CONTROL AND STABILITY THEORY IN THE SPACE OF MEASURES

Electrical Abraham Boyarsky, B.Eng. (Hons.), M.Eng. Ph.D.

ABSTRACT
This thesis treats some problems in stochastic control and stability theory
‘ frc;m the point of view of Flows (induced by the stochastic systems) in the space of pro-
bability measures. In the first pari of the dissertation, the concept of attainable set of
probability measures flor a stochastic process is introduced, and the following results

are obtained for a control system modelled by a stochastic differential equation, where

the control is additive in the drift coefficient :

(i) Employing the martingale approach initiated by Stroock and Varadhan,
a "stochastic bang-bang principle" is proved. If follows from the proof
of this principle that, for a certain class of controls, the attainable set

of probability measures is weak compact.

(i) Assuming the "farget" set of probability measures is a continuous function
of time with respect to a certain topology, a time-optimal stochastic control

theorem is demonstrated.

(i) The existence of unique quasi~diffusions for the class of drift coefficients,
which are bounded and integrable, is verified, and a necessary and suffi-
cient condition for the average of a cost functional, to be minimized by a

feedback control, is derivéd.

In the second part of the dissertation, stability properties of general stochastic

systems are investigated. The following work is carried out :

(iv) A theory of dynamical systems on the space of probability measures is for~

~mulated where the relevant topology is that of weak convergence.

(v)  In this dynamical system framework, a new definition for stochastic stability
is proposed, which is weaker than any other previously studied. Employing
the concept of D-functions, some conditions for stability are obtained for

trajectories in the space of probability measures.
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' ABSTRACT

This thesis treats some problems in stochastic control and stability theory from

the point of view of flows (induced by the stochastic systems) in the space of probdbil ity

measures. In the first part of the dissertation, the concept of attainable set of probability

measures for a stochastic process is introduced, and the following results are obtained for

a control system modelled by a stochastic differential equation, where the control is addi-

tive in the drift coefficient :

@)

)

(i)

Employing the martingale approach initiated by Stroock and Varadhan,
a "stochastic bang~bang principle" is proved. It follows from the proof
of this principle that, for a certain class of controls, the attainable set

of probability measures is weak compact.

Assuming the "target" sets of probability measuresis a continuous function
of time with respect to a certain topology, a time=-optimal stochastic control

theorem is demonstrated .

The existence of unique quasi-diffusions for the class of drift coefficients,
which are bounded and integrable, is verified, and a necessary ‘and suffi-

cient condition for the average of a cost functional, to be minimized by a

feedback control, is derived.

In the second part of the dissertation, stability properties of general stochastic

systems are investigated. The following work is carried out :

(iv)

(v)

A theory of dynamical systems on the space of probability measures is for-

mulated where the relevant topology is that of weak convergence.

In this dynamical system framework, a new definition for stochastic stability
is proposed, which is weaker than any other previously studied. Employing
the concept of D-functions, some conditions for stability are obtained for

trajectories in the space of probability measures.
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E = R n-dimensional euclidean space.

[ Lebesque measure on R .

B(R) The space of real valued bounded measurable functions on R .
B( E) The g - algebra on E generated by the open sets of E .

g(') E{Xto’f]:fel}.

B(1,X) The space of Bochner integrable functions from 1, with the Lebesque

measure , into the Banach space X .

C(E) The space of real valued bounded continuous functions on E .
Co(E) The space of real valued bounded continuous functions or'; E vanishing at o.
Q = C(l, E) The space of continuous functions from | into E.
© © . .
< (E) The space of real valued C™ functions on E having compact support.
g The space of bounded measurable functions from | x R into R.
zo E{X_F : F measurable subset of | } .

3 s{uesm(l):osu(f)s],fel}.
i —s{uesw(lxR): 0 cu(t,x) <1, fel,xeR}
h The Prohorov-Hausdorff metric on j(. .

jé The space of non-empty weak compact subsets of 1’4] (R) .



vi

(X, X) The space of bounded linear operators from X into X , where

X is a Banach space.

"'l(E) The space of signed measures on E .

7’11 (E) The space of probability measures on E.
p Prohorov metric on 7’11 (E).
P, Q Probability measures on

3
eP The integral over () with respect to the probability measure P.

7°(t) o(*) = jRP"(o, X, t ) @(dx).

ﬁ; E{qu(f)(p:ue z°} . i;(f)a{q"(f)w(f)zuef}
R

:o {qu(f)tp:uez} , Z-?-:a(f) E{?)U(f)qo(f):uez}

Oor ~ ~'. o

R:o = {n’(he: vel | B MUNS OO z'}
S(e, 5) A closed & ball of ¢ € MI(R) in the weak topology on %](R).
r(t) The target set in ”](R) .

{T(s, t)ss, te I} The family of bounded linear operators from Co(R) into Co(R)

generated by (2.4) with v = 0.

{Uu(s, t)es, te I} The family of bounded linear operators from CO(R) into Co(R)

generated by (2.4) with control v .



vii

w Wiener measure on 0 .
z, Brownian motion.
€, Dirac measure at x € E
erd, Elements in m](R) R
f,g Elements in Co(R)'
o(¥* X) Weak*topology on X * ; X is a Banach space.
T, The coordinate function from C(l, E) into E.
o(t) = MJ%T?T Where M and a are positive constants.
i
p= [ vt
0

AMt) = (t) + 'ype‘y""f Where 4 is a positive constant.
e

[ M) s
0

(e>]
m

I u Is used to represent both the norms on Co(R) and ﬂl(R) ; which

is meant will be obvious from the element it operates on.
n°(t) = U'(t)*  The adjoint of U"(t).

m(t) = T*(t)



CHAPTER |

INTRODUCTION

1.1 Historical Background

The classical theory of deterministic linear control systems was developed
during the 1930's and 1940's. Methods such as the Nyquist criterion and root locus tech-
nique are some of the classical tools that evolved. The systems were all modelled by
autonomous differential equations since the control analysis rested heavily, in one way

or another, on controlling the location of the poles and zeros of the system transfer func-

tion.

During the 1950's , aerospace applications revealed the inadequacies of
the stationarity assumption in the control system models, and led to further investigation
of time domain methods. The calculus of variations, dynamic programming and Pontrya-
gin's maximum principle are the most important state space methods that developed,

providing a satisfactory deteministic control theory.

The first results in stochastic stability theory appear to be in the work by
Andronov, Pontryagin and Witt [28] . Motivated by Lyapunov's work on the stability
of ordinary differential equations and the fundamental studies of Kolmogorov on Markov
processes, Andronov et al. investigated the probabilistic behaviour of the sample paths
of some Markov processes. However, not until the modern theory of Markov processes
was developed did much progress take place in stochastic stability theory. With the
advent of the lto stochastic integral and its calculus [49 ], many stability results were
obtained Which were in spirit very similar to their deterministic analogues. Much of the

early work on the stability of diffusions is due to Khasminskii [29] and Kushner [34].
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The connections between stability and control theory were first investigated
in the West in the early 1960's by Kalman and Bertram [30]. The necessity for stability
analysis of control systems is due to the fact that optimized control systems may not be
stable. Using the second method of Lyapunov for the design of optimal controllers assures
that the optimal solution is asymptotically stable. Thus, for optimal system design, the

‘problems of control and stability are closely related.

Since there existed substantial results on the control and stability theories
for deterministic systems by the early é0's, it seemed plausible that at least some of the
deterministic results could be extended to stochastic systems. Although, conceptually,
the extension is straight-forward, the mathematics involved in the stochastic analysis is
fairly complex, depending heavily on the theory of Markov processes and involving such
concepts as infinitesimal generators, supermartingales and stopping times. Most of this
basic work can be found in the book by Kushner [34] which includes a chapter on the
design of stochastic controllers using stochastic Lyapunov functions. Sore other exten-
sions of the deteministic control theory, not dealt with in [34], are as follows. In [22]
stochastic Lagrange multipliers are studied. The problem of partial observability of dif-
fusions is investigated in [237]. In [24] Fleming and Nisio consider a more general
model for the control system than the usual lto stochastic differential equation. In (261
and [27], Kushner derives two stochastic maximum principles. For a review of some re-

cent developments in optimal stochastic control theory, see the survey paper {25].



' 1.2 Stochastic Control Theory

Most of the stochastic control problems studied in the literature take one

of the following forms.

(i) Given an initial point xo in the range space, determine the control,
constrained to be in a certain admissible class, which transfers Xq to

a target set in the range space with probability one.

(ii) Given xq, determine the control which maximizes the probability of

hitting a target set.

(iii) Given Xq 1 determine the control which transfers X, to a target set with

: _ probability one and minimizes the average of some preassigned cost func-

tional .

(iv) Given x4/ determine the control which approximates as closely as pos-

sible a specified path in some suitable (probabilistic) manner.

! The optimal stochastic control problem which consists of simply minimizing
the average of a cost functional is readily formulated using dynamic programming [ 34,
Chapter IV] . Unfortunately, the optimal control in general depends upon the solution
of a complex non-linear partial differential equation which is rarely amenable to analy-

tic methods. )

As we can see from the above formulations of stochastic control problems,
the mathematical analysis involves the process sample paths. The sample paths of a
process are analogous to the trajectories of a deterministic system, and therefore studying

’ the sample paths appears to be the natural framework for the investigation of stochastic
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control problems. We shall, however, toke a different approach based on viewing the

control process in a certain space of measures.

in general, for Markov processes, the equation for the dynamics of the
probability measures, on the range space of the process, induced by the random variables
as a function of time is described by the transition function of the process. For many
purposes the resulting representation for the flow of probability measures is not adequate
since the transition function conceals its dependence on the parameters of the process,
for example, the coefficients of a diffusion. We shall employ a more revealing and
descriptive characterization for the flow of probability measures associated with a non-
stationary stochastic differen.fial equation where the control is additive in the drift co-
efficignt. The resulting representation is important in establishing a necessary and suf-

ficient condition for the existence of optimal stochastic controls (Section 5.3).

The key point in our functional analytic approach is the correspondence
of a trajectory in the space of measures to each control function. Whereas it makes no
sense to consider the attainable sets in the range space of a stochastic process, it is
natural fo consider the attainable sets of probability measures for the process. This point

is discussed further in the next section.

1.3  Stochastic Stability Theory

As in deterministic stability theory, the main tool in the study of the
stability of stochastic processes is the Lyapunov function. For each Lyapunov concept
of stability in the deteministic case, there exist at least three stochastic analogues,

corresponding to the three usual modes of convergence of a family of random variables.
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To explain this in more detail, let x =0 be the equilibrium solution whose stability
properties are being investigated. Let x(t ;xo,fo) denote the solution of an ordinary

n-dimensional differential equation with initial state X9 at time to -

Definition 1.1 Deterministic Lyapunov Stability

The equilibrium solution is said to be stable if given any € >0 , there

exists &(e, f0)>0 such that for Il xoll <8

sup |lx(f;x0,’ro)||<e ,

t=t
0

n 1/2
where 11y Il =(Zlyi|2> .
=

To transform Definition 1.1 to stochastic forms, we write the convergence

of the random variable sup Il x (f;xo,fo,w)ll in the three common modes of probabilis-
tet
tic convergence, where (), &, P) is some underlying probability space. From now

on, the generic element we () will be suppressed.
Definition 1.2 Lyapunov Stability in Probability

The equilibrium solution is stable in probability if given e , ¢'>0, there

exists 8(e,e','ro) such that |l x [l <& implies

P{sup I x (tyxa, )l >e'} <e
fzfo 0’0

Definition 1.3 Lyapunov Stability in the rth Mean

The equilibrium solution is stable in the rth mean if the rth moments of

the solution process exist, and given ¢>0, there exists 8(e,fo) such that I X0 ”r<8

implies



EP{ sup 1l x(t ;xolfo)“r} <e ,
b2ty o

n
where Nyl =D 1y.1"
i=l

Definition 1.4  Almost Sure Lyapunov Stability

The equilibrium solution is said to be almost surely P stable if

P lim sup ||x(f;x0,fo)ll=0 =]
I xoll =0 tZH'o
Definition 1.4 is equivalent to saying that Definition 1.1 holds for almost
every weQ) with respect to P . For each of the above definitions, there exists a related

definition for asymptotic stability. These concepts and other definitions of stochastic

stability can be found in the survey paper by Kozin [ 31] .

Lyapunov stability in probability is weaker than the stability concepts
defined by Definitions 1.3 and 1.4 . For some applications, this type of convergence
may be of little interest since it does not imply convergence of the sample paths.
However, where the expectation of a continuous function of the process is required to
converge, this mode of convergence is sufficient. [n fact, one of the motivations for
the sfabilify work in this dissertation is that Lyapunov stability in the mean and a.s.
Lyapunov stability demand too much of the process. We shall work with a type of sta-
bility which is, in general, even weaker than that of Definition 1.2 , but may still be
quite adequate for many applications. Rather than study stability properties with respect
to a point, for instance, the null solution x =0, we shall be concerned with the sta-

bility properties of trajectories of probability measures.
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For a stochastic process, it is more reasonable to have the distribution
functions,associated with the process, approach a probability measure (in the weak topo-
logy) than to have it approach a set in the range space, in the sense of convergenc;' in
probability. Another incf:lequacy of Definitions 1.2 = 1.4 is that the stochastic sta-
bility is with respect to initial points in the range space ; often one does not know exact-
ly where a process starts, and has at most only an estimate of the initial distribution
function. Therefore, it seems more realistic to study stochastic stability with respect to
initial probability measures rather than points in the range space. The approach to sto-
chastic stability that we shall present takes all the above points into consideration. This

is accomplished through the use of dynamical system theory [32].

It is impossible to define a dynamical system for a stochastic process, when
it is regarded as a measurable function on a probability space, since the theory of dyna-
mical systems can only be used in situations where the present state completely specifies
the future states. This is, of course, not true for stochastic processes. Even Roxin's
theory of attainability functions [ 37] , which gives rise to a more generalized dynami-
cal system is of little value since the range of many stochastic processes is the entire
space, thereby yielding no information. Instead of trying to define a dynamical system
on the range space of a process, we shall find it rewarding to define a dynamical system

on the space of probability measures.

To reiterate, the object of the stability work in this dissertation is to pre-
sent a different approach to some stochastic stability problems by examining these prob-
lems from the point of view of dynamical system theory, where the basic space is the

space of probability measures. The advantages of this approach for these problems (Sec-

tion 7.1) are:
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(i) Studying the stochastic systems in the space of measures obviates detailed

knowledge of the sample path behaviour.

(it) The stochastic theory benefits from the completeness and structure of the

(deterministic) dynamical system theory.

(iii) The deterministic and stochastic theories are unified under the concept of

non-deterministic dynamical system.

Using the Prohorov metric in the space of probability measures, a theory
of stochastic stability is formulated based on a slightly modified form of the usual theory
of dynamical systems. Then a certain continuous function, defined on the range space

of the process, is introduced whose existence assures the stability of flows in the space

of probability measures.

Although the control and stability sections are essentially independent
of each other, we justify their presence in the same dissertation by recalling that
stability concepts are important in the design of optimal control systems. Also, the
fundamental concept of controllability in the theory of control is closely related to
stability theory, as can be seen by Theorems 1 and 2 of [44] . A final reason for
treating stochastic control and stability theory together is that the approach proposed
in this work, that of studying the process as trajectories in the space of measures, can
be applied effectively to both these theories . In fact, an alternate fitle for this dis-

sertation could be: "Flows of Probability Measures Induced by Stochastic Differential

Equations with Application to Stochastic Control and Stability Theory".



CHAPTER |l

PRELIMINARIES AND SUMMARY

2.1 Notation

Let ¢( [0, »), Rn) be the space of continuous functions on " {0, o)
into R" . By a continuous Markov process on R" , we mean a family of probability
measures Ps ! s20, xe R” on O = C( [0,00), Rn) such that

I
l“ ES = .S, .-f = t s . -
Ps,x( ‘ t) Pf'“f(r) a.s Ps,x , Te &oo & , where § s the smallest 0-algebra

on ) with respect to which all the coordinate functions = _— (1, * ) Q—R",

*
sSTSt are measurable.

Let z = z(t, *) be n-dimensional Brownian motion and let a= ai(f,x),
1si .S n,and b= bi i(t,x) , 1=i,i<n, be aset of coefficiénfs which satisfy certain
smoothness conditions. The mafhemaﬁcal model which will be used in this dissertation
isthe lto stochastic differential equation. In Ito's theory a measure Ps,x is defined on
Q by making a nonlinear transformation of Brownian motion: for we () the Brownian
path { z(t,w): t 20 } is transformed info the path { x(t,w): t Zs } such that
x(s,w) = xo,and

dx(t,0) = alt,x(t,0))dt + b(t,x(t,w)) dz (t,0), t2s, 2.1)

where dx(t,u) denotes the infinitesimal increment in x during the time interval
[t,t+dt], and dz(t,0) denotes the corresponding increment in z. When a and b
are Lipschitz continuous, lto shows that for a set in ) having Wiener measure one,
there exists a unique continuous solution x(t,w) satisfying these requirements. Hence,

a measure Ps can be definedon ) by setting

lxo

For the reader unfamiliar with basic measure theory, see [8, Vol .11, AppendixJor [42].



eI L er_}:W{xne r],....,xferm},

Ps,x{ “t] Jroeeeees ’ b€ m _
n, ¥ .
where s <t <.... <fm,m2] , and r], ceeey f:ne(ﬁ(R) , where W is the
Wiener measure on () .

To explain the meaning of (2.1) , we write it as the stochastic integral

equation:
t {

X, = Xg + SI a(s,xs)ds + sj b(s,xs) dzs ,

where Ibdz is interpreted in Ito's sense, i.e.,

; N-1
jb(s,xs)dzs = l.i.m Zb(Ti'xT.)(zT. -zT.) ,
s h =20 =0 i i+l i

where s=T, <1-2<,,,,< TN=f’ h=max(7i+l -r),

and |.i.m means in the mean square sense on () .

We shall find it useful to reformulate the meaning of a stochastic differen-
tial equation. In the new formulation a solution to (2.1) is a probability measure P on

Q) such that

d1rf = aft, nf) dt + b(t, nf) dzf ;t2s, as. P,

where { zit2s } is a Brownian motion with respect to P .

Let a be bounded and measurable, b bounded and continuous, and the

matrix c strictly eIIipfic:r Given x € R" , the following question is asked in [ 5] ¢

*
8( R™) is the o-algebra on R" generated by the open sets of R" .

tex bT b, where T represents the transpose operation. Strict ellipticity means

n n
that, T cii fi fi 2 U.Z] flz for all vectors £, where v > 0.
i i=

=1
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Does there exist a probability measure Ps . on (Q, &) such that Ps x{ T =X b=1,
(4 I

~and for any 6 ¢ R"

S, _ ! 1
YQ(f) = exp{(er “f-“s) - .[(OI a(r, “T)) dr - '2- ‘sr(gl ¢ (Tl“,r)g)dT }

. e s ,
is a martingale on (), Et , t2s20, Ps x)' where ( +, - ) is the usual scalar product
7

. n . . op o . .
in R' . We shall refer to this as the "martingale problem" and Ps <! if it exists, is
’

called a solution of the martingale problem starting at time s and state x .
The following important result is proved in [5] :

Theorem 2.1
Let a and b be as in the above paragraph. Then

(i) for each pair s € [0,00) , and x¢ R" , there is one and only one proba-
bility measure Ps x. on (9,35) which solves the martingale problem
14

starting at s and x.

s . .
(if) The system (2, 3t , t2s20, Ps ! %€ Rn) is a continuous strong Markov
'
process.
(iii) For each xée R" , there is an n-dimensional Brownian motion { z t=0 }
such that

J

t
L x + :[a(‘r,nT)dT + }[:b(T’“T)dzT' tes

a.s. with respect to Ps
[

(iv) For fe C:) (Rn) , the set of C® functions from R" into R having

compact support, the measure Ps x satisfies
14

P , P f &
Es”{f(u)} “fx) = Es'x%_[A(‘r)f(nT)dT}, s, 2.2)
S
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> where _
dr n n - 9
- Z 1 3
: . A(r) = .Oi("': )—37 + 7 cii("', ) BT
i=1 i = i
" ' %,x
A process satisfying (iv) is called a quasi-diffusion. For quasi-diffusions, E *~ f (nf)
By

need not satisfy the partial differential equation Fral A(t)v , which is the case

for diffusions. In Chapter V, we shall prove the existence of unique quasi-diffusions
for a certain class of coefficients.

The concept of weak convergence of a sequence { Pn } of measures on
(0, 3°) is defined as follows: Pn converges to P weakly if for every bounded and

continuous function f(w) on Q)

lim. j (o) P_(d) = [ #a) P(do)

n-o ) [y]
We shall denote this convergence by: Pn=>P . ‘We shall also use weak convergence

on the real line, i.e., the sequence of measures { pn} on R converges weadkly to the

measure p on R if and only if

£ f(x) M (dx) = J f(x) p(dx) as n o
R

forall f in C (R), the space of bounded continuous functions on R .

2.2  Adjoint Semi=-Groups

- Adjoint semi-groups were first studied by Feller [40] . The general
theory of adjoint semi-groups, using the adjoint infinitesimal generator, was studied

by Phillips [41] .. Below, we state some of the main results of the theory following

. [32, Chapter I ] .
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Let X be a real Banach space having norm 1l Il , and let £(¥,%)
_be the Banach algebra of bounded linear operators on Eto X . If TeL(X,X),

Il TH denotes the nom of T.

Definition 2.1 If T(t).is an operator function on the non-negative real axis

0st<co to £(X,X) saﬁsfying the following conditions:
(i) _T(t] + f2) = T(r])T(fz) for tety 20 ,

(ii) 00 =1,

where 1 is the identity operator, then { T(t):0st<o } is called a one-parameter semi-

group of operators in 8(1;1) . The semi-group{T(t):OSf<cn} is said to be of class

( Fo) if it also satisfies the property
(iii) s=lim T(t) x =x forall xe ¥ ,
ti0

called the strong continuity property of T(t) at the origin.

Definition 2.2 The s-infinitesimal generator A of the semi-group {T(f):O st <oo }

is defined by

Ax = s-hli&moAhx 2 (2.3)
where
1
A= F(0R-D

whenever the limit exists. The domain of A, $)(A) , is the set of elements xe¢ X

for which the limit in (2.3) exists.

Proposition 2.2

(a) P (A) is a linear manifold in X and A isa linear operator.

(b) If xe D(A), then T(t)xe D) forall t20 and
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d;(*)" = AT(H) x = T() Ax , +20
}

Tt x-x = J T(s) Ax ds , t20
0

(c) D (A) isdensein X , and A is a closed operator.

Let X* be the dual (or adjoint) space of all bounded linear functionals

x* on £ . X* isaBanach space with the norm

Hx*Il = swp 1 x*(x)I

Il xlls1, xeX

Proposition 2.3

Let U be a linear operator with domain $(U) dense in Xt X.

(0) ' The dual operator U* is a weak* closed linear operator If in addition
%
U is bounded, then U*e &(F¥*, X*)and I U* 11 =1IU Il .
(b) If U is closed, then®(U*) is weak* dense in JE* and, if € is

reflexive, ) (U*) is strongly dense in FE* .

We now state the fundamental properties of the adjoint semi-group of

bounded linear operators { T*(t): t20 } .

Proposition 2.4

Let { T(D:t20 } be a semi-group of operators of class ( go) in
£(¥,X) . Then T*(t) is an operator function on the interval t20 into £(F*, X*)

with || T*@®)Il = NT@#) Il for +20 . Moreover,

(i) T*(f]) T*(tz) = T*(f] +f2) for f],f220

* See [1] or [3] for some basic results concerning the weak* topology .
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’ (if) T™*0) =1 (identity operator on X*)
(ith) weak * liin T*(t) x* = x* for x*e ¥ * (weak* continuity of T*(t) at
td0

the origin) .

Under the hypothesis of the previous. proposition, we have

Proposition 2.5

(a) The dual A* of the infinitesimal generator A of the given semi-grou
P

{ T(t): t20 } is a weak* closed linear operator and its domain B(A*)

. is weak* dense in E * .

(b) If x*e PA*) , T*(1) x*e H(A*) for +20, and A*T*(t) x = T*(t) A*x.
Furthermore,
t
T*(t) x*(x) - x*(x) = I T*(s) A*x*(x) ds forall xeX, +>0 .
o
(c) ' An element x*e X* belongs to the domain of A* if
P T E SR

converges in the weak* topology of ¥* as h¥ 0 , and the weak* limit is equal to
A*x* .
Corollary 2.6

The dual operator A* is equal to the weak* infinitesimal generator of

the dual semi-group.



16

, , 2.3  Summary of Results *

Consider the one-dimensional stochastic differential equation

a = [[at, ) +ulrxd) |t + i) e, (2.4)
on the finite time interval | = [0, tf] , where x‘: takes values in the entire real line
R. 2z, isone-dimensional Brownian motion;a, u are bounded measurable functions
from the cartesian product | x R into R, and b is a bounded continuous function from
| x R into R such that bz(f,x) 2v>0 forall tel and xeR i.e., b isstrictly
elliptic. The function u is referred to as the control and acts only on current states.
Often in this dissertation, u is simply a function of t, i.e. u is an open-loop control ;

we shall refer to (2.4) for this case as well. The existence of a unique continuous

Markov process associated with (2.4) is assured by the theory in [5].

The transition function of the Markov process (2.4) induces a two-parameter
flow { Uu(s, t):s, tel } of bounded linear operators on the Banach space of bounded

measurable functions from R into R (with the supremum nom), B(R) . { UY(s, t):s, te l }

is defined by

U%s, 1) fx) = _[ fly) PY(s,x,t, dy) ,
R

where PY(s,x,t, [) is the transition function of (2.4) corresponding to the control u.

By Theorem 2.1, we know that for fe C?(R) ’

t
Wi, tf = £+ [UY G, TIA(T) + o, +)D) Fdr (2.5)
S
where
) 3 b2 (1, +) o2
. AlT) = olT, ) =7 * 5 5 (2.6)
| Ax
and D = —2;

See also Chapter VIII , Remark (vii).
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Let Co(R) be the Banach space (with the supremum nom) of continuous
functions that vanish at £ o . The dual space of Co(R) is WL(R) , the space of
signed measures on R . Wl(R) is a Banach space with the variation norm Il 11 [6,p35].
Let ’ﬂl](R) = { pe M(R):'p 20, Il pll=1 }  represent the space of probability mea=

sures on R.

Integrating both sides of (2.5) with respect to @ ¢ m](R), we obtain for

fe cg" (R)
f .
SN = () + jow (UY(5) (A(s) + uls, -)D))ds , (2.7)

where UY(1) = UY0,1) , tel . Let '(Ne(N) = j PY(0,x,t, Mg (dx) for Te BR) .
R

Then, for any fe BR) , @(U’()H =1P(He(f . Since (2.7) holds for all fe C° (R),

it uniquely defines the flow of probability measures induced by the stochastic process

{x::fel} . For tel , we write (2.7) as

t
PWe) =e® + | o(Us) (AW +u(s, -) D) f ds
0

or, abstractly, as

t
(e = ¢+ J;)co(U”(s)(A(s) +u(s, ) D)( ) ds , (2.8)

and call it as the 'dynamic equation in the space of measures' associated with (2.4) .

Chapter 1l is concerned with the attainable sets of probability mea-
sures for the stochastic control system (2.4) . In Section 3.1, some simple time-
varying control systems are briefly investigated fo motivate the subsequent work . In
Section 3.3, the following result is established : Given a solution process defined
by (2.4) for a bounded measurable control, then this process can be approximated, as

closely as desired, by the solution process of (2.4) for a bang-bang control. Then



18
it will be shown that the attainable set of probabi lity measures of (2.4) , where the
control functions are in a bounded set of bounded measurable functions, is compact

in the weak topology on '”l] (R) forany t20 . A convexity result is also obtained.

Chapter 1V considers some optimal stochastic control problems for the
system (2.4) . In Section 4.1, a definition of the stochastic control problem is pre-
sented, and the concept of controllability in the space of probability measures is dis-
cussed. In Section 4.2 it is shown that the attainable sets of probability measures of
(2.4) are continuous in time with respect to a topology derived from the weak topology
on /”l](R) . With the help of this result, an existence theorem for time optimal sto-
chastic controls is proved. In Section 4.3 it is shown that, for a very general class of

problems, there exists a control which minimizes the expected value of a cost func-
tional at any time t, >0.

In Chapter V , we establish the existence of unique quasi-diffusions for
the class of systems where the diffusion coefficients are bounded and integrable. With

the aid of this result, a necessary and sufficient condition for the average of a cost func-

tional to be minimized by a feedback control is derived.

The idea of studying stochastic control systems from the point of view of
the state distribution functions is not new to the control literature. Mortensen [50]
used this approach to obtain a 'Hamilton-Jacobi® type equation in function space. In
this dissertation, we shall not be concemed with the optimal stochastic control problem

as formulated in [50] . Our main goal is to study the attainable set of probability

* The drift coefficient in [50] is restricted to be continuous.
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measures of a stochastic control system : specifically, as stated above, we shall be

_interested in the continuity, convexity,and compactness properties of the attainable

sets. Although this information does not appear to facilitate the solution of any prac-
tical problems, it does offer a relatively simple and elegant way of regarding stochas-
tic control systems. In conclusion, we aver that the understanding and characteri-
2ation of the attainable sets of probability measures is fundamental in the study of sto-

chastic control processes.

Chapter VI deals with the straight forward application of the theory of
(deterministic) dynamical systems to systems of a stochastic nature. In Section 6.1,
two examples are presented which are used to motivate the definition of a non-
detetministic dynamical system in Section 6.2 . In Section 6.3 , the concept of limit
sets is employed to obtain some topological results concerning the trajectories of proba-
bility measures. In Section 6.4, “the limit sets are characterized further, and it is

shown how the averages of certain functions, ast = o , are related to the limit sefs.

Chapter V11 is concerned with the stability of non-deteministic dynemi-
cal systems. In Section7.1, a certain continuous function (not a Lyapunov function)
s introduced whose existence ensures the stability of flows in the space of probability

measures. In Section 7.2 , the results of the preceding section are applied to the

stochastic stability theory.

The work in this part of the dissertation is motivated by [35). The
main idea here, which was not recognized in [351, is the applicability of dynami-
cal system theory to stochastic problems. To give some indication of the effectiveness
of these methods, we mention that the major theorem of [357, Theorem 3, _is an im-
mediate consequence of a standard result in dynamical system theory (see Remark (ii)

at the end of Section 6.3).



20
We have not yet attempted to apply the theory of Chapters VI and VII

to practical problems, where the usual formulation may be inapplicable. However,
the theory has provided some new results related to stochastic stability. For example,
the results of Section 6.4 , as well as the definition of a generalized stochastic Lya=

punov (D-function) and the work of Section 7.1, are completely new to the stochastic
theory .
"As a final remark, we state, that although the techniques of dynamical

system theory are incapable of establishing a.s. stability results, they do provide a

unified and functional analytic approach to a large class of stochastic stability pro-

blems (see Section 7.1).
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CHAPTER IlI .

ATTAINABLE SETS OF PROBABILITY MEASURES

3.1  Simple Stochastic Control Systems

To motivate the work that follows, we consider simple control systems of

the form

dxt= (a(t)+u] (f))df+(b(f)+02(f))dzf, @.1)

where a, b, uy s U, are one-dimensional bounded measurable functions of t, and z,
is one-dimensional Brownian motion. a and b are system parameters and are assumed to
be fixed. For each t, the random variable x(t, w) induced by the stochastic differential

equation (3.1) has a normal distribution with the mean’

(]
]

t
f (a @) +u] 6))ds ,
0

and the variance

t
2 2
(b @) +u, () d
c ‘[O 5 Uy 5)) $

Suppose that the Markov process defined by (3.1) starts at time tl= 0,
and x=0 a.s. W, and that at some h afterwards, we wish x (f] , w) tobe equal to
a ¢ R a.s. W. Asstated,this problem demands a great deal ; a more reasonable problem
is to have the control functions u, and vy 'direct' the distribution functions of the family
of random variables { x@t, w): te [0, f] ] } iﬁ such a manner that, at time fl , it has
a preassigned fixed normal distribution, N (a, 0’2) , With mean a and variance @

To determine the controls necessary to accomplish this matching of distribution functions

%

X = OG.S.W.
(o]
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(recalling that a normal distribution is completely specified by its mean and variance), the

following conditions are necessary and sufficient :

h
[ e®+uy @t =a
0
and (3.2)
h 2 )
[ 60 +u,0) dt =0 .
0
The controls
u ) = ;1]- a) and u, ) = % - b () (3.3)

1

are bounded measurable functions which satisfy (3.2), olthough they are by no means unique.

Therefore, Yy and Y given by (3.3), 'direct' the distribution functions of x (t, w)
to N (a, 0'2) .

Note that the system (3.1) can only be controlled to a normal distribution and

that controls are necessary in each of the coefficients, one controlling the mean and the other
the variance.

The normal distribution of X, plays a crucial role in the above analysis. If
state variables are introduced in the coefficients of (3.1), the distribution function of X,
is no longer necessarily normal and what was a two-dimensional problem now becomes an in-
finite dimensional problem, i.e., above we had to match only the mean and variance of the
random variable x , whereas now, if we wish to match distribution functions, it is necessary

1

to match all the moments of the distribution function induced by X, with those of the 'target’
1

distribution function.
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Another important problem  in control theory is the characterization of the
control function necessary to attain a certain objective. In time-optimal deterministic
control theory for linear systems, it is a well-known fact that the class of 'bang-bang'
controls is as effective as .the‘larger class of bounded measurable controls. To motivate

the study of analogous problems for stochastic systems, we consider
dx‘; = (a®)+u@®)dt +bHdz, 3.4)

where we assume the process startsat +=0, x=0 a.s. W, a and b are as above, u
is bounded measurable, and 0 < u (t) =1, t ¢ | = [0, i'f] . Atanytime Tel,

the mean of the distribution function induced by X , s
T
I (a@)+vu))ds ,
0
and the variance is
T
f b2 (T) ds ,
0

which is independent of the control. We can readily find a control T, T s) =+1 or O
for all s ¢ | , and such that
T T

Iou(s)ds=j071(s)ds .

Therefore, at any time T > 0, we can find a 'bang-bang' control such that the distribu=-

tion function induced by x:, is the same as that induced by x:_ . . As a consequence of

this, it follows that the expected value of f (x;’, (w) ), conditioned to start at x=0 and
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t = 0, is the same as that of f (xl;_ (w)) startingat x=0, t=0, for any real bounded

continuous functions f .

3.2 Classes of Control Functions

The notion of attainable set is fundamental in the theory of control. We

are thus motivated to investigate the attainable set of probability measures associated with
the stochastic control system (2.4) .

Let 1 =1[0, ff 1, ff < + oo, and let 300 (1) be the Banach space of
bounded measurable functions on | with the supremum norm. Define

2={ue3w(|) c0<u@) si forall feu}

to be the set of admissible control functionson | . Foreach ueS, (2.4) definesa

Markov process.

In Chapter I we defined a continuous Markov process on [0, o] into R

, s 20 and x eR, on Q=C([0,oo),R)

to be a family of probability measures Ps «
14

S

suchthat P (1 3 ) =P (T) aws. P for Te "d"f. The transition distribu-
s, X t t, m S,X .

tion function is defined by P (s, x, t, B) = Ps N (nf eB), BeBR). If pY 6, x, t, B)

is the transition function of the Markov process (2.4) correspondingto u e , then

nu ®o ()= I pY (0, x, t, *) @ (d x) describes the flow of probability measures
R

on | associated with (2.4).

Definition 3.1. We define the attainable set of probability measures for the control

system (2.4), for the admissible class 3, , by
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t

R’ ={7]U(t)tp:ue2}, <pem.|(R).

o

For each f e C (R), the space of bounded continuous functions on R with the supremum

norm, we define

t _ v Cue
m¢<f>—{n M) :ves)

Let xH be the characteristic function of the set H .

Define

20 = { XH + H is a measurable subset of | }

As in befiniﬁon 3.1, we define

(o)

n; - {n'me ezt oM ®),

and

o]
n*(f) = {n”(f)w(f) tue z°}
¢

for fe C(R).

We now consider 300 (1) with its O(Sm (1), -ﬁ] (1)) fopblogy,where

£ (1) is the space of functions whose absolute values are integrable over | with respect

to the Lebesgue measure.

A sequence {u_ JCL (1) convergesto ue £ (1) in the o (L (1), % (1))

topology if and only if

(5)9(5 - IU(S ) ds os.n - o
i

forall ge Sl (1) . We now presenf a result which shall be useful in the sequel .
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e:t;‘#‘

Lemma 3.1

$° s O‘(SQ (1), -Cl (1)) dense in X .

Proof : Let | be the Lebesgue measure on |. We wish to show that, given

any u e there exists a sequence | un} c £° such that

jun(s)g(s)l(ds) - f uG) g I ds) as n < o
| I

forall ge £] (1) . This is equivalent to showing that for all B e é(l) = { x[O 1_]:fe 1},

fun(s) lds) = f u) ] ds) s n = .
B B

This result can be found in [ 1, p. 342, Example 27 1. Since v is the characteristic

function of a measurable set An C |, we would like to prove the existence of a sequence

of measurable sets { An } such that for all sets B e B(1)

(Ang) = [ ve 1@ asn » o. (3.5
B

If uel is continvous, then by [4, p. 300, Example 3] a sequence{ An} can be con-

structed for which (3.5) is satisfied.
Now let u ¢ 3 be arbitrary and fixed. Since 8'2 (n D'coo (1), and C (1),
the space of real - valued continuous functions on |, is dense in 32 (1) with respect to

the &, - norm, there exists a sequence { vi }CC (1) such that

2

f (vi(s)-u(s))2 l(ds) =» O as | 2 oo .
|

’ This implies the existence of a subsequence, also labelled {vi}, such that vi converges
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, to u a.e. on | with respect to | . If necessary, each v, can. be redefined so that

0 s.vi(t) < 1 forall tel and vi remains in C(1).

By Renyi's example, for each vp e C(1), there exists a sequence of 4'

" measurable sets {A K } @ such that
PrE T k=

lim lz(gnAplk) - fB vp(s) 1(ds) 1 = 0O - (3.6)

koo

It is also proved in [4] that it suffices to prove (3.5)‘ for B = Ai P

i=1,2,.... Let g(l) = ¢ B, co. be all the sets of { A in some order.
' =1 pr k |

o~

We wish to choose a subsequence { An } from g(l ) such that (3.5) is satisfied for

. f :
all Be (ﬁ(l). Then, by (3.6), we can choose the sequence of integers { kn} as

follows:

choose k] 3 | l(B] N A],k) - IB 4 (s) .I(ds) | <'l for k zk] ,

1

R
choose k,>k; 31 1 (BNA, ) - J’B vols) 1(ds) 1 <5 for k =k, i=1,2,

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

_choos.e kn>kn-1 > ! I(Bi nAn,k) - IB'VH<S) [ (ds) | <}‘ for kzkn, i=1,...n."

1 fl xBiA( XAn - vn(x)) I(dfc)l <']1—, i=1,2(....h, (3.7)
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for n 2 1. We claim that {An} satisfies (3.5) . Let Be é(l) be arbitrary.

Then,

|j><BxA 1@ - [

] n B n

u (x) I(dx) IIS |'J‘ XB( Xo =V, x)) I @dx) |
|

(3.8)
+ 1 jl Xy (v, 6) = v 6) 1) |

The first term on the right-hand side of (3.8) goesto 0 as n = o by (3.7), and the

second term approaches 0O by the a.e. convergence of {vn} to u . The Dominated

Convergence Theorem permits the limiting operation in the second term. Thus, for any

B e @(I),

1A OB —>f v ) 1 (d)
B

as n- = o .

Q.E.D.

Remarks :

() Lemma 3.1 can be proved in a different manner by using the

(deterministic) bang=bang principle [9, p.23].

Lemma 3.2

Given u ¢ ¥ , there exists {un}c Eo such that

.
l jo (b6 = u_ () dsl—0

as n o forall tel.
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" Proof:  Subdivide | = [0, ff] into n equal subintervals each of length A.

Then, by the bang-bang principle [ 9, p.23], there exists -Ji for 1 s <n suchthat

:;l ) = +1 or O forall t el andso that

i A .
[ @ -u@yds =0
(-1 A ! | |

Define v, on' | by v t) = ui ) for (<1) A<t sjA, 1 sj <n. Then, for

any tel,wehave (j-1)A <t < | A forsome j, and hence the following relation :

b Y () V- S ot
I_IO(g(s)-un(s))dsfl - fo(u(s)-un(s))qs + J\(i-(f;)(s)A-un 6))dsl s2A.

Letting A — 0, we obtain the desired result.

Q.E.D.

()] We note that if § un}CZO converges to U €3, U {20, in the 0 (Sm (N, .S] (1)
topology, there exists no subsequence of {un} which converges to v in
measure (Lebesgue measure on ). To prove this, suppose that there

exists a subsequence { v, } such that v, v in Lebesgue measure [ on

k k :
|,i.e., givenany ¢ >0, l(x: l.Un. ) ~ux!l >e¢) » 0 as
-k | ,
" = o , then there exists a further subsequence {un. | which converges

a.e. ; on |,to u. But this is impossible since {un}C Eoicmd uelX,u/ Eo.

(i) In the proof of Lemma 3.1 it is sufficient fo work with sequences since -C] (1)
*is a separable Banach space, implying that T with its o ( 300 (t), -ﬁ] (1))

topology is a metric topology [1, TheoremV . 5.1, p., 4261,



30

3.3  Stochastic Bang-Bang Principle

It was shown in Section 3.1 that, for the simple control system (3.4), given
any ue and t e I= [0, t ] there exists a J, o{)=+1or 0 for 0 st = f]

such that the normal distributions attained at f] are the same for u and u . We shall

prove a  related result for the stochastic control system 2.4) .

Let the coefficients a and b in (2.4) be uniformly Lipschitz continuous

in x, and bounded continuous functions of t in | for each x e R. Let u be an arbitrary

fixed function in 2 , and let Px = P0 « be the probability measure on (2, 30) such

’

that #+ =x a.s. P and
0 X
t

A |
To=x + jo(a (s, 1rs) +u())ds + Iob(s, 1rs)dzs a.s. Px .

By virtue of lto's theory [ 8, Vol. I, Theorem 11.3], such a unique Px does exist.
This is equivalent to saying that there exists a stochastic process X, such that xo= X d.S.
with respect to the Wiener measure W on Q= C (I, R) , the space of continuous functions

from | into R, and such that

f t
X, = X + Io(a (s,xs)+u(s))ds + ‘[o b(s,xs)dzs a.s. W. (3.9

Proposition 3.3

let ueX , and Ief{un}CZO converge in the o(-ﬁm (I),.i!] (1))

topology to u . Let x: and x_ be the stochastic processes defined by (2.4) corres-

ponding to v and u, respectively, where a and b are uniformly Lipschitz continuous in

x , and for each x e R are bounded continuous functions of t e |, with common bound k .

n . s . .
Then x, converges fo x in probability, uniformly in t el , as n 2 .
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Proof : Lemma 3.1 implies that givenany u ¢3 , a sequence { un}C 3 ° exists

which converges to u in the <J'(-‘3':Jo (1), 31 (1)) topology, or, equivalently,
t t
v ¢ = fo v )ds = Iou G)Yds = v &) as n 2 oo (3.10)

foreach tel [1,p. 342, Example 27 1.

By (3.9)
t
X, x: = v(f)-vn(f) + ‘fo (a(s,xs) - o(s,x:))ds
t ' (3.11) .
+ IO (b(s,xs) - b(s,x:)) dzs

Squaring (3.11), integrating over ) with respect to the Wiener measure, and using the

properties of stochastic integrals, we arrive at

EW{ x. - x': }2 s{v (f).-vn (i‘)}2 + Kz(ff+l) ff Ew{xS -x: }2 ds
0 (3.12)

+ 2ffl< Il v ) - vy ®l,
where
la(s,x)-a (s, y)| sKlx=yl , 1b(s,x)-b (s, y)l =K | x=-y |
forall sel. Now, givenany ¢ > 0, we can find Ne 2 0 such thatfor n 2 Ne ’
the sum of the first and third terms on the right-hand side of (3.12) is less than ¢ . This

follows from (3.10). Thus,

t
w n)2 2 W n)2
E{xf-xf} Se+K(ff+1)J‘oE{xs-xs} ds,

which implies, by Gronwall's Lemma 11, p.11], that

2
Ew{xf - x:} < ¢ exp{ Kzi-f (l+1'f)} _ - (3.13)
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Al
Hence,
im E'f % - }?=0 . e
n 2o
Moreover, we have :
n ' - n
W{sup | x =x, | > e} < W{sup | f (a (s, x)=-a(s, x))dsl > 5
t t s s 3
tel tel 0
' n €
+ W sup ! jo(b(s, x) b (s, ) dz 1 >3
tel
+Wilsep I v) -v 01> % (3.15)
tel
Since ;
f n € f n €
W,:‘:FI’ l Io (a (s, XS) = a(slxs))d5| > 3 sW;KIQ'XS-XSIdS > 3
‘ t
f
9 2 w 2
S—iK E ij‘o(s"x) dz
by Chebyshev's inequality, the first term on the right-hand side of (3.15) goesto 0, as
n = o, by (3.13) and (3.14). The second term approaches 0, as n = o, by the
martingaie inequality, (3.13), and (3.14), while the third term goes to 0, as n = @,
by the choice of {un } . (The formula (3.13) permits the use of the Dominated Convergence
Theorem .)
Q.E.D.
Corollary 3.4.
Let f be a bounded continuous function on R, then f (x:) converges
% in probability to f (xf) as n » o foreach tel, and EY f (x:) S (xt) as

n =2 .
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Proof : The first part is a standard result of probability theory, and the second follows

from the Dominated Convergence Theorem.

Q.E.D.
Corollary 3.5
If f is uniformly Lipschitz continuous with constant L, then
Ew{f(x:) -F(xf)}2 »0as n ° ® for each te |.
Proof : Ew{f(xf) -f(x:)}2 s L2 Ew‘txf - x:}z
| | - 0 as n = o©
by (3.14). | a Q.E.D.

Corollary 3.4 implies that for any t e | and any bounded fe C(l, R)
BV f (;<f) can be approximated as closely as desired by e f (x?) where x: is the -
solution process associated with (2.4) for the 'bang-bang' control u If we assume
that the coefficient b is strictly elliptic, then we can obtain a stronger and more interest-
ing result, The following is an extension of [ 5, Part |I, Theorem 9.1 ] since the drift

coefficient contains a discontinuous term and the convergence of v, to u is not uniform.

The proof depends on techniques developed in [5].

Theorem -3.6  (Stochastic Bang-Bang Principle)*

Assume the coefficients a and b of (2.4) satisfy the following conditions :

a and b are bounded continuous functions,and bz(f, x)2y>0. Let xeR and
n_pn = ol ok
P = PO,x , Px = PO,x , be the probability measures on (€, &) defined by 2.4)

* See Remark (iv) af the end of this section.

*a=c (1, R) and 3? is the smallest o - algebra onQwith respect to which all the co-

ordinate functions L -2k, ssT=t = ff are measurable. Define 3° = 3f°
f
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-

: o .
for the respective controls v and u, where {un} C I convergesto u eX in the

o ('coo (), 3] (1)) topology. Then, P: converges weakly to P

Proof : Let

A | t -2t
ye(t) =exp$9(nf-.x)-9Ja(s,ns)ds-ef u(s)ds-g-f bz(s,ns)dsi'
0
and 0 0
(3.15)
ye(f) —exp;G(n -x)—GJo(s,n s-Oj s-—sz(s,'n

be the martingales associated with u and u respectively.

Using the fact that yg (t) is a martingale with respect to P: , we can derive

the following estimate, as in [5, Part |, Lemma 3.2]:

Ex!n-ﬂ}4SC|f-s|2 , t 25, tel
ot s
forall n 2 1, where C depends on the bounds of a, b, and u . fhen, by [15,

Theorem 2, p.33 ], the family { Pxn }m is relatively weakly compact, i.e. there exists
n=1
a measure Q on (), 30) and a convergent subsequence of {P: }oo , also denoted by
n=1

{P: }oo , which converges weakly to Q .
n=1 .
Since 73 (t) is a martingale with respect to P: , we have for Te 3° and
s

t >s 20, tel,

fryg t, w) P: (dw) = fye (s, @ p (d w

) . .
or, for any 35 measurable bounded continuous function g (w),

J;g (0) vy (t @) P) (du) = fﬂgm) vg (s PP (dw) . (B.16)



¢

35

We must show that Yo () is @ Q - martingale, i.e.,

g (w) yg s 0 Q(dw) = (w) yg (s, 0 Q(dw) . (3.17)
IQ ©) Yo J;Ig w) yg (s

Let M be a number greater than 0 . We claim that the family
‘l’w ={g (u) (yg (t, AM):n 21 } is uniformly bounded, 3: measurable,and equi-

continuous af each w (), where YAX = inf (¥, A). [tis only necessary to show that

for fixed + and O, . n (t, w): n = 1} is equicontinuous at each we). Fix wefl,
Y

tel, and let

¥ 0% ot 2
L(6) = exp]® (w, () -x) -ejoa(s, n (@) ds -5 | Bs w (w)ds

Then,
n ~ n ot ~
ly9 (t, w) -yg(f, Wl se 1L(w)=-¢wl,
which is independent of n . Since m is a continuous function of  into R, where ()
has the sup norm topology, and a, b are continuous functions of the space variable, the
sef { yg t, w): n = 1}is equicontinuous at each w e Q. Since g is continuous, v,
is also equicontinuous, i.e., givenany ¢ >0 there exists @ & = ball (in the sup norm

topology), N8 (w), of w such that for all we N8 (w) ,

sop 1 g (@) (v () ©)AM =g (u) (vg (1 DA M < e

n =1
Thus, since yg (t, w) = Yo (t, w) foreach w as n = o, [ 13, Theorem 6.8, p. 51]
implies that

J o6 (rg (hlAM) @ (de) = lim [ 9@ 0f @AM, (da) @.18)

n <@ o)
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foreach M > 0 .

We now show that
91y, - v OAMI},

and
n

sup Ex{l yg(f) - yg(f)/\M I}
nzl

tendto 0 as N = o : Wing [5, Part I, Lemma 3.1 ] we have that forall n 21,

Pn{sup | =-x | >l} Sdexp{-vlz},
*Yel '

where d and v are positive constants, implying that

Pn

sup E"{l ve ®) - ¥ OAM l} >0 3.19)
n2l

as M > o . Now, the set {w: I T (w) = x| >1} is open and 3‘: measurable,, and

therefore, by virtue of [ 13, Theorem 6.1, p. 40 1,

Q{Lﬂ—f-xl >1}s lim P:{In'f-xl >1}

n—o

s d exp{-vl’}
Thus, forany tel,

e 1y ® - yg DAMI} >0 (3.20)
as M = .

Now,

Yo ve 0 = Earg 0 - vg0AM)} + £ g (g AMI]

and
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n n n
P

iim £ *{avg O} = lim E*fg(yg 0 - yg OAM} + lim E*{ g (vg OAM},

n 2o n 2o n 2,0

Therefore, (3.18), (3.19) and (3.20) imply that
n

EO{ ™ (1')} = lim 'EP’?{ 9 ¥g (r)}

n 2o

‘Taking the limit on both sides of (3.16) , we obtain (3.17), i.e., ye'(f) isa Q -martin-

gale. But Yo (t) is given as a martingale with respect to Px , and the solution of the
martingale problem is unique [5, Part |, Theorem 5.6 ] . Therefore, Q = P and
PP=>P as n = .-

X X

Q.E.D.

If the drift coefficient a in (2.4) is bounded and measurable, then the
proof of Theorem 3.6 becomes more difficult. However, in [ 5, Part Il, Theorem 9.é 1,
it is shown that if u" converges to u in measure (Lebesgue measure on R) on compact
sefs of R, then P:=}Px as n = o . Infact, convergence of v tovas n 2 oo,

in the sense that

fun(s)g(s)ds — [ ve g6 ds s n oo, (3.21)
| |

for all g bounded continuous on |, is sufficient. This is remarked, but not proven, in

[5, Part Il, p. 500 1. Therefore, since the convergence of (3.21) is weaker than

o (Sm (n, 31 (1)) convergence, we have :

Corollary 3.7

Let @ be bounded measurable, b bounded continuous and strictly elliptic.
Then given u ¢ X there exists {un} c 3° such that u Puosn - o "in the

c’(so'o (n . £] (1)) topology, and P:: —_-",>Px .
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Theorem 3.6 and Corollary 3.7 imply that for each f ¢ C (R)

and tel,
' n
Jof (n (00 B (d0) »i;h%wn§<dm
as n » @ or, equivalently,

[#0) P (0, x, t,dy) » [ £0y) P (0, %t dy) (3.22)
R R

as n = . On integrating both sides of (3.22) with respect to

the probability measure © , we obtain

U

7"0o=>n"®o 3.23)

0
t
as n => oo ., This means that thé set Rw is dense in m; in the

weak topology on ml(R) foreach tel.

All the results of this section can be easily extended to an n -

dimensional analogue of the stochastic differential equation (2.4).

If we set b = 0 in Proposition 3.3, we have that

lim x" @ = x @
n 2o

for each t ¢ |, where x () (xn #)) is the unique solution of the

ordinary differential equation.

() =a(tx@) +u() (X0 =atx" M)+ 0),
(3.24)
which is a result obtained in [10] . The work in [10] employs

the (deterministic) bang-bang principle whereas, in this work, we make

no recourse to it.



@v)

(v)

(vi)

(vii)

Calling Theorem 3.6 a 'bang-bang principle' is not strictly
in accord with its meaning in the literature. In the usual sense,
Theorem 3.6 would be a 'bang-bang principle’ if we could show

that for t e | and u e £, there existsa © e $° such that

-

77“ t o= nu (t) @ . This result. appears to be difficult to prove ;

even for the deterministic system (3.24), the corresponding result

has not yet been demonstrated.

Theorem 3.6 does not generalize the result in [10] (where the
drift coefficient is required to be uniformly Lipschitz in the state

variable),since the diffusion coefficient in (2.4) must be strictly
elliptic.
Rather than use the control classes 2, and Eo , we could have
employed

Y ={u: u measurableon |, lu ()| =B, te I},

and

Y® ={u:u measurable on I,Iu(f)|=B,feI},
where B > 0.
Givenany u ¢ sm (1) , if there exists a sequence {un }c £cn (n

such that v, »u as n = o inthe cr(-coo (n, .CI (1))

topology, then the results of Theorems 3.6 and Corollary 3.7 remain

“valid.

39
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(viii)  The author is aware of only one other work in the literature, Fleming

[23], which deals with bounded controls for stochastic systems. Using

the theory of weak solutions of linear parabolic equations, Fleming

shows that the probability density function q"(t, y) of the random variable
x” exists, where u e .‘Zoo(l). Also, if u -u a.e. on | , it can be in-

t
ferred from the work in [23, Appendix 2 ] that q"n(t, y) - q (t, y),

u
as n -, uniformly on compact sets, where q "(t, y) is the density

V)

function of x*n. Theorem 3.6 is a stronger result since it requires only

o =\‘.m(l ), S](l)) convergence of {un}.
(ix) In [51 ], Fattoroni considered an "approximating bang-bang principle",

similar in idea to Theorem 3.6, for the linear control system
x(t) = A(t) x(t) + B(t) u(t), (3.25)

where x(t) and u(t) take values in a Banach space E, A(t) isan
unbounded linear operator from E into E and B(t) e £ (E, E).
Assuming the existence of a solution for (3.25), and making certain as-
sumptions on B(t) and u(t), Fattorini showed that the attainable set
.of x(t), for bang-bang controls, is dense (in a certain topology) in
the attainable set of x(t), for an appropriate larger class of controls.
To show that this result does not detract from Theorem 3.6, we observe
that even if the two-parameter semi-group { U(s, ): t 2520 },

given by (2.5), satisfies the differential equation

au”(as;f)f = (A() + u(t, ) D) UG, DF, (3.26)
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(see Corollary 5.5) where A(t) is defined by (2.6),4 (3.26) cannot
be considered as a special case of (3.25) since D is an unbounded
linear operator on Co(R) , and D operates on the solution itself, not

the control function.

(x) We observe that Theorem 3.6 cannot follow from arguments similar to
those used in Proposition 3.3 since, although the Family{P:} :°=]
is weakly compact, we do not know that the finite dimensional distribu~

. . . . o el ae K
tions of P:: converge to the finite dimensional distributions of Px for

the case where the coefficients are not Lipschitz continuous.

(xi) The theory of absolute continuity of measures corresponding to diffusions,
as developed in [ 57, Chapters 4and 5 ], cannot be used to obtain
a result such as Theorerﬁ 3.6 if the drift coefficients | un(f)} converge
to u(t) in a topology weaker than that of £2(I). This is obvious from

Formula (1.4) of [57, Section5.17.

¥ See [12, Theorem 8.1, p. 547.
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3.4  Compactness of Attainable Sets

Let us assume the coefficients of (2.4) satisfy : a is bounded measurable,
b is bounded confinuous,a.nd b2 (t,x) 2v>0. In Theorem 3.8 it will be shown that for
any starting probability measure, the set of probability measures induced by the solution
process of (2.4), at each time t ¢ |, forms a weak compact set in W](R) if the control
functions are in £ . This result will be needed in the existence proof for a time-optimal

stochastic control in the next chapter.

Theorem 3.8

If a is bounded measurable, b is bounded continuous and strictly elliptic
in the stochastic differential equation (2.4), then ﬂ; is weakly compact in ml(R) for

each t e I.and Qe M](R) .

Proof : Consider 8@ (1) withits © (soo (1, S] (1)) topology where

1 = (o, tf], te < + o . We shall show that the map v = 170 (t) o , from

(.\!m-(l) , O (£°° m, £ ](l))) into m](R) with its weak topology, is continuous.

Since ’”l](R) is a metric space [13, Theorem 6.2, p. 43 ], we may use sequences to

prove continuity. Let { un} c -cm(l) converge fo U € 300 (1) inthe © (-i:m n, 31(1))

topology, which implies by [1,p.342, Example 27 ] that

t t
) J‘ u () ds -’f u@) ds as n 2o
o " 0
forall tel.
Let P" = P and P =P be the measureson = C (1, R)
X 0,x x 0,x

associated with (2.4) for the controls v and u , respectively. Then, by Remark (vii)
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in Section 3.3, P:: Px a's n - o . This'implies that foreach f e C (R),

fnf(nt(w)) P (da) = fnf(ﬂf (0)) P (do) @ n >

or, equivalently,

J‘ f(y) Pn(O,x,f,dy) _)'J' f(y) P(0,x,t,dy) as n 2 o (3.25)
R R

for each x ¢ R . On integrating both sides of (3.25) with respect to the probability

measure ¢ (and using the Dominated Convergence Theorem), we get that

v
n n Mo =>17U @ as n 2> o. Thus, v = r]u (t) © is a continuous map from

(Sm n, a(&m'(l),&] (I))) into m](R) with its weak topology.

Since X is the translation by the function %— in -ﬁm (1) of the closed

ball of radius %- in Sm (n ,itis o (soo (1, -ﬁ] (1)) compact. Therefore, the imdge

of 3, R:p , is weakly compact.
Q.E'D.

Of some importance in optimal control theory is the convexity of the attain-
t . .
able sets. In general, R(o is not a convex set of m](R) as the following example

illustrates. Consider the simple stochastic differential equation
dx;’ = u@) dt +dz, (3.26)

. t o,
starting a.s. W at +=0 and x=0. We shall show that Reo is not convex, where

€ is the Dirac measure at the origin. Let Yy # Yy both be in3, . Then, at time
U.I U'I *
t >0, tel, X has a normal distribution function, % ~ () € . with mean
t V) v
f vy ) ds and variance t, while xf2 has a normal distribution function, 7 (f)eo ,
0
Actually , 'qU](f) € is the measure associated with the normal distribution function.
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t ' .
with mean f Uy ) d's and variance t . Therefore, the distribution function

U, 0
%— n ! (e + -]2- 7 2 (t) € cannot possibly be normal. But (3.26) implies that the
0

. v o el ue t .,
random variables x, can only have a normal distribution. Thus, ﬂ,e is not convex.
0

However, we do having the following different convexity result.

Theorem 3.9

Let a and b be as in Theorem 3.8. Let uel , B¢ %(R), and

feC® (R). Then n; (f) is convex in R, i.e., an interval.

Proof : By the definition of the weak topology on MI(R), themap p = p (f)
from ’M](R) into R, forafixed f e C (R), is continuous. Since ﬂ; is weak compact,
by Theorem 3.8, fi‘\is implies fhafﬂ; (f) is compactin R. Let fe C:o (R) and assume
m; (F) is not an interval. Then there exist two compact subsets K] ’ K2 CR wh‘ich
are separated and whose union is ﬂ‘; (f) . Let {a] ' ﬁ]} and{az, 52 }‘, o sp] <q2 5[32 ,
be the end points of K, and K2 , respectively. Choose Yy and Uy in X such that

U v

Y1=77](f)¢(f)eK] and y, =772(f)¢(f)e|<2.

Divide [0 t] into n equal subintervals of length A. Thus, using 2.7),

o (f) +Zf o WTHAT 0 ds

Y'|=
i=1(G-NA
and
. 4
yo = @ (f) + Zf <p(u A S ) f)ds
=1 (i-
where
A6)= AG)+ u)D

Since y, >y, , forat least one interval [ A, (j+1)A1CTLO, ¢t ]
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i+ a y i+ 48 !

[ eu20a20f)rds > [ o(u'®A'6f) ds
A i A

We can choose A > 0 so that for some sef}{ C{l, ceves n}

n i.A .
B <o)+ jw(uu'(s) A6 ds £ f(':;)(Auuz OA 20 ds < a,
igh 018 ik ia
Define . |
u](‘l') : 0OsTst, ‘r/.U[iA,(i+1)A]
u3(‘r) = e '
Yy (1) Te U [jA, (j+1)A]

i€
Obviously, ugeX . But
U, t v v
3 3 t
17000 =00+ [ o (UTOATON LB, 0,
by the definition of Uz, which is a contradition. Therefore, K] and K2 are not

separated. The same procedure as above proves that K] and K2 cannot consist of dis-

joint bounded intervals themselves. Therefore, ﬂfp (f) is convex in R .

Q.E.D.

Remarks:

0] Theorem 3.9 simply states that, given any f ¢ C:o (R), the expected
value of the random variable f (xl; (w)) for fixed t el , where
{x: (w) : se l} is the solution process of (2.4) associated with control
u, and startingat t=0 and @ ¢ ’”I](R) , takes on all values in some

interval as u varies through X .
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Theorems 3.8 and 3.9 can be extended to the n-

dimensional analogue of (2.4) .

Using the result of Section 5.2, Theorem 3.9 can be
proved for all functions which have compact support

and are twice continuously differentiable .
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CHAPTER IV

OPTIMAL STOCHASTIC CONTROL

4.1 Definition of Stochastic Control Problem and Controllability

In this section, we definé what we mean by a stochastic control problem.
First, we focus attention on a dynamic process flow) in ﬂl](E), E=R". This may
arise, for instance, from a diffusion such as a stochastic differenﬁal equation or from a
more general Markov process. Along with a process in 'm](E), we assume the existence
of an admissible class of controls that can influence the process in question. Thirdly,
there is an 'objective' to be achieved by the process using the available controls. In
the next section, the objective will be to 'hit' a target in minimum time. Another ob-
jective may be to minimize the Prohorov or norm distance between some probability
measure ¥ and the probability measures of the flow in m](E). If the flow in '”l](E)
is induced by a Markov process and the target is a fixed measure in ﬂl ‘(E), the objective
to 'hit' the target means that,at some time t e |= (o, t 1, the probak:ility measure on

n . . . s .
R, induced by the random variable X, i identical to the target measure.

We describe a simple example : let the target be a fixed measure Y on
a sphere in RS; and let the process in R3 be a nonhomogeneou; Markov process with
transition function PY 6, x, t, ), where u indicates the dependence on the control .
Let ¢, be the initial probability measure of the process. [f we can find a control v

in the admissible class such that for some starting time t, and final time be
v
IR3 P (tg, %t T) @ (dx) = $(T)

forall Te @(R3) , then u ‘hits' the target ¥ .
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Let {7 (t): tel} bea family of subsets of m](E) . We shall call it the
mboving target. For most applications, 7 (t) will be a single point in ﬂ](E) for each
t e | . Unless the supports of two or more probability measures are disjoint or 'almost’
disjoint in some sense, fheré is. little physical meaning in trying to 'hit' a set consisting of

more than one probability measure.
Definition 4.1, A stochastic control problem consists of the following :
() a dynamic system in m](E) '
(i) a control class.u,
(i) an initial probability measure o ,
(iv) atarget {T(t):te I},
v) | an objective .
Before discussing the controllability problem in the space of probability

measures we shall show that viewing dynamical systems as flows of measures subsumes the

theory of ordinary differential equations.

Much of the mathematical theory of deterministic control deals with a system

of differential equations, in E, of the form
(1) =g(t,x®, v®) x(0) = xy @“.1)

where the control function u: | = E takes values in some set JCE . We define 9(J)
to be the set of bounded measurable functions taking values in J , and assume conditions on

g, sothat forany u e U(J) a unique solution x (*) of (4.1) exists. The solution of

@.1) is given by



| .
x(1) = xg + [ abix@iu ) s | 4.2)

The attainable set A(f) , for t e, isdefined to be the set of points

attainable at time t by solutions of @4.1) for all possible controls u e U, e,

o '
A =§xo * Jro g (s, x(s),u(s))ds:u eU(J)i

Let e be the Dirac measure at x € E (ex has mass 1 at x , and mass

0 otherwise).

€ (E)

Since E is a metric space, it is homeomorphic to the subset

{ €, 1 XE E} of _'”L(E), where ’”Z](E) has the weak topology [13, p.42].

We define, for solutions of (4.1),
€ = {Dirac measure at X (0)}

e: = { Dirac measure at .x' (t, x @), v (f))}

Let A*(f) = { e: t U eu(J) } . Since R" and & (E) are homeomorphic, so are

*
*(t) and A(’r) . Therefore, instead of sfudying){(f) in E we could, equivalently,

*
investigate the properties of the set of Dirac measures ;{ ) .

To summarize, by the definition of e: , a trajectory {e: : tel } Cc 7’I](E)

is completely equivalent to the corresponding trajectory {x t,x 0, u): tel }C E.

This implies that deterministic systems can be studied in m](E) . For deterministic systems

the attainable sets in /M](E) are, of course, sets of Dirac measures, whereas, for stochas-
tic systems, the attainable sets are more general sets of probability measures with supports:
non-trivial closed sets in E  [13, Theorem 2.1, p.27 1. This approach, therefore,

unifies the theories of deterministic and stochastic systems, since the solutions of both systems

are simply flows of probability measures. We mention that for diffusions, the stochastic
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system. reduces to deterministic sysiems only if the diffusion coefficient is not constrained

to be strictly elliptic.

We now discuss controllability in M](E) . Let { rv (t) o, 1t 2o, te I}
: 0

represent a flow of probability measures. starting at @, attime t el.
0

Definition 4.2. Let u(J) be as above. Fix f] el, andfor 0 =t < fl , define

. j‘f(t) ={¢fe ﬂl](Rn) . Y (f])tpfe T(t])forsome ueZl(J)} ,
. .

where T (f]) is the target set of probability measures at tl and © ' is the starting

probability measure at time t . ﬂf (t) is called the controllable set of probability
1
measures at time t with respectto T (*) at time t - (For deterministic systems, the

target set is often the Dirac measure at the origin of R", and the controllable sets are:

obviously sets of Dirac measures)

For our purposes, we let n=1 and T (t) = v forall tel, where

Ve '”l](R) . Also, let J be a compact subset of R. Thus,
ﬂf(t) = {(Ot € m](R) . Y (t]) o, =V for some v ¢ YU (J) } ) (4.3)
1

For @ non-sfafiohury Markov process in R with transition function pY (s, x, t, B),

®, ‘%(f‘) if and only if these exist a u e u(J) such that for all B e @(R)
t
1

[ P tixt 8) e, (dx) = v(B)
R

For the dynamic system (2.7), 0 ¢ x (0) if and only if there exists a u e (J) such that
1

t
o (f) + f 0 (UY (s) AY(s)f) ds = v (f)
0
forall fe C:o (R), where Au(s) = A+ u(s)D.
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Let

' *
C, ={fe Cgo (R) : supp fNsupp ¥ = W}

Then a simple necessary condition for ® to bein K (0) is that there exist u e Z(J)

t
such that for all f e CU ’ :

t
i
[ e (U A ()6) ds = -0 ()
0

Intuitively, controllability with respect to ¥ means that there exists an ad-

missible control u such that the flow of probability meclsuresl { 17” (tYo : tel } (o

in the controllable set at time 0), ‘hits' v at time N i.e., 'r]U (f] Ye=v. If v

has compact support, then controllability with respect to v implies that for some v ¢ U,

x° (t; w) e supp ¥ a.s.W. Thisis also a finite time stochastic stability result.

4.2  Continuity of Attainable Sets and Time-Optimal Stochastic Control

In this section, we shall study the continuity properties of the attainable set
of probability measures, R:o , of the stochastic control system (2.4) startingat t =0 with
the probabili-fy measure ® . As in the deterministic case, continuity of the attainable sets,
in an appropriate topology, is an essential requirement for the existence proof of time-

optimal controls.

supp ( ) is the supportof (-),
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We shall show that the map -*n; from | = [0, be ] into the non-
empty compact subsets J{ of ml( R) is continuous with respect to a metric h, where
(R) has the weak topology. The weak topology is a metric topology with the
1 4 pology

Prohorov metric p []2]‘. .

Definition 4.3. For (V, W) e ﬂ x,ﬂ, define

plu, W) = inf{p(p,tp):weW}
d (V, W) = sup{p(p,W):peV}'
h (V,W) = max{d (V, W), d (W, v)}.

h is a metric onﬂ . We shall call h the Prohorov - Hausdorff metric. Let N (V, ¢)

bean ¢ p-ball of V. Then, h (V, W) s ¢ ifandonly if VC N (W, ¢) and

WCN (V, ¢ [16,p. 205].

Lemma 4.1

Let x: be the solution process of the stochastic differential equation (2.4)

where u ¢ 3 , and the random variable Xq = xg has initial probability measure ¢ ¢ m](R) .

Then, x: - xl:, in probability as It =t'| = 0, uniformly with respectto uve X .

Proof : " From (2.4), for tel, uel,
u f v !
xf=x0+J‘o (a(s,xs)+u(s))ds+J‘0|a(s,xs)clzs '

where x4 induces the probability measure © . Let t' e |, and a be the upper bound

of a and b . Then,

d U ' v
xl:~_ xl:. = J;. (a (s, xs) +u(s))ds + J;lb (s, xs)c!zs
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and using the properties of stochastic integrals and Halder's Inequality,
Y (xl: - xl:.)z.s (a+l)2|l'-f'|2 + azlf—f'l )

which is independent of u . Therefore,

2
EY () - k)" 20

uniformly for ueZas [t-t'1 =+ 0. Chebyshev's Inequality implies that

u v )2
-
W{lx“; -x:,l Ze} < f2 f !
€ .

which yields the result.
QnE- Dn

Lemma 4.2

Let x: be as defined in Lemma 4.1, Let nu (t) @ be the probability °
measure induced by x: , starting with ® ¢ ?’ll(R) . Then the map t -’R; from |

into X is continuous with respect to the Prohorov -Hausdorff metric h .

Proof : Let Fl; (*) be the distribution function induced by x: startingat t=0
with probability measure © . We know from Lemma 4.1 that givenany e > O, there

exists § > 0 suchthat | t=t'1 <& implies

sup W{lxl:_ —x:.| Ze} se |, ‘ 4.4)
vel

Now, forany y eR,

1
=
X

-+ C
A
~
1
[4)
N
)
=
e
X
-
n
~<
o

F, (y-e) = Fu(y)
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and x:, and replacing y by y + ¢, we

forall ueX , by (4.4) . Interchanging x:

obtain
Fo(y) = F (y+e) < e

forall uel . Thus, xl: converges in distribution to xl:_. uniformly in v eX as

lt+=-t1-»0. Thisisequivalent to saying that
u
7"MHe=1 (tYe ,
uniformly with respect to ueZ as It -t'l = 0. Hence, givenany ¢ > 0-, we find

§ > 0 such that
t mt
RL,EN@Ry o),
and
t oot
C N ( ,
R,CN(R, o
for 1t=-t'l <8. Thus,
t t'
<
h@y Ry) < e

forlt_fll <8¢

Q.E.D.
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We now consider the stochastic control problem, as defined in Section 4.1,

for the .following system :
‘) n =1 and the flow in m](R) is given by 2.7),
(it) the control class is X , |
(iii) the initial probability measure is ¢ ,
(v) the moving target T (*) is a continuous map from | into
with respect to the metric h,
v) " the objective is to have the flow {qu (tYo: tel }, associated
with 2.4) , hit 7 () in minimum time.
We prove the following existence theorem which is similar in form to its

deterministic counterpart (see [14], for instance).

Theorem 4.3 (Existence of Time~Optimal Stochastic Conirol)

If there exists a control u €2 which steers @ e ')q](R) , for the stochastic
system (2.4), to the target T (+) , then there exists u* ¢ 3 Wwhich steers © to the

target in minimum time . (u* is said to be stochastically time-optimal)

Proof :- We are given the existence of a u ¢ ¥ such that ‘qu (t)Yp e T (t) for some

t el . This means that

r(tNR, 7 9

Define

t* = inf{fel : T(f)ﬂR:o # Q}

*
We claim that T(f*)ﬂﬂ;‘ Z @. Ifnot,
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. .
h(r() R =58>0
since T (t) is p - compact by assumption,and R; is p- compact by Theorem 3.8.

Thus, there exists an a > 0 such that

h (R;I 'R::) < % 4

and

h(r(t), T(#) <&

forall t* <t <t* + & ,sincethemap s = T(s) and s "R;, from | in'ro.“,
are continuous in the h metric, by the hypothesis and Lemma 4.2, respectively. For

sucha t
_ . P . t b ot
8 =h(r(r), R sh(r(r), 7)) +h(r()), R, +h(R,.R)
<s+h(rt),R,)
i.e,
t

h (T, R,) >0

which means that T(f)ﬂm; = @, contradicting the choice of t* . Therefore, there
*

exists u* e¢3 such that T]U (t*) @ e T (1*) andno t < t* has this property.

Q.E.D.

We now discuss a necessary condition for a control u ¢ I to be time-optimal

for the stochastic system (2.4) starting at ¢ ¢ m](R) .

Let
supp T (t) = U{suppco o I T(f)} ,

and
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z - u{suppm):fel} ,
.Define
F(Z) = {feC?(R).: supp fNZ = ﬂ}

If Z-= R, then obviousiy F(Z) = f. For the important case where T(t) = p
forall Tel and pe m](R) has compdcf support, F(Z) # f@. Assuming |
‘ *
F(Z) # #, take fe F(Z ). Then, since a time-optimal control exists, ‘qu (t*) pe T(t*)

forsome u*e Y , t*el, and (2.7) becomes

.t*

olf) + Io o (U () A (s) F) ds = 0 . 4.5)

So, if for some u*e I , (4.5) is satisfied forall fe F(Z), it may be a time-
optimal control. This condition is in general far from sufficient for optimality, but may

serve to disquality suspected time-optimal controls.

We saw in Chapter lIl that in general &:D is not convex. However,
for certain state-dependent control systems, where m’:p does not consist only of
probubilif)./ measures whose associated distributions functions are normal, as for the
system (3.26), 'R,:o may be convex. In this case, we can carry the time-optimal

stochastic control theory further.

Definition 4.4. We define the reachable cone of probability measures of the sto-

chastic system (2.4) by

Rp) = {(f, ﬂ;) : fel}

i
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Definition 4.5. We say that ue & is a boundary control on ro, h1C | if

nu(.‘)w lies on the boundary of R (), 3 A (@), on [0, t ], i.e. for each
0<tst, n()oedRio)
Assume that 1.'(f)., the target set, is continuous with respect to h. Then,if

R is convex, one would expect as in the deterministic case that,if a control u* is

u* t*
time-optimal on [0, t*] C |, then g (t*) e d R’ . We can actually prove:
: ®

Theorem 4.4. (Necessary condition for time-optimal stochastic control)

Let u*e 3 be time-optimalon [0, t*] € | . Then u* isa boundary

control on [0, t* ] if R:p is convex for all tel.

Proof: The proof is exactly as in the deterministic case [ 14, p. 65-67 ], except

that the Prohorov-Hausdorff metric is used in place of the Hausdorff metric on R". The
proof requires the continuity, convexity, and compactness of m; as well as the con-
tinvity of T(t).

For ﬂf convex, we can obtain another type of necessary condition for
a control to be time-optimal. Let u* ¢ £ 'be time-optimal and t* the minimum time.
Then, by Theorem 4.4, 0, = nu*(t) Qe d RL for te [0,t*]. Let u be any
other control in £ and yp = nu(f) o- On ’”ZI(R), the weak topology and
weak*topology (o(m](R), CO(R))) are identical [ 18, Theorem 4.4.4, p. 81 ].
Hence, by Theorem 3.8, 'R:p is weak*compact which implies that ﬁ:o is weak*closed
[1, Corollary V.4.3, p. 424 ] . Therefore, m_; is a convex, weak*closed, subset
of 7II(R) forall t e l. Then, in the light of [54, Theorem 1 ], for each

te[0,t*], givenany ¢ > 0, (i) there exists o €d ' such that
Y ¢ ®
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€

||<pt - cpefll <€, and (ii) there exists f: eCo(R), ff £ 0, such that

-y(fet) s<pi(fi) forall ve m:p Thus, forall pe ﬁ;,

€ € € ,.€ € € €
()1 s 1g 1+ 105(F) - o, D1 < 1g@E)! + e 1§51l

or
€ A €
7CION s|¢f(9t)| t e,
, f€
where g‘i = Hence, given any & > 0, there exists gse C (R), gs A 0,
Fongs Tt ¥

t
©

8 )
V()| s lg(a)l + 8

t
such that forall ve ﬂ

In terms of (2.8), this condition becomes
oo 1) [ f u u [
H oW A ) g)ast s 1 oW () A () g )dsl + 8 4.6)
0 0

forall ue Y . Therefore, a necessary condition for u* to be time-optimal is that for

all 8 > 0 and te [0, t*], (4.6) is satisfied.

4.3 Exi‘sfence of Minimum Cost Feedback Stochastic Controls

In this section we shall be dealing with the feedback stochastic cantrol system
(2.4) wheré a(t, x) is bounded measurable, ana b(t, x) is bounded continuous and
strictly elliptic.

Let the system (2.4) startat t = 0 with (e m](R) and suppose we are
given a cost function V e C(R). The problem is to prove the existence of a control v
in a specified admissible class which minimizes the expected value of V(x:] (w)) at some

time t, € | . Such a control, if it exists, will be referred to as optimal. If we let

9 = £, (I x R), the space of bounded measurable functions from | x R into R, be
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the admissible control class, then we wish to prove the existence of a U eﬁ such that
u u
7 () e (V) s m (1) e (V)
for all v eg .

We say that {un}cg cdnverges to u ef/ inthe © (soo (1xR), Sl(l x R))

topology if and only if

[ ] o thx)gtt,x0dt dx > [ [ vttox)y g, ) dr dx
I R I R
forall ge S] (1 xR) , the space of integrable functionson xR .

Define

3 E{u'e-ﬁm(lxR):O‘Su(i",x) s1, tel, xeR} .

Theorem 4.5

Let a be bounded measurable, b bounded continuous and strictly elliptic

in 2.4). Let t, el and VeC (R). Then there existsa U e 3  such that

1
7} u :
(1) e (V) = 1 () e (V)
forall ue S, where pe ml'(R) .
Proof : Let {un} C i converge to U € § in the (:1'(“:co (IxR), -ﬁ] (IxR))
topology. Then, using an extended version of Corollary 3.77 it can be shown that
(8]
Ui N(t) o= T_]u (t) © as n = o . Therefore, the map v — 17u (t) ¢, from
(Sm (IxR), o (-Bm (1xR), -i:] (1 x R))) into %](R) with its weak topology,

is continuous.

Since 3 is the translation by the function :’]Z- of the ball with radius ;-

in Sm(IxR) , itis c(éﬂm (1 xR), SI (I xR)) compact, implying that the image

Extended in the sense that the control is also a function of the state.
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~

?f p ﬁ:o = {qu (Yo : ve i }, is weakly compact in MI(R) .

By the definition of the weak topology on MI(R) , themap p = u (V)
is a continuous function from ml(R) infto R . Thus, ﬁ; (V) is a compact set in R

foreach t el . Therefore, there exists a control U ¢ “z' such that
0 u
() e (V) s g (t)e(V)

~
forall ue & .

" Q.E.D.

Remarks :

i) In Section 5.3 we shall obtain a necessary and sufficient condition

for a control to be optimal.

(i) Theorem 4.5 is similar in form to Theorem 3 /of'/'[23 ], but

P

the proof here seems to be somewhat easier.
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CHAPTER V.

EXISTENCE OF UNIQUE QUASI-DIFFUSIONS WITH APPLICATION

TO OPTIMAL STOCHASTIC CONTROL THEORY

5.1 Introduction

The aim of this chapter is to study one-dimensional processes associated
with the coefficients [ a(x), b(x) ], where a is the drift coefficient and b is the
diffusion coefficient. If the coefficients are smooth, a unique transition function
P(t, x, T), t =0, xeR, Te é (R) can be associated with [a, b j, where the
density of the measure P(t, x, ) is the solution of the Kolmogorov forward equation.

If Bofh a -and b are bounded and uniformly Hglder continuous and b is strictly elliptic,
then we can still associate a unique transition density function p(t, x, y) with [a, b ]
as the solution of the Kolmogorov backward equation. When a and b are not Hélder
continuous, the classical theory of parabolic differential equations does not imply the
existence of a fundamental solution to the backward equation. To relate a Markov process
to [a, b ], one must therefore resort to other methods. For ‘a(x) bounded measurable,

b(x) bounded uniformly continuous and strictly elliptic, Tanaka [47 ] and Krylov [48 ]

were able to construct a quasi-diffusion (see (2.2)) corresponding in some sense to [a,b ].

However, they were unable to show that the resulting semi-group is unique. Therefore,
they could not uniquely identify the quasi-diffusion with [a, b ]. This difficulty is over-
come in [57], by using the martingale approach, where it is shown that to each [a, b ]
there corresponds a unique probability measure Px on(Q, 30) which solves the

martingale problem starting at x € R. If one can also associate a semi-group with [a, b ],

as is done for instance in [47 Jand [48], then it can be shown [5, Part 1l, Theorem 11.1 ]
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that this semi-group must be unique. The uniqueness of Px , however, does not ensure

-

“the pathwise uniqueness which results from lto's formulation of stochastic differential

equations.

The maior. portion of the \.~ork in [47 ] and [48 ] is devoted to
showing that the‘Murkov process constructed for the poorly behaved coefficients is a quasi-
diffusion. The approach presented in [47 1,487 and [5 ]is highly probabilistic in its |
nature. In the next section, we shall derive a formula similar to (2.2), using only func-
tional analytic methods, for the case where the drift coefficient is bounded aI:ld integrable
on R . With this formula, the uniqueness of the semi-group, generated by [a, b] (|n

fhe sense of [487]), can be readily established.

The main difficulty in proving uniqueness from (2.2) is that the transition
function which appears is that associated with the poorly behaved coefficients, and since
very little is known about this transition function (it emerges from-fhe Riesz-Markov
Theorem), uniqueness is di.fficult to prove. The crux of our approach is to find a repre-
sentation for the semi~group {U(t): t = 0 } , associated with the poorly behaved
coefficien'fs, in terms of a semi-group {T(f) :t > 0} associated with well-behaved
coefficients. Since a great deal is known about the unique transition density function

p(t, x, y) corresponding to {T(f) :t 20 } , uniqueness of {U(f) N O} follows

_from the properties of p(t, x, y).

Finally, we remark that the techniques of the next section do not appear
to be as general as those in [5 7. The main contribution is that the uniqueness of the
semi-group, generated by a bounded integrable drift coefficient, is demonstrated from
purely functional analytic considerations. The analysis is done for a one-dimensional

system, but the extension to n~dimensions is straight forward. In Section 5.3, we apply
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the results of Section 5.2 to obtain a necessary and sufficient condition for a control, in

a certain admissible class, to minimize the average of a cost functional.

5.2 Existence of Unique Quasi-Diffusions

From now on, let @ and b be bounded uniformly Hélder continuous, and

let b also be sfriqfly elliptic. Let u(x) bea real-valued bounded, measurable, and

integrable functionon R.

Define
2 A
hyB) = = —5—35 AN >0
A ™ A2“32
Then,
[00]
uy(x) = hy *u(x) = ‘[h}\(y) ulx = y) dy

=0

is infinitely differentiable in x . Since v ‘is integrable over R, it follows from

[ 20, Problem 13, pp. 196-197 ] that

lim uk(x') = u(x) a.e. on R

MO
Since Uy is continuously differentiable, the mean value theorem implies that Uy is
uniformly Lipschitz continuous. Thus, there exists a sequence { un} of uniformly

Lipschitz continuous functions such that lim un(x) = y(x) a.e. on R.
n =

We now construct a Markov process for the coefficients [a+u,b]. Let
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2 2
A= (alx) +u (x) g * el 5,
X

Then, for each n, [8, Vol. 1, Theorem 5.11 ] implies the existence of a unique

o

diffusion process (Q , ¥ ¢ P:' P WorXE R), where the transition density function

prff,; X, y) is the fundamental solution of

dv
5t Anv,

Let Pn(t, x, ) = ‘[[‘ pn('r, X, y)dy and

U (1) fd= - j‘R fy) P (1 x, dy)

for n > 0, where Pn(t, x, I') = P::{nte I‘}, [e £(R),and fe B(R). Define

for t =0

U(t) f(x) = lim  U"(1) f(x) ,

n -0

where f has compact support and is three times continuously differentiable.  Pro-

ceeding exactly as in [ 48, Section 17, it can be shown that U(t) f is representable

as

U(t) F®= j f(y) PY(t, x, dy) (5.1)
R

for any fe C(R), where Pu(f, x, T) is a transition function. Employing the properties
of Pu(t, x, I') proved in [ 48, Section1 ], we can conclude on the basis of [ 5, Part 1,
Theorem 3.14 ] that there corresponds a continuous Markov process to PU(t, x, T). We

denote this Markov process by ( Q , 3:, P: P XE R).
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Nc;w that we have associated a Markov process with [a+u, b ], we
shall obtain a representation for { U(t)f: t > O} which is different from (5.1).
First, let (Q , 3?, Px P WL XE R) be the Markov process generated by the coef-
ficients [a, b], which satisfy the conditions of the first paragraph of this section. In
viewof [ 8, Vol. 1, Theorem 5.11 ] , the transition density function of this Markov

process is the fundamental solution of the parabolic differential équation

ov  _
57 ° Av , | (5.2)
where
2 2
e 2 4 B0 2
A a(x) S + > ax2 . (5.3)

The transition density function p(t, x, y) induces a unique semi-group { T(t): t > 0}

of bounded linear operators on B(R) through the relation
T FG0 = [ Hy) pltx ) dr
A is the s-infinitesimal generator of {T(t) : t o> O} with domain .ﬂ(A) containing
@ = { fe C(R): f has compact support , ', "¢ C(R)} .
Integrating (5.2) , we get Dynkin's formula :

t
T(t)f - f = J‘ AT(s) f ds
0

for feﬁ.
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We are concemed with defining a unique semi-group for the (formal) sto-

chastic differential equation

t

where PV is some probability measure on ( 0 3°), and a, b, u are as above.

In view of the estimates in [ 8, Vol. Il, Theorem 0.5 ], it can be shown
that foreach n > 0 and fe &) , both T(t) f(x) and Un(f) f(x) are differentiable

in t, and twice continuously differentiable in x and satisfy

- : 35U (1) f
iTa(—:)-f = AT(t)f and . '_an_t'_ = AnUn(_f)f , (6.5)

respectively, with the respective initial conditions,

s=lim T(t)f = f . and s=lim Un(t)f = f (5.6)
tdo . t40

We claim that the solution of the second equation in (5.5) can be repre-

sented as

. t : -
U()f = T(1)F + IOT(r-s) u () DU (s)f ds 5.7)

forany n > 0 and fe'b , For t > 0 we write the incremental ratio as

lA-(Un(t+A)f - U (D) = %(T(fu)f - T() f)
t
* (T(NA' ') jor(f-s) u (+)DU (s) F &
t+ A
+

]
x It T(t + A- ) un(') DUh(S)f ds.(5.8)

*D ‘= & is a closed linear operator on CO(R) with domain , @(D), containing

X
= {fe C(R): f has compact support, f'e C(R)} .

[+ 74

dw, = (o(nf)'+ u(nt))df + b(nf)dzf, t =0, a.s. Pu, (5.4)‘
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The first term on the right-hand side of (5.8) approaches AT(t) f,since fe H and

T(t) fe &(A). The third term approaches un(- )D Un(f)f since the map

s a2 T(t+A=-5s) un(- )D Un(s) f from [0, t + A] into CO(R) is s-continuous. This
follows from |l DUn(s )l < for s > 0 (Lemma5.1), and Il Un(S)f - fll 50

as & 40 [8, Vol. Il, Equation (5.69) ]. Since the lefi-hand side of (5.8) goes
aU (1) f

to —r which exists by (5.5), we have

t
f T(t-s)un(-)DUn(S)fdsea(A) ’
0

and

aUn(f)f :
X

t
AT(H)f + AJ’ T(t-s)u (-) DU (s) fds + u (+)DU (1) F
0

An Un(f)F

The following lemmas are presented in preparation for Theorem 5.4.

Lemma 5.1

The linear operator D T(t) is bounded on @ and, since b = Co(R)’
can be extended to a unique bounded linear operator with the same norm and symbol on

Co(R) forany t > 0, and

’
f Il DT(t) Il dt < o
0

forany 0 < T < oo.

Proof: Let fe &) , and let p(t, x, y) be the transition density function associated

with {T(t):t =0} . By [8, Vol. Il, Theorem 0.5 7, we know that p(t, x, y) is



69

continuously differentiable in x and

2
I.Q‘E(_LIS%Z)'[ < AtA- exp{_ﬂz_f-_&_} ,

where M and a are positive constants. Thus,
DT fG)L = 1 [ f(y) aple X, y) g |
| R - ox :
- 2.
27 1 _z
< ILFN M\’;-f- IR\E'F_? exp { - % bz,

LY =-X
where z = La—- . Hence,

DT I < M“ /5—} = (1),

. ,
f HDT(t) Il dt < o
0

and

for 0 < T <.

Q.E.D.

From now on let v, bounded by ¥, infegrabl'e on R, and vanishing at
+ 0, be fixed, and 'le’r{ v, } be a sequence of infinitely differentiable functions (as

described earlier) converging a.e.- to u on R.

Lemma 5.2

Fort 50, n >0, D Un(f) is a bounded linear operator on @ ,

and therefore can be extended to a unique bounded linear operator on Cé(R) with the
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sar_ne.syn.nbol and norm, dnd .H'D Un(t) Il is uniformly integrable with respect to n over
10, 7, T,

Proof: By the construction of U it is bounded by 'y .cmd uniformly Lipschitz
continuousj. Therefore‘, Lemma 5.1 .implies that I bUn(f) Il <o for t >.0 and

T . . '
J"o M DU (1) Il dt < @ (5.9)

for each n SO, and 7+ < .
Now, foreach fed , T(f-,s)'un(-)'DUn(s) fe__,@(-l_j.)., where .
0 ss st <o, Thereforé, . - |

t : t :
f HDT(t-s)u (+)DU (s) fll ds s'yllfllf.HDT(t-s)ll (IDU (s)llds
Y0 n e . 0 n o

< o , (5.10)

since the convolution of two integrable functions is itself integrable [1, Lemma VIN.1.24] .

\

(The existence of the righ'&hand side is assured by Lemma 5.1 and (5._9), for each
n >.0). Hence, invoking [1, Theorem III.6.20, p. 153 ],' we can ‘operate on both

sides of (5.7) with D to get ,

R | ' :
DUn(‘t)f = DT(H)f + J‘ODT(fws)un(f)DUn(s)fds ) | .11y
Then,

. t '
DU ()11 < w(t) + yf Y(t-s) DU (s)llds < o . (5.12)
0 " | L
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t
f

Let | = [0, te 1, and p = f Y (s) ds. Then, integrating both sides of (5.12)
0

‘from O to rel, r2t, weget

r
hn('r) s p t Yy pfo hn(s)_ds,

n

t
where hn(f) f 1D Un(s) Il ds, which implies, by Gronwall's Lemma [11, p. 117,
0

that forall n > 0

h(r) s pe”PT

Q.E.D.

Let
A = B 4oy pZ P
Then,
IIDUn(t)IIs A(t)

forall n >0, tel, and A(t) is integrable over [0, 7], Tel .

Lemma 5.3

Foreach t 2 0, { D Un(i') } n 50 Converges in the uniform operator
topology on  £( C_(R), CO(R))* to V(t)e £(C (R), C_(R)) as n =, uniformly

on every finite interval.

Proof: Foreach t >0, and n,m s 0, D Un(f) - DUm(f) can be extended

uniquely from & 1o a bounded linear operator on CO(R) with the same symbol and

norm.

¥ The space of bounded linear operators from Co(R) into Co(R) .
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Using (5,11), we have, for f e

i
DU_(+)f - DU_(+)f = JE) DT (+=9) (u, () =9, (+)) DU (s)Fds
(5.13)

R
+ IODT(f_S)Um.(')(DUn (s)f)ds.

Consider the integrand of the first term on the right-hand side of (5.13). Let

¢ lu_ @) - )l
! (y"(ym

IDTE-5) @ 6 -u_6)DU_(5)F eI = [lu () =y O IDU_G)F ()1 Fp t-s,xy)ld.

R
: . (5.14)
SUFHXGE YE-9) ;xn'fn(x).

By definition of v and the fact that 1u (x) | =0 as x = * o, there exists k >0

such that | v x 1 < L forall n =2 some N if Ixt! >k . Therefore

8
: 2
gf,s < | )_ &) exp _(y-x) %'d
| nlm(X) Jk L m J2u(t=s ) t-s Y

: k
< £ 4 ] jlu (y)-u (y)ldySe

-_2_ A 211’(*"'5) -k

for sufficiently large n, m. " Hence, |l Qf's Il =0 as n,m ~o for 0 Ss <+t el.

Returning to (5.13),

IDU_ (f)f -DU_@FI S HF x(s);b(f-s)nng”nds
0

(5.15)

+j¢p(f-s)||ou ©f -DU_ (s)f“ ds . |

Now, forany tel, foralmosteveryse (o, +], 1 Qfsll -0 as n, m - .

Then, sinca A () ¥ (t-s) 1l Qn' < 2uXE)YY(t-s), whlch is m‘regrable on [0,1],

the first term on the right-hand side of (5.13) approaches 0 as n, m = o . Given
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any B > 0, we can choose n, m large enough so that for all el (choose
n,m for t = ff)

f
by O-DU_ M <p + jozp(f-s)noun ©-DU_@llds.

! ‘ Using Laplace Transforms, we can show that
t
Dy ()-DU_ M1l sp (1+ joh (t-s) ds)

where h () is the inverse Laplace‘ Transform of N  N=Mmn /—g— .
W5 - N

‘ It can be readily shown that h () is an infegrable function over finite infervals.
Hence, lim Il D Un t) - D Um(f) =0, uniformlyon. | . Since & (Co R), Co R))

* n,m = )
. i5'a Banach space, there exists V (f) e & (<, R) . C R)) such that

lim 11DU_ () - V@I=0

n ~*o

uniformly on 1.
* Q-Ech

Theorém 5.4 (Existence of Unique Quasi-Diffusions)

The semi~-group of operators { U(t) : .t = 0} defi.ned by (5.1) can
be represented as | .

t ' : .
U(t)f = T(t)f + ‘[T(t—s)u(')DU(s)Fds, t >0, (5.16)
. 0 :

for f Eb , and {U(t) : f;O} is unique.
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Proof: For. fed , t >0, nm>0, (5.7) yields
t
U (F - U ()f = fOT(r-s) (0 (") = u (*) DU (s)f ds

t .
+ .jo T(t-s)u () (DU (s)f = DU_(s)f) s

Since { T(t): t =0 } is induced by a conservative diffusion process, Il T(t) Il = 1

forall t > 0. Then, exactly as in Lemma 5.3, we can show that

lim I Un(f) - Um(f)ll =0,

N, Mm 0@

where we use the fact that Il D Un(s ) Il is uniformly integrable with respect to n > 0
over [0,t7], and Il DUn(s) - DUm(s) Il 40 as n, m = . Hence,
{ Un(f) } N 26 converges in the uniform operator topology to U(t) € & (Cb(R)’ Co.(R))

as n - o, i.e.,

lim 1l Un(t) - u(t)!ll =0

n -

We now show that for fe & , V(t)f = DU(f)f forany t+ > 0.
Since D Un(f) f (x) is a continuously differentiable function of x , and

DU (1)f % V(t)f by Lemma 5.3,

-oX
U, (0 f(x) = U (D fy) = [ DU (1)F(&)de
Y

X
_.J‘ V(t) f(&)d ¢ as n 5o,
Y

S

where IIDUn(t)fH s Mt)IFIl forall n > 0. Also, Un(t)f > U(t)f as

n - o, Thus,
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‘ X '
UMEE-UMFy) =] VF@dE,
' b4

which implies that for f e
DU(t)f = V (t)f .-

For the remainder of this proof, let t = 0 be fixed. We claim that

for 0 ss<tandfe

4,6 =T(t-=9u (*)DU ()f % T(t=9u()DU(s)f =q(s)
. as n = c. FromLemma 5.3, we know that |
g, (/) = DU @F() FDU(GIF() = g(s ) 5.17)

as n *+ . Now,

176.-9) 6,6 8,602 <0k gl XD = [ o, 6) =0l Tg 6ol pE=s0 %0 7) &

+ jR o) g, 6y) =g, ) Pl =5, x, y) dy

+ yllg 6 1) =g 6 )l ‘ (5.18)

SUENAE [ 1o 6)-u o)l
- R

t=-s

where the estimate for p (t, x, y) is obtained from [8, Vol. Il, Theorem 0.5 1. The
first term in the right-hand side of (5.18) goes to O uniformly in x as n = o by
the a.e. convergence of v, (y) to u (y) and by the same argument as in the proof

of Lemma 5.3. The second term goesto 0,.as n = w, by (5.17) . Hence,
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a.(s) % q(s) (5.19)

n

as n -, foreach 0 <5 < t.

Let pe ’”l(R) be arbitrary. Then,

w(q, (s) = fR]R u,(Y) DU (s) f(y) plt=s, x, y) dy w(dx)

is a continuous function from [0, t] into R, since, DUn('r) f(y) and p(T, x,y) are
continuous in T,by virtue of the fact that the coefficients which generate { Un(t) it >0 }
and {T(t) it 20 } satisfy the conditions of [ 8, Vol. II,. Theorem 0.57], ensuring the
existence of fundamental solutions. Thus, the function qn(- ): [0, 1] = CO(R) is
weakly measurable for each n > 0. Since Co(R) is a separable Banach space, the
theorem in [6, p. 131 ] implies that qn(s) is strongly measurable in the Bochner sense
[ 6, p. 13.0]*. Therefore, since I qn(s) [l < yA(s) forall n > 0 and A(s) is
integrable over [0, t], the theoremin [6, p. 133 ] implies that

{qn(s) } n 20 C B(ro,t3], Co(R))’ the space of Bochner integrable functions from
[0, t], with the Lebesgue measure, into the separable Banach space Co(R)' Since
q,(s) % q(s) as n = o foreach se[0,t],and Il q,(s) 11 s ¥X(s) for all

n 0, [..3, Theorem 3.7.9, p. 83 ] implies that q(s)e B([ 0, t 7], Co(R)) and

lim j; q(s)ds = f; q(s) ds

n =0

Thus, letting n -+ @ in (5.7), we get for fed

t
U(H)F = T(H)f + f T(t-s)u(*)DU(s)f ds . (5. 20)
0o .

* Recall that every subset of a separable metric space is separable [16, Theorem 7.3, p. 1767,
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It remains only to show the uniqueness of { U(t): t » O} . We shall

need the following result: for fe @ ' DU(r)fl is s-continuous on [0, t. J. In order
to prove this, we first show that for n > 0, DUn(f)f in s-continuous on [0, t_ ].

For te(O,tf],
DU (t+ A)f - DU ()f = DT(++ a)f - DT(t)f

t+ A t
+‘& DT(t+A-s)u (+)DU (s)fds - IODTU-s)%#')DUnG)Fﬁ,

and -
IlDUn(f+ A)f - DU;(f)fII s HDT(MH) W 1IT(A)f - f 1

;.
+ fo I DT(t-s) 11 H(T(4) - 1) u (-)DU (s)F Il ds

t+ A
+J‘ YHUDT(t+ A-s) Il IDU (s) fll ds.
t n

The first term on the right side goes to 0 as A - O by the s-continuity of { 'i'(f): t > 0}
on Cé(R) [ 8, Vol. I, Equation (5.69), p. 163] . Since un(x) is a continuous function,
un(- ) DUn('s) fe Co(R) for all s e 1, and the integrand I D T(t~s) Il 1I{T(A) - I) un(o )
DU (s) fII is uniformly bounded by 2y  (t=s) A(s) I f 11, which is integrable on

[0, t]. Therefore, the second term goes to 0 as A - 0. The third term approaches

0 as A -+ 0 since y(t+ A-s) A(s) is integrable. Therefore, D Un(f)f is s=continuous
on (0O, tel. To prove continuity at the origin, we need only show that

IIDT(A)f - Dfll 40 as A= 0. This follows from

lim  sup IDT(T) f(x)!I = 0 ,
X =0 057-<'rF

which can be proved by an argument similar to 2° of [ 8, Vol. 1, p. 163 ] using
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the estimate (0.41) of [8, Vol. II, Theorem 0.5 in place of. the estimate (0.40), and the
fact that D T(A) f(x) - f(x) as A - O uniformly on compact sets [ 8, Vol. 1,

bottom of p. 164 and top of p. 165 J. Thus, foreach n > 0, D Un(f)f is s-continuous

on [0,t.].
Now, Lemma 5.3 shows that DU_(t)f S, DU(t)f as n = o uniformly

‘on [0, t.]. Hence, DU(t)f iss-continuouson [0, te] by a standard argument,

which implies that

sup{uouu)f s fe[O,ff]} <o . (5.21)

Retuming to the uniqueness proof, let {U(t)f: t >0 } and
{Z(t)f: t > 0} both satisfy (5.20). Then W(t)f = U(t)f - Z(t)f satisfies

t
W(H)f = fo T(t-s) u(-) DW(s)f ds . (5.22)

For xe R,

t
D W(t) f(x) = jo jR o(y) DW(s) i(y) 2lEzse el gy g

and

f
IDW(t) f(x)| < 'y‘fo HDW(s)fH{ ‘[R “ﬁAs) exp {-astx_-—sx-L} dy} ds .

Thus,

t
HDW(t)fIl < ,,j Y(t=-s) 1l DW(s) FIl ds .
0
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Let c, = sup { HDW(T)Il: 0 < ¢+ < f} , which is finite by (5.21). Then

t .
c,'s <, yf() v(s) ds .

Since ¥(s) is integrable over any interval [0, t], wecan find t' > 0 small enough

" so that

.1-' .
yjo B(s) ds < 1.

Hence, Cp = 0. Since there is nothing special about the origin in this argument, it
follows that D W(t)f = 0 forall t > 0. Substituting this into (5.22) we get
W(t)f = 0 forall t+ » 0. (The uniqueness proved here is with respect to all com=

petitors which satisfy (5.21).)
Q.E.D.

Corollary 5.5

1f AT(t-s)u(-)DU(s)fe B([O, t], Co(R)) foreach t > 0, then

for fe®~, U(t)f satisfies

Ll%(%)f = (A+u(-)D) U(t)f - a.e. on [0, @) .,
l'Proof: Using (5.20), for t > O fixed,
Ut + AF - UH)F - T(t+ AF- T _ o (T(A) - | )
- _ - - IO(-——A—?T(f.- $) u(*) DU(s) f ds
(5.23)
p f74
+_A-I T+ A=s)u(*) DU(s)f ds.

t
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It was shown earlier that T(t-s) u(*) DU(s)fe B([O, t], Co(R»' Therefore,
'[3, Corollary 2, p. 88 ] implies that the second term on the right-hand side of (5.23)

goes to u(+) DU(t)f a.e.on [0, @) as A = 0. Forall 0 < Ast,
A

||(15-A£—'2)q(s)u - il%j T(r)Aq(s)d 7 Il
0

1 8 |
< Zjoqu(s)udr = 1A q(s)ll e B([O, +1, C(R),

where q(s) =T(t-s)u(- ) DU(s)f. Therefore, the first term on the right-side of (5. 23)

goes to J‘ AT(t-s)u(+)DU(s)fds as A = 0. Since feP and TP C H(A),

the second term on the left side of (5.23) goesto AT(t)f as A = 0. Thus lea;‘ f
exists a.e. on [0, ®), and
aua: e AT(H)f + AJ‘;.T(f'S) u(*)DU(s)fds + u(:)DU(t) f
= (A +u(*)D) U(t)f a.e. on [0, ®) .
Q.E.D.

The method for integration employed in this section seems fo 'be resiricted

to unboundéd operators of the form
U ' bZSx! 2
A" = (a(x) + u(x)) D + 5 D

2

where D2 = _3_2 . The critical point is the integrability of 11 D T(t) Il over
X
bounded intervals [0, 7]. If we consider a perturbation term in the diffusion coef-

ficient as well as in the drift coefficient, the operator AY is of the form
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A+ uT(x)D + uz(x) D™ .-

To use the techniques of this section, we would require the integrability of Il D2 T(t) 1l
over [0, 7]. This, however, is not implied by the estimates in [8, Vol. I,
Theorem 0.5 ] . In fact,we can show that

T 2
f HD“T(t) Il dt = o (5.24)
0 .

forany 0 < + < o. To see this, let

A = D +-D? ,

which is certainly an infinitesimal generator, and let { T(+) 1t 20 } be the semi-
group generated by A. Now, suppose that

T 2~
f HD“T(H)Ndt < @
0

forany 0 < r < . Then, by the integrability of Il D T(t)1l and Proposition 2.2b),
t

HT) - 11 s [ HAT(s) I ds*
0

exists, and goes to 0 with t.. This shows that { 'ia"(r): t > 0} is Qniformly continuous,
which implies that A is a bounded linear operator [ 1, Theorem VIII. 1.2, p. 6141].

But, this is impossible since A isa differential operator on the Banach space CO(R).

Remarks :

(i)  For u(t, x) bounded, and integrable as a function of x for each t, the

methods of this section can be used to associate a unique two-parameter

* A T(s) is actually defined only on the domain of A; the A T(s) in this relation is
the natural extension to the entire space C,(R).
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family {U(s, t) : 0 <5 <t, tel } with [a(x) +u(t, x), b(x) ] .

For fe D , U(s, 1)f is represented as

t
UGs, Hf = T(t-s)f + fT(f-T)u('r,-)DU(s, rfds .  (5.25)
] .

The extension is accomplished by applying [8, Vol. II, Theorem 0.4 ] in place

of [8, Vol. Il, Theorem 0.5 ],to ensure the existence of fundamental solutions of

BUn(s, t)f
—S-f—_ = An(f) Un(s, t) f K
where

An(t) = A+ un(t, x)D,

and {Un(s, ty: t 2s 20 } is generated by An(f); un(t, x) is continuous -
and bounded on [0, t. ] x R, uniformly Holder continuous in x forall t,

and un(t, x) = u(t, x) a.e.on [0, tf] x R.

Since u(x) is bounded and integrable, we can assume that a(x) has the same

"properties, and that the semi-group {_T(t) 1t 20 } is generated by

bzsx! _ai
2 2 °

X
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5.3 Application to Optimal Stochastic Control Theory

Let U be the set of control functions u(x) which are bounded and in-
tegrable over R. Suppose we are given a cost function Ve ® , and we wish to find
’ u
conditions which will ensure  that,at a certain time ’r.l s 0, EPx { V('trf ) } is
' 1

minimized, i.e., we want to find a condition such that for some vell

ﬁﬁ(fl)ﬂo(V) < nu(f.l) o(V) , o€ %](R),

forall ueY. In the light of Theorem 5.4, for each v e U, the flow
{ qu(t) o: t >0 } C,m']'(R) is unique. Integrating both sides of (5.20) with respect
to ¢, we get for fed

t
o (U(H)F) = (T(1)f) + Jlotp(T(t-s)u(-)DUU(s)f) ds .

Let A* be the &dioinf operator of A with domain P (A*), (See Remark (v)) If
Qe 7/I](R) N $ (A*), then exactly as in Proposition 2.5, it can be shown that
' t
n(t) @(f) = m(t) o(f) + [ 7(s) D*u(-) m(t-s) @(f) ds
0

for any fgCo(R), where 5(t) = UY(t)*, m(t) = T*(+) and D* = --g—)-( .

Now, a necessary and sufficient condition for U el to minimize

°(t) o(V), oe M (R), is that

t - t
jo',,,(T(t]-s)a(.)ou“(s)V)ds < Io](o(T(t]-s) u(-) DUY(s) V) ds

(5.26)

forall vell. If Ve Co(R) and gpe M'I(R) N H(A*) then a necessary and suf-

ficient condition for e to be optimal is that
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Remarks :

(i)

(ii)
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t

to- .
fo‘ n"(s) D*5(+) m(t - 5) (V) ds svfo' #(s) D*u(+) m(t - 5) (V) ds

elU.

If we wish to utilize the theory in [5], we can obtain a stronger version of
(5.26) for Ve C:o(R) . Let a(t, x) and u(t, x) be Eounded measurable

on [0, @) x R, and let b(t, x) be bounded continuous on [0, @) xR
and strictly elliptic. Then, there exisf:;: a unique family { W, 1):0 <5 < f}

associated with [a(t,.x) + u(t, x) ], and
U ) f
wt)f = f+J’ W) A%Gs) Fds (5.27)
0

where UY(1) = UY(0, 1), fe cf(k), and

2 2
A%(s) = (a(s, x) + u(s, x)) ;a)_( + b (;: x) _a_ax__z_

Let ﬁ be the class of bounded measurable controls from [0, @) x R into
R. Then, by (5.27), ueld minimizes the average of Ve C?(R),

at time fl > 0, ifand only if

M a0 B IRV

[ U EAGCIV) & s [ o) AT V) o

) 0

for all ueﬁ, where e m](R).

A sufficient condition for optimality in (5.26) is that for eachse [0, t; ]
O(T( -93(") DU)V) < o(T(t =) u(+) DU(s) V)

forall ve u .

it}
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(iii) To further stress the significance of Theorem 5.4, and the related results in
[57, we will suggest a formulation of an optimal stochastic control pro-
blem and conjecture a method of solution. Let s = 0, U(t) = U(O, 1),
and u(t) = l..‘l‘(i‘, x) bea bounded function of t only, in (5.26). Then,
for Ve @ , in view of Theorem 5.4 and Remark (i) of Section 5.2,
- t

QUIV) = RO V) + [ o(T6- ) u(s) DU(s) V) s (5.28)
uniquely defines the trajectory of the average of the random variable V(xf),
where X, starts at t = 0 with probability measure ¢ . Letting |
y(t) = o(U(t) V), f(t) = o(T(t) V) and K(t, s, u(s), V) =
Oo(T(t-s)u(s) DU(s) V), (5.28) is rewritten as

y(t) = f(t) + f; K(t,s, u(s), V) ds , (5.29)

where K is related to y(t) in an implicit manner. We now consider the

cost functional

f
o) = [ TKlrs)s wlsds) s

v»"/here Ko satisfies certain continuity and differentiability conditions. The
problem is to find an admissible control u(t) such that J(y, u) is minimized.
As formulated, this optimal stochastic control problem resembles the problems
studied in [ 52]. Unfortunately, the integrand in (5.28) is considerably
more complicated than that in Equation (1.1) of [52, Part1]; the dif-

ficulty is due to the unbounded operator D which affects K in a complex manner,
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and the fact that y(t) does not appear explicitly. However, the methods
employed in [527] may prove useful in deducing a maximum principle for

the optimal stochastic control problem formulated above.

We shall now discuss another type of optimal stochastic control problem. Given
the final time t, , weare inferes:fed in minimizing some functional of the final
probabilify measure induced by the random variable x':] (w), for the open-
loop control system (2.4). To be more specific, if ¢ is the initial probability

measure, we wish to find the control u which minimizes
u
where f_ is a continuous map from m](R) with its relative norm topology,
(M, (R), 11 1), into [0, ).
Consider the following space of control functions,which is used in [53 J:

Let Lp- { R, [0, 2 ] } be the space of measurable functions u(t) with

range in R such that

H
f I u(t)IP dt < o
0

forsome 1 <p <. Let .

L 4

1l

{ueL{R,[O,f]},sup |u(f)lgM<oo}
P Osi‘sf.l

Then, W is a closed bounded convex set of Lp { R, [0, t; 7} whichis

reflexive. Define the mapping
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(o) = f;' (n"(s) D* u(s) m(t - 5) w) (-) ds

from L { R, [0, )]} into (MR, - 1), where ge Tl (R)NED(AY).

Then,
e = mt)e + fu) |
Let
Fo(u) = ||m(f])<p+ f(u) - pll ,

where abeb ml(R) is a target measure. Now, if f(¥) is a convex set in
M(R) and fo(u) is a continuous convex functional on ¥ , then [53,

Theorem 2.1 ] shows that there exists an optimal control U e ¥ which mini-

mizes fo . The difficulty in the above formulation is that, in general f(Q)

is not convex,and fo is not a convex function of u . (Observe that f is not
a linear operator on u.)
Actually, we would prefer treating this problem in the metric space

77[1(R) with its weak topology. That is, we wish to know if there exists a

Ge W , or in some other control class, such that

fv) = p(n () o )
is minimized, where p is the metric of weak convergence and ¥ 74] (R).
This problem is very difficult to handle,because there are no techniques available
(to the author's knolwedge) for optimization in a general metric space. The

most general optimization theory seems to require at least a linear space.
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From Proposiﬁonv 2.5, we know that P (A*) is weak*dense (0‘( 7’Z(R) ,
CO(R)) fopology) in the space m( R), i.e., givenany pe M(R), we
can find {p } C D (A*) such that lim p (F) = p(f) forall

fe Co(R)' We -now wish . to . charac:e:i:)e P (A*) more comp!etely.
We shall consider the situation where a(x) and b(x) are twice continuously
differentiable on R. Let @&(R) be the funadmental space consisting of in-

finitely differentiable functions on R with compact support. Define the linear

operator A on &(R) by

2
A = a(x)g’; + h(x) -3—2 ,
oX

- where h(x) = 2(x) . Let pe.'”l(R) . Then p defines a distribution Tp

on &(R) through

QO

T () = [ e(x) ulax)

oo
Integrating by parts, we get

p(Ae) = A*p(e) ,

where
2
) 2)
At = -slap) + —5(hy)
3%

Since pe ’”Z(R),and a, h are continvous, ay, hpe %(R)*. This
means that a p, h pe @'(R), the space of distributions on R. By Leibniz's

formula,

* See [17, Section 137,
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sap - 3ag =1}
ax ax p + a ax [} (5'30)
and
a2h 3 h d3h 3 azg
_hz = (S5)p + 222 4 p 5 - (5.31)
X 9 X ox X d X
We define
Da) = {ue MR) = A*ue MR }
2
Since :—‘; ’ %)—IZ, ] h2 are continuous, a necessary and sufficient condition
ax :

2
that A* pe '”l(R) is that g—)h:- , -a—% € 'M‘(R) , for then all the terms
3x

of (5.30) and (5.31) are in M(R), since ’»Z(R) is a linear space. Thus,.

2
DA = {ue Mr): 2, L )

. : 2
In other words, u e &(A*) if -an;-'( and -a—-% are functions of bounded vari-
3 x

ationon R, equal to 0 at - , ond finite at + .
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CHAPTER VI

DYNAMICAL SYSTEMS IN THE SPACE OF MEASURES

6.1 Examples

To motivate the work that follows, we present two examples.

ExdeIe |

.Let E = R" and let x, be a Feller process taking values in E with

t
transition density function p(t, x, y) such that forall fe C(E)*',

I:llm f f(y) p(t, x, y) dy = f(x) uniformly on compacis. (6.1)
té0 “E

' By [8, Vol. I, Theorem 5.11 1, diffusions whose coefficients are bounded uniformly

Hslder continuous, and the diffusion coefficient strictly elliptic, satisfy the above

.. * *
conditions.

Let ¢ be an initial probability measure and define for T'e B(E),

the Borel ¢ - algebra generated by the open setsof E, t > 0,

I J

E°T

m(t, ) (T) p(t, x, y) dy o(dx). (6.2)

From (6.2) we have that
-m(0, 0) = 0 ,
and by the Chapman-Kolmogorov Equation,

m(t+s, ©) = m(t, m(s, (ﬂ)) t,s 20

——

* C(E) is the Banach space of real bounded continuous functions on E with the

supremum norm. A
* * This is also true if the coefficients are Lipschitz continuous (see [8, Chapter I1 J).
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We claim that the map (t, ¢)—» m(t, ¢) from R+x %](E) into
+
m](E) is continuous where R = [0, ®) and MI(E) has the weak topology:

Let (f+%, (pn)-. (t; @) as n = o ; then,for any fe C(E),

m(f+rl‘ ’ ¢pn) (f) = m(t, @) (f) IEIE f(y) p(t +% , X, y) dy ‘Dh(dx)

6.3)
- [ [ ) et x, Yy o (dx)
E'E

1]

J‘EIEf(Y)<P(f + ;I-‘l Xy )’) = P(fl X, )'»d)’ (Dn(dX)

(6.4)
[ 100 (g () - o)

where Tf f(x) = f f(y) p(t, x, y) dy . The first term on the right-hand side of (6.4)
E

goesto 0 as n - @ by (6.1) and the Dominated Convergence Theorem, while the

second terms approaches 0 in virtue of the fact that Tt fe C(E) and 0 =>Q os

n - o . Hence, (t, ©) =» m(t, ) is continuous.
To summarize, we have shown that for e ml (E),
1 mO, o) = ¢
(2) mt+s,¢0) = m(t, mG, ©)) forall s,t = 0 6.5)

(38) the map R+x ”](E) - /"II(E) defined by (t, ¢) ~ m(t, @)

is continuous,where M](E) has the weak topology.

ExamEIe 1

Let E be a metric space.
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Definition 6.1. Amap p: R'xE = E issaid o define a (positive) dynamical

+ . ap e . .
system (E, R", p), or continuous flow, on E if it has the following properties:

M vO,x) = x forall xe E
2 u(t, v, x) = v(t+s, x) forall xe E, t, s = O
(38) v is continuous .

We define probability measures on E in the following manner: for
xeE,

1 if xeT
o) =

0 otherwise y
and

1 if v(t,x)el
m(t, @) = 0

otherwise '

where T e B(E). Note that m(t, ¢) and u(t, x) are completely equivalent;

specifying one defermines the other. The family { m(t, @):t 20 } has the following

properties :
i if xe Tl
(i) m(0, o)}(I') = = (I)
otherwise
Therefore,
m(ol (D) = .
1 : if p(t+s, x) el v(t, vis, x)) el
(i) m(t+s, o)(T') =
0 otherwise

m(t, m(s, (P)) (r)
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Hence,
‘ +
m(t+s, ®) = m(t, m(s, ©)) for t,se R .
(iii)  Weak continuity of m(t, @) in t and ¢ follows directly from the continuity
of v .

Therefore, any dynamical system (Definition 6.1) defines flows of

+
probability measures {m(f, ©): teR } which satisfy (6.5).

6.2 Definition of Non~Deterministic Dynamical System

Let E be a complete separable metric space, and n(E) the space of

real signed measures on E ., Q(E) is a Banach space with the variation norm. Let

M] (E) be the set of probability méqsurés on E, and let p be the Prohorov metric
on ’)l](E)' [12]. A sequence { pn}CM](E) converges fo e MI(E) in pif
and only if pn(f) -~ p(f) forall fe C(E), i.e.,{pn}converges weakly to p. In
this section we shall interpret some of the results of [ 32, Chapter | ] for the metric
space (m](E),p)-We could work in '”Z(E) or ﬂf(E) = { Qe %(E) : 02 0}
rather than in ml (E) , but often results in these spaces do not lend themselves to

physical interpretation, so we restrict ourselves to the intuitive space M] (E).

Definition 6.2, A transformation m: R+x /)”'I(E) - M](E) is said to define a

non~-deterministic dynamical system (NDDS), or a weak continuous flow, on ’m](E)

if it has the following properties:
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(1) m(0, @) = o forall e WII(E)
@  m(s,m(t, @) = m(t+s, @)  forall e M (E), tse R
(3)  themap (t, @) = m(t, @) from R x M (E) ~ #(E) is continuous,

where m](E) has the weak topology.
(The usual definition of a dynamical system is for R rather than R+,)

In the previous section we saw that diffusions, which are special Markov
processes, and deterministic dynamical systems are examples of NDDS. (Note that not

all semi-groups of probability measures originate from Markov processes [40, p. 340].)

A NDDS isa flow on m](E) . Knowing the probabili'ty measure at
the present time permits the prediction of the probability measure at any future time. For
Markov processes either the transition function or the adjoint of Dynkin's Formula
[8, Vol. 1, p. 23 ] explicitly describes the flow of probability measures.

For every e M] (E), the mapping m induces a weak continuous map

m‘p: R+ - '"l](E,) such that m“’(r) = m(t, <p5. The mapping m?

is called the motion
+
of probability measures starting at ¢ . For every te R, m induces a weak continuous

map m, : '”ZI(E) - m1(E) such that mf((p) = m(t, ©). The map m, is called the

transition. A NDDS may be visualized as the law with which the probability measure

m(t, ¢) moves along m(R+, ©) = { m(t, @): te R+} .
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6.3 Dynamical Systems in the Space of Measures : Some Results

We commence with the following standard definition :

‘Definition- 6.3. If e ml (E) has the property that

m(f.' ’ (D) = 9

+
forall te R, itis called a stationary (invariant or equilibrium) measure.

In form, the following results are standard, but reveal new information

when interpreted for Markov processes.

Proposition 6.1

The set of stationary probability measures of a NDDS is weak closed in

n,c.

Proof: Since E is a separable metric space, so is 7'II(E) [13, Lemma 6.3,

p. 43 7. Thus, we can work with sequences rather than with nets.

We must show that the weak limit of a sequence { e, } C ml (E), of
stationary measures, is itself stationary. From Definition 6.3, m(t, zpn) =0 for éxll
n, and forall t+ 2 0. Since m is weak continuous in t and ¢, Q=>¢ as
n - o implies that m(t, qpn) = m(t, ¢) as n - o . But m(t, (on) =@ for all

n. Hence, m(t, ®) = ¢ forall t > 0.

Q.E.D.
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‘The proof of the following proposition can be found in [ 32, p. 15 ].

Proposition 6.2

If m([a, b]), ) ={m(t, @): te[a,b]}=¢ for b >a >0,

m1(E) , then ¢ is a stationary probability measure.

A closed ¢ ball of ¢ € m](E) , in the Prohorov metric, is denoted by
S(o, ) = {veMy(E): plo, ¥) < e}

Proposition 6.3

If, for every ¢ > 0, there exists at least one e S(¥, €) such that

+
m(t, $)C S(@, ¢) forall te R, then ¢ isa stationary probability measure.

Proof: Suppose ¢ is not a stationary probability measure. Then there exists

T >0 such that m(t, @)#¢ for 0 s t< T, otherwise Proposition 6.2 implies that
© is stationary. Let ¢ > 0 be such that @ ¢ S(m(t, ©), €) . By the weak continuity
of m, there exists & > 0 such that e S(©, &) implies m(r, ¥) e S(m( T, ©), €).
We can also assume that S(¢, 8) N S(m(t, ©), €) = @ (empty set). This implies that
m(t, P)£ S(@, 8) forall te R+. Thus, if ¢ is not a stationary measure, then ¢ has
a p- neighbourhood which contains no (positive) trajectory of probability measures.

This contradicts the hypothesis.

Q.E.D.

Corcllarz 6.4

Let o, Ye M](E). If m(t, Y)=> @ as t =+ o, then @ is a stationary

probability measure.

=
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Proof: By the definition of the Prohorov metric,

m(t, $)=D¢ os t > @e=plim  p(m(t, ¥), p) = O

Therefore, for every ¢ > 0 fherg exists to(e) > 0 such that m(t, ¥) € S(¢, €) for
t > fo(e) . We claim that for t > fo(e) there exists B e S(®, €) such that

m(t, #;) e S(®, ¢) forall te R™ + let g, = m(ty (¢), ¥), then
m(t, IIJ]) = m(t, m(fo(e)l y) = m(t+f0(5)l ) P)

which implies that m(t, ¥y )e S(¢, €) forall t > 0. Proposition 6.2 then implies

that ¢ is a stationary probability measure.

Q.E.D.

+
Definition 6.4. A motion of probability measures for all.t ¢ R and some 7 > 0

satisfies the condition m(t+ 7, @) = m(t, ©), @€ ,”l](E), is éalled periodic.
By definition of a NDDS it follows that
m(t+nT, @) = m(t,m(nT, ) = m(nT, o).

The smallest positive number 7 > O satisfying m(t+ T, @) = m(t, @) is called the

period of m(t, ). If a periodic motion of probability measures does not have a least

period T, then m(t, ¢) is a stationary probability measure.

Proposition 6.5

If there exists at leastone s 2 0 andone T 2 0 such that

m(s+7T, ¢®) = m(s, ©), Qe /”ZI(E), then m(t, ¢) is periodic.
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Proof: The proof is exa.cfly asin [32,p. 18].

The concept of a stationary probability measure can be imbedded in the

concept of an invariant set of probability measures.

Definition 6.5 Aset M C m](E) is called (positively) invariant if under all trans-

formations of the semi-group {mr: t = 0} it is transformed into itself. That is, for

all t 20, mf(M) = {mf(ocheM}C M.

The proof of the following proposition can be found in [32, p. 21 7.

Proposition 6.6

Aset MC mI(E) is invariant if and only i-f ©oe M implies m(t, o)e M
forall + 0.

Proposition 6.6 is equivalent to saying that invariant sets of probability
measures consist of entire trajectories of probability measures.

The following is a standard definition in the theory of dynamical systems
[32, p. 28 ].
Definition 6.6.  ye '”I](E) is called an w-limit méasure of (e m](E) if there

exists a sequence { fn} - 4o such that m(fn , 0)=> Y. The set ofall w limit

measures of ¢ is called the w limit set of ¢ and denoted by A+((p) . Thus,

A+(qo) = {x/Je M](E): 3 {fn}—)ﬂ‘n such that m(fn,(p)=>1b}.

" The set of all w limit measures of all e N C m](E) is called the w limit set of

N . Thus,
AN = u{ K@) s 0e N} .
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Proposition 6.7

For every ¢ ¢ m](E) ' A+(qo) is weak closed in 7’2](5) and
invariant, |
Proof: Consider the sequence { tbk } C A+(<p) such that b= Y. We must

show that e A+(<a). For each ka there exists a sequence {t: } = +o such that

m(f:: P P)=> $, as n = . Wemayassume without loss of generality that

p(m(ft, ), lbk) < ]r for all k, tt > k. Then, letting b= 1': , we have

fn - +m and m(fn , ©) =>Y since

p(m(f s Q) b)) = p(m(f POy ) p(lb: $).
n 'ﬂ n n

s%-"'P((b,wn)-—‘O as n - @®

Thus, Ye A+(¢) and A+(¢) is weak closed in /”l](E).

To show that A+(qo) is invariant, consider the sequence { b } - ®
such that m(fn Q)= Y ¢ A+(<p) . We must show that m(t, ¥) ¢ A+(<p) for all

t = 0. Consider the point m(T, ) where T 2 O is arkitrary and fixed. From the

weak continuity axiom of NDDS ,

m(t +7,0) = m(t, m(t_, o) => m(T,¥)

which implies that m(7, ¥) ¢ A+(<0) . This can be proved forall T >0,

Q.E.D.

If E is a compact space, then ( ’”l](E) + p) is a compact space

[ 13, Theorem 6.4, p. 45 ], which implies that the weak closure of
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+
m(R , @) = {m(f, ©):t =20 }, m(R+, ¢¥), and A+(<P), are weak compact, where
O e /”l](E).

Proposition 6.8

Let E be a complete separable metric space. If @e /”ZI(E) and m(R+, ®)

is weak compact, then

lim  plm(t, @), A'(9) = 0
t w00

Proof: The proof proceeds exactly as in the deterministic case. Suppose the con-

clusion is false, then there could be found a sequence { t }—>+@ andan a@ > 0 such

that for all n
pim(t , @), A@) = a >0 (6.6)

: +
The sequence {m(fn , P) } C m(R, ¢), and contains a subsequence

{ m(i'I'1 , ¥ } - such that m(tr"‘ , 0)=> Ve m(R+, ®) as fr" - o , since m(R+, ®)

is weak compact by hypothesis. Thus, Ye AT(®) and

lim  p(t, @), A(e) = p¥, A'(e) = o0,

n =

contradicting (6.6).
Q.E.D.

Proposition 6.9

If, for some Qe ﬂl] (E), A+(¢p) is nonempty and has a weak compact

neighbourhood which strictly contains it, then m( R+, ©) is weakly compact. If the

I
it
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o
, ¢+ teR } s also defined by a Feller process, then there exists an invariant

measure for the process.

Proof: Let N be the weak compact neighbourhood strictly containing ATI-( @)

W;: claim that there exists a T > 0 such that m(R+, m(7, ) C N. th_erwise, t'here
exists a sequencé { tn} - o with m(fn , 0) e 9 N, since A+(cp) is nonempty.*
Therefore, since the boundary of any set is closed, 3 N ‘is weak compact. This implies
the existence of a subsequence { f"1 } o @, such that |

(it o= b N
Hence, Ye A+(<p) . But Ye 3N and N strictly contains A+(qD),_ which is imposéible.

So there exists T > 0 such that m(RTF, m(7, ) C N.

Now ,

+ ’ . +
m(R ’ <P) m([ol 'l']l (O) Um<R ’ m(TI (P)) /

and

m(R', @) = m((0, 71, @) U m(R, m(T, &) .

m([ O, T], @) is weak compact since m(-, ¢) is a continuous map from the compact

+ .
interval [0, 7], and m(R, m(T, ¢)) is weak compact since it is closed and con-

tained in N . Therefore, m(R+, ®) is weak compact .

If { m :te R } is defined by a Feller process, and the hypothesis of
the theorem is satisfied, then from conditions (i) and (iii) of [ 43, p. 204 ] it follows

that there exists an invariant measure for the process.

Q.E.D.

*  This statement requires the continuity of m (t, o) .
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+
Weak compactness of A (¢) is not sufficient to ensure the existence of a

+
weak compact neighbourhood containing A (¢).

In [35, Theorem 3 ] it is shown that if, for a‘process sa‘ﬁsfying certain con-
ditions, m( R+, ©) is weak compact, then A+(¢) is weak compact. This
result is a direct consequence of [ 32, Theorem 2.2.13, p. 119 ]. Actually,
the result in [ 35, Theorem 3 ] is slightly more general in that it considers

a two-sided flow, i.e., on (-, ), but for practical purposes this extension
is of little significance. Also, the assumption of the weak compﬁcfness of
m(R+, ©) is tantamount to assuming stability in fl';e sense of Lagrange [ 32,

Section 1.5.1 7.

The theory of NDDS can be carried much further than is done here. For in-
stance, we can study minimal sets, prolongations, attractors, and many other

implements of dynamical system theory on metric spaces [ 32, Chapter 2 ].

Some Results Concerning A+(tp)

In this section we present some results concerning the weak limit set of a

probability measure ¢©. Let E = R" and let {mf: te R+} be a NDDS .

Proposition 6.10

Let @e m.l(E) and ge C(E). If m, ©(g) is either non~increasing or

. +
non-decreasing for t sufficiently large, then p(g) = constant forall ye A (@) .
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Proof: We shall prove the proposition only in the case that m, ©(g) is non-decreasing

for t large. Forany p € A+(<P), let { fn} - o be such that

pn = mt-ntp=>p

Then,
lim sup m, o(g) = lim m, o(g)
t -0 ’ n -0 n
= lim p (g) = ug) .
n -

Since lim sup m, ®(g) is independent of p e A+((p) , p(g) is constant for all
t 200

TN A+(cp) .

The proof for the non-increasing case is similar .

Q.E.D.

Proposition 6.11

Let g(x) be a lﬁ (E) measurable real-valued function such that
I g(x)l = +c0 as x|l = o, where Il Il isthe euclidean normon E = R" .

Then mfw(lgl) -mas t -0, Qe ')IZI(E), if -A+(¢p) = @ (empty set).

Proof: Suppose  A'(®) = § but m o(lgl) <K <@ forall t 2 0.
Then, the family E = {mf @:t = 0} is realtively weakly compact : If not, there
existsan € > 0 such that for every compact set JC E ,

*

sup Fy> e ,

MeE

*JC s the complement of the set J in E.
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which implies that

sup p(lgl) = o,

HeE
contradicting the facf that m, o(lgl) <K forall + = 0. Thus, E is relatively weakly

compact [ 13, Theorem 6.7, p. 47 ].

Hence, given any sequence { mop fn =0, fn—rco } , there exists
n
. ]
a convergent subsequence {mf;‘(p : f;‘ =0, o } anda ¥ € 7’21(E) such that

mf'qa =>¢‘ !
n

which implies that ¢ € A+(<p) , contradicting A+(<p) = g . Thus,

m o (lgl) — + ' as t = +o
Q'E.Dl

In particular, for a Markov process which is @ NDDS with ¢ the starting

probability measure, 1g(x) | = o as ll x Il « ®, and "A+(<P) = g, we have

E‘plg(xt)l - a t =0,

Proposition 6.12

Let A be.the s-infinitesimal generator of a (go) Markov semi-group
on 'Co(E) and let A* be its adjoint operator. If @e m](E) nd (A*) , then

AT(@) © M (E) N D (A%).0F Z ={m (t, ) : t = 0} is weak * closed.

* Co(E) is the Banach space, with the supremum norm, of all real bounded continuous

functions vanishing ot @ .

1
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' ‘Proof: Let e m](E)ﬂ D (A*) and ¥ ¢ A+(cp)- Then, for some {fn }->+oo,

m(fn ’ (P):}!/) .

By Propgsition 2.5, ZC SO(A*). Since Z is weak % closed, e Z and thus § e D(A*).

“Also, Ve m](E) implies that |l m, ell =1 forall t = 0. Therefore, Pe 7)Z](E)‘

and

Ae) © M (E) N D(a¥)
Q.E.D.

" The operator A* is defined by

A* o = weak*lim ﬂ;%)_’_ﬂ

hio

and, iteratively, we can define A*". Then, we have

Corollary 6.13 .

If e M (E) N D @), then (o) € M (E) N D(a").

Proposition 6.14

Let e %](E)ﬂ D (A*) and ge',Co('E) such that m, o(g) is-
either non-increasing or non~decreasing as t.~ . Then, forany § e A+(<p) ,

(A*mt ) (g) =0 forall + » Oif{m (t, ) :t 2 0} isw;aak*closed.

Proof: " Let @e M](E) N P (A*). Then, by Proposition 6.12,

A+(@) C /m](E) N P(A*) . Let § e A+(<P), and using Proposition 2.5, we have

: o t : :
m $(g) = ¥(a) = [ A*m u(g)ds . 6.7)
. 0 .
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The formula (6.7) implies that the real~valued function m 3 (g) is differentiable in

t and

dgt- My b(g) = (A* m, ) (9) forall t = 0

Now, from Proposition 6.1, we know that p(g) = constant forall p e A+(<p). Thus,

since I{"(w) is an invariant set of probability measures, m, ¥(g) = constant for all

t 2 0, implying that

(A* m ) (g) = 0
"Q.E.D.

Corollary 6.15

For ¢e ’”l.l(E) N & (A*"), (A* m, ¥Y) (g) =0 forall t >0,
where ¢ e A+((p) and ge Co(E) is such that m, ©(g) is either non-increasing or

non-decreasing.

Remark :

In [35 ], Kushnerapplied A+(<p) to the investigation of stability pro-
perties of stochastic processes. The goal of his work was to obtain a set in E
to which the process converges in probability and which is sometimes smaller
than the sets obtained by the theory of stochastic Lyapunov functions [ 34,

Chapter [, Theorems 2and 3 ] .
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» | CHAPTER VI

STABILITY OF NON-DETERMINISTIC DYNAMIYCAL SYSTEMS

7.1 Stability in the Space of Measures

We make the following definitions for the metric space ( m] (E) , p)

and fixed NDDS {m :t 20}, E=R"

Definition 7.1.  An invariant weak closed set M C 7’1] (E) is stable in the Lyapunov

sense if, forany ¢ > 0, there exists & > 0 such that plo, M) <& .implies that
p(m(t, ©), M) <e forall t = 0. Iffurthermore, p(m(t, ©), M) -0 as t = o,

M is said to be asymptotically stable in the Lyapunov sense.

Definition 7.2. A function Ve C(E) is called a D-function for a weak closed invariant

set M C m](E) if V has the following properties for some small r >0:

(1)  For any sufficiently small ¢ > 0, itis possible to find ¢y > 0 such

that (V) > c2<¢(V) = f V(x)¢(dx)) for all ¢ which satisfy

: E

po, M) > ¢, @eSM, 1.
(2) Forany vy > 0 there exists a v > 0 such that p(¢, M) < 2

implies that (V) < Vo
(3) m(t, ©)(V) s (V) forall ¢e SM, r) and forall t > 0.

It is important to note that V is not a Lyapunov function for M as de-

fined, for instance, in [ 32, Chapter 2.7 ]; it cannot be,since its domain of definition

is not even in m](E). But, as we shall see, V acts like a Lyapunov function,

=~
\
s

enabling us to prove stability theorems in 7’l](E).
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Using the following lemma, Definition 7.2 can be simplified.

Lemma 7.1

(1) and (2) of Definition 7.2 is equivalent to the condition (4):
p(gon,M) —- 0 as n—oco<=)<pn(V)—'0 as N — .
Proof: (4) => (2) since p(qon s M) - 0::>¢n(V) -+ 0 means that for all
v, > 0 there exists v, > 0 such that qon(V) < ¥, ,whenever p((pn , M) < 2%
(4) =>(1). Assume (1) is not true, i.e., there doesn't exist ¢y > 0
such that <Pn(V) >c, for all e, for which P((pn. , M) >¢ s {gpn} C SM, r).
Then,there exists a subsequence {tp } such that ¢ (V)--0. By (4), ¢ (V) -0

implies p(qon , M) - 0. Thisisa contradiction since we started with p((pn s M) > <

forall n. Thus (4)=>(1) and (2).

Now (1) implies that given ¢ > 0 there exists <y > 0 such that

o(V) < ¢ forall ¢ such that plo, M) < < and @©e SM, r) i.e.,

p(@ /M =0 =9 (V) 0.

Similarly, (2) implies that

6, (V)= 0 => ple, M0

Thus, p((pn s M) 50 <pn(V) - 0, and the proof is complete.
Q. E. D.

We can now rewrite Definition 7.2 as follows:
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Definition 7.2! Givén a weak closed invariant set M C 'm](E). A function Ve C(E)

is called a D-function for M if, for some small r > 0,

W) Pl M = 0& @ (V) » 0 for {o} C S(M, 1),
2 m(t, )(V) < o(V) forall @eS(M,r) andforall + >0.
There may be situations where (1) and (2) can only be proved for certain
subsets of S(M, r). For instance, using the integral representation in Proposition 2.5(b)
(wherex= CO(E) and I* = m (E)) may facilitate the proof of (1) and (2) for
points in the subset m](E) N P (A*) of MI(E). In this sﬁirif, the following pro-
position presents a sufficient condition for the existence of a D-function for the invariant

set M cm](E).

Proposition 7.2

Let 4( be a weak dense subset of M(E) If there existsa V ¢ C(E)

such that for some small r > 0,

(M) pe,, M= 00 (V) 20 for{o } ¢ #NSM, 0,
@ m(t, O)(V) < o(V) forall g #NS(M, 1) andall t >0,

then V is a D-function for M .

Proof: Let {(pn} C S(M, r). Since HNS(M, r) is weak dense in
S(M, r), for each e, there exists a sequence{tbn i} C K N S(M, r) such that

p((pn, wn’i) -0 as | = . Letting b, = b o we have that p(cpn, zpn) -0

n,n

as n - Q.
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Now, (1) implies that

(@) lim p(wn,M)=0 > lim ¢n(V)=O (b)

n 00 n -

Under the condition lim p(cpn, wn) = 0, (a) is equivalent to lim p(¢n, M) =0
n =o n =

since the map p - p(u, G) from m](E) into R is continuous, where G is any sub-

set of ’M](E) [16, Theorem 4.3, p. 185 ], and (b) is equivalent to

lim (pn(V) = 0. Thus,
n =

lim plo M) = 0 & lim ¢ (V) =0 ,

n «0 n =0
where {(pn } C S(M, ).
It remains to prove (2) of Definition 7.2'. Let e S(M, r). Then there

exists a sequence { ¢| }C FENS(M, r) such that

lim p(4,, @) = 0

| =00
By virtue of (2), forall t » 0,

m(t, tbi) (V) s &bi(V) forall j . 7.1)

Now, under the condition |im p(lbi , ©) = 0, the right-hand side of
i P e o
(7.1) approaches (V) as | —« o, and the left-hand side approaches m(t, @) (V) ,

by the weak continuity axiom of NDDS. Hence,
m(t, @) (V) = (V)

forall + >0 and e S(M, r).
Q.E.D.
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We now present the major theorem of this section. In form it is similar to
the sufficiency part of the deterministic theorem [ 33, Theorem 12, p. 417, but con~
ceptually it is quite different. The interesting fact is that the existence of a specific

function in C(E) assures stability, in the sense of Definition 7.1, of flows in a subset

of the dual space of C(E).

Theorem 7.3

In order for a weak closed set M C m](E) to be stable, it is sufficient

that there exist a D-function for M.

Proof: Let there exist a D-function V in a certain neighbourhood S(M, r) of

M. Let r > ¢ > 0 and let
A = inf{(V): forall g suchthat plo, M) = ¢} . (7.2

By (1) of Definition7.2, A > 0. By (2) of Definition 7.2, it is possible to find for
As & > 0 such that p(®, M) < & implies that @(V) < A . We would now like

to show that p(®, M) < & implies p(m(t, ®), M) < e forall t+ = 0. Assume the
opposite, i.e., that there exists ¢e S(M, 8) such that at some o> 0,

P(m(f] , ©), M) = ¢ holds true. Then, by (7.2), m(.f] , ©) (V) = A. But, by (3)
of Definition 7.2, ©(V) < X implies m(t, ¢©) (V) <X forall t+ = 0 implying
that m(f] , ©)(V) < N which gives the contradiction. Hence, M is istable.

Q.E.D.

Theorem 7.4

In order for a weak closed invariant set M C ,”l1(E) to be asympto=-

tically stable it is sufficient that there exist a D-function V for M and that
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m(t, ) (V) = 0 as t - oo forany {m(t, ©):t =0 } C S(M, r).

Proof: By Theorem 7.1 it follows that the invariant set M is stable, i.e., for any

e > 0 there exists & > 0 such that
plo, M) <8 = p(m(t, @), M) <e forall t 20 . (7.2)

We show that § can be chosen so that p(m(t, ®), M) =0 as t — o, and
p(@, M) < 6. Forthe § obtained in (7.2), we can find &, such that
ple. M) <8 = plm(t, o), M) <6 forall t 20
We claim that lim  P(m(t, ®), M) = 0. Assume the contrary, i.e., there existsaf

t»c0
least one probability measure Y e S(M, 8]) such that

p(m(t, ), M) > )\] >0 forall t+ 0.

Then, by (1) of Definition 7.2, m(t, ¥) (V) > )\2 for some )\2 > 0 and for all

t > 0 which contradicts the condition

m(t, ¥) (V) = 0 os t - ®.
Q.E.D.

Remark :

(i)  Definition 7.2 can be extended in the following manner: Let X bea
separable Banach space and x* its dual space.  Then, the closed unit
* *
sphere, 11 , of X with the weak*topology is a metric space [ 1,
Theorem V.5.1, 1. 426 ] having metric d. Ifa dynamical system (Defi'ni—
. .
tion 6.1) is defined on (x.l , d), the existence of an element. x,, € X ,
satisfying properties (1) - (3) of Definition 7.2, where ¢ m](E) is re~
: *
placed by x*e I] and V e C(E) is replaced by x, € X , is sufficient to

*
prove stability of invariant subsets of I] , exactly as in Theorem 7.3.
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7.2 Application to Stochastic Stability Theory

We shall be concemed with the stability properties of the following n~

dimensional stochastic differential equationon E = R"

dxf = a(xt)df + b(xf) dzf / : (7.3)

where each of the components of the vector a(x) and matrix b(x) are Lipschitz continuous.

The s-infinitesimal generator of (7.3) is

n 3 1 N a2
A =2 o) 3x; t oy 2 cii(')axiax. M

i=1 i,ji= |

where ¢ = bT b. The process associated with (7.3) is a diffusion process with transi-
tion density function p(t, x, y).

We assume that a(0) = 0 and b(0) = 0. Therefore, x =0 is a sta-
tionary point, i.e., if the process starts there, it remains there forever. Let € be the
Dirac measure at x = 0. Then, € is a stationary probability measure. Since, { € }

is also weak compact, it is a weak compact invariant subset of m] (E).

Definition 7.3. A stochastic Lyapunov function for (7.3) is a continuous function

Ve (A) such that
(i) V:E =0, ®)
(i) V() = 0, V(x) 0 for x # 0

(iii) (AV)(x) <O forall x¢ E.
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Proposition 7.4

A stochastic Lyapunov function V(x) for (7.3) is a D-function for the
weak compact invariant set { eo} C M](E) for the NDDS {mt it o> 0} generated

by the transition density function p(t, x, y) of (7.3).

Proof: Let S(eo, r) be a small p-:- neighbourhoed of €, - Let { qon} C S(eo, r.

First we show that P(tpn , eo) - 0 ifand only if <pn(V) - 0. By the definition of p,
p(qon, eo) = 0 implies that <Pn(f) - eo(f) for each fe C(E). In particular,
an(V) - eo(V). But €, (V) = 0 since V(0) = 0, implying that qon(V) -0 as
n - o.

To show the reverse implication, suppose wr;(V) -0 but P(‘% ’ eo) 0.
Then, since V(x) > 0 for x # 0, (pn(V).,‘ 0 which is a contradiction. Therefore,

(1) of Definition 7.2' is satisfied.
To prove (2) of Definition 7.2', we proceed as follows. For any

x ¢ E, by condition (iii) of Definition 7.3, we have

t
T, V(x) - V(x) = f T.AV(s)ds < 0 forall t >0, (7.4)
0

where we used Dynkin's Formula and the definition
T, V(x) = f V(y) p(t, x, y) dy
E

Since

mit; @) (F) = [ fr p(ts x, ¥) dy @(dx),
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(7.4) implies that for all x € E,

m(t, ex) V) < ex<V) | forall + =0 ., (7.5)

Let © € S(eo, r), and integrate both sides of (7.5) with respect to ¢ to obtain
m(t, ) (V) < o(V) forall t <0 .

Hence the proof is complete.

Q.E.D.

Thamap y - ey from E into the space of Dirac measures on E isa
homeomorphism [ 13, Lemma 6.1, p. 42]. Therefore, given any 8] >0, there

exists 5 > 0 such that
HHxll <8 e p(ex,eo) < 8] .

Hence, if there exists a D-function for €y Theorem 7.3 implies that forany a > 0

there exists & > 0 such that

P(m(fr ex)l eo) < a
forall t 20,if HxIl <8&.

If €, is asymptotically stable, then the ;6|,ufion process of (7.3) con-
verges in probability to 0 as t . To see this, let F:(y) = m(t, ex) ((~o0, 1)
be the distribution function at time t of the process associated (7.3) startingat + = 0
and x € E. In [12, pp. 17-18 ] it is shown that weak convergence of probability
measures is the same as convergence in distribution of the corresponding distribution func-

tions. Then, since €, is asymptotically stable,
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tli:\w p(m(t, ex), ‘eo) = 0

for x in some euclidean neighbourhood O = {y:llyll <8 } of the origin. This

implies that

as t - oo, where & indicates that the convergence is in distribution, and

0 ify <0

F(y) =
° 1 ifya=20

Convergence in distribution to a Dirac measure implies convergence in probability to its

support [18, Exercise 10, p. 86 1. Thus, for x ¢ O and for all @ >0,

w{u XX () i >a} -0

as t - o, where W { x:(m) = x } = 1. This result is similar in form to those

in [34 ] and ‘other works on stochastic stability theory.

To summarize, we have shown that certain stochastic stability problems can
be reformulated in the framework of NDDS, i.e., we can study the stability of stochastic
processes such as diffusions (in the sens;e of Definition 7.1) by examining the induced
flows of probability measures on the range space, rather than by investigating the sample

path behaviour.

Remarks:

(i) Let the NDDS {mf: t =0 } be induced by a Markov process. Then,

since { m, : t > 0} is a contraction semi-group on 'ﬂl(E),» given
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any ¢ >0, ¢, Ye m](E)I
Hp- ¢l < e =D mlt, o) - m(t, )1l < e (7.6)
forall t+ » 0. (This is a rather weak stability result) In [46, Theorem 12.2,

pp. 317 - 318 1, it is shown that there exists a countable family {. fm } c B(R),

I lel < 1 forall m, such that lim P(pn , M) = 0 ifand only if
n =

. lim pn(fm) = p(fl'n) for.all m, and the metric p is equivalent to the metric

n =00

~ ~ 1
p, where p(Pn,p) = i: R lpn(fm) - p(fm)l < |l uo- pll.

m=1 2

Therefore, given ¢ > 0, it follows from (7.6) that
I ® - ) I < e gﬁ(m(fl (D)l m(tl d))) < € (7-7)

forall + > 0. Fix Ye m](E). Then (7.7) implies that the map

i B Bt w, m(t, 9)) from ( My (E), 11+ 1) into R, is uniformly con-
tinuous with respect to t > 0. Moreover, if B remains un.iformly continuous
for t =2 0 when m](E) has the weak topology then we have stability of

the flow{m(f, )t = O}in the sense of Definition 7.1, i.e. given ¢ > 0

there exists & > 0 such that

Plod) <& = v p(m(t, @, m(t, P)) < ¢
t > .

The work in this chapter can be extended to non-homogeneous processes by
considering time-varying D-functions, in a manner analogous to that of

[ 33, Chapter IV, Section 2 ].
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CHAPTER VIl

CONCLUDING REMARKS

In this dissertation, some problems in the stochastic control and stability
theories have been studied by considering the flows of probability measures associated
with the stochastic process. Existing work on these subjects deals mainly with the pro-
cess sample path behaviour, based on methc;ds which depend, to a large degree, on the
rather technical theory of Markov processes. In this thesis, the problems are studied in
a setting which is closely related to that usually employed for deterministic systems on

a euclidean space. The main difference, however, is that the stochastic systems are

studied here from the point of view of how they induce flows in the infinite dimensional

space of measures.

We now present some general comments and a brief summary of the main
contributions of this thesis.
(i) In Chapter Il, by using the martingale approach to the study of stochastic dif-
ferential equations [5], we have proved a 'stochastic bang-bang principle' for the
stochastic control system (2.4). We leave the possible extension of this and related re-

sults in Chapters Ill and IV, to more general control $ysfems than (2.4), for future work.

(ii) The functional analytic approach, presented in Chapter V for the integration
of the Kolmogorov backward equation, where the drift coefficient is merely bounded
and integrable, offers an alternative method to that used in (5], and resultsin a
formula, (5.20) , which holds on a larger domain than (2.2). This formula yields a
necessary and sufficient condition for a control to minimize a cost functional, for a
very large class of admissible controls. Much of the earlier work in stochastic control

theory restricts. the class of controls to be Lipschitz continuous in the state variable,
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in order to ensure that the resulting optimal stochastic differential equation is mathe-
matically meaningful.

(iii) We were not concerned with the problem of observability since, obviously, the
one-dimensional control system (2.4) is fully observable. However, in the corresponding
n-dimensional systems, where one does not necessarily have access to all the states of

the process, the problem of observability is an important one (see [23]).

(iv) The problem of controllability is given only a cursory treatment in Chapter 1V.
Further work in this area is warranted . An important first problem is to find necessary

and/or sufficient conditions on the n x n matrices A,B and C of the linear n-dimensional

stochastic differential equation

dx-'f = (Axf +Bu(t)) dt + Cdzf ,

where X, u(t) , and z, are n-dimensional vectors, such that for a fixed target ¥e ”l](R),

the controllable set

K= U Hn
OStS'r.I 1

with respect to b contains a Prohorov neighbourhood of ¥ . Another problem is to
determine under what conditions, if any, K =m1(R).

The condition for controllability specified by (4.3) may be too stringent.

The following is a weaker definition of controllability: Given {bem] (R") and € >0,

_qaem](Rn) is € -controllable at time t, with respect to ¥ at time t] , if there exists

an admissible control u such that

P(‘pl IPU(f, Xy t]l ‘)(,D(dx)) <e
R
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If the Markov process specified by Pu(t,x,t], [) is a diffusion, generated by an infini-
tesimal generator whose coefficients satisfy the conditions of [ 8, Vol. Il , Theorem
0.4, then the problem of stochastic controllability bears a close similarity fo
problems in the theory of parabolic differential equations (see [ 55, Chapter 3, Sectiom 101
and [56 ,Chapter 1, Section 141)) ;howevel;, for quasi-diffusions and more general Markov
processes, probabilistic methods have to be'used. We remark, more generall.y, that
the stochastic control and stability theories can be related to the corresponding theories
for distributed parameter systems £56] only for diffusions (in the sense of (8, Vol.l,
Chapter V1) ; in other words, only when the process is generated by a partial differen-

tial equation.

Still another approach to stochastic controllability is described in the

following example. Consider the scalar stochastic differential equation

dx; = ax; dt+bu(t) dz, , - (8.1)

where a, b are constants and uewE{u € '-Cm(R): -0 su(t) SO} . Using lto's Lemma

[49, p. 321, it can easily be verified that the solution of (8.1) is

¢ :
x! = ea(f—fo)x + I ea(r_s)bu(s) dz , (8.2)
t o A s
)
v
where x: starts ot time t with the constant x . Let the map rs ¢ R=R be
4

defined by c, wa': for the solution process of (8.1) , where c is the starting
. . s WU w U
point at time s <t . The object is to control the mean E X, ¢ Given E Xe and

t, > f°>0 , we wish to characterize the controllable set

1

,f

u
%t (f]) = {ceR: Ft c =wa: for some uew}.
o o'l 1

Using the isometry property of stochastic integrals [49, p.251, we have
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;
EW { Y alty ) xo}2 _ J‘leZQ(f]-s)bZUZ(s) & . (6.9
1 t

o

Letting wa: =a, Ew(x: )2 =B, and T= t - fo , (8.3) is expanded to
1 ]

L t }
eZaTXOZ Py eaTxo +B = J‘ 1 e20(f] 5) b2u2(s)ds .

t
o

Completing the square, we get

, .
(eaTXO _ 51)2 + ‘32 - J‘ leZG(f]-s) b2u2(s)ds ) 8.4
t

o

where [3], [32 are constants. Given an X ¢ We can now determine if there exists
a veY such that (8. 4 is satisfied, by numerical methods if necessary. To obtain an

estimate of the controllable set %f (t]) , we observe that
)

t
T 2 1 2a(ty=-s) 2.2
0< (e x, = B;) sjf e°(1s)bods-[32,

o

1/2
8, e-aTSXO 53-07(20b202(e2a7_ I '52) v, T

(v) One of the main features of the dynamical system theory approach of Chapters
VI and VII is the facility with which it permits the study of stochastic stability pro-

perties with respect to initial sets of probability measures. -

(vi) An important aspect of the control theory in Chapters Il and IV is the ex~-

tremely weak condition on the drift coefficient and control term of (2.4) .

(vii) We now briefly summarize* the main contributions of this thesis .
(@) Lemma 3.1 presents a new proof of a well~known result in control

theory, without-using the powerful (deterministic) bang-bang principle.

See also Section 2.3 .
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Theorem 3.6 shows that a solution process of (2.4) for a bounded mea-
surable control can be approximated arbitrarily closely (in the sense of
weak convergence on ) by a solution process of (2.4) for a bang-
bang control. This fy.pe’ of result does not exist in the literature for

stochastic control systems.

The weak compactness of the 'attainable sets of (2.4), proved in Theorem

3.8, is also a new result.

The definition of controllability given in Section 4.1 appears to be the

natural extension of the conventional definition of controllability for

deterministic systems.

Theorem 4.3 treats a time-optimal stochastic control problem in an original
manner, employing attainable sets; this necessitates proving the continuity

of the attainable sets in an appropriate topology (Lemma 4.2) .

With the aid of Theorem 3.8, Theorem 4.5 establishes the existence of a
control, in a very large admissible control class, which minimizes the
average of a cost functional. Theorem 4.5 is similar to Theorem 3 of

[23], but the proof here is completely different, and simpler .

The uniqueness result of Section 5.2 is basically of mathematical interest.

However, its implementation in Section 5.3 yields a necessary and suf-

ficient condition,(5.26), for a control u, in a certain admissible class, to

" minimize the average of a cost functional.

The definition of a dynamical system on the metric space ('”ll (E), p)
(Definition 6.2) is new to stochastic stability theory, although a theory

based on such an approach is hinted at in [35] .
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The main results of Section 6.3 are Propositions 6.8 and 6.9, whose
proofs rely on fairly standard methods in dynamical system theory

but, nevertheless, the results are new to stochastic stability theory.

Section 6.4 is e.nﬁrely new. Propositions 6.10 and 6.11 relate certain
+

properties of A (@) to properties of the flow { m @:t20} C R,

where g is a certain real-valued function.  For ¢ in specified subsets

+
of MI(E) , A (@) is characterized further in Proposition 6.12 and 6.14 .

Definition 7.1 is standard, but Definition 7.2 is new, in spite of its
similarity to the usual definition of a Lyapunov function. We remark again
that a D-function is not a Lyapunov function ; it does not even operate

on the metric space ( m_](E), p) .

Proposition 7.2 gives a sufficient condition for a real-valued function to be
a D-function.

Theorem 7.3 is the main result of Section 7.1 . In form, it resembles

the suﬂ:'iciency part of [ 33, Theorem 12, p. 41 1; nevertheless, it isa

completely different result, since V is not a Lyapunov function.

The work of Section 7.2 has no claims on originality ; it merely shows
that the preceding theory reduces to some familiar, more probabilistic re-

sults of stochastic stability theory.

Most of the results presented in this dissertation are restatements, in the

abstract space m](E), of familiar results in the deterministic theory. This is in con-

trast to most studies on stochastic control and stability theory, where probabilistic phrases

adorn the deteministic statements.
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{“ " The work in this study has been directed at the theoretical aspects of
the stochastic control and stability theories, and did not consider any specific problems
of practical interest. It is hoped that the methods and results of this dissertation will
provide a basis for such application.
o
Rt
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