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CONTROL AND STABILITY THEORY IN THE SPACE OF MEASURES 

Electrical Abraham Boyarsky, B.Eng. (Hons.), M.Eng. Ph. D. 

ABSTRACT 

This thesis treats some problems in stochas~ic control and stability theory 

From the point of view of flows (rnduced by the stochastic systems) in the space of pro-

bability measures. In the first parr of the dissertation, the concept of attainable set of 

probability measures for a stochastic pro cess is introduced, and the following results 

are obtained for a control system mode lied bya stochastic differential equation, where 

the control is additive in the drift coefficient: 

(1) Employing the martingale approach initiated by Stroock and Varadhan, 

a "stochastic bang-bang principlé Il is proved. It follows From the proof 

of this princip le that, for a certain class of controls, the attainable set 

of probabi lit y measures is weak compact. 

(Ii) Assuming the "target",set of probahility measures is a continuous. function 

of time with respect to a certain topology, a time-optimal stochastic control 

theorem is demonstrated. 

(Iii) The existence of unique quasi-diffusions for the class of drift coefficients, 

which are bounded and integrable, is verified, and a necessary and suffi

cient condition for the average of a cost functional, to be minimized by a 

feedback control, is derived. 

ln the second part of the dissertation, stability properties of general stochastic 

systems are investigated. The following work is carried out: 

(Iv) A theory of dynamical systems on the spa ce of probability measures is for

. mulated where the relevant topologyis that ofWeak convergence. 

(v) ln this dynamical system framework, a new definition for stochastic stability 

is proposed, which is weaker than any other previously studied. Employing 

the concept .of D-functions, some conditions for stability are obtained for 

trajectories in the space of probability measures. 
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ABSTRACT 

This thesis treats some problems in stochastic control and stability theory from 

the point of view offlows Qnduced by the stochastic systems) in the space of probability 

measures. In the first part of the dissertation, the concept of attainable set of probability 

measures for a stochastic process is introduced, and the following results are obtained for 

a control system modelled bya stochastic differential equation, where the control is addi-

tive in the drift coefficient: 

(i) Employing the martingale approach initiated by Stroock and Varadhan, 

a "stochastic bang-bang princip le Il is proved. It follows from the proof 

of this princip le that, for a certain class of controls, the attainable set 

of probability measures is weak compact. 

(ii) Assuming the "target" sets of probability measures is a continuous function 

of time with respect to a certain topology, a time-optimal stochastic control 

theorem is demonstrated. 

(iii) The existence of unique quasi-diffusions for the class of drift coefficients, 

which are bounded and integrable, is verified, and a necessary'and suffi

cient condition for the average of a cost functional, to be minimized by a 

feedback control, is derived. 

ln the second part of the dissertation, stability properties of general stochastic 

systems are investigated. The following work is carried out: 

(iv) A theo'ry of dynamical systems on the space of probability measures is for

mulated where the relevant topology is that of weak convergence. 

(v) ln this dynamical system framework, a new definition for stochastic stability 

is proposed, which is weaker than any other previously studied. Employing 

the concept of D-functions, some conditions for stability are obtained for 

trajectories in the space of probabi lit Y measures. 
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1.1 Hi stori cal Background 

CHAPTER 1 

INTRODUCTION 

The classical theory of deterministic linear control systems was developed 

during the 1930'5 and 1940'5. Methods such as the Nyquist criterion and root locus tech

nique are sorne of the classical tools that evolved. The systems were ail modelled by 

autonomous differential equations since the control analysis rested heavily, in one way 

or another, on controlling the location of the poles and zeros of the system transfer func

tion. 

During the 1950's , aerospace applications revealed the inadequacies of 

the stationarity assumption in the control system models, and led to further investigation 

of time damain methods. The calculus of variations, dynamic programming and Pontrya

gin's maximum principle are the most important state space methods that developed, 

providing a satisfactory deterministic control theory. 

The first results in stoch~stic stability theory appear to be in the work by 

Andronov, Pontryagin and Witt [28]. Motivated by Lyapunov's work on the stability 

of ordinary differential equations and the fundamental studies of Kolmogorov on Markov 

processes, Andronov et al. investigütecl the probabilistic behaviour of the sample paths 

of sorne Markov processes. However, not unti 1 the modern theory of Markov processes 

was developed did much progress take place in stochastic stability theory. With the 

advent of the Ito stochastic integral and its calculus [49],many stability results were 

obtained which were in spirit very similar to their deterministic analogues. Much of the 

early work on the stability of diffusions is due to Khasminskii [29] and Kushner [34] • 
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The connections between stability and control theory were first investigated 

in the West in the early 1960's by Kalman and Bertram [30J. The necessity for stability 

analysis of control systems is due to the fact that optimized control systems may not be 

stable. Using the second method of Lyapunov for the design of optimal controllers assures 

that the optimal solution is asymptoticqlly stable. Thus, for optimal system design, the 

problems of control and stability are c10sely related. 

Since there existed substantial results on the control and stability theories 

for deterministic systems by the early 60's, it seemed plausible that at least some of the 

deterministic results could be extended to stochastic systems. Although, conceptually, 

the extension is straight-forward, the mathematics involved in the stochastic analysis is 

fairly complex, depending heavily on the theory of Markov proc'esses and involving such 

concepts as infinitesimal generators, supermartingales and stopping times. Most of this 

basic work can be found in the book by Kushner [34 J which includes a chapter on the 

design of stochastic controllers using stochastic Lyapunov functions. Some other exten

sions of the deterministic control theory, not dealt with in [34 J, are as follows. In [22 J 

stochastic Lagrange multipliers are studied. The problem of partial observability of dif

fusions is investigated in C23 J. In [24 J Fleming and Nisio consider a more general 

model for the control system than the usual Ito stochastic differential equation. In [26 J 

and [27] , Kushner derives two stochastic maximum principles. For a review of some re

cent developments in optimal stochastic control theory, see the survey paper [25 J. 
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1.2 Stochastic Control Theory 

Most of the stochastic control problems studied in the literature take one 

of the following forms. 

(i) Given an initial point Xo in the range space, determine the control, 

constrained to be in a certain admissible class, which transfers Xo to 

a target set in the range space with probabi lit y one. 

(ii) Given xo' determine the control which maximizes the probability of 

hitting a target set. 

(iii) Given xo ' determine the control which transfers Xo to a target set with 

probability one and minimizes the average of sorne preassigned cost func-

tional. 

{iv} Given xo ' determine the control which approximates as closely as pos

sible a specified path in sorne suitable (probabilistic) manner. 

The optimal stochastic control problem which consists of simply minimizing 

the average of a cost functional is readily formulated using dynamic programming (34, 

Chapter IV]. Unfortunately, the optimal control in general depends upon the solution 

of a complex non-linear partial differential equation which is rarely amenable to analy-

tic methods. 

As we can see from the above formulations of stochastic control problems, 

the mathematical analysis involves the process sample paths. The sample paths of a 

process are analogous to the trajectories of a deterministic system, and therefore studying 

the sample paths appears to be the natural framework for the investigation of stochastic 



4 

control problems. We shall, however, take a different approach based on viewing the 

control process in a certain space of measures. 

ln general, for Markov processes, the equation for the dynamics of the 

probability measures, on the range space of the process, induced by the random variables 

as a function of time is described by the transition function of the process. For many 

purposes the resulting representation for the flow of probability measures is not adequate 

since the transition function conceals its dependence on the parameters of the process, 

for example, the coefficients of a diffusion. We shall employa more revealing and 

descriptive characterization for the flow of probability measures associated with a non-

stationary stochastic differential equation where the control is additive in the drift co'· 

.. 
1 

effi ci ent. The resu Iti ng representation is important in establi shing a necessary and suf-

ficient condition for the existence of optimal stochastic controls (Section 5.3). 

The key point in our functional analytic approach is the correspondence 

of a trajectory in the space of measures to each control function. Whereas it makes no 

sense to cohsider the attainable sets in the range space of a stochastic process, it is 

natural to consider the attainable sets of probability measures for the process. This point 

is discussed further in the next section. 

1.3 Stochastic Stability Theory 

As in deterministic stability theory, the main tool in the study of the 

stabi lit Y of stochastic processes is the Lyapunov function. For each Lyapunov concept 

of stability in the deterministic case, there exist at least three stochastic analogues, 

corresponding to the three usual modes of convergence of a family of random variables. 

ri" 
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To explain this in more detail, let x = 0 be the equilibrium solution whose stability 

properties are being investigated. Let x( t ; xo,t
O

) denote the solution of an ordinary 

n-dimensional differential equation with initial state Xo at time to • 

Definition 1.1 Deterministic Lyapunov Stabi lit y 

The equilibrium solution is said to be stable if given any e > 0 , there 

exists 5 (e , to» 0 such that for Il xo" < 5 

sup IIx(t;x
o
,t

O
)II<e , 

t;;:: to 

( 
n 2) 1/2 

where Il y Il = L: 1 Yi 1 • 
i=l 

To transform Definition 1.1 to stochastic forms, we write the convergence 

of the random variable sup Il x (t ;x
o
,t

o
,Io))1I in the three common modes of probabilis

t ~t 
tic convergence, where (&, ~, P) is some underlying probability space. From now 

on, the generic element lo)eO will be suppressed. 

Definition 1.2 Lyapu nov Stabi 1 i ty in Probabi 1 i ty 

The equilibrium solution is stable in probability if given e , el> 0, there 

exists 5(e,e ' ,tO) such that Il x Il <5 implies 

Definition 1.3 

P { sup Il x (t j x
o

' tO)1I > el} < e 
t ~ to 

Lyapunov Stabi lit y in the rth Mean 

The equi librium solution is stable in the rth mean if the rth moments of 

the solution process exist, and given e >0, thereexists 5(e/tO) such that Il Xo "/5 
implies 
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where "y" = 2: 1 y. ,r • 
r i=j 1 

Definition 1.4 Almost Sure Lyapunov Stability 

The equilibrium solution is said to be almost surely P stable if 

Definition 1.4 is equivalent to saying that Definition 1 .1 holds for almost 

every we{} with respect to P. For each of the above definitions, there exists a related 

definition for aSY!Tlptotic stability. These concepts and other definitions of stochastic 

stability can be found in the survey paper by Kozin [ 31] • 

Lyapunov stabi lit y in probabi lit Y is weaker than the stability concepts 

defined by Definitions 1.3 and 1.4. For some applications, this type of convergence 

may be of little interest since it does not imply convergence of the sample poths. 

However, where the expectation of a continuous function of the process is required to 

converge, this mode of convergence is sufficient. In fact, one of the motivations for 

the stability work in this dissertation is that Lyapunov stability in the mean and a.s. 

Lyapunov stability demand too much of the process. We shall work with a type of sta-

bility which is, in general, even weaker than that of Definition 1.2 , but may still be 

quite adequate for many applications. Rather than study stability properties with respect 

to a point, for instance, the null solution x = 0 , we shall be concerned with the sta-

bi lit y properties of trajectories of probabi lit Y measures. 
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For a stochastic process, it is more reasonable to have the distribution 

. functions,associated with the process,approach a probability measure (in the weak topo

logy) than to have it approach a set in the range space, in the sense of convergen~-;'in 

probabi lit y • Another inadequacy of Definitions 1.2 - l .4 is that the stochastic sta

bilityis with respect to initial points in the range space; often one does not know exact

Iy where a process starts, and has at most only an estimate of the initial distribution 

function. Therefore, it seems more realistic to study stochastic stabi lit Y with respec,t to 

initial probability measures rather than points in the range space. The approqch to sto

chasti c stabi 1 i ty that we shall present takes ail the above poi nts i nto consi derati on. Thi s 

is accomplished through the use of dynamical system theory [32] • 

It is impossible to define a dynamical system for a stochastic process, when 

it is regarded as a measurable function on a probability space, since the theory of dyna

mical systems can only be used in situations where the present state completely specifies 

the future states. This is, of course, not true for stochastic processes. Even Roxin's 

theory of attainability functions [37] , which gives rise to a more generalized dynami

cal system is of little value since the range of many stochastic processes is the entire 

space, thereby yi e 1 di ng no i nformati on. 1 nstead of tryi ng to defi ne a. dynam i cal system 

on the range space of CI process, we shaH find it rewarding to define a dynami cal system 

on the space of probability measures. 

To reiterate, the object of the stability work in this dissertation is to pre

sent a different approach to some stochastic stability problems by examining these prob

lems from the point of view of dynamical system theory, where the basic space is the 

space of probabi lit Y measures. The advantages of this approach for these problems (Sec

tion 7. 1) are: 
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(i) Studying the stochastic systems in the space of measures obviates detailed 

knowledge of the sample path behaviour. 

(ii) The stochastic theory benefits from the completeness and structure of the 

(deterministic) dynamical system theory. 

(iii) The deterministic and stochastic theories are unified under the concept of 

non-deterministic dynamical system. 

Using the Prohorov metric in the space of probabi lit y measures, a theory 

of stochastic stability is formulated based on a slightly modified form of the usual theory 

of dynamical systems. Then a certain continuous function, defined on the range space 

of the process, is introduced whose existence assures the stabi lit y of flows in the space 

of probability measures. 

Although the control and stability sections are essentially independent 

of each other, we justify their presence in the same dissertation by recalling that 

stability concepts are important in the design of optimal control systems. Also, the 

fundamental concept of controllability in the theory of control is closely related to 

stabi li ty theory, as can be seen by Theorems 1 and 2 of [44]. A fi nal reason for 

treating stochastic control and stability theory together is that the approach proposed 

in this work, that of studying the process as trajectories in the space of measures, can 

be applied effectively to both these theories. In fact, an alternate title for this dis

sertation could be: "Flows of Probability Measures Induced by Stochastic Differentiai 

Equations with Application to Stochastic Control and Stability Theory". 
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CHAPTER Il 

PRELIMINARIES AND SUMMARY 

2. l Notati on 

Let C( [0, Co), Rn) be the space of continuous functions on· (0, (0) 

into Rn. Bya continuous Markov process on Rn, we mean a family of probability 

measures P , s:!: 0, X e Rn on fi;: C( [0,(0), Rn) such that 
s,x 

P (rliJs ) = Pt (f) a.s. P , re at ;: 'iJt , where 'iJs is the smallest a-algebra 
s,x t ,1Tt s,x 00 t 

on fi with respect to which ail the coordinate functions 1T T = 1T (T, .): 0--+ Rn, 

* s S T S tare measurable. . 

Let Zt = z(t, .) be n-dimensional Brownian motion and let a = ai(t,x), 

sis n, and b = b •• (t,x) , l si, i sn, be a set of coefficients which satisfy certain 
Il 

smoothness conditions. The mathematical model which will be used in this dissertation 

isthe Ito stochastic differential equation. In Itols theory a measure P is defined on 
s,x 

fi by making a nonlinear transformation of Brownian motion: for wefi the Brownian 

path {z(t,w): t ~ o} is transformed into the path {x(t,w): t :!: s} such that 

x(s,w) = xO,and 

dx(t,w) = a(t,x(t,w»dt + b(t,x(t,w» dz (t,w), t:!: s, 

where dx(t,w) denotes the infinitesimal increment in x during the time interval 

(2. 1) 

C t,t + dt], and dz(t,w) denotes the corresponding increment in z. When a and b 

are Lipschitz continuous, Ito shows that for a set in fi having Wiener measure one, 

there exists a unique continuous solution x(t,w) satisfying these requirements. Hence, 

a measure P can be defined on fi by setting 
s,xo 

* For the reader unfamiliar with basic measure theory,see [8,Vol.II,Appendix]or [42]. 
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P {1T E f1 ' •••••• , 1T
t 

Er.} = W {X
t 

E f1, •••• , x t Er} 
s,x t1 m m 1 mm' 

Wiener measure on fi . 

To explain the meaning 'of (2.1) , we write it as the stochastic integral 

equation: 

t t 
x

t 
= Xo + J a(s,xs)ds + J b(s,x

s
) dz

s 
s s 

where l bdz is interpreted in Itols sense, i.e., 

t 

Ib(s,x) dz = 
s s 

s 

N-1 

I.i.m ""b('T.,x )(z -z) 
h .... 0 L.J l 'T. 'T.+1 'T. 

i=O 1 1 1 

where s = 'Tl < 'T
2 

< .... < 'T N = t, h = max ( 'T
j
+1 - 'T

j 
) , 

and 1. i.m means in the mean square sense on fi . 

We shall find it useful to reformulate the meaning of a stochastic differen-

tial equation. In the new formulation a solution to (2.1) is a probabi lit Y measure P on 

fi such that 

where Zt j t ~ s} is a Brownian motion with respect to P. 

Let a be bounded and measurable, b bounded and continuous, and the 

matrix c strictly elliptic~ Given x E Rn ,the following question is asked in [5] ~ 

* ~ n n n <D ( R ) i s the 0' - algebra on R generated by the open sets of R • 

t c = bT b, where T represents the transpose operation. Strict ellipticity means 
n n 2 ë 

that ï C •• ç. ç. ~ IJ L ç. for ail vectors f:" where IJ > 0 • 
i,,=l Il 1 1 i=l 1 
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Does there exist a probability measure P on {n, a1 such that P {1T = x} = 1 , 
s,x s,x s 

and for any 9 E Rn 

y~(t) : exp{Cg, wt-w,) - {19'O(T, -T)) dT- ~ {Cg, c (T,.~)dT} 

is a martingale on (n, aS., t :t s :t 0, P ), where ( .,. ) is the usual scalar product 
t S,x 

in Rn • We shall refer to this as the "martingale problem" and P , if it exists, is 
S,x 

called a solution of the martingale problem starting at time sand state x • 

Theorem 2.1 

(i) 

(i i) 

The following important result is proved in [5J: 

Let a and b be as in the above paragraph. Then 

for each pair 5 E [0,(0) , and x E Rn , there is one and only one proba-

bi lit Y measure P . on (n, aS) which solves the martingale problem 
s,x 

starti ng at 5 and x. 

The system (n, 3't
S 

, t :t 5 :t 0, P ,x E Rn) i s a conti nuous strong Markov 
s,x 

process. 

(iii) For each x E Rn , there is an n-dimensional Brownian motion { Z t: t:leO } 

(iv) 

such that 

t t 
1T

t 
= x+ Ja(T,1T

T
)dT + Jb(T,1T T)dz

T
, t:ts 

s 5 

a.s. with respect to P 
s,x 

00 n 00 n 
For Fe C (R), the set of C functions From R into R having 

o 

compact support, the measure P satisfies 
s,x 

P
s 
"} P

s 1 t } E ',f{ 1Tf) - f{x) = E' J A(T) f(1T
T

)dT , t:ts, (2.2) 
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where 

A( 7') 

n 

= La. (7" , • ) ~ + -2
1 

.1 oy. 
i=l 1 

n ' 

L 02 
c .. (7", .) 0 ' 

Il y.oy. 
i, j=l 1 1 

~ x 
A procèss satisfying (iv) is called a quasi-diffusion. For quasi-diffusions, E ' f (1f

t
) 

need not satisfy the partial differenti~1 equation ~~ = A(t)v , which is the case 

for diffusions. In Chapter V, we shall prove the existence of unique quasi-diffusions 

for a certain c1ass of coefficients. 

The concept of weak convergence' of a sequence { P n} of measures on 

(0,30
) is defined as fol/ows: P converges to P weakly if for every bounded and 

n 

continuous function f(w) on fi 

, lim, J f(w) P n (d.!) = J f(w) P(dw) . 
n ~co fi fi , 

We shall denote this convergence by: P ~ P • 'We shall also use weak convergence 
n 

on the real line, i.e., the sequence of measures { Il
n

} on R converge,s weakly to the 

measure Il on R if and only if 

r f(x) Il (dx) ~ r f(x) Il (dx) 
~ n "R 

as n wJ co 

for ail f in C (R), the space of bounded co~tinuous functions on R. 

2.2 Adjoint Semi-Groups 

,Adjoint serrii-groups were first studied by Feller [40]. The genera.l 

theory of adjoint semi-groups,' using the adjoint infinitesimal generator, was studied 

by Phi lIips [41] ." Below, we state some of the main results of the theory following 

[32, Chap'ter 1 ] • 
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Let.l: be a real Banach space havi ng norrn Il Il 1 and 1 et t (z 1 X) 

be the Banach algebra of bounded linear operators on.l to ~ • If T E t(.x/~) 1 

Il T Il denotes the nonn of T. 

Definition 2.1 If T(t). is an operator function on the non-negative real axis 

Ost <00 to t( ~ l.:l) satisfying the following conditions: 

(i) 

(ii) T(O) = l 1 

where 1 is the identity operator, then {T(t): 0 s:t <00 } is called a one-parameter semi

groupofoperatorsin tCI·/~). Thesemi-group{T(t):OSt<oo} issaidtobeofclass 

( ~ 0) if it also satisfies the property 

(ii i) s - lim T(t) x = x for ail XE :f 1 

t ~ 0 

called the strong continuity property of T(t) at the origine 

Definition 2.2 The s-infinitesimal generator A of the semi-group {T(t):O st <00 } 

i s defi ned by 

1 (2.3) 

where 

1 
A = - (T(h) - I} 

h h 1 

whenever the limit exists. The domain of A, S)(A} 1 is the set of elements XE:l 

for which the limit in (2.3) exists. 

Proposi ti on 2.2 

(a) i) (A) is a linear manifold in ~ and A is a linear operator. 

(b) If x E ~ (A) 1 then T(t} XE cf)(A} for ail t ~ 0 and 



.:", 
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(c) 

dT (t) x 
dt 

= AT{t) x = T{t) Ax 

t 
T(t) x - x = l T(s) Ax ds 

o 

, t ~ 0 

, t~O 

f) (A) i s dense in.x , and Ais a cl osed operator. 

14 

Let,1:* be the dual (or adjoint) space of ail bounded linear functionals 

x* on .:l :l * is a Banach space with the norm 

Il x*1I = sup 1 x* (x) 1 
Il xII ~ 1, xe,z 

Proposition 2.3 

Let U be a linear operator with domain cf}{U) dense in ~ to 'X . 

(a) The dual operator U* is a weak* closed linear operatoJ; If in addition 

U is bounded, then U* e.l':{ ~*, X*) and Il U* Il = Il U Il • * 

(b) If U is closed, theni){U*) is weak* dense in X* and, if ~ is 

reflexive, ~ (U*) is strongly dense in 3: * • 

We now state the fundamental properties of the adjoint semi-group of 

bounded li near operators {T* (t): t ~ O} • 

Proposition 2.4 

Let ~ T{t): t ~ O} be a semi-group of operators of class ( ~ 0) in 

.l': <.:% ,~) • Then T*{t) is an operator function on the interval t ~ 0 into .t(~*, :l*) 

with Il T*{t)1I = Il T{t) Il for t ~ 0 • Moreover, 

(i) T*{t ) T*{t) = T*{t + t ) 
1 2 1 2 

* See ( 1] or (3] for some basi c resu 1 ts concerni ng the weak * topology. 
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T*(O} = 1 (identity operator on };*) 

weak* lim T*(t} x* = x* for x* E ~ * (weak* continuity of T*(t) at 
t lo 

the origin} 

Under the hypothesis of the previous. prop?sition, we have 

Proposition 2.5 

(a) The dual A* of the infinitesimal generator A of the given semi-group 

{ T(t}: t ~ 0 J is a weak* c/osed linear operator and its domain c8(A*} 

(b) 

Fu rthermore, 

is weak* dense in ~ * • 

If x* E EJ(A*} , T*(t) x* E 1) (A*) for t ~ 0, and A*T*(t) x = T*(t)A*x. 

t 
T*(t} x*(x} - x*(x} = l T*(s} A*x*(x} ds for aIl x EX, t >0 

o 

{c} An element x* E ~* belongs to the domain of A* if 

(T* (h) - 1) x* 
A*h x* = ~~h--~ h >0 

converges in the weak* topology of .:l* as h ~ 0 1 and the weak* limit is equal to 

A*x* • 

Corol/ary 2.6 

The dual operator A* is equal to the weak* infinitesimal generator of 

the dual semi-group. 

) 

i 
l. 
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2.3 Summary of Results * 

Consi der the one-dimensional stochastic differential equation 

(2.4) 

on the finite time interval 1 = [0, tf~ ,where x~ takes values in the entire real line 

R. z't is one-dimensional Brownian motion,; a , u are bounded measurable functions 

From the cartesian product 1 x R into R, and b is a bounded continuous function From 

1 x R into R such that b
2

(t,x) :t &1 >0 for ail te 1 and xe R i.e., b is strictly 

elliptic. The function u is referred to as the control and acts only on current states. 

Often in this dissertation, u is simply a function of t, i.e. u is an open-Ioop control j 

we shall refer to (2.4) for this case as weil. The existence of a unique continuous 

Markov process associated with (2.4) is assured by the theory in [5] • 

The transition function of the Markov process (2.4) induces a two-parameter 

flow { UU(s,t):s,te 1 ~ of bounded linear operators on the Banach space of bounded 

measurable functions From R into R (with the supremum norm), B(R). {Uu(s, t):s, te 1 J 

i s defi ned by 

UU(s,t)f(x) == I f{y) pU(s,x,t, dy), 

R 

where pU{s,x,t, n is the transition function of (2.4) corresponding to the control u. 

where 

.' 0 
and D == ox 

* 

Cl) 
By Theorem 2. 1, we know that for fe C (R), 

o 
t 

UU{s,t)f = f+ IUu(S,T)(A{T)+U{T, .)D)fdT, 
s 

A{ T) = a{ T, .) ~ x + 

See also Chapter VIII, Remark (vi!). 

(2.5) 

(2.6) 
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let C (R) be the Banach space (with the supremum norm) of continuous 
o 

functions that vanish at ::1: CX) • The wal space of Co (R) is 1Il (R) , the space of 

signed measures on R. 1Il(R) is a Banach space with the variation norm Il • Il [6,p.35J. 

Let 1Il1 (R) = t !JE 1Il.(R):.'" ~ 0 , Il !J Il = 1} represent the space of probabi li ty mea-

sures on R. 

Integrating both sides of (2.5) with respect to cp E 1111 (R), we obtain for 

fE cCX) (R) 
o 

t 
tp (Uu(t) f) = tp(f) + 1. tp (Uu(s)(A(s) + u(s, • }O}f}ds 1 

o 
(2.7) 

where UU(t) == UU(O,t} , t~ 1 • Let f/u(t)rp( r} == l pU(O,x,t, r}tp (dx) for rE œ(R} • 
R 

Then, for any fE B(R} , tp(Uu(t)f} = rf(t}tp(f}. Since (2.7) holds for 011 fE C:(R}, 

it uniquely defines the flow of probabi lit y measures induced by the stochastic process 

{ x u : tEl} • For tEl ,we write (2.7) as 
t 

or, abstractl y, as 

f/u(t)t,d..f) =tp(f} + l tp(Uu(s} (A(s) + u(s, .} O} f ds 

o 

t 
f/u(t}tp = tp + J tp(Uu(s)(A(s) + u(s, .} 0)( » ds , 

o 
(2.8) 

and coll it as the 'dynamic equation in the space of measures l associated with. (2.4) • 

Chapter III is concerned with the attainable sets of probabi lit y mea-

sures for the stochastic control system (2.4) • In Section 3.1 , some simple time-

varying control systems are briefly investigated to motivate the subsequent work. In 

Section 3.3, the following result is established: Given a solution process clefined 

by (2.4) for a bounded measurable control, then this process con be approximated, as 

closely as desired, by the solution process of (2.4) for a bang-bang control. Then 
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it will be shown that the attainable set of probability measures of (2.4) 1 where the 

control functions are in a bounded set of bounded measurable functions, is compact 

in the weak topology on 11/.
1 

(R) for any t:2: o. A convexity result is also obtained. 

Chapter IV considers sorne optimal stochastic control problems for the 

system (2.4) • In Section 4.1 , a definition of the stochastic control problem is pre-

sented, and the concept of controllability in the space of probabi lit Y measures is dis-

cussed. In Section 4.2 it is shown that the attainable sets of probabi lit Y measures of 

(2.4) are continuous in time with respect to a topology derived from the weak topology 

on "'ll(R). With the help of this result, an existence theorem for time optimal sto

chastic controls is proved. In Section 4.3 it is shown that, for a very general class of 

problems, there exists a control which minimizes the expected value of a cost func-

tional at any time t
1 

>0. 

ln Chapter V , we establish the existence of unique quasi-diffusions for 

the class of systems where the diffusion coefficients are bounded and integrable. With 

the aid of this result, a necessary and sufficient co:nditionfortheaverageofacostfunc-

tional to be minimized bya feedback control is derived. 

The idea of studying stochastic control systems from the point of view of 

the state distribution functions is not new to the control literature. Mortensen (50J 

* 
used this approach to obtain a 'Hamilton-Jacobi' type equation in function space. In 

this dissertation, we shall not be concerned with the optimal stochastic control problem 

as formulated in [50J . Our main goal is to study the attainable set of probability 

* The drift coefficient in [50 J is restricted to be continuous. 
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measures of a stochastic control system: specifically, as stated above, we shall be 

interested in the continuity, convexity,and compactness properties of the attainable 

sets. Although this information does not appear to facilitate the solution of any prac-

ticai problems, it does offer a relatively simple and elegant way of regarding stochas-

tic control systems. In conclusion., we aver that the understanding and characteri-

zation of the attainable sets of probability measures is fundamental in the study of sto-

chasti c control processes. 

Chapter VI deals with the straight forward application of the th"eory of 

(deterministic) dynamical systems to systems of a stochastic nature. In Section 6.1 , 

two examples are presented which are used to motivate the definition of a non-

detetministic dynamical system in Section 6.2. In Section 6.3 , the concept of limit 

sets is employed to obtain some topological results concerning the trajectories of proba-

bility measures. In Section 6.4 , the Iimit sets are characterized further, and it is 

shown how the averages of certain functions, as t ... CD , are related to the Iimit sets. 

Chapter VII is concerned with the stabi lit Y of non-detenninistic dyncmi-

cal systems. In Section 7.1 , a certain continuous function (not a Lyapunov function) 

is introduced whose existence ensures the stability of flows in the space of probability 

measures. In Section 7.2 , the results of the preceding section are applied to the 

stochastic stabi lit Y theory. 

The work in this part of the dissertation is motivated by (35). The 

main idea here, which was not recognized in [35], is the applicability of dynami-

cal system theory to stochastic problems. To give some indication of the effectiveness 

',. of these methods, we mention that the major theorem of [35], Theorem 3, is an im-

mediate consequence of a standard result in dynamical system theory (see Remark (ii) 

at the end of Section 6.3). 

: ..... "'. 
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We have not yet attempted to apply the theory of Chapters VI and VII 

to practical problems, where the usual formulation may be inapplicable. However, 

the theory has provided some new results related to stochastic stability. For example, 

the results of Section 6.4 , as weil as the definition of a generalized stochastic Lya

punov (D-function) and the work of Section 7.1 , are completely new to the stochastic 

theory. 

As a final remark, we state, that although the techniques of dynamical 

system theory are incapable of establishing a.s. stability results, they do provide a 

unified and functional analytic approach to a large class of stochastic stability pro

blems (see Section 7.1). 
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CHAPTER III. 

ATTAINABlE SETS OF PROBABllITY MEASURES 

3. 1 Simple Stochastic Control Systems 

To motivate the work that follows, we consider simple control systems of 

the form 

d x
t 

= (a (t) + u1 (t)) d t + (b (t) + u2 (t) ) d Zt 1 (3.1) 

where a, b, u
1 

' u2 are one-dimensional bounded measurable functions of t, and Zt 

is one-dimensional Brov.nian motion. a and b are system parameters and are assumed to 

be fixed. For ea~h t, the random variable x (t, w) induced by the stochastic differential 

equation (3.1) has a normal distribution with the mean 

t 

et = J (a (s) + u
1 

(s)) d s , 

0 

and the variance 

2 t 2 * 
O't = l (b (s) + u2 (s)) d s . 

0 

Soppose that the Markov· process defi ned by (3.1) starts at time t = 0 , 

and x = 0 a.s. W, and that at some t 1 afterwards, we wi sh x (t 1 ' w) to be equal to 

a E R a.s. W. As sta te d, this problem demands a great deal; a more reasonable problem 

is to have the control functions u1 and u
2 

'direct' the distribution functions of the family 

of random variables {x (t, w) : t E [0, t1J} in such a manner that, at time t
1

, it has 

a preassigned fixed normal distribution, N (a, 0'2), with mean a and variance 0'2 • 

To determine the controls necessary to accomplish this match ing of distribution functions 

* x = 0 o.s. W • 
o 
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(recalling that a normal distribution is completely specified by its mean and variance), the 

following conditions are necessary and sufficient : 

t
1 J (a (t) + u 1 (t) d t = a 

o 
and 

The controls 

t1 2 2 
J (b (t) + u

2 
(t)) d t = C1 

o 

= a _ a (t) 
t
1 

and 

(3.2) 

C1 
=. - - b (t) 
vt; 

(3.3) 

are bounded measur.able functions which satisfy (3.2), olthough th9y are by no means unique. 

Therefore, u
1 

and u2, given by (3.3), 'direct' the distribution functions of x (t, w) 

2 
to N (a, C1 ) 

Note that the system (3.1) can only be controlled to a nor~al distribution and 

that controls are necessary in each of the coefficients, one controlling the mean and the other 

the variance. 

The normal distribution of x
t 

plays a crucial role in the above analysis. If 

state variables are introduced in the coefficients of (3.1), the distribution function of x
t 

is no longer necessarily normal and what was a two-dimensional problem now becomes an in-

finite dimensional problem, i.e., above we had to match only the mean and variance of the 

random variable x ,whereas now, if we wish to match distribution functions, it is necessary 
t 1 

to match ail the moments of the distribution function induced by x wi th those of the Itarget l 

t1 

distribution function. 
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Another important problem in control theory is the characterization of the 

control function necessary to attain a certain objective. In time-optimal deterministic 

control the ory for linear systems, it is a well-known fact th~t the class of 'bang-bang ' 

controls is as effective as the larger class of bounded measurable controls. To motivate 

the study of analogous problems for stochastic systems, we consider 

u 
d x t = (a (t) + u (t)) d t + b (t) d Zt 1 (3.4) 

where we assume the process starts at t = 0, x = 0 a.s. W, a and b are as above, u 

is bounded measurable, and 0 s: u (t) s: l , tEl = [0, tf J. At any time ". El, 

u 
the mean of the distribution function induced by x". is 

and the variance is 

". J (a (s) + u (s)) d s 
o 

". J b
2 

( ".) d s 
o 1 

which is independent of the control. We can readily find a control u, u (s) = + l or 0 

for a Il sEI , and such that 

". ". l u (s) d s = l ü (s) d s 
o 0 

Therefore, at any time ". > 0, we can find a 'bang-bang ' control such that the distribu

tion function induced by x~ is the same as that induced by x ~ •. As a consequence of 

this, it follows that the expected value of f (x~ (w) ), conditioned to start at x = 0 and 
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. u 
t = 0, is the same as that of f (x 7' «(.») starting at x = 0, t = 0, for any real bounded 

continuous functions f • 

3.2 Classes of Control Functions 

The notion of attainable set is fundamental in the theory of control. We 

are thus motivated to investigate the attainable set of probability measures associated with 

the stochastic control system (2.4) • 

Let 1 = [0, tf J, tf < + 00, and let :00 (1) be the Banach space of 

bounded measurab,le functions on 1 with the supremum norm. Defi ne 

l = { U E :00 (1) : ° !i: u (t) !i: i for ail tEl} 

to be the set of admissible control functions on 1. For each u E I, (2.4) defines a 

Markov pro cess • 

ln Chapter " we defined a continuous Markov process on [0, 00 ] into R 

to be a family of probability measures P ,s ~ ° and x E R, on fi = C([O, 00), R\ 
s,x ~ 

su ch that P ( ri 3l
t

s
) = P (f) a.s. P for f E ~ t. The transition distribu-

s,x t, 1I't s,x 

tion function is defined by P (s, x, t, B) = P (1I't E B), BE IB(R). If pU (s, x, t, B) 
s,x 

is the transition function of the Markov process (2.4) corresponding to u E l , then 

u f u "1 (t) (/J ( .) = P (0, x, t, .) fi' ( d x) 
R 

describes the flow of probabil ity measures 

on 1 associated with (2.4). 

Definition 3.1. We deflne the attainable set of probability measures for the control 

system (2.4), for the admissible class I, by 
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t 

il(O = {1J u 
(t) Cf) : u E I. }, 

For each f E C (R), the space of bounded continuous functions on R with the supremum 
1 

norm, we define 

at,t (f) = { 1Ju (t) Cf) (f) u E I.} 
tp 

Let X
H 

be the characteristic function of the set H • 

Define 

H is a measurable subset of I} 

As in Definition 3. l, we define 

o t { Jl. = 1J
u

(t)Cf) Cf) E 11/1 (R) 1 

'fJ 

and 
o 
Jl,t(f) = {1Ju

(t)Cf)(f) UE I O
} 

tp 

for f E C (R) • 

We now consider.l: (1) with its a ( .1: (1),.1:
1 

(1)) topology, where 
00 00 

.1:
1 

(1) is the space of functions whose absolute values are integrable over 1 with respect 

to the Lebesgue measure. 

A sequence tun}C.l:oo (1) convergesto u e .1:
00

(1) in the a(loo(I), II (1)) 

topology if and only if 
J u (5) 9 (5) d s ~ f u (s) 9 (5) d 5 

1 n 1 
as n ~ 00 

for ail 9 e .1:
1 

(1). We now present a result which shall be useful in the se·quel • 
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Lemma 3.1 

l 0 is (J ( : en (I), II (I)) dense in l . 

Proof : Let 1 be the Lebesgue measure on 1. We wish to show that, given 

o ' 
any u E I,there exists a sequence { un ~ e l su ch that 

J u (s) 9 (s) 1 (d s) -+ l u (s) 9 (s) 1 (d s) 
1 n 1 

as n ~ en 

for ail 9 E :1 (1). This is equivalent to showing that for ail SE œ (I) == { X [O,t ] : tEl J, 

J U (5) 1 (d s) ... J u (s) 1 (d s) , 
S n S 

as n ... en. 

This result can be,found in [1, p. 342, Example 27]. Since un is the characteristic 

function of a measurable set A el, we would Iike to prove the existence of a sequence 
n -

of measurable sets {An} such that for ail sets S Eê(l) 

I(AnS) -+ 
n 

l U (s) .1 (d s), 
B 

as, n ... en. (3.5) 

If u E l is continuous, then by [4, p. 300, Example 3] a sequence {A } can be con
, n 

structed for which (3.5) is satisfied. 

Now let u 6 l be arbitrary and fixed. Since:2 (1) ::>: CD (1), and C (1), 

the space of real- valued continuous functions on 1, is dense in :2 (1) with respect to 

the :2 - norm, there exists a sequence {vi}e C (1) such that 

J (v. (s)-u(s))2 I(ds) .... 0 
1 1 

as -+ CD • 

This implies the existence of a subsequence, also labelled {v.J, such that v. converges 
1 1 
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to u a .e. on with respect to 1. If necessary, each v. can, be redefined so that , ,1 

o :!:: V. (t) :!:: 1 
1 

forall tE 1 and v. remainsin C(I}. 
l ' 

By Renyi's example, for e,?ch v ECU), there exists a sequence of 
p 

, measurable sets {A k} co' such that 
,p, k= 1 

1 i mIl (B n A k) - r v ( s ) 1 (ds) 1 = 0 
k~oo ' p, JB P 

(3.6) 

It is also proved in [4] that it suffices to prove (3.5) for B = A., 
, 1 

1 = l, 2,,,.' . Let l(l) = { Bi'} co be ail the sets of {A k} in some order .. 
i = 1 ~ p, 

We wish to choose a subsequence { An} from i (1)' such that (3.5) is satisfied for 
~ 

011 BE B (I). Then, by (3.6), we' con choose the sequence of integers { k
n

} as 

fol/ows: 

choose k1 3 1 1 (B1 n A1,k) - f
B 

V1 (s) 1 (ds) 1 < 1 for k ~ k1 ' 

1 

l 
1 

v2 (s} l(ds} 1 < -2 for k ~ ~2' i = 1,2, 
B. 

1 

............................................................................. 

choose kn > kn_1 3 1 1 (~i nAn,k) - fB.Vn(s} 1 (ds) 1 < ~ fûr k ~ kn , i=l, ... n.' 

1 

Let A = A Thus, n n, k 
n 

- v (x)} 1 (dx) 1 < -, i =1,2, .... n, (3.7) 
n n 
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for n ~ 1. We claim that {A } satisfies (3.5). Let B e ~(') be arbitrary. 
n 

Then, 

28 

I, X
B 

X
A 1 (dx) - J u (x) 1 (dx) 1 s: l' l X B ( XA 

v (x)) 1 (dx) 1 
n n B , n 

(3.8) 

+ 1 I, X
B 

(v
n 

(x) - u (x)) 1 (dx) 1 • 

The first term on the right-hand side of (3.8) goes to 0 as n .. 00 by (3.7), and the 

second term approaches 0 by the a.e. convergence of {v } to u. The Dominated n 

Convergence Theorem permits the limiting operation in the second term. Thus, for any 

B e ~(')' 

1 (A n B) -+ J u (x) 1 ( dx) 
n B 

as n' .. 00 • 

Remarks : 

(i) 

Lemma 3.2 

t 

Lemma 3. l can be proved in a different manner by using the 

(deterministic) bang-bang principle [9, p.23 ] • 

Given u e l , there exists {u } CIo such that 
n 

I (u (5) - U (5)) ds 1 - 0 o n 

as n -t 00 for a Il te' • 

G.E.D. 
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Proof: Subdivide 1 = [0, tf J into n equCllsubintervals each of length Il. 

Then, by the bang-bang principle [9, p.23J, there exists ü. for 1 s; ; s; n such that 
, • , 1 

~. (t) = + 1 or 0 for ail tel and so ,that 
l ' , ' , 

·A 

f
i, 

1 (u Js) - u. (s)), d s 1 = 0 
(j-l) Il , 1 

Define u on 1 by u (t) = u. (t) for (j-1) Il < t s; j A, 1 s; i s; n •. Then, for 
n n 1 

any tel , we have (j - 1) Il < t s; j A for some j , and hence the fo Ilowi ng re lation : 

t (j-1) A t 

J (u (s) - u (s)) d s 1 = 
On, 

f (u (5) - u (s)) d s 
On, 

+ f (u (s) - u (s)) d s 1 
(j-1) Il n 

S; 2 Â. 

Letting A ~ 0, we obtain the desired result. 

Q.E.D. 

Oi) We note that if {un}eI
O 

converges to u eI', u fI
o

, in the rI (J!CX) (,1), J!1 (1)) 

topology, there 'exists no subsequence of {un} which converges to u in 

Oii) 

measure (Lebesgue measure on 1). To prove th is, suppose that there 

exists a subsequence { 'u } such that u ~ u in Lebesgue measure 1 on 
nk nk ' 

l,i.e., given any e > 0, 1 (x: 1 u, (x) - u (x) 1 > e) ~ 0 as , n 
k 

n
k 

~ Cl) , then there exists a further ~ubsequence {u 1 } which' converges 
: n k 

a.e., on I,to u. Butthisisimpossibl7since {unie IO,and u eI,uII
o

• 

ln the proof of Lemma 3.1 it is sufficient to work with sequences since I-
1 

(1) 

is a separable Banach space, implying that l with its rI (3. (1), 3.
1 

(1)) 
,Cl) 

topology is a metric topology [l, Theorem V • 5.1, p. 426 J • 
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3.3 Stochastic Bang-Bang Principle 

It was shown in Section 3.1 that, for the simple control system (3.4), given 

any u E and t
1 

E 1 = [0, tfJ there exists a ü., ü (t) = + 1 or 0 for 0 ~ t ~ t
1 

such that the normal distributions attained at t 1 are the same for u and ü. We shall 

prove a related result for the stochastic control system (2.4). 

Let the coefficients a and b in (2.4) be uniformly Lipschitz continuous 

in x, and bounded continuous functions of t in 1 for each x ER. Let u be an arbitrary 

fixed function in l , and let PEP be the probabil ity measure on (fi, :Ji 0) such 
x O,X 

that 11' 

o 
= x a.s. P 

x 
and 

. t t 

1I't = X + Jo(a (s, 1I's) +u (s))ds + Jo b (s,1I's)dzs 
a .s. P 

x 

By virtue of Itols theory [8, Vol. l, Theorem 11.3J, such a unique P does existe 
x 

This is equivalent to saying that there exists a stochastic process x su ch that x = x a.s. 
t 0 

with respect to the Wiener measure W on fi = C ( l, R) , the space of continuous functions 

from 1 into R, and such that 

f t + ft 
X

t 
= x + (a (s, x ) + U (s) ) d s b (s, x ) d z 

o sos s 
a. s. W. (3.9) 

Proposition 3.3 

Let u E I. , and let l u }c I O 
converge in the a ( .c ( 1 ) , .cl (1)) 

n 00 

topology to u Let x~ and x
t 

be the stochastic processes defined by (2.4) corres-

ponding to u and u, respectively, where a and b are uniformly Lipschitz continuous in 
n 

x, and for each x E Rare bounded continuous functions of tEl, with common bound k • 

Then x ~ converges to x
t 

in probability, uniformly in tEl, as n -. CD. 
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Proof : Lemma 3.1 impl ies that given any u E I , a sequence {u } CIo exists 
n 

which converges to u in the (j (.l:CX) (1) , .1:
1 

(1)) topology, or, equivalently, 

t t 

v (t) == f u (5), d 5 ... J U (5) d 5 == V (~) 
nOn 0 

as n ~ CX) 

for each tEl [ 1, p. 342, Examp le 27 ] • 

By (3.9) 
t 

n 
x - x 
t t 

= v (t) - v (t) + f (a (s, x) - a (s, X n ) ) d 5 
nOs 5 

t 
+ J (b (5 , x) - b (s, xn )) d z o 5 5 5 

(3.10) 

(3.11) 

Squaring (3.11), integrating over fi with respect to the Wiener measure, and using the 

properties of stochastic integrals 1 we arrive at 

t 2 t f k 1 v (t) - v n (t) 1 f 

where 

1 a (s, x) - a (s, y) 1 s: K 1 x - y 1 ,ib (s, x) - b (s, y) 1 s: K 1 x - y 1 

for ail 5 El. Now, given any E > 0, we can find N ~ 0 su ch that for n ~ N , 
E E 

the sum of the first and third terms on the right-hand side of (3.12) is less than E. This 

follows from (3.10). Thus, 

which implies, by Gronwall's Lemma [11 1 p. 11 J, that 

(3.13) 
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Hence, 

lim EW{Xt-x~}2=0. (3. 14) 

n ~ (X) 

Moreover, we have : 

w{ sup 1 x - xn 1 > e} ~ W 1 sup 1 ft (a (s, x) - a (s, xn) ) d 5 1 > ~3l 
tel t t tel 0 5 5 i 

Since· 

w 1 sup 1 f (a (s, X ) 

1 0 5 
. te 

+ W 1 sup 1 

tel 

+ wlsup 1 

tel 

t f (b (s, x ) - b (s, xn) ) d z 1 
o 5 s. 5 

v (t) - v n (t) 1 > i! 
> e l 

3" ~ 

(3.15) 

by Chebyshev's inequality, the first term on the right-hand side of (3.15) goes to 0, as 

.n ~ 00, by (3.13) and (3.14). The second term approaches 0, as n ~ (X) , by the 

martingaie inequality, (3.13), and (3.14), while the third term goes to 0, as n -+ (X) , 

by the choice of {un}. (The formula (3.13) permits the use of the Dominated Convergence 

Theorem .) 

Q.E.D. 

Corollary 3.4. 

Let f be a bounded continuous function on R, then f (x;) converges 

w n w 
in probability to f (x

t
) as n ~ (X) for each tel, and E f (xt

) ~ E f (x
t
) as 

n ~oo. 
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Proof : The first part is a standard result of probability theory 1 and the second follows 

From the Dominated Convergence Theorem. 

Corollary 3.5 

If f is uniformly Lipschitz continuous with constant L, then 

E
W 

{ f (x~) - f (x
t

) } 2 ~ 0 as n ~ (X) for each tel. 

Proof 

by(3.14). 

s L 2 EW {x _ xn } 2 
t t 

~o as n ~(X) 

Q.E.D. 

Q.E.D. 

Corollary 3.4 implies that for any tel and any bounded f e C( l, R) 

E
W 

f (~t) can be approximated as closely as desired by E
W 

f (x~) where x~ is the' 

solution process associated with (2.4) for the 'bang-bang' control u .. If we assume 
n 

that the coefficient b is strictly elliptic, then we can obtain a stronger and more interest-

ing result. The following is an extension of [5, Part Il, Theorem 9.1] since the drift 

coefficient contains a discontinuous term and the convergence of u to u is not uniform. 
n 

The proof depends on techniques developed in [5]. 

Theorem ·3.6 * (Stochastic Bang-Bang Princip le) 

Assume the coefficients a and b of (2.4) satisfy the following conditions: 

a and b are bounded continuous functions,and b2 (t, x) ~ li > O. Let x e Rand 

n n 0 ** P == P ,P == Po 1 be the probabi 1 ity measures on (0 , :; ) defined by (2.4) 
x O,X x ,x 

* See Remark (iv) at the end of this section. 

**0 = C ( l, R) and :;: is the smallest cr - algebra onOwith respect to which ail the co

ordinate functions 1T1': 0 ~ R, s :!!: l' ~ t ~ tf are measurable. Define :;o;;:;~ 
f 
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for the respective controls u and 
n 

u, where {u } CIo converges to u e l in the 
n 

n 
Then, P converges weakly to P • 

x x 
a ( .c CD ( , ), .c 1 (1)) topology. 

Proof : Let 

Ye (t) = exp le ('1f
t 

-x) 

, t 

9 J a (s, 'If ) d s 
o s 

and 

1 
t t 

Yen (t) = 'exp e ('If - x) - e f a (s, 'If ) d s - Q f u (s) d s 
t 0 sOn 

be the martingales associated with u and u ,respective Iy. 
n 

Using the fact that y~ (t) is a martingale with respect to P: ' we can derive 

the following estimate, as in [5, Part 1, Lemma 3.2J: 

pn 

E x J( 'If - 'If } 4 :!:: C 1 t - s ,
2 , t ~ s, tel . t 5 

for ail n ~ 1 , where C depends on the bounds of a, b, and u. Then, by [15, 

Theorem 2, p .33 J, the family { Px
n 

} CD is relatively weakly compact, i.e. there exists 
n=l o { n}oo a measure Q on (n, :; ) and a convergent subsequence of Px ' also denoted by 

n=l 
, which converges weakly to Q • 

Since Yen (t) is a martingale with respect to pn , ~e have for r e:;o and 
x 5 

t >5 :i!!:O, tel, 

J n n J n n Ye (t, w) P ( d w) = Ye (s, w) P ( d w) 
(' x r x 

or, for any 'Jo measurable bounded continuous function g (w) 1 
5 

J g (w) Yen (t, w) p
n 

(d w) = n x I nn 
g (w) Ye (s, w) P ( d w) n x 

(3.16) 
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We must show that Ye (t) is a Q - martingale, i.e., 

f 9 (w) Ye (t, w) Q (d w) = J 9 (w) Ye (s, w) Q (d w) . 
fi 0, 

(3.17) 

Let M be a number greater than o. We claim that the family 

"'w == 1 9 (w) (Y~ (t, w)/\ M) : n ~ 1} is uniformly bounded, ';j; measurable,and equi

continuous at éach w E 0, where rA A = inf (y, A). It is only necessary to show that 

for fixed t and Q ,{ Y~ (t, w) : n ~ 1} is equicontinuous at each W E fi ., Fix w dl, 

tEl, and let 

Then, 

l n ( -) n ( ) 1 et ,..,. 
Ye t, w - Ye t, w ~ el' (w) - ,(w) 1 1 

which is independent of n. Since 1ft is a continuous function of fi into R, where fi 

has the sup norm topology, and a, b are continuous functions of the space variable, the 

set { y~ (t, w) : n ~ 1 J is equicontinuous at each W E fi. Since 9 is continuous, "'1..1 

is also equicontinuous, i.e., given any E > 0 there exists a ô - bail (in the sup norm 

,..,. 
topology), Nô (w), of w such that for ail w E Nô (w) , 

- n - n 
sup 1 9 (w) (y Q (t , w) 1\ M) - 9 (w) (y Q (t, w) /\ M) 1 < E 

n ~ 1 

Thus, since y~ (t, w) -+ YQ (t, w) for each w as n ... 00, [ 13, Theorem 6.8, p. 51 ] 

implies that 

l 9 (w) (y e (t, w) A M) Q (d w) 
fi 

= lim J 9 (w) (Y~ (t, w) A M) P: (d w) (3.18) 

n ... 000 
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for each M >0. 

We now show that 

E
Q 

{ 1 YS (t) - YS (t) AMI} , 

and 
p n 

I} sup EX { 1 n n 
YS (t) - YS (t}A M 

n ~ 1 

tend to 0 as N -. 00 : Using [5, Part l, Lemma 3.1 ] we have that for ail n ~ l, 

p
n 

{ sup 1 1T - xl> I} s d exp { - v 12
} , 

x tel t 

where d and v are positive constants, implying that 

pn 

sup E x { 1 

n ~ 1 

n n } Y 9 (t) - Y 9 (t)" M 1 ~o . (3. 19) 

as M -. 00. Now, the set { w: l1T
t 

(w) - xl> / } is open and 3'; measurable, and 

therefore, by virtue of [13, Theorem 6.1, p. 40 J, 

Q { 1 1T
t 

- xl> / } s hm P; { 1 1T
t 

- xl> / } 
n .... oo 

s d exp { - v /2 } 

Thus, for any tel, 

E Q { 1 Y 9 (t) - Y 9 (t) 1\ MI} -. 0 (3.20) 

as M ~ 00. 

Now, 

and 



Therefore, (3.18), (3.19) and (3.20) imply that 

pn 

EO { g Ye (t)} = lim . E X{ g Y~ (t)} . 
n~CD 
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Takingthelimitonbothsidesof (3.16),weobtain (3.17), i.e., Ye·(t)isa Q-martin

gale. But Ye (t) is given as a martingale with respect to Px' ·and the solution of the 

martingale problem is unique [5, Part l, Theorem 5.6 J. Therefore, Q ~ P and 
x 

P
n => P -" as n -. CD •. 
x x 

Q.E.D. 

If the drift coefficient a in (2.4) is bounded and measurable, then the 

proof of Theorem 3.6 becomes more difficult. However, in [5, Part Il, Theorem 9.2 J, 

it is shown that if un converges to u in measure (Lebesgue measure on R) on compact 

n 
sets of R, then P ==> P as n .. CD. In fact, convergence of u to u as n .... CD , 

X x n 

in the sense that 

J U (5) g (5) d 5 -+ Il U (5) g (5) d 5 
1 n 

as n ~ CD 1 (3.21 ) 

for ail g bounded continuous on l, is sufficient. This is remarked, but not proven, in 

[5, Part Il, p. 500 J. Therefore, since the convergence of (3.21) is weaker than 

a (: CD (1), .r: 1 (1)) convergence, we have : 

Corollary 3.7 

Let a be bounded measurable, b bounded continuous and strictly elliptic. 

Then given u e l there exists j u } CIo such that u ~ u as n ~ CD . in the 
l n n 

n 
0'(: (1), J'!1 (1)topology, and P ==>P . 

CD x x 
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Remarks : 

(i) Theorem 3.6 and Corollary 3.7 imply that for each f E C (R) 

and tEl, 

as n -+ 00 or, equivalently, 

J f (y) p
n 

(0, x, t, d y) -+ f f (y) P (0, -x, t, d y) 
R R 

(3.22) 

as n'" 00. On integrating both sides of (3.22) with respect to 

the probability m~asure tD, we obtain 

u 
"1 n (t) tD ~ "lu (t) tD (3.23) 

as n ... 00. This means that thé 'set ~ is dense in a:l~ in the 

weak topology on 11{ ,(R) for each tEl • 

Qi) Ali the results of this section can be easily extended to an n-

dimensional analogue of the stochastic differential equation (2.4). 

(iii) If we set b == 0 in Proposition 3.3, we have that 

lim xn (t) = x (t) 
n-+oo 

n 
for each tEl, where x (t) (x (t)) is the unique solution of the 

ordinary differentia 1 equation. 

x (t) = a (t, x (t)) + u (t) ( x n (t) = a (t, x n (t)) + un (t) ) 1 

(3.24) 
whichisaresultobtainedin [10]. Theworkin [10] employs 

the (deterministic) bang-bang principle whereas, in this work, we moke 

no recourse to it. 



.;'/f" 
'~. 

\Iv} Calling Theorem 3.6 a 'bang-bang principle ' is not strictly 

in accord with its meaning in the literature. In the usual sense, 

Theorem 3.6 would be a 'bang-bang principle ' if we could show 

that for tel and u e ~ , there exists a ü ~ l 0 such that 
-

"lu (t) f{J = "lu (t) cp. This result. appears to be difficult to prove ; 

even for the deterministic system (3.24), the corresponding result 

has not yet been demonstrated. 

(v) Theorem 3.6 does not generalize the result in [10J (where the 

drift coefficient is required to be uniformly Lipschitz in the state 

variable),since the diffusion coefficient in (2.4) must be strictly 

elliptic. 

(vi) 
. 0 

Rather than use the control classes l and ~ ,we could have 

employed 

y = { u : u measurable on l,lu (t) 1 ~ ~ , tel} , 

and 

yo = { u : u measurable on l,lu (t) 1 = ~, tel} , 

where ~ > a . 

(vii) Given any u e : ( 1) , if there exists a sequence {u } C: (1 ) 
00 n 00 

su ch that u ... u as n ... Q) in the a ( : (1), J! 1 (1» 
n Q) 

topology,then the results of Theorems 3.6 and Corollary 3.7 remain 

. valid. 

39 
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(viii) The author is aware of only one other work in the Iiterature, Fleming 

[23], which deals with bounded controls for stochastic systems. Using 

the theory of weak solutions of linear parabolic equations, Fleming 

shows that the probability density function qU(t, y) of the random variable 

x
t
U 

exists, where u E: (1). Also, if u .... u a.e. on l, it can be in-
00 n ----------------

ferred from the work in [23, Appendix 2] that qUn(t, y) .... qU(t, y), 
u 

as n .... 00, uniformlyon compact sets, where q ne t, y) is the density 

u 
function of x

t 
n. Theorem 3.6 is a stronger result since it requi~es only 

(ix) ln [51 J, Fattoroni considered an "approximating bang-bang principle ll
, 

si milar in idea to Theorem, 3.6, for the 1 inear contro 1 system 

x( t) = A(t) x(t) + B(t) u(t) , (3.25) 

where x(t) and u(t)takevaluesinaBanachspace E, A(t) isan 

unbounded Iinear operator from E into E and B( t) E l (E, E). 

Assuming the existence of a solution for (3.25), and making certain as-

sumptions on B( t) and u( t), Fattorini showed that the attainable set 

. of x( t), for bang-bang controls, is dense (in Cl certain topology) in 

the attainable set of x( t), for an appropriate larger class of controls. 

To show that th is resu It does not detract from Theorem 3.6, we observe 

that even if the two-parameter semi-group { U
U 

(s, t): t ~ 5 :?: 0 } , 

given by (2.5), satisfies the differential equation 

oUu(s, t)f = (A(t) + u(t, .) 0) UU(s, t)f 1 

ot 
(3.26) 



(see Corollary 5.5)" where A(t) is defined by (2.6), (3.26) cannot 

be considered as a special case of (3.25) since D is an unbounded 

linear operator o~ C (R" and D operates on the solution itself, not 
o 

the control function. 

(x) We observe that Theorem 3.6 cannot follow from arguments similar to 

those used in Proposition 3.3 since, although the family{P:} ~=1 

is weakly compact, we do not know that the fin ite dimensional distribu

tions of p
n 

converge to the fin ite dimensiona 1 distributions*of P for 
x x 

the case where the coefficients are not Lipschitz continuous. 

(xi) The theory of absolute continuity of measures corresponding to diffusions, 

as developed in [57, Chapters 4 and 5 J, cannot be used to obtain 

a result such as Theorem 3.6 if the drift coefficients { un (t)} converge 

to u ( t) in a topo logy weaker than that of J!2 ( 1 ). Th i s is obvious from 

Formula (1.4) of [57, Section 5. 1 ] . 

* See [12, Theorem 8.1, p. 54 J. 

41 
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3.4 Compactness of Attainable Sets 

Let us assume the coefficients of (2.4) satisfy : a is bounded measurable, 

b is bounded continuous,and b
2 

(t, x) ~ V >0. In Theorem 3.8 it will be shown that for 

any starting probability measure, the set of probability measures induced by the solution 

process of (2.4), at each time tEl, forms a weak compact set in 'fl(R) if the control 

functions are fn 1.. This result will be needed in the existence .proof for a time-optimal 

stochastic control in the next chapter. 

Theorem 3.8 

If a is bounded measurable, b is bounded continuous and strictly elliptic 

in the stochastic differential equation (2.4), then 1l~ is weakly compact in 1Il1(R) for 

each tEl and tfJ E 1IbeR) . 

Proof : Consider t. (1) with its cr ( : (1),: l (1» topology where 
CD CD 

1 = [0, tf J, tf < + CD. We shall show that the map u ... '?U (t) CfJ , from 

(1. CD .( 1) , cr ( : CD (1), 1. 1 (1») into ?Ill (R) with its weak topology, is continuous. 

Since 11l1(R) is a metric space [13, Theorem 6.2, p. 43] , we may use sequences to 

prove continuity. Let {u } C t. (1) converge to u E: (1) in the cr (: (1)':1 (1» 
n CD CD CD 

topology, which implies by [1, p .342, Example 27 J that 

for ail tEl • 

f
t 

U (5) d 5 
o n 

t 
~ J u (s) d 5 

o 
as n ~ CD 

Let p
n 

== p'
n 

and P - P be the measures on fi = C ( l, R) 
x O,x x O,x 

associated with (2.4) for the controls u and u, respectively. Then, by Remark (vii) 
n 
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in Section 3.3, p
n ==> P as n ~ 00. Thisîmplies that for each f e C (R) , 
x x 

as n ~ 00 

or, equivalently, 

f f (y) pn (0, x, t, d y) ~. J f (y) p (0, x, t, d y) as n ~ 00 (3 .25) 
R R 

for each x e R. On integrating both sides of (3.25) with respect to the probability 

measure fi) (and using the Dominated Convergence Theorem), we get that 
u 
nu· u 

", (t) fI)~", (t) tp as n ~ 00. Thus, u ~ ", (t) Cf) is a continuous map from 

(t", (1), a (l",(I), "i (1») into 1Il1(R) with itsweaktopology. 

Since I is the translation by the function ~ in .ca> (1) of the closed 

bail of radius ~ in .ca> (1) , it is cr ( .ca> (1), .t l (1)) compact. Therefore, the image 

of I, 1l. t ,is weakly compact. 
'fJ 

a.E.D. 

Of some importance in optimal control theory is the convexity of the attain

able sets. In general, i~ is not ~ convex set of 1II1(R) as th~ followirig example 

illustrates. Consider the simple stochastic differential equation 

u 
d xt = u (t) d t + d Zt ' (3.26) 

starting a.s. W at t = 0 and x = 0 • 
t 

We shall show that RE is not convex, where 
o 

E is the Di rac measure at the ori gi n • Le t u l 1 u
2 

both be in I. Then, at ti me 

o u u * 
t > 0, tel, x l has a normal distribution function, "1 l (t) EO ,with mean 

t t u u
2 f U

1 
(5) d 5 and variance t, while x 2 has a normal distribution function,,,, (t)E

O
' 

o t 

* Actually, T/u1(t) EO is the measure associated with the normal distribution function. 

, 
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1 u1 0 
2''' (f) E + o 

u
2 

(s) d s and variance t. Therefore, the distribution function 

1 u2 2' "1 (t) E 0 cannot possibly be normal. But (3.26) implies that the 

random variables x~ can only have a normal distribution. Thus, 11,:0 is not convex. 

However, we do having the following different convexity result. 

Theorem 3.9 

Let a and b be as in Theorem 3.8. Let u e l , ~ e ~ (R), and 

f e Cal (R). Then 'Jt (f) is convex in R, i.e., an interval. 
o ~ , 

Proof : By the definition' of the weak topology on 11l1{ R), the map "" ~ "" (f ) 

From 1Il1(R) into R, for a fixed f e C (R), is continuous. Since 1t~ is weak compact, 

by Theorem 3.8, this implies thatt~ (f) is compact in R. Let f e C: (R) and assume 

~~ (f) is not an interval. Then there exist two compact subsets K1' K2 C R which 

are separated and whose union is'~ (f). Let {al 1 ~l} and{a2, ~2},' al s;~1 <02 s;~2' 
be the end points of K

1 
and K2' respectively. Choose u1 and u2 in l su ch that 

u1 u
2 

Y1 = "1 (t) tp (f) e K1 and Y2 = 'f} (t)~ (f) e K2 • 

and 

where 

Divide [0, t] into n equal s'ubintervals of length A. Thus, using (2.7), 

n iA u u 

y 1 = CD (f) + ~ l Cf) (U 1 (s) A 1 (s) f) d s 1 

i=l (i-l)A 

niA u
2 

~ 
y 2 = Cf) (f) + L I Cf) (U (s) A (s) f) d s 1 

i=l (i-1)A 

AU (s) == A (s) + u (s) D . 

Since Y2 > Y1 ' for at least one interval [i A, (i + 1) Il] C [0, t ] 

, 



(j+1) A 
u u l C/J (U 2 (5) A 2 (5) f ) d 5 > 

jÂ 

(j+1) /:. 

l 
U1 U1 

C/J ( U (5) A (5) f) d 5 
jÂ 

We can choose Â > 0 50 that for 50 me set A c { 1, •••• , n J 
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n Ji./:. u1 u1 1(j+1)4 u2 u2 ~1 .< C/J (f) + ~ Cf) (U (5) A (5) f) d 5 + L C/J ( U (5) A (5) f) d 5 < a
2 

. 
Î=1 
i lA: (1 -1) 4 j ~ j A 

Define 

1'i U [j A, (j+1) ~] 
j~ . 

l' e U [ j A, (j + 1) 4·] 
j~ 

Obviously, u
3 

e I. But 

u· t u u 
1J 3 (t) C/J (f) = tp (f) + f Cf) (U 3 (5) A 3 (s) f ) d s i lI.t (f) 

o C/J 1 

by' the definition of u
3

' which is a contradition. Therefore, K
1 

and K
2 

are not 

separated. The same procedure as above proves that K
1 

and K
2 

cannot consist of dis

joint bounded intervals themselves. Therefore, Rt 
(f) is convex in R • 

qJ 

Remarks: 

(i) 

Q.E. D. 

CD 
Theorem 3.9 simply states that, given any f e C (R), the expected 

o 

value of the random variable f (x~ (w)) for fixed tel, where 

{x~ (w) : 5 el} is the solution process of (2.4) associated with control 

u,andstartingat t=O and ({Je 1fl(R) , takesonallvaluesinsome 

interval as u varies through I . 



il 
l' 
ii 
! 

(ii) Theorems 3.8 and 3.9 can be extended to the n-

dimensional analogue of (2.4) • 

. (iii) Using the resulf of Section 5.2, Theorem 3.9 can be 

proved for aIl functions which have compact support 

(md are twice continuously differentiable • 

46 
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CHAPTER IV' 

OPTIMAL STOCHASTIC CONTROL 

4.1 Definition of Stochastic Control Problem and Controllability 

ln this section, we define .what we mean bya stochastic control problem. 

First, we focus attention on a dynamic process (flow) in 11l
1
(E), E = Rn. This may 

arise, for instance, from a diffusion such as a stochastic differential equation or from a 

more gsneral Markov process. Along with a process in '1!ll(E), we assume the existence 

of an admissible class of controls that can influence the process in question. Thirdly, 

there is an 'objective ' to be achieved by the process using the available controls. In 

the next section, the objective will be to 'hit ' a target in minimum time • Another ob-

jective may be to minimize the Prohorov or norm distance between some probabil ity 

measure ,p and the probability measures of the flow in 71l.
1

(E) • If the flow in 1Il
1

(E) 

is induced by a Markov process and the target is a fixed measure in 111. (E), the objective 
1 

to 'hit ' the target means that,at some time tel = [0, tf J, the probability measure on 

Rn . , induced by the random variable x
t

' is i~entical to the target measure • 

We describe a simple example: let the target be a fixed rrieasure ,p on 

a sphere in R
3

; and let the process in R
3 

be a nonhomogeneou~ Markov process with 

transition function pu (s, x, t, f), where u indicates the dependence on the control. 

Let 'Po be the initial probability measure of the process. If we can find a control u 

in the admissible class su ch that for some starting time to and final time tf 

l 3 pu (t 0 ' x, tf ' r) tfJ 0 (d x) = ~ ( r) 
R 

~. 3 
for ail r e (D (R ), then u 'hits 1 the target ~. 

, 
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Let f l' (t) : tel} be a family of subsets of 1Il1(E). We shall coll it the 

moving target. For most applications, l' (t) will be a single point in 11i1(E) for each 

tel. Unless the supports of two or more probability measures are disjoint or 'almost' 

disjoint in sorne sense, there is.little physical meaning in trying to 'hit' a set consisting of 

more thon one probability measure. 

Definition 4. 1 ~ A stochastic control problem consists of the following : 

(i) a dynamic system in 11l1( E) , 

(Ii) a control class' U, 

. (iii) an initial probability measure (lJ , 

(iv) a target {1'(t):tel}, 

(v) an ob.jective • 

Before discussing the controllability problem in the space of probability 

measures we shall show that viewing dynamical systems as flows of measures subs.umes the 

the ory of ordinary differential equations. 

Much of the mathematical the ory of deterministic control deals with a system 

of differential equations, in E, of the form 

x (t) = 9 (t, x (t), u (t)) x (0) = xo (4.1) 

where the control function u: 1 ~ E takes values in sorne set Je E. We define U(J) 

tel be the set of bounded measurable functions taking values in J , and assume conditions on 

g, so that for any u e U(J) a unique solution x (.) of (4.1) exists. The solution of 

(4.1) is given by 

~\ 

, 



x (t) = Xo + f
t 

9 (s, x (s), u (s)) d s' . 

o 
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(4.2) 

The attainable set .A. (t), for tEl, is defined to be the set of points 

attainable at time t by solutions of (4.1) for all"possible controls u E U(J), i.e., 

J"{{t) = lxo + (g {s, x {sl; u (s)) ds: u, U{Jl! 

. Let E be the Dirac measure at x E E (E has mass 1 at x ,and mass 
x x 

o otherwise). Since E is a metric space, it is homeomorphic to the subset 

( (E) == { EX: x E E} of . '»lIE ), where 1Il
1
(E) has the weak topology [13, p. 42] • 

We define, for solutions of (4.1), 

EO = {Dirac measure at x (0) } 

E~ = { Dirac measure at 'x' (t , x (0), u (t))} 

Let Â(t) == {E~ U E U(J) }. Since Rn and ~ (E) are homeomorphic, so are 

~(t) and ,((t). Therefore, instead of studying,Â.(t) in E we could, equivalently, 

investigate the properties of the set of Dirac measures A*(t) •. 

To summarize, by the definitio~ of E~, a trajectory {E~: tEl} C 1IllE) 

is completely e.quivalent to the corresponding trajectory {x (t,'x (0), u) : tEI}C E • 

This implies that deterministic systems can be studied in ?illE). For deterministic systems 

the attainable sets in 1Il
1
(E) are, of course, sets of Dirac measures, whereas, for stochas

tic systems, the attainable sets are more general sets of probability measures with supports.' 

non-trivial closed sets in E [13, Theorem 2.1, p. 27]. This approach, therefore, 

unifies the theories of deterministic and stochastic systems, since the solutions of both systems 

are simply flows of probabil ity measures. We mention that for diffusions, the stochastic 
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system reduces to deterministic systems only if the diffusion coefficient is not constrained 

to be strictly elliptic. 

We now discuss controllability in ~l(E). Let { rU (t) <Dt : t ~ to' tEl } 
o 

represent a flow of probabil ity measures. starting at qJ t at time to El. 
o 

Definition 4.2. Let U(J) be as above. Fix t1 E I, and for 0 ~ t ~ t
1 

1 define 

, 

where T (t 1) is the target set of probability measures at t 1 and <Otis the starting 

probability measur~ at time t • .1(t (t) is called the controllable set of probability 
1 

measures at time t with respect to T ( .) at time t
1

• (For deterministic systems, the 

n 
target set is often the Dirac measure at the origin of R 1 and the controllable sets are' 

obviously sets of Dirac measures~ 

For our purposes, we let n = 1 and T (t) = li for ail tEl, where 

li E 'J1UR). Also, let J be a compact subset of R. Thus, 

k,t(t) = {<Dt E 1Il
1
(R) : rU (t1) <Dt = li for some u E U(J) }. (4.3) 

1 . 
For a non-stationary Markov process in R with transition function pU (s, x, t, B) 1 

;ft (t) if and only if these exist a u E U(J) such that for ail B E ~ (R) 
t
I 

tpt E 

J U 
R P (t , x, t 1 1 B) "ot (d x) = li (B) 

For the dynamic system (2.7) 1 <D E 1< (0) if and only if there exists a U EU (J) such that 

t 1 
<D(f) + I <D (Uu (s) AU(s)f) ds = lI(f) 

o 
CD U 

forall f ECO (R),where A (s) = A + U (s) D. 

, 



~. 

51 

Let 

{
(X) rt}* Cil = f e Co (R) : supp f n supp Il = )li 

Then a simple necessary condition for ([} to be in 

su ch that for ail f e C , 

j{, (0) is that there exist u e U ( J) 
t 1 

. ri 

t
1 f ft) (U u 

(s) AU (s) f) d s = -(0 (f) 
o 

Intuitively, controllability with respect to Il means that there exists an ad

missible control u such that. the flow of probability measures· {"lu (t) ([} : tel ~ (0 

in the controllable set at time 0), 'hits ' Il at time t
1 

' i.e., "lu (t
1

) tp= Il. If ri 

has compact support, then controllability with respect to Il implies that for some u e U (J), 

u 
x (t

1
, w) e supp ri a.s.W. This is also a finite time stochastic stability result. 

4.2 Continuity of Attainable Sets and Time·-Optimal Stochastic Control 

ln this section, we shall study the continuity properties of the attainable set 

of probability measures, 'it , of the stochastic control system (2.4) starting att = 0 with 
([} 

the probability measure ([}. As in the deterministic case, continuityof the attainable sets, 

in an appropriate topology, is an essential requirement for the existence proof of time-

optimal controls. 

* supp ( .) i s the support of (.). 
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We shall show that the map t ~ 'R~ from 1 = [0, tf J into the non

empty compact subsetsJt. of 11l
1
(R) is continuous with respect to a metric h, where 

'IIl
1 

(R) has the weak topology. The weak topology is a metric topology with the 

Prohorov metric p [12 ] • 

Definition 4.3. For (V, W) E Ji X 11" define 

p(tJ,W) = inf {p (tJ , t,O) : rtl E W } 

d (V, W) = sup { p (tJ, W) : tJ EV} 

h (V, W) = max {d (V, W), d (W, V) }. 

h is a,metric on$,o We shall calI h the Prohorov- Hausdorff metric. Let N (V, E) 

be an E p - bail of V. Then, h (V, W) ~ E if and only if VC N (W, E) and 

W C N (V ~ E) [16, p. 205 J. 

Lemma 4.1 

Let x~ be the ~olution process of the stochastic,differential equation (2.4) 

where u E 1'. , and the random variable Xo == x~ has initial probability measure cp E'1Il1(R) • 

Then, x~ -+ X~I in probability (lS 1 t - t l 1 ~ 0, uniformly with respect to u E l • 

Proof : From (2.4), for tEl, u E l , 

t t 
x
U
t 

= Xo + J (a (s, x
u

) + u (s)) d s + J b (s, x ) d z o sOs s 

where Xo induces the probability measure ta. Let t 1 El, and a be the upper bound 

of a and b. Then, 

u' u x -x 
t t l 

t t 
= J (a (s, x u) + u (s)) d s + J b (s, X u) d Z 

tl S t l S S 



53 

and using the properties of stochastic integrals and HéSlderls Inequal ity, 

Wu u2 2 22 
E ( x t - X t l ) . ~ (a + 1) 1 t - t' 1 + ait - t l 1 , 

which is independent of u. Therefore, 

Ew(u_ u)2"'0 
x t Xt l 

Uniformly for u E I. as 1 t - t l 1 .. O. Chebyshevls Inequality implies that 

{ } 
EW {x~ - x~I}2 

W 1 x ~ - X~I 1 ::!: E ~ 2 
E 

which yields the result. 

Q.E. D. 

Lemma 4.2 

Let x~ be as defined in Lemma 4.1. Let Tl u 
(t) (fJ be the probability' 

measure induced by x ~ , starting with (fJ E 1Il1( R). Then the map t "1l.~ From 1 

intoll. is continuous with respect to the Prohorov -Hausdorff metric h • 

Proof : Let F~ ( .) be the distribution. function induced by x~ starting at t = 0 

with probability measure (fJ. We know From Lemma 4.1 that,given any . E > 0, there 

exists 6 > 0 such that 1 t - t l 1 < 6 implies 

sup W { 1 x ~ - X~I 1 ::!: E} ~ E 

UEI. 
(4.4) 

Now, for any y ER, 

u u 
Ft (y-E) - Ft' (y) = W {x~ ~ y - E} 

= 

~ E 
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for ail u E l ,by (4.4) • 
u u 

Interchanging x
t 

and xtl and replacing y by Y + E , we 

obtain 

u U 
Ftl (y) - F ( y + E) :s: E 

t . 

for ail u E I. Thus, x~ c~nverges in distribution to X~I uniformly in u e l as 

1 t - t l 1 -+ o. This is equivalent to saying that 

u u 
1] (t) ~ ~"1 (tl){,O , 

uniformly with respect to u E I. as 1 t - t l 1 -. o. Hence, given any E > 0, we find 

5 > 0 such that . 

~ t C N ('21 t
l 

, e) 
.• fI'f,.~ Vl.(O 1 

and 

for 1 t - t l 1 < s. Thus , 

t t l 

h (il~ , 'R~) < E 

for 1 t - t 1 1 < ô • 

Q.E.D. 
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We now consider the stochastic contro·1 problem , as defined in Section 4.1 , 

for the following system: 

. (i) n = 1 and the flow in 11l
1
( R} is given by (2.7) 1 

(ii) the control class is I 1 

(iii) the initial probability measure is tp 1 

(Iv) the moving target ". ( .) is a continuous map from 1 into 

with respect to the metric h 1 

(v) the objective is to ha~e the flow t 1'Ju (t) qJ : tEl J, associated 

with (2.1) 1 hit ". ( .) in minimum time. 

We prove the following existence theorem which is similar in form to its 

deterministic counterpart (see [14J 1 for instance). 

Theorem 4.3 .(Existence of rime-Optimal Stochastic Control) 

If there exists a control u E l which steers qJ E "'ll(R) 1 for the stochastic 

system (2.4) 1 to the target ". ( • ) 1 then there exists u* E I which steers f/J to the 

target in minimum time. (u* is said to be stochastically time-optimal~ . 

Proof : We are given the existence of a u E l such that 1] u (t) cp E ". (t) for some 

tEl. This means that 

Define 

t* = i nf { tEl: T (t) n ~~ 1 f1} 
We claim that T (t*)nW,t* 1 f1. If not, 

CD 
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h ( 'T (t *) ,ft t*) = S > 0 
, f/J 

since 'T (t) is p - compact by assumption,.and ~ t is p- compact by Theorem 3.8. 
(/) 

Thus, there exists an a > 0 such that 

and 

h ( 'T ( t), 'T (t*)) < -} 

s' ~J 
for ail t* < t < t* + S, s,ince the map 5 ... T (s) and s -+'Rcp' from 1 into~, 

are continuous in the h metric, by the hypothesis and Lemma 4.2, respectively. For 

such a t 

~ h ('T ( t* ) , 'T (t)) + h ( T (t) , 1l :A) + h (Il t ,Dl t* ) .,.. cp. tp 

i.e. 

h (T(t),~t ) > 0 1 cp . 

< S + h (T (t) ,~~) 

which means that T (t)nm ~ = ft, contradicting the choice of t*. !herefore, there 

* exists u * e I such that '7 u (t*) (/J e 'T (t *) and no t < t * has this property. 

Q.E.D. 

We now disclJSS a necessary condition for a control u e I to be time -optimal 

for the stochastic system (2.4) starting at CfJ e 'Ill (R) • 
1 

Let 

supp T (t) = U { supp CfJ '" e T (t)} 1 

and 
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z = u { supp T( t) tEl } 

Define 

F ( Z ) ~ {f E C: (R). : su pp f n Z = .0} . 

1 f Z = R, then obviously F (Z) = .0. For the important case where T( t) = 11 

for a Il TEl and 11 E "lI (R) has com(XIct support, F ( Z ) f .0. Assuming 

u* 
F(Z) f 1, take f E F( Z ). Then, since a time-optimal control exists, Tl (t*) ({JE T(t*) 

for some u* E l t* El, and (2.7) becomes 

't* 
4'(f) + r cp (Uu*(s) AU*(s) f) ds = 0 

o 

So,"if for some u* E l , (4.5) is satisfied for ail f E F( Z), it may be a time-

(4.5) 

optimal control. This condition is in general far From sufficient for optimality, but may 

serve to disquali·ty suspected time-optimal controls. 

We saw in Chapter III that in general ·Rt 
is not convex. However, 

cp 

for certain state-dependent control systems, where 1Z.~ does not consist on Iy of 

probability measures whose associated distributions functions are normal, as for the 

system (3.26), 1l, t may be convex. In this case, we can carry the time-optimal 
cp 

stochastic control theory further. 

Definition 4.4. We define the reachable cone of probabi 1 ity measures of the sto-

chastic system (2.4) by 



1 

~ 1 

; ,1 

~ 1 

;' 

; 

" 

:1 
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Definition 4.5. We say that u Elis a boundary control on [0, t1 J C 1 if 

'fJu
(.) ffJ lies on the boundary of 'R(ffJ), 0 ~ (1,0), on [0, t

1 
J, i.e. for each 

° s: t s: t1 , 17
u

(t)ffJE 011,(<0). 

Assume that r(t)" the target set, is contin'uous with respect to h. Then,if 

1l t is convex, one would expect as in the deterministic case that,if a control u* is 
qJ 

u* '1lt* 
,time-optimalon [0, t* ] C l, then 17 (t*) ffJE 0 "'" . We can actually prove: 

. ~ 

Theorem 4.4. (Necessary condition for time-optimal stochastic control) 

Let u* Elbe time-optimal on [0, 't* ] CI. Then u* is a boundary 

control on [0, t* ] if 'it is convex for ail tEl. 
ffJ 

Proof: The proof is exactly as in the deterministic case [14, p. 65-67], except 

that the Prohorov-Hausdorff metric is used in place of the Hausdorff metric on Rn. The 

proof requires the continuity, convexity, and compactness of 1t t as weil as the con
f/) 

tinuityof r(t). 

For 'R t 
convex, we can obtain another type of necessary condition for 

tfJ 

a control to be time-optimal. Let u* E l 'be time-optimal and t* the minimum time. 

u* t 
Then, by Theorem 4.4, ffJ

t 
- TJ (t) 1,0 E 0 R-,o for t E IP ',t* J. Let u be any 

other control in l and li:: 'T}u(t) ({J. On 11/.
1 

(R), the weak topology and 

weak*topology (a(11l1 (R), Co (R)))are identical [18, Theorem 4.4.4, p. 81 J. 

Hence, by Theorem 3.8, i t 
is weak*compact which implies that 11 t is weak*closed 

ffJ ({J 

[1, Corollary V .4.3, p. 424]. Therefore, at t is a convex, weak*closed, subset 
f/J 

of 11l(R) forall tEl. Then, in the lightof [54, Theorem 1 ],foreach 

t E [0, t* J, given any E > 0, (i) there exists ({Jt
E 

E 0 ~ t such that 
, ffJ 
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Il <Pt - <p~11 <E, and (ii) thereexists f; ECo(R), f~ 'f 0, suchthat 

E E E ~t ~t 
'II(f t) s: <Pt (f t) for ail Il E CI'Io<p' Thus, for ail Il E U1.-,o' 

or 

III(g~) 1 s: I·<pt (g~) 1 + E 1 

fE 

where g~:: t. Hence, given any 5 > 0, there exists g~ E Co(R), g~ fo 0, 
Il f; Il 

such that for ail Il E l t 
fi' 

ln terms of (2.8), this condition becomes 

for ail u E· lr . Therefore, a necessary condition for u* to be time-optimal is that for 

ail 5 > ° and tE [0, t* J, (4.6) is satisfied. 

4.3 Existence of Minimum Cost Feedback Stochastic Controls 

(4.6) 

ln this section we shall be dealing with the feedback stochastic control system 

(2.4) wheré a(t, x) is bounded measurable, and b(t, x) is bounded continuous and 

strictlyelliptic. 

Let the system (2.4) start at t = ° with CfJE 11ll (R) and suppose we are 

given a co st function V E C(R). The problem is to prove the existence of a control u 

in a specified admissible class which minimizes the expected value of V(x~ (1.0))) at some 
1 

time t
l 

El. Such a control, if it exists, ·will be referred to as optimal. If we let 

·fI = : (1 x R), the space of bounded measurable functions From 1 x R· into R, be 
CD 



~'I 
t.: 

\1 , 
[1 
~I 
~I / f 
~I 
l" 

1.
1 

ri t f. 
; 

i' 
" 

tJ 
~ 

~I , 
; 
r 

"1 
~ 
~ 

60 

the admissible control class, then we wish to prove ,the existence ofa Ü E fi such that 

f~r ail u E# . 

We say that {un}C' co~verges to u E 1 in the cr ( oC 00 ( 1 x R), ~1 (1 x R)) 

topology if and only if 

J J u (t,x)g(t,x)dt dx 
1 R n 

-? J J u(t,x)g(t,x)dtdx 
1 R 

for ail 9 E ~ l (1 x R) , the space of integrable functions on 1 x R • 

Define 

"'" 
I ={UE.cCD(IXR) 0 s:u(t~x) S:1, tEl, XER}. 

Theorem 4.5 

Let a be bounded measurable, b bounded continuous and strictly elliptic 

in (2.4). Let t lEI and V E C (R). Then there exists a Ü E! su ch that 

for ail u E Ï" where tp E 1IL l (R) • 

Proof : Let { un} C Ï converge to u E l in the a ( : 00 (1 x R), .c 1 (1 x R) 

topology. Then, using an extended version of Corollary 3.7: it can be shown that 

u u u 
TJ n (t) CD::::::> "1 (t) CD as n ~ CD. Therefore, the map, u ..-. TJ (t) cp , from 

(.coo (1 x R) , cr (oCCD (1 x R), :1 (1 x R))) into 1IllR) with its weak topology, 

is continuous. 

Since l is the translation by the function ~ of the bail with radius ~ 
in ~ (1 x R) , it is cr ( l (1 x R), ~ l (1 x R)) compact, imp Iying that the image 

CD 00 

* Extended in the sense that the control is also a function of the state. 
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IV .... t .1 u..... ~ 
of 1: 1 wt~ == l "7 (t) (() : u e l } 1 is weakly compact in "t1(R). 

By the definition of the weak topology on 1IlJ(R) 1 the map '" .... '" (V) 

is a continuous function fr<?m1ll
1
(R) into. R. Thus , f ~ (V) is a compact set in R 

.... 
for each tel. Therefore 1 there exists a control ü e 1: such that 

.... 
for ail u e l 

G.E.D. 

Remarks : 

(i) ln Section 5.3 we shall obtain a necessary and sufficient condition 

for a control to be optimal. 

(Ii) Theorem 4.5 is similar in form to Theorem 3/0( [23 J, but 

the proof here seems to be somewhat éâ"~ier • 
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EXISTENCE OF UNIQUE QUASI-DIFFUSIONS WITH APPLICATION 

TO OPTIMAL STOCHASTIC CONTROL THEORY 

5.1 Introduction 
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The aim of this chapter is to study one-dimensional processes associated 

with the coefficients [a(x), "b(x) J, where a is the drift coefficient and b is the 

diffusion coefficient. If the coefficients are smooth, a unique transition function 

P{t, x, r), t ~ 0, XE R," rE "ti (R) can be associated with [a, b j, where the 

density of the measure P( t, x, .) is the solution of the Kolmogorov forward equation. 

If both a and b" are bounded and uniformly HéSlder continuous and b is strictly elliptic, 

then we can sti Il associate a un ique transition density function p( t, x, y) with [a, b J 

as the solution of the Kolmogorov backward equation. When a and b are not Helder 

continuous, the classical theory of parabolic differential equations does not imply the 

existence of a fundamental solution to the backward equation. To relate a Markov process 

to [a, b J, one must therefore resort to other methods. For "a(x) bounded measurable, 

b(x) bounded uniformly continuous and strictly elliptic, Tanaka [47 J and Krylov [48 ] 

were able to CQnstruct a quasi-diffusion (see (2.2)) corresponding in some sense to [a, b J. 

However, they were unable to show that the resulting semi-group is unique. Therefore, 

they could not uniquely identify the quasi-diffusion with [a, b J. This difficulty is over-

come in [5 J, by using the martingale approach, where it is shown that to each [a, bJ 

there corresponds a unique probability measure P on ( fi, :; 0) which solves the 
x 

martingale problem starting at x E R. If one can also associate a semi-group with [a, b], 

as is done for instance in [47 ] and [48"], then it can be shown [5, Part Il, Theorem 11. 1 ] 
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that this semi-group must be unique. The uniqueness of P ,however, does not ensure 
x .. 

the pathwise uniqueness which results from Itols formulation ôf stochastic differential 

equations. 

The major po,.tion of the work in [47 J and [48 J is devoted to 

showing that the Markov process constructed for the poorly behaved coefficients is a quasi-

diffusion. The approach presented in [47 J,[48 J and [5 J is highly probabilistic in ifs 

nature. In the next section, we shall derive a formula similar to (2.2), using only func-

tional analytic methods, for the case where the drift coefficient is bounded and integrable 

on R. With this formula, the uniqueness of the semi-group, generated by [a, b J (in 

the sense of [48 J), can be readily established. 

The main difficulty in proving uniqueness from (2.2) is that the transition 

function which appears is that associated with the poorly behaved coefficients, and since 

very little Îs known about this transition function (it emerges from the Riesz-Markov 

Theorem), uniqueness is difficult to prove. The crux of our approach is to find a repre-

sentation for the semi-group f U( t}: t ~ 0 ~ , associated with the poorly behaved 

coefficients, in terms of a semi-group {T( t} : t ~ 0 } associated with well-behaved 

coefficients. Since a great deal is known about the unique transition density function 

p( t, x, y) corresponding to {T( t) : t ~ 0 } , uniqueness of f U( t) : . t ~ 0 ~ follows 

. from the properties of pet, x, y). 

Finally, we remark that the techniques of the next section do not appear 

to be as general as those in [5 J. The main contribution is that the uniqueness of the 

semi-group, generated by a bounded integrable drift coefficient, is demonstrated from 

purely functional analytic considerations. The analysis is done for a one-di"mensional 

system, but the extension to n-dimensions is straight forward. In Section 5.3, we apply 

/ 
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the results of Section 5.2 to obtain a necessary and sufficient condition for a control, in 

a certain admissible class, to minimize the average of a cost functional. 

5.2 Existence of Unique Quasi-Di'ffusions 

From now on, let a and b be bounded uniformly Holder continuous, and 

let b also be stri~tly elliptic. Let u(x) be a real-valued bounded, measurable, and 

integrable function on R. 

Define 

x > ° . 

Then, 

00 

uX(x) == hX * u(x) == l hX (y) u(x - y) dy 

-00 

is infinitely differentiable in x. Since U' is integrable over R, it follows From 

[20, Problem 13, pp. 196-197] that 

a.e. on R 

Since Ux is continuously differentiable, the mean value theorem implies that Ux is 

uniformly Lipschitz continuous. Thus, there exists a sequence t un} of uniformly 

Lipsch itz continuous functions such that lim 
n"'oo 

u (x) = u (x ) a • e • on R. 
n 

We now construct a Markov process for the coefficients [a +u, b' J. Let / 



65 

Then, for each n, [8, Vol. l, Theorem 5. Il ] implies the existence of a unique 

diffusion process (fi ~ :J;, P:', 1T t ,. X ER), where the transition density function 

p (t,: x, y) is the fundamental solution of 
n 

cV 
ct = A V 

n 

Let Pn(t , x, n = J r Pn(t, x, y) dy and 

U (t) f(x)", . J. f(y) P (t, x, dy) 
n· R n 

for n > a, where pn(t, x, f) = P:~ 1T
t 

E r J, r E &j(R), and f E B(R). Define 

for t ~ a 

U(t)f(x) = lim U
n

( t) f(x) , 
n ... 00 

where f has compact support and is three times continuously differentiable. Pro-

ceeding exactly as in [48, Section 1 J, it can be shown that U( t) f is representable 

as 

U(t)f(x)= i f(y) pU(t, x, dy) 
R 

(5.1) 

for any f E C( R), where pU (t, x, r) is a transition function. Employing the properties 

of pU (t, x, r) proved in [48, Section 1 J, we can conclude on the basis of [5, Part l, 

Theorem 3. 14 ] that there corresponds a continuous Markov process to pU (t, x, r). We 

denote this Markov process by (fi , 
o u 

;}t' Px ,1Tt ,XER). 

.~ 
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Now that we 'have associated a Markov process w ith [a + u, b J, we 

shall ~btain a representation for {U(t) f : t ::!: o} which is different From (5.1). 

First, let ( fi , "Jo, P ,1T
t

, XE R) be the Markov process generated by the coef-
t x 

ficients [a~ bJ, which satisfy the conditions of the first paragraph of this section. In 

viewof [8, Vol. 1, Theorem 5.11 J., the transition density function of th is Markov 

process is the fundamental solution of the parabolic differential equation 

av = A a t v , (5.2) 

where 

A 
a b

2
(x) '0

2 
= a(x) a x 

+ "2 2 
a X 

(5.3) 

The transition density function p( t, x, y) induces a unique semi-group, { T( t): t ::!: o} 
of bounded linear operators on B(R) through the relation 

T(t) f(x) = l f(y) p(t, x, y) dy . 
R ' 

A is the s-infinitesimal generator of {T( t) : t ::!: o} with ,domain 9)(A) contain ing 

f):: {f E C( R): f has compact support 1 fi, fil E C( R)} • 

Integrating (5.2), we get Dynkin's formula: 

for f E fJ . 

t 
T ( t ) f - f = J A T (s) f ds 

o 
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We are concemed with defining a unique semi-group for the (formai) sto-

chastic differential equation 

t ~ 0, c.s. pu, (5.4) 

where pu is some probabil ity measure on ( fi , o 
:J ), and a, b, u are as above. 

ln view of the estimates in [8, Vol. Il, Theorem 0.5 J, it can be shown 

that for each n > 0 and f E tJ , both T(t) f(x) and U (t) f(x) are differentiable 
n 

in t, and twice continuously differentiable in x and satisfy 

oT(t)f = 
ot 

A T( t) f and 
~ U (t) f 

n 
= A U (t) f 

n n. ot 

respectively, with the respective initial conditions, 

s~ li m T ( t) f = f 
t~O 

and s-I i m Un ( t) f = f 
t~O 

(5.5) 

(5.6) 

We claim that the solution of the second equation in (5.5) can be repre-

sented as 

U (t) f 
n 

t 
= T(t)f + J T(t-s) un(·) DUn(s)f ds 

o 
* 

for any n > 0 and f E 3:) . For t > 0 we write the incremental ratio as 

~ (Un(1 + t)f - Un(l)f) = ~ (T(I + lI)f - T(I) f) 

+ ( T ( ~ - 1) 1: T (1 - s) Un ( • ) DUn (s) f ds 

(5.7) 

t + ~ 
+ l f T(t+~-s) u (.) DU.(s) f ds,(5.8) 

~ t . n n 

*D .= .2.. . is a closed linear operator on Co(R) with domain 1 cf)(D),containing 
Ox 

l)1 = {f E C(R): f has compact support, f' E C(R)} • 
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The first term on the right-hand side of (5.8) approaches Al{t) f, since f e [) and 

T(t)f'e f)(A). Thethirdtermapproaches u (.) DU (t)f sincethemap 
n n 

5 ~ T(t + A - s) u (.) 0 U (s) f From [0, t + A] into C (R) is s-continuous. This 
n n 0 

follows From Il 0 U (5) Il < CD for 5 > 0 (Lemma 5'.1), and Il U (S)f - f" ... 0 
n, n 

as 5 -t 0 [8, Vol'. Il, Equation (5.69)]. Since the left-hand side of (5.8) goes 

to 

and 

oU (t) f 
n 

---, which exists by (5.5), we have ot 
t 

f T(t-s)u (·)OU (s)fdsef)(A), 
o n n 

~U (t)f 
n 
o t 

t 
= A T (t) f + A f T (t - 5) U (.) 0 U (s) f ds + u (.) 0 U (t) f o n n n n 

= A U (t) f 
n n 

The following lemmas are presented in preparation for Theorem 5 .• 4. 

Lemme 5. 1 

The linear operator 0 T( t) is bounded on 1.) and, since f) = C (R), 
o 

can be extended to a unique bounded linear operator with the same norm and symbol on 

C (R) for any t > 0, and o 
T 

f 0 " D T ( t) Il dt < CD 

for any 0 < T < CD. 

Proof: Let f e f) , and I~t p( t, x, y) be the transition density function associated 

with {T(t): t ~.o ~ . By [8, Vol. /l, Theorem 0.5 J, we know that pet, x, y) is 

1 
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continuously differentiable in x and 

where M and a ore positlye constants. Thus, 

~ 
. 2 

'~ Il filM 21T 1 ~ ~, ex, P { - Zt } dz , 
at Rv21Tt, 

w.here z =' ~ • Hence, 
a 

IIDT(t)II ~ 

and 
T 

M~2U 
a t 

f Il DT(t) Il dt < (X) 

o 

for 0 ~ T < (x). 

I/J (t) , 

Q.E.D. 

From now on 'let u, bounded by 'Y 1 integrable on R, and vanishing at 

:l: ci:> 1 be 'fixe"d, and 'let· { un}' be a sequenc~ ofinfinitely differentiable functions (as 

described earlier) converging a.e.· to u on R • 

Lemma 5.2 

For t > 0, n > 0, D U (t) is a bounded linear operator on if) 1 
n 

and therefore can be extended to a un ique bounded Iinear ope rotor on C (R) with the o . 
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same sY":1bol and norm, cind Il DU (t) Il is uniformly integrable with respect to nover 
n 

. (0, .,. j, T < co • 

Proof: By the construction of u , it is bounded by y and uniformly Lipschitz 
n 

continuous. Therefore, Lemma ,5.1 .impliestha1" Il DUn(t) Il <co for t >0 and 

. i' T . 

J Il D U (t) Il dt < co (5.9) ° n 

for each n > 0, and T < co. 

Now, foreach fecf), T(t-.s)·u (·)DU (s)fe .cf)(D), where n n .. . 

° :;; s :;; t <co. Therefore, 

t ' '. t . 

Joli D T (t :- s) un ( • ) DUn ( s ) . f Il ds' :;;'?" 1 f Il Joli D T (t - 5) Il Il DUn (s ) Il ds 

< 00 1 (5.10) 

.,since the convolution of two integrable functions is itself integrable [1, Lemma VIII.] .24J . 

(rhe existence of the right:-:hond side is assured by Lemmo 5.1 and (5: 9), for eoch 

n >.0.). Hence, invoking [1, Theorem 111.6.20, p. 153 J, we con'operate on both 

siqes of (5.7) with D to get 

. t 

DU (t)f 
n 

= 0 T ( t) f + J D T (t -- ~) u{ ~ ) 0 U (s) f ds 
o n n . 

(5. 11)" 

Then, 

t 
II 0 U (t) Il :;; lb (t) + 'Y f r,!J (t - s) Il D U (s) Il ds < co . 
.' nOn 

(5. 1 f) 
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tf 

Let 1 = [0, tf J, and p = l I/J (s) ds. Then, integrating both sides of (5.12) 
o 

From 0 to TEl, T ~ t, we get 

T 

h (T) :s: p + ')1 p l h ( s ) , ds 1 
n '0 n 

t 
where h (t) == 1 Il 0 U (s) Il ds, which implies, by Gronwall's Lemma [11, p. 11 ] , 

nOn 

that for ail n > 0 

Then, 

h ('7") :s: p e')l P T 
n 

Let 

À( t) = I/J{t) + ')1 p2 

Il 0 U (t)lI:s: À{t) 
n 

')Ipt 
e . 

for ail n > 0, tEl, and À{ t) is integrable over [0, TJ, TEl • 

Lemme 5.3 

Q.E.D. 

For each t ~ 0, {D U (t) } 0 converges in the uniform operator 
n n ~ 

topologyon .s:{C (R), C (R»* to V{t)E .s:{C (R), C (R» as n ... ·00, uniformly 
o 0 0 0 

on every finite interval. 

Proof: For each t ~ 0, and n, m > 0, 0 U (t) - 0 U (t) can be extended 
n m 

uniquely From ~ 

norm. 

to a bounded 1 in ea r operator on C (R) wi th the sa me symbo 1 and 
o 

* The space of bounded Iinear operators From C (R) into C (R) • 
o 0 
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Using (5,11), we have, for f E~ 

t 
DU (t)f - DU (t)f = r OT(t-s) (u (.) -u (,.)) DU '(s)fds 

n m JO n m n 

(5.13) 
, t 

+ lOT (t - 5) U (.) (0 U ( 5 ) f) d s' • o m. n 

Consider the integrand of the first term on the right-hand side of (5.13). Let 

. 2 ' 
~nt',sm(x) == II u (y) - u (y) 1 l exp {- (r -,x) }dy, x ER. Then 

R n m J2 Tf (t -5) - 5 

. r '. 0 
IOT(t-s)(u (x)-u (x))OU (s)f(x)l~ Jiu (y)-u (y)IIOU (s)f(y)II~p(t-s,x,y)ld. 

n m ' n R n m n oX 

(5.14) 
:::; Il f Il À (5) I/J(t -5) ~t,s (x). 

n,m 

By definition of u and the fact thatl u (x) 1 .... 0 as x'" ± 00, there exists k > 0 
n 

such that 1 un (x) 1 < ~ for ail n ~ some N if 1 xl> k. Therefore 

~t,s (x) 
n,m 

:::; f + J~ un (y) - ~m (y) I~ L (y - x)2 t'dy 
-k J2Tf(t-s)~ t - 5 f 

. 1 k ' 
:::; ; + -- fi u (y) - u (y) 1 dy :::; E 

J2Tf(t-s) -k n m 

for sufficiently large n, m. 
, t 5 ' ' 

Hence, Il Cf' Il ... 0 as n, m ... 00 fÇ>r 0 ~ 5 < tel. 

Returning to (5.13), 

Il 0 U (t) f -
n 

t 
DU (t)f Il ~ Il f Il Jf À (5) I/J (t -'5) Il ~t,s Il ds 

m 0 n,m 
t 

+ J I/J (t - 5) Il D U (5) f - 0 U (5). fi t ds • o n m 

(5.15) 

. t 5 . 
Now, for any t, E l, for almost every .s E [0, t J, Il ~' Il .... 0 as n, m ... 00 • , n,m., 

Then, sinc~ À (5) I/J (t-s) Il Cf~:~11 :::; 2 Il >.. (sr I/J (t-s) , which is inte.grable on [0, t J; 

the first term on the right-hand side of (5.13) approaches 0 as n, m ... 00 .' Given 



any ~ > 0 1 we can choose n, m large enough so that for ail tel (choose 

" D U (t) - D U (t)" ~ ~ + n m 

t I l/J (t-s) Il D U (s) - D U (s) Il d s • o n m 

Using Laplace Transforms, we can show that 

t 
" D U (t) - D U (t)" ~ ~ (1 + I h (t-s) d s) 1 
. n m 0 

. . N· 12 
where h (t) is the inverse Laplace Transform of -- 1 N = M TC J-=; . 

Js- N 
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It can be .readily shown that h (t) is an integrable function over finite in~ervals. 

Hence 1 lim " D U (t) - D U (t)" = 0 1 uniformly on· 1. Since t. (C (R) 1 C (R) ) n m • 0 0 
n/rn .... oo . 

i,a Banach space, there exists V (t) e : (C (R) 1 C (R» such that 
o 0 

lim 
n"'oo 

" D U (t) - V (t) " = 0 n 

uniformly on 1 • 

Theorem 5.4 (Existence of Unique Quasi-Diffusions) 

. Q.E.D. 

The semi-group. of op~rators { U( t.) :.t ~ 0 J defined by (5.·1) can 

be represented as 

t 
U(t)f = T{t)f + IT{t-s)u(')DU(s)fds I o . 

t ~ 0 , (5. 16) 

for .f E:f) 1 and {U(t): t~O} is unique. 

-.~ 
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Proof: For f El}, . t ~ 0, n, m > O., (5 .7) yi el ds 

t 
U (t)f - U (t)f n m = J T(t-s) (u (.) - u (.» DU (s)f ds o n m n 

t . 
+. J T (t - 5) U (.) (0 U (5) f - 0 U (5) f) ds • 

. 0 m n m 

Since { T(t): t ~ O} is induced by a conservative diffusion process, Il T(t) Il = 

for ail t ~ O. Then, exactlyas in Lemma 5.3, we can show that 

1 im Il U (t) - U (t) Il == 0, 
n m 

n, m ... co 

where we use the fact that Il 0 U (5) Il is uniformly integrable with respect to n ~ 0 
n 

over [0, t J, and Il DU (5) - DU (5) Il ... 0 as n, m ... co. Hence, 
n !Tl 

{ u (t)} O· converges in the uniform operator topology to U(t) E l (c. (R), C (R» 
n n~ 0 o. 

as n ... co, i . e • , 

lim Il Un(t) - U(t) Il = 0 
n ... co 

Wenowshowthatfor FEl) , V(t)f = OU(t)f forany t ~ O. 

Since 0 U (t) f (x) is a continuously differentiable function of x, ànd 
n 

DU (t)f :.. V(t)f by Lemma 5.3, 
n 

x 
Un(t) f(x) - Un(t) f(y) = J 0 Un(t) f«() d ( 

Y 

x 
... fV(t) f«() d ( 

Y 
as n ... co , 

where Il OUn(t)fll s: X(t) Il fil forall n > O. Also, Un(t)f ~ U(t)f as 

n ... co. Thus, 



\, 

( 
',,-: 

x 
U(t)f(x)-U(t)f(y) = J V(t)f(~)d(, 

y 

which implies that for f E 

DU(t)f = V(t)f.' 
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For the remainder' of this proof, let t ~ 0 be fixed. We claim that 

for ,0 ~ s ~ t and f e 

q (s) == T (t - s) u (.) D, U ( s) f ~ T (t - s) u ( .) D U (s) f == q (s) 
n n n , 

as n ... 00'. From Lemma 5.3, we know that 

gn(s,·) == DUn(s)f(·) J DU(s)f(·)' - g(s,·) (5.17) 

as n ... 00. N ow , 

1 T(t -s) (u (x) 9 '(s, x) -=u{x) g(s, x»I" ~ II u (y) -u(y)llg (s,y)1 p.(t'-s, x, y) dy 
n n , Rn" n 

+ J U (y) 1 9 (s, y) - 9 (s, y) 1 p (t - s, x, y) dy 
R n 

, 2 

~ Il f Il À (s) Jiu (y) - u (y) 1 ~~ exp {_ a ~ : x) }dy 
, R n "t -s "s 

+ i' Il 9 (s, .) - 9 (s, .) Il 
n 

(5.18) 

where the estimate for p (t, x, y) is obtained .from [8, Vol. Il, Theorem 0.5 J. The 

first term in the right-ha~d side of (5.18) goes to 0 uniformly in x as n ... 00 by 

the a.e. convergence of un (y) to u (y) and by the same argument as in the proof 

of Lemma 5.3. The second term gees to 0," as n ... 00, by (5~ 17). Hence, 
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(5. 19) 

as n ~ CD, for each 0 ~ s ~ t. 

Let 1.1 E 1Il. (R) be arbitrQry. Then, 

= f J u (y) DU (s) f(y) pet - s, x, y) dy jJ(dx) 
R R n n 

is a continuous function from [0, t J into R, since, DU ('T) f(y) and p( 'T, x, y) are 
n 

continuous in 'T,by virtue of the fact that the coefficients which generate { Un(t) : t ~ O} 

and {T(t): t ~ ~} satisfy the conditions of [8, Vol. Il, Theorem 0.5J, ensuring the 

existence of fundamental solutions. Thus, the function q (.): [0, tJ -t C (R) is 
n 0 

weakly measurable for each n :> O. Since C (R) is a separable Banach space, the 
o 

theorem in [6, p. 131 J implies that qn(s) is strongly measurable in the Bochner sense 

[6, p. 130 J *. ·Therefore, since Il qn (s) Il ~ 11 X{s) for ail n ?" 0 and X{s) is 

integrable over [0, t J, the theorem in [6, p. 133 J implies that 

{qn(s) } n ~O C B( [0, t J, Co(R», the space of Bochner integrable functions from 

[0, t J, .with the Lebesgue measure, into the separable Banach space C (R). Since o 
s 

q (s) ~ q(s) as n ~ CD for each SE [0, t J, and Il q (s) Il ~ ",X{s) for ail 
n n 

n :> 0, [.3, Theorem3.7.9, p. 83J impliesthat q(S)E B([O, tJ, C (R» and 
. 0 

t t 
lim l q (s) ds = l q ( s) ds 

o n 0 n~CD 

Thus, letting n ~ CD in (5.7), we get for f E f) 

t 
U ( t) f = T (t ) f + Io T (t - s) u ( • ) D U (s ) f ds . (5.20) 

* Recall that every subset ofa separable metric space is separable [16, Theorem 7.3, p. 176J. 
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It remains only to sho~ the uniqueness of {U(t): °t ~ O}. We shall 

need~he following result: for f e cf) , DU(t)f is s-continuous on [0, tf J. In order 

to prove this, we firstshow that for n > 0, DUn(t)f in s-continuous on [0, tf J. 

For t e (0, t f ] , 

and 

o U (t + ~) f - 0 U (t) f = b T (t + ~) f 0 T (t) f 
n n 

t+ ~ t 
+ JO 0 T (t + ~,- 5) un ( • ) 0 Un ( 5) f ds - JO 0 T (t - 5) un ( • ) 0 Un ( s ) f ds , 

Il 0 U (t + ~) f - 0 U (t) fils Il 0 T( t) Il Il T( â) f - f Il 
n n 

t' 

+ f Il 0 T (t - 5) Il Il (T ( ~) - 1) un ( . ) 0 Un ( 5) f Il ds 
o 

t + ~ 
+ J 'Y Il 0 T (t + ~ - 5) Il Il 0 U (s) f Il ds. 

t n 

The first term on the right side go es to 0 as â ... 0 by the s-continuity of {T( t) : t ~ 0 } 

on C~(R) [8, Vol. l, Equation (5.69), p',163 J. Since un(x) is a continuous function, 

u (.) 0 U ('s) f e C (R) for ail 5 e l, and the integrand Il 0 T(t - s) Il II(T(~ - I) u (.) 
n no· n 

o Un(s) fil is'uniformly bounqed by 2 i' I/J (t - 5) À(s) Il fil, which is integrable on 

[0, t J. Therefore, the second term goes to 0 as A ... O. The third term approaches 

o as A .. 0 since Ib(t + Il- 5) X(s) is integrable. Therefore, 0 U (t)f is s-continuous 
n 

on (0, tfJ. To prove continuity at the origin, we need only show that 

Il DT( â) f - 0 fil -+ 0 as ~.., O. This follows From 

lim sup 1 0 T( T) f(x) 1 = 0 
X ... CD OST<t

f 

o 
which can be proved by an argument similar to 2 of [8, Vol. 1, p. 163] using 
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the estimate (0.41) of [8, Vol. Il, Theorem 0.5J in place ofthe estimate(0.40), and the 

fact that D T( ~ f(x) .. f(x) as À'" 0 uniformlyon compact sets [8, Vol. 1, 

bottom of p. 164 and top of p. 165 J. Thus, for each n > 0, DU (t) f is s-continuous 
n 

Now, Lemma 5. 3 show~ that DU (t) f :.. D U( t) f as n ... co unifo'rmly 
n 

. on [0, tfJ. Hence, D U(t)f is s-continuous on [0, tfJ bya standard argument, 

which implies that 

sup { Il D U (t)f Il : t ~ [0, t f J} < co (5.21 ) 

Retuming to the uniqueness proof, let {U( t)f: t :l!: 0 J and 

{Z(t)f: t :l!: o'} both satisfy (5.20). Then W(t)f == U(t)f - Z(t)f satisfies 

t 
W( t)f = Jo T(t - 5) u(.) D W(s) f ds 

For x ER, 

D W(t) f(x) 
t 

= J J u(y) D W(s) f(y) 0 p(t - s, x, y) dy ds 
o R oX 

and 

Thus, 

t 
Il D W( t) fil· ~ 'Y J Itl (t - s) Il D W( 5) f Il ds . 

o 

(5.22) 
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Let Ct = sup { Il D W(r)f Il: 0 ~ r ~ t} , which is finite by (5.21). Then 

t 

yf 
o 

lb (s) ds . 

Since . lP{s) is il')tegrable over any interval [0, t], we con find t l > 0 small enough 

so that 

·t l 

')1 f lb (s) ds < 1 . 
o 

Hence, ctl = O. Since t~ere is nothing special about the ·origin in this argument, it 

follows that D W( t) f = 0 for a Il t ~ O. Substituting th is into (5.22) we get 

W(t).f = 0 for 011 t ~ O. (The uniqueness proved here is with respectto 011 com-

petitors which satisfy (5.21).) 

Q. E. D. 

Corollary 5.5 

If AT(t-s)u(·)DU{s)fE B{[O, t], Co(R» foreach t ~O, then 

··for f E~', U(t)f satisfies 

'Proof: 

o U(t)f = (A + u( • ) D) U( t) f . 
'0 t 

Using (5.20), for t ~ 0 fixed, 

U(t. + A)f - U(t)f 
A 

T( t + /::,)f - T ( t )f 
A 

a • e. on [0, co ) 

t 
= J (T(~ I)T(t.- s) u(·) DU(s) f ds 

o 
(5.23) 

1 t + ~ 
+ li: l T(t+~-s)u(·)DU{s)fds. 

t 



It was shown earlier that T(t - s) u(·) D U(s) f E B([ 0, t J, C (R». Therefore, 
o 
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[3, Corollary 2, p. 88 ] implies that the second term on the right-hand side of (5.23) 

goesto u(·) DU(t)f a.e. on [0, CD) as A ~ O.' Forall 0 <!J. s t, 

II(T( ~ 1) q(s) Il 
l !J. 

= Il A J T(T) A q(s) d T Il 
o 

lA' 
s A J IIAq(s)lIdT = 

o 
Il A q(s) Il E B{ [0, t J, C (R», o 

where q(s) == T(i - s) ut·) D U(s)f. Therefore, the first-term on the right-side of (5.23) 
t 

goesto J AT{t'-s)U(') DU{s)fds as â~O. Since fE~ and T{t)cBcf){A), 
o 

the second term on the leftsideof (5.23) goesto AT{t)f as A~O. Thus, àU{t)f 
of 

exists a.e. on [0, CD), and 

t ' 

àU(t)f = AT{t)f + AI T{t-s)u{')DU{s)fds + u{'),DU{t)f 
àt 0 ' 

= (A+u{')D)U(t)f a.e. on [0, CD) • 

Q. E. D. 

The method for integration employed in this section seems to 'oe restricted 

to unbounded operators of the form 

2 
AU = (a(x) + u(x» D + ~ D2 

2 

2 i 
where D - - • The critical point is the integrabilityof Il DT{t) Il over 

= ox2 

bounded intervals [0, TJ. If we consider a perturbation term in the diffusion coef-

ficient as weil as in the drift coefficient, the operator AU is of the form ' 
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To use the techniques of this section, we would require the integrabil ity of Il 0
2 

T( t) Il 

over [0, .,. J. Th is, however, is not implied by the e~timates in [8, Vol. Il, 

Theorem 0.5 J. In fa ct, we" can show that 

.,. 
J Il 02 T(t) Il dt = co 

o 

for any 0 < T < co. To see this, let 

,.... . 2 
A = 0 +-0 

(5.24) 

which is certainly an infinitesimal generator, and let {'f( t) t ~ O} be the semi-

group generated by A. Now, suppose that 

forany 0 < T < co. Then, by the integrabilityof Il Of(t)1I and Proposition 2.2\b), 

t ,.... 
Il T(t) - 1 Il s J 1'1 A f (s) Il ds * 

o 

exists, and go es to 0 with t.· This shows that { T( t): t ~ o} is uniformly continuous, 

which implies that A is a bounded linear operator [1, Theorem VI1I~t~2, p. 6141. 
,.... 

But,this is impossible since A 

Remarks: 

is a differential operoi'OI on the Banach space C (R). 
o 

(i) For u{ t, x) bounded, and integrable as a function of x for each t, the 

methods of this section can be used to associate a unique two-parameter 

* A f(s) is actually defined only on the domain of A; the A T(s) in this relation is 
the natura 1 extension to the enti re space Co (R). 
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family {U(s, t) : 0 ~ 5 ~ t, tEl l with [a{x) +u{t, X), b{x) J. 

For f Et), U(s, t) f is represented as 

t 
U{s,t)f =T(t-s}f + !T(t-'r)U{T,.)DU{s, T)f ds. 

5 . 
(5.25) 

The extension is accomplished by' applying [8, Vol. Il, Theorem 0.4 J in place 

of [8, Vol. Il, Theorem 0.5 J, to ensure the existence of fundamental solutions of 

where 

oU (s, t) f 
n 
ot 

A (t.) = A + u ( t, x) 0 , 
n n 

and {Un (s, t): t ~ 5 ~ 0 } is generated by A (t) J u (t, x) is continuous . n n 

and bounded on [0, tf J x R, uniformly Hëlder continuous in x for ail t, 

and un ( t, x) ... u ( t, x) a. e. on [0, t f J x R. 

(ii) Since u{x) is bounded and integrabl~, we can assume that a{x) has the sam~ 

. properties, and that the semi-group {,T( t): t ~ O} is generated by 

b2
(x) 02 

2 2' oX 
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5.3 Application to Optimal Stochastic Control Theory 

Let U be the set of control functions u(x) which are bounded and in-

tegrable over R. Suppose we are given oa cost function V E 9) , and we wish to find 

conditions which will ensure· Ihal,olo certain lime I
l 

> 0, EP~ { V("1
1
) } is 

minimized, i. e., we want to find a condition such that for sorne ~ E U 

, 

for ail u EU. In the light of Theorem 5.4, for each u E U, the flow 

{ 7] u (t) cp: t ~ 00} C 01lL
o

1
0( R) is un ique. Integrating both sides of (5.20) with respect 

to tI', we get for f E iJ 

t 
(D(Uu{t)f) = <p{T{t)f) + J tI'{T{t-s)u{.) DUu{s)f) ds. 

o 

Let A * be the adjoint operator of A with domain ~ (A *). (See °Remark (v).) If 

f/J E 1f 1 (R) n f> (A *), then exactly as in Proposition 2.5, it can be shown that 

t 
o 1](t)cp(f) = m(t)f/J(f) + J 17(s)D*u(.)m(t-s)cp(f) ds 

o 

for any f ~ Co{R), where 17(t) == UU{t)*, m(t) == T*(t) and 0* == - ~x • 

Now, a necessary and sufficient condition for li EU tp minimize 

'7u
(t1 ) f/J(V), f/JE 1111 (R), is that 

t 1 - t 1 J (D(T(t
1 

- s) Li(· ) 0 UU(s) V) ds :!!: J cp(T(t1 - 5) u{· ) DUu(s) V) ds 
o 0 

(5.26) 

forall UEU. If VE Co(R) and tpE 1Il1(R) n f)(A*) then a necessaryandsuf

ficient condition for 0 EU to be optimal is that 

~;t. 
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t
1 
-'. t

1 f T7
u

(S) 0* u(·) m(t - 5) tfJ(V) ds s' l ~(s) D*u(·) m(t - 5) CC(V) ds 
o . 0 

for ail u EU. 

Remarks: 

(i) If we wish to utilize the theory in [5 J, we can obtain a stronger version of 

CD . 
(5.26) for V E C (R). Let a(t, x) and u(t, x) be bounded measurable 

o 

on [0, CD) x R, and let b(t, x) be bounded continuous on [0, CD) x R 

and strictly elliptic .• Then, there exists a unique family { UU(s, t) : 0 s 5 st} 

associated with [a(t, x) + u(t, x) J,and 

t 
UU(t) f = f + J UU(s) AU(s) f ds 

o 

where 
u u CD 

U (t) == U (0, t), fE C (R), 
0 

AU(s) = (a(s, x) + u(s, x) ) ...l. + 
oX 

(5.27) 

and 

2 
0
2 

b (s, x) 
2 -2 

OX 

Let U be the class of bounded measurable controls from [0, CD) x R into 

'" 
R. Then, by (5.27), li EU minimizes the average of 

CD .vE C (R), 
o 

at time t1 > 0, if and only if 

t1 - - t1 
J co(Uu(s) AU(s) V) ds s J CC (Uu(s) AU(s) V) ds 
'0 0 

for 011 u E il, where tfJE 11/,1 (R) • 

(ii) A sufficient condition for optimality in (5.26) is that for each s E [0, t
1 

J 

for 011 u E tU . 
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(iii) To further stress the significance of Theorem 5.4, and the related results in 

[5], we will suggest a formulation of an optimal stochastic control pro-

blem and conjecture a method of solution. Let s = 0, U( t) = U(O, t), 

and u(t) = u(t, x) be a bou~ded function of t only, in (5.26). Then, 

for V'E i) , in view of Theorem 5.4 and Remark (i) of Section 5.2, 

t 
'tp(U(t)V) = cp(T(t) V) + J cp(T(t - s} u(s) D.U(s) V} ds 

o 
(5.28) 

uniquely defines the trajectory of the average of the random variable V(x
t

}, 

where >'<t starts ot t = 0 with probability measure ~. Letting 

y(t) = cp( U(t} V}, f(t) = cp(T(t} V} and K(.t, s, u(s), V·} = 

cp(T(t - s} u(s} 0 U(s} V}, (5.28) is rewritten as 

y(t} 
t 

= f( t } + f K ( t, s, u ( s ), V} ds 1 

o 
(5.29) 

where K is related to y(t} in an implicit manner. We now consider the 

cost functional 

t
l 

J(y, u} = J K (y(s), u(s},s} ds 
o 0 

where K satisfies certain continuity and differentiability conditions. The 
o 

problem is to find an admissible control u.(t} such that J(y, u} is minimized. 

As formulated, this optimal stochastic control problem resembles the problems 

studied in [52]. Unfortunately, the integrand in (5.28) is considerably 

more complicated than that in Equation (1. 1) of [52, Part 1 Ji the dif-

ficulty is due to the unbounded operator 0 which affects K in a complex manner, 
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and the fact that y{t) does not appear explicitly. However, the methods 

employed in [52] may prove useful in deducing a maximum principle for 

the optimal stochastic control problem formulated above. 

(iv) We shall now discuss another type of optimal stochastic control problem. Given 

the final time t1 ' we are interested in minimizing sorne functional of the final 

probability measure induced by the random variable x~ (w), for the open-
1 

loop control system (2.4). To be more specific, if tp is the initial probability 

measure, we wish to find the control u which minimizes 

where fo is a continuous map from ?Ill (R) with its relative norm topology, 

(11l1(R), Il Il), into [0, co). 

Consider the following spa ce of control functions,which is used in [53]: 

Let Lp { R, [0, t
1 

] J be the space of measurable functions u(t) with 

range in R such that 

t 1 1 1 u( t) 1 p dt < co 

° 
for sorne 1 < p < co. Let 

'1' = {u E L {R, [0, t1 ] } ,sup 1 u( t) 1 :s; M < co} . 
p 0:s;t:s;t

1 

Then, '1' is a closed bounded convex set of Lp { R, [0, t1 J} which is 

reflexive. Define the mapping 
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f(u) = t('1U
(S)o*U(S)m(t-S)r,Q)(o) ds 

from Lp { R, [0, t1 J} into (1!L(R), II· Il), where CfH 1111 (R)nl)(A*). 

Then, 

Let 

where!/JE 11l1(R) isatargetmeasure. Now,if f('if) isaconvexsetin 

"l(R) and fo(u) isacontinuousconvexfunctionalon 'if , then [53, 

Theorem 2.1 ] shows that there exists an optimal control Ü E 'if which mini-

mizes f • The difficulty in the above formulation is that, in general f(n) 
o 

is not convex,and f is not a convex function of u. (Observe that f is not 
o 

a linear operator on u.) 

Actually, we would prefer treating this problem in the metric space 

1111 (R) with its weak topology. That is, we wish to know if there exists a 

U E 'if ,or in sorne other control class, such that 

is minimized, where p is the metric ofweak convergence and Cf)E 11l1(R). 

This problem is very difficult to handle,because there are no techniques available 

(to the author's knolwedge) for optimization in a general metric space. The 

most general optimization theory seems to require at least a linear space. 
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(v) From Proposition 2.5, we know that f) (A*) is weak*dense (0' ( 11l(R} , 

Co(R» topology) in the space 1Il( R), i.e., given any IJ E '?feR), we 

can find {lJ
n 
l C EJ(A*) such that lim IJn(f} = lJ(f) for ail 

n ... oo 
f E C (R). We' now wish .to. characterize E> (A*) more completely. 

o 

We shaW consider the situation where a(x) and b(x} are twice continuously 

differentiable on R. Let ~(R) be the funadmental space consisting of in-

finitely differentiable functions on R with compact support. Define the linear 

operator A on ~ (R) by 

2 
A = a(x} s.. + h(x) ~2 OX 

2 
where h(x) = b (x) 

2 

on ~(R) through 

è X 

Let IJ E 11[, (R). Then IJ defines a distribution T IJ 

Integrating by parts, we get 

where 

A*JL 

Since IJ E 1f/.(R), and a, h are continuous, a IJ, h IJ E 1Il(R) *. This 

means that a IJ, h IJ E tl(R), the'space of distributions on R. By Leibnizls 

formula, 

*' S ee [17, Section 13 ] • 
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and 

We define 

~ = 0 0 + a ll 
OX ~jJ OX 

2 
~ 

2 oX 
= 

ci)(A*) = { jJ E 11l(R) : A* jJ E 1IL(R)} . 
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(5.30) 

(5.31 ) 

S. 00 
Ince -, eX 

oh 02h 
o x' --2 are continuous, a r:tecessary and sufficient condition 

eX 2 
that A* jJ E 1tl (R) is that ~, ~ E 111,( R), for then 011 the terms 

o OX 

of (5.30) and (5.31) are in '!teR), since '»t(R) is a linear space. Thus, 

2 
f) (A *) = { jJ E 11l (R): ~, ~ E 11l ( R)} • 

OX 

e2 
u 

ln other words, jJ E i)(A*) if .2.1:!. and .:......1;;. are functions of bounded vari-
oX 0 x2 

ation on R, equal to 0 at - CD, and finite at +CD. 
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CHAPTER VI 

DYNAMICAL SYSTEMS IN THE SPACE OF MEASURES 

6. 1 Examples 

To motivate the work that follows, we present two examples. 

Example 

n 
. Let E = R and let x

t 
be a Feller process taking values in E with 

* transition density function p(t, x, y) such that for a Il f E C( E) , 

lim J f{y) p(t, x, y} dy 
tla E 

= f (x) uniformly on compacts. (6. 1) 

By [8, Vol. l, Theorem 5.11 ], diffusions whose coefficients are bounded uniformly 

Hôlder continuous, and the diffusion coefficient strictly elliptic, satisfy the above 

d· . * * con Itlons. 

Let cp be an initial probability measure and define for fE S(E), 

the Borel cr - algebra genera~ed by the open sets of E, t ~ a , 

m{t, cp)( r) ;: J J p{t, x, y) dy cp (dx). 
Er. 

From (6.2) we have that 

. m{a, cp) = cp , 

and by the Chapman-Kolmogorov Equation, 

m{t+s, cp) = m(t, m(s, cp)) t, s ~ a 

* C{ E) is the Banach space of rea 1 bounded continuous functions on E with the 
supremum norme 

(6.2) 

* *This is also true if the coefficients are Lipschitz continuous (see [8, Chapter Il J). 
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We daim that the map (t, (0)--' m (t, (0) From R\ 1If1 (E) into 

1IZ
1

(E) iscontinuouswhere R
t 

= [0, CD) and 1I[1(E) hastheweaktopology: 

1 
Let (t+-, <0 ) ... (t, tf') as n .... CD ; then,forany fE C(E), n n . 

met +! , tf' ) (f) - met, <o)(f) = n n f J f(y)p(t+~,x,y)dy tf'ri(dx) 

E E ~.~ 

- J f f(y) pet, x, y)dy CD, (dx) 
E E 

= JE J/(y )~(t + ~,x, y) - p(t, x, y} dy "'n (<lx) 

(6.4) 

+ JE Ttf(x) (c,On (dx) - tf'(dx» , 

where Tt f(x) = JE f(y) pet, x, y) dy. The first term on the right-hand side of (6.4) 

goes to 0 as n ... CD by (6.1) and the Dominated Convergence Theorem, while the 

second terms approach~s 0 in virtue of the fa ct that Tt f E C( E) and <On ==> <0 as 

n ... CD. Hence, (t, (,0) ~ met, tf') is continuous. 

Example Il 

To summari ze, we have shown that for tf' E 11/.
1 

( E) 1 

(1) m(O, (0) = <0 

(2) met + s, tf') = m( t, mes, rp» for ail s, t ;:!; 0 

(3) the map R + x 1f1 (E) ... 11f 1 (E) defined by (t, tf') ... m( t, (,0) 

is continuous,where 11[ 1 (E) has the weak topology. 

Let E be a metric space. 

(6.5) 
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Definition 6. 1. + 
A map v: R xE ... E is said to define a (positive) dynamical 

system (E, R:+, v), or continuous flow, on E if it has the following properties: 

(1) v(O, x) = x for ail x E E 

(2) v(t, v(s, x)) = v(t + s, x) for a Il x' E E, t, s ~ 0 

(3) V is continuous • 

We define probabil ity measures on E in the following manner: for 

X E E , 

if XE r 

o otherwise 
and 

m(t, tp)(f) = 1: if v(t, x) Er 

otherwise 

where r E é (E). Notethat m(t, tfJ) and v(t, x) are completely equivalent, 

specifying one determines the other,' The family {m( t, tfJ) : t ~ 0 } has the following 

properties :' 

(i) 
1 : 

if XE r 
m(O, tfJ)(r) = = (D(r) 

otherwise 

Therefore, 

m(O, (/J) = tfJ· 

(ii) 
1 : 

if v(t + s, x) Er ~ v( t, v(s, x}) Er 
m (t + s, cp)( r) = 

otherwise 

= m(t, m(s, tfJ)) (r) 
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Hence, 

m(t + s, rp) = m(t, m(s, rp» 
;

for t, s ER. 

(iii) Weak continuity of m{t, rp) in t and t.fJ follows directly from the continuity 

of 11 • 

Therefore, any dynamical'system (Definition 6.1) defines flows of 

+ 
probability measures {m( t, rp): tER J which satisfy (6.5). 

6.2 Definition of Non-Deterministic Dynamical System 

Let E be a complete separable metric space, and 1( (E) the spa ce of 

real signed measures on E. 1f. (E) is a Banach space with the variation norme Let 

11L l (E) be the set of probabi lit y measures on E, and let p be the Prohorov metric 

on '1l1(E) [12]. A sequence { IJnJc1ll1(E) converges to IJ E 1Il l (E) in p if 

andonlyif IJnU) ~ 1J(f) forall fE C(E), i.e',{lJn}convergesweaklyto IJ. In 

this section we shall interpret sorne of the results of C 32, Chapter 1] for the metric 

space(11ll (E),p).Wecouldworkin 11J.(E) or (E) ={'PE 7'l(E): rp~ o} 

rather than in 'hl
l 
(E), but often results in these spaces do not lend themselves to 

physical interpretation, so we restrict ourselves to the intuitive space 1Jl
l 
(E). 

Definition 6.2. A transformation m: R + x 'Ill l (E) - 11l. l (E) is said to define a 

non-deterministic dynamical system (NODS), ora weak continuous flow, on 11l
l
(E) 

if it has the following properties: 
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(1) m(O, t,O) = t,O forall t,OE 1Il1(E) 

(2) m(s,m(t,t,O» = m(t+s,t,O) forall t,OE1Il1(E), t,sER+ 

(3) the map (t, t,O) .... m( t, t,O) from R + x 1Il
1 

(E) .... 111
1 

(E) is continuous, 

where 111, 1 (E) has the weak topology. 

(The usual definition of a dynamical system is for R rather than R ~) 

ln the previous section we saw that diffusions, which are special Markov 

processes, and deterministic dynamical systems are examples of NODS. (Note that not 

ail semi-groups of probability measures originate from Markov processes [40, p. 340].) 

A NODS is a flow on 111
1 
(E). Knowing the probabi lit y measure at 

the present time permits the prediction of the probability measure at any future time. For 

Markov processes ~ither the transition function or the adjoint of Dynkin's Formula 

L 8, Vol. l, p. 23 ] explicitly describes the flow of probabi lit y measures. 

For every t,O E 11l.
1 

(E), the mapping m induces a weak continuous map 

m t,O: R + .... 111
1 

(E) such that m t,O( t) = m( t, t,O). The mapping m t,O. is called the motion 

+ 
of probability measures starting at t,O. For every tER , m induces a weak continuous 

map mt : 'IIl 1(E) .... 11l 1(E) suchthat mt(t,O) = m(t, t,O). Themap mt is called the 

transition. A NODS may be visualized as the law with which the probability measure 

m(t, t,O) moves along m(R+, t,O) == ~ m(t, t,O) : tE R+ J • 



\. 

95 

6.3 Dynamical Systems in the Spa ce of Measures: Sorne Results 

We commence with the following standard definition: 

'DefinHion' 6 .. 3. 1 f fi' E 1111 ( E) has the prope rty tha t 

+ 
for ail tER, it is called a stationary (invariant or equilibrium) measure. 

ln form, the following results are standard, but reveal new information 

when interpreted for Markov processes. 

Proposition 6. 1 

The set of stationary probability measures of a NODS is weak closed in 

Proof: Since E is a separable metric space, so is 1Il1 (E) [13, Lemma 6.3, 

p. 43 ]. Thus, we can work with sequences rather than with nets. 

We must show that the weak limit of a sequence {fI'n} C 11/.
1 
(E), of 

stationary measures, is itself stationary. From Definition 6.3, met, cp.) = CP. for ail 
n n 

n, and for ail t ::! o. Since m is weak continuous in t and fI', CP. ~fI' as 
n 

n ~ CD implies that met, cp.) ==> met, (0) as n ~ 00. But met, <0. ) =,1'1 for ail n n '/'n 

n. Hence, m(t,fI') = f/J forall t ~ o. 

Q. E. D. 
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The proof of the following proposition can be found in [32, p. 15 ] • 

.proposition 6.2 

1 f m([ a, b] 1 fP) == t m( t, ft): t e [a, b J } = CD for b > a > 0 1 

11l1(E) , then CD is a stationary probability measure. 

A closed e ba Il of ft) e 1111 (E), in the Prohorov' metric, is denoted by 

S (ft), e) == {tP e 111 1 ( E) : p'{cp, I/J) s; e }. 

Proposition 6.3 

If, for every e > 0, there exists at least one I/J e S{cp, e) such that 

met, I/J)C S{cp, e) for ail te R+, then tp is a stationary probability measure. 

Proof: Suppose cp is not a stationary probability measure. Then there exists 

T > 0 such that met, cp) "1 cp for 0 s; t s; T, otherwise Proposition 6.2 implies that 

cp isstationary. Let e > 0 besuchthat cpIS(m{t, cp), e). Bytheweakcontinuity 

of m, there exists 6 > 0 such that I/J e S{ft), 6) implies m{ T, I/J) e Sem ( 1', cp), e). 

We can also assume that S{cp, 6) n S{m(t, cp), e) = Jd (empty set). This implies that 

m(t, I/Jll S{cp, 6) for ail te R+. Thus, if cp is not a stationary measure, then cp has 

a p- neighbourhood which contains no (positive) trajectory of probability measures. 

This contradicts the hypothesis. 

Q. E. D. 

Corollary 6.4 

Let tfJ' I/Je 11l 1{E). If met, I/J)=>cp as t ~ CD, then cp is a stationary 

probability measure. 
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Proof: By the definition of the Prohorov metric, 

met, I/J) =:)cp as t -+ CD ~lim p(m(t, I/J), cp) = 0 ' 
t _CD 

Therefore, for every E > 0 there exists tO(E) > 0 such that met, lb) E S(cp, E) for 

t > toC E). We claim that for t > toC E) there exists I/Jl E S( cp, E) such that 

. +. 
met, I/J

l 
) E S(cp, E) for ail tER : let I/J l = m(tO (E), I/J), then 

which implies that met, I/Jl) E S(cp, E) for ail t > O. Proposition 6.2 then implies 

that cp is a stationary probability measure. 

Q. E. D. 

Definition 6.4. 
+ 

A motion of probability measures for all.t E. Rand some T > 0 

satisfiesthecondition m(t+T,cp) = m(t, cp), q)E 11l
l
(E), iscalledperiodic. 

By definition of a NODS it follows that 

m(t+nT,q)) = m(t,m(nT,cp)) = m(nT,q)), 

The smallest positive number T > 0 satisfying met + T, q)) = met, cp) is called the 

period of met, cp). If a periodic motion of probability measures do es not have a least 

period T, then m(t, cp) is a stationary probability measure. 

Proposition 6.5 

If there exists at least one s ~ 0 and one T ~ 0 such that 

m(s + T, cp) = mes, cp), cp E 11l
l 
(E), then m( t, q)) is periodic. 



98 

Proof: The proof is exactly as in [32, p. 18 ] • 

The concept of a stationary probability measure can be imbedded in the 

concept of an invariant set of probability measures. 

Definition 6.5 A set M C 1111 (E) is called (positively) invariant if under ail trans-

formations of the semi-group {mt: t ~ 0 } it is transformed into itself. That is, for 

The proof of the following proposition can be found in [32, p. 21 ] • 

Proposition 6.6 

A set MC 11l1{E) is invariant ifand only if ~E M implies m{t, ~)E M 

for ail t :=!: 0 • 

Proposition 6.6 is equivaJent to saying that invariant sets of probability 

measures consist of entire trajectories of probability measures. 

The following is a standard definition in the theory of dynamical systems 

[32, p. 28 J. 

Definition 6.6. I/JE 1111 (E) is cc:illed an w-limit inéasure of ~E 11/1 (E) if there 

exists a sequence {tn} -t +co such that m{ tn , ~) => tIJ. The set of ail loi limit 

measures of ~ is call.ed the loi limit set of ~ and der:loted by 
+ 

A (~). Thus, 

such that m{ t ,~) =::.I/J } n • 

. The set of ail loi limit measures oLall tpE N C 1IL1 (E) is called the loi limit set of 

N. Thus, 



99 

Proposition 6.7 

For every tfJ E '11l1 (E) , 

invariant. 

+ 
Proof: Consider the sequence { ,pk} C A «(,0) such that ,pk~,p. ,We must 

show that ,p E A+(tp). For each ,pk there exists a sequ~nce t t~ } ... +co such that 

k 
m( tn' ,tp) =>,pk as n ... co. We may assume without 1055 of generality that 

p(m (t~ , tp), ,pk) < ~ for ail k, t~ > k. Then, letting tn = t~, we have 

t ... +co and m( t , (,0) ==>,p since 
n n 

~ n + p(,p, cp n) - 0 as n ... co . 

To show that A+(tp) is invariant, consider the sequence {tn} ... co 

+ + 
such that met , (,0) =>,p E A (tp). We must show that met, ,p) E A (tp) for ail 

n 

t ~ O. Consider the point m( T, ,p) where T ~ 0 is arQitrary and fixed. From the 

weak continuity axiom of NODS, 

m(tn+T,(,O) = m(T,m(tn,tp))~m(T,,p) 1 

which implies that m( T , ,p) E 
+ 

A «(,0). This can be proved for ail T ~ 0 . 

Q.E.D. 

If E is a compact space, then (111. 1 (E), p) is a compact space 

[13, Theorem 6.4, p. 45 J, which implies that the weak closure of 
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+ + + 
m{R ,cp) == {m(t, cp) : t ~ 0 J, m{R, cp), and A ('P), are weak compact, where 

Proposition 6.8 

Let E be a complete separable metric space. If cp e 1111 (E) and m{ R +, cp) 

is weak compact, then 

lim p{m{t, cp), A+{CP» = 0 • 
t ... Q) 

Proof: The proof proceeds exactly as in the deterministic case. Suppose the con-

clusion is false, then there could be found a sequence {t l-'+ Q) and an a > 0 such 
n. 

that for a /1 n 

p{ m{ tn ' cp) , 
+ A (cp» ~ a > 0 (6.6) 

'l + 
The sequence {m( tn ' 'P) f C m{ R ,cp), and contains a subsequence 

{m(t' ,'P) J 'such that m{t' ,cp)=>l/Je m(R+, 'P) as t' ... Q), since m(R+, 'P) 
n n n 

is weak compact by hypothesis. Thus, I/J e A +(cp) and 

lim 
+ 

p(m( t~, cp), A (cp» = = 0, 
n"'Q) 

contradicting (6.6). 

Q.E.D. 

Proposition 6.9 

l1li +. If, for some cpe "Ll (E), A (cp) IS nonempty and has a weak compact 

+ . 
neighbourhood which strictly contains it, th en m{R , cp) IS weakly compact. If the 
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NDDS {mt : teR +} is also defined by a Feller process, the~ there exists an invariant 

measùre for the process. 

Proof: Let N be the weak compact neighbourhood strictly containing 
+ 

A. (tfJ)· 

+ 
We claim that there exists aT > 0 such that m{ R , m{ T, (,0)) eN. Otherwise, there 

exists a sequenc~ {t } ... 00 with m( t ,(,0) e 0 N 1 since 
n n 

+ 
A «(,0) is nonempty. * 

Therefore, since the boundary of any set is closed, 0 N is weak compact. This implies 

the existence of a subsequence { t~ } ... 00, such that 

~{tl , (,0) ~ !/J e 0 N 
n 

+ + 
Hence, !/JE A «(,0). But !/Je oN and N strictly~ontains A ((,O), which is impossible. 

+ 
So there exists T > 0 such that m( R, , m{ T, (,0)) eN. 

Now 1 

+ + 
m{ R ,(,0) = m{ [0, T]; (,0) U m{R , m{ T, q)) 

and 

+ +, 
m{R ,tp) = m{[O, T], cp) U m{R ,m{T, cp». 

m{ [0, T] ,cp) is weak compact since m{', cp) is a continuous map fromthe compact 

+ ' 
interval [0, T], and m(R , m{T, (,0» is weak compact since it is closed and con-

+ . 
tained in N. Therefore, m{ R , (,0) JS weak compact. 

+ 
If {mt: tER } is defined bya Feller, process, and the hypothesis of 

the theorem is saHsfied, then from conditions (i) and (iii) of [43, p. 204] it follows 

that there exists an invariant measure for the process. 

Q. E. D. 

* This st,atement requires the continuity of m (t, (,0) • 
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Remarks 

('1) W k f A+(IfI)' ff' • h' f ea compactness 0 ..,.. IS not su IClent to ensure t e eXistence 0 a 

weak compact neighbourhood containing 
+ 

A (cp). 

(ii) ln [35, Theorem 3 j it is shown that if, for a process satisfying certain con-

ditions, m(R+, cp) is weak compact, then A+(tp) is weak compact. This 

result is a direct consequence of [32, Theorem 2.2. 13, p. 119 J. Actually, 

the result in [35, Theorem 3 ] is slightly more gen~ral in that it considers 

a two-sided flow, i.e., on (-m, m), but for practical purposes this extension 

is of little significance. Also, the assumption of the weak compactness of 

+ -
m( R , cp) is tantamount to assuming stability in the sense of Lagrange [32, 

Section 1.5.1 ] • 

(iii) The theoryof NODS can be carried much further than is done here. For in-

stance, we can study minimal sets, prolongations, attractors, and many other 

implements of dynamical system theory on metric spaces [32, Chapter 2 ] • 

6 4 S R 1 C A+( lA) • ome esu ts oncerning _!::_ 

ln this section we present some results concerning the weak Iimit set of a 

probability measure cp. Let E = Rn and let {m
t

: tER + ~ be a NODS. 

Proposition 6.10 

Let cp E fIl
1 

(E) and 9 E C( E). If mt cp( g) is either non- increasing or 

+ 
non-decreasing for t sufficiently large, then fJ(g) = constant for ail fJ E A (CC) • 
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Proof: We shall prove the proposition only in the case that mt tp( g) is non-decreasing 

for t large. For any 1.1 E A \~), let { t } ... (X) be such that 
n 

11 = m' tp==> Il r-n t r-
n 

Then, 

limsup mt tp(g) = lim mt tp(g) 
t ... oo n ... oo n 

= lim 
n. "'00 

+ 
Since lim sup mt tp (g) is independent of 1.1 E A (tp), l.I(g) is constant for ail 

+t -.00 

1.1 E A (tp). 

The proof for the non-increasing case is similor. 

Q. E. D. 

Proposition 6. 11 

Let g(x) be a ta (E) measurable real-valued function such that 

1 g(x) 1 ... +00 as Il x Il ... 00, where Il Il is the euclidean norm on E = Rn • 

Then mttp(lgl) ... oo as t ... 00, tpf. '1Ill(E), if 'A+(tp) =% (emptyset). 

Proof: Suppose 
+ 

A (tp) = % but mt tp(lgl) < K < (X) for ail t ;;:: 0 • 

Then, the farnily E = {mt tp: t ;;:: o} is realtively weakly compact: If not, there 

exists an f. > 0 such that for every compact set Je E , 

sup I.I( JC ) > .€, • 

I.IEE 

• JC is the complement of the set J in E. 
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whië:h implies that 

sup tJ( 1 9 1) = 00 , 

tJ E E 

contradicting the fact that mt cp(1 9 1) < K for ail t ~ O. Thus, E is relatively weakly 

compact [13, Theorem 6.7, p. 47]. 

Hence, given an y sequence { mt cp : t ~. 0, t ~ 00 } " there ex ists 
n n 

n 
a convergent subsequence {mt,cp : t~ ~ 0, .t~.-+oo} ~nd a lb E '»1.1 (E) such that 

n 

which implies that lb E A +( cp), contradicting 
+ . 

1\ (cp) = ~. Thus, 

mt CC (1 9 1) - + 00 as t ... + 00 

Q.E.D. 

ln particular, for a Markov process which is a NDDS with cp the starting 

probability measure, 1 g(x) 1 ... 00 as Il x /1 ... 00, and" I\+(CP) =~, we have 

Proposition 6. 12 

Let A be.the s-infinitesimal generator of a (~ ) Markov semi-group 
o * . . . . 

on ,C
o 

(E) and let A * be its adjoint operator. If cp E 711 1 (E) n l) (A *), then 

I\+(CP) c 11l1(E) n ID (A*).if Z ={m (t,cp): t ~ O}isweak*c1osed. 

* C (E) is the Ban~ch space, with the supremum norm, of ail real bounded continuous 
o 

functions van ish ing at 00 • 
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Proof: Let CP€ 1}(l(E)n 9:) (A*) and lb E A+(CP)' Then, forsome {tn}-++oo, 

m( t ,cp) => lb 
n 

By Proppsition 2.5, Z C ~(A*). Sinçe Z is weak '1; .cIosed, .1/; € Z: ,and thus I/J € f)(A*). 

Also, CP€ '»ll(E)impliesthat IImt cp" = 1 fora" t ~O. Therefore, i/J€ 1ll1(E) 

and 

O.E. D. 

The operator A * is defined by 

A* cp = weak*lim 
, h ~ 0 

m(h, cp) - cp 
h 

and, iteratively, we can define A*n. Then, ,we have 

Corollary 6.13 

Proposition 6.14 

let CP€ 11l1(E)n ~(A*) and ~€Co(E)such.that .mt cp(g) is 

+ 
either non-increasing or non-decreasing as t. -+ 00. Then, forony I/J E A (cp) , 

(A* mt I/J) (g) = 0 for ail t ~ 0 if {m (t, cp) : t ~ O} is weak * c/osed. 

Proof: Let cp € "'l1 (E) n cf) (A *). Then, by Proposition 6. 12, 

A+(ca C 11I1(E) n 2)(A*). Let I/J E A+(fP), and using Proposition 2.5, we have 

t 
mt lP(g) - lb (g) = J A * m lb ( 9 ) ds 

o s 
(6.7) 
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The formula (6.7) implies that the real-valued function mtl/> (g) is differentiable in 

t and 

d 
dt mt I/>(g) = (A* mt 1/» (g) for ail t ~ 0 

+ 
Now, from Proposition 6.1, we know that fJ(g) = constant for ail fJ E A (cp). Thus, 

since t (0) is an invariant set of probability measures, mt I/>(g) = constant for ail 

t ~ 0, implying that 

(A* mt 1/» (g) = 0 . 

·Q.E.D. 

Corollary 6. 15 

For cpE 11l
1

(E) n i) (A*n), (A*n mt 1/» (g) = 0 forall t ~ 0, 

where 1/> E A+(CP) and gECo(E) issuchthat mtcp(g) iseithernon-increasingor 

non-decreasing .• 

Remark: 

ln [35 J, Kushner applied A \ cp) to the investigation of stabi 1 ity pro-

perties of stochastic processes. The goal of his work was to obtain a set in E 

to which the process converges in probability and which is sometimes smaller 

than the sets obtained by the theory of stochastic Lyapunov functions [34, 

Chapter Il, Theorems 2 and 3 ] • 

~, 

! 
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CHAPTER VII 

STABILITY OF NON-DETERMINISTIC DYNAMICAL SYSTEMS 

7. l Stability in the Space of Measures 

We make the following definitions for the metric space (1Il1 (E) , p) 

and fixed N DDS {mt : t ~ o} , E = Rn • 

Definition 7.1. An invariant weak closed set M C '11/.
1 

(E) is stable in the Lyapunov 

~ if, for any E > 0,' there exists S > 0 such that p( </J, M) < S implies that 

p(m( t, </J), M) < E for ail t ~ O. If,furthermore, p(m( t, </J), M) .... 0 as t .... ex> , 

M is said to be asymptotically stable in the Lyapunov sense. 

Definition 7.2. A function V E C( E) is called a D-function for a weak closed invariant 

set M C 1tl1 (E) if V has the following properties for some sma Il r > 0 : 

(1) For any sufficiently small cl > 0, it is possible to find c
2 

> 0 such 

that ",,(V) > c2{I'(V) " JE V(x)"" (dx~ for ail "" which satisfy 

p(</J, M) > cl' </JE S(M, r). 

(2) For any ')12 > 0 there exists a "1 > 0 such ,that p(</J, M) < ')11 

implies that (D(V) < ')12 . 

(3) m(t, </J)(V) ~ </J(V) for ail </JE S(M, r) and for ail t ~ o. 

It is important to note that V is not a Lyapunov function for M as de-

fined, for instance, in [32, Chapter 2.7 J; it cannot be, since its domain of definition 

is not even in 11l 1(E). But, as we shall see, V acts like a Lyapunov function, 

enabling us to prove stability theorems in 1Il1(E). 



1 

\ 

108 

Using the following lemma, Definition 7.2 can be simplified. 

lemme 7.1 

(1) and (2) of Definition 7.2 is equivalent to the condition (4): 

- 0 as n - CD Ç=> cp (V) - 0 as n _ CD • 
n 

Proof: (4) ~ (2) since p(cp ,M) ... 0 => ~ (V) ... 0 means that for ail 
n n 

')12 > 0 there exists ')Il > 0 such that CPn (V) < ')I2,whenever p(cpn ,M) < ')11 • 

(4)::)(1). Assume (1) isnottrue, i.e., theredoesn'texist c
2 

>0 

such that "'n(V) > c2 forall CPn forwhich p(cpn' M) > cl' {cpn} C S(M, r). 

Then, there exists a subsequence {cp } such that ~ (V) - ... O. By (4), cp (V) ... 0 
nk nk nk 

implies p(cpn
k

' M) ... O. This is a contradiction since we started with PCPn' M) > cl 

for ail n. Thus (4) => (1) and (2). 

Now (1) implies that given cl > 0 there exists c2 > 0 such that 

cp( V) < c2 for a Il qJ such that p( cP, M) < cl and cp E S(M, r) i. e. , 

p(cp , M) _ 0 ==> cp (V) ~ 0 . 
n n 

Similarl~ (2) implies that 

Thus, ,.J ~ ,M) .... 0 ~ cp (V) -+ 0, and the proof is complete. 
~ n n 

Q.E.D. 

We can now rewrite Definition 7.2 as follows: 
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Definition 7. 2! Given a weak closed invariant set M C 1111 (E). A function V E C( E) 

is ca lied a D- function for M if, for some sma Il r > 0 ~ 

(1 ) p(cp ,M) .... 0 ~ cp (V) .... 0 
n n 

for { cpn} C S(M, r) , 

(2) m(t, cp)(V) ~ cp(V) forall C{JE S(M, r) and for ail t ~ O. 

There rnay be situations where (1) and (2) can on Iy be proved for certain 

subsets of S(M, r). For instance, using the integral representation in Proposition 2.5(b) 

(where 1: = Co ( E) and 1:* = 111. (E) ) rnay fac i li ta te the proof of (1) and (2) for 

points in the subset 11l ~ (E) n f) (A *) of 111 1 (E). In this spirit, the following pro

position presents a sufficient condition for the existence of a D-function for the invariant 

set M C 11[ 1 ( E ) . 

Proposition 7.2 

Let 1( be a weak dense subset of 1Il(E). If there exists a V E C(E) 

such that for some sma Il r > 0 1 

(1) .p(CPn,M)~O<=>cpn(V)",O for {<Dn} C if.nS(M,r), 

(2) m(t,cp)(V) ~cp(V) forall Cf)E d(nS(M,r) andall t ~O, 

then V is a D- function for M . 

Proof: Let {Cf) } C S(M, r). Since :Il n S(M, r) is weak dense in 
n 

S(M, r), for each cp there exists a sequence {I/J .} c il. n S(M, r) such that 
n nt! 

p(C{Jn' I/Jn,j) ~ 0 as j ~ 00. Letting I/J n = I/Jn,n' we have that p(Cf)n' I/Jn) -+ 0 

as n ~ 00. 
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Now, (1) impliesthat 

(a) lim p(l/Jn' M) = 0 ~ lim I/J (V) = 0 
n 

(b) 
n ...00 n ... oo 

Under the condition lim p(CfJn' I/J
n

) = 0, (a) is equivalent to, lim p(CfJ , M) = 0 
n n ... oo n ... oo 

since the map '" ... p{"" G) from ml (E) into R is continuous, where G is any sub-

set of ~l{E) [16,Theorem 4.3, p.185], and (b) isequivalentto 

lim CfJ (V) = O. Thus, 
n 

n ... 00 

lim p{CfJn' M) = 0 
n ... 00 

where { CPn J C S{M, r). 

~ lim cp (V) = 0 1 
n 

n ... 00 

It remains to prove (2) of Definition 7.2 1
• Let CfJE S{M, r). Then there 

exists a sequence {I/J. Je il n S{M, r) su ch that 
1 

lim 
j ... oo 

p{ 1/). ,CfJ) = 0 . 
1 

By virtue of (2), for ail t ~ 0, 

for ail (7. 1) 

Now, under the condition lim 
j ... oo 

p( tP. , cp) = 0, the right-hand side of 
1 

(7. 1) approaches 1/) (V) as j ... 00, and the left-hand side approaches m( t, cp) (V) , 

by the weak continuity axiom of NODS. Hence, 

m(t, cp) (V) s; ~(V) 

for ail t ~ 0 and cp E S{M, r). 

Q.E.D. 
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We now present the major theorem of this section. In form it is simi lar to 

the sufficiency part of the deterministic theorem [33, Theorem 12, p. 41 J, but con

ceptually it is quite different.. The interesting fact is that the existence of a specific 

function in C( E) assures stability, in the sense of Definition 7. l, of flows in a subset 

of the dual space of C( E). 

Theorem 7.3 

ln order for a weak closed set M C 111 1 (E) to be stable, it is sufficient 

that there exist a D-function for M. 

Proof: Let there exist a D-function V in a certain neighbourhood SeM, r) of 

M. Let r > E > 0 and lat 

À = inf { cp(V):' for ail cp such that p..cp, M) = E} . (7.2) 

By (1) of Definition 7.2, À > O. By (2) of Definition 7.2, it is possible to find for 

À, S > 0 su ch that p(cp, M) < S implies that cp(V) < À. We would now like 

to show that p(cp, M) < S implies p(m(t, cp), M) < E forall t ::<! O. Assume the 

opposite, i.e., that there exists cpE SeM, S) such that at some t
1 

> 0, 

p(m(t1 ' cp), M) = E ho Ids true. Then, by (7.2), m(.t1' (,0) (V) ~ À. But, by (3) 

of Definition 7.2, (,O(V) < À implies met, (,0) (V) < À for ail t ~ 0 implying 

that m(t
1 

' (,0) (V) < À which gives the contradiction. Hence, M is istable. 

Q.E.D. 

Theorem 7.4 

ln order for a weak closed invariant set M C 1Il 1 (E) to be asympto

tically stable it is sufficient that there exist a D-function V for M and that 
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m(t, cp) (V) ~ 0 as t -t CD for any ~ m(t, tp) : t ~ 0 J C S(M, r). 

Proof: By Theorem 7. 1 it fol/ows that the invariant set M is stable, i. e., for any 

E > 0 there exists 6 > 0 such that 

p(cp, M) < 6 => p(m(t, tp), M) < E for ail t ~ 0 (7.2) 

We show that 6 con be chosen 50 that p(m ( t, tp), M) ~ 0 as t ~ CD, and 

p("" M) < 6. For the 6 obtained in (7.2), we can find 61 such that 

p(tp, M) < 61 => p(m(t, cp), M) < 6 for ail t ~ 0 

We claim that lim p(m(t, cp), M) = O. Assume the contrary, i.e. ,there exists at 
t"CD 

least one probability measure I/J E S(M, 6
1
) such that 

p,m(t, 1/)), M) > Xl > 0 for ail t ~ 0 . 

Then, by (1) of Definition 7.2, m(t, I/J) (V) > X
2 

for sorne X
2 

> 0 and for ail 

t ~ 0 which contradicts the condition 

m(t, I/J) (V) -+ 0 as t -t CD • 

Q.E.D. 

Remark: 

(i) Definition 7.2 can be extended in the following manner: Let X be a 

* separable Banach space and l: its dual space .. Then, the closed unit 

sphere, :1,*, of ,l* with the weak*topology is a metric space [' l 1 

Theorem V.5.1, 1. 426] having metric d. Ifa dynamical system (Defini-

* . 
tion 6.1) is defined on (.xl' d), the existence of an element.x E:1 , . v 

satisfying properties (1) - (3) of Defin ition 7.2, where CfJ E 111
1 

(E) is re-

. * 
placed by x* E .:Il and V E C( E) is replaced by Xv E ~ , is sufficient to 

* prove stability of invariant subsets of Xl ' exactlyas in Theorem 7.3. 
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7.2 Application to Stochastic Stability Theory 

We shall be concerned with the stabi lit y properties of the following n

dimensional stochastic differen'tial equation on E = Rn : 

(7.3) 

where each of the components of the vector a(x) and màtrix b(x) are Lipschitz continuous. 

The s-infinitesimal generator of (7.3) is 

n 

A = L 'a.(') l 
1 ex. 

i = 1 1 

1 n 

+2L 
i, i = 1 

e2 
c •. ( • ) 
Il eX. ex. 

1 1 

, 

T 
where c = b b. The process associated with (7.3) is a diffusion process with transi-

tion density function p( t, x, y). 

We assume that a(O) = 0 and b(O) = O. Therefore, x = 0 is a sta-

tionary point, i.e., if the process starts there, it remains there forever. Let E be the 
o 

Dirac measure at x = O. Then, EO is a stationary probability measure. Since, {EO} 

is also weak compact, it is a weak compact invariant subset of ~1 (E). 

Definition 7.3. A stochastic Lyapunov function for (7.3) is a continuous function 

V E tJ (A) such that 

(i) V: E .... [0, co) 

(ii) V(O) = 0, V(x) > 0 for x '1 0 

(iii) (AV) (x) s: 0 for ail x E E . 
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Proposition 7.4 

A stochastic Lyapunov function V(x) for (7.3) is a D-function for the 

weak compact invariant set t E o} C 1111 (E) for the NODS t mt : t ~ 0 J generated 

by the transition density function p( t, x, y) of (7.3). 

Proof: Let S(E , r) be a small p;" neighbourhood of E • Let j ~ J C S(e , r). 
o 0 l n 0 

First we show that p(cp , E ) ... 0 if and only if cp (V) ~ O. By the definition of p, 
non 

p(cp , E ) ~ 0 implies that cp (f) ... E (f) for each f E C(E). In particular, 
non 0 

cp (V) ~ E (V). But E (V) = 0 since V(O) = 0, implying that cp (V) ~ 0 as 
n 0 0 n 

n ~ 00. 

To show the reverse implication, suppose cp (V) -+ 0 but p("" E ) .,40. 
n n 0 

Then, since V(x) > 0 for x 1- 0, cpn(V) -+ 0 which is a contradiction. Therefore, 

(1) of Definition 7.2 1 is satisfied. 

To prove (2) of Definition 7.2 1
, we proceed as follows. For any 

X E E, by condition (iii) of Definition 7.3, we have 

t 
Tt V(x) - V(x) = l Ts A V(s)ds ~ 0 

o 

where we used Dynkinls Formula and the definition 

Since 

Tt V(x) = l V(y)p(t,x,y)dy 
E 

met, cp) (r) - 1 f pet, x, y) dy cp(dx), 
E r 

for a Il t ~ 0 , (7.4) 
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(7.4) implies that for ail x E E, 

m ( t, E ) (V) ~ E (V) 
x x. 

for ail t ~ 0 

Let cp E S(E ,r), and integrate both sides of (7.5) with respect to cp to obtain 
o 

met; cp) (V) ~ cp(V) for ail t s 0 . 

Hence t~e proof is complete. 

Q.E.D. 

(7.5) 

The map y ~ E from E into the space of Dirac measures on E is a 
y 

homeomorphism [13, Lemma 6.1, p. 42]. Therefore, given any 6
1 

> 0, there 

exists 6 > 0 su ch that 

IIxll <6 => peE ,E ) < 61 x 0 

Hence, if there exists a D-function for EO 1 Theorem 7.3 implies that for any 0 > 0 

there exists 6 > 0 such that 

p(m( t, E ), E ) < 0 
x 0 

for a Il t :le 0 , if Il x Il < 6 . 

If E is asymptotically stable, then the solution process of (7.3) con-o . 

verges in probability to 0 as t ~CX). To see this, let F;(y) = met, EX> «-CD, y]) 

be the distribution function ot time t of the process associated (7.3) starting at t = 0 

and XE E. In [12, pp. 17-18] it is shown that weak convergence of probability 

measures is the same as convergence in distribution of the corresponding distribution func-

tions. Then, since E is asymptotically stable, 
o 



lim 
t ... oo 

p(m( t, E ), E ) = 0 
x . 0 
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for ~ in some euclidean neighbourhood 0 == t y: Il y Il < 5 } of the origine This 

implies that 

F (. ) 
o 

as t ... 00, where 8:J indicates that the convergence is in distribution, and 

F (y) =1
0 

o 1 

if Y < 0 

if y ~ 0 

Convergence in distribution to a Dirac measure impliès convergence in probability to its 

support [18, Exercise 10, p. 86]. Thus, for x E 0 and for ail a > 0 , 

W { Il x: (1.) Il > CI} ... 0 

as t ... 00, where W { x: (1.) = x } = 1. This result is similar in form to those 

in [34 ] and'other works on stochastic stability theory. 

To summarize, we have shown that certain stochastic stability problems can 

be reformulated in the framework of NODS, i.6., we can study the stability of stochastic 

processes such as diffusions (in the sense of Definition 7.1) by examining the induced 

flows of probability measures on the range space, rather than by investigating the sample 

path behaviour. 

Remarks:: 

(i) Let the NODS {mt: t ~ 0 } be induced bya Markov process. Then, 

since { m
t

: t ~ o} is a contraction semi-group on 11l (E), given 
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any E > 0, cp, I/J E 7111 (E), 

Il tfJ - I/J" < E => Il m( t, 0) - m( t, 1/) Il < E (7.6) 

for ail t ~ O. (Th'is is a rather weak stability result.) ln [46, Theorem 12.2, 

pp. 317 - 318], it is shown that there exists a countable family {.f ~ C B(R), 
. m 

Il f
m 

Il s; 1 forall m, such that lim p(fJ
n

, fJ) = 0 if and only if 
n~CX) 

. lim fJ (f ) = fJ( f ) for,all m, and the metric p is equivalent to the metric 
n m m 

n~CX) 

p,where p(fJ
n

, fJ) == t ._1 1 fJ (f ) - fJ(f ) 1 s; Il fJ - fJ". 
m=l 2m n m m n 

Therefore, given E > 0, it follows From (7.6) that 

"cp - 1/)" < E ~1S(m(t, cp), met, 1/)) < E (7.7) 

for ail t ~ O. Fix I/J E 1111 (E). Then (7.7) jmplies that the map 

fJ' t p(m(t, fJ), met, 1/)) From ( 11l.1(E), II· Il) into R, is uniformly con

tinuous with respect to t ~O. Moreover, if ~ remains uniformly continuous 

for t ~ 0 when 1Il1(E) has the weak topology then we have stability of 

theflow{m(t, I/):t ~ O}in the sense of Definition 7.1, i.e. given E> 0 

there exists 5 > 0 such that 

p(CIJt 1/) < 5 ==> sup p(m(t,~, m(t,~» < E 

t~O 

(ii) The work in this chapter can be extended to non-homogen'eous processes by 

considering time-varying D-functions, in a manner analogous to that of 

[ 33, Chapter IV, Section 2 ] . 
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CHAPTER VIII 

CONCLÜOING REMARKS 

ln this dissertation, some problems in the stochastic control and stability 

theories have been studied by considering the flows of probability '!Ieasures associated 

with the stochastic process. Existing work on these subjects deals mainly with the pro-

cess sample pa th behaviour, based on methods which depend, to a large degree, on the 

rather technical theory of Markov processes. In this thesis, the problems are studied in 

a setting which is closely related to' that usually employed for deterministic systems on 

a euclidean space. The main difference, however, is that the stochastic systems are 

studied here from the point of view of how they' induce flow~ in the infinite dimensional 

space of measures. 

. We now present some general comments and a brief summary of the main 

contributions of this thesis. 

(i) ln Chapter Il, by using the martingale approach to the study of stochastic dif-

ferential equations [5] , we have proved a 'stochastic bang-bang principle ' for the 

stochastic control system (2.4). We leave the possible extension of this and related re-

sults in Chapters III and IV, to more general control systems than (2.4), for future work. 

(ii) The functional analytic approach, presented in Chapter V for the integration 

of the Kolmogorov backward equation, where the drift coefficient is merely bounded 

and integrable, offers an alternative method to that used in [5 J, and results in a 

l 
formula, (5.20) , which holds on a larger domain than (2.2). This formula yields a 

necessary and sufficient condition for a control to minimize a cost functional, for a 

very large class of admissible controls. Much of the earlier work in stochastic control 

theory restricts. the class of controls to be Lipschitz continuous in the state variable, 
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in order to ensure that th~ resulting optimal stochastic differential equation is mathe-

matically meaningful. 

(iii) We were not concerned with the problem of observability since, obviously, the 

one-dimensional control system (2.4) is fully observable. However, in the corresponding 

n-dimensional systems, where one does not necessari Iy have access to ail the states of 

the process, the problem of observability is an important one (see [23]). 

o 0 

(iv) The problem of controllabi lit y is given only a cursory treatment in Chapter IV. 

Further work in this area ois warranted. An important first problem is to find necessary 

and/or sufficient conditions on the n x n matrices A, Band C of the linea~ n-dimensional 

stochastic differential equation 

dX:
t 
= (Ax

t 
+ B u(t)) dt + Cdz

t 
1 

wherè x
t
' u{t) , and Zt are n-dimensional vectors, such that for a fixed target IJIdJlt(R), 

the controllable set 

, 

with respect to tt' contains a Prohorov neighbourhood of 1jJ. Another problem is to 

determine under what conditions, if any, K =11l
t
(R). 

The condition for controllability specified by (4.3) may be too stringent. 

The following is a weaker definition of controllabifity: Given ~e11lt(Rn) and °e >0, 

. <,oe1llt (Rn) is e -controllable at time t, with respect to I/J at time t t ' if there exists 

an admissible control u such that 
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If the Markov process specified by pU(t,x,t
1

, r) is a diffusion, generated by an infini

tesimal generator whose coefficients sotisfy the conditions of [ 8, Vol. Il , Theorem 

0.4] , then the problem of stochastic controllability bears a close similarity to 

problems in the theory of parabolic differential equations (see [55, Chapter 3, Sectiom 10] 

and [56 ,Chapter l, Section 14]) jhowever, for quasi-diffusions a'nd more general Markov 

processes, probabilistic methods have to be~used. We remark, more generally, that , 

the stochastic control and stability theories can be related to the corresponding theories 

for distributed parameter systems E56J only for diffusions (in the sense of [8, VoJ .1, 

Chapter V]); in other words, only when the process is generated by a partial differen-

tial equation. 

Still another approach to stochastic controllability is described in the 

following example. Consider the scalar stochastic differential equation 

u u ) dX
t 

= a x
t 

dt + bu(t dZ
t 

1 (8.1) 

where a, b ar~ constants and u eur={ u el. CD (R): - a ~ u(t) ~a }. Using Itols Lemma 

[49, p. 32] , it can easily be verified that the solution of (8.1) is 

t 
XU = ea(t-to) x + J ea(t-s)bu(s) dz 

t 0 t s 1 

o 
u 

where X
U
t 

starts at time to with the constant x • Let the map r : R .. R be 
o s,t 

defined by Cs -+ EWx~ for the solution process of (8.1) ,where Cs is the starting 

point at time s < t. The object is to control the mean EWx~: Given EWx~ , and 

t
1 

> to >0, we wish to characterize the controllable set 

u 
')l t (t 1) = {c e R: r t t c = E

W x~ for some u e 1..û}. 
o 0' 1 1 

Using the isometry property of stochastic integrals [49 , p .25] , we have 

(8.2) 
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EW{ u a(t1-t) }2 st12a(t1-s)b22()d x -e ox = eus s 
t1 0 t 

, 0 

(8.3) 

L • EW u ethng x
t 1 

EW{xU

t 
)2 = R ,d ' (8 3) • d d = a , 1-' on T = t l - t 0 ' • 1 S expan e to 

1 

2aT 2 '2 aT + R 
e x - ae x 1-' o 0 

Completing the square, we get 

where ~I' ~2 are constçmts. Given an xo' we can now determine if there exists 

a u E'ùf such that {8. ~ is satisfied, by numerical methods if necessary. To obtain an 

estimate of the controllable set ~t (t l ) , we observe that 
o 

O ( aT R)2 stl e2a{t1-S)b2a2ds_R2' ~ e Xo - 1-'1 ~ 1-' 
t 
o 

i.e. 

(v) One of the main features of the dynamical system theory approach of Chapters 

VI and VII is the facility with which it permits the study of stochastic stability pro-

perties with respect to initial sets of probability measures. ' 

(vi) An important aspect of the control theory in Chapters III and IV is the ex-

tremely weak condition on the drift coefficient and control term of (2.4) • 

(vii) We now briefly summarize* the main contributions of this thesis • 

(a) Lemma 3.1 presents a new proof of a well-known result in control 

{ .. \, theory, without'using the powerful (deterministic) bang-bang principle. 

* See also Section 2.3 • 
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(b) Theorem 3.6 shows that a solution process of (2.4) for a bounded mea-

surable control can be approximated arbitrarily closely (in the sense of 

weak convergence on fi) by a solution process of (2.4) for a bang-

bang cont.rol. This type of result does not exist in the literature for 

stochastic control systems. 

,(c) The weak compactness of the 'attainable sets of (2.4), proved in Theoreni 

(d) 

3.8, is also a new result. 

The definition of controllobility given in Section 4.1 oppears to be the 1
7
, 

natural extension of the conventional definition of controllability for 

deterministic systems. 

(e) Theorem 4.3 treats a time-optimal stochastic control problem in an original 

manner, employing attainable sets; this necessitates proving the continuity 

of the attainable sets in an appropriate topology (Lemma 4.2) • 

(f) With the aid of Theorem 3.8, Theorem 4.5 establishes the existence of a 

control, in a very large admissible control class, which minimizes the 

average of a cost functional. Theorem 4.5 is similar to Theorem 3 of 

[23], but the proof here is completely different, and simpler • 

,(g) The uniqueness result of Section 5.2 is basically of mathematical interest. 

However, its implementation in Section 5.3 yields a necessary and suf-

ficient condition,(5.26), for a control u, in a certain admissible class, to 

minimize the average of a cost functional. 

(h) The definition of a dynamical system on the metric space (11l1(E),p) 

(Definition 6.2) is new to stochastic stability theory, although a theory 

based on such an approach is hinted at in [35] • 
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(i) The main r~sults of Section 6.3 are Propositions 6.8 and 6.9, whose 

proofs rely on fairly standard methods in dynamical system theory 

but, nevertheless, the results are new to stochastic stability theory. 

(j) Section 6.4 is entirely new. Propositions 6.10 and 6.11 relate certain 

properti es of A+ ('P) to properti es of the flow {m tttJ (g): t ~o } CR, 

where 9 is a certain real-valued function •. For 'P in specified subsets 

+ 
of 1Il1(E), A (fP) is characterized further in Proposition 6.12 and 6.14 • 

(k) Definition 7.1 is standard, but Definition 7.2 is new, in spite of its 

similarity to the usual definition of a Lyapunov function. 'Ne remark again 

that a D-function is not a Lyapunov function j it does not even operate 

on the metric space ( Bl
1 
(E), p) • 

(1) Proposition 7.2 gives a sufficient condition for a real-valued function to be 

a D-function. 

(m) Theorem 7.3 is the main result of Section 7.1 • In form, it resembles 

the sufficiency part of [ 33, Theorem 12, p. 41] j nevertheless, it is a 

completely different result, since V is not a Lyapunov function. 

(n) The work of Section 7.2 has no claims on originality; it merely shows 

that the preceding theory reduces to some fa~iliar, more probabilistic re-

sults of stochastic stability theory. 

Most of the results presented in this dissertation are restatements, in the 

abstract space 11l
1
(E), of familiar results in the deterministic theory. This is in con

trast to most studies on stochastic control and stability theory, where probabilistic phrases 

adorn the deterministic statements. 

-\ 
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The work in this study has been directed ct the theoretical aspects of 

the stochastic control and stability theories, and did not consider any specifie problems 

of practical interest. It is hoped that the methods and results of this dissertation will 

provi de a basi s for such appli cation. 
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