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( Introduction 

The theory of numbers, dated as early as the time of Pythagoras, 

is a branch of mathematics which, unexpectedly, has caught the interest 

on one extreme of nearly every noted mathematician and on the other of 

amateurs who show absolutely no interest at aIl in any other part of 

mathematics. On this account, the the ory of numbers may be considered 

as a separate branch of mathematics. Indeed its development took place 

often independently of the development of other branches of mathematics. 

In this thesis, we shall deal only with arithmetical functions 

which play a very important role in number theory in proving Many of its 

identities, in setting up inversion formulas •••••• etc. 

Chapter 1 is introductory in character. It deals with some of the 

fundamental concepts concerning arithmetical functions; it describes how 

they are defined and how their operations function. 

Chapter II ia devoted to the discussion of some of the Most 

important and frequently used arithmetical functions with emphasis stressed 

on the Mobius function whose properties are developed in the third chapter. 

The last chapter deals with n inversion ", one of the Most important 

results on arithmetical functions. TIere 1re introduce a few inversion 

formulas apart from the fundamental principle. IIowever, for an account 

of the literature of the theory of inversion, one can reter to Dickson's 

n History of the Theory of Numbers n Vol. 1 pg ~~1 - ~~9. 

1 
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1. 

CHAPTER 1 

CALCULUS OF MULTIPLICATIVE FUNCTIONS 

Before going into the calculus of multiplicative 

arithmetical functions. we should get ourselves acquainted with 

sorne fundamental concepts of aritbmetical functions. 

Dei ini ti on 1 : An arithmetical function f (n) is defined ae 

a function which takes a real ( or complex ) value for aIl integral 

values;> 0 of its argument. 

Definition 2:: A function f{n) is cailed a numerical function 

of n if f (1) ~ 0, and if f(n) takes a real ( or complex ) 

value for each non-zero positive integra1 value of its 'argument. 

From the definitions given above, we note that by removing 

from the definition of a numerica1 function the r~8triction that 

the function sha11 not vanieh when the argument is unit y, we 

obtain the definition of an arithmeticai function. The class of 

aIl arithmetical function$,therefore, inc1udea that of aIl numerical 

functions. Renee, allthe properties of the class of arithmetical 

functions a1so can be applied to the class of numerical functions. 

Defini tion 2 : An arithmetical function I(n) is called 

multiplicative if 

f ( m n) III f (m)f (n) 

whenever m is relative1y prime to n 

Since unit y is both prime to and a divieor of every 

number at the same time, th.s by the definitiQn of multiplicativity, 
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( it is obvious that for any multiplicative function f(n), f(l.) = 1. 

t ' 
/ f(m) G f( m.l) • f(m} f(l) 

~ f(1) = 1 

~ The elements of a multiplicative arithmetical function 

In resolving the argument n of a multiplicative function 

f(n) into their prime factors, 

i.e. 
0(1 c(2 oCr 

n = Pl P2 ••••••• Pr 

"\fe then have 

() TTr ( P<i) 
f n = f Pi 

i=l 

By the element of the multiplicative function f{n) to the 

base Pi' we shall mean the aggregate of values f( Pia) for aIl zero 

and positive integral values of a. Thus the elements of a multiplicative 

function completely determine the function. 

Definition 4: The multiplic~tive function f{n) will be ealled a 

linear function if the equation 

f( mit' ) .. f(m} f{n) 

holds not merely when m is relatively prime to n, but for aIl values 

of mt n. 

Definition 5: A generating series of f(n) to the base Pi i8 defined 

by 

m=O 

Thus, the generating series to the base p of a linear 

function f(n} i8 

• 2 
x + 



( 

3. 

f(p)(X) = 1 + f(p) li: + f(p2) 2 X ~ ..... 
81 1 + f(p) x + [f(P)]2X2 

+ •••• 

1 
if f(p) ... a CI 

1 - ax 

By using the generating series as the representative of the 

corresponding element of the function, it is then much more convenient 

in explaining the processes of the calculus we are going to discuss shortly. 

! Elementary function8 

The elementary functions we are going to consider May be 

generally classified into four groups. They are aIl multiplicative. 

A. The l - functions, 

l (m) CI mg 
g 

B. The E - functions, 

E (m) 
g " .. g where Y is the number of distinct prime factors 

of m. 

Âmong the E - functions, those which occur Most frequently 

are EO ' El' E_l and E2 • We shall simply write E for El" The function EO 

vanishee for aIl values of its argument, excepting unit veIne, for which 

it takee the value 1, i.e. EO(l) RI 1. The function E ... El takes the 

same value 1 for aIl values of its argument • 

c. The "- - function, 
..J 

'Â- (m) ... g 
g 

where Y ie the total number of prime factors 

of m. 

Among the'" - functions, the Most important is "--1' which 

we shall write simply as ~ • 

D. 1t (m), 
g 

6 (m) - functions, g 
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\ 
r 

0 if ag/m ( a 70 ) 

~{ Tf (m) g 
1 otherwise 

€. g{m) ={ : if m "" ag ( a» 0 ) 

otherwise 

§ The processes of the calculus 

The calculus of multiplicative arithmetical functions 

consj.sts of four processes. Tbey are applicable to aIl arithmetical 

functions generallYt but they have one common characteristic property 

-- yielding only multiplicative functions when applied to multiplicative 

functions. The four processes are: 

1. multiplication of functions 

II. composition of functions 

III. inversion of functions 

IV. compounding of functions. 

We shall consider the process~s individually. 

Multiplication 

Let f l(n) and f 2(n) be two multiplicative functions 

of n, their product denoted by 

( f 1 X f 2 ) (m) "" t 1 (n) f 2(n) 

is again a multiplicative function of n. 

The generating series of (f 1)( f 2 ) (n). to the 

base p thus is given by 

... 1 + 
2 

li: + . .. 

--------_ ..• ---------- .. -.----



~ 

where f
l (p) (x) CIO 1 + 0( 1 x + 

2 
,,(2 x + •••.••• 

and f
2 tp) (x) 1 + jS 1 = le + 

2 (3 2 x + ••••••• 

are the generating series of f 1\n) and f 2(n) to the base p, 

respectively. 

It is clear that the multiplication thus defined is asso 

-ciative and commutative. Ji'or, 

and 

= [ f 1(n) [2(n) x. fJ] (n) 

= f 1(n) i 2(0) f
3
(0) 

... [fI X f 2(0) f:;(O)] (n) 

- [fl )( ( f 2 X 1:;) J (0) 

= f 1(0) 12(n) 

... f 2(n) f
1
(n) 

... ( f 2 X f l ) (n) 

If we take for 12 the elementary innction E (n) and 
g 

if the generating series of [1(n) to any base p ( a prime) 

is given by 

we then have 

as 

Eg(p)<X) = 1 + Eg(P) x ... Eg(p2) x2 + Eg(p3) x:; + 0 •••• 0 • 

... 1 + g x + g x2 + gx3 + ••••••••• 

5. 

.< • 



In particular, when g • 1, 
23' 

+ .of.' 1 x + 0{ 2 x + 0< 3 li: • ••• = 1 

= f 1 (p) (x) 

,. , • ( f 1 XE) (n) = f 1 (n) 

when g = 0, 

( f 1 X EO ) (p) (x) :::1 1 + (0( i 0 ) x + 

:::1 1 

as 

Eo {pl (x) 

= 1 + 0 + 0 + ....... 
'" 1 

, • ( f 1 X Eo ) (n) = E (n) o 

Thus, E and E behave just like unit y and zero, with respect o 

to multiplication here. 

Composition 

6. 

E. T. Bell L~ l has termed this as " ideal multiplication" 

in order to distinguish it from the ordinary multiplication of 

functions. 

By the c~~position of two arithmetical functions f 1 

and f
2

, we ahall mean the pro cess of forming the function 

defined by 

We shall denote f by f1 • f 2 and caU i t the composite of f 1 an.d '2' 
! 
i 

1 

1 

~-- -_. __ ..... -.. _ ... "'~ ..... "',, ..• ~ .... _._----- -_.-_ .. __ .. -_ .. _--_._.- .... _--.-.-------_. __ .. __ . ---_. _. __ . ___________ J 



( The generating series of the composite ( ~·f 2 )(n) 

to the base p is given by 

( f • 
1 = f 1(p) (x)Xf2 (p)(X) 

the product of the generating·series of 

base p 

We have 

f. E 
o 

The function E plays a special role in composition. 
o 

= f 

:II E. E.· ..... oo. E 
000 
~------~v~--------~I 

k times 

... E 
o 

Since the generating series.of ··Eo to aoy base ia 1.. In 

mul tiplication, we have S~en·. that E behaves like a zero element. 
o 

So here f • E = .. f 
o 

suggests that composition can be considered 

analogous to addition, again with Eo behaving as a zero element. 

Like addition, composition is associative and commutative, but 

unlike addition, it is not distributive unrestrictedly with 

multiplication. However, it has a restricted distributivity described 

by 

Theorem 1 Multiplication is distributive with composition 

if the multipliem is a,linear function. 

Pro of : Let the multiplier be 'P (n) , a linear function. 

[ ( ~ )( f
1 ).( «' X f 2 )] (n) "" dfn 

I,(J (èl) f 1 (d) Cp (-1-) f 2 (~ 

"" ~ c.p (n) f 1 (d) f 2(t) 

( by definition of linear function ) 

c [cp >( ( l' f 2 )] (n) 
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( Inversion , 

The inverse f -1(n) of f (n) is defined as the 

function such that 

co E (n) 
o 

Since every generating series of E (n) 
o 

is equal to 

1 we can say that 

f (p) (x) X f (p)-1 (x) = 1 

f (p) (x) 
-1 where and f Cp) (x) are the generating series of 

f (n) 
-1 

and f (n) to the base p, respectively. 

Moreover, if f l' f 2 = f • ff. , , 't:. 
by performing 

composition by -1 f 4 on both sides, 

i.e. 1 
-1 

f 1 f • fiA 2 = f, • fiA • 14 
-1 

we have 

fI' f 2 ,. f 4 
-1 

= f • E , 0 = '3 

Theorem 2 Composition is distributive with inversion, that iB, 

the inverse of the composite of any two arithmetical functions is 

equal to the composite of their inverses. 

Proof: 

The generating series to base p of the inverse of the 

composite of f l' f 2 is 

[ f l (p) (x) X 

and the generating series to the same base p of the composite of 

their inverses is 

( 

._.------.---------_ ... _- ---~ ._----- --_._._--~-----,-- ---------------



( , 

• • 

[ fl(p) (x)-l X f 2 (p) (X)-~ . 

[ fi (p) (x) X f 2 (p) (X)] -1 ~ l f 1 (p) (%)-1 X f 2 (p)(X)-lJ 

f • 1 = 
-1 

f 1 

-1 

f 2 

Thus the theorem is proved • 

Theorem .i. 

From theorem 2, it follows also that 

( f -1) m = ( f m )-1 

( m , n can be positive or negative integers ) 

Another important property of inversion is given by 

The inverse of <.p)( f is Cp X f -1 ,if li is 

a linear fonction. 

9. 

Proo! : (CP x f ). ( ~ x f -1) = Cf X (f • f -1) 

::2 <f X Eo 

(by theorem 1) 

Thus the inverse of any linear function <P is lp X E-1, 

as cp cao be wri tten 8S the product (p x E 

The theory of inversion will be discussed in more detail 

in chapter 3 

Compounding 

The compound of two multiplicative functions f 1 (n) 

and f 2(n), denoted by f 1 @ f 2 is dèfined as follows, 

! 
j 

1 

\ 
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( f 
1 f 2 (-p 

wi th the summation runs through aIl those divisors g of n 

such that ~ and n 
'T are relatively prime to each otner. 

Let the generating series of f 1. and f 2 be written 

in the form 

f 1(p) (x) 1 (;'1( 0<2 
2 

1: + 1 
x t x + ...... 

f~,p) (x) 1 + /3 
2 

:c x + (0 2 
x + 

1 

It follows that the generating series of the compound 

is as follows 

e f 2 ) (p) (x) 1:: 1 + 

Thus ~e generating series of a compound is equal to the sum of 

10. 

the generating series, to the same base, of the functions compounded, 

except for the constant term, which is equal to 1, as is always 

the case with aIl multiplicative functions. 

Clearly the process of compounding is associative and 

commutative, since addition is so in the generating series of the 

functions compounded. 

Theorem 4 

Multiplication is distributive with compounding. 

The distributive property can be establish~d by means 

of the generating series. Now, suppose the generating series of 

f l' f 2 and 1> ' to the base p, are 



( 

f 1 (p) (x) = 1 + 0<1x + 0(2X2 + •••••• 

2 
!2 (p) (x) = 1 + (d 1 x + fi 2 x + •••••• 

cp (p) (x) '" 1 + '( 1 x + r 2 x
2 

+ • • ••••• 

respectively. 

[ (cp X f 1 ) G> (1' X f 2) ] (x) = 1 + (if 1 e>(1 + ~ 1 ~1) x 
(p) 

+ (0" 20<2 + '0 2 ~ 2 ) x
2 

+ ••••• • 

which is actually the same as 

+ ••••• • 

= 1 + ( r- 1 0<.1 + Y 1,13 1. ) x + 

+ (r 20(2 + '62 f.>2 )x
2 

+ •••• 

· " + X ( f 1 ® f 2) = (<fo X f 1) @ (1' X f 2) 

Theorem 5 

11. 

4' · ( f1 e f 2) ... [ (cp • f 1) 0 (cp. f 2) J <t> ( E _1)t. cf' ) 

Proo! 

[<p · ( f 1 (f) f 2) J (x) 
(p) 

.... 

• </> (p)(x) )( [ ft (p)(x) + f 2 (p)(x) - 1] 
=> cf> (p)(x) X f l (p)(X) + cp (p)(x) ~:" 12 (p)(x) - 1> (p)(x) 

.. (cp. f l)(P)(x) + (<P. f 2)(p)(x) + (E_1X 4> )(p)(x) - 2 

~ (</>. f 1)(P)(x) + (tp. f 2)(p)(X) + {E_1 x 4> )(p)(x) 
i 
1 

1 

1 

1 
\ 
! 



• • 4> • ( f 1 e f 2) = [( ~ • f 1) e (+. f 2) ] 0 ( E_l x cp) 

This theorem is fundamental and can be generalized to 

the case where there are more than two functions in -question. 

i.e. 

cp . ( fi e 
t 

II: L (<1' • 
1 = 1 

where t 
~ (cp' 

i = 1 

12 
@ . . . 

f· ) 
1 

<±) ( El _ 

f.) denotes 
1 

@ ft ) 

t
X f» 

Defini tion 6 The conijugate function of f (n), denoted by 

conj f (n) is defined as follows 

f{n) e conj f (n) ... Eo(n) 

or alternatively, conj f (n) can be defined by 

conj f (n) = f (n) x. E_l (n) 

For, if tlhe generating series of f (n) to the base p is 

f (p) (x) 
2 

+ 0< 2 x + • 0 • • • 

bwing to the fact that Eo (p) (~) ... 1, the generatbig series 

of conj f (n) to the same base p os obviously equal to 

which is the same as the generating series of f (n) X E_l (n), as 

( ) ( ) ( ) E (p2) ... 2 + E_l x = E_l 0 + E_l P x + -1 ~ • • • • 
(p) 

2 3 = 1 - x - x - x - . . .. . . 

l:2~ 

The conjugate function has evidently the following properties: 

1. èonj conj f(n) - f{n) 



( '\ 
\ ) 
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• cO~l conj f(n) cr conj f(n) 'x E_l (n) 

::: f (n) x E_l (n) x E_l (n) 

1 if n has an even number of different prime 

factors of D. 

- 1 if n has an odd number of diflerent prime 

factors of n. 

50, in both cases 

.'. conj conj f (n) = f (n) 

II. êonj ( f 1 X f~ ) = ( conj f 1) X f
2 = f 1 X ( conj f 2) 

Proof conj ( f1 X f 2 ) = ( f 1 X f 2 ) X E_l 

(conj fi) )( f 2 &II ( fi X E_l ) X f 2 

f
1 

X (conj f2 ) = f 1 )( ( f 2 X E_l> 

Since mul tiplicativn is commutative and associative, 

1 they are all equal , , . 
III. cOl1j (fi 0 f2 ) = conj f 1 Cf) conj 

conj ( = ( ..... 
Since multiplication is distributed by compoundin~, , which 

has been proved formerly , 1 

• 1 (1) has become 

... ( fi XE) ® ( 
-1 

-------------_ .. __ .. _- -

(by definition'of conjugate 

function ) 

( 1) 



C· ) 

We conciude this chapter by giving a few lemmas on 

multiplicative functions, which·will be useful in the later 

development of this thesis. The proofs of the firet two lemmas 

are too trivial to be written out, so.we Just state them without 

giving proof s. 

Lemma 1 Given that f{n) is a multiplicative function. 

Then f( 1) = o f (n) = o for aIl n 

and 

f (1) = 1 

Lemma 2 If f{n) ia an arithmetieal .function such that 

~ f (d) = 0 for aIl n 

tdaen f (n) = 0 for aIl n 

Lemma 3 If f(n) i8 a multiplicative function and 

F (n) == ~ f (d) 

then F (n) is also multiplicative. 

Proof : Suppose ( m , n ) = 1 and m and n can 

resolved in the following manner such that 

m = 

q ~s 
s 

be 

where the c;o(. 's and P>' sare positive integers, and the piS 

llj. 

and q's are distinct primes. The positive divisors dl of mare just 

the numbers dl = 
Yr 

Pr 

for aU possible choices of the 0' s wi th o~Y.~o<. 
1 1 

-------------_._ .. 
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Similarly the positive divisors d2 of n are such that 

where O~b.5.~ .• 
1 ~ 

Henee as dl runs through aIl positive divisors of m, d2 runs through 

a11 positive divisors of n, their produet d
1
d2 rune through the values 

d c d1d2 0:: 

)"1 T2 or f,1 &2 Ss 
Pl P2 •••••• P ql q2 .... . ·qs r 

where O~o.~o(. o .<: ~i~j3i' 1 1 

But sinee (m,n) = 1, therefore the values d are just aIl the positive 

divisors of 
0(1 0(2 o(r f31 (J2 Ids 

mn = Pl P2 •••• Pr ql q2 ····qs • 

i.e. L f( dl' d2 ) .. L f(d) 
d2/m d/mn 

Clearly (dl' d2 ) c 1, we then have 

F(mn) 0:: '1 f(d) 
d/mn 

L f(d 1d2) 
d2/n 

~ f(d1) f(d2) f 

d2/n 

ca F(m) F(n) 

( by the multiplicativity 

of f(m) ) 
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CIIAPTER II 

S OME nipORT.ANT ARITHMET 1 CAL FUN CT IONS 

In this ehapter, we shall deal with some important, frequently 

used arithmetical functions and d.Î8cuss their properties. 

i l'J-function 7(n) 

Definition!: cr (n) is defined as the number of different positive 

divisorsof n. 

It can be written in the form 

1 

Obviously, by use of lemma 3 of Chapter l, we can prove 

easily that."r(n) is multiplicative. Since '1 (n) CI 2:. 
d/n 

the form ~ f(d) and sinee f{n) = 1 is multiplicative, 
d/n , 

implies that 9r(n) ie multiplicative also. 

1 is of 

thus it 

The following is a very fundamental theorem on ~(n), 

seen in almost every text book of the theory of numbers. 

Theorem 1: 
~ "'2. .,(r 

If n = Pl P2 •••••• Pr ,then 

, .' 'r 
cr-(il) = TT 

i ... 1 
(0<..+1) 

l 

Proof: Since Pifs are the primes, 

• • cr ( p. ) = 1 + 1 
l 

,1 

J 

1 

1 
j 
1 
1 

l 
! 
J 
J 
1 
1 

1 

1 
j 
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do. 
l where the c<. + 1 

l 
positive divisors of .... ,Pi . 

Since ~(n) is multiplicative, 

.'. c:r(n) 

r 

"'TT 

oCr 
··.·Pr ) 

(0<..+1) 
1 

Some identities involving cr(n) 

1. n-l 
cor en) = n - 2, t ( n-h, h ) 

h~l 

Before proving the stated identity, some definitionsand 

lemmas have to be introduced. 

Definition 2: t( n-h, h ) is defined to be the number of divis ors of 

n-h,of which aIl are greater than h with n, h being integers 

and n ~ h~O. 

Definition :;: A( n.~ ) t if n â 0 ( mod x ) 

if n ~ 0 ( mod x ) 

whe~e n, x are both positive integers. 

From the definitioDs ab ove , we can see that t( n,O) = ~(n), 

and 
n+1. L A ( n+ 1, x ) - cr- ( n+ 1 ) 
x-1 

= t( n+l, 0 ) 

n+l .n =* L A( n+l, x ) ... L A( n+l, x ) + A( n+l, n+l ) 
x=l x=l 

n 
=9 L A( n+l, x ) = t( n+l, 0 ) - 1 

x-l 
..•..••. (1) 

", , 

i 
! 
! . 
i· 
J ' 

i 
j. 

i 
1 
1 . 

! , -

1 
! . i ,' .. 
! 

1 

! 
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( Lemma 1: t( n-h, h ) = t( n+1 - ( h+1 ), h+l) + A( n+l, h+l) 

Proof: From the definitions given above, it is seen that 

t( n-h, h ) "" t( n-h, h+l ) + A( n-h, h+l ) 

iJr t( n-h, h ) = t( n+l - (h+l). h+l ) + A( n-h, h+l ) 

.. n-h Ci n+l mod( h+l ) 

and by the property that 

n 2 nt (mod x ), 

implies A( n, x) :: A( ni, x ), ( trivial from the definition 

of A( n, x ». 
we can write 

t( n-h, h) a t( n+l - ( h+l ), h+l) + A ( n+l, h+l ) 

Lemma 2: 
n-l 

n - ~ t( n-b, h ) •..•..•• (2) 

h=O 
Proof: 
We proceed to prove by mathematical induction. 

When n=l, (2) is se en to be true 

as 1 <= t( 1, 0 ) 

Now, assume (2) i8 true when n=k, 

i.e. k-l 
k .., ~ t( k-h, h ) . ....... (:; ) 

h=O 

If we can prove that (3) implies 

k 
k+1 = ~ t( k+l-b, h ) 

b""O 

then the proot of this lemma is complete. 

By putting a oummation sign over the result of lemma1,we have 
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k-l k-l k-l 
L, t( k-h, h ) .. l: t( :k+l-{h+l), h+l ) + ~ A( k+l, h+l ) 

h=O h-O h=O 

Uere, put h+l D x, and substitute t;) in, we get 

k k 
k = ~ t( k+l~x, x) + 

x=i 

I, A( k+l, x ) 

x=l 

k '" l t( k+l-x, x) + t( k+l, 0 ) - 1 ( by (1) ) 

x""l 

k 
kT'1 ... 1 t( k+l-x, x ) 

x=O 

Thus the lemma is proved. 

Now, we come to the proof of the above stated identity on ~(n) 

iifself • 

~: From lemma 2, 

n-l 
n CI L, t( n-h, h ) 

h=O 

n-1 
ca L t( il-h, h) + t( n, 0 ) 

hal 

',' t( n, 0) = 7(n) 

n-l 
,'. ?,(n) = n - L, t( n-h, h ) 

hel 

Checking the validity of this identity, we can substitute 

n - 23 in as an example, 

22 
~(23) ... 23 - ~ t( 23-h, h ) 

h ... 1 
: 

1 

1 

1 

.... ~_."."~~,,, .•. ' ... '"'''n' ...•.. ~'"_''_ ... __ .• ------------___ . ________ . __ ._. _______ . ______ 1 



20. 

m 23 - [te 22, 1 ) + t( 21, 2 ) + •••••• + t( 12, 11 )J 
co 23 - [3+3+4+1+3+1+2+1+1+1+1 ] 

= 23 - 21 

which is actually the number of divisors of 23 • 

.. ...... (~) 

ry-x cr(n) is the number of divisor-pairs of n. l,et ri' r 2 , be two 

divisors of n, m = [ri' r 2J be the least common multiple and 

g '" ( ri' ~2 ) be the greatest common divisor. We now try ta group the 

m divisor-pairs in such a manner that, for every group, g is a fixed 

divisor r of n. Obviously, for eacb group, g is an arbitrary divisor 

of ~ while r 1 , r 2 must be of the form gml' gm2' where m1m2 c r 

and ( ml' m2 ) "" 1. Thus the number of divisor pairs in the group 

specified by r is ~(~) E2(r) 

first. 

« l • cr . E
2 

- CO; X ....,. 

Before proving this, we have to derive a few other relations 

• "').. -1 E." ••...••• ( 5) 

To prove (5). we note that E .À -1(n) enumerates aIl the 

divisors of n :'i1rhich contain no squared factor, thus is equal to 

E2(n). ( by definition of E2 ) • 

• • • • • • • • ( 6) 

The relation (6) ia a conseq~ence of (5). For, 

1 
1 

! 
.. / 



\. 

E
2 

X Â.. ... r.. x (E.~l) 

.. (À.X,E) • (Â.)( ~1) 

.. Â.. (Â. x?\.. -1) 

=Â. .E 

-1 
= E2 

-1 

21. 

( by (5) ) 

( by theorem 1 of Chapt@r l ) 

( by the distributive 

property of inversion 

by composition ) 

Now we can write 

i.e. 

(~x-r) . (E
2

X7\.) .. ("rX7) • E2- 1 

::: (cr .E
2

) • E
2

- 1 

.. cr 

(n) n ) 
r 

( by (I:l» 

where the summation runs thr~ugh aIl r 1 , r2 with n aD their lea8t common 

multiple. 

'.Do prove this, we have to introduce the notion of " block 

factors of n " first. Dy a block factor r of D, we shall Mean a factor 

r which i8 relatively prime n 
:'0 -. r 

Two factors r 1 , r 2 which have n as 

their least eommon multiple can be put "in the form 

ri = xyp 

r 2 BI xzq 

where n = xyz with x, y, z aIl being block factors and p, q are factors 

of y and z respectively, having no common bloek-factor with them. 

• • cor- (r
1
)'}-(r

2
) - ?-(x) er-(y) oor(p) ?'(x) T(z) "r(q) 

- cr(n) or(x) ?-(p) cr(q) 

--__ ,...·,.-.~t;;.1;1Tl':r.:r';';·T. ... :.,.\_,·_:~v."""'~ .. :-.. L ·lt··'.If.~_·""""·"·· _ ... ~._~-...--_.,_._--_ .. 

; 
<, 



( ia of the form Thus L 'r(r
1

) e-;-(r2 ) 

or(n) L7(r) n where each r occursas Many times as 
r 

can be expressed as the product of relatively prime factors. 

Le. l <T(r1) or(r2 ) c '1(n) X [or(r) • E2(~)J 

... or- (n)X ,..(n) x cr{n) t by (4» 

It is easy to see that an alternate definition of ~(n) can 

be worded as follows. 

22. 

Definition 4: ~(n) is equal to the number of aIl possible factorizations 

of n into a product of 2 factors. This can be further generalized to 

form 7 k(n) which May be defined as the number of a11 possible 

factorizations of n into a product of k fa~tors. 

Obviously, 

Lemma 3: jrk(n) ia a multilpicative function. 

i. e. cr k(mn) = '7"" k(m)"" k(n) 

where ( m, n) - 1 

Proo!: Suppose m and n can be factorized in the following manner, 

m III .... . f k 

n - ••••• gk 

then the corresponding factorization 

If we are given a factorization 

mn = 

then it follows that the fIs and the gIs are uniquely determined by 

the equalities 



c qi = figi 

Thus it f0110W8 that 

Lemma 4: 

( i c 1,2, ••••• ,k ) 

c-- ( o(.i) ( 0(. i + k - 1 ) 
(k Pi .... ---=-------

0<.. (k - 1 )! 
1 

•••.•..• (1) 

~: Here, we aha1l prove the 1emma by mathematical induction. 

Clearly (1) holds when k=l and k=2. 

For, Vlhen kal, 

ci.. 
cr-- 1 ( 

1 ) 1, Pi = 

(ci.. + 1 - .1 ) 
1 

1 
li • f III 

ol. i! Ot '" 

"hen k=2, 

01.. 

or 2( 
1 ) . "', + 1 p. 

1 1 

. (o{. + 2 - 1 ) 1 (o(i + 1 ) . 
0<- + 1 

1 • r;;I., + 1 • • ... a 
i 1 

d.., 1 ( 2 - 1 ) cI.... 
1 
. 

1 

Now, assume (1) is true for k-l 

0/., (o(. + k - 2 ) i.e. '?"' k-l ( 
1 ) Pi II< 1 

0<., 1 ( k - 2 
1 
. ) 

We ahall prove that it i8 a180 valid for 

23. 

To obtain a11 factorizations of 

k. 
o(i 

Pi into k factors, we 

oti can take each of the factorizations of Pi into k-l factors first 

and then in each case, factorize the first factor in aIl possible 
rJ.. 

ways into two other factors. Then among the factorizations of p.l 
1 



~nto k factors, we rlistinguish these where the first factor ia 

Pi~ with e arbitrary (O~e~k-1 ). Thus there are ?'1( Pie) 

"'. -e 
times ~ k-1( Pil ) factorizations with the same first factor. 

Byputting a summation over e with e ranges from 0 toC<. , we then 
1 

get aIl the factorizations of into k factors • 

. . 
, . 

. , 
and 

'( k( 

) ("'-. - e + k - 2 ) ~ .. 1 ( by assumption ) 

(o(i - e ) t . ( k - 2 ) 

cr 1( 
e ) 1 Pi ... 

"'i 
ot.i ot..-e 

) ~ '1k-l ( 1 ) Pi = Pt 
e=O 

(0< i - e + ok - 2 ) ! 

(o<.i - e ) ( k - 2 ) ! 

(o(. + k - 1 ) ! 
... 1 

O<i t (k - 1 ) 

Thus, the lemma is proved. 

r 

Theorem 2: ~ k(n) = 1 lIf(o(i + k - 1 ) 

[( k 1) ~ r i ... 1 0( i 

~l Q(2 D'Cr. 
when n ... Pl P2 •••••• Pr wlth the p's being primes. 

24. 

. ... 

... 
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,. 
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25. 

Proof: ~k(n) ~s a multiplicative function 

i=l 

r 
... Tf (0(1 + k - 1 ) ( by lemma ; .. 1i ). 

. i=l o(i ( k - 1 

r 

... lT 
[( k - 1 ) t] r' i .. l 

(~. + k - 1 ) 
1 1 

cl i : 

! tS - function cS (n) 

Definition 5: ~(n) is defined as the sum of the positive divisors of n. 

By definition, ô (n}can be written as 

<5' (n) ... l, d 
. d/n 

c) (n) is also a multip~icative function. For applying 

lemma 3 of Chapter 1, witb t(n) ... n, F (n) ... ~(n) , and since 

r(n) ... n is multiplicative, 80 it fo11oW8 that 6"{n) is as weIl. 

Tbeorem:ï: 

and n ... 

~: 

, 
• • 

The following is a well-known relation of 6i(n). 

cr (n) 

~~ 
Pl P2 

f5 (n) 

($' (n) 

r ot.+l 
1 

TI Pi - 1 
... -----------1-

i=l Pi 
oCr 

••••• Pr being the canonical factorization of n. 

i8 multiplicative, 
r 01. • 

.. 1T (Pi
l

) 
i .. 1 

o(i 2 
But the divisors of p. are 1, p., Pl' , 

1 1 

Q(i 
Pi is a geometric progression with a common ratio of Pi. 

- ,. 



c 

"-',. 
t ,,-

2 
1 + Pi + Pi + ••••• + • 

~ . 
r ,,{. +1 , 1 

r • 6' (n) -IT Pi 

i=1 p. 
1 

Eguations invol ving 6' {n l 

01.. 
l p. 

l 
.. 

1 

1 

04.+1 
1 p. 

l 
1 

A. Makowski [20] gave some resul ts concerning the equations 

( a) <S (x) "" 6' ( x+ 1 ) 

(b) 6( x+2)= 6(x) + 2 

He found that equation (a) has only 9 solutions in positive 

26. 

integers xf10,OOO. Theyare x = 1,., 206, 957, 133", 1364, 1634, 

2685, 297" and 4364. 

The equation (b) is satisfied by integers x such that both 

x and x+2 are primes. This equation has only 3 solutions in 

integers x~9998 where x i8 composite, namely, x = 43",8575 and 

8825. 

~ t! - function tUn} 

Definition 6: p(n) is defined as the number of integers not greater 

than and prime to n; i.e. the number of values of i such that 

o ( i ~ n with (i, n ) II: 1 

Bifb~6~we proceed to prove that p(n} is multiplicative, it 

is note-worthyto introduce the idea of residue system. 

Definition 7: A complete residue system (mod m) is defined as a set 

of integers al ,a2 , •••• am, such that 

(1) if i ~ j, then ai~ a j (mod m) 

(2) if a is any integer, there is an index i wi th 1 ~ i ~ m 

- " 



(. for which 

a ii a. 
l 

(mod m) 

e .g. The set {1,2, ••••• ,m-l,m} is an example of a complete 

residue sysyem (mod m). 

27. 

Defini tion 8 i A reduced residue system is a set of integers al' a2 , 

•••••• ,ah incongruent (mod m) such that if a is any integer prime 

to m, there is an index i, l~i~h for which aCi a.( mod m). 
1 

In other words, a reduced residue system is a set of representatives, 

one from each of the residue classes containing integers prime 

to m. 

e.g. The setti,5,7tH,1:;,17} is an example of a reduced 

residue system (mod 18). 

Lemma 5: Let (m,n) = 1. Suppose that a rune through a complete set 

of residues (mod m) and a' through a complete set of residues 

(mod n). Then a'm + an runs through a complete set of residues 

(mod mn). 

Proof: There are mn numbers of a'm + an. 

Assume 

a 'm 1 + a 1n ii a 'm + 2 a2n (mod Mn) 

then 
a 'm 1 ~ a 'm 2 (mod n) 

, . ( m,n ) = 1 

• al': ~ a 1 (mod n) • , 2 

Similarly, we can get 

al !!: &2 (mod m) 

Thus a contradiction arises. Since a runs 'I:,hrough a complete 

set of residues (mod m) and a' runs through a complete set of 



c 

28. 

residues (mod n), so 

al ~ a2 (mod m) 

al' ~ a2 ' (mod n) 

therefore, we conclude that aIl the mn are aIl incongruent and thus 

form a complete residue system (mod mn). 

Theore:n lj: p (n) 1s ·multiplicative. 

i.e. ~(mn) = ~(m),(n) where (m,n) =1 

Proof: Let p(m) be p and r
1
,r2 , ••••• r p be a reduced residue 

system (mod m). Similarly let p(n) be q and sl's2' •••••• sqbe a 

reduced residue system (mod n). If x is in a reduced residue system 

(mod Mn), then (x,m) = 1, (x,n) g 1, sinee (m,n) = 1; and hence 

x :!. ri (mod m), x ::. Sj (mod n) for some i and j. Conversely, if 

x !!!. r. ( 1Il0dfl!1) and x s s. ( mod n) then ( x, mn) = 1. Thus the 
~ J 

reduced residue system (mod mn) can be obtained by determining 

aIl the x's such that x= ri (mod m) and x ~ Sj (mod n) for some 

i and j. According to Chinese Remainder Theorem, each pair of i,j 

determines only one x (mod mn), i.e. different pairs of i, j give 

different x (mod mn). But there are pq pairs of these i,j, there-

fore the reduced residue system (mod mn) has pq c '(m);(n) 

elements. Rence we have 

Theorem 5: 1 
1 - -P 

) 

where the product ranges over aIl the distinct primes which 

divide n. 

Proof: Since p(n) is multiplicative, and if 

then 

r 

n = Tf 
i=l 

0(. 
~ p. 

~ 

.. ' 



of... 
We can evaluate 11,( p. l ) directly. AU the positive integers 

1 
cl.. 0(. 

Dot exceeding p. l are prime to p.l except the multiples of Pi' and 
1 ot.-l 1 

1 there are just Pi of these. 

fience f 

01... 

p( Pi
l 

) 

, 
~(n) 1 • 

Theorem 6: 

o(i ~.-1 
1 

0: Pi - Pi 

r ~. 

-"Tf tJ( Pi 
1 

i=l 

r "'1 =lT Pi ( 1 

i .. 1 

r rJ... 

=n-
1 

Pi 

i=l 

• n 1T (1 
pin 

t>l.. 
... Pi 

1 

) 

- ! ) p. 

r 

1f 

1 
P 

i.1 

1 

( 

- ! ) ( 1 
Pi 

- ! ) 1 
Pi 

Proof: Let dl' d2 , ••••• ,dk be the positive divisors of n. We 

group the integers a' s f (1 ~ a ~n ) into classes C(d1 ), •.•. , C(dl.J, 

putting an integer a into the class C(di) if (a,n) .. di. The number 

of elements in C(d i ) ia then 

L1 
a~n 

(a,n)ad. 
1 

and since every integer up to n ia in exactly one of the classes; 

L L 
d./n a~ n 

1 (a,n)ad. 
1 

1 - n 

The number of tl,:ae integers a's i8 exactly equal to the 

i 
1 

1 
j 

f 

i 
! 
;. 

1 
,1 
:\ 
\ . ________ . ,J 
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number of integers b' 8 such that h ~ t and (h, t) = 1. From the 
1 1 

definition of p(n), the number of b's is clearly p( n ). Thus, d. 
1 

d~ 
1 

which is equivalent to the theorem; since, as d. runs over the 
1 

divis ors of n !! , d. also runs over these eame divisors, but just in 
1 

reverse order. 

• • 

GeneralizatioDs of @(n) 

1. An alternate definition of ~(n) would he as fol10w8, 

Definition 9: _(n) ie defined as the number of ordered pairs < x,y) 

for which x+y = n, 1 ~ x ~ n, and 'X ,y both being re1ative1y prime to 

n. It is easy to Bee that this definition of ~(n) is equivalent to 

the one given above.( see definition 6). 

The following i8 a generalization of the definition of the 

Euler's p - function, euggested by S.K. Stein[i]. 

Definition 10: The function p(n,m) with m~O ie defined as the number 

of ordered pairs <:x,y) for which x+y la n+m, l~:x~n and ",y, 

both being rel~tively prime to n. 

Specifically, when m = 0 • p(n,m) would be the same as p(n). 

The mùltiplicativity of p(n,m) is not as obvious as that of 

p(n) • 

Lemma 6: p{n,m) is multiplicative, 

Le. p{a'u,m) a p(a,m)p{b,m) 

if (a,b) • 1 

----------------------- - ._--- .. ---_ .. ,\ 



Proof: Let S1 ={ xl'.··. ,X~(a,m)} be the set of aIl values of x 

for which x+y cr a+m, l ~ x ~ a, and x and y both being relatively 

prime to a. Now, if (a,b) ... 1, then it ean be shown that for eaeh 

x for which x+y .. ab + m, 1 ~ x ~ ab, and x and y both relative ly 

prime to ab, we must have 

X. 
1 

( mod a ) ••••• (1) 

then 

x • x. + ka 
J 

and for some y, 

x. + ka + y 
J 

ab + m ..... (2) 

and for some z, 

X
j 

+ Z .. a + m •.••• (3) 

where either (xj,a) • gl> 1 or (z,a)" g2> 1, sinee otherwise Xj 

would be in Sl' 

Now, (xj,a) .. g1 

:9 gl/x and gl/ (x,ab} ... 1, 

80 that g2 is greater than 1. 

But, subtracting (3) from (2), we get 

g2 I(y,ab) .. 1 

• • x ~ xj (mod a) ; Xj~ S1 

., (1) is derived 

Le. x.!! x. (mod a) 
l 

Bence, if x+y .. ab +m, 1 ~ x ~ ab and x and y both 

relatively prime to ab, then x is of one of the forms 

31. 

\ 
:,\ 
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32. J 

Xi' xi+a, x1+2a, .••••• ,x i +(b-1)a, •••••••• (4) 

where xie Sl' For each i, the set of numbers given by (4) cODetitutes 

a complete residue system ( mod b ), since (a,b) = 1. 

Now, let S2 ={ Xl' , •••.•••• 'X'~(b,m)} be the set of a11 values of 

x for which %+y CI b+m, 1~ x ~b, and X and y both relatively prime 

to b. Then repeating the arguments used to derive (1), we observe 

that only tbose elements of (4) can satisfy the given conditions 

Le. x+y = ab+m, 1 ~x ~ab, (x,ab) = 1, (y,ab) = 1, which are 

congruent to some element of S2(mod b). Thue, for each i, tbere are 

~(b,m) values in the set given by (4) which are easily se en to satis'y 

aIl the required conditions so that,since there are p(a,m) values 

of i, we have 

p(ab,m) z p(a,m)~(b,m) 

Tbeorem 7: ~(n,m) = n';"( 1 _ é m( Pi » 

i-l Pi 

"'1 0(2 cX r where n = Pl P2 ••••• Pt witb the p'S being primes 

and é (p) 
m if pfm 

if p/m 

We have already proved the special case of tbis tbeorem 

wben m ... ° r 

i.e. p(n) = p(n,O) ... n lT ( 
1=1 

~: Since p{n,m) i8 multiplicative, 
r oL 

,,', ~(n ,m) ... 1T ,s'Pi 1 ,m) 
i=1 

Let'a now firet prove 

l 
l , 
i 



\' 

3J, 

cJ.. 01... 2 ~(Pi1,m) c Pi 1( 1 - - ) if p.(m 1 Pi 
Q(i oC -1 

As x rune through the numbers 1, there are 1 ..... ,Pi , Pi 

values of x which are divisible by p. and consequently have to be 
1 

01... 
subtracted to satisfy the ·required conditions. Sinee x+y = p. 1 + m 

1 

( definition 10 ), it ie impossible that both x and y are divisible 

by p., as p./m, and since y runs through a complete residue system 
1 1. 

~ ~ (mod p. ), as x runs through the numbers 1, ••••• , p. , there are 
cC. -1 1. 1 

p.1 values of y which are divisible by p., which oecur in ordered 
1 1 

pairs <x,y) distinct from those for which x ls divisible by p .• 
1 

We therefore have 

d.. 
~(p.1,m) 

1 

.. "'i 
Pi ( 1 2 ) 

Pi 

For p/m, we observe that in this case the ordered paire 

which x+y "'i in which x ie divisible by p. = Pi + m 1 < x,y> for 

identical with those for which y ie divisible by p., so that 
1 

0(. o{i Q(.-1 
~(Pi1,m) 1 = Pi - Pi 

ot i ( 1 -
1 ) = Pi Pi 

r 
r).. 

Thus, ~(n,m) -lT p.(p. 1,m) 
1 

i .. 1 

r 
01.. 

=IT Pi
1

( 
2 ) 1 - -

i=1 
Pi 

when ptm 

r 
01.. 

Tf Pi
1

( 
:1 ) 1 - -

i-1 
Pi 

when p/m 

are 



r g(. r 

~(n,m) ""Tf 
1 Tr( 1 

2 ) Pi Pi 
i ... l i=l 

when p/m 

r o<.i r 
1 

Tf Pi TT( 1 - - ) 

i=l icl 
Pi 

when p/m 

r 2 
= n Tf ( 1 ) 

i ... l 
Pi 

when p1m 

r 
1 

n TT ( 1 -

icl 
Pi 

when p/m 

r 
m(Pi) 

= n1f ( 
e 

or 1 - ) 

i=l 
Pi 

when E~(Pi) 
"{: 

if Plm 

if p/m 

II. C.S. Venkataraman (2.9] gave another generalization of Euler's 

~ - function which bears a certain similarity to the previous one. 

Definition 11: 

p{m,g) is defined as the number of the positive integers which 

are not greater than m and which have a specified divisor g of m 

as their g.c.d. ( greatest common divisor ) with m. 

We can see very eaaily that when g ... 1, 

p(m.l} ... ;(m) 

The multiplicativity of p(m,g) here is again not as obvious 

as that of ~(n). 

Theorem 8: p(m,g) is a multiplicative function, 

i.e. if (m,n) = 1 and g' ia any divisor of n, then 

" f 
~: It follows from lemma 5 that if b is any number of a complete 



set of residues (mod Mn), then b can be written uniquely in the form 

of a'm + an (mod mn) where a is a number of a complete set of 

residues ( mod m) and a' is a number of a complete set of residues 

(mod n). 

Suppose now that (a,m) = g; (a',n) = g'. Then since (m,n) c 1, 

(g,g') g 1, and 8lso 

(an,m) ID g (a 'm,n) 0:: g' 

• • (a'm+an,m) Qg; (a'm+an,n) CI g' 

• • (a'm+an,mn) - gg'. 

Obviously there are ~(m,g)~(n,g') numbers of a'm+an and by 

lemma 5, they are distinct (mod Mn). Rence it fo110w8 that there 

are at 1east ~(m,g)~(n,g') numbers not greater than mn and having 

the g.c.d. gg' with Mn. There cannot be more, for, if b is one of 

the p(mn,gg') numbere, by lemma 5. ( since then b ie also a member 

of a complete set of residues mod (mn) ). 

b E a'm + an : (mod mn) 

also (b,mn) ID gg' , 

,', (a'm+an,mn) 0:: gg'. 

But. (m,n) 0:: 1, and (g,g') Q 1 

.. . (a'm+an,m) '" g (a'm+an,n) ID 

• • (an,m) .. g (a'm,n) ID g' 

, . (a,m) ID g (a',n) CI g'. 

g' 

l" There can be only ~(m,g)~(n,g') numbers not greater than mn 

having the g.c.d. gg' with Mn. 

Hence p(mn,gg') Q p(m,g)9(n,g') if (m,n) '" 1. 

Theorem 9: 
~(m,g) - !1f( 1 - ! ) where prune through the distinct g p 

___ . -__ . ___ . ___ .. _____ 1 
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set of residues (mod mn), then b can be written uniquely in the form 

of a'm + an (mod mn) where a is a number of a complete set of 

residues ( mod m) and a' is a number of a complete set of residues 

(mod n). 

Suppose now that (a,m) ~ g; (a',n) = g'. Then since (m,n) • 1, 

(g,g') = 1, and 8lso 

(an,m) ID g (a'm,n) = g' 

• • (a'm+an,m) ... g ; (a'm+an,n) • g' 

• • (a'm+an,mn) - gg'. 

Obviously there are ~(m,g)~(n,g') numbers of a'm+an and by 

lemma 5, they are distinct (mod Mn). Renee it follow8 that there 

are at least p(m,g)~(D,g') numbers not greater than mn and having 

the g.c.d. gg' with mn. There cannot be more, for, if b is one of 

the p(mn,gg') numbers, by lemma 5, ( since then b is also a member 

of a complete set of residues mod (mn) ). 

b E a'm + an : (mod mn) ; 

also (b,mn) a gg', 

• " (a 'm+an,mn) = gg'. 

But, (m,n) 0: 1, and (g,g' ) ... 1 

• (a'm+an,m) (a'm+an,n) ... g' • 1 ... g 

• • (an,m) ... g (a'm,n) .. g' 

, . (a,m) .. g (a',n) a g'. 

~'. There can be only ~(m,g)~(n,g') numbers not greater than mn 

having the g.c.d. gg' with mn. 

Hence p(mn,gg') ID p(m,g)p(n,g') if (m,n) = 1. 

Theorem 9: 
~(m,g) - !Tf( 1 - ! ) where prune through the distinct g p 

,-.. :",';' 
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prime factors of i. 
Proof: 

By theorem 8, elearly it is suffieient if we prove the result 

when m is a power of a prime p, i.e. it ie sufficient if we prove the 

theorem f'ô)r ~(pr ,pel.) where 01. S r. 

If 0/. = r, obviously ~(pr ,PX) = 1 ........ (1.) 

Next, suppose 0( < r. 

r- 0( . -l.. r r;j. Now, there are p c. :numbers ..r p which are multiples of p • 

It is evident that if we exclude from these, the numbers which are 

0<+1 multiples of p ,we will get precisely aIl and only those numbers 

( ~ pr) Q( r 0<+1 ~ which have the g.c.d. p with P • The multiples of p 

(l> pr) are pr~-1 in number. Bence the number of numbers ( :\> pr) 

whieh have the g.c.d. po/. with pr is 

Therefore 

if~~r, 
~ r 1 p(pr,p ) _ --2- ( 1 _ ) .••••••• (2) 

c( p p 

Combining (1) and (2) we çan at once obtain that 

r . r. 
if m"'lT Pi 1 

i=1 

~(m,g) 

r 

where p ranges over the distinct prime.factors of ~. 
g 
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§ Mobius !Z - function 
) 

j.t,(n) 
; 

Mobius function i8 one of the most important arithmetical 

functions, which ie defined as follows. 

Definition 12: 

~ - function is defined as followe 

jJ-- (1) = 1 

jL (n) ... 0 if a2/n, with a >1 

:n. 

( 

(1) 

(2) 

(3) r (n) = (_l)k if k ie the number of distinct prime 

case (i) 

factors of n. 

It is eaey to see that)LCn) ie multiplicative. 

For, if (m,n) = 1 

if one of m, n ie equal to 1, say m 

?- (mn) "" r- (ln) =: fA"'(n) 

• ii fk (m) aj-l(l) "" 1 ( by definition ) 

. '. r (m) )"-(n) .. 1. r{n) ICI r(n) 

Hence, f" (mn) .. r- (m) r(n). 

case (ii) if one of the m, n has a squared factor, say m; i.e. a2/m 

=* a2/mn 
~. 1 fA- (mn) .. 0 (by defini tion 

also, r-(m)r{n) :II 0 r(n) • 0 

,'. ~ (mn) - rem) r(n) 

ca~e (iii) if m has r distinct prime factors and n has s distinct 

prime factors ~ mn has r+s distinct prime factors • 

.).l.. (mn) lOI (-1 )r+s 

'.. r-(m) ?-(n) ... (_l)r. ( __ l)S ,. (_l)r+s 

~'. t- (mn) = rem) r-(n) 
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Alao, from the definition of~n) itself, it can be dedueed 

that 

if n=l •..•••.• (1) 

if n>l 

For, if we take Q(n) ... L, jA-(d), and ainee J'-"(n) ia multiplicative, 
d/n 

therefore Q(n) ie also multiplicative by lemma 3 of Chapter 1. Since 
0( 

Q(l) =)A-(1) ;:: 1 and Q(po<.) = L r-(pe) ... 1 + ( -1 ) .,. O· 

e=O 

we have the desired result. 

The following is the so-called Mobius inversion formula, which 

ts one ot the most important fundamental blocks in the theory of numbere. 

Theorem 10: Let :g(n) and t(n) be arithmetical funetions. l:l they satisfy 

the relation 

then 

Proof: 

g(n) .. Y,t(d) 
dTn 

f(n) ... ). r (~) g(d} 
dTn 

... L, r-(d) g(~) 
d/n 

ID L f(~) ~ }'<d) 
6/n d/~ 

.. f(n}~ ( by (1» 
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It ie trivial to see that 

therefore, the theorem i8 proved. 

The converse of this theorem is of frequent use in the the ory 

of numbers 81so. 

Theorem 11: 

f(n) = ~ ~(~) g(d) 
d/n 

::::, g(n) .. ), f(d) 
dTn 

Proof: 

L f(d) 
dfn 

.. L l (l(~) g(~) 
d/n blâ 

... g(n) by (1) 

It should be noted that g(n) and l{n) do Dot neoessarily have 

to be multiplicativa; in fact, any arithmetical function will do. 

Char~cteristic properties of ~(n) 
J 

1. The equation (1) stated ahove can be shown as a characteristic 

property of}4(n). In other worde, 

~heorem 12: If (1) ie satisfied by another function~*(n), then it 
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implie s that 

}A--*(n} !! ~(n) 

We can use the Mobius inversion formula to prove that it ia 80. 

Proot: Suppose that f-*(n) bas 

i.e. ~ J"-*(d) 
d n 

Take another 

w(n) 

Then, we have 

={: if n-l 

if n)l 

function w(n), 

if n=l 
D ~ 1 

L 0 if n>l 

w{n) ... )./A-*(d) 
d/n 

inversion formula, we get 

}J.. *(n) :: L, }Ao(n) w(â> 
d/n 

the property (1) 

defined by 

for a11 n. Renee by Mobius 

-,f'(n) w(l) (by definition of w(n» 

... r(n) 

Since it is true for aIl n, 

• ( • f<-*(Q) ;; r(n) 

II. U.V.Saty~nareyana [~41 established in one of his papers that the 

inversion itself is a characteristic property of the Mtibiue function. 

Tbeorem 1): 

Namely, in form of a theorem, it will be : 

Let f(n}, g(n) and~*(n) be three arithmetical functions, and 

g(n) ... 2~ f(d} 
dfn 

f(n} .. L jA-*(d) g(!} 
d/n d 

f(1) '" 0 

then'fL*(n) coincides withfk(n}. 

-, '." ,'.~ è', . ..:., •• ," .'l. •• "r.'.' ...... -----------

! 

! 
1 

> • 



Bafore we proceed to the proof of the theorem, we need 

to diseuss one lemma first. 

Lemma 7 

Proof: 

and 

If ~(n) and f (n) are two arithmetical functions and 

~ (n):.: L 0( (cS) ,t9 (~) 
f; ln 

then if n ,., 1 

if n> 1 

Take n = 1 and n m 2 in (2). We get 

{ 

0< (1) ... 0<.(1

0

) (3 (1) 

cA (1) '" 

{ 

0<. (2) z::: d, (1) f-, (2) + 0( (2) (3 (1) 

ct.. (1) '" 0 

............. (2) 

From the above equations, we have at once 

(3 (1)... 1 

fô (2) = 0 

By mathematieal induction, it iseasy to show that 

f (n) ... 0 for aIl n ~ 2. 

- ------------ - - --- ------ .\ 
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Proof of theorem 13: 

f(n) = L fA- *( d) g( : ) (given condition) 
d/n 

= L ?,,*(d} I: l(b) (given co ndition) 
d/n ~/: 

= L "..*(d) 
~d/n 

f(b) 

r f(f,) 
\. 

= Lm ~*(d) 
(, /n d /-b 

Let f3 (n) = L fL' *( d) 
d/n 

We .then have 

l(n) = L f(~) (0 ( ~ ) 
6/n 

if n=l 
(by lemma 7) 

if ri >1 

Again, by theorem 12, it is provedthatjh*(n) 8stislies the 

three conditions of ;W(n), thus it is identical to the Mobius 

fL' - function. 

Remark: 

The condition f(l) 4 0 in theorem 13 proved above can be 

\ 
'1 

,'\ 

1 
\ 

• .J..L 
______ ." __ . __ ~ ___ •• _. ____ . __ .. _. ___ .. _. __________ ._~ __ . ___ . ___ . __ ---:- _____ .• ___ ~. ___ - •• _ ........ _~_ •• _~,.'._,._< ....... ; r.::O 
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Proo! of theorem 13: 

f(n) = ~ P-*(d) g(:) 
d/n 

(given condition) 

f(b) (given co ndition) 

\Ve 

L f(~) ~ 

= ~ f'"'*(d) 
~/n d lb 

Let ID (n) = L f'-' *( d) 
d/n 

then have 

f(n) = L f(~) (3( ~ ) 
6/n 

if n=l 

if ri >1 
(by lemma 7) 

Again, by theorem 12, it ia provedthat~*(n) satisfies the 

three conditions of jN(n), thus it is identical to the Mobius 

}'-- - function. 

Remark: 

The condition f(1). 0 in theorem 13 proved ahove can be 

,*2. 

i 
Î 
1 

'1 
il 

J 
1 
1 

0\ 
__ ...... '_' ___ '_ .. ___ • ______ . __ ..• __ ~ __ ".n_"" ,J 



C\ 

replaced by a more general condition f(n) ~ o. 

i. e. 

Theorem 14: 

with 

and 

Let r(n), g(n) and ~*(n) be three arithmetical functions 

( i) 

(ii) 

g(n) 

f(n) 

=L 
= ~n 

t(n 

(iii) f(n) * 0 

g( : ) 

then y.. *(n) coincides wi th r- (n). 

\Ve need a tew lemmas before we can prove tbe above theorem. 

;{,emma 8; If D«n) *" 0 andP(n) * 0, 

then 

proo!: Suppose ml and ni are the least of the positive integers. 

m and n to make o<.(m) :\:0 and f3 (n) =\: 0, 

Now, ({ (mini) = Y. do. (d)fo<.!!!fr) 
d7nÇn1 

• dTm~nt <A (d)fI(.!!!ft-) "'\(mt)p(nt ) 

d,ml 

.\ (:, (~) = 0 

when d<ml ' oi..{d) = 0 

i 
1 

:\ 
j 
! 
1 
i 
1 

___ .. __ .......... __ ....... _ .............. _' .... , ..•. ,. :.:~.,!.-,.,:,....." .... '-., .. --,. .. -_ .... :..-." ... T,".~'n01.f--"' ...... "" ..... .......,. ••••• _ ...... _~ _____ . ___ -. ______________ ._. ___________ :..1 
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, • o(m1n1 ) = o(m1)/3(n1 ) '" 0 

i.e. Y (n) :: L 0<. (n)fo(~) $ 0 
d/n 

Lemm&....9 ;: If 0< (n) and ft (n) are two ari thmetical functions and 

(1) o(n) $ 0 

(2) ri.. (n) :: L o<.(d) f.i (i) 
d/n 

then f3 (n) = {: if. n-l 

if n>l 

Proof: Define a function Y(n) '" {1 if nal 
O. if n>l 

then it is clear that 

and by h~pothesis (2), we have 

.. 
0< (n) "0 ( by hypothesis (1) ) 

and by lemma 8, we get 

~ (!!) - t(!!) ;; 0 IV d d 

or, which ie the same thing, if we write it as 

(3 (n) .... )" (n) a 0 

i.e., fO (n) '" Y (n) 

1 (3 (n) -e if n ... l . , 
if n)l 

i' 
1 
1 

1 

:1 
1 
i ( 
1 

j 

1 

:1 

l 
·l 



c) Proof of theorem 1~: 

From (1) 

f(n) 

and (2) of the hypotheeis. 

= ). f-*(d) I, f (~) 
d7n ~/â 

where /1. (~) is defined as 2, P.*(d). 
'" l) dl! f> 

\fe get 

Since by (1) of the hypothesis, f{n) i 0, therefore 

Id (n) ~ { : 

and by theorem.12. 

if n=1 
( by lemma 9·· ) 

if n>l 

1re have (i) r- *(1) z: 1 

(ii) f"- *(n) = ( -1 )k if n has k distinct prime factors. 

(iii) f- *(n) • 0 if a2/n with a) O. 

i.e.~*(n) coincides with the Mobius fL- function. 

Generalization of }A:(n) 
; 

In one of his papers, H. Gupta(18] gave a certain 

generalization of fL(n) which is defined as follows. 

Definition 1:;: v (n) ie defined by the relation 
r 

d~ v (d) -t (r~ 0) if r a being a positive n-a , 
r 

(r~ 0) if 
r a being a positive n"a , 

Evidently v (n) is identical with the Mobiu8 function 
r 

f' (n) for r • O. 

inteser. 

integer , 

j 

l 
i 
! 
i 
1 

1 
il 

~ 
\ 
\ 

, ~: 
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For r a l, the function v (n) appears to be of little 
r 

importance as 

in place of 

a{l 
o if n+l 

Therefore, for convenience's sake p we shall write v(n) 

v (n) with r being an integer > 2. Also, p with or without 
r 

8ub8cripts will denote a prime ~ 2. 

Theorem 15: v(n) ia a multiplicative function 

i.e. if (a,b) .. 1, then 

v(a,b) .. v(a) v(b). 

Proof: 

Suppose the theorem is true for every n~(ab - 1). 

Then 

~ v(d) 
d/ab 

.. L v(d 1d
2

) 
d/a 

d2/b 

a L v(d 1 ) • 'I v(d2 ) + v(ab) - v(a)v(b) 
d1/a d2/a 

Now, two cases arise. 

case (i), if a and b are both r th powers of integers > 0, then 

the left side is equal to 1, and 80 a180 is each sum on the right side. 

• • Y. v(d) 
trab 

e L V(d1 ) • T. v(d2 ) 
d/a d;1P 

case (ii), if at least one of the numbers a and b is not en r th 

power, the left side ia zero and so alao is at least one of the 

aigmaa 

• • 

on the right. 

again, L' 
d/ab 

v(d) 

; 
l 
j'-

1 
i 
:j 

! 
i 
i 

j 
I( 
1 . 
1 

i 

! 

i 

1 
! 
1 

1 
1 
1 
1 
1 



() Hence v(ab) :'v(a) v(b) provided (a,b) a 1. 

The theorem now follows by induction. 

In view of the multiplicativity of ven), we n6ed only to 

find the value of v(p~), (~~ 0 ) in order to find the value of v(n). 

Now, 

L v{d) = L V(d1) + v(po<. ) 

dit 1 ~-1 dl P 

If oI-iëi 0 (mod r) , we have v{po{) ... 1 

If o{s 1 (mod r) , we have v{po<. ) as -1 

If of. , 0 or 1 (mod r), we have v(p...:.) .. 0 

These results hold for the Mobius function. 

1 ( 
1 

'-
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CIIAPTER III 

1 N VER S ION 

~ Fundamental theorem of the theory of inversion 

Arithmetical functions play a very important 

part in 11 inversion" which is one of the most interesting 

topics in number theory. The Mlibius inversion formula is 

usually considered to be the" principle of inversion of arith-

metical functions." The Mobius function is rendered indispensable 

in the whole theory of inversion. In fact, i t is on i ts property 

i t- (d) = { 1 
d/n 0 

if n = 1 
••••••••••• ( 1) 

if n 1 

that the Mobius inversion formula depends. 

However, analogous to (1), there holds a property 

for any numerical function f(n), not for f'" (n) alone, that throws 

a grijat deal of light on many inversion formulas. The said pro-

pert y can be given in the form of a theorem. 

Theorem 1 

For any numerical function f(n), it is possible 

to determine a numerical function fI (n) such that 

L f(d) fI (b) _ { f( 1) 
- 0 

if n = 1 
if n > 1 

where the summation2refers to all pairs ( d, b) of conjugate 

divisors d,~)O of D. ( n = db) The required fl(n), called 



( the reciprocal of f{ n) , can be defined by 

f' ( 1) = 1 J 

(n) 
o({n) k[ ~ l f' = ~l ( -1) f( n) k 

fl{( 1) 
, n>l 

whereo«n) is the total number of prime divisors of n and 

[f(nD k denotes 

i f( dl) r( d 2 ) ............ f( dIe) 

with the summation going through aU the distinct resolutions 

of n into k factors each of which is greater than 1. 

The proof of this theorem will be more clearly 

seen if we here give a numerical example first. 

Example: 

Let n = 18. Then, the pairs (d, ~) of conjugate 

divisors of 18 being 

(d,~) = ( 1,18), (2,9), (3,6), (6,3), (9,2), (18,1), 

Let us now first calculate f'(18). Tbe distinct 

resolutions of 18 will be: 

1 factor 18; 

2 factors 2,9; 3,6; 6,3; 9,2; 

3 factors 2,3,3; 3,2,); 3,3,2; 

Bence, 

~9 .• 

f' (18) =( -1) l--.!.l.ill+ (-1) 2 [f( 2) f( 9) +f{ 3) f( 6)+f( 6) f( 3) +f( 9) f( 2)1 
f{l) [ f2(1) j 

+ (_1»)[ f\2)f\3)f(3)+f{3)f{2)f(})+f(3)f(3)f(2)] 

f3( 1) J 



(J 

Similarly, we get 

-- !L2l 
f(l ) 

:a _ ll§l 
f(l) 

f' (2) - - ~gl 
1'(1) = 1 

+ 

= - .llil 
1(1) 

50., 

.\ 1 f (d) l'(f>) "" f(1)f'(18) + Pf(2)1'(9} + 1(3)f'(6) + 1(6)1'(3) 

+ f(9)1'(2) + f(18)f'(1) . 

: f(l) [_ !lli.l + 2 1(2)f(9) + 2 1(3)f(6) _ 3 f(2)f 2(3il 
f(l) f2(1) f2(1) f3(1) J 

• 0 

+ f(2) I-.ti2l + ~]+ f(3)"[- ilil + 2 f(2)1(3>J 
f(l) f2(1) f(l) f2(1) 

+ 1 ( 6 ) [_ . .tlil J + 
, 1(1) 

f(9)[_!1.tl] + 1(18) 
1(1) 

.-- ---_._------ ........ _-----



Thus the theorem is verified for n ::: 18. 

Now, we proceed to the proof of the theorem 

itself. 

Proof: 

When n = l, the theorem is trivial. It remaina 

to prove the case when n"> 1. 

Glancing at the el!Cample given above, it is 

seen that to prove 

~ f{ d) fi (ft) = 0 forn>l, 

i t is sufficient to prove that the coefficient of the parti-

cular term 

f( dl) f(d2) f(d
3

) •••••••• for (dl!:) 

where the values of dl' d2 , d
3

, •...•••.. < dk are fixed except 

as to order, ia zero in the sum 

,. n>l ••••••••• (2) 

le being defined by 1 ~ k SO«n). 

It is evident tbat the only terms in (2) 

contributing to the required coefficient will occur only in 

those of the following products for which the arguments of f 

are distinct: 

51.< 

f(l) f'(n), f(d) fl(-G), ..... f(d}\:) f'(~) 
Let Ak{n) denote the total number of distinct 

resolutions of n into k factors each greater than l, ,rllile each 

of the resolutions is constructed from the fixed ( except as to 



(, 

order) values dl' d2 , •••••• , dk;and similarly let Ak_/~) 

denote the total number of distinct resolntions of ~. into 
~ 

k-l factors each greater than l, each resolution being 

constructed from the same set of values only with d. omitted. 
J. 

Then it is seen immediately that the required coefficient is 

. (_I)k [ <' l 
fk-l(l) Ak{n) - ~ Ak_l ( ~i)J 

where~' extends only to those d., each counted once only, 
~ 

that occurs among the set of fixed values dl' d2, ••••• , dk. 

The point here is that i' refers only to those of the dl' 

d2 , ••••••.• , dk that are distinct. 

It remains to find the value of Ak(n) and 

Ak_l(~.). In finding Ale(n), we have to de termine only the 
~ 

number of different ways in which the le fixed values dl' d2 , ••• 

•..• ,dk may be rearranged among themselves • 

•••.•••• :., d be the distinct factors y 

among the k fixed factors dl' d2, •••••.•.• , d
Ic 

and let 

k = r y + Z, O<:z<y •••••••••••• (3) 

\Ve may arrange the d' s into sets S., S . ( i :; 1,2, ••.•••• ,Zj 
~ z+J 

j :; 1,2, •••••..• , y-z 

-_._-------------"\ 
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dl , d2 , · ....... , d , · .... , d 
Z y 

d , d y+2 , · ....... , d , • •••• J d2y ' y+l y+z 

d 2y+l , d 2y+2 , · ....... , d 2y+z ) · .... , d3y' 

· ....... , 
•• 000 •• " · ....... , · ....... , 

d(r_l)y+l, d(r_l}y+2, .••••••• , d(r_l)y+z, ••••• dry, 

d li 1) d ry+l , ry+.. • •••••••• , ry+z, 

with S.= d . ( a =: 0, l, t) r ) 
1- ay+l -, ................ , 

S .=db + j \ b =: 0, l, 2, ....... ,r-l ) 
z+J - Y + z 

such that aIl the factors in each set S. are equal , 
1 

i • e. 
• ••••••• = d{r_l)y+i =: dry+i 

and aIl the factors in each set S . are equal, 
z+J 

i . e. d . 
z+J dy+Z+j = d2y+z+j = ••.•.......• = d(r_l)y+z+j 

but no factor in any set is equal to any factor of any other 

set. Renee, the resolution 

n =: dl d2 d3 
••.•••.•••••••• dk ......... (4) 

is equivalent to 

53. 

n = (d1d2 ........ dz)r+l ( d
Z

+l d
Z

+2 ...... dy)r ..... (5) 

distinct. 

The total number of factors is thus 

z ( r + 1) + ( Y - z )r = yr + z = k 

whieh coincides with our assumption in (3). 



() 
Sincel4)is equivalent to (5), ~herefore the 

number of different arrangements of the dis in (4) is equal 

to the number of different arrangements of the d's in (5). 

By definition of Ak(n) , we can say 

k 

y-z 
) 

Similarly it fol1ows that 

·5~. 

(k-l): ) 
---~:':'-Z----':I'--L-""'~-· ---y--~z {i -1,2, .. , z 

[[( r+l)] - r ~ ( r! ) 

( k-l )! 

or we can write 

Thereîore 

= 

= 

Ak_l(~) = 
r + 1 

~ ( n ) 
d. k 

1 

Ak_l (~)= _r_~ ( n ) 
d. k 

J 

Ak{n) -I-' A (~) 
!{-l d. 

1 

z 
AIc(n) - .2:. Ak_l(~.> -

i=1 ·1 

Ak{n) - z (.!;1 ) Ale ( n) 

z ( r+l 
Ir 

± A
k

_
1 

(..2!.) 
d. J=z+1 J 

- ( y -z ) ((-) A
k

( 

( y-z ) r J 
le 

n ) 



) 

= Ak(n) [ k - Z\- zr + zr] 
= ~(n) l k - ~ z + ;!r l J k 

[ k - k 1 = Ak(n) k 

= 0 

~ -1 }k [ Ak(n) - I: Ak_l\ :/) ] = 0 . , 
:tk- l (l) 

f (d) o 

Thus the proof is complete. 

A",special case oI the above theorem is also note-

worthy. it is the case when the numerical function f(n) ia 

restricted to be multiplicative. In which case, the f'ln) ia 

usually called the inverse of f{n), (same as the f-l(n) defined 

in Ghapter 1 ) which is also a multiplicative function itself. 

With the multiplicative property of fln) and ft(n), the pro of 

of the theorem is mueh simpler. Here we shall give a pro of of 

the above theorem with the restriction that f(n) and fl{n) 

are multiplicative. 

Proo!: 

0( ta 
Now let n = Pl P2 •••••••••• 

with the pts being prime numbers. Sinee f(n) is multiplicative, 

• ( ) (c() . fo 
t, f n = f Pl f ~ P2 ) ••••••••• 

Thus from arbitrary values associated with prime-power values 

of n, we can build up a unique multicative function. 
ct.. 

Suppose that we are able to determine numbers !'lp j 

550 



( 
for every prime p, and every index 0<., such that 

fp t>(, 

= { f(~) foro( == 0 
f (+) fI ( d) ......... ( 6) 

foro()- 0 

Let fI (n) be the multiplicative function constructed 

from the values fI ( t"), Sinee f and fI thus defined are both 

mul tiplicati ve, then the composi te F is also mul tiplicati ve. 

We recall that tlle definition of composite F of fI and f 2 ia 

given by 

Therefore, 

F(n) = F ( Pl~ ) F( P:) •........... 

'6) F (pot..) But from l 1 each = f(l) or 0, according as ~ is 

equal or greater than zero. Also since f (n) i5 lDultipli cathTe, 

sa it implies that f(l) = 1. 

•. fk( 1) = {=f( 1) for any integer k > 0 

Bence 

F(n) =L f (.E- ) 
d/n d 

ft (d) 

_{ f(~) if n = 1 

if n > 1 

Thus the ~leorem is proved, provided we can determine 

numbers fl(po<.), satisfying equations of the type (6). 

However, the determination of the numbers f'(pO<) is just a 

matter of straight-forward solution of linear equBtions. 

Thus, for gi ven p, o{, the equations (6) are: 

r 1 

1 



( \ f(p) + f' (p) 

f(p2) + f(p) f'(p) + f'(p2) . . . . · · 
Solving these, we have: 

f(p) 

f(p2) 

(-1) f' (~ • • .. • 
f(l--l) 

f (pd.) 

1 

f(p) 

. 
f(t-2 ) 

f(pO<-l) 

0 

1 

Il 0 

• 0 · · • · · 
Il 0 

0 

0 

....... 0 

•••••• 0 

•••••••••• f(p} .. 1 

................ f(p) 

Thus, with these numbers f'{op""), our proof is complete. 

Before we prove a statement of Liouville to illistrate 

one use of the theorem stated above, we first note a fact which ie of 

considerable importance. We see that 

~ [fl (d) ~ f2(~1) f3(~2)] 
and ~ f 1 (dl) f 2(d2 ) f 3(d

3
) 

are identical, where the first of which I, refers to aIl d, ~ such 
n 

that d ~ = n and L to aU ~ l' ~ 2 such that ~ 1 b 2 co ~ ; and in 

the second, ~ re~fers to'.aIl dl' d2 , d
3 

such that d1d2d
3 

.. n. 

Similarly, 

~[fl(d) ~f2(~1) f 3(62 ) f 4 (b3)] , 

n - d~, ~.S16263 

~ l~ f 1(d1) f 2(d2) ~ f3(Sl) f~(62)]' 
n - d~, d - dl d2 , ~ -~1 ~2' 

~ f 1(d1) f 2(d 2) f 3(d3) f 4(d4), 

n '" d1d2d3d4• 



r / 

are aIl equal. This applies to any number of functions, wJ1ich, 

moreover, need ~Qt be aIl distinct. 

Illustration of the use of Theorem 1 

Now we sha11 prove a statement of Lio'U.vi11e, which 

states that if 

~ A(d) B(~) i C(d) D(') •.•..•.••.••.•... (7) 
n 

and 

~ A(d) E(G) = 2. C(d) F(6) ••••••••••••.•• ' •• (8) n n 

for aIl positive integral values of n where A, H, C, D, E~ F, 

are aIl numerical functions of n, then 

Z. F(d) H(b) = Z- E(d) D(~) ................. (9) 
n n 

for like values of n. 

Proof: 

IIere we shall use multiple summation. Let h be 

resolved into sets of factors each greater than 1. 

(7) then becomes 

Z A (&1 ) B ( h 2) = ~ C( ~l ) D ( f, 2) 
b ~ 

'~=blb2 

since (7) is valid for aIl n, and hence for the positive integer~. 

Multiplying (10) by C· (d), the reciprocal of C( d) 

( as defined in Theorem 1 ) and summing the result with respect 

to a11 d, we have 

~[ C'(d) t c( 6 1) D( ~2)] = { [CO(d)1 A(SI) B(~2)J 
n = d ~ , 

or 

~ [D(d) f C'(I\) C(62) l = *r(d1 )CO(d2) B(d3~ 
n = dl d2 d3 ' 



59,.: 

By theorem l, we have 

C(l) D(n) = ~A(dl) C'(d2 ) lI(d3) 

or we can replace n by band get 

Similarly, we getfrom (8) 

A(l) E(d):;: ) A,~(dl') C(d2') F(d3'} ""a' .•............. (12) 

d = di d2 d} 

Multiplying the corresponding members of (11) and (12) and summing 

the result over aIl pairs (d,~), we have 

A(l) C(l) '[,E(d) D(6) 

= ~ f~ A' (dl' 

= ~ [2t
1 

d - dit 1" 1- lD!, 

= ACf) C(l) LF(d) B(h) . n 

d2 '" d2 (, 2' d} = d3 ~ 3 
(by Theorem 1) 

Dividing out the common factor A(l) C(l), we t~en get 

Here, we can see how Theorem 1 can be applied to prove Liouville's 

statement. 

Some inversion formulas: 

Now, with the fundamental block of inversion being set 

up, more and more inversion formulas have been established to 

'] 
,j 
:1 
'1 
:1 

_____ ._._. _______ . ___ .. ___ . . . .... ______ .. ~._. .. ... __ ~ _____ . ___ .~ __ . __ . _____ ._, __ • ___ ._~,, ___ , ,J 
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embellish the whole tbeory of inversion. 

Here, we abaii choose a few most'impurtant inversion 

formulas and discuss tbem accordingly. 

§ 1. Baker'a inversion formula (1890) 

H. F. Baker [ 3} established an inversion formula which 

states as follows: 

Let a
1

, .•.... ,an he distinct primes and S any set of 

positive integers. For k~ n, let F(a
l

, ...... ,ak) denote the set 

of aIl the numbers in S which are divisible by each of the primes 

For k=O, write F(O) for F, so that F(O) consists of the numbers of 

S which are divisible by a1 , •••••• ,an • We now divide F(a1 , •... ak ) 

into subsets. Those of its numbers which are divisible by no one 

of al' ..•... ,ak form the subset f(a1, .•••• ,ak). Those divisible 

by al' but by no one of a2 , •••• ,ak , form the subset f(a2 ,a
3

, ••• ak )· 

Those divisible bya1 and a2 , but by no one of a
3

,a4 , ••.• ,ak form 

Finally, those divisible by al"" 

F(a
1

, ••••.• ak) is defined-by 

60. 

the subset f(a3,a4, •••.• ,ak). 

akform the subset f(O).Thus 

F(a1 ,a2,·····,ak ) = f(a1,a2 ,···· ,ak) + 1t f(a2 , a3,··· ,ak ) 

+ ~ f(a3 ,aq ,. oo,ak) + ...... + fI f(a1) 
+f(O) .•••••••••••••••.••••.••• (1) 

where L, indicates a summation extendingto aIl selections of k-r 
r 

of the artuments a1,a2 , •••• ,ak ; the inversion is stated in the form: 



'. 

61. 

= F(a l ,a2,.·.··,an) - ~ F(a2 ,aj , •••• ,an) 

+ ~ F(a
j

,a4 , .... ,an) + ••••• + (_l)n-l~F(al) 

+ (_l)h F(O) ••••.••..•.•..••••••.•••••• (2) 

The inversion is proved by eounting the number of times 

that apartieular f oeeurs when each F is replaced by its equiva­

lent as defined by (1). For example, the function f(O) will occur onee 

from F(a ,a , ••••.• ,a ). 
1 2 n 

( n
1

) = n ! times from 
1! (n - 1) ! 

, .. . . . a ) 
n 

nI .. 
21 (n -'2) 1 

times from ~ F(a
3 

•• , a ) 
n 

• • 

(n n 1)= 
n 1 times from L F( al ) 

(n - 1)1 1 1 n - 1 
• 

( :)= 1 time from F( 0 ) 

n n . . 
1 - ( 1 ) + (2) . . . . . + (_l)n-l( n ) + (.l)n( n ) 

n - 1 n 

&:1 ( 1 _ 1 )n = 0 

• f(O) at al! in (2) • , , oeeurs none 

Similarly, f(a1) is seen to oeeur, on the whole" (1 _ 1 )n-l al 0 

times in (2). 

With the same argumœ,t, we ean prove that al! the funetions 

f (al' a2 ' ••• , ak) (with k < n ) actually donot oceur in (2). 

Thus only th,e f'!1Dction f(a1 ' a2 ' 

obvious. 

, a ) is left and (2) is 
n 

.J 
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s x. Cohen's first inversion principle (1959) 

E. Co~en [12] established the following inversion prin-

ciple: 

Let f(n,r) be a complex-valued even function of n 

(mod r). l'hen if r = ri r 2 ' where ri and r 2 are positive integers, 

i t follows that 

f(n, r) = L 
d/{n,r) 

h(d, ~) 

.--l> h(r i ' r 2 ) - L f( l,' r) fL( d) 
~ 

d/rl dl 

First of aIl, we shall define what an even function is. 

Definition 1 : A function f(n,r) is called even (mod r) if 

f{n,r) = f( (n,r),r ) 

where f(n,r) denotes a complex-valued arithemetical function of 

n and r, anù n, rare integers with r necessarily positive. 

Let us now proceed to the pro of of the above inversion 

principle itself. 

Proo!: 

A. By assumption, f(n,r) is defined by 

f(n,r) = L h ( d,~ ) 
d/(n,r) 

Then, using the relation 

Y. f(-li' f) (d) = ;!Trl (t 

----------------. 



if n = 1 · , if n ~ 1. . ................... '1) 

thus we have completed the first part of the proof. 

B. We assume this time that 

Now, we have 

L. h(d,~) = 
d/(n,r) 

L 
d/(n,r) 

L 
d/(n,r) 

= ,- f( (6 , r) {J d. 

Id n,r.) 

by definition of an even function (mod r) 

f(n,r) = f ( (n,r), r) 

, • the converse of A is proved nlso. 

jL(f.) 

The stated inversion formula leads immediately to a 

characterization of tlle class of even functions ( mod r ), which 

shows that: 

A function f(n,r) is even (mod r) if and only if it 

has a representation of the form 

f(n,r) = L 
d/(n,r) 

h ( d, + ) 

and the function h (r!, r 2) is uniquely determined by 

h ( r l' r 2) = Y. f ( ~, r ) r( d) 
dTr1 

for positive values of r 1 and r 2 • 
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We note that the above inversion formula is reduced 

to the ordinary Mobius inversion formula when f(n,r) is restricted 

to the subclass of complet&ly even functions (mod r), that is, 
.; 

functions satisfying t(n,r) = f( n~, ri) for aIl n, ni and aIl 

positive r, ri such that (n,r) = ( n', ri) 

In mathematical terms, we get the Mobius inversion 

formula from the above inversio~ formula by replacing h(r1 , r 2 ) 

by h(r1) and f(n,x) by g( ( n,r ) ) and putting r 2 = 1 

Le. we have the following statement (2) : 

Let f(n,r) be a completely even function (mod r). lt 

follows that 

f(n,r) = g( (n,r) ) =~, h(d) dAn, r) 

h (r) = 

= 

l t( +,.r )f"(d) 
d/r 

L g ( ~ )P.(d) 
d/r 

Thus, as in the case of the even functions (mod r) being charac-

terized by Cohen's first inversion principle, the class of 

completely even functions (mod r) is chatacterized by (2). 

§ Proof of Brauer - Rademacher identity 

Now, we shall give a proof of the Brauer-Rademacher 

identi ty [13J 

~ (r»). d ( r ) () t(r 1(dJP' T =r r 

(d,n)=l 

as an illustràt~onof the inversion principle which we just provcd 

above. Dut before proving the identity itself, it is necessary 

._--... -_ .. _------------------_ .. -.. _._---------_._---'---------,----



Ci to introduce a few definitions and some lemmas on ~ (r) and 

f4' (r) first. 

Lemma l : 

~ (n) LI r(d): 
d n 

We know that ~ (n) is the number of positive integers 

less than or equal to n that are relatively prime to n. Let T 

denote the set of integers 1,2, ••••••• , n, i.e. the set of 

integers i satisfying 1ii~n. We then separate Tinto subsets Td 

where d/n, by ~utting i into T
d 

if (i,n) = d. Then each element ~f 

T ia in exac~ly one Td• Moreover, i ia in Td if and only if i ia 

f th f . d . th 1 < . < n d . n) t "'h f th o e· orm J Wl _ J _ d ,an J, d == • ... ere ore ere 

are exactly p (:) elements in Td• Since there are n elements in 

T, we have n = LI ~ ( :) which is the same aa n = L: ~ (d). 
d n d/n . 

By Mobius inversion formula, we thua have 

Lemma 2 

, . 

~ (n) = L f-(d) : 
d/n 

If li is an integer~ 2 and p is a prime, then 

Then by 1 emma 1, ,ve have 

~ (pt) =)4(1) pt +~(p) pt-1 + .••••• +JX(pt) 

pt + (-1)P pt-t + 0 

= p( pt-1 _ pt-2 ) ••••••••••••.•••••••••• (%) 
t-l 

= p 
t-2 

- p 
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Thus, the lemma follows immediatelyo 

Definition 2: 

The core r (r) of r is defined to be 1 if r = 1, and 

to be the product of the distinct prime factors of r if r> 1. 

Definition 3: 

An integer r is called primitive if r contaills no square 

diviaors)- 1; and called non-primitive if i t does. 

From the def ini tions above, we can see tha"~f'tr) ~ 0, 

if r is primitive and p- (r) = 0 if r is non-primitive ° 

Lemma 3 

If r is primitive, and s is an integer > 1 such that 

'( (s)/r, then 

~ d !J- (d~ 
~ (ds = 0 

d r 

Proof: 

Let r = r l r 2 

Since li (s}/r, 

l' r(s1)!r1 and o(s2>!r2 

Thus the multiplicative properties of ~ (r) and jA'(r) 

imply that 

ft. H~:l = 

66. 

where dl denotes the divisors of rI and d
2 

denotes the divisors of r
2

0 

Since either sI) 1 or s2>1, so it suffices to praye 

, ' 

r 
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k the lemmain case r = p (a prime) and s = p, k>O. 

But d }N( d~ 
~ (dp ) 

which, by lemma 1, is equal to 
1 

::: p~ (pk-l) 

1 
= 

~ ( pl( ) 

= 0 

the lemma is proved. 

Lemma q 

If r is primitive and d is a divisor of r, then 

Proo!: 

Since ris primitive and by the mui tiplicativi.ty of 

fN (r) we have 

~ ( ~) = f'"'( ~ ) jk2 (d) 

= jJ..(~ d
2

) 

= J4' ( r ) ~( d) 

Lemma 5: 

d/r~fÏ'n)al. )'- (d) = {}'-(:l if r/n 
otherwise 

where the summation is over divisors d of:r whose conjugate 

divisors ~ are prime to n. 

Proof: 

When n ::: 1, we have 

r 
1 

! 
i 



c) ). f'(d} = e (r) J1r . 
where e{r) is defined to be = { ~ if r = 1 

otherwise 

We then have 

l r-(d) ,L f-(d) e ( ( ~, 
d/r) d/r 

(~,nhl 
J;: Y(d) ~ 

~/(~, n) 

= L 

n~ 

.2: 
jL{~) 

~/(n,r) d/( ~ ) 

= L ."u. (~) e (~~ 
&/(n,r) 

Thus by the definition of e(r), we then get 

) 

rCG) 

jJ-{ d) 

,&; p,(d)_ {t'-(~) if r/n 
otherwise 

(f,n)=l 

Proof of the Brauer-Rademacher identity: 

Let us denote the left hand side of (3) by A{n,r). 

Evidently A(n,r) ia aneven function {mod r), thus we can apply 

the inversion formula to obtain 

A ( n,r ) = L il (d, ~ ) ................. ( 5) 

~1 
d/(n,r) 

where h (r1 ,r2) = A ( -(- r ) .f-(f,) 

68. 

Hence, by definition of A (n,r ), we have 

h ( r 1, r 2 ) = il (r) d~r' #(d)}C( ~ ) &1 JL< b ) ..... (6) 

(dt;: ) =1 

..... _--_ ... __ ... _ .•... ------
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Dy Iemma 5. &1(. }L(S) is equal to zero unless r/d. in which case 
. .r. 1 
(4'i:")=1 

it has the value}J-( r l ), \V,hen rl/d, we can write 

d = r
1

mr (6) becomes 

Il ( ri. r 2 ) = pH·) r 1 ,....<r1 ) Zr~ 

to obtain 

Now put o(r
2

) = RIR2' where '2)( R2 ) / r 2 and ( R1 , r 2 ) = 1. 

\Ve see at once that Rl/r'l' Then by lemma (4) and the multiplicativity 

of ~ (r) we have 

r~(r»)k(rl)fo(r(r2) ) L et(e) .... (7) 
h (r1 ,r2) = lr(r

2
) ~ (R

l
) e/'ô(r2.,) ~(R2e) 

Dy lemma 3, the sum in (7) is zero unless R2 = 1. But R
2 

= 1 

:::::9 r 1 r 2 = r = R1 'CS'(r2) sp that 

r ( 1/ ) r 2 = o( r 2 ) 
1 

llence, h (r1 , r 2) = 0 unless r 2 =~(r2) and R1 = r 1 , and in part-

icular, unless r 2 is primitive and ( r
1
,r

2 
) = 1. 

We can see that :b ( rl' r 2 ) = 0 if r is non-primitive; 

Le. b (.rl, r-~ =0', if -f .... (r). c () ••• ,'.,., ••• ,., .(8) 

Thus in theremainder of the proof, wesuppose that r is primitive; 

80 that r
2
=)(r

2
), R

2 
=1' ,(r

l
, r

2
) = I p R

1
= ri' 

Rence (7) becomes 



(r 

~." 
'. ) 

h (ri' r 2) == r 1 ~ (r 2 )jJ-( r) &2 -7f1% 
~ 

= r 1 JAi..r) e F(e) ~ (+) e/r2 

Dy lemma 1 and lemma 4, we have 

12 ~ibf'( h ( ri' r 2 ) = r 1 p..(r1) e'p-(e) e.s) ••• (9) 

•• h ( r l' r 2 ) "" r 1 f"( r 1 ) if fA-' ( r) 1= 0 ....•.•••••. •• ( 10 ) 

Combining (S) and (10) into a single formula thus we have, for all 

r, 

h (: r l' r 2 ) :::z fA'( r) ri f'( r 2) ......................... ( 11 ) 

Substituting (11) in (5), we finally get 

A ( n, r ) = La f-'( r) d),.L( ~ ) 
d/(n,r) / 

:: fL(r) L dP.( ~ ) 
d/(n,r) 

Thus the Brauer-Rademacher identity is proved. 

§ III Cohen's Second Inversion Principle: 

Along with the inversion principle relating to the 

claaS of a11 even functions(mod r.), which we discussed above, 

E. Cohen developed also another inversion principle limited to 

i 
i 

.1 

1 

1 



( 
the primitive functions (mod r) only this time. 

Definition q: 

A complex-valued arithmetical function f{n,r) is 

ca11ed erimitive (mod r) if f(n,r) = f (o(n,r), r) for a11 n 

while r (n~r) == 'O( (n,r) ) and;r«n,r» is the core of (n,r). 

Definition 5: 

A completely primitive function f(n,r) (mod r) i8 

defined as one satisfying f(n,r) = f(n',r') for aIl n, n'and 

aIl positive r, r' such that 

)S'~r) « n,r) = '0 n', rI} 

~efinition 6: 

'f (n,r) is defined by 

~ (n,r) = L dr( ~ ) 
d/(n,r) 

Before introducing the inversion principle itself, 

we have to go through a few lenunns which are needed in the proof 

of the inversion principle. Nevertheless, the proofs of the 

following lemmas are quite obvious,mainly based on the multipli-

cative propertiea of~(r) and~(n,r), while r ls taken as the 

power of a prime, so we shall Just state them without going into 

the proofs. 

Lemma 6: 

If r = r 1 r 2 ' r 1 ia primitive, and '10er), then 

={ ro )J.(r
1

) L ~(r2' d) Y(r) dl r r 1 
~(r) 

(~,~)=l 

------. __ .. _---_ .... _--.. _- .... _-----------~_._ .... --.• _--_._-_. 

if b = r 1 

if ~ ~ r 1 

71., 



',-~ . Lemma 7: 
If r = r 1 

r
2 , th en 

d& ~ (r1 , d) = r 1 ~(r2) 
( ~ , r 2) = 1 

Lemma 8: 

If r is primitive, r
2

/ r, and r 1/r2 , then 

d.#r JL(d) Jf{(n~r)] if r1= (n,r), r2 = r.; 
{d,n):1 1 0 otherwise, 
t/r l' d/r2 

Theorem 2: ( the inversion principle for the primitive functions 

Let rI' r 2 be positive integers, and r
1 

primitive. 

If H (r!,r2) is a function of r I ,r2 and f(n,r) is a primitive 

function (mod r) and r= r 1r
2

, then it follows that 

,-...11 ..-. 

~: 

.L: 
f (n , r) = d/ ~ (r) 

(d,n)=! 

1Ç(r) ~(r,) 
r 

fi (d, ~)" 1f(r) R(d, ~ ) 
d (f n,r) 
............. , .. ( 1 ) 

L r( ~ , r) ~(r~,d) ••• (2) 
d/ r ri rrrr 

A. Dy a~plying our assumption that 

L ' 
f (n, r) = d/1I"( r) H (d, ~ ) 

(d,n) =1 

the right side of (2) ~ecomes 

r 
L 
d/~ ~(r) 

'72,. 
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'" r 

Then 

= ~ ( ~) ~ (r 1) II (r l ,r 2) ;(j r 1) 

=p: (r
1

) I1(r1 , r 2 ) 

by lemma (6) 

= H (r ,r2) as r is primitive. l , 1 

B. We assume now 

L 
djr (r) 
( d,n)=1 

H ( d, L) = 
d 

L 
dl. r rI 

~(r) 

2( (r) 
r 

dl 'r (r) 
( d,n)=1 

' .. by lemma ~' 
r(d.) is equal to zero unless(~~ ='(n,r), 

d f': 1( r) 
(d,n):1 

dj~,r/f 

o(~) = 1(r) and in which case, it has the value)-{:~:~r)j. Also, 



( 
since f(n,r) is primitive,(l!Jod r), /. we have 

f ( ~ , ~) = f ( ~ (t) ,r) f ( Y (n, r), r) 

::: f (n,r) 

•• (3) becomes 

~ (r)f{b'(~:~)j f{n,r) 

r 

We note that the conditions 'air, o(f)= o{n,r) are equivalent to the 

conditions ~/r(:,r) , (~, o(r) ) ::: ~(n,r). Similarlyr{~)= '(Cr) 

is equivalent to c/t(r) for a divisor c of r. 

Therelore, by definition of~(n,r), (z.) becomes 

oCr} ~[(((r»] f(n,r) 
= / ~(n,r (by lemma 7 ) 

r 

= JL2 [:(i~~)] f(n,r) 

::: r(n,r) 

Thus the proof is complete. 

Again, as a consequence of the above inversion principle 

we can characterize tbe class of primitive functions (mod r) as 

follows: 

A function f(n,r) is primitive if and only if it can be 

~epresented in the form 

f(n,r) = L H(d, ~ ) 
d/r(r) 
(d,n)=1 

and the function il (r1 , r 2) is uniquely determined by 

l ' 
1 

1 



r 

with r 1 , r 2 being positive and r 1 primitive. 

We note also that this inversion prinqiple can be reduced 

to the Mobius inversion formula if we restrict this to the subclass 

of completely 'primi tive fUllctions (mod r); for if lie put r = r l' 

r 2 = 1 and f (n,r) = j (ru) where m denotes :(~:;) 1 the inversion 

principle becomes 

f(n,r) =~ 
d/ i(r) 
(d,n)=l 

Since f(l,d) =f-(d), 

we can rewrite (5) as follows, 

j(m) = L 
d/m 

~ H(r1)=:· L j(d)?-(~1) 
d/rl 

which is the ordinary Mobius inversion formula. 

S Proofs of the generalized Landau anu H~lder identities 

To illustrate the use of Cohen's inversion principles, 

now we shall prove two well-known identities of number theory 

whose proofs are based on these inversion formulas. A few 

preliminary lemmas are needed before we start proving the identities. 

Definition 7: 

A fUIlction f(n) is said to be cOJDpletely mul tiplicative 

if f(l) = 1, f(mn) = f(m) r(n) for aIl m,n.We note that a completely 



()\ 
multip'lieative function is' the same as a, linear function. (see pg.2) 

Definition 8: 

A divisor d of r is called a canonical divisor of r 

if ( d, ~ ) = 1 • 

Let us here introduce a notation that 

f(n,r) = L y{d) 
d/{n,r) 

and F(r) = f(O,r} 

with x(r) and y(r) being functions of r. 

Lemma 9: If y(r) is completely multiplicative, then 

F(r) ... y (cr(r) ) F (r(r) ) 

~: 

Dy the complete multiplieativity of y(r) and the 

definition of ï(n,r), we have 

Lemma 10: 

F(r) = flO,r)::: L y(d) . x(~) f' ~~) 
d/r 

=.L d' =r f,/ '(r) 

=> y (i;r) L y ( r(r» 
~/X(r) ~ 

= y ( (r) ) F (",(r) ) 

Ii x(r) ia multiplicative, y(r) is completely multipli-

cative, and ~or aIl primes p, y(p) ~ 0 ~ ,Cp) ~ x(p), then F(r) ~ O· 

for a11 r. 

~: 

Binee F(l) ::: f(0,1) = 1 ~ 0, we have to prove the 

lemma here only for r> 1. 



( Since x(r), y(r) and~r) are multiplicative, 

_0, F(r) is also. 

"-Now let p range over tbe canonical prime power 

divisors of r (:1'.>0) and, by the multiplicativity of F{r), we have 

F(r) == V [L y(d) x(~) f-(1)] 

Lemma 11 

p Ir d/l'-

lT [y{ p"') _ y(p "'--1) x(p)] 
p~/r 

= Tf [y"-(p) - yi\.-l Cp) x(p)] 
p Ir 

== TT [y"A-l (p) ( y (p) _ x(p) ~ ••••••••. (6) 
p-"" Ir. J 

,j 0 

Under the conditions of lemma 10, if a and b are 

positive integers, then 

F(a,b) F(a) F~b) f~ (a,b) ) = F ( a,b 

~: 

Since F(r) and y(r) are multiplicative, so it suffices 

t th l . . t b S • dt> > 0 o prove e emma 1U case a = p, = p , p prl.me, an _ s • 

Since y(r) is completely multiplicative, it follows from (6) that 

for q> O. 

F(pq) == yq-l(p) [y(p) _ x(p)] 

By lemma 9, and lemma 10, we then have 

F(~) F(b). y{ (a,b) ) 

F ( (a,b) ) 

== F(pt) F(pS) y(ps) 

F(pS) 

= F(pt) "S(p) 

t 
~ ~[p t 1 F( 0" (pt) ) yS(p) 
. . if (p ) 

== y(pt-l) F(p) yS(p) 

= yt-l+s (p) F(p) 

-.... 

--------



c) = F (ps+t) 

= F(a,b) 

By multiplicativity, the lemma follows for arbitrary 

values of a and b. 

Theorem 3: ( Generalization of Lanùau Identity ) 

If x(r} is multiplicative, y{r) is comFletely multi­

plicative, and for aIl primes p, y(p) ~ 0, y(p) ~ x(p), then 

~ *1 r-2(d) = y(r) F( (n,r) } .. ' .... (7) 
(d,n)cl F{r) y( (n,r) ) 

~: Since ~(r),:x(r) and y(r) are aIL multiplicative, 

l". F(r) is also multiplicative. 

Denote the right 'side of (7) by I(n,r).' By lemma 9, 

we have y(r) i[ ~1::rl] F (~(n,r) ) 
I(n,r) 

y( ~(r» F(r(r» y( (n,r) ) 

Y[~f~~r)J ( by the multiplicativi ty of 
= 

F~] y(r) and F(r) ) 
o n,r 

~ ( t~r) 
m = (r n,r) ) 

Henee I(n,r) is completely primitive (mod r). By applying (5) 

we have 

I{n,r) L H(.d.) •.•••••••• , .••..•••••••••• (8) 
dl if' (r) 
(d,n)=l 

where, assuming r 1 Primitive, 

78. 



By the multiplicativity of~(r~ anù F (r) and by l emma 5 and l emma 

4 of last 

, 1 

section, 

H(r1) = 
fo{r 1) L y{d) r{d) F{~ F(r 1) d/rl d 

JL{r 1) L y{ d) )-4-( d) L y( c) x( e) r(ê) = F(r
1

} 
d/r1 

r 
ce-dl 

Since y(r) is completely multiplicative, 
j-t-(r1) ~ r rI 

H(r l ) = F(r) L, y{D) x( -W );c-{ ï) 
1 D/rl 

L f-(d) 
d/D 

wi th cd=:: D 

, t 

• • 

Combining 

Theorem 4: 

then 

L f-(d) ={ 0
1 

ù/r 

if r = 1 

if r. > 1 

H(r
1

) = ~2(r1) x(r1) 
F(r

1
) 

(8) and (9) we thus have 

l(n,r)= L 
d/ ~(r) 
( d,n)=1 

H~d) 

•••••.•••.••••••••••••• ( 9 ) 

= ~ [~W J t- 2(d) 

(ù,n)=1 

( Generalization of H~lder's ldentity ) 

If x(r) and y(r) satisfy the conditions of lemma 10, 

f(n,r) = F(r) x(e) ~(e) F( e) » (e= (r ) n,r 

---_."' .... _ ... _-----_._--_._--- ------.. - '--'--- - -,' 



where i(n,r) is defined as b~fore, 

i.e. f(n,r) = ~ y(d) x(~)~(~) 
d/(n,r) / 

D t 
F( r) x( e) y.( e) 

eno e F( e) , . by J(n,r). 

Evidently J(n,r) is even (mod r). Renee by Cohen's 

iirst inversion prineiple, 

J{n,r) = 

where, with r = r 1 r 2 , 

( by theorem 3.) 

• • i(n,r) 

-~ .. _. --_. __ ._._-_._._----_._--~_ .. _ •.. _-_ .. _--_ ... _. ' .. - ... " -- _._ .. _-_ .. _ .......... __ ... -.-.... _---_ •... 



c) 
• • J(n,r) = L 

d/(n,r) 
h(d, ~ ) 

L x( ~)j'-( .~) y(d) 
d/(n,r) 

f(n,r) 

~his completes the proof. 

Thua, in viewing the inversion formulas given above, 

we can see the importance played by the M~bius .F - function 

in the theory of inversion, hence in the theory of numbera 

aa a whole. 

81 .. 



(} 

82. 

Bi b li ography 

1. Aider. H.L. A generalization of the Euler ~ - function. Amer. Math. 

Monthly, Vol. 65, 1958. pg 690 - 692. 

2. Apostel. T.M. A characteristic property of the Mobius function. 

Amer. Math. Monthly, Vol. 72, 1965, pg 279 - 282. 

3. Baker. H.F. On Euler's ~ - function. Proceedings of London Math. Soc. 

Vol. 21 ( 1889 - 1890 ). pg 30 - 32. 

%. Bell. E.T. An arithmetical theory of certain numerical functions. 

University of Washington Publications in Math. and Phy. Sciences. 

Vol. 1, No.l, 1915. pg 1 - %%. 

5. Bell.E.T. Inversion principle. Duke Math. Jour. 15, 19%8. pg 79 - 85. 

6. Bell.E.T. Outline of a theory of arithmetical functions in their 

algebraic aspects. Indian Math.1 JourhâJ;. Vol. 17 ( 1921 ':;'28'~J. 

pg 2~9 - 260. 

7. Bell.E.T. Note on an inversion fOi~ula. Amer. Math. Monthly, Vol. %3 

( 1936 ). pg ~6% - ~65. 

8 • Bêll.E. T. On a certain inversion in the theory of numbers. Tokoku 

Math. Jour. Vol. 17 ( 1920 ). pg 221 - 231. 

9. Bell.E.T. Extension of Dirichlet multiplication and Dedekind inversion. 

Bull. of tha A. M. S. Vol. 28 ( 1922 ). pg 111 - 122. 

10.Beumer, M.G. The arithmetical function 'k(n). Amer. Math.Monthly, 

Vol. 69, 1962. pg 777 - 781. 

11.Cohen. E. A clase of arithmetic function. Proceeding of Nat. Acad. of 

Sciences. ~1 ( 1955 ). pg 939 - 9~~. 

12.Cohen. E. Arithmetical inversion formula. Canadian Jour. of Math. 12 

( 1960 ). pg 399 - %09. 



:81. 

13.Cohen, E. The Brauer - Rademacher identity. Amer. Math. Monthly. 

Vol. 67, 1960. pg 30 - 33. 

l%.Cohen, E. Representations of even functions ( mod r ), 1. Arithmetical 

identities. Duke Math. Jour. Vol. 25 ( 1958 ). pg 401 - 421. 

15.Ded~kind, R. Abrifs einer Theorie der hohern Congruenzen in Dezug 

auf einen reellen Primzahl - Modulus. Jour. f~r Math. 54, 1857. pg 1 - 27. 

16.Dickson, L.E. History of the theory of Numbers. Vol. 1. Chelsea 

publishing Co, N.Y. 1952. 

17.Erdos.P. Some remarks on Euler's P function.Acta. Arith. 4 ( 1958 ) 

pg 10 - 19. 

18.Gupta, H. A generalization of the Mobius function. Scripta Math.Vol. 19 

1953. pg 121 - 126. 

19.Hardy and Wright An introduction to the theory of numbers. Third ed. 

Oxford at the Clarendon Press 1954. 

20.Makowski, A. On some equations involving functions ~(n) and é>(n). 

Amer. Math. Monthly, Vol. 67, 1960. pg 668 - 670. 

21.Niven, 1. and Zuckerman, H.S. An introduction to the theory of Numbers. 

Second Edition. Wiley and Sons Inc. 1966. 

22.Rademacher, H. Lectures on Elementary Number Theory. Blaisdell 

publishing company 1964. 

23.Satyanarayana, U.V. On the inversion property of the M~bius r- - functi on 

1. Math. Gazette. 1963. No. 359. pg 38 - 42. 

24.Satyanarayana, U.V. On the inversion property of the Mobius ~- function 

1. Math, Gazette. 1965. No.368. pg 171 - 178. 

25.Scholomiti, N.C. A property of the~- function. Amer. Math. Monthly. 

Vol. 72, 1965. pg 745 - 747. 

. .. --_._._._--_._- ---



26.Swetharanyam. S. A note on the Mobius function. Math. Gazette. 1961, 

No.351. pg ~3 - ~7. 

27.Vaidyanathasw8mX. R. The theory of multiplicative Arithmetic functions. 

Amer. Math. Soc.·Transaction. Vol. 33, 1931. pg 579 - 662. 

28.Vaidyanathaswamy. R. On the inversion of multiplicative arithmetical 

functions. Indian Math. Soc. Journal. 1927. pg 69 - 73. 

29.Venkataraman. C .S. A generalization of Euler' 8 ~ function. Mathematics 

Student 17 ( 19~9 ). pg 3~ - 36. 


