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Abstract

Major dams in the world are often instrumented in order to validate numerical models, to
gain insight into the behavior of the dam, to detect anomalies, and to enable a timely
response either in the form of repairs, reservoir management, or ¢vacuation. Advances in
automated data monitoring system makes it possible to regularly collect data on a large
number of instruments for a dam. Managing this data is a major concem since traditional
means of monitoring each instrument are time consuming and personnel intensive.
Among tasks that need to be performed are: identification of faulty instruments, removal
of outliers, data interpretation, model fitting and management of alarms for detecting

statistically significant changes in the response of a dam.

Statistical models such as multiple linear regression, and back propagation neural
networks have been used to estimate the response of individual instruments. Multiple
linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) models and

(2) models that consider concrete temperatures as predictors.

Univerariate, bivariate, and multivariate methods are proposed for the identification of
anomalies in the instrumentation data. The source of these anomalies can be either bad

readings, faulty instruments, or changes in dam behavior.

The proposed methodologies are applied to three different dams, Idukki, Daniel Johnson
and Chute-3-Caron, which are respectively an arch, multiple arch and a gravity dam.

Displacements, strains, flow rates, and crack openings of these three dams are analyzed.

This research also proposes various multivariate statistical analyses and artificial neural
networks techniques to analyze dam monitoring data. One of these methods, Principal
Component Analysis (PCA) is concerned with explaining the variance-covariance
structure of a data set through a few linear combinations of the original variables. The
general objectives are (1) data reduction and (2) data interpretation. Other multivariate

analysis methods such as canonical correlation analysis, partial least squares and



nonlinear principal component analysis are discussed. The advantages of methodologies
for noise reduction, the reduction of number of variables that have to be monitored, the
prediction of response parameters, and the identification of faulty readings are discussed.
Results indicated that dam responses are generally correlated and that only a few principal

components can summarize the behavior of a dam.
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Les grands barrages sont souvent instrumentés afin de valider les modéles numériques,
pour développer une meilleure compréhension du comportement des barrage, détecter des
anomalies, et permetire une réponse opportune sous forme de réparations, de gestion de
réservoir, ou d'évacuation. Les progrés récents dans les systémes de surveillance
automatisés permettent la collecte simultanée des domnées sur un grand nombre
d'instruments. La gestion de ces données est un souci important puisque les moyens
traditionnels d'analyse pour chaque instrument sont laborieux.. Les taches d'analyse qui
doivent étre accomplies sont : (1)P’identification des instruments défectueux, (2)
I'élimination des valeur errorrées ou aberrantes la sélection et I'ajustement des mode¢les et
la gestion des alarmes pour détecter les changements statistiquement significatif dans la

réponse d'un barrage.

Des modeles statistiques tels que la régression linéaire multiple et les réseaux
neurologiques ont été employés pour estimer la réponse de différents instruments. Les
modeles de régression linéaire multiple sont de deux sortes: (1) les modeles
Hydraulique-Saisonnier-Temps (HST) et (2) les modéles qui considérent les températures

du béton parmi les prédicteurs.

Des méthodes a une, deux, ou plusieures variables sont discutées. pour l'identification des
anomalies dans les données d'instrumentation. La source de ces anomalies peut étre des
lectures errorrées, des instruments défectueux, ou un changement de comportement du

barrage.

Les méthodologies proposées sont appliquées a trois barrages, Idukki , Daniel Johnson et
Chute-a-Caron, qui sont respectivement des barrages vofites,d volites multiples et un
barrage poids. Les déplacements, les contraintes, les débits, et les ouvertures de fissures

ou de joints de ces trois barrages sont analysés.
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Diverses méthodes d'analyse statistique multivariables et d'analyse par réseaux
neurologiques sont également discutées pour analyser des données d'instrumentation du
barrage. Une de ces méthodes, 'Analyse par Composantes Principales (ACP) a pour
objectif de décrire la struture de variance-covariance des données par le biais de quelques
combinaisons linéaires des variables initiales. Les avantages principaux de cette méthode
sont: (1) le réduction des données et (2) l'intérpretation de données. Le nombre de
variables qui doivent &tre surveillées peut étre réduit sans perte significative
d'information. D'autres méthodes multivariables telles que l'analyse canonique, l'analyse

PLS et I'analyse non-linéaire par de composant principales sont discutées.

Les avantages de ces méthodes pour la réduction du bruit de fond, la réduction du nombre
de variables qui doivent étre surveillées, la prédiction des observations, et l'identification
des lectures erronées sont discutés. Les résultats indiquent que les données
d'instrumentation du barrage sont corrélées et que seulement quelques composantes

principales peuvent décrire le comportement du barrage.
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1.1 General

For centuries, dams have provided mankind with such essential benefits as water supply,
flood control, recreation, hydropower, and irrigation. They are an integral part of society’s
infrastructure. Dam failures are rated as one of the major “low probability, high-loss”
events. The large number of dams that are 50 or more years old is a matter of great
concern, since they are generally characterized by increased risk due to structural
deterioration or inadequate spillway capacity (NRC, 1983). Performance monitoring of

existing dams is an essential part of a dam safety program.

Performance monitoring of dams is accomplished by conducting visual observations, and
reviewing and analyzing data collected from instruments, which measure critical
indicators of structural behavior. "Instrumentation of a dam furnishes data to determine if
the completed structure is functioning as intended and to provide a continuing

surveillance of the structure to warn of any developments which endanger its safety”



(Post, 1985). The means and methods available to monitor phenomena that can lead to
dam failure include a wide spectrum of instruments and procedures ranging from very
simple to very complex. Any program of dam safety instrumentation must be properly
designed and consistent with other project components, must be based on prevailing
geological and geotechnical conditions at the dam, and must include consideration of the

hydrologic and hydraulic factors present both before and after the project is in operation.

Measurements complement visual observations as a continuing surveillance system of the
threat to life, property, and the environment, and assist in investigating unexpected or
abnormal performance. A full measurement program covers system design, installation,
operation, maintenance, evaluation of instruments and measurement systems for dams,
appurtenant structures, and foundations. Instrumented monitoring includes measurements
of displacement, strain, stress, pressure, loads on structural members, and seepage and
drainage along with environmental factors that affect dam behavior such as temperatures,
reservoir level, and precipitation. Data are collected and observations are made,

processed, and evaluated by qualified personnel.

1.2 Dam Instrumentation objectives

The principal objectives of dam instrumentation may be generally grouped into three
categories, 1) analytical assessment, 2) legal evaluation, 3) development and verification
of future designs. A wide variety of instruments may be utilized in a comprehensive
monitoring program to ensure that all critical conditions for a given project are covered

adequately (USACE, 1995).

1) Analytical assessment: Analysis of data obtained from instruments can be used to
verify design parameters, verify design assumptions and construction techniques, anaiyze
adverse events, and verify apparent satisfactory performance as discussed below.

a) Verification of design parameters: Instrumentation may be utilized to verify design
parameters with observations of actual performance, thereby enabling engineers to
determine the suitability of the design, b) Verification of design assumptions and

construction techniques: Experience has shown that most new or modified designs and
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construction techniques are not readily accepted until proven safisfactory on the basis of
actual performance. Data obtained from instrumentation can aid in evaluating the
suitability of new or modified designs, c) Analysis of adverse events: When a failure, a
partial failure or a severe distress condition has occurred at a dam project, data from
instrumentation can be extremely valuable in the determination of the specific cause or
causes of the event. Also, instrumentation is often installed prior to, or during, remedial
work at a site to determine the effectiveness of the improvements and the effect of the
treatment on existing conditions, d) Verification of apparent satisfactory performance:
Positive indications of satisfactory performance are very reassuring to evaluating
engineers and operators of a dam project. Instrumentation data can prove to be valuable

should some future variation in historic data occur, signaling a potential problem.

2) Legal evaluation: Valid instrumentation data can be valuable for potential litigation
relative to construction claims. It can also be valuable for evaluation of subsequent claims
relative to changed conditions. In many cases, damage claims arising from adverse events
can be of such a magnitude that the cost of providing instrumentation is justified on this

basis alone.

3) Development and Verification of future designs: Analysis of the performance of
existing dams, and instrumentation data generated during operation, can be used to

advance the state of the art of design and construction of dams.

Available instrumentation data has to be analyzed thoroughly since it is a main
component of dam safety investigation. A wide variety of devices and procedures are
used to monitor dams. The following features of dams and dam sites most ofien
monitored by instruments: 1) Movements (horizontal, vertical, rotational and lateral), 2)
Pore pressure and uplift pressures, 3) Water level and flow, 4) Seepage flow, 5) Water
quality, 6) Temperature, 7) Crack and joint size, 8) Seismic activity, 9) Weather and
precipitation, 10) Stress, and 11) Strain.



1.3 Motivation

In most countries throughout the world, interest in dam safety has risen significantly in
recent years. Aging dams, new hydrologic information, dam construction and population
growth in flood plain areas downstream from dams have resulted in an increased
emphasis on dam safety, operation and maintenance. Historical data shows that the most
prevalent category of potential failure modes for a concrete dam are those related to loss
of foundation support for the dam. For both gravity and arch dams, adequate support from
the supporting rock is essential to the structural integrity of the dam. Significant loss of
this foundation induces stresses for which the dam is not designed. This leads to cracking
of the dam, and potentially its failure. For arch dams, thrust support provided by the
abutments is particularly crucial, given the high loadings transmitted to them (Veesart,
1997). The first phase of the dam safety process involves monitoring dams to identify
potential deficiencies. Monitoring involves making periodic inspections and collections

and evaluating instrumentation data.

In establishing an instrumentation program, it is important to understand the objectives of
the program, the need for each type of instrument, the environment in which the
instrument will be located, the difficulty in gathering the data, and the time and effort in
reducing and understanding data generated. The wrong type of instrument may not
measure the desired behavior. Reliability of instruments also has to be regularly checked.
It is necessary to determine which of the instruments are reliable and which should be

retained (Stateler et al., 1995).

Instrumentation data is often accumulated, but its engineering significance is not fully
exploited in dam surveillance. In many instances the amount of effort put into analysis of
data is small and out of proportion relative to the effort put in instrumentation of the dam
and gathering the data. The output of dam monitoring system, which is a main part of
dam surveillance, has to be thoroughly analyzed to alert dam wardens of any possible
anomalies. The need for effective analysis tools of dam monitoring data was recently

emphasized in the latest International Commission of Large Dams (Dibiagio, 2000). Dam



monitoring practice has not been keeping pace with recent advances in statistical analysis
methods. There is a need to develop new analysis tools to help dam safety engineers in

the evaluation of the dam behavior.

A method, which can extract important features from the data, would be a useful tool in
dam safety studies. Since structural responses of a dam are caused by the combination of
several factors, the multivariate data analysis methods present several advantages: 1) itis
cost effective by reducing the number of individual analyses, 2) it can separate the signal
component from noise across a group of instruments given that the noise component is by
definition uncorrelated from one instrument to another, 3) it can identify dominant

patterns of behavior.

The definition of acceptable ranges for instrumentation readings can be used for
immediate data review during data collection, so that anomalies can be quickly identified
(Veesaert, 1997). It is recognized that trying to establish the range of expected monitoring
data might be difficult in some cases. There is always a trade-off between setting the
range of expected dam performance too narrowly where the limits may be exceeded
frequently, and setting performance ranges too broadly where the danger is that adverse
behavior could occur within the limits of so-called safe performance. When
instrumentation data is not within pre-established limits, prompt evaluation of the safety
of the dam should be undertaken which may lead to: 1) Assessing, and if needed,
resetting the boundaries of satisfactory performance of the dam, as measured by
instruments, 2) Heightened awareness of the condition of the dam and intensified
monitoring, 3) Reducing the reservoir level, 4) Warning, and potentially evacuating
downstream area and, 5) Takiné structural corrective actions. Establishing alarm levels is
an important part of dam safety programs. In dam safety practice these alarm levels are
chosen by statistical analysis for each individual instrument. However, as some of the
measurements are noisy or unreliable, this approach increases the chance of randomly
finding an instrument out of control. The more variables there are, the more likely it is

that one of these instruments may be out of control and indicate an adverse condition



when the dam is actually in a safe state. Thus the false alarm rate (or probability of Type

1 error) is increased if each variable is analyzed and controlled separately.

1.4 Objectives

The principal objectives of this thesis are:

(1) Application of Multivariate analysis and neural networks for dam monitoring data

exploration/analysis.

@) The identification of structural anomalies, faulty instruments and readings from

data

1.5 Scope and outline of the thesis

Chapter 2 presents a summary of previous research on statistical and numerical analysis
methods for dam monitoring data methods used in other fields are also reviewed. Chapter
3 describes in detail the statistical analysis and neural network methods used in this thesis
for the analysis of dam monitoring data. Sources of measurement errors are described in
Chapter 4, followed by a description of dam instrumentation with an emphasis on
concrete arch and gravity dams. In Chapter 5, the methods discussed in Chapter 4 are
applied to data from the Idukki dam in India. In chapter 6, the methods are also applied to
data from Daniel Johnson dam and to Chute-a-Caron dam. In Chapter 7, a summary of
the thesis, and of the major contributions is presented, followed by suggestions for future

research.



2. Review of previous research

2.1 Introduction

Dam safety relies on a carefully planned surveillance program, which consists of stability
checks, measurements and tests on materials. A key part of such a program is a visual
examination of the dam complemented with monitoring data from the dam. A basic
requirement of managing dam safety is monitoring of the structure in order to collect

data, which are then interpreted to understand the state of the dam (Gresz, 1993).

Automatic instrumentation and data acquisition systems are used to monitor the real time
behavior of dams. The output of monitoring systems is presented locally to dam wardens
to alert them of possibly dangerous situations. Telemetry systems are used to send the
information to a central database, where experts evaluate the status of the structure
through the interpretation of data. Monitoring systems produce a large quantity of data,
which has to be managed, and in case of automatic dam monitoring, managed in real time
(Crépon et al., 1999).

The extent and nature of the instrumentation depends on the complexity of the dam, the

size of the impoundment, and the potential for life and economic losses. A number of
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instruments on existing dams are initially installed to monitor the behavior of the dam
during first impoundment and are often irrelevant for monitoring the behavior during its
service life; others are incrementally installed as defects become apparent. A
comprehensive analysis of data provided by these monitored devices is a valuable tool in

dam safety investigation.

The need for effective analysis tools was recently emphasized in the latest International

Commission of Large Dams (ICOLD) General Report (Dibiagio, 2000). Two of the

biggest problems in monitoring have been data processing and presentation, and the

analysis of data. A few decades ago, data gathering and processing was done manually.

The time lag between measurements and interpretation was often very long. The

introduction of computers and specialised software has more or less eliminated the first

problem, but the second problem still exists. In many instances the amount of effort put

into analysis and interpretation of data is small and out of proportion relative to the effort

put in instrumentation of the dam and gathering the data. Performance data is often

accumulated, but its engineering significance is not fully exploited.

When correctly installed and configured, automatic data acquisition systems with
properly located geotechnical, structural, and hydrological sensors provide crucial

information for operating the reservoir safely over the long term. When the data is
scrutinized by human judgment on a regular and periodic basis, a well-maintained
instrument automation system can provide a reliable performance database for the
structure during its operation over several years. This information helps the owner to
recognize an abnormal response under normal conditions, and to monitor the behavior
during extreme hydrological or seismic events.

Two types of models have traditionally been used in dam monitoring, (1) statistical and
(2) deterministic models. Statistical models are based on correlations between
environmental factors (impounded water level, ambient temperatures, ice pressure) and
dam responses (displacements, pressures, flows). These correlations are estimated by
performing statistical analysis of historical data (Enel, 1980). Statistical models provide
the answer to a basic question: Is the dam behaving as it did in the past? Statistical

models are used to interpolate the response within the range observed historically and



uncertainty and unpredicted responses with statistical models typically increased when
extrapolating behind the range of values observed historically. Deterministic models can
be used to model long-term non-reversible deformations to predict behavior at extremely
low or high reservoir levels, at extreme temperatures, and during seismic events. This
method is used to answer the following question: Is the dam behaving properly for given
loading conditions? (Lombardi, 1999). A good agreement between statistical forecasts

and measurements implies that the dam behaves as it did in the past.

2.2 Statistical Methods of Dam Monitoring

Various statistical procedures have been proposed for the analysis of monitoring data
(Silva Gomes et al., 1985). A model of quantitative analysis is a functional relationship
between observed effects and corresponding actions. These models rely on some basic
assumptions: 1) The analyzed effects correspond to a period which the configuration of
the structure remains the same. 2) The response of the dam can be separated in two parts,
a) reversible effects due to the variation of hydrostatic level and air temperature, and b)
irreversible effects which are function of time and can be induced by creep, alkali
aggregation reaction, or other damage. A general statistical model for the response of an

instrument can be formulated as follows:
D(t)y=F@)+GH)+H(T)+¢ 2.1

where F(t) is an irreversible response associated with consolidation, settling, degradation,
or creep, G(H) is the response due to the hydrostatic level, H(T) is the response to
temperature, and ¢ is the residual error. In many cases, thermal inertia creates a delayed
response between temperature variation and instruments readings. Researchers have

proposed various functions for the modeling different components of responses.

The hydrostatic-season-time model (HST), (Crépon et al., 1999). is a regression model,
which takes into account the hydrostatic level as a fourth degree polynomial the seasonal
effect, as a sum of four Sin functions, and T(t) is irreversible effects. Rain effect can also
be included for modeling the piezometer readings. Least square criteria is used to

estimate the model coefficients. The HST model is extremely robust and yields



satisfactory results. It gives in a simple nonlinear function of water level and a periodic
function (Figure 2.1), which is comparable to a delayed response to annual and half-
yearly cycles in which the total extreme loads occur. One of the main gaps in this model
is the lack of physical information provided by parameters (Bonelli et al., 2001). The
polynomial expression for the effects of water level was originally based on a mechanical
analysis of the water level on the displacements of an arch dam, based on resistance of
materials.
D(t) = H(z)+S@)+T(®) 2.2
H(z)=a, +a,z+a,z" +a,2’ +asz’ 2.3
S(8) = a,Sin(6) + a, cos(6) + a,Sin(8)Cos(0) + a,Sin*(8) 2.4
T(t) = ct'+c,t" +c,t® 2.5
where
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Figure 2.1, Periodic functions used in HST model

Homin, Hmax, and ty are respectively the minimum and maximum reservoir water level, and
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the starting time for data collection considered for statistical analysis.
Enel (1980) use a statistical model to forecast the behavior of dams. The effect of water
level, ambient temperature, and creep are considered. A non-linear model is used to

describe the effect of reservoir level variation

F(H)=Ay+ AH+ AH" ..+ A H" 6

where Fy (H) is a structural response (e.g. displacement) and H is reservoir water level.

The order of the model is usually less than 5.

For estimating the thermal displacements two methods are proposed. The displacements

can either be formulated as:
Et) =1 ()e, +L, (e, +...+1,(De, 2.7

Where ey, €2, .- » €k, are unknown coefficients and 1;(t),..., l,(t) are measured concrete
temperatures. If no temperature measurements are available, thermal displacements can

be formulated as:

Ei(t)=E, smot + E, coswt +...+E  sin pat + E , cos par 2.8

2n ) ) .
where ® = —, Ei1, E1a, ... , Ep; are some unknown coefficients, and T is the period

usually equal to 1 year. Irreversible displacements can be described by a combination of

exponential and polynomial functions of time such as:
G,()=ae" +a,e™ +ayt 2.9

where a;, a2, as, ki, ky are some unknown coefficients. The total displacement resulis

from the superposition of the three different types of displacements.
5, O=EO+F,0)+G,@ 2.10
The observed displacements are denoted by Ay (t). The residuals e(t) are
a(t)=Ak(t)—5k(t) 2.11
Unknown parameters are estimated by least squares. After the estimation of the model

i1



parameters the time series of residual £(¢)is obtained. The Variance of the residuals o is

used to define confidence intervals. It is assumed that residuals follow a normal

distribution, therefore, probabilities of £(f) < no can be calculated. For example for n=2,

it can be assumed that the measurements must be between values of &y (t)-2c and

S(t)+20 with probability of 95%.

Guedes et al. (1985) use linear regression to relate individual dam instrument readings to
reservoir, thermal, and time effects. This method is used to separate the effects, to
determine whether or not these factors are independent of each other and to determine the

best empirical equations.

Kalkani (1989) uses polynomial regression to monitor individual piezometers of the
Kremasta embankment dam located in Greece. A portion of the data was used for
estimating the relationship between reservoir level and piezometer levels, which was then
used to forecast the piezometer levels for another portion of the data set and calculate the
mean square of the forecasting errors. Separate models were used for predicting observation
for increasing or decreasing reservoir level. Measurements higher than the predicted values
plus one standard deviation were used to detect increased seepage through the dam, while
measurements lower than the predicted values minus one standard deviation were used as
an indication of malfunction of the piezometer. Temperature, time and rain effects were

not considered.

Gilg et al. (1982) describe results of data analysis for three Swiss dams. The Mauvesian
dam, is an arch dam of 237 m height that shows that the daily oscillation of the air
temperature penetrates to a depth of 50-60 cm and 80 cm respectively in the downstream
and upstream phases. At a depth of 3 m, the yearly variation of temperature is only 5-6°C,
which is equal to about 1/3 of the variation of the monthly average ambient temperature. At
a depth of 15 m the variation of temperature is only 0.5-1°C and the average temperature is
higher than the average annual ambient temperature. This was attributed to the influence of
solar radiation. Time lags of 0.5, 2 and 5 months are observed between concrete

temperatures and ambient temperature at depths of 1, 3 and 15 m respectively. A lag of one
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month is observed between the maximum of reservoir level and the maximum deformation,
which is explained by the temperature effect. An irreversible displacement of 18 mm was
recorded during the 17 years of observation. Uplift pressures show that there is no water
pressure in the upstream part of the central blocks, which shows that the grout curtain is very

effective.

Goguel et al. (1992) describe the instrumentation of Kariba dam, a 128-m high arch dam in
Kenya. Strain meters show a continuous drift, due to creep and shrinkage effects. The
maximum creep rate is 23 micron/meter/year. Scanning of concrete samples with an
electron microscope detected the presence of an expansive gel typical of alkali aggregate

reaction.

Blas (1989) describes a methodology used in the analysis of an arch dam that was
exhibiting moderate irreversible upstream displacements. A statistical model was
developed to estimate the irreversible radial components of displacements at the top of
three dam blocks. Three different time variables are used to capture trends as a piecewise
linear function. The other variables considered in the model are average air temperature
over the previous eight weeks, temperature on the day of the observation, and the water
level.

The order of importance of the variables is time, averaged air temperature, reservoir
level, and daily air temperature. Higher orders of the reservoir level were rejected
because reservoir level oscillations were very small during the time interval considered.
Irreversible displacements of up to 2mm /year were observed. A finite element analysis
of the dam was performed to consider: 1) the non-linear behavior of the material, 2) a
time-dependant volumetric expansion due to water penetration, and 3) representation of
construction joints. It was concluded that swelling was the main reason for observed

anomalies.
Hulea et al. (2000) describe statistical and deterministic models used for monitoring the

Tarnita arch dam. Crest displacements were almost 60% larger than predicted

displacements (70 mm versus 45 mm). However, the dam structure did not show any
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significant signs of deterioration. Different functions were used for estimating the
temperature effect in statistical models. The analysis performed with statistical models
showed that 1) alarm level or threshold for monitored data cannot be established at the
design stage. A dynamic process has to be implemented that allows for updating the
acceptable limits in terms of the evolution of dam behavior, 2) the best model was bas&d

on measured air temperatures as opposed to a HST model.

Chouinard et al. (1995) apply principal component analysis (PCA) to estimate the
principal modes of deformation of a dam from a historical record of instruments. The
PCA was applied independently to two groups of instruments, one for data from stress
meters and the second for data from instrumented cylinders. The correlations between the
scores of the principal components and factors such as reservoir water level, ambient

temperature, and time were analyzed.

Comité Suisse des barrages (2000) describe a method “measured-calculated” for
modeling dam behavior and detecting anomalies. The method consists of the following
steps, 1) monitor and model dam behavior through instruments, 2) calculate the same
quantities through numerical models, 3) compare the predictions and measure values.
There is no restriction for the type of dam to which the method can be applied. In
Switzerland it has been applied to both arch and gravity dams. Radial displacements
(upstream-downstream) are generally used as response variables but the method could
also be applied to tangential displacements, pressure meters, joint movement and other
quantities. Reservoir level, concrete temperature and age are the variables considered.

The general model can be written as:
R{t,env) = P(t,env) + D(¢,env) 2.12

in which R is observed value at time t and environmental conditions of env. P is the
estimated value and D is the error accounting for modeling and observation errors. Three
different methods are used for estimating the observed values, 1) statistical models, 2)
numerical models, and 3) hybrid models, which combine the first two methods where

some parameters of the numerical model are optimized using measured values. The
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statistical method is very similar to HST models. Table 2.1 presents the relationship

between these different methods.
Bonelli et al. (2001) describe 2 model for performing delay analysis on pore pressure

measurements. The method is based on Darcy’s law and Richard’s equation of seepage

Table 2.1, Relation between different Methods

Modeling functions
Empirical By Modeling

- o Deterministic o W
£8 |7 Z 13 5
= § | g| Statistical Hybrid g | & &
O > >

No Yes

Modeling of the dam

and involves the use of a linear dynamic system accounting for the contribution of non-
ageing factors. Delayed effects are due to dissipative behaviour (viscoelasticity, seepage,
etc.), and are therefore irreversible.. The delayed effect of water level was calculated

based on convolution of the impulse response of the dam structure and water level.

Bourdarot (2001) presents a simplified method for analysing the magnitude of the
observed deformation and the deformation patterns in Arch dams. After an initial phase
following the reservoir impounding, during which the irreversible displacements toward
the downstream are observed, an inverse evolution of dams towards the upstream is
observed after 30 to 50 years of operation. Simple finite element models were developed
to illustrate the different pattern of irreversible effects due to shrinkage and foundation
settlement. Displacement rates are estimated from actual case histories and applied to an
arch dam. Creep, shrinkage, and settlement lead to a beneficial compression on the

upstream face countering the effect of the reservoir level. They also cause tensile stresses
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at downstream base of the dam, which sometimes cannot be balanced at low reservoir
levels. The model for shrinkage and creep is very simple, stress dependencies and loading

history are not taken into account.

Paxton (2001) describes the structural monitoring system for Milliken dam. A spalled
block from the downstream face of the dam in the 1950°s led to the installation of
Carlson resistance wire joint meters to monitor changes in six of the cracked or separated
lift joints. Joint meter readings indicated that crack opening mostly occurs during the last
6 m of reservoir filing. The monitoring system was improved in 1998 by measuring crest
deformation, installing crack meters, and replacing the Carlson joint meters. It was
concluded that deformations resulting from static loading conditions have stabilized and

do not threaten the safe operation of the dam.

Crepon et al. (1999) provide a description of Monitor, a software based on the HST
model, developed for dam monitoring data analysis. The database of the program
includes: description of the dam, location and description of measuring instruments,
special functions such as calculation of physical measurements from raw measurements,
and selection of measurements intervals. The sofiware gives a spatial representation of
measured quantities, and has built-in functions for estimating the derivatives and integrals
of original variables. These new derived variables can be used as explanatory variables
and improve the model precision. Considering the accumulated rainfall over a ten-day
period and the speed at which the reservoir changes, results in significant improvement

for modeling of piezometer levels.

The statistical models discussed analyse relationships between environmental factors
(impounded water level, ambient temperatures) and dam performance (i.e. displacements,
pressure, flow). Statistical methods are based on the analysis of past behaviour of the
dam, which is expected to remain the same during normal loading condition. Another
approach is numerical analysis of the dam based on information on loads, properties of
materials, and physical laws govering the stress-strain relationship. One advantage of a

numerical model is that it can predict the response of a dam to extreme effects such as
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floods and earthquakes. Some of numerical analysis methods applied in dam monitoring

are discussed next.

2.3 Numerical analysis

Arch dams (Figure 2.2) rely significantly on arch action to transfer horizontal loads to the
abutements. Arch dams may be divided, according to the geometry of their cross sections,
into thin, moderately thin, and thick arch sections. Table 2.2 identifies each of these types

with regard to crest thickness (t;) and base thickness (1), each

Figure 2.2, A top view of an Arch dam

expressed as a ratio to the height (H), and the ratio of base-to-crest thickness. Under static
loads, a well-designed arch dam should develop essentially compressive stresses, which
are significantly less than the compressive strength of the concrete. However, the
analyses of monolithic arch dams with empty reservoirs, with low water levels, or with
severe low temperatures have indicated that zones of horizontal tensile stresses can
develop in the dam on the upstream and downstream dam faces (USACE, 1994).
Although concrete can resist a limited amount of tensile stress, it is important to keep
tension to a minimum so that the arch has sufficient reserve strength if subjected to
additional loads.

When the design limits are reached or, as in the case of many existing dams, when the
dam is not designed for severe loading conditions, some cracking can occur at the base
and near the abutments. These horizontal stresses tend to open the vertical contraction

joints, which are expected to have little or no tensile strength. It is apparent that joint
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opening will relieve any indicated arch tensile stresses, and the corresponding loads can
be redistributed to cantilever action provided that tensile arch stresses are limited to only

a small portion of the dam.

Table 2.2, Arch dam Types (USACE, 1594}

t./H tw/H to/te
Thin arch 0.025-0.05 0.09-0.25 2.9-5
Moderately thin 0.025-0.05 0.25-0.40 5-10
Thick gravity-arch | 0.05-0.10 0.5-1.0 8-15

The need for an acceptably accurate method of analyzing arch dams led to the
development of the trial load method based on structural mechanics concepts in the
1960’s. The arch dam is decomposed into a series of horizontal arches and vertical
cantilevers. The trial load method is based on the assumption that the hydrostatic load is
divided between cantilever and arch elements in a proportion that results in equal arch
and cantilever deflections at all points. This method can neither fully represent the solid
body of an arch dam nor reflects the effect of foundation. Since the 1970’s the linear
finite element method (LFEM) has been employed for stress analysis of dams. The finite
element method can be applied to complex geometries, and can accommodate variations
in material properties whitin the model. Finite element methods have been used for both
static and dynamic analysis of dams. Some of the applications for analysis of dams are

reviewed next.

Veltrop et al. (1990) develop a finite element model of one of the arches of the Daniel
Johnson multiple arch dam. The analysis consists of a 2D transient heat flow analysis and
a 3D-stress analysis. The results of the 2D-heat flow analysis were used to define the
critical temperature gradient, which then was applied as part of the loading for a 3D-
stress analysis. The loading conditions considered were the hydrostatic and dead load and
winter thermal load conditions. It was concluded that the first set of cracks that appeared

on the arches was due to geometric discontinuities and that the second set of cracks was
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formed because of winter load conditions.

Léger et al. (1993) describe a finite element modeling procedure for obtaining seasonal
temperature and stress distributions in concrete gravity dams. Effects of the reservoir,
foundation, and air temperature distributions, and heat supply from solar radiation on the
thermal response of a dam are discussed. Two separate analyses are performed, a thermal
analysis of a dam, to define the input, followed by the stress analysis of the system.
Parametric analyses are performed to evaluate the effects of geometrical, thermal and
mechanical properties; reservoir, air and foundation temperature variations, and heat
supply from the sun on the thermal and mechanical behavior of gravity dams. Some of
main conclusions were: 1) displacements occur when the mean temperature of the top
dam section is lowest, 2) the daily air temperatures greatly effects the surface thermal
tensile stresses; when actual daily air temperatures are used, the maximum surface
stresses increase by a factor of 1.5 to 2, as compared to a model based on average daily
temperatures over 22 years period, 3) solar radiation has a significant effect on the depth
of frost penetration while its effects on stresses are negligible, 4) the height of the dam
has little effect on the depth of frost penetration, 5) maximum crest displacements occur

when the mean temperature of the upper section is lowest.

Bouzoubai et al. (1997) investigate the effects of external temperature variations on mass
concrete through laboratory experiments and finite element analysis. A concrete block,
instrumented with thermocouples and vibrating wire extensometers and exposed to
temperature variations on one face, was used to simulate the behavior of the downstream
face of a concrete gravity dam exposed to thermal cycles. A finite element model for
thermal analysis was developed and results were compared with the experiments. The
validated numerical model was then used to study the effects of the variation of outside
temperatures on the behavior of gravity dam. Some of the main conclusions were that 1)
when the effect solar radiation is not included, the depth of frost penefration can be
overestimated, 2) the maximum principal tensile stress occurs in coldest month of the

year at the toe of the dam near the downstream face.

Zhang et al. (1997) discuss the effect of the initial temperature and convection
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coefficients in transient thermal analysis of massive concrete structures. Determination of
a precise convective coefficient for the heat exchanged between concrete and air is
complicated. A finite element model of a generating station structure was developed and
results were compared with measurements. Different uniform initial temperatures were
considered. The following conclusions were made: 1) the heat transfer behavior of a dam
is not sensitive to the variation in the heat convection coefficient when the coefficients
are within a certain range, 2) no matter what the assumed initial temperature is, after 9-10

months the results of numerical model coincide with measurement data.

Pedro et al. (1985) evaluate the safety of a Portuguese cracked arch dam in Portugal. The
dam is 130 m in height with a thickness varying from 30 m at its base to 4.6 m at its crest,
and a span of 60 m. Horizontal cracks developed at the downstream face of the dam near
the crest. Triangular flat shell elements are used to model the arch dam. Two different
load cases are considered: 1) dead load and hydrostatic load and, 2) the dead load,
hydrostatic load, and loads due to temperature variations. It was concluded that the
cracking at the downstream face of the dam did not significantly affect its stability. The
recommendation was that the reliability of a numerical model should be evaluated by
comparison of the results with observations under normal operating conditions (and

interpretation of eventual incidents), and by analysis of incidents that occurred in past.

Tahmazian et al. (1989) investigate the stability of the Daniel Johnson mulitiple arch dam.
A three-dimensional non-linear finite element model using the smeared crack technique
was developed to reproduce the observed behavior of the dam, to assess its safety, and to
help evaluate scenarios for remedial work. First, the winter temperature distribution in the
dam was calculated using transient heat flow finite element analysis. The winter
temperature was used in structural analysis in addition to water load and dead load. The
conclusions were that the finite element model successfully reproduced the observed
stresses and deflections, and that observed crack patterns and the thermal cracking did not
significantly affect the load carrying capacity of the structure.

Barrie (1995) studies the safety of Gerber arch dam. Gerber dam, 2 26-m high variable

radius thin arch structure, has experienced seepage and extensive freeze-thaw damage
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since its construction. On several occasions since 1951, the upstream face of the arch dam
has been treated with waterproof membranes to prevent seepage. Inspection of the
structure indicated that the treatment is deteriorated and should be considered ineffective.
Since the last treatment in 1973, seepage has been reporied between lifis. A three
dimensional finite element model was used to evaluate the safety of the arch structure.
The loading combination of water, dead load and winter temperatures were found to be
critical. Winter temperatures contract the arch and displace it in the downstream
direction. Tension was reported to be greater on the upstream side. The maximum
compressive and tensile stresses were reported to be 2.6 MPa and 2.0 MPa respectively.
It was concluded that concrete is not expected to crack under its service load and that the
resulting net tensile strength of the joints may be loosened by tensile stress, which

increase seepage rates.

Lan et al. (1997) describe a Non-Linear Finite Element model (NLFEM) of an arch dam.
The non-linear stress-strain relationship and cracking behaviour are considered. Two
kinds of cracking models are usually employed in a non-linear finite element model of
concrete structures, which are the discrete cracking model and the smeared cracking
model. The discrete cracking model is set up between two adjacent element surfaces. It
can model the occurrence and propagation of the tensile cracks in the structure and
estimate the crack depth. However, the analysed structure has to be re-meshed when the
cracks occur and propagate, which leads to more computation cost. The smeared cracking
mode assumes various continuous parallel cracks. This approach can more efficiently
address the cracking phenomena. Employing the smeared crack criteria a model of a 250
m high arch dam was developed under the loading condition: normal water pressure, dead
load and rising temperature change. The maximum displacement in the arch dam was
157.5 mm for the linear model and 167.7 mm for a (NLFEM), which shows a difference
of 6.5%. The maximum difference between two the models was 24.3% at the bottom of
the arch dam, due to initial cracking in this region under the working loading conditions.
The authors believe that (NLFEM) results are more representative of dam behaviour as
the non-linear nature of cracking are properly addressed.

In conclusion, statistical and deterministic methods have been used for modeling dam
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behavior. In statistical methods, the most common approach in the analysis of dam
monitoring data is to proceed at the level of individual instruments. In the presence of
noisy data, it can be very difficult to identify significant deviations from normal readings.
A procedure that minimizes the effect of noise from individual instruments is to perform
simultaneous analysis on several instruments. Successful applications for simuitaneous
analysis of multiple instruments have been reported in many other fields using
multivariate statistical analysis methods and artificial neural networks (ANN). Some of

the most relevant studies are reviewed next.

2.4 Multivariate statistical Methods

Multivariate statistical methods are used extensively in chemometrics (MacGregor et al.,
1994). Computerized data acquisition systems are routinely utilized to collect real-time
data from a multitude of sensors every few seconds in chemical processing plants.
Traditionally, operating personnel had been using only a few measurements to monitor

the performance of a processing plant.

Kresta et al. (1991) propose a multivariate statistical process control for simultaneously
analyzing several process and quality variables. Multivariate statistical procedures (PCA
and PLS) are used to reduce the dimensionality of a large and highly correlated data set
down to a few factors or components, which contain most of the information about the
process under normal operating conditions. The scores of component variables are plotted
as a function of time to detect large deviations from normal operating conditions. Plots of
the squared errors of prediction are also used to detect major changes in the normal

operating condition.

Nomikos et al. (1994) use principal component analysis to extract the information from
all the measured process variables, and to project it onto a lower dimensional space
defined by the latent variables or principal components. Analysis of process batches is
used to classify similar batches by examining the clusters of their projections into an

hyperplane. The approach is based on basic statistical process control (SPC) concepts,

22



whereby the performance of a process is assessed by comparing it with past
measurements when the process was operating well, and was in control. Control limits

for the monitoring charts are derived from statistical properties of the reference data set.

Sun (1996) describes a multivariate regression procedure based on principal component
regression. The method corresponds to a simultaneous analysis of several response
variables of interest and is referred to as Multivariate Principal Component Regression
(MPCR). PCR works on only one response variable. When there is more than one
response variable of interest, one way to apply PCR is to analyse each response variable
separately using PCR. It is apparent that this approach cannot use the correlation
information of the response variables. In MPCR, principal components of response
variables and independent variables are calculated, and then regression analysis is used
for regressing the principal components of response variables on principal components of

independent variables.

2.5 Artificial Neural Networks

Principal component analysis is now widely used for reducing the dimensionality of data
set and to obtain a better understanding of processes (Martin et al., 1996). However, the
linearity assumption inherent in conventional PCA can lead to misleading conclusions in
the analysis of data from highly non-linear processes. Conventional PCA is not effective
when the variables are nonlinearly related and in such situations nonlinear principal
component analysis (NLPCA) is more appropriate. Nonlinear principal components
analysis can be used in a similar way to PCA, that is data summarization, data
visualization and data exploration. Neural networks have been applied for extracting both
linear and nonlinear principal components from data. The concept of extracting features
from highly nonlinear data has been discussed in a number of studies, most of the
techniques are based on artificial neural networks (Dong et al., 1996). Diamantras et al.
(1996) provide a good review of PCA neural networks.

Fan et al. (1993) present an approach to fault diagnosis of chemical processes during

steady-state operations by using artificial neural networks (ANN). The authors indicate
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that back-propagation networks can learn and perform nonlinear mapping only o a
certain extent. For the case of fault detection in chemical processes, nonlinearities can be
very complex, especially in the case of multiple faults. They modify the conventional

back-propagation ANN by the addition of a number of functional units to the input layer.

Kramer (1991) uses auto-associative neural networks for nonlinear principal component
analysis (NLPCA). The Auto-associative neural networks with a bottleneck layer of
nodes can be used to reduce the number of input variables. The network is called auto-
associative neural network, as it must reproduce the input at the output layer. The
network has three layers, with p nodes in the input and output layers and m nodes in the
bottleneck layer. Since the dimension of the bottleneck layer is smaller than both input
and output layers, the network is forced to develop a compact representation of input
data. NLPCA was used to idéntify and remove correlations among variables as an aid to
reduce dimensionality, visualize the data, and for exploratory data analysis. While PCA
identifies only linear correlations between variables, NLPCA uncovers both linear and

nonlinear relations.
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3. Methodology

3.1 Introduction

The traditional approach in dam monitoring is to analyse the response of individual
instruments and to set thresholds on the observed values to trigger alarms. However, it
can be very difficult to estimate statistically significant deviations from normal readings
for individual instruments, given that the fluctuations in stresses, strains, or deformations
are small and in the order of magnitude of noise in the measurements. In addition, these
are subjected to the simultaneous effects of the water level fluctuations and temperature,

which are often highly correlated.

Traditionally, engineers have relied mainly on instruments that integrate strains over large
volumes of the dam, such as inverted pendulums, or targets. Measurements from these
instruments tend to be less variable due to averaging; however, when significant
deviations are detected, damage and deterioration is usually already in an advanced stage,

and it may be difficult to fully analyse the problem based solely on these instruments.

25



For that purpose, data from siress and strain meters can provide useful additional
information. The desirable features of analysis procedures for this type of data are that:
(1) they should make use of all instruments simultaneously, and (2) they should separate
signal from noise. When simultaneous readings are available for different instruments
across a structure, estimates of correlation between these instruments can be used to
identify the major patterns of deformation of the facility under a variety of external
actions. Correlation measures the degree of linear dependency between the variables,
which is usually a valid assumption for the behavior of dams under normal operating

conditions.

The response of any instrument results from a combination of several reversible or
irreversible effects. Irreversible effects are usually associated with time-dependent
phenomena such as creep, swelling, and settlements. These phenomena are usually most
critical from the point of view of dam safety and it is desirable to monitor their rate of
progress. Reversible effects are usually not critical from dam safety point of view and are
associated with fluctuations of the reservoir water level and temperature. To estimate a
realistic model of the dam the data set should cover as much as possible all the

anticipated operational conditions of the dam.

3.1.1 Data processing and presentation

The usefulness of any observation depends strongly on the care with which the calibration
and subsequent data processing are carried out. Once the data are collected, further
processing is required to check for the errors and to remove erroneous values. Two types
of errors must be considered in the editing stage: (1) large “accidental” errors or “spikes”
that result from equipment failure or other major data flow disruptions; and (2) small
random errors or “noise” that arise from changes in sensor configuration, electrical and
environmental noise, and unresolved environmental variability. The noise can be treated
using statistical methods while elimination of the larger errors generally requires the use
of some subjective evaluation procedure. Data summary diagrams or distributions are

useful in identifying large errors as sharp deviations from the general population. By not
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directly examining the data points in conjunction with adjacent values, one can never be
sure that reliable values are thrown away.

Missing data or gaps are observed in many engineering data records. Missing data is
frequently the consequence of uneven sampling (in time and/or space), or may result from
removal of erroneous values during editing and from sporadic recording system failures,
major difficulties arise if the length of the holes exceeds 20-30% (Struges, 1983). Most
analysis methods require data values that are regularly spaced in time/space. As a
consequence, it is sometimes necessary to use interpolation/estimation procedures to
create the required regular set of data values as part of data processing. The analysis of
data records necessitates some form of “ first look™ visual display. Even the editing and
processing of the data typically requires a display stage. Plotting time series of
temperature, reservoir level, and instrumentation data, scatter plots of different observed
data are to be considered in visual data representation. With the advent of the computer
and electronic data collection methods, the knowledge of statistical methods has become

essential to any reliable interpretation of results.

3.2 Multivariate Analysis of the data

Multivariate analysis is concerned with the empirical analysis of data that is a function of
several independent variables. Multivariate calibration designates procedures used to
describe how measurements on predictor variables X, Xa,...,Xp, are related to some
target variables Y1, Ys...,.Y . The matrix Y (mxn) is formed from n observations on m
responses (stresses, strains, displacement, flow ) at the same time, where the i column is
the observation vector Y; at time t;. The matrix X (pxn) is formed of observations on p
predictor variables (air temperature, concrete temperatures, reservoir level, time)
measured at the same time. These methods are applied to a set of simultaneous
observations to determine the relationship between a set of dependent variables and a set
of independent variables, and to make predictions through extrapolation of available data.

The multivariate analysis methods considered in this thesis are reviewed next.
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3.2.1 Multiple Linear Regression
Multiple linear regression (MLR) is the most widely applied technique for describing
relationships between variables. It is used to describe the relationship between a
dependent (response) variable Y and one or more independent (predictor) variables X,
X3 5oy Xp. The relationship can be expressed as:

Y=Xb+¢ 3.1
Where b is the vector of regression coefficients and ¢ is the vector of residuals. The least
square method is used to minimize the sum of the squared residuals

ge=[-x.5)(T-X.0) 32
and the estimate of b is:

b=(x'Xx)'(x'y) 33
Therefore an estimate of Y can be expressed as:

Y=x(xXx)'(xY) 3.4
which corresponds to the projection of ¥ on the X space. The standard error of estimate

is expressed as:

3.5

The regression model can be used to predict future observations on the response ¥

corresponding to values of the p predictor variable (Xo) as P(x,) =x'b. A 100(1-0)%

prediction interval for this future observation is:

@)~ Larp (S, L+ X0 (X X) ' 20) S 30 € 9@ o (S, 0 (1 2o (X X))

3.6
where n and p are the number of observations and predictor variables respectively.
Prediction intervals can be used to set alarm levels for different response variables. In
predicting new observations care must be taken about extrapolating beyond the region
covered by the sample. It is possible that a model that fits well in the sample data cannot
predict accurately responses outside of that region.

A number of problems can also occur when some of the independent variables are highly
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correlated (Jackson, 1991). This situation, which is called multicollinearity, is

characterized by columns in X that are approximately or exactly linearly dependent.

Multicollinearity causes several problems:

1) The inverse of X'X may be difficult to obtain, since the matrix in nearly singular.

2) The regression coefficients are highly correlated, and the interpretation of these
coefficients is unreliable. Sequential procedures such as forward selection and

backward elimination can be used to mitigate these problems.

The ordinary least squares (OLS) estimation principle, assumes that the variance on the
residuals is constant. If variance of residuals is not constant; weighted least squares
(WLS) should be used. In this case, the weighted sum of squared residuals is minimized.

The estimate of b is:

R ’ -1 7
b =[2{; z“zr_j Xr'y 3.7

where V is the priori estimates of the uncertainty variances of observations.

In situations when there is a high degree of correlation among the predictor variables,
multivariate regression techniques based on latent variables are used as the preferred
method (Martens et al., 1989). These procedures select a few latent variables, which are a
linear function of the original variables and used to forecast the response variables. Some
of these methods, Principal Component Analysis (PCA), Partial Least Square Regression
(PLSR) and Canonical Correlation Analysis (CCA) will be discussed in the following.

3.2.2 Principal Component Analysis (PCA)

PCA is a statistical technique falling under the general title of factor analysis. PCA is
concerned with explaining the variance-covariance structure of a data set through a few
linear combinations of the original variables. The purpose of PCA is to identify the
dependence structure of multivariate observations in order to obtain a compact
representation. The general objectives are (1) data reduction and (2) data interpretation.

The analysis identifies characteristic and uncorrelated modes of variation of the variables.
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Attractive features of this operation are that: (1) it eliminates correlation among the

variables, (2) it is efficient method of compressing the data.

In PCA, the original variables are transferred into new, uncorrelated variables called the
principal components or factors. Each principal component is a linear combination of the
original variables. One measure of the amount of the information conveyed by each
principal component is its variance. For this reason the principal components are arranged
in order of decreasing variance. When the observed variables are correlated, the number
of variables can be reduced without losing much of the information. This objective can be

achieved by selecting only the first few principal components.

PCA is applied to either the correlation matrix (R) or the covariance matrix (S) of the
original variables. PC's are obtained from the solution of the eigenvalue problem:
(R-ADp=0 3.8
where [ is the identity matrix of order m. A number of different numerical algorithms can
be used to compute the eigenvectors, and eigenvalues (Martens et al., 1989). Solving for

Eq. 3.8 results in a set of eigenvalues A,(j =1:m), which can be placed as the elements

of a diagonal matrix A, and a corresponding set of vectors p ,-( j=1:m). The solution is

the vector p with maximum resemblance to all observations.
Principal Components (PC’s) or scores f;(i=1:m)are linear combinations of the

variables, where the weights on each variable are given by the eigenvectors. The
percentage of variance explained by each principal component is equal to its associated
eigenvalue. The percentage of variance explained by the fist k principal components can

be expressed by:

If the purpose of the analysis is data reduction, then retaining only the first k components
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will suffice. The number of components to be retained can be determined by:

1) Percentage of variance: The number of components to retain can be based on the
percentage of variance explained for. The number of components is chosen to explain a
relatively high percentage, say 70%-90%.

2) Average eigenvalue: Those components whose eigenvalue is greater than the average
eigenvalue, which is also the average variance of the variables, are retained. Therefore,
for a correlation matrix, only components whose variances are greater than unity are
retained. The average eigenvalue method often works well in practice. Previous studies
have shown that this method is fairly accurate when the number of original variables is
<30 and the variables are rather highly correlated (Rencher, 1998).

3) Scree graph: Eigenvalues are plotted as a function of the number of eigenvalues. The

number of components is selected where the scree graph flattens out.

The original data (¥) can be reconstructed by using the first k principal components

Y=fip +f,p v+t [P tE 3.10

where E is the residual matrix, f; are scores or principal components, and p, are

eigenvectors (loading vectors). The residual matrix contains that part of the data not
explained by the PCA model and most likely represents the noise in the data. The method
is useful for separating signal from noise since random noise components are usually
uncorrelated and are associated with lower principal components.

These first k components f1, £, f3,...,fk explain a greater percent of the data variance than
the first k terms on any other expansion. PCA can be performed on the correlation R or
covariance matrix S of observations. The components extracted from the covariance
matrix are not the same as those found by analysing the correlation matrix. If different
types of measurements are considered (displacement, flow rates, stresses), then the
structure of PC's derived from the covariance matrix will depend essentially on the type
of units of the measurements. If there are large differences between the variances of the
variables, those variables whose variances are large will tend to dominate the first few

principal components. Variables are typically standardized if they are measured on scales
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with widely differing ranges or if the measurement units are dissimilar.

In dam monitoring, the number of predictor variables is generally limited and is far less
than the number of responses (different instruments). Therefore, the main application of

PCA in dam monitoring is when it is applied to responses for data reduction.

PCA method does not take into account the relation between predictors and response
variables during the decomposition process. PCA can be applied either to predictors or
responses. There are occasions where PCA has been used for both predictor and response
variables. In this case, the PC’s for the predictors are obtained in one operation, and the
PC’s for the responses in another. The PC’s of responses are then regressed against the

PC’s of the predictors (Jackson, 1991).

Alternatively, both response and predictor variables can be considered during factor
calculations. This leads to another calibration method, Partial Least Squares (PLS), which
is explained in the following section. Conventional PCA is not effective when the
relations between variables are non-linear. In such situations non-linear principal
component analysis (NLPCA) is more appropriate. NLPCA can be used in a similar way
to PCA that is for data visualisation, data reduction and data exploration. The techniques
for extracting non-linear principal components are based on Artificial Neural Networks

(ANNs), which will be described in section 3.3.

3.2.3 Partial Least Square (PLS)

Partial least Squares (PLS), also known as Projection to Latent Structures, is 2
dimensionality reduction technique for maximizing the covariance between the predictor
(independent) matrix X and the response (dependent) matrix Y. Partial least square (PLS)
differs from PCA by using both the dependent and independent variables actively during
the decomposition process (Martens et al., 1989). The algorithm used in PLS examines
both X and Y and extracts components, which are directly relevant to both sets of

variables.
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If the model Y=f(X) is considered, the objective is to model X in such a way that Y can
be predicted as well as possible. It can be described by the following equations. The

matrix X is decomposed into a score matrix T, a loading matrix P and an error matrix El
as:

X=TP'+E, 3.11
In a similar manner matrix Y is decomposed into a score matrix U, a loading matrix Q

and an error matrix E, as:

Y=UQ4+E, 3.12

A relationship between the scores of the data sets can be established to extract the latent
variables. The first latent variable is extracted from the matrices X and Y and explains as
much as possible the variance of matrix Y. Different algorithms can be used to extract the
factors. The most popular algorithm used in PLSR is known as Non-Iterative Partial Least
Squares (NIPALS) (Galedi, 1986 and Wise, 1990). Another algorithm, known as
SIMPLS, can also be used (De Jong, 1993). When the optimal number of latent variables

has been determined, the remaining variance is considered to be contributed by noise.

3.2.4 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is the generalization of the correlation coefficient.
While the correlation coefficient measures the association between two sets of n
observations; CCA generalizes this principle to the association between two sets of
variables. CCA is useful when there is more than one response variable and especially
when the predictor variables are moderately correlated. CCA is not a prediction technique
but rather an explanatory technique for portraying the relationship between two sets of
multivariate data. In the canonical correlation technique, one is looking for linear
combinations of the predictors and linear combinations of the responses, which,
themselves, have maximum correlation.

The approach has some similarity to PCA, which searches for patterns whitin a single

multivariate data set that represent maximum amounts of the variation in the data.
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CCA transforms pairs of responses (Y) and predictors (X) into sets of new variables

called canonical variates:
y4
Vo= 4% =1,....,min(p,m) 3.13
i=1

and

w, = Zbk,j Y k=1,....,min{p,m) 3.14
J=

where ay; and by are called canonical coefficients and the correlation between them, 17, is
called the canonical correlation coefficient, v, and w; is the first pair of canonical
variables which have the maximum correlation, v, and w, is the second pair of
canonical variables, independent of the first pair, which has maximum correlation, and so
on. Assuming that both Sy and Sy, are full rank, the number of pairs of canonical
variables will be the minimum of p and m. The canonical correlations are ordered in the
same manner as characteristic roots: Iy 2 12 2 ... 2 I'mingp,g).

The information drawn upon by CCA is contained in the joint variance-covariance matrix
of the variables X and Y. These correlations may be obtained from the solution of

following eigenvalue problems:

88,88, —#1=0 3.15

XX XY . YY

and

s7s s7s —rzl_r[:o 3.16

S YY) e YE XX S XY
where S, (p x p) is the variance covariance matrix of predictor variables X , S;y (m x m)

is the variance covariance matrix of response variables Y, the matrices S,y (p x m) and Sy,

(m x p) contain the covariances between each of elements of X and each element of Y.

Equations 3.15 and 3.16 yield the same eigenvalues, since the two matrixes involved are

of the form 4B and B A where 4=5,,7'S, and B=5,"'S,,. AB and B4 have the

same eigenvalues but different eigenvectors. Square roots of the eigenvalues are the
canonical correlation between the canonical variables. Canonical coefficients of X and,

coefficient of Y variables are eigenvectors of (3.15) and (3.16) respectively.
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A diagram of different approaches to linear multivariate calibration is presented in Figure
3.1. Predictor variables X, ..., X, are used in a linear regression equation to predict the
response variable Y (Figure 3.1.a). In principal component regression, the factors
extracted from highly correlated X variables are used to predict ¥ (Figure 3.1.b). In
partial least square regression, information on Y is also used for extracting the factors
(Figure 3.1.c). In CCA, two sets of factors are extracted to explain relation between two
sets of multivariate data (Figure 3.1.d).

3.3 Artificial Neural Networks (ANNs)

In recent vears there has been a growing interest in a class of computing devices that
operate in a manner analogous to that of biological systems. Artificial neural networks
(ANN) have been applied in almost all branches of science and engineering including
structural engineering. An overview of applications of ANNS to civil engineering is given
in Flood et al (1994). Several factors have simulated this interest, the most notable is the
ability to learn and generalize from examples, to produce meaningful results even when
input data is incomplete or contain error. Before a neural network can be used with any
degree of confidence, there is a need to establish the validity of the results. A network
could provide almost perfect answers to the set of the problems with which it was

trained, but fails to produce almost perfect answers to other examples.

3.3.1 Basic concepts

Artificial neural networks (ANNs) such as three layer back-propagation networks and
radial basis function networks have been proven to be performing complex function
approximation. This ability to approximate complex functions has been exploited in
applying ANNs as models of processes. Neural networks have been trained to perform

complex functions in various fields of application including pattern recognition,
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Figure 3.1, Comparison of multivariate statistical methods
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classification, speech, vision, and control systems. The main advantage of ANNs models
is that they can be synthesized without detailed knowledge of underlying process. Neural
networks are configured from a number of parallel operating processors, termed
neurones. Bach processor maintains only one piece of dynamic information which is its
current level of activation and is capable of doing some simple calculation such as adding
inputs, computing a new activation level, or comparing input to a threshold value. But
collectively, in the form of a neural network, they are capable of solving complicated
problems. The type of activation function adopted, the topology of the connections, and
the values of the connection weights determine the task performed by a network. Usually,
the activation function and topology of the connections are selected first and so it is left to

determine an appropriate set of weights that make the network perform the required task.

connection

et processing vnits output

Figure 3.2, Sample Neural Network

3.3.2 The anatomy of a Neural Network

The basic anatomy of neural networks, can be divided into several basic concepts: 1) a set

of processing units, 2) the state of activation of a processing unit, 3) the function used to
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compute output of a processing unit, 4) the pattern of connectivity among the processing
units, 5) the rule of Propagation employed, 6) the activation function employed, and 7)

the rule of learning employed. An overview of these concepts is presented next.

Set of processing units

All neural networks are composed of a set of processing units. These nodes carry out all
processing and calculations. A processing unit receives input from its neighbors,
computes an output and sends it to its neighbors. The processing units can be divided to

three groups, input units, hidden units, and output units (Figure 3.2).

State of activation

Each unit has an activation function level, which is most often represented as a

continuous quantity between values 0 and 1.

Output function employed

Each processing unit transmits its output to its neighbours. This output, which is also a
scalar value between 0 and 1, is determined from the level of activation of the processing
unit. An output function f is associated with each processing unit, which defines how the
output value for the processing unit is determined from its activation. The relationship
between the activation level and the output level for any processing unit I can be
described as follows:

0, =fi[ai] 3.17

The output function can be the unity function or a threshold function.

Pattern of connectivity among the processing units

Processing units are connected to other processing units and communicate with each
other via these connections. The pattern of connectivity and the strength of the
connections influence how a neural network performs the most. The absolute value of wy,

represents the strength with which the i unit excites or inhibits the j™ unit.
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Rule of propagation employed
The rule of propagation describes how the inputs and the strengths of the connections
arriving at a node are to be combined to compute the net input. Most often, this rule is
simply a weighted summation:

N, =2 w;p, 3.18
If outputs and the weights of the connections coming from the other nodes are represented
by (01, 02,..., 0n) and (W1, Wa,..., Wy) respectively, this net input is simply the dot product
of these two vectors. The dot product is maximum when row vectors are in the same

direction.

Activation function employed
The activation function, F, defines how the net input received by the node and its current
level of activation is combined to compute the new level of activation. This is

mathematically expressed by:

= Fla

i-new i

a N 3.19

The sigmoid function is commonly used in neural network modelling. The sigmoid

function keeps the value of activation between 0 and 1.

Rule of learning employed
The learning rule defines how neural network is modified in response to input data and
learns from examples. Two general learning rules are used most frequently in neural
networks. The first, hebb’s rule of learning is stated as "when an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased” (Hebb, 1949). For simple hebbian leaming, the
learning rule can be simply stated as:

Aw; =na;0, 3.20
Where 7 is a constant with a value between 0 and 1 representing the degree by which the
weights are changing when both units are excited. Another common form of learning rule

is the delta rule:
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It is called the delta rule because the learning is proportional to the difference between

actual and expected activation.

3.3.3 The Back Propagation Neural Network

The Back Propagation Neural Network (BPNN) is currently the most general-purpose and
commonly used neural network paradigm (Swingler, 1996). BPNN learns to generate a
mapping from the input pattern space by minimizing the error between the output
produced by the network and the desired output across a set of imput vectors or
exemplars. The learning process starts with presentation of an input pattern to BPNN.
The training of a multi-layer BPNN, via the generalized delta rule is an iterative process.
Input pattern is propagated through the entire network until an output is generated. The
error in each layer is calculated with generalized delta rule. Each step involves the
determination of error associated with each unit, and then modification of weights on the
connections coming out to that unit. The weights in different layers are slightly changed
in each step to reduce its error signal and the process is repeated for the next pattern. A
set of cycles, made up of one cycle for each row of input data, is called an epoch. The
training process for a network requires sometimes thousands of epochs for all the input
features to be learnt by the network. The iterations are stopped when the sum of squares
of the error for all the input in training set is below a pre-determined value (convergence),
or when the maximum number of epochs is performed by the network, in this case, the

network does not converge and it has to be re-designed.

3.3.4 PCA Neural Networks

The successful application of ANNs for extracting the principal components has been
reported in many studies. Neural networks have been applied for extracting both linear

and non-linear principal components from the data. Non-linear principal component
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analysis is a generalization of PCA.

A good review of linear and non-linear neural network is provided in Diamantaras et al
(1996). The Auto associative neural networks with a bottleneck layer of nodes (Figure
3.3) can be used to reduce the dimension of input variables.

The network has three layers, with p nodes in the input and output layers and one node
in the hidden layer. The activation functions are all linear, so the outputs are given by

(x'w)w, where w is a weight vector. Weights are estimated using least-squares method.

Input Bottleneck output
Layer Layer Layer

Figure 3.3, Autoassociative Neural Networks

The network is called an auto associative neural network because it is trained to
reproduce its inputs. The hidden layer in an auto associative network is also called a
bottleneck layer because the p-dimensional inputs must pass through the k-dimensional
bottleneck layer before reproducing the inputs. Data compression therefore occurs in the
bottleneck layer. NLPCA is a direct generalization of the neural-network implementation
of PCA. NLPCA modifies the PCA networks by adding hidden layers with non-linear
activation functions between the input and bottleneck layers and between the bottleneck

and output layers, giving a network with a total of five layers. The network models a

41



composition of functions. Figure 3.4 shows an example of a NLPCA network. The five-
layer NLPCA network has p nodes in the input layer, £< p nodes in the third (bottleneck)

layer, and p nodes in the output layer.

o

nput T Hidden layers— cutyut

Figure 3.4, Nonlinear PCA Neural Network

The nodes in layers 2 and 4 must have nonlinear activation functions so that layers 1, 2,
and 3 and layers 3, 4, and 5 can represent arbitrary smooth functions. The nodes in layers
3 and 5 usually have linear activation functions, although they could be nonlinear. Direct
connections are allowed between layer 1 and 3 and between layer 3 and 5, but direct
connections are not allowed to cross bottleneck layer 3. As with the linear PCA networks,
data compression takes place because the p-dimensional inputs must pass through the
k- dimensional bottleneck layer before reproducing the inputs. Once the network has been

trained, the bottleneck node activation values give the scores.

3.4 Process control methods

Statistical Process Control (SPC) forms the basis of traditional process performance
monitoring and the detection of process malfunctions. The objective of SPC is to monitor
the performance of a process over time and to verify that it remains in a state-of-

statistical-control. Traditionally, this is achieved by successive plotting and comparison of
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a chosen sample statistic with appropriate control limits (Efthimiadu et al., 1995). If the
plotted variable exceeds the respective control limits, the process is considered to be out

of statistical control.

SPC charts such as the Shewhart chart are well-established statistical procedures for
monitoring stable univariate processes. The assumption behind them is that a process
subjected only to its natural (“common cause”) variability will remain in a state of
statistical control unless a special event occurs. (Kresta et al., 1991). The control charts
represent several statistical hypotheses testing procedures aimed at detecting the

occurrence of a special event as quickly as possible.

A Shewhart chart consists of plotting a given statistic sequentially on a graph, which
displays a target value, and upper and lower limits (Figure 3.5). The control limits are
usually determined by analyzing the variability of the process when the process is under
control. The limits are then usually set at plus and minus three standard deviations about

the target (Figure 3.6).

When the mean of the statistic is not constant and its trend is predictable, the residuals of
a linear regression model are used as control variables. Values of the standardized

variables

0 =% 3.22
o)

can be plotted on Shewhart chart.

The difficulty with plotting several univariate control charts is that response variables are
generally not independent. Figure 3.7 illustrates the failure of the univariate control to
detect out-of-control state, indicated by a cross. The bivariate control ellipse (Figure 3.7)
provides a more detailed and compact representation of the system. The out-of-control
point illustrated cannot be detected by univariate charts and can only be detected by the
control ellipse.Typically process monitoring applies to systems or processes in which

more than one variable is measured and tested. Multivariate Statistical Process Control
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methods (MSPC) address some of the limitations of univariate monitoring techniques by
considering all the data simultaneously, and extracting information on the behavior of one

variable relative to another (Martin et al, 1996).

Shewhart Control Chart
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Figure 3.5, A Typical Shewhart Chart
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Figure 3.6, Warning and control limits
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Figure 3.7, Quality Control using two Variables

Multivariate Statistical Process Control (MSPC)

MSPC is increasingly being recognized as a valuable tool for providing early warning of
changes in processes and for a better understanding of processes. MSPC is the
multivariate extension of univariate statistical process control (SPC). Examples of the
MSPC methods are multivariate T statistic, two-dimensional plots of latent variables

scores (from PCA or PLS), and the Squared Prediction Error (SPE).

One approach is to extend the univariate analysis by plotting a statistic, which measures
the overall deviations of the several statistics from their targets. The most commonly used
statistic of this type is the Hotteling T2 Hotelling statistic was the first to consider the
problem of analyzing a correlated set of variables. The procedure is based on the concept

of statistical distance.
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The T? statistic is defined as:
r*=Q-7)s -1 3.23

where

it 3.24
(n—1)m ’

T? has a F distribution with p and n-p degree of freedoms, where n and m are the number

of observations and the number of variables respectively. Statistics S and Y are sample
covariance and mean value which are estimated from a sample on available past

multivariate observations:

3.25

y =4t 3.26

When new multivariate observations are obtained, then the Hotteling T statistics can be
plotted as a function of time. Figure 3.8 presents an example chart with 0=0.01 for
detecting possible anomalies in the system. The T? statistic has emerged as an extremely

useful metric for multivariate process control.

Another approach to multivariate quality control is to transform a p-dimensional set of
highly correlated data into a lower k dimensional set of data using PCA and PLS models.
These models are known to be suitable for handling noisy or highly collinear or highly

correlated data (MacGregor et al., 1994).

The most common forms of presenting the information is through one and two-
dimensional plots of principal component scores, Hotelling’s T? (Jackson, 1991) and the
Squared Prediction Error (SPE), also known as Q statistics (Jackson, 1991). Once a
model has been developed from the nominal data using a reduced set of principal

components of latent variables, k, the fitted values can be calculated. These values are
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then used to evaluate the SPE for each new observation. That is the squared difference

between the observed values and the predicted values from a reference model.
SPE = Z(ym’w,i - },}ﬂeW,i)z 3.27

i=1

where y_,, are observed variable and 3, is computed from PCA reference model.

Using the first k principal components, this statistic represents the squared perpendicular

distance of a new multivariate observation from the hyper plane.
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Figure 3.8, T chart for a Multivariate Process

When the system is in control, the value of SPE or Q should be small. When process is in
control SPE represents noise that can not be accounted by model. The SPE plot provides
the facility to identify a new event not previously captured in data. By adopting an
approach similar to that for univariate SPC, action and warning limits can be defined for
each latent variable plot based on standard statistical distribution theory. The only

requirement for applying these methods is the existence of a good database of past

observations when the system was behaving normally.
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am Instrumentation and Monitoring

4.1 Introduction

"When you measure what you are speaking about and express it in numbers, you know something
about it, but when you cannot express it in numbers your knowledge about is of a meagre and
unsatisfactory kind"' (Lord Kelvin (1824- 1907)
"Listening what the dam tells through its monitoring system is an alternative to sophisticated

calculation models” (Dibiagio, 2000)

The challenge of managing ageing dams is rapidly becoming a principal focus of dam
engineering throughout the world. At least a quarter of the dams listed in the U.S. Army
Corps of Engineers National Inventory of Dams are more than 50 years old (Bowles et al.,
1999). The fact that these dams are the product of old standards and construction
practices is generally of greater concermn than the ageing process itself. The risks
associated with ageing dams are typically of low probability but high consequence.

The safe operation of dams is an extremely important matter of public safety and
economics. It is imperative, therefore, to have a means of gathering information that can

be used to assess dam performance and safety. Figure 4.1 shows different means of
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gathering information about a dam state. Field measurements, the art of monitoring and
qualifying the behaviour of structures by taking physical measurements has traditionally
been used by dam engineers for this purpose. Dam monitoring programs have also
contributed significantly to advancements in the state-of-the-art of dam engineering

(Dibiagio, 2000).

State of the system

X x ry

Visual Instrumental Calculation

!

Monitored paramters(displacements, strains,...) *

Instruments

Figure 4.1, Block diagram of dam evaluation methods

Dam monitoring is the most effective defensive line against dam failure by early detection
of anomalies (Hulea et al., 2000). Major dams, like other large constructed facilities are
equipped with various types of instruments to monitor their behavior. The efficiency of
these devices depends on their diagnostic value and the quality of the data. Understanding
the role of different types of measurements can improve the quality of a monitoring

program.

Measurements are of particular interest to civil engineers because of the uncertainty in
predicting the behavior of dams (Dibiagio, 2000). Accurate numerical modeling of field
conditions is often impossible or impractical to achieve. Thus, it is frequently necessary

to make assumptions regarding the materials properties or important features such as
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drainage conditions, degree of rock fissuring, in-situ stresses, etc. Consequently, many
dam problems cannot be solved strictly on the basis of mathematical analyses and
physical experiments, therefore other sources of information are required. Instrumentation
and visual inspections are necessary to fill in and bridge the knowledge gap between
theory and actual behavior.

The greatest improvements in the instrumentation have been a result of developments in
instrumentation technology, material science and information technology. The role of
sensors is to convert a measurement, usually an electrical signal, into another quantity,
which can be more easily interpreted. The perfect measurement system does not exist nor
does the perfect measurement environment. Thus, all measurements are subject to
disturbances from many source of error. Measurements should always be validated by
theoretical and/or practical verification. Too often data is accepted without questioning its

accuracy.

4.2 Measurement errors

Every measurement is always inaccurate to some extent. Measurements are always
corrupted with stochastic deviations or noise. Noise is inherent to all physical systems
but its level can be reduced by appropriate measures in terms of measurement and system
design. Identifying the various errors, which exists in measurement systems, is vital for a
good monitoring system. It is necessary to reduce errors in the instrument readings to the
minimum possible level, and to quantify the maximum error, which may exist in any
output reading. Two main types of measurement errors are generally recognized:
systematic errors, or bias in which every measurement is either less than or greater than
the correct value by a fixed percentage or amount, and random errors, which are
unpredictable variations in the measured signal. This latter type of error is often called

noise, by analogy to acoustic noise.

4.2.1 Systematic errors

Systematic errors describe errors in the output readings of a measurement system, which

consistently overpredict or underpredict a quantity. Sources of systematic errors are
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system disturbances during measurement, damaged sensors and use of uncalibrated
instruments. Filtering cannot deal with systematic error due to drift or incorrect
calibration of the measurement device. Commonly bias can be eliminated by re-

calibration of the instruments.

4.2.2 Random errors

Random errors are perturbations of the measurement that can be on either side of the true
value. Such perturbations are usually small, but their importance is a function of
magnitude of the signals. Random errors are introduced when measurements are taken
manually, and when this involves interpolation on a scale. Electrical noise can also be a
source of random errors. Other sources of random errors include uncontrolled influential
factors, such as air currents, ambient temperature fluctuations, relative humidity, power
source disturbances, electromagnetic interference, and connector contact resistance
variations. One particular area of concern is the cables which are comnnected to
measurement instruments. Cables can be a major source of problems in dam monitoring.
They are exiremely vulnerable to damage during the construction and they may become
unserviceable with time because of ingress of water. Also cables can function as antennas
and become a major source of electromagnetic interference and noise (Dibiagio, 2000).

To a large extent, random errors can be reduced by taking the same measurement several
times and averaging the measurements. However, any estimation of the measurement

value and its error bounds must be treated statistically.

4.2.3 Signals and noise

The choice of an instrument will in many cases be dependent on the type of output signal
produced by the device. The reason is that certain types of signals have definite
advantages regarding noise immunity or are more tolerant of changes in electrical
characteristics of cables and connections in the monitoring program. Table 4.1 lists the
most common types of output signals for typical sensors used in dam monitoring systems

(Dibiagio, 2000). The types of signals are listed in order of increasing preference.
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Field and experimental measurements are never perfect, even with sophisticated mbdem
instruments. When measurements are corrupted by random variables, they are said to be
affected by noise. The standard deviation is a good measure of magnitude of the noise in
the signal. One of the fundamental problems in signal measurement is distinguishing the
noise from the signal. What really distinguishes signal from the noise is that the noise in
not predictable or reproducible, it changes from one measurement to the next. If a signal
can be measured more than once, the average of the measurements provides a better

representation of the signal.

Table 4.1, Common Types of Output Signals

Types of signals Examples of typical sensor
Low level analogue Resistance strain gauges

High level analogue Servo-inclinometers

D.C current (4 — 20 mA) Many process type instruments
Frequency Vibrating wire strain gauges
Digital Encoding and smart sensors

In many measurements in physical science and engineering, the true signal measurements
evolves rather smoothly as a function of time or position, whereas noise is characterized
by rapid changes in amplitude from one point to the next. Some types of noise can be
easily separated from the true signal. For example, it may occur that the signal is
disturbed by sharp spikes at a few points. These spikes can be detected by comparing the
value of each data point with its neighbors. If the difference with its neighbors is larger
than a given threshold value, it can be identified as a spike. The spikes are removed,
without affecting the rest of the signal, by replacing the spike by the average value of its
neighbors. The threshold might be defined as some multiple of the estimated standard
deviation of the noise. It is common practice to reduce the noise by a process called

smoothing. As long as the true underlying signal is smooth, then the true signal will not
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be much distorted by smoothing, but noise will be reduced. The simplest smoothing
algorithm is the rectangular or unweighted sliding-average. It simply replaces each point
in the signal with the average of m closest points.

1 k
X, =— )X, 4.1

4
-

The triangular (weighted) and exponential smoothing methods can also be used and give
more importance to values closest to the current measurement point.

Exponential averaging is obtained by calculating the weighted average of the points in a
moving window of m data points. The last point in the window (i.e. the point i to be
smoothed) is given the greatest weight and each proceeding point is attributed a lower
weight determined by the shape of the exponential function. This filter smoothes the point

i by using the points that precede this point. If we consider also the mean with one

additional point:
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By shifting the time index back one time-step, the corresponding expression is obtained:

1 n
X, =—Xx +—X 4.3
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to simplify the notion:

a=—L—=% =a%_ +(1-a)x, 4.4
n+l

This expression is known as the exponentially weighted moving average filter. The value
of the constant o dictates the degree of filtering. The optimum choice depends on the
characteristics of the signal and the sampling interval. The exponentially weighted
moving average filter is arguably the most commonly used noise reduction algorithm in
the process industries, it is also known commonly as the first order low-pass filter. While
these methods are effective in reducing the random noise, they introduce some shift into
the signal. Values of 0.3-1 are normally used for a.. The larger values introducing larger
lags in the filtered signals. A compromise has to be made when selecting 2 value for a for

achieving sufficient noise reduction with lags.
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4.3 Dam safety

The safety of an existing dam can be improved and its life lengthened by a carefully
planned and implemented surveillance program. A key part of such a program is a visual
examination of the structure, the reservoir, and the appurtenant works. However,
surveillance must be more than visual observations. Settlements may go undetected
without proper measurements of the dam. Comparison of seepage quantities from one
inspection to another and over the years is difficult by visual observation and estimation.
There are also conditions within a dam that cannot be seen but that can be measured by
instrumentation. Thus, even for a simple structure, some type of instrumentation may be
needed to improve and supplement the visual examination. Dam safety surveillance today
is a two-part process based on periodic visual inspection of accessible parts of the dam
and its surroundings, and systematic monitoring of the body of the dam and its foundation

by means of instrumentation systems designed specifically for this purpose.

4.3.1 Dam Monitoring

The purpose of instrumentation in an existing dam is to fumnish data to determine if the
completed structure is functioning as intended, and to provide a continuing surveillance
of the structure to warn of any developments that endanger its safety (Post, 1985).

Every instrumentation program should include some redundancy; especially with
embedded instruments since it is usually not possible to repair damaged embedded
instruments. The cost to retrofit replacement instruments will far exceed the cost of
providing adequate redundancy. Redundancy, in this case, is more than only the
furnishing of additional instruments to account for those that are defective or are damaged
during installation. Redundancy includes providing different instruments, which can

measure similar behavior with different methods.

The general layout of the instruments is based on the vertical or horizontal sections,
which the designers consider to be of utmost importance. The types of field
measurements needed to evaluate the behaviour of a designed structure depend on the

theoretical concepts that are available to the designer at the time the design is made. In
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dam monitoring, measurements are taken only on parameters seemed significant and at
points judged critical. Stateler et al. (1995) propose that a set of performance parameters
be determined for each dam and that these parameters should form the basis of the
monitoring system. These parameters can be used in design of an instrumentation system.
Dunnicliff (1988) provides examples of possible geotechnical questions associated with
the appropriate features and parameters (Table 4.2). The architecture and choice of
components for monitoring dams are based on the analysis of the structure’s behavior
carried out by designers in developing the project. The designers consider certain modes

of deformation and their amplitude, as well as certain failure mechanisms.

Concrete and masonry dams are inspected and monitored on a continuous basis following
a carefully planned program. To aid in these inspections and in the analysis of the
condition of the dam, a number of monitoring methods and devices are used (Figure 4.2).
Where these devices are installed, théy should be maintained in good condition, and the
data obtained should be regularly recorded and evaluated. Because of the higher level of
stress, both in the dam and its abutments, the instrumentation of arch dams must be very
carefully planned and denser than that of other types of concrete dams (Bordes et al.,
1998). A summary of the most important factors to monitor is presented in Table 4.3.

Various monitored properties of concrete dams are discussed next.

4.3.1.1 Concrete quality

A great deal can be learned about concrete quality by visual observations. Careful
attention should be placed on the appearance of weathered concrete. Pattern cracking
might point to drying shrinkage or alkali-aggregate reaction (NRC, 1983). Surfaces
subject to rapid flowing water, such as spillways or outlet chutes, must be examined
regularly. Where strength is a question, nondestructive tests, such as sonic velocity
measurements, and core tests for compressive and tensile strength and modulus of

elasticity can be used.
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Table 4.2, Steps for Developing an Instrumentation System (Dunnicliff 1988)

Step Element of Plan
A Prediction of mechanisms that control behaviour
8 Definition of purpose of instrumentation
c Definition of geotechnical guestions
b Selection of parameters to monitor
E Prediction of magnitudes of change
F Selection of instrument locations
G Selection of instruments
H Determination of need for automation
! Planning for recording of factors which influence measurements
J Establishment of procedures for ensuring data validity
K Determination of costs
L Planning installation
M Planning long-term protection
N Planning regular calibration and maintenance
C Planning data collection and management
P Coordination of resources
Q Determination of life cycle cosis

4.3.1.2 Abutment or foundation deformations

This is particularly important for an arch dam because excessive deformations can induce
high tensile stresses. They may cause cracks in the concrete and high tensile stress
measurements may be observed. Also, anomalous decreases in abutment seepage rates
may result from closure of openings in the rock mass; and indicate increase of uplift

pressures. Abutment deformation can be recognized by fresh cracks in the rock. Sources
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of deformations are reservoir load, earthquake forces, arch dam thrust, large temperature
gradients, freeze and thaw damage, and excessive uplift forces. Remedies are dependent
on the cause of the deformation. One or a combination of remedies can be taken, 1) Deep
rock anchors or rock bolt to strengthen the abutments, 2) Vertical and horizontal beams
across the rock mass and anchored by rock bolts, and 3) Extensive grouting to improve

the modulus of elasticity of the rock.

4.3.1.3 Uplift

Uplift pressures are an important factor in stability analysis of a gravity dam. Although
uplift pressure is not a critical issue in the stress analysis of arch dams, it is important in
the foundation stability analysis and should be included as part of overall instrumentation
program. However, measuring water pressures in a rock foundation is always a difficult
task since it can change over short distances because of joing and fissuration. Uplift
pressures in the foundation and in the dam are measured routinely as indicators of
stability. Changes in pressure are looked for; increases may result in instability. Uplift
pressures are measured by piezometers inserted in holes drilled into the foundation of the
dam. Generally, installation of drains is the most effective and economical solution to
reduction of uplift forces. Regular drain flow observations are a must in any surveillance
system. When drains become so obstructed as to impair their function, redrilling the old
drains or drilling new drains is suggested. In many concrete and masonry dams a
foundation drainage system is installed to reduce uplift pressures on the dam. These
systems are usually installed during construction but can be installed or supplemented at
any time. They consist of holes drilled through the base of the dam into the foundation
and may contain pipes. Also, monolith joint drains are commonly installed to intercept
seepage along monolith and lift joints. The water maybe checked for chemical and
suspended sediment content to aid in evaluation of solution or erosion that may be taking
place. The elevation of the reservoir and tail water elevations is recorded at the time of

drainage measurements so that relationships between these parameters can be developed.
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Figure 4.2, Typical instrumentation in arch and gravity dams (Bordes et al., 1998)
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Indicator Possible causes Possible effects Potential remedies Instrumentation
Concrete cracking (general, Freeze-thaw cycles Accelerated deterioration Conduct quality tests, coring, | Crack meter
shallow) Ageing- sulphate attack Reduction of effective density, porosity Flow meter
section ,Increased leakage Seal surfaces from exposure
Concrete cracking (local) Stress concentration Progressive deterioration Movement monitoring Pendulums
Freeze-thaw action Increased leakage Remove and repair Joint meters
differential movement Loss of section deteriorated sections
Deep concrete cracking Excessive loading Increased leakage Determine extent of cracking | Stress/strain meters
Shrinkage (early age) Accelerated deterioration Evaluate short-long term Flow meters
Foundation movement Increased stresses effects Piezometers
Seal or grout cracks Pendulums
Increase drainage
Leakage Cracks Increased rate of Determine path/extent Joint meters

{wet surfaces on concrete)

Deteriorated concrete
Porous concrete

deterioration
Loss of strength
Increased leakage

of cracks
Seal cracks

Pendulums
Stress/strain

Leakage
{concentrated

through concrete)

Cracks, Open joints
Differential movements
High uplift

Loss of concrete matrix
Loss of structural integrity
Increased uplift

Map all leak locations
Detailed inspection
Determine path of water if
possible

Water level

Flow meter
Piezometers
Pendulums
Stress/sirain meters

Table 4.3, Evaluation matrix of a concrete dam (NRC, 1983)




4.3.1.4 Seepage and leakage

Seepage performance is one of the most sensitive early warning indicators (Myers et al.,
1997). Seepage through a dam and its foundation is visible evidence that the dam is not a
perfect water barrier. Seepage and leakage from the abutments, foundation, and joints or
cracks in a dam is collected and measured on a routine basis. It is important to review
such flows for changes in magnitude and material, both dissolved and suspended,
transported by these flows. Increase in these items is early warning indicators of potential
problems. Weirs and venturi flumes with upstream stilling basins are frequently used to

measure seepage and leakage.

Conclusions on the performance of seepage control systems can be drawn from several
measurements. A common and simple monitoring system is to rely on visual surface
inspections at predetermined intervals. Monitoring devices can include piezometers,
observation wells, and drainage collection systems to determine a site dependent pattern
of behaviour. A regular review of the collected data will generally detect major changes

between subsequent readings (UASCE, 1993).

4.3.1.5 Movements

Displacements are probably the most meaningful parameters that can be readily
monitored, because of the monolithic behaviour of arch dams. Although displacements
occur in all directions, the most significant displacements are usually the ones that take
place in a horizontal plane. All concrete arch dams should have provisions for measuring
these displacements, including relative movements between points within the dam and
movement of the dam relative to a remote fixed point. In new dams, plumblines are still
the preferred instrument to monitor the relative horizontal movements within an arch
dam. It may be easier to install inclinometers or a series of tiltmeters, in existing dams
(UASCE, 1994).

Movement of concrete and masonry dams and their abutments can be expected during
and after construction. These movements will occur as the reservoir is first filled, and as

it is emptied and filled during succeeding seasons. Small movements are of little concern,
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but increase in the magnitude of the movement or direction of movement should be
immediately evaluated as to their potentially adverse impact on the structure. Movements
are measured by surveying the location of the surface monuments located at various
points on or adjacent to the dam. The benchmark or starting location for surveys 18
located outside of the influence of the dam or reservoir if possible. Measurements of the
locations of the monuments should be such that changes in vertical, horizontal (both
longitudinal and transverse to the dam axis), and angular locations are measured. The
number of monuments surveyed depends on the size and type of the structure. The
locations are tailored to the structure and, might include locations to measure movement
between blocks, displacement at joints and cracks, deflections of various parts of the

structure, settlement of the foundation, and movement of the abutments.

FLOAT =
TANK -

GUIDE

WIRE

READING
TABLE

DAMPER TANK

ANCHORAGE
WEIGHT

Figure 4.3, Direct and inverted pendulum
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Measurements of the monuments should be recorded at relatively short intervals in the
initial years of the life of the structure and less frequently as the satisfactory history of the
dam lengthens. They should be more frequent if any unsatisfactory performance is
indicated. The data collected should be carefully recorded and should include

observations on the relative water levels in the reservoir and down stream.

Pendulums are one of the methods of measuring the horizontal and vertical movements of
the dam. Direct and inverted pendulums are designed to accurately measure the relative
horizontal and vertical displacements of two points along a true vertical line (Figure 4.3).
The fixed end of an inverted pendulum is grouted into the lower point of a borehole and a
float tensions the wire vertically. The wire position is monitored by a reading table;
bolted onto the upper point of the structure. A direct pendulum is comprised of a wire
suspended from the upper point and a reading station fixed to the structure at the lower
point. The wire is tensioned by a suspended weight that fits into a dashpot to dampen

oscillations.

4.3.1.6 Crack and joint measuring devices

Joint meters are used to measure the opening of monolith joints. Depending on the type of
device being used, the maximum opening that can be measured may range from 0.08 to
0.4 inches. Joint meters provide information about when the joints have begun to open.
They also give an indication of the effectiveness of the grouting and show whether any
movement occurs in the joint during and after grouting. In both new and existing
structures the development of cracks and movements of joints are indications of the stress
on the structure that are sometimes above normal. Measurement of these areas of distress
is provided through crack and joint displacement that can be either installed in
predetermined locations to monitor expected cracks or to observe joint behaviour, or
placed at the site of a known crack or joint as need arises for its monitoring. Relative
displacement instruments monitor monolith movement in three dimensions. They
measure the relative displacement between two surfaces of the instrument attached to

opposite sides of a crack or joint (Figure 4.4)
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Figure 4.4, A portable fissurometer

4.3.1.7 Stress and strain state

Strain meters measure strain and temperature. Since they measure strain at one location
and in one direction only, it is usually necessary to install strain meters in a group of
several instruments. Since strain meters do not directly measure stress, it is necessary to
convert strains into stresses, which will require knowledge of concrete material
properties, which are changing with time, because of creep, shrinkage, and change in
modulus of elasticity. These material properties, as well as the coefficient of thermal
expansion and Poisson’s ratio, are usually determined by laboratory testing. The most
common systems of stress and strain measurement are based on the deformations of a
hydraulic or pneumatic pressure cell or the deformation of a vibrating wire. In a vibrating
wire strain meter, a string or wire is stretched between two points with two
electromagnets placed symmetrically.with respect to the wire span. At the time of loading
the distance between two points will be changed in proportion to the loading, and this will
cause a change in the vibration wire frequency. This frequency is a function of the

dimensions of the wire, its modulus of elasticity and the strain imposed on the wire.
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The strain is converted to siress using the modulus of elasticity E and Poisson’s ratio v of

concrete at the measuring point.
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Equations 4.5 and 4.6 can be used for calculation of stresses in plane strain and plane
stress conditions respectively. Stress meters measure compressive stresses independently
of shrinkage, expansion, creep, or changes in modulus of elasticity. They are used for
special applications such as determining vertical stress at the base of a section, and for
comparison of results from strain meters. They are also used in the arches for determining
horizontal stress normal to the direction of thrust in the thinner arch elements near the top

of the dam.

4.3.1.8 Temperature monitoring

The internal temperature of concrete dams is commonly measured both during and after
construction. During construction, the heat of hydration of freshly placed concrete can
create high stresses, which could result in cracking. After construction is completed and a
dam is in operation, it is not uncommon for very significant temperature differentials to
exist depending on the season of the year. For example, during the winter, the upstream
face of a dam remains relatively warm because of reservoir water temperature, while the
temperature of the downstream face of the dam is reduced by cold ambient air
temperature. The reverse is true in the summer. Temperature measuring devices are very
important in arch dams since volume changes caused by temperature fluctuations have a
significant contribution to the loading on an arch dam (USACE, 1994). Thermometers are

used to determine the temperature gradients for use in evaluating thermal stresses, which
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coniribute to thermal cracking. They are also used to control the cooling process during
the grouting operations and are used to determine the mean concrete temperature. If
concrete temperatures are available for enough points in a dam section, the mean concrete
temperature for the section can be calculated. The mean concrete temperature can be used

for estimating the structural responses of this section (displacements and strains).

4.3.1.9 Seismic instrument program

A seismic instrument program is an essential part of evaluating existing dams in areas of
high potential for seismic activity. Devices to measure ground motions and dam
responses can facilitate rational design decisions for repairs and strengthening of a
structure if damage has occurred as a result of an earthquake. These records are also
helpful to compare the performance of the structure with design expectations and to

estimate the performance of the structure during larger earthquakes.

4.3.2 Dam inspection

Routine visual inspection of dams is of great value in determining the integrity of the
structure. Where signs of deterioration of materials appear, cores and samples are tested
in a laboratory to estimate the strength of the material. A routine schedule of
nondestructive testing, such as ultra-sonic velocity measurements, can be useful in

determining trends of changes in strength.

Careful interpretation of all observations, visual and field instruments must be carried out
to assess the situation before methods of repair or upgrading are decided upon.
Unexpected observations may not give any reasons for concern if a logical explanation
can be found. Fundamental questions have to be answered: (1) what is abnormal
behavior? the observed behavior may deviate from what the designer expected, but tested
against the professional experience, it may prove not to be so abnormal. (2) Does the
deviation from predicted behavior indicate lower safety than aimed for in design? (3)

Does the deviation require remedial action, such as repair, upgrading or strengthening?
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The frequency of instrument readings or making observations at a dam depends on
several factors including: 1) relative hazard to life and property that the dam represents,
height or size of the dam, 2) Relative quantity of water impounded by the dam, 3) relative
seismic risk at the site, 4) age of the dam, and 5) frequency and amount of water level
fluctuation in the reservoir. In general, as each of the above factors increases, the
frequency of monitoring should be increased. For example, very frequent (even daily)
readings should be taken during the first filling of a reservoir, and more frequent readings
should be taken during high water levels and after significant storms and earthquakes.
Daily or weekly readings should be made during the first filling, immediate readings
should be taken following a storm or earthquake, and significant seepage, movement, and

stress-strain readings should probably be made at least monthly.

While instrumentation data are an essential part of a dam surveillance system, the owners
of dams also believe, for valid reason, that no automatic data acquisition configuration
can replace human judgement when it comes to dam performance and safety monitoring
(Bordes et al, 1998). For example, the visual inspection of elements such as cracks in the
concrete and the colour of seepage water remains a vital and integral part of any complete

monitoring program.

The dam safety philosophy is to promote visual observation as being equally important as
instrumentation data. The most dangerous events like, local deformations, cracks,
concentrated seepage flows, and wet spots cannot be detected by the instruments. They
can eventually be discovered before becoming dangerous by means of visual inspections,
which still are the main way of controlling the dam safety (Dibiagio, 2000). Processes
affecting safety, but which cannot be measured by instruments installed during
construction, can only be detected by visual inspection. Typical examples are cracks
being detected and their growth, increasing turbidity in leakage, or the discovery of new
leaks downstream of a weir (Post, 1985). An effective inspection program is essential to
properly maintain a project in a safe condition. The inspections follow a schedule, which

defines the frequency of inspection. This frequency depends on a number of factors. A
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dam that has not been properly inspected by experts for some years or a new or a
reconstructed dam should be inspected rather frequently. The frequency decreases from
the construction and impounding periods towards the long-term operation. However,
inspection must be performed during the whole lifetime of a structure. Apart from pre-
designed schedules the frequency of inspections should be increased at times of
exceptional events, such as floods, storm-induced wave action, earthquakes and the like.

It is good practice to have inspections under variable operating conditions such as:

e Reservoir level down, so that the upstream face and abutments can be visited.

e Reservoir full. This allows inspection of leakage or piezometer pressure under
maximum head conditions. It also helps the inspector to assess hydraulic condition of
spillways.

Generally speaking, the opinion of very many individual engineers and panels is that

measured data of instrumentation and visual inspections results are both necessary and

that a dam cannot be considered safe unless both lead to a favorable conclusion (Post,

1985).

The dam safety engineer will have to combine results of inspection (visual data) and
instrumentation data (quantitative) for a dam safety analysis. Monitoring device
conditions are assessed in a site inspection and are related to a performance level (ability
to monitor). Monitoring device importance factors are determined based on their overall
diagnostic value for the safety assessment of a dam. An optimization strategy using a
ranking equation based solely on the condition assessment and device importance
determination is then used for combining the information. Anderson et al. (1999) propose
a ranking procedure for the prioritization of maintenance and rehabilitation tasks on the
performance monitoring devices for embankment dams. The priority ranking is the
product of the loss of diagnostic function and the importance of that function. It is
assumed that the most important devices in the worst condition should be given priority.
Device condition are elicited from an expert panel. Condition is defined in terms of
ability to function as a monitoring device. The diagnostic value for each of the monitoring

devices is determined by the utility function that is based on: (1) subjective conditional
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probabilities of potential failure modes, (2) subjective conditional probabilities of specific
adverse conditions related to those failure modes, (3) diagnostic values of indicators that
suggest the presence of the adverse conditions, and (4) the diagnostic value of the
monitoring devices for these indicators. This diagnostic value can be updated as

conditions on the dam change over time.

Table 4.4 shows different scenarios for probabilities of anomaly detection. As it can be
seen there are two types of errors. It is important to take into account the probabilities of
both type I and type II errors in instrumentation analysis and design. The probability of
type I error is denoted by alpha (o), the level of significance of an error. Significance
level is defined as the degree of uncertainty about the statistical statement;

a=Level of significance = P (type I error)=P (reject Hol Hyis true)

When a statistical test is performed to compare validity of the competing hypothesis
statements, the result will cause the null hypothesis Hy to be either rejected or accepted.

B=P (type Il error)=P (accept Hol Hois false).

Table 4.4, Probabilities of fault detection

True Behaviour
Fault Present Fault Not Present
@
"g :é Detected Good Type I errors
£ E Not detected Type II exrors Good
jaa) @

In statistical testing, it is desirable to keep the probability of a type I error as low as
possible. This can be done easily by using small values of o. However, there is a

relationship between type I and I errors. As type I errors decrease, type II errors increase.
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4.4 Recent trends in Performance monitoring

Some current trends in sensor development and measurement technology that have an

impact on dam monitoring methods and equipment are listed below.

@

@

Instruments are more accurate and there is a larger selection to choose from.
Generally, equipment costs will decrease with time.

Improved corrosion resistance of sensors due to increased use of noble alloys and
materials, for example the use of titanium for wetted parts in pore pressure sensors.
Intelligent instruments or “smart sensors™ are becoming more common and their level
of intelligence is constantly being elevated. Some important advantages of smart
sensors are: 1) buili-in capacity for self-checking and automatic warning of
malfunctions, 2) automatic compensation for nonlinearitly and hysterisis errors or
systematic errors due to temperature drift, 3) networking capability thereby allowing a
number of instruments to be connected to the same instrument cable, thus reducing
the amount of cables that have to be installed. The cost of cables and cable installation
and terminal work accounts for a large portion of the total cost of monitoring systems.
Increased use of optical instruments, for example computer controlled surveying
instruments for geodetic measurements of deformations.

Laser position measurement systems for precise static and dynamic displacement
measurements.

Digital photographic techniques combined with image processing for displacement
and deformation measurements.

Improvement in and increased use of optical fibre sensors for monitoring pressure,
strain, temperature and displacement, including distributed systems where
measurements can be made at many points along a single fibre. The principal
advantage is their immunity to electromagnetic interference and elimination of
damage caused by induced voltages during electrical storms (Dibiagio, 2000). It is a
simple matter to replace conventional electrical cables with fibre optic cables. The
equipment needed to do this is now available and easy to use. Likewise there are

modems and converters available that can be used to convert and transmit the output
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signals from many types of sensors over fibre optic cables. However, with today’s
technology it is not feasible to replace conventional sensor cables entirely with optical
cables. The reason for this is that most sensors require some form of electrical power to
operate them. This can not be done as technology available for transmitting power
through fibre optic cable that is too expensive, too complicated, or too limited.

e More accurate GPS (global positioning satellite) equipment and methods for

monitoring displacements.

Agencies responsible for dam safety have long used conventional surveying methods to
measure the displacements of benchmarks as part of dam monitoring programs. Such
surveys have provided infrequent though precise estimates of the motion of a dam. With
the development of high precision GPS methods to monitor plate tectonic motions and
crustal deformation rates, an alternative method for monitoring such structural motions is
available (Hudnut et al, 1998). Benefits of GPS lies in a much higher temporal resolution
and nearly unattended continuous operation. Figures 4.5 and 4.6 show an example of the

use of GPS on the Pacioma dam.

Figure 4.5, Pacoima Dam.

4.4.1 Automatic Data acquisition and processing
The trend towards automated monitoring systems started in the 1970's and eliminated
much of tedious work involved in data processing and presentation. Subsequent rapid

advances in electronics and computer technology coupled with decreasing costs and
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extended use of elecirical sensors spurred considerable interest in automation of
monitoring systems for dams. Automatic data acquisition and processing have now
become an integral part of the vast majority of dam monitoring programs for new dams.
Recent major advances in electronics, communications and computers have made it
possible that readings to be taken automatically on dams and on their periphery (Bordes et

al., 1998).

Figure 4.6, The antenna is mounted on a steel pier, and GPS receiver

(Courtesy: Hudnut et al., 1998)

Automation of instrumentation can assist in the assessment of the safety of dams. This is
particularly true for monitoring that requires rapid and frequent data collection or for
instruments that are inaccessible. In recent years, the technology of devices for measuring
seepage, stresses, and movements in dams has improved significantly with respect to
accuracy, reliability, and economics. Although the initial installation of an Automated
Data Acquisition System (ADAS) may appear to be more expensive than traditional
instrumentation systems, the overall long-term cost, in many cases, is now economically
competitive. Automation should receive consideration for all systems that are to be
installed during new dam construction, major rehabilitations, structural modifications, or

any major effort that would support a major instrumentation system. Instrument upgrades
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Table 4.5, Advantages and limitations of ADAS

Advantages Limitations

Increased accuracy, reduced human | Produces large volumes of data; overtaxes
EITOT, storage medium

Increased frequency, more data, less | Potentially higher maintenance costs.
system error.

Increased  data  reliability  and | Installation could be expensive.
consistency.

Timeliness of information, obtain data | Lightning; variable voltage potential

whenever needed.
Is destructive.

Data and system validity checks Excessive downtime
enhance data quality.

Alarms for exceeding data thresholds | Requires use of electronic transducers which
and system health. have least long-term reliability

and replacements could be justified on a case-by-case basis. The instrument automation
concept generally includes an instrument or transducer that is linked to a data-logger or
computer with communication capability that allows data retrieval locally or from a
remote location. The advantages and limitations of an automated system are summarized
in Table 4.5. The limitations can be minimized with appropriate attention to planning

and use of the system (USACE, 1987).

These readings are taken by Measurement and Control Units (MCUs) that are typically
located in close proximity to the instruments they measure. The readings can be 2)
transmitted to an on-site computer immediately through an on-line network, b) stored
temporarily and transmitted periodically to a remote computer using standard
telecommunication facilities. MCUs have complete optional control features which can
be programmed to run automatically, or respond in a programmed way to remote
commands. This allows easy and fast excecution of certain corrective measures. ADAS

provides information on a more frequent and uninterrupted basis than manual instrument
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readings. This becomes especially important during severe weather events, when real-
time data is critical for making informed decisions. Adjusting the monitoring rates are
easy to implement with an ADAS. As dams age, maintenance needs and safety concerns
increase. Dam safety officials are putting greater emphasis on automated instrumentation
and use of data acquisition systems to reduce costs of inspection and monitoring. The
collection and analysis of large quantities of data, especially over long distances, requires
centralized and automated measuring techniques. Data can be processed more rapidly
thus enabling efficient alarm systems to be implemented when predetermined thresholds

are exceeded.



. Case studies of

5.1 Introduction

The safety of a dam is determined by its design, construction and supervision during
operation. High arch dam failures have dropped dramatically since the early part of
century. An essential part of this improvement relates to improved measurement
techniques that can make earlier detection of unexpected behavior. The overall safety of a
dam can be assessed by the analysis of available measurements. The current practice is to
perform statistical analysis of individual instruments using linear regression methods.
Confidence intervals are used to set the alarm levels for observed values. However, a
large number of instruments must be analyzed, and it can be very difficult to estimate
statistically significant deviations from normal readings for individual instruments, given
that the fluctuations in stresses, strains, or deformations are small, and in the order of
magnitude of noise in some measurements. Data reduction methods can be helpful to
overcome these difficulties and provide tools for better management and analysis of dam
monitoring data. Some of the multivariate analysis methods discussed in Chapter 3 are

applied to the Idukki dam data set.
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5.2 Idukki Dam

The Tdukki arch dam is situated in south India in the Periyar valley in the state of Kerala.
It was the first concrete arch dam to be built in India. Tt is a double curvature, parabolic,
thin asymmetrical arch dam and was constructed between 1969 and 1974.

The 169-m high dam is made up of 24 individual blocks and is seated on massive tightly
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Figure 5.1, Location and view of Idukk: arch dam

jointed hypersteine granite of excellent quality. The crest of the dam is 381 m long by
7.6m wide, and the thickness at the base is 24.4m. The concrete for Idukki dam was
designed to withstand a maximum compression of 35 MPa and a tension of 1.1 MPa.
Arch dams are designed to carry external loads by compression. The major effort in arch
dam design is to adjust the geometry to minimize the extent and magnitude of tensile
stresses. However, tensile stresses can not be completely avoided and they do exist in
some arch dams, and often result in cracks (Veltrop et. al, 1990). The monitoring system

of the Idukki arch dam is described next.

5.2.1 Monitoring

Different types of instruments are installed to monitor the deformations of the dam and of

the foundations, and the stresses in the arch dam. (Table 5.1). Records of these data have
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been kept since 1974. The accuracy of a portion of the data may be questionable,
particularly regarding the stress, strain measurements, since these instruments are sealed
in the concrete and cannot be inspected, or their readings validated by independent

meains.

Reservoir level

The fluctuation levels of the Idukki reservoir have been monitored on a daily basis since
April 1974. Reservoir variations follow a regular cyclic pattern of almost 12 months.
Maximum and minimum yearly reservoir levels are in November and June of each year
(Figure 5.2). The maximum reservoir level of 731m was reached on Sept 1981. The

minimum reservoir level after the filling period was 695m recorded in June 1983.

idukki reservoir variation
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Figure 5.2, Reservoir level fluctuation, Idukki dam

Temperature
Daily air temperatures were recorded at the Idukki site. Minimum and maximum
temperatures occur in the months of October and June of each year respectively. The

maximum recorded temperature was 32.2 °C in May 1990.
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Figure 5.3, Daily air temperature Variation, Idukki site

Smoothed 14-day moving average air temperature
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Figure 5.4, Smoothed 14-day air temperature, Idukki site.
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Temperature variations are different for 1990 onward and show a trend of warmer
temperature. Smoothed temperatures are presented in Figure 5.4. There were also 8
resistance-type water thermometers embedded in the upstream face of the dam between
the 579 m and 731 m levels. The data from the five operative instruments shows that the
water temperature at the bottom of the reservoir is stable and colder than in the upper
parts of the reservoir.

Table 5.1 shows the list of instruments that are installed in Idukki dam. These instruments
are either classified as global or local instruments. A local instrument such as an
instrumented cylinder measures the strain at a specific location of the dam. A global
instrument mainly integrates response parameters (strains) over large volumes of the
dam, such as inverted pendulums. Measurements from these instruments tend to be less
variable due to averaging. The last column shows number of readings in a year.
Instrumented cylinders are among the instruments, which are monitored very frequently;
while the stress meters and strain meters are monitored only twice per year, at maximum
and minimum reservoir level.

Table 5.1, Type and frequency of reading for different instruments

Number of
Measures Instrument Global Local readings
(No/year)
Pendulum * 12
Crest * 4
Collimation
Displacement | Base Meters * 4
Rock targets * 4
Clinometer * 12
Electronic *
Joint meter
Strain meters * 2
Stress/Strain Stress meters * 7
Cylinders * 104
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£2.1.1 Deformations

There are two types of instruments that are installed in the dam to measure and record the
horizontal deformations of the dam: (1) Pendulums, and (2) Crest collimation targets.

Pendulums are among the most reliable instruments for measuring the horizontal
movements of the dam (KSEB, 1989). A total of 6 pendulums were installed in blocks
1,7 and 8 (Figure 5.5). Simple Pendulums P2, P3, P4 and an inverted pendulum P35 are
installed at elevations 2400 ft (732 m), 2300 £t (701 m), 2100 ft (640 m) and 1900 ft (579
m) of the central block (block 1) respectively (Figure 5.6). Pendulums P1 and P6 are
installed in blocks 7 and 8 to measure movements at elevations 2100 ft (640 m) and 2300
ft (701 m) respectively. These instruments measure both radial and tangential
displacements. Pendulum P5 measures absolute displacements of the dam at elevation
1900 ft (579 m). This displacement is added successively to displacements from other
pendulums to obtain their absolute displacements. Displacements on March 1977 were
selected as a reference to compare the pendulums and crest collimation results. Therefore
displacements represent the relative displacement from this date. The recorded reservoir

level was 711.44 m at the reference level.

Average radial displacements are calculated for different reservoir level intervals (Figure
5.7). The dam moves upstream when reservoir levels are less than the reference reservoir
level and moves downstream for reservoir levels greater than this reference reservoir

level.

Figure 5.8 and Figure 5.9 show the tangential and radial displacements in the central
block (block 1). The radial displacements are highly correlated with reservoir level
except at the base (elevation 579 m), where the displacements are in order of 1-2 mm. As
can be expected radial displacements show higher correlation with reservoir level than

tangential displacements.

Displacements of pendulum P4 at elevation 2100 ft (640 m) are downstream for reservoir

levels greater than the reference reservoir level of 711 m, and upstream for reservoir
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Figure 5.6, Pendulums installed in block 1
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levels less than 711 m. The maximum radial displacement is 6.05 mm downsiream on
Nov. 1984 for a reservoir level of 725.8 m. The maximum upstream movement is 1.86 m
on June 1987 for a reservoir level of 698.6 m. The pendulum at elevation 2300 ft (701 m)
shows maximum downstream and upstream displacements of 13.1 and 7.7 mm

respectively.

5.2.1.2 Crest Collimation

Displacement of the crest is measured by shifting a movable target on the crest in a
direction perpendicular to a fixed line of sight. Movable targets are installed over blocks
1,7 and 8 where, the readings were taken on a monthly schedule. The maximum
downstream movement for the period of 1977-1989 was 15 mm at reservoir level of
730m in September 1981. The maximum upstream movement for this period was 10.1

mm in block 1 during May 1989 at reservoir level of 696 m.

52.1.3 Stress/strain measurements

Initially 82 rosettes of vibrating wire strain meters were embedded into the body of the
dam to measure the strain and stress in different points of the dam (Figure 5.10). One half
were installed 3 m deep in the downstream wall and the other half placed 3 m deep in the
upstream wall. Some of these instruments were not functional and some were giving
unreasonably high readings. In general, tension has been recorded for most of the
instruments. The readings from the strain meters are unreliable on the whole and are no
longer dependable (KSEB, 1989). High tensile strain/ stress measurements obtained from
the instruments are not consistent with results from the visual inspection of the dam.
Some of these instruments had to be replaced in order to continue monitoring stresses
whitin the dam. Since the strain-stress state of arch dam is very important in monitoring
of the dam behavior, new rosettes of vibrating wire strain meters, placed in cylindres
instrumenté de I'Universite de Sherbrooke (CIUS), were used to replace some of the more
strategically placed instruments. Each concrete cylinder contains seven vibrating wire
extensometers. The instrumented cylinder is placed in a 6-inch diameter borehole. The

instrumented cylinders are fully described in Simard et al (1993), and Ballivy et al
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(1993). Each concrete cylinder comprises vibrating strings from which the three
dimensional state of strain at a point can be measured (Figure 5.11). The cylinders were
initially installed in October 1991 to validate measurements from the network of strain
gauges installed at the time of initial construction. There are a total of six instrumented

cylinders installed in the dam.

8.2.2 Statistical analysis of stresses in Idukki dam

A very important part of an arch dam monitoring system is the analysis of stresses to
validate and control its safety. The stress meters installed in Idukki measure only the
stresses perpendicular to their axis and are located in the plane of the arch of the dam ina
vertical or horizontal position.

These instruments are not read frequently and consist only of one measurement during
the summer season and one measurement during the winter season corresponding to
minimum and maximum reservoir levels. In order .to properly identify stress patterns
inside the dam, readings should have been taken much frequently. Preliminary analysis of
these instruments indicated that reliability of many of the instruments is questionable.

Due to the poor quality and small number of readings of stress meters and strain meters,
it was difficult to obtain good results from the statistical analysis. Instead statistical
analysis were performed on instrumented cylinders, which are read twice weekly. Out of
6 cylinders originally installed in the dam, two are defective and their readings are not
acceptable. The four remaining cylinders were considered for statistical analysis. There
are a total of 24 measurements, which are recorded twice weekly for a period of 17
months.

To eliminate spikes from the data set, the time series of first differences (rate of strain
change) was calculated for each component of the 24 readings. Mean and standard
deviations were calculated for each component. Considering the sample size, all the data
points greater than three-standard deviations from the mean were removed (Myers,

1995).
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The strain matrix can be represented by:

& 5.1

The strain matrix has three eigenvalues with three corresponding orthogonal
eigenvectors. These three eigenvectors correspond to normal strains, referred to as
principal strains, which exist on mutually orthogonal surfaces that contain no shear strain.

The principal strain tensor can be expressed by:

&, 0 0
0 ¢, O 5.2
6 0 ¢

in which principal strains €1, €p2, and €p3 are the solution of :

£, ~€, &y Euz
S &, &, & |=0 53
Exx &z &, 5})3

When principal strains are obtained, they can be used to calculate principal stresses:

Op, &p, +&p, +&p, &
Ev
Op, |=——————| &, +&,+&, |+ &2 54
d+v)(1-2v) I+v
T p, &+ &, + &, &,

Where E and v are the elastic constants of concrete. Principal strains are calculated from
Eq. 5.3. The results indicate that instrumented cylinder RB2 measures the maximum
principal tensile (Figure 5.12) and compressive stain (Figure 5.13), and is more critical
than the other three instruments. High tensile strains are observed in three of the
instruments. However, no cracks have been observed to validate the true state of stress.
Nonetheless, the data from cylinders can be used to monitor changes in the state of stress

in relative terms.

5.2.2.1  Multivariate linear regression

The goal of multiple linear regression analysis is to determine the dependency of the

maximum tensile principal strains (corresponding to cylinder RB2) with the reservoir
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level, time, ambient temperature and internal temperature of concrete. The prediction
model can be used to check future readings, establish confidence intervals, and set alarm

levels.

In dam monitoring practice two types of statistical models are used. The first category of
models is based on ambient temperature, reservoir level, and time effects. The second
category of models is the HST model, in which seasonal effects are used instead of
temperature data. The HST method provides good results in many cases but is mefficient
in predicting of the responses for abnormal temperature cycles. The HST model is used to
model the tensile principal strain of cylinder RB2 (denoted PS_RB2 hereafter). Pertodic
functions (Eq. 5.7), and polynomial of reservoir level (Eq. 5.6) and time functions (Eq.

5.8) are considered.

D@)y=H(Zz)+S@)+T() 5.5

H(z)=a, +a,z+a,2" +a,z° +asz* 5.6

S(8) = a,Sin(8) + a, cos(9) + a, Sin(8)Cos(6) + a,Sin* (6) 5.7

T(t) = ¢ t'+e, b +eyt"” 5.8
where z= ﬁ , t=t-tp, and O = —25%

where Hppin, Hmax, are respectively minimum and maximum reservoir water level.

Every regression model must be validated. One practice is to use cross validation by
splitting the data into estimation and validation sets. A model is obtained on the
estimation set and verified with the validation set. However, this is not easily done with
the standard statistical software packages. Press (Prediction Sum of Squares) statistics is
a criterion that can be used as a form of validation. Press statistics or deleted residuals are

readily available in commercial statistical packages (Myers, 1990).

Consider a set of data in which the first observation is withheld from the data, and the

remaining (n-1) observations are used. The first observation is then replaced and the
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second observation is withheld to estimate the coefficients for a model. The procedure is
repeated so that the model is fitted n times. The deleted response is estimated for every
data point, resulting in n prediction errors or press residuals. An observation is not used
in estimating its estimated press residuals consequently this is a form of validation. Press
residuals are calculated from:

e, = ’J’f”yf S ’e,. - 5.9
T XX, 1-X, (X X))y

where x, is the vector of the predictor variables at a particular time The PRESS statistics
is defined as:
PRESS =3 (e, 5.10

checks are also made to avoid overfitting and underfitting the data set
The best subset of predictor was selected on the basis of C, statistics. If p predictor

variables are selected the C,, is defined as:

n
-9
Cp=:———‘s—2‘—+2p“i’l 5.11
where
y is the predicted value of y from p predictors
s is the residual mean square after regression on the completed set of k
variables
n is the sample size

Stepwise regression summary is presented in Table 5.2. The periodic functions, reservoir
level variation and time effect explain about 98% of variation of principal strain of
cylinder RB2. The variables in order of importance are time and periodic functions.

Parameter estimates and associated t-test values are presented in Table 5.3.

Residuals are normally distributed, have no bias, and have a constant variance (Figure
5.14), and model performance is judged to be satisfactory (Figure 5.15). Predicted values
and prediction intervals are shown in Figure 5.16. Note that the prediction intervals can
be used to set alarms for detecting significant changes in the principal strain. Hydrostatic,

seasonal and irreversible component of the HST model is presented in Figure 5.17.
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Table 5.2, Stepwise regression summary of principal strain of cylinder RB2

| Summary of Stepwise Regression
Step | Muitiple | Mulliple | R-squa F-to § plevel | Variabls |
Variable | +infout| R | Resquare change ' entflem | included |
¢ . {1 09808 _ 0825 0.825 622.340 0.000000 1]
Cos®._ . | 2 0977 0954 0129 363.813 0.000000
Sm® | 3 0987 0973 0020 96212 0.000000
2 0.991 0.981 0.008  54.216 0.000000

7 Bt Bt MOttt MU Al St e :
Sin(B)Cos(@ 0.992 0.983 0.002  13.845 0.000296

Table 5.3, Regression summary of principal strain of cylinder RB2

re

SRR NIIINE

Regression Summary
R=.991 R?=.983
Std.Error of estimate: 1.5819
Beta |StdEwr. | B | Std.Em
I ofBeta | | dB

{128) p-level

0
!
!
]
1

N=134

Intercept | 187.402  1.659 112.986 0.000000
0.749 0060 0.003 22133 0.000000
3418 0570  -5995 0.000000

4537 0395  11.475 0.000000
10080 1856 5437 0.000000
1791 0.481  3.721 0.00029§

Distribution of Standard residuals
- Expected Normal

35

No of obs

Figure 5.14, Standardized residuals of principal tensile strain cylinder RB2, HST model
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Figure 5.15, Principal strain cylinder RB2 and predicted HST model
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HST components of Principal strain RB2
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Figure 5.17, HST components of principal strain of cylinder RB2, Idukki dam

HST model indicates that irreversible effects account for more than 82% of the variation
of principal strain of cylinder that is rather surprising.

Dimensional analysis indicates that strains induced by reservoir level variations can be
expressed as &, = b,z +b,z° +b,z° . In consequence, another model was developed which

considered reservoir level variations and seasonal effects as predictors. Reservoir level
and seasonal effects accounts for 43% and 46% of the variation of principal strain
respectively (Table 5.4). Regression summary results are presented in Table 5.5.
Predicted values and prediction intervals are shown in Figure 5.20. Comparing the two
models, the HST model would explain a larger proportion of total variances, and is more
accurate in predicting maximum principal strains.

It must be noted that the data set analyzed covers only a period of 17 months, from Oct.
1992 to Feb 1993. Ideally data sets should cover at least a period of 3 year, in order to
obtain a good estimate of seasonal factors. Analysis of data over a longer time period can

separate irreversible effects more conclusively.
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Table 5.4, Stepwise regression summary of second model for principal strain of

cylinder RB2

Summary of Stepwise Regression
Step | Mulliple | Multiple
Variable | sinfout | R | B-square

T o T =
| R-gquare . plevel | Variabls
| _charge | % | included
044 10256 0000000 1f

bmiej 2 /0.87‘ 031 163.88 0.0Q“OOOG »
cos(B) | 3 09 047 28487 0.000000
Sin 25,62 4 0.99 0.05 22522  0.000000 :

Table 5.5, Regression summary of second model for principal strain of cylinder RB2

Regression Summary
R= .9856 R2= 9714 Std.Error of estimate: 2.0464

Beta | Std.Err. | ?
 ofBeta | | oftf | !
21491 045 478.24 0.000000
148 003 5540 0.94 5883 0.000000
0681 002 1440 031  46.09 0.000000
059 002 1025  0.40 25.66 0.000000
0.23 0.02 764 0.51 15.01 0.000000

I B | BWdEn ; 1(129)

Distribution of Standard residuals
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Figure 5.18, Residuals of principal tensile sirain cylinder RB2, second model
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5.2.2.2 Principal component analysis

The data set analyzed covers 17 months of observations with a frequency of two readings
per week. The reliability of two of six cylinders is doubtful based on a preliminary
exploratory analysis. Therefore only four cylinders are considered for the analysis. The
cylinders are installed at the periphery of the dam next to the rock surface and can only
model the localized behavior of the related dam section The data set consisis of 24
variables, six for each cylinder.

PCA were performed on the correlation matrix. The number of principal components to
retain may be determined by several methods. Figure 5.21 shows the scree plot, which is
plot of the eigenvalues as a function of the number of eigenvalues. The number of
components is selected by identifying the point at which the scree plot flattens out.
Another option is to use only eigenvalues of greater than one. In this application the scree
plot flattens out at the fifth eigenvalue that is also less than one. Consequently, only the

first four principal components are retained.

Eigenvalues of correlation matrix
14 . .

52.01%
12¢

10+

Eigenvalue
<D

-2 i s : .
o 5 10 15 20

Eigenvalue number

Figure 5.21, Scree plot, PCA correlation matrix of instrumented cylinders
The first four components explain 96% of the total variance (Table 5.6) of the 24 original

variables, which is a significant reduction with respect to number of original variables. It
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of monitored variables.

Table 5.6, PCA results

can be concluded that PCA can efficiently compress the original data and reduce number

Principal Eigenvalues | Variance Explained Commutative
- Component by each PC Variance Explained
1 12.48 52% 52%
2 6.39 27% 79%
3 2.89 12% 91%
4 1.23 5% 96%
5 0.5 2.1% 98%

The first principal component explains 52%; the second component 27%; the third 12%;
and the fourth 5% of the total variance of the data set (Table 5.6). As can be noted, the
remaining components explain only 4% of the variance and, most likely, they correlate

with the noise in the data..

Principal components-correlation matrix

Principal components
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Figure 5.22, Principal components of cylinders, Idukki dam
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Table 5.7, Stepwise regression, summary for PC1 of cylinders

Summary of Stepwnse Regression PC1
Step | Mut tspe Muitspée R»«square
i . R R . ¢h

F- i ;}ufevet'g Variab

0.93
0.05

0. 93
0.98

000

281 21

Table 5.8, Stepwise regression, summary for PC2 of cylinders

Summary of Stepwese Regressnon PC2 ’
Step Mu tlple Multzple R-square

| Variabls
| included

F o prlevel |

0.65 0.65 241.60 §o.oooqwV_y;,j;
0.84 0.19. 154.80 00000 2
0.95 0.11 28554 0.0000 3
097  0.02 101.84  0.0000 4
0.98 0.01 5435  0.0000 5

Table 5.9, Stepwise regression summary for PC3 of cylinders

Summary of Stepwise Regression PC3 v
Step | Multiple | Multiple | R-square; F-to | p-level
Variable | +inf-out| R | R-square! ghange | entrfrem .

Variabls
| included

TiB2 | 1 070 049 049 1262700000 1

23 | 2 097 094 045 10014500000 2

LT.LB1 3 0.98 0.95 0.01 30.90 0.0000 3
Table 5.10, Stepwise regression summary for PC4 of cylinders

Summary of Stepw:se Regression PC4 ;

Step | Multipie | Muitiple zR-square F-to | p-level | | Variabls 3

Variable sinout | R ‘R—square! change | entrirem | | included |

TRB1TL 1 062 038 0.38 810400000 1)

TLBt | .2 095 0981 053 764.790.0000 2|

3 097 0.93 0.02 489400000 3|

4098 095 0.02 549600000 Al

5 0.88 0.96 0.01. 22.86 0.0000 5

Multiple linear regression models were developed for the first four PC's. Cylinder
temperatures, time and polynomial of reservoir level were considered as predictor
variables. Temperature of cylinders LB1, LB2, RB1, and RB2 are denoted by T_LBI,
T _LB2, T RB1 and T RB2 respectively. Results of stepwise regression indicate that
PC1 is highly correlated with time, and PC2 is correlated with water level. The first

component explains most of the variance and the scores are monotonically decreasing as
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a function of time (Figure 5.22). The scores could be associated with creep, which shows
similar behavior as a function of time. However it is not clear if creep is occurring at the
cylinders or in the dam. The second component explains 27% of the variance. Plotting the
scores as a function of time together with reservoir level indicated that the scores are
correlated to reservoir level variation. Third component (PC3) is correlated with both
water level and temperature reservoir level (Table 5.9). Plotting the scores as a function
of time together with average cylinder temperature indicated that the scores are correlated
to average cylinder temperature. The fourth component explains 6% of the total variance,
and is highly correlated with cylinder temperatures (Table 5.10). The scores for the fourth
component show a very strong correlation with the variation of the temperature measured
by cylinders RB1 (Figure 5.25). The correlation is strongest for a time delay of 45 days
due to thermal inertia of the dam. The remaining principal components represent only 4%
of the data variation and they represent noise in the data as they correspond to variation
type not present in all the measured instruments.

It must be noted that the data set analyzed covers only a period of 17 months, from Oct.
1992 to Feb 1993. Analysis of data over a longer time period can separate irreversible

and reversible effects more conclusively.

Time series of PC2 and reservoir water level
5 . . : v o v v v 735
41 é@@mﬁ% 1730
. %
3t f 1725
2 & E
. 1720 =
T
>
13 't 715 &
T of S
At 1710 ‘j%’
4
21 1705
—a— PC2
31 . 1700
3 ~& - Raservoir level
4 ‘ . . o I .N ‘ ‘ N : o . .N I N’ N ' ' I 695
8 3 8 8 g 8 8 8 8 8 8
4 o & L o 3. 5 & & % )
s & 8§ £ & & = z o 2 &
Time

Figure 5.23, Scores of second PC and reservoir level variations, Idukki dam
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Time series of PC3 and average cylinder temperature
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Figure 5.24, Scores of third PC and average cylinder temperatures, Idukki dam

Time series of fourth PC and cylinder temperature RB1
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Figure 5.25, Scores of fourth PC and cylinder temperature RB1, Idukki dam
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Communalities based on 4 factors
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Figure 5.26, Explained variance of instruments by four principal components of

instrumented cylinders, Idukki dam

Four principal components can be used to estimate the response variables (24 measured
strains). The variance explained for each instrument is a measure of goodness of fit
(Figure 5.26). For most of the instruments the variance explained is well over 90%. The

four factors only explain about 83% of the variation of the &, for cylinder LB1

5.2.3 Statistical analysis of displacements

Simple Pendulums P2, P3, P4 and inverted pendulum P35 are installed at elevations 2400
ft (732 m), 2300 ft (701 m), 2100 ft (640 m) and 1900 fi (579 m) of the central block
(block 1) respectively (Figure 5.6). Pendulums P1 and P6 are installed in blocks 7 and 8
to measure movements at elevations 2100 ft (640 m) and 2300 ft (701 m) respectively.
These pendulums are considered for statistical analysis.

Pendulum readings are available from 1977 to 1989. Measurements had been recorded
more frequently before 1981, Air temperature readings were only available from 1982

and therefore were not considered in the analysis. The name of the variables is defined to
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indicate the block number, elevation, and type of displacement, for example 1R2400 and

1T2400 are respectively of radial and tangential displacements at elevation 2400 ft (732

m) of block 1.

Table 5.11, Basic statistics for pendulums, Idukk: dam

|

Descriptive Statistics

ValidN | Mean  Minimum | Maximum | Std.Dev.

220 020 282 217 036
220 228 805 894 194
...220  -422  -13.11 1766 511
220 -426  -15.01 1692 577
220 086  -35.59 1.13 2.50
220 -093 3530 597 281
212 141 -36.24 _3.24
212 14z -36.07 3.24
192 0.74 -5.32 6.31 2.58
L der 128 -7.95 34 324
192 -1.68  -10.91 11.54 472
197 218  -13.42 12.86 5.42
193 124 -5.87 7.41 2.50
193 -0.58 -11.60 717 3.15
192 0.47 -3.93 5.07 1.87
193 0.21 -3.20 7.80 1.65
Box Plot pendulums
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Figure 5.27, Box plot for pendulum readings, Idukki dam
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Complete simultaneous readings for all pendulums are available for 182 data points.
There are a few extreme points for all instruments, especially for tangential
displacements in Block 1 (Figure 5.27). Maximum displacements are observed at
elevation 2400 ft (732 m) of Block 1. Figure 5.28 shows the correlation among pendulum

readings, which are grouped according to their correlation coefficients.

The following observations can be made regarding pendulum displacements:

1) all radial displacements except 1R1900, which is located at the base, are highly
correlated, 2) tangential movements of block 1 are highly correlated, 3) radial
displacements and reservoir level variations are highly correlated, 4) there is no
correlation between tangential displacements of central block 1 and reservoir level, and
5) radial and tangential displacements of block 7 and 8 are strongly correlated with

reservoir level.

Correlation Map, Variables Regrouped by Similarity

8712300
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772100
7R2100
8R2100
8R2300
| 872100

Water Level '

171900 1 ' T
172100 y
172300
172400
1R2100
1R2300
1R2400
| 7R2300
772300
772100
7R2100
8R2100
8R2300
872100
872300

1R1900

Figure 5.28, Correlation map for pendulum readings, Idukki dam
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Table 5.12, Correlation between pendulum displacements blocks 1, Idukki dam

Correlations between pendulum displacement

WL mmoc; 1R2100] 1R2300] 1R2400] 171900 1T2100] 172300, 172400}

1

Variable b . o
‘ 100 010 083 091 092 001 -008 -0.15 -0.16
100 031 018 €19 -002 -005 -008 -0.10
3031 1.00 .. bes 000 009 032 032
018 0.4 _ 098 -002 008 027 028
018 083 1.00 002 009 026 027
01 002 000 -002 -002 100 085 073 072
005 009 008 009 08 100 08 084
008 032 027 026 073 086 100 099
-0.100 032 028 027 072 084 099 1.00

Table 5.13, Correlation between pendulum displacements block 1,7 and 8, Idukki dam

Correlations

7R2100| 7R2300/ 7T2100) 712300/ 8R2100| 8R2300 8T2100 872300
| | ! | | | :
-0.90 -089 -0.90 -091 -090 -0.82 -0.8f
006 007 006 016 010 006  0.10
076 076 077 082 081 069 070
088 089 090 090 088 080 080
092 082 093 082 080 082 084
002 -003 -0.01 -002 002 001 -0.03
008 007 009 009 010 008 0.07
018 017 018 019 017 010 0.3
019 018 019 019 018 011 0.3
092 09 093 088 08 078 082
: .08 100 0e8 100 08 087 082 083
|772100 | 096 098 100 099 08 08 081 083
1000 099 100 089 08 08 085
088 089 089 100 085 076 084
bsr 08 088 08 100 08 0.76
082 081 083 076 086 100 091
083 083 085 084 076 091 1.00

Variable

5.2.3.1 Anomaly detection

One of the main applications of the instrumentation data analysis is the identification of
anomalies in dam monitoring systems Two kinds of checks are generally applied on

instrumentation data: 1) A comparison of the observation and its rate of change with
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preset threshold values. The thresholds are obtained from historical data or numerical
models; and. 2) A comparison of the observation with predicted values obtained from a
reference model.

In current dam safety practice these alarm levels are chosen based on the analysis of each
individual instrument. However, as some of the measurements are noisy or unreliable,
this approach increases the chance of finding an instrument out of control. Thus the false
alarm rate (or probability of Type 1 error) is increased if each variable is analyzed and
checked separately since the number of false alarms is directly proportional to the
number of instruments. In many cases, the dam will actually be in a safe state but each
alarm could require verification. A combination of univariate, bivariate and multivariate
statistical methods is proposed to overcome some of these difficulties and reduce the
probabilities of false alarms generated by a dam monitoring system.

A model is developed for the reference period and is used for the prediction of instrument
readings in real time. Abnormal data, which is not consistent with past readings must be

investigated and labeled as erroneous data or possible anomalies,

The data used in generating statistical reference model:

1) must be for the intact structure, where only minor structural modifications have
occurred, 2) must be under operating conditions and cover all range of normal operational
loadings (i.e reservoir level, temperatures), 3) must have sufficient length and appropriate

frequency of readings to obtain a statistically significant model

In developing the statistical reference model it is important to treat outliers properly. The
reference model is then used for the prediction of future observations and to establish the
confidence limits for range of expected behavior. Any reading, which is not consistent
with the reference model, generates a warning message or alarm. When the reading is not
within pre-established limits, prompt evaluation of the safety of the dam is normally
taken which may lead to:

1) Assessing, and if needed, resetting the boundaries of satisfactory performance of the

dam, as measured by instruments, 2) intensified monitoring, 3) lowering the reservoir
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level, 4) waming the population, and evacuating downstream areas and, 5) taking

structural corrective actions.

Frroneous data can be a source of error when developing reference models, and must be
removed before building regression or PCA models (Wise, 1991). This is important
because outliers have a great deal of leverage on the regression models and can change
them significantly. An outlier is an observation (or subset of observations) that appears to
be inconsistent with the remainder of the data set (Barnett, 1994). Any extreme data point
can be due to: 1) erroncous data, 2) faulty sensors or, 3) changes in the dam behavior.
Qutlier identification (and subsequent removal or accommodation) is a part of the data

screening process, which should be done routinely before statistical analyses.

Outliers can be classified into one of four categories. The first category contains those
outliers arising form a procedural error, such as data entry error or a mistake in coding.
These types of outliers can be easily identified and should be eliminated. The second
class of outliers are observations that occur as a result of an extraordinary event. In this
case an explanation exists for the uniqueness of the observation (Hair et al, 1995). Higher
than normal reservoir level and daily temperatures are such examples. A decision must be
made whether or not the outlier represents a valid observation in the population. If so, it
should be retained:; if not, it should be deleted from the analysis. The third class of outlier
comprises extraordinary observations for which there is no explanation. Although these
are the outliers most likely to be omitted, they may be retained if the analyst feels they
represent a valid segment of the population. Other information such as results of
inspections can be used to facilitate a decision. The fourth and final class of outliers
are,observations that fall within the ordinary range of values on each of the variables, but
are unique in their combination of values across the variables (multivariate outliers). In
this case, the observations must be retained unless specific evidence is available
discounting the outlier as a valid member of the population. Methods used in detection of
outliers are a significant part of a statistical study and can be divided into, univariate,
bivariate and multivariate. Several of these methods should be utilized, looking for

consistent results in identifying outliers.
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The following steps are taken in the identification of anomalies in the reference model
and for the subsequent comparison of future values to this model. Since results of visual
dam inspection and engineering reports are available at the time of developing the
reference model, any data that does not conform to the model is generally discarded.

However, anomalies detected in the real-time monitoring must be carefully dealt with.

Univariate detection

Outliers are identified by examining the distribution of observations, deleting as outliers
those cases that fall in the outer ranges of the distribution. The primary issue concerns the
establishment of the threshold for designation of an outlier; the observations (i.e.
displacements, pressures) or their rate of change are converted to standard scores, which
have a mean of zero and a standard deviation of one. Once the values are expressed is a
standardized format, comparisons across variables can be easily made. For small samples,
(80 or fewer observations) the guidelines suggest identifying those cases with standard
scores of 2.5 or greater as outliers (Myers et al, 1995). When the sample size is larger, the
guidelines suggest that the threshold value of standard scores range from 3 to 4. In either
case, It should be recognized that a certain number of observations may occur normally
in these outer ranges of the distribution. Univariate control charts for tangential
displacements of block 1 at elevations 1900 ft (579 m) and 2400 ft (732 m) are shown in
Figure 5.29 and Figure 5.30 respectively. Figure 5.29 shows anomalies in tangential
displacements of block 1 at the base of dam. The tangential displacements of pendulum
P5 at the base are less than 1-2 mm during the period of 1977-1986, while, these
displacements increase during the period from 1986 to 1989 and the maximum

displacement in this period is 4.91 mm for a reservoir level of 698 m.

Bivariate detection

Pairs of variables can be examined jointly through a scatter plot. Cases that fall markedly
outside the range of the other observations can be noted as isolated points in the scatter
plot. To assist in determining the expected range of observations, an ellipse representing

a specified confidence interval (normally 95% of the distribution) for a bivariate normal
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Univariate controt chart for 171900
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Figure 5.29, Univerariate control chart for tangential displacements of block 1,
elevation 1900 ft (571 m)

Univariate control chart for 172400
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Figure 5.30, Univerariate control chart for tangential displacements of block 1,
elevation 2400 ft (732 m)
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distribution can be superimposed over the scatter plot. This provides a graphical portrayal
of the confidence limits and facilitates identification of the outliers.

Figure 5.31 shows that that radial displacements are highly correlated. Observed
displacements of January 1988 are 17.66 mm and 16.92 mm for elevations 2300 ft (701
m) and 2400 ft (731 m) respectively, and is regarded as an outlier. Similarly readings of
September 1980 are regarded as an outlier. It must be noted that this point can not be
detected from univariate method. Radial displacements are highly correlated with
reservoir level variations. Alternatively scatter plots of these displacements and reservoir
level can be considered. Similarly, tangential readings of block 8 at elevations 2100 fi
(640 m) and 2300 ft (701 m) are highly correlated and outliers can be identified outside
of confidence ellipse (Figure 5.32).

Moultivariate detection,

Multivariate assessment of each observation across a set of variables can also be used.
Dam responses are often correlated, Consequently, the dimensionality can be
substantially reduced to a few principal components, much less than the original number
of variables. In many cases, only three of four principal components can describe as
much as 90% of the variance. Using standard distribution theory, confidence ellipses can

be superimposed on the joint principal component scores charts.

PCA was used in a preliminary analysis to detect outliers. Principal components are
extracted and their scores calculated. Next the joint principal component scores charts are
plotted and 95% Confidence ellipses are then used to identify outliers (Figure 5.33 to

Figure 5.35) and several anomalies are identified..

Outlier designation
When observations that are candidates for designation as outliers are identified by the
several univariate, bivariate, or multivariate methods observations, which were similar,

are deleted prior to fitting the reference model.
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Scatier plot of Radial displacements (Block 1) and confidence ellipse
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Displacement of 1R2300 (mm)

Figure 5.31, Bivariate control chart for radial displacements of Block 1, Idukki dam

Scatter plot of Tangential displacements (Block 8) and confidence ellipse
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Figure 5.32, Bivariate control chart for tangential displacements of Block 8, Idukki dam
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Scatterplot of PC1 and PC2, and confidence ellipse
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Figure 5.33, Monitoring chart based on first and second PC
Scatterplot of PC1 and PC3 and confidence ellipse
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Figure 5.34, Monitoring chart based on first and third PC
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Scatterpiot of PC2 and PC3 and confidence ellipse
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Figure 5.35, Monitoring chart based on second and third PC

5.2.3.2 Principal component analysis

PCA was performed on the correlation matrix of pendulums. The first three components
explain 88% of the total variance (Figure 5.36) of the 16 original variables. The first
principal component explains 63%; the second component 19%; the third 6%; of the total
variance of the data set (Figure 5.36). The first component explains most of the variance

and the scores are highly correlated with reservoir level variations (Figure 5 40).

Analyses of loadings for the first and second principal component indicates that all radial
displacements of block 1 except at elevation 1900 ft (579 m) and tangential and radial
displacements of blocks 7 and 8 are associated with PC1.

PC2 accounts for tangential displacements of block 1. PC3 is only correlated with radial
displacements of block 1 at the base (1R1900). Displacements of 1R1900 (located at the
base) are not correlated with rest of the pendulums. The principal components are
uncorrelated and orthogonal; therefore when one of the variables is not correlated with

the other variables, then variance of that variable is one of the eigenvalues and the

113



Eigenvalue

Eigenvalues of correlation matrix
Active variables only

12

10¢

[52]

E=N

62.69%

i

-2

2 4 6 8 10 12 14 16 18

Eigenvalue number

20

Figure 5.36, Scree plot, pendulum readings, Idukki dam
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Figure 5.37, Loadings for PC1 and PC2
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PC3
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Figure 5.38, Loadings for PC’s 1 and 3
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Table 5.14, Loading of principal components, pendulums

Loadings
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Figure 5 40, Time series of PC1 and Reservoir variations
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Time series of PC1 and reservoir level
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Figure 5.42, Scores of PC2, pendulum readings, Idukki dam
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variable itself becomes one of the principal components. In extreme case when there is no
correlation between variables, PCA reproduce the variables, thus if correlations are small
there is little to be gained with a principal components analysis. PC2 shows movement of
the dam towards the right bank after 1986.

It must be noted that Pendulum PS5 measures absolute displacements of the dam at
elevation 1900 ft.(571 m) This displacement is added successively to displacements from
other pendulums to obtain their absolute displacements. Therefore most of anomalies are
recorded at the base of the dam. The tangential displacements of pendulum PS5, located at
the base, are less than 1 mm during the period of 1977-1986. The tangential
displacements increase during the period from 1986 to 1989 and the maximum

displacement in this period is 4.91 mm for a reservoir level of 698 m.

The PCA model can be used for monitoring the future observations. Number of
monitored variables is decreased from 16 (number of original instruments) to the first
three PC's. Scores of PC1 is used for monitoring radial displacements of block 1 at higher
elevations, and radial and tangential displacements of blocks 7 and 8. Scores of PC2 are
used for monitoring tangential displacements of block 1. The signal component of the
instruments reading is separated from noise given that the noise component is by
definition uncorrelated from one instrument to another. This will result in reducing
number of false alarms as compared to the traditional practice of monitoring the 16

instruments independently.

For every new observation scores are calculated and compared with the expected range
specified by the reference PCA model. Univariate and bivariate control charts are useful
for the detection of anomalies. When an anomaly is detected the instruments associated

with that PC can be reviewed.
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aniel Johnson

6. Application of Methodology to

and Chute-a-Caron dams

6.1 Introduction

In the northern regions of Canada, the ambient air temperature differentials between
summer and winter can be as high as 45° C. This variation in air temperature induce
thermal stresses that exceed the tensile strength of the concrete. The Daniel-Johnson dam
(Fig. 6.1) located in Quebec, Canada, is an example of a large multiple arch dam that has
undergone thermal damage. Chute-a-Caron is a gravity dam comprised of three sections.
Two of the sections form an angle of 147 °. These two segments interact due to thermal
expansion and a construction joint, located in the drainage gallery has opened under this
action. Sbme of the multivariate statistical analysis methods discussed in Chapter 3 are

applied to these two dams.

6.2 Daniel Johnson Dam
The Daniel Johnson dam (Figure 6.1) is the largest multiple arch dams in the world. It is
located 800 km northeast of the city of Montreal on the Maniconagan river. Its maximum

height and length are about 165 m and 1315 m respectively (Veltrop et. al, 1990). It
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consists of 13 cylindrical arches supported by 14 buttresses (Figure 6.2). The dam
includes a large main arch, two adjacent symmetrical transition arches, and eleven normal
arches of identical geometry. The main arch spans over 150 m, has a thickness of 24 m at

its base, and a thickness of 4.8 m at its crest.

Figure 6.1, Location and view of Daniel Johnson multiple arch dam

Impounding of the lake started in 1964 and was completed in 1977. Shortly after
construction, different types of cracks started to appear on the downstream and

upstream faces of the dam. Eleven of the thirteen arches are known to have cracks.

Two kinds of cracks are present: The first type of cracks is known as plunging cracks.
They cut the bottom of the arch in a plane perpendicular to the upstream face (at elevation
830 ft) and plunge towards the downstream face (Figure 6.3). These cracks were revealed
by water seepage in the drainage system (Mamet, 1989). These plunging cracks were
caused by stress concentrations due to geometric discontinuities and have been treated by
a series of on-going grouting programs. In December 1992, the water infiltration rate of
Arch 5-6 suddenly increased by 5 I/s in a matter of six weeks to reach an infiltration rate
of 15 Vs (Figure 6.4). Progressive grout erosion was identified as the most probable

reason for the increase in the water infiltration. Numerous cracks and joints were grouted
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in order to reduce water infiltration during and after the construction of the dam. In some
cases, as a result of high injection pressures and inaccurate methods, the injection
provoked the propagation of existing cracks or the initiation of the new ones (Lariviere et
al, 1999). As a result of the research work carried out at IREQ (Institut de Recherche
d'Hydro-Quebec), last grouting program was successfully conducted in January 1999. The
total water infiltration from the plunging cracks dropped from 15 s before the campaign
to less than 0.1 V/s by the end of the grouting program.

2) The second type of cracks are visible "oblique" cracks on the downstream face of most
of the arches, especially at the lower part. These cracks first appeared in 1968 in the lower

downstream faces of arches. Field observations indicated that the cumulative length of

downstream face oblique cracks continues to increase every year at a nearly constant rate

(Tahmazian et al, 1989).
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.2, Elevation view, Daniel Johnson dam
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Figure 6.3, Plunging cracks, Arch 5-6, Daniel Johnson dam
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Although the dam was stable, there was concern that continued cracking and exposure of
the downstream face could lead to concrete deterioration Winter temperatures were
identified as the primary cause of oblique cracks (Tahmazian et al, 1989). In 1986,
shelters were installed at the downsiream face of nine arches to insulate the bottom of the
arches from extreme winter temperatures, which reduced the crack propagation. Field
observations showed that the annual amount of new cracking in the nine sheltered arches
decreased from 488 ft prior to installation of the shelters to 24 ft after installation.

(Tahmazian et al, 1989).

6.2.1 Monitoring

A wide variety of devices and procedures are used to monitor the behavior of the Daniel
Johnson dam. The following features are monitored: Movements, pore pressures, water
level, seepage flows, temperatures, cracks and joints openings, stresses and strains. A
comprehensive study of these measurements is necessary for checking the safety of the
dam. Reservoir water level, air temperature, and concrete temperature measurements are
useful for the prediction of structural responses. Study of dam displacements are useful
for estimating the normal and abnormal behavior of a dam through comparison with the
past performance data. Arch dams are very sensitive to base cracking (Fanelli, 1998).
Analysis of cracks characteristics through visual inspection, extensometers readings, and
water infiltration is useful for making decisions regarding safety and related actions
regarding rehabilitation of the dam. Some of these measurements are discussed next.
Temperature and reservoir water level

Air temperatures and reservoir water level are recorded almost daily at the site. Maximum
reservoir level of 359.6 m was reached in October 1979 (Figure 6.5). Air Temperatures

vary between -32° C in winter to 32° C in the summer (Figure 6.6).

Pendulums
Simple and inverted pendulums are installed to measure the displacements. The
frequency of available readings varies but the average frequency of readings is about one

month.
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Figure 6.4, Water infiltration, Arch 5-6, Daniel Johnson dam
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Figure 6.5, Reservoir water level variation, Daniel Johnson dam
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Flow meters

These instruments measure the water infiliration through the dam, which is as an
indicator of severity of cracking in the dam. The analysis of water infiltration data
in conjunction with displacements or strains can be used to study the effect of cracks on

the structural stability of the dam.

6.2.2 Statistical Analysis of Daniel Johnson Monitoring data

For the purpose of this analysis, data was provided by Hydro-Quebec for pendulums, flow
meters and extensometers, located in arch 5-6 from 1966 to 1996. The readings from
different instruments are not recorded simultaneously. Pendulum and extensometers

measurements are analyzed in the following sections.

6.2.2.1 Analysis of simple Pendulums

Eight simple pendulums (S1 to S8) located in arch 5-6 are considered for statistical
analysis. In the analysis of a dam over an extended period of time, care must be taken to
insure that a data set is homogeneous and that changes in the structure or response of the
dam are clearly identified and modeled. In the extreme cases, the data may be treated as
several independent samples. For example during the first impoundment, irreversible
displacements associated with settlements are observed and decrease during subsequent
cycles of the water level in the reservoir. The analysis was performed on the data starting
in 1972 when the normal reservoir level was reached (Figure 6.5). Reservoir level
reached its maximum level of 359.6 m in October 1979 (Figure 6.7). The reservoir level
has been lowered below this level since that time due to presence of cracks. Annual
cycles are also observed with maximum and minimum reservoir levels in October and
April.

Characteristics of the pendulums are summarized in Table 6.1. Each pendulum measures
the deformations in three principal directions: 1) displacements in the Y direction are
downstream-upstream displacements, 2) displacements in the X direction are in-plane

displacements, and 3) displacements in the Z direction are vertical displacements.
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Vertical displacements are typically small, and are missing for most of the instruments.
The maximum displacements are in the Y direction (upstream-downstream), and
therefore these displacements were considered for statistical analysis. Measurements of
pendulum S6 is different from the trend of other pendulums. Some suspected outliers
(spikes) are observed for some of the pendulums (Figure 6.9 to Figure 6.16). As expected
the displacements also increase with the elevation of the pendulum (Table 6.1 and Figure
6.8). The movements of pendulums at buttress 6 are higher than those of buttress 5 since
buttress 6 is closer to the center line of the dam (Figure 6.2).

Table 6.1, Location of the Pendulums, Daniel Johnson dam

Pendulum Buttress | Block | Elevation(m)
S1 6 AB 244
S2 6 14 274
S3 6 20 309
S4 6 20 336
S3 6 20 356
S6 5 GH 275
S7 5 N 308
S8 5 W 335

Readings of pendulum S1 located near the base of Buttress 6, vary between 6.5 mm and 9
mm. The maximum displacements for both pendulums S3 and S4 occur in the winter, and
are of 22 mm and 28 mm respectively. The absolute maximum displacement is 32.3 mm
for pendulum S5 during the winter of 1984. Seasonal variations of displacements are
observed in pendulums S3, S4 and S5, which are located at higher elevations.
Measurements of S3, S4 and S5 are correlated with daily air temperature variations,
which is illustrated for S5 in Figure 6.17 and Figure 6.18. The elliptic shape of the scatter
plot indicates a lag between air temperature and displacements. Accurate calculation of
lags cannot be done due to the low frequency of readings (once a month) for the
pendulums. The maximum correlation (R=0.97) among pendulums is between pendulums
S7 and S8 (Table 6.2 and Figure 6.19). This is expected since they are located in
neighboring blocks of buttress 6. Pendulums S4 and S3 also show a high correlation, as
they are located in the same block (block 20 of buttress 5). Pendulum S6 shows the

lowest correlation with the rest of instruments.
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Box Plot, Pendulums
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Figure 6.8, Box Plot for Pendulums, Daniel Johnson dam
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Figure 6.9, Upstream-downstream displacements of pendulum S1, Daniel Johnson dam
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Displacements of pendulum 82 -Y dirsction
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Displacements of pendulum 84-Y direction
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Figure 6.12, Upstream-downstream displacements of pendulum S4, Daniel Johnson dam
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Figure 6.13, Upstream-downstream displacements of pendulum S5, Daniel Johnson dam
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Displacements of penduium S6-Y direction
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Figure 6.15, Upstream-downstream displacements of pendulum S7, Daniel Johnson dam
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Displacements of pendulum 38-Y direction
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Figure 6.16, Upstream-downstream displacements of pendulum S8, Daniel Johnson dam
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Scatierplot (Daily air iemperature and pendulum S5 Y direction)
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Table 6.2, Correlation matrix for simple pendulums, Daniel Johnson dam

Correlations

Variable

Sty 82y 83y S4y S5y 86y STy S8y
o e

10.31 052 (
0.36 0.70 0.73
0.31 0.76 0.84

054 0.23
0.77 0.49
0.93 0.70

00 0.92 0.75
92 1.00 0.90
0.90 1.00

0.77 0.93 1.00 0.90 0.23 0.72 0.82

10.49 0.70 0.90 1.00 0.07 0.53 0.65

0.31 0.36 0.31 0.23 0.07
52 0.70 0.76 0.72 0.53
10.73 0.84 0.82 0.65

1.00 0.66 0.55)
0.66 1.00 0.97
0.55 0.97 1.00
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Matrix Plot (Manic5 pendulums)

3 B S 3 W
81y a

Figure 6.19, Matrix plot of pendulum displacements, Daniel Johnson dam

6.2.2.2 Principal component analysis of simple pendulums

PCA was applied to the correlation matrix of upstream-downstream displacements, which
are higher and show more variation. The percentage of the variance explained by each
principal component is shown in descending order in Table 6.3. The first three
components explain 95.5% of the total variance. The remaining components explain only
4.5% of the variance and, most likely, they represent the noise in the data. The first
principal component explains 70%; the second component 14%; and the third 11% of the
total variance of the data. Analyses of loadings indicate that principal component 1 (PC1)
is highly correlated with all instruments except S6y (Table 6.4 and Figure 6.23). PC2 is
rather highly correlated with S6y. This is expected, as S6y is not strongly correlated with

other instruments,
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Figure 6.20, Scree plot of pendulums, Daniel Johnson dam

Table 6.3, PCA analysis results for Simple pendulums, Daniel Johnson dam

Principal Eigenvalues | Variance Explained | Commutative Variance
Component by each PC Explained
5.56 69.5% 69.5%
1.13 14.1% 83.6%
0.94 11.8% 95.5%

Table 6.4, Loadings of principal components

Loadings
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Figure 6.22, Scores of PC2, simple pendulums, Daniel Johnson dam
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Loadings, PC2 vs. PC3
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Figure 6.25, Loadings for PCs 2 and 3, Daniel Johnson dam

Time series of PC1 and daily air temperature
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Figure 6.26, Scores of PC1 and daily air temperature, Daniel Johnson dam
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Time series of PC1 and daily air temperature
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Figure 6.27, Scores of PC 1 and air temperature (1981-1997), Daniel Johnson dam

Following observations can be made regarding PC1: In the period from 1972 to 1979,
scores of PC1 are monotonically decreasing. As the loadings are negative, a decrease of
PC1 represents increasing displacements during this period. These irreversible
displacements can be due to creep. From 1981 to 1995, cyclic trends are observed.
Analyses of correlations indicate that these displacements are correlated with daily air
temperature (Figure 6.27). PC2 explains the variance of pendulum S6y. There is no strong
correlation between PC2 with reservoir level and air temperature. However,

displacements of S6y are very small and in the range of 1-2 mm

Grouping instruments

In a large dam like Daniel Johnson, thousands of instruments are used to monitor the
behavior of the dam. Traditionally instruments are reviewed and plotted individually.
This is time-consuming and in case of faulty instruments can be confusing. In case of a

faulty instrument, results will be the inconsistent with readings from similar instruments.
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PCA can be used to group instruments that exhibit similar patterns of behavior. Principal
components can be monitored instead of the original variables, which reduces the number
of variables to monitor. If PC’s behave normally there is no need to monitor the original
variables. If a statistically significant change is detected in one of the PCs is detected,
individual instruments associated with that PC can be reviewed. This can reduce

significantly the time and expense of dam monitoring.

6.2.2.3 Analysis of extensometers

Readings of eight extensometers covering the period from 1982 to 1995 was considered
for multivariate statistical analysis. These instruments monitor the oblique cracks of
buttress 6 (Table 6.5).

Table 6.5, Specification of extensometers

Name(instrument) Block Elevation (im)
EXM1 16 259
EXM2 16 256
EXM3 16 259
EXM4 18 245
EXM5 18 257
EXM6 18 250
EXM7 I8 263
EXM8 18 257

A box plot of extensometers data is presented in Figure 6.28. Data from extensometers is
more erratic than data from other instruments (Figure 6.29 to Figure 6.37). The maximum
crack opening for this time period is 0.9 mm. EXM1 readings are negative for the whole
period.

Analyses of correlations between the instruments shows that instruments EXM1, EXM2,
EXMS5, EXM7, and EXMS are highly correlated (Figure 6.37 and Table 6.6). These
instruments all recorded strong fluctuations in 1986, and a step jump in crack opening in

December 1993. EXM3 and EXM4 are also highly correlated (R=0.89).
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Box plot of extensometers
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Figare 6.29, Crack opening, EXM1, Daniel Johnson dam
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EXM2-Crack opening
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Figure 6.30,

EXM3-Crack opening
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Figure 6.31, Crack opening, EXM3, Daniel Johnson dam
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EXM4-Crack opening
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Figure 6.32, Crack opening, EXM4, Daniel Johnson dam
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EXM6E-Crack opening

“«
©

w
[ B

0.2¢
0.0+

@ e M)
@ @ @ 2

(wiw) Buuado B0 gNXI

03

<
Q@

1€661-090

1 166199

1686L-090

14861-9eQ

16861-080

1€861-99Q

1 1861-99¢

16461980

Time

Figure 6.34, Crack opening, EXM6, Daniel Johnson dam
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EXM8-Crack opening
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Figure 6.36, Crack opening, EXMS8, Daniel Johnson dam

Table 6.6, Correlation matrix of extensometers, Daniel Johnson dam

Correlations

EXM1

EXM2 | EXM3 [EXM4  EXMS5 | EXMB | EXM7 | EXMS |

Variable

i

1
i

100 -0.87 -002 022 -088 067 -0.88  0.87
100 014 047 083 067 098 098
100 089 013 050 010  0.23
100 015 080 022 -0.12

100 -062 093 082
100 070 -065
A0 097
1.00
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Matrix Plot of extensometers
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Figure 6.37, Matrix plot of extensometers, Daniel Johnson dam

PCA was performed on the correlation matrix of these eight instruments The first two
components explain 94% of the total variance (Figure 6.38) of the eight original
variables; which is a significant reduction with respect to number of original variables. It
can be concluded that PCA can efficiently compress the original data and reduce number
of monitored variables. The first principal component and the second component explain
64% and 30% of the total variance of the data set respectively (Figure 6.38). The

remaining components explain only 6% of the variance and, most likely, they represent
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Figure 6.38, Scree plot, correlation matrix of extensometers, Daniel Johnson dam

Rotation of Principal Components

In order to improve the interpretation of the principal components, it is often desirable to
rotate a subset of the initial eigenvectors to a second set of new vectors. As a consequence
of rotations of the PC’s, a second set of scores is computed that are called rotated
principal components.

Various rotational strategies have been proposed in the literature. The goal of all of these
strategies is to obtain a clear pattern of loadings. The most widely used method is the
varimax approach, which rotates the loadings so that the variance of the squared loadings
in each component is maximized. The squared loadings in each component are nudged
toward 0 and 1 (Rencher, 1998), which aids in the assignments of instruments to PC's,
and subsequent grouping of the instruments. This is illustrated using the extensometers
data of Daniel Johnson dam.

The varimax criterion was used to rotate the PCs and group the extensometers data. Two
groups are observed corresponding to PC1 and PC2. Group 1 comprises instruments

EXMI1, EXM2, EXMS5, EXM7 and EXMS8, which are highly correlated with PCI. It must
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be noted that EXMI loading for PCl in negative which indicates high negative
correlation between EXM1 and the rest of the group (Figure 6.39). Group 2 comprises
instruments EXM3 and EXM4, which are highly correlated with PC2.

As previously mentioned, Daniel Johnson has undergone major rehabilitations (thermal
shelters in 1986) and several grouting campaigns. Some of these campaigns have
improved the dam section and some have deteriorated the dam section due to excessive
high pressures and inaccurate methods. Therefore analyses of correlations of crack
openings are hard to perform and interpret. Since the dam has undergone several changes
due to cracking and grouting.

Different behaviors are observed for PC1 and PC2. PCI1, which represents instruments
EXM2, EXMS5, EXM7 and EXMS8, captures strong fluctuations in crack opening in 1986.
There is also a step jump in crack opening after December 1992, which is consistent with
reports of increase in seepage in arch 5-6 (Lariviere et al, 1999). The amplitude of
fluctuations of PC2 is decreased after 1986, which indicates that the thermal shelters,
have been effective in reducing crack openings. PC2 shows seasonal behavior before
1986, with a lag of about one month relative to daily air temperature (Figure 6.42 and
Figure 6.43). Propagation of cracks is observed in PC2 after 1993. Analyses of
correlations between PC1 and reservoir level and ambient temperature are hard to
interpret due to continuous changes in crack characteristics due to various interventions in

the dam during that period.

6.2.2.4 Analysis of water infiltration measurements

A preliminary analysis was done on simultaneous readings from pendulums and a flow
meter for arch 5-6. The number of simultaneous readings is much smaller than the
number of readings for either the flow meter or pendulums. Correlations between water
infiltration in arch 3-6 and displacements of the pendulums, is maximum with pendulums
S1 and S2, which are closest to the location of cracks. The cracks are located at elevations

of 253 and 259 m, and propagate from the upstream face to the downstream face.
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Loadings, PC1 vs. PC2
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Figure 6.40, Scores of PC 1, extensometers, Daniel Johnson dam
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Time series of PC2, Extensometers
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Figure 6.41, Scores of PC2, extensometers, Daniel Johnson dam
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Figure 6.42, Partial plot of PC 2 and air temperature (1982-1986), Daniel Johnson dam
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Figure 6.43, Cross correlation of PC2 and air temperature (before 1986), Daniel Johnson

dam

Pendulum S1 is located at elevation 244 m. Pendulum S1 and water infiltration were
considered for a more detailed analysis. Readings of both instruments that were recorded
in the same week were considered for analysis. Figure 6.44 shows respectively the
displacement of pendulum S1 in Y direction along with the water infiltration in Arch 5-6.
There is a high correlation between measured flows and pendulum displacement. After
January 1993, the trend of displacements is different from that of water flows. While
water flow is increasing, pendulum displacements seem to stabilize and do not show
much variation. Figure 6.45 presents scatter plot of water flow and pendulum S1
displacements. Obviously the trend has changed after 1993. It can be concluded that
propagation of cracking after 1993 was due to grout erosion, which increased water flow

in the Arch 5-6, does not affect the stiffness of the dam.
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Table 6.7, Correlation, pendulum readings and water infiltration (Arch 5-6)

Correlation Matrix
51 82 S3 S4 85 S7 S& | Flow
S 1.00
52 0.82 | 1.00
S3 0.44 | 040 | 1.00
S4 .18 1 020 | 093 | 1.00
S5 0.02 | 006 | 0.83 | 096 | 1.00
S7 0.26 | 030 | 072 | 0.70 | 0.60 | L.O0
S8 0.20 | 025 | 081 | 084 | 0.77 | 0.96 | 1.00
Water infiltration 0.59 | 058 | 041 | 025 | 0.10 | 041 | 034 | 1.00
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Figure 6.44, Time series of water infiltration and displacement pendulum S1,

Daniel Johnson dam
6.3 Chute-a-Caron gravity dam

Chute-3-Caron is a gravity dam that comprises three sections. Two of the segments form

an angle of 147 ° (

151



Figure 6.46). These two segments interact due to thermal expansion and have opened a
construction joint, which is located in the drainage gallery.
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Figure 6.45, Scatter plot of Pendulum S1 displacement and water infiltration Arch 5-6,
Daniel Johnson dam
This joint was grouted several times starting in 1991 when water infiltration exceeded
300 V/min. Water flows reduced to 50 I/min but increased to 750 I/min in the summer of
1996. A 15.5 mm wide vertical expansion joint, over 80% of the height of the dam, was
cut near the intersection of the two segments in June 1997 using a diamond cable (Figure
6.47). The behavior of the dam is being monitored with inverted pendulums, flow meters,

and the joint meters, which measure movement of the construction joint (Table 6.8).

6.3.1 Statistical Analysis of Chute-3-Caron monitoring data
Some instruments, which are located in blocks 12S, 13S and 148, are considered for
statistical analysis. The description of the instruments is summarized in Table 6.8.

Thermometers TE14S1, TE14S2, and TE14S3 measure the water temperatures (Figure
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6.49), while thermometers TE1484, TE1485, TE1281, TE12S2, and TE12S3 measure the
concrete temperatures in the dam. Water temperatures vary between 0 ° C and 22 ° C,
while air temperatures vary between -27 ° C and 27 ° C. During winter months (i.e.
December through March) water temperature remains at 0 ° C.

The downstream face of the dam is colder than the upstream face in the winter and
warmer in the summer. Therefore it is expected that temperature effects cause the dam to

move towards downstream in the winter and upstream in the summer.

Table 6.9 presents descriptive statistics on measured temperatures from 1998 to 2000.
Concrete temperatures are less variable than air temperatures. The maximum concrete
temperature was recorded at TE12S1, which is located near the dam surface, and is higher
than maximum air temperature. This can be explained by the effect of solar radiation.
Thermometers located deeper inside the dam show less variability. Mean concrete
temperatures are higher than the mean air temperature due to solar radiation and exposure

of the upstream side to the reservoir, which never goes below 0° C.
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Figure 6.46, Location and plan, Chute -a- Caron gravity dam
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Table 6.8, List of instruments, Chute -3- Caron dam

Instrument Plot 138, Chute-2-Caron
Inverted pendulums PD13S-1,PD138-2
Flow meters DV138-1, DV148-1
Joint meters FI138-1, FI138-2, F1138-3
Thermometers (water) TE148-1, TE148-2, TE148S-3,
Thermometers TE145-4, TE14S8-5, TE12S-1, TE12S8-2, TE128-3
(concrete)

Inverted pendulums measure the displacements of block 13 in three directions: (1) right-
left (X), (2) upstream-downstream (Y), and (3) vertical (Z) (Figure 6.52 and Figure 6.53).
It must be noted that because of the position of block 138 in the intersection of two
angled segments, upstream-downstream movements of block 13 are related to both
upstream-downstream and right-left movements of block 14. Right-left displacements can
be used to monitor opening and closing of vertical expansion joint. Joint meters FI1351,
FI13S2, and FI113S3 are located at the ends of block 13 and joint meter FI1352 is located
at the center of the block 13 (Figure 6.48).

Correlations between instruments are presented in Table 6.10. Vertical displacements of
the two pendulums are highly correlated (R=0.99). Right-left displacements of pendulums
are also highly correlated (R=-0.98). Right left displacements of both pendulums are
correlated with displacements of joint FI13S1 and concrete temperatures, TE14S4 and
TE12S2. Upstream-downstream displacements of PD13S2 are correlated with concrete
temperatures (TE12S1), near the dam surface. Vertical displacements of both pendulums
show strong correlation with joint meters FI13S1 and thermometers TE14S5 and
TE12S83. Measurements from the two flow meters are correlated (R=0.71), but these two
instruments are not strongly correlated with the other instruments. One explanation is that
flows usually have a very non-linear response (relative to other instruments) since they

are highly dependent on closure and opening of joints.
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Figure 6.48, Block 13 instrumentation layout, Chute-a-Caron dam

Table 6.9, Statistics for air, water, and concrete temperatures

Descriptive Statistics
Valid N; Mean | Minimum | Maximum | Std.Dev.

Variable , o .
TEMPERATURE| 14600 46 273 267 120
TE1481 112840 78 02 . 217 78
78 02 217 78
02 220 78
-128 . 234 . 110
5.5 236 9.2
o -8y 03189 114
1283.0 106 = 0.7 224 73

gEfgsl
1B
TE1283
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Water temperatures
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6.50, Air and concrete temperatures, Chute-a-Caron dam
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Figure 6.51, Reservoir level variation, Chute-a-Caron dam
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Displacements of pendulum PD1382
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Joint meters, Block 13
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Figure 6.54, Joint meters, Chute-a-Caron dam
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Flow meters
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Figure 6.55, Water flow, blocks 13 and 14, Chute-a-Caron dam
Table 6.10, Correlation matrix of instruments Chute-a-Caron
PD1351 X [PD13S1.Y |PD1351 7 |PD1352 X |PD13S2 Y 1PD13S2 Z |DVA3S1 |DVI4ST [Fi1351 |FI13S2 [F1H3s3
TEMPERATUR |-0.81 052 061 0.80 064 063 041 1005 082 |062 |0.70
PD13S1. X 11,00 0.60 064 098 0.88 064 002 {027 |09 |09z |o84
PD13S1 Y |0.60 1.00 0.02 047 0.79 0.03 032 j041  |038 (059 [|-0.24
PDI3S1Z |04 0.02 7.00 0.74 042 0.99 058 1048 10.80 |055 0.9
PD13S2 X |-0.98 047 074 1.00 081 0.75 0.10 020 |094 |090 080
PD1352 Y |0.88 0.79 042 081 100 042 046|033 |078 1074 |-064
PD13s2 z  |-064 0.03 0.99 0.75 042 100 059|020 o080 |-054 {092
DVi3s 0.02 032 058 0.10 0.16 059 700 1071|048 1001|040
DV1451 0.27 041 0.18 020 0.33 0.20 071|100 1041 1030 |0.00
F11351 092 038 0.80 054 .78 080 049 1041 {100 10.74 094
FI1352 092 059 2055 -0.50 0.74 054 001|030 |074 1100 075
F11353 084 024 0.93 090 064 0.2 040|000 {094 1075 [1.00
TE1451 082 017 0.87 089 063 0.89 033 1006|081 1066 1089
TE1452 082 0.18 0.87 0.89 063 089 633 1006 1091 |-066 l088
TE1453 082 018 087 0.89 053 0.80 033|006 |0t 066 |088
TE1454 089 040 0.84 0.92 079 0.85 027 |-003 |06 |0.73 1091
TE1455 085 0.28 093 0.90 069 0.93 041|004 loe2 |-073 [0.97
TE1281 088 054 067 087 088 069 0.6 |-003 1089 |-068 1078
TE1252 089 040 0.86 0.92 578 087 032|000 1004 1075 |oo4
TE1253 20.70 0.09 0.95 0.78 0.44 0.94 053|008  |0.78 |-0.70 [0.04
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6.3.1.1 Principal component analysis

PCA was performed on the correlation matrix of pendulums, flow meters, and joint
meters of block 13 of Chute- & -Caron. The first two principal components, which have
eigenvalues greater than one, are retained. These two principal components explain 87%
of the total variance of the original eleven instruments. The first and second principal
component explains 58% and 29% of the total variance of the instruments.

Analyses of loadings (Table 6.11 and Figure 6.57) indicate that components X and Z of
pendulums, and joint meters are contributing to PC1. As previously discussed these
variables are highly correlated with each other, Flow meters and Y displacements of
PD13S1 are correlated with PC2. These variables do not have strong correlations with the

rest of instruments (Table 6.10).

Loadings, PC1 vs. PC2
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Figure 6.57, Loading of PCs 1 and 2, Chute-a-Caron dam
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Table 6.11, Loading for principal components

Loadings

Variable .
[PD1381 X|

0.58 0.29
Scores of PC1
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Figure 6.58, Scores of PC 1, Chute-3-Caron dam
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60, Scores of PC 1 and daily air temperature, Chute-a-Caron dam
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Figure 6.61, Scatter plot of PC 1 and daily air temperature, Chute-2-Caron dam
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Figure 6.62, PC 1 and concrete temperature, TE14S4, Chute-a-Caron dam
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Figure 6.63, Scatter plot of PC 1 and concrete temperature, TE14S4, Chute-a-Caron dam

Scores of PC1 are highly correlated with all temperature measurements. Correlation is
highest when it is compared with concrete temperatures (Figure 6.62 and Figure 6.63).
Concrete temperatures are less variable than daily air temperatures and are a better
predictor of dam instrument responses. These data must be collected whenever it is
possible, and used in analysis of dam monitoring data. If concrete temperatures are not
available, average values of daily air temperature can be used (with the optimum time
lag). This is required in order to reduce the high frequency in the air temperature
variations, since dam only responds to lower frequencies of temperature fluctuations

The two principal components can be used for monitoring of the dam instead of the
original eleven instruments. HST regression models were developed for both PCs.
Explained variances are 0.977 and 0.89 for HST models of PCs 1 and 2 respectively
(Table 6.12 and 6.13). Lower R? on PC 2 is due to the nonlinear behavior of flow meters.
Seasonal and irreversible components of models is presented in Figures 6.65 and 6.67.

Trreversible component of PC1 indicate gradual closure of vertical expansion joint.
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Table 6.12, Regression summary of HST model for PC 1

| Regression Summary for Dependent Variable: PC1
R= 0885 R%* .877 S8id.Error of estimate: .151
Bola | SWEm. | | SwEr. | H(1640) |
| ofBela | . o
o -1.39 0026 o540 00000
002 29383 0000 41.9 0.0000
002 -1.33E-6 0.000 314 00000
0.00.  -0.98 0.006 -173.6 00000
cos(6) | \ 0.00 098 0005 1880 00000
sin’(8) 0.06 0.00 0.18 0.011 17.0 0.0000

Regression Summary for Dependent Variable: PC2
R=.944 R?= .891
Std.Error of estimate: .32960

Beta | StdErm. | | SWEm
. piReis | ] Biion
-2.16E+00  0.056 -38.32
1.181 0.048 3.73E-03  0.000 2445
-0.569 0.048 -1.09E-06  0.000 -11.73
(B} 0.552 0.008 _.8.22E-01 0012 67.00
cos(9) 0124 0008  -168E-01 0011 1474
sin(@cos® |-0.373 0008 -1.07E+00 0024 = -45.25
sin*(8) -0.089 0.008 -2.51E-01 10.023 -10.72
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Figure 6.66, Scores of PC2 and predicted scores using HST model, Chute-a-Caron dam
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Figure 6.67, Scasonal and irreversible components of PC2, Chute-a-Caron dam

6.3.1.2 Canonical correlation analysis

Canonical correlation analysis is another multivariate method, which can be used for

exploratory data analysis. Relationships between two sets of instruments are estimated

and latent factors, for these two sets of instruments, are obtained.

CCA was used to explore the relationship between a set of measurements for pendulums

PD13S1 and PD13S2 in three different directions (total of 6 measurements), and a second

set consisting of flow meters and joint meters (total of 5 instruments).

Table 6.14, Canonical weights for displacements

Canonical Weights, first set

Root 1  Root 2
Variable ;

]

814

123

000 001 035

054  -183
097 107  -058

-0.05  -0.08

-0.59 0.48 8.31

| Root 3| Root 4 | Root 5 |

_0.94
085
431
-1.90
-146

-4.27

..0.80

~ 0.96]
1.02

0.06
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The canonical weights of canonical factor 1 for the first set are high for displacement X of
pendulum PD13S1 and Z displacements of both Table 6.14). The canonical coefficients
of canonical factor 1 for the second set are high for F13S1 and F13S2 (Table 6.15).
Closing of joint FI13S1 and opening of FI13S2 are associated with vertical displacements
of both pendulums. Flow meters loadings are very small which indicated that there is no

strong relationship between flow meters and displacements. First canonical factor is

Table 6.15, Canonical weights for joint and flow meters

| Canonical Weights, second set
Root 1 Rool 2 Root 3|
Variable | ? |
DVI351
Dy14st)
Fi1351 |
Fi1382 |
Fi1353

Root 4 ’;Rom g |

T 069 055 237

strongly correlated with measurements of TE14S4 (Figure 6.68).

2.0

Scatter plot (Canonical factor 1 and concrete temperature)

Canonical factor 1

-10 -5 0 5 10 15
TE1484temperature (°C)

Canonical factor1 is highly correlated with PC1. CCA results confirm the results obtained

Figure 6.68, Canonical factor 1 and concrete temperature

from PCA. Temperature effects are the main factor affecting the dam behavior.
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6.3.1.3 Multiple linear regression results

HST models were developed for all eleven instrument of block 13. Reservoir level is
almost constant during the period and therefore it is not contributing to the variations of
instruments readings. Regression models were developed that consider concrete
temperatures as an alternative to the seasonal component of HST models. A comparison

of explained variance (R?) by these two models is presented in Table 6.16.

Table 6.16, Comparison of results for two regression models

Adjusted R squares

Model 1 [|Model 2

HST concrete temperatures
PD1381-X  |0.95 0.96
PD13S1-Y |03 0.45
PD13S1-Z |0.98 0.98
PD1382-X |0.89 0.99
pPD13S2-Y |0.87 0.8
PD13S2-Z {0.97 0.96
DV13S1 0.88 0.82
DV1481 0.7 0.62
Fi1381 0.91 0.96
Fi13S2 0.92 0.95
Fi1383 0.96 0.98

Both models are performing well as R? is higher than 0.9 for most of the instruments,
except flow meters and PD13S1-Y. However this can be expected, as flow meters did not
have strong correlation with temperatures. Both models performed poorly on PD13S1-Y,
which exhibits unusually high values in Feb to March 2000. These readings do not
conform to the previous readings. Other instruments do not indicate any change in dam
behavior at that particular time. These readings are most likely outliers due to interference

with the wire of the pendulum.

6.3.1.4 Artificial Neural networks Applications
A back propagation network was used to build a model for forecasting displacements of

pendulum PD1382 in the X, Y and Z direction. Several models were tested using a back
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propagation neural network with sigmoid transfer functions. Preliminary analysis showed
that time and concrete temperatures are the best predictors for the displacement of the
pendulums. Concrete temperatures at five locations and time were used as input variables
to forecast the displacements of the pendulums.

Unlike statistical forecasting methods, the neural network does not follow well-defined
development guidelines. Therefore the model building process is generally conducted by
trial and error. Two major elements of the back propagation neural network models are

the number of hidden layers, and the number of hidden nodes.

Number of hidden layers

As the number of hidden layers is increased, the training data can be predicted very
accurately. However, the prediction skill of the validation set can decrease, as the model
gets more complex. The lack of fit of the validation set occurs due to overfitting. The
optimal number of layers must strike a balance between overfitting and accuracy

(Neuralware, 1996).

Using more than one hidden later increases the complexity of the network, computational
time and possibility of model overfitting. Most problems require only one, and sometimes
two layers. Generally it is better to start with one hidden layer and increase the number of
hidden nodes until satisfactory performance is reached. If the results of one hidden layer
are not satisfactory, more hidden layers must be added to the network configuration. In
this application, a single hidden layer was tried first and results were found to be

satisfactory.

Number of hidden nodes

It is suggested that the number of hidden nodes must be smaller than the number of mput
nodes (Neuralware, 1996). Since six inputs were used as dependant variables, the number
of hidden nodes was increased incrementally between one and six. All the networks were

trained until the best performance was achieved.

172



Performance of the network was measured using R® statistics, i.e. percentage of the
variance explained by the model. The data was divided into two equal sets. The first set
was used to train the network, and the second set was used to validate the model. R®
statistics were calculated for both the training and validation sets. Every network was

trained several thousand times until the mode! converged and best results were obtained.

Prediction model for PD13S2 in x direction
Results of R? for different network configurations are presented in Table 6.17. All the
networks, which have more than one hidden unit, produce very satisfactory results. Since

the model with two hidden nodes is simpler than the other three models and results are

comparable, it was selected as the best model (Figure 6.69).
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Figure 6.69, Predicted and observed values of pendulum m PD1382 (X Direction)
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Prediction model for PD13S2 in Y direction

Results of R? for different network configurations are presented in Table 6.18. All the
networks, which have more than one hidden unit produce very satisfactory results. As the
case for PD132_X, the model with two hidden nodes is simpler than the other three

models and results are comparable, it was selected as the best model (Figure 6.70).

Table 6.17, Variance explained (R?) for PD13S2_X, different Model configurations

Number of hidden nodes | Training data | Validation | All data
data
1 0.982 0.928 0.957
2 0.994 0.971 0.983
3 0.993 0.980 0.978
4 0.996 0.967 0.981
5 0.992 0.972 0.983

Table 6.18, Variance explained (R?) for PD13S2_Y different model configurations

Number of hidden nodes | Training data | Validation | All data
data
1 0.925 0.854 0.892
2 0.962 0.896 0.931
3 0.979 0.897 0.933
4 0.986 0.890 0.941
5 0.974 0.914 0.946

Prediction model for PD13S2 in Z direction

The data was divided into two equal sets. The first set was used to train the network, and
the second part was used to validate the model. Results of R? for different network
configurations are presented in Table 6.19. Like the previous two models, all the
networks, which have more than one hidden unit, produce very satisfactory results. The
model with 3-hidden nodes was selected as the best model as it produced better

predictions at the peaks (Figure 6.71).
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Table 6.19, Variance explained (R?) for PD13S2_Z, and different model configurations

Number of hidden nodes | Training data | Validation | All data
data
1 0.945 0.920 0.931
2 0.982 0.946 0.963
3 0.994 0.963 0.971
4 0.996 0.965 0.978
5 0.996 0.961 0.980

BPNN, prediction of PD1382-Y, 2 hidden nodes
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Figure 6.70, Predicted and observed values of pendulum m PD1382 (Y direction)
Generally one-layer networks with 2 or 3 nodes provided good predictions of pendulum

displacements. Explained variances were higher for X and Y direction as vertical

displacements are not as highly correlated with temperatures as X and Y displacements.
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BPNN, prediction of PD1382-Z, 3 hidden nodes
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Figure 6.71, Predicted and observed values of pendulum m PD13S2 (Z direction)

Once a model is built by neural networks it can be used to monitor future observations.
Discrepancies with observations can be used as an indication of possible anomalies. The
neural networks are generally computationally demanding, and training of the networks
‘takes more time than statistical models. Neural networks are difficult to interpret
physically and are not as useful as statistical models to estimate contributions for

reservoir fluctuation, temperature effects, and irreversible effects on the total response.

176



€CO

7.1 Summary

Univariate and multivariate statistical methods are used to analyze the behavior of
concrete dam. Statistical models such as multiple linear regression, and back propagation
neural networks have been used to estimate the response of individual mstruments.
Multiple linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST)
models and (2) models that consider concrete temperatures as predictors. Univariate,
bivariate, and multivariate methods are proposed for the identification of anomalies in
instrumentation data. The source of these anomalies can be either from bad readings,

faulty instruments, or changes in dam behavior.

Multivariate statistical analysis methods are applied to threc different dams, Idukki,
Daniel Johnson, and Chute-3-Caron, which are respectively an arch, multiple arch and a
gravity dam. Displacements, strains, flow rates, and crack openings of these three dams

are analyzed.
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Data reduction

Multiple instruments are often used for monitoring the behavior of a dam. The responses
of these instruments are often correlated as they are affected by common factors. The
response of a dam to external factors can be grouped into reversible and irreversible
effects. Reversible effects are usually correlated with reservoir level variations, and air
and water temperature variations. Irreversible effects are time dependent, and are due to
creep, shrinkage, settlement, and chemical reactions such as alkali aggregate reactions.
The simultaneous analysis of instrumentation data was performed using principal
component analysis on instrumentation data from three different dams (Table 7.1).
Generally less than four factors were needed to explain as much as 90% of the total
variance. The unexplained variance is due to noise levels in the instruments and possibly

localized behavior.

Table 7.1, comparison of PCA results, three different dams

Type of dam Instruments Number of Number | Explained
original of PC's | Variance
Instruments
Idukki Instrumented cylinders 24 4 91%
Pendulums 16 4 92%
Daniel Johnson | Pendulums 8 3 95%
Extensometers 8 2 93%
Chute 3 Caron | Flow meters 2
Displacements 6 2 87%
Join meters 3

These three analyses on three types of dams indicate that principal component analysis is
effective in data reduction for dam monitoring data. These principal components can be
effectively used to monitor a dam instead of monitoring all the individual instruments.
Confidence intervals can be used to predict the expected minimum and maximum bounds
for the scores of each principal component. If principal components behave normally
there is no need to review each individual instruments. If a statistically significant change

is detected in one of the principal components, individual instruments highly correlated
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with the principal component can be reviewed. This can significantly reduce the time and

expense of dam surveillance.

Individual analysis of Instruments

Models such as multiple linear regression, and back propagation neural networks are used
to estimate the response of individual instruments. Multivariate linear regression models
are of two kinds, HST models and models that consider concrete temperatures as an
alternative to the seasonal model of HST. Several methods must be taken into
consideration for choosing a prediction medel prediction accuracy, time, cost, and
simplicity of prediction method.

The HST method is the easiest to develop and provides satisfactory results in many cases
but it is inefficient for predicting responses for abnormal temperature cycles. In contrast,
back propagation neural networks are better suited for modeling non-linear relationship,
more computationally demanding and training of the networks takes more time than
statistical models. Neural networks are difficult to interpret physically and are not as
useful as statistical model to estimate contributions for reservoir fluctuation, temperature

effects, and irreversible effects to the total response.

Fault detection and faulty instruments

Univariate, bivariate, and multivariate methods are proposed to identify anomalies in
instrumentation data. These anomalies can be due to either bad readings or an indication
of change in behavior of the dam. Current practice methods are based on univariate
methods. The use of bivariate and multivariate methods is an important contribution to

dam monitoring methodology.

Collection of the data, and frequency of reading

Concrete temperatures are less variable than daily air temperatures and were shown to be
a better predictor of dam instrument response. These data must be collected whenever it
is possible, and used in analysis of dam monitoring data. If concrete temperatures are not
available, daily air temperature must be recorded, and average values are used (with the

optimum time lag). This is required in order to reduce the high frequency in the air
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temperature variations, since dam only responds to lower frequencies of temperature
fluctuations.

Available data for siress and strain meters of Idukki dam were only recorded twice per
year, which makes the estimation of parameters very difficult. Whenever possible all
instruments should be recorded at least weekly. Simultaneous analysis of such a data set
can provide insight about the behavior of the dam and the correlation of readings between
different instruments. Available data for instrumented cylinders of Idukki dam were
available for a period of 17 months, which makes the estimation of seasonal effects very
difficult. The minimum length of the data needed for a meaningful analysis is at least

three years of data to separate reversible and irreversible effects.

7.2 Recommendation for future research

e Multivariate statistical methods were proved to be useful in data reduction for
instrumentation in concrete dams. The simultaneous analysis of different types of
instrumentation could not be considered in many cases due to limitations in data
availability and quality. More studies are needed and more data should be
collected with an appropriate frequency of readings to develop these methods
further and integrate them into regular dam behavior studies that are monitored by
government control.

e More research is needed to improve the near real time surveillance of the dam
using monitoring data and for setting a hierarchy of alarm levels that allows an
early detection of potential dam safety related problems while minimizing costly
false alarms.

e Measurements complement visual observations as a continuing surveillance
system of the threat to life, property, and the environment, and assist in
investigating unexpected or abnormal performance. Research is also needed to
integrate qualitative visual inspection observations and dam instrumentation data

in an efficient dam surveillance methodology.
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e Application of multivariate methods must be further developed to model the
changes in dam responses.

e Setting a methodology based on modes of failure, A methodology is needed to be
developed to assignl) instrumentation which can detect different failure modes,
2)devise analysis and diagnosis tools based bivariate/ multivariate statistical

methods

7.3 Contribution to the Knowledge

In most countries throughout the world, interest in dam safety has risen significantly in
recent years. Aging dams, new hydrologic information, dam construction and population
growth in flood plain areas downstream from dams have resulted in an increased
emphasis on dam safety, operation and maintenance.

Instrumentation data is often accumulated, but its engineering significance is not fully
exploited in dam surveillance. The output of dam monitoring system, which is a main
part of dam surveillance, has to be thoroughly analyzed to alert dam wardens of any
possible anomalies. The need for effective analysis tools of dam monitoring data was
recently emphasized in the latest International Commission of Large Dams (Dibiagio,
2000). Dam monitoring practice has not been keeping pace with recent advances in
statistical analysis methods. 'There is a need to develop new analysis tools to help dam

safety engineers in the evaluation of dam behaviors.'

Original contribution of this research can be divided into three main areas:

(1) Data reduction using multivariate statistical methods and in particular principal
component analysis

(2) Anomaly detection

(3)-Application of Artificial Neutral Networks to dam monitoring data

Principal component analysis can be used as a powerful tool in analysis of dam

monitoring data. Principal components can be effectively used to monitor a dam mstead

of monitoring all the individual instruments. If a statistically significant change is
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detected in one of the principal components, individual instruments highly correlated
with the principal component can be reviewed. This can significantly reduce the time and
cost of dam surveillance.

The second major contribution is with respect to detection of anomalies in
instruments readings. In dam safety practice these alarm levels are chosen based on
analysis of each individual instrument. However, as some of the measurements are noisy
or unreliable, this approach increases the chance of randomly finding an instrument out of
control. Thus the false alarm rate (or probability of Type 1 error) is increased if each
variable is analyzed and controlled separately because the more variables there are, the
more likely it is that one of these instruments may be out of control and indicate an
adverse condition when the dam is actually in a safe state. Multivariate statistical
methods overcome some of these difficulties and reduce the probabilities of false alarms
generated by a dam monitoring system.

Finally, the third contribution is application of Artificial Neural Networks to dam
monitoring data. Back propagation neural networks are used as an alternative estimation
method in analysis of dam monitoring data. Back propagation neural networks can be
effectively used to model linear and non-linear relationships. However, they are more
computationally demanding and training of the networks takes more time than statistical

models.
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