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Intreduction

The theory of numbers, dated as early as the time of Pythagoras,
is a branch of mathematics which, unexpectedly, has caught the interest
on one extreme of nearly every noted mathematician and on the other of
amateurs who show absolutely no interest at all in any other part of
mathematics. On this account, the theory of numbers may be considered
as a separate branch of mathematics. Indeed its development took place
often independently of the development of other branches of mathematies.

In this thesis, we shall deal only with arithmetical functions
which play a very important role in number theory in proving many of its
identities, in setting up inversion fermulas...... etc.

Chapter I is introductory in character. It deals with some of the
fundamental concepts concerning arithmetiecal functioms; it desecribes how
they are defined and how their operations function.

Chaptei IY is devoted to the discussion of some of the most

important and frequently used arithmetical functions with emphasis stressed
on the Mobius function whose properties are developed in the third chapter.

The last chapter deals with " inversion ", one of the most important

results on arithmetical functions. Here we introduce a few inversion
formulas apart from the fundamental principle. However, for an account
of the literature of the theory of inversion, one can refer to Dickson's

" History of the Theory of Numbers " Vol. I pg 4kl - 449.
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CHAPTER I

CALCULUS OF MULTIPLICATIVE FUNCTIONS

Before going into the calculus of multiplicative
arithmetical functions, we should get ourselves acquainted with

some fundamental concepts of arithmetical functions.

Definition 1 : An arithmetical function # (n) is defined as
a function which takes a real { or complex ) value for all integral

values > 0 of its argument.

Definition 2:: A function #(n) is called a numerical function
of n if £ (1) & 0, and if f£(n) takes a real ( or complex )
value for each nen-zero positive integral value of its -argument.

From the definitions given above, we note that by removing
from the definition of a numerical function the restriction that
the function shall not vanish when the argument is unity, we
obtainh the definition of an arithmetical function. The class of
all arithmetical function$, therefore, includes that of all numerical
functions. Hence, all the properties of the class of arithmetical

functions also can be applied to the class of numerical functions.

Definition 3 : An arithmetical function f£(n) is called

multiplicative if

g (mn) = ¢ (m)t(n)

whenever m is relatively prime to n

Since unity is both prime to and a divisor of every

number at the same time, thus by the definition of multiplicativity,
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it is obvious that for any multiplicative fumction f£(n), £(1) = 1.
Vo f(m) e £(ma) = f£(m) £(1)
= (1) = 1 '

The elements of a multiplicative arithmetical function

In resolving the argument n of & multiplicative function

f(n) into their prime factors,
L3 °(2

1 “p
i.e, R =Py Py eceecesP

r (pf<p2<......<p )

r

we then have

r A .
t(n) = TT 2(p; )

i=1

By the element of the multiplicative function f£(n) to the
basg p;» we shall mean the aggregate of values £( pia ) for all zero
and positive integrél values of a. Thus the elements of a multiplicative
function compietely detérmine the function. ' v i
Definition A4: The multiplicetive function f£(n) will be calied a
linear function if the equation

f( ma) = £(m) £(n)

holds not merely when m is relatively prime to n, but for all values

of m, n,
Definition 5: A generating series of f(n) to the base Py is defined E
by 00 j
. m m f
f(p_)(x) = Z £(p; ) x 1
i
m=0 .

Thus, the generating series to the base p of a linear

function f(n) is

}(p)(x) o 2(1) + 2(p) x4 2(52) 2 4 vernnn
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f(.p)(x) = 1+ f£(p) x+ f(p2) X2 5 ieees

= 1+ f£(p) x+ [f(p)]2x2 Foeoe

1 R
= Toax » i tp)-a

By using the generating series as the representative of the
corresponding element of the function, it is then much more convenient
in explaining the processes of the calculus we are going te discuss shortly.

§ Elementary functions

The elementary functions we are going to consider may be
generally classified into four groups. They are all multiplicative,
A. The I - functions,

Ig(m) = m®
B, The E - functions,
Eg(m) = gv yhere Y is the number of distinct prime factors
of m,

Among the E -~ functions, those which occur most frequently
are Eo R El’ E__1 and E2. We shall simply write E for El' The function E0
vanishes for all values of its argument, excepting unit valwe, for which
it takes the value 1, i.e. Eg(1) = 1. The function E = E; takes the
same value 1 for all values of its argument .

C. The A - functiom,
7\g(m) = gv where Y is the total number of prime factors
of m.

Among the \. - functions, the most important is 7‘-1' which

we shall write simply as - .

p. TC g(m), = E(m) - functions,
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"o it  af/m ( a>0)
M (m) = ,
1 otherwise
1 . g ‘
€.g(m) - if m = a (a>0)

otherwise

§ The processes of the calculus_

The calculus of multiplicative arithmetical functions
consists of four processes. They are applicable to all arithmetical
functions generally, but they have one common characteristic property
— yielding only multiplicative funcitions when applied to multiplicative
functicons. The four processes are:

I. maltiplication of functions
11, composition of functions
IXI. inversion of functions
Iv, compounding of functions,
We shall consider the processes individually.
Multiplication

Let ¢ 1(n) and f2(n) be two multiplicative functions

of n , their product denoted by
(flx fz)(m) = tl(n) f2(n)
is again a multiplicative function of n.
The generating series of ( £ R } (n) to the

base p thus is given by

( f1x ; 2)(P) (x) = 1 «+ (o‘lﬁl) X + (°<2ﬁ2) 22+ P
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where (x) =1+ Ky x4+ 08, x" ¢ onie,

£, .
1 (p)
and ¢ v (x) =14+ 8, x4+ %2 4 e

2 (p) 1 B2
are the generating series of fl(n) and f2(n) to the base p,
respectively.

1t is clear that the muitiplication thus defined is asso

~-ciative and commutative., for,

(g, %2 e ] @

ft

[fi(n) f%(n) X f3] (n)
fl(n) fQ(n) f3(n)
[11x £,(n) 13(n)] (n)
[flx ( £, X £ )] {n)
fl(n) f2(n)
f2(n) fl(n)
=(f,x¢t,) (n)

If we take for f2 the elementary function Eg(n) and

i

a

and ( £, x f2) (n)

if the generating series of fl(n) to any base p ( a prime )

is given by
f (x) =1 +£4, x + & X2 4 ol X0 4 eurennns
1(p) 1 2 3

we then have

(2,%E )y () = 1 «(Ky)x & (Hpm)x® + (L50)x” 4 oenee.

as

By (p)(®)

1+ Bp) x + B L 4+ B P 4.

1 + gx + gx2 + g-x3 + setensees




In particular, when g =« 1,

- =1 gp) (3
SJe(2,xE)(m) = £, (n)

when g = 0,

( flx EO )(P) (x) = 1 + (041'0)x + (?<2'0)x2 + sosee

= 1
E, (p) (x) = Eo(l) N Eo(p) X + Eo(p2) x2 + eoee
= 1 & 0 + 0 4+ .ecneee
= 1
(% B ) (a) = E ()

Thus, E and Eo behave just like unity and zéro, with respect

to multiplication here.

Composition

E. T. Bell [.4] has termed this as " ideal multiplication"
in order to distinguish it from the ordihary multiplication of

functions. -

By the composition of two arithmetical functions f 1

and f2 , we ghall mean the process of forming the function

defined by
n
d/n

We shall denote f by £,¢ f, and call it the composite of £, and f, .
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The generating series of the composite ( £:2 9 }(n)
to the base p is éivenbby  Lo ,
(1 ) () ) DX 1 () ()
the product of the genéiatiﬂg'séfiés‘of ‘ flaﬁg»ﬂjfé .tq.the same
base p .

The function Eo plays a special role iniéomposition.

We have
cho = f .

B = E. o E:-3; . «E = E
o o o "%t o (1}

e}

k times
Since the generating Seriééfof“.Eo to ahy base is 1 . 1In

multiplication, we have'ééeptfhht' Eo behaves like a zero element.

So here £ E ;j fJ”>sﬁggests that composition can be considered
analogous toladdifion,'again with E0 behaving as a zero element.
Like addition, ¢ompbsition is associative and commutative, but

ﬁﬁliké addition, it is not distributive unrestrictedly with
mulﬁiplicétion. Howeier, it has a restricted distributivity described
,: by

Theorem 1 Multiplication is distributive with composition

if the multiplier is a:linear function.

Proof : Let the multiplier be ¢ (n) , a linear function.

[(xe exe)]@ - 2 @@ n@ed e, E

PR N RERCURERC)
( by definition of linear function )

e x gt ] @

Lo



Inversion
The inverse f—]‘(n) of f(n) is defined as the

function such that

-1
(¢27) (a) = E|(n)
Since every generating series of Eo(n) is equal to

1 , we can say that
-1 :
= 1
g (3 Xt gy (x)
where f(p‘) (x) and ¢ (,p)-l(x) are the generating series of

-1
§(n) and ¢ (n) te the base p, respectively.

Moreover, if ¢ 1°f o = 1 3: £y o by performing

composition by fl:l on both sides,

. . . -1 . -1
1.0, . ¥ 1 f ) f L = b 4 3 . 4 L £ 4
we have
-1 -
£ 8501, = f3 o = 13
Theorem 2 Composition is distributive with inversion, that is,

the inverse of the composite of any two .arithmetical functions is
equal to thev composite of their inverses.
The generating series to base p of the inverse of the

composite of £ f£o is
-1

[H () () X 1) ""] o

and the generating series to the game base p of the composite of

their inverses is
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-1 _1‘
fyp) (X)X fpp) (%) ]

- |2 (x) X1 ()]-1 £y ()07 xg (x)~!
, [ 1(p) ‘¥ 2 (p) \* = [ 1 (p)'* 2 (p)'*

«1 -1 -1
® L)
[ £, £, -] - £ ?,

Thus the theorem is proved .

From theorem 2, it follows also that

~—r
=]
I}
—~~
-
B
A
1
[y

( m , n can be positive or negative integers )

Another important property of inversion is given by

Theorem 3 The inverse of @ x £ is ¢ x £ -1 , if ¢ s

a linear funetion,

Prodf : (¢ x £ ) (@ x f-l) = ¢ X (£ - f"l) (by theorem 1)
= @ X E
= E

o
Thus the inverse of any linear function (¢ is @ X E-l,

as @ can be written as the product ¥ X E .

The theory of inversion will be discussed in more detail
in chapter 3 .
Compounding :

The compound of two multiplicative functions f 1(n)

and f 2(n), denoted by £, ® £, is defined as follows,

s e el eegeninae
5 o e s et
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( 4 ® L)@ =35 1,(8) f,(

with the summation runs through all those divisors 8 of n

such that § and -g- are relatively prime to each other,

Let the generating series of f 1 and f 24ﬂ be written

in the form

; 2
= (=8 evoves
fl(p) (x) 1 + 1 X + 54’2 X +

2
f&(p) (X) = 1 4+ /é 1 X + ﬁ 2 X +  csensa

It follows that the generating series of the compound £ ® f

1 2

is as follows

(f1 ®f2)(p)(x) = 1 + (041 +ﬁ1)x +(a(2+ /32)x2+...

Thus th.e generating series of a compound is equal to the sum of
the generating series, te the same bage, of the functions compounded,
except for the constant term, which is equal to 1 , as is always

the case with all multiplicative functions,

Clearly the process of compounding is associative and
commutative, since addition is so in the generating series of the

functions compounded.
Theorem 4

Multiplication is distributive with compounding.
Proof : The distributive property can be established by means
of the generating series. Now, suppose the generating series of

f1 ’ f2 and 75 , to the base p, are




i1,

2
fl(p)(x) = 1 + X x4 °<2x‘+ ......
2
§2(p)(x) =1 + B, X + B,X + .oeeee
2
4>(p)(x)=1+Y1x+r2x + eescese
regpectively.

[($x1,) @ (4>><f2>](p)<x> - 1w (N, +¥ )

+ (b’2042+h’2/32)x2 + sesesvae

which is actually the same as

[* X ( @fg)](p) (x) = 1 + )’1(0(1 +/61)x + 3‘2(o<2+ﬁ2)x2

= 1 + (¥4 +¥1/31) X +
+ (3'20(2 +¥5 8o )x2 + e e e
"\‘#X( f1®f2) = (95)(f1)®(¢)(f2)

Theerem 5
P 401, -[@F1)0 1o (5,x9)

Proof :

IR IO [T SRR ARICRE 1]

K ABIOLEAM ORI IO EATRIO R FW
= (Pt )+ (Pt @)+ (B xP)(x) - 2

~ (P fl)(p)(x) + (- f2)(p)(x) + (E_;x 4>)(p)(x)

s st P et § B 1 A A SRM it 48 3 S . 2 BT, S T o P 8 L A 1 e 1 L S S o i Rl £ A T A e a4 oA+ - oo
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L1, @ty) = [ t) ® (et @ (B x )
This theorem is fundamental and can be generalized to

the case where there are more than two functions in -question.

i.e.

¢ -( 1, ® £, @ ... @ £,)
t

= z’ (‘P. fi)®(E1—-tx¢)
i=1

where

t
1 =

1 (4: . fi) denotes

(b t)@(Pt) @ r-nv ©(F-1)

Definition 6 The conjugate function of £ (n), denoted by

conj ¢ (n) is defined as follows
f(n) @ conj £ (n) = Eo(n)

or alternatively, conj f (n) can be defined by
conj £ {(n) = £(n) X B, (n)

For, if the generating series of f (n) to the base p is

2

f(p)(X) =1 + £ x+o<2x + e o e s

1

owing to the fact that E, (p)(i) = 1, the generating gseries

of conj f{(n) to the same base p os obviously equal to

2

1 - ole - d X - . . e

2

which is the same as the generating series of £ (n) X E_, (n), as

2
E_1 (p) (x) = E_1(0) + E_l(p) X + E_l(p2) b I

= 1 = X = x2 - x3

The conjugate function has evidently the following properties:

I. éonj conj £(n) = £(n)
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Proof: '
conj conj f(n) = conj f(n)-x E__l(n)
= f(n) X E 1(n) X E_l(n)
1 if n has an even number of different prime
','E_l(n)= factors of n .
-1 if n has an odd number of different prime

factors of n .

Se, in both cases

E_, (n) x E_, (n) = 1
.*. conj conj f (n) = £ (n)
II1. gonj ( f g X fg Y = ( conj £ 1)>< £, = £ X% ( conj £ o)
Proof : conj { £, X f2) = | £, X £, ) x E_,

{conj £,)% to = (2, X E_ ) x f,

g, X (eonj ¢,) = 2, x( £, XE )
Since multiplication is commutative and associative,

.'. they are all equal .

I1I. conj ( 1, ® f2) = conj f; @ conj £,
Proof : conj | 1, O] 1’2) = ( £, ® £,)XE; ..... (1)

Since multiplication is distributed by compoundiny, , which

has been proved formerly ,v o (1) has become
= ( X E )@ ( £,XE )

= conj £ ® conj 1, (by definition of conjugate
function )




N

Proof : Suppose (m ,n ) = 1

14,

We conclude this chapter by giving a few lemmas on
multiplicative functions, which will be useful in the later
development of this thesis. The proofs of the first two lemmas
are too trivial to be written out, so. we just state them without

giving proofs.

Lemma 1 Given that ¢(n) is a multiplicative function.
Then #f(1) = 0 = £(n) = 0 for all n
and

(1) & © = 1(1) = 1

Lemma 2 if f(n) is an arithmetiéal function such that

£(d = 0 for all n
d/n

then f£(n) = 0 for all n

Lemma If f(n) is a multiplicative function and

P - ot

then F (n) is also multiplicative.

; and m and n can be

resolved in the following manner such that

where the o4 's and [ 's are positive integers, and the p's

and q's are distinct primes. The positive divisora d1 of m are just

LI 1 Ty
the n\lmbers d1 = Pl P2 ¢ o o o o o pr

for all possible choices of the Y 's with 0 & )’i £ o(i




150

Similarly the positive divisors d2 of n are such that

SIS §

2 8
d2 . PR P

£ £
where O-Si-ﬁi .
Hence as d1 runs through all positive divisors of m, d2 runs through

all positive ‘divisors of n, their product d,d_, runs through the values

192
dedd = LERRL ¥, by & 8g
1 2 p1 p2 .‘...'pr q1 q2 .....‘qs
<y <ok <
where O-Ki_ X , O_Sif_ﬁi.

But since (m,n) = 1, therefore the values d are just all the positive ’

A & e B B . i
* divisors of mn = Py 1p2 2....pr rql 1q2 ?...qsﬁs. '

i.e, Z ~’—f(d.a )=Z £(a)
5:7; 1* %

dl/m d/mn |

Clearly ( di’ d2 ) = 1, we then have

g

Flun) d/mn «e)
= o o £(d,d,)
_ 4. 4, 20(d,) 2(a,) , ::It::m:é;tiplicativity |
- ;%;; £(a,) ;g;; f(d2)

F(m) F(n)




il
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CHAPTER II

SOME IMPOﬁTANT’ARITHMETICAL FUNCTT ONS

In this chapter, we shall deal with. some 1mportant frequently

used arxthmetmal :t’unctmns and dlscuss thelr properties.

§ ‘T—-functiox;' ‘T(n)

Defini'f'i_oh'l: © T (n) is d‘ef.ined as the number of different positive
. ‘di'vi»sora of n.

It can be written in the form

Twe g

Obviously, by use of lemma 3 of Chapter I, we can prove

'easlly that '7'(n) is multipllcatlve. Since T (n) = ‘L/—/ 1 is of
d/n

the form ; £(d) -and since f(n) = 1 is multiplicative, thus it
d/n

implies that "7'(n) is multiplicative also.
The following 'is'_a very fundamental theorem on 7 (n),

seen in almost every text book of the theory of numbers.

| ‘ °‘2 “y
Theorem 1: If n = p1 Po eeeeesPp then
T - T'T (e, +1)

i=1
Proof: Since pi's are the primes,

o) =1

c7.( P‘:i )=°(i +1
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A, X,

where *l;hea‘(i + 1 positive divisors of pi;l are 1, p,, p.12, ....,pil.

Since T (n) is multiplicative,
' A £ oL
' 1 2
S T@) = T (e by «enen” )
= -ﬁ"T‘( Pil )
i=1
=TT (KX;+1)

i=1

Some identities invelving “r(n)

T =n-3 t(ab n)

h=1

Before proving the stated identity, some definiti'ohs.. and

lemmas have to be introduced.

Definition 2: t( n-h, h ) is defined to be the number of divisors of 3

n-h, of which all are greater than h with n, h being integeis
and n>h20.

Definition 3: A(n,x )=/l ifn=0( modx)

0 ifn %0 ( mod x)
where n, x are both positive integers.
From the definitions above, we can see that t( n,0) = 7(n),
and
n+l
ZA(n+1,x)-°T(n+1)

x=1

= t( n+t1, 0 )

nt+l n
= Z A( n+1, x ) =Z A( n+1, x ) + A( n+1, n+1 )

x=1 x=1

= 3 A(wet, x) = W w1, 0) -1 cereenn(1)

x=1




Lemma 1: t( n=h, h ) = t{ n+1 - ( h+l ), h+l

) + A( n+i, h+1)

Proof: From the definitions given above, it is seen that

t( n=h, b ) = t{ n-h, h+1 ) + A( n-h, h+1 )

or t( n-h, b ) t( o+t ~ (h+l), hel )

E . n-h

3

n+l mod( h+i )
and by the preperty that
2 = n {max),

implies A( n, x ) A( n*, x ), ( trivial £

[

of A( n,

we can write

t( n-h, h ) = t( n+1 - ( het ), Bet )
Lemma 2: |
n-1
n = Z t( n_h,h) . A.Q..ll'(2)
’ ’ h=0
Proof:

We proceed to prove by mathematiqal induction,
When n=1, (2)‘is seen to be true

as 1 = t( 1; 0)

Now, assume (2) is true when n=k,

i.e. k-1
k=Z t{ k-h, b ) cereeena(3)

h=0
If we can prove that (3) implies
k
k+1 = :z; t( k+i-h, h )
h=0

then the proof of this lemma is complete.

+ A( n-h, b+t )

rom the definition

x )).

+ A ( n+1, het )

By putting a summation sign over the result of lemma}, we have

18,

A+ e+ e e e =



e

k-1 k-1
Z t( k-h, h ) = Z t( k+1-(h+1), ht1 ) +

h=0 h=0

19,

k-1
Z A( k+1, h+1 )

h=0

Hlere, put h+l = x, and substitute (3) in, we get

k k
k=Zt(k+1-‘-x,x) + ZA(k+1,x)

x=1 =1

k
=Zt(k+1-—x,x) + t( k+s1, 0 ) «- 1

x=1

k
kil = Z t( k+l-x, x )

x=0

Thus the lemma is proved.

( by (1))

Now, we come to the proof of the above stated identity on r(n)

itself,
Proof: From lemma 2,

n-1 o
nuZt(n-h,h)
h=0
n-1 _ v _ .
=Zt(n-h,,h)+t(n,0)

h=1
‘Jt(n, 0) = 7 (n)

' n-1
&r(n) = n -‘Z t( n-h, b )
h=1

Checking the validity of this identity, we can substitute

n = 23 in as an example,

T(23) = 23 - % t( 23-h, b )
h=1
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- (23) = 23-[1;( 22, 1 )+ t( 21, 2 )+ ...+ t( 12, 11 )]
= 23 - [3+3+4+1+3+1+2+1+1+1+1]
= é3 - 21
-2
which is actually the number of divisora of 23.

IL T LB, = X o eeeeenn ()

cr.xcr(n) is the number of divisor-pairs of n. let Iyy T be two

9.
divisors of n, m = [fl, rzj be the leést common multiple and

g = ( ryy Ty ) be the greatest common divisor. We now try to group the
divisor—paifs in such a manner that, for every‘group, % is a fixed
divisor r of n, Obviously; for each group, g is an arbitrary divisor
of g while Ty Ty must be of the form gmy, gmg, where mymy = T

and ( mg, m, ) = 1. Thus the number of divisor pairs in the group
specified by r is 2 ) E2(r)

13

PR .CT.E2=‘7'X’T'

L. o (m) =3 [ TE]PNE) B(R)
Before proving this, we have to derive a few other relations

first.

-1

E, = E.N RN €3]

To prove (5), we note that E .7\-1(n) enumerates all the
divisors of n vwhich contain no squared factor, thus is equal to

E2(n). ( by definition of E, ).

-1
Eo XN = E, R )

The relation (6) is a consequence of (5). For,

LR AT T T LA A & o o St S s & = e i s e s el . .
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ByX ™ = N X (BA7) ( by (5) )
= (AXE) . (A x2a"1) ( by theorem t of Chapter I )
« n.(axah
= »n 7t
- E2'1 " ( by the distributive

property of inversion
by composition )

Now we can write

(rx7) . B,

(rxT) . (Exn)
| 1

= (‘T’.E2) . E2"
=

( by (%))

pe. T (0) =3 [HE]PALR) By

B
~

w., T () r(e,) = [?‘(n)]z'
where the summatiqn rung through all T4y To with n as their least common
multiple.
ﬁo prove this, we have to introduce the notion of " block

factors of n " first. By a block factor r of n, we shall mean:a_faétof
r which is relatively prime :o %.’ Two factofs Ty To wﬁiéh have n as
their least common multiple can be put .in the form

r, = xyp

r, = x2q
where n = xyz with x, y, z all being block factors and p, q are factors
of y and z respectively, having no common block-factor with them.

e T () T(ry) = r(x) 7 (3) r(e) 7 (x) T(2) T(q)
| = T (n) 7 (x) 7(p) T (a)
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Thus Z"T(rl) ‘T(rg) is of the form

I (n) :E;’r(r) where each r occurs as many times as

1

can be expressed as the product of relatively piime faétors.
e 2, (e) Tlry) = Tl)x [7(e) - my@)]
= T (n)xp(n)x or(n)  (by (&))

L]

'§ eFT'k-- function °Tk(n)

It is easy to see that an alternate definition of 7 (n) can

be worded as follows.

Definition 4: °r (n) is equal to ﬁhe nnmbér of a11 possible factorizations
of n into‘a product of 2 factors. This can Be further generalized to

form ’T’k(n) which may be defined as the number ofvall possible
factorizations of n into a product of k faétors.

Obviously,
Lemma 3: ﬁfk(n) is a multilpicative function.
i.e. c7"k(mn)_. = "]'k(m)?'k(n)
where ( m, n ) =1 '
Proof: Suppose m and 1n can be factorized in the following manner,

m«=Iff., .....%F

172 k

n = g1g2 ..ooogk
then the corresponding factorization
mn = (flgl)(f2g2) .....(fkgk) exists.
If we are given a factorization
mn = q1q2lnoo.qk,
then it follows that the f's and the g's are uniquely determined by

the equalities
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qi = fig

Thus it follows that
‘Tk(mn) = W’k(m) c7"1{(n).

i (i=1’2’0.c.l’k)

Lemma 4:
dﬁ ) . (o(i + k-1 ) ! ...-----(1)
ot (k=-1)t

Proof: Here, we shall prove the lemma by mathematical inductionm,
Clearly (1) holds when k=1 and k=2,
For, when k=1,

%
qyl( Pi ) = 1,
K +1-14)
i . 1:
"‘i! 0! !

LY 1 ) =

when k=2,

%4
?’2( Pi ) - °Ci +1 »
K, +2-1)1 2, +1)
31 nl -0L1+1

aci'.(e-”z oLyt

Now, assume (1) is true for k-1

) - (OLi + k-2 ) !

oCi!(k—2)!

We shall prove that it is also valid for k.

ol
To obtain all factorizations of Py

%y
i.e. °r§_1( P;

' into k factors, we

&
can take each of the factorizations of pii into k-1 factors first

and then in each case, factorize the first factor in all possible

s
ways into two other factors. Then among the factorizations of pi1




o0

2’!.

into k factors, we distinguish these where the first factor is

pig with e arbitrary ( 04e4k-1 ). Thus there are "7’1( pie )

K. ~e
times cT'k_l( pi1 ) factorizations with the same first factor.

By putting a summation over e with e ranges from ¢ tov(i , we then

of

get all the factorizations of pii

into k factors.

2 | a‘i 4i e | o(i-e

e=0

[ Qs . '
M Tl opyt yu Ay —e+k-2)1 ( by assumption )
(o(i-e)! ‘(k-z);
and "7'1( Pie) "_.1'
L. DL' o4, e
G TR = S T (et )
e=0
i
=Z, (K; ~ewxk~2)1
=0 (D(.i-e)! (k=-2)1

ﬂ(p(i+k-1)$

aﬁi'.(k-l)'.

‘Thus, the lemma is proved.

: r
Theorem 2: N d k(n) = 1 (°Li +k=-1)1
ro. \
[(k-1)] 3=t &y
A 4, oL

1 r
when n = p1 p2 ......pr

with the p's being primes.
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(_f Proof: L7‘1{(n) is a multiplicative function

B

. - o(.i
) Tk(n) ""'TT‘T‘k( P; )

i=1

r
”W (X +k-1)1 ( by lemma .4 ).
yeg Ot (k=-1)

ety

[(k-l) ﬂr il oLy !

3 & - function S (n)

Definition 5: 6(n) is defined as the sum of the positive divisors of n.
By definition, & (n) can be written as

S () = 3_', a

6 (n) is also a multiplicative function. For applying
lemma 3 of Chapter 1, with f(n) = n, F (r) = o(n) , and since
£(n) = n is multiplicative, so it follows that 6 (n) is as well,

The following is a well-known relation of & (n).

Theorem:3: r oti+1 4
S (n) = TT P;
j=1 Py 1

o«
end n = Py Py .....prr being the canonical factorization of n.

Proof: S (n) is mlll.lti'plicative,
AL
;‘\ 6.(11) bt ( Pil )
i=l

~ | %4 2 %
) But the divisors of p.” are 1, p., P. 4, ¢ec: By and 1, p
i i’ % i,

«.
pi2, pil is a geometric progression with a common ratio of P;-

— e



ol u&*l
A ] 2 i R - 1
&“- Ve 1+ p kT et pi1 « P
Pi -1

: r A+l
[} 1 - 1
v S (n) =T P ~

i=1 p; - 1

Equations involving & (n)
A. Makowski [20] gave some.results concerning the equations
(a) S (x) =6(x+1)
(b) S(x2 )= 6(x) + 2

He found that equation (a) has only 9 solutions in positive

26.

integers x£10,000 ; They are x = 14, 206, 957, 1334, 1364, 1634, L

2685, 2974 and 4364.
The equation (b) is satisfied by integers x such that both
x ahd x+2 are primes., This equation has only 3 solutiomns in

integers x £9998 where x is composite, namely, x = 434, 8575 and

8825,

3 ¢§ - function_ f(n)

Definition 6: ¢(n) is defined as the number of integers not greater
than and prime to n; i.e. the number of values of i such that
04{ifn with (i, n) =1
Bators-we proceed to prove that f(n) is multiplicative, it
is note-worthy to introduce the idea of residue system;

Definition 7: A complete residue system (mod m) is defined as a set

of integers al,a2,..,.amlsuch that
(1) if i % j, then aj¥ 8y (mod m)

P (2) if a is any integer, there is an index i with 1<i<¢m
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(‘. for which
a = a; (mod m)
e.g. The set'{1,2,.....,m-1,m} is an example of a complete
residue sysyem (moad m).

Definition 8 ; A reduced residue system is a set of integers ay 8,

«e+v..,8, incongruent (mod m) such that if a is any integer prime
to m, there is an index i, 1< i<h for which a & ai( mod m).
In other words, a reduced residue system is a set of representatives,
one from each of the residue classes containing integers prime
to m.

e.g. The set{1,5,7,11,13,17} is an example of a reduced
residue system (mod 18).

Lemma 5: Let (myn) = 1. Suppose that é ruhs_through a cdhplete set
of residues (mod m) and a' through a coﬁpleté gset of residues
(mod n). Then a'm + an runs through a complete set of residues
(mod mn).

Proof: There are mn numbers of a'm + an.
Assume
a;'m + a.n = a,'m+ agn (mod mn)

1 2 2

then
(mod n)

a1'm
‘.. ( m’n ) = 1

o a,’ = a,’ (mod n)

Similarly, we can get

a = a (mod m)

1 =2
Thus a contradiction arises. Since a rung through a complete

set of residues (mod m) and a' runs through a complete set of
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residues (mod n), so

a, % a, (mod m)
31' ] a2' (mod n)
therefore, we conclude that all the mn are all incongruent and thus

form a complete residue system (mod mn).

Theorem 4: ¢ (n) is hultiplicative.

i.e. #(mn) = #(n)g(n) where (m,n) =1
Proof: Let $(m) be p and I sTgsess..T, be a reduced residue
system (mod m). Similarly let f§(n) be q and 81,92,......sqbe a
reduced residue system (mod n), If x is in a reduced residue system
(mod mn), then (x,m) = 1, (x,n) = 1, since (m,n) = 1; and hence

X

r, (mod m), x = sj_(mod n) for some i and j. Conversely, if

X

r, (modrm) and x = 8; ( mod n) then ( x, mn) = 1. Thus the
reduced residue system (mod mn) can be obtained by determining
all the x's such that x= r, (mod m) and x = 85 (mod n) for some

i and j. According to Chinese Rémainder Theorem, each pair of i,j
determines only one x (mod mn), i.e. different pairs of i, j give
different x (mod mn). But there are pq pairs of these i,j, there-
fore the reduced residue system (mod mn) has pgq = ¢(m)¢(n)

elements. Hence we have

f(un) = f(m)f(n).

Theorem 5: f(n) = n 1}_ (1- % )
p/n

TN TR T T T

where the product ranges over all the distinct primes which
divide n,

r oL
Proof: Since f(n) is multiplicative, and if n = 11' pi1

i=1

then  f(n) =TTH (pg')

iml
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oA
We can evaluate ﬁ( pi1 ) directly. All the positive integers

A, A
not exceeding pi1 are prime to pi1 except the multiples of Py» and
o =1
there are just pi1 of these.
Hence,
oL, s o4, ~1 A,
i i i i 1
= - = . 1 «=
$Cp," ) = p;° - py ;" ( Pi)

coogw) =TT et

i=1
r A
i 1
= I' pi ( 1 - -.)
im1 t

i
|
!
1
1
i
s
L)
i
1
v
A
!
i
i
1
{
{
[}
!
2
!
1
b
P
)

1 :
- TT ']l - 1’. %
np/ln ( > i

!
]
i
:
}
i
{
|
i
{
{
i
i
!

Theorem 6: :Z; f(d) = =n
d/n

Proof: Let dl’ d2, .....,dk be the positive divisors of n. We
group the integers a's, ( 1<a<n ) into classes C(d1 ) IR C(d,__l.
putting an integer a into the class C(d;) if (a,n) = d,. The number
of elements in C(di) is then
2,
atn
(a,n)adi

and since every integer up to n is in exactly one of the classes,

2. 2. 1 = =n

' d./n asn
”) ' 1 (a,n)ndi

The number of the integers a's is exactly equal to the
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number of integers b's such that bﬁg— and ( b, g ) = 1. From the

i i
definition of $(n), the number of b's is clearly f( % ) . Thus,

d% ¢(Ei) = n

which is equivalent to the theorem; since, as di runs over the
. n .. . .
divisors of n, 3 also runs over these same divisors, but just in
i
reverse order.

5,, #(a;) = =

Generalizations of #(n)

I. An alternate definition of #(n) would be as follows,

Definition 9: f#(n) is defined as the number of ordered pairs { x,y>
for which x4y = n, 1€x<n, and x,y both being relatively prime to
n, It is easy to see that this definition of ¢(n) is equivalent to
the one given above.( see definition 6).
The following is a generalization of the definition of the

Euler's § - function, suggested by S.K. Stein [1].

Definition 10: The function F(n,m) with m20 is defined as the number
of ordered pairs £x,y> for which =x+y = n+m, 1<x<n and x,y,
both being relatively prime to n.

Specifically, when m = ¢ , f(n,m) would be the same as @#(i).
The multiplicativity of ¢(n,m) is not as obvious as that of
f(n).
Lemma 6: @(n,m) is multiplicative,
i.e. §(av,m) = @(a,n)d(b,m)

if (a,b) = 1
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Proof: Let S, ={x1,....,x¢(a,m)}be the set of all values of x
for which x+y = atm, 1<x%a, and x and y both being relatively
prime to a. Now, if (a,b) = 1, then it can be shown that for each
x for which x+y = ab + m, 1<x<ab, and x and y both relatively
prime to ab, we must have

X = xi ( mod a ) .....(1)

where x.€ S, . For, suppose x = x.(mod &), 1£ x.<a, where x-{:S
1 1 J 1:

J~ J
then
x = x., + ka
J
and for some y,
x. +ka+y = ab+m .....(2)

d
and for some z,

x:j +2 = a+m eeeee(3)
where either (xj,a) = g1> 1 or (z,a)= g2> 1, since otherwise xJ.

would be in Sl.

Now, (xj,a) =g,

= g,/x and g /(x,ab) = 1,

80 that 8, is greater then 1,

But, subtracting (3) from (2), we get
32 /(Yoab) = 1
e . x % x'i (mod a) ; xjtfsl

v+ (1) is derived

ie. x=x (mod a) ; x, €5,

Hence, if x+y = ab +m, 1<£x<ab and x and y both

relatively prime to ab, then x is of one of the forms

i
i
i
!
]
J
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X, X;+a, X +2a, ......,xi+(b—1)a,........(4)

where xie Sl. For each i, the set of numbers given by (%) constitutes
a complete residue .system ( mod b ), since (a,b) = 1.
Now, let 82 ={x1',........,x'¢(b’m)} be the set of all values of
x for which xty = b+m, 1< x<b, and x and y both relatively prime
to b. Then repeating the arguments used to derive (1), we observe
that only those elements of (%) can satisfy the given conditions
i.e. x+y = ab+m, 1<x<ab, {(x,ab) =1, (y,ab) = 1, which are
congruent to some element of S2(mod b). Thus, for each i, there are
#(b,m) values in the set given by (4) which are easily seen to satisfy
all the required conditions so: that, since there are }If(a,m) values
of i, we have

flab,m) = g(a,m)f(b,m)
e (p;)

Theorem 7: r
flam) =0 TT( 1 -
jul Py
& 042 otr
where n = Py Py eeeee Py with the p's being primes

)

and em(p) =| 2 if p/m
1 if p/m
We have already proved the speeial case of this theorem

when m = O

r
. 1
ive. f(a) = B(a,0) = a TT(1-1)

i=1 :
Proof: Since ﬂ(n,m) ig multiplicative,

\’o ﬁf(n,m) = -ﬁ-ﬁgp:iim)
i=1

Let's now first prove

U ST




s A
1 i 2 .
¢(pi )m) = pi ( 1 - 5. ) if pi/h
i
As x runs through the numbers 1, CEETRED TR there are P;

values of x which are divisible by P, and consequently have to be

. ols
subtracted to satisfy the required conditions. Since x+y = pi1 +m
( definition 10 ), it is impossible that both x and y are divisible

by P;» as pi/m, and since y runs through a complete residue system

(mod P; ), as x runs through the numbers 1,.....,p?1 y there are
o, -1 :

i
P

i values of y which are divisible by P;» which occur in ordered

pairs {x,y> distinet from those for which x is divisible by P;-
We therefore have
ol.—1

i

As ok
¢(pil’m) = pil - 2pi

A 2
= pi ( 1- B )
i
For p/h, we observe that in this case the ordered pairs
p(.
<x,y» for which x+y = pi1 + m in which x is divisible by p; are

identical with those for which y is divisible by p;s 80 that

ol ol L |
1 1 1
¢(Pi ’m) = pi - pi
oL
i 1
= . 1 - =
p; ( 5 )

r
A
Thus, $(n,m) = T f(p;",m)
iml
(T« 0
=TT p.(1-2) when p/m
i=1
<
S i
1T (1- 3 ) when p/m
i

i=1

d e £ riia as

A e e AT aian s e LT
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o,
2
fnm) «TT »° TTC 2 - = ) when p/m
i=1 i=1 t
1I' &1 r 1
-TT_ Py ]—r( 1~ Ei )  when p/m
i=1 i=1
= onTJT (1- Bi ) when p/m
is=1
P,
ol 1
n T (1- > ) when p/m
i=1 N
r
e (p;)
or =a[] (1-—F——)

i=l :
when em(pi) =] 2 if p/m
1 if p/m

II. " c.S. Venkataraman[29] gave another generalization of Euler's

§ - function which bears a certain similarity to the previous one.

Definition 11:

ﬂ(m,g) is defined as the number of the positive integers which
are not greater than m and which have a specified divisor g of m
as their g.c.d. ( greatest common divisor ) with m.
We can see very easily that when g = 1,
fm,1) = $(n)
The multiplicativity of ¢(m,g) here is again not as obvious

as that of f(n).

Theorem 8: M(m,g) is a multiplicative function,

i.e. if (m,n) = 1 and g' is any divisor of n, then
$(mn,gg') = $(m,g)¥(n,g')

Proof: It follows from lemma 5 that if b is any number of a complete
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set of residues (mod mn), then b can be written uniquely in the fofm
of a'm + an (mod mn) where a is a number of a complete set of
residues ( mod m) and a' is a number of a complete set of residues -
(mod mn).
Suppose now that (a,m) = g; (a',n) = g'. Then since (m,n) = 1,
(g,g') = 1, and also
(en,m) = g ; (a'm,n) = g
,'« (a'm+an,m) = g ; (a'mtan,n) = g
(a'm+an,mn) = gg'.
Obviously there are ¢(m,g)¢(n,g') nunbers of a'm+an and by
lemma 5, they are distinct (mod mn). Hence it follows that there
are at least f(m,g)@(n,g') numbers not greater than mn and having
the g.c.d. gg' with mn. There cannot be more, for, if b is one of
the ﬂ(mn,gg') numbers, by lemma 5, ( since then B is also a member
of a complete set of residues mod (mn) ).
b=a'm+ an i (mod mn) ;
also (b,mn) = gg',
'+ (a'm+an,mn) = gg'.
But, (m,n) = 1, and (g,g') = 1
'+ (a'm+an,m) = g ; (a'm+an,n) = g'
'« (an,m) = g ; (a'myn) = g
Vo (aym) = g ; (a'yn) = g'.
»'« There can be only ¢(m,g)¢(n,g') numbers not greater than mn
having the g.c.d. gg' with mn.
Hence ﬁ(mn,gg') = ﬂ(m,g)ﬂ(n,g‘) if (m,n) = 1.

2 Theorem 9: m 1
; f(m,g) = ETT( 1 - 3 ) where p runs through the distinct

B e e




35.

set of residues (mod mn), then b can be written uniquely in the fofm
of a'm + an (mod mn) where a is a number of a complete set of
residues ( mod m) and a' is a number of a complete set of residues
(mnd n).

Suppose now that (a,m) = g; (a',n) = g'. Then since (m,n) = 1,
(g,g') = 1, and also

(sn,m) = g ; (a'm,n) = g'

,’. (e'm+an,m) = g ; (a'm+an,n) = g'

.
.

(a'm+an,mn) = gg'.
Obviously there are #(m,g)@(n,g') numbers of a'm+an and by
lemma 5, they are distinct (mod mn). Hence it follows that there
are at least ﬂ(m,g)ﬂ(n,g') nunbers not greater than mn and having
the g.c.d. gg' with mn. There cannot be more, for, if b is one of
the ﬁ(mn,gg') numbers, by lemma 5, { since then b is also a member
of a complete set of residues mod (mn) ).

bea'm+ an  (mod mn) ;

also (b,mn) = gg',
'+ (a'm+tan,mn) = gg'.

But, (m,n) = 1, and (g,g') = 1
'+ (a'm+an,m) = g ; (a'm+an,n) = g’

'« (an,m) = g ; (a'myn) = g

S (aym) = g ; (a'yn) = g'.
'+ There can be only #(m,g)f(n,g') numbers not greater than mn
having the g.c.d. gg' with mn.
Hence f(mn,gg') = f(m,g)¥(n,g') if (m,n) = 1,

At Theorem 9: m 1
! #(m,g) = ETT( 1 - > ) where p runs through the distinct

e e e e s T T L e 3. A A A T S e e e e e s —

e e e e i«




36.

prime  factors of E.
Proof:

By theorem 8, clearly it is sufficient if we prove the result
when m is a power of a prime p, i.e. it is sufficient if we prove the
theorem for #(p*,p") whereet < r.

If &= r, obviously ¢(pr,ﬁx) =1 .i.eee..(1)

Next, suppose << r,

Now, there are p' . numbers $ p* which are multiples of .
It is evident that if we exclude from these, the numbers which are
multiples of ﬁx+1, we will get precisely all and only those numbers
(% p") which have the g.c.d. v with p°. The multiples of §“+1
(j> pr) are prml-1 in number. Hence the number of numbers ( #> pr)

which have the g.c.d. p°( with pr is

-k -k Ny - X 1
P -pt - p" la=pr(1---p)
Therefore
r « r 1
if‘(r, ¢(p ,P ) ‘-‘—E';( 1 -;) --..nsa.(2)
P .

Combining (1) and (2) we can at once obtain that

r r
. r. A
if mnTrpi N , g;TTpi 1 ando(iﬁri,
i=1 B T |
T
r. A
fln,g) = TT #p, *opy 1)
i=1

m 1
=g nli-3)

where p ranges over the distinct prime.factors of '-;-.
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§ Mobius A+ = function J(n)
/

Mobius function is one of the most important arithmetical
functions, which is defined aQ follows.
Definition 12:
M - function is defined as follows
(1) M (1) =1
(2) M (n) =0 it a2/n, with a>1
(3)  # () = (=1)¥ if k is the number of distinct prime
factors of n.
It is easy to see that/&(n) is multiplicative.
For, if (m,n) = 1
case (i) if one of m, n is equal to 1, say m
P (an) = p(tn) = puln)
Yo (m) = p(1) =1 { by definition )
o p(m) p(n) = 1. pu(n) = pu(n)
Hence, f&(mn)F/A.(m)/L(n).
case (ii) if one of the m, n has a squared factor, say m; i.e. a2/m
=y 82/mn
O )4.(mn) =0 ( by definition )
also, fb(m)jk(n) = O)A(n) = 0
o o (mn) =pa(m) paln)
case (iii) if m has r distinct prime factors and n has s distinct
prime factors = mn has r+s distinct prime factors.
M (mn) = (~1)r*s
ope(m) pdn)= (-1)F. (-1)8 = (-1)78

o tam) = pm) paln)

~
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Also, from the definition of/u(n) itself, it can be deduced
that

d; l.k(d)nl if n=1 veeeaaea(1)

0 if n>1

For, if we take Q(n) =?§,}L(d), and sinceI}L(n) is multiplicative,
d/n

therefore Q(n) is also multiplicative by lemma 3 of Chapier 1. Since

-3
Q1) =p4(1) = 1 ana  QF) =) pf) =14 (1) =0
=0

we have the desired result.
The following is the so-called Mobius inversion formula, which

is one of the most important fundamental blocks in the theory of numbers.

Theorem 10: Let :g(n)and f£(n) be arithmetical functions. I? they satisfy

the relation

g(n) -d;;f(a)

then
£(n) =(% P a(a)
=d% p(a) a(2)
Proof:

2. pHa) g8) - dE/; p(a) si/d 1(5)

d/n

e 2, pa) 2(8)

dé/n

-2, 1(8) 2. pa)
1 )d/%}&(d

§/n

- 2(a), ( by (1))
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It is trivial to see that

5;1 P(E) gla) = 5 pla) g(®)

therefore, the theorem is proved.

The converse of this theorem is of frequent use in the theory
of numbers also.

Theorem 11:

#(n) = (% (2) gla)
= g(n) = d% £(a)
Proof:

§n £(d) = &f({;‘)

- 6'/2% Pl a(5)

‘"df\:/n (B g(e)

=; g(5) d;% f"(ﬂ)

=g(n) by (1)
It should be noted that g(n) and f(n) do not necessarily have

to be multiplicative; in fact, any arithmetical function will deo.

Characteristic QronertiggfoffL(n)

1. The equation {1) stated above can be shown as a characteristic
property of u(n}. In other words,

F¥heorem 12: If (1) is satisfied by another function/x*(n), then it
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L implies that
jx(a) = prn)
We can use the Mobius inversion formula to prove that it is so.
Proof: Suppose that }-*(n) has the property (1)
ie. %; pr(a) ={ 1 if net
d/n
0 if o1
Take another function w(n), defined by
w(n) .! 1 if n=1
L 0 if n>i

Then, we have w(n) -;p*(d) for all n. Hence by Mobius
d/n

inversion formula, we get

;um=§ﬁnﬂy

-/L(n) w(1) (by definition of w(n)})

= p(n)
Since it is true for all n,

<

[ /ﬂb*(n) '5/"(11)
I1I. U.V.Satysnarayana [24] established in one of his papers that the
inversion itself is a characteristic property of the Mdbius function.

Namely, in form of a theorem, it will be :

Theorem 13:

Let £(n), g(n) and}k*(n) be three arithmetical functions, and

aw-%m>

2(n) = 2, px(a) &(2)
d/n
£(1) % 0

-

then,f&*(n) coincides with;&(n).

N s e I €T
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Before we proceed to the proof of the theorem, we need

to discuss one lemma. first.,

If oA (n) and fi(n) are two arithmetical functions and

(1) & (n) = 2. «L(s) B
[() (n) < 5) BE@

I(n) A (1) s 0 |
then ,g(n)={1 if o= 1
0 ifa>i
Proof:
Take n = 1 and n = 2 in (2). We get
L (1) = (1) B (1)
A ()% o0 ;
K (2) = o (1) B(2) + a(2) £ (1)
X (1) & 0 1
From the above equations, we have at once
B (1) = 1
p(2)= o

By mathematical induction, it iseasy to show that

F (n) = 0 for all n = 2, ,




Proof of theorem 13%:
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£(n) = dZ‘ Mx(a) el —2—) (given condition)
= g/j; Mex(d) ;‘l £(¢) (given co ndition)
= :Z; px(a)  £(%)
% d/n
ZE: (%) ) (
= £ *(d)
Q/n d /—8- /u“
e n = ZI *
Let 3 (n) Y o *(d)
We “then have
£(n) = L. 2(5 -+
)= Lo t6) p0)
= (n) =| 1 if nat
/3 i _ (by lemma 7)
0 if n)i
Again, by theorem 12, it is proved that p*(n) satisfies the

three conditions

— function.

/Lb

Remark:

~ The condition £(1) % 0 in theorem

of p(n), thus it is identical to the Mobius

13 proved above can be

¢ e b T 48 AP, TP Pyt




Proof of theorem 173:

f(n) = %/_‘ Mex(a) g(%) (given condition)
= %n Mx(d) 5% £(4) (given co ndition)
= Z pex(d)  2(5)

6 d/n

2w 2
$/nf()d/ M *(a)

o~

Let B (a) = :/7}1 Je*(a)

We then have

a) = 1. 2(8) p(2
£(n) S/Bf()ﬂ(s)
= pla)=]1 it §=1 (by Leama 7)
0 if =nX

Again, by theorem 12, it is proved that}l«*(n) satisfies the
three conditions of pv(n), thus it is identical to the Mobius

o - function.

Remark:

~ The condition f(1) & 0 in theorem 13 proved above can be

L2,

S U AT 51, PP ot T R, 14 RV

S T et



43,

replaced by a more general condition f(n) % 0,
i.e.
Theorem 14:

Let f(n), g(n) and p*(n) be three arithmetical functions

with

(3) ) - ? £(a)

(ii)  2(n) = p px(a) el )
and

(iii) f£(n) 3 o
then }A.*(n) coincides with s (n).
We need a few lemmas before we can prove the above theorem.
Lemma 8; If £(n) & 0O and,%(n) f o,

then

¥ (n) = 2 d L)% 0
A « (d) B(3) #
Proof: Suppose m, and n, are the least of the positive integers.

m and n to make A(m) 40 and }f3 (n) &0,

Now, ¥ (m,mn ) = oA (d)ﬁ(%)
11 d%nl

=d%:n1d(d)/a('nl£gi') +0((m1),6(n1) +d‘/zm"1nlok(d)/g.(_“;a£t)

m.n
when d)ml, -1-5:1- <n1

S P (PERE) = 0

when d(m1 , A(d) =0

L i ieiia el R
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|

1

S (agny) = o(ay)pay) b 0 |
_ {

ie. ¥ (n) =; % (n)p(B) # o0

d/n
nggg_9;: If(x(n) and /3(n) are_two arithmetical functions and
(1) t(n) %0 3
(2) ot(a) =d‘/Z (a) p(3)

i fd i

FREPRS SN

then /3 (n) = { 1 if n=1

0 if n>1

Proof: Define a function ¥(n) =[1 if n=t i
0 if n>i

then it is clear that

o (n) = 2, (a)¥(E)

d/n

and by hypothesis (2), we have

: EITRS L 7= SRS

Ze <@pE - L« ¥

d/n . }

Cor ;na((d)[ﬁ(%)-b’(g)] 0

* A (n) ¥0 ( by hypothesis (1) ) 4 ;

and by lemma 3; we get
AE) -¥E) =0 j,
or, which is the same thing, if we write it as |
p@) - ¥@ = o |
ivee 3 (n) - ¥ () }
Ve p(n) = {1 if =1

0 it a1
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(.-') Proof of theorem 14:

From (1) and (2) of the hypothesis, we get

£(n) %d% p*(d)s%ﬁ _:(sJ

= * 'S
s%'nﬂ' (a) £(5)

) e(8) Lo
%f( ) d/2;*(:1)

2% 2(5) (3

where /3(%) is defined as Zﬁ }L*(d)‘
d/g
Since by (1) of the hypothesis, f(n) % 0, therefore
/5 (n) =1[1 if n=1
( by Yemma G )
0 if n>t
and by theorem 12,
we have (i) | *(1) = 1
(i1) M *(n) = ( -1 )¥ if b has k distinct prime factors.
(iii) M- *(n) = 0 if a2/n with a3 0.
i.e.}&*(n) coincides with the Mobius - function.

Generalization of m{n)
I A

In one of his papers, H. Gupta[{8] gave & certain
generalization of }4.(11) which is defined as follows.

Definition 13: vr(n) is defined by the relation

v (d) ={1 (r20) if n=a®, & being a positive integer,
; r
d/n

Evidently vr(n) is identical with the Mobius function

/U~(n) for r = 0.

0 (r20) if nka”, a being & positive integer

S AR REC ST
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For r=1, the function vr(n) appears to be of little

importance as |

vl(n) =11  if nwl

| o ifam

Therefore, for convenience's sake, we shall write v(n)
in place of 'vr(n) with f being an integer'.z 2. Also, p with or without
subscripts will denote a primeFZ_2.
Theorem 15: v(ﬁ) is a multiplicative function

i.e. if (a,b) = 1,'then»
v(a,b) = v(a) v(b).

Proof:

Suppose the theorem is true for every n<(ab - 1).
Then
TZ; v(d) = EEJ v(d1d2)
d/ab d,/a -
d2/b |
= Z v(dl) . z v(dz) + v(ab) - v(a)v(v)
dl/a d2/a

Now, two cases arise.
case (i), if a and b are both roh powers of integers > 0, then

the left side is equal to 1, and so also is each sum on the right side.

PR =d12/la v(a,) '.;59 v(a,)

cagse (ii), if at least one of the numbers a and b is not en rth
power, the left side is zero and so also is at least one of the

sigmas on the right.

', again, :Z:' v(d) éa:;: v(dl) . ;E: v(d2)
1 a

a/ab dp/b




e
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Hence v(ab) =v(a) v(b) provided (a,b) = 1.
The theorem now follows by induction.
In view of the multiplicativity of v(n), we need only to

find the value of v(p&), (20 ) in order to find the value of v(n).

2.ov@) = Y, wa) + v

K -
d/Po‘ dl/P 1

Now,

If A= 0 (mod r), we have v(p~) = 1
If =1 (mod r), we have vw(p*) = =1
If &% 0 or 1 (mod r), we have v(p*) = 0

These results hold for the Mobius function.
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CHAPTER III

INVERSION

§ Fandamental theorem of the theory of inversion

' Arithmeticalbfunctions play & very important
part in " inversion " which is one of the most interesting
topics in number theory, The M8bius inversion formula is
usually considered to be the " principle of inversion of arith-
metical functions," The Mébius function is rendered indispensable
in the whole theory of inversion. In fact, it is on its property

:g; 1 ifn=1
M () = N ¢ §

d/n 0 ifn 1

that the Mobius inversion formula depends,

However, analogous to (1), there holds a property
for any numerical function f(n), not for s (n) alone, that throws
a great deal of light on many inversion formulas, The said pro-
perty can be given in the form of a theorem,

Theorem I
For ény numerical function f(n), it is possible

to determine a numerical function f' (n) such that

Lot o ={ K0 ita-d

where the summationz}@fers to all pairs ( d, &) of conjugate

divisors d,820 of n. ( n = dé) The required £'(n), called
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the reciprocal of f(n), can be defined by

f'(l):l)

o«n) k i ‘
' (n) =i<§:1(—1) [f(n)] X ———1175‘—; n>1

whereo{(n) is the total number of prime divisors of n and

[f(nﬂ | denotes
2 £(d)) £(dy)ennnnnnnnn . t(d))

with the summation going through all the distinct resolutions
of n into k factors each of which is greater than 1.

The proof of this theorem will be more clearly
seen if we here give a numerical example first,
Example:

Let n = 18, Then, the pairs (d, $) of conjugate
divisors of 18 heing

(4,%) =( 1,18), (2,9), (3,6), (6,3), (9,2), (18,1),
Let us now first calculate £'(18), The distinct

resolutions of 18 will be:

1 factor 18;
2 factors 2,9; 3,6; 6,3; 9,2;
3 factors 2,3,3; 3,2,3; 3,3,2;

Hence,

£1(18)=(-1)1 £ 13 + (_1)2[f(2)f(9)+f(z?2:3(1')6)+f(6)f(3)+f(9)f(2):,!

. (_1)3[ f(2)f\3)f(3)+f&3)f(z)f(3)+f(3)f(3)f(2)J
3
(1)




(1
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o _2(18) L, 2(2)2(9) , , 2(3)2(6) _ 5 2(2)£2(3)
2(1) £%(1) £%(1) £7(1)

Similarly, we get

o) - (00 4+ [ 1223

£(1) £2(1)

£1(6) = (c1)t 26) (_1)2[f(2)f(3) + 2(3)2(2)]
- £(1) 12(1)

£(1) £2(1)
r(3) = (-t 2B o £0)
£(1) £(1)
o -1
£'(1) = 1

.'.'EL t(a) £4(8) = 2(2)12'(18) + ;(2)f'(9) + £(3)21(6) + £(6)2'(3)

+ £(9)£1(2) + £(18)21(1)

- 2(1) [- £#(18) , , f<§)f(9) . D f(3:)2£(6) -3 1(2)£2(3)]
£(1) £2(1) £2(1) £3(1) |

£(1) £2(1).

+ £2(2) [_ £(9) . f2(3)ﬁ+ f(j)-_ji@l + 0 f§22f§§!]

L (1) £2(1)

. f(e)[-..--f-(ll] s 2(9)[- 22T+ 2(18)

2(1) | 2(1) ]
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Thus the theorem is verified for n = 18,

Now, we proceed to the proof of the theorem
itself,

When n = 1, the theorem is trivial, It remains
to prove the case when n> 1,

Glancing at the example given above, it is
seen that to prove

S () £'(§ =0 for n>1,
it is sufficient to prove that the coefficient of the parti-

cular term

f(dl) f(d2) f(dj) teeseessfor (dk)
where the values of dl’ d2, d3,..........dk are fixed except

as to order, is zero in the sum
< £(d) £(%) yo DL ceeeeea.a(2)
k being defined by 1 £ k £X(n).

It is evident that the only terms in (2)'
contributing to the required coefficient will occur only in
those of the following products for which the arguments of f
are distinct:

£(1) £'(n), £(d) f'(%i),.....f(dk) f'(%l'{)

Let Ak(n) denote the total number of distinct
resolutions of n into k factors each greater than 1, while each

of the resolutions is constructed from the fixed ( except as to




order ) values dy, dg, veve.ny dpjand similarly let Ak_ltﬁzj

denote the total number of distinct resolutions of 2 inte

‘ i
k-1 factors each greater than 1, each resolution being

constructed from the same set of values only with di omitted,
Then it is seen immediately that the required coefficient is

1k '
"_("‘:ll‘_{‘&k(n) D (’T:;)]

fk—l( l)
where Ei' extends only to those di’ each counted once only,

that occurs among the set of fixed values dl’ d2,....., d1

.

<
The point here is that j;' refers only to those of the d

1?
d2!........, dk that are distinct,

It remains to find the value of Ak(n) and
Ak_legf). In finding Ak(n), we have to determine only the
numberlof different ways in which the k fixed values dl’ d2,...
....,dk may be rearrangeﬂ among themselves,

Let d;, d2, teesireaaney dy ke the dis#inct factors
among the k fixed factors dl’ d2, cersstaney dk and let

k=ry+z, 022<Y conneannenad(3) -~
We may arrange the d's into sets Si, Sz+j (i=1,2,00000eu,2;

j=l,2, S0 ece 0oy y-Z)
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d Py d 3 veescesny d 3 creseny d

y+2 y+z 2y’

Qoyel R PI PN R PR, P

. ° es0ss 0oy . see e .
. . s8 000y . s es 0 .
. . es s ev ey . sev e *
. ] tee0s ey - e s 00 .

d d d d
(r=-1)y+l, (r-1)y+2,....000e, (r-1)y+z,..... ry,

dry+l s dry+?. cerenseney dry+z,

i = = 2 u
with si_..day+i (a=0, 1,2, tieervennnneas, )

S d

- ( b = 0) 1) 2, -......,r-l )

z+j= by + 2 + j

such that all the factors in each set Si are equal ,
i.,e,

d. = d s = d = ssco0osne= d(r_

i y+i 2y+i y+i = dry+i

and all the factors in each set Sz+j are equal,

i.e,

dz+j - dy+z+j = d2y+z+j

™ eessessoee

0= Y po1)yrzag
but no factor in any set is equal to any factor of any other

set, Hence, the resolution

n = d1d2d3 'o-'v-ououano-odk u-onboo-.(Q)

is equivalent to

r+l
n = (dld2 unoaoo-adz) ( d

r
el Gyen ......dy) ceeae(5)

where all dl’ d cod , d

POIREEE 2 2e1? dz+2,..............dy are
distinct,
The total number of factors is thus

z{(r+1) +(y-2z)r=yr+2z=k

which coincides with our assumption in (3).
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Since (4) is equivalenf to (5), therefore the
number of different arrangements of the d's in (%) is equal
to the number of different arrangements of the d's in (5).

By definition of Ak(n), we éénrsay
k!
z y-z
’ [( r+l )ﬂ (rt)

Similarly it follows that

Ak(n) =

* [[( r‘+1)E] r '] (rt)
a C(k-1)t B

AT =
j

or we can write

Ak-l(:)_ r+1Ak(n)
Ak-l ((i:—')= -—:-(‘—-Ak(n)

' L
Terefore () =5 4y )

n

Ay(n) - .Z k-l(n> - ﬁ-_ A ()
' i

J=z+1

[}

Adn) -2 (F2) ) - (v -2) €) a4 n)

Ak(n) l:l_ Z(lli'*l) _ (vl-CZ)r:]

i

[( r+l )] [ ,)y z-1 (r- l-](g z+1 z42 ...,v)
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i}

'Ak(n).[ k - zrk— yr + zr]
nln) [ L= lzryr) ]

Ay (n) [ Jiiili']

]

=0
o . |
K (-1)k [Ak(n) - LAk_l(-g-_,v’)] =0
B oty E)) 1
= £ (d) £'(8) = O

Thus the proof is complete.

A-.special case of the above theorem is also note—
worthy. It is the case when the numerical function f(n) is
restricted to be multiplicative. In which case, the f'(n) is
usually called the inverse of t(n), (same as ﬁhe f-l(n) defined
in Chapter I ) which is also a multiplicative function itself.
With the multiplicative property of fin) and f£'(n), the proof
of the theorem ig much simpler. Here we shall give a proof of
the above theorem with the restriction that £(n) and f'(n)
are multiplicative,

Proof:
: ﬁow let n = p;‘p2ﬂ..........
with the p's being prime numbers. Since f{n) is multiplicative,
', f(n) = £ ( p;‘ ) £ p2ﬁ ) eeeneenen
Thus from arbitrary values associated with prime-power values

of n, we can build up a unique multicative function.

ol
Suppose that we are able to determine numbers f'(p )




for every prime p, and every indexo{, such that

f (-g.:) £' (a) ={ £(1) ford = 0 A €]
0 for( > 0

Let £'(n) be the multiplicative function constructed

d
p

from the values f' ( p“), Since f and f' thus defined are both
multiplicative, then the composite F is also multiplicative.

We recall that the definition of composite F of fl and f2 is

m)=%w®%%ﬁ

F(n) = F ( pl‘*> F( p;‘)............

But from {6), each F (po() = £(1) or 0, according as o« is

given by

Therefore,

equal or greater than zero, Also since f (n) is multiplicative,
so it implies that £(1) = 1.
o fk(l) = 1k=f( 1) for any integer k>0
Hence
B(n) =2_ £ (&) 1 ()

d/n

_{ £(1) iftn=1

1o itn>1
Thns the theorem is proved, provided we can determine
nunbers f'(p"(), satisfying equations of the type (6)
However, the determination of the numbers f'(p“) is just a
matter of straight-forward solution of linear equations,

Thus, for given p, X, the equations (6) are:

56
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£(p) + £'(p) = 0
£(p%) + £(p) £'(p) + £'(2%) =0
£(5) + 20N (p) #..e' (@) =0
Solving these, we have:
£(p) 1 0  0......0
£(p?) £(p) 1 0 vev...0
(-1)0‘1'({»3 o :
(Y 17 e2(p). 1
2(3*) ™Y e 2(p)

Thus, with these numbers i"('pd), our proof is complete.
Before we prove a statement of Liouville to illistrate
one ﬁse of the theorem stated above, we first note a fact which is of

considerable importance. We see that
; [f1(d)zs‘f2($1) f3($’2)]

and Zn, fl(dl) f2(d2) f3(d3)

are identical, where the first of which Zn, refers to all d, § such

that d$=n and tho all 61, 82 such that $162 = % ; and in

the second,zn/ refers to:all d d2, d3 such that d,d,d, = n.

1 17273

Similarly,
21y Toggls,) as,) 1,089]
n=d$ %= 58
2% gy 15085 L £5(5,) 2,(5,)],
n=db, d = d1d2, % -5152,
T t,(ay) £,(a,) £(a;) 2,(a,),

n = d1d2d3d,h

263




are all equal. This applies to any number of functions, which,
moreover, need not be all distinct,

Illustration of the use of Theorem I

Now we shall prove a statement of Liowville, which
states that if

2 aa) 5(8) %c(d) D(8) weennernnnenennad(7)

and

]

2 A(a) B(%)

n

%C(d) F(8) vevennvevnnnrenaa(8)
for all positive integral values of n where A, B, C, D, E, F,
are all numerical functions of n, then

% F(d) B(6) = %E(d) &) vevrennnnn. ceeeee(9)
for like values of n.

Proof:

Ilere we shall use multiple summation. Let h be

resolved into sets of factors each greater than 1,

(7) then becomes

%A(sl ) B (6,) =§c(sl)»<82)

5=$1$2 ’

58;

since (7) is valid for all n, and hence for the positive integer &,

Multiplying (10) by C'(d), the reciprocal of C(d)
( as defined in Theorem I ) and summing the result with respect

to all d, we have

é[ ¢r(a) gc(sl) o( 52)]= 2 [C'(d)%A(él) 5(52)]

n=ds$,

or

%[D(d) %c'(sl) 0(82)1 = %E&(dl )C'(d2) B(dBﬂ

n = d1 d2 d3 R
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By theorem I, we have
c(1) D(n) = 2,a(a)) ©'(d,) 8(d5)
or we can replace n by & and get
c(1) n(g) = Z’A(SH C'(64) B8 )ouvrninninininnn(11)
b=b16561
Similarly, we get from (8)

A1) B(a) = 2.4(d) c(ag) R(ay)

_ 1) )
d = dl d2 dé
Multiplying the corresponding members of (11) and (12) and summing
the result over all pairs (d,6), we have

A(1) c(1) Z;,E(d) D(6)
2 [T 2 (ag) clay) rlag) Zoas)) or(y) n(63)]

]

d; = dy 6], d, = djby, d3=d§$§

a(®) (1) LR(a) B(b) (by Theorem I)

Dividing out the common factor A(1) C(1), we then get

Z.E () D(8) = 2o F(a) B(6)

Here, we can see how Theorem I can be applied to prove Liouville's

statement.

Some inversion formulas:

Now, with the fundamental block of inversion being set

up, more and more inversion formulas have been established to

Z, [241 A (ayr) a(s)") ;2 c(ay') cr(65") %—gg‘.(dg)B(Sg)]

S r TIALRT ket n i
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embellish the whole theory of inversion.
llere, we shall choose a few most impertant inversion

formulas and discuss them accordingly.

I. Baker's inversion formula (1890)

4. F. Baker [ 3] established an inversion formula which
states as follows:

Let Biyeveene ya, be distinct primes and § any set of
positive integers. For k<n, let F(al, ...... ,ak) denote the set
of all the numbers in S which are divigible by each of the primes

Bl 17 Bpeprere , ap, so that F(al,.. ..... ,a ) = 8.

For k=0, write F(0) for F, so that F(0) consists of the numbers of
S which are divisible by Birecnvee,d . We now divide F(al,....ak)
into subsets. Those of its numbers which are divisible by no one
of aj,eeenns ,a, form the subset f(al,.....,ak). Those divisible
by a,, but by no ome of ay,....,a,, form the subset f(ag,aB,...ak)-
Those divisible by a, and a,, but by no one of 85,8,5.0-0,8 form

k

the subset f(33v34’°'°"’3k)' Finally, those divisible by a,,...
a, form the subset £(0). .Thus F(al, ..... .ak) is. defined by

F(al,a2,.....,ak) = f(al,a2,....,ak) + j%;f(aQ,aS,...,ak)
+ ;—r f(a3,al‘,...,ak) + ......+%’1 f(al)

+£(0) treiiiiiiiiiiiiieeeenaa()
whexwz}i indicates a summation extending to all selections of k-r
r

of the artuments 81585y eccerly; the inversion is stated in the form:




—
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f(al,a2,......,an) = F(al,aQ,......an) - Z/ F(ag,aj,....,an)

v 2o Blagragueeenra) 4 cooee + (172 R(a,)

+ (1)T F0) veriiiiiieiiiiinereninaeeas(2)

The inversion is proved by counting the number of times
that a particular f occurs when each F is replaced by its equiva-
lent as defined by (1). For example, the function £(0) will occur once
from F(a ,a ,......,8 ).

(a8 0ennern )

<n>= n | times from Z,F(a2,.... , &)
1 1! 1

(n - 1)! n

(n)a nl times from Z,F(a3,.... , &)

2 2| (n--2)1 2 n

n n I imes from a
(n-1)= (n-l)‘lll' * ! nZ;'1 * 1)
( n)a 1 time from F( 0 )

() w () m e S OMHR ) L ()

n-1

= (1-1)* = o0

« + £(0) occurs nome at all in (2) .

Similarly, f(al) is seen to occur, on the whole, ( 1 -1 )n-l = 0
times in (2).
With the same argumenit, we can prove that all the functions

£ (a1 1By s e e e a) ( with k £ n ) actually donot occur in (2).
Thus only th.e function f(al s By e e e an) is left and (2) is

obvious.




62+

§ I. Cohen's first inversion principle  (1959)

B. Cohen [12] established the following inversion prin-
ciple:
Let f(n,r) be a complex-valued even function of n

(mod r). Then if r
it follows that

]

ry Ty where ry and r, are positive integers,

Z h(a, =)
a/(a,r) ¢
= h(r,, r) = 2, £ L))

d/r1 1

First of all, we shall define what an even function is.

f(un, r)

it

Definition I : A function f(n,r) is called even (mod r) if

f(n’r) = f( (nrr):r )

where f(n,r) denotes a complex-valued arithemetical function of
n and r, and n, r are integers with r necessarily positive,

Let us now proceed to the proof of the above inversion
principle itself.

A. By assumption, f(n,r) is defined by

£(n,r) = 2 h (d, 5 )

d/(n,r)

Then, using the relation r = r

g;l fE o r) (a)

i it il
EIRURINS
=
S I
uﬂu
™
\: (=2
D ~
o
X
=2

|
=
—~~
2]
—
N
\")
S’
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» ! fa\ 1 if =1
. 2% 4“(d)={o B M > 1o (1)

Thus we have completed the first part of the proof.

B. We assume this time that

h(rl, r2) = :Z; f(-él, r))L(d)

d/r1

with r = r1 r2.

Now, we have

yan , L Z (=% ) (b
B B Y RSy R TRV

| £(8, r)m(8)
i{(n,r) ﬁ /L

=d
;  f(p,r) J(8)
A/(n,x) ﬁ $ /(n,r

£ ( (nyr), r) ( by (1) )

by definision of an even function (mod r)

)

f(n,r) = £ ( (n,r), r)
+ « the éonverse of A is proved aiso.

The stated inversion formula leads immediately to a
characterization of tae class of even functions ( mod r j, which
shows that:

A function f(n,r) is even (mod r) if and only if it

has a representation of the form

f(n,r) = d/j(‘;'r) h(d, )

and the function h (rl, r2) is uniquely determined by

h(rl,r2>=% £ (I, r)p(a)
1

for positive values of ry and Ty

‘
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We noie that the above inversion formula is reduced
to the ordinary Mobius inversion formula when f(n,r) is restricted
to the subclass of completely even functions (mod r), that is,
functions satisfying f(n,r) = f( n?, r') for all n, n; and all
positive r, r' such that {n,r) = ( n', r')

In mathematical terms, we get the Mobius inversion
formula from the above inversion formula by replacing h(rl, r, )
by h(rl) and f(n,r) By g{ ( n,r ) ) and putting r, =1

i.e. we have the following staﬁement (2) :

Let f(n,r) be a completely even function {mod r). It

follows that

f(n,r) = g( (n,r) ) = ; h(d)
d/(n,r)
= h(r) - ; £ &, r ) pm(d)

]

2 e (S (@)

a/r
Thus, as in the case of the even functions (mod r) being charac-
terized by Cohen's first inversion principle, the class of

completely even functions (mod r) is chatacterized by (2).

Proof of Brauer -~ Rademacher identity
Now, we shall give a proof of the Brauer-Rademacher

identity [13]

g (r) g;; 7%7{7#(—}) = po(x) d/(z,) d (). (3)

(d,n)=1 n,r

as an illustration .of the inversion principle which we just proved

above. DBut before proving the identity itself, it is necessary




to introduce a few definitions and some lemmas on § (r) and

f&(r) first.

Lemma I :
JORPIACE
Proof:

We know that }?f (n) is the humber of positive integers
less than or equal to n that are relatively prime to n. Let T
denote the set of integers 1,2,......., n, i.e. the set of
integers i satisfying 1£if£n. We then separate T into subsets Td
where d/n, by putting i into T, if (i,n) = d. Then each element »f

T is in exacily one Td. Moreover, i is in T, if and only if i is

d
of the form j d with 1535% , and ( j, —3—) = 1. Therefore there
are exactly § (%) elements in T . Since there are n elements in

T, we have n = Z ¢ (%) which is the same as n = Z ﬂ‘ (d).
d/n d/n _

By Mébius inversion formula, we thus have

g (n) - é;% pla) 2

Lemma 2 :
If q is an integer22 and p is a prime, then
F Y =pd (%)
Proof:

Then by lemma 1, we have

B (2% =p(1) p* e pu(p) 2*7 v e pla)

p¥ 4 (-1)P p*1 4 0

t-1  t-2
p(p ™" =-0p )

. t-1 t=1 =2
Vg = p

n

65.
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'+ (4) vecomes f (p*) =p § (")

Thus, the lemma follows immediately.

Definition 2:

The core ¥ (r) of r is defined to he 1 if r = 1, and

to be the product of the distimet prime factors of r if r>1.

Definition }

An integer r is called primitive ii r contains no square
divigors > 1; and called non-primitive if it does.

From the definitions above, we can see thaf;/.&(r) #'O,
if r is primitive and},&(r) = 0 if r is non-primitive,
Lemma ; '

If r is primitive, and s is an integer >1 such that

¥ (s)/r, then _
d d)
g; a ids;

Let r = r,or,; (rl, r, ) =1, and s = 3182)1

fl
(=]

Proof:

Since ¥ (8)/r,
W X(sll)/r1 and B"(sg)/r2

Thus the multiplicative properties of @ (r) and /u«(r)

imply that
PRI O 2. ey ; _p pHdy)
e P (T T s dyfry, B (dgsy)

where d1 denotes the divisors of rl and d2 denotes the divigors of r

Since either sl) i or 32>1, so it suffices to prave



the lemma in case r = p ( a prime) and s = pk, k> 0.

But d m(d 1 - P
2;% (ap®) = #(p") TR

which, by lehma 1, is equal to
1 P

= 8 (pF-1) T pf(p°)

1
g (%)

the lemma is proved.

Lemma & :
If r is primitive and d is a divisor of r, then
M) = () p(a)
Proof:

Since r is primitive and by the multiplicativity of

»p(r) we have
P = () 4P ()

Lemma 5:
| T B L
d/r, Gﬁ,n)=1, 0 othgrw1se
where the summation is over divisors d of‘r whose conjugate

oo . r .
divisors < are prime to n,

Proof:

When n = 1, we have

67.
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27;’”(“) - ()

L . 1 ifr=1
where e(r) is defined to be =-{0 otherwise

We then have

]
s

=

it
M
}‘ .
&
Al

B

&)l Ve 5
- :/z;,ad) S P
- a/(Z) 8 d/gg) A
- s/(znfr) M(8) e (@
Thus by the definition of e(r), we then get
7w - A0 ot

("'5"7’1):1

Proof of the Brauer-~Rademacher identity:

Let us denote the left hand side of (3) by A(n,r).
Evidently A(n,r) is an even function (mod r), thus we can apply

the inversion formula to obbain

A(n,r) = d/(Z;l/,r) H (d,.-ﬁ— ............... (5)
where h (rl,r2) = 5;1 A ( _%1. y ) ()
r = r1r2,

Hence, by definition of A (n,r ), we have

h(r,r,)=4¢() g; ﬁf)}*({-)g/; b)Y (6)

(d,_g. ) =1

|
|
|
|
'!
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By lemma 5, 6%1 /41,(5) is equal to zero unless rl/d, in which case
dy By
(4i4) |

it has the value},L( r, ). When rl/d, we can write

d = rym, (6) becomes

h ( ri.Ty } = g €r) rlﬂ(rl) a/r —’6—(%1—1!17%4%2)
/U«( —;-%) is zero unless l—:g-/ ¥ (r2)

therefore we may put m = [

LI ]
i

T

¥(r,)
g(r) m("1) r e X_(z_gl]
W) - ¥ (ry) e/ZY(rz) : 9‘5_. bfei r'gjb]

r
Now put m = R.R,, where ¥ R, ) / r, and ( R, Ty Y = 1.

] e- to obtain

12
We see at once that Rl/r'l' Then by lemma (4) and the multiplicativity

of ﬁ (r) we hawe _
P (D) (X (x) ) P eple) | (p
7)< Ty (ry) () o/5(rg) flrge)

By lemma 3, the sum in (7) is zero unless Ry = 1. But R, =1

h (

=r r,=r-= RIX(r2) sp that
( ‘ﬁ: ) I‘2 = V( 1‘2 )
Hence, h (rl, r2) = 0 unless r, =3’(r2) and R, = r,, and in parf-

icular, unless r, is primitive and ( r T, ) = 1.

We can see that h( r, T, ) =0 if r is non-primitive; . -

‘Thus in the remainder of the proof, we suppose that r is primitiVve,

so that r2=7f(r2), R2 =1 , (rl, r2) =1, BR=r,,

Hence (7) becomes
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1

Wi b (ry, ry) = r.f (r,) p(r) ; 'e—ﬂ'}f%%;_
| e r2

r, pdr) e/zrz e ple) # (12.)

]

By lemma 1 and lemma 4, we have
h (v, 7y ) =1, plr,) ;;2 e ple) é%g_ sl e8)...(9)
Putting e = D in (9) we get
h (ry 1y ) = 7yplry) e%Q;L(e) D%,e/p D (D)
wr ) g op0) Zg o)
RPN R S

“

., h( T, T, ) = r1)¢(r1) it }L(r) £0 i (10)

]

Combining (8) and (10) inte & single formula thus we have, for all

n r, T, ) = }&(r) r1}L(r2) .................. eaen L(11)

Substituting (11) in (5), we finally get
By M0 )
p(r) 2 dpul =)

d/(nvr)

Thus the Brauer-Rademacher identity is proved.

A{( n,r)

§ III Cohen's Second Inversion Principle:

Along with the inversion principle relating to the
claag of all even functions(mod ¥), which we discussed above,

E. Cohen developed also another inversion principle limited to

Nt




~

[£n

the primitive functions (mod r) only this time.

Definition 4:

A complex-valued arithmetical function f(n,r) is
called primitive (mod r) if £(n,r) = £ (¥ (n,r), r) for all n
while ¥ {(n,r) =¥( (n,r) ) and¥((n,r)) is the core of (m,r).

Definition 5:

A completely primitive function f(n,r) (mod r) is

‘defined as one satisfying f(n,r) = £(n',r') for all n, n' and

all positive r, r' such that

¥ (r) X (x)
¥ (n,r) ¥ (o', T}

Definition 6:

7(1 (n,r) is defined by

n,r} = Z '£"
% (mr) d/(n,r) dj*‘ T)

Before introducing the inversion principle itself,
we have to ge through a few lemmas which are needed in the proof
of the inversion principle. Nevertheless, the proofs of the
following lemmas are quite obvious, mainly based on the multipli-
cative properties ofjx,(r) and %(n,r), while r is taken as the
power of a prime, so we shall just state them without going into
the proofs.

Lemma 6:

If r=r, r,, r is primitive, and $/¥(r), then

p Mr)
d/zr/r 7(,(r2, d) = ——7(_1‘;_— if § = r,
¥(r .
($,(_£?)=1 0 1f$;ér1
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Lemma 7:
If r = ry Ty, then
d;=r | : ?(a (rl, d) = r1’,b(r2)
(s ) r2) =1
Lemma 8: -

If r is primitive, r2/ r, and rl/r2, then

T . B .
dp=r /*(d) = )L['(n,r)] if r,= (n,r), r, = r;
(d,n)=1 0 otherwixse,
/ﬂ/rl’ d/r2

Theorem 2: ( the inversion principle for the primitive functions )

Let Tys Ty be positive integers, and r, primitive, -

It H (r1 r2) is a function of r ,r, and f(n,r) is a primitive

function (mod r) and r= r,r,, then it follows that

f(n’r) = d/zx(r) H (d-s %) = d/zb"’ r: H(dy—z—)
(d,n)=1

,n ¥(n,r)

e ey o B ae) 2, HE, 0 Rle,0)..(2)
— 1 2 T d/ errl
Proof:

A. By applying our assumption that

N
f(n,r) = d/¥(r) " (d, 1 )

(d,n) =1

the right side of (2) hecomes

T(r)/&(rl) 7 £ (—;'-, r )7(,(r2; d)

awas”



Y 5

1T =1
d
RS TOVCA N DS 2. %
AT R
(6’%)=1

=X(r) ;u'(r1) H (ri’r2) —;;&Ll-l- by lemma (6)

=}L/2 (r)) H(ry, r,)

= H (rl,r2)’as r is primitive.

B. We assume now

Mrpry XEE) T (S e, )

Then

d/ ¥ (r) : a/¥(r) dr
PRAR (2,n)-1 VE16
] xrmi/z (& 1) d/Zx( A 2 ep
: (d,n):l °/€%
Xdr /%

v by lemma (8),

d/ﬁ= T(I‘) )J-

(d,n)=1

o2 P

(d) is equal to zerc unless 3’(%) =Y{(n,r),

¥(E) = Y(r) and in which case, it has the value)-kl}&)—] . Also,

¥ (n,r)

73
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since f(n,r) is primitive.(mod r),.' we have
f('i‘,r) = f(X(i—),r ) = f( Y(nsr)p r)
= f (n,r)

e (3) becomes

‘o"(r)}b[b,(n oy () Z Z P )

- sk o/ s
Y= ¥a,r), ¥E =y(r)

We note that the conditions $/r, 30 Y(n,r) are equivalent to the
conditions s/m ) (‘g’; ¥(r) ) = ¥(n,r). Similarly X(-g)= ¥(r)
is equivalent to c/g%;y for a divisor ¢ of r.

Therefore, by definition ofﬁ(n,r), (%) becomes

Y] 0

P ‘ﬂrrr
(s
K(n r)

J(rw‘[?%%)] fon) "7%(5)71 (by lemma 7)

¥ (r)
- [F] s

= £f(n,r)

F Gy #)

Thus the proof is complete.

Again, as a consequence of the above inversion principle
we can characterize the class of primitive functions (mod r) as
follows:

A function f(n,r) is primitive if and only if it can be
represented in the form

f(n,r) = Z H(d,‘-{')

4/ (r) d
5 (d,n)=1

and the function H (r1, rg) is uniquely determined by
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~ X(r)}"(rl) 7_1 £( % , r) 7(/(!‘2,(1)

with ry, T being positive and r, primitive.

2 1

We note also that this inversion principle can be reduced
to the Mobius inversion formula if we restrict this to the subclass

of completely primitive functions (mod r); for if we put r = r

1’
r, =1 and £ (n,r) = j (m) where m denotes L Lir , the inversion
2 ¥(n,r
principle becomes ‘
f(n,r) = jz:, H (d)
4/ ¥ (r)
(d,n):l
Z e . cieneaa.(5)
— r r
= II(rl) = f(—d-1, r ));.(31)
d/r1

Since 76(1,«1) =/u.(d),

we can rewrite (5) as follows,

i(m) = 2., & ()

d/m

= ulr,)-- dZ 5(a) )
T

which is the ordinary Mobius inversion formula.

Proofs of the generalized Landau and Holder identities

To illustrate the use of Cohen's inversion principles,
now we shall prove two well-known identities of number theory
whose proofs are baseq on these inversion formulas. A few
preliminary lemmas are needed before we start proving the identities.
Definition 7:

A function f(n) is sa;d to be completely multiplicative

if £{1) = 1, €(mn) = £(m) £(n) for all m,n.We note that a completely
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muLtiplicative function is the same as a: linear function. (see pg.2)
Definition 8:

A diviser d of r is called a canonical divisor of r

if(d,-z—)_zl.

Let us here introduce a notation that

o) = 2 ) <) )

n,r
and F(r) = £(0,r)

with x(r) and y(r) being functions of r.
Lemma Q: If y(r) is completely multiplicative, then

F(r) = y (ﬁ;j‘ ) F (¥(x))

Proof:

By the complete multiplicativity of y(r) and the

definition of f(n,r), we have

Pe) = 200,0) = 2 vid) ) p ) i

d/r

- 2 v @ x ()5

d$é =r
8/ ¥(x)
-y (557) 2 v (LLEdy <))

5/¥ (r)
r
=y('f(;5‘) F (¥(r))
Lemma 10: If x(r) is multip}icative, y(r) is completely multipli-
cative, and for all primes p, y(p) £ 0 ; 7(p) £ x(p), then F(r) £ 0
for all r.

Proof:

Since F(1) = £(0,1) = 1 £ 0, we have to prove the

lemma here only for r>1.




st

Since x(r), y(r) and}J.(r) are multiplicative,
v F(r) is also.
A . .
Now let p range over the canenical prime power

divisors of r (A>0) and, by the multiplicativity of F(r), we have

R(r) = 1] [ 2, y(a) x(%) ,»(ﬁ)}

™/ a/p*

- T [ -5 (s
pN/r

= I:r/ [ y () -3 (p) X(p)]
p r

= 1?5 [ 7 () (5 (p) - x(p) ﬂ.........(6)
p r .

£ 0

Lemma 11 : Under the conditions of lemma 10, if a and b are

positive integers, then

F(a,b) = -E(a) F(b) y( (a,b) )

F ((a,b))

Proof:
Since F(r) and y(r) are multiplicative, so it suffices
to prove the lemma in case a = pt, b = ps’ P prime, and t2s>0.

Since y(r) is completely multiplicative, it follows from [6) that

for g>0.

-1 ;
F(eT) = 17 (p) [(e) - x(p)]
By lemma 9, and lemma 10, we then have

F(a) F(b) y( (a,b) ) _ F(p*) F(°) y(»°)
F ( (a,b) ) F(p®)

F(p%) 7°(p)

t
5[ F¥ (%) )y
Y[m ¥ ) ¥y (p)
y(»*1) F(p) ¥°(p)

vt (p) F(p)

I Rt ]

7
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F (p8+t)

F(a,b)

By multiplicativity, the lemma follows for arbitrary

values of a and b.

Theorem 3: ( Generalization of Landau Identity )
If x(r) is multiplicative, y(r) is completely multi-
plivcative, and for ali primes p; y(p) £ 0, y(p) # x(p), then

x{d F n,r
(d) Y(r) ( ( 2 ) ) e (7
d; o F(r) y( (n,r)) )

d n =1

Proof: Since /L(r),:x(r) and y(r) are all multiplicative,

v F(r) is also multiplicative.

Denote the right side of (7) by I(n,r).” By lemma 9,

we have foe) y(r) y[-%,—z;l;y] F (¥(n,r) )

Y(b’(r)) F(¥(r)) y( (n,r) )

x§r)
_ y[x n,r ] ( by the multiplicativity of

By v e

SO EES - ool

Hence I(n,r) is completely primitive (mod r). By applying (5)

we have

I{n,r) = 2(, H(d) v.vvivennnnnnncannrennss.(8)

r

where, assuming ry Primitive,




H(rl)

;;1 I, r M)
2 HH
1

By the multiplicativity of/w(r) and F (r) and by lemma 5 and lemma

4 of last section,

#lxy) i

H(r,) =—m:i‘)- dz/;l y(d) pld) F(—1)
pelry) >
- Iy ;r,l SECIRECEC/D

Since y(r) is completely multiplicative,

p(r.) r r
'y H(r)) = __ﬂ?i—)— %1 y(D) x(1 );&(—Di-) % y(d)

with ¢ d = 0

o Z}L(d)={1 if r=1

' d/r 0 ifr>1
Voo H(r) = /“'2(’1) ) i, (9)
F(rl)

Combining (8) and (9) we thus have

I(n,r)= Z ) H{d)

Theorem 4&: ( Generalization of Hilder's Identity )

If x(r) and y(r) satisfy the conditions of lemma 10,

then

£(n,r) = F(r)FJ(cgt)a) p(e) (e =% )
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where f(n,r) is defined as béfore,

i.e. f(n,r) =

Proof: Denote

2o yta) =)l

d/{n,r

F(r) x(e) p(e)
F(e) 7

by J(n,r).

Evidently J(n,r) is even (mod r). Hence by Cohen's

first inversion principle,

J(n,r) = Z( n(d, )

where, with r = ry To

d/(n,r)

Bryr) = 2 Sk, v ) pla)

1

]

]

d/r1

; Rr) f(£2) (55) @
d/r, F(.ill) /u,

. Z ) (rg) 40

F(r

F(r)Fzg;)Wrz) d/Z; [t 2 o

(dr)l

( by multiplicativity of F{r), x(r) and}k(r) )
B(x) x(r) plry)  3(r) B (2,7, ) )
F_(rz) ‘ ) F(rl) Y( ( 1‘1,1‘2 ) )

( by theorem 3.)

F(r) x (rz)/b(rg) y (rl) -F(%I;gy(by lemma 11.)
K(ry)p(r,) ¥(r,)

d%’r) y(a) x() p®)

————
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. J(n,r) = %,r) h(d:‘g—)

LA X
d/Z(;,r) x(£) (L) y(a)
= f£(n,r)
Phis completes the proof,
Thus, in viewing the inversion formulas given above,
we can see the importance played by the Mabiusilb - function

in the theory of inversion, hence in the theory of numbers

as a whole.
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