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Abst.ract 

Major dams in the world are often instrumented in order to validate numerical models, to 

gain insight into the behavior of the dam, to detect anomalies, and to enable a timely 

response either in the form of repairs, reservoir management, or evacuation. Advances in 

automated data monitoring system makes it possible to regularly collect data on a large 

number of instruments for a dam. Managing this data is a major concem since traditional 

means of monitoring each instrument are time consuming and personnel intensive. 

Among tasks that need to be performed are: identification of faulty instruments, removal 

of outliers, data interpretation, model fitting and management of alarms for detecting 

statisticaHy significant changes in the response of a dam. 

Statistical models such as multiple linear regresslOn, and back propagation neural 

networks have been used to estimate the response of individual instruments. Multiple 

!inear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) models and 

(2) models that consider concrete temperatures as predictors. 

Univerariate, bivariate, and multivariate methods are proposed for the identification of 

anomalies in the instrumentation data. The source of these anomalies can be either bad 

readings, faulty instruments, or changes in dam behavior. 

The proposed methodologies are applied to three different dams, Idukki, Daniel Johnson 

and Chute-à-Caron, which are respectively an arch, multiple arch and a gravit y dam. 

Displacements, strains, flow rates, and crack openings ofthese three dams are analyzed. 

This research also proposes various multivariate statistical analyses and artificial neural 

networks techniques to analyze dam monitoring data. One of these methods, Principal 

Component Analysis (PCA) is concemed with explaining the variance-covariance 

structure of a data set through a few linear combinations of the original variables. The 

general objectives are (1) data reduction and (2) data interpretation. Other multivariate 

analysis methods such as canonical correlation analysis, partial least squares and 
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nonlinear principal component analysis are discussed. The advantages of methodologies 

for noise reduction, the reduction of number of variables that have to be monitored, the 

prediction of response parameters, and the identification of faulty readings are discussed. 

Results indicated that dam responses are generally correlated and that only a few principal 

components can summarize the behavior of a dam. 
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Résumé 

Les grands barrages sont souvent instrumentés afin de valider les modèles numériques, 

pour développer une meilleure compréhension du comportement des barrage, détecter des 

anomalies, et permettre une réponse opportune sous forme de réparations, de gestion de 

réservoir, ou d'évacuation. Les progrès récents dans les systèmes de surveillance 

automatisés permettent la collecte simultanée des données sur un grand nombre 

d'instruments. La gestion de ces données est un souci important puisque les moyens 

traditionnels d'analyse pour chaque instrument sont laborieux .. Les tâches d'analyse qui 

doivent être accomplies sont : (l )l'identification des instruments défectueux, (2) 

l'élimination des valeur errorrées ou aberrantes la sélection et l'ajustement des modéles et 

la gestion des alarmes pour détecter les changements statistiquement significatif dans la 

réponse d'un barrage. 

Des modèles statistiques tels que la régression linéaire multiple et les réseaux 

neurologiques ont été employés pour estimer la réponse de différents instruments. Les 

modèles de régression linéaire multiple sont de deux sortes: (1) les modèles 

Hydraulique-Saisonnier-Temps (HST) et (2) les modèles qui considèrent les températures 

du béton parmi les prédicteurs. 

Des méthodes à une, deux, ou plusieures variables sont discutées. pour l'identification des 

anomalies dans les données d'instrumentation. La source de ces anomalies peut être des 

lectures errorrées, des instruments défectueux, ou un changement de comportement du 

barrage. 

Les méthodologies proposées sont appliquées à trois barrages, Idukki , Daniel Johnson et 

Chute-à-Caron, qui sont respectivement des barrages voûtes,à voûtes multiples et un 

barrage poids. Les déplacements, les contraintes, les débits, et les ouvertures de fissures 

ou de joints de ces trois barrages sont analysés. 
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Diverses méthodes d'analyse statistique multivariables et d'analyse par réseaux 

neurologiques sont également discutées pour analyser des données d'instrumentation du 

barrage. Une de ces méthodes, l'Analyse par Composantes Principales (ACP) a pour 

objectif de décrire la struture de variance-covariance des données par le biais de quelques 

combinaisons linéaires des variables initiales. Les avantages principaux de cette méthode 

sont; Cl) le réduction des données et (2) l'intérpretation de données. Le nombre de 

variables qui doivent être surveillées peut être réduit sans perte significative 

d'infonnation. D'autres méthodes multivariables telles que l'analyse canonique, l'analyse 

PLS et l'analyse non-linéaire par de composant principales sont discutées. 

Les avantages de ces méthodes pour la réduction du bruit de fond, la réduction du nombre 

de variables qui doivent être surveillées, la prédiction des observations, et l'identification 

des lectures erronées sont discutés. Les résultats indiquent que les données 

d'instrumentation du barrage sont corrélées et que seulement quelques composantes 

principales peuvent décrire le comportement du barrage. 
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CHAPTE 1 

le Introduction 

1.1 General 

For centuries, dams have provided mankind with such essential benefits as water supply, 

flood control, recreation, hydropower, and irrigation. They are an integral part of society's 

infrastructure. Dam failures are rated as one of the major "low probability, high-loss" 

events. The large number of dams that are 50 or more years old is a matter of great 

concern, since they are generally characterized by increased risk due to structural 

deterioration or inadequate spillway capacity (NRC, 1983). Performance monitoring of 

existing dams is an essential part of a dam safety program. 

Performance monitoring of dams is accompli shed by conducting visual observations, and 

reviewing and analyzing data coHected from instruments, which measure critical 

Îndicators of structural behavior. "Instrumentation of a dam furnishes data to determine if 

the completed structure is functioning as intended and to provide a continuing 

surveillance of the structure to warn of any developments which endanger Hs safety" 
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(Post, 1985). The means and methods available to monitor phenomena that can lead to 

dam failure include a wide spectrum of instruments and procedures ranging from very 

simple to very complex. Any pro gram of dam safety instrumentation must be properly 

designed and consistent with other project components, must be based on prevailing 

geological and geotechnical conditions at the dam, and must include consideration of the 

hydrologie and hydraulic factors present both before and after the project i8 in operation. 

Measurements complement visual observations as a continuing surveillance system of the 

threat to life, property, and the environment, and assist in investigating unexpected or 

abnormal performance. A full measurement pro gram covers system design, installation, 

operation, maintenance, evaluation of instruments and measurement systems for dams, 

appurtenant structures, and foundations. Instrumented monitoring includes measurements 

of displacement, strain, stress, pressure, loads on structural members, and seepage and 

drainage along with environmental factors that affect dam behavior such as temperatures, 

reservoir level, and precipitation. Data are collected and observations are made, 

processed, and evaluated by qualified personnel. 

1.2 Dam Instrumentation objectives 

The principal objectives of dam instrumentation may be generally grouped into three 

categories, 1) analytical assessment, 2) legal evaluation, 3) development and verification 

of future designs. A wide variety of instruments may be utilized in a comprehensive 

monitoring pro gram to ensure that aU critical conditions for a given project are covered 

adequately (USACE, 1995). 

1) Analytical assessment: Analysis of data obtained from instruments can be used to 

verify design parameters, verify design assumptions and construction techniques, analyze 

adverse events, and verify apparent satisfactory performance as discussed below. 

a) Verification of design parameters: Instrumentation may be utilized to verify design 

parameters with observations of actual performance, thereby enabling engineers to 

determine the suitability of the design, b) Verification of design assumptions and 

construction techniques: Experience has shown that most new or modified designs and 
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construction techniques are not readily aceepted until proven satisfactory on the basis of 

actual performance. Data obtained from instrumentation can aid in evaluating the 

suitability ofnew or modified designs, c) Analysis of adverse events: Wnen a failure, a 

partial failure or a severe distress condition has occurred at a dam project, data from 

instrumentation can be extremely valuable the determination of the specifie cause or 

causes of the event. Also, instrumentation is often installed prior to, or during, remedial 

work at a site to determine the effectiveness of the improvements and the effeet of the 

treatment on existing conditions, d) Verification of apparent satisfactory performance: 

Positive indications of satisfactory performance are very reassuring to evaluating 

engineers and operators of a dam project. Instrumentation data can prove to be valuable 

should sorne future variation in historic data occur, signaling a potential problem. 

2) Legal evaluation: Valid instrumentation data can be valuable for potentiallitigation 

relative to construction daims. It can also be valuable for evaluation of subsequent daims 

relative to changed conditions. In many cases, damage daims arising from adverse events 

can be of such a magnitude that the cost of providing instrumentation is justified on this 

basis alone. 

3) Development and Verification of future designs: Analysis of the performance of 

existing dams, and instrumentation data generated during operation, can be used to 

advance the state of the art of design and construction of dams. 

A vailable instrumentation data has to be analyzed thoroughly smce it is a mam 

component of dam safety investigation. A wide variety of devices and procedures are 

used to monitor dams. The following features of dams and dam sites most often 

monitored by instruments: 1) Movements (horizontal, vertical, rotational and lateral), 2) 

Pore pressure and uplift pressures, 3) Water level and flow, 4) Seepage flow, 5) Water 

quality, 6) Temperature, 7) Crack and joint size, 8) Seismic activity, 9) Weather and 

precipitation, 10) Stress, and Il) Strain. 
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1.3 Motivation 

In most countries throughout the world, interest in dam safety has risen signifieantly in 

reeent years. Aging dams, new hydrologie information, dam construction and population 

growth in flood plain areas downstream from dams have resulted in an inereased 

emphasis on dam safety, operation and maintenance. Historical data shows that the most 

prevalent category of potential failure modes for a concrete dam are those related to 10ss 

of foundation support for the dam. For both gravity and arch dams, adequate support from 

the supporting rock is essential to the structural integrity of the dam. Significant 10ss of 

this foundation induces stresses for which the dam is not designed. This leads to cracking 

of the dam, and potentially hs failure. For arch dams, thrust support provided by the 

abutments is particularly crucial, given the high loadings transmitted to them (Veesart, 

1997). The first phase of the dam safety process involves monitoring dams to identify 

potential deficiencies. Monitoring involves making periodic inspections and collections 

and evaluating instrumentation data. 

In establishing an instrumentation program, it is important to understand the objectives of 

the program, the need for each type of instrument, the environment in which the 

instrument will be located, the difficulty in gathering the data, and the time and effort in 

reducing and understanding data generated. The wrong type of instrument may not 

measure the desired behavior. Reliability of instruments also has to be regularly checked. 

It is necessary to determine which of the instruments are rehable and which should be 

retained (Stateler et al., 1995). 

Instrumentation data is often accumulated, but its engineering significance is not fully 

exploited in dam surveillance. In many instances the amount of effort put into analysis of 

data is small and out of proportion relative to the effort put in instrumentation of the dam 

and gathering the data. The output of dam monitoring system, which is a main part of 

dam surveillance, has to be thoroughly analyzed to alert dam wardens of any possible 

anomalies. The need for effective analysis tools of dam monitoring data was recently 

emphasized in the latest International Commission of Large Dams (Dibiagio, 2000). Dam 
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monitoring practice has not been keeping pace with recent advances in statistical analysis 

methods. There is a need to develop new analysis to01s to help dam safety engineers in 

the evaluation ofthe dam behavior. 

A method, which can extract important features from the data, would be a useful to01 in 

dam safety studies. Since structural responses of a dam are caused by the combination of 

several factors, the multivariate data analysis methods present several advantages: 1) it is 

cost effective by reducing the number of individual analyses, 2) it can separate the signal 

component from noise across a group of instruments given that the noise component Is by 

definition uncorrelated from one instrument to another, 3) it can identify dominant 

patterns ofbehavior. 

The definition of acceptable ranges for instrumentation readings can be used for 

immediate data review during data collection, so that anomalies can be quickly identified 

(Veesaert, 1997). It is recognized that trying to establish the range of expected monitoring 

data might be difficult in sorne cases. There is always a trade-off between setting the 

range of expected dam performance too narrowly where the limits may be exceeded 

frequently, and setting performance ranges too broadly where the danger is that adverse 

behavior could occur within the limits of so-caUed safe performance. When 

instrumentation data is not witrun pre-established limits, prompt evaluation of the safety 

of the dam should be undertaken wruch may lead to: 1) Assessing, and if needed, 

resetting the boundaries of satisfactory performance of the dam, as measured by 

instruments, 2) Heightened awareness of the condition of the dam and intensified 

monitoring, 3) Reducing the reservoir level, 4) Warmng, and potentiaHy evacuating 

downstream area and, 5) Taking structural corrective actions. Establishing alarm levels is 

an important part of dam safety programs. In dam safety practice these alarm levels are 

chosen by statistical analysis for each individual instrument. However, as sorne of the 

measurements are noisy or unreliable, this approach increases the chance of randomly 

finding an instrument out of control. The more variables there are, the more likely it is 

that one of these instruments may be out of control and indicate an adverse condition 
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when the dam is actual1y in a safe state. Thus the faise alarm rate (or probability of Type 

1 error) is increased if each variable is analyzed and controlled separately. 

1.4 Objectives 

The principal objectives of tms thesis are: 

(1) Application of Multivariate analysis and neural networks for dam monitoring data 

explorationlanalysis. 

(2) The identification of structural anomalies, faulty instruments and readings from 

data 

1.5 Scope and outline of the thesis 

Chapter 2 presents a summary of previous research on statistical and numerical analysis 

methods for dam monitoring data methods used in other fields are aiso reviewed. Chapter 

3 describes in detail the statistical analysis and neural network methods used in this thesis 

for the analysis of dam monitoring data. Sources of measurement errors are described in 

Chapter 4, followed by a description of dam instrumentation with an emphasis on 

concrete arch and gravit y dams. In Chapter 5, the methods discussed in Chapter 4 are 

applied to data from the Idukki dam in India. In chapter 6, the methods are aiso applied to 

data from Daniel Johnson dam and to Chute-à-Caron dam. In Chapter 7, a summary of 

the thesis, and of the major contributions is presented, followed by suggestions for future 

research. 

6 



c P E 2 

2" Review of previous research 

2.1 Introduction 

Dam safety relies on a carefully planned surveillance pro gram, which consists of stability 

checks, measurements and tests on materials. A key part of such a pro gram is a visual 

examination of the dam complemented with monitoring data from the dam. A basic 

requirement of managing dam safety is monitoring of the structure in order to collect 

data, which are then interpreted to understand the state of the dam (Gresz, 1993). 

Automatic instrumentation and data acquisition systems are used to monitor the real time 

behavior of dams. The output of monitoring systems is presented locally to dam wardens 

to alert them of possibly dangerous situations. Telemetry systems are used to send the 

information to a central database, where experts evaluate the starus of the structure 

through the interpretation of data. Monitoring systems pro duce a large quantity of data, 

which has to be managed, and in case of automatic dam monitoring, managed in real time 

(Crépon et al., 1999). 

The extent and nature of the instrumentation depends on the complexity of the dam, the 

size of the impoundment, and the potential for life and economic losses. A number of 
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instruments on existing dams are initially instaUed to monitor the behavior of the dam 

during first impoundment and are orten irrelevant for monitoring the behavior during Its 

service life; others are incrementally instaHed as defects become apparent. A 

comprehensive analysis of data provided by these monitored devices Is a valuable tool in 

dam safety investigation. 

The need for effective analysis tools was recently emphasized in the latest International 

Commission of Large Dams (ICOLD) General Report (Dibiagio, 2000). Two of the 

biggest problems in monitoring have been data processing and presentation, and the 

analysis of data. A few decades ago, data gathering and processing was done manually. 

The time lag between measurements and interpretation was often very long. The 

introduction of computers and specialised software has more or less eliminated the first 

problem, but the second problem still exists. In many instances the amount of effort put 

into analysis and Interpretation of data is small and out of proportion relative to the effort 

put in instrumentation of the dam and gathering the data. Performance data is often 

accumulated, but its engineering significance lS not fully exploited. 

When correctly installed and configured, automatic data acquisition systems with 

properly located geotechnical, structural, and hydrological sensors provide crucial 

information for operating the reservoir safely over the long term. When the data IS 

scrutinized by human judgment on a regular and periodic basis, a well-maintained 

instrument automation system can provide a reliable performance database for the 

structure during its operation over several years. This information helps the owner to 

recognize an abnormal response under normal conditions, and to monitor the behavior 

during extreme hydrological or seismic events. 

Two types of models have traditionally been used in dam monitoring, (1) statistical and 

(2) deterministic models. Statistical models are based on correlations between 

environmental factors (impounded water level, ambient temperatures, ice pressure) and 

dam responses (displacements, pressures, flows). These correlations are estimated by 

performing statistical analysis of historical data (End, 1980). Statistical models provide 

the answer to a basic question: ls the dam behaving as it did in the past? Statistical 

models are used to interpolate the response within the range observed historicaHy and 
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uncertainty and unpredicted responses with statistical models typically increased when 

extrapolating behind the range of values observed historically. Deterministic models can 

be used to model long-term non-reversible deformations to predict behavior at extremely 

low or high reservoir levels, at extreme temperatures, and during seismic events. This 

method is used to answer the foUowing question: Is the dam behaving properly for given 

loading conditions? (Lombardi, 1999). A good agreement between statistical forecasts 

and measurements implies that the dam behaves as it did in the past. 

2.2 Statistical Methods of D am Monitoring 

Various statistical procedures have been proposed for the analysis of monitoring data 

(Silva Gomes et al., 1985). A model of quantitative analysis is a functional relationship 

between observed effects and corresponding actions. These models rely on sorne basic 

assumptions: 1) The analyzed effects correspond to a period which the configuration of 

the structure remains the same. 2) The response of the dam can be separated in two parts, 

a) reversible effects due to the variation of hydrostatic level and air temperature, and b) 

irreversible effects which are function of time and can be induced by creep, alkali 

aggregation reaction, or other damage. A general statistical model for the response of an 

instrument can be formulated as follows: 

2.1 

where F(t) 1S an irreversible response associated with consolidation, settling, degradation, 

or creep, G(H) is the response due to the hydrostatic level, R(T) 1S the response to 

temperature, and E 1S the residual error. In many cases, thermal inertia creates a delayed 

response between temperature variation and instruments readings. Researchers have 

proposed various functions for the modeling different components of responses. 

The hydrostatic-season-time model (HST), (Crépon et al., 1999). is a regression model, 

which takes Ïnto account the hydrostatic level as a fourth degree polynomial the seasonal 

effect, as a sum of four Sin functions, and T(t) is Irreversible effects. Rain effect can aiso 

be included for modeling the piezometer rearlings. Least square criteria is used to 

estimate the model coefficients. The HST model is extremely robust and yields 
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satisfactory results. It gives in a simple nonlinear function of water level and a periodic 

function (Figure 2.1), which is comparable to a delayed response to annual and half­

yearly cycles which the total extreme loads occur. One of the main gaps in this model 

is the laek of physieal information provided by parameters (Bonelli et al., 2001). The 

polynomial expression for the effeets of water level was originally based on a mechanieal 

analysis of the water level on the displacements of an arch dam, based on resistanee of 

materials. 

D(t) = H(z) + SeO) + T(t) 

where 

H -Hmin z= , 
2m' 

t'=t-to, and e = -
365 Hmax-Hmin 
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Figure 2.1, Perioille funetions used in HST model 
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Hmin, Hmax, and to are respeetively the minimum and maximum reservoir water level, and 
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the starting time for data collection considered for statistical analysis. 

Enel (1980) use a statistical model to foreeast the behavior of dams. The effeet of water 

level, ambient temperature, and creep are considered. A non-linear model 1S used to 

describe the effeet of reservoir level variation 

2.6 

where Fk (H) is a structural response (e.g. displacement) and H i8 reservoir water level. 

The order of the model is usually less than 5. 

For estimating the thermal displacements two methods are proposed. The displacements 

can either be formulated as: 

2.7 

Where ekl. Cja, ... , ~n, are unknown coefficients and h(t), ... , lu(t) are measured concrete 

temperatures. If no temperature measurements are available, thermal displacements can 

be formulated as: 

Ek(t) = Eli sin lOt + EI2 coswt + ... + EpI sin plOt + E p2 cos pOJt 2.8 

where û) = ~1t , El h El2, ... , Ep2 are sorne unknown coefficients, and T is the period 

usually equal to 1 year. Irreversible displacements can be described by a combination of 

exponential and polynomial functions oftime such as: 

2.9 

where a}, a2, a3, k1, k2 are sorne unknown coefficients. The total displacement results 

from the superposition of the three different types of displacements. 

2.10 

The observed displacements are denoted by Llk (t). The residuals lO(t) are 

c(t) = Ll k (t) - 6k (t) 2.11 

UnknO\JVl1 parameters are estimated by least squares. After the estimation of the model 
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parameters the time series of residual is obtained. The Variance of the residuals cr is 

used to define confidence intervals. It is assumed that residuals follow a normal 

distribution, therefore, prohabilities of s(t)::S; na can be calculated. For example for n=2, 

it can he assurned that the measurements must be between values of 8k(t)-2cr and 

8k(t)+2cr with probability of95%. 

Guedes et al. (1985) use linear regression to relate individual dam instrument readings to 

reservoir, thermal, and time effects. This method is used to separate the effects, to 

determine whether or not these factors are independent of each other and to determine the 

best empirical equations. 

Kalkani (1989) uses polynomial regression to monitor individual piezometers of the 

Kremasta embankment dam located in Greece. A portion of the data was used for 

estimating the relationship between reservoir level and piezometer levels, which was then 

used to forecast the piezometer levels for another portion of the data set and calculate the 

mean square of the forecasting errors. Separate models were used for predicting observation 

for increasing or decreasing reservoÏf level. Measurements higher than the predicted values 

plus one standard deviation were used to detect increased seepage through the dam, while 

measurements 10wer than the predicted values minus one standard deviation were used as 

an indication of malfunction of the piezometer. Temperature, time and rain effects were 

not considered. 

Gilg et al. (1982) describe results of data analysis for three Swiss dams. The Mauvesian 

dam, is an arch dam of 237 m height that shows that the daily oscillation of the air 

temperature penetrates to a depth of 50-60 cm and 80 cm respectively in the downstream 

and upstream phases. At a depth of 3 m, the yearly variation of temperature is only 5-6°C, 

which ls equal to about 113 of the variation of the monthly average ambient temperature. At 

a depth of 15 m the variation of temperature is only 0.5-1 oC and the average temperature 1S 

higher than the average annual ambient temperature. This was attributed to the influence of 

solar radiation. Time lags of 0.5, 2 and 5 months are observed between concrete 

temperatures and ambient temperature at depths of 1,3 and 15 m respectively. A lag of one 
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month is observed between the maximum of reservoir level and the maximum deformation, 

which is explained by the temperature effect. An Irreversible displacement of 18 mm was 

recorded during the 17 years of observation. Uplift pressures show that there 1S no water 

pressure in the upstream part ofthe central blocks, which shows that the grout curtain is very 

effective. 

Goguel et al. (1992) describe the instrumentation of Kariba dam, a 128-m high arch dam in 

Kenya. Strain meters show a continuous drift, due to creep and shrinkage effects. The 

maximum creep rate is 23 micronlmeter/year. Scanning of concrete samples with an 

electron microscope detected the presence of an expansive gel typical of alkali aggregate 

reaction. 

BIas (1989) describes a methodology used in the analysis of an arch dam that was 

exhibiting moderate irreversible upstream displacements. A statistical mode! was 

developed to estimate the irreversible radial components of displacements at the top of 

three dam blocks. Three different time variables are used to capture trends as a piecewise 

linear function. The other variables considered in the model are average air temperature 

over the previous eight weeks, temperature on the day of the observation, and the water 

level. 

The order of importance of the variables 1S time, averaged air temperature, reservoir 

level, and daily air temperature. Higher orders of the reservoir level were rejected 

because reservoir level oscillations were very small during the time interval considered. 

Irreversible displacements of up to 2mm Iyear were observed. A finite element analysis 

of the dam was performed to consider: 1) the non-linear behavior of the material, 2) a 

time-dependant volumetrie expansion due to water penetration, and 3) representation of 

construction joints. It was concluded that swelling was the main reason for observed 

anomalies. 

Hulea et al. (2000) describe statistical and deterministic models used for monitoring the 

Tamita arch dam. Crest displacements were aImost 60% larger than predicted 

displacements (70 mm versus 45 mm). However, the dam structure did not show any 
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significant signs of deterioration. Different functions were used for estimating the 

temperature effect in statistical models. The analysis performed with statistical models 

showed mat 1) alarm level or threshold for monitored data cannot be established at the 

design stage. Adynamie process has to be implemented that aUows for updating the 

acceptable limits in terms of the evolution of dam behavior, 2) the best model was based 

on measured air temperatures as opposed to a HST mode!. 

Chouinard et al. (1995) apply principal component analysis (PCA) to estimate the 

principal modes of deformation of a dam from a historical record of instruments. The 

PCA was applied independently to two groups of instruments, one for data from stress 

meters and the second for data from instrumented cylinders. The correlations between the 

scores of the principal components and factors such as reservoir water level, ambient 

temperature, and time were analyzed. 

Comité Suisse des barrages (2000) describe a method "measured-calculated" for 

modeling dam behavior and detecting anomalies. The method consists of the following 

steps, 1) monitor and model dam behavlor through instruments, 2) calculate the same 

quantities through numerical models, 3) compare the predictions and measure values. 

There is no restriction for the type of dam to which the method can be applied. In 

Switzerland it has been applied to both arch and gravit y dams. Radial displacements 

(upstream-downstream) are generally used as response variables but the method could 

also be applied to tangential displacements, pressure meters, joint movement and other 

quantities. Reservoir level, concrete temperature and age are the variables considered. 

The general model can be written as: 

R(t,env) = P(t,env) + D(t,env) 2.12 

in which R Is observed value at time t and environmental conditions of env. P is the 

estimated value and D ls the error accounting for modeling and observation errars. Three 

different rnethods are used for estimating the observed values, 1) statistical models, 2) 

numerical models, and 3) hybrid models, which combine the first two methods where 

sorne parameters of the numerical model are optimized using measured values. The 
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statistical method is very similar to HST models. Table 2.1 presents the relationship 

between these different methods. 

Bonelli et al. (2001) describe a model for performing delay analysis on pore pressure 

measurements. The method is based on Darcy's law and Richard's equation of seepage 

Table 2.1, Relation between different Methods 

Modeling funetions 

Empirieal ByModeling 

4-< Deterministic 
Cl '" Cl Cl - !:l § .... Z Z C\$ 

!:l 0 (1) ..... S ..... (1) ..... 
tiî ~ 

CIl ..... tiî ra ~ Statistical Hybrid ~ (1) 
00 Cf.l ..... .... 

ëa A ~ 
(1) CZl ~ 

U >< 

No Yes 

Modeling of the dam 

and invoives the use of a linear dynamic system accounting for the contribution of non­

ageing factors. Delayed effects are due to dissipative behaviour (viscoelasticity, seepage, 

etc.), and are therefore irreversible. The delayed effect of water level was calculated 

based on convolution of the impulse response of the dam structure and water level. 

Bourdarot (2001) presents a simplified method for analysing the magnitude of the 

observed deformation and the deformation patterns in Arch dams. After an initial phase 

following the reservoir impounding, during which the irreversible displacements toward 

the downstream are observed, an inverse evolution of dams towards the upstream is 

observed after 30 to 50 years of operation. Simple finite element models were developed 

to illustrate the different pattern of irreversible effects due to shrinkage and foundation 

seUlement. Displacement rates are estimated from actual case histories and applied to an 

arch dam. Creep, shrinkage, and settlement lead to a beneficial compression on the 

upstream face countering the effect of the reservoir level. They aiso cause tensile stresses 
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at downstream base of the dam, which sometimes cannot be balanced at low reservoir 

levels. The model for shrinkage and creep is very simple, stress dependencies and loading 

history are not taken into account. 

Paxton (2001) describes the structural monitoring system for Milliken dam. A spaHed 

block from the downstream face of the dam in the 1950's led to the installation of 

Carlson resistance wire joint meters to monitor changes in six of the cracked or separated 

lift joints. Joint meter readings indicated that crack opening mostly occurs during the last 

6 m of reservoir filing. The monitoring system was improved in 1998 by measuring crest 

deformation, installing crack meters, and replacing the Carlson joint meters. It was 

concluded that deformations resulting from static loading conditions have stabilized and 

do not threaten the safe operation ofthe dam. 

Crepon et al. (1999) provide a description of Monitor, a software based on the HST 

model, developed for dam monitoring data analysis. The database of the program 

includes: description of the dam, location and description of measuring instruments, 

special functions such as calculation of physical measurements from raw measurements, 

and selection of measurements intervals. The software gives a spatial representation of 

measured quantities, and has built-in functions for estimating the derivatives and integrals 

of original variables. These new derived variables can be used as explanatory variables 

and improve the model precision. Considering the accumulated rainfall over a ten-day 

period and the speed at which the reservoir changes, results in significant improvement 

for modeling of piezometer levels. 

The statistical models discussed analyse relationships between environmental factors 

(impounded water level, ambient temperatures) and dam performance (i.e. displacements, 

pressure, flow). Statistical methods are based on the analysis of past behaviour of the 

dam, which is expected to remain the same during normal loading condition. Another 

approach is numerical analysis of the dam based on information on loads, properties of 

materials, and physical laws governing the stress-strain relationsrup. One advantage of a 

numerical model is that it can preruct the response of a dam to extreme effects such as 

16 



floods and earthquakes. Sorne of numerical analysis methods applied in dam monitoring 

are discussed next. 

2.3 Numerical analysis 

Arch dams (Figure 2.2) rely significantly on arch action to transfer horizontalloads to the 

abutements. Arch dams may be divided, according to the geometry oftheir cross sections, 

into thin, moderately thin, and thick arch sections. Table 2.2 identifies each of these types 

with regard to crest thickness (te) and base thickness (tb), each 

Figure 2.2, A top view of an Arch dam 

expressed as a ratio to the height (H), and the ratio ofbase-to-crest thickness. Under static 

loads, a well-designed areh dam should develop essentially compressive stresses, which 

are significantly less than the compressive strength of the concrete. However, the 

analyses of monolithic arch dams with empty reservoirs, with low water levels, or with 

severe low temperatures have indicated that zones of horizontal tensile stresses can 

develop in the dam on the upstream and downstream dam faces (USACE, 1994). 

Although concrete can resist a limited amount of tensile stress, it is important to keep 

tension to a minimum so that the arch has sufficient reserve strength if subj ected to 

additionalloads. 

When the design limits are reached or, as in the case of many existing dams, when the 

dam is not designed for severe loading conditions, sorne cracking can occur at the base 

and near the abutments. These horizontal stresses tend to open the vertical contraction 

joints, which are expected to have little or no tensile strength. It is apparent that joint 
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opening will relieve any indicated arch tensile stresses, and the corresponding loads can 

be redistributed to cantilever action provided that tensile arch stresses are limited to only 

a small portion of the dam. 

Table 2.2, Arch dam Types (USACE, 1994) 

tclH tJH tbi'tc 

Thin arch 0.025-0.05 0.09-0.25 2.9-5 

Moderately thin 0.025-0.05 0.25-0.40 5-10 

Thick gravit y-arch 0.05-0.10 0.5-1.0 8-15 

The need for an acceptably accurate method of analyzing arch dams led to the 

development of the trial load method based on structural mechanics concepts in the 

1960's. The arch dam is decomposed into a series of horizontal arches and vertical 

cantilevers. The trial10ad method is based on the assumption that the hydrostatic load is 

divided between cantilever and arch elements in a proportion that results in equal arch 

and cantilever deflections at an points. This method can neither fully represent the solid 

body of an arch dam nor refleets the effeet of foundation. Since the 1970's the linear 

finite element method (LFEM) has been employed for stress analysis of dams. The finite 

element method can be applied to complex geometries, and ean accommodate variations 

in material properties whitin the mode!. Finite element methods have been used for both 

static and dynamic analysis of dams. Sorne of the applications for analysis of dams are 

reviewed next. 

Veltrop et al. (1990) develop a finite element model of one of the arches of the Daniel 

Johnson multiple arch dam. The analysis consists of a 2D transient heat flow analysis and 

a 3D-stress analysis. The results of the 2D-heat flow analysis were used to define the 

critical temperature gradient, which then was applied as part of the loading for a 3D­

stress analysis. The loading conditions considered were the hydrostatic and dead load and 

winter thermal load conditions. It was eoncluded that the first set of cracks that appeared 

on the arches was due to geometrie discontinuities and that the second set of cracks was 
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fonned because ofwinter load conditions. 

Léger et al. (1993) describe a finite element modeling procedure for obtaining seasonal 

temperature and stress distributions in concrete gravit y dams. Effects of the reservoir, 

foundatiol1, and air temperature distributions, and heat supply from solar radiation on the 

thennal response of a dam are discussed. Two separate analyses are perfonned, a thennal 

analysis of a dam, to define the input, followed by the stress analysis of the system. 

Parametric analyses are performed to evaluate the effects of geometrical, thermal and 

mechanical properties; reservoir, air and foundation temperature variations, and heat 

supply from the sun on the thermal and mechanical behavior of gravity dams. Sorne of 

main conclusions were: 1) displacements occur when the mean temperature of the top 

dam section is lowest, 2) the daily air temperatures greatly effects the surface thermal 

tensile stresses; when actual daily air temperatures are used, the maximum surface 

stresses increase by a factor of 1.5 to 2, as compared to a model based on average daily 

temperatures over 22 years period, 3) solar radiation has a significant effect on the depth 

of frost penetration while its effects on stresses are negligible, 4) the height of the dam 

has little effect on the depth of frost penetration, 5) maximum crest displacements occur 

when the mean temperature of the upper section is lowest. 

Bouzoubaâ et al. (1997) investigate the effects of extemal temperature variations on mass 

concrete through laboratory experiments and finite clement analysis. A concrete block, 

instrumented with thermocouples and vibrating wire extensometers and exposed to 

temperature variations on one face, was used to simulate the behavior of the downstream 

face of a concrete gravit y dam exposed to thermal cycles. A finite element model for 

thermal analysis was developed and results were compared with the experiments. The 

validated numerical model was then used to study the effects of the variation of outside 

temperatures on the behavior of gravit y dam. Sorne of the main conclusions were that 1) 

when the effect solar radiation is not inc1uded, the depth of frost penetration can be 

overestimated, 2) the maximum principal tensile stress occurs in coldest month of the 

year at the toe of the dam near the downstream face. 

Zhang et al. (1997) discuss the effect of the initial temperature and convection 
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coefficients in transient thennal analysis of massive concrete structures. Detennination of 

a precise convective coefficient for the heat exchanged between concrete and air is 

complicated. A finite element model of a generating station structure was developed and 

results were compared with measurements. Different unifonn initial temperatures were 

considered. The foUowing conclusions were made: 1) the heat transfer behavior of a dam 

is not sensitive to the variation in the heat convection coefficient when the coefficients 

are within a certain range, 2) no matter what the assumed initial temperature is, after 9-10 

months the results of nurnerical model coïncide with measurement data. 

Pedro et al. (1985) evaluate the safety of a Portuguese cracked arch dam in Portugal. The 

dam is 130 m in height with a thickness varying from 30 m at its base to 4.6 m at its crest, 

and a span of 60 m. Horizontal cracks developed at the downstream face of the dam near 

the crest. Triangular flat shen elements are used to mode! the arch dam. Two different 

load cases are considered: 1) dead load and hydrostatic load and, 2) the dead load, 

hydrostatic 10 ad, and loads due to temperature variations. It was concluded that the 

cracking at the downstream face of the dam did not significantly affect its stability. The 

recornrnendation was that the reliability of a numerical model should be evaluated by 

comparison of the results with observations under nonnal operating conditions (and 

interpretation of eventual incidents), and by analysis of incidents that occurred in past. 

Tahmazian et al. (1989) investigate the stability of the Daniel Johnson multiple arch dam. 

A three-dimensional non-linear fimte element model using the smeared crack technique 

was developed to reproduce the observed behavior of the dam, to assess its safety, and to 

he1p evaluate scenarios for remedial work. First, the winter temperature distribution in the 

dam was calculated using transient heat flow finite element analysis. The winter 

temperature was used in structural analysis in addition to water load and dead load. The 

conclusions were that the finite element model successfully reproduced the observed 

stresses and deflections, and that observed crack patterns and the thermal cracking did not 

significantly affect the load carrying capacity of the structure. 

Barrie (1995) studies the safety of Gerber arch dam. Gerber dam, a 26-m high variable 

radius thin arch structure, has experienced seepage and extensive freeze-thaw damage 
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since its construction. On several occasions since 1951, the upstream face of the arch dam 

has been treated with waterproof membranes to prevent seepage. Inspection of the 

structure indicated that the treatment is deteriorated and should be considered ineffective. 

Since the last treatment in 1973, seepage has been reported between lifts. A three 

dimensional finite element model was used to evaluate the safety of the arch structure. 

The loading combination of water, dead load and winter temperatures were found to be 

critical. Winter temperatures contract the arch and displace it in the downstream 

direction. Tension was reported to be greater on the upstream side. The m~"'(imum 

compressive and tensile stresses were reported to be 2.6 MPa and 2.0 MPa respectively. 

It was concluded that concrete is not expected to crack under its service load and that the 

resulting net tensile strength of the joints may be loosened by tensile stress, which 

increase seepage rates. 

Lan et al. (1997) describe a Non-Linear Finite Element model (NLFEM) of an arch dam. 

The non-linear stress-strain relationship and cracking behaviour are considered. Two 

kinds of cracking models are usually employed in a non-linear finite element model of 

concrete structures, which are the discrete cracking mode! and the smeared cracking 

model. The discrete cracking model is set up between two adjacent element surfaces. It 

can model the occurrence and propagation of the tensile cracks in the structure and 

estimate the crack depth. However, the analysed structure has to be re-meshed when the 

cracks occur and propagate, which leads to more computation cost. The smeared cracking 

mode assumes various continuo us parallel cracks. This approach can more efficiently 

address the cracking phenomena. Employing the smeared crack criteria a model of a 250 

m high arch dam was developed under the loading condition: normal water pressure, dead 

load and rising temperature change. The maximum displacement in the arch dam was 

157.5 mm for the linear model and 167.7 mm for a (NLFEM), which shows a difference 

of 6.5%. The maximum difference between two the models was 24.3% at the bottom of 

the arch dam, due to initial cracking in this region under the working loading conditions. 

The authors believe that (NLFEM) results are more representative of dam behaviour as 

the non-linear nature of cracking are properly addressed. 

In conclusion, statistical and deterministic methods have been used for modeling dam 
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behavior. In statistîcal methods, the most common approach in the analysis of dam 

monitoring data is to proceed at the level of individual instruments. In the presence of 

noisy data, it can be very difficult to identify significant deviations from normal readings. 

A procedure mat minimizes the effect of noise from individual instruments is to perform 

simultaneous analysis on several instruments. Successful applications for sÏmultaneous 

analysis of multiple instruments have been reported in many other fields using 

multivariate statistical analysis methods and artificial neural networks (ANN). Sorne of 

the most relevant studies are reviewed next. 

2.4 Multivariate statistical Metbods 

Multivariate statistical methods are used extensively in chemometrics (Mac Gregor et al., 

1994). Computerized data acquisition systems are routinely utilized to collect real-time 

data from a multitude of sensors every few seconds in chemical processing plants. 

Traditionally, operating personnel had been using only a few measurements to monitor 

the performance of a processing plant. 

Kresta et al. (1991) propose a multivariate statistical process control for simultaneously 

analyzing several pro cess and quality variables. Multivariate statistical procedures (pCA 

and PLS) are used to reduce the dimensionality of a large and highly correlated data set 

down to a few factors or components, which contrun most of the information about the 

process under normal operating conditions. The scores of component variables are plotted 

as a function of time to detect large deviations from normal operating conditions. Plots of 

the squared errors of prediction are also used to detect major changes in the normal 

operating condition. 

Nomikos et al. (1994) use principal component analysis to extract the information from 

an the measured process variables, and to project it onto a lower dimensional space 

defined by the latent variables or principal components. Analysis of process batches is 

used to classify simüar batches by examining the clusters of their projections into an 

hyperplane. The approach is based on basic statistical process control (SPC) concepts, 
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whereby the perfonnance of a process i8 assessed by companng it with past 

measurements when the process was operating weIl, and was in control. Control limits 

for the monitoring charts are derived from statistical properties of the reference data set. 

Sun (1996) describes a multivariate regression procedure based on principal component 

regression. The method corresponds to a simultaneous analysis of several response 

variables of interest and is referred to as Multivariate Principal Component Regression 

(MPCR). PCR works on only one response variable. When there is more than one 

response variable of interest, one way to apply PCR is to analyse each response variable 

separately using PCR. It Ïs apparent that this approach cannot use the correlation 

infonnation of the response variables. In MPCR, principal components of response 

variables and independent variables are calculated, and then regression analysis is used 

for regressing the principal components of response variables on principal components of 

independent variables. 

2.5 Artificial Neural Networks 

Principal component analysis is now widely used for reducing the dimensionality of data 

set and to obtain a better understanding ofprocesses (Martin et al., 1996). However, the 

linearity assurnption inherent in conventional PCA can lead to misleading conclusions in 

the analysis of data from highly non-linear processes. Conventional PCA ls not effective 

when the variables are nonlinearly related and in such situations nonlinear principal 

component analysis (NLPCA) ls more appropriate. Nonlinear principal components 

analysis can be used in a similar way to PCA, that is data summarization, data 

visualization and data exploration. Neural networks have been applied for extracting both 

!inear and nonlinear principal components from data. The concept of extracting features 

from highly nonlinear data has been discussed in a number of studies, most of the 

techniques are based on artificial neural networks (Dong et al., 1996). Diamantras et al. 

(1996) provide a good review of PCA neural networks. 

Fan et al. (1993) present an approach to fault diagnosis of chemical processes during 

steady-state operations by using artificial neural networks (ANN). The authors indicate 
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that bacle-propagation networks can leam and perform nonlinear mapping only to a 

certain extent. For the case of fault detection in chemical processes, nonlinearities can be 

very complex, espedally the case of multiple fauIts. They modify the conventional 

back -propagation ANN by the addition of a number of functional units to the input layer. 

Kramer (1991) uses auto-associative neural networks for nonlinear principal component 

analysis (NLPCA). The Auto-associative neural networks with a bottleneck layer of 

nodes can be used to reduce the number of input variables. The network is called auto­

associative neural network, as it must reproduce the input at the output layer. The 

network has three layers, with p nodes in the input and output layers and m nodes in the 

bottleneck layer. Since the dimension of the bottleneck layer is smaller than both input 

and output layers, the network is forced to develop a compact representation of input 

data. NLPCA was used to identify and remove correlations among variables as an aid to 

reduce dimensionality, visualize the data, and for exploratory data analysis. While PCA 

identifies only linear correlations between variables, NLPCA uncovers both linear and 

nonlinear relations. 
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CH PTE 3 

3@ Methodology 

3.1 Introduction 

The traditional approach in dam monitoring is to analyse the response of individual 

instruments and to set thresholds on the observed values to trigger alarms. However, it 

can be very difficult to estimate statistically significant deviations from normal readings 

for individual instruments, given that the fluctuations in stresses, strains, or deformations 

are small and in the order of magnitude of noise in the measurements. In addition, these 

are subjected to the simultaneous effects of the water level fluctuations and temperature, 

which are often highly correlated. 

Traditionally, engineers have relied mainly on instruments that integrate strains over large 

volumes of the dam, such as inverted pendulums, or targets. Measurements from these 

instruments tend to be less variable due to averaging; however, when significant 

deviations are detected, damage and deterioration 1S usually already in an advanced stage, 

and it may be difficult to fully analyse the problem based solely on these instruments. 
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For that purpose, data from stress and strain meters can provide useful additional 

information. The desirable features of analysis procedures for this type of data are that: 

(1) they should make use of an instruments simultaneously, and (2) they should separate 

signal from noise. When simultaneous readings are available for different instruments 

across a structure, estimates of correlation between these instruments can be used to 

identify the major patterns of deformation of the facility under a variety of external 

actions. Correlation measures the degree of linear dependency between the variables, 

which is usually a valid assumption for the behavior of dams under normal operating 

conditions. 

The response of any instrument results from a combination of several reversible or 

irreversible effects. Irreversible effects are usually associated with time-dependent 

phenomena such as creep, swelling, and settlements. These phenomena are usually most 

critical from the point of view of dam safety and it is desirable to monitor their rate of 

progress. Reversible effects are usually not critical from dam safety point of view and are 

associated with fluctuations of the reservoir water level and temperature. To estimate a 

realistic model of the dam the data set should coyer as much as possible aH the 

anticipated operational conditions of the dam. 

3.1.1 Data processing and p:resentation 

The usefulness of any observation depends strongly on the care with which the calibration 

and subsequent data processing are carried out. Once the data are collected, further 

processing is required to check for the errors and to remove erroneous values. Two types 

of errors must be considered in the editing stage: (1) large "accidentai" errors or "spikes" 

that result from equipment failure or other major data flow disruptions; and (2) smaU 

random errors or "noise" that arise from changes in sensor configuration, electrical and 

environmental noise, and unresolved environmental variability. The noise can be treated 

using statistical methods white elimination of the larger errors generally requires the use 

of sorne subjective evaluation procedure. Data summary diagrams or distributions are 

useful in identifying large errors as sharp deviations from the general population. By not 
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directly examining the data points in conjunction with adjacent values, one can never be 

sure that reliable values are thrown away. 

Missing data or gaps are observed in many engineering data records. Missing data is 

frequently the consequence of uneven sampling (in time and/or space), or may result from 

removal of erroneous values during editing and from sporadic recording system failures, 

major difficulties arise if the length of the holes exceeds 20-30% (Struges, 1983). Most 

analysis methods require data values that are regularly spaced in time/space. As a 

consequence, it i5 sometimes necessary to use interpolation/estimation procedures to 

create the required regular set of data values as part of data processing. The analysis of 

data records necessitates sorne form of" first look" visual display. Even the editing and 

processing of the data typically requires a display stage. Plotting time series of 

temperature, reservoir level, and instrumentation data, scatter plots of different observed 

data are to be considered in visual data representation. With the advent of the computer 

and electronic data collection methods, the knowledge of statistical methods has become 

essential to any reliable interpretation of results. 

3.2 Multivariate Analysis of the data 

Multivariate analysis 1S concemed with the empirical analysis of data that is a function of 

several independent variables. Multivariate calibration designates procedures used to 

describe how measurements on predictor variables XI, X2, ••• ,Xp are related to some 

target variables YI. }2, ... ,Y m. The matrix Y (mxn) is formed from n observations on m 

responses (stresses, strains, displacement, flow) at the same time, where the i th column is 

the observation vector Yi at time ti. The matrix X (pxn) is formed of observations on p 

predictor variables (air temperature, concrete temperatures, reservoir level, time) 

measured at the same time. These methods are applied to a set of simultaneous 

observations to determine the relationship between a set of dependent variables and a set 

of independent variables, and to make predictions through extrapolation of available data. 

The multivariate analysis methods considered in this thesis are reviewed next. 
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3.2.1 Multiple Linear Regression 

Multiple linear regression (MLR) is the most widely applied technique for describing 

relationships between variables. It is used to describe the relationship between a 

dependent (response) variable Y and one or more independent (predictor) variables X!, 

X2 , ... , Xp• The relationship can be expressed as: 

3.1 

Where 12 is the vector of regression coefficients and f is the vector of residuals. The least 

square method is used to minimize the SUffi of the squared residuals 
, 

e'.§.. = (r - X. Q) (I - X.Q) 3.2 

and the estimate of12 is: 

3.3 

Therefore an estimate of Y can be expressed as: 

3.4 

which corresponds to the projection of Ion the X space. The standard error of estimate 

is expressed as: 

t't-Q'X'I 3.5 
n-p-l 

The regression mode! can be used to predict future observations on the response Yo 

corresponding to values of the p predictor variable Œo) as .Y(!o) = !'oQ. A lOO(1-a)% 

prediction interval for this future observation is: 

.Y(!o) -ta/2.n-/~ Sy/(l + !'o (X'Xr
1 
!o) ::;; Yo ::;; Y(!o) +ta/2.n-p(~ Sy,x2(1 + !'a (X'XrJ 

!a) 

3.6 

where n and p are the number of observations and predictor variables respectively. 

Prediction intervals can be used to set alarm levels for different response variables. In 

predicting new observations care must be taken about extrapolating beyond the region 

covered by the sample. It is possible that a model mat fits weIl in the sample data cannot 

predict accurately responses outside of that region. 

A number of problems can also occur when some of the independent variables are highly 
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correlated (Jackson, 1991). This situation, which is called multicollinearity, is 

characterized by columns in X that are approximately or exactly linearly dependent. 

MulticoHinearity causes several problems: 

1) The inverse of X'X may be difficult to obtain, since the matrix in nearly singular. 

2) The regression coefficients are highly correlated, and the Interpretation of these 

coefficients is unreliable. Sequential procedures such as forward selection and 

backward elimination can be used to mitigate these problems. 

The ordinary least squares (OLS) estimation principle, assumes that the variance on the 

residuals 1S constant. If variance of residuals is not constant; weighted least squares 

(WLS) should be used. In this case, the weighted SUffi of squared residuals is minimized. 

The estimate oft! is: 

3.7 

where V is the priori estimates of the uncertainty variances of observations. 

In situations when there 1S a high degree of correlation among the predictor variables, 

multivariate regression techniques based on latent variables are used as the preferred 

method (Martens et al., 1989). These procedures select a few latent variables, which are a 

linear function of the original variables and used to forecast the response variables. Sorne 

of these methods, Principal Component Analysis (PCA), Partial Least Square Regression 

(PLSR) and Canonical Correlation Analysis (CCA) will be discussed in the following. 

3.2.2 P:rincipal Component Analysis (PCA) 

PCA is a statistical technique falling under the general title of factor analysis. PCA 1S 

concemed with explaining the variance-covariance structure of a data set through a few 

linear combinations of the original variables. The purpose of PCA is to identify the 

dependence structure of multivariate observations in order to obtain a compact 

representation. The general objectives are (1) data reduction and (2) data interpretation. 

The analysis identifies characteristic and uncorrelated modes of variation of the variables. 
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Attractive features of tms operation are that: it eliminates correlation among the 

variables, (2) it is efficient method of compressing the data. 

In PCA, the original variables are transferred into new, uncorrelated variables called the 

principal components or factors. Each principal component is a linear combination of the 

original variables. One measure of the amount of the information conveyed by each 

principal component is its variance. For tms reason the principal components are arranged 

in order of decreasing variance. When the observed variables are correlated, the number 

of variables can be reduced without losing much of the information. This objective can be 

achieved by selecting only the first few principal components. 

PCA is applied to either the correlation matrix (R) or the covariance matrix (ID of the 

original variables. PC's are obtained from the solution ofthe eigenvalue problem: 

(R-Âl)p=Q 3.8 

where l is the identity matrix of order m. A number of different numerical algorithms can 

be used to compute the eigenvectors, and eigenvalues (Martens et al., 1989). Solving for 

Eq. 3.8 results in a set of eigenvalues ÂjU = 1: m), which can be placed as the elements 

of a diagonal matrix A, and a corresponding set of vectors p j U = 1 : m). The solution is 

the vector p with maximum resemblance to an observations. 

Principal Components (PC's) or scores h(i = 1: m) are linear combinations of the 

variables, where the weights on each variable are given by the eigenvectors. The 

percentage of variance explained by each principal component is equal to its associated 

eigenvalue. The percentage of variance explained by the fist k principal components can 

be expressed by: 

k 

IÂj 
~ 

m 

IÂj 
j=l 

3.9 

If the purpose of the analysis is data reduction, then retaining only the first k components 
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will suffice. The number of components to be retained can be detennined by: 

1) Percentage of variance: The number of components to retrun can be based on the 

percentage of variance explained for. The number of components is chosen to explain a 

relatively high percentage, say 70%-90%. 

2) Average eigenvalue: Those components whose eigenvalue is greater than the average 

eigenvalue, which is also the average variance of the variables, are retained. Therefore, 

for a correlation matrix, only components whose variances are greater than unit y are 

retained. The average eigenvalue method often works weIl in practiee. Previous studies 

have shown that this method is fairly accurate when the number of original variables is 

<30 and the variables are rather highly correlated (Reneher, 1998). 

3) Seree graph: Eigenvalues are plotted as a funetion of the number of eigenvalues. The 

number of components is selected where the seree graph flattens out. 

The original data ([) can be reconstructed by using the first k principal components 

1 1 , 

[ = ft PI + Iz Pz + ... + Ik Pk + E 3.10 
-- --

where ~ is the residual matrix, fi are scores or principal components, and Pi are 

eigenvectors (loading vectors). The residual matrix contains that part of the data not 

explained by the PCA model and most likely represents the noise in the data. The method 

Îs useful for separating signal from noise since random noise components are usually 

uncorrelated and are associated with lower principal components. 

These first k components fI, f2, f3, ... ,fk explain a greater percent of the data variance than 

the first k terms on any other expansion. PCA can be perfonned on the correlation R or 

covariance matrix .s. of observations. The components extracted from the covariance 

matrix are not the same as those found by analysing the correlation matrix. If different 

types of measurements are considered (displacement, flow rates, stresses), then the 

structure of PC's derived from the covariance matrix will depend essentially on the type 

of units of the measurements. If there are large differences between the variances of the 

variables, those variables whose variances are large will tend to dominate the first few 

principal components. Variables are typically standardized if they are measured on scales 
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with widely differing ranges or if the measurement units are dissimilar. 

In dam monitoring, the number of predictor variables ls generally limited and is far less 

than the number of responses (different instruments). Therefore, the main application of 

PCA in dam monitoring ls when it ls applied to responses for data reduction. 

PCA method does not take into account the relation between predictors and response 

variables during the decomposition process. PCA can be applied either to predictors or 

responses. There are occasions where PCA has been used for both predictor and response 

variables. In tms case, the PC's for the predictors are obtained in one operation, and the 

PC' s for the responses in another. The PC' s of responses are then regressed against the 

PC's ofthe predictors (Jackson, 1991). 

Altematively, both response and predictor variables can be considered during factor 

calculations. This leads to another calibration method, Partial Least Squares (PLS), which 

is explained in the following section. Conventional PCA ls not effective when the 

relations between variables are non-linear. In such situations non-linear principal 

component analysis (NLPCA) is more appropriate. NLPCA can be used in a similar way 

to PCA that is for data visualisation, data reduction and data exploration. The techniques 

for extracting non-linear principal components are based on Artificial Neural Networks 

(ANNs), which will be described in section 3.3. 

3.2.3 Partial Least Square (PLS) 

Partial least Squares (PLS), also known as Projection to Latent Structures, is a 

dimensionality reduction technique for maximizing the covariance between the predictor 

(independent) matrix X and the response (dependent) matrix Y. Partialleast square (PLS) 

differs from PCA by using both the dependent and independent variables actively during 

the decomposition process (Martens et al., 1989). The algorithm used in PLS examines 

both X and Y and extracts components, which are directly relevant to both sets of 

variables. 
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If the model Y=f(X) is considered, the objective is to model X such a way that Y can 

be predicted as weIl as possible. It can be described by the following equations. The 

matrix X is decomposed into a score matrix 1, a loading matrix f and an error matrix 

as: 

3.11 

In a similar manner matrix Y is decomposed into a score matrix U, a loading matrix Q 

and an error matrix E2 as: 

3.12 

A relationship between the scores of the data sets can be established to extract the latent 

variables. The first latent variable is extracted from the matrices X and Y and explains as 

much as possible the variance ofmatrix Y. Different algorithms can be used to extract the 

factors. The most popular algorithm used in PLSR is known as Non-Iterative Partial Least 

Squares (NlP ALS) (Galedi, 1986 and Wise, 1990). Another algorithm, known as 

SIMPLS, can also be used (De Jong, 1993). When the optimal number of latent variables 

has been determined, the remaining variance is considered to be contributed by noise. 

3.2.4 Canonical Correlation Analysis (CCA) 

Canonical correlation analysis (CCA) is the generalization of the correlation coefficient. 

While the correlation coefficient measures the association between two sets of n 

observations; CCA generalizes this principle to the association between two sets of 

variables. CCA is useful when there is more than one response variable and especially 

when the predictor variables are moderately correlated. CCA is not a prediction technique 

but rather an explanatory technique for portraying the relationship between two sets of 

multivariate data. In the canonical correlation technique, one is looking for linear 

combinations of the predictors and linear combinations of the responses, which, 

themselves, have maximum correlation. 

The approach has sorne similarity to PCA, which searches for patterns whitin a single 

multivariate data set that represent maximum amounts of the variation in the data. 
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CCA transforms pairs of responses CY) and predictor8 (X) into sets of new variables 

called canonical variates: 

and 

P 

v k = 'C"' ak ' x' _ ~ ,Z_I 

;=1 

m 

wk=""\'bk,y, - L. ,j_) 
j=1 

k=l, .... ,min(p,m) 3.13 

k=l, .... ,min(p,m) 3.14 

where ak,i and bkJ are caHed canonical coefficients and the cOlTelation between them, ri , i8 

called the canonical cOlTelation coefficient, .!:! and WI is the first pair of canonical 

variables which have the maximum cOlTelation, .!: 2 and w 2 i8 the second pair of 

canonical variables, independent of the first pair, which has maximum correlation, and so 

on. Assuming that both Sxx and Syy are fun rank, the number of pairs of canonical 

variables will be the minimum of p and m. The canonical cOlTelations are ordered in the 

same manner as characteristic footS: rI ;;:: r2;;:: ... ;;:: frnin(p,q), 

The information drawn upon by CCA is contained in the joint variance-covariance matrix 

of the variables X and Y. These cOlTelations may be obtained from the solution of 

following eigenvalue problems: 

3.15 

and 

1!Ï;!ÏYx!Ï~!ÏXY - r211 = 0 3.16 

where ~ (p x p) is the variance covariance matrix of predictor variables X , .s.yy (m x m) 

is the variance covariance matrix of response variables Y, the matrices .s.xy (p x m) and.s.yx 

(m x p) contain the covariances between each of elements of X and each element of Y. 

Equations 3.15 and 3.16 yield the same eigenvalues, since the two matrixes involved are 

of the forro A Band BA where A = S}y -1 SyX and B == Sxx -1 Sxy. A Band B A have the -- -- -- --
same eigenvalues but different eigenvectors. Square roots of the eigenvalues are the 

canonical cOlTelation between the canonical variables. Canonical coefficients of X and, 

coefficient of Y variables are eigenvectors of (3.15) and (3.16) respectively. 
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A diagram of different approaches to linear multivariate calibration is presented in Figure 

3.1. Predictor variables Xl, ... , Xp are used in a linear regression equation to predict the 

response variable Y (Figure 3.1.a). In principal component regression, the factors 

extracted from highly correlated X variables are used to predict Y (Figure 3.l.b). In 

partial least square regression, information on Y is also used for extracting the factors 

(Figure 3 .1.c). In CCA, two sets of factors are extraeted to explain relation between two 

sets of multivariate data (Figure 3.l.d). 

3.3 Artificial Neural Networks (ANNs) 

In recent years there has been a growing interest in a class of computing devices that 

operate in a manner analogous to that of biologie al systems. Artifieial neural networks 

(ANN) have been applied in almost an branches of science and engineering including 

structural engineering. An overview of applications of ANNs to civil engineering is given 

in Flood et al (1994). Several factors have simulated this interest, the most notable is the 

ability to leam and generalize from examples, to produce meaningful results even when 

input data is incomplete or contain error. Before a neural network can be used with any 

degree of confidence, there i8 a need to establish the validity of the results. A network 

eould provide almost perfeet answers to the set of the problems with which it was 

trained, but fails to produee almost perfect answers to other examples. 

3.3.1 Basic concepts 

Artificial neural networks (ANNs) such as three layer back-propagation networks and 

radial basis function networks have been proven to be performing complex function 

approximation. This ability to approximate eomplex functions has been exploited in 

applying ANNs as models of processes. Neural networks have been trained to perform 

complex functions in various fields of application including pattern recognition, 
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Figure 3.1, Comparison ofmultivariate statistical methods 
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classification. speech, vision, and control systems. The main advantage of ANNs models 

is that they can be synthesized without detailed knowledge of underlying process. Neural 

networks are configured from a number of parallel operating processors, termed 

neurones. Each processor maintains only one piece of dynamic information which is its 

CUITent level of activation and is capable of doing sorne simple calculation such as adding 

inputs, computing a new activation level, or comparing input to a threshold value. But 

collectively, in the form of a neural network, they are capable of solving complicated 

problems. The type of activation function adopted, the topology of the connections, and 

the values of the connection weights determine the task performed by a network. Usually, 

the activation function and topology of the connections are selected first and so it is left to 

determine an appropriate set ofweights that make the network perform the required task. 

Figure 3.2, Sample Neural Network 

3.3.2 The anatomy of a Neural Network 

The basic anatomy of neural networks, can be divided into several basic concepts: 1) a set 

of processing units, 2) the state of activation of a processing unit, 3) the function used to 
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compute output of a processing unit, 4) the pattern of connectivity among the processing 

units, 5) the mIe of Propagation employed, 6) the activation function employed, and 7) 

the mIe ofleaming employed. An overview ofthese concepts is presented next. 

Set of processing units 

AH neural networks are composed of a set of processmg units. These nodes carry out aH 

processing and calculations. A processing unit receives input from its neighbors, 

computes an output and sends it to its neighbors. The processing units can be divided to 

three groups, input units, hidden units, and output units (Figure 3.2). 

State of activation 

Each unit has an activation function level, which 1S most often represented as a 

continuous quantity between values 0 and 1. 

Output function employed 

Each processing unit transmÏts its output to its neighbours. This output, which is also a 

scalar value between 0 and l, is detennined from the level of activation of the processing 

unit. An output function f Ïs associated with each processing unit, which defines how the 

output value for the processing unit is detennined from its activation. The relationship 

between the activation level and the output level for any processing unit 1 can be 

described as follows: 

o.=f.[a.] 
l 1 l 

3.17 

The output function cau be the unit y function or a threshold function. 

Pattern of connectivity among the processing units 

Processing units are connected to other processing units and communÏcate with each 

other via these connections. The pattern of connectivity and the strength of the 

connections influence how a neural network perfonns the most. The absolute value ofwij, 

represents the strength with which the i th unit excites or inhibits the lh unit. 
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Rule of propagation employed 

The role of propagation describes how the inputs and the strengths of the connections 

arriving at a node are to be combined to compute the net input. Most often, this roie is 

simply a weighted surnrnation: 

Ni::::: LWijPi 3.18 

If outputs and the weights of the connections coming from the other nodes are represented 

by (01, 02, •.. , On) and (Wh W2, ... , Wu) respectively, this net input is simply the dot product 

of these two vectors. The dot product is maximum when row vectors are in the sarne 

direction. 

Activation function employed 

The activation function, F, defines how the net input received by the node and its CUITent 

level of activation is combined to compute the new level of activation. This is 

mathematically expressed by: 

3.19 

The sigrnoid function is commonly used in neural network modelling. The sigrnoid 

function keeps the value of activation between 0 and 1. 

Rule of learning employed 

The learning role defines how neural network is rnodified in response to input data and 

leams from examples. Two general leaming roles are used most frequently in neural 

networks. The first, hebb's role of leaming is stated as "when an axon of cell A is near 

enough to excite a œIl Band repeatedly or persistently takes part in firing it, sorne growth 

process or metabolic change takes place in one or both cells such that A's efficiency, as 

one of the cells firing B, is increased" (Hebb, 1949). For simple hebbian leaming, the 

leaming role can be simply stated as: 

3.20 

Where 11 is a constant with a value between 0 and 1 representing the degree by which the 

weights are changing when both units are excited. Another cornrnon form of learning role 

is the delta role: 
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It is caUed the delta mIe because the leaming is proportional to the difference between 

actual and expected activation. 

3.3.3 The Back Propagation Neu.ral Network 

The Back Propagation Neural Network (BPNN) is currently the most general-purpose and 

commonly used neural network paradigm (SwingIer, 1996). BPNN learns to generate a 

mapping from the input pattern space by minimizing the error between the output 

produced by the network and the desired output across a set of input vectors or 

exemplars. The learning process starts with presentation of an input pattern to BPNN. 

The training of a multi-Iayer BPNN, via the generalized delta mIe 1S an iterative process. 

Input pattern is propagated through the entire network until an output is generated. The 

error in each layer is calculated with generalized delta mIe. Each step involves the 

determination of error associated with each unit, and then modification of weights on the 

connections coming out to that unit. The weights in different layers are slightly changed 

in each step to reduce its error signal and the process is repeated for the next pattern. A 

set of cycles, made up of one cycle for each row of input data, is called an epoch. The 

training process for a network requires sometimes thousands of epochs for aH the input 

features to be learnt by the network. The iterations are stopped when the sum of squares 

of the error for an the input in training set 1S below a pre-determined value (convergence), 

or when the maximum number of epochs is performed by the network, in this case, the 

network does not converge and it has to be re-designed. 

3.3.4 PCA Neural Networks 

The successful application of ANNs for extracting the principal components has been 

reported in many studies. Neural networks have been applied for extracting both linear 

and non-linear principal components from the data. Non-linear principal component 
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analysis is a generalization ofPCA. 

A good review of linear and non-linear neural network is provided in Diamantaras et al 

(1996). The Auto associative neural networks with a bottleneck layer of nodes (Figure 

3.3) can be used to reduce the dimension of input variables. 

The network has three layers, with p nodes in the input and output layers and one node 

in the hidden layer. The activation functions are an linear, so the outputs are given by 

(K'W)W, where w is a weight vector. Weights are estimated using least-squares method. 

Input 
Layer 

BoUleneck 
Layer 

output 
Layer 

Figure 3.3, Autoassociative Neural Networks 

The network is called an auto associative neural network because it is trained to 

reproduce its inputs. The hidden layer in an auto associative network is also called a 

bottleneck layer because the p-dimensional inputs must pass through the k-dimensional 

bottleneck layer before reproducing the inputs. Data compression therefore oœurs in the 

bottleneck layer. NLPCA is a direct generalization of the neural-network implementation 

of PCA. NLPCA modifies the PCA networks by adding hidden layers with non-linear 

activation functions between the input and bottleneck layers and between the bottleneck 

and output layers, giving a network with a total of five layers. The network models a 
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composition of functions. Figure 3.4 shows an example of a ~LPCA network. The five­

layer NLPCA network has p nodes in the input layer, k< p nodes in the third (bottleneck) 

layer, and p nodes in the output layer. 

Figure 3.4, Nonlinear PCA Neural Network 

The nodes in layers 2 and 4 must have nonlinear activation functions so that layers l, 2, 

and 3 and layers 3, 4, and 5 can represent arbitrary smooth functions. The nodes in layers 

3 and 5 usually have linear activation functions, although they could be nonlinear. Direct 

connections are allowed between layer 1 and 3 and between layer 3 and 5, but direct 

connections are not allowed to cross bottleneck layer 3. As with the linear PCA networks, 

data compression takes place because the p-dimensional inputs must pass through the 

k- dimensional bottleneck layer before reproducing the inputs. Once the network has been 

trained, the bottleneck node activation values give the scores. 

3.4 Process control methods 

Statistical Process Control (SPC) forms the basis of traditional process performance 

monitoring and the detection of pro cess malfunctions. The objective of SPC lS to monitor 

the performance of a process over time and to verify that it remains in a state-of­

statistical-control. Traditionally, this lS achieved by successive plotting and comparison of 
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a chosen sample statistic with appropriate controllimits (Efthimiadu et al., 1995). If the 

plotted variable exceeds the respective controllimits, the process is considered to be out 

of statistical control. 

SPC charts such as the Shewhart chart are weU-established statistical procedures for 

monitoring stable univariate processes. The assumption berund them is that a process 

subjected only to its natural ("common cause") variability will remain in a state of 

statistical control unless a special event occurs. (Kresta et al., 1991). The control charts 

represent several statistical hypotheses testing procedures aimed at detecting the 

occurrence of a special event as quickly as possible. 

A Shewhart chart consists of plotting a given statistic sequentially on a graph, which 

displays a target value, and upper and lower limits (Figure 3.5). The controllimits are 

usually determined by analyzing the variability of the process when the process is under 

control. The limits are then usually set at plus and minus three standard deviations about 

the target (Figure 3.6). 

When the mean of the statistic is not constant and its trend is predictable, the residuals of 

a linear regression mode! are used as control variables. Values of the standardized 

variables 

3.22 

can be plotted on Shewhart chart. 

The difficulty with plotting several univariate control charts is that response variables are 

generaHy not independent. Figure 3.7 illustrates the failure of the univariate control to 

detect out-of-control state, indicated by a cross. The bivariate control ellipse (Figure 3.7) 

provides a more detai!ed and compact representation of the system. The out-of-control 

point illustrated cannot be detected by univariate charts and can only be detected by the 

control ellipse. Typically process monitoring applies to systems or processes in which 

more than one variable is measured and tested. Multivariate Statistical Process Control 
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methods (MSPC) address some of the limitations of univariate monitoring techniques by 

considering aH the data simultaneously, and extracting information on the behavior of one 

variable relative to another (Martin et al, 1996). 
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Figure 3.5, A Typical Shewhart Chart 
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Figure 3.6, Waming and controllimits 
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Figure 3.7, Quality Control using two Variables 

Multivariate Statistical Process Control (MS PC) 

MSPC is increasingly being recognized as a valuable to01 for providing early waming of 

changes in processes and for a better understanding of processes. MSPC is the 

multivariate extension of univariate statistical process control (SPC). Examples of the 

MSPC methods are multivariate T2 statistic, two-dimensional plots of latent variables 

scores (from PCA or PLS), and the Squared Prediction Error (SPE). 

One approach is to extend the univariate analysis by plotting a statistic, which measures 

the overall deviations of the several statistics from their targets. The most commonly used 

statistic of this type is the Hotteling T2.Hotelling statistic was the first to consider the 

problem of analyzing a correlated set of variables. The procedure is based on the concept 

of statistical distance. 
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The TZ statistic is defined as: 

3.23 

where 

T 2 n-m F 
( 

~ m,n-m 
n-

3.24 

T2 has a F distribution with p and n-p degree of freedoms, where n and m are the number 

of observations and the number of variables respectively. Statistics S. and Y are sample 

covariance and mean value which are estimated from a sample on available past 

multivariate observations: 

n _ 

LCIi-Y),CIi -Ir 
S = -".i=--"-l _____ _ 

n 

IIi 
y=~ 

n 

n-1 
3.25 

3.26 

When new multivariate observations are obtained, then the Hotteling T2 statistics can be 

plotted as a function of time. Figure 3.8 presents an example chart with a=O.OI for 

detecting possible anomalies in the system. The T2 statistic has emerged as an extremely 

useful metric for multivariate process control. 

Another approach to multivariate quality control is to transform a p-dimensional set of 

highly correlated data into a lower k dimensional set of data using PCA and PLS models. 

These models are known to be suitable for handling noisy or highly collinear or highly 

correlated data (MacGregor et al., 1994). 

The most common forms of presenting the information is through one and two­

dimensional plots of principal component scores, Hotelling's T2 (Jackson, 1991) and the 

Squared Prediction Error CSPE), also known as Q statistics (Jackson, 1991). Once a 

model has been developed from the nominal data using a reduced set of principal 

components of latent variables, k, the fitted values can be calculated. These values are 
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then used to evaluate the SPE for each new observation. That is the squared difference 

between the observed values and the predicted values from a reference model. 

m 

SP E = ~:CY new,! - Y new,Y 3.27 
i~l 

where Ynew,i are observed variable and Yllewi is eomputed from PCA reference model. 

Using the first k principal components, tm3 statistic represents the squared perpendicular 

distance of a new multivariate observation from the hyper plane. 
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Figure 3.8, T2 ehart for a Multivariate Proeess 

When the system is in control, the value of SPE or Q should be smaU. When process is in 

control SPE represents noise that can not be aecounted by model. The SPE plot provides 

the facility to identifY a new event not previously captured in data. By adopting an 

approach similar to that for univariate SPC, action and waming limits can be defined for 

each latent variable plot based on standard statistieal distribution theory. The only 

requirement for applying these methods is the existence of a good database of past 

observations when the system was behaving normally. 
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CH p ER4 

4.. Dam Instrumentation and Monitoring 

4.1 Introduction 

Il Wh en you measure what you are speaking about and express if in numbers, you know something 

about it, but when you cannot express it in numbers your knowledge about is of a meagre and 

unsatisfactory kind'" (Lord Kelvin (1824-1907) 

"Listening what the dam tells through ils monitoring system is an alternative to sophisticated 

calculation mode/srI (Dibiagio,2000) 

The challenge of managing ageing dams is rapidly becoming a principal foeus of dam 

engineering throughout the world. At least a quarter of the dams listed in the U.S. Army 

Corps ofEngineers National Inventory of Dams are more than 50 years old (Bowles et al., 

1999). The fact that these dams are the product of old standards and construction 

practices is generally of greater concem than the ageing process itself. The risks 

associated with ageing dams are typically of low probability but high consequence. 

The safe operation of dams is an extremely important matter of public safety and 

economics. It is Imperative, therefore, to have a means of gathering infonnation that ean 

be used to assess dam perfonnanee and safety. Figure 4.1 shows different means of 
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gathering information about a dam state. Field measurements, the art of monitoring and 

qualifying the behaviour of structures by taking physical measurements has traditionally 

been used by dam engineers for this purpose. Dam monitoring programs have also 

contributed significantly to advancements in the state-of-the-art of dam engineering 

(Dibiagio, 2000). 

State of the system 

... .. .. 
Visual T 

t 
Monitored paramters(displacements, strains, ... ) 

Instruments 

Figure 4.1, Block diagram of dam evaluation methods 

Dam monitoring is the most effective defensive line against dam failure by early detection 

of anomalies (Hulea et al., 2000). Major dams, like other large constructed facilities are 

equipped with various types of instruments to monitor their behavior. The efficiency of 

these devices depends on their diagnostic value and the quality of the data Understanrung 

the role of different types of measurements can improve the quality of a monitoring 

program. 

Measurements are of particular interest to civil engineers because of the uncertainty in 

predicting the behavior of dams (Dibiagio, 2000). Accurate numerical modeling of field 

conditions is often impossible or impractical to achieve. Thus, it is frequently necessary 

to make assumptions regarding the materials properties or important features such as 
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drainage conditions, degree of rock fissuring, in-situ stresses, etc. Consequently, many 

dam problems cannot be solved strictly on the basis of mathematical analyses and 

physical experiments, therefore other sources of information are required. Instrumentation 

and visual inspections are necessary to fiE in and bridge the knowledge gap between 

theory and acrual behavior. 

The greatest improvements in the instrumentation have been a result of developments in 

instrumentation technology, material science and information technology. The IOle of 

sensors is to convert a measurement, usually an electrical signal, into another quantity, 

whieh can be more easily interpreted. The perfect measurement system does not exist nor 

does the peneet measurement enviIOnrnent. Thus, aU measurements are subjeet to 

disturbances from many source of error. Measurements should always be va!idated by 

theoretical and/or practical verification. Too often data is accepted without questioning its 

accuracy. 

4.2 Measu:rement erro:rs 

Every measurement is always inaccurate to sorne extent. Measurements are always 

corrupted with stochastic deviations or noise. Noise is inherent to aU physieal systems 

but its level can be reduced by appropriate measures in terms of measurement and system 

design. Identifying the various errors, which exists in measurement systems, is vital for a 

good monitoring system. It is necessary to reduce errors in the instrument readings to the 

minimum possible level, and to quantify the maximum error, which may exist in any 

output reading. Two main types of measurement errors are generally reeognlzed: 

systematie errors, or bias in which every measurement is either less than or greater than 

the correct value by a fixed percentage or arnount, and random errors, which are 

unpredictable variations in the measured signal. This latter type of error is often called 

noise, by analogy to acoustic noise. 

4.2.1 Systematic errors 

Systematic errors describe errors in the output readings of a measurement system, which 

eonsistently overpredict or underpredict a quantity. Sources of systematic errors are 
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system disrurbances during measurement, damaged sensors and use of uncalibrated 

instruments. Filtering Call1ot deal with systematic error due to drift or incorrect 

calibration of the measurement device. Commonly bias can be eliminated by re­

calibration of the instruments. 

4.2.2 Random enors 

Random errors are perturbations of the measurement that can be on either side of the true 

value. Such perturbations are usually smaU, but their importance is a function of 

magnitude of the signaIs. Random errors are introduced when measurements are taken 

manually, and when this involves interpolation on a scale. Eiectrical noise can also be a 

source of random errors. Other sources of random errors include uncontrolled influential 

factors, such as air currents, ambient temperature fluctuations, relative humidity, power 

source disturbances, electromagnetic interference, and connector contact resistance 

variations. One particular area of concem is the cab les which are connected to 

measurement instruments. Cables can be a major source of problems in dam monitoring. 

They are extremely vulnerable to damage during the construction and they may become 

unserviceable with time because ofingress ofwater. Also cables can function as antennas 

and become a major source of electromagnetic interference and noise (Dibiagio, 2000). 

To a large extent, random errors can be reduced by taking the same measurement several 

times and averaging the measurements. However, any estimation of the measurement 

value and its error bounds must be treated statistically. 

4.2.3 Signais and noise 

The choice of an instrument will in many cases be dependent on the type of output signal 

produced by the device. The reason is that certain types of signaIs have definite 

advantages regarding noise immunity or are more tolerant of changes in electrical 

characteristics of cab les and connections in the monitoring program. Table 4.1 lists the 

most common types of output signaIs for typical sensors used in dam monitoring systems 

(Dibiagio, 2000). The types of signaIs are listed in order of increasing preference. 

51 



Field and experimental measurements are never perfect, even with sophisticated modem 

instruments. When measurernents are corrupted by random variables, they are said to be 

affected by noise. The standard deviation is a good measure of magnitude of the noise in 

the signal. One of the fundamental problerns in signal measurement 1S distinguishing the 

noise from the signal. What really distinguishes signal from the noise is that the noise in 

not predictable or reproducible, it changes from one rneasurement to the next. If a signal 

can be measured more than once, the average of the measurements provides a better 

representation ofthe signal. 

Table 4.1, Common Types of Output SignaIs 

Types of signaIs Examples of typical sensor 

Low level analogue Resistance strain gauges 

High level analogue Servo-Înclinometers 

D.C CUITent (4 - 20 mA) Many process type instruments 

Frequency Vibrating wire strain gauges 

Digital Encoding and smart sensors 

In rnany measurements in physical science and engineering, the true signal measurements 

evolves rather srnoothly as a function of time or position, whereas noise is characterized 

by rapid changes in amplitude frorn one point to the next. Sorne types of noise can be 

easily separated frorn the true signal. For example, it may occur that the signal is 

disturbed by sharp spikes at a few points. These spikes can be detected by comparing the 

value of each data point with its neighbors. If the difference with i1s neighbors is larger 

than a given threshold value, it can be identified as a spike. The spikes are removed, 

without affecting the rest of the signal, by replacing the spike by the average value of its 

neighbors. The threshold might be defined as sorne multiple of the estimated standard 

deviation of the noise. It is cornrnon practice to reduce the noise by a process called 

smoothing. As long as the true underlying signal is smooth, then the true signal will not 
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be much distorted by smoothing, but noise will be reduced. The simplest smoothing 

algorithm is the rectangular or unweighted sliding-average. It simply replaces each point 

in the signal with the average ofm closest points. 

1 k 

xk =- Ix; 
in k-m+l 

4.1 

The triangular (weighted) and exponential smoothing methods can also he used and give 

more importance to values closest to the CUITent measurement point. 

Exponential averaging is obtained hY calculating the weighted average of the points in a 

moving window of m data points. The last point in the window (i.e. the point i to he 

smoothed) is given the greatest weight and each proceeding point is attributed a lower 

weight determined hy the shape ofthe exponential function. This filter smoothes the point 

i by using the points that precede this point. If we consider also the mean with one 

additional point: 

_ 1 hl 1 [ k] 1 n _ 
Xk +1 =-- Ix; =-- Xk +1 + IXi =--Xk+1 +--Xk 

m + 1 k-m+l m + 1 i=k-n+1 n + 1 n + 1 
4.2 

By shifting the time index back one time-step, the corresponding expression is ohtained: 

_ 1 n_ 
xk =--xk +--Xk- l 

n+l n+l 
4.3 

to simplify the notion: 

a =_n_~ x
k 
=ax

H 
+ (l-a)x

k 
n+l 

4.4 

This expression is known as the exponentially weighted moving average filter. The value 

of the constant a dictates the degree of filtering. The optimum choice depends on the 

characteristics of the signal and the sampling interval. The exponentially weighted 

moving average filter is arguably the most commonly used noise reduction algorithm in 

the process industries, it is also known commonly as the first order low-pass fiUer. While 

these methods are effective in reducing the random noise, they introduce sorne shift into 

the signal. Values of 0.3-1 are normally used for a. The larger values introducing larger 

lags in the filtered signaIs. A compromise has to he made when selecting a value for a for 

achieving sufficient noise reduction with lags. 
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4.3 Dam safety 

The safety of an existing dam can be improved and its life lengthened by a carefully 

planned and implemented surveillance program. A key part of such a pro gram is a visual 

exarrrination of the structure, the reservoir, and the appurtenant works. However, 

surveillance must be more than visual observations. Settlements may go undetected 

without proper measurements of the dam. Comparison of seepage quantities from one 

inspection to another and over the years is difficult by visual observation and estimation. 

There are also conditions within a dam that cannot be seen but that can be measured by 

instrumentation. Thus, even for a simple structure, some type of instrumentation may be 

needed to improve and supplement the visual examination. Dam safety surveillance today 

is a wo-part process based on periodic visual inspection of accessible parts of the dam 

and its surroundings, and systematic monitoring of the body of the dam and iis foundation 

by me ans of instrumentation systems designed specifically for this purpose. 

4.3.1 Dam Monitoring 

The purpose of instrumentation in an existing dam is to fumish data to determine if the 

completed structure is functioning as intended, and to provide a continuing surveillance 

ofthe structure to wam of any developments that endanger its safety (Post, 1985). 

Every instrumentation program should include some redundancy; especially with 

embedded instruments since it is usually not possible to repair damaged embedded 

instruments. The cost to retrofit replacement instruments will far exceed the cost of 

providing adequate redundancy. Redundancy, in this case, is more than only the 

furnisrung of additional instruments to account for those that are defective or are damaged 

during installation. Redundancy includes providing different instruments, which can 

measure similar behavior with different methods. 

The general layout of the instruments is hased on the vertical or horizontal sections, 

which the designers consider to he of utmost importance. The types of field 

measurements needed to evaluate the hehaviour of a designed structure depend on the 

theoretical concepts that are available to the designer at the time the design is made. In 
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dam monitoring, measurements are taken only on parameters seemed significant and at 

points judged critical. Stateler et al. (1995) propose that a set of performance parameters 

be determined for each dam and that these parameters should form the basis of the 

monitoring system. These parameters can be used in design of an instrumentation system. 

Dunnicliff (1988) provides examples of possible geotechnical questions associated wÎth 

the appropriate features and parameters (Table 4.2). The architecture and choice of 

components for monitoring dams are based on the analysis of the structure's behavior 

carried out by designers in developing the project. The designers consider certain modes 

of deformation and their amplitude, as well as certain failure mechanisms. 

Concrete and masonry dams are inspected and monitored on a continuous basis following 

a carefully planned pro gram. To aid in these inspections and in the analysis of the 

condition of the dam, a nurnber of monitoring methods and devices are used (Figure 4.2). 

Where these devices are installed, they should be maintained in good condition, and the 

data obtained should be regularly recorded and evaluated. Because of the higher level of 

stress, both in the dam and its abutments, the instrumentation of arch dams must be very 

carefully planned and denser than that of other types of concrete dams (Bordes et aL, 

1998). A summary of the most important factors to monitor 1S presented in Table 4.3. 

Various monitored properties of concrete dams are discussed next. 

4.3.1.1 Concrete quality 

A great deal can be learned about concrete quality by visual observations. Careful 

attention should be placed on the appearance of weathered concrete. Pattern cracking 

might point to drying shrinkage or alkali-aggregate reaction (NRC, 1983). Surfaces 

subject to rapid flowing water, such as spillways or outlet chutes, must be examined 

regularly. Where strength is a question, nondestruetive tests, such as sonie veloeity 

measurements, and core tests for compressive and tensile strength and modulus of 

elasticity can be used. 
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Table 4.2, Steps for Developing an Instrumentation System (Dunnicliff 1988) 

Step Element of Plan 

A Prediction of mechanisms that control behaviour 
i 

B Definition of purpose of instrumentation 

c Definition of geotechnical questions 

D Selection of parameters to monitor 

E Prediction of magnitudes of change 

F Selection of instrument locations 

G Selection of instruments 

H Determination of need for automation 

1 Planning for recording of factors which influence measurements 

J Establishment of procedures for ensuring data validity 

K Determination of costs 

L Planning installation 

M Planning long-term protection 

N Planning regular calibration and maintenance 

0 Planning data collection and management 

p Coordination of resources 

Q Determination of life cycle costs 

4.3.1.2 Abutment or foundation deformations 

This is particularly important for an arch dam because excessive deformations can induce 

high tensile stresses. They may cause cracks in the concrete and high tensile stress 

measurements may be observed. Also, anomalous decreases in abutment seepage rates 

may result from dosure of openings in the rock mass; and indicate increase of uplift 

pressures. Abutment deformation can be recognized by fresh cracks in the rock. Sources 
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of deformations are reservoir load, earthquake forces, arch dam thrust, large temperature 

gradients, freeze and thaw damage, and excessive uplift forces. Remedies are dependent 

on the cause of the deformation. One or a combination of remedies can be taken, 1) Deep 

rock anchors or rock boit to strengthen the abutments, 2) Vertical and horizontal beams 

across the rock mass and anchored by rock bolts, and 3) Extensive grouting to improve 

the modulus of elasticity of the rock. 

4.3.1.3 Uplift 

Uplift pressures are an important factor in stability analysis of a gravit y dam. AIthough 

uplift pressure is not a critical issue in the stress analysis of arch dams, it is important in 

the foundation stability analysis and should be included as part of overall instrumentation 

program. However, measuring water pressures in a rock foundation is always a difficult 

task since it can change over short distances because of joing and fissuration. Uplift 

pressures in the foundation and in the dam are measured routinely as indicators of 

stability. Changes in pressure are looked for; increases may result in instability. Uplift 

pressures are measured by piezometers inserted in holes drilled into the foundation of the 

dam. Generally, installation of drains is the most effective and economical solution to 

reduction of uplift forces. Regular drain flow observations are a must in any surveillance 

system. When drains become so obstructed as to impair their function, redriHing the oid 

drains or drilling new drains is suggested. In many concrete and masonry dams a 

foundation drainage system is installed to reduce uplift pressures on the dam. These 

systems are usually installed during construction but can be installed or supplemented at 

any time. They consist of holes drilled through the base of the dam into the foundation 

and may contain pipes. Also, monolith joint drains are commonly installed to intercept 

seepage along monolith and lift joints. The water maybe checked for chemical and 

suspended sediment content to aid in evaluation of solution or erosion that may be taking 

place. The elevation of the reservoir and tail water elevations is recorded at the time of 

drainage measurements so that relationships between these parameters can be developed. 
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Figure 4.2, Typical instrumentation in arch and gravit y dams (Bordes et al., 1998) 
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V'o 
1.0 

Indicator 

Concrete cracking (general, 

shallow) 

Concrete cracking (local) 

Deep concrete cracking 

Leakage 

(wet surfaces on concrete) 

Leakage 

( concentrated 

through concrete) 

Possible causes Possible effeds Potential remedies 

Freeze-thaw cycles Accelerated deterioration Conduct quality tests, coring, 
Ageing- sulphate atiack Reduction of effective density, porosity 

section ,Increased leakage Seal surfaces from exposure 

Stress concentration Progressive deterioration Movement monitoring 
Freeze-thaw action Increased leakage Remove and repair 
differential movement Loss of section deteriorated sections 

Excessive loading Increased leakage Determine extent of cracking 
Shrinkage (early age) Accelerated deterioration Evaluate short-long tenn 
Foundation movement Increased stresses effects 

Seai or grout cracks 
Tll~n":Ha" clrilill~H"~ 

Cracks Increased rate of Detennine path/extent 
Deteriorated concrete deterioration of cracks 
Porous concrete Loss of strength Seal cracks 

Increased leakage 

Cracks, Open joints Loss of concrete matrix Map aU leak locations 
DifferentiaI movements Loss of structural integrity Detailed inspection 
High uplift Increased uplift Determine path of water if 

possible 

Table 4.3, Evaluation matrix ofa concrete dam (NRC, 1983) 

Instrumentation 

,-

Crackmeter 
Flow meter 

Pendulums 
Joint meters 

Stress/strain meters 
Flowmeters 
Piezometers 
Pendulums 

Joint meters 
Pendulums 
Stress/strain 

Waterlevel 
Flowmeter 
Piezometers 
Pendulums 
~t1" .. 1. . mete1"~ 



4.3.1.4 Seepage and leakage 

Seepage perfonnance is one of the most sensitive early warning indicators (Myers et al., 

1997). Seepage through a dam and Hs foundation ls visible evidence that the dam lS not a 

perfect water barrier. Seepage and leakage from the abutments, foundation, and joints or 

cracks in a dam is collected and measured on a routine basis. It lS important to review 

such flows changes magnitude and material, both dissolved and suspended, 

transported by these flows. Increase these items ls early waming indicators of potential 

problems. Weirs and venturi flumes with upstream stilling basins are frequently used to 

measure seepage and leakage. 

Conclusions on the perfonnance of seepage control systems can be drawn from several 

measurements. A common and simple monitoring system is to rely on visual surface 

inspections at predetennined intervals. Monitoring devices can include piezometers, 

observation wells, and drainage collection systems to detennine a site dependent pattern 

of behaviour. A regular review of the collected data will generally detect major changes 

between subsequent readings (UASCE, 1993). 

4.3.1.5 Movements 

Displacements are probably the most meaningful parameters that can be readily 

monitored, because of the monolithic behaviour of arch dams. Although displacements 

occur in a11 directions, the most significant displacements are usually the ones that ta1œ 

place in a horizontal plane. AH concrete arch dams should have provisions for measuring 

these displacements, including relative movements between points within the dam and 

movement of the dam relative to a remote fixed point. In new dams, plumblines are still 

the preferred instmment to monitor the relative horizontal movements within an arch 

dam. It may be easier to insta11 inclinometers or a series of tiltmeters, in existing dams 

(UASCE, 1994). 

Movement of concrete and masonry dams and their abutmenis can be expected during 

and after constmction. These movements will occur as the reservoir is first filled, and as 

it is emptied and filled during succeeding seasons. Small movements are of little concern, 
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but increase in the magnitude of the movement or direction of movement should be 

immediately evaluated as to their potentially adverse impact on the structure. Movements 

are measured by surveying the location of the surface monuments located at various 

points on or adjacent to the dam. The benchmark or starting location for surveys is 

located outside of the influence of the dam or reservoir if possible. Measurements of the 

locations of the monuments should be such that changes in vertical, horizontal (both 

longitudinal and transverse to the dam axis), and angular locations are measured. The 

number of monuments surveyed depends on the size and type of the structure. The 

locations are tailored to the structure and, might include locations to measure movement 

between blocks, displacement at joints and cracks, deflections of various parts of the 

structure, settlement of the foundation, and movement of the abutments . 

. " ~. " 
~.. . 

DAMPERTANK 

{;~:;:;;'~,i0:;:.::'.:.:.t ~~GE 

Figure 4.3, Direct and inverted pendulum 
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Measurements of the monuments should be recorded at relatively short intervals in 

initial years of the life of the structure and less frequently as the satisfactory history of the 

dam lengthens. They should be more frequent if any unsatisfactory performance is 

indicated. The data collected should be carefully recorded and should include 

observations on the relative water levels in the reservoir and down stream. 

Pendulums are one of the methods of measuring the horizontal and vertical movements of 

the dam. Direct and inverted pendulums are designed to accurately measure the relative 

horizontal and vertical displacements of two points along a true verticalline (Figure 4.3). 

The fixed end of an inverted pendulum is grouted into the lower point of a borehole and a 

float tensions the wire vertically. The wire position is monitored by a reading table; 

bolted onto the upper point of the structure. A direct pendulum is comprised of a wire 

suspended from the upper point and a reading station fixed to the structure at the lower 

point. The wire is tensioned by a suspended weight that fits into a dashpot to dampen 

oscillations. 

4.3.1.6 Crack and joint measuring devices 

Joint meters are used to measure the opening of monolith joints. Depending on the type of 

device being used, the maximum opening that can be measured may range from 0.08 to 

0.4 inches. Joint meters provide information about when the joints have begun to open. 

They also give an indication of the effectiveness of the grouting and show whether any 

movement occurs in the joint during and after grouting. In both new and existing 

structures the development of cracks and movements of joints are indications of the stress 

on the structure that are sometimes above normal. Measurement of these areas of distress 

is provided through crack and joint displacement that can be either installed 111 

predetermined locations to monitor expected cracks or to observe joint behaviour, or 

placed at the site of a known crack or joint as need arises for its monitoring. Relative 

displacement instruments monitor monolith movement in three dimensions. They 

measure the relative displacement between two surfaces of the instrument attached to 

opposite sides of a crack or joint (Figure 4.4) 
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Figure 4.4, A portable fissurometer 

4.3.1. 7 Stress and strain state 

Strain meters measure strain and temperature. Since they measure strain at one location 

and in one direction only, it is usually necessary to install strain meters in a group of 

several instruments. Since strain meters do not directly measure stress, it is necessary to 

convert strains into stresses, which will require knowledge of concrete material 

properties, which are changing with time, because of creep, shrinkage, and change in 

modulus of elasticity. These material properties, as well as the coefficient of thermal 

expansion and Poisson's ratio, are usually determined by laboratory testing. The most 

common systems of stress and strain measurement are based on the deformations of a 

hydraulic or pneumatic pressure cell or the deformation of a vibrating wire. a vibrating 

wire strain meter, a string or wire is stretched between two points with two 

electromagnets placed symmetrically with respect to the wire span. At the time of loading 

the distance between two points will be changed in proportion to the loading, and this will 

cause a change in the vibration wire frequency. This frequency is a function of the 

dimensions of the wire, its modulus of elasticity and the strain imposed on the wire. 
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The strain is converted to stress using the modulus of elasticity E and Poisson's ratio v of 

concrete ai the measurmg point. 

I-v 

v 

o 

v 

1-v 

o 
4.5 

4.6 

Equations 4.5 and 4.6 can be used for calculation of stresses in plane strain and plane 

stress conditions respectively. Stress meters measure compressive stresses independently 

of shrinkage, expansion, creep, or changes in modulus of elasticity. They are used for 

special applications such as determining vertical stress at the base of a section, and for 

comparison of results from strain meters. They are also used in the arches for determining 

horizontal stress normal to the direction of thrust in the thinner arch elements near the top 

of the dam. 

4.3.1.8 Temperature monitoring 

The internaI temperature of concrete dams is commonly measured both during and after 

construction. During construction, the heat of hydration of freshly placed concrete can 

create high stresses, which could result in cracking. After construction is completed and a 

dam is in operation, it is not uncommon for very significant temperature differentials to 

exist depending on the season of the year. For example, during the winter, the upstream 

face of a dam remains relatively warm because of reservoir water temperature, while the 

temperature of the downstream face of the dam is reduced by co Id ambient air 

temperature. The reverse is true in the summer. Temperature measuring devices are very 

important in arch dams since volume changes caused by temperature fluctuations have a 

significant contribution to the loading on an arch dam (USACE, 1994). Thermometers are 

used to determine the temperature gradients for use in evaluating thermal stresses, which 
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contribute to thennal cracking. They are also used to control the cooling process during 

the grouting operations and are used to detennine the mean concrete temperature. If 

concrete temperatures are available for enough points in a dam section, the mean concrete 

temperature for the section can be calculated. The mean concrete temperature can be used 

for estimating the structural responses oftms section (displaeements and strains). 

4.3.1.9 Seismic instrument program 

A seismic instrument pro gram is an essential part of evaluating existing dams in areas of 

high potential for seismic activity. Deviees to measure ground motions and dam 

responses can facilitate rational design decisions for repairs and strengthening of a 

structure if damage has occurred as a result of an earthquake. These records are also 

helpful to compare the perfonnance of the structure with design expectations and to 

estimate the perfonnance of the structure during larger earthquakes. 

4.3.2 Dam inspection 

Routine visual inspection of dams is of great value in detennining the integrity of the 

structure. Where signs of deterioration of materials appear, cores and samples are tested 

in a laboratory to estimate the strength of the material. A routine schedule of 

nondestructive testing, such as ultra-sonic velo city measurements, can be useful lU 

detennining trends of changes in strength. 

Careful interpretation of aU observations, visual and field instruments must be carried out 

to assess the situation before methods of repair or upgrading are decided upon. 

Unexpected observations may not give any reasons for concem if a logical explanation 

ean be found. Fundamental questions have to be answered: (l) what is abnonnal 

behavior? the observed behavior may deviate from what the designer expected, but tested 

against the professional experience, it may prove not to be so abnonnal. (2) Does the 

deviation from predicted behavior indicate lower safety than aimed for in design? (3) 

Does the deviation require remedial action, such as repaîr, upgrading or strengthening? 
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The frequency of instrument readings or making observations at a dam depends on 

several factors including: relative hazard to life and property that the dam represents, 

height or size ofthe dam, 2) Relative quantity ofwater impounded by the dam, 3) relative 

seismic risk at the site, 4) age of the dam, and 5) frequency and amount of water level 

fluctuation in the reservoif. general, as each of the above factors increases, the 

frequency of monitoring should be increased. For example, very frequent (even daily) 

readings should be taken dming the first filling of a reservoir, and more frequent readings 

should be taken during high water levels and after significant stonns and earthquakes. 

Daily or weekly readings should be made during the first filling, Immediate readings 

should be taken following a stonn or earthquake, and significant seepage, movement, and 

stress-strain readings should probably be made at least monthly. 

While instrumentation data are an essential part of a dam surveillance system, the owners 

of dams aiso believe, for valid reason, that no automatic data acquisition configuration 

can replace human judgement when it cornes to dam perfonnance and safety monitoring 

(Bordes et al, 1998). For example, the visual inspection of elements such as cracks in the 

concrete and the colom of seepage water remains a vital and integral part of any complete 

monitoring program. 

The dam safety philosophy is to promote visual observation as being equally important as 

instrumentation data. The most dangerous events lilec, local defonnations, cracks, 

concentrated seepage flows, and wet spots cannot be detected by the instruments. They 

can eventually be discovered before becoming dangerous by means of visual inspections, 

which still are the main way of controlling the dam safety (Dibiagio, 2000). Processes 

affecting safety, but which cannot be measured by instruments installed during 

construction, can only be detected by visual inspection. Typical examples are cracks 

being detected and their growth, increasing turbidity in leakage, or the discovery of new 

leaks downstream of a weir (Post, 1985). An effective inspection program 1S essential to 

properly maintain a project in a safe condition. The inspections follow a schedule, which 

defines the frequency of inspection. This frequency depends on a number of factors. A 
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dam that has not been properly inspected by experts for sorne years or a new or a 

reconstructed dam should be inspected rather frequently. The :frequency decreases from 

the construction and impounding periods towards the long-term operation. However, 

inspection must be performed during the whole lifetime of a structure. Apart from pre­

designed schedules the frequency of inspections should be increased at times of 

exceptional events, such as floods, storm-induced wave action, earthquakes and the like. 

It is good practice to have inspections under variable operating conditions such as: 

@ Reservoir level down, so that the upstream face and abutments can be visited. 

@ Reservoir fulL This allows inspection of leakage or piezometer pressure under 

maximum head conditions. It also helps the inspector to assess hydraulic condition of 

spillways. 

Generally speaking, the opinion of very many individual engineers and panels is that 

measured data of instrumentation and visual inspections results are both necessary and 

that a dam cannot be considered safe unless both lead to a favorable conclusion (Post, 

1985). 

The dam safety engineer will have to combine results of inspection (visual data) and 

instrumentation data (quantitative) for a dam safety analysis. Monitoring device 

conditions are assessed in a site inspection and are related to a performance level (ability 

to monitor). Monitoring device importance factors are determined based on their overall 

diagnostic value for the safety assessment of a dam. An optimization strategy using a 

ranking equation based solely on the condition assessment and device importance 

determination is then used for combining the information. Anderson et al. (1999) propose 

a ranking procedure for the prioritization of maintenance and rehabilitation tasks on the 

performance monitoring devices for embankment dams. The priority ranking is the 

product of the 10ss of diagnostic function and the importance of that function. It is 

assumed that the most important devices in the worst condition should be given priority. 

Deviee condition are elicited :from an expert panel. Condition is defined in terms of 

ability to function as a monitoring device. The diagnostic value for each of the monitoring 

devices is determined by the utility function that is based on: (1) subjective conditional 
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probabilities of potential failure modes, (2) subjective conditional probabilities of specifie 

adverse conditions related to those failure modes, (3) diagnostic values of indicators that 

suggest the presence of the adverse conditions, and (4) the diagnostic value of the 

monitoring devices for these indicators. This diagnostic value can be updated as 

conditions on the dam change over time. 

Table 4.4 shows different scenarios for probabilities of anomaly detection. As it can be 

seen there are two types of eITors. It is important to take into account the probabilities of 

both type 1 and type II eITors in instrumentation analysis and design. The probability of 

type 1 eITor is denoted by alpha (a), the level of significance of an eITor. Significance 

level is defined as the degree of uncertainty about the statistical statement: 

a=Level of significance = P (type 1 eITor)=P (reject Hoi Ho is true) 

When a statistical test is performed to compare validity of the competing hypothesis 

statements, the result will cause the null hypothesis Ho to be either rejected or accepted. 

13= P (type II eITor)=P (accept Hoi Ho is faIse). 

Table 4.4, Probabilities of fault detection 

True Behaviour 

Fault Present Fault Not Present 

.... <lJ 
.id ~ Detected Good Type 1 eITors := := e:$ Q -.... -..... . ... 
~ ~ 
~ t Not detected Type II eITors Good ..... 
~ ::= Q Wi 

In statistical testing, it lS desirable to keep the probability of a type 1 eITor as low as 

possible. This can be done easily by using small values of a. However, there lS a 

relationship between type 1 and II eITors. As type 1 errors decrease, type II errors increase. 
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4.4 Recent trends in Performance monitoring 

Some current trends in sensor development and measurement technology that have an 

impact on dam monitoring methods and equipment are listed below. 

e Instruments are more accurate and there is a larger selection to choose from. 

e Generally, equipment costs will decrease with time. 

e Improved corrosion resistance of sensors due to increased use of noble alloys and 

materials, for example the use of titanium for wetted parts in pore pressure sensors. 

e Intelligent instruments or "smart sensors" are becoming more common and their level 

of intelligence is constantly being elevated. Sorne important advantages of smart 

sensors are: 1) built-in capacity for self-checking and automatic waming of 

malfunctions, 2) automatic compensation for nonlinearitly and hysterisis errors or 

systematic errors due to temperature drift, 3) networking capability thereby allowing a 

number of instruments to be connected to the same instrument cable, thus reducing 

the amount of cab les that have to be installed. The cost of cables and cable installation 

and terminal work accounts for a large portion of the total cost of monitoring systems. 

® Increased use of optical instruments, for example computer controlled surveymg 

instruments for geodetic measurements of deformations. 

® Laser position measurement systems for precise statie and dynamic displacement 

measurements. 

® Digital photographie techniques eombined with image proeessing for displacement 

and deformation measurements. 

@ Improvement in and increased use of optical fibre sensors for monitoring pressure, 

strain, temperature and displacement, induding distributed systems where 

measurements can be made at many points along a single fibre. The principal 

advantage is their immunity to electromagnetie interference and elimination of 

damage caused by induced voltages during eleetrical storms (Dibiagio, 2000). It is a 

simple matter to replace conventional electrical cables with fibre optie cables. The 

equipment needed to do this 18 now available and easy to use. Likewise there are 

modems and converters available that ean be used to convert and transmit the output 

69 



signais from mally types of sensors over fibre optic cables. However, with today's 

technology it is not feasible to replace conventional sensor cab les entirely with optical 

cables. The reason for this is that most sensors require sorne form of electrical power to 

operate them. This can not be done as teehnology available for transmitting power 

through fibre optie cable that is too expensive, too eomplieated, or too limited. 

@ More accurate GPS (global positioning satellite) equipment and methods for 

monitoring displacements. 

Agencies responsible for dam safety have long used conventional surveying methods to 

measure the displacements of benchmarks as part of dam monitoring programs. Such 

surveys have provided infrequent though precise estimates of the motion of a dam. With 

the development of high precision GPS methods to monitor plate tectonic motions and 

crustal deformation rates, an alternative method for monitoring such structural motions is 

available (Hudnut et al, 1998). Benefits of GPS lies in a much higher temporal resolution 

and nearly unattended continuo us operation. Figures 4.5 and 4.6 show an ex ample of the 

use of GPS on the Pacioma dam. 

Figure 4.5, Pacoima Dam. 

4.4.1 Automatic Data acquisition and processing 

The trend towards automated monitoring systems started in the 1970's and eliminated 

much of tedious work involved in data processmg and presentation. Subsequent rapid 

advances in electronics and computer technology coupled with decreasing costs and 
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extended use of electrical sensors spurred considerable interest automation of 

monitoring systems for dams. Automatic data acquisition and processing have now 

become an integral part of the vast majority of dam monitoring programs for new dams. 

Recent major advances electronics, communications and computers have made it 

possible that readings to be taken automatically on dams and on their periphery (Bordes et 

al.,1998). 

Figure 4.6, The antenna is mounted on a steel pier, and GPS receiver 

(Courtesy: Hudnut et aL, 1998) 

Automation of instrumentation can assist in the assessment of the safety of dams. This is 

particularly true for monitoring that requires rapid and frequent data collection or for 

instruments that are inaccessible. In recent years, the technology of devices for measunng 

seepage, stresses, and movements in dams has improved significantly with respect to 

accuracy, reliability, and economics. Although the initial installation of an Automated 

Data Acquisition System (ADAS) may appear to be more expensive than traditional 

instrumentation systems, the overall long-term cost, in many cases, is now economically 

competitive. Automation should receive consideration for aU systems that are to be 

installed during new dam construction, major rehabilitations, structural modifications, or 

any major effort that would support a major instrumentation system. Instrument upgrades 
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Table 4.5, Advantages and limitations of ADAS 

Advantages Limitations 

Increased accuracy, reduced human 1 Produces large volumes of data; overtaxes 
error. storage medium 

Increased frequency, more data, less 1 PotentiaUy higher maintenance costs. 
system error. 

1 

Increased data reliability and Installation could be expensive. 
consistency. 

Timeliness of infonnation, obtain data Lightning; variable voltage potential 
1 whenever needed. 

Is destructive. 

Data and system validity checks Excessive downtime 
enhance data quality. 

Alarms for exceeding data thresholds Requîres use of electronic transducers which 
and system health. have least long-tenn reliability 

and replacements could be justified on a case-by-case basis. The instrument automation 

concept generally includes an instrument or transducer that 1S linked to a data-logger or 

computer with communication capability that aHows data retrieval locally or from a 

remote location. The advantages and limitations of an automated system are summarized 

in Table 4.5. The limitations can be minimized with appropriate attention to planning 

and use of the system (USACE, 1987). 

These readings are taken by Measurement and Control Units (MeUs) that are typically 

located in close proximity to the instruments they measure. The readings can be a) 

transmitted to an on-site computer immediately through an on-Hne network, b) stored 

temporarily and transmitted periodically to a remote computer using standard 

telecommunication facilities. MCUs have complete optional control features which can 

be programmed to run automatically, or respond in a programmed way to remote 

commands. This allows easy and fast excecution of certain corrective measures. ADAS 

provides infonnation on a more frequent and uninterrupted basis than manual instrument 
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readings. This becomes especially important during severe weather events, when real­

time data is critical for making informed decisions. Adjusting the monitoring rates are 

easy to implement with an ADAS. As dams age, maintenance needs and safety concems 

increase. Dam safety officiaIs are putting greater emphasis on automated instrumentation 

and use of data acquisition systems to reduce costs of inspection and monitoring. The 

collection and analysis of large quantities of data, especially over long distances, requires 

centralized and automated measuring techniques. Data can be processed more rapidly 

thus enabling efficient alarm systems to be implemented when predetermined thresholds 

are exceeded. 

73 



c AP E 5 

5 .. Case studies of dam monitoring for Arch dams 

5.1 Introduction 

The safety of a dam is detennined by its design, construction and supervision during 

operation. High arch dam failures have dropped dramatically since the early part of 

century. An essential part of this improvement relates to improved measurement 

techniques that can make earlier detection of unexpected behavior. The overall safety of a 

dam can be assessed by the analysis of available measurements. The CUITent practice is to 

perfonn statistical analysis of individual instruments using linear regression methods. 

Confidence intervals are used to set the alarm levels for observed values. However, a 

large number of instruments must be analyzed, and it can be very difficult to estimate 

statistically significant deviations from normal readings for individual instruments, given 

that the fluctuations in stresses, strains, or defonnations are smaU, and in the order of 

magnitude of noise in sorne measurements. Data reduction methods can be helpful to 

overcome these difficulties and provide tools for better management and analysis of dam 

monitoring data. Sorne of the multivariate analysis methods discussed in Chapter 3 are 

applied to the Idukki dam data set. 

74 



5.2 Idukki Dam 

The Idukki arch dam is situated in south India in the Periyar valley the state of Kerala. 

It was the first concrete arch dam to be built in India. It is a double curvature, parabolic, 

thin asymmetrical arch dam and was constructed between 1969 and 1974. 

The 169-m high dam is made up of 24 individu al blocks and is seated on massive tightly 
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Figure 5.1, Location and view ofIdukki arch dam 

jointed hypersteine granite of excellent quality. The crest of the dam is 381 m long by 

7.6m wide, and the thickness at the base is 24.4m. The concrete for Idukki dam was 

designed to withstand a maximum compression of 35 MPa and a tension of 1.1 MPa. 

Arch dams are designed to carry extema110ads by compression. The major effort in arch 

dam design is to adjust the geometry to minimize the extent and magnitude of tensile 

stresses. However, tensile stresses can not be completely avoided and they do exist in 

some arch dams, and often result in cracks (Veltrop et. al, 1990). The monitoring system 

of the Idukki arch dam is described next. 

5.2.1 Monitoring 

Different types of instruments are installed to monitor the defonnations of the dam and of 

the foundations, and the stresses in the arch dam. (Table 5.1). Records ofthese data have 
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been kept smee 1974. The accuracy of a portion of the data may be questionable, 

particularly regarding the stress, strain measurements, sinee these instruments are sealed 

in the concrete and Call1ot be inspected, or the!r readings validated by independent 

means. 

Reservoir levei 

The fluctuation levels of the ldukki reservoir have been monitored on a daily basis since 

April 1974. Reservoir variations follow a regular cyclic pattern of almost 12 months. 

Maximum and minimum yearly reservoir levels are in November and June of each year 

(Figure 5.2). The maximum reservoir level of 731m was reached on Sept 1981. The 

minimum reservoir level after the filling period was 695m recorded in June 1983. 

Idukki reservoir variation 

660 

640 1 
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Time 

Figure 5.2, Reservoir level fluctuation, ldukki dam 

Temperature 

Daily air temperatures were recorded at the Idukki site. Minimum and maXImum 

temperatures oceur in the months of October and June of each year respectively. The 

maximum recorded temperature was 32.2 oC in May 1990. 
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Figure 5.3, Daily air temperature Variation, lduk:ki site 

Smoothed 14-day molling a-.erage air temperature 
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Figure 5.4, Smoothed 14-day air temperature, ldukki site. 
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Temperature variations are different for 1990 onward and show a trend of wanner 

temperature. Smoothed temperatures are presented in Figure 5.4. There were also 8 

resistance-type water thennometers embedded in the upstream face of the dam between 

579 m and 731 m levels. The data from the five operative instruments shows that the 

water tempe rature at the bottom of the reservoir is stable and colder than in the upper 

parts ofthe reservoir. 

Table 5.1 shows the list of instruments that are installed in Idukk:i dam. These instruments 

are either classified as global or local instruments. A local instrument such as an 

instrumented cylinder measures the strain at a specifie location of the dam. A global 

instrument mainly integrates response parameters (strains) over large volumes of the 

dam, such as inverted pendulums. Measurements from these instruments tend to be less 

variable due to averaging. The last column shows number of readings in a year. 

Instrumented cylinders are among the instruments, whieh are monitored very frequently; 

while the stress meters and strain met ers are monitored only twiee per year, at maximum 

and minimum reservoir level. 

Table 5.1, Type and frequency ofreading for different instruments 

Number of 

Measures Instrument Global Local readings 

(No/year) 

Pendulum * 12 

Crest * 4 

Collimation 

Displacement Base Meters * 4 

Rock targets * 4 

Clinometer * 12 

Electronic * 
Joint meter 

Strain meters * 2 

S tress/S train Stress meters * 2 

Cylinders * 104 
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5.2.1.1 Deformations 

There are two types of instruments that are installed in the dam to measure and record the 

horizontal deformations of the dam: (1) Pendulums, and (2) Crest collimation targets. 

Pendulums are among the most reliable instruments for measuring the horizontal 

movements of the dam (KSEB, 1989). A total of 6 pendulums were installed in blocks 

1,7 and 8 (Figure 5.5). Simple Pendulums P2, P3, P4 and an inverted pendulum P5 are 

installed at elevations 2400 ft (732 m), 2300 ft (701 m), 2100 ft (640 m) and 1900 ft (579 

m) of the central block (block 1) respectively (Figure 5.6). Pendulums Pl and P6 are 

installed in blocks 7 and 8 to measure movements at elevations 2100 ft (640 m) and 2300 

ft (701 m) respectively. These instruments measure both radial and tangential 

displacements. Pendulum P5 measures absolute displacements of the dam at elevation 

1900 ft (579 m). This displacement is added successively to displacements from other 

pendulums to obtain their absolute displacements. Displacements on March 1977 were 

selected as a reference to compare the pendulums and crest collimation results. Therefore 

displacements represent the relative displacement from this date. The recorded reservoir 

level was 711.44 m at the reference level. 

Average radial displacements are calculated for different reservoir level intervals (Figure 

5.7). The dam moves upstream when reservoir levels are less than the reference reservoir 

level and moves downstream for reservoir levels greater than this reference reservoir 

level. 

Figure 5.8 and Figure 5.9 show the tangential and radial displacements in the central 

block (block 1). The radial displacements are highly correlated with reservoir level 

except at the base (elevation 579 m), where the displacements are in order of 1-2 mm. As 

can be expected radial displacements show higher correlation with reservoir level than 

tangential displacements. 

Displacements ofpendulum P4 at elevation 2100 ft (640 m) are downstream for reservoir 

levels greater than the reference reservoir level of 711 m, and upstream for reservoir 
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levels less than 711 m. The maximum radial displacement is 6.05 mm dovvnstream on 

Nov. 1984 for a reservoir level of725.8 m. The maximum upstream movement is 1.86 m 

on June 1987 for a reservoir level of 698.6 m. The pendulum at elevation 2300 ft (701 m) 

shows maximum downstream and upstream displacements of 13.1 and 7.7 mm 

respectively. 

5.2.1.2 Crest Collimation 

Displacement of the crest is measured by shifting a movable target on the crest in a 

direction perpendicular to a fixed hne of sight. Movable targets are installed over blocks 

1,7 and 8 where, the readings were taken on a monthly schedule. The maximum 

downstream movement for the period of 1977-1989 was 15 mm at reservoir level of 

730m in September 1981. The maximum upstream movement for this period was 10.1 

mm in block 1 during May 1989 at reservoir level of 696 m. 

5.2.1.3 Stress/strain measurements 

Initially 82 rosettes of vibrating wire strain meters were embedded into the body of the 

dam to measure the strain and stress in different points of the dam (Figure 5.10). One half 

were installed 3 m deep in the downstream wall and the other halfplaced 3 m deep in the 

upstream wall. Sorne of these instruments were not functional and sorne were giving 

unreasonably high readings. In general, tension has been recorded for most of the 

instruments. The readings from the strain meters are unreliable on the whole and are no 

longer dependable (KSEB, 1989). High tensile strainl stress measurements obtained from 

the instruments are not consistent with results from the visual inspection of the dam. 

Sorne of these instruments had to be replaced in order to continue monitoring stresses 

whitin the dam. Since the strain-stress state of arch dam is very important in monitoring 

of the dam behavior, new rosettes of vibrating wire strain meters, placed in cylindres 

instrumenté de l'Universite de Sherbrooke (cruS), were used to replace sorne of the more 

strategically placed instruments. Each concrete cylinder contains seven vibrating wire 

extensometers. The instrumented cylinder is placed in a 6-inch diameter borehole. The 

instrumented cylinders are fully described in Simard et al (1993), and Ballivy et al 
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(1993). Each concrete cylinder compnses vibrating strings from which the three 

dimensional state of strain at a point can be measured (Figure 5.11). The cylinders were 

initially installed in October 1991 to validate measurements from the network of strain 

gauges installed at the time of initial construction. There are a total of six instrumented 

cylinders installed in the dam. 

5.2.2 Statistical analysis of stresses in Idukki dam 

A very important part of an arch dam monitoring system is the analysis of stresses to 

validate and control its safety. The stress meters installed in Idukki measure only the 

stresses perpendicular to their axis and are located in the plane of the arch of the dam in a 

vertical or horizontal position. 

These instruments are not read frequently and consist only of one measurement during 

the summer season and one measurement during the winter season corresponding to 

minimum and maximum reservoir levels. In order .to properly identify stress patterns 

inside the dam, readings should have been taken much frequently. Preliminary analysis of 

these instruments indicated that reliability of many of the instruments is questionable. 

Due to the poor quality and small number of readings of stress meters and strain meters, 

it was difficult to obtain good results from the statistical analysis. Instead statistical 

analysis were performed on instrumented cylinders, which are read twice weekly. Out of 

6 cylinders originally installed in the dam, two are defective and their readings are not 

acceptable. The four remaining cylinders were considered for statistical analysis. There 

are a total of 24 measurements, which are recorded twice weekly for a period of 17 

months. 

To eliminate spikes from the data set, the time series of first differences (rate of strain 

change) was calculated for each component of the 24 readings. Mean and standard 

deviations were calculated for each component. Considering the sample size, aU the data 

points greater than three-standard deviations from the mean were removed (Myers, 

1995). 
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The strain matrix can be represented by: 

5.1 

The strain matrix has three eigenvalues with three corresponding orthogonal 

eigenvectors. These three eigenvectors correspond to normal strains, referred to as 

principal strains, which exist on mutually orthogonal surfaces that contain no shear strain. 

The principal strain tensor can be expressed by: 

o 
5.2 

in which principal strains Epl, Ep2, and Ep3 are the solution of: 

&x -&pI &xy &xz 

&yx &yy -&p2 &yz =0 5.3 

&zx &yz &zz -&p3 

When principal strains are obtained, they can be used to calculate principal stresses: 

f

Œ"PI] f&PI+&P2+&P3] f&PI] 
Œ"P 2 = Ev &P I + &p2 + &p3 + Ev &p2 

(1+v)(l-2v) l+v 
Œ" P3 &P I + &p2 + &P3 &p, 

5.4 

Where E and p are the elastic constants of concrete. Principal strains are calculated from 

Eq. 5.3. The results indicate that instrumented cylinder RB2 measures the maximum 

principal tensile (Figure 5.12) and compressive stain (Figure 5.13), and is more critical 

than the other three instruments. High tensile strains are observed in three of the 

instruments. However, no cracks have been observed to validate the true state of stress. 

Nonetheless, the data from cylinders can be used to monitor changes in the state of stress 

in relative terms. 

5.2.2.1 Multivariate Unear regression 

The goal of multiple linear regression analysis 1S to determine the dependency of the 

maximum tensile principal strains (corresponding to cylinder RB2) with the reservoir 

88 



280 

260 

240 

220 

~ 200 

:::. 180 
c: 

"ê 160 
1ii 
ëii 140 
a. 
1) 

120 .S: 
à: 

100 

80 

60 

40 

-250 

~ -300 
"b 
x 
~ -350 
c: 

~ 
(J) 

~ -400 
'13 
c: 
it -450 

-500 

-550 

Tensile principal strains 

'\.m,1tb1XI!ll1tR1l:! 'IlPD =~diq,cg~~~~~~ 

0; ~ N N N N N N N N N C") PS3 LBi 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) -0) 0) 0) 0) 0) 0) 0) 0) 0) 0') 0') 0') 

" PS3 LB2 ... ..... ..... .,... .,... ..- ..- ..... ..... ... ...... ...-
...!.. 6 C:: .0 25. >. C: Ôl 6.. >- ,) , -c: PS3 RBi u (J) (Il Il) (Il :::l :::l (J) 0 (J) (Il -0 0 ...., IJ.. <!; ::2: ...., 

<!; (/) z 0 ...., 
--- PS3 RB2 -

Time 

Figure 5.12, Tensile principal strains in four instrumented cylinders 

Compressive principal strains 

..... ..- N C\J N N N C\J N 
0) 0) 0') 0') 0') 0) 0') 0') 0) 
0) 0) 0) 0) 0) 0) 0) 0') 0') 
...... ..- ..... ..... ..- ..... ..- 'F 

.,... 
15 6 

, 
.0 .!. >. C:: Ôl 6.. c: 

0 
Il) (Il (J) a. (Il :::l :::l (J) 

0 ...., IJ.. <!; ::2: ...., 
<!; (/) 

Time 

C\J N 
0') 0') 
0') 0') ..... .,.. 
~ 6 

(J) 

z 0 

C") 
0') 
0') ..... , 
c: 
(Il ...., 

,', PSi LBi 
-<l- PSi_LB2 
....(>- PS1_RBi 
- PSi_RB2 

Figure 5.13, Compressive principal strains in four instrumented cylinders 

89 



level, time, ambient temperature and internaI temperature of concrete. The prediction 

model can be used to check future readings, establish confidence intervals, and set alann 

levels. 

ln dam monitoring practice two types of statistical models are used. The first category of 

models is based on ambient temperature, reservoir level, and time effects. The second 

category of models is the HST model, in which seasonal effects are used instead of 

temperature data. The HST method provides good results in many cases but is inefficient 

in predicting of the responses for abnormal temperature cycles. The HST model is used to 

model the tensile principal strain of cylinder RB2 (denoted PS_RB2 hereafter). Periodic 

functions (Eq. 5.7), and polynomial of reservoir level (Eq. 5.6) and time functions (Eq. 

5.8) are considered. 

where 

D(t) = H(z) + S(8) + T(t) 

H -Hmin z=-_..........!!!"'--
Hmax -Hmin 

21ft' 
t'=t-to and 8 = --

, 365 

where Hmin, Hmax, are respectively minimum and maximum reservoir water level. 

5.5 

5.6 

5.7 

5.8 

Every regression model must be va!idated. One practice is to use cross validation by 

splitting the data into estimation and validation sets. A mode! is obtained on the 

estimation set and verified with the validation set. However, this is not easily do ne with 

the standard statistical software packages. Press (Prediction Sum of Squares) statistics is 

a criterion that can be used as a form of validation. Press statistics or deleted residuals are 

readily available in commercial statistical packages (Myers, 1990). 

Consider a set of data in which the first observation is withheld from the data, and the 

remaining (n-l) observations are used. The first observation is then replaced and the 
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second observation is withheld to estimate the coefficients for a model. The procedure is 

repeated so that the model is fitted n times. The deleted response 1S estimated for every 

data point, resulting n prediction errors or press residuals. An observation is not used 

estimating its estimated press residuals consequently tbis i8 a form of validation. Press 

residuals are calculated from: 

5.9 

where ;s,.i i8 the vector of the predictor variables at a particular time The PRESS statistics 

is defined as: 

5.10 

checks are aiso made to avoid overfitting and underfitting the data set 

The best subset of predictor was selected on the basis of Cp statistics. p predictor 

variables are selected the Cp is defined as: 

where 
A 

Y 

n 

5.11 

1S the predicted value of y from p predictors 

is the residual mean square after regression on the completed set of k 

variables 

is the sample size 

Stepwise regression summary is presented in Table 5.2. The periodic functions, reservoir 

level variation and time effect explain about 98% of variation of principal strain of 

cylinder RB2. The variables in order of importance are time and periodic functions. 

Parameter estimates and associated t-test values are presented in Table 5.3. 

Residuals are normally distributed, have no bias, and have a constant variance (Figure 

5.14), and model performance isjudged to be satisfactory (Figure 5.15). Predicted values 

and prediction intervals are shown in Figure 5.16. Note that the prediction intervals can 

be used to set alarms for detecting significant changes in the principal strain. Hydrostatic, 

seasonal and irreversible component of the HST model is presented in Figure 5.17. 
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Table 5.2, Stepwise regression summary of principal strain of cylinder RB2 

Summary of Siepwise Regression 

Multiple! Multiple F * tu 1 p~level 
Variable R 1 RM$ uare chan e entr/rem i 

t' 0.908 0.825 0.825 622.340 0.000000 
0.977 0.954 0.129 363.813 0.000000 

3 0.987. 0.973 0.020 96.212 0.000000 
, , '" '" _.vw 

4 0.991 0.981 0.008. 54.216 0.000000 

5 0.992 0.983 0.002 13.845 0.000296 

Table 5.3, Regression summary of principal strain of cylinder RB2 
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Figure 5.14, Standardized residuals of principal tensile strain cylinder RB2, HST model 
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Principal strain and predicied HST 
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Figure 5.15, Principal strain cylinder RB2 and predicted HST model 
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Figure 5.16, Principal strains, predicted values and prediction interval 
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HST components of Principal strain RB2 
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Figure 5.17, HST components of principal strain of cylinder RB2, ldukki dam 

HST model indicates that irreversible effects account for more than 82% of the variation 

of principal strain of cylinder that is rather surprising. 

Dimensional analysis indicates that strains induced by reservoir level variations can be 

expressed as & H = bl Z + b2z
2 + b3z

3 
• In consequence, another model was developed which 

considered reservoir level variations and seasonal effects as predictors_ Reservoir level 

and seasonal effects accounts for 43% and 46% of the variation of principal strain 

respectively (Table 5.4). Regression summary results are presented in Table 5.5. 

Predicted values and prediction intervals are shown Figure 5.20. Comparing the two 

models, the HST model would explain a larger proportion of total variances, and is more 

accurate in predicting maximum principal strains. 

It must be noted that the data set analyzed covers only a period of 17 months, from Oct. 

1992 to Feb 1993. Ideally data sets should cover at least a period of 3 year, in order to 

obtain a good estimate of seasonal factors. Analysis of data over a longer time period can 

separate irreversible effects more conclusively. 
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Table 5.4, Stepwise regression summary of second model for principal strain of 

cylinder RB2 

Summary of Stepwise Regression 

Step 1 Multiple p-level i Variabls 
+Inl..out 1 R ' included 

1 0.66 0.000000 1 

2 0.81 0.31 163.88 0.000000 2 
, .. ~" . 

3 0.96 0.92 0.11 284.87 0.000000 3 

4 0.99 0.97 0.05 225.22 0.000000 4 

Table 5.5, Regression summary of second model for principal strain of cylinder RB2 
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Principal strain and predicted, second model 
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Figure 5.19, Principal strain cylinder RE2 and predicted second model 
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5.2.2.2 Principal component analysis 

The data set analyzed covers 17 months of observations with a frequency of two readings 

per week. The reliability of two of six cylinders is doubtful based on a preliminary 

exploratory analysls. Therefore only four cylinders are considered for the analysls. The 

cylinders are installed at the periphery of the dam next to the rock surface can only 

model the localized behavior of the related dam section The data set consists of 24 

variables, six for each cylinder. 

PCA were perforrned on the correlation matrix. The number of principal components to 

retain may be detennined by several methods. Figure 5.21 shows the seree plot, which is 

plot of the eigenvalues as a function of the number of eigenvalues. The number of 

components lS selected by identifying the point at which the scree plot flattens out. 

Another option IS to use only eigenvalues of greater than one. In this application the scree 

plot flattens out at the fifth eigenvalue that is also less than one. Consequently, only the 

first four principal components are retained. 

Eigenvall..les of correlation matrix 
14.-----~~----~------~------~------~------~------_. 

52.01% 

12 

10 

8 

4 

2 13% 
.11% 

o 

-2~--------~----------~----------~----------~------~ 
o 5 10 15 20 

Eigenvalue number 

Figure 5.21, Seree plot, PCA correlation matrix ofinstrumented cylinders 

The first four components explain 96% ofthe total variance (Table 5.6) of the 24 original 

variables, which is a significant reduction with respect to number of original variables. It 
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can be conc1uded that PCA can efficiently compress the original data 

of rnonitored variables. 

reduce number 

Table 5.6, PCA results 

Principal Eigenvalues Variance Explained Commutative 

Component by each PC Variance Explained 

l 12.48 52% 52% 

2 6.39 27% 79% 

3 2.89 12% 91% 

4 1.23 5% 96% 

5 0.5 2.1% 98% 

The first principal cornponent explains 52%; the second component 27%; the third 12%; 

and the fourth 5% of the total variance of the data set (Table 5.6). As can be noted, the 

rernaining components explain only 4% of the variance and, most likely, they correlate 

with the noise in the data .. 
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Figure 5.22, Principal components of cylinders, Idukki dam 
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Table 5.7, Stepwise regression, summary for PCI of cylinders 

2.00 0.98 0.05 281.21 0.00 2 

Table 5.8, Stepwise regression, summary for PC2 of cylinders 

Variabls 
included 

1 
0.92 0.84 0.19 154.80 0.0000 2 

~ •• ~~ A "'~M,~ _'~". __ " 

0.97 0.95 0.11 285.54 0.0000 3 
0.97 0.02 0.0000 4 

0.99 0.98 0.01 0.0000 5 

Table 5.9, Stepwise regression summary for PC3 of cylinders 

Summary of Stepwise Regression PC3 

Variable 
Step 1 Multiple ! Multiple 1 R-SqUare]F - ta 1 

+in/~aut ) R 1 R-SQuare 1 chamJe entr/rem: 
p~level 1 Variabls 

incJuded 
T LB2 1 0.70 0.49 0.49 126.270.0000 1 • zi3'~"--'" ~ .~, . ~'". 'oc ~ ". _ ~. " ... ". _ """ •• , ,. 

2 0.97 0.94 0.45 1001.45.0.0000 2 
T lB1 3 0.98 0.95 0.01 30.900.0000 3 

Table 5.10, Stepwise regression summary for PC4 of cylinders 

Variable 

I_8!3.L. 
T_~ê,t 

T RB2 

Summary of Stepwise Regression PC4 

Multiple i Multiple 1 R-square : F - ta 
R 1 R-s uare J chan e 1 entrJrem 

0.62 0.38 0.38 81.04 0.0000 
... '" ... ~,- " "" --" . , '" ~, ... -

2 0.95 0.91 0.53 764.790.0000 
. ,. v." _'_m.<, ._." 

3 0.97 0.93 0.02 48.94 0.0000 
4 0.98 0.95 0.02 54.96 0.0000 

0_' , ""_,,. W _,_ 

5 0.98 0.96 0.01 22.86 0.0000 

Variabls 
included 

1 
2 
3 
4 
5 

Multiple linear regression models were developed for the first four PC's. Cylinder 

temperatures, time and polynomial of reservoir level were considered as predictor 

variables. Temperature of cylinders LBI, LB2, RBI, and RB2 are denoted by T_LBl, 

T_LB2, T_RBI and T_RB2 respectively. Results of stepwise regression indicate that 

PCI is highly correlated with time, and PC2 is corre1ated with water level. The first 

component explains most of the variance and the scores are monotonically decreasing as 
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a function oftime (Figure 5.22). The scores could be associated "vith creep, which shows 

similar behavior as a function of time. However it is not clear if creep is occurring at the 

cylinders or in the dam. The second component explains 27% of the variance. Plotting the 

scores as a function of time together with reservoir level indicated that the scores are 

correlated to reservoir level variation. Third component (PC3) 18 correlated with both 

water level and temperature reservoir level (Table 5.9). Plotting the scores as a function 

oftime together with average cylinder temperature indicated that the scores are correlated 

to average cylinder temperature. The fourth component explains 6% of the total variance, 

and is highly correlated with cylinder temperatures (Table 5.10). The scores for the foooh 

component show a very strong correlation with the variation of the temperature measured 

by cylinders RB1 (Figure 5.25). The correlation is strongest for a time delay of 45 days 

due to thennal inertia of the dam. The remaining principal components represent only 4% 

of the data variation and they represent noise in the data as they correspond to variation 

type not present in aIl the measured instruments. 

It must be noted that the data set analyzed covers only a period of 17 months, from Oct. 

1992 to Feb 1993. Analysis of data over a longer time period can separate irreversible 

and reversible effects more conclusively. 
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Figure 5.23, Scores of second PC and reservoir level variations, ldukki dam 
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Time series of PC3 and average cylinder temperature 
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Figure 5.24, Scores ofthird PC and average cylinder temperatures, Idukki dam 
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Figure 5.25, Scores of fourth PC and cylinder temperature RB l, Idukki dam 
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Figure 5.26, Explained variance of instruments by four principal components of 

instrumented cylinders, Idukki dam 

Four principal components can be used to estimate the response variables (24 measured 

strains). The variance explained for each instrument lS a measure of goodness of fit 

(Figure 5.26). For most of the instruments the variance explained is weIl over 90%. The 

four factors only explain about 83% ofthe variation of the Exy for cylinder LBI 

5.2.3 Statistical analysis of displacements 

Simple Pendulums P2, P3, P4 and inverted pendulum P5 are installed at elevations 2400 

ft (732 m), 2300 ft (701 m), 2100 ft (640 m) and 1900 ft (579 m) of the central block 

(block 1) respectively (Figure 5.6). Pendulums Pl and P6 are installed in blocks 7 and 8 

to measure movements at elevations 2100 ft (640 m) and 2300 ft (701 m) respectively. 

These pendulums are considered for statistical analysis. 

Pendulum readings are available from 1977 to 1989. Measurements had been recorded 

more frequently before 1981, Air temperature readings were only available from 1982 

and therefore were not considered in the analysis. The name of the variables lS defined to 
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indicate the block number, elevation, and type of displacement, for example lR2400 and 

l T2400 are respectively of radial and tangential displacements at elevation 2400 ft (732 

m) ofblock 1. 

Ê ..s 
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Table 5.11, Basic statistics for pendulums, Idukki dam 

Std.Dev. 
Variable 
iR1900 220 2.17 0.36 

"*,,,.,, ... ,~o,.,,,,.., .. ,,_~" 

R2100 220 -6.05 8.94 1.94 
1R2300 220 -4.22 -13.11 17.66 5.11 

"'-""~"·''''''''.'E'"?''''''''«>M",," 

1J1~1Q9, 220 -4.26 -15.01 16.92 5.77 

JI.1~Q9~. 220 -0.86 -35.59 1.13 2.50 

tlfj92 ..... 220 -0.93 -35.30 2.81 

JI?3.9Q. .. 212 -1.41 -36.24 3.24 
212 3.24 

7 192 2.58 
7R2 197 3.24 
7T2 192 4.72 
.,,,-,,<u,"_,",,,,-,u,>,w,,,,,,<,,,<,M 

Zl?_~QQ. 
8R21 00 

,'"....c~..,.,_',~~''''''''"'''''''', 

8R2300 -0.58 7.17 

!3IgJ5!Q .. 0.47 -3.93· 5.07 
8T2300 0.21 -3.20 7.80 1.65 

Box Plot pendulums 

o 0 " " 

" .. .. .. 0 Median 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D 25%-75% 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l Non-Outlier Min-Max 
N C"J '<1' Ol N C"J (!!j C"J '<1' ..- C"J ..- C"J N C"J 

N N ..... N N N N N N N N 0 Outliers n:: n:: n:: l- I- l- I- n:: n:: l- I- n:: n:: l- I-.,... .,... ..- .... ..- ..- ..- t-- t-- t-- t-- co co co 0:::> .. Extremes 
Pendulums 

Figure 5.27, Box plot for pendulum readings, Idukki dam 
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Complete simultaneous readings for aIl pendulums are availab1e for 182 data points. 

There are a few extreme points for an instmments, especially for tangential 

displacements in Block 1 (Figure 5.27). Maximum displacements are observed at 

elevation 2400 ft (732 m) ofBlock 1. Figure 5.28 shows the correlation among pendulum 

readings, which are grouped according to their correlation coefficients. 

The following observations can be made regarding pendulum displacements: 

1) an radial displacements except lR1900, which is located at the base, are highly 

correlated, 2) tangential movements of block 1 are highly correlated, 3) radial 

displacements and reservoir level variations are highly correlated, 4) there lS no 

correlation between tangential displacements of central block 1 and reservoir level, and 

5) radial and tangential displacements of block 7 and 8 are strongly correlated with 

reservoir level. 
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Figure 5.28, Correlation map for pendulum readings, Idukki dam 
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Table 5.12, Correlation between pendu1um displacements blocks l, Idukki dam 

Correlations between pendulum displacement 

-0.92 -0.08 -0.16 
0.19 -0.05 -0.10 

0.31 .00 0.93 0.00 0.09 0.32 0.32 

1.R.~?g.cL -0.91 0.18' 0.94 1.00 0.98 -0.02 0.08 0.27 0.28 

199:4QQ -0.92 0.19 0.93 0.98 1.00 -0.02 0.09 0.26 0.27 
1I1~9Q, 0.01 -0.02 0.00 -0.02 -0.02 1,00 0.85 0.73 0.72 

JJ:glQ~. -0.08 -0.05 0.09 0.08 0.09 0.85 1.00 0.86 0.84 

JT?~Q~t -0.15 -0.08 0.32 0.27 0.26 0.73 0.86 1.00 0.99 
" c _ ._~ .,.,_, > ." AA 

1T2400 -0.16 -0.10 0.32 0.28 0.27 0.72 0.84 0.99 1.00 

Table 5.13, Correlation between pendulum displacements block 1,7 and 8, Idukki dam 

5.2.3.1 

Correlations 

7R210017R2300, 7T2100i1T230018R21ooI8R2300!8T2100!ST2300 
J 1 1 l ' , , Variable l 1 ! ~ ! l i 

-0.86: -0.90 
0.06 
0.76 

--, .,,'~, "'~ - >" 

-0.89 
0.07 
0.76 

-0.90 
0.06 
0.77 

-0.91 
0.16 
0.82 

,.VN _ •• _<. ,~_"" _~, > 

-0.90 -0.82 
0.10 0.06 
0.81 0.69 

•• ",nA" ._,." 

0.07 
0.73 
0.89 0.88 0.89 0.90 0.90 0.88 0.80 

-0.81 
0.10 
0.70 
0.80 
0.84 

,~_. ~V_"" •• ,~.', -' '" 

0.89 0.92 0.92 0.93 0.92 0.90 0.82 
",. _ _ , __ W" _,_ "" • " •••••• ~".e""~ 

-0.03 -0.02 -0.03 -0.01 -0.02 0.02 0.01 -0.03 
•• ,," .• __ ~ •• " '" _,. "_",._._ ""_"""h, ,"~~. 

0.06 0.08 0.07 0.09 0.09 0.10 0.08 0.01 
0.16 0.18 0.17 0.18 0.19 0.17 0.10 0.13 

• '"'~ _"A ••. ,~ •. "",. -" -""., ... ~,.~,._.~.. , -""-~" --,"-

0.17 0.19 0.18 0.19 0.19 0.18 0.11 0.13 
?BgJQ~t 1.00 0.92 0.96 0.93 0.88 

0.88 
O&~_ 
0.89 

0.82 0.78 
•• "" 0"' "._, ~._~ 

0.82 
0.83 
0.83 
0.85 
0.84 
0.76 
0.91 
1.00 

ZE~?'QQ, 0.92 1.00 0.98 
.ZI?:!QQ .. _Q.96 0.98 1.00 
?Ig~QQ 0.93 1.00 0.99 

IlQ,. 0.88 0.88 0.89 
0.82 
0.78 
0.82 

0.87 
0.82 
0.83 

Anomaly detection 

0.86 
0.81 
0.83 

1.00 
0.99 
1.00 

0.87 0.82 
0.86 0.81 
0.88 0.83 

0.89 1.00 0.85 0.76 
0.86 
1.00 
0.91 

Q:?IL .... __ 0.8~ .. J :99_ 
0.83 0.16 0.86 
0.85 0.84 0.16 

One of the main applications of the instrumentation data analysis is the identification of 

anomalies in dam monitoring systems Two kinds of checks are generally applied on 

instrumentation data: 1) A comparison of the observation and Hs rate of change with 
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preset threshold values. The thresholds are obtained from mstorical data or numerical 

models; and. 2) A comparison of the observation with predicted values obtained from a 

reference mode!. 

In current dam safety practice these alarm levels are chosen based on the analysis of each 

individual instrument However, as sorne of the measurements are noisy or unreliable, 

this approach increases the chance of finding an instrument out of control. Thus the faise 

alarm rate (or probability of Type 1 error) is increased if each variable is analyzed and 

checked separate!y since the number of faise alarms is directly proportional to the 

number of instruments. In many cases, the dam will actually be in a safe state but each 

alarm couid require verification. A combination of univariate, bivariate and multivariate 

statisticai methods is proposed to overcome sorne of these difficulties and reduce the 

probabilities of faise alarms generated by a dam monitoring system. 

A mode! is developed for the reference period and is used for the prediction of instrument 

readings in real time. Abnormal data, which is not consistent with past readings must be 

investigated and labeied as erroneous data or possible anomalies. 

The data used in generating statistical reference model: 

1) must be for the intact structure, where on1y minor structural modifications have 

occurred, 2) must be under operating conditions and coyer aIl range of normal operational 

loadings (i.e reservoir level, temperatures), 3) must have sufficient length and appropriate 

frequency of readings to obtain a statistically significant model 

In developing the statistical reference model it is important to treat outliers properly. The 

reference model is then used for the prediction of future observations and to establish the 

confidence limits for range of expected behavior. Any reading, which is not consistent 

with the reference mode!, generates a waming message or alarm. When the reading is not 

within pre-established limits, prompt evaluation of the safety of the dam is normally 

taken wmch may lead to: 

1) Assessing, and if needed, resetting the boundaries of satisfactory performance of the 

dam, as measured by instruments, 2) intensified monitoring, 3) lowering the reservoir 
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level, wammg the population, and evacuating dO\\lJlstream are as and, 5) taking 

structural corrective actions. 

Erroneous data can be a source of error when developing reference models, and must be 

removed before building regression or PCA models (Wise, 1991). This 1S important 

because outliers have a great deal of leverage on the regression models and can change 

them significantly. An outlier is an observation (or subset of observations) that appears to 

be inconsistent with the remainder orthe data set (Bamett, 1994). Any extreme data point 

can be due to: 1) erroneous data, 2) faulty sensors or, 3) changes in the dam behavior. 

Outlier identification (and subsequent removal or accommodation) is a part of the data 

screening process, wmch should be done routinely before statistical analyses. 

Outliers can be classified into one of four categories. The first category contains those 

outliers arising form a procedural error, such as data entry error or a mistake in coding. 

These types of outliers can be easily identified and should be eliminated. The second 

class of outliers are observations that occur as a result of an extraordinary event. In tms 

case an explanation exists for the uniqueness of the observation (Hair et al, 1995). Higher 

than normal reservoir level and daily temperatures are such examples. A decision must be 

made whether or not the outlier represents a valid observation in the population. If so, it 

should be retained; if not, it should be deleted from the analysis. The third class of outlier 

comprises extraordinary observations for which there is no explanation. Although these 

are the outliers most likely to be omitted, they may be retained if the analyst feels they 

represent a valid segment of the population. Other information such as results of 

inspections can be used to facilitate a decision. The fourth and final class of outliers 

are,observations that faU within the ordinary range of values on each of the variables, but 

are unique in their combination of values across the variables (multivariate outliers). In 

this case, the observations must be retained unless specific evidence is available 

discounting the outlier as a valid member of the population. Methods used in detection of 

outliers are a significant part of a statistical study and can be divided into, univariate, 

bivariate and multivariate. Several of these methods should be utilized, 100 king for 

consistent results in identifying outliers. 
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The following steps are taken in the identification of anomalies in the reference model 

and for the subsequent comparison of future values to this model. Since results of visual 

dam inspection and engineering reports are available at the time of developing the 

reference model, any data that does not conform to the model 1S generally discarded. 

However, anomalies detected in the real-time monitoring must be carefully dealt with. 

Univariate detection 

Outliers are identified by examining the distribution of observations, deleting as outliers 

those cases that faH in the outer ranges of the distribution. The primary issue concems the 

establishment of the threshold for designation of an outlier; the observations (i.e. 

displacements, pressures) or their rate of change are converted to standard scores, which 

have a mean of zero and a standard deviation of one. Once the values are expressed is a 

standardized format, comparisons across variables can be easily made. For small samples, 

(80 or fewer observations) the guidelines suggest identifying those cases with standard 

scores of 2.5 or greater as outliers (Myers et al, 1995). When the sample size is larger, the 

guidelines suggest that the threshold value of standard scores range from 3 to 4. In either 

case, It should be recognized that a certain number of observations may oeeur normally 

in these outer ranges of the distribution. Univariate control charts for tangential 

displacements ofblock 1 at elevations 1900 ft (579 m) and 2400 ft (732 m) are shown in 

Figure 5.29 and Figure 5.30 respectively. Figure 5.29 shows anomalies in tangential 

displacements of block 1 at the base of dam. The tangential displacements of pendulum 

P5 at the base are less than 1-2 mm during the period of 1977-1986, while, these 

displacements increase during the period from 1986 to 1989 and the maximum 

displacement in this period is 4.91 mm for a reservoir level of 698 m. 

Bivariate detection 

Pairs of variables can be examined jointly through a scatter plot. Cases that faIl markedly 

outside the range of the other observations can be noted as isolated points in the scatter 

plot. To assist in determining the expected range of observations, an ellipse representing 

a specified confidence interval (normally 95% of the distribution) for a bivariate normal 
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Univariate control chart for 1 T1900 
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Figure 5.29, Univerariate control chart for tangential displacements ofblock 1, 

elevation 1900 ft (571 m) 
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Figure 5.30, Univerariate control chart for tangential displacements ofblock 1, 

elevation 2400 ft (732 m) 
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distribution can be superimposed over the scatter plot. This pro vides a graphical portrayal 

of the confidence limits and facilitates identification of the outliers. 

Figure 5.31 shows that that radial displacements are highly correlated. Observed 

displacements of January 1988 are 17.66 mm and 16.92 mm for elevations 2300 ft (701 

m) and 2400 ft (731 m) respectively, and is regarded as an outlier. Similarly readings of 

September 1980 are regarded as an outlier. It must be noted that this point can not be 

detected from univariate method. Radial displacements are highly correlated with 

reservoir level variations. Altematively scatter plots of these displacements and reservoir 

level can be considered. Similarly, tangential readings of block 8 at elevations 2100 ft 

(640 m) and 2300 ft (701 m) are highly correlated and outliers can be identified outside 

of confidence ellipse (Figure 5.32). 

MuUivariate detection, 

Multivariate assessment of each observation across a set of variables can also be used. 

Dam responses are often correlated, Consequently, the dimensionality can be 

substantially reduced to a few principal components, much less than the original number 

of variables. In many cases, only three of four principal components can describe as 

much as 90% of the variance. Using standard distribution theory, confidence ellipses can 

be superimposed on the joint principal component scores charts. 

PCA was used in a preliminary analysis to detect outliers. Principal components are 

extracted and their scores calculated. Next the joint principal component scores charts are 

plotted and 95% Confidence ellipses are then used to identify outliers (Figure 5.33 to 

Figure 5.35) and several anomalies are identified .. 

Outiier designation 

When observations that are candidates for designation as outliers are identified by the 

several univariate, bivariate, or multivariate methods observations, which were similar, 

are deleted prior to fitting the reference model. 
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2 4 

PCA was performed on the correlation matrix of pendulums. The first three components 

explain 88% of the total variance (Figure 5.36) of the 16 original variables. The first 

principal component explains 63%; the second component 19%; the third 6%; ofthe total 

variance of the data set (Figure 5.36). The first component explains most of the variance 

and the scores are highly correlated with reservoir level variations (Figure 5 40). 

Analyses of loadings for the first and second principal component indicates that an radial 

displacements of block 1 except at elevation 1900 ft (579 m) and tangential and radial 

displacements ofblocks 7 and 8 are associated with PCI. 

PC2 accounts for tangential displacements of block 1. PC3 is only correlated with radial 

displacements ofblock 1 at the base (lR1900). Displacements of lR1900 (located at the 

base) are not correlated with rest of the pendulums. The principal components are 

uncorrelated and orthogonal; therefore when one of the variables is not correlated with 

the other variables, then variance of that variable is one of the eigenvalues and the 
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Table 5.14, Loading of principal components, pendulums 

loadings 
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variable itselfbecomes one of the principal components. In extreme case when there is no 

correlation between variables, PCA reproduce the variables, thus if correlations are smaH 

there is little to be gained with a principal components analysis. PC2 shows movement of 

the dam towards the right baTIk after 1986. 

It must be noted that Pendulum P5 measures absolute displacements of the dam at 

elevation 1900 f1.(571 m) This displacement is added successively to displacements from 

other pendulums to obtain their absolute displacements. Therefore most of anomalies are 

recorded at the base ofthe dam. The tangential displacements ofpendulum P5, located at 

the base, are less than 1 mm during the period of 1977-1986. The tangential 

displacements increase during the period from 1986 to 1989 and the maxImum 

displacement in this period is 4.91 mm for a reservoir level of 698 m. 

The PCA model can be used for monitoring the future observations. Number of 

monitored variables is decreased from 16 (number of original instruments) to the first 

three PC's. Scores ofPCl is used for monitoring radial displacements ofblock 1 at higher 

elevations, and radial and tangential displacements of blocks 7 and 8. Scores of PC2 are 

used for monitoring tangential displacements of block 1. The signal component of the 

instruments reading is separated from noise given that the noise component 1S by 

definition uncorrelated from one instrument to another. This will result in reducing 

number of false alarms as compared to the traditional practice of monitoring the 16 

instruments independently. 

For every new observation scores are calculated and compared with the expected range 

specified by the reference PCA model. Univariate and bivariate control charts are useful 

for the detection of anomalies. When an anomaly is detected the instruments associated 

with that PC can be reviewed. 
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c APTE 6 

6. Application of Methodology to Daniel Johnson 

and Chute ... à ... Caron dams 

6.1 Introduction 

In the northem regions of Canada, the ambient air temperature differentials between 

summer and winter can be as high as 45° C. This variation in air temperature induce 

thermal stresses that exceed the tensile strength ofthe concrete. The Daniel-Johnson dam 

(Fig. 6.1) located in Quebec, Canada, is an example of a large multiple arch dam that has 

undergone thermal damage. Chute-à-Caron is a gravit y dam comprised of three sections. 

Two of the sections form an angle of 147°. These two segments interact due to thermal 

expansion and a construction joint, located the drainage gallery has opened under this 

action. Sorne of the multivariate statistical analysis methods discussed in Chapter 3 are 

applied to these two dams. 

6.2 Daniel Johnson Dam 

The Daniel Johnson dam (Figure 6.1) is the largest multiple arch dams in the world. It is 

located 800 km northeast of the city of Montreal on the Manicouagan river. Its maximum 

height and length are about 165 m and 1315 m respectively (Veltrop et. al, 1990). It 
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consists of 13 cylindrical arches supported by 14 buttresses (Figure 6.2). The dam 

includes a large main arch, two adjacent symmetrical transition arches, and eleven normal 

arches of identical geometry. The main arch spans over 150 m, has a thickness of 24 m at 

its base, and a thickness of 4.8 m at its crest. 

Figure 6.1, Location and view of Daniel Johnson multiple arch dam 

Impounding of the lake started in 1964 and was completed in 1977. Shortly after 

construction, different types of cracks started to appear on the downstream and 

upstream faces of the dam. Eleven of the thirteen arches are known to have cracks. 

Two kinds of cracks are present: The first type of cracks ls known as plunging cracks. 

They eut the botiom of the arch in a plane perpendieular to the upstream face (at elevation 

830 ft) and plunge towards the downstream face (Figure 6.3). These cracks were revealed 

by water seepage in the drainage system (Mamet, 1989). These plunging cracks were 

caused by stress concentrations due to geometric discontinuities and have been treated by 

a series of on-going grouting programs. In December 1992, the water infiltration rate of 

Arch 5-6 suddenly increased by 5 lis in a matter of six weeks to reach an infiltration rate 

of 15 lis (Figure 6.4). Progressive grout erosion was identified as the most probable 

reason for the increase in the water infiltration. Numerous cracks and joints were grouted 
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in order to reduce water infiltration during and after the construction of the dam. In sorne 

cases, as a result of high injection pressures and inaccurate methods, the injection 

provoked the propagation of existing cracks or the initiation of the new ones (Larivière et 

al, 1999). As a result of the research work carried out at IREQ (Institut de Recherche 

d'Hydro-Quebec), last grouting pro gram was successfully conducted in January 1999. The 

total water infiltration from the plunging cracks dropped from 15 lis before the campaign 

to less than 0.1 Vs by the end of the grouting program. 

2) The second type of cracks are visible "oblique" cracks on the downstream face ofmost 

of the arches, especially at the lower part. These cracks first appeared in 1968 in the lower 

downstream faces of arches. Field observations indicated that the cumulative length of 

downstream face oblique cracks continues to increase every year at a nearly constant rate 

(Tahmazian et al, 1989). 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 6.2, Elevation view, Daniel Johnson dam 

Upstream ~ Downstream 

850 

800 o 

Figure 6.3, Plunging cracks, Arch 5-6, Daniel Johnson dam 
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Although the dam was stable, there was concern that continued cracking and exposure of 

the downstream face could lead to concrete deterioration Winter temperatures were 

identified as the primary cause of oblique cracks (Tahmazian et al, 1989). In 1986, 

shelters were instaUed ai the downstream face of nine arches to insulate the botiom of the 

arches from extreme winter temperatures, which reduced the crack propagation. Field 

observations showed that the annual amount of new cracking in nine sheltered arches 

decreased from 488 ft prior to installation of the shelters to 24 ft after installation. 

(Tahmazian et al, 1989). 

6.2.1 Monitoring 

A wide variety of devices and procedures are used to monitor the behavior of the Daniel 

Johnson dam. The following features are monitored: Movements, pore pressures, water 

level, seepage flows, temperatures, cracks and joints openings, stresses and strains. A 

comprehensive study of these measurements is necessary for checking the safety of the 

dam. Reservoir water level, air temperature, and concrete temperature measurements are 

useful for the prediction of structural responses. Study of dam displacements are useful 

for estimating the normal and abnormal behavior of a dam through comparison with the 

past performance data. Arch dams are very sensitive to base cracking (Fanelli, 1998). 

Analysis of cracks characteristics through visual inspection, extensometers readings, and 

water infiltration is useful for making decisions regarding safety and related actions 

regarding rehabilitation of the dam. Sorne of these measurements are discussed next. 

Temperature and reservoir water level 

Air temperatures and reservoir water level are recorded almost daily at the site. Maximum 

reservoir level of 359.6 m was reached in October 1979 (Figure 6.5). Air Temperatures 

vary between -320 C in winter to 320 C in the summer (Figure 6.6). 

Pendulums 

Simple and inverted pendulums are installed to measure the displacements. The 

frequency of available readings varies but the average frequency of readings is about one 

month. 
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Flow meters 

These instruments measure the water infiltration through the dam, which is as an 

indicator of severity of cracking the dam. The analysis of water infiltration data 

in conjunction with displacements or strains can be used to study the effect of cracks on 

the structural stability ofthe dam. 

6.2.2 Statistical Analysis of Daniel Johnson Monitoring data 

For the purpose ofthis analysis, data was provided by Hydro-Quebec for pendulums, flow 

meters and extensometers, located in arch 5-6 from 1966 to 1996. The readings from 

different instruments are not recorded simultaneously. Pendulum and extensometers 

measurements are analyzed in the following sections. 

6.2.2.1 Analysis of simple Pendulums 

Eight simple pendulums (S 1 to S8) located in arch 5-6 are considered for statistical 

analysis. In the analysis of a dam over an extended period of time, care must be taken to 

insure that a data set is homogeneous and that changes in the structure or response of the 

dam are clearly identified and modeled. In the extreme cases, the data may be treated as 

several independent samples. For ex ample during the first impoundment, irreversible 

displacements associated with settlements are observed and decrease during subsequent 

cycles of the water level in the reservoir. The analysis was performed on the data starting 

in 1972 when the normal reservoir level was reached (Figure 6.5). Reservoir level 

reached its maximum level of 359.6 m in October 1979 (Figure 6.7). The reservoir level 

has been lowered below this level since that time due to presence of cracks. Annual 

cycles are also observed with maximum and minimum reservoir levels in October and 

April. 

Characteristics of the pendulums are summarized in Table 6.1. Each pendulum measures 

the deformations in three principal directions: 1) displacements in the Y direction are 

downstream-upstream displacements, 2) displacements in the X direction are in-plane 

displacements, and 3) displacements in the Z direction are vertical displacements. 

125 



Vertical displacements are typically smaU, and are missing for most of the instruments. 

maximum displacements are in the Y direction (upstream-downstream), and 

therefore these displacements were considered for statistical analysis. Measurements of 

pendulum S6 is different from the trend of other pendulums. Sorne suspected outhers 

(spikes) are observed for sorne of the pendulums (Figure 6.9 to Figure 6.16). As expected 

the displacements also increase with the elevation of the pendulum (Table 6.1 and Figure 

6.8). The movements of pendulums at buttress 6 are higher than those of buttress 5 since 

butlress 6 is closer to the center line ofthe dam (Figure 6.2). 

Table 6.1, Location ofthe Pendulums, Daniel Johnson dam 

Pendulum BuUress Block Elevation(m) 
81 6 AB 244 
82 6 14 274 
83 6 20 309 
84 6 20 336 
85 6 20 356 
86 5 GR 275 
87 5 V 308 
88 5 W 335 

Readings of pendulum SI located near the base ofButtress 6, vary between 6.5 mm and 9 

mm. The maximum displacements for both pendulums S3 and S4 occur in the winter, and 

are of 22 mm and 28 mm respectively. The absolute maximum displacement is 32.3 mm 

for pendulum S5 during the winter of 1984. Seasonal variations of displacements are 

observed in pendulums S3, S4 and S5, which are located at higher elevations. 

Measurements of S3, S4 and S5 are correlaied with daily air temperature variations, 

which is illusirated for S5 in Figure 6.17 and Figure 6.18. The elliptic shape of the scatter 

plot indicates a lag between air temperature and displacements. Accurate calculation of 

lags cannot be done due to the low frequency of readings (once a month) for the 

pendulums. The maximum correlation (R=0.97) among pendulums is between pendulums 

S7 and S8 (Table 6.2 and Figure 6.19). This is expected since they are located in 

neighboring blocks of buttress 6. Pendulums S4 and S3 also show a high correlation, as 

they are located in the same block (block 20 of buttress 5). Pendulum S6 shows the 

lowest correlation with the rest of instruments. 
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Figure 6.9, Upstream-downstream displacements ofpendulum SI, Daniel Johnson dam 
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Figure 6.10, Upstream-downstream displacements ofpendulum S2, Daniel Johnson dam 

Figure 6.11, Upstream-downstream displacements ofpendulum S3, Daniel Johnson dam 
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Figure 6.12, Upstream-downstream displacements ofpendulum 84, Daniel Johnson dam 
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Figure 6.13, Upstream-downstream displacements ofpendulum 85, Daniel Johnson dam 
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Figure 6.14, Upstream-downstream displacements ofpendulum S6, Daniel Johnson dam 
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Figure 6.15, Upstream-downstream displacements ofpendulum S7, Daniel Johnson dam 
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131 



34

1 
32 

30 

I28 

ë 
~ 26 
CIl 
0 
(Il 

ë.. 
.!Il 24 
0 

22 

20 

18 
-30 

0 

Scatterplot (Daily air temperature and pendulum S5 y direction) 

o 

o 00 
o 0 

o 00 8 ': 
0 0 00)& 0 

08 0 0 0 

o 
o 

o o 

o 

-20 

o o 
o 

-10 

o o 

o 
Daily air temperature ( 0 q 

o 

o 0 

10 
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Table 6.2, Correlation matrix for simple pendulums, Daniel Johnson dam 

Correlations 

1 Say 1 S7y say 
Variable ! 1 

.§t:t.,,", 1.00 0~!:)2 0.75 0.54 Q~~3 0.31 0.52 0.52 
!I,,;;;,;:;;.,t,", •• , •••• ~i 0.92 1.00 0.90 0.77 0.49 0.36 0.70 0.73 
.0;;:"0'''""",,,0''''1.9: 75 0.90 1 ;000.93, 0.70 0.31 0.76 0.8 
§4y .... ,.,. 0.54 0.,770~9~ .00 0.90 0:23 O. 7~ 0,.82 
.§§y ..... ~. Q.2~Q:49 Q,70 0.90,1:00 9:Q7 Q.53 0:65 
§§y, 'O" 0.31 0.36 0.31 0.23 O.OZ 1 :OQ 0.66 0.5§ 
S7y 0.52 0.70 0.76 0.72 0.53 0.66 1.00 0.97 

0.52 0.73 0.84 0.82 0.65, 0.55 0.97 1.00 
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Matrix Plot (Manie5 pendulums) 
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Figure 6.19, Matrix plot ofpendulum displacements, Daniel Johnson dam 

6.2.2.2 Principal component analysis of simple pendulums 

PCA was applied to the correlation matrix of upstream-downstream displacements, which 

are higher and show more variation. The percentage of the variance explained by each 

principal component is shown in descending order in Table 6.3. The first three 

components explain 95.5% of the total variance. The remaining components explain only 

4.5% of the variance and, most likely, they represent the noise in the data. The first 

principal component explains 70%; the second component 14%; and the third 11 % of the 

total variance of the data. Analyses of loadings indicate that principal component 1 (pC 1) 

is highly correlated with aU instruments except S6y (Table 6.4 and Figure 6.23). PC2 is 

rather highly correlated with S6y. This is expected, as S6y is not strongly correlated with 

other instruments. 
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Figure 6.20, Seree plot ofpendulums, Daniel Johnson dam 

Table 6.3, PCA analysis results for Simple pendulums, Daniel Johnson dam 

Principal Eigenvalues Variance Explained Commutative Variance 

Component byeachPC Explained 

1 5.56 69.5% 69.5% 

2 1.13 14.1% 83.6% 

3 0.94 11.8% 95.5% 

Table 6.4, Loadings of principal components 

Loadings 

PC1 PC3 

-0.73 -0.18 -0.64 
-0.90 -0.05 -DAO 
-0.96 0.16 -0.14 
-0.92 0.36 0.10 
-0.71 0.57 0.33 
-0049 -0.76 0.31 
-0.89 -0.27: 0.28 
-0.93 -0.10, 0.27 
5.51 1.18 0.9 
0.69 0.15 0.1 
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Figure 6.21, Scores ofPCl, simple pendulums, Daniel Johnson dam 
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Figure 6.22, Scores ofPC2, simple pendulums, Daniel Johnson dam 
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Figure 6.23, Loadings for PCI and PC2, pendulums, Daniel Johnson dam 
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Figure 6.24, Loadings for PCI and PC3, Daniel Johnson dam 
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loadings. PC2 vs. PC3 
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Figure 6.25, Loadings for PCs 2 and 3, Daniel Johnson dam 
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Figure 6.26, Scores ofPCl and daily air temperature, Daniel Johnson dam 
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Figure 6.27, Scores of PC 1 and air temperature (1981-1997), Daniel Johnson dam 

Following observations can be made regarding PC1: In the period from 1972 to 1979, 

scores of PC 1 are monotonically decreasing. As the loadings are negative, a decrease of 

PC l represents increasing displacements during this period. These irreversible 

displacements can be due to creep. From 1981 to 1995, cyclic trends are observed. 

Analyses of correlations indicate that these displacements are correlated with daily air 

temperature (Figure 6.27). pe2 explains the variance ofpendulum S6y. There is no strong 

correlation between PC2 with reservoir level and aIr temperature. However, 

displacements of S6y are very small and in the range of 1-2 mm 

Grouping instruments 

In a large dam like Daniel Johnson, thousands of instruments are used to monitor the 

behavior of the dam. Traditionally instruments are reviewed and plotted individually. 

This is time-consuming and in case of faulty instruments can be confusing. In case of a 

faulty instrument, results will be the inconsistent with readings from similar instruments. 
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PCA can be used to group instruments that exhibit similar patterns ofbehavior. Principal 

components can be monitored instead of the original variables, which reduces the number 

ofvariables to monitor. IfPC's behave normally there is no need to monitor the original 

variables. If a statistically significant change is detected in one of the PCs is detected, 

individual instruments associated with that PC can be reviewed. This can reduce 

significantly the time and expense of dam monitoring. 

6.2.2.3 Analysis of extensometers 

Readings of eight extensometers covering the period from 1982 to 1995 was considered 

for multivariate statistical analysis. These instruments monitor the oblique cracks of 

buttress 6 (Table 6.5). 

Table 6.5, Specification of extensometers 

N ame(instrument) Block Elevation (m) 

EXMl 16 259 

EXM2 16 256 

EXM3 16 259 

EXM4 18 245 

EXM5 18 257 

EXM6 18 250 

EXM7 18 263 

EXM8 18 257 

A box plot of extensometers data is presented in Figure 6.28. Data from extensometers is 

more erratic than data from other instruments (Figure 6.29 to Figure 6.37). The maximum 

crack opening for this time period is 0.9 mm. EXMl readings are negative for the whole 

period. 

Analyses of correlations between the instruments shows that instruments EXMl, EXM2, 

EXM5, EXM7, and EXM8 are highly correlated (Figure 6.37 and Table 6.6). These 

instruments an recorded strong fluctuations in 1986, and a step jump in crack opening in 

December 1993. EXM3 and EXM4 are aiso highly correlated (R=0.89). 
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Figure 6.29, Crack opening, EXMl, Daniel Johnson dam 
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Figure 6.30, Crack opening, EXM2, Daniel Johnson dam 
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Figure 6.31, Crack opening, EXM3, Daniel Johnson dam 
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Figure 6.32, Crack opening, EXM4, Daniel Johnson dam 
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Figure 6.33, Crack opening, EXM5, Daniel Johnson dam 
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Figure 6.34, Crack opening, EXM6, Daniel Johnson dam 
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Figure 6.35, Crack opening, EXM7, Daniel Johnson dam 
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Figure 6.36, Crack opening, EXM8, Daniel Johnson dam 

Table 6.6, Correlation matrix of extensometers, Daniel Johnson dam 

Correlations 

EXM1 EXM5]EXM6 EXM8 
Variable j 

EXM1 1.00 -0.87 -0.02 0.22 -\').88 0.67 -0.87 

EXM2 1.00 0.14 -0.17 0.93 -0.67 0.98 0.98 

EXM3 1.00 0.89 0.13 0.50 0.10 0.23 

EXM4 HIO -0.15 0.80 -0.22 -0.12 

1.00 -0.62 0.93 0.92 

1.00 -0.70 -0.65 

1.00 0.97 

1.00 
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Figure 6.37, Matrix plot of extensometers, Daniel Johnson dam 

Principal component analysis 

PCA was performed on the correlation matrix of these eight instruments The first two 

components explain 94% of the total variance (Figure 6.38) of the eight original 

variables; which is a significant reduction with respect to number of original variables. It 

can be concluded that PCA can efficiently compress the original data and reduce number 

of monitored variables. The first principal component and the second component explain 

64% and 30% of the total variance of the data set respectively (Figure 6.38). The 

remaining components explain only 6% of the variance and, most likely, they represent 

the noise in the data. 
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Figure 6.38, Seree plot, correlation matrix of extensometers, Daniel Johnson dam 

Rotation of Principal Components 

1 

In order to improve the interpretation of the principal components, it is often desirable to 

rotate a subset of the initial eigenvectors to a second set of new vectors. As a consequence 

of rotations of the PC's, a second set of scores is computed that are called rotated 

principal components. 

Various rotational strategies have been proposed in the literature. The goal of aU of these 

strategies is to obtain a clear pattern of loadings. The most widely used method is the 

varimax approach, whieh rotates the loadings so that the variance of the squared loadings 

in each component is maximized. The squared loadings in eaeh component are nudged 

toward 0 and 1 (Rencher, 1998), whieh aids in the assignments of instruments to PC's, 

and subsequent grouping of the instruments. This is illustrated using the extensometers 

data of Daniel Johnson dam. 

The varimax eriterion was used to rotate the PCs and group the extensometers data. Two 

groups are observed corresponding to PCI and PC2. Group 1 comprises instruments 

EXMl, EXM2, EXM5, EXM7 and EXM8, which are highly correlated with PCI. It must 
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be noted that EXM1 loading for PCI in negative which indicates high negative 

correlation between EXMl and the rest of the group (Figure 6.39). Group 2 comprises 

instruments EXM3 and EXM4, which are highly correlated with PC2. 

As previously mentioned, Daniel Johnson has undergone major rehabilitations (thermal 

shelters in 1986) and several grouting campaigns. Some of these campaigns have 

improved the dam section and some have deteriorated the dam section due to excessive 

high pressures and inaccurate methods. Therefore analyses of correlations of crack 

openings are hard to perform and interpret. Since the dam has undergone several changes 

due to cracking and grouting. 

Different behaviors are observed for PC 1 and PC2. PC 1, which represents instruments 

EXM2, EXM5, EXM7 and EXM8, captures strong fluctuations in crack opening in 1986. 

There ls also a step j ump in crack opening after December 1992, which ls consistent with 

reports of increase in seepage in arch 5-6 (Larivière et al, 1999). The amplitude of 

fluctuations of PC2 ls decreased after 1986, which indicates that the thermal shelters, 

have been effective in reducing crack openings. PC2 shows seasonal behavior before 

1986, with a lag of about one month relative to daily air temperature (Figure 6.42 and 

Figure 6.43). Propagation of cracks is observed in PC2 after 1993. Analyses of 

correlations between PC 1 and reservoir level and ambient temperature are hard to 

interpret due to continuous changes in crack characteristics due to various interventions in 

the dam during that period. 

6.2.2.4 Amdysis of water infiltration measnrements 

A preliminary analysis was done on simultaneous readings from pendulums and a flow 

meter for arch 5-6. The number of simultaneous readings is much smaller than the 

number of readings for either the flow meter or pendulums. Correlations between water 

infiltration in arch 5-6 and displacements of the pendulums, is maximum with pendulums 

S 1 and S2, which are closest to the location of cracks. The cracks are located at elevations 

of 253 and 259 m, and propagate from the upstream face to the downstream face. 
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Figure 6.39, Loadings ofPC1 and PC2, Daniel Johnson dam 
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Time series of PC2. Extensometers 
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Figu.re 6.41, Scores ofPC2, extensometers, Daniel Johnson dam 

Time series of PC2 and air temperature 
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CrossCorrelation Funclion 
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Figu.re 6.43, Cross correlation ofPC2 and air temperature (before 1986), Daniel Johnson 

dam 

Pendulum SI is located at elevation 244 m. Pendulum S 1 and water infiltration were 

considered for a more detailed analysis. Readings of both instruments that were recorded 

in the same week were considered for analysis. Figure 6.44 shows respectively the 

displacement of pendulum SI in Y direction along with the water infiltration in Arch 5-6. 

There is a high correlation between measured flows and pendulum displacement. After 

January 1993, the trend of displacements is different from that of water flows. While 

water flow is increasing, pendulum displacements seem to stabilize and do not show 

much variation. Figure 6.45 presents scatter plot of water flow and pendulum SI 

displacements. Obviously the trend has changed after 1993. It can be concluded that 

propagation of cracking after 1993 was due to grout erosion, which increased water flow 

in the Arch 5-6, does not affect the stiffness of the dam. 
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Table 6.7, Correlation, pendulum readings and water infiltration (Arch 5-6) 

Correlation. Matrix 1 

SI S2 1 S3 S4 S5 S7 S8 Flow 
Î 

SI 1.00 1 , 
S2 0.82 1.00 

83 0.44 0.40 1.00 

84 0.18 0.20 1 0.93 1.00 

S5 0.02 0.06 0.83 0.96 l.00 

S7 0.26 0.30 0.72 0.70 0.60 1.00 

S8 0.20 0.25 0.81 0.84 0.77 0.96 1.00 

Water infiltration 0.59 0.58 0041 0.25 0.10 0041 0.34 1.00 

Water flow arch 5-6 and pendulum S 1 displacement 
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Figure 6.44, Time series of water infiltration and displacement pendulum SI, 

Daniel Johnson dam 

6.3 Chute-à-Caron gravity dam 

Chute-à-Caron is a gravit y dam that comprises three sections. Two of the segments form 

an angle of 147 0 
( 
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Figure 6.46). These two segments interact due to thermal expansion and have opened a 

construction joint, which 1S located in the drainage gallery. 

+ Trend before 1993 .. 

u 

Trend after 1993 

+ 

6.5 ,._._._._ ..... L.. ... __ .•. :+:.1 ____ - .... _L._._._L... __ ~ .••• .L..~----' _____ L .... _ ... _--'-___ .. ,L_. ____ _ 

o 2 4 6 8 10 12 14 16 18 
Wstedlow Arch &.6 (lIs) 

Figure 6.45, Scatter plot ofPendulum SI displacement and water infiltration Arch 5-6, 

Daniel Johnson dam 

This joint was grouted several times starting in 1991 when water infiltration exceeded 

300 lImin. Water flows reduced to 50 l/min but increased to 750 lImin in the summer of 

1996. A 15.5 mm wide vertical expansion joint, over 80% of the height of the dam, was 

cut near the intersection of the two segments in June 1997 using a diamond cable (Figure 

6.47). The behavior of the dam is being monitored with inverted pendulums, flow meters, 

and the joint meters, which measure movement of the construction joint (Table 6.8). 

6.3.1 Statistical Analysis of Chute-il-Caron monitoring data 

Sorne instruments, which are located in blocks 12S, l3S and 14S, are considered for 

statistical analysis. The description of the instruments 1S summarized in Table 6.8. 

Thermometers TE14S1, TEI4S2, and TE14S3 measure the water temperatures (Figure 
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6.49), while thennometers TE14S4, TE14S5, TE12S1, TE12S2, and TE12S3 measure the 

concrete temperatures in the dam. Water temperatures vary between 0 0 C and 22 0 C, 

while air temperatures vary between -27 0 C and 27 0 C. During winter months (i.e. 

December through March) water temperature remains at 0 0 C. 

The downstream face of the dam is colder than the upstream face in the winter and 

wanner in the summer. Therefore it is expected that temperature effects cause the dam to 

move towards downstream the winter and upstream in the summer. 

Table 6.9 presents descriptive statistics on measured temperatures from 1998 to 2000. 

Concrete temperatures are less variable than air temperatures. The maximum concrete 

temperature was recorded at TE12S1, which is located near the dam surface, and is higher 

than maximum air temperature. This can be explained by the effect of solar radiation. 

Thermometers located deeper inside the dam show less variability. Mean concrete 

temperatures are higher than the mean air temperature due to solar radiation and exposure 

ofthe upstream side to the reservoir, which never goes below 0° C. 

Figure 6.46, Location and plan, Chute -à- Caron gravity dam 
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Table 6.8, List of instruments, Chute -à- Caron dam 

Instrument Plot 13S, Chute-ii-Caron 

Inverted pendulmns PDBS-l, PDBS-2 

Flow meters DV13S-1, DV14S-1 

Joint meters FIl3S-1, FI13S-2, FIl3S-3 

Thermometers (water) TE14S-1, TEl4S-2, TE14S-3, 

Thermometers TEl4S-4, TE14S-5, TE12S-I, TE12S-2, TEl2S-3 
(concrete) 

fuverted pendulums measure the displacements ofblock 13 in three directions: (1) right­

left (X), (2) upstream-downstream (Y), and (3) vertical (Z) (Figure 6.52 and Figure 6.53). 

It must be noted that because of the position of block 13S in the intersection of two 

angled segments, upstream-downstream movements of block 13 are related to both 

upstream-downstream and right-left movements ofblock 14. Right-left displacements can 

be used to monitor opening and closing of vertical expansion joint. Joint meters FIl3S1, 

FIl3S2, and FIl3S3 are located at the ends ofblock 13 and joint meter FI13S2 is located 

at the center ofthe block 13 (Figure 6.48). 

Correlations between instruments are presented in Table 6.10. Vertical displacements of 

the two pendulums are highly correlated (R=O.99). Right-Ieft displacements ofpendulums 

are also highly correlated (R=-O.98). Right left displacements of both pendulums are 

correlated with displacements of joint FIl3S1 and concrete temperatures, TE14S4 and 

TE12S2. Upstream-downstream displacements of PD13S2 are correlated with concrete 

temperatures (TEl2Sl), near the dam surface. Vertical displacements ofboth pendulums 

show strong correlation with joint meters FIl3S1 and thermometers TE14S5 and 

TE12S3. Measurements from the two flow meters are correlated (R=O.71), but these two 

instruments are not strongly correlated with the other instruments. One explanation is that 

flows usually have a very non-1Înear response (relative to other instruments) since they 

are highly dependent on dosure and opening of joints. 
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Figure 6.48, Block 13 instrumentation layout, Chute-à-Caron dam 

Table 6.9, Statistics for air, water, and concrete temperatures 

Maximum 1 Std.Dev. 
Variable j 

.JË.Me§R~IYR§. 1460.0 26.7 12.0 

T§t4§1~.> .>. 1284.0 21.7 7.8 
1281.0 0.2 21.7 7.8 
1282.0 7.8 0.2 22.0 7.8 
1280.0 6.9 -12.8 23.4 11.0 
1283.0 8.4 -5.5 23.6 9.2 
1276.0 10.0 -15.7 31.9 11.4 
1279.0 10.4 -5.7 26.1 9.2 

, ~ ~" ~ c _., , 

TE12S3 1283.0 10.6 0.7 22.4 7.3 
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Figure 6.49, Water temperatures, Chute-à-Caron dam 
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Figure 6.50, Air and concrete temperatures, Chute-à-Caron dam 
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Figure 6.51, Reservoir level variation, Chute-à-Caron dam 
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Figure 6.52, Displacements ofPendulum PD13S1, Chute-à-Caron dam 
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Figure 6.53, Displacement ofPendulum PD13S2, Chute-à-Caron dam 

Joint metars, Block 13 
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Figure 6.54, Joint meters, Chute-à-Caron dam 
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Figu.re 6.55, Water flow, blocks 13 and 14, Chute-à-Caron dam 

Table 6.10, Correlation matrix of instruments Chute-à-Caron 

PD13S1 PD13S2_X PD13S2_Y PD13S2_Z DV13S1 DV14S1 F113S1 F113S2 F113S3 

TEMPERATUR -0.81 0.80 -0.84 0.63 0.11 -0.05 0.82 -0.62 0.70 

PD13S1.J< -0.98 0.02 0.27 -0.92 0.92 -0.84 

PD13S1_Y 0.32 0.41 -0.38 0.59 -0.24 

PD13S1_Z 0.58 0.18 0.80 

PD13S2_X 0.10 -0.20 0.94 

PD13S2_Y 0.16 0.33 

PD13S2_Z -0.64 0.59 0.20 

DV13S1 0.02 0.58 0.59 1.00 0.71 

DV14S1 0.27 0.18 -0.20 0.20 0.71 1.00 

FI13S1 -0.92 0.80 0.94 -0.78 0.80 0.19 -0.11 

F113S2 0.92 0.59 -0.55 -0.90 0.74 -0.54 0.01 

FI13S3 -0.84 -0.24 0.93 0.90 -0.64 0.92 0.40 

TE14S1 -0.82 -0.17 0.87 0.89 -0.63 0.89 0.33 

TE14S2 -0.82 -0.18 0.87 0.89 -0.63 0.89 0.33 

-0.82 -0.18 0.87 0.89 -0.63 0.89 0.33 

-0.89 -0.40 0.84 0.92 -0.79 0.85 0.27 -0.73 0.91 

TE14S5 -0.85 -0.28 0.93 0.90 -0.69 0.93 0.41 -0.73 0.97 

TE12S1 -0.88 -0.54 -0.68 0.78 

TE12S2 -0.89 -0.75 0.94 

TE12S3 -0.70 -0.70 0.94 
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Matrix Plot 

Figure 6. 56, Matrix plot of instruments, Chute-à-Caron dam 
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6.3,1.1 Principal component analysis 

PCA was performed on the con-elation matrix of pendulums, flow meters, and joint 

meters of block 13 of Chute- à -Caron. The first two principal components, which have 

eigenvalues greater than one, are retained. These two principal components explain 87% 

of the total variance of the original eleven instmments. The first and second principal 

component explains 58% and 29% ofthe total variance of the instmments. 

Analyses of loadings (Table 6.11 and Figure 6.57) indicate that components X and Z of 

pendulums, and joint meters are contributing to PCI. As previously discussed these 

variables are highly con-elated with each other, Flow meters and Y displacements of 

PD13S1 are con-elated with PC2. These variables do not have strong con-elations with the 

rest of instmments (Table 6.10). 
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Figure 6,57, Loading ofPCs 1 and 2, Chute-à-Caron dam 

162 

PD13S2 X 
0-

FI13S1 
o 

F113S3 
o 

1.0 1.2 



Table 6.11, Loading for principal components 

Loadings 
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Figure 6.58, Scores of PC 1, Chute-à-Caron dam 
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Figure 6.59, Scores of PC 2, Chute-à-Caron dam 

Scatterplot (PC1 and air temperature) 
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Figure 6.60, Scores of PC 1 and daily air temperature, Chute-à-Caron dam 
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Scatterplot (pei and concrete temperature) 
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Figure 6.61, Scatter plot of PC land daily air temperature, Chute-à-Caron dam 
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Figure 6.63, Scatter plot of PC 1 and concrete temperature, TEI4S4, Chute-à-Caron dam 

Scores of PCI are highly correlated with aU temperature measurements. Correlation is 

highest when it is compared with concrete temperatures (Figure 6.62 and Figure 6.63). 

Concrete temperatures are less variable than daily air temperatures and are a better 

predictor of dam instrument responses. These data must be collected whenever it is 

possible, and used in analysis of dam monitoring data. If concrete temperatures are not 

available, average values of daily air temperature can be used (with the optimum time 

lag). This is required in order to reduce the high frequency in the air temperature 

variations, since dam only responds to Iower frequencies oftemperature fluctuations 

The two principal components can be used for monitoring of the dam instead of the 

original eleven instruments. HST regression models were developed for both PCs. 

Explained variances are 0.977 and 0.89 for HST models of PCs 1 and 2 respectively 

(Table 6.12 and 6.13). Lower R2 on PC 2 is due to the nonlinear behavior of flow meters. 

Seasonal and irreversible components of mode1s is presented in Figures 6.65 and 6.67. 

Irreversible component ofPC1 indicate graduaI dosure of vertical expansion joint. 
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Table 6.12, Regression summary ofHST model for PC 1 

Regression Summary for Dependent Variable: pei 
R=.9885 R2= .977 Std.Error of estimate: .151 

Beta B 

-1.39 
0.93 0.02 2.93E-3 0.000 41.9 0.0000 

-0.70 0.02 -1.33E-6 0.000 -31.4 0.0000 
,~ .. 

-0.66 0.00 -0.98 0.006 -173.6 0.0000 

-0.73 0.00 -0.98 0.005 -188.0 0.0000 

111 2 (9) 0.06 0.00 0.18 0.011 17.0 0.0000 

Table 6.13, Regression summary ofHST model for PC2 

Regression Summary for Dependent Variable: PC2 
R=.944 R2= .891 
Std.Error of estimate: .32960 

Beta Std.Etr, B t(163~) p.!evel 
N=1646 

-2.16E+00 0.056 -38.32 0.000 
1.181 0.048 3.73ê~(}3 0.000 24.45 0.000 
-0.569 0.048 -1.09E-06 0.000 -11.73 0.000 
0.552 0.008 8.22E-01 0.012 67.00 0.000 

" , ,~ " " " 'A"' 

.C?~~Q) -0.124 0.008 -1.68E-01 0.011 -14.74 0.000 

S~I~~~[:~~_(~l. -0.373 0.008 -1.07E+00 0.024 -45.25 0.000 

SÎl1
2(S) -0.089 0.008 -2.51 E-01 0.023 -10.72 0.000 

PCl and predicted PCl (HST model) 
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Figure 6.64, Scores of PC 1 and predicted scores using HST model, Chute-à-Caron dam 
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Seasonal and irreversible parts of PC1 
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Figure 6.65, Seasonal and irreversible components of PC 1, Chute-à-Caron dam 
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Figure 6.66, Scores ofPC2 and predicted scores using HST model, Chute-à-Caron dam 
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Figure 6.67, Seasonal and irreversible components ofPC2, Chute-à-Caron dam 

6.3.1.2 Canonical correlation analysis 

Canonical correlation analysis is another multivariate method, which can be used for 

exploratory data analysis. Relationships between two sets of instruments are estimated 

and latent factors, for these two sets of instruments, are obtained. 

CCA was used to explore the relationship between a set of measurements for pendulums 

PD13S1 and PD13S2 in three different directions (total of6 measurements), and a second 

set consisting of flow meters and joint met ers (total of 5 instruments). 

Table 6.14, Canonical weights for displacements 

Canonical Weights, first set 
Roet 1 i Ree1 21 Reot 3] Reet 4 i Reot 5 

Variable i 
eJ?1~1~. -0.02 0.21 0.25 -0.94 0.96 
.PQ1~§!_Y 0.00 0.01 0.35 0.85 -1.28 
P91?~J_~ .. 0.54 -1.89 -8.14 4.31 1.02 
~Q1~§?_~_ 0.97 1.07 -0.58 -1.90 -0.90 
EQ1§§?_Y. -0.05 -0.08' -1.23 -1.46 -0.67 
PD13S2 2 -0.59 0.48 8.31 -4.27 0.06 

169 



Table 6.15, Canonical weights for joint and flow meters 

-0.47 
FI13S3 -0.06 

0.69 
0.54 
3.43 

-0.03 
-3.43 0.52 

Root 5 

2.37 
-1.76 
1.67 

-0.33 
-2.57 

The canonical weights of canonical factor 1 for the first set are high for displacement X of 

pendulum PD13S1 and Z displacements ofboth Table 6.14). The canonical coefficients 

of canonical factor 1 for the second set are high for F13S1 and F13S2 (Table 6.15). 

Closing of joint FIl3S1 and opening ofFIl3S2 are associated with vertical displacements 

of both pendulums. Flow meters loadings are very small which indicated that there is no 

strong relationship between flow meters and displacements. First canonical factor is 

strongly correlated with measurements ofTE14S4 (Figure 6.68). 
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Figure 6.68, Canonical factor 1 and concrete temperature 

Canonical factor! is highly correlated with PCI. CCA results confirm the results obtained 

from PCA Temperature effects are the main factor affecting the dam behavior. 

170 



6.3.1.3 Multiple Unear regression resulis 

HST models were developed for aU eleven instrument of block 13. Reservoir level is 

almost constant during the period and therefore it is not contributing to the variations of 

instruments readings. Regression models were developed that consider concrete 

temperatures as an alternative to the seasonal component of HST models. A comparison 

of explained variance CR2
) by these two models 1S presented in Table 6.16. 

Table 6.16, Comparison ofresults for two regression models 

Adjusted R squares 
Model1 Model2 
HST concrete temperatures 

PD13S1-X 0.95 0.96 
PD13S1-Y 0.3 0.45 
PD13S1-Z 0.98 0.98 
PD13S2-X 0.99 0.99 
PD13S2-Y 0.87 0.9 
PD13S2-Z 0.97 0.96 
DV13S1 0.88 0.82 
DV14S1 0.7 0.62 
Fi13S1 0.91 0.96 
Fi13S2 0.92 0.95 
FI13S3 0.96 0.98 

Both models are performing weB as R2 is higher than 0.9 for most of the instruments, 

except flow meters and PD 13 S 1-Y. However tms can be expected, as flow meters did not 

have strong correlation with temperatures. Both models performed poorly on PD13SI-Y, 

which exmbits unusually high values in Feb to March 2000. These readings do not 

conform to the previous readings. Other instruments do not indicate any change in dam 

behavior at that particular time. These readings are most like1y outliers due to Interference 

with the wire of the pendulum. 

6.3.1.4 Artificiai Neural networks Applications 

A back propagation network was used to build a model for forecasting displacements of 

pendulum PD13S2 in the X, Y and Z direction. Several models were tested using a back 
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propagation neural network with sigmoid transfer functions. Preliminary analysis showed 

that time and concrete temperatures are the best predictors for the displacement of the 

pendulums. Concrete temperatures at five locations and time were used as input variables 

to forecast the displacements of the pendulums. 

Unlike statistical forecasting methods, the neural network does not follow well-defined 

development guidelines. Therefore the model building process is generally conducted by 

trial and error. Two major elements of the back propagation neural network models are 

the nurnber ofhidden layers, and the nurnber ofhidden nodes. 

Nnmber of hidden hayers 

As the number of hidden layers is increased, the training data can be predicted very 

accurately. However, the prediction skill of the validation set cau decrease, as the model 

gets more complex. The laek of fit of the validation set oecurs due to overfitting. The 

optimal nurnber of layers must strike a balance between overfitting and accuracy 

(Neuralware, 1996). 

Using more than one hidden later increases the complexity of the network, computational 

time and possibility of mode! overfitting. Most problems require only one, and sometimes 

two layers. Generally it is better to start with one hidden layer and increase the nurnber of 

hidden nodes until satisfactory performance is reached. If the results of one hidden layer 

are not satisfactory, more hidden layers must be added to the network configuration. In 

this application, a single hidden layer was tried first and results were found to be 

satisfactory. 

Number of hidden nodes 

It is suggested that the number of hidden nodes must be smaller thau the nurnber of input 

nodes (Neuralware, 1996). Since six inputs were used as dependant variables, the number 

of hidden nodes was increased incrementally between one and six. AlI the networks were 

trained until the best performance was achieved. 
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Performance of the network was measured using R2 statistics, i.e. percentage of the 

variance explained by the model. The data was divided into two equal sets. The first set 

was used to train the network, and the second set was used to validate the mode!. R 2 

statistics were calculated for both the training and validation sets. Every network was 

trained several thousand times ootil the model converged and best results were obtained. 

Prediction model for PD13S2 in x direction 

Results of R2 for different network configurations are presented in Table 6.17. An the 

networks, which have more than one hidden unit, produce very satisfactory results. Since 

the model with two hidden nodes is simpler than the other three models and results are 

comparable, it was selected as the best model (Figure 6.69). 
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Figure 6.69, Predicted and observed values ofpendulum m PD13S2 (X Direction) 
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Prediction model for PD13S2 in Y direction 

Results of R2 for different network configurations are presented in Table 6.18. An the 

networks, which have more than one hidden unit produce very satisfactory results. As the 

case for PD 132_X, the model with two hidden nodes 1S simpler than the other three 

models and results are comparable, it was selected as the best model (Figure 6.70). 

Table 6.17, Variance explained (R2
) for PD13S2_X, different Model configurations 

Number ofhidden nodes Training data Validation An data 
data 

1 0.982 0.928 0.957 
2 0.994 0.971 0.983 
3 0.993 0.980 0.978 
4 0.996 0.967 0.981 
5 0.992 0.972 0.983 

Table 6.18, Variance explained (R2) for PD13S2_Y different mode! configurations 

Number ofhidden nodes Training data Validation Alldata 
data 

1 0.925 0.854 0.892 
2 0.962 0.896 0.931 
3 0.979 0.897 0.933 
4 0.986 0.890 0.941 
5 0.974 0.914 0.946 

Prediction mode! for PD13S2 in Z direction 

The data was divided into two equal sets. The first set was used to train the network, and 

the second part was used to validate the model. Results of R2 for different network 

configurations are presented in Table 6.19. Like the previous two mode!s, an the 

networks, which have more than one hidden unit, produce very satisfactory results. The 

model with 3-hidden nodes was selected as the best mode! as it produced better 

predictions at the peaks (Figure 6.71). 
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Table 6.19, Variance explained (R2
) for PD 13 S2_Z, and different model configurations 

Number ofhidden nodes Training data Validation An data 
data 

1 0.945 0.920 0.931 
2 0.982 0.946 0.963 
3 0.994 0.963 0.971 
4 0.996 0.965 0.978 
5 0.996 0.961 0.980 

BPNN, prediction of PD13S2-Y, 2 hidden nodes 
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Figure 6.70, Predicted and observed values ofpendulum m PD13S2 (Y direction) 

Generally one-layer networks with 2 or 3 nodes provided good predictions of pendulum 

displacements. Explained variances were higher for X and Y direction as vertical 

displacements are not as highly correlated with temperatures as X and Y displacements. 
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BPNN, prediction of PD13S2-l, 3 hidden nodes 
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Figure 6.71, Predicted and observed values ofpendulum m PD13S2 (Z direction) 

Once a model is built by neural networks it can be used to monitor future observations. 

Discrepancies with observations can be used as an indication of possible anomalies. The 

neural networks are generally computationally demanding, and training of the networks 

'takes more time than statistical models. Neural networks are difficult to interpret 

physically and are not as useful as statistical models to estimate contributions for 

reservoir fluctuation, temperature effects, and irreversible effects on the total response. 
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CHAPTER 7 

7. Summary and Recommendations 

7.1 Summary 

Univariate and multivariate statistical methods are used to analyze the behavior of 

concrete dam. Statistical models such as multiple linear regression, and back propagation 

neural networks have been used to estimate the response of individual instruments. 

Multiple linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) 

models and (2) models that consider concrete temperatures as predictors. Univariate, 

bivariate, and multivariate methods are proposed for the identification of anomalies in 

instrumentation data. The source of these anomalies can be either from bad readings, 

faulty instruments, or changes in dam behavior. 

Multivariate statistical analysis methods are applied to three different dams, Idukki, 

Daniel Johnson, and Chute-à-Caron, which are respectively an arch, multiple arch and a 

gravit y dam. Displacements, strains, flow rates, and crack openings of these three dams 

are analyzed. 
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Data reduction 

Multiple instruments are often used for monitoring the behavior of a dam. The responses 

of these instruments are often correlated as they are affeeted by common factors. The 

response of a dam to external factors ean be grouped into reversible and irreversible 

effects. Reversible effects are usually correlated with reservoir level variations, and 

and water temperature variations. Irreversible effects are time dependent, and are due to 

creep, shrinkage, settlement, and chemical reactions sueh as alkali aggregate reactions. 

The simultaneous analysis of instrumentation data was performed using principal 

component analysis on instrumentation data from three different dams (Table 7.1). 

Generally less than four factors were needed to explain as much as 90% of the total 

variance. The unexplained variance is due to noise levels in the instruments and possibly 

localized behavior. 

Table 7.1, comparison ofPCA results, three different dams 

Type of dam Instruments Number of Number Explained 
original ofPC's Variance 
Instruments 

Idukki Instrumented cylinders 24 4 91% 
Pendulums 16 4 92% 

Daniel Johnson Pendulums 8 3 95% 
Extensometers 8 2 93% 

Chute à Caron Flowmeters 2 
Displacements 6 2 87% 
Join meters 3 

These three analyses on three types of dams indicate that principal component analysis is 

effective in data reduction for dam monitoring data. These principal components can be 

effectively used to monitor a dam instead of monitoring an the individual instruments. 

Confidence intervals can be used to predict the expected minimum and maximum bounds 

for the scores of each principal component. If principal components behave normally 

there is no need to review each individual instruments. If a statistically significant change 

is detected in one of the principal components, individual instruments highly correlated 
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the principal component can be reviewed. This can significantly reduce 

expense of dam surveillance. 

Individual analysis of Instruments 

time and 

Models such as multiple linear regression, and back propagation neural networks are used 

to estimate the response of individual instruments. Multivariate linear regression models 

are of two kinds, HST models and models that consider concrete temperatures as an 

alternative to the seasonal model of HST. Severa! methods must be taken into 

consideration for choosing a prediction model prediction accuracy, time, cost, and 

simplicity of prediction method. 

The HST method is the easiest to develop and provides satisfactory results in many cases 

but it is inefficient for predicting responses for abnormal temperature cycles. In contrast, 

back propagation neural networks are better suited for modeling non-linear relationship, 

more computationally demanding and training of the networks takes more time than 

statistical models. Neural networks are difficult to interpret physically and are not as 

useful as statistical model to estimate contributions for reservoir fluctuation, temperature 

effects, and irreversible effects to the total response. 

FauU detection and faulty instruments 

Univariate, bivariate, and multivariate methods are proposed to identify anomalies in 

instrumentation data. These anomalies can be due to either bad readings or an indication 

of change in behavior of the dam. CUITent practice methods are based on univariate 

methods. The use of bivariate and multivariate methods is an important contribution to 

dam monitoring methodology. 

Collection of the data, and frequency of reading 

Concrete temperatures are less variable than daily air temperatures and were shown to be 

a better predictor of dam instrument response. These data must be collected whenever it 

is possible, and used in analysis of dam monitoring data. If concrete temperatures are not 

available, daily air temperature must be recorded, and average values are used (with the 

optimum time lag). This is required in order to reduce the high frequency in the air 
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temperature variations, since d31n only responds to lower frequencies temperature 

fluctuations. 

Available data for stress and strain meters of Idukki dam were only recorded twice per 

year, which makes the estimation of parmneters very difficult. Whenever possible an 

instruments should be recorded at least weekly. Simultaneous analysis of sueh a data set 

can provide insight about the behavior of the dam and the correlation of readings between 

different instruments. A vailable data for instrumented cylinders of Idukki dam were 

available for a period of 17 months, which makes the estimation of seasonal effects very 

difficult. The minimum length of the data needed for a meaningful analysis is at least 

three years of data to separate reversible and irreversible effects. 

1.2 Recommendation for future research 

@ Multivariate statistical methods were proved to be useful in data reduction for 

instrumentation in concrete dams. The simultaneous analysis of different types of 

instrumentation could not be considered in many cases due to limitations in data 

availability and quality. More studies are needed and more data should be 

collected with an appropriate frequency of readings to develop these methods 

further and integrate them into regular dam behavior studies that are monitored by 

govemment control. 

@ More research is needed to improve the near real time surveillance of the dam 

using monitoring data and for setting a hierarchy of alarm levels that allows an 

early detection of potential dam safety related problems while minimizing costly 

faise alarms. 

@ Measurements complement visual observations as a continuing surveillance 

system of the threat to life, property, and the envrronment, and assist in 

investigating unexpected or abnormal performance. Research is aiso needed to 

integrate qualitative visual inspection observations and dam instrumentation data 

in an efficient dam surveillance methodology. 
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@ Application of multivariate methods must be further developed to model the 

changes in dam responses. 

@ Setting a methodology based on modes of failure, A methodology is needed to be 

developed to assignl) instrumentation which can detect different failure modes, 

2)devise analysis and diagnosis tools based bivariatel multivariate statistical 

methods 

7.3 Contribution to the Knowledge 

In most eountries throughout the world, interest in dam safety has risen significantly in 

recent years. Aging dams, new hydrologie information, dam construction and population 

growth in flood plain are as downstream from dams have resulted in an inereased 

emphasis on dam safety, operation and maintenance. 

Instrumentation data is often accumulated, but its engineering signifieanee 1S not fully 

exploited in dam surveillance. The output of dam monitoring system, which 1S a main 

part of dam surveillance, has to be thoroughly analyzed to alert dam wardens of any 

possible anomalies. The need for effective analysis tools of dam monitoring data was 

reeently emphasized in the latest International Commission of Large Dams (Dibiagio, 

2000). Dam monitoring practice has not been keeping paee with reeent advances in 

statistical analysis methods. 'There is a need to develop new analysis tools to help dam 

safety engineers in the evaluation of dam behaviors.' 

Original contribution of this research can be divided into three main areas: 

(1) Data reduction using multivariate statistical methods and in particular principal 

component analysis 

(2) Anomaly detection 

(3)-Application of Artificial Neutral Networks to dam monitoring data 

Principal component analysis can be used as a powerful tool in analysis of dam 

monitoring data. Principal components can be effectively used to monitor a dam instead 

of monitoring aU the individual instruments. If a statistically significant change is 
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detected in one of the principal components, individual instruments highly corre1ated 

with the principal component can be reviewed. This can significantly reduce the time and 

cost of dam surveillance. 

The second major contribution is with respect to detection of anomalies in 

instruments readings. In dam safety practice these alarm levels are chosen based on 

analysis of each individual instrument. However, as sorne of the measurements are noisy 

or unreliable, this approach increases the chance of randomly finding an instrument out of 

control. Thus the faIse alarm rate (or probability of Type 1 error) is increased if each 

variable is analyzed and controlled separately because the more variables there are, the 

more likely it is that one of these instruments may be out of control and indicate an 

adverse condition when the dam is actually in a safe state. Multivariate statistical 

methods overcome sorne of these difficulties and reduce the probabilities of false alarms 

generated by a dam monitoring system. 

Finally, the third contribution 1S application of Artificial Neural Networks to dam 

monitoring data. Back propagation neural networks are used as an alternative estimation 

method in analysis of dam monitoring data. Back propagation neural networks can be 

effectively used to model linear and non-linear relationships. However, they are more 

computationally demanding and training of the networks takes more time than statistical 

models. 
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