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ABSTRACT

Many aspects of open pit mine planning can be modelled as a combinatorial

optimization problem. This thesis reviews some existing mine scheduling methods

and some of their short comings. Many of the problems are related to the partially

ordered knapsack problem with multiple knapsack constraints. This is a special case

of a maximum directed cut problem with multiple knapsack constraints on the arcs

in the cut.

The major contribution of this thesis is the study of the directed cut polytope

and cone, which are the convex hull and positive hull of all directed cut vectors of

a complete directed graph, respectively. Many results are presented on the polyhe-

dral structure of these polyhedra. A relation between the directed cut polyhedra

and undirected cut polyhedra is established that provides families of facet defining

inequalities for the directed cut polyhedra from the undirected cut polyhedra.

A polynomial time algorithm for optimizing over the undirected cut polytope is

given for the special case ch an objective function has the same optimal value on two

relaxations, the rooted metric polytope and the metric polytope. Projections of the

directed cut polytope onto the arc set of an arbitrary directed graph are researched.

A method known as triangular elimination is extended from the undirected cut con-

text to a directed cut context.

A complexity result proving that the problem of selecting a physically connected

maximum value set of blocks from a 2D grid is NP-hard is given. In the mining lit-

erature such a grid would be called a bench.
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An implementation of a LP rounding algorithm known as pipage rounding is

applied to a pushback design problem. This simple and efficient technique produces

results within 6.4% for a real data set.
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ABRÉGÉ

De nombreux aspects de la planification d’une mine à ciel ouvert peuvent être

modélisés comme des problèmes d’optimisation combinatoire. La première partie

de cette thèse passe en revue quelques méthodes de planification existantes dans la

littérature et certaines de leurs lacunes. Plusieurs problèmes sont liés au “partially

ordered knapsack” (POK) problème avec contraintes de type sac à dos. Il s’agit

d’un cas particulier du problème de coupe maximale dans un graphe dirigé avec des

contraintes de type sac-à-dos sur les arcs de la coupe.

La contribution majeure de cette thèse est l’étude du cône et du polytope des

coupes dirigées, lesquels sont respectivement l’enveloppe convexe et l’enveloppe pos-

itive de toutes les coupes d’un graphe dirigé complet. Plusieurs résultats sur la

structure polyèdrale des ces polyèdres sont présentés.

Une relation entre les polyèdres de coupes dirigées et les polyèdres de coupes

non-dirigées est établie. Cette relation permet d’obtenir des familles de facettes

définissant des inégalités valides pour les polyèdres de coupes dirigées à partir des

inégalités valides et des facettes du polyèdre de coupes non-dirigées. Un algorithme

polynomial pour le polytope des coupes non-dirigées est proposé dans le cas partic-

ulier d’une fonction objectif ayant la même valeur optimale pour deux relaxations, le

polytope métrique enraciné et le polytope métrique. Les projections du polytope de

coupes dirigées sur les arcs d’un graphe dirigé sont également étudiées. Une méthode

de projection intitulée élimination triangulaire est généralisée du cas non-dirigé au

cas dirigé.
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Le problème qui consiste à sélectionner d’une grille 2D un ensemble de sommets

connectés de valeur maximale est également étudié. Dans le contexte des mines,

les sommets sont les blocs et la grille 2D est un banc. Un résultat de complexité

établissant la NP-complétude de ce problème est présenté.

Un algorithme “page rounding” arrondit la solution de la relaxation linéaire a

été implémenté pour résoudre le problème de conception de “pushbacks”. Cet al-

gorithme simple et efficace a été testé sur des données réelles et a permis d’obtenir

des solutions très proches de la solution optimale (écart de 6.4% par rapport à des

données réelles).
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CHAPTER 1
Outline

Scheduling the extraction of an open pit mine can be viewed as a combinatorial

optimization problem with tens to hundreds of thousands of variables. What one

would like to solve can easily be modelled as an integer program but due to the num-

ber of variables and constraints involved, current commercial integer program solvers

will take too much time to solve the optimization problem to be practically useful.

This thesis looks at the long term scheduling of an open pit mine and optimization

problems related to it.

Chapter 2 is an introduction and review of work previously done on long term

open pit mine planning and the related partially ordered knapsack problem. In

particular, many results of this thesis are polyhedral in nature, we therefore focus

much of the survey on valid inequalities and facets of the knapsack and partially

ordered knapsack polytopes.

The major contribution of this thesis is the theory that is developed on the

directed cut polyhedra. Chapter 3 reviews some previous work on the undirected

cut polyhedra and semidefinite programming. Section 3.4 defines the directed cut

polytope and cone. The rooted directed semimetric and directed semimetric polytope

(resp. cone) are defined and shown to be relaxations of the directed cut polytope

(resp. cone). Chapter 4 introduces some families of facet defining inequalities for

the directed cut cone and polytope. A theorem relating facets of the undirected cut
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polytope and facets of the directed cut polytope is also presented. Operations on

facet defining and valid inequalities of the directed cut cone and polytope such as

zero-lifting, collapsing, permutations and switching are proved.

The problem of deciding whether there exists an integer optimum solution of

the same value as that of a given fractional solution to an optimization problem is of

fundamental importance. Very few useful results are known of this type, and Chapter

5 describes one of them that can be efficiently implemented. A result previously

proved and stated in terms of the correlation polytope is proved in terms of the cut

polytope and the switching operation. This alternate proof leads to a polynomial

time algorithm for optimizing over the cut polytope in the case when optimizing

over the rooted metric and metric polytope have the same value for a given objective

function.

Chapter 6.1 investigates the projection of the directed cut polyhedra. The di-

rected cut polyhedra are initially defined in terms of an underlying complete directed

graph, but it is of interest to get a description of the polyhedra when projected onto

different support graphs. An operation defined previously for the cut polytope known

as triangular elimination that is a form of Fourier-Motzkin elimination combined with

lifting is generalized to the directed cut polytope.

Future possible work on the directed cut polyhedra are described in Chapter 7.

In particular, a conjecture on the characterization of DMET(G) is presented. The

class of graph for which DMET(G) =DCUT(G) is also discussed in this chapter.

Chapter 8 returns to the computational complexity of the pushbacks design

problem which was discussed in Chapter 2. Specifically, it is proved that if one
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wants to find maximum weight physically connected set of blocks in an orebody

block model, the problem becomes NP-hard, even without a knapsack constraint.

This result deals specifically with the geometric layout of an orebody block model, in

contrast with other reductions which deal with a partially ordered knapsack problem

involving a graph that can not be embedded into the orebody block model setting.

Some experimental results on a heuristic rounding procedure are presented in

Chapter 9. The goal of this algorithm is to produce a pushback that strictly adheres

to a knapsack constraint and chooses the cut-off grade dynamically. The algorithm

described is implemented and run on an actual copper deposit.

A brief set of conclusions are presented in the final chapter. Followed by an

appendix listing the vertices of RDMET2
3 , DMET2

3 , RDMET2
4 and DMET2

4 .

While this thesis is laid out and prepared to be read from start to finish, the

dissertation can be read in many different ways. If one is only interested in the

theory of directed cut polyhedra, Chapters 3 through 7 will be of interest and can

be read independently of the rest of the thesis.

Chapter 8 and 9 are largely independent of each other and the rest of the thesis.

It is recommended that the reader read Chapter 2 until Section 2.3 before reading

either Chapter 8 or Chapter 9.

If the reader is interested in valid inequalities for the knapsack polytope, the

partially ordered knapsack polytope and the directed cut polytope, one could read

Section 2.3, Chapter 4 and Chapter 6.
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Lastly, if the reader is interested in our proof of the result of Bondarenko and

Uryvaev [17] and how to optimize over the cut polytope in polynomial time when op-

timizing over the rooted semimetric and semimetric polytope have the same objective

value, then reading Chapter 3 up to Section 3.4 and Chapter 5 will suffice.

4



CHAPTER 2
Survey of open pit optimization and the partially ordered knapsack

problem

Open pit mine design and long-term production scheduling are a critically im-

portant parts of mining ventures and deal with the efficient management of cash

flows in the order of hundreds of millions of dollars. Mine design and production

scheduling determines both the economic outcome of a project and the technical

plan to be followed from mine development to mine closure. It is an intricate and

complex problem to address due to its large scale, the unavailability of a truly op-

timal net present value (NPV) solution, and the uncertainty in the key parameters

involved (geological, mining, financial, and environmental).

The optimization of open pit mine design consists primarily of defining the

“ultimate pit limits” which define what will eventually be removed from the ground,

and dividing up the pit into manageable volumes of materials often referred to as

pushbacks, cutbacks, or phases. Pushbacks, as they are referred to herein, allow for

the mine designer to develop short term schedules for a smaller more manageable

data set. They also contribute to the yearly production schedules so one can apply an

economic discount rate when calculating the NPV of the mine. Typically, an orebody

model of what is predicted to be in the ground is produced through one of various

techniques ([31], [32], [39]). The resulting orebody model is typically represented as

a block model, where the physical area of the deposit is broken up into rectangular
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blocks of a given size and each block has a predicted ore content. From this orebody

model, optimization techniques are used to produce the ultimate pit. The ultimate

pit is the maximum valued pit possible that obeys slope and physical constraints.

Pushbacks are produced from the sections of the orebody model that remain within

the ultimate pit limits.

Traditional production scheduling methods are performed using pushbacks de-

signed to maximize the economic value, or metal content within each incremental

pushback in a greedy fashion. There are major issues with the existing pushback

design methods that lead to sub-optimal production schedules including: (a) not

considering requirements in grade and ore quality parameters; (b) ignoring the in-

situ grade uncertainty; (c) large variations in size of the pushbacks, or so-termed

“gap” leading to impractical results; (d) not considering discounting during the op-

timization and assuming that a greedy approach will maximize discounted value.

It should be stressed that the total NPV that can be generated from a mining

operation strongly depends on the pushback design that guides the extraction se-

quence of ore and periodical metal production. It is impossible to generate a truly

optimal production schedule using sub-optimally designed pushbacks. Production

schedules based on sub-optimal pushback designs fail to produce the maximum and

optimal NPV of a mining project (eg. [39], [40], [71], [74]).

A popular technique for producing pushbacks is to take an algorithm that pro-

duces an ultimate pit and run it multiple times over the orebody model where the

economic block values are scaled down by a series of decreasing factors, values of

λ1, ..., λt where 0 ≤ λi ≤ 1 are used to replace the value v of a block with v − λiv.
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The result is a series of nested pits, small pits are produced when the orebody model

block values are scaled down by a large factor, as the factor gets smaller, larger and

larger pits are produced until the ultimate pit is produced when the factor is 0. The

series of nested pits produced gives the mine designer possible pushback options.

This is the approach used by the Lerchs-Grossman algorithm [59] implementation of

Whittle [82], a series of heuristically discounted pits is produced in a greedy fashion

until it is no longer profitable to consider any further pits. The final pit is used as

the ultimate pit limits.

The scaling approach suffers from the problem of having the pushback sizes

produced differing erratically. A series of small pit increments followed by a very

large pit may be generated. A simple example when this would happen is if there

was a large section of ore beneath a large amount of waste. It would not be feasible

to mine anything until the scaling factor reaches some threshold value and then a

large pit with no incremental smaller pushbacks would be produced; such a situation

is depicted in Figure 2–1. Large size differences between consecutive pushbacks

that may render them impractical are often referred to as gap problems and are a

common problem in developing designs that are feasible in an engineering sense,

without manual “re-designing” which then has unknown effects on the optimization

of the design.

Producing a series of pits in the fashion described above also suffers from the

problem that the pit produced for a given factor may be disconnected and not one

single pit. If one chooses the pushbacks strictly in this fashion, single pushbacks

may have multiple sections that are physically far from each other, making them
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Figure 2–1: Schematic representation of an open pit design showing three pushbacks with
gap problems

impractical. Ideally, a pushback should be one connected piece and not fragmented.

A further problem with the technique described is that other geometric limitations

open pit pushbacks must adhere to are not considered. This can include requiring

the pit base be a convex shape and of a minimum width.

Existing algorithms for pushback and open pit optimization are typically de-

signed to only consider one fixed orebody model. The traditional single estimate

assessment for pertinent parameters, including project net present value (NPV), ex-

pected cash flows, metal quantities, and expected production costs. Two major flaws

of traditional optimization in mine design and planning are: (i) inputs are assumed

certain while they are not, thus uncertainty from geological, mining and market

sources is not accounted; and (ii) conventional mathematical models cannot handle

input uncertainty models, viz a viz stochastically described inputs. Consequences

of these flaws are demonstrated in an example [32] where mine design optimization

in an open-pit gold mine shows that the consideration of geological uncertainty pre-

dicts a NPV that is considerably less than that forecasted via conventional modelling.

The difference arises from significant departures in expected cash flows between the
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traditional single-block orebody estimates and stochastic models, and demonstrates

potentially misleading results from combining traditional orebody models with com-

plex non-linear optimization algorithms. Furthermore, this example highlights the

conceptual and computational inadequacy, and technological limits of mine design

and production scheduling technologies currently used, when optimizing under un-

certainty. With advances in stochastic simulation techniques, new algorithms are

needed to handle multiple equally likely orebody model realizations. The techniques

should provide a robust optimization over all orebody models and not just perform

well in expectation.

In Section 2.1 some popular traditional methods for pushback design are re-

viewed and how they address the issues introduced is discussed.

Throughout this thesis many references will be made to both directed and undi-

rected graphs. To avoid confusion, we will adopt the notation ij to represent a

directed arc from node i to node j in a directed graph. When necessary the notation

(i, i + 1) may be used to represent a directed arc from node i to node i + 1. The

notation i, j will represent an edge in an undirected graph between nodes i and j.

2.1 A review of existing methods

2.1.1 The Lerchs-Grossman algorithm

The most well established procedure in practice for producing ultimate pit limits

is the Lerchs-Grossman (L-G) algorithm [59]. This algorithm constructs a directed

graph G = (V, A) where each node v ∈ V represents a block in the orebody model.

A weight wv equal to the cost of removing a waste block v or equal to the profit of

processing ore block v is associated with each node v ∈ V (G). The arcs of G represent
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the slope constraints of the open pit mining problem. For a given deposit, a set of

slope angles will be determined by engineers so the pit walls do not collapse from

being too steep or mine extra waste from being too shallow. These are determined

based on characteristics of the geology and engineering guidelines. If a block j must

be physically removed prior to block i then G will contain a directed path from node

i to node j, we denote an arc from node i to node j in A(G) as ij.

The L-G algorithm finds a maximum weight graph closure, a subset of nodes

S ⊆ V (G) such that no arc a ∈ A(G) has a tail in S and head in V (G) \ S and∑
v∈S wv is maximized over all such S. The graph closure represents the traditional

ultimate pit limits. By the construction of the arc set A(G) and the definition of a

graph closure it is straight forward to see that every graph closure can be physically

mined and will adhere to the engineering slope constraints.

Figure 2–2: A depiction of a graph closure, the xi labelled nodes of the graph represent
blocks in our block model

The algorithm begins by adding a dummy root node s to the graph G with arcs

directed from s to every node in G. When referring to a tree or spanning tree of

our graph, edges are considered undirected. The mass of a branch is the sum of the
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weights of the nodes in the branch. An arc is termed strong if it is a downward arc

(towards s in the tree) that supports a mass that is strictly positive, or an upward

arc that supports a mass that is non-positive. Otherwise, the arc is termed weak. A

spanning tree rooted at s is normalized if the only strong arcs it contains are adjacent

to the root s.

The L-G algorithm produces a series of normalized trees until one of the trees

corresponds to a graph closure. It can be shown that this graph closure is in fact the

maximum graph closure.

2.1.2 Seymour’s parameterized pit limit algorithm

Fred Seymour [74] modified the Lerchs-Grossman algorithm to incorporate what

is known as parameterization. Open pit parameterization produces maximum valued

pits as a function of another parameter (where this parameter is defined for each block

in our orebody model). Seymour chooses pit volume as the parameter to parameterize

in his paper. If one was to plot the economic pit value vs. chosen parameter value

as shown in Figure 2–3, Seymour’s algorithm can return precisely those pit designs

that lie on the upper convex hull of this point set. If the upper convex hull is well

defined and feasible pits exists at or around the desired parameter values (pit sizes in

Seymour’s paper) then one can use such pits to develop pushbacks that don’t suffer

from non-uniform sizes.

The algorithm follows the approach of the L-G method. But instead of producing

one final tree, representing the maximum graph closure-ultimate pit, it produces a set

of branches, where a branch’s strength is its value divided by the sum of the volume

of the blocks in the branch. A threshold value is used to determine if a branch is
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“strong” or “weak”, by altering the threshold, a series of nested pits can be produced.

All strong branches together form the normalized tree that L-G’s algorithm returns

when the threshold is set to its minimum value.

While this approach can provide some useful results in practice [74], if the pits

that lie on upper convex hull are far apart in terms of size then gap problems will

continue to persist. The algorithm will not return pits of the desired size, this

situation is depicted in Figure 2–3. Seymour’s algorithm would return the two nested

pits on the upper convex hull, but will not return any of the potentially useful designs

that lie between these two sizes that lie below the convex hull.

Figure 2–3: A plot of the upper convex hull of the pit value vs. pit size shows a large gap
between possible pit sizes

2.1.3 Network flow approaches

Following the success of modelling the ultimate pit problem as a maximum graph

closure problem, Picard [69] showed how to find the maximum closure of a graph by

using a network flow algorithm. This allows one to use known efficient algorithms

for finding a maximum flow and use it to find the ultimate pit limits.
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The maximum flow problem can be stated as: given a directed graph G, with

capacities on the edges, a source node s, and a sink node t; one wants to know the

maximum amount of flow that can travel from the source node s to the sink t without

violating the capacity constraints on the edges. An arc ij with a capacity of cij can

send at most cij units of flow from node i to node j. The flow must also obey the

conservation of flow constraint at each node in V (G)− {s, t}, which states that the

flow into a node is equal to the flow out of the node, ie.

∑
i:ij∈A(G)

xij =
∑

k:jk∈A(G)

xjk ∀j ∈ V (G) \ {s, t}. (2.1)

A minimum cut is the set of arcs with their tail in a subset of nodes S ⊆

V (G)− {t} containing s and head in V (G)− S such that the sum of the capacities

in the cut is the minimum over all such cuts. Since any flow going from s to t

is constrained to be at most the capacity of a minimum cut, it follows that the

maximum s-t flow is at most the size of a minimum cut. It can be shown that these

two quantities are in fact equal. Given a maximum s−t flow one can find a minimum

cut by starting at t and doing a depth first search of the edges that are saturated

(the flow over the arc equals the arc capacity) in the reverse direction from the sink.

Picard [69] showed that given a graph G, on which one wishes to find a maximum

closure, one can construct an auxiliary graph G′ where the minimum cut in G′

corresponds to the maximum closure of G. Construct G′ by taking a copy of G and

adding two new nodes, a source s and a sink t. Add arcs from s to every node that

has positive weight in G and add arcs from every negative weight node to t. Give

the edges of the form sv a capacity csv equal to the weight of v in G and give arcs of
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the form vt a capacity cvt equal to the absolute value of the weight of v in G. Give

all other arcs, the arcs that correspond to slope constraints, infinite capacity.

Consider the small example of a vertical cross-section of an orebody model in

Figure 2–4. Figure 2–5 depicts the construction of the network from the orebody

model in Figure 2–4 the unlabelled arcs have infinite capacity. A minimum cut in G′

will have only arcs directed from s or to t, since all other arcs have infinite capacity.

In the context of an orebody model, one can think of a minimum cut consisting of

arcs directed to the ore that is left in the ground and arcs from the waste that is left

in the pit. The infinite capacity arcs ensure that slope constraints are maintained.

Since the orebody model is finite, minimizing the value of ore left outside the pit plus

the cost of the waste left inside the pit is equivalent to maximizing the ore inside

the pit minus the waste inside the pit. Figure 2–6 shows the minimum cut in our

example, the dashed arcs correspond to the arcs in the minimum cut.

Figure 2–4: Vertical cross section of an orebody model

One can formulate the minimum cut problem as a linear program (LP) in such

a way that the constraint matrix is totally unimodular. This implies that one can

get an integral solution by solving the LP, which can be done in polynomial time.
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Figure 2–5: Network constructed from the orebody model in Figure 2–4, s is the source
and t is the sink

Figure 2–6: A minimum cut of the network show in Figure 2–5

Hochbaum and Chen [53],[52] showed that the L-G algorithm can be used as a

network flow algorithm. From the series of normalized trees they showed how one

could obtain an optimal network flow. They also analyzed the runtime of the L-G

algorithm and improved it by scaling techniques (different from those used to generate

pushback designs) to show that L-G can be implemented to run in O(mn log n)

time, where m and n are the number of arcs and nodes in the constructed graph

respectively. The network flow algorithm they developed is known as the pseudoflow
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algorithm. Muir [63] implemented the pseudo-flow algorithm and found it more

efficient than the L-G algorithm in practice.

Gallo, Grigoriadis, and Tarjan [37] developed a way to use a network flow al-

gorithm to produce a series of parameterized minimum cuts. This process returns

the series of pits that are on the upper convex hull of economic pit value vs. the

chosen parameter, the same set of pits that Seymour’s algorithm can return. This

process can be used to generate all the pits on the upper convex hull with very little

additional computation. These possible pit designs, however, will suffer from the

same gap issues as those returned by Seymour’s algorithm.

2.1.4 Dagdelen-Johnson Lagrangian parameterization

In [22], Dagdelen and Johnson formalized the process of parameterization in

the context of Lagrangian relaxation. Lagrangian relaxation is a process where a

troublesome constraint is removed from the LP and placed in the objective. In the

context of an open pit optimization problem, the technique applied to the problem

of finding a pit of a fixed tonnage is shown. This can be done by modelling the

ultimate pit as a LP, with the added constraint that the number of blocks in the pit

is a fixed amount, say b:

max
n∑

i=1

cixi

s.t. xj − xi ≤ 0 for (vi, vj) ∈ A(G)
n∑

i=1

xi = b

xi ∈ {0, 1} for i = 1, .., n
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If the constraint
∑n

i=1 xi = b is removed this system is totally unimodular and the

LP relaxation gives an integral solution and can be solved efficiently by the simplex

method. However, the constraint
∑n

i=1 xi = b ruins the total unimodularity of the

constraint matrix and it is unlikely that the LP relaxation will give an integral

solution, making the IP much more difficult to solve efficiently. The Lagrangian

relaxation of this problem would be to place this constraint in the objective along

with a penalty factor λ ≥ 0 for violating it. The new IP would be:

max
n∑

i=1

(ci − λ)xi − λb

s.t. xj − xi ≤ 0 for (vi, vj) ∈ A(G)

xi ∈ {0, 1} for i = 1, .., n

This IP is totally unimodular once again thus by relaxing the integrality on the xi’s

one can solve it efficiently. Since one fixes the penalty λ and b is fixed λb is a constant

and can be removed from the objective function. It is straight forward to see that

the problem being solved is the ultimate pit limit problem where the economic value

of the orebody model is scaled down by a constant factor λ, since each block i has

economic value (ci−λ) in the LP. Choosing λ to be zero this is equivalent to finding

the ultimate pit limits. As λ gets larger one can expect to get smaller and smaller

pits. One can therefore view the procedure of finding nested pits by Dagdelen and

Johnson’s Lagrangian Parametrization as an equivalent procedure to that of scaling

the orebody model value and running the L-G algorithm to get a series of nested

pits. It therefore suffers from the same gap problems as those discussed previously.

Choosing appropriate values of λ is not always straight forward either, it may take
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quite a bit of time to try to find a value of λ to produce pits close to the desired

tonnage, and it might not even be possible to produce a pit of the desired size with

this technique.

2.1.5 IP formulations

Due to technical and engineering limits there are many constraints that should

be considered that intrinsically limit the size of a pushback based on its period of

extraction [70]. Two such constraints are milling constraints and extraction capacity

constraints. The mill should typically be fed a certain minimum and maximum

quantity of ore. Also, constraints on the number of trucks can limit the amount

of ore/waste that can be mined in a given period. These constraints can often be

modelled as knapsack constraints which have the form:

∑
i∈V (G)

aixi ≤ b (2.2)

where b > 0 and ai ≥ 0 for all i ∈ V (G).

Since efficient algorithms exist to find optimal pits without knapsack constraints,

we would like to know if an efficient algorithm exists with these restrictions. The

problem of finding a graph closure with a knapsack constraint will be discussed

further in Section 2.3.1.

If one considers the problem of finding an optimal pit with only the restriction

that the pit must be connected (one single entity) it can be shown that this problem

becomes NP-hard. We present this result in Chapter 8.

One approach [77] to solve these large IPs is to aggregate blocks together to

decrease the number of variables in the IP. Doing this in a naive fashion can alter
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the shape of the ultimate pit that is produced. Taking the average of a set of blocks

tends to increase the small values and decrease the large values of the blocks in

the orebody model which leads to dilution. This can have a dramatic effect on the

feasibility study of a mine, and has the same effect as what is known in mining

literature as selectivity [72].

2.1.6 Fundamental tree algorithm

An approach for combining blocks together known as the fundamental tree algo-

rithm was introduced by Ramazan [71], [70]. The fundamental tree method combines

blocks in such a way that the ultimate pit produced on the combined blocks is the

same as that produced if the blocks were not combined together. The approach de-

creases the number of blocks, which in some cases makes solving integer programs

feasible for larger volume mines.

Since the number of decision variables has decreased in the IP formulation,

one can put more constraints into the IP and still have efficient run times. The

fundamental tree algorithm combines together blocks into a set of the so-calleds

fundamental trees, which is a set of blocks where:

1. the blocks can be profitably mined,

2. the blocks obey the slope constraints and,

3. there is no proper subset of the chosen blocks that meets 1 and 2.

The fundamental tree method is very similar to the pit parameterization method

of Seymour. One could consider the “branches” produced by Seymour’s algorithm

as fundamental trees, then use these branches as the “ore” variables in an LP for-

mulation. Ramazan chooses to try to minimize the size of the trees by requiring
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that no proper subset of a tree can be profitably minded, the branches produced by

Seymour’s method will combine branches together as long as the ratio of value over

tonnes increases, resulting in larger trees.

The problem with the technique of treating large branches or trees as single

binary variables in an IP formulations is that one often wishes to have constraints

due to milling, blending and transportation requirements that aren’t considered in

the process of producing the combined decision variable. Larger fundamental trees

allow the IP formulation to be solved more efficiently but will affect selectivity in

terms of constraints such as blending. There is no clear way of limiting the size of

the fundamental tress produced. Often too many fundamental trees are produced

and the IP formulation is still too large to be solved in practice.

2.2 Further limitations and more advanced algorithms

In most common practice, economic discounting is only heuristically used at the

time of pushback design optimization. Nested pits are created in a greedy fashion so

that one tries to produce a series of pits where the value of a pushback divided by

its volume is always greater then a future pushbacks economic value divided by its

volume [82]. Tolwinski and Underwood [81] developed an algorithm that explicitly

uses discounting in schedule design but provides only heuristic solutions due to the

long runtime required to reach optimality on a large mine. If one wishes to apply

a discount rate of d to the constrained pushback design problem over p periods and

have constrained pushbacks of size at most b, the problem can be formulated as the
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following integer program:

max

p−1∑
k=0

n∑
i=1

(1 + d)kcixi,p

subject to xi,l −
l∑

k=1

xj,k ≤ 0 ∀i, l = 0..p− 1 and ij ∈ A(G)

p−1∑
k=0

xi,k ≤ 1 ∀i

n∑
i=1

xi,k ≤ b for k = 1..p

xi,k ∈ {0, 1} ∀i = 1..n, k = 0..p− 1

This IP formulation would take too long to solve but it does define the pushback

design objective that would optimize the pits NPV. An algorithm that solves the

constrained pushback design problem for one pit could be used multiple times in

a greedy fashion to obtain a series of pushbacks, however, it is easy to construct

examples where it is not always optimal in terms of NPV to apply this greedy tech-

nique. To optimize the NPV one needs to consider the design of all pushbacks and

discounting at the same time.

Further limitations of existing methods include using pre-determined cut-off

grades. A cut-off grade defines what is determined to be waste or ore (and in more

complex models, sent to the stockpile). Cut-off grades will often vary from pushback

to pushback depending on the period of extraction. Often a pushback design algo-

rithm is run for a specific cut-off grade and the process is iteratively repeated with

alternate cut-off grades heuristically until a given set is determined as the best.

21



Tachefine and Soumis [78], [79] formulated a multi-period pushback design op-

timization problem as an integer program, where each period corresponding to a

pushback had a knapsack constraint. Under this model, the economic value of a

pushback could be appropriately economically discounted for the period of extrac-

tion. They used a set of Lagrangian multipliers, one for each period/pushback and

then used a search optimization algorithm like steepest descent to try to find the

best Lagrangian multipliers. The solutions produced would violate the knapsack

constraints by a small amount, they then made the produced schedules feasible by

employing a either a tabu search heuristic or one of two greedy discarding methods

they developed.

Akaike [1] developed a similar algorithm that used an extension of the La-

grangian relaxation approach with a network flow formulation in which the abil-

ity to have a dynamic cutoff grade was incorporated. Choosing appropriate values

of the Lagrangian multipliers to adhere to specific constraints is again done by a

steepest-descent or equivalent algorithm.

More recent work of Bienstock and Zuckerberg [15] investigate more advanced

techniques of using Lagrangian relaxation methods to solve optimization problems

that can be formulated as linear programs where the removal of a small number of

constraints produces integral optimal solutions. They have applied their techniques

specifically to mine scheduling problems, as the removal of the knapsack type con-

straints in a typical IP formulation of POK problem leaves a totally unimodular

system.
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With advances in orebody modelling through stochastic simulations, one would

like a set of tools that could optimize an open pit design over a set of multiple

realizations of the orebody model simultaneously. If one wanted to optimize the over

the averaged values of each block to obtain a single orebody model and optimize the

design over that model, much of the information contained in the multiple realizations

would be lost. Maximizing the expected value of a design over all realizations is

not necessarily the best technique either, situations occur when such an approach

can yield designs with a high NPV on a few realizations but a very poor NPV on

most. One would like a robust procedure that would perform well over almost all

realizations. To this end, the information from each realization must be maintained

and techniques to handle the large amount of data and produce designs that perform

well for most realizations must be developed.

Godoy and Dimitrakopoulos [40] developed an optimization algorithm based

on producing a schedule for each simulation through traditional techniques. They

then use a simulated annealing algorithm to produce schedule that optimizes NPV

and penalizes deviation from production targets. While their algorithm has been

shown to produce positive results, this approach suffers from having to produce

many different schedules, one for each simulation, prior to running the simulated

annealing algorithm. It also doesn’t address many of the additional problems with

traditional techniques, like dynamic cut-off grade optimization.

Dimitrakopoulos and Ramazan [33] used a stochastic integer program model

to solve the problem of having to produce the initial set of schedules one at a time.

Their method constructed a large integer program from the multiple simulations and
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attempts to find a schedule that minimizes the sum of deviations from production

targets in each simulation. This method produced positive results as well, however

the integer program formulations produced tend to get too large to be practically

useful for a large deposit.

A further limitation of existing methods not yet discussed is connectivity. Ideally

a pushback design should be physically connected. A pushback that has parts that

are physically disconnected is not practical from a mining perspective as moving the

mining equipment can be a costly and time consuming operation. In Section 8 we

present a complexity result related to finding a connected set of blocks in a geometry

that arises in the open pit mining problem. In the work of [21], [3] the geometric

problem of finding an optimal specific shape on a 2D grid is investigated. These

results can be thought of as applying to one level or bench of a mining problem.

Many of the advanced techniques cited in this section have produced positive

results. They all, however, do not necessarily solve the optimization problems to

optimality in a reasonable amount of time. Further, they often use heuristics and as-

sumptions that don’t reflect the exact problem to produce feasible schedules. None

of the advanced methods described solve all the issues addressed simultaneously.

They tend to optimize different aspects of the problem separately and find ways to

iteratively try and improve solutions until some sort of convergence is reached. Tra-

ditional methods of optimizing also presume that the ultimate pit limits are known

prior to the pushback design. These piecewise approaches can lead to suboptimal

solutions. Recently, the mining industry has become interested in the area termed
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global optimization [83]. This global optimization can be viewed as removing the

piecewise optimization steps from the mine planning process.

With the many different types of open pit mine scheduling and constraints in-

volved, it would be nice if an algorithm could solve a generic IP formulated for the

POK problem with multiple knapsack constraints. While the POK formulation can’t

encompass all of the problems it can be used to model most with the exception of

mining width and connectivity.

2.3 Knapsack and partially ordered knapsack polytopes

The IPs that have been described thus far can be thought of as a set of prece-

dence constraints in combination with a set of knapsack type inequalities. The mining

methods reviewed up to this point have mainly used two different techniques, either

Lagrangian relaxation (scaling) or solving IPs through block amalgamation. While

these are the traditional approaches of the mining community, the problem of solving

knapsack type problems with precedence constraints has been studied outside the

realm of mining optimization.

The combination of precedence constraints with a knapsack inequality is known

as either a partially ordered knapsack problem (POK) or a precedence constrained

knapsack problem (PCKP) in scheduling optimization. It is known as the maximum

weight ideal (MWI) problem in poset theory [34]. It can also be viewed as a subcase

of the densest k-sub-hypergraph problem from graph theory.

2.3.1 Knapsack problems

One of the classic NP-complete problems from Karp’s [55] 21 NP-complete prob-

lems is the subset sum problem. The subset sum problem is: Given a set of integers,
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does the sum of some nonempty subset equal zero? This can be generalized to the

0−1 knapsack problem; given a set of weights wi and a set of values vi for i = 1, ..., n

can you choose a subset S of N = {1, ..., n} such that:

∑
j∈S

vj ≥ K (2.3)∑
j∈S

wj ≤ b (2.4)

(2.5)

for a given value of b and K. The optimization 0− 1 knapsack problem is given by

replacing constraint (2.3) with:

max
∑
j∈S

vj. (2.6)

The 0− 1 knapsack problem has been studied extensively. If the weight W is poly-

nomial in the size of n there exists a dynamic programming algorithm that can solve

the problem in polynomial time, O(nW ). For larger W , a fully polynomial time

approximation scheme (FPTAS) is known.

While there are many algorithms for and variations of the 0− 1 knapsack prob-

lem, our focus will be on polyhedral properties and results. In the rest of this section

and in Section 2.4 we will describe past polyhedral work on the knapsack and POK

polytopes. The study of the knapsack polytope is a vast area of research as the

knapsack inequalities play a pivotal role in commercial integer program solvers, we

focus primarily on results on the knapsack polytope that have been extended to the

POK knapsack.
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The knapsack polytope is the convex hull of all 0 − 1 points x ∈ {0, 1}|N |

satisfying a given linear inequality of the form:

∑
j∈N

ajxj ≤ b (2.7)

where the aj’s and b are non-negative.

A subset S ⊆ N is called a cover of inequality (2.7) if:

∑
j∈S

aj > b.

Clearly, not all xj’s can be 1 for j ∈ S as this would violate (2.7), which implies that

for any x in the knapsack polytope and cover S:

∑
j∈S

xj ≤ |S| − 1. (2.8)

Inequality (2.8) is known as a cover inequality. If a cover S has the property that

for any proper subset T ⊂ S the following inequality is satisfied:

∑
j∈T

aj ≤ b

then S is a minimal cover. Minimal cover inequalities are used extensively in cutting

plane algorithms for solving general integer programs with knapsack type inequalities.

These inequalities can be strengthened by a technique known as lifting. Lifting,

which was originally introduced by Gomory [42], takes a valid inequality and con-

structs a valid inequality in a higher dimensional space. There are many variations

and types of lifting, lifting for the knapsack and POK problems will be discussed

here, in Chapter 4 lifting will be applied to the cut and directed cut polyhedra.
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For a subset S ⊂ N of the possible knapsack items, a lower dimensional knapsack

polytope can be defined as:

KnapS = {x ∈ {0, 1}|S| :
∑
i∈S

aixi ≤ b}

Lifting takes a valid (or facet) inequality of such a lower dimensional knapsack and

constructs an inequality valid for the original knapsack polytope.

For knapsack cover inequalities, the lifted cover inequality for a minimal cover

C ⊆ N has the form:

∑
i∈C

xi +
∑

i∈N\C

αixi ≤ |C| − 1. (2.9)

Choosing the values of the αi’s, which are non-negative integers, is known as the lift-

ing problem. A generalized lifting method for 0-1 knapsack problems was developed

by Wolsey [87]. This method generalized earlier work on lifting inequalities for 0-1

knapsack problems (see [9], [49], [66], [64] and [86]).

Given a minimal cover C, let X = {i /∈ C : ai > aj ∀j ∈ C}, the inequality:

∑
j∈C∪X

xj ≤ |C| − 1 (2.10)

is known as an extended cover inequality and is a simple example of a lifted cover

inequality that can be computed quickly.

Lifting cover inequalities can defined more generally. Given an ordering π(1), ..., π(|N | − |C|)

of the elements of N \C the lifting coefficients απ(j) can be computed by solving the
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problems:

απ(j) ≤ |C| − 1−max{
∑
i∈C

xi +

j−1∑
i=1

απ(i)xπ(i)} (2.11)

s.t.
∑
j∈C

ajxj +
i−1∑
j=1

aπ(j)xπ(j) ≤ b− aπ(j)

xi ∈ {0, 1} ∀j ∈ C

xπ(i) ∈ {0, 1} ∀i = 1, ..., j − 1

Choosing the απ(j) such that the inequality (2.11) is satisfied produces a valid in-

equality for the knapsack polytope. If inequality (2.11) is satisfied with equality

then inequality (2.9) defines a facet of the knapsack polytope. This gives a way of

constructing valid (and facet-inducing) inequalities from the cover inequalities. As

the inequality that arises from the lifting operation is dependent on the ordering π,

the choice of π can greatly affect how useful the lifted inequality is for solving an

optimization problem on the knapsack polytope. Not only are there 2|N\C| ways of

choosing π but solving the lifting maximization is equivalent to solving a knapsack

problem on a slightly smaller dimensional polyhedra [50].

There have been many experiments testing how effective using cutting plane

techniques based on the lifted cover inequalities are. They have been found to work

well in practice. There are many papers investigating methods of generating them

efficiently. See [46] for a thorough review.

2.4 POK polytope

The cover inequalities mentioned above have been generalized to the POK poly-

tope, the convex hull of all 0 − 1 points satisfying a given knapsack constraint and
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satisfying all precedence constraints. A node i of the precedence graph is called a

predecessor of a node j if there exists a directed path from i to j in A(G) and j is

referred to as a successor of i. Define the set Pi to contain i and all predecessors of

node i. For a set of nodes C ⊆ V (G), let P (C) = {i : i ∈ Pj for some j ∈ C}, so

P (C) is the set of all predecessors of nodes in C unioned with the set of nodes C.

Note that the POK literature uses the opposite direction to imply precedence from

that used thus far.

In the POK literature ([16], [68], [18], [58]), two nodes i, j are called incomparable

if i /∈ Pj and j /∈ Pi. In the same vein, a set S is called incomparable, if for all

i, j ∈ S, i and j are incomparable. There are two different definitions of a cover

C ⊂ V (G) for the POK problem. Park and Park [68] define C to be an induced

cover if C is incomparable and
∑

j∈P (C) aj > b and C is a minimal induced cover if∑
j∈P (C\{i}) aj ≤ b for each i.

An alternate definition of an induced cover is proposed by Boyd [18], in which

C ⊂ V (G) be a minimal induced cover if P ′ = P (C) \ j satisfies
∑

i∈P ′ ai ≤ b for all

j ∈ C. Using both of the defined induced covers the inequality:

∑
i∈C

xi ≤ |C| − 1 (2.12)

is valid for the POK polytope.

If Q ⊆ Rn+m is a polyhedron where (x, y) ∈ Q means x ∈ Rn and y ∈ Rm then

the projection of Q onto the space Rn corresponding to x is:

Projx(Q) = {x ∈ Rn : ∃y ∈ Rmsuch that (x, y) ∈ Q}.
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Boyd goes on to prove structural polyhedral results on the projection of the POK

polytope. Let POK(C) = ProjP (C)(POK) be the projection of the POK polytope

onto the space indexed by the nodes of P (C).

Let H(C) be the set of nodes i ∈ C such that i doesn’t have any successors in

C. The following theorem appears in [18]:

Theorem 1 ([18]) Given any minimal cover C the constraint:

∑
i∈C

xi ≤ K − 1 (2.13)

is a facet of POK(C) if and only if ∩{S⊆H(C):|S|=K−1}P (S) = ∅.

A further class of valid inequalities is obtained from (1, k)-configurations. A set

C ∪ {t} ⊆ V (G), t /∈ C is a (1,k)-configuration if:

• the items of C ∪ {t} ⊆ V (G) are incomparable

• C ∪ {t} is a cover with
∑

i∈P (C∪{t})\{t} ai ≤ b

and

• Q ∪ {t} is a minimal cover, for all Q ⊆ C with 2 ≤ |Q| = k ≤ |C|.

The (1, k)-configurations for precedence constraints are a straight forward general-

ization of the (1, k)-configurations of the 0 − 1 knapsack polytope introduced by

Padberg [67]. Boyd proves the following theorem:
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Theorem 2 Let C ∪ {t} be a (1, k)-configuration and let Q be a subset of C of

cardinality k. For any r ≤ k the constraint:

(k − r + 1)xt +
∑
i∈Q

xi ≤ k (2.14)

is a facet of POK(C ∪{t}) if and only if Pt∩P (Q) = ∅ and ∩{S⊆Q:|S|=r−1}P (S) = ∅.

Van de Leensel et al. [58] uses Boyd’s definition of a minimal cover to investigate

algorithmic consequences of lifting and lifting order sequences. We use T (C) to

denote P (C) \C and R(C) to denote V (G) \P (C). In [58], a lifting order π is called

a predecessors first, remaining variables second (PFRS) order for a subset of items

W ⊆ V (G) if π is a one-to-one mapping, π : T (W )∪R(W )→ {1, ..., |T (W )∪R(W )|}

satisfying:

• (i) π(i) < π(j) if i ∈ T (W ), j ∈ R(W )

• (ii) π(i) < π(j) if i, j ∈ T (W ) and j ∈ T (i)

• (iii) π(i) < π(j) if i, j ∈ R(W ) and i ∈ T (j).

Given a minimal induced cover C and a PFRS order π, define predecessor and

successor sets for a node j as:

pπ(j) = {i ∈ P (C) ∪R(C) : π(i) < pi(j)} (2.15)

and

sπ(j) = {i ∈ P (C) ∪R(C) : π(i) > π(j)}. (2.16)
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For a lifted cover inequality following a PFRS order π at stage j where j ≤

|T (C)|, the lifting process has already constructed the inequality:

∑
i∈C

xi +
∑

i∈T (C)∩pπ(j)

αi(1− xi) ≤ |C| − 1.

The lifting process then computes the value of αj by solving:

αj = |C| − 1−max{
∑
i∈c

xi +
∑

i∈T (C)∩pπ(j)

αi(1− xi)} (2.17)

s.t. xi = 1 for i ∈ T (C) ∩ sπ(j)

xi = 0 for i ∈ R(C)

xj = 1

x ∈ POK.

At a stage j > |T (C)|, (ie. j corresponds to a an item in R(C)) the process has

already constructed the lifted cover inequality:

∑
i∈C

xi +
∑

i∈T (C)

αi(1− xi) +
∑

i∈R(C)∩pπ(j)

αixi ≤ |C| − 1.

The process then computes the value of αj by solving:

αj = |C| − 1−max{
∑
i∈C

xi +
∑

i∈T (C)

αi(1− xi) +
∑

i∈R(C)∩pπ(j)

αixi} (2.18)

s.t. xi = 0 for i ∈ R(C) ∩ sπ(j)

xj = 0

x ∈ POK.
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This ordering ensures that in each step of the lifting process the precedence con-

straints are not violated and the variables set to 1 do not violated the knapsack

inequality. Furthermore, Van de Leensel et al. [58] prove:

Theorem 3 [58] Let C is a minimal induced cover and π be a PFRS order for

C then if the coefficients αj of xj are lifted according to (2.17) for j ∈ T (C) and

according to (2.18) for j ∈ R(C) then the inequality:

∑
i∈C

xi +
∑

i∈T (C)

αi(1− xi) +
∑

i∈R(C)

αixi ≤ |C| − 1

defines a facet of the POK polytope.

It is stated that this lifting sequence can be used to lift (1, k)-configuration

inequalities so that the final inequality obtained is facet inducing for the POK poly-

tope.

Computing the values of the αj’s can be in general as difficult as solving a

knapsack (or POK) problem. However, for the case j ∈ P (C) Van de Leensel et al.

provide a combinatorial interpretation that yields a polynomial time algorithm for

computing the αj’s. This is accomplished by computing the number of components

in the graph induced by C and subsets of T (C). Let f be a function on subsets

W of T (C) that counts the number of components in the graph induced on node

set W ∪ C. Define a sequential lifting order π to be a reverse topological order if it

satisfies π(i) < π(j) when j ∈ Pi.

Given a reverse topological order π for the items in T (C), define

γi = f({π−1(1), ..., π−1(i− 1)})− f({π−1(1), ..., π−1(i)}).
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This γ function counts the difference in the number of components in the graph H

induced by C∪{π−1(1), ..., π−1(i−1)} and the graph induced by adding node π−1(i)

and relevant arcs to H. The resulting theorem is:

Theorem 4 ([58]) Let C ⊆ V (G) be a minimal induced cover and let π be a reverse

topological order on T (C). If the values of γi are computed according to π then for

each j = π−1(1), ..., π−1(|T (C)|):

∑
i∈C

xi +

π−1(j)∑
i=π−1(1)

γi(1− xi) ≤ |C| − 1 (2.19)

is a facet inducing inequality for the polytope Q where Q is the convex hull of valid

POK solutions x where xi = 1 for i ∈ {π−1(j + 1), ..., π−1(|T (C)|} and xi = 0 for

i ∈ R(C).

There are initially at most |C| graph components and every node that is added

from T (C) can only decrease the number of components. If a node i ∈ T (C) has its

corresponding xi set to 0 this means that at least γi +1 elements of C must be set to

zero and the right hand side of the inequality can be decreased by γi. Computing the

γi’s can be done easily by counting the number of graph components in polynomial

time.

In contrast, it is proved that computing the αj’s for j ∈ R(C) to be a NP-hard

problem by reducing from max clique. This reduction relies on a specific precedence

graph G on which the lifting problem will be solved. The graph arising in the specific

instances of POK problems that one is interested maybe be easier to handle. Van de

Leensel et al. prove that this is the case when the precedence graph is a tree and the

coefficients are polynomially bounded in the size of the tree. In this case computing
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the value of the αj’s for j ∈ R(C) is a straight forward application of Johnson and

Niemi’s [54] algorithm for solving POK problems on trees via dynamic programming.

Much of the work of Van de Leensel is based on the work of Park and Park

[68]. However, Park and Park use their alternative definition in which C ⊂ V (G) is

a minimal induced cover if:

∑
i∈P (C\{i})

ai ≤ b

for all i ∈ C.

With regards to open pit mining. Boland et al. [36], [16] discovered a set of

inequalities termed clique based inequalities that are valid for the POK polytope.

For two nodes i and j, if:

∑
l∈Pi∪Pj

al > b

then i and j are said to conflict. A conflict graph is the graph CG = (V (G), E)

where E = {i, j : i and j conflict}. If C ⊂ V (G) is a clique in the conflict graph

then the inequality:

∑
j∈C

xj ≤ 1 (2.20)

is valid for the POK polytope. Conditions on when (2.20) is facet defining are also

presented.

In terms of finding an optimal solution to a POK problem not a great deal

is known. The problem was shown to be hard to approximate within a factor of

2log nδ
for some δ > 0 under the assumption that 3-SAT /∈ DTIME(2n3/4+ε) by
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Hajiaghayi et al. [47]. They actually show that this inapproximability result is

true for the densest k-sub-hypergraph problem, a problem which POK generalizes.

The POK problem has been related to a machine scheduling problem known as

1|prec|
∑

wjCj, minimizing average completion times of precedence constrained jobs

on a single machine by Woeginger [84]. A constant factor approximation algorithm

for the POK problem would yield a 2−ε approximation algorithm for 1|prec|
∑

wjCj

an open problem that has been researched extensively [56] [73].

In terms of positive results, efficient approximation algorithms have been found

for certain classes of precedence constraint graphs. As the problem contains the 0−1

knapsack problem when no precedence constraints are given the problem is NP-hard

on every class of graphs. As mentioned earlier, Niemi and Johnson [54] developed a

FPTAS for the case where the precedence graph is a directed out-tree. This algorithm

is based on dynamic-programming and the item weights being polynomial in the size

of the problem.

Kolliopoulos and Steiner [56], give a PTAS algorithm for a class of 2-dimensional

graphs generalizing series-parallel graphs. As with the Niemi and Johnson algorithm

it is pseudo-polynomial time based on the weights.

One way to solve a POK problem is to formulate it as a directed cut problem

with a knapsack constraint on the arcs in the cut. Let G be the directed graph

representing the precedence constraints where an arc i to j implies that if node i

is chosen then node j must be chosen as well. Let vi be the value of node i. Let

ai ≥ 0 be the weight associated with node i and
∑

i∈V (G) aixi ≤ b be the knapsack

constraint associated with the POK problem.
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Construct a new graph G′ from G by adding a new node s and arcs si ∀i ∈ V (G),

ie. V (G′) = V (G) ∪ {s} and A(G′) = A(G) ∪ {si : i ∈ V (G′) \ {s}}. Assign an arc

weight of vi to arcs si for all i ∈ V (G′) \ {s} and a weight of −M to each arc ij that

appeared in the precedence graph G where M =
∑

i:vi>0 vi. The POK problem can

now be stated as a maximum weight directed cut problem on the graph G′ with the

knapsack constraint on the arcs si:
∑

i:i∈V (G′)\{s} aixsi ≤ b. We want node s to be

inside the cut, therefore, we also add arcs from every node in i ∈ V (G) \ {s} to s

and give them a weight of −M .

Clearly, any maximum weight directed cut will not violate the precedence con-

straints as doing so would give a weight of at most −M +
∑

si:si in cut vsi ≤ 0 and

choosing the empty set achieves a cut at least as good. If node s is outside the cut

and the nodes on one side of directed cut is not the empty set, then the weight of

the directed cut is again at most −M < 0 which is worse than choosing the empty

set.

We have now shown that the POK problem can be expressed as a maximum

directed cut problem on the graph G′. In the following chapters we investigate the

directed cuts in further detail. While our original motivation for looking at directed

cuts came from the POK problem and mining applications, it is a combinatorial

optimization problem of interest in its own right.
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CHAPTER 3
The directed and undirected cut polyhedra

The cut polytope, CUT2
n , (resp., cut cone, CUTn) is the convex hull (resp.,

positive hull) of the edge incidence vectors of the cuts in the complete graph, Kn.

The cut cone and polytope arise in many fields [28, 29, 30], and the structure of facets

of the cut polytope has been intensively studied. The book by Deza and Laurent [30]

entitled “Geometry of Cuts and Metrics” is largely devoted to the study of the cut

polyhedra and related metrics, it is nearly 600 pages and give a host of references

to further work in the area. Cut polyhedra are too broad a topic for us to cover the

majority of past work. We will instead focus on the results that we relate in some

way to the directed cut polyhedra with explanations as to why these results are of

interest to us.

Before reviewing existing work on the cut polyhedra, we will explain why the

directed cut polytope is in one sense more complicated than the cut polytope. For

the cut polytope an operation known as switching exists which is a face preserving

automorphism. For a set of nodes S ⊂ V (Kn), let δ(S) ∈ {0, 1}|E(Kn)| denote the

incidence vector of the edges in the cut with S on one side and V (Kn) \ S on the

other. If δ(A1), ..., δ(A2n−1) is an ordering of the set of all cuts of Kn and δ(S) is an

arbitrary cut where S ⊆ V (G), then the switching operation with respect to δ(S)

maps the set of cuts δ(A1), ..., δ(A2n−1) onto itself.
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The switching operation is in fact the symmetric difference operation ∆. For

a cut δ(Ai), δ(Ai∆S) = δ(Aj) for some 1 ≤ j ≤ 2n−1. Applying the operation

to the family of cuts (δ(A1), ..., δ(A2n−1)) yields (δ(A′
1), ..., δ(A

′
2n−1)) where δ(A′

i) =

δ(Ai∆S). As stated, it can be shown that {δ(A1), ..., δ(A2n−1)} = {δ(A′
1), ..., δ(A

′
2n−1)},

ie. the switching operation is an automorphism.

In terms of the cut polytope, the operation is a face preserving automorphism.

This implies that any vector, δ(Ai), which is a vertex of the cut polytope, can be

mapped to the origin by setting S = Ai. By using the switching operation, if one

knows the facial structure at the origin then one can obtain the facial structure at

any vertex δ(Ai) of the cut polytope. This allows one to study the facial structure

of the cut cone and extend the results to the structure of the cut polytope.

In contrast, the directed cut polytope does not have such a set of automorphisms.

In Section 4.5 we show that even for ~K4, the complete directed graph with four nodes,

two vertices of the directed cut polytope can have a different number of incident

faces. This implies that studying the directed cut cone can not provide a complete

understanding of the facial structure of the directed cut polytope. In this sense, the

directed cut polytope is more complex than the cut polytope. An operation relating

switching to the directed cut polyhedra will be presented in Section 4.6, however it

will not be as useful as switching for the cut polytope.

Many of our results will still focus on the study of the directed cut cone. Early

research on the cut polyhedra focused on the cone as well, before an understanding

of the switching operation existed. These are complex objects and an understanding

of the directed cut cone is still fundamental to understanding the polytope.
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The current chapter and the chapters that follow on the directed cut polyhedra

are the main contributions of this thesis. We envision that the theory developed here

could to be useful to many fields beyond the focus of our work. In the same way

that research on the cut polyhedra has touched many different fields of research from

Ising spin glass models (see for example: [43], [13]), network design [60] and more

recently quantum computing (see, [7]), just to name a few.

3.1 Semidefinite programming and cuts

Optimization over the cut polytope is known as the maximum cut problem, and

is NP-hard. A LP-relaxation for this problem is provided by the metric polytope,

and performance bounds are available, eg., see [8]. A celebrated result of Goemans

and Williamson [41] uses semidefinite programming to provide tighter performance

bounds. The max cut problem can be modelled as the quadratic program:

max
1

2

∑
i<j

ci,j(1− yiyj) (3.1)

s.t. yi ∈ {−1, 1} ∀ i ∈ V (G).

Where nodes i with equal values of yi lie on the same side of the optimal cut.

Relaxing the constraint that the yi’s are 1−dimensional, one can instead require yi

to be an n−dimensional vector on the unit sphere and replace the objective function

multiplication of yi’s with a dot product. The resulting relaxation has the form:

max
1

2

∑
i<j

ci,j(1− yi · yj) (3.2)

s.t. yi ∈ Sn ∀ i ∈ V (G)
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where Sn is the unit sphere of dimension n. This relaxation is a semidefinite program

that can be solved in polynomial time by the interior point [65] or ellipsoid methods

[45]. Goemans and Williamson then use the solution of the semidefinite program

and round the solution vectors to values of either 1 or −1 based on which side of

a randomly chosen hyperplane through the origin they appear. The valid cut they

obtain is within an expected value of at least 0.87856 of optimal. This analysis is

based on the weights ci,j on the edges being non-negative.

In general any {−1, 1} quadratic program of the form (3.1) can be expressed as

the binary quadratic program:

max
∑
i6=j

ci,jxi(1− xj)

s.t. xi ∈ {0, 1} ∀ i ∈ V (G)

The two forms of quadratic programs are linearly transformations of each other.

The product xxT can be modelled by a symmetric matrix Y . Let y be the diagonal

of matrix Y , the set of feasible matrices must satisfy the property that Y − yyT is

positive semidefinite.

The techniques used in the semidefinite programming rounding algorithm as-

sume that the weights on the arcs are non-negative. Alon and Naor [2] developed

an alternate method of rounding a semidefinite program and analysis of the method

that provides a way to allow negative terms to be considered on the edges. These

methods do not trivially extend to allow knapsack type inequalities on the edges to
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be included. We discuss some existing work on formulating a knapsack type con-

straint in a semidefinite program briefly here, for a more thorough presentation see

[51].

Given a quadratic program with a knapsack constraint aT x ≤ b the most straight

forward method of modelling it is by restricting the values of the diagonal of Y , ie.:

max trace(CY )

s.t. trace(Diag(a)Y ) ≤ b (3.3)

Y − yyT � 0

where y is the diagonal of symmetric matrix Y and C is the constraint matrix ci,j.

In [51], this and other methods of modelling knapsack constraints are compared.

Another method they investigate is squaring both sides of the knapsack constraint

to obtain the inequality: aT xxT a ≤ b2. Modelling this as a semidefinite program

gives:

max trace(CY )

s.t. trace(aaT Y ) ≤ b2

Y − yyT � 0.

They show that this modelling is stronger than (3.3). A further strengthening is

obtained by multiplying inequality aT y ≤ b by either yi or (1−yi). Using all possible

n inequalities obtained by multiplying the knapsack inequality by yi and using the

inequality obtained by multiplying the knapsack inequality by (1−y1) and summing
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it with the knapsack inequality multiplied by y1 the following semidefinite program

is obtained:

max trace(CY )

s.t.
n∑

j=1

ajyi,j ≤ byi i = 1, ..., n

n∑
j=1

aj(yj,j − y1,j) ≤ b(1− y1)

Y − yyT � 0.

It can be shown that this is a further strengthening. Further strengthening inequal-

ities will be discussed in Section 3.2 and how binary quadratic programming relates

to optimization over the cut polyhedra.

Goemans and Feige [35] extended the techniques of Goemans and Williamson

[41] to obtain a 0.859 approximation to the maximum directed cut problem. They

formulated the maximum directed cut problem as a binary quadratic program and

considered the semidefinite relaxation:

max
∑

ij∈A(G)

wij(ti · fj) (3.4)

s.t. ti · fi = 0 ∀i ∈ V (G) (3.5)

ti + fi = v0 ∀i ∈ V (G) (3.6)

ti, fi ∈ Rk ∀i ∈ V (G) (3.7)
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The binary quadratic program uses variable ti to represent a truth assignment

of node i being in the set S. If fi = 1 then node i is not in S. If the arc ij is in the

cut then ti = 1 and fj = 1. The constraint tifi = 0 ensures that at most one of ti or

fi can be set to 1.

The semidefinite relaxation takes ti and fi to be vectors of dimension k. The

objective function (3.4) is expressed as the dot product of ti and fj, for arc ij being

in the cut, multiplied by the arc weight wij. The vector v0 is any unit vector. They

strengthen the relaxation further by adding the triangle inequalities to the relaxed

formulation. Triangle inequalities for cut and directed cut problems will be discussed

in further detail in Section 3.2.

While the semidefinite relaxations have proved to be effective and tighter relax-

ations of the cut and knapsack polyhedra it is not immediately clear how one could

use the knapsack semidefinite relaxations in conjunction with the techniques used in

the semidefinite programming rounding algorithm of [41] to produce cuts that adhere

to the knapsack constraint.

To this end our focus has been on integer program formulations and linear

program relaxations of the POK problem. One way to model a POK problem is

as a graph closure with a knapsack constraint or in the case of mine scheduling,

multiple knapsack constraints. A problem that generalizes the POK problem is that

of finding a directed cut with a knapsack constraint on the arcs that cross the cut.

This problem can be used to model many of the optimization problems arising in

mine planning. While much is known about the structure of the knapsack polytope,
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relatively little is known about the structure of the POK polytope and the directed

cut polytope.

Directed cuts are of interest in their own right. One of the classical algorithms

taught in most undergraduate computer science programs is on how to find a mini-

mum weight directed cut with non-negative edge weights. While the undirected cut

polytope has been extensively studied, little work has previously been done of the

directed cut polytope. The focus of this chapter and Chapters 4 through 7 will be

on furthering our understanding of the directed cut polyhedra.

3.2 The cut polytope and cone

A distance function d on a set S, d : S × S → R, is a function where d is

symmetric, d(x, y) = d(y, x) ∀x, y ∈ S, and d(x, x) = 0 ∀x ∈ S. When d is a

distance function on S then (S, d) is known as a distance space.

Since we often have to refer to both arcs and edges we will use a pair of indices

without a comma to define a directed arc, ie. ij refers to the arc from node i to node

j. Similarly, we will use a pair of subscripts separated by a comma to refer to an

edge, ie. i, j refers to an edge between nodes i and j and i, j = j, i.

If the following are satisfied,

di,k ≤ di,j + dj,k, (3.8)

di,j = 0→ i = j, (3.9)

then (S, d) is a metric space. Removing restriction (3.9) defines what is known as a

semimetric space. One can easily check that the function δ : S → {0, 1}E(Kn), S ⊆
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V (Kn) mapping a subset S to the incidence vector of edges leaving the set S defines

a semimetric.

The simplest facets of the cut polytope are those defined by the triangle inequal-

ities:

xi,j − xi,k − xj,k ≤ 0,

−xi,j + xi,k − xj,k ≤ 0,

−xi,j − xi,k + xj,k ≤ 0, (3.10)

and the perimeter triangle inequalities:

xi,j + xj,k + xi,k ≤ 2, , (3.11)

for distinct i, j, k ∈ V (Kn). The cone defined by inequalities (3.10) is known as the

semimetric cone METn. The polytope defined by inequalities (3.10) and (3.11) is

known as the semimetric polytope MET2
n . It is well known that the semimetric cone

and polytope are relaxations of the cut cone and polytope respectively,

CUTn ⊆METn and CUT2
n ⊆MET2

n .

It is also well known that triangle inequalities (3.10) and the perimeter triangle

inequalities (3.11) are facet defining inequalities for the cut polytope. This can be

proved by showing that the triangle inequalities (3.10) are facets of for CUT2
3 and

then applying the operations known as switching and zero lifting. Switching was

discussed earlier and will be discussed in further detail below. Zero lifting will be

discussed later as well.
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The triangle inequalities involving a specific node, say node 1 ∈ V (Kn), define

a relaxation of the semimetric polyhedra. The rooted semimetric cone, RMETn is

defined by the inequalities:

x1,j − x1,k − xj,k ≤ 0,

−x1,j + x1,k − xj,k ≤ 0,

−x1,j − x1,k + xj,k ≤ 0, (3.12)

for 2 ≤ j < k ≤ n. The rooted semimetric polytope, RMET2
n is defined by the

inequalities (3.12) along with the perimeter inequalities involving node 1:

x1,j + xj,k + x1,k ≤ 2, , (3.13)

for 2 ≤ j < k ≤ n.

Proposition 27.2.1 of [30] states:

Proposition 5 ([30]) The only integral vectors of RMET2
n are the cut vectors δ(S)

for S ⊆ V (Kn). Moreover, every cut vector is a vertex of RMET2
n .

This implies that the cut, semimetric and rooted semimetric polyhedra satisfy the

relation:

CUTn ⊆METn ⊆ RMETn, and CUT2
n ⊆MET2

n ⊆ RMET2
n .

Another family of polyhedra related to the cut polyhedra are known as the

correlation polytope and cone. Let V = {1, ..., n} be a set of n elements, for a subset

S ⊆ V define π(S) ∈ R(n
2)+n where 1 ≤ i ≤ j ≤ n by:
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π(S)i,j =

 1 if i, j ∈ S

0 otherwise.

The positive hull generated by the vectors π(S) for all S ⊆ V is the correlation

cone, CORn. Likewise, the convex hull of all vectors π(S) is the correlation polytope,

COR2
n .

The correlation polytope COR2
n is a linear transformation of the cut polytope

CUT2
n+1. A mapping ξ : RE(Kn+1) → R(n

2)+n can be defined that maps a vector

p ∈ COR2
n onto a vector x ∈ CUT2

n+1, ie. p = ξ(x). Where:

pi,i = xi,n+1 i = 1, ..., n (3.14)

pi,j =
1

2
(xi,n+1 + xj,n+1 − xi,j) ∀1 ≤ i < j ≤ n. (3.15)

Since we can write out the inverse ξ−1 where:

xi,n+1 = pi,i i = 1, ..., n (3.16)

xi,j = pi,i + pj,j − 2pi,j ∀1 ≤ i < j ≤ n (3.17)

ξ is a bijection.

As vertex n+1 has a special role in this mapping, in the literature the mapping

ξ is referred to as pointing at vertex n + 1. The choice of n + 1 was arbitrary and

mappings could be defined pointing at any vertex of Kn+1. Note that this mapping is

valid for transforming a vector in the cone CUTn+1 to a vector p in the cone CORn.

The relation between the cut and correlation polyhedra was discovered independently
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by many authors. The book by Deza and Laurent [30] lists Hammer [48], Deza [26],

Barahona, Jünger and Reinelt [14], and De Simeone [23].

The bijection allows us to easily obtain families of facet defining inequalities for

the correlation polytope from well known families of facet defining inequalities for

the cut polytope and vice versa. Using the bijection, the triangle inequalities (3.10)

and (3.11) become:

pi,j ≥ 0 (3.18)

pi,j ≤ pi,i (3.19)

pi,j ≤ pj,j (3.20)

pi,i + pj,j ≤ 1 + pi,j (3.21)

pi,k + pj,k ≤ pk,k + pi,j (3.22)

pi,i + pj,j + pk,k ≤ 1 + pi,j + pi,k + pj,k (3.23)

for the correlation cone and polytope.

Proposition 5.2.7 of [30] expresses a mapping between facets of the cut and

correlation polyhedra:

Proposition 6 (Proposition 5.2.7 of [30]) Let a ∈ RV (Kn), b ∈ RE(Kn), c ∈

RE(Kn+1) be linked by:

ci,n+1 = ai +
1

2

∑
1≤j≤n,j 6=i

bi,j i = 1, ..., n

ci,j = −1

2
bi,j 1 ≤ i < j ≤ n
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For a given, α ∈ R, the inequality:

∑
1≤i<j≤n

ci,jxi,j ≤ α

is valid (facet inducing) for CUT2
n+1 if and only if the inequality:

∑
1≤i≤n

aipi,i +
∑

1≤i<j≤n

bi,jpi,j ≤ α

is valid (face inducing) for COR2
n .

The binary quadratic programming problem can be viewed as an optimization

problem on the correlation polytope. As:

max
∑

1≤i≤j≤n

ci,jxixj

s.t. xi ∈ {0, 1} i = 1, ..., n

is equivalent to:

max cT π(S)

s.t. π(S) ∈ COR2
n , S ⊆ V.

This means that facets of the correlation polytope can be used to strengthen re-

laxations of a binary quadratic program. In particular, the semidefinite relaxations

mentioned earlier can be strengthened with the triangle inequalities (3.18) - (3.23).

3.3 Operations on the cut polyhedra

When studying the polyheral structure of an object like the cut polytope, one

would like a way of proving that inequalities are valid or facets. In this section we

will review a few operations that can be performed on the cut polytope that either
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preserve valid inequalities or prove that inequalities are facet defining. Of particular

interest to us are the operations: permuting, collapsing, switching and zero lifting.

Other operations exist but they will either be left out or introduced later.

As stated in Deza and Laurent’s book [30], since the cut polytope and cone deal

with the complete graph Kn the faces are clearly preserved under any permutation

of the nodes. Given a permutation σ of the nodes {1, ..., n} and v ∈ RE(Kn) define

σ(v) to be σ(v)i,j = vσ(i),σ(j) for i, j ∈ E(Kn). The following result trivially holds:

Lemma 7 (Lemma 26.2.1 of [30]) Given v ∈ R|E(Kn)|, v0 ∈ R and σ a permuta-

tion of {1, ..., n}, the following statements are equivalent:

• The inequality vT x ≤ v0 is valid (resp. facet inducing for CUT2
n .

• The inequality σ(v)T x ≤ v0 is valid (resp. facet inducing for CUT2
n .

The collapsing operation, as it is referred to in the literature ([25], [27]), maps

a vector v ∈ RE(Kn) to a vector v′ ∈ RE(Km) where m < n. It provides a way to

construct a valid inequality for CUT2
m from a valid inequality for CUT2

n by identifying

vertices and adding the weights of their incident edges. Formally, the collapsing

operation of a vector v ∈ RE(Kn) for a partition π = {M1, ...,Mm} of the vertices

{1, ..., n} is:

vπ
i,j =

∑
s∈Mi,t∈Mj

vs,t. (3.24)

This notion generalizes to an arbitrary subgraph G ⊆ Kn, if we simply assume that

vi,j = 0 for edges not appearing in E(G).

Two other useful operations for proving inequalities are facets of the cut polytope

are switching and zero lifting. Conversely to collapsing, lifting, as described in Section
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2.3.1, takes a valid or facet inducing inequality for a lower dimensional polyhedra, like

CUT2
n , and constructs a valid or facet inducing inequality for a higher dimensional

polyhedra, like CUT2
n+1. A useful type of lifting, known as zero-lifting, takes an

inequality vT x ≤ v0 that is valid for CUT2
n and constructs the vector v′ where

v′i,j = vi,j for i, j ∈ E(Kn) and v′i,j = 0 for j = n + 1.

For the cut polytope CUT2
n Theorem 26.5.1 of [30] states:

Theorem 8 (Theorem 26.5.1 of [30]) Given, v0 ∈ R, v ∈ R|E(Kn)| and zero-lifted

v′ ∈ R|E(Kn+1)| the following are equivalent.

• vT x ≤ v0 is facet inducing for CUT2
n .

• v′T x ≤ v0 is facet inducing for CUT2
n+1.

It is straight forward to check that the triangle inequality:

x1,3 ≤ x1,2 + x2,3 (3.25)

is a facet of CUT2
3 . Applying Theorem 8 and the fact that we can relabel the nodes

of the complete graph if needed (by Lemma 7) proves that the triangle inequalities

are facet defining for CUT2
n .

To prove Theorem 8 in Deza and Laurent’s book, they prove a useful result

which is stated as Lemma 26.5.2 in [30]. We state it below.

For an inequality vT x ≤ 0, let R(v) define its set of roots, ie. R(v) = {x : x ∈

CUTn, v
T x = 0}. For F ⊆ E(Kn) let F̄ = E(Kn) \ F and for x ∈ R|E(Kn)|, let

xF = (xe)e∈F be the projection of x onto the edges of F . If X is a subset of RE(Kn)

then let XF = {xF |x ∈ X} and XF = {x|x ∈ X, xF = 0}.
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Lemma 9 (26.5.2 of [30]) Let vT x ≤ 0 be a valid inequality for CUTn and let

R(v) denote its set of roots. Let F be a subset of E(Kn).

(i) If rank(R(v)F ) = |F | and rank(R(v)F ) = |F̄ | − 1, then the inequality vT x ≤ 0 is

facet inducing.

(ii) If the inequality aT x ≤ 0 is facet inducing and vF̄ 6= 0, then rank(R(v)F ) = |F |.

We will use variations of this lemma later on when proving some result on the

directed cut polyhedra.

A fourth useful operation mentioned at the start of the chapter is known as

switching. Given every facet of the cut cone, CUTn, every facet of the cut polytope,

CUT2
n , can be defined as follows.

Let S be a subset of V , then the S-switching of an inequality aT x ≤ a0 is an

inequality (a′)T x ≤ a0−aT δG(S) where a′ ∈ R|E(G)| is defined by a′i,j = (−1)δi,j(S)ai,j.

Such an inequality is said to be switching equivalent to aT x ≤ a0x.

The switching mapping is an affine bijection that maps:

rB(x)e =

 1− xe ife ∈ B

xe otherwise.
(3.26)

Proposition 26.3.6 of [30] states:

Proposition 10 (Proposition 26.3.6 of [30]) Let A be a collection of subsets of

E that is closed under the symmetric difference. Suppose that

C(A) = {x ∈ R|E| : vT
i x ≤ 0 for i = 1, ...,m}.
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Then,

P (A = {x ∈ R|E| : (vB
i )T x ≤ −vi(B) for i = 1, ...,m and B ∈ A}.

For cuts the corollary of this proposition is:

Proposition 11 Suppose that

CUTn = {x ∈ R|E(Kn)| : vT
i x ≤ 0 for i = 1, ...,m}.

Then,

CUT2
n = {x ∈ R|E(Kn)||(vδ(A)

i )T x ≤ −vT
i δ(A) for i = 1, ...,m and A ⊆ V (Kn)}.

This proposition provides the relation between the cut cone and polytope and was

the key to work on characterizing the projection of the cut polytope by Barahona

and Mahjoub [12]. We will present this work in Chapter 6.

In the following section, we develop some theory related to directed cut polyhe-

dra and their relaxations. This theory will include definitions of relaxations of the

directed cut polyhedra and operations that prove inequalities are valid and/or facet

defining.

3.4 Directed cut polyhedra

We would like to define a distance space that relates directed cuts to a metric

in much the same way as the undirected case. Let ~Kn denote the complete directed

graph with n nodes. Let δ+ : S → RA( ~Kn), S ⊆ Vn be the directed cut vector for a

set S, where δ+(S)ij = 1 if i ∈ S and j /∈ S.

55



The distance space definition is too restrictive for directed cuts as symmetry

does not hold: δ+(S)ij is not equal to δ+(S)ji if either is equal to 1. The directed

cuts have a more general three point symmetry,

δ+(S)ij + δ+(S)jk + δ+(S)ki = δ+(S)ji + δ+(S)kj + δ+(S)ik. (3.27)

This is evident as both sides of equation (3.27) are equal to 0 if i, j, k ∈ S or i, j, k /∈ S.

If S contains only one of i, j, k say i and j, k /∈ S then δ+(S)ij = 1 and the other

two terms on the right hand side of (3.27) are equal to 0 while the left hand side

has δ+(S)ik = 1 and the other two terms are equal to zero. Finally, if S contains

two nodes, say i, k and j /∈ S then δ+(S)ij = 1 and δ+(S)kj = 1 and all other terms

are 0, so (3.27) is sissified. By relabeling nodes if needed it is easy to see that (3.27)

holds for all possible sets S.

We define a directed distance as a function that satisfies such a three point

symmetry as well as dxx = 0 ∀x ∈ X. If the directed distance satisfies the following

triangle inequality:

dik ≤ dij + djk, (3.28)

then we will call (S, d) a directed-semimetric space. One can easily check that for

S ⊆ V ( ~Kn), (S, δ+) is a directed semimetric. We can define the directed-semimetric

cone DMETn as the cone defined by the symmetric equalities (3.27), non-negativity

constraints xij ≥ 0 ∀1 ≤ i 6= j ≤ n and following triangle inequalities:

xik − xij − xjk ≤ 0 1 ≤ i, j, k ≤ n all distinct (3.29)
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and the directed-semimetric polytope DMET2
n as the polytope defined by the semi-

metric cone with the additional perimeter triangle inequalities:

xij + xjk + xki ≤ 1 1 ≤ i, j, k ≤ n all distinct. (3.30)

We will show in Corollary 14 below that all 0, 1 solutions of the polytope DMET2
n

are directed cuts vectors and all directed cut vectors are included in DMET2
n . This

implies that DMET2
n is a relaxation of the directed cut polytope.

This is not the first time that a relaxation of the directed cut polytope based

on the directed triangle inequalities has been considered. In [20], Charikar et al.

look at what they define as a directed semimetric space as the non-negativity con-

straints, along with the triangle inequalities of the form (3.29). Their goal was not

to approximate the cut polytope but instead to investigate extending results on met-

ric embedding related to partitioning problems in undirected graphs to problems

involving directed graphs.

If we consider the triangle inequalities and cycle equalities that only involve a

given node 1 ∈ V ( ~Kn) we can define rooted relaxations of the directed-semimetric

cone and polytope. We define the rooted directed semimetric cone, RDMETn as the
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cone defined by, for each ij ∈ A( ~Kn):

x1i + xij + xj1 = x1j + xji + xi1 (3.31)

x1i − x1j − xji ≤ 0 (3.32)

xi1 − xij − xj1 ≤ 0 (3.33)

xij − xi1 − x1j ≤ 0 (3.34)

xij ≥ 0. (3.35)

The rooted directed semimetric polytope, RDMET2
n , is the polytope defined by the

inequalities above and the perimeter inequalities:

x1i + xij + xj1 ≤ 1 (3.36)

where we take all ij ∈ A( ~Kn). By definition, the rooted directed semimetric cone and

polytope are relaxations of the directed semimetric cone and polytope respectively.

Lemma 13 establishes that the rooted semimetric polytope is a relaxation of the

directed cut polytope, ie. the only 0 − 1 vectors in RDMET2
n are the directed cut

vectors and every directed cut vector is in RMET2
n .

In Chapter 4 we prove that inequalities (3.29) are facets of the directed cut cone

and polytope and inequalities (3.30) are facets of the directed cut polytope. Lemma

13 and Corollary 14 below imply the following relation:

DCUTn ⊆ DMETn ⊆ RDMETn and DCUT2
n ⊆ DMET2

n ⊆ RDMET2
n . (3.37)

The defined polyhedra for the complete directed graph ~Kn are not full dimen-

sional, which is evident from the linearities (3.27). It can be useful to consider the
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projection onto a graph with fewer arcs where the defined polyhedra are full dimen-

sional.

Lemma 12 The directed cut polytope DCUT2
n , the directed semimetric polytope

DMET2
n and the rooted directed semimetric polytope RDMET2

n have dimension
(

n
2

)
+

n− 1.

Proof. By the relationship of (3.37) it suffices to show an upper bound on the

dimension of RDMET2
n and a lower bound on the dimension of DCUT2

n which are

both given by the formula in the statement of the lemma. Consider the polytope

defined by the inequalities (3.32), (3.33), (3.34), (3.36), the non-negativity constraints

xij ≥ 0 and the three point symmetries x1j+xji+xi1 = x1i+xij+xj1. These equations

define DMET2
n . By performing Gaussian-Elimination on this system of equations,

one can replace each occurrence of xji with x1i +xij +xj1−x1j−xi1 where j > i ≥ 2.

This eliminates
(

n
2

)
− n + 1 variables leaving

(
n
2

)
+ n − 1 variables and proves the

upper bound.

For the lower bound, a set of
(

n
2

)
+n−1 linearly independent directed cut vectors

are constructed. Let Si,j = {k : k ≤ i or j < k ≤ n} for (1 ≤ i < j ≤ n) and let

Ti = {k : 2 ≤ k ≤ i} for i = 2 · · ·n. We claim that the set of directed cut vectors

C = {δ+(Si,j) : 1 ≤ i < j ≤ n} ∪ {δ+(Ti) : 2 ≤ i ≤ n} are linearly independent. By

construction, the matrix M formed by using these directed cut vectors as the rows

where the columns are indexed by ij for 1 ≤ i < j ≤ n followed by the columns

i = 1, j = 2, · · · , n is lower triangular with all 1’s on the diagonal.

It will be useful to consider the directed cut polytope and cone on the graph

~Jn with n nodes and arc set A( ~Jn) = {ij : 1 ≤ i < j ≤ n} ∪ {i1 : 2 ≤ i ≤ n}
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as opposed to the complete directed graph ~Kn. The polyhedra DCUTn, DCUT2
n ,

DMETn, DMET2
n , RDMETn and RDMET2

n become full-dimensional when restricted

to the arc set A( ~Jn). From here on we will use this representation.

Figure 3–1: The directed graph ~J5.

The set of inequalities that define DMETn, DMET2
n , RDMETn and RDMET2

n

need to be modified slightly as some of the arcs used to index the inequalities do

not exist in A( ~Jn). As mentioned in the proof of Lemma 12 we can substitute each

occurrence of xji, for i < j, in inequalities xji ≥ 0 and (3.29) with x1i + xij + xji −

xi1− xj1 for 2 ≤ i < j ≤ n. This yields the following set of equations that define the

cone DMETn:

For 2 ≤ i ≤ n,

xi1 ≥ 0, x1i ≥ 0 (3.38)
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For 2 ≤ i < j ≤ n,

xij ≥ 0 (3.39)

−xij − xi1 + x1i − x1j + xj1 ≤ 0 (3.40)

−xij + xi1 − xj1 ≤ 0 (3.41)

−xij − x1i + x1j ≤ 0 (3.42)

xij − xi1 − x1j ≤ 0 (3.43)

For 2 ≤ i < j < k ≤ n,

−xij + xik − xjk ≤ 0 (3.44)

xij − xik − xjk + x1k − xk1 + xj1 − x1j ≤ 0 (3.45)

−xij − xik + xjk + xi1 − x1i + x1j − xj1 ≤ 0. (3.46)

The inequalities (3.38)-(3.40) above are the non-negativity constraints, and the re-

maining inequalities are the triangle inequalities. All of the above inequalities along

with the following perimeter inequalities define DMET2
n .

For 2 ≤ i < j ≤ n,

x1i + xij + xj1 ≤ 1 (3.47)

For 2 ≤ i < j < k ≤ n,

xij + xjk + xik + x1i − xi1 + xk1 − x1k ≤ 1. (3.48)
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While we have stated that RDMET2
n and DMET2 are relaxations of the directed

cut polytope, the following lemma provides further validation of their relation to

directed cuts.

Lemma 13 The only integral vectors of RDMET2
n are the directed cut vectors δ+(S)

for S ⊆ Vn and every directed cut vector is a vertex of RDMET2
n .

Proof. In the first part of the proof we will use the full dimensional definition

of RDMET2
n given in terms of all n(n − 1) variables. The non-negativity and the

perimeter inequalities imply that the only integral vectors in RDMET2
n are 0/1 val-

ued. Let x ∈ RDMET2
n ∩ {0, 1}An . Let I = {i : xi1 = 1} and J = {i : x1i = 1}. We

first show that one of |I| = ∅ or |J | = ∅. Indeed, if i ∈ I and j ∈ J , i 6= j the rooted

perimeter inequality xi1 + x1j + xji ≤ 1 would be violated by x. Otherwise, if there

exists i ∈ I ∩ J then x1i + xi1 = 2 but summing RDMET2
n inequalities:

x1i + xij + xj1 ≤ 1 (3.49)

xi1 − xij − xj1 ≤ 0 (3.50)

together yields

x1i + xi1 ≤ 1. (3.51)

If both I and J are empty then x corresponds to the cut δ+(Vn) since xij = 1

implies that at least one of xi1 = 1 or x1j = 1 by (3.34).

Assume I 6= ∅, consider an index i ∈ I. For any j ∈ I, i 6= j the perimeter

inequalities (3.36) for arcs ij and ji prove that xij = xji = 0. Therefore all arcs ij

with both endpoints in I have xij = 0.
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Now consider any j /∈ I. The perimeter inequality (3.36) for ji implies that

xji = x1j = 0. As this inequality is satisfied as an equation, by the linearity (3.31)

we have that

x1i + xij + xj1 = 1.

However, xj1 = 0 since j /∈ I and x1i = 0 by (3.51), so xij = 1. Lastly, if j, k /∈ I

then xjk = 0 follows from the fact that xjk ≤ xj1 + x1k, xj1 = 0 and x1k = 0 as J is

empty. We have shown that x = δ+(I).

Assume J 6= ∅, then by the inequalities given by RDMET2
n we can show as

above that xij = 0 if i, j ∈ J , i, j /∈ J or j ∈ J and i /∈ J and xij = 1 if i ∈ J and

j /∈ J . This proves that x = δ+(J).

To show that every dicut vector is a vertex of RDMET2
n we use induction on n.

In this part of the proof we use the full dimensional definition of RDMET2
n formed by

eliminating variables xji for j > i ≥ 2 using the linearities. This makes verification

of linear independence simpler. For the base case n = 3, one can easily check that

RDMET2
3 =DCUT2

3 , see the Appendix.

For n ≥ 4 we assume inductively that a dicut vector x that corresponds to a

directed cut δ+(S) in ~Kn−1 satisfies a set of
(

n−1
2

)
+ (n− 1)− 1 linearly independent

inequalities with equality. Call this set of inequalities T . We will extend T to a set

of
(

n
2

)
+n−1 linearly independent inequalities from RDMET2

n that are satisfied with

equality. Doing so involves considering the possible cases of whether or not nodes 1

and n are in S.
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Case 1: 1 ∈ S and n ∈ S.

The inequalities xin ≥ 0 for i = 1, ..., n − 1 and xn1 ≥ 0 are satisfied with equality

and these n inequalities along with the inequalities in T are linearly independent.

Case 2: 1 /∈ S and n /∈ S.

The inequalities xn1 ≥ 0, xin ≥ 0 for i /∈ S, and xin + xn1 + x1i ≤ 1 for i ∈ S are

satisfied with equality. These n inequalities along with the inequalities in T are all

linearly independent.

Case 3: 1 ∈ S and n /∈ S.

Firstly suppose |S| = n − 1. Then the n inequalities xin + xn1 + x1i ≤ 1, 2 ≤

i ≤ n − 1, xn1 ≥ 0, and −x1n + x2n + x12 − x21 + xn1 ≥ 0 (corresponding to

xn2 ≥ 0) are satisfied as equalities, and together with the inequalities in T are linearly

independent. Otherwise, |S| ≤ n − 2. Then the n inequalities xin ≥ 0 for i /∈ S,

xn1 ≥ 0, x1i + xin + xn1 ≤ 1 for all i ∈ S, i 6= 1 and −x1n + xjn + x1j − xj1 + xn1 ≥ 0

for some j /∈ S, j 6= n are satisfied with equality and linearly independent. Note that

the last inequality corresponds to xnj ≥ 0 and the index j exists by the assumption

on the cardinality of S. These inequalities along with the inequalities in T are all

linearly independent.

Case 4: 1 /∈ S and n ∈ S.

The n inequalities xin ≥ 0 for i = 1, ..., n − 1 and xn1 + x1i + xin ≤ 1 for some

i /∈ {1, n} together with the inequalities in T are all linearly independent and are

satisfied with equality.

The following corollary is evident as RDMET2
n contains a subset of the inequal-

ities that define DMET2
n and no directed cuts violate inequalities of DMET2

n .
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Corollary 14 The only integral vector of DMET2
n are the directed cut vectors δ+(S)

for S ⊆ V ( ~Kn) and every directed cut vector is a vertex of DMET2
n .

The operations of permuting and collapsing that we reviewed for the cut poly-

tope can similarly be defined for the directed cut polytope.

For a permutation σ of the nodes {1, ..., n} and a vector v ∈ RA( ~Kn) we define

σ(v) ∈ RA( ~Kn) as σ(v)ij = vσ(i)σ(j). The following lemma trivially holds as the nodes

in ~Kn can be relabelled.

Lemma 15 Given v ∈ RA( ~Kn), v0 ∈ R and σ a permutation of {1, ..., n}, the follow-

ing statements are equivalent:

• The inequality vT x ≤ v0 is valid (resp. facet inducing) for DCUT2
n .

• The inequality σ(v)T x ≤ v0 is valid (resp. facet inducing) for DCUT2
n .

We can define a similar type of collapsing operation that constructs a valid

inequality for DCUT2
m from a valid inequality for DCUT2

n , where m < n. Let

π = (M1, ...,Mm) a partition of V ( ~Kn) into m non-empty sets. If v ∈ RA( ~Kn) the

collapse of v according to π is:

vπ
ij =

∑
s∈Mi,t∈Mj

vst. (3.52)

The directed collapsing operation has many similar properties to the undirected

collapsing operation. For instance, if Sπ is defined to be ∪k∈SMk for S ∈ {1, ...,m}

then vπT δ+(S) = vT δ+(Sπ). This gives the following lemma which has the undirected

equivalent stated as Lemma 26.4.1 in Deza and Laurent’s book [30].
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Lemma 16 Let v ∈ RA( ~Kn), v0 ∈ R and π = (M1, ...,Mm) be a partition of the

vertices of V ( ~Kn). The following are true:

1. If vT x ≤ v0 is a valid inequality for DCUT2
n then vT

π x ≤ v0 is a valid inequality

for DCUT2
m.

2. If δ+(S), S ⊆ {1, ...,m} is a root of inequality vπT x ≤ v0 then δ+(Sπ) is a root

of vT x ≤ v0.

We leave the switching and zero-lifting operations on the directed cut polytope until

later.

In characterizing some of the structural properties of directed cut polyhedra, we

will show a powerful relation between the directed cut polyhedra and the undirected

cut polyhedra. To this end, we begin by considering a partition of the set of all

subsets of nodes of ~Jn, V ( ~Jn) = {1, ..., n}, into two sets, S1 and S2. Where S1

contains all subsets S such that 1 ∈ S and S2 contains all subsets S with 1 /∈ S.

Define the polytope Pn,1 to be the convex hull of directed cut vectors associated

with the subsets of S1, ie. Pn,1 = conv{δ+(S) : S ∈ S1}. Similarly, define Pn,2 =

conv{δ+(S) : S ∈ S2}. Clearly, the directed cut polytope is the convex hull of the

two polytopes Pn,1 and Pn,2 with the two polytopes only intersecting in a single

point, the cut vector δ+(V ( ~Jn)) = δ+(∅).

The benefit of defining polytopes Pn,1 and Pn,2 is the fact that both are bijections

of the undirected cut polytope. We define the mappings ξ1 (resp. ξ2) between the

cut polytope CUTn and Pn,1 (resp. Pn,2) below. In Chapter 4, these mappings are
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used to obtain valid inequalities and facets of the directed cut polytope from valid

inequalities and facets of the cut polytope.

ξ1 : R(n
2) → (R(n

2), {0}n−1) and ξ2 : R(n
2) → (R(n

2), {0}n−1)

The mapping ξ1 is defined by,
xi1 = 0 for 2 ≤ i ≤ n

x1i = x1,i for 2 ≤ i ≤ n

xij = 1
2
(xi,j + x1,j − x1,i) for 2 ≤ i < j ≤ n.

equivalently ξ−1
1 is defined by, x1,i = x1i for 2 ≤ i ≤ n

xi,j = xij + xji = x1i − x1j + 2xij for 2 ≤ i < j ≤ n

The mapping ξ2 is defined by,


xi1 = x1,i for 2 ≤ i ≤ n

x1i = 0 for 2 ≤ i ≤ n

xij = 1
2
(xi,j + x1,i − x1,j) for 2 ≤ i < j ≤ n.

equivalently ξ−1
2 is defined by, x1,i = xi1 for 2 ≤ i ≤ n

xi,j = xij + xji = xj1 − xi1 + 2xij for 2 ≤ i < j ≤ n

For any S ⊆ S1, ξ1 has the property that,

ξ1(δ(S)) = δ+(S).
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The above figure is an example for S = {1, 4}.

ξ−1
1 (δ+

~J4
(S)) = ξ−1

1 (x12, x13, x14, x23, x24, x31, x34, x41)

= ξ−1
1 ((1, 1, 0, 0, 0, 0, 0, 0))

= (1, 1, 0, 0, 1, 1)

= (x1,2, x1,3, x1,4, x2,3, x2,4, x3,4) = δK4(S)

Similarly, for any subset S of S2,

ξ2(δ(S)) = δ+(S).
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The above figure is an example for S = {2, 3}.

ξ−1
2 (δ+

~J4
(S)) = ξ−1

2 (x12, x13, x14, x23, x24, x31, x34, x41)

= ξ−1
2 ((0, 0, 0, 0, 1, 1, 1, 0))

= (1, 1, 0, 0, 1, 1)

= (x1,2, x1,3, x1,4, x2,3, x2,4, x3,4) = δK4(S)

It follows that ξ1(CUTn) = Pn,1 and ξ2(CUTn) = Pn,2. This observation yields the

following proposition:

Proposition 17 The directed cut polytope is the convex hull of the linear transfor-

mation of two cut polytopes (undirected) that only intersect in a single point, the

directed cut δ+(Vn) = δ+(∅) = (0, 0, · · · , 0).

Proof. By our choice of S1 and S2 the theorem trivially holds by the fact the

polyhedra Pn,1 and Pn,2 are linear bijective mappings of CUT2
n .

The relation between CUT2
n , Pn,1 and Pn,2 gives rise to the following proposition

which has a similar flavour to Proposition 6.

Proposition 18 Let a ∈ R(n
2), b, c ∈ R(n

2)+n−1 and α ∈ R where,
b1i = 0 for 2 ≤ i ≤ n

bi1 = a1,i +
∑i−1

k=2 ak,i −
∑n

j=i+1 ai,j for 2 ≤ i ≤ n

bij = 2ai,j for 2 ≤ i < j ≤ n
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and 
c1i = a1,i −

∑i−1
k=2 ak,i +

∑n
j=i+1 ai,j for 2 ≤ i ≤ n

ci1 = 0 for 2 ≤ i ≤ n

cij = 2ai,j for 2 ≤ i < j ≤ n.

The inequality, ∑
1≤i<j≤n

ai,jxi,j ≤ α

is valid (resp. facet defining) for the cut polytope if and only if the inequality

n∑
i=2

bi1xi1 +
∑

1≤i<j≤n

bijxij ≤ α

is valid (resp. facet defining) for the polytope Pn,1 which is in turn valid (resp. facet

defining) if and only if the inequality

n∑
i=2

ci1xi1 +
∑

1≤i<j≤n

cijxij ≤ α

is valid (resp. facet defining) for the polytope Pn,2.

We obtain the following table of relations between facets of CUTn, Pn,1 and

Pn,2.

CUT2
n Pn,2 Pn,1

x1,j − x1,i − xi,j ≤ 0 xij ≥ 0 x1j − x1i − xij ≤ 0

x1,i − x1,j − xi,j ≤ 0 xi1 − xij − xj1 ≤ 0 xij ≥ 0

xi,j − x1,i − x1,j ≤ 0 xij ≤ xi1 xij ≤ x1i

x1,i + xi,j + x1,j ≤ 2 xi1 + xij ≤ 1 x1i + xij ≤ 1
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for 2 ≤ i < j ≤ n, and

CUT2
n Pn,2 Pn,1

xi,k − xi,j − xj,k ≤ 0 xik − xij − xjk ≤ 0 xik − xij − xjk ≤ 0

xi,j − xi,k − xj,k ≤ 0 xij − xik − xjk + xj1 − xk1 ≤ 0 xij − xik − xjk − x1j + x1k ≤ 0

xj,k − xi,j − xi,k ≤ 0 xjk − xik − xij + xi1 − xj1 ≤ 0 xjk − xik − xij + x1j − x1i ≤ 0

xi,j + xj,k + xi,k ≤ 2 xij + xik + xjk − xi1 + xk1 ≤ 1 xij + xik + xjk + x1i − x1k ≤ 1

for 2 ≤ i < j < k ≤ n. In the following chapter we will use this relation between di-

rected and undirected cuts to prove that certain inequalities are facets of the directed

cut polytope.
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CHAPTER 4
Facets of the directed cut polytope and cone

In this chapter we will use the relation between the directed and undirected

cuts established by the mappings ξ1 and ξ2 to extend previously known structural

properties of the cut polyhedra to the directed cut polyhedra. Theorem 19 below

allows us to characterize many different facets of the directed cut polytope from

knowledge of past work on the cut polytope.

To begin, we will need to define some terms and notation. For a graph G =

(V, E) the support graph, G(a) = (V (a), E(a)), of a vector a ∈ RE is the graph with

edges E(a) = {e|ae 6= 0 e ∈ E} and nodes V (a) such that every nodes in V (a) is an

endpoint of at least one edge in E(a). For a ∈ RE and a0 ∈ R inequality aT x ≤ a0 is

said to be completely support by F ⊂ E when E(a) ⊆ F . We refer to an inequality

aT x ≤ α as non-trivial if its support graph doesn’t have one node common to every

edge, ie. G(a) is not a star.

Theorem 19 If aT x ≤ α is a facet of the undirected cut polytope CUT2
n then

∑
2≤i<j≤n

2ai,jxij +
n∑

i=2

ci1xi1 +
n∑

i=2

b1ix1i ≤ α (4.1)

is a facet of the directed cut polytope DCUT2
n .

To prove Theorem 19, Lemma 20 on facets of the cut polytope will be needed.

This lemma is a generalization of Lemma 26.5.2 of [30] which was stated in Section

3.3 as Lemma 9.
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Our version of Lemma 26.5.2 below deals with inequalities of the form vT x ≤ α

where α is not necessarily zero. This is needed as the directed cut polyhedra are not

closed under switching.

Lemma 20 Let vT x ≤ α be a valid inequality for CUT2
n and let F be a sub-

set of E(Kn). If the inequality aT x ≤ α is facet inducing and vF̄ 6= 0, then

rank(R(v)F ) = |F |.

We follow much of the same proof structure as Lemma 26.5.2 in [30] with mod-

ifications due to the fact the Lemma 26.5.2 deals with homogeneous inequalities and

we have non-homogeneous inequalities of the form vT x ≤ α where α can be strictly

positive.

Proof.

If aT x ≤ α is facet inducing we can find a set A of
(

n
2

)
affinely independent roots

x1, ..., x(n
2)

. Let T = {xi − x(n
2)

: 1 ≤ i ≤
(

n
2

)
− 1}. The vectors in T are linearly

independent. Consider a
(

n
2

)
−1×

(
n
2

)
matrix M where the rows of M are the

(
n
2

)
−1

linearly independent vectors of T . Since the rank of M is
(

n
2

)
− 1,

(
n
2

)
− 1 of the

columns are linearly independent.

If the columns of M corresponding to the set F have rank |F | − 1, consider

partitioning the set T into three disjoint sets T1, T2 and T3. Let T1 consist of |F | − 1

vectors from T whose projection on F are linearly independent. Let T2 be the set of

vectors in T whose projection on F are 0 and let T3 be T \ (T1 ∪ T2). We know that

|T2 ∪T3| is
(

n
2

)
− |F | and the set T2 ∪T3 is linearly independent and consists of roots

of vT x ≤ 0 as yi = xi − x(n
2)

for yi ∈ T and vT y = vT xi − vT x(n
2)

= α− α = 0.
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The projection of a vector from T3 onto F can be expressed in terms of a convex

combination of vectors from the set T1. For x ∈ T3 we can write:

xF =
∑

xi∈T1

λi(xi)F .

Create the set T ′
3 from T3 by replacing x ∈ T3 by:

x′ = x−
∑

xi∈T1

λixi

where
∑

xi∈T1
λi = 1. The new set T ′

3 has the property that the projection of its

elements onto F are zero and they are roots of vT x = 0 since x′ = x −
∑

xi∈T1
λixi

and vT x′ = vT x−
∑

xi∈T1
λiv

T xi = 0−
∑

xi∈T1
λi0 = 0.

The set T ′
3 was constructed using elementary row operations from T1 and T3

where the vectors in T1∪T2∪T3 are linearly independent. It follows that T2∪T ′
3 are

linearly independent. Any x ∈ T2 ∪ T ′
3 has xF = 0 and vT x = 0 which means vF̄ = 0

as |T2 ∪ T ′
3| =

(
n
2

)
− |F | = |F̄ |.

If all the columns of M corresponding to the set F are linearly independent, ie.

rank(AF ) = |F |, then columns of M corresponding to F̄ have rank |F̄ | − 1 and we

can use the above reasoning to deduce that vF = 0 and vF̄ 6= 0.

With Lemma 20 in hand we can proceed with the proof of Theorem 19. A graph

is called a star if it has a node that is common to every edge.

Proof of Theorem 19.

To show that (4.1) defines a facet, we begin by considering the case where G(a)

is not a star in which all edges contain vertex 1.
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Since aT x ≤ α is a facet of the cut polytope, it follows that we can find
(

n
2

)
affinely independent roots δ(Si) (1 ≤ i ≤

(
n
2

)
) of aT x ≤ α such that 1 ∈ Si. Choose

F = {(1, 2), (1, 3), · · · , (1, n)}, applying Lemma 20 we get that rank(R(a)F ) = |F | =

n−1 as the facet inducing inequality is non-trivial. Let δ(Ti) (1 ≤ i ≤ n−1) be n−1

roots of aT x ≤ α whose projections on F are linearly independent. We can assume

that 1 /∈ Ti, since if 1 ∈ Ti we can replace Ti with V (Kn)\Ti (ie. δ+(Ti) = ξ2(δ(Ti))).

We claim the set of directed cut vectors C = {δ+(Si) : 1 ≤ i ≤
(

n
2

)
} ∪

{δ+(Ti) : 1 ≤ i ≤ n − 1} are
(

n
2

)
+ n − 1 affinely independent roots of the in-

equality
∑

2≤i<j≤n 2aijxij +
∑n

i=2 b1ix1i +
∑n

i=2 ci1xi1 ≤ α. By construction, every

cut in C is a root, so we simply need to show that they are affinely independent.

Consider the square matrix M whose rows are first the
(

n
2

)
directed cut vectors

δ+(Si) followed by the n−1 vectors δ+(Ti), Index the columns of M by the sets I∪J

where I = {ij : 1 ≤ i < j ≤ n} and J = {i1 : 2 ≤ i ≤ n}. M has the form:

M =

 X 0

Z Y


The matrix X is affinely independent as the vectors δ+(Si) are affinely independent.

The matrix Y has full row rank, since its rows δ+(Ti)J = δ(Ti)F are linearly inde-

pendent.

To complete the proof, we will show that the support graph G(a) cannot be

a star with all edges containing vertex 1. For suppose it was, then the inequality

aT x ≤ α becomes ∑
1j∈E(G(a))

a1,jx1,j ≤ α (4.2)
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Let the cut vector δ(S) be a root of (4.2), so that aT δ(S) = α. We may assume that

1 ∈ S. Suppose first that for each j ∈ S, a1,j > 0. If S = {1}, (4.2) does not define a

facet, since it is a non-negative combination of valid inequalities of the form a1,j ≤ 1.

Otherwise let k be any other element of S. If a1,k > 0 then we have a contradiction,

since aT δ(S \ {k}) > α. So a1,k < 0 for all k ∈ S and it follows that (4.2) does not

have any roots besides δ(S), a contradiction. Therefore there must be some j ∈ S

for which a1,j < 0. We again have a contradiction because aT δ(S ∪ {j}) > α.

4.1 The triangle inequalities

Using the bijections ξ1 and ξ2 one can obtain sets of facets for DCUTn and

DCUT2
n from the triangle inequalities of the cut cone and polytope. Recall that the

triangle inequalities for the cut cone and polytope are:

xi,k − xi,j − xj,k ≤ 0

xi,j − xi,k − xj,k ≤ 0

xj,k − xi,j − xi,k ≤ 0 (4.3)

for 1 ≤ i < j < k < n. The additional triangle inequalities, known as the perimeter

inequalities, for the cut polytope are:

xi,j + xi,k + xj,k ≤ 2 (4.4)

for 1 ≤ i < j < k < n.

Using Theorem 19 and the fact that (4.3) are facets of CUTn one can easily see

that the following corollary is true.
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Corollary 21 The following inequalities:

xij ≥ 0 (4.5)

xik ≤ xij + xjk (4.6)

xik − xij − xjk ≤ 0 (4.7)

xij − xik − xjk + xj1 − xk1 ≤ 0 (4.8)

xjk − xik − xij + xi1 − xj1 ≤ 0 (4.9)

for 1 ≤ i < j < k ≤ n are facet defining inequalities of DCUTn.

Similarly, the fact that the perimeter inequalities (4.4) are facet inducing inequalities

of CUT2
n implies the following corollary which is a straight forward application of

Theorem 19.

Corollary 22 The inequalities:

xij + xjk + xki ≤ 1 (4.10)

for 1 ≤ i < j < k ≤ n are facet inducing inequalities of DCUT2
n .

4.2 Pentagonal inequalities

The pentagonal inequalities are a class of facet defining inequalities for CUTn

that are slightly more complex than the triangle inequalities. They have the general

form:

xi,j + xj,k + xk,i + xl,m ≤ xi,l + xj,l + xk,l + xi,m + xj,m + xk,m. (4.11)
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Figure 4–1: The pentagonal inequality implies that the sum of weights on the dashed edges
must be at least as large as the sum of weights on the solid edges

Using Theorem 19 we get a class of inequalities that are facet defining for DCUTn

and DCUT2
n . The pentagonal inequalities for DCUT2

5 are:

x21 − x23 + x24 − x25 − x31 − x34 + x35 + x41 − x45 − x51 ≤ 0

−x12 + x13 − x23 − x24 + x25 + x34 − x35 + x41 − x45 − x51 ≤ 0 (4.12)

−x12 + x13 − x14 + x15 − x23 + x24 − x25 − x34 + x35 − x45 ≤ 0

−x14 + x15 + x21 − x23 − x24 + x25 − x31 + x34 − x35 − x45 ≤ 0

−x13 + x14 − x15 − x21 + x23 − x24 + x25 − x34 + x35 − x45 ≤ 0

−x15 − x21 − x23 + x24 + x25 + x31 − x34 − x35 − x41 + x45 ≤ 0

−x12 − 2x13 + 2x14 + x15 + x23 − x24 − x25 + x31

−x34 − x35 − x41 + x45 ≤ 0 (4.13)

−x13 − 2x14 + 2x15 − x21 + x23 + x24 − x25 + x34

−x35 + x41 − x45 − x51 ≤ 0

−x13 + x14 + x21 + x23 − x24 − x25 + 2x31 − x34

−x35 − 2x41 + x45 − x51 ≤ 0

−x12 + x13 − x15 + 2x21 − x23 − x24 − x25 − 2x31

+x34 + x35 − x41 + x45 ≤ 0
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The figure below shows the directed pentagonal inequality for the directed cut poly-

hedra.

Figure 4–2: The directed pentagonal inequality implies that the sum of weights on the
dashed arcs must be at least as large as the sum of weights on the solid arcs

For graph ~Jn other forms of pentagonal arise as arcs ji do not exist for j > i.

The inequalities (4.12) and (4.13) have such forms. When arcs ji for j > i exist in

a directed pentagonal inequality, the form valid for ~Jn can be obtained by replacing

xji by xij + xj1 + x1i − x1j − xi1.

Using Theorem 19 we get:

Corollary 23 The directed pentagonal inequalities:

xik + xkm + xim + xjl ≤ xij + xil + xjk + xjm + xkl + xlm (4.14)

are facet defining inequalities for DCUTn and DCUT2
n when n ≥ 5.

4.3 Hypermetric inequalities

The hypermetric inequalities are valid inequalities for CUT2
n and CUTn which

generalize the triangle and pentagonal inequalities. Similarly, they give rise to valid

inequalities of the directed cut cone and polytope. Let b = (b1, · · · , bn) be an integral

vector such that
∑n

i=1 bi = 1, the inequality:

∑
1≤i<j≤n

bibjxi,j ≤ 0 (4.15)
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is known as a hypermetric inequality. Every hypermetric inequality is known to be

valid for the cut cone, and the roots of a hypermetric inequality are the cut vectors

δ(S) for which
∑

i∈S bi is 0 or 1.

Using our mapping from the cut cone to the directed cut cone, hypermetric

inequalities for DCUTn take the form:

n∑
i=2

(b1 −
i−1∑
k=2

bk +
n∑

j=i+1

bj)bix1i +
n∑

i=2

(b1 +
i−1∑
k=2

bk −
n∑

j=i+1

bj)bixi1

+
∑

2≤i<j≤n

bibjxij ≤ 0 (4.16)

where
∑n

i=1 bi = 1.

The pure hypermetric inequalities have the form b = (1, · · · , 1,−1, · · · ,−1). The

pentagonal facet for CUTn has b = (1, 1, 1,−1,−1). Observe that, as noted above,

the pure hypermetric facet for CUTn generalizes the triangle and pentagonal facets.

4.4 Zero-lifting the directed cut polytope

To prove a zero-lifting theorem for the directed cut polytope, we will need a

second variant of Lemma 26.5.2. This variant, Lemma 24, is an identical result to

Lemma 26.5.2 of [30] but for the directed cut polytope not the cut polytope.

Lemma 24 Let vT x ≤ 0 be a valid inequality for DCUT2
n and let R(v) denote its

set of roots. Let F be a subset of A( ~Jn).

(i) If rank(R(v)F ) = |F | and rank(R(v)F ) = |F̄ | − 1, then the inequality vT x ≤ 0 is

facet inducing.

(ii) If the inequality vT x ≤ 0 is facet inducing and vF̄ 6= 0, then rank(R(v)F ) = |F |.
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The proof of Lemma 24 is a straight forward from the proof of Lemma 26.5.2 of

[30]. We include it here for completeness but it required no substantial alterations.

Proof. (i) By the assumptions, a set A of |F | linearly independent roots can be

found whose projections on the arcs F are linearly independent. Likewise, a set B of

roots of vT x ≤ 0 can be found whose projections on F are the zero vector where the

vectors of B are linearly independent and |B| = |F̄ | − 1. It is easy to see that the

vectors A ∪ B are a set of
(

n
2

)
+ n − 2 linearly independent roots of vT x ≤ 0 which

imply that vT x ≤ 0 is a facet of DCUTn.

(ii) If vT x ≤ 0 is a facet of DCUTn, we can find a set A of
(

n
2

)
+ n− 2 linearly

independent roots of vT x ≤ 0. If we construct a matrix M by using the vectors A as

the rows, we have a (
(

n
2

)
+ n − 2) × (

(
n
2

)
+ 2− 1) matrix with linearly independent

rows. This means that all but one column of M are linearly independent.

If all of the columns corresponding to arcs of F aren’t linearly independent then

rank(AF ) = |F | − 1. Let T1 ⊆ A be |F | − 1 vectors whose projection on F are

linearly independent, let T2 ⊆ A be the vectors of A whose projection on F are the

zero vector and let T3 = A \ (T1 ∪ T2).

For x ∈ T3 we can express xF (the projection of x onto the arcs of F ) as a

convex combination of vectors of T1. ie. xF =
∑

yi∈T1
λi(yi)F . A new set T ′

3 can

be constructed where for each x in T3, we add x′ = x −
∑

yi∈T1
λiyi to T ′

3. The

vectors in the set T2 ∪T ′
3 are linearly independent. It follows that vF̄ = 0 as we have

|T2 ∪ T ′
3| = |F̄ | linearly independent vectors satisfying vT x = 0 with xF = 0.
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If the columns corresponding to the arcs of F are linearly independent then

rank(AF̄ ) = |F̄ | − 1 and a similar argument as above can be applied to show that

vF̄ 6= 0.

We can now state and prove our zero-lifting theorem for the directed cut cone.

Theorem 25 Given v ∈ R|A( ~Kn)| and zero-lifted v′ ∈ R|A( ~Kn+1)| the following are

equivalent.

• vT x ≤ 0 is facet inducing for DCUTn.

• v′T x ≤ 0 is facet inducing for DCUTn+1.

Proof. Assume that v′T x ≤ 0 is facet inducing for DCUTn+1 and let R(v′) denote

its roots. Let F = {(1, n + 1), ..., (n, n + 1)} ∪ (n + 1, 1) and F̄ = A( ~Jn). Using

Lemma 24 and the fact that v′F = 0 we know that the rank of R(v′)F is equal to(
n
2

)
+ n− 2 which implies that vT x ≤ 0 is a facet of DCUTn.

Assume that vT x ≤ 0 is facet inducing for DCUTn. Let F = {1n, 2n, ..., (n −

1, n)}, as v 6= 0 we can assume that vF̄ 6= 0 (the zero-lifting theorem is not needed for

trivial facets like the non-negativity constraint). By Lemma 24, rank(R(v)F ) = |F |.

Let Tj ⊆ V ( ~Jn), j = 1, ..., n − 1 be |F | sets such that the projections of δ+(Tj)

j = 1, ..., n−1 onto the arc set F are linearly independent. Let Sk, k = 1, ...,
(

n
2

)
+n−2

be subsets of V ( ~Jn) such that δ+(Sk) are linearly independent roots of vT x ≤ 0.

Let S ′
k = Sk ∪ {n + 1} for k = 1, ...,

(
n
2

)
+ n− 2. We claim the vectors δ+(S ′

k) ∪

δ+(Tj)∪δ+({1, ..., n})∪δ+({n+1}) for j = 1, ..., n−1 and k = 1, ...,
(

n
2

)
+n−2 form

n−1+
(

n
2

)
+n−2+2 =

(
n+1

2

)
−(n+1)−2 = Dim(DCUTn+1)−1 linearly independent

roots of v′T x ≤ 0. This proves that v′T x ≤ 0 is facet inducing for DCUTn+1.
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To see that this claim is true consider the matrix M consisting of the vectors

δT +(Tj), δ+(S ′
k) and δ+({n+1}) as rows for j = 1, ..., n−1 and k = 1, ...,

(
n
2

)
+n−2.

Let the columns of M be indexed by the arcs: 21, 31, ..., n1 then ij for 1 ≤ i < j ≤ n

followed by (1, n+ 1), (2, n+ 1), ..., (n− 1, n+ 1) then (n + 1, 1) and lastly (n, n + 1).

The matrix M has the form:

M =



X 0 A 0

Z Y 0 0

0 0 1 0

0 0 0 1


where the columns of the submatrix X are indexed by the arcs 21, 31, ..., n1 followed

by arcs ij for 1 ≤ i < j ≤ n. Matrix X is linearly independent as it corresponds to

the
(

n
2

)
+ n− 2 linearly independent vectors δ+(S ′

k). The entry A is a column vector

corresponding to the (n + 1, 1) entry of the δ+(S ′
k) vectors. Submatrix Y ’s columns

corresponds to the arcs (1, n+1), (2, n+1)..., (n−1, n+1). As the entries of (i, n+1)

are identical to in in the δ+(Tj) vectors it follows that Y is linearly independent. As

X and Y are linearly independent it is straight forward to see that M is linearly

independent.

In the next section we will use Theorem 25 to show that a family of inequalities

are facets of DCUT2
n . This family seems unrelated to the mapping of facets of the

cut polytope so we can’t apply Theorem 19.
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4.5 Facets of DCUT2
4

The vertices of DCUT2
4 are the directed cuts:

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

(0 0 0 0 0 0 0 0 0 0 0 0)

(1 1 1 0 0 0 0 0 0 0 0 0)

(0 0 0 1 1 1 0 0 0 0 0 0)

(0 1 1 0 1 1 0 0 0 0 0 0)

(0 0 1 0 0 1 0 0 1 0 0 0)

(0 0 0 1 0 1 1 0 1 0 0 0)

(1 0 1 0 0 0 0 1 1 0 0 0)

(0 0 0 0 0 0 1 1 1 0 0 0)

(0 0 0 1 0 0 1 0 0 1 0 0)

(0 0 0 1 1 0 0 0 0 1 0 1)

(1 0 0 0 0 0 0 1 0 0 1 0)

(0 0 0 0 0 0 1 1 0 1 1 0)

(0 0 0 0 0 0 0 0 0 1 1 1)

(1 1 0 0 0 0 0 0 0 0 1 1)

(0 1 0 0 1 0 0 0 0 0 0 1)
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Computing the facet defining inequalities for DCUT2
4 using lrs [4] we get the linear-

ities:

x13 + x32 + x21 = x31 + x12 + x23 (4.17)

x12 + x24 + x41 = x14 + x42 + x21 (4.18)

x13 + x34 + x41 = x14 + x43 + x31. (4.19)

The non-negativity constraints (note that the variables x32, x42 and x43 have been

removed by lrs as DCUT ( ~K4) is not full dimensional):

x12 ≥ 0 (4.20)

x13 ≥ 0 (4.21)

x14 ≥ 0 (4.22)

x21 ≥ 0 (4.23)

x23 ≥ 0 (4.24)

x24 ≥ 0 (4.25)

x31 ≥ 0 (4.26)

x34 ≥ 0 (4.27)

x41 ≥ 0 (4.28)

and following inequalities:
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1− x12 + x14 − x34 − x41 ≥ 0 (4.29)
1− x12 − x23 − x31 ≥ 0 (4.30)
1− x13 − x34 − x41 ≥ 0 (4.31)

1− x12 + x14 + x21 − x23 − x24 − x34 − x41 ≥ 0 (4.32)
1− x12 − x21 − x41 ≥ 0 (4.33)

1− x12 + x21 − x23 − x41 ≥ 0 (4.34)
x13 − x14 + x21 − x23 + x24 + x34 ≥ 0 (4.35)

x13 − x14 + x34 ≥ 0 (4.36)
1− x13 + x14 − x24 − x41 ≥ 0 (4.37)

x12 − x13 + x14 + x23 − x24 + x34 ≥ 0 (4.38)
x23 − x24 + x34 ≥ 0 (4.39)

x12 − x13 − x21 + x23 + x31 ≥ 0 (4.40)
x21 + x23 + x31 ≥ 0 (4.41)

1− x13 − x21 + x31 − x34 ≥ 0 (4.42)
x12 − x13 − 2x21 + x23 + x24 + 2x31 − x34 + x41 ≥ 0 (4.43)

x12 − x13 + x23 ≥ 0 (4.44)
x14 + x21 − x24 ≥ 0 (4.45)
x31 + x34 + x41 ≥ 0 (4.46)

1− x12 + x21 − x24 − x31 ≥ 0 (4.47)
x21 + x23 − x24 − x31 + x34 + x41 ≥ 0 (4.48)
x14 − x21 + x23 + x24 + x31 − x34 ≥ 0 (4.49)

x21 + x24 + x41 ≥ 0 (4.50)
x12 − x13 − x21 + x23 + x24 + x31 − x34 ≥ 0 (4.51)

x14 + x31 − x34 ≥ 0 (4.52)
x12 − x14 + x24 ≥ 0 (4.53)
x13 + x21 − x23 ≥ 0 (4.54)

x13 − x14 − x23 + x24 − x31 + x34 + x41 ≥ 0 (4.55)
x12 − x14 − x21 + x24 + x41 ≥ 0 (4.56)
x13 − x14 − x31 + x34 + x41 ≥ 0 (4.57)

1 + x13 − x14 − x23 − x31 ≥ 0 (4.58)
x12 + 2x13 − 2x14 − x23 + x24 − x31 + x34 + x41 ≥ 0. (4.59)
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Now one can easily check that the directed cut vector δ+({3}) has a total of 27 inci-

dent facets which are: (4.29), (4.30), (4.22), (4.31), (4.25), (4.32), (4.24), (4.23),

(4.44), (4.45), (4.46), (4.28), (4.47), (4.48), (4.49), (4.50), (4.51), (4.52), (4.21),

(4.53), (4.54), (4.20), (4.55), (4.56), (4.57), (4.58) and (4.59).

While the directed cut vector δ+({1, 2}) has a total of 29 incident facets which

are: (4.30), (4.31), (4.32), (4.33), (4.34), (4.35), (4.26), (4.36), (4.37), (4.27), (4.38),

(4.39), (4.40), (4.42), (4.23), (4.44), (4.45), (4.46), (4.28), (4.47), (4.48), (4.53),

(4.54), (4.20), (4.55), (4.56), (4.57), (4.58) and (4.59). The result on the struc-

ture of these two vertices implies that there is no hope of finding a facets preserving

automorphism like switching that takes a given vertex to any other arbitrarily chosen

vertex. As different vertices have fundamentally different structures.

The relaxation DMET2
4 of DCUT2

4 has a total of 21 vertices, 15 correspond to

directed cuts and 6 half-integral fractional vertices. The fractional entries are:

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

(0, 1/2, 0, 1/2, 1/2, 1/2, 1/2, 0, 0, 1/2, 1/2, 1/2)

(0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 0, 0)

(1/2, 0, 0, 1/2, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2)

(1/2, 1/2, 1/2, 0, 1/2, 0, 0, 1/2, 0, 1/2, 1/2, 1/2)

(1/2, 1/2, 1/2, 0, 0, 1/2, 1/2, 1/2, 1/2, 0, 1/2, 0)

(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 0, 0, 1/2, 0, 0, 1/2)

To complete the description of the convex hull of DCUT2
4 , other inequalities are

needed. These inequalities are not related to the previously discussed triangle or
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hypermetric inequalities. They are of two types, one has the form:

x13 + x24 ≤ x12 + x34 + x14 + x23. (4.60)

Figure 4–3: The sum of weights on the solid arcs must be greater than or equal to the sum
of the weights on the dashed arcs.

The other has the form:

x31 + x12 + x24 − x21 ≤ 1 (4.61)

Figure 4–4: The sum of the weights on the solid arcs minus the weight on the dashed arc
must be less than or equal to 1

To prove that these inequalities are facet defining for DCUT2
n we simply need

to show that they are facets of DCUT2
4 and zero-lift them.

Theorem 26 The inequality:

xik + xjl ≤ xij + xkl + xil + xjk (4.62)
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is facet inducing for DCUTn.

Proof. As DCUT4 has dimension 9, listing 9 affinely independent roots proves that

(4.62) is a facet of DCUT4. The following are such a set of 9 cuts:

δ+(∅), δ+({2}), δ+({1, 2}), δ+({2, 3}), δ+({2, 3, 4}), δ+({3, 4}), δ+({4}), δ+({1, 4}), δ+({1, 2, 4}).

Applying Theorem 25 gives the result that (4.62) is a facet inducing inequality

for DCUTn and DCUT2
n .

To prove that (4.61) is a facet defining inequality, a zero lifting result would be

needed for non-homogeneous inequalities on the directed cut polytope. We prove such

a lifting result in Section 6.2. Proving this result is more difficult than proving it for

the undirected cut polytope. For the undirected case proving a zero-lifting theorem

for a homogeneous inequality implies a zero-lifting theorem for non-homogeneous in-

equalities by switching. We discuss switching the directed cut further in the following

section.

4.6 Switching directed cuts

Since Pn,1 and Pn,2 are linear bijections of the cut polytope there must be an

analogous operation to switching for Pn,1 and Pn,2. Given A ⊆ Vn such that 1 ∈ A,

ξrδ(A)ξ
−1
1 would map:

Pn,1
ξ−1

→ CUT2
n

rδ(A)→ CUT2
n

ξ1→ Pn,1

Using the bijections ξ1 and ξ2 we can write out the switching mappings for Pn,1

and Pn,2 but a simpler way to view the switching operation is in terms of the set of

the vertices on each side of the cut.
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For Pn,1 the switching mapping φ1,A on a directed cut is given by:

x′i1 = xi1 (4.63)

x′1i =

 1− x1i if i /∈ A

x1i otherwise
(4.64)

x′ij =



1− xij − x1i if ij ∈ δ+(A)

x1j − xij if i /∈ A, j ∈ A

xij + x1i − x1j if i, j /∈ A

xij if i, j ∈ A.

(4.65)

Similarly, the switching mapping for Pn,2 for a directed cut δ+(A) where 1 /∈ A

is defined by:

x′1i = x1i (4.66)

x′i1 =

 1− xi1 if i ∈ A

xi1 otherwise
(4.67)

x′ij =



1− xij − xj1 if (i, j) ∈ δ+(A)

xi1 − xij if i /∈ A, j ∈ A

xij + xj1 − xi1 if i, j ∈ A

xij if i, j /∈ A.

(4.68)

We know from the structure of DCUT2
4 given in Section 4.5 that vertices of

DCUT2
n can be very different. This switching for Pn,1 and Pn,2 can only map directed
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cut vectors to other directed cut vectors where node 1 does not change side in the

node partition.
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CHAPTER 5
The rooted cut polytope

As mentioned, the simplest facets of the cut polytope are those defined by the

triangle inequalities:

xi,j − xi,k − xj,k ≤ 0,

−xi,j + xi,k − xj,k ≤ 0,

−xi,j − xi,k + xj,k ≤ 0, (5.1)

xi,j + xj,k + xk,i ≤ 2, (5.2)

that define the metric polytope MET2
n which was introduced in Section 3.2.

If we instead only consider the triangle inequalities involving a single node 1 we

get the following system of inequalities that define the rooted semimetric polytope

RMET2
n , previously introduced in Section 3.2.

x1,j − x1,k − xj,k ≤ 0,

−x1,j + x1,k − xj,k ≤ 0,

−x1,j − x1,k + xj,k ≤ 0, (5.3)

x1,j + xj,k + xk,1 ≤ 2, (5.4)

The following theorem was stated in [17] in the terms of a correlation setting:

92



Theorem 27 For c ∈ RE(Kn), max{cT x : x ∈ RMET2
n } = max{cT x : x ∈MET2

n }

if and only if max{cT x : x ∈ RMET2
n } has an integral optimal solution.

One direction is straight forward, If max{cT x : x ∈ RMET2
n } has an integral

optimal solution then this optimal solution is a cut vector. This follows from Propo-

sition 27.2.1 of [30] which states that the only integral vectors of both RMET2
n and

MET2
n are the cut vectors and every cut vector is a vertex of both RMET2

n and

MET2
n . As CUT2

n ⊆ MET2
n ⊆ RMET2

n , Theorem 27 implies that this cut vector

maximizes the objective function over the polytope CUT2
n and MET2

n as well and:

max{cT x : x ∈ CUT2
n } = max{cT x : x ∈MET2

n } = max{cT y : y ∈ RMET2
n }.

This theorem therefore gives a certificate of the optimality of maximizing cT x over

CUT2
n . Such certificates are not expected to exist for all objective functions, since

optimizing over CUT2
n is known to be NP-hard. In the alternative proof that we

present, we will show how to find this optimum integer solution.

Our alternate proof of the other direction is in terms of a cut setting and the

switch mapping. The first part of the proof uses the following two lemmas:

Lemma 28 Let u be a vector (vertex) in MET2
n , then for any i ∈ 1, ..., n there exists

a vector (vertex) v ∈MET2
n that has v1,k = u1,k with i 6= k and v1,i = 1− u1,i.

Proof. We can obtain the point v via switching u with the cut S = {i}.

Lemma 29 Every vector x ∈ MET2
n can be expressed as a convex combination of

vectors of RMET2
n with at least one being integral.

Proof. Let U = {i : x1,i < 1
2
}. By Lemma 28 and reordering the labels if

needed we can perform a series of 0 ≤ |U | ≤ n switches on x such that the following
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holds:

1 ≥ x1,2 ≥ x1,3 ≥ ... ≥ x1,n ≥
1

2

Let s be the index such that x1,i > 1
2

for i ≤ s and x1,i = 1
2

for s < i ≤ n.

Break the set of indicies i, j, i < j into two sets, A = {i, j : i ≤ s} and

B = {i, j : i > s}. For i, j ∈ A,

xi,j < x1,i + x1,j (5.5)

since xi,j ≤ 1, x1,i > 1
2

and x1,j ≥ 1
2
. Combining (5.5) with xi,j +x1,i +x1,j ≤ 2 yields

xi,j < 1.

If i, j ∈ B then xi,j either satisfies:

xi,j = x1,i + x1,j = 1 (5.6)

or

xi,j < x1,i + x1,j = 1. (5.7)

For the proof we want to avoid xi,j = 1, case (5.6). Consider the following series of

switches to eliminate equalities of type (5.6) from occurring.

1: for k ← s, ..., n− 1 do

2: Set Sk = {1, ..., k}

3: for j ← k + 1, ..., n do

4: if xk,j < 1 then

5: Set Sk = Sk ∪ {j}.

6: end if
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7: end for

8: Switch on the set Sk.

9: end for

Let x′ be the vector x at the end of the series of switches. The series of switches

performed do not alter the values of the x1,i edges. If i < s then every switch

performed has nodes 1 and i in Sk and therefore leaves x′1,i = x1,i. If i ≥ s then

x1,i = 1
2

and any switch with i /∈ Sk sets x′1,i = 1 − 1
2

= 1
2
. If i < s then x′i,j < 1 as

x′1,i > 1
2
, x′1,j > 1

2
and x′i,j + x′1,i + x′1,j ≤ 2.

We now show that for i ≥ s, x′i,j < 1. Assume for a contradiction that there

exists at least one x′i,j = 1. Choose the maximum value of i such that there exists a

x′i,j = 1 and choose a value of j such that it is minimum with respect to this value

of i. If xi,j = 1 when k = i in the switching algorithm, Sk would contain i and but

not j and xi,j would become 0. It follows that an assignment x′i,j = 1 occurs at a

later stage than when k = i. Assume it occurs at the stage k = l > i. As Sl doesn’t

contain j it follows that l < j and xl,j = 1 before the switch Sl is performed. The

switching operation preserves the integrality of 0, 1 values which means that x′l,j is

either 0 or 1 at the end of the algorithm.

Since x′ satisfies the triangle inequalities x′i,j ≤ x′i,l + x′l,j. If x′l,j = 1 we have a

contradiction to our choice of i and thus x′l,j = 0 and x′i,l = 1. But this contradicts

our choice of j as l < j. Therefore, x′i,j < 1 for all 1 < i < j ≤ n.

Now x′ can be expressed as the following convex combination:

x′ = εz′ + (1− ε)v′
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where z′ is the cut δ({1}) and v′ is given by:

v′1,j =
x′1,j − ε

1− ε
(5.8)

v′i,j =
x′i,j

(1− ε)
(5.9)

It remains to show that v′ is in RMET2
n . Choose ε to be 1

2
(1 − maxi,j:i<j,i6=1 x′i,j).

This choice ensures that ε > 0 and v′i,j ≤ 1 since x′i,j < 1 for all edges i, j.

Checking the triangle inequalities for RMET2
n , v′ must satisfy v′1,j +v′1,i+v′i,j ≤ 2

which is equivalent to:

x′1,j − ε

1− ε
+

x′1,i − ε

1− ε
+

x′i,j
1− ε

≤ 2 (5.10)

or:

x′1,j + x′1,i + x′i,j ≤ 2, (5.11)

which is satisfied since x′ is in MET2
n . The value of v′ must also satisfy:

v′1,i ≤ v′1,j + v′i,j (or v′1,j ≤ v′1,i + v′i,j). (5.12)

This is equivalent to:

x′1,i − ε

1− ε
≤

x′i,j
1− ε

+
x′1,j − ε

1− ε
(5.13)

or:

x′1,i ≤ x′i,j + x′1,j, (5.14)
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which is satisfied by x′. The last type of inequality that must be satisfied has the

form:

v′i,j ≤ v′1,i + v′1,j (5.15)

or:

x′i,j
1− ε

≤
x′1,i − ε

1− ε
+

x′1,j − ε

1− ε
, (5.16)

which is satisfied as x′1,i + x′1,j ≥ 1 and our choice of ε ensures that x′i,j ≤ 1− 2ε.

Performing the series of switches on the vectors v′ and z′ in the reverse order

with the sets Sk, k = n − 1, ..., s followed by the |U | switches with the sets {i} for

all i ∈ U yields the vectors v and z where x = εz + (1− ε)v.

The proof of Theorem 27 is now fairly straight forward.

Proof. (Theorem 27) If max{cT x : x ∈ RMET2
n } has an integral optimal

solution then this optimal solution is a cut vector. This direction was proved earlier

after the theorem statement.

To prove the other direction assume that max{cT x : x ∈ MET2
n } = max{cT y :

y ∈ RMET2
n }. Let x ∈ MET2

n maximize cT x, by Lemma 29 the vector x can be

expressed as a convex combination of the vectors z and v where z is a cut vector and

v ∈ RMET2
n . Using Proposition 27.2.1 of [30] again implies that the cut vector z

obtained by applying Lemma 29 is a vertex of RMET2
n and MET2

n . Let y ∈ RMET2
n

maximize cT y, by the statement of the theorem cT y = cT x = cT (εz +(1− ε)v) where

z, v ∈ RMET2
n . Since y maximized cT y it follows that cT y = cT v = cT z. Therefore,
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given c if:

max{cT x : x ∈MET2
n } = max{cT y : y ∈ RMET2

n }

there exists a cut vector z that is also optimal with respect to c.

The proof of Lemma 29 was constructive in the sense that following the series

of switches outlined we can construct v and z. This gives the following corollary.

Corollary 30 If maxx∈RMETn cT x = maxx∈METn cT x, the cut vector z maximizing

cT z can be found in polynomial time.

The proof of Theorem 27 as presented does not immediately generalize to the

directed case. If it could be shown that DMET2
n was the convex hull of two MET2

n

polytopes and RDMET2
n was likewise the convex hull of two RMET2

n polytopes in

the way that DCUT2
n can be expressed as the convex hull of the linear bijective

mapping of two CUT2
n polytopes a similar result to Theorem 27 would be easy to

show. However, this is not the case, in fact one needs to only look as far as n = 4 to

see that DMET2
n and RDMET2

n are not the convex hulls of two instances of linear

transformations of MET2
n and RMET2

n respectively.

MET2
4 has 8 vertices which are precisely the 8 cut vectors on 4 vertices since for

the graph K4, MET2
4 = CUT2

4 . Computing the vertices of DMET2
4 with the software

package lrs [4] gives fractional values which imply that DMET2
4 is a strict superset

of DCUT2
4 . Lemma 13 implies that the 15 cut vectors of ~K4 are vertices of both

DCUT2
4 and DMET2

4 which means DMET2
4 has strictly more than 15 vertices, which

is larger than one would have hoped for from the convex hull of two MET2
4 polytopes

intersecting only at the origin. Using lrs [4] to enumerate the set of vertices of
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DMET2
4 supported this observation; it outputted that DMET2

4 had 21 vertices. We

have included the enumeration of vertices of DMET2
4 in Appendix 10. Enumerating

the set of vertices for RMET2
4 and RDMET2

4 yielded similar results. RMET2
4 was

found to have 12 vertices, 8 cut vectors plus and additional 4 vectors with some

fractional entries. RDMET2
4 was found to have 35 > 2 ∗ 12− 1 vertices, 15 integral

directed cut vectors and an additional 20 fractional vectors.
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CHAPTER 6
Projecting the directed cut polyhedra

Solving an optimization problem on the cut polytope is computationally difficult

in general. Hence, the study of the metric and rooted metric polyhedra. They are

natural LP relaxations that can often be solved efficiently, giving bounds on the

optimum integer solution. Solving these relaxations also provides a good starting

point for an integer program solver when attempting to solve optimization problem

on the cut polytope in practice. In some special cases the solution obtained when

solving the relaxed problem can be shown to always give the optimal solution, ie.

the optimal solutions on the metric and cut polytope coincide.

Given a graph G ⊂ Kn with n nodes, the following notation: CUT2(G),

MET2(G) and RMET2(G) is used to refer to the projections of CUT2
n , MET2

n and

RMET2
n respectively onto R|E(G)|, the edge set of graph G.

While the Fourier-Motzkin elimination method can be used to obtain descrip-

tions of the projected polyhedra from the polyhedra corresponding to the complete

graph, it is computationally difficult to compute such a projection. Barahona and

Mahjoub [12] have found an explicit linear description of the semimetric polyhedra

based on the cycle inequalities, which are of the form:

∑
e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1 (6.1)
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where C is a cycle of G and F ⊆ C has an odd number of edges |F |. Their results

lead to the following theorem which is listed as Theorem 27.3.3 in [30]:

Theorem 31 (Barahona [10], Barahona and Mahjoub [12]) For a graph G,

MET (G) = {x ∈ RE
+ : xe − x(C \ {e}) ≤ 0 for C cycle of G, e ∈ C},

MET2(G) = {x ∈ RE
+ : xe ≤ 1 for e ∈ E,

x(F )− x(C \ F ) ≤ |F | − 1 for C a cycle of G, F ⊆ C, |F | odd}.

• For C a cycle of G, e ∈ C and F ⊆ C with |F | odd, xe − x(C \ {e}) ≤ 0 is a

facet of MET(G) if and only if C is a cordless circuit.

• The inequality xe ≥ 0 defines a facet of MET(G) if and only if e does not belong

to a triangle.

Furthermore, if G does not contain a K5-minor then:

MET (G) = CUT (G) and MET2(G) = CUT (G).

The result for cones is due to Seymour [75], while the extension to polytopes is

due to Barahona and Mahjoub [12] via switching. These characterizations imply a

polynomial time algorithm for the max cut problem on graph without a K5-minor.

One could simply solve the optimization problem on the semimetric polytope for

the complete graph where edges that do not appear in G have a weight of 0 in the

objective function.

Alternatively, Barahona and Mahjoub presented a separation algorithm that can

find a violated cycle inequality (6.1) in polynomial time. The algorithm begins by
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checking if any non-negativity constraint is violated. Then it constructs an auxiliary

graph G′ by taking two copies of G, say G1 and G2, so V (G′) = V (G1) ∪ V (G2).

Let i1 denote the copy of vertex i ∈ V (G) in graph G1 and let i2 be the copy

of vertex i ∈ V (G) in V (G2). If edge (i, j) ∈ E(G) then (i1, j1) ∈ E(G′) and

(i2, j2) ∈ E(G′). The graph G′ will also contain edges of the form (i1, j2) and (i2, j1)

if edge (i, j) ∈ E(G).

Weights x(i,j) are assigned to edges (i1, j1) and (i2, j2) while weights 1−x(i,j) are

assigned to edges of the form (i1, j2) and (i2, j1). The cycle inequality (6.1) can be

rewritten in the form:

∑
ij∈C\F

xij +
∑
ij∈F

(1− xij) ≥ 1 (6.2)

Now finding a violated inequality of the form (6.2) if one exists can be accomplished

by finding the shortest path in G′ between nodes i1 and i2.

Figure 6–1: A graph G and its auxiliary graph G′. The dashed edges have weight 1− xe

If there exists a path between i1 and i2 of length < 1, one can see that it

corresponds to a violated inequality (6.2) where the edges (i1, j2) and (i2, j1) in the

path form the set F and the other edges in the path form C \F . As i1 and i2 are on

opposite sides of the vertex sets V (G1) and V (G2) it follows that |F | must be odd
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and it is straight forward to see that such a C and F must correspond to a violated

cycle inequality.

If x violates a cycle inequality (6.2) and C ′ is the cycle and F ′ the odd subset of

edges of C ′ in the violated inequality let i be a node on the cycle C ′. Let f1, ..., f|F ′|

be the edges in F in the order they appear when traversing the cycle C ′ starting

at node i, let C ′
1 ⊆ C ′ \ F ′ be the set of edges appear between edges fi and fi+1

where i is even and let C ′
2 ⊆ C ′ \ F ′ be the set of edges appearing between fi and

fi+1 when i is odd. The path in G′ from i1 to i2 that is made up of the edges

B = {j1, k2 : fi = j, k and i is odd}∪ {j2, k1 : fi = j, k and i is even} along with the

edges {i1, j1 : i, j ∈ C ′
1} ∪ {i2, j2 : i, j ∈ C ′

2} form a path from i1 to i2 in G′ where

the length of the path is equal to the violated inequality (6.2).

As the shortest path algorithm can be run in O(n2) time, the whole separation

algorithm takes O(n3) as the shortest path algorithm must be run for each vertex

i ∈ V (G). Using this separation algorithm one can optimize in polynomial time

using the ellipsoid method and the analysis of Grötschel, Lovász and Schrijver [44].

6.1 Projected facets of the directed cut polytope

For a directed graph G ⊂ ~Jn with n nodes we can define: DCUT2(G), DMET2(G)

and RDMET2(G) to be the projections of DCUTn, DMETn and RDMETn, respec-

tively, onto the subspace R|A(G)| indexed by the arcs of G. We will limit our focus to

subgraphs of ~Jn, using the linearities (3.27) these results can be extended to graphs

that are subgraphs of ~Kn but not ~Jn.
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In investigating the projection of the directed cut polyhedra and relaxations

we begin by considering some simple inequalities and give necessary and sufficient

conditions for when they are facet inducing.

We begin by considering a generalization of the triangle inequality xij ≤ xik+xkj,

a facet of DCUTn. Assume there exists a path from i to j with that i < j and by

relabeling the arcs if needed Pij = {(i, i + 1), (i + 1, i + 2), ..., (j − 1, j)}. We define

path Pij to be induced in G if A(G) does not contain any arc kl /∈ Pij such that k < l

and nodes k and l are in path Pij and kl 6= ij.

Lemma 32 Let G be a directed graph, Pij be a directed path from i to j in G and

let ij be an arc in G. The inequality:

xij ≤
∑
a∈Pij

xa (6.3)

is facet inducing for DCUT(G) if and only if Pij is an induced path.

To prove Lemma 32 we will use a technique referred to in the undirected cut

literature as triangular elimination which was first proposed by Avis, Imai, Ito and

Sasaki [5] and further refined in [6]. Triangular elimination is a combination of

zero-lifting and Fourier-Motzkin elimination that can be used to map facet inducing

inequalities for CUT2(G) to facet inducing inequalities CUT2(G′) for graphs G and

G′ satisfying certain conditions.

Let G = (V, E) be a graph and let u, v be and edge of E. The graph G′ = (V ′, E ′)

is a graph triangular elimination of G (with respect to u, v) if V ′ = V ∪{w}, w, u ∈ E ′

w, v ∈ E ′ and E ′ ∩ E = E \ {u, v} where w /∈ V .
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Figure 6–2: A graph G and G′, its triangular elimination with respect to edge u, v.

Let G′ be a triangular elimination of G = (V, E). Then the inequality (a′)T x ≤ 0

is an inequality triangular elimination of aT x ≤ 0 with respect to the edge u, v if:

a′T x = aT x− au,vxu,v + au,vxv,w − au,vxu,w.

The following theorem appears as Proposition 4 in [6].

Proposition 33 (Proposition 4 of [6]) Let G′ = (V ′, E ′) be a graph triangular

elimination of G = (V, E), and let a′T x ≤ 0 be the inequality triangular elimination

of aT x ≤ 0. Then a′T x ≤ 0 is facet inducing for CUT(G′) if aT x ≤ 0 is facet inducing

for CUT(G) and aT x ≤ 0 is not completely supported by u, v.

More complex versions of triangular elimination exist in [6], however their proofs

often use the switching operation which is not available in the directed cut framework.

We will extend the notion of triangular elimination to the directed cut polyhedra,

giving sufficient conditions on G and G′ so that a set of facet inducing inequalities

for DCUT(G) can be mapped to facet inducing inequalities for DCUT(G′). Anal-

ogous results to Proposition 4 of [6] will be presented. These results will allow us

to characterize classes of facet inducing inequalities for the projected directed cut

polyhedra.
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For our purpose, we will define multiple types of directed triangular elimination

of a graph and inequality. To prove Lemma 32, we will prove a form of triangular

elimination that takes a facet defining inequality and adds a multiple of the inequal-

ity:

xuw ≤ xuv + xvw (6.4)

to produce a new inequality that is facet defining under certain criteria.

In Figure 6–3, we depict an example where an arc uv is eliminated from an

inequality by adding inequality (6.4).

Figure 6–3: A depiction of the triangular elimination of an inequality of type (6.3).

We now state and prove a directed triangle elimination lemma for a multiple of

inequality (6.4).

Lemma 34 Let G = (V, A) be a directed graph and G′ = (V ′, A′) be the directed

graph with nodes V ′ = V ∪ {w} and arcs A′ = (A \ {uv}) ∪ {wu, wv}. If aT x ≤ 0 is

a facet inducing inequality for DCUT(G) with auv < 0 then

a′T x = aT x− auvxuv + auvxwv − auvxwu ≤ 0

is a facet inducing inequality for DCUT(G′).
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Proof. Let S1, ..., S|A|−1 be subsets of V (G) such that δ+
G(S1), ..., δ

+
G(S|A|−1) are

linearly independent roots of aT x ≤ 0.

Let

S ′
i =

 Si ∪ {w} if u ∈ Si

Si otherwise.

As G is the collapsing of πuw(G′), the sets δ+
G′(S ′

1), ..., δ
+
G′(S ′

|A|−1) are linearly

independent and roots of the equation a′T x ≤ 0.

The inequality a′T x ≤ 0 is a facet of DCUT(G′) if there exists a set of |A′|−1 =

|A| linearly independent roots. The directed cut vectors δ+
G′(S ′

i), i = 1, ..., |A|−1 and

the cut vector δ+
G′({w}) are linearly independent as the arc wu only appears in the

cut vector δ+
G′({w}). The cut vector δ+

G′({w}) is a root of a′T x ≤ 0 as the LHS of the

inequality becomes auvxwv − auvxwu = auv − auv = 0.

Therefore, the cut vectors (∪|A|−1
i=1 δ+

G′(Si)) ∪ δ+
G′({w}) form a set of |A| linearly

independent roots of a′T x ≤ 0.

We can now use Lemma 34 to prove that the class of inequalities presented in

Lemma 32 are facet inducing.

Proof of Lemma 32. We will prove this by induction on the number of arcs

in the path Pij. For the base case of two arcs Corollary 21 states that in the full

dimensional complete directed graph, ~Jn, xij ≤ x(i,i+1) + x(i+1,j) is a facet.

By relabeling the vertices if needed assume that i < j and kl ∈ Pij implies

k = l − 1. Assume Pij is not an induced path, ie. ∃ an arc kl such that l > k + 1

and nodes l and k appear on path Pij and let P ′
ij be the path from i to j that uses
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arcs from Pij between i and k, then arc kl and finally arcs from Pij from l to j. Let

P ′
kl be the arcs in Pij from k to l.

Then the inequalities:

xkl ≤
∑
a∈P ′

kl

xa (6.5)

xij ≤
∑

a∈P ′
ij\Pkl

xa (6.6)

are either facet defining if the the paths are induced, by the induction hypothesis or

they are the sum of facet inducing inequalities.

The sum of equations (6.5) and (6.6) is:

xij ≤
∑
a∈Pij

xa

which implies that it is not a facet.

Now assume that Pij is an induced path. Consider the graph G′ = (V ′, A′)

where V ′ = V \ {i} and E ′ = (E \ {ij, (i, i + 1)}) ∪ {(i + 1, j)}. By the induction

hypothesis the inequality:

x(i+1,j) ≤
∑

a∈Pij\{(i,i+1)}

xa (6.7)

is a facet inducing inequality for DCUT(G′). We can now apply Lemma 34 to

inequality (6.7) using xij ≤ x(i,i+1) + x(i+1,j) for the triangular elimination. The

resulting inequality:

x(i+1,j) ≤
∑

a∈Pij\{(i,i+1)}

xa − xij + x(i,i+1) + x(i+1,j) (6.8)
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is a facet in DCUT(G) as required.

The second family of inequalities that we are interested in proving are facets of

the projected directed cut polyhedra are based on the non-negativity inequalities.

We know the inequality xa ≥ 0 is a facet inducing inequality for DCUTn by Corollary

21. It follows that xa ≥ 0 is a facet for DCUT(G) for any directed graph G containing

arc a. When the directed cut cone for the complete directed graph ~Kn was projected

to the full dimensional directed cut cone for DCUT( ~Jn) we used the linearities xji =

xij+xj1+x1i−xi1−x1j to eliminate entries corresponding to arc ji for all i < j. Since

the choice of labelling vertices is arbitrary for ~Kn due to symmetry, the inequality

xji ≥ 0 is a facet for DCUTn projected onto the space indexed by the arcs of a graph

containing arc ji, which implies that:

xij + xj1 + x1i ≥ xi1 + x1j (6.9)

is a facet of DCUT(G) for a graph G not containing arc ji.

The inequality (6.9) can be generalize to:

xi1 + x1j ≤
∑
a∈C

xa (6.10)

where C is a directed cycle in G containing nodes i, j and 1. To prove (6.10) is a facet

inducing inequality when the cycle C contains no shorter cycle, we will use another

form of directed triangular elimination. This form is based on using a multiple of an

inequality of the form:

xuv ≤ xuw + xwv (6.11)
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to eliminate arc uv. Figure 6–4 depicts such an elimination.

Figure 6–4: A depiction of our second type of triangular elimination using a multiple of
inequality (6.11).

We now state our second type of triangular elimination formally.

Lemma 35 Let G = (V, A) be a directed graph and let aT x ≤ 0 be a facet inducing

inequality for DCUT(G) containing the term auvxuv where auv < 0 and there exists

at least one root of aT x ≤ 0 that has a non-zero xuv. Let G′ = (V ′, A′) be a directed

graph with nodes V ′ = V ∪ {w} and arcs A′ = A ∪ {uw, wv} \ {uv}. Then the

inequality a′T x′ = aT x− auvxuv + auvxuw + auvxwv ≤ 0 is a facet inducing inequality

for DCUT(G′).

Proof. Let δ+
G(S1), ..., δ

+
G(S|A|−1) be a set of |A| − 1 linearly independent roots of

aT x ≤ 0. Let

S ′
i =

 Si ∪ {w} if u ∈ Si

Si otherwise.

We claim that the set of cut vectors δ+
G′(S ′

i), i = 1, ..., |A|−1 are linearly independent

roots of a′T x′ ≤ 0.

Let M be the matrix created by using the vectors δ+
G(Si) as rows and let M ′ be

the matrix formed by using vectors δ+
G′(S ′

i) as rows. If we index the columns of M
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and M ′ by their corresponding head and tail nodes we see that the columns ij in M

and M ′ are identical for ij /∈ {uv, uw, wv}. The columns Muv and M ′
vw are identical

by construction. Therefore rank(M) = rank(M ′) and δ+
G′(S ′

i) for i = 1, ..., |A| − 1

are linearly independent. The vectors δ+
G′(S ′

i) are roots of a′T x′ ≤ 0 as δ+
G′(S ′

i)uw = 0

by construction and if δ+
G(Si)uv = 1 then δ+

G′(S ′
i)wv = 1 and if δ+

G(Si)uv = 0 then

δ+
G′(S ′

i)wv = 0 so a′T δ+
G′(S ′

i) = aT δ+
G(Si) = 0.

If the column Muv is all zeros, we can consider a new root with non-zero xuv

(which we know exists by the lemma statement) and replace any row of M by this

vector. We can now assume that M contains at least one cut vector with xuv = 1,

by relabeling if needed let S1 be a set such that δ+
G(S1) has u ∈ S1 and v /∈ S1.

Let S ′
|A| = S1 and recall that S ′

1 = S1 ∪ {w}. The vector δ+
G′(S ′

|A|) is a root of

a′T x ≤ 0 as δ+
G′(S ′

|A|)uw = δ+
G(S1)uv = 1, δ+

G′(S ′
|A|)wv = 0, a′uv = 0, and a′uw = auv.

Now append δ+
G′(S ′

|A|) to the end of M ′. We claim that the rows of M ′ are linearly

independent and we know that there are |A| rows. We know that the rows of M ′

without the last row are linearly independent and by construction the entries of

column uw are all zero, since the last row of M ′ has a one in column uw it follows

that the rows of M ′ are linearly independent.

Using Lemma 35 we can generalize inequalities of the form (6.9) to get:

Lemma 36 If C = {12, 23, ..., (h− 1, h), h1} is a directed cycle in G′ = (V ′, A′) and

i and j are two nodes in C ′, i < j for which i1, 1j ∈ A then the inequality:

xi1 + x1j ≤
∑
a∈C′

xa (6.12)
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is a facet inducing inequality of DCUT(G′) if and only if G′ doesn’t contain any arcs

kl /∈ C ′ such that k, l ∈ C ′, kl /∈ C ′, k < l and either: 1 ≤ k < l ≤ i, i ≤ k < l ≤ j

or j ≤ k < l ≤ h and G′ doesn’t contain an arc k1, j < k < h.

Proof. Assume G′ contains an arc kl such that either 1 ≤ k < l ≤ i, i ≤ k <

l ≤ j or j ≤ k < l ≤ h and let Pkl be the path from k to l in C ′. The inequality

xkl ≤
∑
a∈Pkl

xa (6.13)

is valid for DCUT(G′). Let C be the directed cycle C ′ \ {Pij} ∪ {kl} in G′, the

inequality

xi1 + x1j ≤
∑
a∈C

xa (6.14)

is also valid for DCUT(G′). If we sum inequalities (6.13) and (6.14) we get inequality

(6.10). Hence, it is not facet inducing when such an arc kl exists. Using a similar

approach one can show that if an arc k1, j < k < h exists then (6.10) is not a facet.

If no such arcs exist and C ′ is an induced directed cycle we can proceed by

induction on the length of C ′, since we know that xij +xj1 +x1i ≤ x1j +xi1 is a facet

for DCUTn by Corollary 21 for our base case, a cycle of length 3.

Let w be a node of C ′ such that w /∈ {1, i, j}. Consider a graph G = (V, A) such

that V = V ′\{w} and A = (A′\{(w−1, w), (w,w+1)})∪{(w−1, w+1)}. Let C be

the directed cycle in G such that C = (C ′\{(w−1, w), (w,w+1)})∪{(w−1, w+1)}.

By the induction hypothesis we know that:

xi1 + x1j ≤
∑
a∈C

xa (6.15)
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is a facet of DCUT(G). This implies that:

xi1 + x1j ≤
∑
a∈C′

xa

is a facet of DCUT(G′) by applying Lemma 35 with u = w − 1 and v = w + 1 as

δ+
G({i, w − 1}) is a root of 6.15 with x(w−1,w+1) = 1.

Inequalities of the type (6.3) and (6.10) make up the building blocks for the facets

of the projection of DMETn to the space indexed by the arcs of arbitrary directed

graphs. We will discuss the projection of DMETn in further detail in Chapter 7.

We will introduce a few more triangular elimination techniques for graph where

instead of using the triangle inequality xij + xjk ≤ xik we will use the inequality:

xij + xj1 + x1i ≥ x1j + xi1. (6.16)

However, we can not simply try to add this inequality to eliminate an arc 1i or j1.

For example, consider adding inequality (6.16) to a facet inducing inequality:

x1u + xui + xiw + xw1 ≥ xu1 + x1i (6.17)

for the graph G = (V, A). The resulting inequality for the graph G′ where V (G′) =

{1, u, w, i, j} and A(G′) = {1u, ui, ij, j1, iw, w1, i1, 1j, u1} is:

x1u + xui + xij + xj1 + xiw + xw1 ≥ xu1 + xi1 + x1j. (6.18)

However, (6.18) is not a facet of DCUT(G′) as it is the sum of valid inequalities:

xi1 ≤ xiw + xw1 and xu1 + x1j ≤ x1u + xui + xij + xj1.
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Instead of using inequality (6.16) for these further eliminations we use either:

xw1 + x1u ≤ x1w + xwu + xui + xi1 (6.19)

or

xu1 + x1w ≤ x1j + xju + xuw + xw1. (6.20)

Lemma 37 Let G = (V, A) be a directed graph with arc i1 ∈ A and let aT x ≤ 0 be a

facet inducing inequality with ai1 > 0 for DCUT(G). Let G′ = (V ′, A′) be a directed

graph with nodes V ′ = V ∪ {u, w} and arcs A′ = (A \ {i1}) ∪ {1w,w1, 1u, wu, ui}.

Then the inequality:

a′T x = aT x + ai1(xw1 + x1u − x1w − xwu − xui − xi1)

≤ 0

is facet inducing for DCUT(G′).

Proof. The proof has a similar flavour to the proofs of Lemmas 34 and 35. Let

Sj for j = 1, ..., |A| − 1 be subsets of V such that the vectors δ+
G(Sj) are linearly

independent and roots of aT x ≤ 0.

Let

S ′
j =

 Sj ∪ {w} if 1 ∈ Sj and i /∈ Sj or if 1, i /∈ Sj

Sj ∪ {u, w} if i ∈ Sj and 1 /∈ Sj or if 1, i ∈ Sj.

By construction the directed cut vectors δ+
G′(S ′

j) are linearly independent roots

of a′T x ≤ 0. As |A′| = |A| + 4, four additional roots are needed that are linearly
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independent together with the roots already defined to prove that a′T x ≤ 0 is facet

defining.

Let T1 = {w}, T2 = {u, w}, T3 = V ′ \ {u} and let T4 = V ′ \ {u, w}. It is easy to

check that the vectors δ+
G′(Ti) are roots of a′T x ≤ 0 for i = 1, ..., 4.

Let N be the |A| − 1 × |A| matrix constructed by using the vectors δ+
G(Sj) as

rows. By renumbering the sets Sj if needed assume the rows are ordered by the sets

Sj such that 1, i /∈ Sj followed by the sets Sj such that i, 1 ∈ Sj followed by Sj such

that i ∈ Sj and 1 /∈ Sj and lastly by Sj such that 1 ∈ Sj and i /∈ Sj. By our choice

of Sj’s N is linearly independent. Let i1 be the arc the final column of matrix N

corresponds to and let N ′ be matrix N without column i1.

Let M ′ be the |A|+ 3× |A|+ 4 matrix constructed by using the vectors δ+
G′(S ′

j)

for j = 1, ..., |A| − 1 followed by δ+
G′(Tk) for k = 1, ..., 4 as rows. If M ′ has full row

rank then a′T x ≤ 0 is facet inducing as each row is a root of a′T x ≤ 0.

Let N1 be the subset of rows of N ′ with 1 ∈ Sj and i /∈ Sj. N2 be the subset of

rows of N ′ with i ∈ Sj and 1 /∈ Sj. N3 be the subset of rows of N ′ with 1, i ∈ Sj. N4

be the subset of rows of N ′ with 1, i /∈ Sj. Now M ′ has the form:
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M ′ =



A \ {i1} w1 1w 1u wu ui

N1 0 1 1 0 0

N2 1 0 0 0 0

N3 0 0 0 0 0

N4 0 0 0 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 0 1 1 0

0 0 1 1 0 0


By construction, the matrix N appears as the upper left submatrix of M ′:

N =



A \ {i1} w1

N1 0

N2 1

N3 0

N4 0


We can perform linearly reversible matrix operations to M ′ to show that it is linearly

independent. As the last row of M ′ has all zeros in the columns corresponding to N

we can subtract the last row of M ′ from each row of M ′ that corresponds to N1. Let

M ′′ be the resulting matrix.
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Let

X =



1w 1u wu ui

0 0 1 0

0 0 0 1

0 1 1 0

1 1 0 0


The matrix X has full row rank and now our matrix M ′′ has the form:

M ′′ =

M 0

Z X

,

where M is a linear transformation of N . As M ′′ is full rank we know that a′T x ≤ 0

is a facet defining inequality for DCUT(G′).

Next we prove a similar lemma by using the inequality:

xu1 + x1w ≤ x1j + xju + xuw + xw1. (6.21)

Figure 6–5: A depiction of the elimination inequality used in Lemma 38.

Lemma 38 Let G = (V, A) be a directed graph such that 1j ∈ A and aT x ≤ 0 is a

facet inducing inequality for DCUT(G) where a1j > 0. Let G′ = (V ′, A′) be a directed

117



graph with V ′ = V ∪ {u, w} and let A′ = A \ {1j} ∪ {ju, uw, w1, 1w, u1}. Then the

inequality

a′T x = aT x + a1j(xu1 + x1w − x1j − xju − xuw − xw1) (6.22)

≤ 0 (6.23)

is a facet inducing inequality for DCUT(G′).

Proof. Let S1, ..., S|A|−1 be a set of subsets of V such that δ+
G(Si) are linearly

independent and roots of aT x ≤ 0.

Let

S ′
i =


Si if 1 ∈ Si and j /∈ Si or if 1, j /∈ Si

Si ∪ {u, w} if 1, j ∈ Si

Si ∪ {u} if j ∈ Si and 1 /∈ Si.

By construction, the vectors δ+(S ′
i) form |A| − 1 linearly independent roots of

a′T x ≤ 0. An additional 4 more linearly independent roots are needed to prove that

a′T x ≤ 0 is a facet of DCUT(G′).

Let T1 = V (G′) \ {u, w}, T2 = {u, w}, T3 = V (G′) \ {w} and T4 = {u}. One can

easily check that the vectors δ+
G′(Ti) are roots of a′T x ≤ 0 for i = 1, ..., 4.

We claim that the vectors δ+
G′(Tk) for k = 1, ..., 4 with the δ+

G′(S ′
i) for i =

1, ..., |A|−1 form the required linearly independent roots to prove a′T x ≤ 0 is a facet

of DCUT(G′). As we did in the proof of Lemma 37 we will construct a matrix from

these vectors to show that they are linearly independent. It is easy to check that

they are roots. Let M ′ be the matrix formed by using the vectors δ+
G′(S ′

i) as rows

where 1 ∈ S ′
i and j /∈ S ′

i, let N1 be these vectors restricted to the arcs A \ {1j}. Let
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the next set of rows of M ′ be the vectors δ+G′(S ′
i) where j ∈ S ′

i and 1 /∈ S ′
i and let

N2 be these vectors restricted to the arcs A \ {1j}. Let these vectors be followed by

δ+
G′(S ′

i) where 1, j ∈ S ′
i and let N3 be these vectors restricted to the arcs A \ {1j}.

Let M ′ next contain the vectors δ+
G′(S ′

i) where 1, j /∈ S ′
i as rows and let N4 be these

vectors restricted to the arcs A \ {1j}. Let the last four vectors of M ′ be δ+
G′(Tk) for

k = 1, ..., 4. The matrix M ′ has the form:

M ′ =



A \ {1j} 1w ju uw w1 u1

N1 1 0 0 0 0

N2 0 0 1 0 1

N3 0 0 0 0 0

N4 0 0 0 0 0

0 1 1 0 0 0

0 0 0 0 1 1

0 1 0 1 0 0

0 0 0 1 0 1


By construction, the upper left section of matrix M’ is:

N =



A \ {i1} w1

N1 1

N2 0

N3 0

N4 0


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where N is the matrix formed by using δ+
G(Si) for i = 1, ..., |A| − 1 as rows, hence

full row rank. By using the last row of M ′ and subtracting it for each row of M ′

corresponding to an entry of N2, M ′ takes the form:

M ′′ =

N ′ 0

Z X


where N ′ is obtained from N by subtracting a row of N4 from each row of N2, which

implies that N ′ is full row rank. The submatrix X is:

X =



1w 1u wu ui

1 0 0 0

0 0 1 1

0 1 0 0

0 1 0 1


which has full row rank. This implies that the rows of M ′′ are linearly independent,

hence the rows of M ′ are linearly independent and a′T x ≤ 0 is a facet of DCUT(G′).

Figure 6–6: A depiction of the facet preserving elimination of Lemma 38.

120



With the operations of Lemmas 34, 35, 37 and 38, we can construct many dif-

ferent types of facet preserving inequalities from those already presented in Chapter

3. In Chapter 7 we discuss the construction of valid inequalities using DMETn and

triangular elimination further.

6.2 Zero lifting projected inequalities

It would be nice to have a zero lifting result for the projected polyhedra similar to

the result of Theorem 25. For the projected cut polyhedra CUT(G) and CUT2(G),

De Simone [24] proves a zero lifting theorem for graphs other than the complete

graph under certain properties. Her theorem states:

Theorem 39 (De Simone [24]) Let G = (V, E) be a graph with n ≥ 3 vertices,

and let H = (V ∪{r}, F ) where F induced on the nodes V is E. If N(r)−{v} ⊆ N(u)

for some u ∈ V (G) then:

If the non-trivial inequality aT x ≤ d defines a facet of CUT2(G) then [a, 0]T x ≤

d defines a facet of CUT2(H).

An inequality is non-trivial if its support graph contains at least three vertices.

The notation [a, 0] ∈ R|F | denotes the vector a with zeros for entries that correspond

to edges in F \ E.

We will prove a variation of De Simone’s theorem for directed subgraphs of the

full dimensional directed graph ~Jn. Let N+
G (v) denote the set of nodes which are tail

nodes of an arc directed towards v and let N−
G (v) denote the set of nodes which are

head nodes of arcs directed from v in the directed graph G.
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The proof of our theorem follows the same basic approach to that of De Simone’s

with some modifications. The proof of De Simone’s theorem uses the fact that the

support graph of all non-trivial facets for the cut polyhedra are two connected. This

is not the case for the directed cut polyhedra. For instance in Section 4.5 it was

stated that:

xij + xjk + xkl − xkj ≤ 1 (6.24)

is facet inducing for DCUT2
4 , but the support graph is not two connected in the

directed or undirected sense. However, we can avoid this problem by putting a

requirement on the support graph of the facet inequality we are trying to lift.

For a directed graph G = (V, A) ⊆ ~Jn with n ≥ 3 vertices, define H be a r-copy

of G if:

• V (H) = V (G) ∪ {r}.

• The graph induced by H on the vertices V (G) \ {r} is G

• There exist u ∈ V (G) such that N−
H (r) \ {u} ⊆ N−

H (u) and N+
H (r) \ {u} ⊆

N+
H (u).

• The vertex u has |N−
G (u)| ≥ 2 and |N+

G (u)| ≥ 2.

Theorem 40 Let G = (V, A) ⊆ ~Jn be a directed graph with n ≥ 3 vertices and let

H = (V ∪ {r}, F ) be an r-copy of G. If aT x ≤ α is a facet inducing non-trivial

inequality of DCUT2(G) where the underlying support graph G(a) doesn’t contain a

node incident to every arc (not a directed star) then [a, 0]T x ≤ α is facet inducing

for DCUT2(H).
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Proof. We can assume that DCUT2(G) is full dimensional as it is a subgraph

of ~Jn. Let m be the dimension of DCUT2(G), which by assumption is equal to the

number of arcs of G, and let x1, ..., xm be affinely independent roots of aT x ≤ α that

correspond to directed cuts δ+
G(S1), ..., δ

+
G(Sm) where Si ⊆ V (G).

A well known property of facets (see [88] or [76]) states that if ā is a vector such

that āT xi = āT xj for all i, j ∈ {1, ...,m} then ā must be a multiple of a.

Let yk and zk be the incidence vectors corresponding to cuts δ+
H(Sk ∪ {r}) and

δ+
H(Sk) respectively. The new points satisfy [a, 0]T yk = [a, 0]T zk = α. Let cT x = b

be an arbitrary hyperplane through the 2m points yk and zk for k = 1, ...,m. Such

a hyperplane exists as c = [a, 0], b = α is such a hyperplane. We want to show that

c = [c̃, ĉ] = λ[a, 0] and b = λα. Clearly, c̃ is a multiple of a as c̃T xi = c̃T xj for all

i, j ∈ {1, ...,m}.

Since cT (yk − zk) = ([λa, ĉ])T ([xk, ŷk]− [xk, ẑk]) = b− b = 0 for all k, it follows

that:

∑
w∈Sk∩N−(r)

ĉwr =
∑

w∈(V (H)\Sk)∩N+(r)

ĉrw (6.25)

Furthermore, cT (yk + zk) = 2(λa)T xk + ĉT ŷk + ĉT ẑk = 2b. This implies that:

∑
w∈Sk∩N−(r)

ĉwr +
∑

w∈(V (H)\Sk)∩N+(r)

ĉrw = 2b− 2λα. (6.26)

Combining (6.25) and (6.26) we get that:

∑
w∈Sk∩N−(r)

ĉwr =
∑

w∈(V (H)\Sk)∩N+(r)

ĉrw (6.27)

= b− λα. (6.28)
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As we want to show that ĉ = 0 we begin by assuming that there exists at least

one non-zero entry in ĉ to obtain a contradiction. We want to have at least one arc

other than ur and ru to have a non-zero ĉjr or ĉrj for some j ∈ V (G) \ {u}.

Assuming that ĉur is the only non-zero entry of ĉ, (6.25) implies that u ∈ V (G)\

Sk for all k. Which implies that
∑

w∈Sk∩N−(r) ĉwr = 0 for all k = 1, ...,m and

cT yk = cT zk = α.

As |N+
G (u)| ≥ 2, let i and j be two nodes such that ui, uj ∈ A(G). The

vectors δ+
G(Si) for i = 1, ...,m are affinely independent which means the set of vectors

T = {δ+
G(Si) − δ+

G(Sm) : 1 ≤ i ≤ m − 1} is linearly independent. If we construct a

matrix using the vectors of T as rows then the columns that correspond to iu and ju

are all zeros. This contradicts T being a set of m − 1 linearly independent vectors.

Therefore, ĉur can not be the only non-zero entry of ĉ.

If we assume that ĉru is the only non-zero, equation (6.25) implies that u ∈ Sk for

k = 1, ...,m. As |N−
G (u)| ≥ 2, at least two nodes i and j exist such that iu, ju ∈ A(G).

If we consider the set T as constructed above, the columns corresponding to iu and

ju will be all zeros which means that T is not linearly independent and the only

non-zero entry can’t be ĉru.

By (6.25) there can not be exactly two non-zeros cru and cur since if u ∈ Sk for a

given k, the LHS of (6.25) is zero and the RHS is non-zero, likewise if u ∈ V (G) \Sk

the RHS of (6.25) is zero and the LHS is non-zero. Therefore, at least one entry of

â that is not aru or aur is non-zero.
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Define a new vector c̄ ∈ RA(G) where:

c̄vu = ĉvr if v ∈ N−(r) (6.29)

c̄uv = ĉrv if v ∈ N+(r) (6.30)

c̄vw = 0 otherwise (6.31)

We will show that c̄ is a multiple of a to obtain a contradiction on the structure of

the support graph G(a).

If u ∈ Sk then by (6.28):

∑
w∈N−(r)\{u}

ĉwrx
k
wu +

∑
w∈N+(r)\{u}

ĉrwxk
uw =

∑
w∈(V (G)\Sk)∩N+(r)

ĉrw (6.32)

= b− λα (6.33)

If u ∈ V (G) \ Sk then:

∑
w∈N−(r)\{u}

ĉwrx
k
wu +

∑
w∈N+(r)\{u}

ĉrwxk
uw =

∑
w∈Sk∩N−(r)

ĉwr (6.34)

= b− λα (6.35)

Combining these equations we find that for all k:

c̄T xk =
∑

vw∈A(G)

c̄vwxk
vw =

∑
w∈N−(r)\{u}

ĉwrx
k
wu +

∑
w∈N+(r)\{u}

ĉrwxk
uw (6.36)

= d− λα. (6.37)

This implies that c̄ = λ′a, ie. c̄ is non-zero by construction and is a multiple of a.

Hence, the vector a has zeros for entries corresponding to all arcs not containing
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node u which is a contradiction to the lemma assumptions. This implies that ĉ must

be zero.

Theorem 40 generalizes Theorem 25 for zero lifting directed cut polyhedra of

the complete graph. If we know that aT x ≤ α is a facet of DCUT2
n for n ≥ 4 we

can take node n − 1 to be u and let node n + 1 be the node r and apply Theorem

40, since the support graphs for non-trivial facet inducing inequalities for DCUTn

and DCUT2
n don’t have a single common node to every arc. Nodes 1 and n− 2 have

arcs directed toward n− 1, node n− 1 has arcs directed towards nodes n and 1, so

|N+
Kn

(n− 1)| ≥ 2 and |N−
Kn

(n− 1)| ≥ 2.

Theorem 40 also deals with non-homogeneous facets. In particular we can now

complete Section 4.5 by proving:

Lemma 41 The inequality:

xki + xij + xjl − xji ≤ 1 (6.38)

is a facet inducing inequality for DCUT2
n for n ≥ 4.

Proof. For DCUT2
4 it is easy to check that the following cuts are roots of the

inequality x31 + x12 + x24 − x21 ≤ 1:

δ+({1}), δ+({1, 2}), δ+({1, 2, 3}), δ+({2, 3}), δ+({1, 3}),

δ+({3}), δ+({1, 3, 4}), δ+({3, 4}), δ+({1, 4}).

This proves that (6.38) is a facet of DCUT2
4 and as the support graph of (6.38) does

not contain a node common to all arcs we can apply Theorem 40.
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CHAPTER 7
Future work on the directed cut polyhedra

7.1 Directed metric polyhedra projections

As was mentioned at the start of Chapter 6, the projection of METn and MET2
n

onto the arc set of a subgraph of Kn has a very nice characterization. The following

is due to a result of Barahona:

Lemma 42 (Barahona [10])

MET (G) = {x ∈ RE(G)
+ |xe − x(C \ {e}) ≤ 0 for C a cycle of G, e ∈ C}.

Using Proposition 11 on switching, Barahona and Mahjoub expressed the structure

of MET2(G):

Lemma 43 (Barahona and Mahjoub [12]) MET2(G) = {x ∈ RE
+|xe ≤ 1for e ∈

E, x(F )− x(C \ F ) ≤ |F : −1 for C a cycle of G, F ⊆ C, |F | odd}.

While this set of cycle inequalities used in this lemma can be exponential and the

Fourier-Motzkin procedure can be used to describe the projection of a polyhedron

using an exponential number of constraints, there also exists an efficient separation

algorithm for the cycle inequalities. This algorithm was described at the start of

Chapter 6. If one was only interested in optimizing over MET(G), this could be

accomplished easily by solving the optimization problem on MET2
n with weights of

zero on edges not appearing in G. This would not require a characterization or

separation algorithm for MET(G). However, there are problems where people are
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more interested in determining if a vector violates an inequality of MET(G), an

example of such problems are known as partial completion problems [57]. In this

case, having an explicit characterization of MET(G) is useful. It could also be the

case that considering n(n− 1) arcs is impractical for large n if G has far fewer arcs.

In investigating if a similar result holds for the projection of the directed metric

cone, we did not find such a nice characterization. To begin describing what we think

the characterization of the projection of the directed semimetric polytope is, we will

begin by focusing on two types of inequalities already introduced in Chapter 6. It

was proved in Section 6.1 that both inequalities (6.3):

xij ≤
∑
a∈Pij

xa (7.1)

and (6.10):

xi1 + x1j ≤
∑
a∈C′

xa (7.2)

are facet inducing inequalities under certain conditions. It can be shown that under

these conditions (6.3) and (6.10) are facets of the projection of DMETn onto the arc

set of a graph G, ie. DMET(G).

To check if an inequality of type (6.3) or (6.10) is violated by a given vector

y ∈ R|A(G)| is straight forward. To check if an inequality of type (6.3) is violated, for

each arc ij we can try and find a shortest path in the graph G \ {ij} from i to j and

check it the path length is less than yij, if so we have found a violated inequality.

For a subraph of ~Jn every cycle must include the node 1 as the graph induced

on ~Jn \ 1 is acyclic. For inequalities of type (6.10) and the pair of nodes i and j with
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i < j, we can check if y ∈ R|A(G)| violates the inequality by summing the length of

the shortest path from node 1 to i, the shortest path from i to j and the shortest

path from j to 1 and checking if this sum is less than yi1 + y1j. Doing this for each

possible pair i and j will find a violated inequality of type (6.10) if one exists.

To begin to characterize DMET(G) we will construct a auxiliary graph G′ where

G′ contains two types of nodes. One type of node, which we refer to as type A,

corresponds to 4−tuples of nodes of G, where (i, j, k, l) ∈ V (G′) if i, j, k, l ∈ V (G)

for i < j < k < l. This node corresponds to the inequality (6.10):

xj1 + x1k ≤
∑
a∈C

xa

where the cycle C ∈ G is the arc 1i, a directed path from i to j, a directed path

from j to k, a directed path from k to l and the arc l1. If any of the arcs 1i,j1,

1k and l1 do not exist in A(G) then the Fourier-Motzkin elimination method tells

us they must have been eliminated through the addition of another valid inequality.

This is the basis of the construction of the auxiliary graph G′. If the arc j1 does not

appear in A(G) then node (i, j, k, l) in G′ has an arc directed to nodes of the form

(i′, j′, k′, l′) ∈ G′ where i′ < j′ < k′ < l′ and j = l′. Similarly, if arc 1k does not

appear in G then node (i, j, k, l) has an arc directed to nodes of the form (i′, j′, k′, l′)

in V (G′) if i = k′ for each such (i′, j′, k′, l′) ∈ V (G′).

The second type of nodes in G′, which we refer to as type B, will correspond to

the 4− tuple (i, p, q, l) where pq ∈ A(G), i < p and l < q. This node is based on the
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inequality of the form (6.3):

xpq ≤
∑

a∈Ppq

xa

where Ppq is a path from p to l in G\{pq} followed by the arcs l1 and 1i followed by a

directed path from i to p. If arc l1 does not exist in A(G) then a node (i′, j′, k′, l′) of

type A in G′ will have an arc directed to (i, p, q, l) if l = j′ for each such (i′, j′, k′, l′) ∈

V (G′). If arc i1 does not exist in A(G) then nodes of type A in G′ of the form

(i′, j′, k′, l′) will have an arc directed to (i, p, q, l) if i = k′.

Each node of G′ will be assigned a node weight. A node (i, j, k, l) of type A will

have a weight equal to:

yj1 + y1k − yl1 − y1i −
∑
a∈Pij

ya −
∑

a∈Pjk

ya

∑
a∈Pkl

xa. (7.3)

Here Pij, Pjk and Pkl are the shortest paths between nodes i and j, j and k, and k

and l respectively in G with arc weights from the vector y. If an arc does not exist

in G its corresponding y value is zero in (7.3).

Nodes of type B will have a weight equal to:

ypq − y1i − yl1

∑
a∈Ppl

ya −
∑
a∈Piq

ya. (7.4)

We are now interested in subgraphs T ⊆ G′ with the following properties. For

all nodes (i, j, k, l) ∈ T of type A, if arc i1 is not in G then T contains a node

(i′, j′, k′, l′) where i = k′ and the arc from (i′, j′, k′, l′) to (i, j, k, l). If 1l is not in

A(G) then T must contain a node (i′, j′, k′, l′) of type A where l = j′ and the arc

from (i′, j′, k′, l′) to (i, j, k, l).
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For all nodes (i, p, q, l) of type B in T , if l1 is not in A(G) then T must contain

a node (i′, j′, k′, l′) of type A where l = j′ and the arc from (i′, j′, k′, l′) to (i, j, k, l).

If 1i is not in A(G) then T must contain a node (i′, j′, k′, l′) of type A where i = k′

and the arc from (i′, j′, k′, l′) to (i, j, k, l).

We will refer to such a subgraph T as a directed inequality subgraph of G′ and we

denote this as T ⊆DIS G′. If we sum the weights assigned to nodes of any subgraph

T with the desired properties the result must be non-positive or we have found an

inequality which the vector y violates, we denote the weight of a directed inequality

subgraph with respect to a vector x as x(T ). By construction it is easy to see that

the inequalities that the subgraph T correspond to are valid for DMET(G).

Conjecture 44 Let G ⊆ ~Jn and let G′ be the constructed auxiliary directed inequal-

ity graph for G. Then,

DMET (G) = {x : x ∈ R|A(G)|, xa ≥ 0∀a ∈ A(G),∀T ⊆DIS G′, x(T ) ≤ 0}.(7.5)

One fundamental difference between the projection of MET2
n onto a graph H

and the projection of DMET2
n onto the arcs of a directed graph G is that using

the triangular elimination to eliminate edges one at a time, one can produce any

cycle inequality in the undirected case, and hence the set of constraints that describe

MET(H). For the directed semimetric polytope this is not the case. For example,

the inequality presented in the following example, the last inequality in Figure 7–3,

is a facet of DMET(G), however this inequality can not be obtained by a series of

addition of inequalities that define DMET2
n that eliminate one arc per addition. In

the following construction, two arcs are eliminated in the final inequality addition.
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Figure 7–1 depicts the elimination of two arcs, i1 and 1j by two additions and

the resulting inequality. The triangular elimination methods presented in Chapter 6

can be used to produce the inequality depicted in Figure 7–2.

Figure 7–1: A depiction of eliminating two arcs by two additions. The sum of weights on
solid arcs is greater than or equal to the sum of weights on dashed arcs.

Figure 7–2: A depiction of the resulting inequality. The sum of weights on solid arcs is
greater than or equal to the sum of weights on the dashed arcs.

Figure 7–3 shows the elimination of two arcs with one addition. The resulting

inequality is facet inducing for DMET(G) if G is the support graph of the inequality

depicted. But it does not appear to us that it is possible to produce this inequality

by eliminating at most one arc per addition starting inequalities that define DMET2
n .

If Conjecture 44 is true, it still only provides an exponential description of

DMET(G). An exponential description is already available via Fourier-Motzkin elim-

ination. To make the description given in Conjecture 44 useful, a polynomial time
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Figure 7–3: A depiction of adding another valid inequality to the inequality of Figure 7–2
and the resulting inequality. The inequality obtained has two arcs eliminated. The sum
of the weights on the solid arcs must be greater than or equal to the sum of weights on
dashed arcs.

separation algorithm would be needed as well. We are therefore interested in algo-

rithms for finding a directed inequality subgraph T of minimum weight or of positive

weight in the constructed graph G′.

7.2 Forbidden minors

A graph H is a graph minor of a graph G if it can be obtained by a series of

edge contractions and edge deletions. A contraction of an edge i, j involves replacing

nodes i and j with a new node and making it adjacent to N(i)∪N(j), the neighbours

of i and j.

As mentioned in Section 6 the following theorem due to Seymour characterizes

when the triangle inequalities describes the cut cone.

Theorem 45 ([75]) If G does not contain a K5 minor then CUT(G) =MET(G).

It would be nice to characterize when the projection of DCUT(G) is completely

characterized by DMET(G). Through the use of the vertex enumeration software lrs

[4] we have come up with a list of subgraphs that ensure that DMET(G) 6=DCUT(G).
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Figure 7–4: A list of directed graphs for which DMET(G) has fractional vertices.

We will define a directed graph G to be a directed minor of a graph H if G can be

obtained from H by performing a series of arcs deletions and directed contractions.

A directed contraction in this context will mean contracting two nodes i and j

into a new node v, if either ij or ji (or both) are arcs of A(G), and adding arcs

{vu : u ∈ V (G), iu or ju ∈ A(G)} and arcs {uv : u ∈ V (G), ui or uj ∈ A(G)}.

Note, there are multiple definitions of directed minors, this definition is only for the

context of this section. It appears to us that a graph containing any of the graphs

in Figure 7–4 as a directed graph minor ensures that DMET (H) 6= DCUT (H).

We would like to come up with a theorem proving that DCUT(G) = DMET(G)

if and only graph G doesn’t contain a directed minor of a given set of graphs, such

as those appearing in Figure 7–4. Such a theorem would likely take a bit of work as

the result of Seymour is a deep theorem that is based on the work of Wagner [85]

characterizing the structure of graphs without a K5 minor. So one would likely need
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a nice characterization of directed graphs not containing directed minors of a set of

forbidden graphs if a similar approach is to be used.

7.3 Inequalities for the POK problem

In formulating open pit optimization problems as an directed cut problems with

knapsack constraints the directed graph which arises is neither the complete directed

graph ~Kn nor the graph ~Jn but a subgraph of ~Kn. If the graph closure problem is

formulated as a maximum cut as described at the end of Section 2.4 then the arcs ij

representing the precedence constraints have weights of −M (a large negative weight

such that arc ij never appears in a maximum directed cut). Therefore, a triangle

inequality of the form:

xsi + xij ≤ xsj

will always have xij = 0, so it is equivalent to xsi ≤ xsj. Considering all such

inequalities forms a totally unimodular system as it defines the graph closure LP. To

develop new valid inequalities for directed cut problems with knapsack constraints,

further research on the interaction between knapsack inequalities and directed cut

inequalities and the integer solutions nearby will be needed.
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CHAPTER 8
Geometric complexity results

We now diverge from the study of polyhedra related to the mining optimization

and focus on the complexity of some problems discussed. Finding a maximum weight

closure with a cardinality constraint on the number of nodes in the closure is NP-

hard in general [54], [34]. This can be shown by a reduction from max clique. From

a graph G for which one wants to know if a clique of size s exists, a graph G′ can

be constructed on which a maximum weight closure of bounded size will be found

if and only if G contains a clique of size s. To create the graph G′, add nodes with

weight 1 for every edge of G and add nodes of weight 0 for every vertex of G. For

each edge node in G′ (the nodes with weight 1) add two arcs directed to the vertices

corresponding to its endpoints. It is easily shown that the graph G′ has a graph

closure problem with at most
(

s
2

)
+s nodes of weight

(
s
2

)
if and only if G has a clique

of size s. This problem of finding a maximum weight closure with a cardinality

constraint is also known as the maximum weight ideal problem, where the directed

graph is considered as a partially ordered set (poset) and a graph closure corresponds

to an ideal of the poset.

The reduction described is not very useful in our framework, however, since our

directed graph has a fixed maximum degree. For a 45 degree slope constraint the

1:5:9 pattern (see [53]) produces an out and in degree of at most 14, δ+(v) ≤ 14.

The maximum clique problem is polynomial time solvable by simply looking at all
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(
n

∆(G)+1

)
subsets of vertices and checking if the subset is a clique. The geometry of

our graph should be considered in the reduction to validate if our instance of the

constrained graph closure is still NP-hard.

As mentioned in Section 2.2 one limitation of existing pushback design algo-

rithms is connectivity. The pushback should be physically connected and not a

collection of disjoint pieces. In investigating connectivity in terms of open pit de-

sign, it can be shown that the problem of finding a maximum weight connected pit

is NP-hard. In fact the proof only uses one mining level, so this can be viewed as a

proof that designing an underground mine to optimize the sum of ore minus waste

removed is NP-hard. The question of whether or not the POK problem (without

connectivity) is NP-hard for a precedence graph created from a block model is still

open.

We will prove the NP-hardness of the connected pit optimization problem by

a reduction using a problem known as: connected node cover on a planar graph of

maximum degree 4. A node cover of a graph G = (V, E) is a subset of the vertices

S ⊂ V (G) such that every edge has at least one endpoint in the subset. A connected

node cover is a node cover S ⊂ V (G) such that the graph induced by S is connected.

The decision problem associated with finding a node cover is whether or not a node

cover of size k exists (|S| = k). It was shown in [38] that connected node cover is NP-

hard even on planar graphs of maximum degree 4. From an instance of this problem,

we want to construct an instance of a maximum value connected pit problem. A

connected pit, will be one in which a path exists between all blocks in the pit where
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blocks are adjacent if they physically touch and share a common border (ie, a block

will have 4 neighbours on its level).

Theorem 46 Maximum weight connected pit is NP-hard.

Figure 8–1: A planar graph G on the left and a grid embedding of the same graph on the
right

A planar grid embedding of a graph with n vertices is a mapping of vertices to

distinct Cartesian 2D grid points and edges to non-intersecting grid paths. Tamassia

and Tollis [80] show that every planar graph of maximum degree 4 can be embedded

in a grid of size O(n2) in linear time, where the length of every edge is O(n2). Given a

planar graph G = (V, E) of maximum degree 4 we can construct an instance of max-

imum weight connected pit where the maximum weight connected pit corresponds

to the minimum weight cover. Begin by subdividing each edge of G and associating

the new set of vertices {s1, ..., sm} with the edge that they subdivided. The resulting

graph is clearly still planar and all the new vertices have degree of 2 < 4. Then

use Tamassia and Tollis’ algorithm to construct a grid embedding of our subdivided
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graph. Assume that the grid we have our graph embedded on is of size n′ by n′

(where n′ is of the order of n).

Figure 8–2: A grid embedding of G with each edge bisected (the black square nodes) and
dummy nodes on every other grid point

To create an instance of a maximum connected pit problem, create a single level

(bench) orebody block model of size 2n′ by 2n′. Note that only the top level of

an orebody model is being considered, so slope constraints and angles need not be

considered. For each node in our embedded graph Cartesian grid, if its location is

(i, j), associate it to the block at location (2i, 2j) in our orebody block model. If

the node at location (i, j) is one of the subdivided edge nodes {s1, ..., sm} assign the

corresponding block a value of n3. If the node at location (i, j) is one of the original

nodes of our graph assign it a weight of −1. If an edge exists between two vertices

vk and vl in our graph, assign the blocks that the edge between vk and vl would

pass through (by taking the grid embedding of the edge and doubling its length in

every direction and placing it on the block model) a value of 0, such blocks will be
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referred to as “zero-weight” blocks. Assign all other blocks of our block model a

large negative value of −n4. We claim that G has a connected node cover of size k if

and only if the constructed orebody model has a connected pit of value ≥ mn2 − k.

Proof. If a G has a connected node cover S of size k, let b1, ..., bk be the

blocks associated with the nodes in S. Choosing all the blocks associated with the

m subdivided edges and the blocks b1, ..., bk gives a pit of value mn2− k. The blocks

in this pit can be connected with blocks of value 0 since each block representing a

subdivided block has a path of zero length blocks to one of {b1, ..., bk}.

If our constructed pit has a connected pit value of mn2 − k then the graph G

has a connected node cover of size k. None of the large negative value blocks can

be in our maximum connected pit, since including one will give a value of at most

mn2−n4 which is less than zero (for a planar graph m is O(n)), so choosing a single

subdivided edge block would give a higher valued pit (n2). It follows that our pit

of value mn2 − k contains only blocks of value −1, 0, and n2. Since there are at

most m blocks of weight n2 they must all be contained in our pit. Since each of the

subdivided edge blocks (those of weight n2) are connected through blocks of weight

0 to blocks of weight −1 every subdivided edge block must have at least one of the

blocks that corresponds to its endpoints in G in the connected pit (to connect the

subdivided edge block to the rest of the pit). This implies that the set of nodes,

S, in our original graph that correspond to the −1 weight blocks in our pit form

a connected node cover. It follows that |S| = k since the connected pit would has

value mn2 − k.
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Figure 8–3: A top view of the constructed orebody model

This complexity result implies that finding a 3D dynamic programming algo-

rithm to produces a connected pit in polynomial time is likely impossible. So there

should be no way to generalize the 2D dynamic programming methods to 3 dimen-

sions.

While this shows that added the constraint of connectedness to our problem

makes the general problem harder, connectedness combined with other gap con-

straints such as the convex bottom, may make the problem easier. The NP-hard

reduction used in this proof falls apart if we have the requirement that our pit have

a convex shape at every bench. An interesting question is whether or not the problem

of finding a maximum valued pit of a constrained size (no connectivity requirement)

remains NP-hard.

The complexity result proved has implications on the computational complexity

of underground mining. In an underground setting, blocks that are removed must be
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physically connected to one another. This result implies that such an optimization

problem should be NP-hard as well even without a knapsack constraint.
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CHAPTER 9
Experimental results - pipage rounding

A major drawback with the Lagrangian relaxation type methods is that the

troublesome constraints are not strictly satisfied by the pushback produced. If the

resulting pushback exceeds a constraint such as mill capacity, then a decision has to

be made on which blocks should be removed from the pushback so that it adheres to

the mill requirements. Similarly, if a pushback falls short of a constraint such as mill

capacity, a decision must be made as to how to enlarge the pushback. These decisions

are typically not done optimally in terms of maximizing discounted NPV. A second

major problem with these methods is that they rely on using a predetermined cut-off

grade and assigning every block a label of either waste or ore prior to the optimization

stage.

We investigated the problem of finding an optimal pushback that adheres to a

specific constraint using a dynamic cut-off grade. The specific constraint considered

is a mill capacity for a given period and an optimal pushback is defined as one that

meets the mill capacity and has the maximum profit of mining the blocks sent to

the mill minus the cost of removing the waste blocks in the pushback. The integer

program formulation of the problem we would like to solve is rather large. Solving

such integer programs requires too much computation time in practice. However,

one can often solve the linear program relaxation in a reasonable amount of time

to obtain a fractional solution. We outline a method for converting the fractional
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solution of a linear program into an integral solution using a technique known as

pipage rounding.

The general framework of pipage rounding relies on finding a non-linear function,

F (y), that is equal to the objective function of the IP, f(y), for integral points. The

linear program relaxation of the integer program is solved and the fractional optimal

solution, y∗, is used to evaluate F (y∗). F (y) is chosen in a way such that one can

round y∗ to integrality while both preserving feasibility and increasing the value

of F (y). Informally, if the evaluated F (y∗) is close to the value of f(y∗) then the

solution obtained from pipage rounding will be close to optimal.

The rounding step consists of taking two fractional entries, yi and yj, of the

current vector y∗ and computing F (y) twice. Once with yi rounded up and yj

rounded down, call the new vector y+ and then for yi rounded down and yj rounded

up, call this new vector y−. The rounding up and down is done in such a way as

to ensure that both y+ and y− are feasible and to ensure that at least one of yi

or yj become integral in both y+ and y−. The entries of y∗ are updated to y+ if

F (y+) > F (y−) and to y− otherwise. The process is repeated until no fractional

entries remain. Clearly, there can only be a linear number of such roundings as each

iteration produces at least one more integral entry.

In the application of pipage rounding to our problem, yi = 1 means that block

i is sent to the mill (processed) for a profit of pj. For a block j if a block i “below”

it is processed then we assume no cost for removing block j and we profit a profit cj

if block j remains in the ground (this is essentially the same as having a negative cj

value if we remove block j). One can replace a variable xj where xj = 0 if a block
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j is removed and xj = 1 otherwise, as xj = min{1 − yi|i below j}. This essentially

puts the slope constraints into the objective function.

The LP we solve has the same optimal solution as the following optimization

problem:

f(y) = max
∑
i∈V

ci min{1− yj, (i, j) ∈ A(G)}+
∑
j∈V

pjyj (9.1)

subject to
∑
j∈V

wjyj ≤ b (9.2)

0 ≤ yj ≤ 1 ∀j ∈ V (9.3)

For the non-linear function,

F (y) =
∑
i∈V

ci

∏
j:(i,j)∈A(G)

(1− yj) +
∑
i∈V

piyi

was chosen. We replaced,

min{1− yj : (i, j) ∈ A(G)}

in the objective function with the polynomial,

∏
j:(i,j)∈A(G)

(1− yj).

For a given i ∈ V , if any yj is 1 for (i, j) ∈ A(G) then min{1− yj : (i, j) ∈ A(G)} is

equal to 0 and
∏

j:(i,j)∈A(G)(1− yj) is 0 as well. For a given i ∈ V , if all yj’s are zero

for (i, j) ∈ A(G) then min{1− yj : (i, j) ∈ A(G)} is 1 and so is
∏

j:(i,j)∈A(G)(1− yj).

It follows that F (y) and f(y) agree for integral values of vector y.
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Given two fractional vector entries y∗i and y∗j we would like to round one up

and one down while preserving constraint (9.2). Clearly, we can only decrease yi by

the minimum of yi and the amount restricted by constraint (9.2). This amount is

dependent on how much we can raise yj, it is required that the value of wiyi + wjyj

remain the same after yi is increased and yj is decreased. An easy calculation implies

that yi can be decreased by the minimum of yi and (1−yj)
wj

wi
, let ε1 be this minimum.

Similar calculations show that we can increase yi by at most ε2 = max{1− yi, yj
wj

wi
}.

One can deduce that the maximum amount we can increase yj is ε1
wi

wj
and the

maximum we can decrease it is ε2
wi

wj
. If ε1 = yi then clearly y∗i will be decreased to

0 otherwise ε1 = (1− yj)
wj

wi
and yj is increased to 1. If ε2 = (1− yi) then yi + ε2 is 1

otherwise ε2 = yj
wj

wi
and yj − ε2

wi

wj
is 1. This guarantees that at least one of the two

fractional entries will be rounded to integrality.

The algorithm was implemented and tested on a case study of 10,000 nodes.

While a malicious example could be constructed such that the non-linear function

is not a good approximation to the LP, in practice it appears to work well giving a

solution within 6.4% of optimal. The ability to strictly adhere to a given constraint

and to determine the cut-off grade dynamically are desired features in a pushback

design algorithm.
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CHAPTER 10
Conclusions

The main results of this thesis concerned the polyhedral structure of the di-

rected cut polyhedra. We primarily focused on describing valid and facet defining

inequalities for the directed cut polyhedra and their relaxations. The motivation for

this work was to further the understanding of these complex combinatorial objects.

Such an understanding can lead to more efficient algorithms for problems that can

be modelled as optimization problems on the directed cut cone or polytope.

Similar results on the undirected cut polyhedra have had impact in a very di-

verse array of fields as mentioned in Chapter 3. Directed cuts are also a natural

formulation for many problems and have been extensively researched. There are

many famous algorithms for finding minimum weight directed cuts, these algorithms

are often required learning in undergraduate computer science programs. An ap-

proximate algorithm for the maximum directed cut problem appeared in a Fulkerson

prize winning paper [41]. Yet the polytope associated with these maximization and

minimization problem had not been researched in the same fashion as the undirected

cut polytope. The polyhedral results developed are well suited to improve both cut-

ting plane and semidefinite optimization algorithms for problems involving directed

cuts.

Projections of the directed cut polytope and cone were a focus of this thesis as

well. If the directed graph over which one wishes to find an optimal directed cut has
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a specific structure then knowing the exact form of the inequalities that define the

projected cut polytope, or a relation of it, can be used to improve an algorithm’s

efficiency. While the optimization problem can be solved on the directed metric

polytope for the complete directed graph, for a large n it may be impractical to

consider O(n2) arcs when the directed graph you are interested in has an order of

magnitude fewer arcs.

Having established a close link between the undirected cut polyhedra and di-

rected cut polyhedra, we presented an algorithm for optimizing over the cut polytope

when optimizing over the rooted semimetric and semimetric relaxations had the same

objective value. This result can be extended to the directed cut polyhedra by using

this algorithm to optimize over both of the defined polyhedra P1,n and P2,n and

taking the better directed cut as the optimal solution. Deciding whether there exists

an optimum integer solution of the same value as that of a given fractional solution

can be very useful. Particularly, since in the result presented an efficient algorithm

exists for computing the integral solution.

In investigating problems related to open pit mining, the main focus was not

to develop an algorithm that worked well on real data sets in practice. The focus

instead has mainly been theoretical in nature. An understanding of the structure of

the polyhedra related to the problem can help in the development of efficient algo-

rithms. Commercial software has had success applying techniques like Lagrangian

relaxation [15] and branch and bound [19]. The cutting plane approaches that could

be developed from the work of this thesis need not compete with these techniques

but instead improve them.
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While optimization in the mining industry has been around for many years, there

still exist many decisions that could be modelled as an optimization problems that

are decided either heuristically or by hand by an experienced planner. The process

that many companies use for developing their long term schedule for an open pit mine

ignores key factors that can greatly impact the NPV of the operation. These include

optimizing cut-off grades, blending, stock piling, economic discounting, precisely

meeting mill and transportation requirements, and incorporating tax models. With

recent advances in orebody modelling multiple simulations of a single deposit are

available to the long term planner. New economic models of mining operations

involving real options are gaining acceptance. The optimization algorithms used in

long term planning will need to change to reflect these recent advances.

When multiple deposits are potentially feeding the same processing facility or

multiple deposits can feed multiple processing facilities, optimization algorithms need

to simultaneously schedule the long term plan for each facility and deposit. An area

of study termed “global optimization” has recently become of interest to mining

companies [83]. This field can be simply viewed as taking multiple decisions that

have traditionally been made in a piecewise fashion and instead produce algorithms

that make these decisions concurrently to obtain better solutions. These solutions

can lead to substantial improvements in the NPV of a mining operation. While

problems related to mining width and connectivity may still remain elusive, many

global optimization problems can easily be modelled using directed cuts and knapsack

constraints. They can be modelled in such a way as to provide solutions that solve

the other issues discussed in Chapter 2.1.
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The area of optimization in the mining industry remains an underdeveloped

area of research. One major problem seems to be related to a lack of communication

between industry and optimization reserchers. The mining process is a complex op-

eration. It takes years of hands-on experience at an operational level to understand

all of the optimization opportunities that exist. It can be difficult to obtain a solid

perspective on what can be safely changed. To solve these problems lines of commu-

nication between operations and research must be fostered. The work in this thesis

is a result of such collaboration at McGill’s COSMO mine planning laboratory. It

would also seem beneficial to bring people with optimization backgrounds into an op-

erational setting so that they can better understand the problems and opportunities

that arise.

With growing concerns on emissions related to large-scale industry, the study

of better optimization algorithms is now more important than ever. Being able to

effectively model every aspect of a mining operation as an optimization problem is not

only of interest economically but environmentally. The feasibility of projects in the

future may rely on modelling and limiting carbon emissions related to projects, such

problems seem to fall under the framework of precedence constraints and knapsack

inequalities.
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Appendix A

Vertices of DMET and RDMET:

Table 10–1: Vertices of DMET2
3 and RDMET2

3

Table 10–1

x12 x13 x21 x23 x31 x32

0 0 0 0 0 0

1 1 0 0 0 0

0 1 0 1 0 0

0 0 1 1 0 0

0 0 1 0 1 0

0 0 0 0 1 1

1 0 0 0 0 1

Table 10–2: Vertices of RDMET2
4

Table 10–2

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0
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Table 10–2

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

0 0 0 1 1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

0 1/2 0 1/2 1/2 1/2 1/2 0 0 1/2 1/2 1/2

0 1/2 1/2 1/2 1 1 0 0 1/2 0 0 1/2

0 1/2 0 1/2 1 1/2 0 0 0 1/2 1/2 1

1/2 1/2 1/2 0 1/2 0 0 1/2 0 0 0 0

1/2 1/2 1/2 0 0 0 0 0 1/2 0 0 1/2

1/2 1/2 1/2 1/2 1/2 1/2 0 0 1/2 0 0 1/2

0 0 1/2 1/2 1/2 1 1/2 1/2 1 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 1 1 0 1 0 0 0

1/2 0 1/2 0 0 1/2 1/2 1 1 0 1/2 0

1 0 1 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 1/2 0 0 1/2 0 1/2 1/2 0 1/2

1/2 0 0 1/2 0 0 1/2 1/2 1/2 1/2 1/2 1/2

0 0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 0 0 0 0 0 1/2 1 1/2 1/2 1 1/2

1/2 1/2 1/2 0 1/2 1/2 0 1/2 1/2 0 1/2 1/2
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Table 10–2

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

0 0 0 1 0 0 1 0 0 1 0 0

0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0 0

0 0 0 1/2 1/2 0 1/2 1/2 0 1/2 0 0

0 0 0 1 1 0 0 0 0 1 0 1

1/2 1/2 1/2 0 0 1/2 0 0 0 0 1/2 0

1/2 1/2 1/2 0 1/2 0 0 1/2 0 1/2 1/2 1/2

1/2 1/2 1/2 0 0 1/2 1/2 1/2 1/2 0 1/2 0

1 0 0 0 0 0 0 1 0 0 1 0

0 0 0 1/2 0 1/2 1/2 0 0 1/2 1/2 0

0 0 0 0 0 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1

1/2 1/2 0 0 1/2 0 0 1/2 0 1/2 1 1

0 1 0 0 1 0 0 0 0 0 0 1
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Table 10–3: Vertices of DMET2
4

Table 10–3

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

0 1/2 0 1/2 1/2 1/2 1/2 0 0 1/2 1/2 1/2

0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0 0

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 1 1 0 1 0 0 0

1 0 1 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

1/2 0 0 1/2 0 0 1/2 1/2 1/2 1/2 1/2 1/2

0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 1

1/2 1/2 1/2 0 1/2 0 0 1/2 0 1/2 1/2 1/2

1/2 1/2 1/2 0 0 1/2 1/2 1/2 1/2 0 1/2 0

1 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1
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Table 10–3

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

0 1 0 0 1 0 0 0 0 0 0 1

1/2 1/2 1/2 1/2 1/2 1/2 0 0 1/2 0 0 1/2

A list of vertices of RDMET2
5 and DMET2

5 can be obtained here:

http://cgm.cs.mcgill.ca/∼cmeagh1/DMET5/dmet5.pdf
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