[u.,.+,,>={ke-w{l..:..n,:"*”f'}= KOS =0, i = 1,.....,}, (3.12
t=1

where fi’s are the functionals defining L. Put

Hh) ... filn+p-1)
F= : cerd . (3.13)
f0) .0 fuln+p-=1)
By (3.12)., we have

ndpe1

L™ omp) = {k eL: k= > k), (kO),.... kn+p-1)" € NuH(I")}.
=0
(3.14)
It follows that dim (L"]jgsp)) = dim (Null ()} > p.

The.upper bound is achieved by taking L* = L

. When the upper bhound equals
ot [ |

the lower bound in (3.8), the optimality of L}, follows [rom the definition of d”.

0

The estimates of Gel’fand n-width described in Example 2.1 are established by

the jollowing coroilaries.
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Corollary 3.1 Let [ € £10,00) bt @ monolone decreasing positive function. If
S.={ke'0,00): |K(r)| < f(r), V7 € Ly}, (3.15)
then
d" (84, '10,00)) = [[Ppu,cy ()ler (3.16)

and the swbspace L', = {k: ki) =0, i=0,1,...,n =1} is opltimal for d".

apl

Proof It will be shown that S, is co-monotone decreasing. For this it is enough
to show that for any positive inlegers p < m < oo, which will be held fixed in
the proof, if M is a p-dimensional subspace of sp{1,z,...,2™ '}, then the p-section
A := MNS.|,m) of the sct S,,|[u,m) is not smaller than the tail p-section Su|[,,._,,,m),

.o, there is a function & € A such that

”k“f‘ 2 ”Sul[m—p.m)"fl - ”P[m—p.m)(f)"f’-: (317)

where || || denotes the €' norm, and the last identity holds because S, is closed under
truncation Pp,_, ). It will be shown that in fact there exists £ € A which touches
the l)oulldary ofl A al p poinis al least, i.e., there exist m,72,...,7, in the interval
[0,2) at which [k (7)| = |f (7)) ], and [k(7)| £ |f(7)| elsewhere in the interval [0, m).
Such a k clearly has the requisite property (3.17) because f is monotone decreasing.
s existence will be established by induction on the number of points touching the
boundary.

Let & be a nen-zero vector in M. Since [ is positive, there exists a constant
a € IR such that ak) € A and ak, touches the boundary of A at 1 point at least, say
al. 1 € [0,m). Suppose, next, that for some integer 7, 1 <7 < p, there exists k; € A
which touches that boundary of A at (least at) ¢ points, 1y, 7,...,7; in [0, m). Let us
show thal there exist &4, € A which touches the boundary at (least at) ¢ -+ 1 points,

T T29e ooy Titt-
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Let {egy . o.oep) be a basis of ML and V0 M = sp {7, .27} be the transfor

mation whose matrix representation relative 1o this basis is

M (Tl) e !‘I.(Tl)
(3.18)

m(r) oe(T)

For i < p, Null(V:) # 0. Let Ak # 0 be any function in Nufl (V;). Then Ak, € M
and & + aAk; € M for all @ € IR. Since by this construction Ak (7)) = 0, j =
1,2,...,7, b + aAk; will stay on the houndary of A at 7, m,..., 7 for all « € IR.
Since Ak; # 0, & + aAk; = kg must touch the boundary of A at some poiut 74
in [0,m) for some value @ € IR, i.c., [k (i) | = |f (7ia)) |y andd 71y # 1aTav e, T
Thus k.-;_. touches the boundary ol A at (least at) i + | points, and has the requisite
properties.
Since

pli_ngo ||Su|[u,u+p)"£' = plﬂgg ”P[n,rt-}-p](f)"f‘ = ”P[u,m)(f)“f‘ 3

the identity (3.9) applies. Therefore, the theorem implics that d" = ||Pp. o0y (fHns

and the subspace L}, = {k: k() =0, ¢ =0,1,...,n — 1} is oplimal.

O
Corollary 3.2 Lel [ € £'[0,00) be ¢ monolone decreasing posilive function. If
Sa={k€€1[0,m): i|k(r)|f”(1’)5 1}, (3.19)
T=0
then
d" (84, £'[0,00)) = f(n), (:3.20)

and the subspace L}, = {k: k(z) =0, i =0,1,...,n~ 1} is oplimal for d".
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Proof We will prove that S, is I-monotone decreasing. For this it is enongh to show

that every houndary funetion in S, |jpua) is not less than the tail function &, delined

by

0 tF#m ‘
o (’) = # (3'21)
f(mn) t=m
Let k € Saljom) be a boundary function, e, Xt [6()]S71(#) = 1. Then, as [ is
monotone decreasing,

L1

[&ller 2 fn) 32 IRENSTHE) = Jlmm) = |lbw]-

=0

I'hus 8, satisfies the monotonicity hypothesis in Theorem 3.1.

'To show that the identity (3.9) holds, i.e., ||Salmm+n)la = ISalpoc}ller, it is enough
to show that ||Selmmsnlle = ||Salposller- Let & € Safpeo). As [ is decreasing and

PRGNS L 1, we get
oo
Iklle < f(n) 20 1R@NT(E) < fln).

Henee, ||Salmeo)lle < (1) = |kalle < ISelpmmsnlles as by € Selpnas)-

Therefore, d* = {|Salpasnlla = f(n) and the subspace L}, = {k: k(i) =0, i =
0,1,...,7— 1} is optimal.

0O

A slightly different version of the next proposition is a standard theorem in [38,

Theorem 2.1, p.250] which can be deduced from our common principle.

Corollary 3.3 Let L be the Wiener algebra, i.c., the H®-normed algebre of functions
in H® (D) with Fourier coefficients in £'[0,00). Let 0 < r < 1,1 >0 and ! # 0 if

=1.1f
S(r,) = {K: KW € H® (Dy1), [[KWoop < C}, (3.22)
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where KUY denoles the 1-th devivative of K, then

S(r, ! <,
I (:I )L n< (1.2)
!u—l).('ru—-l n 2 l.

n!

d" (S(r.1).L) =

and the subspace Li, = {k: k(i)=0, i =0,1,....0 =1} is optimal.

Proof The proof is trivial when n < L. We prove this covollary for n > 1 §(r. ) is
[-monotone decreasing, i.e., every boundary vector in S(r, )[jp,,) is not less than the
Lail vector &, defined by
ko(?) = 3.2
=3 (3:21)

!
This fact follows from a theorem in Pinkus [38, Theorem 2.1, p.250] which implies
that S(r,!)|pn contains a n + I-dimensional H* ball of radins h'f!—l)—!(»'w"'“’. That
radius equals the H* norm of &y, which in turn equals ||S(r, )|,0ollL. Since &,
as defined in (3.24) is in S(r,)lpmt1)s 1S Dpweotlll = NallL = 1S Hppwr iyl
It follows that identity (3.9) holds. Therclore, d" = 5'—';—!0—!6'1-”" and the subspace
Ly, =1{k: k(#)=0, :=0,1,...,n— 1} is optimal.

3.5 Estimation of the Time n-Width

Invoking Proposition 3.2 and Theorem 3.1, we obtain an estimate of time n-widili of

a g-monotone decreasing data set.

Theorem 3.2 Let E = U = {*(~o0,00). [f the a priovi sel 8, is ¢-monolone

decreasing, then the n-width 0* has bounds

"Sal[n.ﬂ-ﬂ’)”L S o (SaaL) S ”erl[n.m)"L: (P S ¢, p< OO) (3.25)
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Moreoeer, if
lin 1S4 s lln = [Saleoslles (3.26)

then 0" (S,, L) = d" (S,, L) = ||Sa|m~yllL, and an impulse at the start of the obser-

walion wlerval is oplimal for 0.

Proof "The theorem can he proved by invoking Theorem 3.1 and Proposition 3.2.
The up|.>('.r bound in {3.25) is achieved by taking u to be an impulse at the start
of the observation interval. To show the lower bound in (3.25), we notice that for
all p < ¢, p < 00, 0 (Sy,L) 2 0" (Suliomsm» ). Since Saljonep is contained in a
finite dimensional subspace, and in such a case the hypotheses of Proposition 3.2 are
awtomatically fulfilled, 0* (S,,L) 2 4" (S,,l[g‘n+,,}, L), by that proposition. Since S, is
monotone decreasing by hypothesis, Sq|[o,n4p) is also monotone decreasing. Hence by
‘Theorem 3.1 0" (Se, L) 2 {|Saljnnenllu. Noticing that the above inequality holds for
all finite p < ¢, we get the lower bound in (3.25). When the upper bound coincides
with lower bound, by Theorem 3.1 6" = d" = ||S;|(n,00)||1, 2nd the optimality of the
impulse follows from definition of 8".

O

The estimates of time n-width described in Example 2.1 are established by the
lollowing corollaries to Theorem 3.2, which follow immediately from the corollaries

to Theorem 3.1.

Corollary 3.4 Lel E = U = (*(-00,00). If S, s as defined in Corollary 3.1, then
0" (S, €'[0,00)) = d" (4, £'[0,00)) = |[Ppacey()e (3.27)

and the optimal input is an impulse al the start of the observation interval.

Corollary 3.5 Lel E = U = {®(—~00,00). If 8, is as defined in Corollary 3.2, then

0" (Sa, €0, 00)) = d" (S, £'10,00)) = f(n), (3.28)
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and the optimal input is an impulse al the start of the obscrvation interval,

Corollary 3.6 Let E = U = (™ (—00,00) and L be the Wiener algebra. If' S, is as
defined in Corollary 3.3, then

IStr M, n <,
fa=Dlerpn=t >y,

n!

0" (S(r,1),L) = d" (S(r, 1), L) = (3.29)

and the optimal tnpul is an impulse al the start of the observation inlerval.

3.6 Estimation of Kolmogorov n-Width

For estimation of the Kolmogorov u-width of + g-monotone decreasing data set, we
will need an additional assumption.
Assumption 2 S, is closed under the truncations P oy, or more generalli?, theee

is a causal Cesaro operation C, which maps S, into C, (S,) and salisfics

(- Py s.

L < |Saline] - (3.30)

Here a “Cesaro operation” is any map salislying (3.30), and is so called heeaise
it will typically be obtained via a Cesaro summation; i.c., the first n samples of each
impulse response in S will be multiplied by a weighting function which deceases with

time.

Theorem 3.3 Under the Assumplion 2, if the a priovi scl S, is q-monolone decreas-

ing, then the Kolmogorov n-width d, has bounds

||Sa|[n,n+p)"L S dn (Sm L) S ”Sulin,m]”L! (P S 4 p< OC')' (3:”)
Moreover, if

i Sl sl = ISl (3:52)

*If 8, is closed under truncations then (3.30) is satisfied with C, cqual to the identity
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then d, (S, L) = 0*(S,,L) = d"(S,,L) = []S,.|[n.m)||L: where U = (™(—00,00) in

0", and the span L, = sp{1,z,...,2"7'} is an optimal subspace.

In the proof of the theroem, we will use the following standard result in duality

theory [27).

Lemma 3.1 Lel L be a normed spuce, X be a subspace and X* be the annihilator of

X. Then for cach k€ L

nf Jk =2 = ediBx B(k), (3.33)

where “max” indicales the supremum is allained,

Proof of Theorem 3.3 To show the lower bound in {3.31), fix p < ¢, p < co0. By

definition of d,,,

dn (Srn L) 2 du (Sn|[0,n+p), L) (3.34)

= inf sup inf ||b—-2 3.35
Xa k€Saljo.ntp) z€Xn “ “L { )

By Lemuma 3.1, the last infimum can be replaced by a maximum as following:

inf ||k—2|L=

z€X, !IJEXIEmﬁllﬂl (k). (3.36)

Therelore, we have

d, (Sq,L) 2 inf sup max
x'l kesﬂllo.ﬂ-ﬂ’i) I,CIEKTJ,'.“L!'"SI

(k). (337)

Assume 2, a2,...,2, form a basis of X, i.e., X,, = sp{z),22,...,2,}. Bach z;

is a sequence, x; = {x;(0), z;(1),...}. Put
(0} ... zi(n+p-1)
X=|f + . . (3.38)
xa(0) ... zu(n+p-1)
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We have

tp—-1 -
X;:‘hu‘“_‘_p) = {R‘ eLl: k= z O (W) ch(n + p— ' e .-\’u“(.\')} .

=0
(:3.39)
Obviously, X0ty is a subspace of X, and
dim (X;‘[l[u.,,.,r,,)) = dim(Null(X)) 2 p. (3.40)

By the definition of prsection, the boundary of S,fjontp) ﬂXﬂ[u‘,,.H.) is either a p-
section or contains a p-section. Therelore the monotonicity of the a priori uncertainty

set implies that

”Stll[l}.u-i-p) nxi |[U.u+p)“L 2 “Sr! |[u.n+;a)"[n VX?I' ("I ! )

It will be shown that

sup max (k) > ||Salpnen 1 X lomem |- (3.12)
teSalomsm (1 Xtlomsn veXtiwli< || |lu +1)ﬂ [O0n4p)
Therefore,

d.(S.,L) = inf sup max P(k) (by (3.37)),

Xn kESrIIIO.u-I-P) nxii' I[O.n'{-ll) 'J!EX;I.'-"V’[Isl
i}I{l[ ”Stxl[u,n-t-p) ﬂ x;!; |[U,n+p) "L (I)y (3’42))1

> |ISelpmsmllL, (by (3.41)),

v

which is the desired lower bound in (3.31).

To show (3.42), we notice that for ecach & € Suljputpy N XL, o := % kot
a functional defined on sp{z,z2,...,k}, and its norm equals one. By the Haln-
Banach Theorem, it can be exiended to L and the extended functional also has unit,

norm. If we denote the extended functional still by g, then ¢ € X} and ||| = .

Therefoye,

sup max Pk) = sup Pe(k), (3.43)
k€Salio,nip) N X lonspy VEK IS k€Salfo,n+ 5 VXt lo, 45y
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= sup ||A'||L~ (3"1")
kES.alln,n+p] nX-JI |10.n+:-l

= “Su|[U,u+p)ﬂxil[(l.u-l-p]"[:' (dl.’j)

By delinition, d,, has the following upper bound

dy (Se, L) < supind |k — 2|1 (3.46)
keS, +€Ln

Set & = PlyaCu(k), where €, is a Cesaro operation satislying (3.30) in Assumption

2. We pet

d (Sm L) < :USI) ”I" = P[U.u)cn(k)”In (347)
vEDa
< |ISalpeo)llL. (by Assumption 2) (3.48)

When the upper bound coincides with the lower bound, by Theorem 3.1 and
Theorem 3.2, dy, (Sq, L) = 0" (84, L) = ¢" (84, L) = }|S¢|[0,00)|| L+ the optimality of the

subspace L, follows from the definition.
(]

The estimates of Kolmogorov n-width described in Example 2.1 are established

by the following corollaries to Theorem 3.3
Corollary 3.7 If S, is as defined in Corollary 3.1, then

dy (S0, €'[0,00)) = 0" (8., '[0,00)) = d" (84, €'[0,00)) = [[Ppne)(S)lle,  (3.49)

where E = U = {®(—00,00) in 0", and the span L, := sp{l,z,...,2""'} is an

optimal subspace.

Proof o apply Theorem 3.3, it is enough to show that S, satisfies Assumption
2, and the rest will follow from the proof of Corollary 3.1. Since S, is closed under

truncation, Assumption 2 is satisfied.
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Corollary 3.8 If S, is as defined in Covollary 3.2, then

dy (84, 0'[0,00)) = 0" (Su'[0.00)) = d" (8,00, 0)) = f(n). (3.30)

where E = U = (™(—co.00) in 0, and the span L, = sp{l.: 2" s an

........

optimal subspace.

Proof Since S, is closed under truncation, Assumption 2 is satistied. The rest of

the proof follows [tom the proof of Corollarvy 3.2
i

Sxample 2.1, parts (i) and (ii) follow from the preceding corollarvies when f{) =

Crt,

Corollary 3.9 Lel L be the Wiener algchra. If S, is as defined in Corollary 3.3,

then

o (S0, ) = 0" (S(r, 1, ) = & (S, ), Ly = { LoDl

=tlenm=t = >,

n!

(4.51)

where B = U = (®(-00,00) in 0%, and the span L, 1= sp{l,z,...,z"7 '} is an
) ' ] n 1

oplimal subspuce.

Proof Theorem 2.1 in {38, p.250] implies that there exists 2 mapping C,, on L such

that Yk € S(r, [),
(T~ PromCa) ()], = 1Salpuill.

Hence, Assumption 2 is satisfied. The rest of the proof follows from the prool of

Corollary 3.3.

O

Example 2.1, parts (iii) and (iv) are special cases of Corollary 3.6 for the sets

S(r,0) and S(1,1).
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Under the conditions of Theorem 3.3, the FIR model is optimal for reducing
modeling error. More than that, the FIR model taken together with an impulse
input at the start of the observation interval, form an optimal (model set and input)

pair for reducing the worst-case identification error.

3.7 The Optimal Worst-Case Identification Error

Theorem 3.4 Lel U = (™(—~00,0c). Under the Assumption | and Assumption 2, if

the a priori data sel is g-monolone decrcasing and identily

lim 1Sa | ntn L = [1Saltn.eo L (3.52)

=4

holds, then the oplimal notse free worst-case idenlification error

inf il T (w.X,) = max{d"(8,,L),ds(S,,L)} (3.53)

ueld X,cL
= ”Suhm.oo)”l'_,, (.}54)

where meo= min{n, T'}. The oplimal inpul is an impulse al the start of the observation

interval and the optimal affine model set is the FIR model L, = sp{1,z,...,z""1}.
Proof 'Theorem 3.3 implies (3.54). By Proposition 2.2 and Theorem 3.2, we have

. . T . T
inf il (4, Xy) 2 max {d" (S, L), dy (S, L)} . (3.55)

[t is left to show that

inf inf " (u, Xa) < max {d" (S,,L),ds (Sa, L)} - (3.56)

Let u be an impulse at 4, the start of the observation interval and X,, = L,,. By

definition of ¥ (1, X,),

inf inf el (0, X,) € s inf L— Lk ) .
“EU xrthL (u’ ") - klr'qn‘clgSu kc':'nELn kz‘;l()y) ” est "L (3 57)
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Since the input is an impulse at the start ol the observation interval, the a posterior

uncertainty set S(y) has the form

S(_f[) = {’\ €8S, P[(L'”(A‘) = P[n"f')(k,,.“,‘)} (3.."1\\.)

Let € be a Cesaro operation satisfying (3.30) in Assumption 2, and Ay =PouCu
(Atrue )s which is in Ly, By the causality of Cpy ke is equal to Pl Co Ploa (k).

Therefore, for all & € S{y),

Ik = keull = Ik = Pom)CnPogm) (Rrue) [lLy (by the causality of )
= [1% = Plom)Cn Pron (F)lL
(because Piomy(k) = P (Kyeue) for k€ S{v))
= ||k = PmCun(h)|lL (by the cansality of Cy,,)

< ”S“I[’"""‘)“L {by (3.30) in Assumption 2).

Since the above inequalities hold for all ki € S, and all k € S{y), noticing (3.57),

we gel the desired upper bound.

a

The optimal worst-case identification errors for the data sets in Example 2.1 are
derived from the following Corollarics to Theorem 3.4. The lact that all the sets in
these corollaries satisfy the conditions in Theorem 3.4 follows from the corollaries Lo

Theorem 3.1 and Theorem 3.3.
Corollary 3.10 Let U = {®(~00,00). If S, is defined us in Corollary 3.1, then

inf inf, e’ (u,Xn) = max {d" (Su, ') ,dy (Sur ')} = [Py (), (3.59)

where m = min{n,T'}. The oplimal inpul is an impulse al the starl of the obscrvation

interval and the optimal affine model set is the FIR model L, = sp{1,z,...,2"7'}.

-
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Corollary 3.11 Lot U = {™{=nc.oc). IfS, is defincd as in Covollary 3.2, Hen

inf il (1, X,) = max {d"' (841"} du (S r')} = f(m). (3.60)

wheee e = min{a, T}, The oplimal input is an impulse at the start of the obsereation

imterval and the optimal affine model sct is the FIR model Ly, = sp{l.z..... L)

Fxample 2.1, parts (i) and (ii) follow from the preceding corollaries when f(1) =

',

Corollary 3.12 Lel U = (™(—o0,00) and L be the Weiner algebra. Lot 0 < r <1
and p£0 ifr=1. If S, is defined as in Corollary 3.3, then

ol inf T (X (07 (S0 L)y (S )} = { © e
I:IGIU J{l.l.lCL( (u, “)_"ldk ‘ ( @ )‘("( . ) - ("‘—'P!!Cr'r'l—b m 2]’5
(3.61)

where mo= min{n, T}, The optimal input is an impulse at the start of the observation

interval and the optimnl affine model set is the FIR model Ly, = sp{1,z,...,2""'}.

Example 2.1, parts (iii) and (iv) are special cases of Corollary 3.12 for the sets

S(r,0) and S(1,1).

3.8 Estimation of Shift Invariant Time n-Width
Proposition 3.3 Under the hypotheses of Example 2.2,
0" (S,,,L) < 0" (S,,,L) < al" (S,,,L). (3.62)

where the upper bound is valid for the following o, For S,,, Sy, and S,;, a =2; for

Sey a=m.
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Proof The lower bound follows from the faet that the supremum delining 0" is over
a larger set than for 0%,

For the upper bouund, we cousider a sequence of impulses as the input, e o d) = 1
for t = mn, m € Z&. and u(t) = 0 elsewhere, Since the input is a periodie funetion
of period n. the output is similarly a periodie Tunetion and is zero on an interval of
length n if and only ilit is zero everywhere. In this case the location of the ohservation

interval does not alfeet 8] (1) and we can arbitrarily set ty = 0, wherenpon
0" (S., LY <sup{|lkllp : A €S, (Kut)(1)=0, 0<t < n}). {3.63)
1) In the cases of S, and S,,,. (ANu) (1) =0, 0 <! < n,implies that
]
Z M+ Tu(-7)=0,0<1t<n

r=-—1{

Since u is a sequence of impulses, we have

oo
Z Mi+mn)=0,0<1<n,

m=0
Le. M(t) = =22_ Kt + mn), 0 <1 < n. It follows that
Elle = 321k + D2 1k,
t=0 I=n
n—1 oo
< Z (¢ A+ em)| + |[P[,, o) () |fer .
1=0 m=1

= 2” [noo) )[l’i"
By (3.63), we have
0" (Su,, €'} < 250p {|Ppaey (K)llr = k€8, } =20"(S,,0').

ii) In the case of S,,, considering the discrete Fourier transforms of hoth the input,

and the output, we have

(o) = (@) (),
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where K {w,) = o0, M) and w, = —-’, J =01, n—=1.Therefore by (3.63).

0" (S...H™)

IA

sup {||I\'||m : NeS,,, i (c""l) ( '“”) =0, j=0,...,n— I}.
snp{”l\'”w: N e€S,, K ((:‘“’J) 0, j=0,L....,n— 1},
sup {||Nllw : N € 13,8,,}.

where B, is a Blaschke product in H™ (D,1),

i ( ) n—| re—7 Llu, PRl (:n — l)
nl<) = H N = — p2nn
_,'=ul réetwn s | —péng

This implies that 0" (S,,,H®) < C||Ba]|e. To compute || B, ||, we notice that

| B, (c"w) |2 -(_"_li___l_).

1 — 7‘2“ cmw

k]

1 — cos(nw)
1+ 7 — 2r2cos(nw)’

97_2n

-~

< ar®,
Therefore,
0" (Sa,, H®) < 2Cr™ = 20" (S,,, H®).

11i) In the case of S,,, il A € S, then " has bounded derivative in D and Hardy’s
inequality implies that K{z) = ¥, k(7)z" and T, k()] < co. Hence K (&) is

defined for all w and K (&™) = lim,_; K (re™). It follows that
0" (S.,,H®) < sup{||1\'||¢.O K| £C, K (e"“’s) =0,j=0,1,---,n— 1}.

Now we prove that & (&™) is Lipschitz continuous with Lipschitz constant. || A”||eo.

Since K'(2) € H(D), integration on the arc {re™ : w; < w < w,} gives us

| (1‘(3"“") - K (1'81'“’2) | = |/ al\ 16'“’ dw|, (3.64)
_ wi dK (re)d (rev)
= fu,, d(re@)  dw d“’" (3.65)

IA

fm r|K’ (re“") ldw, (3.66)
)
Pl K ffooluny — w2l (3.67)

IA
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Thervelore,

|k (Ciun) - K (("\Jr) | = !-l_.nll | (rr"‘") — K (l‘f'i“!’) R (3.68)

< linll FIIR i lwn = wl. (3.6}
= |||~ bt = wul. (3.70)

Henee, for A € S,, satisfying the interpolations K {e™) =0 for j = 0.4, ,n — |,

we have
1Kl < 1K T /1

and
A ]

0" (Sary H®) < 75 = 10" (S0, H).
n



Chapter 4

Ensemble Input Design for Fast

Identification

Assuming that an oplimal model set has been chosen to represent the a priori data
Lo a certain tolerance, a major contribution to the worst-case estimation error is the
component we have called “inherent error”, 67 (u). In practical on-line identification,
the input is seldom free to be optimized so as to reduce the the inherent error to
its minimal value 07; the input can only be modified to the extent of having certain
desirable ensemble properties, e.g., flat spectrum, by introduction of a dither signal.
In this Chapter, we will study how the input should be so modified.

The unmodeled dynamics affect identification as a multiplicative noise, which can-
nol be eliminated by increasing the input power or by averaging. A characterization
of the identifying capability of an input will be given in the gap metric, in the presence
of this multiplicative noise. The characterization makes use of certain “spectrum flat-
ness” propertics of the input, when the model set is an FIR (finite impulse response)
model. In this case, the worst-case inherent error is bounded both above and below
by functions of the spectrum flatness. These bounds become large when the spec-

trum is far from flat, which implies the necessity of a not-far-from- flat spectrum in
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Figure 4.1: Unmodeled dynamics affects identification as multiplicative noise

nonparametric identification. (Portions of the paper are in [23].)

Input design problems have been considered in [11, 12].

4.1 Unmodeled Dynamics and the Multiplicative

Noise

Let X, be an optimal afline model set, for S,, with the representation error dist(X,,,S,)
= €. Then eacli system k € S, can be decomposed into two parts, i.e., & = &y + &z,
where & € X, and k; € B(e), the e-ball in L. We call &, modelled dynamics and &,
unmodelled dynamics, If kl,,,t‘ € X, is an estimate for &; and chosen as a nominal
model of the true system, the error between the nominal k; ., and the true system &

is bounded as following

”kl.est - kl "L —€< "kl.eat - k”L < "kl.eat - kl "L + €. (41)

Therefore, an accurate identification can be achieved by representing the uncertainty
set accurately by a mode] set, and then estimating the modelled dynamics &y accu-
rately.

Given an input u € U and the output observations on [to, Ly + T'), the modeled
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-

dynamies b must satisfy the following equations:
s(1) = B, (b)) + (0(0) + Bu(ka)() VLE [taylo+T) (1.2)

where &, represents the unmodeled dynamies. Sinee ky is unknown, the output of the
nnmodoled dynamics @,(4;) remains unknown even if the input u is given. There-
fore, the output of the unmodeled dynamics affects the identification of the modeled
dynamics as a noise, as shown in Figure 4.1. The magnitude of this noise depends
on the magnitude of the &, and the input. Hence, an accurate representation of the
a priori uncertainty set not only reduces the representation error, but also reduces
the disturbance caused by the unmodeled dynamics in identification of the modelled
OLes,

Generally speaking, the noise gencrated by the unmodeled dynamics behaves dif-
f(‘rcnl.ly.frmn the additive noise v in two aspects. First, the magnitude of this noise
increases with the magnitude of the input. Therefore, it can not be overcome by
increasing the input power. We call this multiplicalive noise. Second, unlike addi-
tive stochastic noise, the multiplicative noise can not be eliminated by averaging.
The effects of multiplicative noise can only be reduced by representing the data set
accurately and designing the input suitably.

To isolate the effects of multiplicative noise, we first assume that there is no

additive noise in the measurements and the a priori uncertainty set is of the form:
S. = X, + B(e), (4.3)

where X, is a n-dimensional subspace of L and B(e) is the e-ball of L centered at the
origin. X,, and B(c) represent the modeled and unmodeled dynamics respectively.

Later, we will study the cases where measurements are corrupted by additive noise

and the a nriori uncertainty sel is a subset of X, + B(¢) as in Example 2.1.

The effects of the multiplicative noise can be characterized by 2 map mapping
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unmodeled dynamies to modeled dynamics. Il the norm of this map is large, then
small unmodeled dynamics may caunse large inherent error.

As we recall, the noise-free inherent ervor is

6[;(11) = Hll[){“’\'”L : hesS,, P[,‘,_,‘,+-1')‘I),,(A‘) = U} (1)
= sup{|[&llL: & € Su[ ) Null(PpyigrrBu)}- (-1.H)

For k €8, N Null(Pyy 10+ ®u), b = ki + k2, where by € X, &2 € B(0), we have
P[rn.tn-r-'l‘)‘i’u(kl) = _P[tu.to-i-'l')@u(;"'.!)- ('l-ﬁ)
Set.

F = P[to,.‘,0+']')§|1(xl! )\

{k €L: P[tu,to+'1‘)@u(k) c F}

S is a linear subspace of L. Let Py, 47 ®ulx, and Ppg 41 ®uls denote the restrie-
tions of Py 47w on X, and S respectively. Since a by satislying (4.6) is in the

subspace S, the relation (4.6) is equivelent to
Pl oty RulX, (k1) = =Py o) Buls (k). (1.7)
Equation (4.7) defines a mapping from S to X,,. We denote it, hy M,

Proposition 4.1
e(L+ (M) = 65 (u) 2 (M| - 1), (4.8)

where || - || is the L induced norm.

Proof Set

Sl = {k e L: k= kl + kg, k| = M(kz), kz e S, "kg“[, S (.}.
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By delinition of &4'(x) and (1.7), 87 (x) = ||Si|lL. Since every & € 8¢ has the form
k= (1+ M)(ky) for some &y € S with |[ky]lL € ¢, where Tis the identity mapping,
we have ||Sy |l € (1 4 ||M||)e.

On the other hand, by definition of ||M||, ¥y > 0, 3k, € S such that

1M < MU/ kel + 1 (19)
i i !
b=M (ukjn ) il (110)
By delinition of 8, & € Sy. Since 8¢ () = ||S1]|L, we have
() 2 Ikl
2 M|~

> M —n)—c (by (49)).
Since this inequalities hold for all 3 > 0, we have & (u) 2 e(|M]| = 1).
O

I'he Proposition 4.1 shows that it is the norm of the operainr M characterizes the
effects of the unmodeled dynamics in identifying the modeled dynamics. 1t will be
shown that when ||+ |l = || - |2, [[M]] is related to the gap between X, and the null
space Null(Pg o471 ®4). Especially, when X, equals the FIR modei, the optimal
model for all the a priori sets in Example 2.1, this gap is related to some spectral
property of the input. For simplicity, we denote the null space Null(Pyy 1047y ®0) by

Ny,

4.2 A Characterization by Gap

The next theorem shows the relation between the inherent error 61 (1) and the gap

between X, and Ny, .
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Figure 4.2: Characterization of multiplicative noise by the gap

Definition 4.1 Lel A and B be any two closed subspaces of a Hilbevt space. The

cosine of the angle between them is defined by
cos(A,B) := sup{j(a, b)| : |e|| = ||b]] = 1,¢ € A,b € B}, (1.11)

where (+,+) denoles the inner product on the Hilbert space. The direel gap between A

and B is defined by

-

0(A,B)= sup inf |l = b]|. 1.12
( ) “rl]]:l.IuEA. bEB“ ” ( )

The cosine of the angle and the gap are related as shown in the next proposition,

which is extracted from [35].

Proposition 4.2
cos(A,B) = |PAPg| = §(A,B*), (4.13)

where P s denoles the projection operalor on A.
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Theorem 4.1 Let | {ly, = || - ll2. {f Ny is a closed subspace of (* and S, is as in
(4.3), then
00 if cos (X, Ny ) =1,

b (1) = . e _ (4.14)
(1 = cos* (X, Ny )) olherwise.

Proof Set
sin(A,B) := (1 — cos?(A,B))/2 (4.15)

Then we have

sin®(X,,Ny,) = 1 — sup ||Px.,PN.0(f)"21
Il

A=

= ] - sup ||Px.‘(f)||2a
II!lI— .feN'o

= = IPx. (S W),

I/ll= 1 IEN

2
- Ill= lfGN ” x,, )” ]

= inf inf 2
Ilfl= lfeNzo 9€Xa I = gll™

Since sin(X,,, Ny ) = 0 il and only if X, NNy, # 0, 63 (u) = 0o if cos(S,N,,) = 1.

Assume sin(Xq, Ny, ) # 0. Since asin(X,, Ny, ) = infjyzareN,, |Pxs(k)||, Yk €
Ny, |&] sin(X,, Nyy) < ||Pxa(k)]l. Also, by the structure of S,, k € S, if and only
il |Pxs(#)]| < e It lollows that Yk € N;, N8, ||k||sin(Xn, Ny, ) < e. Therefore,

63 (u) < ¢(1 — cos}(Xn, Ny )) 2.

On the other hand, ¥y > 0, 3k € Ny, such that ||&||sin(S, Ny ) > |[Pxs (k)| - 7.
Since & can be chosen so that ||[Pxs(k)|| = €, ¥y > 0, 3k € N, NS, such that
| & sin(X,, N ) > € — 5. This implies that

60 (1) = (1l — cos*(X,, N, ))~V2
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By Proposition 4.2, cos(X,,, Ny} = [|[Px,Pn, |l. Exploiting the fact that X,
and N are finite dimensional subspaces, we can write these projection operators in
matrix forms, which can be used in computing [|Px, PN, |- Inn the special case where
X, = L, these matrices are related Lo the correlation matrix of the input, and its
norm is related to the spectrum property of 1.

Let X, = 5p{f1, S, . [u}, where {f1,++, fu} is an orthonormal basis in the
£2[0, o) sense. Let {f:}52, be an orthonormal basis of £2[0, 00) obtained by extending
{fis. -, fu}- A system k € L will be represented by k = 22, xi fi.

Set a;i(t) 1= ®u(fi)(t). Then the operator Py 4@y has the following matrix

representation with respect to the basis {f;},

a1 (o) cz(to)
i (to + 1) ag(to + 1) _
P[tg,tu-{-T)@u ~ Alo = . o . 2( ¢ . . (4.'())

o{te+ T -1) az(te+7-1) ---

We denote the first n columns of A, by By, i.e.,

a(to) az(to) -+ an(lo)

t 1 t 1 eer apll I
B, = fll(o+ ) flz(o'i' ) | fl(u+ ) , (4.17)

ar(to+T—1) aelbo+T—-1) -+ an(lo+T—-1)
and the rest of A;, by C,. Then Ay = [By, Ci,].

Proposition 4.3 Let || || = ||+ ||le and Sa = X, +B(e). [fu € £*(—00,00) und Ay,

is full rank, then 83 (u) = oo when By (n) is not full rank, otherwise,

2By S5 s ‘gg"::;’ (1.18)

where g and & denole the largest and the smallest singular values respectively,
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Proof I'irst, we show that the wull space Ny is closed in £2[0, 00). Suppose {k;} is
a convergent sequence in Nygo Assume ke its limit, des limis [[& = k|[2 = 0. An
input. u € £2{0, 00) defines a continuous linear functional on €2 through the summation

ey kTt = 1) for all ¢, Therefore,

Z k(r)u(l = 7) = lim Z Eityu(t—1)=0VtL€E [lo,lo+ 1), (4.19)
r=U P r=0)
which tmplies that ke Ny, -

By Proposition 4.1,

g -1/2
8o () = ¢ (1= ||Px,Pn,|I*) (4.20)

Next, we estimate

Px,Pn,|[- The projection operator Px, has matrix repre-

sentation

Lixn O
Px,, ~ g y
0 0

with respect to the basis { f;}. Since u € 2, the sequences {e;(£)}22, are in 2. Hence,

the projection operator Py, has matrix representation

Pn, ~ 1= Al (A A7) Ay,

lo (1}

Since Ay, = [By, Cy], we have

BE (AuAL) ™ B, B (AuAL)™ G

PN'D ~ - T T\~ T T\~ !
C!o (AIOAIQ) Blu Cfg (AIOAIQ) Clo
Ilence
-1 - -1
Px,Pn,, ~ Fuxn = B?t; (A‘nAtc) B, -B] (Agofl?;) Oy ,

0 0
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and

(Px.Pn,) (Px.Pn,)’

(l,m.—ls;g (.-l,‘,.‘-l',’(',)'l n,u)2+u;{;(.-\,‘,.—x;{;)‘ CoCE (A al) Y1, 0
0 0

Since

(1o = B (At?)” n,‘,) B (A AD) T CCE (A ALY 13
= luxn — 287 (A.,, AEY ™ By 4+ BE (A AD) ™ By BE (4,40)7 11,
+ BT (AAL) ™ CoCL (A0 AL) ™ By,
= uen + BE (A0AL) 7 (=2 (A ALY + B BL + CuCF) (A AT) ™ 134,
= Lcn = BL (A,A) ™ By,
o (note that (AgAl) = B, BY, + €, CT)

we have

0 0

.
(Px.Pn,) (Px.Pn,) ~ (f,,xu—i (A, ALY B, u).

Therefore,

1~ |Px,Pn,lI* = 1-|Px,Px, (Px.Pn,) Il
= 1= (ha = BT (A0 l) ™ 1)
g py ]
) -« (B,’n (A AL) B;,,) :
Since ||[Px, PN, |* = | when g (B’ (A,o ) ! Btu) =G, 1 (u) = oo if 13, is not
full rank. It is trivial to check that

a(By, T) ( ” - a( R, BY)
Eb™) BT (A B ) < 06 by)
® | sty <2 (Bo(Madl) ™ Bu) < T
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This completes the prool.

0
When X, = L, = sp{l.z....2" '} and {fi} = {='}. the operator Py g1 B
has the Tollowing matrix representation,
u(ly) u(ly — 1)
T ! R (1.21)

(o +1T =1y u(ty+71-=2)
We denote the fivst n columns of M, by U (1), i.c.,

iw(lo) u(ty — 1) oo (g —n 1)

U () w(ty + 1) u(ty) e uflyg —n+2)
] = . . . .

ulto+T = 1) u{to+7T-=-2) - ullg+T —n)

St W4, = jl‘l,,‘,o.r\'l,'f:,o and &, (n) = U, (n)TU,(n). Then we have the following

corollary to Proposition 4.3

Corollary 4.1 Under the conditions of Proposition {.3, if X, = L, then

2(‘1’1.,!0) 72 T, 5'(‘1':1.10) 1 g o
(W) < flu) (—(ﬁ“ﬁ) * (1:23)

When an input is not in (2, the null space Ny, may not be closed in 2. Hence, the
characterization in terms of projection operators may not hold. However, a similar
relation between the inherent error and the ratio of the largest and the smallest

singular values ol &, still holds. For this, we introduce the notion of
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(11
4.3 Spectrum Flatness and Mixing Rate
Definition 4.2 Let f(n), g(n) € (¥(—co.a0). The T-crosscorvelation of fand g is
a function ¢p (T 8) [l =TT = 1) x Z — MR defined by
T-1
Srplrod) L fU+ Dalt + 74 1). (4.20)
i=0
The T-autocorrclation of [ is defined as ¢pp(r.t).
For a given input we form the T-autocorrelation matrix
By go(1) = Uy () Uy (n), (1.25)
¢lxn(01 iD) ﬁf)uu(_ls!()) v (f’uu(_” + I»!n)
éuu(_lalﬂ) ‘fbuu(o-.lo_ I) 961111(“”+211(l‘ ') .
=3 ‘ ) co(.26)
Q"’uu(_n + l,l'l]) e e ‘f’rm(()v ly—n + I)

Definition 4.3 If u € #*(—oc,00) and infy, g(®, (1)) # 0. we define the u-th
degree spectrum flatness of u by

rpy | SUPy, a(®,(1)) ' .
v (n, 1) = (i“fto 2(®rr (7)) ) \ (4.27)

otherwise, v,(n,T) = co

We call v, (n, T) spectrum flatness for two reasons. a) For periodic signals w, (7', 7")
equals the ratio of the largest and smallest spectral values of the signad. ) Tor
“stationary” signals, »,(n,T) also equals the ratio of the largest and smallest spectral
values when 1" and n tends to infinity. These are shown in Appendix B. The short.
time spectrum and local correlation are well understood subjects in signal processing
and spectrum estimation.

For stochastic processes, spectrum flatness reflects their “regularity”™, which is
related Lo the concept “mixing” [5, 9]. Here, we are going to introducing & quantily

which measures the regularity of a deterministic signal and call it the mixing rale,



Chapter 4. Ensemble Input Design for Fast Edentification 66

Definition 4.4 Lel [ € {™(—00,00). If

r

:él% (ff)”({), t) — i > |(,f3”(i,f,)]) > 0. (-1.28)

1i=r--’l‘+|.;;.*u

then we say fis T-miring. The quantity
: 7
Ty 1= i ) —  max ) 4.2¢
(T :élé (q’)u(ﬂ,!) oJDEX | i=r—§:l i#01¢jf(f,f)| , (4.29)

where 0 < n < T, ds ealled the n-th degree T-mizing ride,

Example 4.1 A scquence of impulses with period T is T-mixing, Let wu(t) =
T 8= A1), Obviously ¢uu(r) = 6(7)/T. It lollows that ~,(n,T)=1/T >0
for all v < T,

Example 4.2 A pscudo-random binary sequence u({) with period T is T-mixing.
It has been shown that ¢,,(0) = 1 and ¢uu(7) = 1/T if 7 # 0. It follows that
Yo (1, T = (T'+ 1 --n)/T. This implies that the PRBS has a larger mixing rate than
the sequence of impulses if n < 7.

The mixing rale is related to the spectrum flatness as follows.

Proposition 4.4 [f v is a T-mizing function, then

1y < 250D, B0,
2 ”j“ < { ?
) S =, T)

Proof Consider the matrix @, ,(n). By Gershgorin’s theorem, we have

~ 1 (4.30)

inf @(®uu(n)) 2 7(n, T),

and
supa(d,,(n)) < sup(éu(0,1) 4+ max Z |duu(, 8)]),
t ! Osrsn=l,  tli%0

= 2sup ¢u.(0,¢) — 73(71, T).
t

The relation in (4.30) follows.
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4.4 Spectrum Flatness and the Inherent Error

Input design in terms of the nsual spectral properties has been studied in the past e.g.,
[31, 10). The input is usually designed to achieve certain asymptotic identification
criterta. ere, the objective of input design is to achieve fast identilication and the
emphasis is on the elfects of unmodeled dynamics.

In this section, we show that spectrum Hatness can be used as & eriterion lor
input design. Spectrum fHatness is an ensemble property of the inputs. There is a
set of inputs all having the same spectrum Aatness. To characterize the identilying
capability of the inputs by spectrum flatness, we consider the worst-case of inputs in

that set.

4.4.1 The ? Case

Theorem 4.2 Let || - ||L = || - |l If Se = Ly + B(c), where B(c) is the closed c-ball

in &', then

sup &3 (u)= sup &1 (u) = V1 + 12, (4.31)

v (n,T)=v wu(n,T)=v
Remark This theorem indicates that if we can modily the input so that its spectrom
flatness is close to 1, then the inherent error is approximately /2 times of the rep-
resentation error. On the other hand, if the spectrum flatness of the input is large,
we may not he able to identily the system well. In the worst-case, the inherent error
is V1 4+ »2 times of the representation error. Since ||« |lg 2 || - fu= 2 || - ||, Lhis
theorem also gives a lower bound on the inherent error in the H* and £' norins,

Proof of Theorem 4.2 IMix {o. Let k € Ny,. Then

.

Ut (n)(Pian-1j(k)) + Y Utg-in{n) (Pin iz 1y (k) = 0. (1.32)
i=l

This implies that
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N0 (Poa-nNlle £ 37 1igmin (1) (Ppingir g (£))l2,

i=1

h‘l:]) vVa(P(n Z IP[m,(t-i-l)n](I‘ li2,

st:p\/a'((l).,; )ZHP[.,.(:H)H] s

IA

IA

= Sl!t]) (}((D“.t n “P[n.r:\u)(k)“l‘

Since k € S, implies that [|Pp, ) (8)][i < ¢, we have

sup, (P, (n /2 oy
1Py ()l < c ( st (-;f))”) < an(nT). (1.33)

I follows that |[A]l2 = (IPpm=1(A)13 + [Pre0) (RI2)/2 < €4/1 + w(n, T)2. Noticing
that the above formula is independent of ¢y, we get the upper bound in (4.31).

For the lower bound, consider the input

1 t=1ty+:T, 1 € Z/{0},
u(ly =< ljv L=y, (4.34)

0 otherwise.
It is casy to check that vy(n,T') = v. Pul

Ve T =,
Mr)=< —¢ 7=T, (4.35)

4] otherwise.

The fact that k& € Ny NS, implies that

& (1) > ||k]l2 = eV + a2 (4.36)

This completes the prool.
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4.4.2 * The H™ and (! cases

Now we study the mherent error for some more realistic a priori uncertainly sets in
the H*® and ' norms. For this we will need the following two lenmas relating the
H> and ! norms to the ¢ norm. They indicate that if the frequency response of
a system is smooth or its impulse response decays exponentially, then its H™Y or (!

norms are uot too much larger than its €* norm.

Lemima 4.1 [f K'(z) € H®(D), then K(z) € HY(D) Vp € (1,00 and

Ko < (K NN N
" \("‘)“C\'J = ')(P'i' 1) " A "p -+ 9 ” \”J)r (‘I.-h)

Proof By Hardy’s incgnality, A'(z}) € H®(D) implies that K(z) = 3205, ¢nz" and
* o lan] < 0o, It follows that K'{z) € HP(D) Vp € [1,00] and the nontangential
limit K(e®®) of K(z) exists for all 8 € [—w, 7] and K (e) = lim,_; K(ret?).

It has been shown in the proof of Proposition 3.3 part (i) that A (™) is Lipschitz
continuous with Lipschitz constant || K’||.. Therefore, A (¢?) achieves its supremnn
and infimum. Without loss of generality, we assume |K (¢?)] = [K(1)] = || K ||+, and
|K(e)| = infp |[K ()], where [0, < 7. Put A0 = (JK(1)] = |K(e™)])/|| K
Since |K (%) — K(¢)| < || K lol®1], by Lipschitz continuity, A0 < |0 < 7. Also,

K| 2 ||| = [| A"} |0).

o

Lipschitz continuity of K (e®) implics that V# € [—=, 7],

Therefore,

[ eran 2 [ (1Kl - 1L lorao (1.38)
-AD = Joae b - ’ "

2 [ K] |

K’

D) d0, (4.39)

-—2 s » - )
= PO (RN = (1K Yo — | K7 A0+ (4.40)
2 ki r I
= G, (KR - 1K), (1.41)
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This implies that .
- 2 Sy FRIRN = L .
1K1 2 e (Nl = (1 72m S wE). (1.42)
it follows that
ciln . . " lp . b LI, .
VEIZ < (0 DIR Do 20K + (1720 SR (1.43)

Noticing that (¢ + 0)V/? < o' + 0/P, Ya >0, b >0, p > |, we complete the proof.

a

Lemmad4.2 Letp > 1, 0<r < 1. Ifk € [0,00) and |k(r)| £ Cr™ VY7 € [0,00),

then
C 1-1fp y
W< | ——— M7 + 20kl
I < (oo I + 20, (444
Proof Since k||, < (Z2,(Cr7P)? < C/(1 — v), there exists an integer N such
that
eV (1 =) < IIElly < CHYD/(1 = 9), (1.45)
Hence,
N-1 o0
&l = 32 1)+ D2 k(7]
T=0 =N
N-1 /e
< (N (Z |k('f)|”) +CrV /(1 =),
r=0
< N + Ikl (by (2.45),)
< (N =DYPIE]L + 21k,
= (N = Dk 2 - + 20 kL,
v ¢ \-Vr
< ((N - 1) "'T":—T:) Kl + 20|k]l,,  (by (4.45),)

C 1-1fp
: (m) 1K1 + 21l ((N — 1)Vt < (elnr'l)_]) .
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Proposition 4.5 et S, = 8, as in parl (i) of Feample 2.0 with ' = |, and
” * ”L = “ . ”[I . Then

o {1 =77 "
min {(1 + v)d", (-——1—)} sup  ST(u) < sap 8 () (1.16)
L -1 rafn, Y=v an )=

< p(L+ A Lo R, (1T

[FAN

where p = (W)‘”, d' = d"(Su YY) = #T/( =), and d, = d, (84 0 =
(1 —r).

Proof Fix lo. It has been shown in Corollery 3.7 that S, C L, + B(d,). By
Theorem 4.2, Yk € S, NNy,

Nklle < duVl + 02 {1.18)
Since k € S,,1, by Lemma 4.2,
[kller < pdi2(1 +4) Y 2, (1 + %), (4.19)
Since the above incquality holds for all & € S,,) NNy, and Ly, we get the upper bound
(4.47).

To show the lower bound, we consider the same inpul as in (4.34) whose spectrnm

flatness is ». For such an input, & € Ny, if and only if

k(t)y=—v D k(t+7T) VL€ 0,7 - 1].

=1

We will construct a system which is in 8, NNy, in cach of the following two cases.

(i)If1—v (l—_'_;;r) > 0, then put

—urT (&T) r<T -1,

7 r>T 1.

T‘T 1 — T‘T '37'1l
k = D ]
” ”l V(]__rl)(l_r)-i-l—r

k(r) =

In this case we have




=1
b
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Gi) 01— v (5r) <0, put

r T<T -1,
Mr)=

—1‘ rry
—‘W.’,. oo Tr>T -1

In this case we have ||k|], > (‘[’T":) I4 is casy to check that in both cases & €

S, NNull (P[,m,"+';-]'I',,). Combining (i) and (i), we get the lower bound (4.46).

Proposition 4.6 Let |- ||L = || - |l and
S, = {A‘. € 1'0,00): |[Pprocy(k)li € 1/7 V7 >0, and |[[K'||o < l} , (4.50)

where K is the dervivative of the z-transform of k. Then

_ 2\ 3 2\ 7
vt < sup &) (u) < sup 67 (u) < (1+" ) + (l L ) . (4.51)

v+~ va(n,T)=v vy (0 T)=v 6n? 27n?

Proof I'ix {). It has been shown in Corollary 3.9 that S, C L, + B(1/n). By
Theorem 4.2, Yk € S, M Ny,

(klle < 1/nV1+ o2 (4.52)

Since k& € 8§, by Lemma 4.1,

1 + »? 3 1+ 2 3
1%]| re S( e ) -I-( ) . (4.53)

2rn?

Since the above inequality holds for all £ € S, NN, and ¢p, we get the upper bound
in (4.51).
To show the lower bound, we consider the same input as in (4.34) whose spectrum

latness is ». Pul

u:-ul T= 0’
k(r)= 4 =T,

0 otherwise,
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It is casy to check that & € S, NN, and [|Alg~ = #8550 This gives the lower howul
in (-1.51).

[

In Proposition -L.h and Proposition 1.6, the inherent ervors have upper and lower

bounds increasing with the speetrum Hatness ol the input.

4.4.3 The Case of Finite Power Disturbances

In this section, we counsider the inherent error when the disturbance has linite (¥ norm

on an interval of fixed length. For this, we assume that
V ={v € l®(—00,00): [[Pyuesr(v)l2 <n}. (41.54)

The next proposition shows the relation hetween the spectrian flatness of the
input and 67 () in the case when L = €2 and S, = X, + B(¢}, where B{¢) is the

closed ¢-ball in £'. The other cases can be delt similarly.

Proposition 4.7 Under the conditions of Theorem 4.2, given the ensemble of inpuls
U(r,7) = {u € £2(—0,00) : w,(n,T) = v,y (1, T") = v}, the worst-caxe inherend

error achievable with U(v,7) is

o g 12
sup 67 (u) = ((7;/7 + vt + :‘) &
veU{va)

Proof Fix {y. By definition of 6% (u),

6T(7L) = ||Su nsc.!u "21

where

Sf—'Jo = {k € L: ”P[ln.!o-l*'l')q’u(k)”'l S Tf}'
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For & € S, NS, .4, by a similar acgument to that in the prool of Theorem L2, it can

be shown that

lfh,('”)(P[(l.n—l](l“)) + A"u.!u—u(P[n,f.\u)(k)) = P[lu,to-!-'l")(“)

for some 0 € V. 1t follows that

106 (1) (Pl (kDll < sup /7 (@it (IPpaoo) (K)]2 + 1

Henee,

MPpa-1i(E)l2 < cnln, T) + 0/ \/a(®uu(n))  an(n, T) +n/7,

as yJa(d, (n)) 2 y.(n,T). This yields the upper bound.
For the lower bound, consider the input
vy =T, i€ Zf{0},
u(t)=¢ v =0,
0 otherwise.
It ts easy to check that v, (n,T) = v and v,(n,T) = 7. Put
n/y+re T=0,
Bt} =1 —¢ r="T,
0 otherwise,

The fact that & € S, S,,r-: implies that

500 2 Iblle = (/7 +ve)* +&)'"*.

This completes the prool.

(4.56)

(4.59)

(4.60)

(4.61)

0

Remark The uncertainty caused by the additive noise can be reduced by increasing

the magnitude of the input, while the one caused by multiplicative uncertainty can

not.
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It should be noted that the noise energy in general increases with the length
of the observation interval 7. llowever, il the noise can be averaged out, o long
observation interval can be decomposed into several shorter intervals, Then worst
case identification can be performed on the basis of ensemble averaged observations.
Although it is not realistic to assume noise can be vanquished by averaging on a
short interval, additive noise does have this property on a long interval in practical

problems [26].



Chapter 5

Several Identification Algorithms

In this Chapter, we propose several algorithms for estimation of the modeled dynam-
ics. These estimates will be used as nominal approximations to the true system. The
estimation problem is first formulated as a convex optimization problem. Then two
robust algorithms based on the analytic center are given. Another result involves an

algorithm for impulse response estimation, for which an €' error bound is given.

5.1 From Worst-Case Identification to Convex Op-
timization

As in the previous chapter, we first assume the a priori uncertainty set has the form
of a finite dimensional subspace plus an e-ball in L, i.e., S, = X,, + B(¢), with X,
and B(e) representing the modeled and ummodeled dynamics respectively. Then,
the true system k., € S, has a decomposition k& = k; + ko, where k; € X, and
k2 € B(e). The objective of identification is to estimate the modeled dynamics k;
f[rom the output observations on a finite time interval, [to,to + T'). Given an input u,

on the basis of these observations, the location of &, is narrowed down from X, to a
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-1
-1

smaller set
Su(y) i= (M € Xu 1 Ploesn) (Pulk) = ) = Pl e 4 @, (42))
Jor some v €V oand by ¢ BV}, (5.1
The \\*01-'st,-('usc error i an ostimate &, o is
Tk = sup [lAy = Kl {h.)

keSS
T (kest) gives a criterion for nominal system selection. I the estimate is to minimize
the worst-case identification ervor, the identilication problem is equivalent to the
optimization problem

min  J (k). (h.3)

kr.-fexu
The optimal estimate with respect to J is called the Chebecher Centert of §,(y). For

a fixed &, ||k — #|

L is @ conveX lunction in &4, As it is the supremum of a class
ol convex [unctions, J is itself a convex Tunction in k.. Therefore, the optimization
problem (5.3) is a problem of minimizing a convex hinction on a linear subspace.
[nstead of the Chebechev center ol Sy(y), one could choose other kind of centers
as nominals, e.g., the analytic center (which will be defined later), which may lave
some advantages over the Chebechev center. Morcover, it is trivial 1o show that if

the nominal is chosen in §,(y), then the worst-case estimation error J(k, ) is within

a factor of two of the optimal one.
Proposition 5.1 [f k., € S(y), then

T (hest) €2 min T (ko) (54)

‘ert EAn

Although, problem (5.3) is a convex optimization problem which is casy to solve

in theory, the computation might be quite complicated hecause the construction of

UI'lie Chebechev center of a convex set in a normed space is the center of the smallest ball covering
the set.
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the convex function 7 can be computationally involved. Hlowever, in some special

cases which are of interest in control, the computation can be done casily,

5.2 Two Algorithms Based on Convex Optimiza-
tion
First, we examine two cases where the a posteriori uneertainty set Si(n) is a polytope.

Example 5.1 Let || - |l = |- lloy Xo = Ly, = sp{l,z 002" and Ble) he the
e-ball in €', The noise ¢ has £ bound 5, i.e.,, V.= {v € (™ {lo]|l« < g}, The input
is given on the interval [ty —n+ 1,4+ 7'), and the output is observed on Lhe interval
[to, Lo+ 77). The input past is unknown except being bounded by €/, = ||u]|.... Tn this

case, it can be shown that the a posteriori uncertainty set

n—1

Zﬂ Jult = 7) = y(1)| <+, VLE [l o+ T )} (5.5)

T=I}

Si{y) = {k €L,:

To show S;(y) is contained in the set on the right side of (5.5), we notice that, lor

ky € Si(y), 3v € V and k2 € B(¢) such that

ZL Thue(t —7)—y{t) = +Zk; Ju(b—=7) YLE [lo b+ T). (5.6)

=0

This implies thal

Z A; ! and T —_ Tj(t) S 7] + C(,r'“ VI € [’,(), "U + 'l'). (57)

=0

On the other hand, if a system & € L, satisfies (5.7), then

ZL u(t —7) —y(t)=o(t) +y(t) VLE [lo,la+T). (5.8)

=0

for some v(t) € V and y2({) such that ||yl < <C.,. Put

€ T=T4+n-1,
kg(T) = (5())

0 otherwise,
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and the input past

’ gt + 1 +n—=1)/ Tefto—=T—=n+1,1y—nl.
() () t<ty="T—-n+1.
Then go(t) = T2y ka(m)u(t = 7) Y1 € [to,to + T'), i.e., g2 is the output of a system
in B(¢) driven by an input whose € norm is less than (7. Therefore, & is in S,(y).

This completes the proof for (5.5).

Put
E o= [KG),. . k= 1) (5.11)
7 = [ylta),...,y(to+ T =1)" (5.12)
7 o= [oto)y...,o(to+ T — 1) (5.13)
Fr o= [pllo)s. . y2llo+T=1)]T (5.14)

Let Uy (1) be defined as in (4.22). Then, S;(y) can be written as

Sily) = {keR": Uy(m)E=§+7+7
B 2 € R, [#llew S 0, [l S Cu}-

= {IT eIR": U,D(n)i; —F<Ip+Cu,...,n+cC)" and
—Upy(n)k+ 7 < [+ €Cuy-..,n + Cu]"},

which is a polytop.

Example 5.2 Let |- |l = || - [lo, Xu = Ly = sp{l,z,...,2" '}, and V = {v €
(% ||o|le €7}, We assume that the entire input is given. The output observations
are made on the interval [{, ty + T'). The unmodeled dynamics are assumed to be in
the ¢-ball of the set of causal BIBO stable systems which includes the time varying
systems,(see Chapter 8 for details on time-varying systems,) which is still denoted by
B(c), i.c.,

B(c) := {A:(-,-) L XTy R sup (L S c}. (5.15)
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We are going to show that, in this case, §;(y) is also a polytope, i.e.,

Si(y) = {kl €L,:

Jult = 1) = u(t)] £ 1+ ||P_oonft)llo VI E [to,to + 7')}
(5.16)
By definition of S,(y} in (5.1), for k&1 € S¢(y), there exist a system Ay € B(e) and
a disturbance v € V such that
o
ZL u(t — 7) (t):v(t)+2kg(t,r)u(t—r) Vi€ [t by + T, (5.17)
=0 =0

which implies that

Z ki(m)u(t = 7) = y(2)] £ 7+ €||P(coog(tt)llco V2 € [Loyto +T). (5.18)

Conversely, if a system in L, satisfies (5.18), then there exist v € V and ya,
1P (ot (92l < €lP=co(w)loer such that
n-1
S ki(r)u(t = 7) — y(t) = v(t) + ya(t). (5.19)
=0
To show k; € Si1(y), it is enough to show that therc is a system k, € B(c) such
that ya(t) = Ka(u)(t) on [to,to + T). Next, we will construct a time-varying system
k € B(e) satisfying this condition. Assume that the supremum of the input pasts

P(_o,(u) is achieved at time my, i.e., [u{m)| = ||P{coy(tt)||o. Put
t =1t —my,
ba(tyry = | VO =t (5.20)
0 olherwise.

k € B(c) as || k]| = sup, Jy2(t)/u(m)| € €. Also, T2 g kao(L, 7)u(l — 7) = y2(t). This

proves our claim.

In general, S;(y) may not be a polytope, but often it is possible to find a polytope
covering S;(y) tightly. In these cases, an algorithm based on polytope can be used to

construct a slightly inaccurate estimate of the nominal and related hounds.
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5.2.1 An Algorithm Based on the Analytic Center

In the Tollowing, we will define the analytic center of a polytope and derive an algo-
rithin which chooses the analytic center as the estimate, The analytic center is always
in the polytope. Therefore, as shown in Proposition 5.1, the worst-case error lor this
estimate is within a lactor of two of the optimal. Morcover, the analytic center is

robust with respeet to the inaceuracies in the a priort information.

Given a polytope in IR" defined by a set of lincar incqualities,
Siy)={kem": @k<h, i=1,....21}, (5.21)

its barrier flunction is defined as

Ry e — log (ITZ, (b — &l b)) Eesi). 5.22)
0o k& Si(y).

It can be shown that +f is analytic and strictly convex on 8,(y). The analytic center

of Si(y) is defined as the unigue minimizer of #, which is denoted by &., i.c.,

Pk = min (k). (5.23)
keSi(y)
liquivalently, £, is the maximizer of [12%,(b; — @Tk), i.e.,
2T s 27 o
TIh —@lk.) = max J[(bi — &l k). (5.24)
=1 kESl(y) i=1

There are several efflicient algorithms for finding the analytic center of a convex
seb. Details of the general definition of the analytic center and algorithms to find it
can be found in [4] and the references therein.

The analytic center 8;(y) is the point in the polytope furthest away from the
boundary, as it maximizes the product of the distances to the constraint planes &'?'l-: =
b;. ‘This implies that the nominal given by the analylic center is the system in the a

posteriori uncertainty set which is the least sensitive to inaccuracies in the a priori
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assumptions. Since the 8,%s in §;(y) are given by the measurements and the a prion
information on the noise and unmodeled dynamics, any inaccuracy in the a priori
information will canse the houndary planes to move, Somwe points which are in the
polytope will be eliminated when the boundary moves, ‘The analytic center is the
point in the polytope least likely to be eliminated.

Once the analytlic center is chosen to be the nominal, the worst-case estimation
crror is given by

sup ”k —_ f\‘,.M”L. {H.25)
keSi(y)

(5.25) is a problem of maximizing a convex function on a polytope. 1t is well known
that the maximum is achicved at the vertices of the polytope. Asswme thal &y, ... &,
are the wertices of S;(y). The worst-case estimation ervor can be computed via the
{ollowing formula:

i W — & -
inax ki = kel (5.26)

Since Sy(y) is a polytope in IR", the number of its vertices will not exceed (27°)".
In fact, in most practical cases, the number of vertices is much smaller than this
upper bound. Statistical results on the number of vertices can be found in [30]. The
upper bound will have a polynomial order increase with the number of measurements.
The polynomial property is an advantage of choosing a nominal in a predetermined
finite parameter model set. Otherwise, as shown in [6], the computation complexity
for the worst-case estimalion error increases combinatorically with the number of
measurements. Standard algorithins for finding the vertices of a polytope can he
found in a survey paper by Matheiss and Rubin [30].

In fact, once the vertices of §,(y) are found, the problem (5.3) of minimizing the
worst-case uncertainty is readily solved. In {his case,

I (keat) = max |[ki = kol (5.27)
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Sinee J (k) is the maximum of ne convex Tunctions in Ay, the problem (5.3) can
be solved casily by any one of the convex optimization algorithms, ¢.g., in the book
by Boyd and Barratt.

In sumimary, we propose the following identification algorithm:
(1) Form the polytope Si{y);
(11) Find the analytic center &q, of Sy{y);
(iii) Find the vertices {£]}7 of Sy(y);

(iv) Compute the worst-case estimation error, maxj<icm ||ki — Fest||L-

5.2.2 A Minimum Description-Length Algorithm

Instead of the analytic center, we can choose a system in S;(y) which needs the fewest
paramelers to describe, i.e., the lowest order FIR system in S;(y).

Let L; be the #th order FIR model set, i.e., L; := sp{l,...,z'}. To find the lowest
order FIR system which is consistent with the a posteriori information, we check
whether the set Si{y) N L; is empty, starting from ¢ = 0. If S;(y) N L; is empty, we
increase the order of the model set by 1 and check whether S;(y) N L;4, is empty. This
procedure ends within n steps. There are several algorithms available for checking
whether a convex set is empty. One of them is the ellipsoid algorithm (see [3] for
details). Once a non-empty intersection S;(y) N L; is found, its analytic center can
be chosen as a nominal. This nominal is one of the lowest order FIR systems in S;(y).
Since cach step is a convex optimization problem, to find the estimate we only need
{0 solve at most n convex optimization problems.

In summary, we give the following algorithm:

(i) Form the polytope Sy(y) and set i = 0;
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(i) Form the set 8 ()N L; by adding on the constraints (1) = ... = k(n—=1) =

(iii) Check whether Sy(y) L, is empty. it s, set 7 = 7 4 1 and go to step (ii);

otherwise, continue;
{tv) Find the analytic conter ke of Sy ()N L;;
(v) Find the vertices {&}7 of Si(»);

(vi) Compute the worst-case estimation error maxXicicm ||k = Fewt||L-

5.3 An Algorithm for an Input with Flat Spec-

trum

. As shown in Chapter 3, the model set L, = sp{l,...,2""'} is the optimal n-parameter
afline model set for a class of a priori data sets. This suggests that for systems in
these data sets, estimation of the first n coeflicients of their impulse responses is the
most efficient way of identifying and representing the systems. A well known method
{26] for estimating the coefficients of an impulse response is to compute the inner

products of the output and delayed inputls on the observation interval, i.c.,

) 1 to+T—-1 ' .
k(i) = m ,;, y(u(l - 14). (H.28)

When the input is a white noise and the disturbance is uncorrelated with the inpui,
k(i) converges to the k(i) as T — oo. In fact, it can he shown that, even on a finite
interval, these estimates will be quite accurate when the input is highly mixing, In
the next proposition, we give a hard bound on the worsi-case estimation error in the
o norrr; for a special a priori data set which has been considered in Fxample 2.1,

Similar results can be obtained for the other cases.
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Proposition 5.2 L/
S.={kel: [k(r)| <" Y7 Ty, (5.29)

wnd

V= {oer: |[Pyen(v)l <} (5.30)

If w is T'-mirving, then the worst-case cstimation crror

T(best) := sup ||k = kewe|n (5.31)
kS (v)
of
n-—1
bot 1= D k()2 (5.32)
i=0

has upper bound

: Tl 1YY /7 nwy(n, T) 12 ry/n .
‘7“"")5("qs.,..(o,au))l—w-+(¢uu(o,to)) rrnn D TS ) 699)

Proof By definition,

Si(y) = {kl c P[u.n) {Sa): P[lo.to+T) (Qulkr) —y) = P[to.to+T) (=Pu(k2) +v)
Jor some kg € P, o) (Su) and v € V} . (5.34)

Fix ky € Sy(y), there exist &y € P, 00)1Se) and v € V, such that

=1 o0
Z By(r)e(t = 7) —y(t) = v(t) - Z ko(ryu(t — 7) Vi € [lo, o+ T). (5.35)

Set ya(l) := =332, ka(7)u(t — 7) and kv, 77,7, 72 as in (5.11)-(5.14). Then (5.35) is

equivalent to
Uip(nYer = 57 = 5+ . (5.36)

Multiply Uy, (n)7 on both sides of (5.36), we get

By o ()R = Upy(n)7F = Uy (n)¥5 + Uy (n)T . (5.37)
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It is trivial to check that
Fea 1= [R(0),. o k(= D) = U, () i Gunl0. 0). (5.38)

Therelore,
(7 = ®uio (1) Bua0. 1)) b + Uiy ()1 (F 4 ) 0 (0,11, (5.539)
|7 = @usto )/l 0, D) R, + )" 7 a0, 1)

Uty ()" o/ hua (0 o) - (5.40)

“kl - kt'.ﬂ ”l

IA

+|

Noticing that g{(®u(n}) > Yuln, T) and G( Do (1)) bui(0y 1) < v (1, T, we get Lhe

desired upper bound from (5.40).
Ol

It will be shown in Chapter 8 that this algorithm is casy to implement for time-

varying system identification.



Chapter 6

Fast Identification of

Continuous-Time Systems

In this chapter, we first formulate the fast identification problem for continuous-time
systems in a way similar to that in Chapter 2. Then we iniroduce two measures of
identification speed similar to the time n-widths. Their properties and relation to
Gel’fand n-width are studied.

The fast identification problem in the continuous-time case is different from its
discrete-time counterpart. On a continuous-time interval, it is possible to collect an
unlimited amount of sampled data provided the sampling can be made arbitrarily
fast. It remains unclear, however, whether arbitrarily accurate identification can be
achieved on the basis of this large amount of data. In Section 6.3, it is shown, that in
the noise free case, one can identify a stable continuous-iime LTI system exactly on
an arbitrarily short time interval, provided the entire segment of the output on the
interval is available and the input is chosen properly. Here, the only a priori infor-
mation is that the system is BIBO stable. No structural information or quantitative
information about the system is required. A logarithmic integral condition on the

inputs involved is obtained via quasianalyticity theory.
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In such a case. however. accurate identilication becomes impossible when the
measurements are even shightly corrupted by noise. Sumilarly, the inherent ecror cam
be large if only samples of the output on a interval are available. An example s given
where the inherent error is the samie as the a priori uncertainty no matter how last
the sampling, Nevertheless, it is shown in Seetion 6.1 that, il the svsten is known to
be in a compact set, (in cither the H* norm or L' norni.) then the inherent error can
be made arbitrarily small provided there are enough sampling points in an interval
in which the noise-to-signal ratio is small enough.

With the above results in mind, one can ask: is identilication speed still restricted?
Is the metric complexity still a factor limiting identification speed?  The answer
to these questions is alfirmative. It is shown in Section 6.5 that lor a lixed noise
level, even if the sampling rate is infinitely high, there is an irreducible uneertainty
whenever the a priori uncertainty set contains a smooth subsei (e.g. a set ol low-
pass [urictions,) of positive Gel’fand n-width. The higher the metric complexity, the
stower the identification. Finally, the irreducible uncertainty is obtained for a set of
approximately band-limited and time-limited systems in an example,

This chapter is based on [25].

6.1 Formulation

We will consider continuous-time LTI systems with integrable impulse responses. We
denote the space of such systems, equipped with cither the L' norm of the impulse
responses or the H* norm of the transfer functions, hy L. 'Fhe admissible input,
signals are those in the unit hall of L*(~o00,00), denoted by By. The system with

impulse response k acts on an input u in the following convolution form:

y(l) = j:o k(r)u(t — )dr + v(l). (6.1)
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where o(1) s the measurement noise. Sometimes we denote this relation in a more
compact. way, as y(1) = (b x u)(l) + o(l).

We are given the a priovi informalion that a system & lies in a subset §, of L and
the measurement noise has bounded L™ norm, Le., ||0]lo € ¢ It is assumed that S,
is convex and symmetric, e, k€ 8, = -k €S,.

(iiven an input « in By, the objective of identification is to estimate the system
[rom the noise corrupted observations of the output y at sample points §; = tp +
ifs, i =0,...,¢=1,inthe time interval [tg, Lo+ T, where s is the sampling frequency
and ¢ is the number of sampling points in the interval, ¢ = Ini(sT), the smallest
integer strictly greater than 7. On the basis of these observations, y(4;) = (Kipye *
W)y +o(L), 1 =0,...,¢ =1, the location of the true kernel, ke, is narrowed down

from the a priori data set S, Lo a smaller a posteriori set, S(y),
S(y):={k€Su: hirue *u—k*xu){t;)+0(t)| <€ fori=0,...,¢(—1}. (6.2)

As in the discrete-lime case, we are going to represent the a posteriori information
by a nominal and a ball in the normed space L, and the nominal will be chosen {rom

a finite parameter model set.

Definition 6.1 A subset X,, of L is called a n-parameter model set if it is in the

range of a mapping from R" fo the set of real functions on IR.

If the estimated kernel, A.y is optimally chosen from a n-parameter model set X,
for S{y), then the worst-case identification error
T, Xy, 8,¢) = sup sup inf sup ||k — kese]|L (6.3)
kiruc€Sa  [ulleoge  Kest€Xn  keSiy)
is a function of the input « and model set X,, when the sampling rate and noise level
are fixed. 1f, instead of ¢ samples on the interval [tg, {p + T}, the entire segment of the

output is available, then the worst-case uncertainty is denoted by e'(u,X,, 00, €).
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When the observation inteeval is not fixed, we consider the shift-invariant worst
case identification error

t'T(u.X".s,t) = sup !'T(H,X,,.H.( I (6.1)
Wedh

As in the diserete-time case, the worst-case identilication crror can be split into
two terms, the inherent error

e

87w, s,¢) 1= sup Nkl : A€Se, |[(A*xw)() < fori=0....C~1},  (G5)
and the representation crror

dist(S,, X)) := sup inf ||k — gL (6.6)
kES.l .’lexn

Using an argument similar to that in Proposition 2.1, we can show thal

max {5T(It,s, c),disl(S,,,Xu)} <el (1, X,y 8,¢) € Jmax {6""(11,3, ), dist(S,, X,,)} .
(6.7)
and
max {87 (u, s, ¢), dist(Se, Xu) } < € (1, Xy 5,6) < 3max {87 (u, 5,¢), dist(S, X )}
(6.8)
where

8 (u,8,¢) 1= sup 6 (u, s, ). (6.9)
foem

In this chapter, we will mainly study the dependency of the inherent error on
the input, noise, and length ol the observation interval. The representation and

estimation problems will be investigated in Chapter 7.

6.2 Two Measures of Identification Speed

In the following we introduce two notions, similar to the time n-widths, as measures

of identification speed. The first one is the best achievable inherent error on a fixed
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observation interval,

D (s, 0) = inf 87, s,0). (6.10)
"EBU

The sevond is the best achievable shilt-invariant inherent error,

DT (s, )= inf sup 67 (. s,¢) (6.11)
uEBU f()G]R-

Obviously, ¥ (s, ) € #7(s. ), and both functions are monotone decreasing in s and
increasing in ¢,

It shonld be noted that these two notions are slightly different from the time n-
widths. In both @ and 9, the infimum is taken over all inputs in the unit ball of (%
instead of the whole space. Although this is not important in the noise-free case, it
does make a difference in the noisy case, especially when the complete segment of the
oulput is available on an interval.

In the rest of the chapter, the following questions will be answered:

Problem 1: In the noise free case, what is the hest achievable inherent error and
the best achievable shift-invariant inherent error when the complete segment of the
output is available on an interval of length T, i.c., what is ¥7(oc,0) and 9" (co0,0)?
What are the optimal inputs?

Problem 2: Is it possible to approach the best achievable inherent error and the best
achievable shift-invariant inherent error in Problem 1 by increasing the sampling rate
and signal-noise ratio, i.c., will #%(s,¢) and 97 (s, ¢) tend to 97 (c0,0) and 97 (0, 0)
respectively as s — oo and ¢ — 07

Problem 3: Is the length of the observation interval 7' a limiting factor on the best
achievable worst-case uncertainty, i.e., will #7(s,¢) and 97(s,¢) be large when T is

small?
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6.3 Exact Identification in the Noise-Free Case

In this section, Problem | is solved by showing that if S, is a bounded set in L', then
there exists a class of bounded inuputs which make 67 (1w, o0, 0) = 0 for all 7"~ 0. This
implies that #7(e0.0) = #7(00,0) = 0 VT > 0.

To show the existence of such inputs, we first derive a condition on inpnt signals
which enables us to identify a system exactly if the entive ontput on (o0, a0) is known
exactly. Then we will derive another condition on the inputs, usitg quasianalyticity
theary [21]. which enables us to recover the entire ontput from its values ou any
interval of positive length. Finally, we construct a class of bounded test inputs based

on Lhese results which allow exact identification on any interval.

Lemma 6.1 A:sume u(l) € L™®(—00,00) and the anlocorrelalion function

A

ou(l) 1= !1_1.1;0 }1] » w(l 4+ 7)a(r)dr (6.12)

exists for almost all t € R, and that ¢, € Lt If the spectrum of w, i.c., the support
of the Fourier transform of ¢, ®.(w), is of posilive measwre in IR, then v defines an

infective mapping U from L'[0,00) to L™(—o00,00), U : k — y, by
(UR)) (1) = y(t) = ]“’ E(rYu(l — 7)dr. (6.13)
QO

Proof To show U is injective, it is enough to show that if U (k) = 0 for some & € L,

then k£ = 0. Since (k) = 0 implies that
K(w)P,(w) =10, (6.14)

where A (w) is the Fourier transform of k, A'{w) = 0 on the support of $,(w). Since
by the hypothesis the support of ®,(w) is of positive measure, K{w) =0 on a set of

positive measure. Since K is the boundary function of an analytic function on the
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right hall plane, A'{w) can not vanish on a set ol positive measure unless A = 0. This
implies the injectiveness of 4.

a

This lesnma shows that when the spectrum of the input is of positive measure,
one can identily any system in LY accurately on {—oo, 00).

Generally speaking, it is impossible to recover a bounded function from its values
on an interval, lowever, recovery becomes possible if we know that the function is
the restriction of an analytic function. In fact, it is enough for the function to be

quasianalytic.

Definition 6.2 (liven any interval I C IR and a sequence of numbers M, > 0, we
sy that a function [, infinitely differentiable on I, belongs to the class Cp ({M,}) if

there are two numbers ¢ and p, depending on [, such that
|f(z)] < ep™ M, (6.15)
Joreel andn=20,1,2,...

Definition 6.3 A class C; ({M,}) is called quasianalytic if, given any zq € I, the
only function [ € C; ({M,}) such that f™xe) =0, n =0,1,..., has f(z) =0, z € /.

A quasianalytic class is similar to an analytic one in the sense that (a) its mem-
bers are infinitely differentiable, and (b) if a function in such a class vanishes on a

subintesval of [, then the function vanishes on 1.

6.3.1 A Logarithmic Integral Condition

The next lemma gives a necessary and sufficient condition for a class to be quasian-

alylic in terms of a logarithmic integral. The proof can be found in [21].
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Lemma 6.2 (Carleman’s Criderion) Given any intereal Iof positive length, the class

Cr ({ ML }) is quasianalylic {f

w [ log F(1
f (O”—()) A = oo, (6.16)
0 | - ¢

where

Pl = supr— (6.17)

n20 I‘[,,

Using the logarithmic intergal condition in (6.16), we can characterize a elass of

inputs which can identify any stable system exactly on an arbitrarily small interval.
Theorem 6.1 Lel u € L™(—o00,00) be infinitely differentiable and

’ﬂ.
FFo(H) = sup

-+, G.18
D e (6.18)

where ul™ denoles the n-th order derivalive of w. If the speelrwm of v has posilive

measure in the sense of Lemma 6.1, and

/om ("’lgi—t(:)) di = oo, (6.19)

then for al T > 0 and S, bounded in || - |11,
67 (1, 00,0) = 0. (6.20)

Remarks (i) Since 67 (u,00,0) < 87 (u,00,0), (6.20) implies that §7(u, 00,0) = 0
for all #q.

(i1) The boundedness condition on the a priori uncertainty set. S, only requires the
existence of such a hound, not an explicit value of the bound. Therefore, knowledge
that the system is BIBO stable suffices.

(iif) Theorem 6.1 implies that, under it hypotheses, the uncertainty about asystem

can be reduced from S, to a singleton in an arbitrarily shori time.



Chapter G, Fast Identification of Continnons-"Time Systems 95

proof It will he shown that 67 (u, 00,0) = 0 for all #; € IR. For this, first we show

that the set ol ontputs

U(S,):= {y oy(t) = Lm ryu(t — t)dr, k€ S,,}

is a subset of a guasianalytic class. Since S, is bounded in L' norm, there exists

M € IR such that sup {]|k]i : # €S,} < M. Let
y(l) = /Om k(r)u(t — 7)dr.
Since (by Lebesgue’s Dominated Convergence Theorem,)
y = [T ke - ryar,
for ke 'S,,, we have
15 e < Il [ oo € M. (6.21)

This implies that the set of outpuls U (S,) is a subset of C ({[|u(")||°o}) By the
assumption (6.19) and Lemma 6.2, Cr ({||u(")|]°°}) is quasianalytic.

Next we show that if an output in U (S,) equals zero on an interval [ig, {g+7'], then
it is zero on (—oo, 00). To see this, let y € U (S,) and y{t) = 01 € [lo, Lo+ T). Sincey
is infinitely differentiable, y(¢) = 0 on [tg, to+ T] implies that (™ (to +T/2) =0, n =
0,1,2,.... Being a member of quasianalytic class, y™(to + T/2) =0, n =0,1,2,...

only when y({) = 0, by definition of quasianalytic class. Therefore,

§7(1,00,0) = {jlkllL: &k € Suy y(t) =0 Yt € [to,t0 + T}, (6.22)
= {HlL: k€ Se @K) () ZOVIE (—o0,00)}.  (623)

Since the spectrum of u has positive measure, Lemma 6.1 implies that
{k: keSS, (UK)()=0VLE€ (—o0,00) } = [0}. (6.24)

Therefore, 67 (1, 0o, 0) = 0.
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6.3.2 A Class of Quasianalytic Inputs

It will be shown in this section that inputs satisfving the conditions specilied in
Theorem 6.1 can be generated by smoothing rich signals with a Gaossian filter. For

this we need the following lemma,

Lemma 6.3 Lel g(t) = e~ Then Yo € L, the convolution w = g+ v is infinilely

differentiable, vt = ¢ x v, and ||u'™|| < 2"n! for some constant ¢ € IR.

Proof First we prove that u is infinitely differentiable and ) = ¢™ s e by indnetion.
This cquation is obviously true for » = 0. Assume this is trae for 0 — 1. Then the

n-th order derivative

u(")(t) = lim u(""'”(t tAalh - u(“"”(!.)

At—0 Al ’
o0 (n=1)¢y _ _ oaln=t)y _
L g" =T+ Al gt = T)
- AI:TO —co ( Al ”(T)CIT.

(by hypothesis)

Since ¢ (x) = exp(—22/2) P(z), where P(x) is a nth order polynomial, there exists
X > 0, such that |¢'"| is monotone decreasing with the rate jexp(—x*/2)e"| on
[X, 00) and monotone increasing on (—oo, —X] with the same rate. Noticing that the

following relations hold, (i) for all ¢ and T,

gt =1 AL = gD (L= 1)

t=T4 AL
f g () da
t

Al . ,
= M”Mﬂ,(feh—nt—r+Aq)
< Mg ls

(iiyfor t — 7 > X and |AL]| £ 1,

gl —7r 4+ A — gt =7
1 =T D < ), (eeli-mi-rral)

gl -7 — 1)| (|g"‘)(x)| decreasing);
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() fort —7< =X and JAl| < 1,

”(H—I]U -7+ A’) _— y(n—l)([, — T)
Al

I

|.f/""(£)|, (Eeft—Tt—T+AL)

< |_q(")(!. -7+ I)I (|g(“’(:\')l increasing);

we get, for A €1,

o) Ig(")(t—r—f- l)| —co<t—-7< =X,
{n=1)ry n=1 -
g (l—7+Al)—g (t — 1)
- - < {n} -X<t—-7r<X
N < S g™ leo X<t-r<X,
g(")(!,—'r+l)‘ X<iti—717<00.
(6.25)

Knowing that the function on the right hand side of the above inequality is in L, by

Lebesgue's Dominated Convergence Theorem, we have

b /m (glﬂ_”(t =k AL - gt - T)) v(r)dr = ]m Q("}(l — 1)v(T)dT,

Almel} J ey A! -
(6.26)
Since this holds for all ¢ € IR, we have our claim.
Next, we show that ||ul™||, < c¢2"n! for some constant c.
Since ut™ = ¢ x v, |1 < 1" 1]|7||oo- Noticing that
(n) _ ( —r 4 —rfq {n)
g = (e X e )
- S (e e
m=0
we have
(n) . m ~22 {4 (m) —-£2/4 (n—m)
g™ < 3 el (e ) (@) I,
m=0
< Y eul (e"‘j/“) o) Izl (e"?/")(n_m) l2 (by Schwarz inequality),
m=0
n
= ¢y, C,'l"||w"‘c"""2 ||2||w“"me"""2||2 (by Parseval’s identity)
m=0
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where ¢ is a constant, Since

moo—wt |2 ~ Qe =D
™ e 5 = f w e T

™

, [ — 1)
= ARSI PP

o= o=l < St (6.27)

we have,

It lollows that

[|g(")||| < o Z (7,’:'\/§u! (6.28)

m=U
2" nl, (6.29)

l

where c; is a constant. Thercfore, for all » € L™, there exists a constant ¢ = euf|e]|.
such that ||u{] s < c2*nl.

[

Proposition 6.1 If the spectrum of v € L™ has posilive measure, and 1w = g % v,

where g(l) = e™/2, then u salisfics the condition of Theorem 6.1.

Proof "Since ®,(w) = G(w)d,(w) and G(w) does nol vanish anywhere, the spectram
of u is the same as the spectrum of v, which is of positive measure. By Lenuna 6.3,
w is infinitely differentiable and |[u™]|., < ¢2"n! for some constant c.

Now instead of going through the tedious procedure of checking that F, satlisfies
the logarithmic integral condition (6.19), we will show that lunctions in Cp, ({||u(")||,,_,})
ate in fact analylic in a region R containing the real line, i.c., Cp, ({||'u.{“)||m}) C
H(R}, using a device from [21]. This will imply that Cr, ({l[u(“’”m}) is quasiana-
iytic. For an analytic function f € H(R), i e R, /™ () =0, n = 0,},2,... implics
that f = 0. Therefore, by definition, Cp ({||u‘")||m}) C H(R) is quasianalylic,

Since the logarithmic integral condition is also a necessary condition for a set to be
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quasianalytic, quasianalyticity of Cg, ({||u(“’||%}) will imply the satisfaction of the
condition.

Let f € Cp ({||'u("'||,,°}). Then, by definition of Cr ({||'u("}||c.;,}), there are two

positive numbers ev and p, such that

IS < ap™ et

ca{2p)"nl.

N

Therefore the Taylor expansion

f(“)(tu)
!

1

)= (o) + 3

n=1

(L = to)" (6.30)

converges for {§ — fy] < 1/2p and ¢, € IR. This implies that f(t) is in facl the

restriction to IR of a function analytic in R:= {z: |Im(z)| < 1/2p}.
c

Example 6.1 Let A € (0,1) be a real number with the binary expansion 0.¢,a;.. ..
Set,
294 — 1 n<ti<n+1,
o(ty=4 (6.31)
2aq, — 1 —n<ti<l—n.
Choose A such that the autocorrelation function of v,
L= <1,

du(t) = (6.32)
0 it > 1.

It is shown in [50, p.151] that almost all X € (0, 1) satisfies this condition. Therefore,

_ sin®(w/2)

Sl ="pE

whose support has positive measure. By the above proposition and Theorem 6.1, if

(6.33)

w=g*v, then 6"(n,00,0) = 0.
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From this example, we get
Theorem 6.2 [fS, is o bounded set in LY, then for any T >0,

7 (c0,0) = 0. (6.31)

6.4 Arbitrarily Accurate Identification on a Fi-

nite Interval

In the proof of Theorem 6.1, we exploited the fact thal in the noise Iree case, if the
input is infinitely differentiable then the measured output is also infinitely differen-
tiable; and if the output equals zero on an interval then the n-th derivative of the
output is zero at the center of the interval, for all n. This will not he true when the
oulput is even slightly corrupted by neisc. Therelore the questions raised in Problem
2 arise: is Problem 1 well posed, i.c., given any interval, is it possible to identify a
system arbitrarily accurately if the sufficiently high sampling rate and signal-noise
ratio are sufficiently high?

Generally speaking, 1im,—oo limeo ?7 (s, ¢) Iﬁay not be zero even when 97 (00,0) =
0. The next example, derived from Proposition 6.3 in the next section, shows this

clearly.
Example 6.2 Let S, be the unit ball of L. Then

(s,¢) > d(S,, L") =1 forall s, c € IR. (6.35)
where d*(S,, L") is the Gel’fand n-width of S, in L', and ¢ = Ini(sT).

However, as shown in the next section, the limit converges Lo zero if S, is compact,

in L. The above example shows that the compactiness condition is not. dispensable,



Chapter . Fast Identification of Continnous-"Time Systems 101

Proposition 6.2 Lt S, C L be compact in || ||, f u satisfies the conditions in
Theorem 6.1, then for ell 1y € IR, T >0,

. . T _ o
_,l_',',',\‘.,lﬂ‘(}‘s (u,s,¢)=0. (6.36)
Proof We will show that for all « satislying the conditions in Theorem 6.1,

lim lim &7 (e, s,¢) = 6F (u, 00,0). (6.37)

B0 g =eel}
Therefore, by Theorem 6.1, we have (6.36).
IMirst. we show that
an&a"‘(z;,oo, ¢) = 6% (x, 00,0). (6.38)
Since 87 (1, 00,¢) is a monotone increasing function in ¢, it is enough to show that
there exists a sequence {m;} C %y such that 67 (x, 0o, 1/m;) — 67 (w,00,0) as i — oo,

By definition of
87 (1w, 00,¢) :=sup{||k|lL : k € Sa, |k u(t)] < e VL€ [to,to+ T}, (6.39)

Vi € Ty, Tkn € S, such that |k*wu(l)] < 1/m Vit € {tg, to + T and 67 (u, 00,1/m) <
lkwllL + t/m. Since {k,.} C S, and S, is compact in L', there exists a subsequence

{Fm,} C {ki} such that &,,, > k€S, in ||+ |1 as i = oo. It lollows that

lim 67 (ut, 00, 1/m) < lim (k|1 + 1/ms) = [[H]e..

[
It will be shown that |k * u(t)] = 0 VL € [to, Lo + T, which implies that |[k||p <
&"(w,00,0). This implies (6.38), noticing that 67 (u, 00, ¢) is monotone increasing in
c

To show [k * u(t)] = 0 Vi € [ty {g + T], we notice that for all ¢, u € L™ defines a
bounded lincar functional on L' via the convolution (k #u)(¢). Therefore, k,,, — k €

S, in || + ||t implies that for ¢ € [to, o + T,

(k*u)(t) = ‘_I'_l.lg(km’ *u)(f) =0.
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Now we show that (6.37) holds. Set ¢ = Int(s1}. By delinition,
STy s ) = sup{jlhllL: &k € Sus Jhru(t) S ety = tatifs. i = .. C— 1} (6.m

S, kru

T

Since S, is compact in L' and the derivative ol o is bonnded, Tor &

M < oo,

1/

is differentiable and there exists a constant M such that [|(& + v)]|~
Therefore, lor & € S,, |k xu(l;)] € bty =do+ifs. i = 0., ¢ — | implies that
[(h*u)(8)] < e+ M/s on [lg, by + T]. Nence,

§T(uys,¢) < sup{|lhllL: & € Suy [(Ax )1} S + M/s VIE [lontn+ 1),
= 6" (u,00,c+ M/[s).
Taking the limits on both sides of the inequalities and applying (6.38), we get
Jllgil_[né (u,s,€) < c+f{-}ljl_\,l—.061‘("’oo’( + M/s) = 6" (1, 00,0). (H.41)

Since 67 (u,s,¢) > 67 (u,00,0) for all s and ¢, (6.41) implies (6.37).

]
Corollary 6.1 If S, is compact in L', then for T'> 0,
aanolo 11_1:r119 (s5,¢) = 0. (6.42)
In fact a stronger claim can he made.
Theorem 6.3 IfS, is compaci in L', then for T > 0,
lim hmr) (3,¢) = 0. (6.43)

§=00 ¢—()

Proof We will show ti.at there is a sequence of input functions which will identify

the system arbitrarily accurately as ¢ tends 1o 0 and s tends to infinity.
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et

I Wy <t <N+ 1/2), n=0,£1....
f.“\r(f.) = / (ﬁll)

] ol herwise,

Then vy has diserele speetrum at wy, = 2ma/2Y, = 0,£1,... and its Fourier

coeflicients
sin(mnw [2)

why

2

|""N(wm)| = a . (6.45)

Let g(t) = exp(=#%/2) and uy = g * vy, Since G(w) # 0, Yw € IR, Un{wy,) =
) Vn{wa ) # 0 Jor m =0,£1,43,...
IMirst, we show that

lim sup 8 (uy,c0,0) = 0. (6.46)

N—ow 3y

By Lemma 6.3, there exists a constant ¢ such that ||u,f{?)||,_\7 < ¢2%n! for all N. Using

an argument similar Lo the proof of Proposition 6.1, we can show that the set Uy (S,.)

is quasianalytic and for all {g,
6 (un,00,0) = sup {IEIIL : k€ Sa, (kxun)(t)=0VLE [lo,lo+ T}
= sup{|lk|lL: & €S, (k*xun)(l)=0VteIR}.

(Axupn)(t) =0Vt e R implies KN (wn ) Un(wp) =0 for m =0,£1,£3,..., where &

is the Fourier transform of k. Since Un(wy,) # 0 for m =0,£1,43,..., we have
6 (un,00,0) =sup {JIk]lL : % € Say, K(wm) =0, m=0,£1,43,...}.  (6.47)

As 6T (upn,00,0) is a monotone decreasing in N, it is enough to show that there is a
sequence {N;} such that §7(up,, 00,0) converges to 0 as i — co.

Now, for cach N, thereis ky € Sq, Kn(wy) =0, wy = 2ma/2¥ m = 0,£1,43,.. .,
and 8% (uy,00,0) < |lkn|lL + 1/N. Being a sequence in the compact set S,, {ky}
contains a subsequence {ky;} which converges to a function # € S, in || - ||p1, i.e.,

limi—c |thn, — k|11 = 0. Therefore,

lim 5’1‘(HN|, 0o,0) < 'lilg “kN.-”L‘ = ||k||L1. (6.48)

=00
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It remains to show that & =0,

As ||~ S e limian by, = A in HY, A€ S, ¢ LY haplies that the Fonrier
transform N of & is continuouns, 1[ & # 0, there exists an interval 1 and a constant a
such that |A(w)| > « > 0 Vw € 1. It {ollows that [Ny ()] > a/2 >0V ¢ ! or N,
large enougly, which is a contradiction,

Now we show (6.43). To express the dependency of 87 on fy explicitely, we denote
87 by 67(u, s, ¢, to). The limit in (6.43) exists because ¥ is monotone deereasing in

and increasing in e. Therefore, it is enough to show that for integers me and L

lim lm TG, 170 =0 (6.-19)

ME— 0 [

To show (6.49) by contradiction, we assume the limit in (6.19) is greater than

some constant 20 > 0. By (6.46), IN > 0 such that

sup 57'(uN,oo,0,tu) <af2 {(6.50)
toclit

Since u is a periodic function with period 2V, we have

oy

sup 67 (un,m, 1/1,tg) < sup 8 (unym, 1L ty) (6.51)
ek to€[~T\2N+7)

Therefore, by definition of 97,

. lim limd%(m,1/0) < lim lim su 8T (up,m, 1 /L1 (.52
ml—-oo I_'gl (m / ) = 00 [, toe[_s'['.EN+']'] (l N, T / U) () ) )

By the hypothesis, for each m and {, there exists a (7" € [=7,2N 4 1] such that
Ty, (1) e
6" (un,m, 1/ 1y"") > @ (6.53)

Being a sequence in a closed interval, {i{™"} contains a subsequence {45’} which

converges to £ and |t™"%) _ 42| < T'/4 for all 7 and 7. By definition of &7
g 0 0 Q J. by y

8T (uny iy 174, 6™y < 672 (upy, g, LU, b+ TA) 5, § € &
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Therelore, by (6.53).,

lim L 873 LGS+ T11) > o (6.54)

= =

However, from (6.37) in the proof of Proposition 6.2 and (6.50). we get

lim L 8" (un o VL5 + T = &M un. 00. 0. i+ T/ Laf2.

1= J—

which contradiets to (6.51).

0

The condition in the theorem can be relaxed. IS, is merely compact in the H™
norm but still bounded in the L' norm, then the convergence still holds in H™.

The order of the limits in all of the above results is not important. Using similar
proofs, we can show that if the order of the limits is reversed the conclusions still

hold. .

6.5 Identification Speed and Gel’fand n-Width

In the noise-free case, the uncertainty of a system known in a compact set can he
reduced to an arbitrarily small neighborhood around the true system almost imme-
diately when the sampling rate is high enough. However, it will be shown in this
section that in the case where the measurement is corrupted by additive noise, there
is an irreducible uncertainty cven when the sampling rate is infinitely high. More-
over, the irreducible uncertainty is large when the observation interval is short. This
uncertainty is given in terms of the Gel’fand n-width. It gives a lower bound on the
best achievable inherent error, which will be shown to be asymptotically accurate.
When the sampling rate is finite, the optimal inherent error is bounded below by

the Gel'fand n-width in a way similar to that in the discrete-time case.
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Proposition 6.3 If there crists A > 0 such that {E||lL > N[l for all k¢ S, then
D7 (2.0) > d(S..L). (6.55)
where ¢ = Inl(sT).

Remark The hypothesis of the proposition is antomatically satisticd when ||« |, =
|- ll,. The proof which is similar to the one for Proposition 3.2 s omilted,

This proposition shows that for a fixed sampling rate the optimal inherent error
is bounded below by a quantity related to the metric complexity of §,. When' S, has
positive Gel'fand n-width, there is an irreducible uncertainty even when the noise is
Zero.

To get a lower bound for 97 (o0, ¢}, we need to study certain subsets of S,,.

6.5.1 A Notion of Smooth Subsets

Definition 6.4 Let Sy; be a subsel of the M-ball of L'[0,00), i.c., sup{||&|lLi : & €
Sar} < M, and W be a convolution operator with kernel w € L'[0,00) such thal
lw(t) — w(t + Ab)|ly < &|AL. If WSyp:={wxk: k€ Sp} C8,, we call WSy «

smooth subset of S,.

Example 6.3 Let S, be the set considered in [52], i.e., for €y >0, €/ >0, a >0,

S, = {k eL: k() < Cre™ and [wh (jw)] < (J'g} (6.56)
Let
/T 01T
w(t) = /1 == (6.57)
0 t > r[ll

and Spyy = {k € L: ||k(t)e®|ly < M}. It can be shown that WSy is a smooth subset,
of S, with k = 2/7 for all @ > a and M < min{C, T\~ ,C, T, /2}.
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For &y € WSy, there exists a linction & € Syy such that A = w * & We notice

that
| ¢
skt S g [ (e = 7l
(ooT ¢
= — : T,
7 e,
< c""%‘—ﬂ-f, (because & € Spy)
< e
and
lwW (jw) K (jw)| < W (Gw)|Kleo
sin(wT/2)
< M lwi—=l2
s M= |
< 2M/T,
< Ch

Therelore, &y is in S,.

6.5.2 The Optimal Inherent Error with Finite Signal to

Noise Ratio

With the notion of smooth subsets, we can get a lower bound on the optimal inherent

error in the nnisy case, where the sampling rate can be infinite.
Proposition 6.4 [f condilions in Proposilion 6.3 are salisfied, then
I (00,6) > sup d¥(WSa, L), (6.58)
WS, CSa

where WSyy is a smooth subset of S, and N = Int("‘ti) +1.
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Proof [I'irst we prove that for all WSy, C S,.

S,, = {-[t' [ ”"SM . I(A‘*’ “)U)l S— { V! < [’u,fu + I']}
D {AeWSy: (hxa)U)=0fori=0....,. N -1}

~

=: §,
ke g,,, &y € Sy such that & = w s k. This implies that

() =yt + A = (A u)(t) — (k¥ o)L+ AL
[(hy # (w0 % w)){1) = (kg (0 a))( -+ AD]

1l

NAc i (e % ) (0) = (o % 2)(t -+ A

1A

< M||(wu)() = (o xw)(! 4+ A

Since for u € By,

|(w * w)(t) — (w = w)(t + Al)]

t t+At

< / (w{t = 7)—w(t + Al — 7))u(r)dr| + / w(l + At — myu(r)dr|,
-0 L

< 2wlt) - wlt + At)li]lull,

< 2xjAtl,  (by the assumptions on w)

we have |y(t) — y(t + At)] < 2eM|AL. k € §, implies that y{t:) = 0 and Lence
ly(t: + At) < 2eM|AL). Since Vi € [ly, to + T, 3, such that |4; —J!.| <T/2AN = 1), it
follows that {y(1)] < «MT /(N — 1) € ¢. This implics that &k € S,,.
Therefore,
sup {||k]|lL : k£ € S,} = sup {I]k“L : keS§, (6.59)

Since this holds for all u € By, we have

T N o= T ,
7" (00, ¢€) 1}2{,5 (u,00,¢),

> inf sup{||kllL: k€ Sp}, (bccause WSy C S,,)
uEBU
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> il su ){ Hl: k€S \
> s {Jkls ke S,
> dN (WS, L), (by a similar argument as in Proposition 6.3.)

I'he prool is completed by noticing that the above tnequalities hold for all smooth
subsets of S,

O

This propoesition shows that for a fixed noise level ¢, the optimal inherent error
is bounded below by the Gel'fand n-widths of the smooth subseis of S,. Since the
Giel'Tand n-width d¥ is large when N is small and N is proportional to the length of the
observation interval, the optimal inherent error can be quite large if the observation
interval is short, no matter how fast the sampling. This coincides with the well known
fact that it is impossible to estimate the low frequency components of a signal on a
short time interval.

After combining Proposition 6.3 and Proposition 6.4, we get

6.5.3 An Asymptotically Accurate Lower Bound on the Op-

timal Inherent Error

Theorem 6.4 Under the conditions of Proposition 1,

97 (s, €) > max (dN(S,,,L), sup dC(WSM,L)) (6.60)
WS CSa

where n, W8y and N are as in Proposition 6.4 and 6.3.

Obviously, #7 (s, ¢) is also bounded below by the max in (6.60). This lower bound
is asymplotically accurate in the following sense. For all T' > 0,

lim #7(s,¢) = lim max (dC(S,,,L), sup dN(WSM,L)) =0. (6.61)
WSaCSa

¢—0 =0
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Forall 0 €« s < oo and « > 0,

LI #'(s.) = limmax (dc(SmL)- sup !f‘\‘(”'S.\!‘L))
I'=l r'—0 WS, CS,

= ||S.llL. (6.62)

where IS, flL = {I|#|lL : & € 8.} is the a priori inherent evror.

6.5.4 An Example

Example 6.4 Let S, be as in Example 6.3, with /% = /2. We will show that

~ —GTle Cyem?
17(s, ¢) > max . - : ’
1 (q’c)‘"m{:x+(72’1'/c2c-'*a.2’ (e (T + 1)

(6.6:3)

where M = min{C\/ae, Cy/2a}.
First, we find a lower bound for the Gel’fand nowidth (W Sap, L), where w and
Sar are as in Example 6.3.

By Proposition 3.5 in [38],

d"(WSp, L) > ;:E ke:J(WSi:,:rﬂ.\',.H) [&]lr, (6.64)
where X, is a n 4+ 1 dimensional subspacc of L'. Fori = 1,...;n 4+ 1 and 1y > 0,
set
k(l) = 1 (=N +T) SIS E— 10T +Ta)+ Ty, (6.65)
0 olherwisc,

Yo = sp{ky, .. kpg1 } and Xpgy = Wsp{ky, ..., kg }. 1L Tollows thai

d"(WSys,Ly) 2 su inf klly. 6.60
(WS, L) 2 :;‘;>[:Jkea(ws,:r’]x..+1)” I (6.66)

Since k € d(WSp N Xng1) if and only il there exists b € d{Spr N Yupr) such that

: = Wh, we have

d"(WSas,Ly) 2 sup inf |WEl,. (6.67)
T2 >0 k€d(Spr [ Yatr )
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It can be shown that for & € Yo [[WE[y = [|&]li. To see this, let k& = S04 oy
It follows that |[WEll, = [| S a;Wki]]). From (6.57) and (6.65), we get (i) for

Ty <y,

[ 0< 1< (i= )T +T2)
CEgl) )T+ 1) <SG = )N+ T + T
(Wh)(1) =< /T (=T + 1)+ T <t < G- )H+ D)+ T
S T (= D+ 1)+ T <LSE(T+T)
| 0 i +1y) <t
(6.68)
and (it) for Ty > 71,
(0 0< i< (i V(T +T)
ST (o N+ ) < LS (= (N + ) + T
(WEk)(t) =<1 G- +T)+TT <t <E- WM +T)+ T
S (i= )N+ Do)+ Ta <t <i(T +To)
| 0 (1 +To) < t
(6.69)

In both cases, the support of Wk; is disjoint with the support of Wk; if ¢ # j.
Therefore, ||WE|l, = T |ou]||Whilli Also in both cases, |Wkili = T2 = ||ki]-
lHence, [WE|; = T |eslll&:ll = |1&])i- 1t follows that

d"(WS,, L) > su inf k. 6.70
( o L) T2>l:)ker'3(s.uﬂl’n+:)” “1 ( )

It can be shown that i“rkea(SMﬂ}',.“) |k||; > The~om+0T2g=enTi pf | To show this,
it is cnough to show that for k = S aiky € You, if ||k]) € Themo(nt)Tzg—anTi py

then & is in Spy. Since for & € Yqy

00 “+1 (i-1)} (T +T)+T2
LT = Yl [ eo"dr,
0 i= 1 (-1 +T2)

n+1

i=1
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< __l_(_.l(rl-l-l]T_‘t.nplTl”‘[‘.

—_— -[12

It

ki € Tae afn m"-’t‘ anfy AL Splies & c Sy
]
By (6.70), we have

. . ,—nn'l'. .,‘I
d" (W8, L)) > sup Them o —anti g = L 2
Ty>0 afn+1) ¢
By Proposition 6.4,
- Radi] NT| A!
?7(c0,¢) > sup —t—,————
Ti>0,0>a,M<min{C, Tre="T O 2} (N + 1) ¢
N\ by 1
> sup ————— (by letting o = «a)
Ty >0,M min{Cy T 0,1 /2) a(N+1) ¢
-N
e M .
> sup —————  (by letting 1), = 1/u)

M<min{Cy feaCaf2a) ¢(N +1) ¢
c—“!ul\*!'l'/r. M
> sup Frrarmreh
- A”Stllill{C[}Cﬂ.Cgl?ﬂ} ("(3 + 2a M /“.) e

(becanse N <24 2aMT /().

If Ci/ea = Cyf2a, then by letting M = C2/2a we get a lower bound on 97 {00, (), i.e.,

C“C.QT‘/'- ('!2

nT > N
{ (OO,C) -3 02']'/( VS

On the other hand, by, Proposition 6.3,

97(5,0) > d*(Sa, L) > d“(WSar,Ly),

(6.72)

(6.73)

where ( = Int(sT). Applying (6.71) with e = a, T} = I fa, and M = () /ac, we get,

Cl e—T

"
V(s,0) 2 (ae)?(sT + 1)

Combining (6.72) and (6.74), we get the desired lower hound for 97 (s, c).

(6.71)



Chapter 7

Representation and Estimation of

Continuous-Time Systems

Iy this chapter, we study the problem of representation and estimation of continuous-
time systems by sampling!. One of the key questions is: once a model set and
estimale are obtained for the sampled data system, how should their continuous-time
connterparts be constructed? Here, we give a causal procedure for the consiruction
of a continuous-time ecstimate from a discrete one. Representation and estimation
errors are given in the Ly norm which is an upper bound on the H* norm. (Parts of
this chapter are in [16].)

Continuous and discrete-time signals and systems will appear in pairs. To dis-
tinguish them, we use the carat symbol ~ to denote the discrete-time quantities,
c.g., i denotes the sampled version of the continuous-time output y. To guarantee
that a sampled version is well defined, the continuous-time signals are constrained to
he piccewise conlinuous. L* denotes the set of piecewise continuous bounded real

function on IR,

ISampled data systems have been extensively studied in the past, e.g., [1]. Recenily, they have
been re-investigated in the robust control context [7].
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7.1 Sampled Data Systems
A mapping M LY (~o00,00) = (V(—00,00) is causal if

f’(_,x.‘th (I - P(_l\..;]) = U V! e %. (TI)
where Lis the identity operator on L™ and M : (-0, 00) = LY(—ao, a0) is causal
il

P(_m‘;]l‘\/] (i - p(_‘x\‘,,,l) =0 VielR, (7.9)

where I is the identity operator on (™, and m =sup{l € Z : 1 < 1},
A sampler is any causal bounded map from L™ to £ and a hold is any causal
bounded map from £ to L™, In particular, for a lixed sampling peviod T, > 0, we

define tl-lc (usual) synchronized sampler Sy, by
(Sru)(m) =u(ml,), meZ nwel™ (7.3)
and the (usual) zero-order hold Hr,
(Hy,@)(t) = @i(m), L€ (mTy,(m+ DT), der (7.1)

The subscript 75, in Hy, and Sy, is assumed fixed and usnally sappressed from nota-

tion.

H admits a convolution sum representation. Let by € L' be the pulse function

I, 0<t<Ty
ho(t) = ’ (7.5)

0, olherwise.

IEmbed Z into IR as usual. Define h: R x Z — IR hy
h(t,7)=ho(t = 71,), t€R, 7€ X.
Then, H can be expressed as

(Ha)(t) = fj h(t,T)a(r), telR (1.6)

T=—o
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for o ¢ £, where the series converges absolutely.

Let. T be the vight shift operator in %,
(TF()=7t—-1), tel, Fel,
and T the T-shift operator in L™,
(Ta)(!) =2(t=1,), teIR, xeL™

Then S and H satisfios

HT = TH, ST =TS. (7.7)
Morcover,
SH="T. (7.8)

A sampler and hold pair define a mapping D from the set of continuous-time

systems Lo the set of discrete-time systems by
D(%) :== SKH. (7.9)

We call this map discretization map and the discrete-time system k= D(k) the

sampled system ol k.

Proposition 7.1 D is a contractive linear operator from L' to ', ie., |D| < 1,

and for all k € LY,
- t
k(1) = D(k)() =j( k(r)dr teZ. (7.10)
Proof IMirst, we show that if £ is shift invariant, then D(k) is also shift invariant.
KT = SKHT by (7.9)
= SKTH by (7.7)

= STKH since K is shift invariant

Il
-}

SKH by (7.7)

It
=

K by (7.9),
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wheh proves that K is shift invaria!,
Morcover, for i € (™ and 1 € X,
an = (Ka
= (SKHu)(¢)
= (KHu)(! T,) by the definition of 8
= Z - 7)a(eN(tt,) by (7.6)

= > [Kh(,7)am))r,) by linearity.

However,

(KA, m)a(m))(tTy) = [Kh(,7)(1T))iE(T)
= [Kho{- — 71)|(tT,)i(r) by the definition of b
. = [Kho)((t = 7))a(r) sinee K is shift invariant

= k(L —T)i(r),
where
k() = (Kho)(tT,)
= f ST, = 7)ho(7)dr
.
k(1T — 7)d
./u (tf, — 1)dr

¢l
= ] k(r)dr.
(t=1 )Tp

To show |D|| € 1, it is enough to show that for all i € E!, Wl < N|kllLr. This
follows directly from (7.10), as

e = 3k

-5
® 2

~
c

tr,
j (7)dr
- 1)1,,
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[FaN

N,
Zj(‘ |k(7)|dT

et TRERY N

f” ()| dr
0
Ik

I

L.

The Tollowing assumptions are made about the identification problem:

(1) The a priori information about the true system is given in continuous-time, i.e.,

l".frm' € Su C Ll;

(i1} The identification experiment is performed on the sampled system &y, 1.,
the input is generated by a computer as a sequence of real numbers and then
applied to the true system through a zero-order hold; the output obscrvations

are collected through a sampler.

The objective of the identification is to construct an cstimate of k. in a selected
model set in L' and give error bounds in the L' norm.

One way Lo achieve this objective is as the follows:

(i) Transform the a priori uncertainty set S, in continuous-time to an a priori

uncertainty set S, in discrete-time by using the map D, i.e., S, 1= D(S.);
(ii) Seleet an optimal (or suboptimal) model set X, for 8, in ¢';

(iil) Choose an estimate k., of the sampled system Ay, in X, and compute the
error bounds in the ' norm by using algorithms for discrete-time system iden-

tification;
(iv) Construct an estimate and compute the error bounds in L.

The last step of the above procedure is related to the following topic.
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7.2 "Inversion of the Discretization Map

It is not difficult to verily that D has a non-teivial wnll space in LY Therelore, it
is not invertible on LY. Nevertheless, if a subspace X < L is in the complement of
Null(D), i.e., XN Null(D) = 0. then the restrication of D on Xois inveetible, This
implies that if botl ét, and }f{,, are in D(X). then an estimate lor Ay, can be taken

as by = (D|x)"l(fc,3,). and the estimation error has bounds
s = Rrruellr < Meest = RaellLe < D) A w0 = Krewe 1o (7.11)

One of such subspaces X is the set of band-limited systems. Shannon's sapling,
theoremn states that i the frequency response of & is band-litnited and the sampling,
frequency is larger than the band-width of &, then & can be exactly recovered [rom
k. Although in practical control problems, systems are never band-limited, a system

can be approximately recovered if it is approximately band-limited. More geuerally,

we have

Proposition 7.2 Le! X C L', D(X) =, and XOANull(D} = 0. IfS, C X+ B(«),

then for k € S, and key = (D|x)™ (kst), we have
WRese = Bl < Nhest = Kllis < (D) I (kewr = Kl +¢) + . (7.12)

Proof The first inequality follows from Proposition 7.1, To show the seconed one,

we nolice that

1Ko = &lLe < |Jhes = (D1x) ™' D(A)ILr + (DIx) ™' D(k) ~ k

- (7.13)

Since k € S, k) € X, ko € B(c) such that & = &) + ky. It {ollows that,

(DIx)™'D(k) = ky + (D|x) ™' D(k2). (7.14)
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Therefore,

1w = Kl < I(DIx) ™" (ke = F)llLs + 1k — & + (D]x) ™' D(k)lL:  (7.15)
I(D1x) ™ ke = Eller + k2l + 1(DIx) " NID(A2) o (7.16)
IDIx) ™l (Nfeat = Ello + ) + . (7.17)

IA

EA

T'his completes the proof,

O

If D. is seen as a mapping from L™ on the jw axis to L™ on the unit circle,
then Shannon’s reconstruction procedure has unit norm on the space ol band-limited
systems, Le., [(Dlx)~ = 1.

A severe shorteoming of Shannon’s reconstruction procedure is that it is not causal.
In other words, it can not be performed until the complete set of sampled data
becomes available.® A Nehari approximation problem can be solved to obtain a
cansal estimate.

lustead of a subspace of band-limited systems, we will take the inverse of D on
a stubspace of step functions. It can be shown that, if the system’s impulse response
is stnooth (similar Lo approximately band-limited), then it can be approximated by
a step function. Moreover, the inversion procedure on such a subspace is causal and

the norm of the inverse ||(D|x)™!|| equals one.

Proposition 7.3 Le!

YT, T, <t< @i+ 1T,

fit) = | (7.18)
0 otherwise,
and X, := 5p{ Jo, f1....}. Then D|x, : X, — ! is one-one and onto, and
(Dlx,)™' (k) = L k(i) (7.19)
i=0

Morcover, |{D|x,)7!|| = 1.

i J . . . » -
*1t is well known that the ideal rectangle filter used in the Shannon reconstruction is not causal.
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Proof To show D|x, is one to one, it is enough to show that Dx (&) = 0 implies

that & = 0. By Proposition 7.1, if D|x_(A#) = 0. then

(0T,
j.,_ Kt =0 Vi€ Z,. (7.20)
Since k € X, b =%, ifie (7.20) implies that ¢; = 0 for all i, i, & = 0.
D|x, is onto as for any k& € (', there exists b = S M0 € X, such that
D(k) = k.
|k( )7 = 1 because for any b = 3575, e fi € X,
(1T, ~
Db (e = 31 [ ko (7:21)
Ii
= Zf |I.(! Mt as ks constant on (i1, (1 4 1)1,)-(7.
= . (7.23)

0

The .above inversion procedure will enable us to relate a representation problem

in the continuous-time casc to ane in the discrete-time case,

Proposition 7.4 IfS, C X, + B(¢), then
dy (84, 0') <y (S0, L") < du (8 ') + 2. (7.24)

Proof By definition of d, (S,,L'), Vi > 0, there exists a n-dimensional subspace
X, C L! such that

dist (Sa, Xn) < du (Sa,L') +1. (7.25)
Let X, := D(X,). Then

do (85,0") < dist (8,X,) (7.26)
= ::pn |er5€ ”D(k-—-fa)”pl (7.27)
< dist (S, X,) by Proposition 7.2, (7.28)
< dy (Sa,LY) + 1. (7.29)
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Sinee this is troe Tor all 4 > 0, we get the first inequality in (7.21).
By definition of d, (S,,, P‘), ¥y > 0, there exists a n-dimensional subspace X, € 1
such that

dist (8,,X,.) < du (Sa, ) +. (7.30)

Set X, = (D]x.)"" (X,). Then

dy (S0 L) < dist (e Xa), (7.31)
= il ||Af —(D|x,)~" D(h.)”m . (7.32)

By l’ru];usil.iun 7.2 and 7.3, for all k € S,

|# = (Dlx) " D), < 1% = Rllo + 2. (7.33)
Therefore,
i N < inf ||k = Allg + 2. 7.3
d, (S,,,L ) < :gslihlel}g,. |k — hlle + 2¢ (7.34)
< do (80, 0') +2¢+ 1. (7.35)

Since the above inequalities hold for all 7 > 0, we get the second inequality in (7.24).

0
7.3 An Example
Consider the identification of a continuous-time system in
S, := {k eL': |k(r)| <7, kis abs. cont. and |[k||, < c} (7.36)

To show that this problem can be reduced to the discrete-time case, it is enough to
show that 8§, is contained in X, + B(27T}¢), i.e., for all k € S,, 3k, € X, such that
Tk = ki)l € 275c.
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For k € S. set ky = (D|x,) ™' D). Mo prove that [k — &yllLe = 27, we notice
that

1 1 'l - . .
ki(t) = (m) = — /( kT)dT te ('l (i 1Y) (7.37)

I_n Jim=1)1,

As a result,

W=kl = [ k() = kol

oo (m+1Y1,
Z /..H () — &y (8)|dt

m=p My
=] (m+l)'f}. l m'l',.
= Z/ k(1) ~ 7f k(7 )dr| dt
m=0 mTy I,. (m-1)1,
(m+l]l,, l miy
_ / M) = R(F)drfdl. (7.38)
m“l) mi,, ,; (- l)l,.
However,
o fm% (k(2) = ktr) e a
el v — KT MLT| (L
mTy T Vim-nym,
[m+1)T;, m'ly, !
= j ' ' f dk(r) (lr'd.'r ot
m'Ty, (m=-1)1}, Jr dr!
(m+1)715 l m'iy ()T | e
< / ’ —_ : k() dr'drdi
mTy ‘[I’ (=17, S(m=1)T,, dr’
(1)1 | (7!
= ]',,] g dr',
(m=-1y1, | d7!
This implies that
(4T | db( T’
il < o, [ (ST g
m=0 (rn=1)T,, dr
< 2|l
< 2T (7.39)

Therefore, by Proposition 7.2 and Proposition 7.4, the representation and estima-

tion prablem for & € S, can be done via the procedure proposed in Section 7.1



Chapter 8

The Intrinsic Uncertainty in
Identification of Time-Varying

Systems

In this chapter, we will apply the results for fast identification derived in the pre-
vious chapters to the identification of time-varying systems. The systems will be
represented by their Volterra kernels. It will be shown that there is an irreducible
identification error when a system’s present behavior does not determine it future
behavior completely. The faster the system’s possible variation, the larger the error.
Later, the identification of slowly time-varying systems will be discussed.

In this chapter, we will only deal with the discrete-time case. The continuous-time
counterpart can be derived easily using the results in Chapter 6 and 7. This chapter

is based on [24, 58].
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N
I=tlo .
U el Ry} O -y
t=lto4 1
t=tat 2
I oy s

Figure 8.1: Linear time-varying systems represented by Volterra sums
8.1 Representation of Time-Varying Systems by

Volterra Sums

Time-varying systems will be represented by Volterra sum operators, K: U - Y,
where (as shown in Figure 8.1)
%
y(t) = ki, r)u(t—71), {,7€ X (8.1)
r=0
Here, as in the time invariant case, U and Y are normed lincar spaces contained in
the set £*{—o00,00). A distinction will be made between kernels £(-, <) : Zx %y — IR
and the weighting functions that these kernel induce, denoted by &(-), ¢ € %, which
satisfy ky(7) := k(L,7), £(7) : Zy. — IR, It will be assumed thal kernels &(-,-) belong

to a normed algebra B satisfying the conditions,

B = {k(-,-) k() €L VL€ T and sup [Ik()n < oo}, (8.2)
te
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where Liis a convolution algebra defined as in the time invariant case. The norm on
B is
(-, Ylp 2= sup 1ol (3.3)
teZ

The product in B of two kernels in B is the kernel of the product operator.

Identilication will be considered in the L-norm for weighting functions and/or the
B-norm for the kernels. The B-norm is a natural choice where it coincides with the
operator norm of the time-varying operator, as in the case where L= (!, More gen-
erally, the precise operator norin may be intractable, but the B-norm is nevertheless
suitable for the “frozen-time” analysis of systems, as in [58, 49]. There, the systems
vary slowly with time or “approximately commute with the shift”, and the B-norm
is an upper hound on the operator norms of the local! operators.

The rate of change p of such a system is defined to bhe

p(k) = sup ||ke(-) = koo ()| (8.4)
teZ

For any? subset S C B, p (S) = sup, g plk).
Suppose that the a priori information concerning a system locates its weighting
functions k(-) in a set S, C L and limits its rate of change, but does not otherwise

constrain the manner in which it changes with time, i.e.,
S.={keB: keS,CLVie X, and p(k) < ¢ < 0}, (8.5)

which implies that p (g,,) = ¢ < 00, Here S, again satisfies Assumption 1 of Chapter

2 and is therefore a closed convex symmetric set.

“I'he tocal operator of K at time ¢ is the time-invariant operator K; with the impulse response
ke ). 5

*We will use capitals with tilde, such as S, to denote set of kernels in B, and capitals without
iilde to denote the sets of corresponding weighting functions in L.
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8.2 Uncertainty Principles

First, we consider the identification of the weighting functions £(-) in the L-norm,
To get the most general lower bounds to uncertainty, assume that the entive histories
of the input « and oulput y on (—oo0,00) are known and there is no measurement
noise. (Otherwise, a greater lower bound is possible.) Based on these observations ol
w and y the location of the true kernel Ay, is narrowed down, as in the time-invariant

case, from S, to a smaller scl
S (krue) = {k € 8u+ (Ku = Ky} (1) = 0 V1 € R}, (3.6)

and the uncertainty in the corresponding weighting lunction at time 4y, is reduced

from S, to the subset
S (Kiruer o) = {kig € Sa s kig(+) = k(to,*) Jor some k() € S (i)}, (87)

Again, to get the most general lower bound, we assume that the nominal system for
ki, can be any system in L. As in the time invariant case, Lhe worst-case uncertainty
in identifying the weighting [unction at iy, for an optimally chosen estimate (k..),

is

e(u,io) :=  sup inf sup ||k = (Fest),, L (8.8)
’ (brrur)ig€Sa  Restdig€L ko eShipunial i

and is a function of the input ©. We would like to relate this uncertainty optimized
over all inputs, i.e.,

A (8o Lito) = inf e(u.lo), (8.9)
to the n-width 9" (S,, L), and show that if the rate p (§u) is greater than zero then
there is an irreducible uncertainty in identification no matter what the input. For
this we will need the following lower bound on ¢(wu, ty) whose derivation is similar Lo

(2.14) for the time-invariant case,

e(u, to) = sup {|lkpll : Kil(-) = k(lo,+) for some k €8,
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Jor which (Ku) (1) =0V € IR} (8.10)

Given 0™ (8,, L), introduce the function ¢ mapping the positive integers {1,2,...}
into IR U {00}, é(n) := 10*"='. Then ¢(n) is monotone decreasing in n, Lot ¢71 be

the inverse relation ¢~' s IRy — %y,
o~ ) s=inl {n: n >0, ¢(n) <a},
which is also monotone decreasing .

Theorem 8.1 [f the a priovi uncerlainly sel S, has a ralc of change p (gﬂ), then
the oplitmal worst-case uncerlainty in identification of the weighting function at time

foy A (S.., L, l.u), has the lower bound
A (8, Ly ty) 2 0070 = 1) Vige & (8.11)
where 0 := 0(S,,L) and p:=p (g,,).

Proof By (8.10), it is enough to show that for all « € U and ty € Z, there exists a
null kernel, & € §uﬂ Null (®,) whose frozen-time system &y, is appropriately large.
Choose n = ¢~ (p). By definition of 82", given ¢ > 0, v € U, and ¢, € Z, there
is an impulse response &y, € S, for which the (time-invariant) systein operator K,,

sabisfies (K u)(t)=0for lp—n <t <lg+n,and
0%~ — € < Ik || < 01 (8.12)
Deline & € B,

ko) (1=} if i<t <iotn,

0 elsewhere.

k(t,-) := (8.13)

The resulting (Lime-varying) operator K is null, ie., (Ku) = 0, and k(¢,-) € S,.
Also, the choice n = ¢7'(p), together with (8.12) and (8.13) imply that K has an
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jinue=l

appropriate rate, el p(K) £ — < p (Q,) UHenee ke S, NNl (). Finally,

{
(‘(”w !U) 2 ”]"fu“L (l‘.\‘ (S‘ 1 n)).
0=t — o0 (by (3.12))

U'-’-,n-'(n)“l -, ((j)-l (’,) = u),

v

and since this holds lor all ¢ > 0 and v € U, the theorem follows,
]

In fact, the uncertainty is greater than zero not only in the worst-case hut for
any system which is not too close to the boundary of §,. This is shown in the nest
corollary to Theorem 8.1. Denote the uncertainty for a weighting fnction (k. ),
by

e(u, tg, R ) 1= inf sup ky = {(Rest), |L- (8.11)
( + Uy etrue ) (ku:),DEL k[uES(k[r"P.lu) “ ] to ”

Also, denote the optimal uncertainty for (k) by,
A (gm L7 tOv ktrm:) = l!lE!Il:I (3(“, l"'lh klruc.—)- (H~ | _r})

Corollary 8.1 If (kiue), € @S, V! € %, and p(kyu) < fp (é,,) Jor some 0 < o <
1,0 8 <1, then for all ty € &,

A (84, L to, birae ) 2 (1 — )0 {247 10=Pk = 1} (8.16)
where § :=0(S,,L), p:=p (g,,) and ag,, = {ak ke g,,}.

Proof It will be shown later that a closed convex symmetric set. S, € B can he

found such that (km,,_. + §b) C S,. It will follow that for all u € U

e(u, bo, kirue) > sup{||kto||L ¢k (¢) = E(lo,*) for some k € S, Jor which Ku = U}.
(8.17)



Clhapter 8. Intrinsie Uneertainty in Identification of Time-Varying Systems 126

To see that (8.17) will follow, note that (A',,m 4 gf) C S, implies that the set in (8.7)

satislies

S (ke tn) D {k,u e L: k() =k(ly,) for sume b € (A',,.m, + g;,)

for which (Ku — Kjppett) = 0} (8.18)
=: Sb (I\‘h‘ur-\ !-U) . (8-19)

Therefore, by (8.11),
e(u, toy bppur) = inl sup kg = (Keat )y, L (8.20)

(k”l)in GL kfo Esb(kl!‘llt ltD)

Since S (e, bo) i convex and symmetric around (k"’“'-')tn’ the optimal choise for
(Kva)y, Tor the right hand side of (8.20) is (kirie),, 1€
c(“--u Lo, ktruc) 2 Sup "ktu - (ktruc)go ”L (8-21)
klo Esb(klrue-to)

which implies (8.17) by definition of Sy (Kjpye, fo)-

An appropriate sct S, is the subset of S,
Sy = {k: MeE(l—a)S, VIEX, plk) L (L -P)p (§u)}

for then & € Sy implics (k+ kpue), € (1 —a)Sa+0S;) C S, Vi € Z, and
plk+ kype) < (1= B)p (gu) + 3p (5,,) =p (§a), which implies that & + ke € §a. '
Since (8.17) holds for all « € U, applying the method of proof of Theorem 8.1 to S,,
we gel the proposition.

O

When o = g = 0, the lower bound for A (gﬂ,L, to,k,,.,.,) is the same as the one
for the optimal worst-case uncertainty A (ga,L, lo) in the theorem.
Now we consider the identification of a time-varying kernel in the normed space

B. Based on the observalions on the infinite interval (—oo,c0), uncertainty as to
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the true kernel is redueced to 8 (Ayeee ) as in (8.6). The worst-case uneertainty for the
optimally chosen estimate beg i the B-norm is

e(u) == sup wf sup  |[& = Foaellps (8.2
kirue €54 ’\‘ES“‘““r)

Vral
Since the B-norm ol a time-varying kernel is the supremnm of the L-noris of its
weighting functions, it is not diflicult to show that e(u) > (. fy) for all . Therelore,

the lower bound in Theorem 8.1 is also a lower bound to the optimal worst-case

uncertainty of the time-varying kernel A (g,,,L) = inl,eu e{u); Lo
Corollary 8.2 Under the hypotheses of Theorem 8.1,
A(8,,L) 2 o7 - 1), (8.23)
A result similar to Corollary 8.1 is also casy Lo obtain lor time-varying kernels,

Example 8.1 In the following we assume that the sets S,, ¢ = 1,2,3,4, are defined
as in Example 2.1; (kiru), € @S, VI € Z; and p (kyrue) < ﬂp( ) For lixed » > 0,

let 3 be the function ¥ : [0,00) — Z.,

. 7.‘211—I -
. P(z) = inl {n - < .:.} .

(i) If S; = S.,, then it has been claimed that #*"~' = £=p2=1 By Corollary 8.1,
for all {g € X,

A (gu:La lﬂtktruc) > (1~ o) ] < 7'{2'11[“_”)5“"”] - l}.

-_T

(ii) If S, = S, or S, = S,,, then 0?"~! = Cr#=t, lence, for all Iy € X,

A (gmLa tuskh‘uc) > (l - a)c,.{?tﬁ[(l-ﬂj{:] - l}‘
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(1) If S, = S.,. then 0271 = = By definition of ¢, o{n) = It follows

__
n=1" nfdu=1)"
that the inverse netion

. (.
rf)"l (1l =mp) = inf {H ceZ,: ”(2”—_1) <(l - H)p}

C
iml<ne,: 2n-1 2———-,~——}
{ ¥ (1—p)p

(‘v

—_— 3/
TR T

IA

As 0" = £ we have gl l0-mel - 1} — {267V [(1 — B)p] — 1}, Corollary 8.1

nOw gives

- -1
A (g,”L, t[h ktrm;) 2 (l ._2&) ((fJ l ((IC)_ 'B)p) - %) Vf-[l G E
| —a 1 1y~
> ) (2(1—5)p+6) Vio & 2.

Remarks on prediction uncertainty. 1t might be expected that for quickly chang-
ing uncertain plants, observations from the remote past should contribute little to the
identification of the present weighting function; i.e., the useful observation interval
should get shorter as the time variation rate p(S,) increases. This is borne out by
Theorem 8.1 and the examples, which show that the optimal identification error is
bounded helow by a monotone increasing function of the time variation rate p (53)
The ervor in predicting {Kirye)p+1 rom observations of y on (—o0,] is bounded
below by A (g,,,L,tu,kt,.,,c) + p at least®. If that bound exceeds ||S.}iL, then iden-
tification provides no information about future behavior, and it becomes impossible

to construct a model with any predictive power. This happens whenever the rate p

salisfies p > puar, Where pyq. is the solution of
(1 =) o027 0 Bomacl =1}y e = Sl

where by, satisfies the hypotheses of the corollary.

AA greater lower bound can be obtained by exploiting the fact that observations are available
only on (=00, tg).
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8.3 Comments on ldentification of Slowly Vary-
ing Systems

To estimate a time-varying system & accurately in the B norm, it is necessary to
estimate cach frozen time system aceurately in the L norm. For a lixed g, the frozen
system &y, is a time-invariant system. I we were able Lo carey onl aninpot-ontput
experiment on this {rozen system, we could use any available time-invariant idenli
fication algorithin to construct a model for ky,. Unlortunately. this is not feasible,
An experiment on the time-varying system can only give us the ontput of &, at time
ty, as shown in Figure 8.1, Nevertheless, if the system is known to be slowly time

varying, we can estimate the output of Ay, (1), lvom the output (1) ol &,

Proposition 8.1 Let & € B and |[k{t,:) = k(t + 1| £ p VI ¢ Z. ltoru €

(00, 00), let

= i k(l, Tyu(t —7), (8.21)

re(
e ZI. to, Tha(l — 7). (8.25)

Then Vi, lg € Z -
(L) = yea ()] < plt — Lol [[ue]] . (8.26)

Proof "For simplicity, we prove the lemma for § < gy only.

[(t) ~y(8)] = |Z k(t,7) = k(by, 7))ult = 7)], (8.27)

'r-(J
< Zu 1) — k(lo, 7)|[11¢]] oo (5.28)
= [|A 3 = k(Loy M1 17elloes (8.20)
lo=t+1
< D0 Nk(E+d,) = ki 1) ] oss (8.30)
=0
to—t+1
< Y pllull (8.31)

=0
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nit Y V()

ull i Y NEEND

- -y {ti} -

Figure 8.2: LTV system identification by smoothing
= pllulls(to = 1). (8.32)

a

This Proposition indicates that if a system is slowly time varying, then the output
of the s'yst.cm y is close to the output y,, of the frozen time system &y, around fg.
Therefore, a window emphasising the outpui around ¢y should be applied in identify-
ing the frozen time system k. When a rectangular window is used, the time-varying
system identification problem is reduced to a sequence of time-invariant system iden-
tification problems on a sliding finite-time interval, and all the algorithms derived
in Chapter 5 can be applied. In particular, the algorithm estimating the impulse
respouse via inner products of the output and delayed inputs has the advantage of
easy implementation. The impulse responses of the frozen time systems are obtained
by filtering the products of the output and the delayed inputs with time-varying

rectangular windows, as shown in Figure 8.2.



Chapter 9

Concluding Remarks

9.1 Summary of the Work

Motivated by the problems of robust adaptive control, ve posed the problem of Tast
identification in this thesis. Time complexity and algorithmic complexity, two com-
plexity issues related to fast identification, have been studied. The minimal time
needed to identify a system to a specified accuracy in input-output behavior has been
studied for hoth discrete and continuous-time cases. ‘Fhat time has been shown to
depend on the metric complexity of the a priori data set, as measured by the Gel’fan
n-width. The complexity of an identification algorithm was measured by the min-
imum number of parameters the algorithim needs to estimate in order to obtain a
representation of the a posteriori information within a specified accuracy, This min-
imum number depends on the Kolmogoro: = ity o the a priori data sel when the
model sets are restricted to be affine models. It is the relationship bhetween identifica-
tion speed and complexity that makes it fruitlul Lo pose identification problems in the
context of complexity theory. In that context, identification and feedback hoth serve
the common purpose of reducing plant uncertainty and thereby reducing complexity.

In the discrete-time case, for a class of monotone decreasing data sels, it has heen
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shown that the optimal input to achieve that minimal time is an impulse at the start
of the obscervation interval, and the optimal alline model 1o achieve that simplest
representation is the FIR model. In the continnons-time case, a class ol optimal
inputs has been characterized by a logarithmic integral condition using the theory
of quasianalytic functions. A suboptimal afline vepresentation for continuous-time
data sets has been shown to be obtainable [rom the optimal representation of their
simpled data systems, The optimality of such suboptimal representations is related
to the smoothness of the impulse responses and the sampling period.

The input design problem has also been studied in a case where only certain
enserble properties of the input can be designed. Upper and lower bounds to the
inherent error have been given in terms of the gap metric in general, and in terms of
the spectrum flatness in several special cases. T'wo robust identification algorithms
have also heen proposed.

IT a system changes while it is being ideniified, then there is an irreducible uncer-
tainty as to its inpul-oulput behavior, which has been related to its rate of change.
The irreducible identification errors derived here exist even if there is no additive
noise, T'his intrinsic property of time-varying systems indicates that adaptive con-

trollers must be designed for a set of systems, i.e., must be rooust.

9.2 Directions for Future Research

Certain aspects of the research reported in this thesis are worth further investigation.

Further rescarch is contemplated on the following topics:

I. The effects of stochastic additive noise on identification speed. In
Chapter 2 and Chapter 3, we concentrated on the effects of lack of data on
the inherent error. The optimal inherent error was sought in the limiting case

where the signal Lo noise ratio tends to infinity. When the signal to noise ratio
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is limited, the results provided lower bounds on the hest achiovable inherent
errors. 1L is unclear how the stochastic additive noise would affect the hest
achievable inherent ervor, and how one should exploit the stochastic property of
the additive noise in input design. The results on ensemble input. design shoubd

shed some light on these questions.

2. Formulation of the fast identification problem in the stochastic set-
ti;lg. In Chapter 2, we formulated the fast identitication problem in the worst-
case setting. A similar formudation can be achieved in the stochastic setting hy
embedding both system uncertainty and disturbance uncertainty into a proba-

bilistic framework.

3. Estimation of 6", In Chapter 3, the upper and lower bounds on the n-width
0" have been given for several data sets, A challenging technical problem is Lo

obtain the exact n-width 0",

4. An information interpretation of the logarithmic integral condition.
In Chapler 6, a class of optimal inputs are characterized by a logarithmie in-
tegral condition. It is often speculated that logarithmic integrals are related to
information theory. An interpretation of the results in Chapter 6 may reveal

certain intrinsic relations hetween identiflication and information theory.

Besides the above direct extensions, the results in this thesis should he relevant to
several long-term research lopics, e.g., a unified theory of feedback and identilication,
an information-based adaptive control theory, optimal adaptive strategies based on
optimal identification and optimal feedback, and iterative identification and control

design.



Appendix A

Bounds on Inherent Error

Lenima 2.0 used in the proof of Proposition 2.1 can be shown using devices similar
to those in [43].

Proof of Lemma 2.1 I we can show that S(0) is symmetric around the origin,
then for all &, € L,

( sup ||k — kege|[L + sup || =k - kcst”L)
+eS(0) keS(0)

(as S(0) is symmetric),

o —

sup ||[& = kel =
keS(u)

v
~ | —

5 sup (|Ik = kearllL + 15 + keat[lL)
< ke5(0)

1
5 sup ||k = kg + b+ kogt||Es
=~ keS(0)

= sup [kl
keS(0)

v

Since the above inequality holds for all k. € L, we get (2.15).

To show that §(0} is symmelric around the origin, we notice that

S(.O) = S,, ﬂ {A‘ €L: P[fu.fo'l'?')@"k = P[!o,!o-{-T)v fO'r" some v € V} )

=: 5, ﬂ S..
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Since 8, is symmetric by Assumption 1, it is enough to show that the set 8§, sym
metric. Let &) be an element in S, Theu there exist ey in Vosueh that (Kya) (4
() Yt € [t, fo+ T). This implies that (=Kya) (1) = =y (1) VIEC [t to + 1) Sinee
V is symmetric by Assumtion 1, —oy is in V. T'his implies that =& € 8, and henee
S. is symmetric.

For (2,16), we show that for all &, € S, and v, € V,

»

sup ey — kofic < sup Ay = Mafi- (A1)
by k2€S(y) hy e eS(0)

Let &y, &y € S(y). Then thereexist oy, vy € V such that Py g pmy (®u{k) — y) =
Pl .io+1) (1) and Py goar) (Ru(k2) — ) = Pryery(v2). 14 follows from the linearity
of Py to+1®u that P o4 @, (L‘;—*-) = Ploy+m) (ﬂfh) Since Vs convex and
symmetric, 52 € 'V, which implies that 5‘:—"1 € S,. Since by ky € 8, and S, 15 also
convex and symmetic by Assumpltion 1, 51:—"?- is also in S,. Hence, 51—;5& €S,NS. =
S(0). By the symmetry of S(0), 57%‘-'" € S(0). (A.1}is proved by letting by = !‘-*LH:,—I“-
and hg = 52;—“- on the right hand side.

Since §(0) is convex and symmelric, its diameler equals dwice of its radios, i,

sup  |[hy — haof[L = 26(x).

hy h2€S(0)

This completes the proof.
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Comments on Spectrum Flatness

It can be shown that the spectrum flatness defined in the Chapter 4 is closely related
to the ratio of the supremum and infimum of the spectrum of a signal in the standard

SCHUSEe.

Proposition B.1 [f u is a T-periodic signal, then

plT) = ming, [H{wy)] (B.1)

T max, [U(wn)|’

where Uw,,) = Tl w(t)e™ ™ m=0,---,T =1, wy = 2zm/T.

Proof  Since u is T-periodic, there exists a unitary matrix V such that U, (n) =
VUp_(T'). 1t is trivial to check that for ¢t € [0,T — 1],

-1

Yow(T — 1=t —7)e =170 < g fw,, )e ™, (B.2)
r=0
Put
e—ro(T=1)  prpn(T-1) |, a—pwr_(T-1)
e_JWD(T-z) c_JWI(T-2) ‘e e_JwT-I(T"'2}

139
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| l |
¢TI0 ¢ ¢ T
Y =
emdwo (=1} pan(T=1) L mgwp (=10

Notice that both X and Y are unitary matrices. From (3.2} we have

Upg(n) = VY diag(t(wo), - -+ Ulwr-1)) X"

Hence -

(bu.to(-r’n) = ”to(’r)"‘l Ifo(’l')w

Xdiag({U(wo)|*, -+ U {wr=1)]) X

Therelore

inf,u _Q'_((I)",!U('r)) = iy, |U(¢Um)|2,

sy, F(Puio (1)) = max,, [U{wa)?.

Proposition B.2 Assume v € {* and ils anlocorrelation funclion

|
(1) = lim
T

57 Z .u('r)u(l, +7)

=7 r==1

isin 01 Let

o(c) = ‘Z‘, e (1),

— i0
m= ugléfgfzn— P(e”),
M = sup &)

If there exists a function [ such thal

1 T Lo+T

T > u(T)u(t+T)—-§I,T; ST ul(ryu(t+7)| < (1) Vit € X,

r=—T r=lp=T

110

(13.4)

{13.5)

(13.6)

(13.7)

(13.8)

(B.9)

(13.10)
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and linge . f(T) =10, then

lim 11111 u,.(u )= M/m. (B.11)

| IERTh W Sy
To prove Proposition B.2, we need a standard result from Szego [13].
Lemma B.1 Lel
o(0) e(=1) - o(=n)

V, = fb(” ?S(O) ff’(l_”) (B.12)

dn) dn—1) -« ¢(0)

and N, << A pe cigenvatues of the Toeplitz form V,. Under the hypotheses

of the aboue proposilion,

lim A = M, (B.13)
and
Jim ,\"H = m. (B.14)

Proof of Proposition B.2 It will be shown that

I

llm T::upa((bto(n,'ZT-}-l)) = A (B.15)
T—oo to
Jim ;,mfa(tl)to(n,?’]‘ +1)) = Al (B.16)

Then, by the above lemma, the proposition follows from the definition of v,(n, T).
Put £y = 5% (n,27 + 1) — V.. Since @4(n, 27" +1) and V, are both Hermitian

matrices, so is I5,. Since ®,(n,27 + 1) is a Hermitian matrix, its singular values are

the same as its eigenvalues, 1 we see 57®¢,(n,2T + 1) as V; being perturbed by E,,

then by a standard result in matrix analysis, we have

l
/\T(Vn) + ’\!Ptfll('l':lo) S W}A: (q),o(vt,QT + 1)) S ’\l(‘/n) + '\ma:l:(E!o) (B17)
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It follows that

’\i( | ,,) + l}ll 1\,,“',, ( I"‘fu) < ,—li' supy, \ ((bt“( 221 41 )) = \l( \ NES sup -\mu.l'( I“,nlh‘)
0 * tw

AV 0 A (Fig) € il A (@204 1) A1)+ sup Ay RLO)
Q ha

P8

If we can show that linyg o inley Xin(#,) = 0 and Tap_osupy N (Fy) = 0 then
we can get (B.15) and (B.16) by taking the limit 7° = o0 in the above inequalities,
For cach element of fy,, ¢; ;. we have

. [ todi=1+T l L
i = n| 2 wnurdi-f)) —gn| 3 wmalr i)
= r=tgti=1=T r=-=T
.,.

l
o ( > u(r)u(r+é—j)) = di = J)

r==T

Therefore, by (13.10), we have

lecil < F(T) + (13.20)

T
;—(Z u‘r+r—J))—-¢(i——j)

By the hypotheses, limp—,, f(7T') = 0 and

=0,

r==T

-
ﬁ ( 3> u(r)u(r-i—i—j)) — (i —§)

hence, limp_ |e; ;| = 0. Since the eigenvalues of a matrix are continnons unetions
b W

of its elements, we conclude that

Him mf/\,,“n(btu) =10

T—

and

|im sup Amr::l':(ﬁ'l(:n) = 0.

T—%

This completes the proof.
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