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ABSTRACT

Theoretical equations of probability distribu-~
tions of orientations, orbit constants and phase angles
of rods and discs in dilute suspensions subjected to shear,
electric and combined shear and electric fields in non-
equilibrium states have been derived, and used to calculate
various mean particle orientation parameters and macroscopic
rheological properties.

The spread in axis ratios among particles and
interactions between particles are examined in some detail
and shown to be two most likely causes of establishment of
equilibrium distributions of orientations and orbits.

Oscillatory changes in the orientation distribu-—
tions of rods and discs of various axis ratios and concentra-
tions were measured in shear flow and used to calculate
distributions of orbits and phase angles, mean projections
and rheological properties. Transient orientation distribu-
tions of particles were also measured in various combinations
of shear and electric fields. In general, measured transient
and equilibrium orientation distributions were in good
agreement with the theory, from which a number of interesting
and unusual non-Newtonian rheological effects are predicted.

The fading memory effect in suspensions when the

flow is cyclically reversed was examined briefly.



RESUME

Les &équations théoriques de la probsbilité des distributions
d'orientations, des constantes d'orbites et des angles de phase des
batonnets et des disques en suspensions dilufes, soumises & un champ
de cisaillement, & un champ &lectrique ou aux champs combinés, ont &té
dérivées. Ces équations ont servies & calculer les différents paramétres
des orientations moyennes des particules et les propriétés macroscopiques
rhéologiques.

La répartition des rapports d'axes parmis les particules, et
les interactions entre les particules sont examinfes en détail et se sont
montrées comme étant vraiéemblablemenf les deux causes de l'établissement
des distributions &quilibrées des orientations et des orbites.

Les changements oscillatoire dans les distributions d'orienta-
tion des bAtonnets et des disques de divers rapports d'axes et de concen-
trations ont &té mesurés dans un écoulement de cisaillement et utilisés
pour calculer les distributions d'orbites et d'angles de phase, les
projections moyennes et les propriétés rhdologiques. Les distributions
d'orientation transitoires des particules ont aussi &té mesurées en
différentes combinations de champs de cisaillement et &lectriques. En
général, les distributions d'orientation équilibrées et transitoires
étaient en accord avec la théorie pour laquelle un nombre d'effets
rhéologiques non-Newtonien, intérressants et rares, sont prédits.

L'effet d'estompement dans les suspensions, lorsque 1'écoule-

ment est renvers? d'une fagon cyclique, a été &tudié briévement.



(1)

TABLE OF CONTENTS

page
CHAPTER T

GENERAL INTRODUCTION .eccececccncccccccccccecs

creesens 1

REFERENCES .ccccccocces

----oo.o.o.oooo-o-o-.-oo-ooo-a 7

CHAPTER 1T

TRANSIENT ORIENTATION AND RHEOLOGICAL PHENOMENA OF RODS
AND DISCS IN SHEAR FLOW

ABSTRACT

'.l'...llO....‘...'I.......l...ll.'.......l.. 9

LIST OF SYMBOLS

[ R AR E R R IR 11

1. INTRODUCTION cessssecssseves

I.....I....‘O'..ll.. 14

2. SINGLE PARTICLES

i veceesecessserscsessvacsascans 16

3. MONODISPERSE AND COLLISION-FREE SUSPENSIONS ..... 19

(a) Probability Distribution of el and ¢ eeeeees 19
(b) Mean Projections ..ccceoeseecccccmscreccrrocss 30

(c) Viscosity and Normal Stresses

cecosseecasssoen 37

4. EFFECT OF VARIATION IN PARTICLE SHAPE .cccoccoecs 55

(a) General R R R R R 55
(b) ¥ >1and’r‘e<1 i eseecasesvaseseno 59
(c) r, = 1 ceecoe teecesececcccacacenes ceocosecce s 6l
@ | X, - 1| = 0(0) ceevccnenes 62

(e) Examples of Mean Projections I, and 5120 e 62

5. EFFECT OF PARTICLE INTERACTIONS ..

(a) General i veeesececcececcsassesocvescecaen o 70

(b) Types of 2-body Interactions c..cceccecencecs 71
(c) Relaxation TimeES .ceceveccenerorcccronceeroesry 78

REFERENCES .ccceacecccac



(i1)

page
CHAPTER IIT

OSCILLATORY BEHAVIOR OF RODS AND DISCS IN SHEAR FLOW
ABSTRACT tecesoeceacccscssscosossescscscssscsecscsnossccses 88
LIST OF SYMBOLS +vccceeccccsecscscscscsccsconannansanc. o 89
1. INTRODUCTION ..vccecocvecscsocacsancscssocssscsscssscss 91
(a) General ....cieeecveecccccscscccnsscncacancos 91
(b) Distributions of Orbit Constants ....c.cecse. 92
(c) Suspensions of Initially Parallel Alignment .. 97

(d) Reversibility .ceceeececcectoceccanssccnscasnas 101

2. EXPERIMENTAIL PART e e s eseeeesseessesscesecscesseacee 102
(a) Apparatus and MaterialS ...ececescseccesccccas 102
(D) ProCedUYEeS .coeeecossccscossosssoascsoncsccsses 107
3. RESULTS AND DISCUSSION .ccesecesses cecescecscsecee 114
(a) Distribution of OrbitsS ...ceceeeescescaceasccs 114
(b) Oscillations in Orientation Distributions .... 119
(c) Distribution of Phase Angles ...cecoccsencosas 133
(d) Effect of Concentration .ceeecocescceccccecceos 142
(€) Flow ReVEeIrSAl .cvecececcocsesnccosssosoassosnses 155
4. CONCLUDING REMARKS .ccacses ccceeceaesocccocsescessono 159
(@) GeNETAl c.o.cocerecccoccacancsacascaccscsncccscas 159
(b) Effect of Rotary Brownian Motion ....ceecsoos 159
(c) Rheological PropertileS .ecesececcssscoscccsccocas 169
REFERENCES .cccevos e ecooecoas ececocecne ceececoesonsse 175

CHAPTER 1V

THE MICRORHEOLOGY OF RIGID SPHEROIDS IN SHEAR AND
ELECTRIC FIELDS

ABSTRACT ..ccccececococcocscascas ceecnee ccecescsesecens 178



LIST OF SYMBOLS

®© @ 0 6 9 9 9 9 0050 08P 6 TGS AL SO E SO0 S SE

1. INTRODUCTION

2. SINGLE PARTICLES

© 9 2 06 © 0 0 0 9 ° 0000 EC L 00 e0 e e 0 SO

(a) Hydrodynamic Torque on an Ellipsoid
(b) Electrostatic Torque on an Ellipsoid ..cccccse

(c) Angular Velocity of an Ellipsoid in
Shear and Electric Fields

(d) Motion of Spheroids

© 9 ® 5 0 0606060060000 0000000800000

3. DILUTE SUSPENSIONS

(a) Transient Orientations 6, and 61

(b) Orientations 6, and ¢y for G =0

(c) Steady Orientations of 61 and ¢;

(d) Mean Projections

(e) Rheological Properties

@ @ 0000 ®° 0 ® 86 0e e e0 0 e e

REFERENCES «cccecescce

CHAPTER V

ORIENTATION DISTRIBUTIONS OF CYLINDERS IN SHEAR AND
ELECTRIC FIELDS

ABSTRACT .ccocesvcssce

LIST OF SYMBOLS <cccccesscocscsonocscs cececcecsesccccooe
l. INTRODUCTION .c.ccocccw ccscccocccseccoscocesoscs o

(a) General ...ccocecans

© 050 ® 00009 0606000000 S®O 8000000

(b) Distributions of Particle Orbits

2. EXPERIMENTAIL e ooeeceoseoecossccacs ceoscocecesccocen
3. RESULTS .ceoo e s e s e esccececooeseasensoscsonsosse e e
(a) Sub-critical Fields: £2 < 1 eeueen.. s
(b) Super-critical Fields: f2 > 1 teceosccccacea

(¢) Electric Field Alone: G = 0

(iii)

page
180
184
185
186

190

193
205
215

215
224
226
229
236

257

260

261



(iv)

page
4. DISCUSSION .ceccescsscscccsccssssscsaccsossccsssccsosnse 306
(a) General ............;....................... 306
(b) Spread in R R LR R LR 307
(c) Particle Interactions .eeccececccccceccccccn. 308
(d) Particle Shape .e.ceescccsceccncsncscccccccns 310
(e) Rheological Properti€sS ..cceceecccsccocccces 315
REFERENCES ccccccccosascsccosssersssocssscssnrccscsvcsccs 321
CHAPTER VI
GENERAL CONCLUSION
1. GENERAL SUMMARY .tecevecccscscsscscscsccccscsccces 324
2. CLAIMS TO ORIGINAL RESEARCH .ccccoccrccccccccces 326
3. SUGGESTIONS FOR FURTHER WORK .cccceceeescccccccnn 327
REFERENCES .+ ccoecceccccossososaeccsasesssconcoosacssse 329
APPENDICES
APPENDIX I. DETAILS OF VARIOUS CALCULATIONS ..ccvee 330
1. Mean Projections El and 523 teeeeeeseaccencnsann 331
2. Mean Projections fz and §l3 ceesescssccessacoeses 335
3. Mean Projections r, and §12 ....... ceceacesscons 343
4, Integration of Egq. [83]-II ceecocssssccecsecacas 345
5. Details of Eg. [1l09]-II ...ccccecccnsccccrcccanns 349
6. Probability Distribution po,t(Kl) cecsoeccoeseons 352
7. Anisotropy of the Viscosity of Suspensions ....-. 357
REFERENCES cccocecooccses cesoscses ceecssccecssransevan 364
APPENDIX II. SOME REVERSIBLE AND IRREVERSIBLE
PHENOMENA IN SUSPENSIONS +ec-cccceccsoosnnescsccssccns 365

REFERENCES ..cececccccaaccse 375

e esceeeeaoeoenccece seoc e 0 s 2



(v)
page

APPENDIX III. MAGNETIC TORQUE ON AN ELLIPSOID ...... 376

REFERE:NCES ® ® ® © 9 0 0 P 0 9 S G 0 G S O SO P E G B S G O S O 0SS S S e e e o 379

APPENDIX IV. THE COUETTE APPARATUS ...ccccecvsooness 380

REFERENCES

R 388

APPENDIX V. HISTORICAL SURVEY

® % 0 0 000000008 00000000 389

REFERENCES cutccecescescssscscscesssssoscssssossssnconcas 401



Figure

LIST OF FIGURES
CHAPTER II

Probability functions for an initially

isotropic and collision-free suspension ...

Mean projections, intrinsic viscosity

and normal stress differences

Effect of a spread in axis ratio
Function fl(re)/re versus loglore crasasans
Four types of characteristic orientation ..

Damped oscillation of orientation
probability function .....cececccecceoncns

CHAPTER III

Coordinate systems and orbit projections ..
Histogram of particle axis ratiosS cececeacs
Tracings of photographs of rods and discs .

Mean values of orbit distribution ..

pPolar plots of probability distribution

of ¢l tecoeneescas cecosceesscsoseassns cessoes

Polar plots of probability distribution

OFf B, cecececeoccocoonconssss
1

o8 00co0ee0 0600000000

@ s 0o ® 00 ®0000° 00000 0 e 0

Change in spread of ¢

Polar plots of probability distribution
of Ky eeeeeeeecs

o o9 0aa00c® e 00 e e a0 o0 0090008 ¢ 0O

Oscillations of mean phase angles

Damped oscillation of mean projection
length .c.c... ces

Damped oscillation of mean projection area

(vi)

page

26

34
63
68

73

83

93

105

117

120

126

130

135

139

144

146

.



Figure

12

13
14
15

16

17

18

Damped oscillation of mean projection
length for aligned rods

Attenuation constant versus concentration ..
Reversibility of mean projection length ....

Polar plots of probability distribution
pm(Pé,¢l) and P_(P&,K) .eveeececccnnccnsans

Equilibrium orbit distribution

Changes in intrinsic viscosity and normal
stress differences

Anisotropy in intrinsic viscosity

CHAPTER IV

Coordinate systems

Variations of Q(re) and A
Variations of P(q,re) versus q and Ly eeee
Schematic diagrams of particle motion ....

Polar plots of probability orientation
distribution at various £

© © ¢00000ee9 0 e 0060 o

Mean projection lengths at various £

Variations of intrinsic viscosity with

time  ..cececocccnse cesoene

Three dimensional plots of [n]_ and [€23]00
versus f and r

e o0 eceo0se0co0o0esecosceeeco o e

Variations of r._, ¢i,, [nl, and [£,5],

versus £ ...... coesesnas

CHAPTER V

Coordinate systems

------------------------

(vii)

page

148
153

157

162

166

170

173

187
200
203

207

222

[\
>
w

249

253

265

-



Figure

10

11
12

13

Tracings of photographs of rods

Projections of particle orbits for a
rod and a disc

Distributions of orbit parameters

Polar plots of probability orientation
distributions

® * v e 00000000000 sr0 e

Mean projection lengths and areas at
£2 <1

Cumulative orientation distributions

Mean projection lengths and areas at
£25 1 L.,

Rotations of single rods and diSCS ..eeeeo..

Cumulative orientation distributions
at G=0 ....

Constancy of orientation ¢2 at G = 0

© e 000 e

Mean projection lengths and areas at
G =0

@ ® 0@ 0 00 60 80 E 00 e e OELE 0 B0 SE PO EBO S s

Rheological properties of suspensions

APPENDIX II

Damped Oscillations of T

9 tercescccsescsons

APPENDIX VI

Principle of the Couette apparatus

Photograph of Couette Mark II

(viii)
page

272

275

279

282

285

288

292

295

297

304

316

382

384



LIST OF TABLES

Table
CHAPTER II
I Equations for mean projected lengths
and areas ........;.........................
11 Alternate formula ......civerrrennonnnnnn..
III Numerical values of %BO ceececrerssnsntenan
CHAPTER III
I Distribution functions of orbit parameters
IT Description of SUSPENSiOoNS .v.veeeevevenn..
III Measured orbit distributions .............
v Measured and calculated relaxation time ..
CHAPTER IV
I Equations for rotation of single spheroids
IT Equations for X717 Xor X3 eevecececceonaans
IIT Equilibrium orientation distributions and
mean projections .....ccccecen.. creetcoeenn
CHAPTER V
I Properties of suspensions ........ csssano
II Experimental conditions ....... ceccoaeron
III Measured orbit distributions .......... .o
v Measured mean projections, [n] and [£23]
v Measured orientation distributions ......
Vi Measured mean projections and [E£23] ceoa
Vil Polarizability and equivalent axis ratio .

(ix)

page

31
32

67

213

218



(x)

MASTER LIST OF SYMBOLS

To avoid confusion the master list of symbols
is given here since, due to the limited number of letters
available, certain symbols designated different quantities
between one Chapter and another. A list of symbols is
also given at the beginning of each Chapter.

The following notations are used. An equation
number followed by a Roman numeral indicates the Chapter
in which it appears; thus [20]-II designates Equation [20]
of Chapter II. Prime superscripts designate quantities
given relative to the xi-axes with a few exceptions which
are clearly identified. A bar over a symbol designates its
average value; a wavy underline designates a vector

quantity.
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CHAPTER I

GENERAL INTRODUCTION



Rheology is the science of deformation and flow
of matter. Because it deals with the composition and
structure of flowing and deformed materials, it is highly
interdisciplinary with an appeal to the physical, biolo-
gical, medical and earth sciences, and to various associated
technologies. It can be conveniently subdivided into two
related parts: (i) macrorheology which deals with macro-
scopic and hencé measurable stresses (the external forces
applied per unit area of the boundary of a body) and
stréins (changes of shape and volume resulting from the
stresses) of materiais, and (ii) microrheology which is
concerned with predicting the macrorheological behavior
of a body from a detailed description of its elementary
units.

This thesis deals theoretically and experimentally
with certain aspects of the rheology of dilute suspensions
of rigid particles in Newtonian liquids for simple shear
strains, including those occurring in the presence of
externally applied electric fields. From descriptions of
the microrheological behavior of single particles, the
elementary units of our systems, and of the collective
behavior of populations of particles in dilute suspensions,
reasonably complete theories of macrorheology have been
developed.

In a dilute suspension of rigid spheroidal particles

subjected to a simple shear flow, each particle rotates,

A



translates and interacts with others. The rotational
motion of each isolated particle is governed by Jeffery's
1)

equations (which we will consider in detail in later

Chapters, and especially Chapter II), and the macrorheolo-
gical properties of suspensions are determined by the
orientation distributions at any given instant. A series
of experimental investigations conducted in tﬁis laboratory
have confirmed Jeffery's equation for rigid cylindrical
2,3,4),

particles it was shown that single particles rotated

in fixed orbits, and that, in dilute suspensions, the equili-
brium distributioné of orbitsS'G) fell between those predicted
from considerations of minimum energy dissipation (the so-
called Jeffery's hypothesisl)) and from avrandom orientation
of particles (the so-called Eisenschitz assumption7)); the
equilibrium distribution of orbit constants, which is
essential to a complete rheological description (including

the intrinsic viscosity, the simplest rheological property),
is thus theoretically indeterminate. It was observed
experimentally that when a shear is suddenly applied to an
initially isotropic suspension, the orbit distributions of
rods gradually changed toward equilibriums). Several

attempts have been made to remove the indeterminacy of orbit
distributions; the orbit distributions following from the

7)

Eisenschitz assumption are valid with very intense rotary

Brownian motion (or, in the notation we employ in Chapter IIT,

at P& = 0); others deal with the effect of weak rotary

Brownian motion of particlesg’lo) and inertial and non-



Newtonian properties of the suspending mediumll). As
discussed in the Historical Survey given in Appendix V,
none of these theories can account for the experimental

observationss’s's), a critical review of which has been

made by Goldsmith and Masonlz). This indeterminacy of
particle orbits has led us to the investigation of the
microrheological behavior of particles in the transient
states of flowing suspensions described in this thesis. We
have not, let us hasten to admit, removed this indeterminacy,
but we have established unambiguously the important role of
particle interactions which has hitherto been ignored in
theoretical treatments. In the course of the studies we
have discovered a number of other interesting effects.
Specifically, the present studies were undertaken
to examine, both theoretically and experimentally, transient
properties such as orientation distributions of suspensions
of rods and discs when a shear is suddenly applied to a non-
equilibrium state, including states existing in externally
applied electric fields, and to study mechanisms for estab~
lishing equilibrium distributions of particle orientations
and particle orbits. In the course of the investigation we
found it necessary to study the transient microrheological
behavior until equilibrium in particle orientations in the plane
normal to the vorticity axis (see Chapter II) is established;
this equilibrium was established much more rapidly than that of
particle orbits and as will be seen proved to be amenable to

theoretical analysis. Thus our studies in shear flow are limited



to the transient orientation distributions of particles
over the period of time in which orbit distributions
remained constant.

The term "kinetics" is used in the title of this
thesis because of the close parallel between the equations
describing molecular behavior (especially collisions) in
the kinetic theory of gases and those describing particle
behavior in sheared suspensions in which, we believe,
particle interaction (or collision) is the primary mechanism
for establishing equilibrium state.

In Chaptér II, transient orientation probability
functions for initially isotropic suspensions of spheroids
in simple shear flow are derived from Jeffery's equationsl)
of motion of a single particle assuming that no particle
interactions occur. The various mean orientation parameters
such as projection lengths and area of particles are derived
from the orientétion probability function for convient descrip-
tion of the experimental results. The results are also used
to calculate instantaneous macrorheological properties
(e.g. the intrinsic viscosity and intrinsic normal stress
differences) of suspensions. Two possible mechanisms for
establishing equilibrium orientation distributions are then
considered: the variations in particle shape, and particle
interactions. Each mechanism has its own relaxation time,
that of the first being independent of particle concentration,
and that of the second varying inversely with it. Comparison
with experimental results for suspensions of various cylindrical

particles is given in Chapter III.



A generalized theory of the motion of ellip-
soidal particles in combined shear and electric fields
is derived in Chapter IV. From the equations of motion
of single particles with no permanent dipole, the pro-
bability functions of particle orientations and rheological
properties are given for suspensions in transient states
using the method of analysis employed in Chapter II.
Experimental confirmation of the equations for shear and
electric fields in both transient and steady states is
presented in Chapter V.

Chapter VI presents the general findings and
conclusions and suggestions for further work.

The Appendices include (I) detailed mathematical
derivations for equations given in Chapters II and TII,
(II) memory fading in suspensions arising from the predicted
and observed effects of reversing the direction of shear,
(ITI) application of the theory given in Chapter IV when the
electric field is replaced by a magnetic fields, (IV)
detailed description of the experimental devices used, and
(V) a historical survey included for the benefit of the

general reader.
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CHAPTER 1II

TRANSIENT ORIEWTATION AND RHEOLOGICAL
PHENOMENA OF RODS AND

DISCS IN SHEAR PLOW



ABSTRACT

The non-equilibrium state of the probability
distribution of orientations of non-spherical axisymmetric
rigid particles is derived for a dilute suspension subjected
to a simple shear flow assuming no particle interactions and
negligible Brownian motion. If the particlés in the sus-
pension are initially oriented randomly, the orientation
distribution function undergoes undamped oscillations of
frequency twice that of a particle rotation about the vor-
ticity axis. Thus the instantaneous rheological properties
of the suspension,such as the intrinsic normal stress differ-
ences and the intrinsic viscosity which arc obtained as
averages with respect to oricntation, should also oscillate
with time. ECxperiments on shcared suspensions of rigid rods
and discs have shown that the orientation distribution does
oscillate but is damped, dying away to an cquilibrium distri-
bution which may then procced to change slowly with time.
| Two possible causes for this damping arc considered,
the first being the slight variation in shape between particles
and the second, the changes in oricntations resulting from
2-body interactions. 1In both cases, the rotating particles
experience changes in rotational phase which lead@ ecventually
to the equilibrium distribution of oricntation and of the
associated rheological properties. It is predicted that

the systems are non-Newtonian in the non-equilibrium state
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except when the equivalent axis ratio is unity (corres-—
ponding to spheres), but Newtonian in the equilibrium
state. Each mechanism has its own relaxation time for

which approximate equations are derived.
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LIST OF SYMBOLS

= semi-axes of a particle
= defined in Eq. [84]

=~ first and second order tensors rela-
tive to Xy and x!.

i

= Fourier coefficients

- second order tensor relative to xi
= volume concentration (ml./ml.)

= orbit constant

- constants in viscosity and normal
stress equations

22
= Al + Bl
= function of Ee defined in Eq. [86]

= frequency of class (o-B8) interactions
per particle per unit time

= force per unit length on the particle
along the particle axis

= probability distribution of axis ratio

= force doublet per unit length on the
particle

= velocity gradient
~ Jacobian defined by Eg. [10]

= moduli of elliptic integrals

= defined in Eg. [56]

K(ki)’E(ki)H(ai’ki)= complete elliptic integrals of the first,

second and third kinds.

= 2a, length of cylinder

A



P

pij r

p(Z)

P(Z)

p(C,xk), pt(91,¢l)

P..
1]

Po (K) ; P (9q)

i3

ij

ij

ijo
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functions of C and ry defined in
Eq. [26] and [28]

functions of t, s 61 defined in
Eq.[21] and Table I (i = 1,2,3,4,5)

transformation tensor

integer

number of particles per unit volume
isotropic pressure of fluid

stress tensor for fluid and for a
suspension

probability distribution of
z =k, C, ell ¢l

cumulative distribution of
rt =x, C, elr ¢l

two dimensional probability distribution
of k, C and 61, ¢l

equilibrium distribution of « and ¢y
distance from the center of particle
equivalent axis ratio

particle axis ratio = a/b

projection length of rod (i = 1,2,3)
and mean values

particular value of r
1
xl/a
function defined in Eq. [35].

projection area of disc (i,j = 1,2,3,
i # j) and its mean value

time

period of rotation
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vV,

(€551

N
€9

velocity components of the fluid
(i=1,2,3)

velocity components of total flow,
undisturbed flow and disturbance flow
along xi-axis

Cartesian coordinate axis for a
space and for a particle

(re - re)/c
function defined in Eg. [40]
Jacobian Zeta function

spheroid integrals

parameter of complete elliptic integral
of the third kind (i = 0,1,3,4,5)

parameter of Jacobian Zeta function
Kronecker's delta

viscosity of suspension and medium
intrinsic viscosity of a suspension

spherical polar coordinate for axis
of revolution

initial phase angle

cross-sectional radius of the particle
at the point s; integral defined by
[61b]

Heuman's Lambda function

1

- - = -1
2G/(re + Ty ) 2G/(re + r,

)

(Pii - ij)/nch, the intrinsic normal
stress difference of a suspension
standard deviation of axis ratio

relaxation times

parameter of Heuman's Lambda function
(L =1,2,3,4)

function defined in Eg. [17]
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1. INTRODUCTION

In a suspension of rigid anisometric particles
‘undergoing viscometric flow each particle rotates and
interacts with others as it travels along with the suspending
medium. As a result of the variation in angular velocity of
each particle, preferred orientations are adopted which give
rise to anisctropies which have varicus consequences, for
example the development of non-Newtonian behaviour and
streaming birefringence. In previous papers from this
laboratoryl’2’3) the steady state orientation distributions
in dilute suspensions of rigid, non-sedimenting spheroids
which are subjected to a simple shear field were calculated
and experimentally confirmed for rods and discs. In the
steady state, rods showed a most probable orientation with
their axes oriented along the direction of flow2’4), whereas
discs showed a most prckable orientation with their axis of
revolution directed across the shearz). The transient pheno-
mena involved in the process of establishing equilibrium were
also considered3). When a shear is suddenly applied.to a
suspension which is isotropic (i.e. the particles are randomly
oriented), it was predicted that the orientation distribution
undergoes a damped oscillation initially, followed by a
gradual monotonic change in orientations until equilibrium is
attained. The experimental data cf Rnczurowski et 5l3),

however, fell largely within the latter period of slow

monotonic change, while their theoretical analysis for the

,.J
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orientation processes was incomplete.

‘ In this Chapter we wish to extend the earlier
calculations3) to provide a more complete theoretical basis
for further experimental studies of the oscillations in
orientation distributions, the results of which are given

in the following Chapters). It is appropriate at this point

to list the assumptions on which the present theory is based:

(1) the particles of the suspension are rigid, neutrally
buoyant and of axisymmetric shape and do not possess
rotary Brownian movement;

(2) the suspending medium is Newtonian;

(3) both particle and fluid inertia are negligible so that
the fluid motion is determined by the Stokes equation;

(4) the suspension is monodisperse;

(5) there are no interactions (collisions) so that each

particle mey be considered as isolated.

From the equations of motion for a single axi-
symmetric particle in a simple shear flow, the two-dimensional
orientation distribution function for the non-equilibrium
state is derived, from which several mean orientation para-
meters (for example, projections of particle length and
equatorial area) and the intrinsic viscosity and normal

stresses are calculated. All of these quantities are shown

to undergo undamped oscillations.

The restrictions of assumptions (4) and (5) are

-1



then separately removed. In both circumstances,\tﬁe oscil-
lations are damped, with characteristic relaxatidﬁ times,

until equilibrium values are attained. These two mechanisms
of damping, which have been confirmed experimentallyS), are

discussed in some detail in Sections 4 and 5.

2. SINGLE PARTICLES

Jeffery6) has calculated the rotation of a single
spheroidal particle immersed in a viscous fluid undergoing
a simple shear flow whose undisturbed velocity components
(i.e. components along the Cartesian coordiante axes in the

absence of a particle) are described by
U = u, = o , u,; = Gx2 ’ [1]

where G is the velocity gradient. Throughout this Chapter
we shall employ a notation similar to that previously
definedl_B) except for the use of the coordinate system
xi(i =1,2,3) in place of x,y,2 (see the inset of Fig. 1),
the components of vectors now being denoted by the use of
subscripts 1,2,3. When a single neutrally buoyant rigid
spheroid of axis ratio r, is introduced into the shear flow,
its axis of revolution assumes angular velocities given by

6)

Jeffery's equations

de G(rl — 1)

l =
at  4(x

51n26131n2¢l , (2]

O N0 N

+ 1)

16
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aé G
O (r2cos?y, + sin®¢;) (3]
dt ry + 1

*
where 61 and ¢1 are Bulerian angles for the axis of
revolution of the spheroid with respect to X, as a polar
axis (see the center inset of Fig. 1). Integration of

[2] and [3] yields

Cr
e

i

tane1 [4]

22 2. !
(rgcos®¢q + sin $q)

27t
re tan (—T—- + K) [5]

tand)l

where the integration constants C and k denote the orbit
constant and the initial phase angle respectively, and
where T is the period of one complete rotation of the
spheroid about the vorticity axis (Xl) between ¢, = 0 and

27, given by
G e e - (el

A single spheroid thus rotates in the periodic manner
defined by [4] and [5] for a given orbit constant C(-w< C < =),
the trace of the particle end being a spherical ellipse
(see the inset of Fig. 1).
It has been shown by Bretherton7) that the rotation

of a rigid axisymmetric body (for example a spheroid, a

Sinee the treatment is restricted to axisymmetric particles, the third
Fulerian angle, describing axinl apin, is neplected in the nresent
treatment.
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circular cylinder or a cone) in a uniform simple shear

flow is mathematically idcntical with that of a spheroid
obtained by Jeffery6). The quantity L which no longer

represents the true axis ratio of the particle, is a

function only of the particle shape and is then called the
equivalent axis ratio (re < 1 for discs and oblate spheroids,
and r, > 1 for rods and prolate spheroids). It is calcul-
ated by means of [6] from the measured period of rotation

T. This has been experimentally confirmed for rodse) and
discsg), it being found that a cylindrical particle of axis
ratio rp (length to diameter) of 0.86 is equivalent to a
sphere (re = 1) for rotation in shear flow.lo)

Recently Cox 11) has shown theoretically that for long
slender particles the equivalent axis ratio is related to the
actual axis ratio by r, = const. TS for sharp-ended bodies
and r_ = constant. rp//fﬁ_f; for blunt-ended bodies. From a
comparison with experiments, the value of constant in the
latter formula is found to be 1.24 for cylindrical particles.
The theory that follows will therefore not be restricted to
spheroidal particles, but will deal with general axisymmetric

particles. Distinction is therefore made between one end of

the axis of revolution of a particle and the other.
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3. MONODISPERSE AND COLLISION-FREE SUSPENSIONS

*
(a) Probability Distribution of 6, and ¢,

(i) Arbitrary Initial Orientation

The orientation distribution pt(¢l) obtained in
the previous papers for both transient and steady statesl’3)
does not describe completely the resultant anisotropy of the
flowing suspension since there is no consideration made for
the distribution of particle orbits. Here the two-dimensional
orientation distribution function will be considered for a
collision-free suspension of axisymmetric particles of uniform
size in a simple shear flow, defined by [1]. 1In a collision-
free suspension each particle is assumed to be well isolated
from the others so that it rotates in a fixed orbit as des-
cribed in the previous section.

Particle orientations may be described by a distribu-
tion function p, (6,,9,) with 0 < 6, < 7 and 0 < ¢y < 2w
defined such that pt(el,¢l) deld¢1 is the fraction of par-
ticles with axes directed in the intervals (61,61 + del)
and (¢l,¢l + d¢l) (shown by the hatched area in the inset
in the center of Fig. 1) where 6, and ¢, are measured for

one end of each particle axis. One may also consider a

% Since the probabilities must always be positive, all distribution
functions should be taken as the absolute values in the equations
which give them.



distribution function p{c,x) with - © <C < and

0 < x < 2m defined as the fractions of particles with

values of C, ¥ lving in the intervalé (c, ¢ + dc) and

(¢, « + dx) respectively, Tt must be noted that the

regions of 61, ¢l used here are chosen to be the same as
3)

thoge used previously ', where the normalization of the

distribution function is made over the entire sphere

2T T 2m o
jr .jr pt(61,¢l)deld¢l = ‘[— -[’ p(C,k)dcdk = 1
(@] O O Ladad

Tt immediately follows from the above definitions that

(7]

pt(el,¢1)deld¢l = p(C,k)dCdk 81

where the increments dC and dk correspond to the increments

del and d¢l. Thus

C,K
1Cdk = J ! 4ae ., ddé 9
e (61'4"1) 1L .

where the Jacobian is defined by

C,K 3C . oK aC . 0K
g (L _3Cc .k 9C gk 10
(61'%) 90, oy 99y 99y ol

The partial derivatives in [10] are evaluated from [4] and

[5]1 as
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2 2 . 2 1/2
aC _ (recos ¢l + sin ¢l)
= 2 !
ael recos el
oK r
- e

2 2 .2
8¢l r_cos ¢1 + sin ¢l

{111
2 .

aC _ (1 — re)tanelsln¢lcos¢l

2 2 2 1/2 '
3%, re(recos ¢l + sin ¢1)
K
— = .
361

Substituting the resulting value for the Jacohian into [9]
and making use of [8], the probability distribution pt(el,¢l)

may be obtained as

5ec26

= 1

.2
(recos ¢l + sin ¢l)

177 p(C,k) . [12]

Since both C and k are assumed to be constants for ény given
particle in a collision-free suspension, p(C,x) must also be
a constant and ke determined by the initial orientations of
particles. If the probabhility orientation distribution of
particles in a suspension at some initial instant £t = 0 is
given by po(810,¢lo), then the corresponding distribution

function p(C,x) is given by



1/2

2 2 2 . 2
p(C,k) = cos Blo(recos ¢10 + sin%¢, ) po(610,¢10) ' [13]

where 610,¢10 are the initial orientation angles of a

particle also given by

tane10 = C(COSZK + risinzK)l/z [14]

tancb10 = retanK .

Therefore [13] may be written as

X po[tan"l {C(coszx + rzsinzx)l/2} ,tanbl(retanK)]
p(C,x) = = ‘ [15]
(COSZK + 1:25i112|<)1/2 {l + Cz(coszk + rzsinzKi}
. e e
Substitution into [12] yields the distribution function
pt(61,¢1) at a general time t as
r -1 -1 tancb1 —-retanzl,;-E
P tan ~(xtanf ), tan ( jﬂ
(¢} 1 -1 2t /| -
L 1 +x tan¢1tan—E—
£ {161

P (68,s8y) = 2 2.2
X (cos 81 + ¥ sin 61)

where X2 = xlsin2¢l + xzsin¢lcos¢l + X3cosz<;bl



Xy = 1 {1+ r;z + (1 - r )cos éﬂE} ,

= (r—l — r_ ) sin ant (171
X2 e e T '
X3 = {1 + ri + (1 —x )cos 3%3 .

Tf the initial orientation distribution po(610,¢10) of
particles in a suspension is known, the instantaneous
probability distribution pt(el,¢l) at time t can be
evaluated from [16]. Inspection of the function X2 shows
that pt(el,¢l) generally oscillates with a period T. If
initially p0(610,¢10) = p0(610,¢10 + m), whicih includes the
case where we do not distinguish between the ends of the

particle axes, it oscillates with a period T/Z.

(ii) Random Initial Orientation

For the special and interesting case where the
particles are initially randomly (isotropically) oriented,

the distribution function po(810,¢10) is given by

1
(elol¢10) - '4-7? Slnelo ° [18]

If this suspension is sheared, the probability distribution
pt(el,¢l) at a future t is obtained by substituting [18]
into [16].

|



Thus

sine1
Py (64,9;) = ’ [19]
LR 41r(00526l + )(zsinzel)3/2

while the corresponding distribution function p(C,«) is

obtained from [15] as

Cre
p(ch) =

. [20]
an{l + C2(c052K + risinzK)}?’/2

The probability distributions of the individual orientation
angles 61 and ¢l can immediately be obtained by the integra-

tions over the limit of by and 81 respectively. Thus

am ‘ sinel
Pt(el) = Pt(911¢1)d¢1 = i E(kl) ’ [21lal
o

2
Ty "y

where

. 2 -1.2 4ant
m, = 1 + 3sin ChY Pre - rel) (1 — cos —grﬁ
[21Db]
_ L4 oos 4TE2 _ 12 s ATty
+ {(re r, ) {1 — cos T YT+ 8(re r, )y (L cos = )}}
. 2 -1.2 47t
m, = 1 + §sin 8, %re —xr_)7(1—cos —%}ﬂ
[21c]
-
e = hA 0 - cos 4152 _ 12— cos 4Tty
{(re re Yy (1 cos — YT+ 8(re re ) T (1 cos — )} j

and E(kl) is the complete elliptic integral of the second

kind with modulus ki =1 — m2/ml, and



Ui
- _ 1
X
o}
which is equivalent to [11]-3*. The corresponding

cumulative distributions are

1 el sinel
Pt(el) = ; — E(kl)del , [23]
(o] 172
and
_ 4y, tand
P ($;) = 35 tan ! ( L 2 > : [24]
2x1x2tan¢l + Xy 7t 4

As predicted previously3), both pt(Gl) and pt(¢l) are
oscillating functions of time with a period of T/2. The
variations of pt(¢l) for suspensions of rods (re = 5) and
discs (re = 0.2) are illustrated in Fig. 1l(a) and (b). The
value of ¢5;7613 plotted against ¢1 in polar coordinates
gives a circle of radius l//EE (corresponding to pt(¢l)
1/27) for t=0,T7/2, T, 3T/2 , etc., which corresponds to

the random distribution given by [18], whereas for t.= T/4,

3r/4, 5T/4 etc., it gives an ellipse with semi-~axes

2

corresponding to pt(¢l) equalling ri/2ﬂ and l/2ﬂre, the

orientation distribution pt(61,¢l) at such times being

51nel

Pp g (87007) =

. [25]
2 2 2 -2, 2 . 2 3/2
41 {cos 61 + (r_cos ¢, + ¥, sin ¢l)51n 61}

% For convenience we adopt a convention whereby [11]~3 denotes
Equation [11] of Reference (3).



FIGURE 1

Various probability functions for an initially isotropic
and collision-free suspension of rods (re = 5) and discs
(re = 0.2) which illustrate behaviour typical for all

values of re > 1 and re < 1.

(a); th(¢l) for rods at various time periods (i) t/T = 0,

(ii) 0.03, (iii) 0.25, (iv) 0.47 and (v) «, being

calculated from [22] and [102].
(b); th(¢l) for discs at the same time periods as in (a).

(c); pE(C) for (i) rods and (ii) discs calculated from [26],
the distribution at -~ « < C < 0 being the mirror image

about C = 0, so that PE(w) = 1.

(d); Vp(x) for (i) rods and (ii) discs calculated from [27],
and (iii) the equilibrium distribution p_(k) = 1/V/2m

for both rods and discs from [103].

As explained in Section 3(k) when re's for rods and
discs are reciprocals of cne another, the curves in (a) become
identical with those in (b) when rotated through 7w/2; the
same applies to (i) and (ii) in (4d).

The central inset shows the coordinate systems
X and xi, and Eulerian angles 81 and ¢l of the particle axis
with respect to the Xl—axis 2as a polar axis; the orbits of a

rod and disc are shown by the heavy solid and broken lines

respectively.
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This corresponds to the situation in which, for r, > 1,
nearly all the particle axes lie approximately in the
X1X3—plane, whilst for r < 1 most of the particles have
the orientation ¢1 = 0.

Similarly the probability distributions pE(C)

and p(k) can be obtained from [20]. Thus
2m
pp (C) = j' p(C,k)dk =nfE(k2) ' [26a]
o

where m' and k, are given by:

for r > 1 (prolate spheroids and rods)

Cr, 5 C2(r§ - 1)
m = R k= = ’ [26b]
m{1l + C2)(l + Czrz)l/2 2 C2r2 + 1 :
e e
and for r < 1 (oblate spheroids and discs)
Cre 5 C2(l —-rz)
n' = , kS = ————— [26c]
m(L + C2)1/2(l + Czrz) 2 C2 + 1
and
pl(k) = p(Cc,x)dC = 5 > . [27]
. 21 (cos k + r;sin K)

The orbit distribution.pE(C) given by [26] is equivalent

to {9]-3 and corresponds to the Eisenschitzlz)

distribution for which orbit constant values

A



are assumed to be those of an initially random distribution
of orientations. The corresponding cumulative distribution
of orbit constantsPE(C)is therefore the Eisenschitz cumula-

tive distribution PE(C) given by [17]1-1, which is

C

_ _ 2m" 2

PE(C) i/' pE(C)dC =1-—= H(ao,k2) [28a]
-C

where H(ug,kz) is the complete elliptic integral of the

third kind, m" and ai are given by

forr_ >1,

2
ro -1
n" = — o o2 = 2 , [28b]
r (C°r? + 1)° r
e e e
and for r < 1,
r
n" = 5 e - , ug = 1 — r2 ’ [28c]
(c + 1)°?

and the modulus kéis given by [26]. The cumulative distri-

bution P (k) derived from [27] is given by

K
P (k) =-/— p(k)dk = g? tan_l(retan K) . [29]
o

The values of (C) and p(k) for initially isotropic suspensions
Po P

of rods (re = 5) and discs (re = 0.2) are shown in Fig. 1(c)

and (d) respectively, and are representative of the experimental

5)

values of re used™’ .
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(b) Mean Projections

Although the orientation distribution pt(el,¢l)
describes completely the resulting anisotropy of a flowing
suspension, it is useful to calculate the mean values of the
various particle projections used previously for the analysis

2,3)

of experimental results as single measures of the mean

particle orientation. Convenient choices are the projection
of unit length ry (i = 1,2,3) of a cylinder on each of the
three Cartesian axes, and the projection of unit area Sij

(i,j =1,2,3, i # j) of the face of a cylinder on the three

coordinate planes given by

r{ = S,3 = Icosell ,
r, = S;3 = [slnelcos¢l| . [30]
ry =8, = Isinelsin¢ll '

the projections always being positive. The mean values of

these projections are given by the integral
2T T
Ty = Sy = f [ r, * py(8,,0,)30,d0; [31]
e} o

where, for a suspension of particles with initially random
orientation, pt(61,¢l) is given by [19]. Solutions of these
integrals are expressed in terms of the complete elliptic

integrals and are summarized in Table I. For convenience



TABLE I

Equations for Mean projected Lengths of Rods and Faces of Discs
for Initially Isotropic and Collision-free Suspensions

Quantity Equations
2
T forxr > 1 T. =S =——-——-—4——*K(k)———m-2—-n(a2 k)
1 e 1 23~ mm, + m,) (1 - m,) 3 1+m 1" 73
1 2 2 2
m, - m l1-m
= 2 2 2 _ .2 2
Sp3 for ¥, <1 = m o m, 1"\ TTm
1 2
_ o z[ki 1-nmgd 1=l
* for r > 1 r. =8 = £ 12Kk, + —=== (e, k,) —_—T(a, k,)
2 e 2 12 m m2 4 o 4n2 4 2 4 n 4n2 a4 3 4
3 3 3 373
= 2 2 4nt
§,, for ¥ < 1 ky = i - r) (1 - cos = for r_ < 1
2 -2 41t
k4-i(1-re)(1—cos,r) for r, > 1
2 2
a, = 1/m, ay = 1/ms
- - = 2
x forr > 1 r. =S = [ﬂ(a , k) o= e, k ﬂ
3 e 3 13 m /7;2 + 4y (1 + kZ) 4 6 S 6
3 3 5
- 2 -2 4Te
S13 for r <1 . kg = l(re -1)(1 - cos =) for r_ < 1
2 _ 4,2 4nt
ks = &(re 1) cos —Erﬁ for L > 1
2 2 2
k2 ~ kS mz ~ 1+ m4k5 32 B 1+ m5k5
6 2’ 4 - 2 5 2
1+ kg m4(l+k5) m5(1+k5)

my and m, are given by [21b] and {21c] respectively;

3 4

Note that the equalities shown for ;; of rods and E;j

the other coefficients are

ms = i, - :;1)2(1 - cos 405, me = 3L+ /1 - e/md), =l - - 4/m§3).

5

of discs apply only for when their

re's are reciprocals of one another. Details of the derivation of these equations are

given in Reference (13).
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TABLE II

Alternate Formulas to those in Table I for Hean Projections

Quantity Equations
= - g5 s 1 x - 1 (x.)2(8 ,
x‘1 ll 523 7([ (nj, nz)(l + mz) (k3) (m?. ~1)N1 - mg) % K k3)z P k3) ]
- o (mp )L - )
553 g = ain 1[:11-7_27(1—@
(1- g
?2 ?2 = §12 = ———[ K(kh) * (m" : q‘kh ) {1 A (§l, "h)} (_1—5_-) A (’2"1;):]
oy /ey et %t i
_ m - 1 %
512 ¢, =oln - <mu(1 32 )> ’ 8, = sin (1 _ mskz)
A engd et mdiE al_:m
T r, =8 - - K(k,) + b (— ){1—1\(',::)} ( A(ﬁ,,k)]
3 3 13° ,/ s L [nJI + kg B, ~ 1 3 ™ = §
513 8= gin~t (m’* ;f)é , g, = sin~t (1 - m51.'§)é

As in Table I, equalities of T. and -S-jk appear only when ;e's of rods and discs are reciprocals.

S



in the numerical evaluation, Table II provides alternate
formulas of the mean projections, where Ao(gyk) is Heuman's
Lambda function and Z(8,k) is the Jacobian Zeta function.
The variation of r, for r = 10 and 5.,. for r = 0.1 with

i e ij e
time is shown in Fig. 2 (a). All mean values at the
initial time and at times t = T/2, T, 3T/2 etc., are 0.5
corresponding to random orientation, while for times t = T/4,
3T/4, 5T/4 etc., ry and r, (also S12 and SlB) assume their
minimum values and E3 (also §l3) its maximum, corresponding

L L.

the orientation distribution pt(el,¢l) given by [25].

d
cO

It is :eadily shown from the equations for Ei =S that

jk
dfi/dt =0at t=0, T/2, T, 3T/2 etc., so that slopes of
the curves in Fig. 2(a) are continuous at Ei = §jk = 0.5.
Since the projections in [30] are the absolute
values, the period of oscillation of fi = gjk must always be
T/2 no matter what the initial distribution of orientations.
The equalities ;l (rods r_ = 10) = §23 (discs
r, = 1/10), 52 = _12 and ?3 = 513 illustrated in Fig. 2(a)
result from the permutability of ry and r;l in a number of
the relevant equations. Thus it is seen from [21] tﬂat the
orientation distributions pt(el) for the initially isotropic
case are identical for r_ = R and r_ = R, R being a
specific value. Since, from {301, T; and §23 depend only
upon 61, the mean values El for rods R and §

R L are the same.

23 for discs
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FIGURE 2

(a) Variations of mean orientation parameters for
rods (re = 10) and discs (re = 1/10) with time;

?1 and 523 (broken line), 52 and §12 (solid line),

and f3 and §13 (broken and dotted line). For explana-
tion of coincidences of Ei and gjk for rods and discs
where re's are reciprocals, see text. Since

(dry/dt) ._, = O the peaks appearing at each half

rotation are not singularities.

(o) Variations of the intrinsic viscosity [n] for a
suspension of prolate spheroids (r, = 10) calculated

from [48].

(c) Variations of three intrinsic normal stress
differences for prolate spheroids &e = 10) calculéted
from [50]; [£l2] is shown as the solid line, [223] by

the dashed line and [£3l] by the dotted line.
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On the other hand, it is readily seen from [17]
and [22] that pt(¢l) for rods R and pt(q)l — w/2) for discs
R“l are equal. This is illustrated graphically in Fig.l(a)
and (b) for another example in which the re's bear a
reciprocal relationship, so that the polar diagrams become
coincident when one on set is rotated through ¢, = T/2;
similar behaviour is shown by the polar diagrams for p(k)
in Fig. 1(d) as is readily shown from [27]. It follows that
the products p (¢;) x [sin¢l| and p, (¢;) x |cos¢,| for rods
R are respectively equal to pt(cbl - 7n/2) X Icos(¢>l - 7n/2)|
and pt(¢l - 7m/2) X |sin(¢l - n/2)| for discs R_l. Therefore,
from the complete integration of [31], integration of which
with respect to el is unaffected by the permutation for the
reason stated above, fz and 53 for rods R are equal to 512
and §,, respectively for discs rRL,

Thus we have the following relations between Ei

and gjk for suspensions of initially random orientation

Ty(xr,) = ?1(re-l) = E)5(x,) = 523(re_l) Y
T,(r) = T5lrgt) = §5(x) = 5,70,
r . (r ) = r,(r _l) =S, . (r) =75 (r'—l)
3'7e 27 e 12 7e 13'7e

|
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for a given value of oo

(c) Viscosity and Normal Stresses

(i) Suspensions of Spheroids

The general theory of the rheological behaviour
of a suspension in a Newtonian fluid developed by Cox and
Brennerl4) may be applied to the present study of suspen-
sions of spheroids and circular cylinders. We will now
consider a suspension of spheroids, a suspension of long
slender rods being examined separately in the following
section. Application of the Cox and Brenner theory requires
the introduction of the particle coordinate axes Xi as shown
in Figure 1. The flow field uy when expressed relative to

the xi—system of axes (and denoted by ui) is given by
u, = M or u! = M

]
i 5% i 3194 [32]

where Mij is the transformation tensor given by
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cosel — sinel 0
M = cosqbls:l.nel cos¢lcosel - 51n¢l [33]

sin¢lsinel sind)lcose1 coscbl

Here any symbol with a 'prime' denotes its value given
relative to the xi—system, its value relative to the xi-

system being obtained by means of an eguation of the form

[32].

The disturbance flow vi caused by the presence

of a spheroidal particle in a viscous flow field is given

by Jeffery ([52]-6), as

4xi
— ' [ '
i~ %o =T 5 By x§ g [34]

where ui is the complete flow field, uio is the undisturbed

fluid flow, and r is the distance from the particle center:

12 2 2,3

- ] 2 1 : :
r = (x1 + X5 + X3 )¢. The term Bij is a function of

particle shape and orientation and is given by [25]-6 and
[39]-6.

On the other hand, the disturbance flow produced
by a rigid particle of arbitrary shape in a viscous flow

field was obtainedl4) in the tensor form

-
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9S. .
= Al ' 1]
Vi T B3Sig * Byx aR] [35]
where
61 xix!
5. .= —3 4 _lgl ,
3 or r

the terms invdlving Aﬁ and Aék representing flow fields
produced by a point force and a point force doublet respec-
tively. Since there is no external force acting on the
particle to balance the hydrodynamic force, A& must vanish.
Also since no resultant couple acts on the particle, the

tensor Aij must be symmetric, from which it follows that

Bsi. 1 asij asik
[ - ' - = At - .
Vi o= Byx §§§l = 7 Bk 5%y 3% [36]

1 4 \} 1 1
Furthermore Aiiazay be taken to be zero (i.e. All + A22 + A33
= 0) since ij §§%l = 0. Therefore, the disturbance flow

k

vi may be written as

3xi
v = ' Vot -
vi= rS Ajkxjxk [37]

Comparing the two eqguations [34] and [37], the tensor Aij is
obtained as

[ — _4__ 1
Ais =3 Biy [38]

Tf the undisturbed flow is the plane shear flow defined

by [1]1, the tensor Aij for a spheroidal particle,



obtained from Jeffery's values of Bij, is expressed in

terms of the axis ratio and orientation as

v _ _G . 2e .
All g+ Sin 151n2¢l '
o)
0'"
G 1 . 2 o 2 .
] T e——————— — + . N —— :
A22 o {(2 51n2¢l cos 8151n2¢l)60 sin 6151n2¢]} ’
9a o'B 2
oo
-G 12 % . 2
A'. = —=—— {(sin2¢, + = cos 0, sin2¢.)B" + — sin"6.sin2¢,} ,
33 2, 172 1 1'% 1 1
9b"a'B" 2
o o
G [39]
A'_ = A! = ———2——— 5in26._sin2¢
l I
12 2 6(a2 + b2) Bé 1 1
B3 = B3y = '_2'G'_" cos8, cos2¢) ‘
’ 6k a!
o
Al' =A! = _ sinf_cos2¢
13 31 2 1 1 '

2 a ]
3(a” + bl

where b and a are the cross sectional radius at center and

semi-length of the spheroid respectively. The terms aé,

é, a", Bg in [39] are spheroidal integrals and are given as

e}
followslz’ls),
[ZrZ - 5re - 3Y]
a! = = ’
o 4b5(r2 _ 1)2
e
[r + ar L - 3Y]
R!' = 7@ '
o) b5( ; 1)2
[40]
3 a2
- [2re + r, - (Are - 1)Y]
- 7
° ab3 (2~ 1)°
e
[— 3r_ + (2r° + 1)Y]
B = e e ,
o) b3(r2 1)2
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where
cos tr cosh™ 1r
Y = = .
1 -2 @2 - nt/?

The value of Aij may then be obtained using the transforma-

tion

A.. =M

. M. A' . [41]
ij ip 19 P9

If we assume that all particles in the
suspension have the same size and shape and that there are
no particle interactions so that at any particular time the
orientation probability distribution is given by [19], then
the macroscopic stress tensor Pij for the suspension is

related to the value of Aij by

.. = Do N, . 42
Pl] pl] + 8nnONAl] [42]

where N is the number of particles in unit volume and Kij
is the mean value of Aij for particles of the suspension

at every instant, being given by

21m T ' s L0
R =f f Migpy(0g,0,)d0,d0) : [43]
o o '

The term pij is the stress tensor for a suspending mediumnm

of viscosity Ny which, for the given plane shear flow, 1is



given by
-p 0 0
iy = 0 -p e [44]
0 RS -p

where p is the pressure. If the viscosity of the suspen-

sion has a value n, the shear stress P23=I?32 may be written

as
P23 = nG = nOG + 8ﬂnONA23 [45]

so that the intrinsic viscosity [n] defined by

Jrz

=1+ [nlc [46]

where ¢ is the volume fraction of spheroids (= % ﬂasz),
may be obtained as
6A
(n] = —5 : [47)
ab“G

Substituting X23 obtained from [391, [41] and [43], we

obtain

[nl =C i 46 sin22 + C., co 26 + C sin26
ni =ty sy ¢) T Cycos 0y * Ly 1

1
[48]
1 ag 1 4
cl:zbsr <oc'8"+;'— B (2 + 1g '
e O O o] e (o]
Cp = - G353 -

5 1 2 1
b r o b re(re + 1)BO

42
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A bar over symbols indicates their mean values obtained
by means of equations of the form [43]. Eq. [48] is
equivalent to the result of Jefferys) who obtained the
viscosity by calculating the rate of energy dissipation
due to the presence of a spheroid in a viscous shear flow.

The normal stress differences are, from a2},

without summation over i or j.

The evaluation of All' A22 and A33 from [39] and [41] and

subsequent substitution into [49] yields

_ o Y A
(£, = ¢ {2 sin 6,sin2¢, 3 sin 0,sin2¢, — > sin 6151n4¢l}

. 2 .
+ (C2 —C3) sin 0151n2¢l

1]

(E,3] = C; sin4elsin4¢l [50]

. . 4 .
sin2¢, — } sin 6151n4¢l}

. 4 . . 2
[qu] C1 {3 sin Ols1n2¢l 2 sin 81

. 2 .
(C2 - C3) sin 0151n2¢l

where [gij] = (Pii - ij)/nooc is the intrinsic normal stress

difference defined by analogy to the intrinsic viscosity [n].
It should be noted that the quantity usually discussed is (P72~

P33), corresponding to [€23].
The other components of shear stress, P12 = P and

21

_P13 = P31 are
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P
12 .. 3 . 2 . .
nch = 4Cl sin 61c056151n¢1cos ¢l + (C3 - C2) 51n610056151n¢1
P13 3 2 (511
nch = 4Cl sin elcoselm.n ¢lCOS¢l + (C3 - C2) 51nelcoselcos¢l .

The values of Pio and P,5 are identically zero for an

initially isotropic suspension for all time, but not equal to
zero in general (for example when all particles are initially
aligned in some direction with 6 # 0 or w/2).

The spheroidal integrals aé, Bé etc., can be

approximated for an elongated spheroid (re >> 1) by

1 1
o' = ’ a" = ’
° 27 °  ap3y
e e
[52a]
or - 1 o - 2($Ln2re — 1.5)
o .53 ’ o 3.3
b r b r
e e
and for a very flat oblate spheroid (re << 1) by
. 3w " T
o [ e, v Q N —— ’
o) 8b5 o 8b3
[52b]
2 T
B 1 o~ , B‘ll o~ .
o b5re o 2b3

The constants Cl’ C?, C3 then take the values

for r_ >> 1,

2
r
e

©17 Tmm, - 1.5 c, =Cqy =2, [53a]

_
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(ii) Suspension of Long Slender Particles

Although rotation of & long slender axisymmetric
particle in a plane shear flow has been shown to be iden-
tical to that of a spheroid7_9), its disturbance flow is
generally different from that produced by a spheroid.
Therefore, in this section, we consider a suspension of
long slender axisymmetric particles of length 2a and cross-
sectional radius b at its mid-point. Taking the Xi-axes
as before with the Xi—axis lying along the particle's
center-line, we define s = xi/a as a dimensionless distance
along particle axis and a function A(s) such that bA is the
cross-sectional radius of the particle at the position
s{|s| < 11 on its axis. Following the analysis
given by Coxls), it is seen that, to the lowest order, the
disturbance flow produced by such a particle is that produced
by a line of force —zi per unit length acting at the particle

axis. For the given plane shear flow, this is evaluated to

be

2
1l —s

> )
A 2
T x! + sin sin2 54
nr (&nxr_ )
p p

3 1
1 3 2n2 — 5 n(

S
]

By = Fy= O

where rp = a/b is the axis ratio.

The tensor Aij has therefore only one component

—d
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and for r_ << 1,

_ 5 _ 8 _
Cy = 3¢ ' €2 T I, Cy=1- [53b]

The second term on the right hand side of [50] thus
vanishes for ry >> 1, but is non-zero for ry << 1. The
instantaneous changes in the intrinsic viscosity and normal
stress differences for a collision-free suspension of
spheroids of r, = 10 are shown in Fig. 2(b) and (c) respec-
tively. Inspection of [48] shows that the contribution to
[n] from a single particle is, if a particle is a prolate
spheroid, maximum at the orientations 91 = m/2 and ¢1 = 7/4
or 37/4 at which [n] = Cl + C2 and nminimum at 91 = 0 cor-
responding to [n] = C,- On the other hand for an oblate
spheroid the maximum occurs at 61 = 0 corresponding to
in]l = C2 and the minimum at 61 = m/2 and ¢l =0, n/2, T,
3n/2, at which [n] takes the value of C3. It is also noted
that the normal stress differences vanish at every quarter
period when the orientation distribution pt(6l,¢l) is
symmetrical about the X1X3—plane.

It also should be noted that when r_ = 1 (i.e. a=b)
the spheroidal integrals given by [40] reduce to aé = Bé =

5

2/5 a” and ag = Bg = 4/15 a3 and the cocfficients become

|

Cl = 0 and C2 = C3 = 2.5, and [n] = 5/2, the well-known
Einstein result for rigid spheres with all the other stress

components Pij vanishing.
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+a
Al = = 'x'dx! = Ga® in%6. sin2 [55]
11 7 Bm_ Fixpax = T2(in2r ) + X) sin 0,sin2¢,
-a
where
+1 2
R =—243 s?gn [L=57) 45 [56]
>t 17 2
-1

all other components vanishing. The tensor Aij’ by the

transformation [41], is obtained as

cjca’ 2
All = —;;z— sin elcos 6151n2¢l
cica® 2
A22 = 5— sin 9151n2¢1cos ¢l
3r
P
ClGa3 4 2
A33 = 5— sin 6151n2¢151n ¢l
3r
p
[571]
2C1Ga3 3 5
Al2 = A21 = —;;5—— sin elc038151n¢lcos ¢1
P
2ClGa3 3 2
A13 = A3l = —;;3-— sin elc056131n ¢lcos¢1
p
ClGa3 4 2
A23 = A32 = 5— Sin 6151n 2¢l

6r
p
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where 2
“p
€1 = 4(JLn2rp + K) [58]
For a spheroid (Az =1 — sz), the constant K = — 1.5, the

present Cy being identical to that given by (53a].
However for a cylindrical rod () = 1), the value of X is
(12 - &) = - 2.14.

If the particle has an orientation with either
6, = 0 or ¢, = 0 or w/2, the disturbance flow given by
the above value of Aij is identically zero. Thus, for
these cases we must evaluate the disturbance flow to the
next higher order. Firstly, when the particle has an
orientation with either ¢y = 0 or /2, by writing the
undisturbed flow velocity and particle center-line velocity
relative tc the xi—axes and making use of the theory for

long slender partic1e511r16)’

it may be shown that for a
particle with rointed ends (such as a spindle or double
cone) the disturbance produced by the particle is that
produced by a line of force per unit length (- (}i) and a
line of force douklets of magnitude gij acting at Ehe
particle center-line (gij being the moment of a doublet

of forces directed in the i-th directicen with a relative

separation in the j-th direction) where

- F

r oy 2
Fy = > sinal[—,\ﬂ+l {xéiwh(—ﬁ) s}+0(l )]
2



and

ZNnOGazxzsinel
g1 =
L3 o [60]
ZWHOGazkzcosel
[] - L —
933 T 932 T 2
p

all other components of g!. being zero. By making use of

1]
the relationll)
r 2
_ 3 1
(E:a) - 3hso0 (T_-nr ) [61a]
e P
where
r-kl 5
A ='j A Tds [61b]
-1

between re’and rp for slender bodies with pointed ends,

- the above value of jﬁé may be written as

4w _Ga 2
} VSR | NS S-S 1
Fy = siné) [- g0+ g D@ TS0 (znr > ; [62]
rp p p
The tensor Aij' given by
+a
1
I AP AY. 'S
-3
may be evaluated as
+a
AL, = AL, = —%  axt = 88 1 sing
23~ 32 T G 923%%1 T 2 4 R
o “-a Tp
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3
1 Ga
1 -— - —
A3 T 3 j 91391 = 3 A cost,
Mo -a P
[64]
+a 3
' = 1 1yt l__:Ga
A31 . 3,7’3xldx:L 4r2 A cos6q
Mo -a p
so that Aij’ by the transfcrmation [41], is
3
_ _ Ga
P23 T P32 7 2 A (651
p

all other components being zero. While this analysis is
valid only for bodies with pointed ends, the final result
[65] nevertheless applies to particles with blunt ends
(such as cylindrical rods) since, for such particles, the
disturbance flow is still produced by a line of force
doublets given by [60], together with a line of force

- Sﬁ%L= (0,0, - 355) of unknown strength. The values of
Aé3, Aéz and Ai3 are therefore as given by [64]. However

since there is no external couple on the particle,.the

tensor Aij must be symmetriclg) and sc
Ga3
] — |} —_
A31 = Al3 = —5 A cos@l [66]
4rp

which is the same value as obtained for particles with
pointed ends. Thus [65] is valid whether or not the particle

has pointed ends.
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For the other case which must be considered,

namely 61 = 0, the disturbance flow is entirely that which

is produced by a line of force doubletsll) with magnitude
2ﬂnOGa2A2
95y = = 933 = ——5—— sin2¢,
r
p
[67]
2wnoGa212
gé3 = + géz = B COSZ¢1
r
P
Substitution into [63] and transformation into the X;-
system of axes yields
3
Ga
A = A = [68]
23 32 4r;

all other components of Aij being zero. This result is

valid whether or not the particle has pointed ends, since

it may be shown that for a particle rotating in a shear

flow in the orientation el = 0, the effects of the particle
11)

ends are negligible . Thus for a general axisymmetric

slender particle one has

ClGa3 4 5 Ga3 .

A23 = A32 = >~ sin 6151n 2¢1+ — A {69]
oxr 4r
p P

all other components of Aij being given by [57].

The shear stress P23 within a suspension of such



pafticles is then given by [45] so that the intrinsic
viscosity [n] defined by [46] may be obtained as
84
[n] = —22 [70]
ab“G A
where the volume fraction of particles is given by

ﬁasz A. Substitution of the value of K23 from [69]

yields

>

_ Y PR
[n] = 3 ACy sin6;sin"2¢; + 2 . (71]

While there are errors of order (Ga3/ré) in the values of

Aij given by equations [57] and [69] for Gl # 0 and ¢l #0,

T/2, the inclusion of the term (Ga3/4r§) A in the expres-
sion for A23 = A32 ensures that the fractional error in
is small even near el = 0 or ¢l = 0, /2. For a

spheroid (Xz =1 — 52), the value of [n] given by [71]

A. .
1]

reduces to the equation [48] with Cl’ C2 and C3 given by
f[53a], while for a cylindrical rod (A = 1), the vaiue of

[n] is

—
3
[
il
wiN

c, sin4elsin22¢l + 2 . [721

with Cl given by [58]. Thus we see that, for the same

52



orientation distribution, the viscosity of a suspension
of rods is higher than that for a suspension of spheroids
with the same axis-ratio and number density N. However
the converse is true for a suspension of rods and spheroids
with the same axis-ratio and éoncentration c.

The normal stress differences for a suspension of
long slender particles of general shape may be oﬁtained

from [57] and [69] and are thus given by

! 2 7 2
_ . . _ . . 1 . .
[512] = 3% (2 sin 6151n2¢l 3 sin 6131n2¢l 3 sin 6151n4¢1)
4Cl — [73]
[523] =35 sin 6151n4¢l

Ry T L T2 o 1 il s
[€3l] =3 (3 sin 6151n2¢1 2 sin 8151n2¢l 3 sin 6151n4¢f

where Cl is given by [58]. For a spheroid (Az = 1 — 52),
these eqguations reduce to the values given by [50] with

Cl’ C2 and C3 given by [53a].

The other stress components P12 = and

Pa1
Pig = P3y obtained from [57] are similar to [51] except
that the coefficient of the first term is given by 4 times

that given by [73] and the second term vanishes.

33
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Since the egquations describing the non-Newtonian
rheological properties of suspensions of spheroids ([rasi,
[50] and [52]) and of long slender roas ({711 and [731])
are given in terms of particle orientation, then if the
distripbution of particle orientations is known [n] and
[gij] can be evaluated from the appropriate mean orienta-
tion parameters. The examples shown in Fig. 2 are calculated
for a collision—free suspension of spheroids of r_ = 10
are also representative of all prolate spheroids and long
slender rods. It should be noted that [Eij] vanishes when
the probability distribution pt(¢l) = pt(ﬂ - ¢1) (i.e.,
pt(¢l) is symmetrical about ¢l = n/2 and m, for example
at t = 0, T/4, T/2, 3T/4 etc., as in Fig. 1).

Although a theory for the rheology of dilute
suspensions of discs is not yet available, it is speculated
that the equations for large discs (rp << 1) are not very
different from those of oblate spheroids at the limit of
r, + 0 since the disturbances produced by the two particles
are probably very similar, unlike the cases of prolate

spheroids and of rods of r_ >~ 1 considered above.
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4, EFFECT OF VARIATION IN PARTICLE SHAPE

(a) General

As will be shown in the following Chapters), the
measured orientation distributions in a flowing suspension
of cylindrical particles show damped oscillations which die
away after a few particle rotations in contrast to the un-
damped oscillations discussed previously. One of the
possible sources of dampiﬁg is the variation of Ty amongst
the particles of the suspension to cause variations in the
angular velocities corresponding to a given el, by and
variations in the period T. Thus while all contributions to
pt(61,¢l) initially oscillate in phase with one another, they
gradually get out of phase as time proceeds. As a result the
oscillations of the probability orientation distribution
pt(61,¢1) for such a suspension will be damped out; p(C),
however, remains unchanged since each particle maintains its
original orbit; the variation of p(k) in this case will be

discussed 1ater5)

Let the probability distribution g(re) of equiva-
lent axis ratios Ty of particles in the suspension be Gaussian
with a mean ;e and a standard deviation o, assumed to be very

small compared with Ee’ so that

1 -(r_ — 1)
g(re) = exp [ € > € } . [74]
2
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The probability orientation distribution pg t(el,¢l) for
14

the suspension is then given by the integral

el

Pc't(el:d’l) = Pt(el’¢l)g(re)dre [75]

o

and the mean particle projections Ei and §jk become

2T 7~ T o
r.m = Sjko =f [ rif pt(el,¢l)g(re)dred61d¢l . [76]
o o o

Integration of [76] with respect to 61 and ¢l

yields the mean projections Ei’ gjk for a monodisperse

suspension (i.e., 0 = 0), so that
o - .2
1 -(r —r)
- = _ - ant e e
r.o = Sjkc = = ri(re, - ) exp [ 252 ]dre . {771

o

Since Ei(re, 4tt/T) is a periodic function of time with an

angular frequency v = 4m/T = 2G/(r  + rél

), it can be expanded
as a Fourier series:

0

4“t) =1B + Z {A sin nvt + B_cos nvt} [78]
o n n

n=1

T, (r
1(e' T

where the Fourier coefficients An and Bn are functions of
To- However, for ¢ << Ee’ An and Bn can be approximated by

using the mean Ee’ the error involved being of order o.

-
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Substituting r_ - ?e = oy and with the use of

[78]1, [77) becomes

[~} (o]
T =%, =1p +-1 z {A_sin 2nGt
10 Jko °  Var n Y +oy+ (r_ + oy)_l
n=1 - e e
[791
+ Bncos 2net } exp [-3 YZ] ay

re + gy + (re + oy)

where the lower limit of integration - ?e/o is replaced

by - «» since g << Ee' The argument of the sine and cosine

in [79] may be expanded in terms of y:

- 2nGt_ — = nvt — ay ~ a_‘zy2 [80]
r, + oy + (re + oy)
where
T = 2G
R = 7
r + r 1
e e
2nGt (1 — Ee"z)
a, = —— o , [81]
2 (T + T 1)2
e e
—_ =2
2nGt (1 — 3re ) 2
a, = o]
3 T + 7 h3
e e

Then [79] can be written
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o«

— f— l — —
r, =S, = 3iB + — {A sin nvt + B _cos nvt}
i0 jko <] n n
Var T
® 2 2
X {Jﬁ cos(a,y + 2.y Yexp[-iy“lay [82]
- 0 '

-~ O

. 2 2
~ J 51n(a2y +agy Yexp[-3y ldy}

To obtain the solution of [82] requires evaluation of the

following types of integral

[=~]

2 cOos Ccos 2
I =j expl- a;y°1  layyl  [agy’] dy [83]
sin sin
- 00
where a; = ! and either the sine or cosine is taken in each

of the last two terms. However any integrations involving the
sine function in the second term will vanish, so that the only

13)

non-zero integrals are

(=]

I. = [ 2] a cos a 2d
1= exp a,y Jcos ayy e} 5Y dy

2

-a.a .
= [—T_ exp 12 [84a]
2(a2 + a2) 4(a2 + a2)
1 3 1 3
a.a’ a a2
— 1 - 1
X ( a2 + 2%+ a Y 2cos 32 (:/a2 a? —a yZsin — 32
1 3 1 2 1 3 1 2 2
4(al + a3) 4(al + a3)
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o]

-
]

exp [-a 2]co in a 2d
2 P 1Y S ayy si 3Y y

- 0

2
-a.a
i 172
= [———-—2 5 exp [——-—-——2 5 } [84b]
2(a:L + a3) .4(al + a3)
[ 3 1 232, 2 2 1 ala:;
x i(va +a’ —a,)%cos —————— — (Vaj + a + a.)%sin ——————| -
L 1 3 1 4 2 2 1 3 1 2
(al + a3) 4(al + a3)

Three specific cases depending on the value of ;e
are now considered and followed by several sample calculations

of mean projections.

(b) ¥ >1 and ¥ < 1.

A <

When Ee is not close to 1, in the expansion [80]
as is always small compared with ays and as a first order
approximation may be neglected since A and B have already
an error of order og. The integrals of [82] are thus simpli-

fied, with the use of [84], to give

[o]

- = _ 1 ) - -
rio = Sjko ZBO + Z {An51n nvt + Bncos nvt}

n=1

[85]
2 —
- 2n2G2cr (r2 - l)2
e 2
x {exp =3 7 £t}
(x + 1)

where the Fourier expansion represents an undamped oscilla-

tion for r, = Ee and ¢ = 0, similar to that shown in Fig.2(a).

However because of the last term in [85] the oscillétion of

,J
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Eio will be damped exponentially with t2. Defining the
relaxation time Ty 23S that in which the amplitude of
oscillation of the n th harmonic reduces to 1l/e, then it

follows from [85] that

_Ll ez
Tin = &9 fn(re) [86al
where
B (F2 + 1?
£ (r)) = — [86Db]
ntel s T2 -1
e
the absolute value of (fez — 1) being used so that Tin’

which varies inversely with G and o, is positive.

For large t, the contribution from n > 1 to Eio or

S is very small and may be neglected, so that [85]

jko
becomes
r. =5, =3B
ig jko ~ ? To
_ IR D
+ D.sin [nvt + 8(r )] exp I = t7] [87]
1 e -2 4
(r + 1) ‘
e |
1 1 1 k
and

G(Ee) = sin_l(Bl/Dﬁ = cos"l(Al/Dl) .

Eq. [87] shows that Ei (or gjk ) becomes a sinusoidal

o )
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function which decays with a relaxation time

= L =
11 7 G f1(Fe) (88l
The analysis given here applies for all values
of ;e except Ee = 1 (for which we are concerned both with
particles equivalent to oblate spheroids ry < 1 and to

prolate spheroids T > 1) and ?e very close to unity;

these two cases are considered next.

(c) =1

b

When Ee = 1, then a, = 0 and a3 = —nGt02/2, so
that [82] becomes

- - 1
Tio T Sjkc 2 B,
1891
2 / 22 4.2 1
+Z {Asj.nn\)t-klzscosn\)t}[l+ l+nG,Ot 1%,
n n 2242
2 +2n G o t
n=1
corresponding to an oscillation which is damped with a
relaxation time given by the solution of
4
1+ /1 + %%t )y 1
1n
57 4.7 = = [50]
2 + 2n"G'o T1n e
which is
_ 4,401 .
Tin = T2 ; [91]

nGo
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Tin is thus proportional to 0_2 unlike the preceding case

where it varies with o 1.

— 1| = 0(o)

When ]fé — 1| is of order o, both a, and a; must

be included in the integrations of [83], since both are of

order nGtGZ. Therefore the characteristic relaxation time

1

Ty, is proportional to (nGo2)~ , as is also true for

Ty, = 1.

(e) Examples of mean projections Lo and S126

Egs. [76] to [91] are general relationships appli-

S. and to all initial distributions of

cable to all Lig? ko

orientations, the only differences being in the Fourier
coefficients Al and B . To illustrate the use of the theory,
numerical values of ?20 and §120 for initially isotropic
suspensions of r, = 10 and 1/10 respectively as funqtions

of t/T are shown in Fig. 3. Fig. 3(a) shows the undamped
oscillations for a monodisperse suspension (¢ = 0) calculated
from the equations in Table II, and Fig. 3(b) the damped
oscillations for O/Ee = 0.03 obtained by numerical integra-

tion of [77]; it is readily seen from [85] and the argument

given in Section 3(b) that ?20 and §120 are identical for
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FIGURE 3

The effect of a spread in r, on r, (or 812)
for Ee = 10 (or 0.l1l) for initially random

orientations.

(a) o = 0, calculated from the equation

listed in Table II;

(b) O/Ee = 0.03, calculated through the

numerical integration of [771;

(c) O/Ee = 0,03, calculated from [94].

The broken lines in (k) and (c) indicate the
equilibrium value %Bo = 0.155. The arrow

indicates T,l/T = 3.83 given by [86].

|
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(c)

o2 ONV YU

N



these two cases when ;e (for rods) = féq'(for discs) and
o/ry << 1 (l?e — 1| »>> o).

It is also of interest to calculate the same
quantities from the appropriate equations involving the
Fourier series. Since the oscillation ofAi"20 (or §120 with
Ee replaced by Ee—l and c/'fe fixed) starts with a finite

positive value and decreases at the start, A = 0. Hence

from [85]
r. =S.. =418
20 120 o [921]
ol _ -21‘12G202 (;ez - l)2 5
+ Z B_cos nvt exp t .
n -2 4
— (r = + 1)
n=1 e

Here the Fourier coefficient B by definition is given by

Bn = 4/T f (1:2)0:__0 cos nyt dt . [93]

3

where is the period of rotation for Ee’ i.e., T =21

a1l

(r_ +

e e-l)/G. As a first order approximation, terms in

[92] with n > 2 may be neglected, so that

—2G202(;e2 - 1)2 5
- - , -
= =1 t
25 = S12g = B * B,COS nvt exp — 7 [94a]
(r + 1)
e
which can be written in terms of t/T as
22 —2 2
-8t ¢ (r —1) :
r. =5 = 1B+ B,cos 2Tt ex < £)? [94Db]
26 - Cl20 T o T 1 — S¥P\T—2 32 2 = . -
T r, (re + 1) T

65
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The mean projection on (or §120) for fé =10 and ¢ = 0.3
(or I:'e = 0.1 and 0 = 0.003) calculated by means of [94b]
with %Bo = 0.155 and By = 0.171 obtained by numerical
integration of [93] is shown in Fig. 3(c). Since [94b]
is only a first order approximation, the initial value of
Eéo obtained by [94b] is lower than 0.5 and becomes negative
at t = T/4. However the values of ;20 in Fig. 3(b) and (c),
are nearly the same and become identical after 3 particle
rotations, as is readily shown by superposing the curves,
which proves that 520 becomes a damped sinusoidal function
at large t as predicted above (Eq. [88]). The equilibrium
value %Bo shown by the broken lines ianig. 3(b) and (c)
depends upon Eé (Table IIT). As r_ of rods (or fé-l of
discs) increases, %Bo decreases gradually, indicating
increased alignment of the axes of rods and the faces of
discs in the direction of flow (the X;-axes) .

The relative relaxation time Tln/T, calculated

from [86] as

Tln _ r (r

is indicated by the arrow in Fig. 3(c) using n = 1.
For this approximation, the appropriate function

in [86] is fl(Eé)’ numerical values of which are plotted



Numerical values of 2z B

TARLE III

calculated

from [93] and TabBle I

;e or ;e—l 3 B ?e or 'r_e’l 3 B
1 0.500 10 0.155
2 0.37k 20 0.097
3 0.308 30 0.073
h 0.265 Lo 0.059
5 0.234 50 0.050
6 0.211 60 0.0kk
7 0.192 70 0.039
8 0.177 80 0.035
9 0.165 90 0.032

10 0.155 100 0.029

o
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FIGURE 4

The function fl(;e)/;é versus log10 Ee
calculated from Eg. [86b]. For reasons
explained in the text, the calculated values
shown by the dashed portion‘in the regibh
Ire — 1| = 0(0) are not applicable. Because

of the permutability of R and R_l in [96],

the curve is symmetrical about loglO re==0.

-
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against loglo'fe in Fig.4, and are valid in the region

shown by the solid 1ine, and for reasons already given,

invalid in the region shown by the broken line near

r, = 1. It is of interest to note that fn(re)/re has

the property that

' -1
£ _(R) f (R 7)
n = n — [96]
R R

for any given values of R = fe; therefore Ty, is identical
for a prolate spheroid (or equivalent) of Ee = R and an
oblate spheroid (or equivalent) of Ee = R—l, provided that

O/Ee are also the same.

5. EFFECT OF PARTICLE INTERACTIONS

(a) General

In the foregoing analysis the suspensions were
assumed to be sO dilute that interactions (also termed
collisions) between particles could be neglected, with each
particle undergoing a periodic rotation given by {41 and [5]
with constant C and K. 1t therefore follows that for such
a collision-free suspension (with ¢ = 0) the distribution
p(C,k) is constant for all time, being determined uniquely

by the particle orientations at t = 0. However in any real

1



suspension of infinite volume undergoing shear flow,
particies will always interact given sufficient time, no
matter how dilute the suspension. Thus the motion of an
individual particle no longer satisfies [4] and [5] exactly.
However, at any given time t, the quantities C and k for
a particle may still be defined by these equations, their
values now changing with time as a result of collisions.
The distribution p(C,x) would then also be expected to vary
with time.

A theory of the effect of interactions recently
' developed by Cox17) is summarized for use in the following
Chapﬁéﬁf); the theory is limited to suspensions of long
slender axisymmetric particles of length 2 (re >> 1) at
concentrations of N particles per unit volume so lbw that
interactions involving more than two particles may be
neglected (i.e., N23 << 1 so that the average distance

between the particles r >> ).

(b) Types of 2-Body Interaction

Due to the variation of the angular velocity
d¢l/dt with ¢l for a collision-free suspension, it follows
from [3] that particles with r, >> 1 spend a time of order
reG—l during one particle rotation in orientations which

differ from ¢l = /2 or 3m/2 by an amount of order rel or



less , while spending only a time of order G—l at orien-
tations for which ¢l - m/2 = 0(1) (i.e., théy spend a
time of order reG-l almost aligned with the flow and then
flip over in a time of order ¢"1). 1In addition to these
two characteristic ¢4 orientations, the particles can also
be classified according to their orbits: those with

¢ =0 (1) and those with C = 0(1).

4 Using these characteristic values of ¢l and C,
a particle orientation may be designateéd to be one of the
following four types according to the scheme in Fig. 5:
(i) ¢ = 0(1) with ¢l not near w/2 or 3m/2, (ii) C = 0(1)
with ¢, near m/2 or 31/2, (iii) C = O(r;l) with ¢, not
near m/2 or 3m/2, and (iv) C = O(r;l) with ¢, near T/2 or
3n/2.

The effect of each interaction may be measured
by the changes Ak and AC which result from the angular
displacement A¢l and Ael of each of the two interacting
particles, A¢l and AOl being defined as the additional
displacements that occur over those for an isolated particle
in shear during the period of interaction At. From [4] and
[5] the values of Ax and AC are therefore given by

oK re
Ak = —— A¢l = A¢l [98a]

2 2 . 2
8¢l r_cos ¢l + sin ¢1




FIGURE 5

Schematic diagrams of the four characteristic
values of ¢l, C for a long slender rod whose

rotational orbit is shown by a heavy curve.

Type (i): C=0(1) with ¢1_not near w/2 or 31/2.
Type (ii): Cc=0(1) with ¢l near ©/2 or 3m/2.
Type (iii): C==O(réq') with ¢l not near m/2 or 37m/2.

Type (iv): C==0(réd') with ¢, near m/2 or 3m/2.

3
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8C_ 44 . 2C

AC = b¢
36, T1 7 36, 1

1l

D=t

(rzcosz¢ + sin2¢ ) (1 —-rz)tane sin¢g_ cos¢
_ e 1 1 e 1 1 1
= AB + + 8¢
r cos’6 ! r (rlcos’. + sin’$.)? 1
e 1 e e 1 1

the value of Ael ané A¢1 being assumed to be small. The
effect of type (i) particle on one of type (ii) is not
necessarily the same as that of (ii) on (i); thus for the
four types of particle orientation listed above, the inter-
actions should be examined separately for the effect of one
particle upon the other, and vice versa; thus 42 = 16
classes of interaction a-8, designating the effect of o
upon B, are possible with each of &, B having all possible
values between (i) and (iv); thus interactions a-8 and

B-a are not identical except when a=8,

For a particle of type (i) the disturbance
velocity produced at a large distance r >> L is of order
Gl(l/r)z/ﬁn r, 16), corresponding to a disturbance in
velocity gradient cof G(R/r)3/ln re*. Since the particle
spends a time of order At = G—l interacting with a second
particle (Guring which time ¢1 of type (i) particle is not
close to T/2 or 3m/2), the additional angular displacement

of the second particle located at a cdistance r is therefore

such that A¢l and AGl are of order 23/1:3 n .-

% The value r is used throughout this Section since the
analysis is limited to a particle of r_>>1 for which
X . . e
r, = O(rp) as mentioned in Scction 2.
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If this second particle is type (ii), then
substitution into [98] shows that Ak = 0(1) and AC = 0(1)
if the distance between particles is of order l(re/ln re)l/{
On the other hand if the second particie is one of type (iv),
then Ak = 0(1l) with AC = O(r;I) for such an interaction. An
examination of all other types of interaction shows that
Ak and AC are always smaller than the two mentioned above
by amounts at least of order r;l and thus may be neglected.

Therefore it appears (somewhat surprisingly) that
the dominant interactions affecting the orientation probability
distribution are the very'distant interactions (i.e., with r
of order r, = Z(re/zn re)l/3), and not those previously
defined as close and distant collisionsB).

The frequency fa—B of the interaction a~B per

particle per unit time is giveh, from the analogy to the
18)

equation for the two-body collision frequency of spheres P

by

f,.g = NGrl p(e) - p(B) [99]

where p(q) is the probability that a particle is of type «,

so that %? p{a) = 1. For the two dominant classes of
interacg;;h described above, (i-ii) and (i-iv), only the frac-
tion r;l of particles have orientation such that ¢i is not

close to w/2 or 3m/2, Thus



+h
Il

a3
I\lGro/re

NG23/on r, [100a]

Hh
it

3,.2 3
i ~ ?
1\Cro/1e NG2 /re n r, [100b]
if we assume that there is not an excess of particles in
. . ~1 - .
orbits with C = O(re*) and that at no stage particles are

so aligned one with another that r;l

times the number of
particles in orientations with ¢l —_T/2 = O(r;l) are orders
of magnitude larger or smaller than those in other orienta-
tions.

This last assumpticn, which is equivalent to
stating that the probability distribution of orientations
is not very différent from the time-independent (i.e.
equilibrium) distribution, is not strictly valid for an
initially random distribution for which pt(81,¢l) is
initially periodic, the frequency fu—B therefore also being
periodic. However it is observed experimentallyS) that as
a result of particle interaction, pt(el,¢l) undergoes a
damped oscillation tending to the time-independent value,
so that [100] may be expected to apply to the later stages
of the damping. On the other hand the frequency f. is

i-iv
-1

r times smaller than I. ..;
e i-ii

zlthough 4k is of order unity
for interaction (i-iv), it may therefcre be neglected. Thus,
after a sufficient pericd of time, the mest dominant type of
interaction is type (i-ii) for which a detailed calculation

17)

has been made
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(c) Relaxation Times

it has been,shown17)

that the change in the
probability pt(C,K) in time At resulting from the inter-
actions (i-ii) is of order GN23At/Rn L Since the period
of rotation is approximately T = Zﬂre/G for T >> 1, the
change in pt(C,K) during one particle rotation is of order
reN£3/2n .- Therefore the characteristic time period for
the change in pt(C,K) is of order &n re/GN£3, corresponding
to &n re/N23re particle rotaticns. This characteristic
time may be considered as a measure ef‘relaxation time
required to reduce the amplituce of oscillation in pt(¢1)
or the value of ]pt(K) - pw(K)% to 1/e of the initial value

and be denoted by 1., (see Fig. 6), thus

= 3 3
T, = in re/GHQ . [1011

Alternatively one may obtain To by ncting that it should be
of the same order of magnitude as the mean time between
interactions of type (i-ii), and thus equal to {fiwii}-l'
For the case in which T, = 0(&n re/GNQB) >> 7, the chance
of an interaction for any given particle in one rotation is
very'small,so that pt(C,K) does not change much in a time T.

Also if we consider the time-independent distribu-
tion which is obtained as the sclution of steady state

continuity equation (i.e., the rotaticnal flux p(¢1)-(d¢l/dt)

4
of particles is the same for all ¢1) znd is given byl")

A
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r
e

2 2 .2
2ﬂ(recos ¢, + sin ¢f

P,(¢;) = ' [102]

then the frequency fu-B of any type of particle interaction
does not alter with time; therefore the probability distri-
bution for changes in Ak, denoted by p(Ax), at any given
value of k(= KO) and t(= to) would be equal to that for any
later time t = t, * t' evaluated at a value of k = KO-Zﬂt'/T.
If, when the distribution pt(¢l) is given hy [102], we take
the average over T, p(Ak) becomes independent of k. Thus we

would expect p(k) to become random, i.e.,

P, (k) = 1/27 [103]

This is also the probability distribution corresponding to
the time-independent distribution Pm(¢1) given by [102]

obtained from [5] and the identity
pw(¢1)d¢l = p,(K)dk ' [104]

so that we see that [102] and [103] are allowable distribu-
tions even when we take into account particle interactions
(so long as Ty >> T) .

It is important to note that the probability
distributions pw(¢l) and p_ (k) given by [102] and [103],
which are shown in Fig. 1(a), (b) and (d), are independent

of the mechanisms by which the equilibrium state is attained.

,!
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However, [102] applies strictly only when all the particles
have the same r, (i.e., 0 = 0) and when 1, >> T. For a

distribution in Tor it follows from [75] that

o
pc,,t(d’l) =_[ p, (¢)g(xr )dr, . [105]
o
Employing the scheme of analysis given in Section 4, pt(¢l)
may be expanded as a Fourier series, with the equilibrium
distribution o °°(cbl) given approximately as the leading
4

coefficient in the series (cf. [79] and [93]), from which

it follows that

T/2

f P (d,,T,) dt . [106]
o

po’,oo(qb]_) =

=N

Substituting pt(¢l,Ee) from [22] into [106] yields

T/2
by o(d) = = f L [107]
nT o X
which on integration yields
?e
Po = (®1) =~ 7 [108]
' 2ﬂ(re cos ¢1 +.sin ¢l)

which is identical to [102] for r_ = I_. Because of the

e e
Fourier expansion, however, this is an approximation. The




error in [108] can be estimated by calculating the axis

ratio of the polar diagram Py °o(¢l), which can be shownl3)
4

from [74], [102] and [105] to be

po,w(w/z) =2 02
= re (l + :—2—) [109]

po,w(O) ‘ Xy

which reduces to fez when ¢ = 0, the value calculated.from
[102]. Thus using [108] introduces an error of crder 02
in the ratio, which is negligible when o << Ee as in the
suspensions studied experimentallys)..

For T, >> T, pt(K) for an initially random distri-
bution would tend to p_(k) in a.steady manner since pt(K)is
not altered much during one particle rotation T. During
this time, however, both pt(¢l) and pt(el) will show damped
oscillations as illustrated in Fig. 6(a) and (b). If o is
not very much longer than T, interactions during one period
. will have an appreciable effect and since fa-B is cyclic
with a period of T/2 (at least until some time-independent
sﬁate is established), it follows that pt(K) in tending to
its final state will possess an oscillation of magnitude
reNQ3/2n ry superimposed on its steady variation. As will
be shown in the following Chapters) a small oscillation in
addition to the steady change in pt(K) was observed with
cylindrical particles. Also when the effect of interactions

during the time period T is appreciable, we would expect the

final values of pw(¢l) to shift toward a random orientation

84
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from that given by [102] by an amount of magnitude reN£3/
Ln Ty- This change in pw(¢1) results in the value of

P, (k) given by [104] showing an undamped oscillation

of amplitude of order reNE3/ln r .
e

If the suspension is so concentrated that T, << T,
then the damping of pt(el,¢l) is so fast that we would
expect a monotonic change in pt(61,¢1).

When the time-independent pm(¢l) is established,
there is then a slow change in pt(el) and pt(C) with a
relaxation time T3(>> Tz), these changes occurring also as
a result of particle interactions (see Fig. 6). During the
initial period (with time of order 12) the interactions of
the types discussed above cause a change in pt(C) which,
according to the experimental data of Anzurowski et 3&3)
for rods, results in an increase of a number of particles
in lower orbits. But particles with C = O(rél) [types (iii)
and (iv) in Fig. 5] produce a much smaller disturbance flow
than those which have been discussed [type (i)]. Thus it
takes a much longer time Ty for pt(C) to attain equilibrium
than for Tye To estimate this relaxation time T which

may also be proportional to (o) 1

, it would be necessary
to re-—examine all the possible types of interactions in
detail. On the other hand experimentally it is found that

Ty corresponds tc a period of several hundred particle
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FIGURE 6

Schematic plots of the variation of the probability
distributions with time for a dilute suspension with

2-particle interactions:

(a) pt(¢1) for ¢, =

|
<
=
-

(b) p,(8;) for 0, = 0. ,
(c) pt(K) for kK =« ,

(c) pt(C) for ¢C=C .

For higher concentrations pt(K) is expected to show an
oscillation superimposed on the steady change as shown
by the broken line, all other probability functions
exhibiting variations of those shown here. Note that
the periods of oscillation are T/2 applying for the
case where particle ends are not distinguishable; when

they are distinguishable the periods are T.
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rotations3) for a very dilute suspension of rods

(c = 4.3 x 107°

ml/ml, r, = 20.8).

These changes in orientation distribution would
produce corresponding changés in the wvarious rheoiogical
properties of the suspension. Thus if T, = 0(%n re/N23re)
is much greater than T, the viscosity and normal stress

differences would show a damped oscillation, followed by

a slow monotonic change to equilibrium values (over a time

T3).

A further mechanism for establishing equilibrium
orientations is provided by rotary Brownian movement.
This has been considered most recently by Leal and Hinchlg)
and will be discussed briefly in the following Chapters).

We have thus presented an a priori theory of
the rheclcgical properties of dilute suspensions which in
systems where r_ # 1 predicts general non-Newtonian behaviour,
i.e. with time dependent viscosity changes and non-zero
normal stress differences etc., until equilibrium is reached

when Newtonian behaviour, i.e. with constant [n] aqd

vanishing [Eij] is exhibited.
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CHAPTER IIX

OSCILLATORY BEHAVIOR OF' RODS AND

DISCS IN SIUEAR FLOW
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ABSTRACT

Damped oscillations of the orientation distribu-
tions of rods and discs were measured in the eatly stages
of shearing. As a result of the spread in the particle
axis ratio and of particle interactions, equilibrium
orientation distributions were established in the plane
normal to the vorticity axis after a few particle rotations.
Oscillations of the distribution of phase angles superirnosed
on a monotonic change due to particle interactions were also
observed. The reciprocal of the measured relaxation times of
the decrement of oscillations of the mean projections of rods
varied linearly with the particle concentration, in good
agreement with theory. It was concluded that rotary BRrownian
motion of the particles played a negligible role in the
experiments. The theory and supporting cxperimental cata
provide methods for @ priori predictions of constitutive
equations of the non-Newtonian rheological nropertics of

dilute suspensions.
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LIST OF SYMBOLS

For symbols other than those listed below, see Reference 1.

A(an74)
bl' b
d

2

d23

Pp (650 Py (9 )

Py (P&,6,), b, (PE,K)

z

Pé

Pp(Oim) s Py (0yp)

9 (04)

amplitude of .oscillation
constants defined in [31]
diameter of a cylinder

minor axis of the projected
ellipse of the face of a disc on
X2X3-plane.

rotary diffusion constant
constant of integration
mean length of rods

projected length of a rod on
X2x3=plane

probability distribution of ¢im
(i = 2,3)

probability distribution of ¢l

and « as function of Pé.
rotary Pé&clet number

cunulative distribution function
of ¢im (i = 2,3)

probability distribution defined
in [21]

period of oscillation for Ps t(K)
14
defined in [17]

standard deviations for Pt(¢im),

¥ and rp respectively

e
relaxation times measured, due to
the spread in r, and cdue to

Brownian motion



im

w(¢l)

orbit parameters defined in [1]
(i = 2,3)

angular velocity (d¢l/dt) in
shear field

30
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1. INTRODUCTION

(a) General

The oscillatory behavior of particle orientations
and of various rheological properties in dilute suspensions
of spheroidal and cylindrical particles subjected to a
simple shear (Couette) flow in the creeping flow regime was
investigated theoretically in the preceding Chapterl). It
was shown that for an initially isotropic suspension the
probability orientation distribution pt(el,¢l) is generally
anisotropic and oscillates with frequéncy 2/T, with corres-
ponding oscillations in rheological properties such as the
intrinsic viscosity [n] and normal stress differences [gij].
Two mechanisms (the spread in particle axis ratio T and
2-body interactions) which cause damping of the oscillations
and eventual establishment of an equilibrium state were

examined in detaill).

This Chapter describes an experimental study of
particle orientations undertaken to test the theory, and to
serve as a basis for discussion of several of its implications.
The experiments extend earlier work by Anczurowski et glz)
on the slow changes in the distributions of the rotational
orbits of rods and discs, and deal mainly with the oscillatory

behavior of orientation distributions pt(¢l) and pt(el) in

J



the early stages of shearing when the distribution of orbits
remained fixed. Distributions of orbits and various orien-
tation parameters were measured in initially isotropic
suspensions of rods (re > 1) and discs (re < 1), and in an
initially parallel alignment of rods, for various intervals
of time until the equilibrium probability distribution
pm(¢l) was established. The measured particle orientations
were then used to calculate the mean projection length ;2
and area 512 from which relaxation times for damping of the
oscillations were measured and compared with the theory,
using a variety of methods of analysis and display of the
statistical data.

The possible effects in the experiments of rotary
Brownian motion, assumed in the theory to be negligible,
and some interesting rheological consequences of the results
are then considered. Before presenting the results, we
consider several useful conventions and methods of analyzing

the experimental data.

(b) Distributions of Orbit Constants

It is convenient to use in place of the spherical
elliptical orbit constant C (-» < C < ») of the axis of
revolution of a particle, the maximum values of the azimuthal
angles * ¢2m for discs (re< 1) and * ¢3m for rods (re > 1).
As illustrated in Fig. 1, these are the angles between the

Xl—axis and the particle axis when it crosses the XlX3 and

|

32
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FIGURE 1

Coordinate systems for rods and discs and the projections
of orbits on the three coordinate planes. The orbit of
a rod (re > 1, illustrated by heavy solid lines) is a
spherical ellipse. The projection of one end of the axis
of revolution on the X2X3—p1ane is a plane ellipse (i).
The projection on the X1X3—plane (ii) rocks back and forth
between * ¢2m and the projection.on the XlXZ—plane (iii)
between = ¢3m' The projection lengths Xy r,, Ij of a
rod are indicated in (i) and (ii).

The axis of revolution of a disc rotates similarly

to a rod as shown by the heavy broken lines.
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and XlXZ—planes respectively, from which it follows3’4)

that

il
u
o]
=]
Q
a]

o “terg, (- /2 to w/2) [1la]

¢3m = tan c . (- /2 to n/2) [1b]

The probability distribution function pE(¢im)
(i = 2,3) corresponding to an initially random orientation

may be obtained from the relation:

pE(¢im)d¢.

im = pE(C)dC 12]

where pE(C) is the Eisenschitz distribution of orbits given
by [26]-1*. The calculations are straightforward and are
summarized in Table I which also includes the cumulative dis-
tributions PE(¢jm). Tt should be noted that the following
equalities in the distribution functions occur for rods and

discs whose re“s are reciprocals:

pE(¢2m)re=R - pE(¢3m)re= 1/R ! [3a]

Pp(don) r=R = Pplégy) r=1/R . [3b]

> ; ~
When ro > 1, pE(¢3m) becomes nearly constant since my 2/m

2 . = 0
and kj * 1 except near O3 = 0; and when r_ << 1, P (¢5)

* Designating Liq.[26] of Reference 1 tfrom which many other equations
are cited.
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TABLE I

DISTRIBUTION FUNCTIONS OF ORBIT CONSTANTS
INITIALLY RANDOM ORIENTATION

2

2 2
m m, ¢ k)
o s
2re51ny2m 251ny2m -2 -2 2
> 1 -r (1 ~-r ysin“¢
w‘(sinz" +r2coszA ) e & e 2m
" “om Te T om
¢)2m 5
2r l-1r
<1 2 e . _ r2 e
2 2 -2 2 3 e 2
(1 + recot ¢2“3 (1l + r, tan ¢2m) 1+ recot ¢2m
-2
2 2 -2 1=z
> 1 22 2. 2, % T Te 2
- - z
(1 + r, cot ¢3d ﬂre(l + retan ¢3m) 1 + r “cot ¢3m
¢3m
251n¢3m 2re51n Im 5 5 9
<1l -r (1 - r)sin“¢
ar (si 2¢ + —2CO52¢ T e e 3m
LG (SIN Qg T ¥e 3

E(kl) and H(ai,kl) are complete elliptic integrals of the second and

third kinds respectively
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is also nearly constant except near ¢2m = 0, indicating
that P (¢, ) for r_ >> 1 and PE(¢2m)'for r, << 1 are almost
linear with respect to ¢3m and ¢2m respectively.

Since one end (or face) of a cylindrical particle
used in the experiments was indistinguishable from the other,
¢im and - ¢im are equivalent; as a matter of convenience the
range of ¢im was taken from 0 to m/2. Similarly measurements
of ¢1 could only be made in the range between 0° and 180° and
of 61 between 0° and 90°; from symmetry considerations,
hoWever, the distributions were readily expressed for the
ranges ¢1 = 0° to 360°, ahd 01 = 0° to 180°. The ranges of
the phase angle k, obtained only between 0° and 180°, can

also be extended to k = 0° to 360°.

(c) Suspensions of Initially Parallel Alignment

Although the orientation theory given in the
previous Chapterl) is applicable to any initial orientation,
most of the detailed calculations were made for an initially
random orientation. We wish now to consider the case of
initially parallel alignment of the particles. This is
easily achieved with rods by applying an electric field
parallel to the X2—axis before the onset of shear motion,
causing the rods to assume identical_orientationss)

Gl = m/2 and ¢l = 0 corresponding to k = 0 and C = ». When

shear is applied after removal of an electric field, each



particle rotates according to Jeffery's equationss) at

constant k(= 0) and C(= «), so that from [4]-1 and
[5]"1,
61 = 7w/2 [4a]

2Tt
r tan %= [4b]

il

tan ¢l

where T is the period of rotation about the Xl-axis given
by

p = 20 (r, + r-l) . [5]

In this case all the particles rotate synchronously with

identical projections af unit length

—fl = 0 ’

- 2 2 2mt. -}

r, = [1 + r_ tan 5 ’ [6]
ry=[1+1r° cot ﬁf—]

fz and ?3 oscillating with frequency 2/T and amplitude
unity.

As discussed previouslyl), the oscillations of
fi will decay from (i) spreads in ry and (ii) particle

interactions. We now consider the effect (i) to provide

some theoretical basis for the experimental study, effect

(ii) being discussed later. Assuming a Gaussian distribution
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of re:
- 2
-(r_ - r))
glry) = —— exp |[—2 = : [7]
vamw oe 20e

the fraction of particles oriented in the interval d¢l at
¢l corresponds to that of r, in the interval dre at r, at

any given time (except at t = 0) so that

po,t(¢1)d¢1 = g(re)dre . [8]

Since the partial derivative (Bre/8¢l)t, which may be
obtained from [4b], is not explicitly expressed in terms

of ¢1, pO,t(¢l) is most conveniently given in terms of r,:

-(r - ;_)2 c052 2nt + rzsin2 2rt
p (6.) = 1 exp [ e e . T e T
o, Vo o 2 o2 .27t 27t 2”t(r§ - 1)
e sin T CO0s T - =
T (r7 + 1)

1]

[91]

The evaluation of Py t(d)l) can be made in the following way:
14
for each value of ry the orientation ¢L at a given time is
obtained from [4b], then the corresponding Py t(qbl) is
14

calculated from [9].

* — *
If one considers the rods of axis ratio ry = re-Ar

ol

* — KXk -
and r =x, + Are for the same L then the corresponding

)
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orientations ¢; = $1 + A¢z and ¢;* =% - A¢;* are obtained
from [4b] at any given time, El being the orientation for
fé. Changes of sign for the differences (- Ar: to + A¢;
and + Ar;* to - A¢;*) are due to rods of smaller axis
ratio always rotating ahead of that of higher axis ratio
at constant G (see [4b]). However when Ar: = Ar:* so that
g(r:) = g(r;*), but in general A¢; # A¢I*. It follows that,
although the Gausian distribution g(re) is symmetrical with
respect to the mean ?é, the probability pc,t(¢l) is generally
not symmetrical with respect to the mean 61'

Due to the differences in angular velocity amongst
rods, the spread in ¢1 increases as shear proceeds until a
time is reached at which the most rapidly rotating rod (of
least re) catch up the slowest (of greatest re) so that the
differences in orientation ¢, between the two is 180°. 1In
this case, the distribution po,t(¢l) is not given simply by
[9]; instead the summation over the range overlapped by the
two different axis ratios is required. This behaviour of
po,t(¢l) for initially aligned rods eventually determines
the eguilibrium distribution pm(¢l) given by [102]-1. Since
[9] is not given in terms of ¢1 and for the reason just
mentioned is not valid after some finite time, the equilibrium
distribution pg,m(¢l) cannot be obtained analytically, but
only by numerical evaluation of [9] at large t and summation

at given ¢l for different values of T,-
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The mean projection lengths fi given by [6]

resulting from the spread in r, are then modified to

- .2
(re-r)
o €XP
_ 1 jﬁ 20
r = — r dr [10]
20 V21 o 1+ r’tan® ﬂ)2 € ¢
e [e] e T
- .2
—(re B re)
w ©XP
_ 1 jr 20
r = e—— = T dr v [ll]
30 V21 o (L +r 2cot2 EEEJZ €
e o e T

which show damped oscillations with time.

(d) Reversibility

When shear flow is reversed the motion of rigid
particles is known to be also reversible7’8), i.e. the
translational and rotational paths of each particle will
be retraced to the original position, provided that the
same boundary conditions exist for the reversed flow.

Various demonstrations of this phenomenon have been described
by Hellerg), Goldsmith and Masonlo), and in a cine-film by
Taylorll). For examﬁle, letters of dyed liquid written in
the annulus of Couette apparatus which was filled with the

same (but undyed) liquié can be made to disappear by

rotating one of the cylinders and then to reappear slightly
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10)

blurred by diffusion of the dye, on rotating backwards

Multi-particle interactions and orientation distributions

12) ) 2,13)

of spheres ’ rods2

and discs have also been demon-

strated to be reversible. Reversible oscillations of Fz

are demonstrated for a suspcnsion of initially aligned rods

in Section 3(e).

2. EXPERIMENTAL PART

(a) Apparatus and Materials

Experiments were carried out in a Couette apparatus
consisting of two counter-rotating concentric cylinders
capable of producing a plane shear flow and permitting
observations along the Xl—axisl4).

Rods of uniform length were prepared by sectioning,
in a sliding microtome, Nylon monofilaments embedded in a
block of Tissuemat wafers (Fisher, m.p. = 67°C). By using
single filaments instead of the 20- to 40-filament yarns
used in earlier work4), it was possible to reduce the
standard deviations Op from the mean axis ratio ;p from
values of Op/;p up to 10% to < 3% (Table II).

The distribution of r, of rods for ;p = 15.9
obtained from the measurement of 106 rods is shown by the
histogram in Fig. 2, where rp values spread over the range

of 15 to 16.9, which conforms reasonable well with a

Gau%@an distribution, similar to [7] with rp in place of ry-



TABLE II
DESCRIPTION OF SUSPENSIONS

System Material d(u) 2(w) T ;; Medium N(mZ-l) c:<103
P (m/m2)
. a) g) v . b)
I Nylon a5 720 | 15.9(2.4) 11.6(2.6) | silicone Fluid 200 20.0 0.023
S + .
ROCS rreon BF C 50.0 0.057
100.0 0.115
. . _£) - . d)
II Aluminium 175 87C 4.96(3.0) 3.96(4.8) | Castor oil RA 10.0 0.21
Rods coated * 20.0 0.42
C.H.Br
Nylon 272774 50.0 1.05
100.0 2.09
200.0 4,19
111 pylar ) | 1170 130 | 0.11(1.8) 0.2(2.7) | vcon o0i1 & 10.0 1.37
Discs EB 1713 . 25.0 3.42
CH,Br, 50.0 6.85

2

) Canadian Industries Limited, t) Dew Corning, c¢) Du Pont, d) Fisher Scientific Co.,
) Union Carbide, £) Coating by gtisnal Research Co., Cambridge, less.,
)

e
g) Bracketed values are vercent standard deviations 100 cp/rD or 100 oe/re fromr the mean.

&0oT
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The standard deviation op was obtained from the measured'

values of rp using

N
o=Ni f (r_. - T.) [12]

N1 being the total number of particles measured. However,
since continuous monofilaments were only available in
several diameters, and the microtomed sections had to be
less than 1 mm, the nﬁmber and size of axis ratios that
could be obtained by this method were limited. Aluminium-
coated Nylon monofilaments were also used to produce
electrically conducting rods used in the experiments in
which the rods were aligned electrically.

Discs of uniform diameter and thickness were made
by passing a polyester computer tape 1 inch wide and 130y
thick through an IBM punching machine to produce two sizes
of discs (1170 and 1820u in diameter)ls). The mixture was
separated by sieving and the smaller discs were used. This
method has the advantages of high productivity and unifor-

mity over the technique used earliert®

of pressing thermo-
plastic spheres in a heated hydraulic press.

Liquids of viscosity in the range 10 to 50 poise,
to which tetrabromoethane was added to equalize the densities
of the fluid and the particles, were used as suspending media.

The viscosity of each liquid was measured in a rotational

viscometer (Rheomat 15, A.G. Epprecht, Zurich), and found



FIGURE 2

Histogram of the measured particle axis ratios

rp and the Gausian probability function (broken

line) calculated from [7]1 for rods of Ep= 15.9
and o = 0.38 (100 o /T = 2.4%).
P p° €
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to show Newtonian behavior up to velocity gradients of
100 sec_l. N§ observable sedimentation occurred over a
period of severai days in any of the suspensions used;
their properties are listed in Table II.

All experiments were conducted in a temperature-

controlled room at 21 + 0.5°C.

(b) Procedures

To avoid end effects in the Couette apparatusl4),
the suspensions were floated on an insoluble layer of a much
less viscous but denser liquid such as saturated aqueous
cadmium nitrate or glycerine. Two types of initial orienta-
tion were sought; one random and the other, with rods only,
with parallel alignment. To obtain random orientations, the
suspensions were stirred with a needle probe after being
introduced into the apparatus. As will be seen later, the
randomness with respect to ¢l was satisfactory, but only
partially so with respect to 61. Shear at G = 0.5 to 1 sec—l
was then applied and photographs of particles were taken at
regular time intervals in the vertical direction (along the
Xl-axis) using an automatic camera (Robot Motor Recorder 36 MG
35mm camera with a 30 ft. film magazine) capable of taking up
to 250 frames. The time of cach frame was recorded from a
stopwatch through a separatc lens on the upper right corner

of the frame.
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To obtain initially parallel orientations, the
coated rods were aligned by applying an electric field
(60 Hz, 2 kv) across the annulus between the two cylinders
(i.e. along the xz-axis) using glycerine as the substrate.
After several minutes the rods become aligned along the
direction of the fields), i.e. at ¢l = 0° and 6, = 90°.

1
Following removal of the electric field, shear at G = 0.5

sec_1 was applied to the suspension, and photographs of
the particles were taken as before.

With rods, the two quantities 223, the projected
length on the X2X3—p1ane (the plane of the photographs),
and ¢l of each rod was measured from the photographs which
were projected on an analysing table. With discs, d and
d23, the major and minor axes of the elliptical projection
of the face on the X2X3—plane and ¢l of each disc were

measured. The angle 81 of each particle was calculated

from the following geometrical relationships

sin 61 = 223/ T, cosel = d23/d . [13]

Since the length of a rod could not be determined directly
from the photographs, %, the mean length measured separately,
was used in the calculation; this introduced errors which
were minimized by using rods of small o_.

The orbit constant C and the phase angle k of a

given particle in a suspension at time t are defined byl)



109

_ 22 . 2. 1
C = E; tanel(recos ¢, + sin ¢1) [1l4a]
tan¢
- -1 1 _ 2rt
K = tan ( —re—" ) -5 [14b]

and are constant in a collision-free suspension; thus
under collisionless conditions pt(C) and pt(K) should
remain constant. However, the calculations of C and «
from [1l4] require 91, ¢l, ry and T to be known for each
individual particle. 1In practice, it was not feasible to
determine r, for each particle whose ¢l was measured.
Instead C and k of each particle were calculated by
inserting the means ;e and T (= 2w(fé + l/fé)/G) in [14]1;
these were obtained by measuring T for 30 particles of
each stock at a known G and calculating r, by means of [5]
and then taking the mean value Ee and the standard devia-
tion O using [12] with L in place of r, (Table II).
Although the number of measurements of r, was not always
sufficient to determine the distribution function reliably,
it was assumed to be Gaussian (as for rp) in order to
calculate the effect of spread in values of r, on the
orientation distributionsl). The two measured axis ratios
rp and r, are in good agreement with the empirical

relationshipl7'18)

log,y ¥, = 0.78 log o r + 0.051 [15]
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which gives better agreement with the experimental data
for the entire range of T, including discs (re < 1) than

1,19)

the relation obtained by Cox which is applicable

only for ry >> 1. If the variance in Ty is determined
solely by that in rp, it follows from differentiation of

[15] that

Q

g
£ =0.78 F . [16]
r rp

o

For the particles employed (Table II), the proportionality
constant was found to be 1.6 instead of 0.78, from which

we conclude additional factors sﬁch as curvature and irregu-
larities in the shapes of the edges caused by the cutting
contributed to 0.

Using the mean values ;e and T introduces errors
into C and k, but the error in C becomes only significant
when 61 is very small (see [l4al), sO that the effects of
the spread in r, on Pt(c) and pt(¢im) are small and may be
neglected. On the other liand the error in k does not depend
on the orientation ¢l since the first and the second terms
in [l4b] are nearly the same order of magnitude. It is

convenient to introduce a new quantity 3 defined by

tang
K, = tan 1 1

1 (

) - 2LE (171
T

Te

which is different from k defined by [14b]. The effects of

,J



FIGURE 3

(a) Tracings of photographs showing the orientation

Il

distributions of rods (fé = 11.6) at N 100 particles/ml,

for initially random orientations at t 0 (frames Al to
A4) and for t = T/4 (frames Bl to B4). The X;-axis is

normal to the plane of page.

(b) Projections of discs (fe = 0.2, N = 50 particles/ml),
the long bars corresponding to the diameter d and the
short bars (having orientations ¢l) corresponding to the
projection d23. A complete disc face is shown in each

frame. Frame Al to A4 correspond to initially random

fl

orientation, and Bl to B4 to t T/4.

Analysis of orientations ¢1 and projection lengths
223 and d23 were made for each particle from which all of
the orientation paramcters and orbit constants were

calculated using [13] and [14].

144
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the spread in r, on pt(Kl) will be discussed in Section 3(c).
Examples of particle projections traced from

photographs are shown in Fig. 3. To obtain the distribu-

tions of particle orientations over 100 to 200 particles,

it was necessary to photograph several different fields

since each contained less than 50 particles. The mean

orientation parameters Fi' S.. (i,j = 1,2,3) and the rheolo-

ij
gical properties of the suspension were calculated using

[31]1-1, [48]1-1 and [50]-1.

3. RESULTS AND DISCUSSION

(a) Distribution of Orbits

The orbit distributions Pt(¢im) for rods(fe==ll.6,
N = 50 m1™1) and discs (r, = 0.2, N = 25 ml™%) which were
initially randomly oriented were determined by calculating
¢im from the measured orientations Gl, ¢l of each particle
and fé. The results, summarized in Table III, show that
Pt(¢im) remained effectively constant in the time interval
up to 4 particle rotations. The mean values of Pt(¢im)

(denoted by a bar over the symbol) over the time t/T

4
given in the last column (Table III) are plotted in Fig. 4,

where the standard deviation from the mean is indicated by

the vertical bar about ecach point. As expected from the

4

[ P

4



TABLE III
, MEASURED ORBIT DISTRIBUTIONS
Rods (%, = 11.6, N = 50 nl); Dises (r_ = 0.2, N =25 )

. P s :
;; Pim ¢ PE(¢im)a) t(¢lm) : Pt(¢im) :
(deg.) t/T=0 t/T=1 t/T=2 t/T=3 t/T=4

10 0.176 0.091 0.079 0.052 0.014 0.022 0.020 0.037
20 0.364 0.208 0.208 0.187 0.190 0.292 0.218 0.219
30 0.577 0.323 0.348 ~0.302 0.296 0.416 0.306 0.334
11.6 40 0.83%2 0.436 0.470 0.417 0.415 0.532 0.428 0.452
(i=13) 50 1.192 0.549 0.585 0.573 0.528 0.635 0.545 - 0.573
60 1.732 0.662 0.704 0.687 0.668 0.723 0.660 0.688
70 2.747 0.775 0.773 0.802 0.768 0.810 0.776 0.786
80 5.671 0.888 0.857 0.927 0.874 0.920 0.885 0.893
90 © 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.882 0.061 0.096 - 0.025 0.047 0.057 0.041 0.053

20 - 1.820 0.175 0.212 0.124 0.119 0.204 0.105 0.158 .

30 2.887 0.294 0.288 0.240 0.238 0.329 0.306 0.280 .
0.2 40 . 4.196 0.414 0.399 ' 0.397 0.398 0.489 0.487 0.433
(i = 2, 50 5.959 0.532 0.4290 0.488 0.500 0.546 0.595 0.524
60 8.660 0.649 0.615 0.636 0.619 0.647 0.727 0.649
70 13.737 0.766 0.707 0.760 0.726 0.705 0.776 0.735
8C 28.356 0.883 0.822 0.843 0.822 0.784 0.844 0.823
90 © 1.000 1.000 . 1.000 1.000 1.000 1.000 1.000

a) Calculated from the equations listed in Table I

b) Mean value over the five values of t/E

GFE
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theoretical calculations of PE(¢im) in the third column

of Table III or by the solid lines in Fig. 4, 5;75;;7 for
rods and F;TE;;T for discs were linear with respect to

¢im except near 0° (i.e., near C = 0), indicating a nearly
constant pt(¢im). Similar constancy in orbit distributions
was observed at all other concentrations listed in Table II.

For suspensions of rods of initially parallel
alignment achieved by applying an electric field across
the annulus between the Couette cylinders, 88.5% of rods
were initially in the X2X3—plane (i.e., C = = and ¢3m==90°),
and 87% of rods remained in the same orbit after shearing
for 5 particle rotations.

Thus in all of the experiments, the distribution
of orbits, and by inference (but not proven) the orbit
constant of each particle in an assembly, remained constant
over the first 4 to 5 rotations; this is the region in
which the detailed analysis of orientation distributions
discussed below have been made.

On the other hand it was expected from the obser-

vations of Anczurowski et a12’4) over several hundred

—

particle rotations at comparable concentrations, that
Pt(¢3m) for rods would drift slowly toward lower orbit
constants and Pt(¢2m) for discs toward slightliy higher

orbits; the latter case was confirmed in the present

experiments over 112 rotations as shown in Fig. 4 (b).



FIGURE 4

The mean values of P, (¢5) for rods of §é==11.6
at N = 50 m1 % (part a) and of P (¢, ) for discs
of fé =0.2 at N = 25 m1 "} (part b) over 4 par-
ticle rotations. The vertical spread at each
point indicates twice the standard deviation
from the mean. The theoretical distributions
corresponding to random orientation calculated
from the equations given in Table I are given by
the solid lines. The equilibrium distributions
of orbits after 112 rotations of the discs are
given by the open triangles and the broken line

drawn through the points.
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(b) Oscillations in Orientation Distributions

(i) Initially Random Orientation

Oscillatory distributions of particle orienta-
tions ¢1 and 81 were observed during the early stages when
the orbit distributions remained constant for initially
random orientations, described in this section, and for
initially parallel alignment, described in the following
section.

The probability distributions pt(¢f = dPt(¢l)/d¢l,
obtained from the slope of the smoothed curves drawn through
the experimental integral distribution Pt(¢1), are shown in
the polar diagrams in Fig. 5 for both rods and discs, using
[pt(¢l)]% as the radial coordinate in order to decrease the
axis ratio of the resulting envelopes. The initial distri-
butions were close to the circle of radius [1/27r];l corres-
ponding to random orientation (Fig. 5(i)). When shear was
applied a periodic change of frequency 2/T in pt(¢l) was
observed as predicted from the theoryl).

For rods, the maximum in pt(¢1) first appeared in
the range of ¢l between 45° and 90°, and occurred at
by = 90° after one quarter of a particle rotation (t=T/4,
Fig. 5(iii)); the maximum then rotated into the region of
¢l between 90° and 135°, and the initial distribution was

nearly, but not completely, restored at t = T/2 (Fig. 5(v)).

Similar changes in pt(¢l) occurred with the discs except
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FIGURE 5

1

Polar plots of the measured values of [pt(d>1)]4

100 m1~t

versus ¢, for rods of fé = 11.6, N
{open circles) and for discs of ;e = 0.2,
1

N = 25 ml ~ (closed circles) at various times

indicated in each plot. The circle of radius
[1/2ﬂ]£ in (i) corresponds to a random orienta—
tion. The solid lines in (ii) to (v) are
calculated from [18] for fe and standard deviations
listed in Table II. In (v) the maximum occurred
at ¢l = 70°, 110°, 250° and 290° for rods, and at
¢, = 33°, 147°, 213° and 227° for discs. The
eguilibrium distributions pm(¢l) (given by the
curve in (vi) and calculated from [102]-1) were

. reached after only 4 particle rotations.
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that the maxima were shifted by 90°. Since the particle
angular velocity d¢,/dt is at a minimum at ¢, =90° for rods
and ¢1 = 0° for discs, rods spend most of their time

close to the direction of flow (in the X1X3—plane), and

discs with their axes normal to it (in the X x2—p1ane).

As seen in Fig. 5 (ii) , the maxima of pt(¢1) for rods thus
moved quickly (i.e., within t/T < 0.1) toward the direction
of flow and for discs toward ¢1 = 0°., At t = T/4, more

than 85% of rods had orientations with ¢l = 90 * 5°, whereas
about 90% of discs were within ¢, = * 5° (Fig. 5(iii)),
correspondlng to a calculated major semi-axis [pT/4(90 )]

= [r /21r]4 and a minor semi-axis [pT/4(0°)]‘11 = [l/21rre]4

for rods and the converse for discs ([25]-1). The measured
probability distributions pT/2(¢l) were not the same as

po(¢l) [Fig. 4(i) and (v)]; this could have been due to

the small spread in r, of the particles in a given suspensionl)
and, as will be seen later, to interactions between particles.

The effect of the spread in r, can be estimated

from the known distribution in ry by writing the probability
function

po,t(q)l) = f pt(¢>l,re)g(re)dre [18]
o
where pt(¢l,r ) is the probability function of ¢l for a
truly monodisperse (i.e., ¢ = 0) and collision-free suspen-

sion obtained previouslyl) and g(re) is taken to be Gauigan

g
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and given by [7]. The solid lines in Fig. 5(ii) to (v)
were calculated by numerical integration of [18] with
G = 0.418 (3.6%) for rods of r, = 11.6 and o = 0.0054
(2.7%) for discs of ;e = 0.2.
The dimples in the calculated curve at t = T/2
[Fig. 5(v)] can be explained in the following way. Consider

* .
a rotation of rods of rg differing slightly from r_. The

e
* —
orientation ¢1 at t/T is given by
- =-1
(r + r ) [T
* * 27t e e o
tan 4)1 =r, tan |— = 1 S . 3 [191]

— *
At t = T/2, rods of r, assume the orientation given by

*
tan d)l =T, tan | ——————— + « [20a]

whereas rods of ;e assume the original orientation

tan ¢1 =rg tan. ki . [20b]

1f both rods start off with the same orientation, for
example, ¢l = 0° (corresponding to « = 0°), the orientation

¢l at t = T/2, as secn from [20a], differs appreciably from

¢l = 0°. If, on the other hand, the initial orientation is
¢l = 90° (corresponding to k = 90°) then the decviation of

¢, from ¢, = 90° at t = T/2 is very small. Therefore

D

23
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pc,t(¢1) at E = T/2 decreases around ¢1'=LQ° bpt remains »
nearly equal to po(¢l) at ¢1 = 90°; thus it possesses a’ﬁ:
maximum somewhere between ¢y = 0° and 90° depending upon
Og- Simi;arly po,t(¢l) for discs at t = T/2 has minima
and maxima but shifted by 90°. 1In Fig. 5(v) this is
evident for rods, but not so for discs because of the very
small spread in r, for the discs (Ue/Eé < 0.03). The
experimental points are not in perfect agreement with the
theoretical values, suggesting that, even though the orbit
distributions did not change appreciably, there were particie
interactions in the suspensions which caused the deviations.
Although not shown in Fig. 5, the oscillations of
pt(¢l) continued with decreasing amplitude until equilibrium
was established after only 4 particle rotations as illus-
trated in Fig. 5(vi). The experimental points for the
equilibrium distribution pm(¢1) were in good agreement with
the theoretical values based on the time-independent solu-
tion of the continuity equation, namely pw(¢1)(d¢l/dt)= const.,
the solution of which is given by [102]-1, from which it also
follows that the equilibrium orientation distribution
po,w(¢1) obtained as a limit of (18] has an error of order
Oq in comparison with Pw(¢1)° Thus the curves in Fig. 5(vi)
for pw(¢l) are indistinguishable from po,w(¢l)'
For the distribution of orientations 6, a new

quantity qt(el) is introduced here defined by

d Pt(el)

%) = T —cospy)  Pe(0y) cosee O, (21}



and chosen as a matter of convenience since the integral

distribution Pt(el) for a random orientation is given by

Nt

Po(el) (1 - cos 61) [22a]

so that

i

q,(97) [22b]
In Fig. 6, the experimental points are plotted in a polar
diagram with [qt(el)]% as the radial coordinate, obtained
from the slope of smoothed experimental curves of Pt(el)
versus (1 - cos el), in the range of 61 between 0° and 90°.
To avoid excessive superposition of experimental points

only one half of each curve is shown, either in the upper

or the lower quadrant of Fig. 6. As already mentioned, the
initial distribution qo(el) for rods was not perfectly
random [Fig. 6a(i)], probably because of insufficient
stirring before starting the experiment. On the other hand,
qo(el) for discs showed satisfactory randomness [Fig..6b(i)].
At t = T/4 more than 602 of rods had 6, > 80°, whereas 75%
of discs had el > 70°. The calculated distribution qT/4(61)
was obtained by means of [21] using pt(el) given by [21]-1.
Good agreement with the éxperimental points except near

91 = 0° is seen from Fig. 6-a(ii) and -b(ii). It is also
noted from Fig. 6, that the experimental values at t = 0

and T/2 were nearly identical, and similarly for t = T/4

and 3T/4, showing that g, (6,) oscillated synchronously with
t'1



FIGURE 6

Polar plot of [qt(Ol)]; versus 61 for the same
suspension as in Fig. 5 [(a) for rods and (b)

for discs] after cach quarter rotation. The
heavy solid semi-circle of radius 1/V/2 corres-
ponds to a random orientation given by [22b].

The theoretical distributions qT/4(Gl) calculated
from [21] are also shown by the solid lines in

both (a) and (b). 4
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the oscillation of pt(¢l).

As observed before for pt(¢l), the spread in r,
also influences the distribution function qt(el), which
may be evaluateg by means of a relation analogous to [18].
However the calculation of qo,t(el)' similar to that for
po,t(¢l)' showed only a small difference from qt(el) at
t = T/4 ang 3T/4; therefore the curves in Fig. 6 are
given for the monodisperse Suspension (i.e,, for O, = 0).

The experiments described here thus confirm the
theory based on the hypothetical collision~free suspension
developed previouslyl) that the distributions of particle
orientations oscillated with a frequency 2/T. The oscilla~
tion, moreover, was damped andg died away after about 4
particle rotations. The relaxation time Ty Yesulting from
the spread in I, calculated from the theory ([88]~1) for

the rods of Eé = 11.6 is, expressed as a number of particle

rotations,

= =2
T r (r” + 1)
. e e = 3.2 [23]
T

2v2 o, ,;ez - l’

The relaxation time T, due to the particle interactions ig

([101]-1)

= 6.9 [24]

EIE NG
!

for fé = 11.6 at N = 100 ml—l. Thus each of T;7 and T, is
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too large to account for the experimentally observed rate
of damping; it is therefore reasonable to conclude that

the damping resulted from the combination of the two

effects.

(ii) Initially Parallel Alignment

Oscillations in the distributions of ¢, were also
found for rods (fe = 3.96) initially aligned along the
Xz—axis by means of the electric field, so that all the
rods were near ¢l = 0° and el = 90°, corresponding to
¢k = 0° and C = ©. When shear was applied after removing
the electric field, each rod rotated about the Xl—axis at
constant 61(= 90°) and C(= «). Because of the singularity
in po(¢l) the method of display used in Fig. 5 was not
feasible; instead changes in the spread of ¢; with time
were employed. These are illustrated in Fig. 7 where the
spread of ¢l for the middle 90% of rods measured at each
t/T is shown as a sector; actually the spread is given
by two diametrically opposed sectors, but for simplicity
only one is shown. Included in Fig. 7 are the distributions
of ¢l (shown as hatched sectors) obtained when the flow was
reversed at t/T = 0.95, discussed later.

Initially (t = 0) the 90% spread about ¢, = 0
was + 4°, increasing to = 5° as shear was applied (t/T =0.06)
and then decreasing to * 3° at t = T/4 with the rods

oriented near the direction of flow (¢l = 90°), After a

|
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FIGURE 7

Changes in the measured 90% of spread of
orientations ¢1 (unhatched sectors) for
initially aligned rods of ?é = 3.96 at

N =10 m~1 for forward rotations at various
times until t/T = 0.95 when the flow reversed;
the corresponding spreads for reversed flow
are given by the hatched sectors. To avoid
confusion only one of the two sectors
(separated by 180°) is shown for each value
of t/f. The inward radial arrows indicate
the corresponding spreads calculated for
collision-free suspensions resulting from
the spread in ry of the particles. The out-
ward radial arrows show the calculated

orientations for rods of re = 3.96.
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half particle rotation (t = T/2) the spread increased

to * 55° with less than 15% lying within initial range
¢l = 0 + 4°, At t = 3T/4 the rods again oriented near
¢1 = 90° with the spread increasing from * 3° (at t=T/4)
to = 5°,

The effect of the distribution in ro in a
collision-free suspension on the calculated spread in
¢l for 90% of rods is also shown in Fig. 7. The limits
correspond to rods of ry between 3.65 and 4.27 for
r, = 3.96 and o_ = 0.19 (4.8%), these lower and upper

values of ry being obtained from the numerical evaluations:

e
.[ g(re) dre = 0.05 and 0.95 . [25]
o

The orientations ¢l for rods of these extreme axis ratios

at various values of t/T were calculated by means of [4b]

and are shown by the inward radial arrows in Fig. 7. The
orientations ¢l corresponding to the rods of r, = 3.96

are also shown by the outward radial arrows which, because

of lack of symmetry mentioned earlier, do not necessarily
coincide with the center of the range between two inward
arrows. The additional spreads in ¢l observed experimentally
over those calculated in this way can be attributed to the
imperfect initial orientation which yielded the initial

spread in ¢1 [Fig. 7(i)], to the particle interactions or

,J
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to both; these effects are not easily separated by this
method of analysis of the data.

Although not shown in Fig. 7, when shear was
applied beyond t/T = 0.95, oscillations in the distribution
of ¢l persisted, accompanied by an increasing spread of ¢q-
It was also observed that the spread in ¢l increased as
the concentration increased; for example the spread in
¢, for 90% of rods at t = T/2 were + 65°, + 73°and * 85°
for N = 50, 100 and 200 m1~1 respectively, clear indications
of the effect of particle interactions. The steady state
orientation p,(¢;) at N = 10 mi~! was not attained within
the duration of the experiments (up to t/T = 5); however,

1

for N = 100 ml ~ it was found after about 3 particle rota-

tions. As will be seen later the effect of concentration

is better analyzed by the use of T..

(c) Distribution of Phase Angles

The polar plots of the probability distribution
pt(Kl) obtained from the slope of the smoothed curves of
the measured integral distribution Pt(Kl) vs. K, are
shown in Fig. 8 for rods and discs of initially random
orientations, using /E;TEIT as the radial coordinate, the
results at various times being éhown only in the region of
Ky between - 90° and 90°, the other half being the mirror
image. The initial distribution po(Kl) was in good

agreement with the theoretical distribution corresponding



to the random orientation of ¢y [Fig. 8(i)}. Thus

initially 80% of the rods fell within Ky = 0 + 15°,

It
%3
o
1+
!—l
(8

(]
L]

whereas nearly 60% of discs were within Kq

The sequential plots in the upper half of each
diagram in Fig. 8(i) to (vi) showed oscillation in pt(Kl)
when shear was applied, the amplitude of oscillation of
pt(Kl) decreasing until it reached the equilibrium
distribution pw(Kl) = 1/2 m, corresponding to pw(¢l),
after 3 to 4 particle rotations (Fig. 8(vii) and (viii)).
Similar behavior was observed for a suspension of discs
as shown in the lower half of each plot in Fig. 8.

Since, as already mentioned, each individual
particle could not be identified, Ky was.  calculated from
[17] from the measured orientation ¢q- Accordingly the
probability pc’t(¢l) given by [18] using the relation:

994

Po,e(€1) = Po, e (e ) [26]

the partial derivative (a¢l/aml)t being obtained from [17].
The calculated pc,t(Kl) obtained by. the numerical integra-
tion of [18] and with the use of [26] for rods (r_= 11.6
and ¢ = 0.418) and for discs (fe = 0.2 and 0 = 0.0054)

are shown by the broken lines in Fig. 8(ii) to (vi),
indicating that it changes monotonically with time.

However it may be shown analyticallyzo)that po,t(Kl)

undergoes a damped oscillation with a period TKl relative

134
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FIGURE 8

Polar plates of /EZTEIS versus K, for rods (open circles,
fé = 11.6, N = 50 mﬁ_l) and discs (solid circles, fe== 0.2,
N = 25 mZ_l) at various times. The solid lines in (i) are
calculated from Eq. [27], corresponding to random orienta-
tions. The circles of radius i//fﬁ in (vii) and (viii)
correspond to the equilibrium distribution pm(Kl) given

by [29]. The other solid lines in (ii) to (vi) are drawn
through the experimental points. The broken lines are
pc,t(Kl) resulting from the spread in Ty and calculated
from [26]. Note that the calculated pO,t(Kl)’ for example
at Kl = 0, decreases without oscillating. The times in
(ii) and (iv) are chosen to correspond to the maximum
values in the oscillation of TETHEIT for rods and of

lCOSKlI for discs (see Fig.9(a) and (b)).

-
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to T given by

H|

T

K
—1. , [271
T

> |
o | o

which for the system used (Table II) corresponds to a

period of 20 to 30 particle rotations. Therefore po,t(Kl)
appears as a monotonic change during the time of experi-
ments covering about 5 particle rotations.

The large discrepancies in po't(K) found between
those obtained experimentally and those calculated from
[26] are more'clearly illustrated by calculating the mean
phase angle functions fETH_E;] and IEEE?T?II, chosen as a
matter of convenience, which are shown in Fig. 9. The
mean TEIE_EIT and TEEE-EET obtained from the measured
orientations of rods and discs showed oscillations super-
imposed on a slow monotonic change and eventually oscillated
about 2/m. The corresponding values for collision-free

suspensions resulting from the spread in r, were calculated

by the numerical integrations;

A
[Sin K= pO't(Kl) |sinKll dc [28a]
o
2T
cos K| = Py ¢ (Ky) ICOSKlI dc 4 [28b]
o

which are shown by the broken lines in Fig. 9. As seen from
po,t(Kl)’ the calculated ISanll and lcosKll increase or de-

crease monotonically and asymptotically reach the equilibrium
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value 2/w, corresponding to pm(Kl) = 1/27 ([103]-1).

It was shown previouslyl) that, when there is
a spread in r, Po,w(¢l) has a deviation from pm(¢1) by
the amount of order 02, but that the equilibrium distri-

bution P, °°(Kl) is given exactly by
r
Py, wlky) = 1/2m [29])

since pm(Kl) for ¢ = 0 is a constant (= 1/27) and inde-
pendent of Ky and r,- On the other hand, when taking'
account of interactions between particles, pt(Kl) for a
dilute suspension is expected to change steadily, whereas
as the concentration increases it should show an oscilla-
tory change of frequency 2/T superposed on the steady
changel). The latter behavior in pt(Kl), clearly shown
by (ETH_EIT and FEGE—EIT in Fig. 9, was observed at all
concentrations studied. It is concluded therefore that
the additional damping in the oscillations of pt(¢1)
observed experimentally from pg,t(¢l) is caused by particle
interactions (Fig. 5 and 7).

In Fig. 9(c) and (d) the comparisons are made
for two suspensions of rods of the same axis ratio
(re = 3.,96) at the same concentration (N = 50 ml—l) but with
different initial orientations; one with parallel alignment
(part c) and the other random (part d). For the initially
parallel alignment all rods were initially near k; = o°,
so that VETHEIT = 0 and TEBEEIT = 1. The oscillations of

et e e e .
151n Klland lcos Kll were also observed as 1n the

|
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case of initially random orientations; however, their
amplitudes were initially small and then increased with
elapsed time. On the other hand, for initially random
rods (Fig. 9(d)), large oscillations were observed from
the start. This may be explained as follows. In the
initially parallel case, since the rods were oriented in
a small range of ¢l (Fig. 7) and were always at C = «,
the only types of interaction occurring in the early
stages are (i)-(i) and (ii)-(ii) which produce very small
changes in Ak and AC (only of order r;2) 1). As the
spread in ¢1 increased, other types of interaction, for
example type (i)-(ii) which produces large changes in

Ak and AC (of order unity)l),.became possible. On the
other hand, with initially random rods all types of inter-
actions were possible from the beginning, so that here the
amplitude was large. This clearly indicates that the
effects of particle interactions depend upon the initial
orientation distribution.

The amplitude of oscillation in pt(Kl) due to

particle interactions was predictedl) to be of order

reNl3/in ros SO that the amplitudes of [sinKﬂ and ICOSKll
are expected to be the same order of magnitude. The
experimental amplitudes of TEIHEIT for the first 2 to 3
oscillations were found to be approximately 0.22 for

T, = 11.6 and N = 50 me~! [Fig. 9(a)], and 0.11 for

all
il

_ = 3.96 and N = 50 me” ! [Fig. 9(d)]1, which agreed well



with the predicted values of reNl3/2n r, = 0.189 and 0.095
respectively.
gimilar oscillatory changes in TEIHEIT and
nggzszere also found at all concentrations in the range
studied, among which, however, only slight differences in
changes of amplitude could be detected. The effect of
concentration on the damped oscillations of orientation

distribution is much more clearly revealed by Ei and Sij
as discussed in the next section.

(d) Effect of Concentration

The distributions of particle orientations, orbits
and phase angle were obtained for each suspension, examples
of which have been shown in the preceding sections. However
for analysis of the effects of particle concentration, the
mean projections Ei and gij defined previouslyl) were used,
among which ;2 for rods and 512 for discs were chosen since
these two quantities showed the largest amplitudes of oscil-
lation. The means 52 and 512 obtained from the measured
orientations for the initially isotropic suspensions are
shown in Fig. 10 and 11 respectively, each experimental
point representing measurements on about 100 particles.

Initially ?2 and 512 were close to 0.5, corres-
ponding to random orientations, after which, because of the
changes in pt(¢1) and pt(Ol) (Fig. 5 and 6), they underwent

damped oscillations of period T/2. The minima observed at

142
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t = T/4, 3T/4 etc. reflect alignment of the rods near

¢l = 90° and of the discs near ¢l = 0°. The amplitudes
of oscillation A(nlfy4) calculated at each quarter period

of rotation using the relation
A T/4) = |3z, [(n, + 1)T/4] * r,l(n; - DT/41} - T, /0|
[30]

and similarly for §12, are shown by the closed circles in
Fig. 10 and 11. Taking the amplitudes calculated this way
to be continuous functions of time as indicated by the
broken lines, the relaxation times T for the damped oscil-
lations of EZ and §l2 corresponding to a decay in amplitude
to 1/e of the initial value obtained from ?2 and §12 for a
monodisperse (Oe = 0) and collision-free suspension (Tables
I and II of Reference 7) were estimated graphically and are
indicated by the arrows in Fig. 10 and 11 and listed in
Table IV. It is clear that 1/T decreased as N increased.

The calculated ?20 and 5120 resulting from the
spread in Ty obtained by numerical integration of [77j—l
for collision-free suspensions are also shown in Fig. 10(i)
and 11 (i) respectively, including the amplitude calculated
from [30]. The corresponding relaxation times Ty for ;20
and 5120 obtained graphically from the plots like Fig. 10 (i)
are listed in the third row in Table IV, which are in good
agreement with the approximate theoretical values Tll/T

obtained from [95]-1 with the exception (fe = 11.6);

this discrepancy is rcasonable since at large ry
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FIGURE 10

Damped oscillations of EE (open circles) for
initially random rods (?é = 11.6) calculated
from the measured orientations at various
particle concentrations N m&™+ [(ii) to (iv)].
The calculated ?20 by numerical integration of
[30] for a collision-free suspension is shown
in (i). The amplitudec of the oscillations
shown by the closed circles are calculated by
means of [30] at each quarter of rotation, the
broken lines being drawn through these points.
The relaxation times T corresponding to the
point at which the amplitude decayed by 1l/e

are indicated by the arrows.
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FIGURE 11

Damped oscillations of 512 (open circlesi and
the amplitude (closed circles) for initially
random discs (fé = 0.2) at various particle
concentrations N me™ L [(ii) to (iv)1. The
calculated 5120 shown in (i) was obtained by
numerical integration of [77]1-1, for which the
relaxation time TO/T was found to be 4.25 which
is beyond the scale of abscissa. 1/T for (ii)

to (iv) are indicated by the arrows.
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FIGURE 12

Damped oscillations of fz for rods (?e==3.96)
at various particle concentrations N ml-l,
initially aligned along the Xz—axis are shown
by the open circles and the solid lines drawn
through these points. The solid line in (i)
gives ?20 obtained by nqmerical integration of
[9]. The closed circles are the amplitudes
calculated from [30] at each quarter rotation.
The relaxation times T indicated by the arrows

are obtained from the broken lines drawn to fit

the closed circles.
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the contribution of T, with n > 2 becomes important.

The same method of analysis was applied to ?2
for initially aligned rods (r, = 3.96) with the results
shown in Fig. 12 and summarized in Table IV. Initially
all rods had ¢l near 0° and 01 near 90° so that ?2 was
effectively unity, yet at t = T/4, ¥, was not zero since
the rods were not initially perfectly aligned in the
direction of field [Fig. 7(i)]. Thus damped oscillations
of fz were observed as the result of the initial spread
in ¢, and of the spread in r_. The calculated ?20 from
[9] is also shown in Fig. 12(i). The amplitude of each
oscillation was calculated using [30] and 1/T obtained
graphically.

According to the theory, relaxation at N > 0 is
due to superposition of the effects of the spread in ry
and 2-body collisions (which disappear at N = 0); it
follows from [88]-1 and [101]1-1 that the net relaxation

time T is given by

% = %—— + %— [31lal
11 2
which may be written by substitution from [95]-1 and
{i01lj-1
I o b, + by [31b]
T 1 2

where
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1~ — 2 [ b2 = - [31c]

It should be noted that the relationship for b2 applies
only when r, > 1, since no detailed interaction theory
for oblate spheroids and discs is available. The damping
expressed by the last term in [31b], due to 2-body inter-
actions, follows 2nd order kinetics as predicted some

years ag021).

As expected from [31l], linear variation of T/t
with N is shown for the rod suspensions in Fig. 13 where
T/TG is taken to be the value at N = 0. Applying the
least squares method, values of bl and b2 were obtained
from the plots and are listed in Table IV. The agreement
with theoretical values, especially for b,, is excellent
except for the initially aligned rods (re = 3.96). lere
a discrepancy is not surprising since b2 given by [3lc] is
validl) only when the distribution pt(¢l) does not differ
greatly from pw(¢l), which was certainly not the case.

With the discs, shown in the inset of Fig. 13,
the variation of T/t with concentration was not linear over
the range of the experiments. It follows from [31] that a
more realistic measure of concentration than N is the
volume fraction ¢ which has been used in the inset of

Fig. 13, and which with discs was 102 greater than rods

at the same N. We have no doubt that, at values of c¢



TABLE IV

MEASURED AND CALCULATED RELAXATION TIMES

AND EQUILIBRIUM PROJECTIONS

gl

a)
Quantity r =11.6 r =3.96 = 3.96 r =0.2
e e e
— b)
3. .7 .7 a.5
T1,/7 2 2 2
10/5 c) 2.4 2.6 2.3 4.3
N me T
10 - - . 1.95
20 1.5 - 2. -
/T 25 - - - 1.6
50 1.2 1.1 1.6 1.3
100 0.8 - 1.2¢ -
200 - - 0.9 -
10 11
T, D (sec) c9x10°| 1.8x 100 |1.8x 10| 2.7x10
- - -3
b, (m2) cale.® 1.2 x 163 12.7 x 1072 |12.7x 10 -
meas.f) 7.9 x 10 10.7 x 1073 3.4x 1073 -
e)
calc. 0.32 0.38 0.38 -
bl meas. 0.46 0.39 0.45 -
_ _ calc.? 0.140 0.266 0.266 0.234
26 °F 5126 | meas.™ 0.130 0.265 0.260 0.230
a. Initially parallel alignment;

b.
c.
d.
e.
f.
g.

Calculated from [88]-1.
Obtained graphically from

Calculated from [31c].
Obtained lcast squares.
Calculated from [93i-1 for

;éo and S
Calculated from [39] with Dr given

B

all other cases werc initially random.

&5”

QL

for a cnllision-free suspension.

[34].

The errvor invelved is * 0.005 for the various values of N.

2



FIGURE 13

Linear plots of T/T versus N for initially
random rods (Eé = 11.6, open circles) and for
initially aligned rods (?é = 3,96, closed
circles). The points given at N = 0 are T/TG
obtained graphically from fZU resulting from

the spread in r, for a collision-free suspension

listed in Table 1IV.

Inset: T/t versus c for initially random discs
(Eé = 0.2); the broken line for initially
random rods (r_ = 11.6) indicates the different

magnitudes of concentration used in the experi-

ments.
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comparable to those of the rods, the plots would be linear.
The deviation from linearity at high concentrations suggests
that n-body (n > 2) interactions contribute to the damp-
ing; at first sight these interactions would enhance the
damping (i.e. increase T/1) and cause the curve to bend
upwards from the ¢ axis and not to level off as observed.
The resolution of this point, however, requires more experi-
mental data and an extension of the theory of interactions.

The measured equilibrium values rz,w and Slz,m

were found to be independent of concentration (as expected)
and are seen (Table IV) to be in good agreement with %Bo
corresponding to ?20 and §120 at t = « ([98]-1 and Table IIIX
of Reference 1). This indicates that the equilibrium
obtained here corresponds to pw(¢l) with no change in distri-
bution of orbits. However a slow change in orbit distribu-
tion over several hundred particle rotations was observed by
Anczurowski et alz), which would result in slow monotonic

changes 1in r, and Sl2‘

(e) TFlow Reversal

The effects of flow reversal on the orientation
distributions of particles were observed in the suspension
of initially aligned rods (fe = 3.96, N = 10 me” 1) and are
illustrated in Figs. 7 and 1l4. As seen from Fig. 7, when

the flow was reversed at t/T = 0.95, the particle orienta-

155
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tions were approximately reproduced and restored to the
initial values at t/T = 0. The recovery was not perfect,
however, presumably because of irreversible effects due

to possible (but not detectable) sedimentation and
Brownian rotation of the particles and interparticle
attraction or repulsion, to imperfections in the flow
caused by convection currents and to other disturbances.
For example the 90% spread in ¢l at t/T = 0.5 increased
from * 55° for forward flow to + 75° for the reversal flow,
and at t/T = 0 from * 4° to * 27°.

The reversibility in the same system is more
strikingly shown by ;2 (Fig. 14) where the damped oscilla-
tion regrows on reversal and the initial conditions are
restored at t/T = 0; in negative time damping occurs as a
mirror image of the forward direction as predicted by
Anczurowski et Elz)' In a perfect experiment it should be
possible to move back and forth indefinitely with repro-
ducible decay and growth of the oscillations.. However,
because of the irreversible effects mentioned above, this
is difficult, if not impossible to achieve. We therefore
expect the system to drift to an eventual equilibrium,

E2w for example, after which no change occurs on reversing
flow. Expressed another way, the system exhibits a fading
memory. This has a number of interesting and important

implications which are discussed elsewherezz)



FIGURE 14

The change of ?2 calculated from the measured
orientations of rods (?é = 3.96, N = 10 mz-l)
showing the reversibility of the orientation
distribution in the sheared suspension. Upon
reversing flow (solid circles) the path was
retraced until t/T = 0 was reached. In nega-
tive time the damped oscillations are nearly

mirror images of the oscillations in positive

time.

Note that ?e is continuous at all points

indu&mgtﬁ7=0.l)
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4. CONCLUDING REMARKS

(a) General

Most of the details of the theoryl) of damped
oscillations of the various particle orientation distri-
bution functions have been confirmed experimentally, with
the measured relaxation times in generally good accord
with values predicted from the two damping mechanisms
proposed, the first (with a concentration-independent
rate) due to the spread in r

e and ths second (with a con-

centration~dependent rate) due to particle-particle
interactions.

We conclude by considering the possible influence
(excluded from the theoryl)) of rotary Brownian motion in
our experiments, and some consequences of the measured

orientation effects on the rheological properties.

(b) Effect of Rotary Brownian Motion

Rotary Brownian motion of the particles can of
course cause a redistribution of particle orientations in
shear flow, and is of paramount importance in determining
streaming birefringence, shear thinning and other conse-
quences of preferred orientation of anisometric particles
of colloidal dimensions where the rotary Brownian diffusion
coefficient D, is very much greater than in our experimental

systems. However, even when Dr is very small it can be
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important because of its cumulative effect with passing
time as has been pointed out by Brenner23) and Leal and
Hinch24). We wish to demonstrate, however, that it played
a‘negligible role in our experiments.

Following Boeder's theoretical analysis of
streaming birefringence of spheroidal particleszs), based
on one-dimensional rotary diffusion (with respect to ¢l),

the probability distribution of orientations ¢l at time t

is given by

o0, (P6,4;) 2%p, (P&,6,) 3
=D, s+ [P, (P&, ;) w($y)] [32]
ot 24 30,

where m(¢l) is the angular velocity of the particle in the
shear field alone given by [3]-1; pt(Pé,¢l) is distinguished
from pt(¢l) used previously and reflects the effect of

rotary Brownian motion superimposed on the shear; P€ is the
rotary Péclet number defined by Brenner23) by analogy with

its conventional use in convective heat transfer as

Pé = G/2 D. ; [33]

Dr is the rotary diffusion coefficient of the major axis

of the particle given by 26) -

for re > 1

3le

D = ——— (2 4n 2r_ - 1) [34a]
r 16ﬂnoa3 € ’
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and for re << 1:

3kT1

D_ = —3 [34b]
32ﬂnob

k being the Boltzman constant and Ty the absolute tempera-
ture. 1In the steady state at t =« , [32] is identically

zero, from which it follows on reduction and integration

that

3pm(Pé,¢l) r2cosz¢1 + sin2¢l
T + 2Pé pm(Pé'¢1)[

5 ] = k0 [35a]
re+l

where the constant of integration ko is chosen so as to

normalize pm(Pé,¢1). Using the approximation w = G cosz¢l,

valid only when re:ﬁ>l([3]—l), [35a] simplifies to

Ip,, (P€,¢,)

2
8¢l + 2Pé pm(Pé,d)l) cos cbl =k

[35b]

(o]

Numerical solutions of [35b], similar to those obtained by
Boederzs), are plotted in Fig. 15(a). In the limit P& = 0,
[35] yields the isotropic distribution (identical to [22]-1

for po(¢l))

p, (P&é,= 0,¢,) = —21? . [36]

When Pé + = (i.e. D~ 0), [35] reduced to

re
p,(Pé=w,¢,) = [37]

2 2 . 2
2n(recos ¢1 + sin ¢l)




(a)

(b)

FIGURE 15

Polar plots of V/p_,(P&,¢;) at

various P& calculated from [35b]

(ii to iv) and [36] and [37] (i
and v respectively). Note that
the angle of maximum orientation
goes from 45° at P& = 0 to 90°

at Pé = =,

Corresponding polar plots of
/p, (Pé,x) for r, = 5 calculated

from [38].
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which is identical to [102]-1 for pw(¢l).
It is interesting to note that the optical angle

of isocline measured in streaming birefringence27)

is the

angle ¢1 of preferred orientation which changes from 45° at
the limit of Pé =.0 to 90° at Pé = ». Similar behaviour is
predicted for the initial transients in a randomly oriented

system with P& = (Dr = 0), since the angle of maximum

I

pt(¢l) changes from ¢l 45° at the limit t » 0, as can
readily be shown from the relation for maximum pt(¢l)
dpt(¢1)/d¢l = 0 (see [22]-1), to ¢; = 90° at t/T = § (Fig.5)
with corresponding changes in the angle of isocline.
Although the equations of particle rotation ([4]-1
and [5]-1) are no longer valid when Dr > 0, the phase angle
¢ and orbit constant C may still be defined as before, but
now they change with time for an isolated particle. The

equilibrium distributions p, (Pé,k) can be calculated from

[35], [36] and [37] using the relation:

p, (Pé,k)dx = Pw(Pé'¢1)d¢1 [38]

and [14b]. Numerical values for r_ = 5 are shown in Fig..
15(b). It is clear from [36] and [37] that the distribution
P, (P&,k) for P& = 0 is equivalent to initially random orien-
tation ([27]-1), and p_(P&,k) for P& » » to the equilibrium
distribution p_ (k) ([103]-1). There are marked similarities
in the changes with time of the phase angle distribution

resulting from the spread in re in a collision-free suspension

A
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where pt(K) changes monotonically from pO(K) to pm(K) =1/27
(Fig. 8), and the changes with P& (at equilibrium) as it

increases from 0 to .

Leal and Hinch24) have treated the problem at
P€ >> 1 (i.e. weak Brownian roﬁégioﬁf ﬁsing a two-dimensional
diffusion equation, analogous to [32], involving both el and
by which was then transformed to a coordinate system
involving the orbit constant C and time, and in this way
obtained the steady state orbit distribution p_(C). Fig. 16
shows the values of P_(C) calculated from their equations and
compared with the experimental results obtained by Anczurowski

and Mason4) 0

(for r = 12.8) at pé = 10° (approx.), similar
to our experiments. Theoretical curves were obtained from
the exact solution for p_(C) given by [17]-24 for r, = 12.8
(curve ii), the approximate solution for ry >> 1 of [19b]l-24
(curve iii) and the Eisenschitz distribution for r, = 12.8
([28]1-1, curve iv). It is seen that the calculated values
of Pm(C) due to weak Brownian rotation (curve 1i) lie between
those obtained experimentally (curve i) and the Eisenschitz
distribution (curve iv). However the approximate solution
(curve iii) is very close to the Eisenschitz distribution
(curve iv). It is concluded that Rrownian rotation cannot
account for the equilibrium distribution P_(C) observed by
Anczurowski et 3l4). Since a spread in r, cannot by itself

cause changes in orbit constants, it is evident that in the

experiments the P_(C) was established by particle interactions



FIGURE 16

Equilibrium orbit distribution P_(C) versus

C of (i) the experimental results of
Anczurowski et 3&4) for fé = 12.8 at

N =5 x 10%me" ! (open triangles) and

N =2 x lO3mJL_l (open circles; (ii) cal-
culated from [17]-24, (iii) the approximate
solution ([19b]1-24), both due to weak Brownian
rotation; and (iv) the Fisenschitz assumption
([28]-1) of random particle orientations. The

upper scale shows orbit constants expressed as

cb2m'
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as already suggested4). Since there is not yet a theory
for the changes in orbit constants caused by interactions,
there is no a priori method of calculating P _(C). Since
shear motion of the fluid produces only an undamped oscilla-
tion in orientation distribution in a collisionless suspen-
sion, the relaxation time Ty for the establishment of
Pw(Pé'¢1) is independent of G and is therefore of the same
order of magnitude as for the pure rotational diffusion

(i.e., at G = 0), so that28)

1
Ty = #o . [39]
4 6Dr

For the particles used in the present experiments Ty
calculated from [34] and [39] are many orders of magnitude

greater than those found experimentally, e.g. for rp=:15.9

(Tatle II) Ty = 5.9 x 109 sec, whereas the observed 1 was
about 200 sec and in agreement with [31].

Recently Leal and Hinchzg)

investigated the time-
dependent viscosity of a suspension with weak Brownian

rotations and showed two relaxation processes, the first

associated with the diffusion of k with Té = (Dr -r‘zi)_l and
. . 2, -1
[ N ] "
the second with C with Ta = (Dr re) . Both T, and T, are

still very much greater than we observed experimentally and
thus cannot account for our results. The evidence of the

role of interactions in our experiments seems to be indis-

putable.



(c) Rheological Properties

Numerical values of the rheological properties
of the suspensions can be calculated from the measured
orientation distributions, using the equations given in
the preceding Chapterl). Examples of oscillatory changes
in the intrinsic viscosity [n] and the intrinsic normal
stress difference [523] = (P22 - P33)/nch using [48]-1,
[501-1, [72]-1 and [73]-1 are illustrated in Fig. 17. Like
EZ and other measures of orientation the rheological pro-
perties are predicted to undergo damped oscillations of
frequency 2/T until [&23] = 0 and [n] assumes a constant
value independent of G, i.e. the systems pass through
transient non-Newtonian regimes until they become truly
Newtonian, with all of the rheological parameters calcul-
able from first principles.

The effects of a spread in r, were calculated by
the numerical integration of the mean orientation parameters
using the probability distribution po,t(61’¢l) given by
[75]1-1; these are shown by the solid lines in Fig. 17.
The points calculated from the measured orientations were
in good agreement with the calculated [n] and [523] in the
early stages of shearing, but began to deviate around
t/T = 1, because of particle interactions as demonstrated
earlier by the various orientation parameters.

Anisotropy of particle orientations induced by

flow, or any other mechanism, will cause anisotropy in the
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FIGURE 17

Changes in intrinsic viscosity [n] for rods
(fe = 11.6, N = 50 ml_l, part a) and for
discs (?e = 0.2, N =25 ml_l, part b) esti-
mated from the measured orientations by means
of [72]1-1 and [48]-1 respectively. Intrinsic
normal stress differences [€23] for the same
suspensions are given in (c) for rods and (&)
for discs estimated using [{731-1 and [501-1
respectively. The broken lines are drawn
through £he points. The calculated values
using po't(01,¢l) given by {751-1 and the
measured O (Table II) are shown by the solid

lines.

|
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viscosity which can be revealed by changing the orienta-
tion of the field of shear flow. As two simple examples,
we consider the effect of rotating the field of shear flow
about the vorticity axis (Xl) through 45° and 90° as
illustrated in Fig. 18, in a monodisperse collisionless
suspension of r, = 10.0. Assuming that in the original
flow equilibrium distribution of orientations pw(¢l) and
the Eisenschitz distribution of orbits pE(C) were estab-
lished, [n] is calculatedzo) for the original flow in

which it remains constant at 3.3 (line i). Stopping the
flow, and rotating the flow field but not the particles
about the vorticity axis and then resuming flow, [n] will

be changed and undergo an oscillation of frequency 2/T.

For the flow along the Xzfaxis, [n] (line ii) is initially
almost the same (curve iii) as the equilibrium value for

the original flow, and then increases to [n] = 10.2. On

the other hand, for the flow with 45° rotation, [n] is
initially very high (8.6), since the maximum probability

is directed 45° to the flow direction the orientation at
which rods make their maximum contribution to the viscosity.
In a real system, however, with particle interactions and/or
rotary Brownian movement these differences in [n] would
disappear in time and assume equilibrium values independent
of the orientation of the shear flow. Such anisotropy of
viscosity in solutions of extended macromolecules may be one
cause of drag reduction and turbulence suppression obscrved in

many dilute polymer solutions30).
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FIGURE 18

Effect of rotation of shear flow about
vorticity axis on calculated intrinsic
viscosity for an initially random colli-
sionless monodisperse suspension of spher-
oids (re = 10) which has been allowed to
assume the equilibrium pw(¢l) in the
initial flow (i). Details of calculation

are given in reference (21).

J
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CHAPTER IV

THE MICRORHEOLOGY OF RIGID SPHEROIDS

IN SHEAR AND ELECTRIC FIELDS
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ABSTRACT

A general theory for the rotation of a single
ellipsoidal particle without Brownian motion in a flowing
dielectric Newtonian fluid subjected to an electric field
is developed. The particle experiences hydrodynamic and
electric torques, the latter resulting from permanent
and induced polarization of the particle, which cause the
particle to rotate in a manner which depends upon the
relative magnitudes of the two torques. Demetriades'
analysis of the motion of a dielectric spheroid in a simple
shear (Couette) flow and an electric field normal to velocity
and vorticity vectors is a special case of the theory.

The distribution functions of particle orientations
in a dilute monodisperse and collision-free suspension of
dielectric spheroids subjected to shear and electric fields
are calculated for transient and steady states. When the
electric field is below the critical value (so that particles
execute complete rotations about the vorticity axis), the
orientation distribution function for an initially randomly
oriented spheroid is an oscillating function of time. Above
the critical field, when the particles no longer execute
complete rotations, the orientation distribution changes
monotonically with time. The significance of particle
orientations to suspension rheology is discussed with parti-
cular reference to viscosity enhancement due to the electric

field, and to the development of transient and permanent

-
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normal stress differences and other manifestations of non-
Newtonian behavior. The extension of the theory to the
case in which an electric field is replaced by a magnetic

field is briefly considered in the appendix.
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OF SYMBOLS

semi-axes of an ellipsoid

major and minor semi-axes of a spheroid
function of ry defined in [17]

magnetic induction of the applied field

tensor representing the point force
doublet

volume fraction of particles in

suspension

spherical elliptic orbit constant
integration constants

coefficients in stress equations
external electric field; electric field
inside a particle

critical electric field defined in [37]
dimensionless parameter defined in [30]
arbitrary function of el,¢l
velocity gradient

external magnetic field; magnetic field

inside a particle
Jacobian
modulus of elliptic integrals

dielectric constants of isotropic and

anisotropic particle; that of fluid

complete elliptic integrals of the
first and second kinds

permanent dipole moment per unit volume
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=

=

Py (2,n)
pm(qsl), Pw(¢1)
Pt(n)

P(q,re)
q, qij
Q(re)

S. .
1]

S.. (i#j = 1,2,3)

1]

T, Tl, T2; T3
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functions defined in [55], [68] and [71]
magnetic moment of a particle

number of particles per unit volume
of suspension

fluid pressure

permanent and induced polarization per
unit volume

total, permanent and induced dipole
moments of a particle

stress tensor for medium and suspension
intrinsic viscous and electric stresses

probability function of n = 61,671,659,
two~-dimensional probability function of
L, = el'(bl; 621¢27 CO' K]_; COIKC; C,k .
steady state probability and distribution
of 91

cumulative distribution function of
no=8;,0;,8,,0,

function of g and ry defined in [19b]
dielectric or permeability ratio
function of Ty defined in [19a]
distance from the center of a particle

mean projection length of unit axis

length of prolate spheroids and rods
axis ratio of a spheroid (= a/b)
component of the rate of strain

mean projection area of unit equatorial

area of oblate spheroids and discs

period of rotation at £=0, f2 <1,

© > f2 > 1; characteristic time when G=0
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X.,x! (1 =1,2,3)

Yyr¥y,¥y

ai’Bi'Yi (i=1,2,3)

crit.
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total fluid velocity; disturbance
velocity

Cartesian coordinate axes relative to
shear and electric fields, and relative
to the particle axes.

functions defined in [85c], [85d] and
[85e]

elliptic integrals given by [6], [73c]
and [73d]

Kronicker delta
Dirac delta function
permutation symbol

total, hydrodynamic, electrostatic and

magnetic torques

components of fluid vorticity
viscosity of fluid and suspension
intrinsic viscosity of suspension

Eulerian angles of particle axis

(polar axis Xl)
phase angle of ¢1 of a rotating particle
integration constants

magnetic permeability of fluid and

particle
function defined in [49]

intrinsic normal stress difference of

suspension

induced magnetic dipole moment per

unit volume

critical orientation angle
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¢lw; ¢iw’ ¢£m = steady orientation at EO > Ecrit7
stable and unstable values

Xi XqrXprX3 = functions defined in [50] and Table II

Wl, WZ | = functions defined in [47] and {58c]

we (i=1,2,3) = spins of particle about X

NOTE:

Symbols with prime superscripts indicate values relative to

xl

ir excepting ¢iw and ¢'Ew‘
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1. INTRODUCTION

The macroscopic rheological properties of sus-
pensions are determined by the microrheological behavior
of the individual particle under given conditions of flow.
In this Chapter we consider suspensions of spheroids in
which external electric fields are superimposed on shear
fields thus generating electric torques on each of the
particles and affecting their individual rotations and,
in turn, the orientation distributions and rheological
properties of particle assemblies. The theory serves as
a framework for the experimental studies of orientation
distributions in suspensions of rods and discs described

1)

in the following Chapter and is an extension of earlier

theories of particle rotation by Demetriadesz), Allan and

3) 4)

Mason™’, Chaffey and Mason

and of viscosity by Chaffey
5,6) {

and Mason , under similar conditions.

We present a generalized theoretical analysis of
the rotational motion of neutrally buoyant rigid ellipsoids
in a general viscous Newtonian flow and a unifiydm and
parallel electric field. The particles may be anisotropic
in their electrical properties and may have permanent dipoles
directed arbitrarily with respect to the particle axis, but
are assumed to have no Brownian motion. Exact eguations are
derived for the specific case of rotation of a single spheroid
with no permanent dipole in a simple shear (Couette) flow

with an electric field perpendicular to the velocity and

vorticity vectors of the macroscopic fields, which are then
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used to obtain the orientation distribution functions in
dilute suspensions. Probability distribution functions
of particle orientations in transient and steady states
are calculated using our earlier scheme of analysis for
shear alone7). Rheological properties of dilute suspen-~
sions such as the intrinsic viscosity and normal stress

differences are then calculated from the orientation

distribution functions.

2. SINGLE PARTICLES

In this section, we discuss the rotational motion
of a single rigid ellipsoidal particle suspended in a
dielectric (i.e., non-conducting) viscous incompressible
fluid undergoing creeping flow in an externally applied
electric field. First we consider the hydrodynamic torque
on the particle in a general viscous flow, and then the
electrostatic torgue in a uniform electric field. Setting
the sum of the two equal to zero as the condition for
mechanical equilibrium of the particle, we calculate its
angular velocity in the combined hydrodynamic and electric
fields. Whenever convenient the equations in the following
two sections are expressed in either vector or vector com-
ponent form in which summation over a repeated subscript

index is understood and each component is obtained by cyclic

permutation of indices.
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(a) Hydrodynamic Torque on an Ellipsoid

We assume that the ellipsoid (with semi-axes
ayr Ay a3) is rigid and suspended in a neutrally buoyant
condition in a viscous Newtonian fluid undergoing creeping
flow, and employ moving Cartesian coordigfites xi (i=1,2,3)
with axes coinciding with the principal axes of the ellip-
soid. The undisturbed fluid motion may thus be expanded as
a Taylor series in xi, there being no constant terms indepen=-
dent of x! if it is assumed there is no external force on
the particle; even if there is an external force on the
particle, the only effect that this would have would be to
translate the particle, there being no effect on its rotation.
Assuming that the particle is so small that quadratic term in

xi may be neglected, the undisturbed flow may be written in
the form

u! = s!

'xt o+
i i3™7g

1] 1
€54k 5% (1]

1]
rate of strain and vorticity of the fluid at a position

where ui, s!. and Zgij are the components of the velocity,

r' = (xi, xﬁ, xé), and gijk is the permutation symbol.
Throughout this Chapter a prime superscript indicates that

the quantity is given relative to the xi—axis, unless other-
wise stated. If we consider that the fluid undergoes creeping
flow, the equation of motion is the linearized form of

Navier-Stokes equation:

novzgv - Vp =0 [2]
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FIGURE 1

Generalized coordinate systems Xyr Xyr Xg
and xi, xé, xé, and Eulerian angles el,

¢l’ wl of an axis of an ellipsoid.

Coordinate systems for the axis of revolu-
tion (heavy line) of a spheroid for the
specific combination of shear and electric
fields considered in the detailed

calculation.

—



(a)

(b)

188

\/

ug = GX,




183

with the equation of continuity:
Ven' = 0 [3]

where U and p are the viscosity and pressure of the sus-
pending fluid respectively. When the ellipsoid is placed
in the fluid flow, it rotates with the angular velocity w'
(to be determined) and produces a distg@bance flow in the
neighbourhood of the particle which may be obtained as the
solution of [2] and [3] with the boundary conditions that
the fluid velocity reduces to [1l] at large distances from

the origin, while satisfying the no-slip condition
w' = xx (4]

on the particle surface x'2/a2 + x'2/a2 + x'2/a2 = 1. The
1 1 2 2 3 3
disturbance flow so obtained may then be used to calculate

the force per unit area acting on the surface of the ellip-

soid and hence the hydrodynamic torque Pﬁ:

Sﬁk rLl- wg} [5]

which is equivalent to [36]-8% and where o, is the elliptic

2 2 2
+ ~ -
' l61mo(aj ak) ra] a
T =
Hi

2 2 2
3(ajo¢j + akuk) aj + a

A NE N

integral defined by

(5]

] =I 2 2 = 7) 3 : (61
o (ai + A) /T;i + A)(a2 + )\)(a3 + A)

% Designating Equation [36] of Reference (8).

A



1380

If there is no external torque to balance the
hydrodynamic torque, then the resultant couple on the
particle must vanish at every instant. Thus the angular

velocity @' of the particle is obtained by writing Pﬁ = 0.

—_—

If however the particle is subjected to an external force
field, the hydrodynamic torgue must be balanced by the
external torque for steady motion of the particle. This

is treated in the next section.

(b) Electrostatic Torque on an Ellipsoid

We now consider an ellipsoidal particle suspended
in a homogeneous isotropic fluid of dielectric constant K2
under the influence of a uniform and parallel external

electric field of strength Eé. Since the absolute electro-
static system of units (e.s.u.) has been employed in previous
3,4)

publications™’ from this laboratory, we continue to use the

same system instead of the rationalized MKS units used by
others cited later.

If the dipole moment of the ellipsoid above that
which would exist if the ellipsoid were replaced by the

suspending medium is P', then the electrostatic torque T

E
acting on the particle is given by
! — ? 1]
g =R X Ep (7]

Fé, 2' and Eé being relative to the xi—axis defined in the
ag Las)
previous section., The dipole moment P' consists of two

parts: (i) that due to the permanent polarization of the
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particle (denoted by Ei) and (ii) that due to induced

polarization (denoted by Pé), so that
=<m

-— 1
Eﬁ = E} X Eé + Eé X Eé [8]

By definition the permanent dipole exists in the
absence of the external electric field, and is a consequence
of the structure and orientation of molecules which consti-
tute the material of the particle. Also included in Ei_is
the polarization induced by the internal field produced by
the permanent dipoles. If Eﬁ_is the permanent dipole moment
per unit volume of a particle and these dipoles are assumed
to be uniformly distributed inside the particle and are all
aligned parallel to one another in a given direction (not
necessarily in the direction of particle axis), the total
moment is given by multiplying by the volume of the particle,
i.e.

it '

p! = a;a,a, p . [9]
P17 3 1283 B

In the theory of electrical birefringence (the

o)
Kerr effect)”lo) and of electrical streaming birefringencell)

of macromclecular solutions, the permanent dipole is assumed
to be a point dipole situated at the center of each molecule.
Therefore the electric torque on this dipole is given by the
cross product of the dipole moment and the electric field
inside molecules. However under the present more realistic
assumption of uniform permanent polarization, the electric

torque on the permanent dipole is given by the cross product
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of the dipole moment Pi and the electric field Eé outside
P ()

the particle as given by [8].
The induced dipole moment of a homogeneous di-

electric ellipsoid in a dielectric medium can be evaluated

12) and Jonesl3). In

using the analysis given by Stratton
general a particle which is electrically anisotropic has

six independent components Kij (= Kﬁﬁ of dielectric constant
relative to the xi—axis. However for simplicity we assume
in the present theory that the dielectric constant has only
diagonal components, so that Kij = Ginij' sij being the
Kronecker delta. The earlier theoretical analyses by

2) 4)

Demetriades and Chaffey and Mason assumed that particles

. . . r ot o
were isotropic (i.e., Kll =K = K33).

22
13)

Jones has shown that the electric field inside

an anisotropic ellipsoid E; is, in component form,
(=]

El, = El; [1+ laja,ag(aly - 1)a,17t [10]
where qii = Kii/Kz' the dielectric ratio of the particle to
that of medium, and oy is defined in [6]. The effective
induced dipole which must be used to calculate the torque
on the particle is equal to the polarization of the particle
itself minus that of the suspending medium which would occupy
the same volume as the ellipsoid if it were absent. Hence,
from the definition of polarization, the effective induced

polarization per unit volume pé of the ellipsoid relative to
=]

the xi—axis is

|
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2
) o 1 1)
Pyi = 7 (g!, - 1) E!. . [11]

Therefore the induced dipole moment of the ellipsoid Pé

-~
above that which would exist if the particle were replaced

by the suspending medium is obtained from [10] and [1ll] as

1 -1
P!. = T a,a.a Kz(qi. - l)Eéi[l + gal 2a3(q - 1)ai] . [12]

Substituting [9] and [12] into [8] yields the total electric

torque acting on the dipolar ellipsoid:

K. (g'.-1)
v _l‘. 2 J3J ' 1
Thi =3 ala2a3e [4TrplJ okt i ( 5 EOJEo 1. [13a]
2123q %y

It is readily shown that if the particle has no permanent di-
ole (P! = 0) and is isotropic (K!. = K, = K., = gK q being

P ! 11 22 33 2"

the dielectric ratio), then [1l3a] reduces to the result given

by Chaffey and Mason4):

1 L]
1 o ok
€..
ijk

ri. =

pi ~ 3 21883 Kpla - D) [13b]

+
1 ga a2a3(q 1)aj

(c) Angular Velocity of an Ellipsoid in Shear and Electric
Fields

When the ellipsoid is subjected to viscous flow and
an electric field simultaneously, the total torgque acting on
it is given by the sum of the hydrodynamic and electrostatic

torques: £: = T' + I''., If the particle is free to rotate,
(=) (=)



I'' must vanish. Equating the sum of [5] and [13a] to zero
yields the angular velocity mi of the ellipsoid relative to
the xi—axis:
2 2 2 2
ot = a, - a; ot s ala2a3(a2a2+a3a3) PN
172, 2°%3"% Lo (a2 + a2) P12%3 ~ P13Fqn
ay + aj m (aj + a3
[14a]
v LS
K2(q22 1) K2(q33 1) o
+ - E02E03 !
1 v 1 L.
1+ ga.laza:‘](q22 l)on2 1+ 2a1a2a3(q33 l)cn3
a2 - a® a.a.a. ( 2 + 2 )
o= 3%, PP A i i Bl b 4m(pt B~ pl.E')
252, 2 w2t T T P13%17 P11%3
373 Mglag * a2y
[14b]
[ |-
Kylaz;-1) Kolay - o
* - Esafor] -
a [ 1 v
1+ galaza:s(q33 1)0(.3 l+2ala2a3(ql:L l)CLl
a2 - a2 a.a,a (aza -+a2a )
w':l 2S'+c'+123ll 22 an(p!.E'_=-p!.E'.)
3 2+ 2 12 3 16 (2+ 2) 11702 12701
al a2 'ﬂ'l’]o al a2
[ldc]
] - L
Kplay - 1) Kolay, - 1) oo
+ - EL1Bgo | -
1 [ 1 [
1+ 2a1a2a3(qll 1)0Ll l+2ala2a3(q22 l)on2

Téking the axes X147 Xoy X3 as fixed in space with
the origin coinciding with the center of the ellipsoid, the
orientation of the particle may be defined in terms of the
Eulerian angles 61, ¢l’ wl giving the orientation of the
xi, xé, x§ axes in the conventional way (Fig. la). The time

rates of change of these angles are then related to the
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components of angular velocity of the particle by

del

4% - wésinwl + wécoswl . [15a]
d¢l )

=5 = (m551nwl - wécoswl)cosecel ’ [15b]
dwl

e wi - (w531nwl - wécoswl)cotel . [15¢]

Substitution of [14] into [15] and integrating [15] gives the
variation of particle orientations 61, ¢1, wl with time. 1In

general these integrations cannot be performed analytically;

in view of this several examples of limiting cases are now

considered.

(1) Isotropic spheroid with permanent dipole

If the particle is a sphercid (al =a, a, = a = b)

of axis ratio Ty (= a/b), then the elliptic integral o, may

5)

be evaluated as

6, = —>— (1 - A), Gy = Gq = —2 [16]
1 b3 2 3 b3
Te Te
where
ri recosh—lre
A = - for r_ > 1 [17a}
2 2 ..3/2 ! e
re 1 (re 1)
recos_lre ri
A = - ’ for r, <1 [17b]

il
=
°

A= 2/3 R for ry [17¢]
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If, in addition, we consider an isotropic spheroid
of dielectric constant ak, and with permanent dipole parallel
3 3 1 - 1 — L] _—
to the axis of revolution (p11 =M, Pjy = Py3 = 0), then the

angular velocity wi given by [14] becomes

wi = Ci ’ [lsa]
2

1 -re mQ(re) 2K2P(q,re)

o' = s' +¢! « —2—E' 4+ ———"_E'_E' ‘ [18b]
rz+ 1 31 2 Ny o3 N 03 0ol
2
r - 1 mQ(r ) 2K2P(q,re)

w! = st o+t + B' - ——————E' E' , [18c]
r§+l 12 3 n, 02 g ol o2

where the parameters mQ(re) and P(q,re), which reflect the
effect of the permanent and induced polarization respectively,

are defined by

2r2 + (1 - 2rd)a
e e

Q(r ) = 12 [lga]
e 4(r§ + 1)
2
(38 - 2) (g - 1) %0(r,) °
Plarry) = gi T (q- DA (G =DE = g} [19b]

(ii) Couette flow and electric field parallel to the

X,—axis
=2

We now consider the fluid flow to be Couette flow

To
defined, relative e the xi—axis (Fig. 1b), by
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u, = 0, uy = Gx2 . [20]

Since a, = a; we can chooée wl = 0 without loss of generality

and thus simplify the calculation of the rate of strain sij
and vorticity Zci which become

. 2 . 2 .
- L
Zsll = Gsin 91s1n2¢1 ’ 2s22. Gecos 61s1n2¢1 '
' = - i ' o= 'o= i i
2533 G51n2¢l ’ 4512 4521 Gsin26 ls:Ln2¢l '
[21]
! = ! = ! = ' = i
2523 2532 Gcoselc052¢l ’ 2513 2531 G51n61c052¢1 '
' = ' = o i ' =
22;1 Gcosel ’ 2;2 Gs:.nel ’ 2§3 0 .

Of special interest is the case, corresponding to

the usual experimental arrangementl’3’5), in which the electric

field is parallel to the xz-axis (Fig. 1b), so that

Eol = E03 =0 ! E02 = Eo ' [22]

and relative to the x!-axes,

i

Eél = EO cos¢lsin61 ,

Eéz = EO cos¢lcosel ' ’ [23]
Eé3 = - Ej sin¢>l .

Substitutions of [21] and [23] into [18] and then into [15]

yield the rotation of the spheroid:
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del G(rz -1 mQ(re)
= > sin2¢lsin28l + Eocos¢lcosel
dt 4(re + 1) N
[24a]
K P(qg,r )
2 e 2 .
e Eocos qbls:.nzel ’
d¢, G 2 2 mQ(xr )
_—= (r cos™¢. + sin“¢.) - E_singcosech
2 e 1 1 o 1
dt r 4+ 1 n
e o
[24Db]
K.P(g,r )
2 e .
+ ——n—— Eos:Ln2q>l .

(e}

It should be noted that the angular velocities
del/dt and d¢l/dt due to shear (the first term on r.h.s. of
[24]) depend linearly upon G, while those due to the permanent
and induced dipoles vary linearly with Eo (thus depending upon
the polarity of the field) and Eé (independent of polarity)
respectively. The effect of the induced polarization in an
alternating field of frequency much greater than G is the same
as that in a steady field except that Eg is replaced by the
root mean square value of the electric field. On the other
hand in an alternating field of frequency much greater than G

permanent polarization has no effect since the mean field

It is also interesting to note that, from [18a], the

axial spin wy of the particle:

il

N QY

cosel [25]
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is independent of E, s except insofar as it affects 61
This is the result derived by Jeffery8) for the motion of
spheroids in Couette flow alone, and confirmed experimentally

with rods by Forgacs and Masonl4).

(iii) Properties of A, Q(r ) and P(g,r )

Since A > 0 over the range 0 < r, < « as is evident
from [17]1, it follows from [19a] that Q(re) is zero at the
extremes of ry and otherwise positive as shown in Fig. 2,
passing through a maximum (= 0.169) at re = 0.842. Near the

extremes of ror A and Q(re) can be approximated as follows:

for r, << 1 A= wre/z ’ Q(re) = ﬂre/S ’ [26a]
for r > 1 A=1 . olxy) =1/4 52, [26b]
when r_ = 1 A= 2/3 R Q(re) = 1/6 . [26c]

Three-dimensional plots of numerical values of
P(q,re) versus g and r, are shown in Fig. 3 where it is seen
that P(q,re) is positive for ry < 1 (part a), negative for
ro > 1 (part b), and identically zero at ry = 1 and/or g = 1.
It is evident that when g = 1 there is no net induced polari-
zation so that the external electric field does not affect
the rotation of the particle if it has no permanent dipole.
When the particle is spherical (re = 1), the induced polari-
zation is always parallel to the electric field, so that there
is no electric torque. Since Q(re) = 0 at ry > 0 and <,

P(q,re), in general, also vanishes when r, > 0 and o,



FIGURE 2

Log-log plots of A and Q(re) X 102

versus Ty- When Ty = 1, A = 2/3 and

when e ”*, A asymptotically approaches

unity. Q(re), which is unsymmetrical
with respect to loglore = 0, exhibits
a maximum (= 0.169) at ro = 0.842; at

the extremes of re==0 and «, Q(re)==0.
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except at the limits g - 0, . In the former case, [19Db]

yields

(3a - 2) Q(re)
lim P(q,re) = [27a]
q+0 8t A(A - 2)

from which P(0,r ) = 1/32m at r_ = 0 and P(0,r_ ) =0 at r_=o
e e e e

On the other hand if g + =, which is equivalent to suspending
an electrically conductive particle in a dielectric medium

(and corresponding to the experiments described in the

following Chapterl)), [19b] becomes

(33 - 2) Q(x,)
lim P(q,re) = [27b]
8m A(A-1)

g

from which P(w,re) = 1/1671 at v, = 0 and P(w,re) = =1/16m at
r, = . P(q,re) for g = ©» has a maximum (= 2.04 x 10-2) at
r_ = 0.093, and a minimum (= -2.34 x 107%) at r_ = 10.4, as

4)

noted previously .

The parameter P(q,re) is equivalent to
Bu/{Ay(a2 + bz)ew} in Demetriades' notationz) but differs by
the factor 4m since we have used e.s.u.; thus [24] for the
case m = 0 is equivalent to his result.

However for particles with permanent dipoles all
terms in [24] must be used. We cite, as an example, the
evidence of permanent dipoles in platelets of guanine recently

Observed : 15) . . :
ekkained in this laboratory . It is also interesting to

16)

consider electrets (the electrical equivalent of permanent



FIGURE 3

Three-dimensional plots of P(q,re)
versus q and ry for ry < 1 (part a)
and for rg 2 1 (part b fcr which the
axis of P(q,re) has been reversed
because of negative values). Since
P(q,re) = 0 for g = 1 and/or r, = 1,
the lines at constant r  pass through
zero minima (re < 1) and maxima (re:>l)

at g = 1.
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magnets) and ferroelectric particlesl7’18) with electrical
properties analogous to ferromagnetism, such as Rochelle

salt, for which the permanent dipoles may be so large that
the induced dipole in the particles may be neglected; in

this event the angular velocity will be given only by the

first two terms on r.h.s. of [24].

(d) Motion of Spheroids

In this section we describe the rotation of a
spheroid with no permanent dipole in shear and electric
fields in order to derive relations for the orientation
probability distributions and rheological properties in
suspensions in the following section. Writing m = 0 in [24]
gives the two basic equations from which the variations of

61 and ¢1 are obtained for various combinations of Eo and G.

(i) General

Integration of [24] for m = 0 yields4)

Cr -K P(q,r )
tanf, = TR 20 < T~exp{ 2 = Eit] ., [28a]
. . 2
(recos ¢l+51n ¢l-fre51n2¢1) Ny
tang, = r /1 - £2 tan(ZE 4 ) + £r , [28b]
1 e ’I’l 1 e

CO and Ky being integration constants, T, the period of one

rotation about the X;-axis given by
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T=___£.TT——.(I' +r_l)

[29]
14
1 G Gﬁj}i e e
and £, a dimensionless quantity which appears frequently in
the subsequent equations being defined by

_ 2,.2

K?_P(q,re)Eo(re + 1)

£ = ] [30]
Gn

ofe
so that £ > 0 for Ty >1 and £ £ 0 for re < 1.

The solutions of [28b] and [29] are real only for
f2 < 1, in which case it follows that the spheroid rotates
periodically so that the projection of one end of the particle
axis on the x2x3—plane describes an elliptical spiral. This
is shown schematically in the middle of Fig. 4 where the
particles are represented by rods for Yo > 1 and by discs
for r, < 1; the similarities between the rotations of spheroids
and cylinders will be discussed laterl). It is seen from [28a]
that the particle drifts toward 6, = m/2 for r, > 1 and 6 = 0
for Iy < 1 when t -~ ®. 1In other words, the axis of a prolate

spheroid (re > 1) and the eguator of an oblate spheroid

(re < 1) will lie on the x2x3—plane at equilibrium.

(ii) Impeded rotation at and above the critical field
(£2 > 1).

It can be seen from [28] that as f2 increases the

effect of the electric field on the rotation increases until

f2 = 1, corresponding to the critical electric field Ecrit ,
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FIGURE 4

Schematic diagrams of the orbit of one end of a rod

(representing

L a prolate spheroid, ry > 1) and a

disc (oblate spheroid, ry < 1) projected on the

x2x3—p1ane.

TOP :

MIDDLE:

BOTTOM:

Curve 1 - rotation in an electric field (G=0).
When re > 1 the axis becomes fully aligned in
the direction of EO; when T < 1 the equatorial

plane becomes aligned in the field direction;

cf. Table I.

Curve 2 - spherical elliptical orbit in a shear

field alone (EO =0, £ =0).

Spirz2! paths at Ej < E (0 < f2 < 1).

crit.

Rotation toward the steady orientation ¢{m at

2 .
EO > Ecrit. (£ > 1), and the counter rotation
3 3 ] 121 —_— 121
in the region ¢lw < ¢lw < ¢lm = ¢ 1o when
E =E (£2 = 1).

o crit,
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at and above which the particle can no longer execute a
complete rotation about the vorticity axis; the period

of rotation Ty then becomes infinite or imaginary. Instead,
the particle will eventually assume steady orientations

el = elw, ¢1 = ¢1w at which del/dt = 0 and d¢l/dt = 0 and

[24] reduces to

sin ZGlm =0 ’ [31la]
tan2¢ - 2fr_tan¢ + r2 =0 [31b]
1w e 1l e *
From [3la]
elm =0 or m/2 . [32]
It is evident from [28a] that elm = 0 for ry < 1 (except

for particles with &, = m/2 initially which rotate with

61 = /2 at all times), and 610o = /2 for L > 1 (except for
particles with el = 0 initially which spin with Gl = 0 at all
times). The solution of [31b] yields two values of ¢, , for

f2 > 1, one stable and the other unstable3), designated

respectively ¢iw and ¢i; (note that these are not relative

to the xi—axis) given by

¢, = tan T [r (£ - /£ - 1)]

' [33al

1

o1, = tant [r_(f + V/ TS [33b]

If the spheroid has an initial orientation

¢fm =T < gy < ¢iw' integration of [24b] for m = 0 yields



210

- _ =2 _ 21t
tamb1 = re £ 1 coth(—fg + KZ) + fre [34]

where Ko is an integration constant and T2(= /- Ti) is the
absolute value of the imaginary period of rotation T, given

by [29]:

T, = (r +r . [35]
27 GfZ-1 e e

The particle thus rotates toward increasing ¢q (i.e., in the
direction of flow) until it reaches ¢; , as shown at the bottom
of Fig. 4.

1f, on the other hand, the initial orientation is
between ¢iw and ¢fm it rotates counter to the flow (Fig. 4

bottom), the motion then being given by

tancbl = -1y /£ 2-—1 tanh (3124- 2) + fr . [36]
Ty
The condition f2 = 1 corresponds to the critical

field which from [30] becomes

2 _ -r n G

ES . = | 8 {371
crit. K P(q,r )(r +-l)l

Integration of [24b] for f2 = 1 yields

—(ri + 1)

tan ¢l = —G?—’*-T——— + re [38]
(o

the minus sign being for T < 1 and the plus for ry > 1.

J
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The notation that the upper and lower signs refer respec-

tively to r, < 1 and ro > 1 will be used throughout. When

£2 = 1, ¢iw and ¢£m coincide at ¢crit found by setting

t > o in [38]:

_ - -1
¢crit. = + tan re . [39]

For all values 1 < £2 < w the variation of el is

given by [28a], thus showing that when t »+ «, el + w/2 for
prolate spheroids (re > 1) and el + 0 for oblate spheroids
(re < 1) as mentioned before. It should be noted from [25]
that when ro > 1 all rotation ceases (wi = wé = wé = 0) at
equilibrium (t = ), whereas when ro < 1 the particle has an

axial spin wi = G/2 with wé = wé = 0. At equilibrium ¢l for

ry < 1 becomes indeterminate, however ¢iw and ¢ given by

crit.

[33a] and [39] for r, <1 give the direction of the asymptote
along which the particles approach 61 = 0 as shown at the
bottom of Fig. 4.

Equations [28] to [39] are equivalent to the
equations derived by Allan and Mason3) and Chaffey and Mason4)°
Good agreement with most of these equations was observed
experimentally with single discsl’4) and rodsl’3)°

It is interesting to consider two extreme cases:
£ = 0 corresponding to either E, = 0 (shear alone) or ro=1

<

and EO 7 0 (spherical particles in shear and electric fields)

and G = 0 (electric field alone); we do this below.
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(iii) Rotation in shear flow (f = 0)

Here the rotation is periodic as shown by inte-
grating [24] for E, =0 to give Jeffery's solutions) as
listed in Table I, where the integration constants C and «
are the orbit constant and phase angle respectively. It
should be noted that these equations can be also obtained
from the general solution [28] by setting £ = 0. In Couette
flow the axis of a single spheroid rotates in a periodic
manner in a fixed spherical elliptic orbit (Fig. 4 top)
whose ellipticity is determined by C7’8). The limiting
orbits C = = » and 0 respectively correspond to (i) rotation
of the particle axis in the X, X3-plane (9l = m/2) and (ii)
aligned parallel to the xl-axis (el = 0) so that the particle
spins with angular velocity wi = G/2 (cf. [25]). Experiments

14,19)

with single rods and discszo) have shown excellent

agreement with Jeffery's equationsg)

(iv) Rotation in an electric field (G = 0)

The rotational motions obtained by integrating [24]
for m = 0 and G = 0 are listed in Table I, where CE and Kg
are constants of integration which vary from - « to + «, and

are determined by the initial orientation. The equilibrium

orientations, found by setting t - «, are

[

C
= £ -
for r <1 elm = T exXp Kp, ¢lw = 7/2 ’ [40a]
for r > 1 elw = m/2 , ¢lw = 0 . [40b]
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TABLE I

Equations for Rotation of Single Spheroids
at Various Values of £

CONDITION tan¢, tané,
a)
£f=0 Cr
retan( E%E_+ K) > & T
- . 2
(Eo = Q) (recos¢l+ s:.nd)l)
0< f2 < lb)
Eqg. [28Db] Eq. [28a]
(Eo< Ecrit.)
£ = 1P
Eq. [37] Eq. [28a]
(Eo crit.)
2 b) " 1
£ > 1 P = T < 0 < 6yt Eq. [33] Eq. [28a]
(Eo:'Ecrit.) ¢im<< ¢y < ¢£; : Eqg. [35]
b,c) 21t CE Tt
G=0" exp [+ — + «_] ———— exp [t —1]
Ty E /sin2g, 3
T = 21 (r_ + r.Y)/G; T, = |mn_/{K.P(q,r )E2}| ; T, and T
e e 7 3 of WP il Bl F 2

are given by [29] and [35] respectively and are related to T

by T/7, = /1 - £% and T/T, = €2 - 1.

a) Solutions for ¢l and 6_ correspond to [48]-8 and [49]-8.

1
b) Solutions correspond to [281-4, [34]1-4, [35]-4, [36]-4, [39]-4 and
[40]1-4.

c) Solutions correspond to [18]1-3; upper sign for r, < 1 and lower

for r > 1.
e
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These motions are schematically shown at the top of Fig. 4.
Since the electric field is applied along the
xz—axis, it is more convenient to use the angles 65/ ¢, (i.e.

the xz-axis as a polar axis as shown in Fig. 1lb). Using the

transformations:

cosez = sinelcos¢l ’ tan¢2 = tanelSin¢)l ’ [41]

The equations of particle motion listed in Table I become

2 3 2 K

tané, = (67 + exp KE)Q - exp [t ;z + 7;] ' [42a]
E
c K

tan¢, = 7? exp (7§) ’ {42b]

where the sign in [42a] is plus for r < 1 and minus for

To > 1., It is seen from [42] that ¢, is constant so that the
particle axis moves along a line of constant ¢, with 6,
changing exponentially with time at the rate 2w/T3. Because
of the sign in [42a] oblate spheroids (re < 1) move toward

62 = m/2 and prolate spheroids (re > 1) move toward 6, = 0.
Experiments with single rodsl’3) and single discsl’4), have
shown fair agreement with the theory.

It should be mentioned that when G -~ 0, corresponding
to f2 » » (but G # 0), the rotational motions of the particle
given by [28a], [34] and [36] are nearly the same, but not
jdentical to those for G = 0 given in Table I. However we
note that, for ry > 1, the egquilibrium orientations elm and

¢lw given by [32] and [33a] when f2 + o (i.e. 04, = /2,

|
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¢lm = 0) are identical with [40b] for G = 0. On the other
hand, for r, < 1, although $1 0 for two cases is the same
(i.e. ¢lm = n/2 from [33a] and [40al) el°° = 0 when f2 > ®

(c.£. [32])but 6, = Cp exp kp/V2 for G = 0 (c.f. [40a]).

3. DILUTE SUSPENSIONS

In a suspension so dilute that interactions between
particles can be neglected, each particle rotates in accor-
dance with the equations discussed in the preceding section.
We now employ these relationships to calculate instantaneous
distribution of particle orientations and various rheological
properties by methods analogous to those used for shear fields
alonez). We will consider a suspension of isotropic dielectric
spheroids with no permanent dipoles which is subjected to
Couette flow and an electric field across the shear so that
the results of section 2-(d) apply. The particles in a given
Suspension are assumed to be of identical size; the effect

of a spread in Ty is considered laterl)

(a) Transient Orientations el and ¢1L

(1) General

The following analysis is for 0 < £2 < 1; that
for f2 > 1 is similar, so for brevity only the results are
given. The results for f = 0, corresponding to EO = 0, have
previously been presented in detail7) and showed good agree-

ment with the experimental results for rods and discs2l)
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At any instant the fraction of particles having
orientations in the interval deld¢l at 61'¢1 is identical
to the fraction of particles having Cor Ky in the corres-

ponding interval dCodKl at C, SY i.e.

Py (8,,97)d0,dé; = p(C_,k,)dC,dK, [43]

where pt(el,¢l) with 0 < Gl s mand 0 £ ¢; < 217 and
pt(Co,Kl) with - » < Co <+, and 0 < Ky £ 21 are the
probability functions of 91'¢1 and Co' Ky respectively, which

are therefore related by

C _,k
o 1) ) [44]

Pe(81,6;) = B(C,k)) J(e
1791

The Jacobian, obtained from [28] is

Corf1 /A - £2 Kplar) 5
J exp Eot .

n

[SIES

8.,0.) 2 2 2 .2 .
1'71 cos el(recos ¢l+sz.n ¢l fresz.n2q>l) o

[45]

Since Co and Ky are constant for each particle in the assembly,
the probabiliity p(Co,Kl) is constant and equals its value at
t = 0, which, from [28], [44] and [45], is seen to be

re(l - f2)
T p_(0. ,9.,.) [46]
lylz a- f2 + Ci‘l’l) o 10710

P(ColKl) =



21’7

where

Wl = rz(l-fz)sinzK + fx \/l--f2 sinZKl + (li-fzrz)coszK

1 e [47]

1

and po(elo’¢10) is the probability distribution at t = 0, ¢10
and 610 being given in terms of Co and Ky by the relation [28]
with t = 0. Substitution of [46] into [44] yields the pro-

bability function pt(81,¢l) at a general time t as

po[tan_l(x tanel), tan-lv] 2K2P(q,re) 5
p.(6.,¢4.) = exp | ———— E‘t , [48].
t 11 2 2 .2 o
X(cos™@. + X"sin”6.) o
1 1
where
r V1 - f2 tang. -— (r2 - fr tan¢,) tan E%E
e 1 e e 1 1
v = 2 2rt ! [49]
r J& - £ + (tan¢, ~ fr ) tan —
e 1 e 1
2K P(qg,r )
2 .2 . 2 2 e 2
X = (x151n ¢l + X251n¢lcos¢l + X5C0s ¢l) exp [ n Eot} ’

[501]

the guantities X1r Xo and X3 being functionsof time, formulas
for which are listed in Table II for the present case

< > . = (-
(Eo Ecrit.) as well as those for E_ 2 E.pj¢, and for G 0;

values for E, = 0 have already been given (cf. [16]1-7 ) and

are also obtained by setting £ = 0 in the equations for



TABLE II

Equations for X17 Xar X3 in [50]

CONDITION EQUATIONS
1 -2 - ant
Xy = == [L+x_ 2+ (l-rez)cos =~ 2£%cos —4;t + 26/1- £2 sin -——4;':1
2(1~-£9) 1 1
0 < f2 <1
o1 2 -1 . 4mt -1 4t
Xy 2 [Vyi-£ (rg r)sin T E(re+re)(1-cosT)]
1
05E0< Ee:rit.
1 2 2 qnt /
X3 = —— >3~ 1+ ro+ (l—re)cos % - 2f2cos é;—t-~ 2f ].--f2 sin 4‘"—t]
2(1~£%) 1 T
2 2
G K. P(q,r )E
Xl =1 + - t2 __2 e’ "o ¢
re + 1 l']o
21
2 R 2
2(re - 1)G 2K2P\q,re)G Eo
X2 = P t o+ > t
re + 1 no(re + 1)
E =E _.
o crit. 2 2 2
G te 5 K2P(q,r JE
X =1 + t + -——.Lg t
3 2 +1 no
‘e
1 -2 -
Xy =T L+ + (1-x % cosh - 26%c0sh LE- 26/ -1 sinn A1Y
2(1-£9) 2 2 T,
251
2 -1 . 4nt -1 4t
= £° - - == - 205,
Xy f2 N [ 1 (1L’e re)slnh Tt f(re+re ) {1 - cosh - )]
- 2
bo > Ecrit.
1 2 2 4nt 2 4t 2 . 4nt
X3 = > [l+re+(l—re)cosh-7r—--2f coshT-v 2f/E7 - 1 sxnhT]
2(1-£5) 2 2 2
- 2t 2nt
G=0 Xy = exp [+ ==1, Xy = 0, x3—exp[t—;-_]
3
Note: The corresponding equations for f = 0 (E_ = 0) are given by
g eq o

[17]-7 and may be obtained from the equations for 0 < f2 <1

by setting £ = 0

218
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£2 < 1 in Table II. Thus if the initial orientation distri-
bution po(elo,¢lo) for a suspension is known, the instan-
taneous probability function pt(el,¢l) at all future time
may be calculated by means of [48].

(ii) Random initial orientation
We now consider an initially isotropic suspension,
for which
sing X sin6
10 1
p (8. rb,) = = T . [51]
o 107710 4 41r(coszel + xzsinzel)z
It follows from [48] and [51] that at time t
siné 2K P(q,r )
1 2 e 2
p,(8.,9.) = exp[————EtB
t 1’1 47r(coszel N X2Sin261)3/2 g o
[52]

The separate probability distributions of

91 (0 to m) and ¢4 (0 to 2m) are obtained by the integration

of [52] as
2T .
sin® rZKZP(q’re) 5
pt(el) = j pt(el,cbl)dqyl = '—__%_E(kl) exp L———n— E_t [53]
Tm, °m o
o) 12
and

m

pt((bl) =f pt(el,¢1)del
o

1

.2 . 2
27 (xlsln ¢l+x251n¢lcos¢l+x3cos d)l)

[34]

,J
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where E(kl) is the complete elliptic integral of the second

kind with modulus kl =1 - m2/ml and

2K_P(q,r )
_ 2 1 /. _ 2, 2, . 2 2 e _2
m, = COS eli-z(xlﬁ-x34- (x3 xl) -+x2)51n el exp [ = Eot] '

(@]

[55al

=]
!

Mo

2K_P(g,r )
_ 2 1 _ / _ 2 2, .. 2 2 e 2
cos el+-2(x14-x3 (x3 xl) -+x2)51n el exp [ Eot] .

[55b]

The corresponding cumulative distributions are then

el 1 2K2P(q,re) 5 1 sinBl
Pt(el) = j pt(el)del T exp {—n——“—" Eot f ——%'-— E(kl)del.
(o} ml m2

[56a]

and
¢l

4y, tand
_ 1, -1 1tan®y
Py (87) “j' P (9))dy = 77 *a0 (2 s+ o2 1 4>
o XyXptaney + Xy

[56b]

The probability distribution p(CO,Kl) is obtained
from [46] for the initially isotropic suspension (i.e.,
po(910,¢10) is given by [51]) as

2
_ Core(l £°)

[57]
an(1 - £2 + cly)’

/2

1t should be noted that the limits of CO and Kl are taken to

be (- » to + ®) and (0 to 2m) respectively, corresponding to
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those
that of 61 (0 to m) and ¢l (0 to 2m).

The probability distributions p(Co,Kc) for
f2 = 1 and p(CO,Kz) for f2 > 1 can be obtained using the

same analysis given above for the initially isotropic sus-

pensions; the results are

2

Core r, + 1
P(C K ) = ’ [58a]
o''¢c 2 2 2.2 2,3/2
a7l + re(l+Co) + Core(reikc) ]
Core(f2 - 1)
p(C_,x,) = [58b]
o'"2 2 2 3/2
am (£ - 1 + Co ‘i’z)
where
2,2 2 2 . 2.2 . .2
‘i’z = re(f -~ 1)cosh Ky = fre £f“ -1 sinh 2K2 + (1+£ re)sz.nh Koo [58c1

When f = 0 (shear flow alone) [57] reduces to p(C,k) given by
[20]1-7 which is
Cr
e

p{C,k) = . [59]
4 [1 + C2(COS2K + rzsinzlc)]3/2

Values for p(Co), p(Kl), p(Kz) and p(KC) can be obtained by
the integration of [57] and [58]; the analytical solutions
are not feasible for all of these probability functions.

As a set of examples, Fig. 5 shows polar diagrams
of Vp,(9;) calculated from [52] for various values of f and t
for a suspension of prolate spheroids of r, = 5. When £ = 0,

pt(¢l) shows undamped oscillations with a period T/2 as noted
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FIGURE 5

The probability distribution th(¢17 versus ¢l for

initially randomly oriented prolate spﬁeroids (re = 5)

at various £ and t.

(a)

(b)

(c)

(d)

in shear flow alone (f = 0, E, = 0) at (i) t/T =0,
(ii) 0.03, (iii) 0.25, (iv) 0.47 calculated from
[22]1-7 and (V) /pw(¢1) from [102]-7. This case

has already been discussed in detail7)

at EO < Eorit. (£=0.3) at (1) t/Tl==0, (ii) 0.05,
(iii) 0.3, (iv) 0.45 calculated from [54] and
(v) Vp,(¢,) from [65].

at Eo > Erit. (f = 1.1) at (1) t/T2==0, (ii)
0.023, (iii) 0.046, (iv) 0.069 calculated from [54];
the steady orientation ¢iw = 72.7° is indicated by

the broken line.

in an electric field alone (G=0) at (i)

t/T3 = 0, (ii) 0.105, (iii) 0.21 and (iv) 0.315

calculated from [54].
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previously7). At t = T/4 nearly all the particles become

oriented in the direction of flow (x3-axis), and then at
t = T/2 resume their initial orientations. Similarly when
0 < f2 <1, pt(¢l) oscillates with a period T1/2. However
because of the electrical torque acting on each particle,
the rotational motion of a given particle is not symmetrical
in the first and second quadrant, it takes a longer time
(t = 0.3 Tl) to reach a similar (but not identical) orienta-
tion distribution to that for f = 0 and t = T/4 [Fig. 5a-(iii)
and b-(iii)]. When f2 > 1, pt(¢l) changes monotonically to
the steady orientation ¢iw(= 72.7° for £ = 1.1) where the
distribution may be described by the Dirac delta function
pw(cbl) = cS(q>l = ¢l At G = 0 the orientation distribution
shows a monotonic increase in the direction of the electric
field (Fig. 5d) until Pw(¢1) = 5(¢l).

The behavior of pt(¢l) for the reciprocal case
r, = 1/5 is similar to that shown by Fig. 5 when ¢l is rotated
through 90°. However the numerical values of pt(¢l) are not
identical since P(q,re), and hence f, does not possess the

property of permutability of Ty and re_1 except when f = 07)

(b) Orientations 62 and ¢2 for G = 0

We consider here the orientation distribution
pt(62,¢2) for the special case G = 0, which may

be obtained from the identity:

Py (05,0,)d8,d0, = p,(8,,4,)d8,ds, : [60]



TES

where pt(el,¢l) is given by [52] for an initially isotropic
suspension. From the transformation [41], [60] can be

written by

sing 2

P 0,6,) = P 66, [61]

E - sinzgzcosétt—2

Substitution of [52] into [61l] for the present case G = 0
yields

T

sinf_ exp {i 2t ]
2 3

P (0,,6,) = 5 [62]

41r{sin262 + cos _‘_1_;_1'; ]}3/2

62 exp [+
It is evident from [42] and [62] that pt(62,¢2) is independent

of $oe Thus pt(¢2) = po(¢2) remains constant and is given by

m

P (0,) =f P (8,,0,)d8, = 1/21 . l63a]
o}

the corresponding cumulative distribution being

:
2
P (4,) =f P (8,)d, = ¢ /21 . 163b]

o

The probability distribution pt(ez) may be obtained from
[62]:

2w sinb exp[t 2ﬂt]
2 T,
Pe(9)) =j Py (0500500, = =3 P e 3z ¢ 183l
o 2{sin 6, + cos 6, expl* T]}

3
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the corresponding cumulative distribution being

0
2 1
2 4nt, .3
Pt(ez) = f pt(ez)de2 =3 -1 {1+¢tan 6, expl+ ——;3]} 2 ., [63d]

(o]
When t > o, pt(ez) shows a steady increase at 62 = m/2 when

rg < 1 until pw(ez) = 6(92 - w/2), and at 6, = 0 when re >1
until pm(ez) = 6(62).

(c) Steady Orientations 61 and ¢l_

It has been shown in Section 2 that, when

0 < f2 < «®, as t *» » each particle approaches 8

1= 0, n/2
when ry < 1 and re > 1 respectively; when re > 1, ¢l depends
upon f, whereas when ry < 1l it is indeterminate (and trivial).

In the former case (re > 1), if 0 < f2 <1, pm(¢l) oscillates

in accordance with [54] and pw(el) is given by the Dirac
delta function as expressed in Table III. When £2 > 1,
Pm(¢1) also becomes a delta function since all particles
assume ¢l = ¢iw where ¢iw is given by [33a] ( or by [39] for

the case f2 = 1).

If we consider the case for which the equilibrium
distribution pw(¢l) is steady, then from the equation of

continuity ([1l0a]l-22):

de¢
d 1
357 [P, (7)) (7)1 = 0 [64]

where the angular velocity (d¢l/dt) of each particle is given
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by [24b] with m = 0. Integration of [64] yields

r 1l -~ £

p,(9)) = [65]

2. 2 .2 .
+ -
2w(recos ¢l sin ¢1 fre51n2¢1)

which is normalized for the limits of ¢ = 0 to 2n . The

corresponding cumulative distribution is

¢l 1 -1 2 fztan(pl
Poo(¢l) = [ Pw(¢1)d¢1 = or tan (?f_tan_‘bl) . [66]
o]

The steady state distributions given by [65] and [66] depend
upon r_ and f but are independent of the initial orientation
of the particles and of the mechanism (provided one exists)
by which the steady state is attained. When f = 0, [65] and
[66] reduce to the results obtained previously for shear

22)

alone . The polar plots of me(¢l) for I, = 5 at £ = 0 and

0.3 are shown by the broken lines in Fig. 5(a) and (b). The
‘maximum probability occurs at ¢l = 90° for £ = 0 and at

¢l = 86.5° for £ = 0.3. We note that as f -+ 1, Pm(¢1) given
by [65] tends to the value 6(¢1 - tan—lre) calculated for the
case £ = 1 in which monotonic changes in pt(¢l) occur. Experi-

7,23)

ments with rods and discs at £ = 0 have shown good agree-

ment with the theory.
The formulas for steady orientation distributions
at various values of f are summarized in Table III. Two

possible mechanisms which enable a steady state to be estab-



TABLE III

Equations for Equilibrium Orientation Distributions
and Mean Projections

p (6.) r >1 r <1
CONDITION P, (¢)) 2) = 1 < £
o> 1 rg <1 1= 2 T30 120 S23| S130
. £2 b)
0<£2<1 Eq. [65] s, - 1/2) | 8(8)) 0 Eq. [71a] Eq. [71b] 0 1 0
£ =1 66, - tan'r) " " " 1A+ o2 r /el T B
2
r (£-YE°-1)
f2 > 1 6[¢l - tan_l{re(f - /f2 -1) }] " " u i e " ©" "
/l+ri(f—\/c”§-l)2 »/l+r§(f-/f2-l)2
G=0 84,) " 1/m o 1 0 o | am | om

a) pm(¢l) for Ty

b) G(Gl) etc. des

< 1 is undefinable (and trivial)

ignate Dirac delta function.

since pw(el) = 6(81) except when f2 = o for which pm(¢l) = 5(¢1 - m/2).

882

|
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lished when f2 < 1 and ¢l of individual particles is periodic,
namely (1) the spread in particle shape and (2) particle
interactions, will be discussed in the following Chapterl).
When f2 2 1 the steady state is attained directly as a result

of monotonic changes in ¢1 and 91 of the individual particles

(cf. [33]).

(d) Mean Projections

(i) Transient state

Following earlier practicez's)

it is convenient to
use mean orientation parameters such as the mean projections
along the fixed coordinate axes of unit length of the particle
axes for prolate spheroids and rods (re > 1) and the mean
projections on the coordinate planes of unit area of the
equatorial plane of the particles for oblate spheroids and
discs (re < 1). These guantities are used in analyzing the
experimental data given in the following Chapterl) and are

defined as

2r W

;1 =S, = | cose, | P (6,,9,)d0 d¢, , [67al
o o
21 W

;2 = 513 = ff |sinelcos¢l] pt(61,¢l)deld¢l ' [67b]

o o
2T

i
?3 512=ff ]sinelsimbl] P (0),¢,)d0, do; [67c]
(@] o

I
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where fi is the mean projection length on each of the

coordinate axis x. and §i is the mean projection area on

i j

each of the coordinate plane xixj (L # 3). If we consider
an initially isotropic and collision-free suspension,

pt(61,¢l) is given by [52], from which we obtain

27
T =5 ==X ex [M E%t] _iﬁ_ [68a]
17 5237 27 P g o xx + D ’
o
r. =S, = 1 [——-—ZKZP(q're) E2t 1
T2 T P13 T 7 °XP n, o
[68b]
2K P(qg,r ) 1
Ul 2 2 .2 3 .. 2
{cos 61+xlexp[——n:)——— Eot] sin el}2s1n 8,
* . 4 . 2 48y
o m,sin el + m4sa.n el + 1
2K P(g,xr )
- = _1 2 e 2
ry = 812 = o exp [ ___—ﬁ;____ E_t]
[68c]
2K, P(g,r ) 1
Tr{c0526 +X exp[——z———e Ezt] sinze }esinze
1 3 no (o] 1 1
X 7 5 del
o m351n 81 + mzsln el + 1
where
2K2P(q:r )
=1 - (x, + x,)exp [————E—Et]
M3 17 %3 ng o
[68d]
xi 4K2P(q,re)
+ ()(l)(3 - —4—) exp [*——no— Eot] ’
2K P(q,re)
m, = -2 + (Xl + x3) exp [—n——— Eot] . [68e]
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When £ = 0 these equations reduce to the solutions given
previously7); when 0 < f2 < », [68] must be integrated

numerically.

When G = 0, the solutions are

- _T _%T _.=% _1 21t _

r, =1, = s12 = 523 == csch (+ ——-—Ts) [E(kz) K(kz)] [69a]
_— —_ 2 — 2T
r, =8, = 3 sech (& —%Ed {exp[+ ﬁfg - l} [69b]

where K(kz) and E(kz) are the complete elliptic integrals of
the first and the second kind respectively with mcdulus

k2 = 1 - explz 4ﬂt/T3], and as before the upper sign is for
ry < 1 and the lower for ry 1.

Examples for ro, = 10 are shown i? Fig. 6. In a
shear flow (f = 0, Fig. 6 a) Ei oscillates with constant
amplitude and frequency 2/T. When 0 < f2 < 1, El oscillates
with frequency 2/Tl with rapidly decreasing amplitude and
approaches El = 0 when all the particles‘rotate with Gl = n/2;"
52 and F3 oscillate with varying amplitudes which approach

2

asymptotic values. When £ > 1, EZ shows a small initial

increase and levels off to the steady value fz = cos¢>l'°°

(= 0.159); f3 increases toward its steady value f3 = Sin¢im
(= 0.987), and El decreases to fl = 0., Finally for G = 0
and f2 = ®, El = E3 decreases to zero , and EZ increases to
unity.

When r, < 1 {(oblate spheroids, discs) the mean

. 3 - - - » . 1 ~ _ -
projections 823, S12 and S13 are similar to those of s Ty



FIGURE 6
Mean projection lengths El (curve 1), EZ (curve 2)
and f3 (curve 3) for initially randomly oriented

prolate spheroids of ry = 10 at various values of f.

(a) in shear flow (EO:=0, £f=0) calculated from

the equations given in Table II of reference 7.

(b) when EO < Ecrit.’ obtained by numerical inte-

gration of [68] for £ = 0.275.

(c) when E, > Ecrit.’ from [68] for £ = 2.0.

(d) in an electric field (G = 0) calculated

from [69].

All abscissa are plotted using the dimensionless time
scales t/T, t/Tl, t/'I'2 and t/T3 for (a), (b), (c) and

(d) respectively.
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and 53 respectively (note the change in order from the
equalities Ei and §jk in [67]) shown in Fig. 6. For the
special case £ = 0 the curves are numerically identical
when r, = 1/10 because of the interchangibility of r, and
r "1 discussed previously7).

e

(ii) sSteady state

As mentioned earlier when t » » for f2 >0
each particle approaches 61 = 0, m/2 when r, < 1 and rp, > 1
respectively, from which it follows that the steady mean
projections become flw =0 (for r_ > 1), and §12m = §l3w =0
and §23m = 1 (for r, < 1). However when 0 < £2 < 1 and
ro > 1, the probability distribution pm(¢l) is given by [65]

and the mean orientations ?2 and E3 are thus

2T
;2w =f lcoscbll P (¢1)do, , [70a]
o}
2n
o

The solutions of these integrals are

_ 1 [ 1 m6_'/l+m2 1 m5—/l+m§
= - n ) - n ( ) ’ [71al
2@, 2mi |/l+m2 m6+¢l+m§ 1/l+m5 m5+ l+mg

H

/ 2
- 1 [ s zn(L__S)_ 76 ,?,n(m6- l+m6)] [71b]
3= 2mi /u_mg o+ /1 +m2 ;/1+m2 m +/1_+-n€

6

.',
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where

il
h
H

|
-
=
l.-J

1
h

me e i e [71lc]

me = fre + ir; 1 - £ [714]
and i = vV = 1. Since m, and m; are complex conjugates, the
first and second terms in [71lal] and [71b] are also complex
conjugates. Therefore the difference is a pure imaginary
quantity, and hence 52 and E3 are real.

When £2 > 1 and r, > 1, it is immediately seen
from the steady orientations listed in Table III that EZm
and f3m are given by the single values in the table including
the case G = 0. It should be noted that since oblate
spheroids and discs (re <1l) at G =20 have a steady orienta-
tion distribution p_(8;) = 1/m, §23m = 2/7 and S = 0. On

13

the other hand for r > 1 at G=0, ¥, =1land r,_ =171, =0.
e 20 e 3

Although the steady distribution pm(¢l) is known

when £ = 0 (i.e. Ej = 0) pm(el’¢l) is not yet known since
pw(el'¢l) depends on the mechanism by which the equilibrium

is attained; hence Eim and gjkw for £ = 0 can not be
evaluated. The solution of [71] at £ = 0 corresponds to the
situation in which all the particles (re > 1) lie in the
x2x3—plane (el = 7m/2, C = ) with the orientation distribution

given by [65] with £ = 0. Variations of fim with £ are

discussed later.



(e) Rheological Properties

The macroscopic rheclogical properties of a dilute
suspension of spheroids is determined by the distribution of
particle orientations in a given field of flow. In the
Sections 3(a) to (c) we have derived the orientation probab-
jlity distributions in the transient and steady states at
various values of f. We now consider the rheological
properties of a suspension using the analytical method of
Cox and Brenner24), which permits the evaluation of a tensor
describing the macroscopic stresses, the components of which
yield the tangential and normal stresses. This yields more
information than the energy dissipation method employed by

Chaffey and Masons's)

to calculate the viscosity.
The general form of the disturbance flow Vi (rela-
tive to the xi—axis) produced by a particle is given by

l__._l_ -1 et _illl
vl A [r (xl&]k Jéik stij) 5 Xixjxk] [72]

where r is the distance from the center of a particle and
Aik is a tensor component determined by the particle shape.
The flow field given by [72] represents that produced by a

point force doublet. Comparison with Jeffery'ss) calculation

([54]~-8) shows Aij to be

2[aisij - ajBk(?;}'( - m}'{)]

Biy = > ,  (i#3#K [73a]
3Bk(aiai + ajaj)
2{2y.s'., = v.Si. - v.S;,1
Aj; = Lil 333 k& (1 #3#Kk [73b]

AP PR A AR
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where % is defined in [6] and other elliptic integrals

Bi and Y; are

-]

da .
B, =[ , (1#3i#k) [73c]
* (a§+ ) (af(+ ) /(ai+ 2 (ai + 2 @2+
Yi=f 22 (i#3#K% (73]

2 2 2 2 2
a5+ 2 (a2 + 0 /(a2 + 1) (a2 + ) (a5 + )

In the present investigation of spheroids, by

substituting !, s!

. .
: ij and cj from [18] and [21] into [73] and

using [22], we obtain

G b3r (r2 - 1)
A e e

' [74a]
1L 9{2r2 - (1 + 2r2)A}
e e
G b3r (r2 - 1)
Al = e e
22 2
27(2r” - A
(2rg = &) [74b]
2 (4rz - 1)a - 2r2 5
X [sin2¢l+-2cos elsin2¢l - > 5 sin elsin2¢l] ’
4{2x" - (1+ 2r7)A}
e e
3 2
ar o -G b re(re - 1)
33 2
27(2x” - A)
( e [74c]
2 (4ri - 1)a - 2r2 2
X [25in2¢l+-cos elsin2¢l - 3 5 S sin elsin2¢l] ,
4{2r” - (1+2r9)Aa}
e e
G b3re(rz - 1)
Ai2 = > sin2elsin2¢l
6(re + 1) (32 - 2)
[744]
3
2K2b reP(q,re)

2 2
E~ cos ¢.,cos20
3n {2r - (2r2-1a} ° ! !
o e e



G b3r (rz - 1)
Aél = > = sinZGlsian)l
6(re + 1) (3A - 2)
3.3
2K2b reP(q,re) 5 5
+ 5 > E cos ¢lc0526l
3n°{2re - (2re - 1)Aa}
26b°r (x> - 1)
Al, =A! = cosf,cos2¢
3 1
2 32 3(2r2 - 3A) .
e
G b3re(ri - 1)
Ai3 = > sinScos2¢l
3(re + 1) (3a - 2)
2K b3r P(g,r )
2”7 Te e 2 . .
+ E051n6151n2¢1

2 2
3no{2re - (2re - 1)Aa}

G b3r (r2 - 1)
Al = e e
31 2
3(re + 1)(3A - 2)

sinBcoszq)l

33
2K2b reP(q,re) 5
E 51nel

2 2
3no{2re - (2re - 1)A}

The macroscopic stress tensor Pij

is given by24)

P. -

+ 8mn N A, .
1] o) i

P..
1j J

where

- 1 J
Pij PO;45 * Mg LEN * LEN

i

ou. Bu.)

sin2¢l
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[74e]

' [74£]

[7449]

[74h]

of a suspension

[75al

[75b]

is the stress tensor of the suspending medium and N is the

|
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number of particles per unit volume. The quantity Kij
(relative to the xi—axis) is the mean value of Aij over the
assembly of particles at a given instant. Transforming Ai.
given by [74] to Aij through the Eulerian angles 61 and ¢l'
and substituting into [75a] we obtain the stress Pij of the
suspension. The shear stresses P23 and P32 are given by

P = G + Ge [C. si 46 in‘22 + C 0529 + C sinze]
23 7 To® T B¢ I sin’0 sin"2¢, + C, cos®, 3 1
[76a]
5
8K, P(gq,r )E°c
- 2 <2 [(rz—l) sin48 sing cos3¢ - r? sinze sing.cos¢, ] ,
2 2 e 1 1 1 e 1 1 1
2r + (1-2r)a
e e
P,, =N G+ n Ge [C, sinT6,sin’2¢. + C 29, + c. sinZe. ]
32 = no n,Ge 1 sin 1Sin ¢l 5 COs 1 3 Sin el
[76b]
2
- 8K2P(q,re)EoC [(xT-1) sin4e sing cos3<p +sin26 sing.cesg, ]
2024 (1- 2098 @ 177491 1 S R 5]
e e
where ¢ = 4wab2N/3 is the volume fraction of spheroids and
5 6r2 - 4r2A - 5A 2
17 e m 2262 - 3m) {262 - (262 + 1)a} (22 + 1) (3 - 2y | 76e]
re e e e
42 - 1)
c, = ' [764]
2 2r2 - 3A
e
2(1"2e - 1)
c, = . [76e]

2
(re + 1) (38 - 2)

It should be noted that Cl’ C2 and C3 given above are equivalent
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to those given by [48]-7 but expressed in a different form.
The shear stress Pio is the quantity normally obtained
experimentally when measuring the viscosity and is given in
[76b] by the sum of (i) the stress due to the suspending
medium alone (first term), (ii) that due to the shear flow
on the particles (second term) and (iii) that due to the
electric field on the particles (last term). In general,

therefore, Pij may be written

= H 2 E
Pij = pij + nOGc [ Pij] + Konc [ Pij] [77]
where the dimensionless quantities [HPij] and [EPij] are the

intrinsic viscous and intrinsic electric stresses, given for

P32 by [76]:

., 4 . 2 2 ., 2
[ P32] = C, sin'8,sin"2¢, + C, cos"8, + C, sin"0,; ’ [78a]

-8P(g,r )
[EP32] = — = [(ri- 1) sin4elsin¢1cos3¢l
2re + (1~ 2re)A

[78b]

. 2 .
+ sin 9151n¢lcos¢l]

If we define the viscosity of the suspension as the

ratio n = P32/G, and the intrinsic viscosity [nl {n - no)/noc,

then 2
K,E7c-
— H 270 E
n =n,+ nge [ P32]-+ G [ P32] [79a]
and H KZEg E
[nl =1 P32] + n—OG—' [ P32] . [79b]
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Thus [n] is the sum of two terms, the first being the
intrinsic viscosity for the same distribution of orienta-
tions but with no electric field (f = 0), and the second

the effect of the electric field. Substituting [78] into
[79b] yields

, 4 . 2 2 . 2
[nl = Cl sin 8151n 2¢l + C2 cos el + C3 sin el

[80a]
+ fc, [( 2_ 1) si 46 sind,co 34, + si 28 i c 1
4 re sin 6, i ¢1 s ¢l sin lsxn¢1 os¢l
where
Bre
" (2 + 1){2r> + (1 - 2r2)a) ) 8ow]
e e e
The intrinsic normal stress differences7) defined
by [Eij] = (Pii - ij)/nch are also given by two components,

corresponding to the hydrodynamic and electric stresses,

which generally cannot be separated experimentally when

f2 > 0. It follows, therefore, from [74] and [75] that

_ 1o 4 . - . 4 . . 2 A
[612] = Cl( 3 sin 8151n4¢l 3 sin 6151n2¢1 + 2 sin 6151n2¢l)

+ (C2 - C3) sinzelsin2¢1 [81a}

2 . 2 2 . 4 . 2
- f(re-l)c4(% sin®28,c0s ¢, + } sin §,sin 2¢,) ,

_ 4 2 1 .2 2
[523] = Cl sin 6151n4¢l +f(re l)C4(u sin Zelcos ¢l
[81Db]

+ 3 sin4815in22¢l)
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—
]
@]
—~
i
ol

. 4 . . 4 . . 2 .
sin 6151n4¢l + 3 sin elSln2¢l 2 sin 61s1n2¢l)

2 .
- (C, - C3) sin”0,sin2¢, [8lc]

2 . . 2 2 . .4 .2
+ £(r 1) C4([; sin 26, cos ¢, — & sin 6, sin 2¢1)

e
where Cl' C2, C3 and c, are given by [76c-4], and [80bl.

The remaining stress components are

P

12 .3 . 2 . .
n G ==4Cl sin elcoselsln¢lc05 ¢l + (C3 C2) Sln910059151n¢l
e [82a]
+ £C [(r2— 1) sin36 cosf cos3¢ + sin®_ cosb cosé, |
4 e 1 1 1 1 1 1 '

P21 3 2

nch = 4Cl sin 61c056151n¢1cos ¢l + (C3-C2) 31n61c056151n¢1
[82b]

2 . 3 3 2 .
+ fc4 [(re- 1) sin elcoselcos ¢l -, 51nelcoselcos¢l 1

P P
13 _ 31 _ .3 . 2 .
nch = nch = 4Cl sin 910056151n ¢lcos¢l + (C3 Cz) 51n61coselcos¢1
2 3 2 [82c]
+ f(re - 1) C4 sin 61c056151n¢lcos ¢1 .

We note that, with the exception P13 = P3l’ the
macroscopic stress tensor Pij for the suspension is no longer
symmetrical because external couples act on the particles.
All stresses Pij given by [76], [81l] and {82] at £ = 0

reduce to the equations derived previously7)

(1) Transient states

The mean values of the goniometric factors in [76]

to [82] can then be evaluated by the integral
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FIGURE 7

Transients of [n] for initially randomly
oriented prolate spheroids (re = 10)
calculated from [80a] with the use of [83]

and [52]. The conditions of (a), (b), (c)

are the same as those in Fig. 6(a), (b), (c)
respectively. The equilibrium value [n]_ =4.4
for £ = 0.275 and [nl_ = 9.6 for £ = 2 (calcu-
lated from [87al) are indicated by the broken

lines in (b) and (c).
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21w
Ff'é'ﬁl_)' = F(8),6,)p, (8;,6,)40,d¢; [83]
o O
where F(el,¢l) is any function whose mean value is required.
As an example, we show in Fig. 7 the transient variation
with time of [n] obtained from [80a] and numerical integra-
tion of [83] at various values of f for an initially isotro-
pic and collision-free suspensions (with pt(el,¢l) given by
[52]) with r, = 10. It is seen that [n] undergoes oscillations
(whose amplitude approaches asymptotically to the value cor-
responding to 08, = /2 for all particles) with a period Tl/2
when f2 < 1, and changes monotonically to an equilibrium value
when f2 > 1, in each case reflecting similar changes in

(ii) Steady state

Since, as shown earlier, prolate spheroids (re > 1)
drift to 81 = m/2 and oblate spheroids (re < 1) to 8y = 0 at

equilibrium (t -+ «), [80] and {811 reduce to:

for r > 1

—e
. 2 2 . 3 .
[nl_, = C; sin"2¢, +C + £C,l(x - 1) sing,cos ¢, + sing,cos¢, 1 , [84a]
(£..1 =- 3c¢C, sin4¢, - (C, -C,+C;) sin2¢, - z f(r2—1)C sin22¢ [84Db]
127 ! 1 172773 1~ e 4 1’
_ . 1 2 . 2
[€23]0o = Cl s:.n4¢l + 3 f(re 1) C4 sin 2¢l , [84c]
= - 1 i nd - 3 1 2_ . 2
[&;31]0° 3 Cl 51n-¢l+ (Cl C2+C3) s:.n2¢l + 5 f(re l)C4 sin 2¢l, [84d]
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and for r < 1

[nl, =C, [E5451,=0 - [84e]

Thus at equilibrium a suspension of oblate spheroids (re < 1)
becomes Newtonian, i.e. the viscosity is independent of G
and normal stress differences vanish, with [n] | depending
only on r, and not influenced by the electric field.

On the other hand, with prolate spheroids (re > 1)
the orientation distribution pt(¢l) at 0 < f2 < 1 and t » =
for a collision-free suspension, given by [54], is an oscil-

]

oscillate indefinitely with frequency 2/Tl and known amplitude.

lating function, so that [n]_, and (E.

ij will continue to

o0

When particle interactions are allowed so that the time-
independent orientation distribution pm(¢l) given by [65] is
established, the steady values ([nl]l_ and [gij]w can be evaluated
by taking the average orientation factors obtained by substi-

tuting pm(¢l) in integrals of the type [83]. The results are

27
sin®2. = in26.p (¢.)dé. = 2r Y. ¥ 2 85a]
17 s 1P 1?1799 e'12 [85a
o
2m
sind cos3¢ = sind c053¢ p (¢d.)dp, =fr (L+«r J_-fz)!{—2 [85b]
1 1 1 1771 1 e e 2
o
27
—_— . _ -1
sin 2¢>l = [ Sln2¢lpm(¢l)d¢l =2 f}:eY2 [85¢c]
o)
2T
sin 4¢. = sind¢.p (¢,)dé, = -4 fr (2 - 1)v7? [85d]
"1 1071 1 i e e 2

(o]



where

Substituting [85] into [84] we obtain, for r,

0 < f2 < 1:

[n]

=<}

(£.,1,

I

(2xr C
e

2r_ + (r§+ 1Y/ 1 - £2

2

e + 1 + 2re

2

r 2% ) v v v
e 4

172 3

/ 2 1 2 -2
2fre[-2(l-re l1-f )C1+(C2 C3)Y2-+E C4(re l)Yl]YZ

2 1 -
[523 - 4fre(re [ Cl r CY1ly

_ 2 1 2 -2
€3], = 2fxr [r (r_+2/1-£%c; (Cy-C¥, +i Cylx] - 1Y, 1Y)

Next we consider the case f2

orientation ¢l is uniquely determined by [33a].

[33a] into [84] yields

R
nl, = 4¥3(c, +

3 £ reC4)(l + Y3)

471 2

2,-2

- - @+ - +2~1
£ 5], = 2050-2C, +(C, - C.) (1+¥2) + }

where

1=

_ 2, _ 2 2, -
= 4¥5lc, (1-Y3) 2 C f(xr 1YL+ ¥))

_ 2 2, 2 2, -2
w = H3[20 V34 (Cy-Cy) (14 Y3) +3 CE(x - 1)Y,1 (1 + YD)

re(f - V/£%-1)

2

+ C

2 2, -
C4f(re - l)Y3](l + Y3)
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[85e]
[85f]

, [86a]
+ [86b]
, [86c]
. [864]

> 1 for which the particle

Substituting

] [87a]

,  [87b]

, [87c]

[874]

[87e]

A
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It is easily shown tﬁat when £ = 0, [86] reduces
to Jeffery's results) for [n]_ corresponding to maximum
energy dissipation (i.e. for 61 =n/2, C = »), and to
[gij]°° = 0 signifying Newtonian behavior. When f2 >0 it
is noted from [86] and [87] that [nl, varies with G (at
constant Eo) and [gij]°° # 0, indicating permanent non-
Newtonian behavior. The formulas for the steady state
intrinsic viscosity [nl_ given by [86a] and [87a] are equi-
valent to [32]-6 and [20]-5 of Chaffey and Mason® ' ®) but are
expressed in a different form.

Numerical values of [n], for prolate spheroids
calculated from [86al] and [87al, and [€23]°° from [86c] and
[87c] are shown in three-dimensional plots in Fig. 8. It is
seen that for a fixed Ter 9. r = 20, [n], decreases
slightly as f increases from zero, reaching a minimum (a
cusp) at £ = 1 and then increases very rapidly beyond f > 1;
similarly —[£23]w increases steadily from zero at f = 0 to
f = 1 where it exhibits a discontinuous change in slope and
thenincreases rapidly.

When r, = 1, £ =0 and (nl, = 5/2, the classical
Einstein value for freely rotating spheres, independent of Eg.
However if we let ry, 1t and adjust the ratio Eg/G so that £
can vary upward continuously from zero, it follows from [86a]
and [87a] that [n]_ increases from 5/2 at £ = 0 to 4
(corresponding to non-rotating sphereszS)) at £ = 1, and then
remains constant; this is the curve shown at ry = 1l in

Fig. 8a.



243

FIGURE 8

Three~-dimensional plots of the equilibrium
intrinsic viscosity [nl_ (part a) and the
conventional equilibrium intrinsic normal
stress difference [523]°° (part b) for prolate
spheroids as functions of T, > 1 and £ calcu-
lated from [86] for £ < 1 and [87] for £ > 1.
The minimum [n]_ occurs at £ = 1 except at

r, = 1 corresponding to spheres, for which
[n], increases from 5/2 to 4 at £ = 1, above
which it is constant. At £ = 0 and/or ro = 1,
[£23]oo = 0 indicating Newtonian behavior. With
oblate spheroids [623]°° = 0, and [n]_ is

independent of £ (see text).
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For £ >> 1, it is easily seen by making an

expansion of \/f2 - 1 in [87e] that p is approximated by

Y3 = re/2f. Substituting this into [87a] to [87d] and

taking a limit of f » « yields

2 2
2(2re 4reA-+A)

22

lim [n]_ = [88a]

o) 14

2_, 2
£ (2 - 31) (2rg - 2rZA +A)

lim f[£.,.1_=0

i3l ' [88b]

f >

indicating that [n]_ approaches a finite asymptotic value,
and that -[E23]°° exhibits a maximum between 1 < £ < o,
Equation [88al] can also be obtained from [20]-5 by setting
¢im = 0.

It should be noted that [84e] is valid all ranges
of £. However, for the special case G = 0 (and thus f is

undefined) and t » «, cblate spheroids (re < 1) assume

final orientations ¢lw = m/2 with pm(SJ} 1/m (Table IIT)
and the intrinsic electric stress [EPBZ] given by [78b]
vanishes. If a small gradient is now applied, so that f is
large and [n] is definable, [84e] must now be replaced by
nl, = %(C2 + C3) and [F,ij]°° = 0 corresponding to Newtonian
behavior.

To demonstrate the effect of an electric field on
the microrheological and macroscopic rheological properties,
Fig. 9 shows the calculated equilibrium mean projections

T.
1

(from [71] and Table III), the orientation ¢iw (from [33al),
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FIGURE 9

Variations of equilibrium mean projections Ei
(part a), orientation ¢im (part b), and
intrinsic viscosity [n], and intrinsic normal
stress difference [£23]°° (part c¢) for re==lOO
with f calculated from {71] and Table I1I,
from [32a] and from [86] and [87] respectively.
All quantities exhibit a discontinuous change
in behavior at £ = 1. At f = =, [nl, = 4169.0
(obtained from [88al), the value corresponding
to ¢iw = 0, is indicated by the horizontal
broken line in (c); —[€23]w passes through a
maximum around f£f = 70, corresponding to

¢iw = 35.5°, and then decreases to [523]°° =0

at £ = o,
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the intrinsic viscosity [n]_ (from [86al] and [87a]) and
the intrinsic normal stress difference [g23]m (from [86¢]
and [87c]) as function of f when r, = 100. As f increases
from 0.1 to 1, there is little change in Eim’
decrease in [n]_ and a steady increase in —[g23]m. At £ = 1,

a small

each quantity shows a sudden change of behavior. At higher
£, e increases and f3m decreases, having equal values

(r,, = f3m = 0.707) at £ = 50 (corresponding to ¢leo = 45°),
with féw + 1 and f3m > 0 as £ > »; ¢]  decreases to zero

and [n]°° increases to an asymptotic value (given by [88a])
about 102 times that for f = 0; [523]oo exhibits its maximum
around £ = 70, then decreases to zero as f - . This be-
havior is representative of r. > 1 and indicates the consi-
derable effect of an electric field on the rheological
properties of a suspension.

A general macrorheological description for all
possible distributions of spheroid orientations is provided
by [77] to [82]. These equations predict, in addition to
effects already discussed, a number of interesting and per-
haps surprising phenomena, but it is beyond the scope of
this discussion to examine them in detail. Instead we draw

attention briefly to the following possibilities:

(1) When f2 + o and pt(¢l) is not symmetrical about
¢; = 0, [80a] indicates that [n] can fall in the interval
t . This means that in transient states and at finite
concentrations the suspensions may have any viscosity,

positive, negative or zero.
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(2) When G = 0 (and £ and n are undefined), [77]
indicates that the macroscopic stresses due to the electric
field do not vanish when the orientations are not isotropic.
Thus there are electrically generated shear stresses which
can induce electrohydrodynamic flows. These flows can also
exist when f2 + o and are responsible for the negative

viscosities mentioned above.

Finally, from the similarity between electric and
magnetic field theory, we show in the Appendix how the

present theory can be extended to a magnetic field.
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CHAPTER V

ORIENTATION DISTRIBUTION OF CYLINDERS

IN SHEAR AND ELECTRIC FIELDS
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ABSTRACT

Transient orientation distributions of electri-
cally conductive rods and discs in suspensions subjected
to combined shear and electric fields were determined
ex?erimentally. In sub-critical electric fields the orien-
tation distribution oscillated at a frequency twice that of
the individual particles rotation; the orbit distribution
drifted towards higher orbits with rods and lower orbits
with discs, so that eventually the axes of rods and the
faces of discs lay in planes normal to the vorticity axis.
In super-critical fields the orientation distributions no
longer oscillated but changed gradually as each particle
moved to a steady orientation. Monotonic changes in orienta-
tion distributions occurred in suspensions subjected to an
electric field alone. All of these observations were as
predicted from theory. The influence of electric fields
on such rheological properties as the intrinsic viscosity

and normal stress differences of the suspensions are

discussed.
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LIST OF SYMBOLS

Symbols are listed in Reference 1. The foilowing additional

symbols are used in this Chapter.

A(t) = amplitude of oscillation of fz

Cg = constant given by [22d]

D = relative amplitude given by [8]

Dr = rotary diffusion constant

pt(¢im,Kl) = two-dimensional probability distribution

of ¢im and Kq

pt(¢im), P(¢im) = probability and cumulative distribution
of ¢im
Tep’ TeE = hydrodynamically and electrically

equivalent axis ratio

rp = particle axis ratio for cylindrical
particles

v = volume of a particle

A(reE) = function defined by [17] and [19]

vij = electro-polarizability tensor

[Egij] = intrinsic electric normal stress
differences

Ty Tyyr Tor Tgr Ty relaxation times for damping of

oscillations of fz

¢ (1 =2,3)

orbit parameters defined in [1]

@ = function given by [2Db]
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1l. INTRODUCTION

(a) General

In the preceding Chapterl) we developed an
a Eriori theory of the micro- and macro-rheological pro-
perties of dilute suspensions of rigid spheroids subjected
to shear and electric fields, special emphasis being given
to the case of electrically conductive particles with no
permanent dipoles in an electric field directed normally to
the velocity and vorticity of the shear flow. It was shown

that the rotation of each particle depends upon the dimen-

sionless factor

2,2
K,P(g,r JEZ(xrZ + 1)
£ = - 2 e "o e [1]

G
nore

which is a measure of the relative effects of the electric
field (of strength EJ in e.s.u.) and the shear field (of
gradient G). When f2 < 1 (designating a sub-critical electric
field) the particles rotate about the vorticity axis, (the
xl—axis in Fig. 1); as a result the orientation distribution
pt(¢l) oscillates with a frequency 2/Tl. When f2 > 1 (a
super-critical field) the particle no longer executes complete
rotations; instead of oscillating, pt(¢l) gradually approaches

the delta function 6(¢1 - ¢im)’ the equilibrium orientation

¢}, of all particles which is uniquely determined by ry and f.

,.!
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In this Chapter we present experimental conf&rma—
tion of the equations for the rotations of single particles,
for the distributions of orientations and orbits, and for
the mean projections using dilute suspensions of rods (re> 1)
and discs (re < 1) with initially random orientations in
both sub- and super-critical fields and in an electric field
alone (G = 0). The case when f = 0, corresponding to a shear
flow alone, has been previouslyz) described in detail.

The probability orientation distributions pt(¢l)
at f2< 1 showed oscillations which were eventually completely
damped out, in contrast to the undamped oscillations predicted
from the theory for monodisperse and collision-free suspensions,
so that equilibrium distributions Rw(¢l) were established after
a few particle rotations. The relaxation times for the damping
of oscillations were measured from fz for rods using an analy-
tical method similar to that used at f=0 2). The measured
orientations were then used to calculate rheological properties
of the suspensions from the theory using [77]—1* and [781-1.
Mechanisms of damping similar to those considered at £ = 0 2),
and those due to the electric field are examined in Section 4.

Before presenting the experimental data and the
calculations, we present some useful new relationships

describing the rotational orbits.

N Equations, tables and figures from earlier papers are identified
by appending the reference number; thus [TT7}1-1 designates
Equation [TT] of Reference (1).
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(b) Distributions of Particle Orbits

Although the constant Con(defined in [28a]-1)
determines the characteristic elliptical spiral orbit for
the particle axis when f2 < 1, it is convenient to use
the orbit constant C (constant for an isolated particle
when £ = 0 and defined by [28a]-1l) which now changes
continuously with time. Rods move toward C = «» (i.e.

61 = m/2) and discsvtoward C =0 (i.e. el = 0). The
experimental results, however, are more conveniently
expressed by the orbit parameters ¢2m for discs and ¢3m

for rods, used previously for f = 02), and defined as

_1 -
¢2m = tan "C r ’ ¢3m = tan "C , [2]

e
¢2m' ¢3m being equivalent to el at ¢l = 7/2 and 0 respec-
tively (see Fig. 1). From the equations in Table I-1,

C and Co are related by

C
o

1
C = = ®° exp [
1 -f

[3al

_ 2
K, P(q,r,)Eg t]
n

O

where

a a4
o = 14.f2cos(4134-2K )-+f/1-f2 sin(;EE + 2k.) . [3b]
Tl 1 Tl 1

The probability distribution of orbit constants

at £ = 0 corresponding to a random orientation of particles,

A
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FIGURE 1

Coordinate systems: Xqr Xy, Xg aXes; Eulerian
angles el, ¢l and 62, ¢2 with Xq= and x2-axis

as the respective polar axes. The orbit para-
meters ¢, and ¢3m are identical for the orbit
described by the end of the axis of revolution

of a spheroid in a shear flow alone (shown by
heavy solid line for re > 1 and heavy broken

line for r < 1). The electric field (of strength

e

EO) is applied along the x2—axis.
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denoted by pE(E) (¢ = C, bomr ¢3m)' has been given pre-
)

viously2 , and is nearly constant when pE(¢3m) is used for
rods and pE(¢2m) for discs except near Pom? O3 = 0° (see
Table I-2).

We now consider the transient distribution Py (o)
when shear and electric fields are applied to a suspension
of initially randomly oriented particles. The probability
distribution p(Co,Kl) given by [57]-1 may be converted to the
probability pt(¢im,Kl) with -1/2 < ¢im < /2 using the

identity:

P, (¢, rk)de, = p(Co,Kl)dCO . (i =2,3) [4]

Substitution of the partial derivative (aCO/a¢im) obtained

from [2] and [3a] into [4] yields

1 -2K,P(q,r )
/ 2 .3 2
r, 1-f ¢2sin¢>2m exp [________9__ Eit]

( ) = i
P (bpprky) = 2R.P(G,T) 32 ¢
am 2<I>cosz¢ + V¥ sin2 ex 2 e E2t
Te 2m 1 ¢2m 13 N, o
[5a]
1 -2K P(Q:r )
r /1-¢° 3%sing._ exp [; € B2
e 3m no (e}
Py (dgpeky) = 2K P(q,r_) 3/2
4t <I>cos2¢ + ¥ sin2¢ ex —2 e E2t
3m 1 3m FP n, o
[5b]

where Wl and ¢ is given by [47]-1 and [3b] respectively.

The probability distribution pt(¢im) may be obtainad from
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the integral:

2m
Py () =f Peldimrkydde; . (i=2,3 6]
o)

When f = 0, as noted previouslyl), C = Co and k = Kyr so
that the probability pt(¢im) given by [6] reduces to
pE(¢im) which is constant at all times in a collision-free
suspensionz). In other words, pE(¢im) corresponds to
initially rendomly oriented particles which rotate in a
constant orbit in a shear flow (f = 0). The cumulative
distribution Pt(¢im), by definition, is obtained by the

integration:

3 ¢

im
Peli) = f P o) a6, o =[
[o]

2

m

[pt(¢im'K1)dK1d¢im' [7]
(o] (o)
In general, analytical solutions of [6] and [7] are not

available for f£2 > 0; Pt(¢im) is evaluated by numerical

integration with the results given later.

2. EXPERIMENTAL

Experiments were made in a Couette apparatusB) consisting
of two stainless steel counter-rotating concentric cylinders,
electrically insulated from one another to allow the applica-

tion of an electric field across the annular gap (gap width



1.88 cm) in which shear flow occurred. An electric field
was applied to the outer cylinder using a 60Hz a.c. power
supply (0 to 25 RV) with the inner cylinder grounded. The
electric field strength Eo (in e.s.u.) was calculated,
taking wall curvature into account, from the peak-to-peak
potential differences between two cylinders.

Electrically conductive rods of nearly uniform
length were made by microtomingz) Al~coated Nylon mono-
filament of diameter 175u. Discs were obtained by passing
a polyester laminated Aluminium tape (with the metal film
sandwiched between two layers of polyester) through an IBM
punching machinez). The complications arising from the
structure of the discs are discussed later. Two Newtonian
suspending media were used: Castor oil AA and Pale-4-o0il,
the density of which was matched to that of particles by
adding tetrabromoethane; no appreciable sedimentation was
observed over a 24 hr. period. Properties of the suspensions
used are listed in Table I, including values of standard
deviation in ry from the mean of the particles resulting
from an unavoidable spread in particle dimensions caused
by the methods of preparing the particlesz),

The viscosities Mg of the suspending media were
measured in a bob and cup viscometer (Rheomat 15, A.G.
Epprecht, Zurich). The dielectric constants K, of the media
were measured by the substitution method using a Balsbough

dielectric cell 2TN 50 and a General Radio capacitance

bridge 716-C at 10 k Hz. All experiments were conducted in
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TABLE [

Properties of Suspensions

RODS DISCS

Material Af-coated Nylon 2) Egigiztzg agP)

Diameter (u) 175 1172

Length (i) 900 870 © 95

T, 5.14 4.96  0.081

R 4.43 (4.2)| 3.96 (4.8) 0.155 (2.6)
Castor oil AA e) Pale-4-0il £)

Mediun + C,H,BT, + C,H,Br,

U (poise) 9.9 15.5

K, 4.5 6.9

a) Coating by National Research Co., Cambridge, Mass.

b) Chase-Foster, East Providence, R.I.

c) Rods used in Experiment III (Table II)

d) Mean equivalent axis ratio obtained from the measured
period of rotation in shear flow by means of the relation
T = 21T(re + r;l)/G (Table I-1) and the bracketed values

are percent standard deviations c/re X 100 from the mean -

e) Fisher Scientific Co.

f) Baker Castor 0il Co., Bayonne, N.J.



Experimental Conditions

TABLE II

g7

RODS DISCS
Experiment I II 111 v v VI

2

Number f <1 f2>l G=0 f2<1 f2>l G=0

-1
N (mf ™) 30.0 50.0 20.0

2

c(mf/ml) x 10 0.065 0.105 1.75

-1
G (sec ') 0.43 0.44 0 0.74 1.37 0
E, 1.63 3.26 2.14 1.75 4,62 1.11
(statvolts/cm)

a) 72.7 95.6 95.2 58.0 45.0 208.1
Ti (sec)
(i=1) (i=2) (i=23) (i=1) (i=2) (i=3)
£ b) 0.32 1.22 - -0.25 -1.21 -
P(q,r ) c) -0.0242] -0.0238 |-0.0160 0.0212 0.0263 | 0.0303
e meas.

P(q,r ) 4 | -0.0221{ -0.0221 |-0.0216 | 0.0201 | 0.0201 | 0.0201
e’ calc.
e)

E . 2.90 2.97 - 3.43 4,20 -

crit.
(statvolts/cm)
a) Measured period of rotation for Tl; calculated from £ for T2;

and calculated from the experimental conditions and measured

P(q,re) for T3-

. 2
b) Calculated from measured T, (f2< 1) and from measured ¢im (£ >1).

¢) Calculated from f using [30}-1; for G = O from the slope of line

lOglOtandDl vs t using equation in Table I-l.

d) cCalculated from [27b]l-1 using r,-

e) Calculated from [37]-1 using re, G, and measured P(q,re)
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FIGURE 2

Tracings of photographs showing the orientation
distribution of rods for initially random
orientation at t = 0 (I-1 to III-1) and near
equilibrium (I-2 to III-2). The Roman numerals
correspond to the experimental conditions listed
in Table II. The xl—axis along which the photo-
graphs were made, is normal to the plane of the
page. The orientation ¢l and projected length
of each particle was measured from which all of

the orientation parameters were calculatedz)

.
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a thermostatically controlled room at 21 * 1°C.

The procedures and subsequent frame-by-frame
analysis of photographs of the particles were the same as
2)

with shear fields alone”™’, but now using the combinations

of shear rate G and electric field strength Eo listed in
Table II. Typical examples of projections of rods traced
from series of photographs at each time are shown in Fig. 2.
To obtain the distributions of particle orientations over

100 to 200 particles, it was necessary to photograph several
different fields since each contained less than 40 particles.
Photographic analysis yielded the orientations 04 and ¢l

from which r.y S ¢2 were calculated directly using the

1)

definition equations™’. The orbit constant C and ¢im were

ij

1
from the rotation of particles in shear flow alone by means

then calculated from the measured 6., and ¢1 using ;e obtained

of the equation in Table I-1 and [2]. All theoretical
calculations were made using Ee and P(q,re) obtained experi-
mentally as described in the next section. For convenience
the conditions of the various experiments, which are subse-

quently identified by Roman numerals, are listed in Table II.

3. RESULTS

(a) Sub-critical Field: £2 < 1

The tracings of one end of the axis of revolution

of a rod and a disc on the x2x3—plane in a sub-critical field
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FIGURE 3

Projections of ends of unit length of axis of revolution

of particles on the x2x3—plane in sub-critical fields.

(a)

(b)

Elliptical spiral for a rod e = 4.43 with initial
C = 0.19, indicated by the large closed circle, at
G = 0.4 sec”! ang E, = 0.98 stitvolts/cm (corres-
ponding to £ = 0.23), the locus being drawn to fit

the experimental points. The rotational orbit

drifts to the predicted C =

A disc Ty = 0.155 with initial C = 38.0 at G=0.4

sec 1 and EO = 1.07 statvolts/cm (corresponding to
f = 0.24), drifting in the direction of diminishing

C and (nct shown) eventually reaching the predicted

value C = 0,

,J




(a) RODS, £=0.23

(b) DISCS ,f=-0.24

227G
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are shown in Fig. 3. Starting at the points shown by the
large solid circles, the locus of a particle end was an

elliptic spiral as predicted by the theoryl) The rod
drifted to C = « (¢2m = ¢3m = 90°), finally rotating in
the x2x3—plane so that the locus was a circle of diameter
equal to the length of the rod. For the disc it moved
toward C = 0 (¢2m = ¢3m = 0°) and eventually lay with its
face parallel to the x2x3—plane and spinning about its axis
with constant angular velocity G/2. This predicted
behavior was also observed with single rods by Allan and

4)

Mason ', and for single discs by Chaffey and Masons) The

factor f was calculated from the measured period of rotation
T, between ¢, = 0° and 360° by means of [29]-1 and the
parameter P(q,re) by means of [30]-1; values are listed in
Table II. Reasonably good agreement with the value of
P(q,re) calculated from [27b]-1l was obtained. As expected
from the rotation of single particles (Fig. 3), progressive
drifts in the distribution of orbits were observed in

Expts I and IV as illustrated in Table III and Fig. 4.
Reasonably good agreement with the values calculated by
numerical integration of [7] using [5], shown by the solid
lines in Fig. 4, was obtained. The initial distributions
Po(¢im) were close to PE(¢im) corresponding to random

orientation. It is clearly seen in Fig. 4 that the orbits

of rods shifted toward ¢3m = 90° and those of discs toward

¢om = 0°- At t/T; = 2, nearly 70% of rods had ¢, > g8o°

and 80% of discs had ¢2m < 20°.

_
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TABLE III

Measured Orbit Dlstrlbutlons Pt(q)im)

for 0 < £2 <1

a) P, (¢. )
t Tim
¢im PE(¢im)

(deg.) t/7=0 0.5 1.0 1.5 2.0

10 0.057 0.022 - - - -
20 0.167 0.132 0.012 - - -
RODS 30 0.287 0.253 0.037 0.011 0.021 -
40 0.407 0.374 0.171 0.021 0.082 -
Expt.I| 50 0.527 0.489 0.232 0.053 0.113 0.022
60 0.646 0.689 0.439 0.192 0.288 0.089
(i=23) 70 0.764 0.856 0.646 0.446 0.402 0.178
75 0.823 0.890 0.786 0.542 0.495 0.222
80 0.882 0.903 0.866 0.660 0.536 0.322
85 0.941 0.953 0.933 0.800 0.721 0.500
90 1.000 1.000 1.000 1.000 1.000 1.000

5 0.022 0.009 0.037 0.075 0.149 0.226
10 0.072 0.029 0.157 0.257 0.455 0.603
DISCS 15 0.129 0.071 0.222 0.450 0.619 0.771

20 0.188 0.139 0.296 0.564 0.762 0.875
Expt.iv{ 30 0.306 0.263 0.509 0.743 0.891 0.937
40 0.423 0.402 0.648 0.881 0.940  0.982
(i=2)1| 50 0.540 0.559 0.796 0.911 0.950 0.991
60 0.655 0.716 0.898 0.941 0.970 -
70 0.770 0.864 0.954 0.950 0.980 -
80 0.885 0.944 0.963 0.970 0.990 -

90 1.000 1.000 1.000 1.000 1.000 1.000

a) Calculated from the equations in Table I-2
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FIGURE 4

Changes of distributions of orbit para-
meters Pt(¢3m) for rods (Expt. I, f=0.32)
and Pt(¢2m) for discs (Expt. IV, f =-0.25)
in sub-critical electric fields at various
times t/Tl. The solid lines were calculated
by numerical integration of [7] for an
initially isotropic suspension using the
measured f value. The broken lines are

drawn to fit experimental points.
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(b) DISCS , f=-0.25
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The probability distributions Py (d4) = dp, (¢4) /4o,
obtained from the slope of smoothed curve of experimental
distributions Pt(¢l) versus ¢, are shown in Fig. 5 using
'polar plots, the radial coordinate being /S:TEIT. Initially
the experimental points were close to the circle of radius
1/ /27 corresponding to random orientations. When shear
and electric fields were applied the probability pt(¢l) for
rods showed a maximum at ¢ = 70° and a minimum at ¢, = 160°
at t/Tl = 0.08 [Fig. 5(ii)] and then the maximum crossed
¢, = 90° into the second quadrant [Fig. 5(iii)]. Similar
behavior was shown by discs (Expt. III), but the maxima
were shifted by 90°. At t/T1 = 0.5, pt(¢l) assumed nearly
an initial distribution for rods, but notZ%or discs for
reasons discussed later. Although not shown in Fig. 5, in
the second half-rotation pt(¢l) continued to change as in
the first half, and thus oscillated with frequency 2/Tl.
However the oscillations of pt(¢l) were damped and the steady
(equilibrium) distributiong pw(¢l) was established after a
few particle rotations, as shown for the rods in Fig. 5(v)
after 5 rotations. For discs ¢, became indeterminate since
all assumed the orbit C = 0 (i.e., their faces lay in the
x2x3-plane). The experimental points for rods are in good
agreement with the theoretical values of pm(¢l) calculated
from [65]-1. It should be noted that at equilibrium the
maximum probability occurred at ¢, = 86° indicating that the
electric torque acting on the rods shifts the position of

minimum angular velocity (d¢1/dt) below ¢1 = 90° (the angle

281
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FIGURE 5

Polar diagrams of probability orientation
distributions pt(¢l) versus ¢l (the radial
coordinate being /EZTEIT in order to de-
crease the axis ratio of resultant envelops)
for rods (open circles, Expt. I, £ = 0.32)
and for discs (closed circles, Expt. IV,

f = -0.25) in sub-critical fields at various
times (i to iv). The solid lines are JE;TEIT
calculated from [54]-1 for an initially
isotropic and collision-free suspension using
the measured £ value. The equilibrium for
rods at t/'I‘l = 5, is shown in (v) where the
equilibrium values /5;76;7 calculated from

[65]-1 are shown by the solid line.
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of minimum angular velocity at f = 0) as predicted by the
theoryl).

As with the case f = 02), the oscillatory behavior

of the orientation distributions is displayed more clearly

by the mean projections Eé for rods and §i2 for discs. As
shown in Fig. 6, fz (= 0.548 initially) of rods decreased

to a minimum (= 0.102) at t/T1 = 0.32, then increased to

0.596 at t/Ty = 0.5, thus showing oscillations with frequency
2/T1 which then became damped. The amplitude A(t) of each
oscillation was determined for each quarter period of rotation
(see [30]~2) and was then compared with the amplitude obtained

from the theoretical calculation of 52 from [68b]-1 as the

ratio:

A(t)
D = meas.

A(t)

. [8]

calc.

Values of D for rods obtained in this way are plotted as
closed circles in Fig. 6a. The relaxation time T/T1 for the
damped oscillation of ?2 was taken as the time at which D
decays to l/e as indicated by the arrow in Fig. 6a, so that

for Expt. I

T/Tl = 1,73 . [9]

Similar damping of oscillations of ;1 and f3 were also
observed, and in Expt. I each Ei reached equilibrium at
t/T; = 5, at which r; = 0.019, T, = 0.314 and r, = 0.880;
these are in good agreement with the theoretical values

—ey
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FIGURE 6

Mean projection length 52 for rods (Expt.I,
f = 0.32) and mean projection area §12 for
discs (Expt. IV, f = -0.25) in sub-critical
fields. The solid lines are theoretical
values calculated by numerical integration
of [68]-1 for collision-free suspensions.
The closed circles in (a) are the relative
amplitudes D obtained from the measured and
calculated amplitudes of oscillations of Ez
and the broken lines are drawn to fit these
points. The relaxation time T/Tl (= 1.73)
at which D is reduced to 1/e is indicated

by the arrow.
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(r;j, = 0, r,, = 0.325, ry = 0.895) calculated from [71]-1.
Damped oscillations of frequency 2/Tl were also

exhibited by §ij of discs, as illustrated by §12 in Fig. 6b.

12 and S13

equilibrium values of zero, indicating that all discs drifted

§23 approached an equilibrium value of unity, and S

toward the lower orbits and eventually lay in the x2x3-plane.
Since the calculated §12 (shown by the solid line in Fig. 6b)
obtained from [68c]-1 also shows a damped oscillation (i.e.,

A(t)calc decreased asymptotically to zero), it is impractical

to estimate the relaxation time for this case.

(b) Super-critical Field: f2 > 1

In super critical fields the particles no longer
executed complete rotation about the xl—axis; instead they

gradually assumed the steady orientation ¢iw at which the
hydrodynamic and electric torques were balancedl). Progres-
sive changes in Pt(¢l) for rods (Expt.II, £ = 1.22) and discs
(Expt.V, £ = =1.21) obtained from the measurement from the
x2x3—projection are shown in Fig. 7, where from symmetry
considerations, the range of ¢l was taken between 0° and 180°.
In both cases the initial distribution PO(¢1) was nearly a
straight line corresponding to random orientation; Pt(¢l)
then changed gradually toward the steady orientation ¢iw
indicated by the vertical solid lines ¢iw = 67° for rods and
164° for discs. The values P(qg,r )

e meas.
measured ¢j, using [33a]-1 and [30]-1 are listed in Table II,

calculated from thec

A
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FIGURE 7

Cumulative orientation distribution Pt(¢l)
versus ¢l in super-critical fields for (a)
rods (Expt. II, £ = 1.22) and (b) discs
(Expt. Vv, £ = -1.21) at various time
intervals. The solid lines are calculated
from [56b]-1 using the measured f values.
The solid vertical lines indicate the mea-
sured steady orientations ¢iw = 67° for
the rods and 164° for the discs; the
unstable steady orientations ¢£; = 83°
(rods), 175° (discs) calculated from the

measured ¢iw are indicated by the vertical

broken lines.
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showing reasonably good agreement with the theoretical
values calculated from [27b]-1 for g = «. The unstable
steady orientations ¢Im were calculated from [33b]-1
using f obtained from measured ¢iw and are indicated by
the vertical broken lines in Fig. 7. Good agreement of
Pt(¢l) with the theoretical calculation from [56b]-1 using
f values obtained above were observed for both experiments,
showing that as predicted the probability distribution
pw(¢l) became the delta function 6(¢l - ¢iw);

The corresponding changes in mean projections
Ei and gij obtained from the measured orientations are
summarized in Table IV and are shown in Fig. 8. With rods
EZ passed through a maximum and 53 a minimum in the early
stages and then asymptotically approached the equilibrium
values Ezm = cos¢},, = 0.397 and f3m = sin¢j, = 0.918; El
decreased monotonically to 0.082 at t = 30 sec. indicating
that nearly all rods lay in the x2x3—plane. The experi-
mental points are in generally good agreement with the
theoretical values obtained from [68]-1 except for T, at

1
high t. With the discs §l3 passed through a maximum and

523 a minimum in the early stages and asymptotically approached
the equilibrium values S1300 = 0 and 823°° = 1; 812 gradually
decreased from 0.542 initially to 0.028 at t = 60 sec.,
indicating that all the discs approached the predicted value

B

1= 0. Good agreement with values of §ij calculated from

[68]1~1 were found except for §l3 and §23 at large t.

-3
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TABLE IV

Measured Mean Projections, Calculated Intrinsic
Viscosity and Normal Stress Difference for f2 >1

RODS (Expt. II, £=1.22) DISCS (Expt. v, f£f=-1.21)

t
- - - b) o)l = = - b) c)

(sec) r, r, r, inl [523] 512 523 S13 [n] [523]

calc. calc. calc. calc.
0 0.469 0.471 0.574 3.32 =-2.49 0.542 0.453 0.536 3.86 =1.12
1 0.477 0.439 0.615 4.95 -2.05
2 0.406 0.557 0.386 4,70 -2.82 0.388 0.439 0.691 4.95 -3.12
4 0.331 0.524 0.700 5.54 -4.18 0.307 0.446 0.735 4.51 -3.44
6 0.283 0.769 0.523 5.43 =4.85 0.277 0.471 0.740 4.34 -3.29
8 0.233 0.468 0.810 5.57 ~5.58 0.255 0.474 0.732 4.11 -3.25

10 0.168 0.437 0.847 5.28 -5.88 0.227 0.566 0.678 4,58 -2.75

12 0.233 0.526 0.701 4.41 -2.89
14 0.163 0.407 0.876 5.18 -6.10 0.218 0.579 0.667 4.62 -2.68
16 0.205 0.582 0.653 4.61 -2.57
18 0.157 0.416 0.867 5.22 -6.29 0.197 0.629 0.613 4.81 -2.37
20 0.185 0.640 0.612 4.72 -2.39
22 0.155 0.391 0.897 5.01 -6.35

25 0.140 0.725 0.515 5.11 -1.96

26 0.078 0.395 0.900 5.05 -6.37
30 0.082 0.385 0.904 4.96 -6.28 0.103 0.806 0.412 5.46° -1.53

35 0.077 0.856 0.338 5.71 ~1.30
40 0.060 0.877 0.300 5.82 -1.11
45 0.041 0.8%8 0.266 5.91 -0.92
50 0.043 0.901 0.266 6.03 ~0.9C
55 0.025 0.938 0.204 6.18 -0.71
60 0.028 0.940 0.203 6.22 =-0.71
a)

© 0.000 0.397 0.918 5.17 -~6.84 0.000 1.000 0.000 6.96 0.00

a) Equilibrium values are calculated from ¢im and 61

(= /2 for rods and = 0 for discs).

b) Calculated from [80a]-I
¢) Calculated from [81b}-1
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FIGURE 8

Changes of mean projection lengths Ei for
rods (Expt. II, £ = 1.22) and mean projec-
tion areas §ij for discs (Expt. V, £=-1.21)
in super-critical fields calculated from
the measured orientations of particles.

The solid lines are theoretical values

from numerical integration of [68]1-1 for an
initially isotropic and collision—freevsus—

pension. The steady state values EZ%

3

for rods are indicated by the broken lines.

cos¢l, = 0.397 and r,, = sin¢j, = 0.918
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(c) Electric Field Alone (G = 0)

Upon applying an electric field alone, an isolated
rod and disc rotated until ¢l = 0° and 90° respectively.
As predicted from the theoryl) and previously observed with

single rods4) 3)

and discs loglotanq)l was linear with time t
as shown in Fig. 9, where the time axis is arbitrarily
chosen so that ¢l = 45° when t = 0. The slope of this line
yields the period T, and in turn the parameter P(q,re) by
use of the equation listed in Table I-1. Each line shown in
Fig. 9 is calculated using the mean value of P(q,re) from
measurement on 10 different particles. The measured (algebraic)
values of P(q,re) are greater than the theoretical values for
spheroids calculated from [27b]-1, and the discrepancies are
greater than for finite f (Table II). These discrepancies,
which were also noted by Allan and Mason4) and Chaffey and
Masons), may be attributed to a particle shape effect; this
will be discussed later.

Monotonic changes in Pt(¢l) of suspensions were
observed as illustrated in Fig. 10, where Pt(¢l) is plotted
only in the range of ¢l = 0° to 90°, since the rotation of
particles is symmetrical with respect to the direction of
field (the x2-axis). Initially the particles were oriented
nearly randomly with respect to ¢l as shown by the diagonal
line in Fig. 10. Then, to be expected from the rotation of
isolated particles, all the rods moved toward ¢l = 0° and

the discs toward ¢1 = 90°. At t = 60 sec., 80% of rods had

¢l = * 10°, whereas less than 55% of discs had ¢l = 90 * 10°,



FIGURE 9

Rotations of single rods and discs in an
electric field EO = 2.14 statvolts/cm and
1.11 statvolts/cm respectively. To avoid
congestion the experimental points for
only 3 of 10 particles are plotted. The
solid lines are calculated from the equa-
tions listed in Table I-1 using the mean
values of P(q,re). The time axis is chosen
so that ¢l = 45° at t = 0. Similar linear
plots were obtained from single rods by
Allan and Mason4) and for single discs by

Chaffey and Masons).
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FIGURE 10

Progressive cumulative orientation distri-
bution Pt(¢l) in an electric field alone
(G = 0 for (a) rods (Expt. III) and (b)
discs (Expt. VI). The solid lines are
calculated from [56b]-1 for G = 0 for
initially isotropic and collision-free

suspensions at the times (sec) indicated.

237
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The calculated Pt(¢l) from [56b]~1 using measured P(q,re)
are not always in close agreement with the experimental
points. At equilibrium pw(¢l) = 6(¢l) for rods and
= 6(¢1 - w/2) for discs.
The theory described previouslyl) predicts that,
at G = 0, particles move along loci of constant 2 (the
azimuthal angle for the particle axis when the x2-axis is
chosen as the polar axis of the spherical coordinate; Fig. 1),
and consequently the distribution of ¢, remains constant,
independent of time. As predicted, integral distributions
Pt(¢2) obtained from the measured 61 and ¢l’ summarized in
Table V, are effectively constant for 30 sec. The average
values of ?ETE;T over t = 0 to 30 sec., listed in the last
column, are plotted together with the standard deviation o,
from the mean at each point in Fig. 11, and fall close to a
random orientation of ¢, as expected from the theory ([63b]-1).
The mean projections ;i for rods and gij for discs
are summarized in Table VI. As shown in Fig. 12, ;l and ?3
of rods decreased gradually to El = f3 = 0 at t = », while
EZ increased to unity, indicating that all rods became aligned
along the x,-axis. With discs 512 and §23 showed small in-
crease to the equilibrium value 2/7 (Table III-1) corres-
ponding to a random orientation of Gl at ¢l = 90°, and §l3
decreased slowly to §13 = 0. Theoretical mean projections
;i and gij corresponding to an initially isotropic suspension
calculated from [69]-1 using Ty given in Table II, are shown

by the solid lines in Fig. 12; there is generally good
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TABLE V

Measured Orientation Distributions Pt(¢2)

for G =0
Pt (¢2) —
%2 Po(d’z)a) Peloy) o
t=0 sec 10 sec 20 sec 30 sec
10 0.111 0.102 0.108 0.142 0.151 0.126
20 0.222 0.199 0.178 0.228 0.286 0.223
RODS 30 0.333 0.300 0.270 0.325 0.380 0.319
40 0.444 0.389 0.340 0.421 0.484 0.409
50 0.556 0.473 0.459 0.508 0.578 0.505
Expt.III | 60 0.667 0.588 0.568 0.604 0.656 0.604
70 0.778 0.730 0.735 0.700 0.745 = 0.728
80 0.889 0.841 0.848 0.838 0.834 0.840
20 1.000 1.000 1.000 1.000 1.000 1.000
10 0.111 0.111 0.136 0.089 0.080 0.104
20 0.222 0.210 0.200 0.1le6l 0.170 0.185
DISCS 30 0.333 0.306 0.288 0.250 0.290 0.284
40 0.444 0.410 0.384 0.331 0.410 0.384
50 0.556 0.512 0.488 0.435 0.530 0.491
Expt.IV 60 0.667 0.633 0.608 0.573 0.670 0.621
70 0.778 0.762 0.752 0.734 0.810 0.765
80 0.889 0.901 0.936 0.887 0.930 0.914
90 1.000 1.000 1.000 1.000 1.000 1.000
a) Corresponding to random orientation Po(¢2) = ¢2/2n

([63b]-1).

b) Mean values of Pt(¢2) for 4 indicated values of t.
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FIGURE 11

Constancy of Pt(¢2) for rods (Expt. III,
G = 0) and discs (Expt. VI, G = 0) in an
electric field alone over t = 0 to 30 sec.
Points are the mean values and the verti-
cal bar twice standard deviation 9, from
the mean. The theoretical distribution
corresponding to random orientation of $5
is indicated by the solid diagonal line

(c.f. [63b]-1).
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TABLE VI

Measured mean projections f& and §ij’ and calculated intrinsic

electric normal stress differences [Egij] for G =0
Random® | £=0 sec 10 20 30 40 50 60 %0 120 &3
;l 0.500 0.426 0.364 0.322 0.282 0.246 0.208 0.206 0.168 0.151 0.000
RODS ;é 0.500 0.545 0.661 0.750 0.828 0.859 0.908 0.917 0.942 0.956 1.000
Eé 0.500 0.531 0.445 0.335 0.259 0.198 0.146 0.119 0.083 0.067 0.000
Expt.III [EElz] -0.113 -0.122 -0.118 -0.105 -0.102 -0.083 -0.075 -0.073 -0.058 -0.053 0.000
[E€23] 0.113 0.139 0.129 0.104 0.092 0.069 0.059 0.053 0.038 0.035 0.000
[E€31] 0.000 -0.017 -0.011 0.001 0.010 0.013 0.016 0.020 0.020 0.018 0.000
Eiz 0.500 0.511 0.514 0.595 0.589 0.642 0.649 0.622 0.605. 0.636 0.637
DISCS 553 - 0.500 0.473 0.519 0.543 0.614 0.589 0.602 0.603 0.630 0.680 0.637
§i3 0.500 0.559 0.487 0.407 0.345 0.225 0.186 0.149 0.066 0.035 0.000
Expt.VI [Eglzl 0.196 0.218 0.206 0.1%5 0.182 0.117 0.102 0.083 0.046 0.037 0.000
[E€23] -0.196 -0.217 -0.191 -0.187 -0.162 -0.112 -0.094 -0.073 -0.034 -0.021 0.000
[E€3l] 0.000 -0.002 -0.015 -0.008 ~0.020 -0.005 -0.008 -0.010 -0.013 -0.016 ©.000

a) Calculated from theoretical equations in Ref. (1) for ;;

[22] for [Egijl.

and §:. and from
1)

€0

|



FIGURE 12

Monotonic changes in mean projection
lengths Ei for rods (Expt. III, G = 0)
and mean projection areas gij for discs
(Expt. VI, G = 0) in an electric field
alone calculated from the measured
particle orientations. The experimental
values are given in Table VI. Theore-
tical values, shown as the solid lines,
are calculated from [69]-1 for initially
isotropic and collision-free suspensions,

using the measured values of T3 listed

in Table II.
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agreement with the experimental points found for discs,

but less so for rods particularly at large t.

4. DISCUSSION

(a) General

The experimental results described above for
various combinations of shear and electric fields showed
generally good agreement with the theory for monodisperse
and collision-free suspensions. As previously considered
in detail for f = 02’6), deviations from the theory can be
attributed to heterodispersity, interactions and the shape
of the particles. These effects, in addition to rotary
Brownian motion of the particles, which we show to be of
negligible importance in our experiments, are discussed
below.

Finally we consider the rheological properties
which are predicted from the measured orientation distri-
butions. Before discussing the effects of heterodispersity
and interactions, we remark that the method used for arriving
at the relaxation time T from the experimental data differs

from that used at f = 0. In the latter case A(t) for

calc.
. . . . 2,6
a monodisperse and collision-free suspension is constant“’ )

whereas with 0 < f2 < 1 it varies with time (approaching

asymptotically to zero for e < 1 and a finite value for

N Ca s .
ry 1), so that it is not practical to use A(t)meas. alone.
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For this reason we have introduced the relative amplitude D
(whose relaxation time is defined as that for which D = 1/e)
in the preceding section; D is always unity for a mono-

disperse and collision-free suspension.

(b) Spread in r_

2

When £° < 1, initially all particles rotate about

the vorticity axis in phase with one another, but because of
'the variations in r, among the particles they move out of
phase as time progresses. It has been shown theoreticallyG)
that the spread in r, can lead to a steady orientation pm(¢l)
in a collision-free suspension at £ = 0. A similar (but much
less rigorous) analysis can be used to calculate the effect
of a spread in r, on the damping of the oscillations of Ei
and §ij when 0 < f2 < 1. Assuming a Gaussian distribution
of r (with standard deviation ¢ from the mean fe) and ex-
panding the oscillation of ;i and §ij into a Fourier series,
the relaxation time T for damping of the oscillations of

the first term in Fourier expansion is readily shown to be

- =2

T11 _ re(re + 1) (10]
- 2

1 2/2mo [r° - 1] -

which is identical to [95]-6 but with T (the mean period of
rotation at £ = 0) replaced by Tl. Equation [10] is valid

only when f is very small so that the oscillations of Ei do
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not differ greatly from those at f = 0; there is doubt
about its validity for r, < 1 since gij for a monodisperse
suspension (o = 0) itself undergoes a damped oscillation
(Fig. 6) whéreas it is undamped when f = 0 6). For rods

used in Expt. I (?é = 4,43, 0 = 4.2%) [10] yields
Tll/Tl = 3.0.

(c) Particle interactions

The rotations of individual particles will be
disturbed by hydrodynamic and electrostatic interaction
between the particles, the most important at low concen-
trations being two-body interactionss). For hydrodynamic
interactions the arguments used at f = 0 apply when
0 < f2 < 1, so that we may use the approximate equations

previously derivedG) and experimentally confirmedz) for the

relaxation time Ty for the damping of 52 of slender rods

(re >> 1)

3
T, = &n r_/8GNa [11]

which for Expt. I corresponds to 15 particle rotations so
that the suspensions were effectively collision-free on the
time scale of most of our experiments. The effect of electric
interactions is very much more complicated, and an analysis

is not attempted. There are two separate aspects to such
interactions, the first being the short-lived perturbations

of angular velocities of each of a pair of particles as they
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pass by under the action of shear which cause changes in
phase angle and (less marked) particle orbits as a result

of the electric torque developed on one induced dipole by
the action of another7). The second, and probably more
complicated, is the electric attraction induced by the
electric field which causes particles to move together and
under certain conditions to form chainss)- this is a process

7

which can continue to grow with time of application of the
electric field.
As an approximation the three separate effects

can be combined to give a net relaxation time T given by

= =+ = 4+ L [12]

where T11 and T, are given by [10] and [11]; Ty due to
the electric field, is unknown. Inserting the numerical
values for Expt. I calculated from [10] and [11], we obtain
T/Tl < 2.5 which is compatible with the measured value 1.73
given by [9].

Rotary Brownian motion of the particle can also
cause the oscillations of orientation distribution to

decay with a relaxation timez)

Ty = 1/6Dr [13]

where D. is the rotary diffusion constant; Tyr calculated

10

from [13], is of the order 10~ "sec. for the particlesusedz)
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and is thus not a factor in our experiments.

We conclude therefore that the deviations in the
observed orientation distributions from those calculated
theoretically for monodisperse and collision-free suspen-
sions were due to the small unavoidable spreads in particle
dimensions and to hydrodynamic and electric interactions

between the particles at the concentrations employed. We

also believe that the deviations in measured Ei and §ij

for £2 > 1 and G = 0 (Figs. 8 and 12) at large t were
mainly due to electrostatic interactions, which act

especially to prevent particles from lying flat in the

x2x3-plane.

(d) Particle Shape

The equations of particle rotation derived in the
previous Chapter are for spheroidal particles. The equations
9,10)

for shear flow (f = 0) have been shown experimentally to

hold for cylindrical particles when the hydrodynamically
equivalent axis ratio oq (< 1 for discs and oblate spheroids
and > 1 for rods and prolate spheroids) is used, determined
experimentally from the measured period of rotation T using
the relation T = 27 (reH + ré;')/G (Table I-1). Brethertonll)
has shown theoretically that the rotation of a rigid axisym-
metric particle in a simple shear flow is mathematically
equivalent to that of a spheroid.

X12)

Co has shown that for long slender particles

the equivalent axis ratio L is related to the actual axis
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ratio rp by ey = const. rp for sharp-ended bodies, and
Toy = const. rp//zn rp for blunt-ended bodies. An empirical
relationship2’13’l4) between rp and Tey’ Consistent with

12)

theory is given by

logloreH = 0.78 loglorp + 0.051 ’ [14]

and is applicable for a wide range of Ten S 1.
We now consider the motion of a cylinder in an
electric field (G = 0) for which the induced dipole moment

Péi in an external electric fielgd Eéi is a linear function

] —_ 1] ]

P2i = Vionj [15]
where vij is the electric polarizability tensor of the
particle; the values for spheroids are given previouslyl),

and for isotropic bodies of revolution (e.g. spheroids and

cylinders) vij = 6ijvij' The torque on the dipole inserted

into an electric field Eéi is thenl)

1 _— ] v ]
TEi = €14k BogBox . (161
For short conductive cylinders (q = «) Taylorls) has calcu-
lated numerically the electric polarizabilities, from which
data we list in Table VII the two components Vil (the
polarizability parallel to the axis of revolution) and

véz vé3 (that normal to it) for several particle axis ratios.



Calculated Polarizabilities and Equivalent

Axis Ratios of Cylinders

TABLE VII

41v a) 4Ty a) b) c)
r 11 22 AMr ) r r
P RV Kyv eE eE eH

2 2

0.0 1.000 o - ® 0 0
0.25 1.7507 6.1814 -4,4307 0.201 0.384
0.5 2.4325 4.2173 -1.7848 0.454 0.657
1.0 3.8614 3.1707 0.6907 1.303 1.124
2.0 7.0966 2.6115 4,4851 2,941 1.923
4.0 15.071 2,3151 12.756 5.648 3.290
® o 2.0000 ® co %

a) From numerical calculations by Taylorl

b) For calculation see text.

¢) Calculated from [14].
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Introducing the quantity A(reE) defined by

. 4ﬂ(vll - v22) v [17]
eE K2V r

A(x

where V is the volume of particle (for a cylinder V = Zwabz)

and . is electrically equivalent axis ratio, [16] may be

written as

r! =0

E1l '
K2V
' _ ' '
I'E2 - 4 A(reE)Eo3Eol ' (18]
K2V
¥ — ] 1
I‘E3 - 4T A(reE)EolEoz ’

which, by comparison with [13b]-1 of electric torque on a

spheroid, yields

_ 2(3A-2) p [19]
Mreg) = sz =17

where A is given by [17]-1 for a spheroid of r.- Values of
A(reE) for a cylinder calculated from Taylor's datals) are

given in Table VII. Values of the electrically equivalent

)

axis ratio Tep? computed to give the same values of A(reE

(i.e. to give the same torque) using [19], are listed in

Table VII for comparison with T oH from [14]. It is of

interest to note the following inequalities:
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when r_ > 1
p—

g >ty > You [20a]

when r < 1

oF p cH . [20b]

These inequalities are valid for rp = 0.25 to 4, and pro-
bably for a wider range of rp. The large difference
between the measured P(q,re) at G = 0 and the calculated

values from [27b]-1 may be caused by using Ty instead of

H

reE in the calculation.

Better agreement between the two was found

4)

previously for rods (P(q’re)meas./P(q're) =0.89 +0.05,

calc.
c.f. our values 0.74 (rods), 1.51 (discs)). A large discre-

pancy in P(q,re) for discs was also noted by Chaffey and
Mason4). On the other hand, we note that the measured

values of P(q,re) for f2 > 0 (G # 0) were in good agreement

with the calculated values (mean P(q,r )
e’'meas.

for Expts I, II, IV and V is 1.18 * 0.12).

/P(q’re)calc.

Separating ron and rg in [27b]-1 for g = « and

using [19] we obtain

2 2
3{2reH+ (1 - 2reH)A}

P(gq,r. ) = Axr_ ) [21]
e 64ﬂ(riH + 1) ek

as the basic equation for the effect of shape. However we

have not attempted to calculate TeE for the particles used
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in our experiments since they were not the perfect con-
ductors assumed in Taylor's calculationlS). In our
experiments, the rods as a result of microtoming had ends
which were non-conductive; each disc, as mentioned above,
was a thin Aluminium film between two polyester layers of
dielectric constant different from that of the medium.

With both kinds of particle the electric charge density

probably deviated from that assumed in the theory.

(e) Rheological Properties

The orientation distributions described above are
important to a number of physical properties of the suspen-
sions, especially the viscosity and normal stresses. These
two quantities may be calculated from the distributions
using equations derived in the preceding Chapterl).

When f2 < 1, oscillations in the distribution of
orientation distributions are accompanied by parallel damped
oscillations in the calculated intrinsic viscosity [n] and
the intrinsic normal stress difference [£23] with frequency
2/Tl as shown in Fig. 13, which include theoretical values
calculated from [80al-1 and [81b]-1 for an initially isotropic
and collision-free suspension with pt(el,¢l) given by [52]-1.
The displacement between the two curves for [n] of discs
resulted from measured values of §12 which were higher than

predicted from the theory (Fig. 6b). Equilibrium values

calculated from [84]-1 and [86]-1 are also shown in Fig. 13.
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FIGURE 13

Calculated intrinsic viscosity [n] and normal
stress difference [523] for the suspension of

rods (Expt. I, £ = 0.32) and discs (Expt. IV,

f = -0.25) from the measured particle orienta-

tion distributions using [80al-1 and [81b]-1.

The solid lines are calculated from [80al-1 and
[81b]-1 in the same way but using the theoretical
values of pt(61,¢l) for a monodisperse and collision-
free suspension given by [52]-1. The broken lines
are drawn to fit the points calculated from the
measured orientations. The theoretical equilibrium
values [n]l_ = 3.45 and [%;2310o = -0.90 for rods and
[n]l, = 6.96 and [E,3], = 0 for discs are also
indicated. The damped oscillations, of frequency

2/T,, reflect similar oscillations in fz and 512

shown in Fig. 6.
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(a) RODS , f=0.32

tnl

(P

t/T, , ROTATIONS
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Values of [n] and [g23] when £2 > 1 calculated
from the measured orientation distributions using [80a]-1
and [81b]-1 are Summarized in Table IV, With rods [n]
showed a maximum around 8 sec., and then slowly levelled
off to the equilibrium [nl, = 5.17, and [523] decreased
continuously from =2.49 to [523]m = =6.84. With discs [n]
passed through a maximum and minimum and then gradually
increased to [nl, = 6.96; [623] decreased to a minimum
(= -3.44) at t = 4 sec., then asymptotically approached
(€551, = 0.

In an electric field alone (G = 0), the orientation
distributions pt(¢l) for initially random orientations were
always Symmetrical with respect to the xz-axis, SO0 that the
calculated shear stressg Pij (i#3) was identically zZero at
all times. However normal Stresses Pii are generated by the
electric fielg which we may express most conveniently as

electric normal Stress differences [EEij] which we express

Chapterl)

[Eé;lzl = [EPll] - [EP22] = Cg(2 sin22elcosz¢l + sin4elsin22¢>l) ’
[22a]

E E E .2 2 . 4 . 2

[ E31 =1 Pyl =1 Pyl = - Cg(sin 20, cos $; * 2 sin 6,sin 2¢;) .
[22b]

E - B, ,_ E _ . 2 2, _ .4 3

[ 531] = [ Pyl -1 Pl = C;(sin 2elcos $; = sin 6,sin 2¢;)

[22¢]
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where

2(x> - l)P(q,re)

. [22d]
2r

M DD o

2
+ (1 - 2re)A

Numerical values [Egij] calculated from the
measured orientation distributions using [22] are summarized
in Table VI, and show gradual changes until [Egij]o° = 0. We
note that, since the electric field was applied parallel to
the x2—axis and the orientation distribution was assumed to
be initially random, the calculated normal stresses Pll and
P4, are equal so that [E£3l] = 0 from which [Eng] = —[E523].
However, experimentally orientation was not perfectly sym-
metrical with respect to ¢, = 0° and 90° so that [Eg31]
calculated from the measured orientations did not vanish
(Table IV).

It should be emphasized that all of the rheological
properties have been calculated from measured and calculated
orientation distributions. It would, of course, be of great
interest to test the predictions by direct rheological measure-
ments. Several experimental studies of the effect of electric
fields on increasing the viscosity of dispersions have been
madel6—19) but in no case was the system characterized
sufficiently to test the theoryl), although we note nothing in
the results at variance with it.

Particle orientations in combined shear and electric
fields are also of interest to other phenomena in suspensions

such as streaming electrical double refractionzo’zl) and

J



light transmissionzz); these electro-rheo-optical effects

would be expected to show damped oscillations when f2 <1
and monotonic changes when f2 > 1 provided, of course, that

there is no appreciable rotary Brownian motion of particles.
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1. GENERAL SUMMARY

The principal achievements, discoveries and
conclusions described in this thesis may be summarized

as follows:

(i) The probability distribution functions of particle
orientations and particle orbits for monodisperse collision-
free suspensions of rods (re > 1) and discs (re < 1)
subjected to simple shear flow, derived from the equationsl)
describing the rotational motion of single spheroids, are
oscillating functions of time with frequency 2/T, T being
the period of one complete rotation of a particle. These
functions have been used to derive relationships for the mean
projections of various particle dimensions which are expressed
as elliptic integrals and alternate formulas which are con-
venient for numerical calculations. A complete theoretical
description of the macro-rheological properties of dilute
suspensions of spheroidal particles and of long slender rods
has been obtained by using the method of analysis proposed
by Cox and Brennerz) to calculate all components of the macro-
scopic stress tensor. There are two possible processes causing
the orientation probability distribution to undergo damped
oscillations and eventually reach steady values: (1) spread
in axis ratio amongst the particles and (2) interactions
between particles. Each process has its own characteristic

relaxation time.
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(ii) Measured transient distributions of particle
orientations and orbits for rods and discs with initially
random orientation and for rods only with initially'parallel
alignment made in the early stages of shearing, agreed well
with the theory e:plained in (i). Analysis of the damped
oscillations of the mean particle projections (e.g. ?2 for
rods and §12 for discs) showed that the inverse of the relaxa-
tion time varied linearly with particle concentration as
predicted by the theory. As expected, particle orientation

distributions were reversible with respect to the direction

of shear flow in a suspension of initially aligned rods.

(iii) A general theory of the rotational motion of an
ellipsoidal particle in combined shear and electric fields

was developed as an extension of earlier work3’4) Equations

for transient and steady state distributions of particle
orientations and particle orbits for initially isotropic and
collision-free suspensions of spheroids with no permanent

dipoles have been derived. When EO < E , the orientation

crit.
distribution oscillates with frequency 2/Tl, whereas when

EO > Ecrit it changes monotonically. Complete rheological

equations for dilute suspensions subjected to shear and
electric fields have been evaluated from these orientation
distributions. From these equations, some inte;esting,
rheological phenomena in suspensions subjected to electric

fields have been predicted.

|
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(iv) O;ientation distributions of suspensions of rods
and discs measured were in generally good agreement with
the theory described in (iii). From the measured orienta-
tions, numerical values of several important macro-rheological
parameters (which can, in principle, be measured) were

calculated from the theory.

2. CLAIMS TO ORIGINAL RESEARCH

(i) Equations were derived for the transient probability
distributions of particle orientations and of mean projections

of axisymmetric particles. in shear flow.

(ii) Complete rheological equations were derived for
dilute suspensions of spheroids and long slender rods in shear
flow; these equations can be solved numerically when the

particle orientations are known.

(iii) A theoretical analysis of the effect of a spread in
particle shapes on the orientation distribution has been made
from which the characteristic relaxation time for damping of

oscillations of mean particle projections can be predicted.

(iv) A theoretical analysis of the orientation probability
distribution of spheroids in a suspension was made for the case

in which shear and electric fields were applied simultaneously.

(v) Complete rheological equations were derived for a

suspension of spheroids subjected to shear and electric fields,
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of which (ii) are limiting cases.

(vi) Most of the theoretical calculations and pre-
dictions of particle orientations were confirmed experi-
mentally using dilute suspensions of rods and discs sus-

pended in a viscous liquid subjected to various combinations

of shear and electric fields.

(vii) For purely shear flowg the inverse of the measured
relaxation times was found to be linearly dependent on
particle concentration and, for rods, in good quantitative

accord with the theory.

(viii) The reversibility of particle orientations in shear

flow was demonstrated and shown to be a phenomenon of poten-

tial importance.

(ix) The applicability of the electro-rheological theory

to magneto-rheological phenomena was suggested.

3. SUGGESTIONS FOR FURTHER WORK

Some of the more interesting lines of future
investigation which have come to mind as a result of the

research conducted for the preparation of this thesis are

given below.

(i) A more extended experimental study of the effect
of particle concentration on the transient states, and

particularly the changes of orbit distribution over long

periods of time.



328

(ii) Improvements in methods of preparing particles

in order to reduce the spread in axis ratios.

(iii) Experiments on the changes in phase angle and
orbit constant during interactions in shear flow between
pairs of particles in various initial orientations for

comparison with the details of Cox's theorys)

(iv) Experimental and computational studies on the
effect of various perturbations on the fading memory of

particle orientation when shear flow is cyclically reversed.

(v) Measurements of rheological properties such as
shear viscosity and normal stress differences, of suspensions
subjected to shear, electric, and combined shear and electric
fields in both transient and steady states for comparison

with values calculated from the measured particle orientations.

(vi) Theoretical and experimental studies of electro-
rheological phenomena when G = 0 and G + 0, under which

conditions the theory predicts unusual behavior.

(vii) Further theoretical and experimental studies of the
relationships between the hydrodynamically and electrically
equivalent ellipsoidal axis ratios (reH’ reE) and of P(q,re),

and the axis ratios of circular cylinders.

(viii) Extension of the theory of the rotational motion
of spheroids in shear and electric fields to cases in which
the electric field is arbitrarily criented with respect to

the shear field.

J
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APPENDIX I
DETAILS OF VARIOUS CALCULATIONS

Mean projections El and §23

Mean projections ;2 and §13

Mean projections f3 and 512
Integration cof Eq.[83]-II
Details of Eq. [109]-II
Probability distribution popt(Kl)

Anisotropy of the viscosity of

suspensions



1. Mean Projections fi and §

23

The mean projections of unit length of a rod on

the Xl—axis or of unit area of the face of a disc on

the X2X3-plane are expressedl) as

2 - T
r, = 523 =[ [ pt(el,tbl)cosﬁldeldcbl . [1]
o 7o

If we consider a suspension of initially random orienta-

*
tion, pt(61,¢l) is given by Eq. [19]-II ~, so that
_ _ 2mew sinelcosel
¥y =Sy = 2 2. 2. 372 99,d¢; (2]
4m(cos €. + X sin"@.)
o) o 1 1

where x2 is the known function of ¢l and t given by

EqQ.[17]-II. The first integration may be made with respect
to ©

l;
/2 sinelcosel :

tee (c 520 + 2 in26 )3/2 del t3al

o © 1 X s 1

)
which, after the substitution of sin“el = y, can be written

1
- ay

I=2 372 . [3b]

2
o{l + (X" — Dy}

En)
v

According to a convention, this designates Equation [19] of
Chapter II of the thesis.



The solution of Eq. {[3bl yieldsz)

- o¢L 1 r
T=25-357 ' (4]
so that
21Td¢ 27 de¢
r. = 8§ =_].‘_.{ ._l.._ __1_..} (5]
1 23 27 X x + 1 ¢
o o
From the expression for xz, the first integral of Eq.[5]
becomes
27
1
- . -3
I, = j( (2 +m cosch1 —n 51n2¢1) d¢1 {61
o
where
— 1 -1,2 _ 4t
L =1+ 4(re - r, ) (1 cos —3 ) ’
-2
m= 3(x° — ry Y (1 — cos g—,TIT,-E) P
n=3(xr - r—l) sin i%E .

sin € = ————ro or cos g =

sz + n2 ‘/m2 + n2 !
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then Eq. [6] becomes

2T
I; =[ {2 + ./42 + n2 cos(2<[>1 + €) }—% d¢y - [7]
o

If the substitution of 2¢1 + ¢ = 2y is made in Eq. [7],

one obtains

/2 2 ;
I, =é[ (1 - 92 sin?y) 2 ay [8a]
(o)

This may be written as

4

=3

K(k;) [8b]
where K(kl) is the complete elliptic integral of the first

kind with modulus kl = b/a.

Following the analysis given above the second part of

the integrals in Eg. [5] can be written in the form:

/2
1, = 4[ {(@® - b2 sin®y)? + 1371 d¢;, . [9]
o

Substituting (a2 - b2 sinzw) = x2, one obtains

-4



a N
I, = 4j x_dx [10a]
c (x + 1) \/(;2 - x2) (x2 - c2)

where c2 a2 - b2 = § - /mz + nz. Eg. [10a)] can be

separated into two integrals:

a

a
I2= 4 { dx —[ dx } 2
c v/(a2 - xz) (x2 - c2) c (x + 1)»/(a2 - x2) (x2 - c2)

[10b]

both of which can be expressed in terms of elliptic integrals3)

as

o=

K(kl) [11a]

a
jr ax -
c JQaz - x2)(x2 - c2)

and

a
dx _ 2 ' _ 2
f = [K(kz) 2c Tlay, k2)]
c

(x + l)1/(a2 - x2) (x2 - c2) (a +c)(l —-c)

[11b]

where H(az, k2) is the complete elliptic integral of the

third kind with the modulus k2 = (a — c)/(a + ¢c) and the

. L 2 _(a-c)(1l -20c) A
characteristic M T EF O F o Combining these two

results Eq. [10b] becomes
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[12]

2 , _ 2
) {K(kz) 2c Ti(o;, kz)}]

1
I,=4 [ 7KKk ¥ Ty 0 =<

Finally substituting Eqs. [8b] and [12] into [5] yields

the mean projection:

—_ — 4 1l 2¢c 2
r, =S.. = { K(k,) — ——— Tq(a;, k,)} . [13]
1 23 m{a + ¢) 1-c 2 l---c2 1 2

For convenience in numerical evaluation of ;1 and 523,
3)

. 2 2
since 0 < oy < k2,

H(ai, k2) can be expressed as
2
!

K(k? Z(B,kz).

2 2 2
/(1 - al) (k2 - al)

[14]

) = K(kz) +

2
H(al, k2
where 7 (R, k2) is the Jacobi Zeta function with modulus
k, and amplitude B8 = sin—l(al/kz).

Hence

4 1 1 .
-2 { K(k,) — > K(kZ)Z(B,k2)1

Y. =S S
(a +c)(1 + c) 2 JQaz——l)(l-c )

1 23

[15]

2. Mean Projections r, and S13

The other mean projections fz and §l3 are given by
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JYI

sin elcos¢l
de.d¢ . [16]
4n(cos 6 + X slnze )3/2 1

The first integration with respect to ¢l may be written

as
2m cos¢l
I= , 3577 441 (171
° (p + g cos2¢1 + r 51n2¢l)
where
— 1 . 2 - -l 2 - i’ll‘t_:_
p=1+ 3 sin Ol(re r, )T (1 cos —g ’
1 a2 2 -2 _ it
g =z sin”#6 (re - T, ) (1 cos —T_) '
r = — ! sine (r, — r;I)sin 3%5 .

Since the projection must be always positive, the numerator

cos¢, in Eq. [17] must be taken to be positive. Therefore

/2 cosd ., dd
1771
=2 3/2
° (p+qg cos2¢l + r 51n2¢1)

T cosp d¢l
-2 373 . [18]
1/2 (p + g cos2¢1 + r sin2¢l)

Substituting cot¢l = x, the first integral of Eq. [18]
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[191]

00
I = 2 f x dx
1 2_ 2 2 3/2 °
(p+q)3/2 o {(x + r ,2+p q r }

(p + q)2

A further substitution is made by putting x + r =

2 _ p2 _ q2 _ r2

a sinh z, where a 5
(p + q)

I = sinh z

p+gq

so that

a(p + q)

which, on reduction, yields

I 2

2 [
(p + q)3/2 ‘/;inh r a coshzz

L o+ i+ £ED

Similarly, the second integral in Eq.

I 2

(p + q)%(r - Vp + q)

Substituting these solutions into Eq.

integration with respect to by

" /o= g sin’

K
i
0
I

1

|
A |

2

2
o p —qgq —r

r
> > ]dz ’
a (p + g)cosh™z

[20]

. [21a]

[18] is obtained as

[21Db]

[18] gives the first

Therefore

dg [221

1 -

-
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Substitution of p, g and r and rearranging the equation

gives
/2 sinze /1 — kzsinze
— —_ 2 1 1 1
r, = Sl3 = T————— {
“m¢m2 + 4 o m:L - sinzel
. 2 /. 2 .2 (23]
sin 61 1 — k151n 91
- 2 }ds,
m2 Sin 1
where
_ 1 _-l2 _ ant
m = 2(re L )T (1 CoS —F— ’
m, = M1 + /1 + 4/m2} ’
m, = {1 - A+ 4/m2} ’
and
2 _ -2 47t
kjy =21 =r ") (1 - cos —7) ,

kl being real when ry > 1 and imaginary when Ty < 1.

The first integral in Eg. [23] can again be separated into

two parts:

1T/2sir128 »/ - kzsinze
1 = 1 1 1 a6
1 n — sin 1
o) 1 St 1
L /2 sinzeldel
== [24]
1 o (1 — L sinze y/1 — kzsinze
m 1 1 1
1
2 /2 4
k .
1 sin eldel
Ty

1 .2 / 2.2
o (1 ml sin Gl) 1 — leln 61

A
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Since ki is either positive or negative depending on the
value Tor integration thus yields different values for

Ty > 1 and ry <1.

(a) Prolate spheroids and rods (re > 1)

In this case 0 < ki < 1, the integrals in Eq. [24]
become3)
,T.T/z sinzeldel 1
= ml{ I(=—,k,) —K(k;)} [25al]
m 1 1
1 . 2 2 .2 1
o) (L —=—sin 06,)vl — k. sin 0
ml 1l 1 1
and
m/2 . 4
[ sin eldel
1 .2 2 . 2
o (1 — q sin 61) 1 klsln 61
[25b]
2
m. + Kk
- 2 1 1 -1 1
=m; {II(m 'kl) + > E(kl) 5 K(kl)} .
1 mlkl kl

where E(kl) is the complete elliptic integral of the second

kind with modulus kl‘ Hence

_ 2 2 1
Il =m k]. K(kl) - E(kl) + (1 mlkl)H(m—, k

) . [26a]
1 1

1

Similarly, the second part of the integrals in Eq. [23] is
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evaluated to give, for r, > 1,

— 12 - —m 2y m-
12—m2k1 K(kl) E(kl)+ (1 mzkl)n(mz'kl) . [26Db]

Finally substituting Eg. [26] into [23] yields the mean

projection length of rods on the X, -axis:

2 2

1 —mk 1 —mk

11 1 21

K(k,) + ——7?———-rlﬂ——ﬁi) - 7 -
1 m(m~ + 4)2 2

1
nxk)1 [27]
- 2

1

R

I
ERLN
8T~
v o

An alternate formula of the complete elliptic

integral of the third kind is now given. Since ki < %— <1,

1

1 m/ny
H(n_\—'kl) = K(kl) + 1 - Ao(q)l'kl)] ’ [288.]

1 2
2»/(1 - mlkl) (ml - 1)

and since — oo«:l/m2 < 0,

2 —
m k7 1wh2

-1

K(kl) -

ho(8y00;)  [28b]

= NN

T 2
21/(1 — mzkl) (m2 — 1)

where Ao(@,kl) is the Heuman's Lambda function with modulus

kl and amplitude

m, — 1
¢, = sin_ll———l————i and @2 = sin_1 _—1 .
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Therefore Eé can be written also as

2
m (1 —m k)

- 1 2 1 171
r, = ———— [ZK(k,) +[/———=""{1 — A (3.,k.)}
2 T 1 m. —1 o 171
m/m2+4 1
—— [29]
J m T
AT 02" "1

2

(b) Oblate spheroids and discs (re < 1)

Here, kl in Eq. [25] is imaginary and the following

transformations can be applied:

1

K(ik) = —=—— K(k")
A+ k2

E(ik) = /1 + k2 E(k")

m(e?,ik) = 1 k%K (k") — o’ 2,k")]
0 — kA — K2
2 2 2
where k' = ___]i_____. . 0L'2 = -OL_t_:k_ .

1+ k2 1+ k%

Then I1 and 12 given by Egq. [26] can be transformed to

Il -1 H(ai,k ) — V1 + k2 E(k.) [30a]
— 5 3 2 3
/l + k2



342

and
I, = —2 _n(2,k) -/ + k2 E(k.) [30b]
2 /r—wm—i 2773 2 3
1 + k2
where
2 =2 4t
k2 = %(re - 1)(1 — cos ﬁf—)
and
2 2
,  L+mk; ;14 mk;
a) = ——5- a; = .

2 2
ml(l + k2) m2(l + k2)

Hence S13 becomes

= 2 2 2
515 = = > [H(ocl,k3) - I[(otz,k3)]. [31]
Trm/(m + 4) (1 + k5)

An alternate formula for 513 is also obtained by means of

the transformation given by Eq. [28]:

2 2
_ 2(1 + m k%) m, (1 + m k2)
5,y = —— [ =2 Kk, + ST - A ek
mf2 . Lt/ 2 1

1+ k

m (L + m k2) [32]
- 22 A @ ,k)
m, -1 0 4'"3



where
m, —1 /
&, = sin 1 1 , ¢, = sin”1 A — m_k2 .
3 m, 4 272
3. Mean Projections T, and 512
The mean projections ?3 and §i2 given by
_ _ 2w sinzelsinqsl
37 Sl2 ) 4 (cosze + 2 'n26 )3/2 d91d¢1 331
o /o T 17 X sinY,

can be evaluated by following the analysis given above, the

first integration with respect to ¢y being given by

3 12 2 2 99, - [34]

_ - 1 m Vp + g sin26l
Y = g = em—
L 2__ -
o b q

This is equivalent to Eq. [22] except that the numerator
for this case is given by VP + g. The solution of the

integral in Eq. [34] also depends on ry

For r > 1,
e

f3 = 2 {nn (af,k3) - n(a§,1<3)} [35a]

T/ + 4) (1 + kg);-

343
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and for r < 1
e

2 2
k l—mk
512 =_12r' [_1- Kky) —— =L H(nll—'kl)
m m(m~ + 4)2 1
[{35b]
L—mk, 1
T2 7 LGrky)
m(m + 4)2 2
where
2
ki‘= 11 - r2) (1 — cos 425 ,
2 _ 4,2 _ 4rt
k2 = 2(re 1) (1 cos —5— '
and k2
k2 _ 2
31+ %2

It is noted from Egs. (27}, [31] and [35], that the mean
values of fz and f3 for r, =R (R > 1) give the same values
of §12 and 513 for r_ = 1/R respectively.

Numerical values of Ei and gij for an initially
isotropic and collision-free suspension are given in Fig.2 of
Chapter 1II. All are independent of the shear rate G in the
creeping flow regime assumed throughout the experiments and

the theoretical analysis.



4. Integration of Eq. [83]-IT

To perform the integration of the type [83]1-1I,

the more generalized definite integral

+400

1= f expl-ax> + ibx® + icx] dx (361

where a, b, ¢ are constants and i = /-1, will be evaluated
here. Rearrangement of the argument of the exponential gives
[+

I= f expl-(a — ib){x2 —a——i_—c—igx}] dx [37]

- 0

which, by further rearrangement, yields

_ e s ___ic 2 . ic .2
1= [ exp [ (a — ib) {x (e = ib)} + (a —ib) (37— i) ] ax .
- 00 [38]

The second term in the argument can be taken outside the

integral sign, so that

o«

-2 i 2
I =ex {————-—-—-——l j'exp [—-(a—ib) {x-——l-?—-—}“ dx .

4(a — ib) . 2(a — ib)
[39]
1 .
Substituting y = (a — ib)*{x — iTEigfIET} yields
2 oo
1 - C 2

I = ——— exp [—————] [ expl-y'1 dy v [40]

/a — ib aa —ib) 4
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the solution of which is

2
_ W - C
I "Ja —ip P Iga—m! : [41)

Consider now the definite integral

o

I, = f e.xp [--ax2 + ibxz] sin cx dx [42]

- 00

which may be separated into two parts:

@

1 2 2 .
= — - +
Il 21 f exp [-ax ibx™ + icx] dx
- 00

® [43]
2 L2 .
Ty jgxp[-ax + ibx” — icx] dx .
The first integral in [43] is identical to [36], the solution
thus being given by [41l]; the same analysis applied to the
second integral is also given by [41]. Therefore the integral

[42] is identically zero, and integrals involving the sine in

the second term of [83]-II vanish.

Next the integral of type

©

I, = j' exp [—ax2 + ible cos cx dx [44]

-0

may also be separated into two parts;




JA47

=]

‘[ expl[- ax2 + ibx + icx] dx

- 00

L]
Il
[

[45]

©0

+
i

}r exp [- ax2 + ibx — icx]dx

-0

The solutions of these two integrals are identical to [41],

so that

2
_ m - c
L=V =% exP[4(a+ib)] [46]

- (a + ib) exp [ - ac2 ] exp [ - ibc ]
a® + p2 4(a? + b9

By noting the following relations

[46] becomes

I, = /—————E—~— exp [——:—EEE——]
2 2(a2 + b% 4(a2 + b2

1 - 1
x {(/a2 + b2 + a)? + i(/gz + b2 — a)?}

[47]

bc2 .. bc2
= 1 SsSin

x {cos
a2 + b2 a(a? + pd

} .
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(a)

The second term in the exponential in [44]

may be replaced by either a sine or cosine term; firstly

-]

I3 = j exp(- ax2] cos bx2 cos cx dx
- 00

[48]
which can be written
1 2 2
I3=z[ exp[~ ax” + ibx"] cos cx dx
-0 . [49]
1 2 . 2
+ 3 fexp[-ax — ibx"] cos cx dx .
The first integral in [49] is equivalent to [44] and the
second integral has the same solution as [47], i.e.
d 2 2 [ - ac2
f exp[- ax* — ibx Jcos cxdx =/—-2—-—2- exp {-——5———2}
2w 2(a” + b") 4(a” + b))
[501
(2. 2 3 2. 2 : 2 bc?
x {(/a®+p° + a)2 —i(Ya"+b° — a)?}Hcos + i sin 5 2}.
4(a” +b") 4(a”+b)
Hence from [47] and [50]
2
I = [—— exp [_:_L}
3 Va2 + 9 a(a? + b9 [51]
/2 2 ] be? 2 2 1 be>
x {(/a" + b +a)2cos—-——2c—2—+(‘/;+b — a)? sin 2} .
4(a” +b") 4(a” + b))

which is given in Eq. [84a]-II.
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(b) Secondly the integral

o

-
Il

4 j exp [-ax2] sin b}tz2 cos cx dx
- 00

s+

il

-2% f exp [—ax2 + ibx2] cos cx dx [52]

©

- -zl]-_- exp [—ax2 - ibx2] cos cx dx

-— 0

can be obtained from [47] and [50] as

L= T exp f-_acz___]
4 V@2 + b2 Laa? + b3 [53]

2 2
Pl 1 1
x {(Va +b° —a)zcosﬁ—-— (»'a2~l-b2 + a)? sin —-—b(-:———}

4(a2+b2) 4(a2 + b2)

which is equal to Eq. [84b]-II.

5. Details of Eq. [109]-II

It follows from Eg. [105]-II that the equilibrium

distribution Py m(q)l) is

[e o)

pc,m(¢1)=f P,(¢)g(rddr_ . [54]
(o]

The integration of [54] is not feasible for general values

of ¢l, but is tractable for particular values. To estimate
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the error in [108]-II, the axis ratio Py co(17/2)/p0 o (0) of
r 14
the polar diagram Py w(¢l) will be calculated.
14

Firstly for ¢1 = n/2, from [74]-II and [102]-II,

o0

1 --(re —-;;)2
PO',‘-”(“/Z) = ———3/—2— j re exp __——i_— dre [551]
(2w) o o 20

may be evaluated by substituting oy = r, — fe; thus
1L (o 7
po,m("/Z) = :;;;375 ,[.(GY +r ) expl- 5-1 dy [56]

- 00

where the lower limit of integration y = - ?é/o is replaced

by - «, valid if o << Eé. The first part of the integral

in [56]:
- 2
foy exp [- 32’--] dy =0 R [571
and the second part yields
j' r_ exp - 5—] dy = rer/2—1r ’ . [58]
so that
pc,w("/z) = re/2ﬂ o [591
For ¢1 = 0, [54] becomes, after the substitution
oy = ¥, — Ee,
1 3 1 -2
Py o(0) =355 f —_— exp[—zL] dy [60]
’ (2m) - + oy

¥
- r e
e/o




where the lower limit y = - ?é/c cannat be replaced by -«,
since at this point the function inside the integral becomes

singular. However by making a Taylor expansion:

- 1 st -9 yY [61]
- - oy, = - =2
r + ay r (1 + —) b o X r
e e —_— e e e
re
[60] becomes
1 . oy oy 2
po'w(o) =375 f = - - 5) exp[—L2 Jdy ., [62]
(2m) o~ re r, re

with the lower limit now replaced by - ., The solutions of

the three parts of [62] are

7 - o
x r
- 00 e e
© . 2
f :—y-z— exp [—ZL]dy =0 [63b]
-0 re
® 22 2 2
_.q—L3 exp [—%—]dy = —_= Y/ﬁ . [6 3c]
ke X

so that [62] becomes

Py ol®=—70~-=5) ' [641]

and the axis ratio 8 w(ﬂ/z)/pc »(0) is, from [59] and
7 7
i641,

[65]




Using the first term of the Taylor expansion [65] may be

approximated as

Soae =2 _s2a 4 2 [109]
! =r 1 + — 109]-1T1
po’m(o e ;éz

6. The Probability Distribution Py tiﬁl)
[

We seek to prove that the function pc,t(Kl) for
a collision-free suspension, which was obtained by numerical
integration of [18]-III and with the use of [26]-I1II, and
shown in Fig. 7 of Chapter III, changes monotonically with
time.

The Probability distribution pc,t(Kl) resulting

from the spread in ro is

B¢l
po-'t(Kl) = po,'.t(¢l) (—a'?]':) t ° [26]_III
Substituting the partial derivative (3¢1/8K1)t obtained
from [17]-III, and the probability distribution Py t(¢l)
4

given by [18]-III into [26]-III yields

-I—.- (o]
) = = [ p, (¢,)g(r )ar
Py, 1 2 21t —2__ 2 2nt Jj P9I e -
cos” (F— + ;) +r_ sin k) G

T T

[661

w

N
q
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It is not feasible to obtain the solution of integral in
[66]; an alternate expression for Py t(Kl) is obtained in
’

the following way.

The phase angle k is defined by

tang, = retan(z—;'_,i + «) ] [5]-IT

On the other hand Ky is defined from [17]-IIX:

_ = 21t
tan¢l = retan(—:— + Kl) [67]

T
for the same orientation ¢1. Therefore

21t _ = 2rt
r tan(55= + k) = r tan(=— + k,) . [681]

T

The phase angles « and Kk, are related to each other by

&3
K = - E%E + tan" 1| -8 tan(ggz + Kl)} [69a]
L T
e
or -
Ky = - 2t + tan"1 £ tan(ZEE + Kﬂ . [69Db]
= - T
T Ny
e
The probability distribution pt(K) for a fixed
T, is a constant, equal to p(x);
e
p, (k) = p(x) = . [27]-11

2ﬂ(cos2K + résinZK)

The fraction of particles in the interval dKl at Ky is
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identical to that in the interval dk at k, thus
pt(Kl)dKl.E pt(K)dK [70]

from which the probability distribution pt(Kl) for r, is
given by

Py (Kq) = pg(K) -g-ﬁ—l)t : [71]

The partial derivative (aK/aKl)t may be obtained from

[69a]:
K T, 2 27t Te 2 2rt -1
<-—-—3K )t == [cos (— + Kl) + —5 sin (— + Kl)] . [72]

Substituting [27]1-II and [72] into [71] and noting « is

given by [69a], one obtains

T r
e 2 2rt -1 e 2Tt
pt(Kl) = > [cos {- -5+ tan [ T tan(— + Kl)]}
e T
r -1
+ rzsinz{- 2t + tan-l[ £ 1:an(-27r—t + k)13 . [73]
e T r - 1
e T
72 -1
X cosz(—zﬂ—t+s< ) +—e—-sin2(2—ﬂE+K ) o
- 1 2 —_ 1
T r T

e

Rearrangement of [73] yields
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r
p (x) = = {(re2 — D Gr, T )eos(ZE + HE 4 )
2T T T
+ 3(x +§)cos(@-‘—:——2-‘lt—+.< )} [74]
e e - 1l
T T
1-1
— 2 2 -2 2 27t
+re + (re-re )cos(_lil_ +Kl)} .
For 0 << fé, the values of r_ are close to Eé, and thus
[74] may be approximated by
- -1
e —_ -2 - 2 2, 2mt 21t -2
Pt(Kl) =5 [(re — 1)r_~cos (——=—+kK)) +1r ] . [75]
T T
The period of rotation T for a given T, relative to T is,
from [6]-1II,
_ r re"l
T =T =— — . [761
r +r
e e

Then the difference (2mt/T — 2nt/T) appearing in [75] becomes

(rxr —1) _
2zr_t _ 2nt _ ZZT—t e e 2 (re _ re) (771
T T T r (7 + 1)
e e

which may be approximated by

-2
ot e . 2zt Fe T b

- - . [78]
T T T r(r2+l) € e
e'e



Substitution of [78] into [75] yields

;e
pt«l)==

2 [;2 + (1 —;z)cos
[e e

oy
2 (2nt rg — 1 \

(re - re) + KI)J

- =2
T re(re + 1)

[791]

This is a periodic function of time for given Kq- However,

the period TK for pt(K) obtained from the equality:

— (r - re) = 27 ' [80]
relative to T for fé >> 1 or fé << 1 is
K. __e ._e [27]-II

which is very large compared to the period of one particle
rotation.
The probability distribution p_ . (x;) resulting

from the spread in L is then given by

oo}

po,t(Kl) = [ pt(tcl)g(re)dre [81]
(o]

where pt(Kl) is given by [79], and g(re) by [74]1-II. 1t is

seen from [81] that Py t(Kl) is the sum of pt(Kl) for the
1

3

1
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various re's, and that, if 0 << T, the period of Po,t(Kl)
is also the same order as given by [27]-III. It therefore
appears as almost monotonic change during the time periods
of experiments, which were about 5 particle rotations,
whereas the period of po't(K) is, from [27]-III, of order
20 to 30 particle rotations for the particles employed
(Table II of Chapter III).

For the same reasons similarly TEI;—EIT and
| cos Kll are periodic functions with period of the same
order as [27]1-III, and therefore appear as monotonic changes

on the line scale employed in Fig. 9 of Chapter III.

7. Anisotropy of the viscosity of suspensions

When the axisymmetric particles in a suspension
attain the equilibrium orientation distribution pm(¢l), the
most probable orientations occur at ¢l = 90° for prolate
spheroids or their equivalents (re > 1) and at ¢l = 0° for
oblate spheroids or equivalents (re < 1) as shown in Chapter

III. The equilibrium distribution pm(¢l) is given by

r
e

P, (09) = [102]-1I

2 2 . 2
2ﬂ(recos ¢1 + sin ¢l)

thus showing anisotropy in orientation with respect to ¢,.

This also causes anisotropy in the viscosity which can be

A
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readily demonstrated by changing the direction of shear
flow as shown in Fig. 18 of Chapter III. We now give

details of the calculations.

The intrinsic viscosity of a suspension of

spheroids is

- 4. 2 2 . 2 _
[n] = Cl sin Ols:m 2¢1 + C2 cos 61 + C3 sin 91 [48]1-1II

the constantsvcl, C2 and C3 being only dependent upon

the axis ratio r,- The mean goniometric factors for the

steady state in an initial flow system (flow (i) in Fig. 18

of Chapter III) are given by4)

- 5 4r2 ” C2(r2+ 1) + 2
sin 6151n 2¢1 =—3 > [ >3 T3 T 2 pE(C)dC [82]
(r_=-1) (c re+l)2(C +1)2

P (C)

T + dc [83]
(c2rz+]_)2(c2+1)2

(o]

2 . 2
cosel—l—sz.nel—2[
o

assuming that the distribution of orbit constants is given

by the Eisenschitz distribution ([26]-II). Numerical inte-

grations of [82] and [83] for r, = 10 and substitution into

[48]-II yield [n] = 3.30 which is shown as line (i) of

Fig. 18 in Chapter III.

(a) Flow rotated by 90°

If we stop the flow and rotate the flow field

(but not the particles) by 90° about the vorticity axis
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(Xl—axis), the orientation angles ¢l change by 90° while
the el's remain unchanged. Then the initial orientation
with respect to ¢1 in the new flow system is, from [102]-II,
given by

r

p (¢ ) = = . [84]
o 10 2 . 2 2
2n(re51n ¢10 + cos ¢10)

Since we have assumed the Eisenschitz distribution of orbit

constants, the distribution pt(el) is still given by [2la]l-II,

therefore the initial distribution po(610,¢10) is
r sin€
( - e 10
Po‘elo'¢lo) 4n(r25in2¢ + cosz¢ ) ’ 851
e 10 10
Substituting into [16]-II yields
xisinel
Pt(el'¢l) ) 4HX2(COS20 + xzsinze )3/2 ree
1 1 o 1
2 2 .
where Xo and Xy are given by
2 . 2¢ + . + 2 [87a]
Xo = Xpp Sin ¢, Xg2 51n¢lcos¢l Xg3 ©OS ¢l '
- -2 ant
Xo1 = 1+ r, 2+ —r, " )cos —gf— , [87b]
_ -1 . 4nt
Xo2 = (re —-re) sin = ’ [87¢c]

Xo3 = {1+ rz + (1 —-rz) cos é%E , [874]
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and

Xi = X1 sin2d>l + Xpp Sing;cos¢, + ¥, cosz¢l ’ [88a]
Xy =3 +x + = x]%) cos Y , [88b]
Xp, = (£]° —r2) sin 2E , [88c]
3= 2]t v e @] —x)) cos Y . [884]

The goniometric factors in the viscosity equation

[48]-II can be evaluated from the integrals

21 @
sin46 sin22¢ = j p, (6.,¢ )sin46 sin22¢ de.de¢ [89a]
1 17 e'V1r%1 1 191991
o o
21
sin26 =1 — c0526 = [ f p, (6,9 )sin26 de.d¢ . [8Sb1
1 1 t 1’1 1771771
o o

Substitution of [86] into [89] yields

1 5 1 K xi sin22¢l
sin 6151n 2¢l = ; f —_— Ild¢l [90a]
o Xl
2 Lo Xf;
sin 61 = — f - 12d¢l [90b]
m o X1

where the integrals Il and I, are



. 5
r sin Bl
I = das
1 J 2 2 .2 .3/2
o (cos °1 + X, Sin 61)

1

n/2 3

sin 91
I = de
2[ 2 2 . 2 3/2 1
o (cos 61 + Xo sin 61)

Solutions of [91a] and [91b] are given by
2

for x~ <1
2
—4
1 [ X, -1 2]
I, = 1 + — 4+ ——— tanh 1 —x .
1 2
21 = x2)* xe -x °
_ 1 1 _ 1 -1 .2
12 == + > 2.3/2 tanh 1 Xo .
Xo 17X, (1 —=x)
F 2 _
or x =1
Il = 8/15 ' I2 = 2/3 .
For xz > 1
——t

L 1 1
2° 2 2 2 _ . 3/2
o] 0(Q 1

tan_l ng —1 .

X

S84

[91a]

[91b]

[92a]

[92b]

[93]

[94a]

[94Db]

The integrals given by [90] are evaluated numerically using

Il and I, given by [92] to [94] for r, = 10 and [n] is



obtained from [48]-II with the results shown in Fig. 18 (ii)

of Chapter III.

(b) Flow rotated by 45°

When the flow is rotated by 45° about the Xl—axis

the initial orientation po(¢10) with respect to the new ¢1

becomes, from [102]-1I,

r
e

p ($.,) = . [95]
0’10 n{rz +1 - (rZ - 1) sin2¢,,}

Assuming the Eisenschitz distribution of orbits as before,
the initial distribution po(610,¢10) is given by
resine10

p (6. ,¢ ) =
o 10" '10 2 2 . 2
21r{re +1- (r - 1) sin ¢10}

. [961

Substituting [96] into [16]-II yields the time-dependent

distribution pt(61,¢l) as

2 .
Xo 51nel

P (8y:6,) = o 2 (00520, + v2sin%0.) 2 ' [97]

X2 17 XS

2 . . 2 .
where Xo 18 already given by [87] and Xy 18
2 . 2 . 2

X, = X, sin ¢l + Xoy 51n¢lcos¢l + X,3 ©OS ¢l, [98al

-2 -
Xo1 = X1 F (re -~ 1) sin mt rel ’ [98b]

w

N
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_ -1 _ ant

Xgg = X9 * 2(re re) cos —— ’ [98cl
_ 2 . 4rmt

X23 = Xl3 + (re - 1) sin 5 + re . [s8d]

The mean goniometric factors sin461sin22¢1 and
sin28l =1 - 00526l are obtained by numerical integration
of [90] using xg given by [98] in place of xi. The intrinsic
viscosity [n] so oktained for r, = 10 is shown in Fig. 18(iii)

of Chapter III.

-
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APPENDIX II

SOME REVERSIBLE AND IRREVERSIBLE

PHENOMENA IM SUSPENSIONS

,J
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As shown in Figs. 7 and 14 of Chapter III, the
orientation distributions of particles were retraced when
the flow was reversed. We now wish to demonstrate, by
calculation, some reversible and irreversible phenomena
which are not only important in suspension rheology but

may also be of wider significancel)

When a suspension of particles in a fluid under-
goes a simple shear flow, each particle translates and
rotates, and interacts with others. Under proper conditions
the translational and rotational movements are retraced
exactly when the direction of the motion of the fluid is
reversed so that every pre-existing configuration of the
particle assembly is restored: the suspension thus possesses
perfect memory. The general requirements for reversibility
are that the linearized form of the Navier-Stokes equation
applies and that the boundary conditions are identical for
forward and reverse flows2’3).' More specifically, the
requirements are that (i) the Reynolds number is so low
that particle and fluid inertia are negligible; (ii) the
shear flow is geometrically perfect; (iii) the fluid is
Newtonian; and (iv) the particles are rigid, non-sedimenting,
electrically neutral, and large enough for Brownian motion
and van-der-Waals attraction to be negligible. A simple
demonstration of the reversibility is shown by the reappear-
ance of dyed letters of fluid on reversiné a shear which was

first made to disappear by shearing4’5). Multi-particle

6) 7)

interactions of spheres and discs7’8) have also

, rods
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been demonstrated to be reversible.

Failing to meet one or more of the requirements
listed above causes incomplete reversibility and impairs
the memory by measurable amount: for example by increasing
Reynolds number so that inertia effects become appreciable,
permitting temperature gradients with resulting thermal
convection, using small and/or electrically charged particles
so that diffusion and/or interparticle attraction can occur,
employing non-Newtonian fluidsg'lo), etc. As shown in Figs.
7 and 14 of Chapter III, a slight but measurable amount of
irreversibility was observed for the orientation distribution
of particles in a dilute suspension of rods. This was
probably due to the imperfect geometry of the shear flow and
some uncontrollable thermal convection.

We wish now to demonstrate, by theoretical calcula-
tions, how a system which has perfect memory can be perturbed
and so impair the memory. Consider a suspension of rods of

various lengths having a Gaussian distribution of equivalent

axis ratios rgt

g(r ) = —— exp I ] 11
€ 2T © 202
e e

where Ee is the mean value of r_ and 0, is the standard devia-
tion. The suspension is then subjected to a uniform electric
field to allow all rods to align themselves in the direction

of the field'!). Tf the electric field is parallel to the

,J
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X2—axis (Fig. la, inset) the mean projection of unit length
of rods on the Xz-axis, denoted by ?2, is equal to unity.
After removal of the electric field, a shear defined by

u; =u, = o, u; = Gx, (Fig. la, inset) is applied. In the
ideal case in which the suspension is so dilute that no
particle interaction takes place (actually even if there are
particle interactions the system can be reversible if the
boundary conditions are identical for forward and reverse

flow), each rod rotates exactly as described by Jdeffery's

equationlz) in the X2X3-plane, the particle motion being
given by
tang, = r_ tan (E%E + k) [2]

where ¢1 is the angle between the Xz-axis and the axis of
revolution of rods (Fig. la, inset) and k (= 0 for case under
consideration) is the phase angle determined from the orien-

tation at £t = 0 and T is the period of rotation given by

27
S +
T G (re re

-1y i (3]

The projection r, of unit length cf each rod on the X _ —axis-

2
is

_ _ 2 2 21t
r, = cospy = [1 + r_ tan (—T—

| SIETY
—
S
f—

+ )1

which is an oscillating function with the frequency 2/T. For
the suspension the mean projection FZ resulting from the

spread in ry is given by




(a)

(b)

FIGURE 1

Damped oscillation of fé calculated from [5] for
Eé = 10 and O, = 0.2. The broken line indicates
the equilibrium value EZm = 0.192. The coordinate

system relative to the shear flow is shown in the

inset.

The envelope of the maxima and minima of the oscil-
lations in fé, shown as solid and broken lines
respectively, obtained by numerical integration of
[10]. Curve 1 corresponds to the oscillation shown
in (a). Curves 2, 3, and 4 are for the 1lst, 4th

and 16th reversals following perturbations of k at

t/T * 9.0, and curve 5 is the equilibrium value
ng- The memory of the system Mi versus i (number

of reversals) is shown in the inset.
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where the period of rotation T relative to the mean T =

— — =1 .
27r(re + rg ) /G is

T = T(r, + :ce'l)/(‘fe + ‘fe‘l) ) (61

Numerical integration of [5] for fé = 10 and o, = 0.2 as a
function of t/T yields the results shown in Fig. la, where
fz is seen to undergo a damped oscillation whose amplitude
becomes vanishingly small as t + » and ;Zm = 0.192 (indicated
by the broken line). On reversing the flow at any time the
oscillations can be built up reversibly until t = 0 is
reached when, in negative time, they decay as mirror images
of those in positive time. The envelope of the maxima and
minima in ;2 is shown by curves of Fib. 1lb. The pattern can,
in principle, be repeated indefinit=ly by cycling back and
forth in time. Thus the system possesses perfect memory.

The equilibrium fzm corresponds tc the orientation distribu-

tion p,(¢;), given by 13)

r
e

— 2 2 . 2
21r(re cos ¢l + sin ¢l)

P, (97 171

where the mean axis ratic fé is used instead of T since

error involved in [7] is only of order Gé.
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We now consider making the system have fading
memory. A simple method is to stop the motion at some given
time, say t/T = 9, perturbing the particleé in some manner,
reversing the motion until t/T = -9, and then repeating the
process. Various kinds of perturbation may be considered.

A simple one is to perturb the angular displacement ¢1 of
all particles having the same values of ¢ in the direction
of equilibrium orientation distribution given by [7]. Since
the distribution of phase angle k corresponding to [7] is a

random distributionl3):

P, (k) = 1/2m ' (8]

the perturbation with respect to ¢l mentioned above is equi-
valent to perturbing the phase angle k. A simple scheme of
perturbation is to employ an identical Gaussian distribution
of perturbation for each value of k. Thus the distribution

of k after the first perturbation becomes

2

1 -K

g,(k) = expl 1 . (91
1 vam 01 ZGi .

where ol is the standard deviation of k.

The mean projection fz'now becomes from [5] and [9]:

— 2, 2 2mt -3
r, =ff [1+ r_tan (—77;-— + )] 7 glr g, (k)ar dk . [10]
)

Numerical integration of [10] with o, = 0.2 radians yields

damped oscillations on reversing time similar to those in

A
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in Fig. la but with reduced amplitudes. The envelope of
the maxima and minima of ;2 is shown as curve 2 in Fig. lb.
Thus initially ;2 undergoes damped oscillation along the
curve 1 which is now stopped at t/T = 9, and the system is
perturbed according to [2]. On reversing the flow, 52
builds up its oscillations along curve 2 until t = 0, at
which EZ = 0.610 indicating that some of the memory of the
system has been lost. In negative time 52 undergoes the
damped oscillations along the curve 2 which is mirror image
of those in positive time.

If we next stop the flow again at t/T = -9, and
make identical perturbations as in [9], the memory is impaired
further. It is readily seen that, after ith perturbation and

time reversal, total perturbation with respect to k becomes

2
1 -K
g:(k) = ———— exp [ ——= 1 . [11]
1 vV2mi oy 2i 012

The mean projection ?2 then is obtained by a numerical inte-
gration of the type [10] using [11]. The results for several
such cycles for 0y = 0.2 are shown in Fig. 1lb. It is seen
that the oscillations of ?2 are no longer exactly restored
following each reversal, as indicated by the progressive

i

decrease in ;2' at zero time after i th reversals. We can

express the memory of the system in a number of ways, a simple

one being




M, = = — . [12]

As shown in the inset of Fig. 1b, Mi decreases nearly
exponentially with i from 100% initially to zero at i = =
when ;2 is flat and the memory of the initial imprint is
completely lost (line 5).

We have illustrated as an example of the scheme
a system which shows both perfect and imperfect memory.
By changing the shape, size, deformability and concentration
of the particles, the type of fluid, the duration of each
cycle of shear, the number of flow reversals and the type

of perturbation, a wide range of memory patterns can

doubtless be achieved.
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APPENDIX III

MAGNETIC TORQUE ON AN ELLIP. SOID



Here we consider briefly how the theory described
in Chapter IV can be modified when the electric field is
replaced by a magnetic field.

A particle suspended in the fluid of magnetic
permeability Uy and subjected to a uniform and parallel
magnetic field of strength ED (in e.m.u.) experiences a
magnetic torque ré :

— ] | [ 1 ] :
Sq‘ﬂ x B' = uM' x Hj [11

where B' is the magnetic induction of the applied field and
M° the magnetic moment which @epends upon magnetic properties
of the particle. If it is either paramagnetic or diamagnetic
(i.e., there is no permanent magnetization), then the induced
magnetization per unit volume Ei of the particle with per-
meability uij which has only diagonal components (i.e.,

U .) is

] [
ij ij*is

M2
1 - & | R ]

1 = 77 (afy - DHL (2]
where Hii is the magnetic field created inside the particle,
and qii is the ratio of the permeability of the particle to
that of the medium (qii = uii/UZ)‘ From the similarity

between electric and magnetic field theories, the magnetic

field inside the ellipsoid is, by analogy from [10]-1IV,

3

=y

7
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H'.
] = ol
a1 1 + la,a,a,(gl. - 1)o ) 3]
2919273141 i

Substituting [3] into [2] and eventually into [1], we obtain

che magnetic torque acting on the particle due to the induced
riagnetization as
2
(qt. -1
uylass )

1
T = —
. 3 ala2a3 € ,j

H'_H' . [4]
1 v _ (o] ok
1+ 2ala2a3(qjj l)uj

If instead the particle has a permanent magnetiza-
tion EL per unit volume but no induced magnetization (i.e.,
it is ferro-magnetic), the torque exerted by the external

magnetic field is

r*. = Ul ala a

Mi 3 283 ¥y €

ik Soj Pok . (51
The angular velocity of a magnetic ellipsoid in shear and
magnetic field can be obtained by combining [51-1v, [4] and
[5]. It is clear that, from the comparison between [13b]-1IV
and [4] for the particles with no permanent magnet, all
equations derived in the previous sections hold if Eo is
replaced by Ep and K2 by ug, and that we may expect magneto-
rheological phenomena very similar to the electro~rheological
phenomena we have described.

Hall and Busenberg D calculated viscosity of a
suspension of permenently magnetized spheres (re = 1) in a

magnetic field directed arbitrarily in the Xlxz—plane (Fig. 1-1IV).

—



373

When Ho is parallel to the Xz—axis, [n]_ shows similar
behavior to that shown in Fig.8a-IV.[n]_ changes from 2.5 at
zero magnetic field to 4 at the critical field where [n]_
exhibits a sudden change of behavior and above which it is
constant (= 4). If Hj is not parallel to the X,-axis, but
in the XlXZ—plane, then as i increases [n]_ shows a steady
increase to an asymptotic value less than 4, and depending
upon the orientation of H, thus indicating that the spheres
rotate no matter how high the field. Similar behavior of

the viscosity of a suspension of loaded spheres in a gravita-

tional field has been predicted by Brenner 2)
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APPENDIX IV

THE COUETTE APPARATUS
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THE COUETTE APPARATUS

Although the essential features of Couette
apparatus in which the hydrodynamic field of laminar
shear was produced have been described previouslyl), a

brief description is given here since several modifica-

tions were made.

The principle of the apparatus consisting of

two counter-rotating concentric cylinders of radii Ry

and R2 are rotated in opposite directions with their
angular velocities Ql and ﬁz respectively, is shown in

2) of the Navier~Stokes equatjion in the

Fig. 1. Solution
creeping flow regime in the annular gap btetween the
cylinders gives the angular velocity Q(R) of the fluid

at the distance R as

2 252
(QRT + Q R )R - (9 + Q YRTR

(R2 - Rl)R

Thus the velocity gradient is

ds (R) 2(91 )Rl 2
= = — . [2]
(R2 - Rl)R

G(R) = R

Since the two cylinders rotate in opposite directions

384



&
D
N

R.Sh,

Fig. 1. Principle of the Couette apparatus

(After Trevelyan and Masonz)).



there exsists a cylinder of zero velocity at which Eq. [2]
becomes

,
2(p)R; + 2,R))

22 (3]
2~ R’y

G(R*) =

R

where R* is the radial distance from the center to the
stationary layer (i.e. Q(R*) = 0).

In most of the experiments an inner cylinder of
_Rl = 13.354 cm and an outer cylinder of R2 = 15.234 were

used, for which Eq. [3] becomes

G = 0.6949 Ny + 0.9044 N, [sec 1] [4]

where Nl‘ahd Nz are the rpm of the inner and outer cylinders
respectively. Since the two cylinders are driven by separate
continuously variéble motors, R¥ aﬁd G(R*) can be varied at
will.

A Couette Mark II apparatus is shown in Fiyg. 2.
It consists of‘two stainless steel cylinders (A) and the
adjustable common support (C) for microscope and camera.
The outer cylinder has a glass bottom plate to permit illumin-
ation of the field from below. The individuai cylinders are
connected through a 4-speed gear box and a set of worm gears
to the }H.P. d.c. motors with magnetic amplifie: control

(Bepco Canada Ltd.) having a speed range of 150 - 3,000 rpm.




Fig., 2: The Mark II Couette Apparatus.

Two stainless steel cylinders (A) are driven

by the individual motor with continuous con-
trols (B). A 35mm camera (D) with 70mm sivitar
lens and beam splitter are mounted on the support

(C) which allows both vertical and radial movements.

84
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By means of three sets of reduction worm gears a wide
range of velocity gradients (0 to 40 sec—l) can be
obtained. The speed controls and tackometers are mounted
on the right-hand panel (B), while the variable a.c. and
d.c. voltage supplies and a chopper device for timing are
on the left-hand panel (part of it can be seen behind the
camera support).

The camera support (C) consists of an aluminium
platform capable of concentrjic rotation with respect to
the two cylinders and a column which provides the vertical
movement. At the top of the column a compound slide move-
ment supplied the X2 and 23 adjustment in order to keep a
particle under oBservation stationary in the field of view
of the camera.

In experiments of Chapter III ana V an automatic
35mm camera (D) (Robot Motor Recorder 36ME) with a 30 ft
film magazine capable of taking 260 frames was used. The
magnetic shutter release device attached to the camera is
connected to the electronic timer that creates the iﬁbulse,
intervals of which can vary continuously from } sec to 1 min.
The camera is also equipped with a small fixed focus lens
on the top so that the time can be recorded on the upper
right-hand corner of the frame from the image of the electric
digital stop watch which is synchronized to the switch of

the motor for Couette cylinders. Photographs were generally

|
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taken through 70mm telephoto lens and the beam splitter
shown in Fig. 2.

For some experiments the Mark IV device which
is similar to the Mark II in principle but is more
3)

versatile was also used. Various sets of transparent

(Plexiglas) cylinders or discs can be mounted on two con-
centric counter-rotating spindles to allow observation along
both horizontal and vertical directions. By means of a
built-in lathe the cyliners can be machined in situ to a
tolerance of * 8 microns. A 16mm cine-camera (Bolex
Paillard H16) which is mounted to a similar support assembly
as in the Mark II device was used to record the events photo-
graphically through a microscope.

In the Couette Mark II device an electric field
can be applied by grounding the inner cylinder and connecting
the outer cylinder to a 0 to 25 kV stabilized a.c. power
supply. The field strength E  created in an annular gap,
from the analogy of a concentric cylindrical condenser, is
given by

\Y%

o (R) = ram 7Ry 5]

where V is the potential difference between cylinders.
However if there is a small difference in diameters of inner
and outer cylinders as in the case of the Mark II, the

c o . . 4
variation in EO across annulus can be igncred ), and the




387

electric field becomes simply

E, = v/d [6]

where d = R2 - Ry. Since we have used an a.c. power
supply, the root-mean-square value of an applied voltage

5)

is calculated from tre relationship

A"

2/2

where VD is the peak-to~peak value which is measured by

-an oscilloscope (Tektronic Type 564B).
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The most familiar rheological property of a fluid
is its shear viscosity n defined, in effect by Isaac Newton,
-.as the ratio of the shear stress P32 to the rate of shear
strain G (n = P32/G, see Chapter II). The first signifi-
cant development in suspension rheology was made early in

1)

this century by Einstein™’ who developed the now classical
theory of viscosity of a suspension of rigid spheres by
purely hydrodynamic considerations. Assuming the spheres

to be suspended in a Newtonian fluid in a neutrally buoyant
condition, to be separated from each other by distances much
greater than the sphere diameter, and neglecting the inertia
term in the Navier-Stokes equation governing motion of the
fluid surrounding each sphere which, incidentally, rotates
with an angular velocity of one half of the velocity gradient
of the fluid, the viscosity n of the suspension was predicted

to be

n =ng (1+ 5¢c/2)

where U is the viscosity of suspending medium and c is the
volume fraction of spheres. The coefficient 5/2 is the
intrinsic viscosity [n] of the suspension; experimentally
[n] is obtained from ﬁhe reduced viscosity (n - no)/noc at
the limit of zero concentration. Einstein's equation was
found to hold for very dilute (up to ¢ = 0.01) lyophobic
suspensions of spherical particlesz'3). The viscosity at
higher concentrations was investigated theoretically by a

number of workers4—7) by taking into account the interactions

between spheres, with the results generally given as a power

,J
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series

2 4

n = no(l + 2.5¢c + kyc ces)

where kl is the interaction constant whose value has been
calculated to vary from 6.25 to 15; there is still no
agreement (either theoretically and experimentally) on its
correct value.

The first theoretical attempt to predict the
viscosity of suspensions of non-spherical particles was
made by Jefferys) for rigid spheroids. The theory took
account of axis ratios and the orientations of the particles
in shear flow, assuming negligible Brownian motion of the
particles. Several equations were derived later for spher-
oids under the influence of weak and intense Brownian

motion9_17).

18) extended the

For flexible particles, Taylor
Einstein treatment for rigid spheres to the case of spherical
liquid drops and obtained [n] as a simple function of visco-
sity ratio of the drops to that of the medium.

Numerous theoretical and experimental studies of
the viscosity of polymer solutions have been made since
19)

Staudinger's empirical relationship between the intrinsic

viscosity and molecular weight of macromolecular solutions

was formulated. Hugginszo'21> 10)

extended Kuhn's hydro-
dynamic treatment of a chain of spheres to the case of a
randomly~coiled chain of spheres as a model for linear
macromolecules. These developments have led to a number of

successful theoretical studies of viscosity of polymer

,_J
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22) 23,24)

Streaming birefringence (or double refraction)

solutions by Flory and others

is a rheo-optical effect which can give information re-
garding the size, shape and flexibility of particles and
dissolved macromolecules. Freundlich et les) showed that
the streaming birefringence in colloidal dispersions of
rods and discs was related to the particle orientations.

Boeder26) 14,27,28)

and Peterlin et al then developed

theories for spheroids in which particle orientation figured
prominently. It was suggested that streaming birefringence
could be used as a hydrodynamic research t00129’30).
Excellent reviews of this subject have been given by EdsallBl)
and others32’33). The optical transmittance of sheared sus-
pensions is another rheo-optical property which depends on
the size, shape and orientation of the particles and is
especially interesting in dispersions of platelet534).

Experimental observations of rotations of spheroidal

particles suspended in water-glass solutions were first made
35)

by Taylor in a simple shear flow produced in an annular

gap between two concentric glass cylinders of a Couette
apparatus (see Appendix IV). Upon rotating the outer cylinder,
periodic motions of particles predicted by Jefferys) were
qualitatively confirmed. It was also observed that particles
were assuming the final orientations of the minimum energy
dissipation after about a few hundred rotations as Jefferys)

speculated; that is prolate spheroids rotated the axis of

revolution parallel to the vorticity and oblate spheroids
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normal to it. Eirich et 3536)

studied the orientations of
glass, silk and rayon rods (with axis ratio ranging from 5
to 100) in dilute suspensions in a Couette apparatus at

G = 100 to 250 sec l. 1In the steady state half of the
particles were found aligned with the vorticity axis (verti-
cal), and the remainder perpendicular to it (horizontal) for
particles of axis ratio 5. With higher axis ratios more
particles were aligned with the flow. Similar results were
reported by Binder37); particles with axis ratio < 15
assumed the vertical position, whereas those with axis ratio
> 15 became oriented in the horizontal plane.

Quantitative measurements of particle rotations
were first made in this laboratory using a Couette apparatus
some 20 years ago. Jeffery's equations for the periodic
motion of particles were confirmed for glass rods38), Orlon

33) and polystyrene discs40). It was found that an

rods
isolated particle remained in the same orbit indefinitely,
so that there was no tendency for it to assume a preferred
orbit in contrast to earlier findings35’37). However in
dilute suspensions of rods an equilibrium distribution of
orbits was observed at a few hundred particle rotations4l—43);
the observed distribution of orbits lay between that corres-
ponding to minimum dissipation of energy (the so-called
Jeffery's hypothesis) and that corresponding to a random
distribution of particle orientations (the Eisenschitz

distribution, discussed in Chapter II). There are also a

number of theoretical considerations to explain this
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indeterminacy of particle orbits. Inertial effects, neg-
lected in Jeffery'ss) original calculation, were considered
by Saffman44), who showed that the orbit can change slowly
towards that corresponding to Jeffery's hypothesis. However
the time required to reach an equilibrium is too large to
account for any of the experimental observations. He sug-
gested that non-Newtonian properties of the liquid used
might be responsible for Taylor's observations35). The
drift in orbits of rods and discs at high shear rates (and
high Reynolds number) where inertial effects become signifi-

cant was studied by Karnis et §l45)

44)

; formal agreement with
Saffman's theory was found. Observations in non-Newtonian
1iquias?®747) showed that the orbits of both rods and discs
drifted toward the orbits corresponding to the minimum

energy dissipation. It has recently been shown in our
laboratory48) that the equilibrium orbits of cylindrical
particles in visco-elastic fluids depends both on the axis
ratio and applied velocity gradient. Particles of axis ratio
greater than 0.9 and less than 0.3 moved to the orbit of

least energy dissipation, but those with axis ratio between
these two values could assume intermediate equilibrium orbits.
It is thus clear from the experimental evidence that the
distributions of orbits observed at low velocity gradients

in Newtonian fluids4l—43) cannot be explained by the effect
observed at high Reynolds numbers and in non-Newtonian fluids.

4
Recently Brenner‘g) pointed out that the long-term

effects of Brownian rotation cannot be ignored no matter how

_



small it may be. When Brownian motion is dominant, the
particles becomeﬁrandomly oriented and thus display the
Eisenschitz distributionll) of orbits. The steady state
orientation distributions at various rotary Péclet numbers
(the ratio of velocity gradient to the rotary diffusion
constant) was first obtained by Boederzs) in his analysis
of streaming birefringence of spheroids. The corresponding
distribution of particle orbits in case of very weak
Brownian motion has recently been obtained by Leal and
Hinchso). It is striking that the calculated distributions
of orbits for large Péclet number were similar to the
Eisenschitz distribution and very di“ferent from those
observed experimentally by Anczurowski and Mason42). There-
fore Brownian motion cannot account for the experimental

observations.

Mason and Manley4l) proposed that the equilibrium

distribution of orientations and particle orbits was deter-
mined by the interaction between particles in their experi-
ments which, incidentally, are similar to those reported in
the present investigation (Chapter II and IIT). The
importance of particle interactions to the viscosity of
concentrated suspensions was pointed out by BinghamSl) and
otherss’sz). Detailed experiments on collisions of spheres
in Couette flow were conducted by Manley and Mason53). A
doublet formed by a two-body collision rotates as a rigid

dumbbell at a constant angular velocity and separates at a

point which is a mirror image of the initial contact point.

3985
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The measured collision frequency of spherical particles in
a suspension showed good agreement with the theoretical
calculations based upon simple geometrical considerations.
The rotation of fused doublets was found to follow
Jeffery's equations for spheroids of axis ratio 2 39).
Except for that presented in Chapter II, there is no theo-
retical treatment of two-body interactions between non-
spherical particles. A few experimental observations of

41,43) and discsS4) in a

interactions between rigid rods

simple shear flow showed the sudden jump in particle orbits

when they collided with one another; it is, however, clear

that such interactions could ultimately determine the steady

state distributions of orbits and orientations. The results

have been reviewéd in detail by Goldsmith and Masonss).
When a suspension of asymmetric particles is.

subjected to an electric field it can become anisotropic,

as shown for example by the optical birefringence first

studied by Kerr56), and now known as Kerr effect. This

electro-optical effect can be cbserved even when the particles

(or molecules) are isotropic. A number of quantitative

studies of electrical birefringence in colloidal solution557_60)

led to the conclusion that, as in streaming birefringence,

particle orientation was the principal cause. The effect of

permanent dipoles on electric birefringence was first noted

in studies of solutions of tobacco mosaic virus6l) The theory

of the Kerr effect for rigid macromolecules was considered by

Peterlin and Stuart28) and several other562—64). The electrical

torqgue acting on the particles, which depends upon electrical

-



properties (such as the permanent dipole moment and di-
electric constant) of the particles and of the medium,
tends to align the particles, with rods assuming orienta-
tions parallel to the electric field, and discs oriented
with their axes of revolution perpendicular to it (see
Chapter IV). Such alignment is opposed by any Brownian
rotation existing, so that the final orientation is deter-
mined by the ratio of the electric torque to the Brownian
couple. The distribution of particle orientations in an
electric field was then calculated by the solution of the
rotary diffusion equation62'63).

The rheological and rheo-optical properties of
a solution, dispersion, or suspension can be modified by
applying any external field, for example an electric or
magnetic field, which generates additional couples on the

particles. The changes (generally increases) in the

viscosity of liquid and suspensions by applying an electric

field were observed as early as 1896 by Duff65). This
effect is often called an electro-viscous effect, but it
should not be confused with the conventional first, second

and third electroviscous effects due to the electrical

33'7

double layer at the surfaces of electrically charged particles

(and molecules) and observed without an applied electric
field. The first definitive study cf the electroviscous

effect (as we have defined it) was made by Bjornstahl and

Snellman66’67)

dispersions of metal and sulfur. Alcock68)

, who found increase in viscosity in colloidal

and Andrade and
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co—worker569’70) studied pure liquids in an electric field,
and found that the viscosity of certain polar conductive
liquids increased, whereas that of non-conductive liguids
was not affected. Induced particle aggregation and align-
ment (termed fibration) and increased viscosity of silica
gel suspensions by an electric field were observed by
Winslow7l). The effect was found to be reversible, i.e.

the particles could be easily redispersed by mechanical
agitation and the original viscosity restored. The measured
viscosity of the suspensionat a fixed velocity gradient was
linear with the square of the electric field strength7l).
Klass and Martinek72) studied the increase in viscosity of
silica and calcium titanate suspensions in electric fields
and concluded that induced polarization in the double layer
surrounding each particle was the primary cause of the
electroviscous effect in their suspensions; they reported
that they did not observe any fibration of particles. How-
ever direct evidence of fibration into linear chains of
spheres in dielectric liquids in an electric field has been

73)

presented by Zia et al who also showed that the chains

so formed (which would lead to viscosity enhancement)
rotated like rigid rods without breaking at low shear. Thus
chain formation is almost certainly one cause of the large
increase in viscosity observed66’67’72) when an electric
field is applied to a suspension. On +the other hand simul-

taneous application of shear and electric fields to produce

rheo-electro-optical effects in suspensions received little

|
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attention until the work of Tolstoi74). By generalizing
the resulté of Peterlin and Stuartzs) he obtained expres-
sions for birefringence ahd extinction angle as the
function of electric field stfength and velocity gradient
for suspensions of electrically isotropic particles with
no permanent dipole. His analysis, however, was limited

to two-dimensional problems. A relatively completé theory
was later given by Demetriades75) for figid spheroids
having an isotropic dielectric constant but no permanent
dipole moment. Upon applying an electric field normal to
the vorticity and the direction of shear flow, the angular
velocity of the symmetry axis of particles was obtained as
the sum of those in shear flow alone and in electric field
alone. Demetriades then calculated the steady state orien-
tation distribution by solving the orientation diffusion
equation, and obtained the electro-streaming-birefringence
and the associated extinction angle of the suspension. This
theoretical work was extended by Ikeda76) to the case where
spheroids possess permanent dipoles along the axis of

77)

symmetry, and by Chaffey and Mason to the case where the

electric field was arbitarrily oriented with respect to the

shear flow. . Experimental observations of the rotational

78) 77)

motion of single rods and single discs (with no appre-

ciable Brownian motion) in combined shear and electric fields

showed good agreement with theory (see also Chapter V).

Analysis77) of Demetriades’ theory75) revealed the existence

of the critical electric field, below which the particles can

-
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execute a complete rotation, and above which the rotation
is impeded by the opposing action of the electric torque
on the particle. Chaffey and Mason79) also calculated the
intrinsic viscosity [n] of a suspension of spheroids in an
electric field; these calculations are extended in Chapter
Iv.

Since electric and magnetic phenomena are analo-
gous in many ways, the effect of magnetic field on rheology
of suspensions may be expected to be similar to that of
electric field. Pryce-JonesSo) and HarveyBl) observed the
increase in viscosity of suspensions of magnetic iron oxide
upon application of a magnetic field. Osipovsz) noted that
the viscosity of clay suspensions in a magnetic field varied
with time. The theory of the viscosity in a magnetic field
was considered by Hall and Busenberg83) for suspensions of
spheres with fixed magnetic moments. McTague84) studied
the effect with ferromagnetic particles of cobalt in a
capillary viscometer and reported good agreement with theory
of Hall and Busenberg83). Simple dimensional analysis of the
effects of a magnetic field was made by Rosensweig et 2£85)“
Results similar to those of Hall and Busenberg were recently
obtained by Brenner and Weissman86) 87)

and by Hinch and Leal

14

when Brownian rotation of particles was taken into account.

88)

Brenner also calculated viscosity of -a suspension of

spheres whose gravity and geometrical centers are displaced
in a gravitational field and obtained results effectively the

same as those of Hall and Busenberg83).

A
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