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ABSTRACT 

Background: Neurosurgical education has been facilitated by virtual reality surgical simulators, 

which provide a safe training environment for trainees. Electroencephalography (EEG) has been 

used to assess the electrical activity of the brain during surgical performance. When divided into 

various frequency bands, EEG data lends itself well to analysis by machine learning, a branch of 

artificial intelligence. Although machine learning classification has traditionally been difficult to 

interpret, advances in model interpretability techniques, such as those utilizing Shapley values, 

allow for the determination of the significance of each input metric to the overall model 

classification. Although EEG has been used widely to explore expertise in sport and aviation 

simulation training, it has yet to be used to classify surgical expertise.  

Objective: The goals of this study were (a) to develop a machine learning model to accurately 

differentiate skilled and less-skilled individuals using EEG performance data recorded during a 

simulated surgery task, (b) to explore the relative importance of selected EEG bandwidths to 

surgical expertise, and (c) to gain insight into differences in EEG bands between skilled and less-

skilled individuals.  

Hypothesis: EEG recordings during a virtual reality surgery task would accurately predict the 

expertise level of participants.  

Methods: Twenty-one participants performed three simulated brain tumor resection procedures 

on the NeuroVR™ platform (CAE Healthcare, Montreal, Canada) while EEG data was 

simultaneously recorded. Participants were divided into 2 groups. The skilled group was composed 

of five neurosurgeons and five senior neurosurgical residents (post-graduate years 4-6) and the 



  6 

less-skilled group was composed of six junior residents (post-graduate year 1-3) and five medical 

students. A total of 13 metrics from EEG frequency bands and ratios (e.g., theta, alpha, beta, 

theta/beta ratio) were generated. Machine learning models were trained using EEG activity to 

differentiate between skilled and less-skilled groups. The relative importance of each EEG metric 

was calculated using Shapley values.  

Results: Seven models were trained with the artificial neural network achieving a testing accuracy 

of 100% (AUROC = 1.0). Model interpretation via Shapley analysis identified low alpha (8–10 

Hz) as the most important metric for classifying expertise. Skilled surgeons displayed higher (p = 

0.044) low alpha than the less-skilled group. Beta (13–30 Hz), beta 1 (15–18 Hz), beta 2 (19–22 

Hz) and the theta/beta ratio (TBR) were also shown to be important metrics for discerning 

expertise. Skilled surgeons showed significantly lower TBR (p = 0.048) and significantly higher 

beta, beta 1, and beta 2 (p = 0.049, 0.014, 0.015 respectively).  

Conclusion: Machine learning algorithms successfully differentiates EEG activity between skilled 

and less-skilled groups during a simulated bimanual surgical task. Our methodology aids in the 

understanding of which EEG components contribute to expertise. The findings from this study can 

be used to help inform future research on surgical skill education and develop intelligent tutoring 

systems to provide trainees neurofeedback on virtual reality surgical simulation. 

Key words: Brain tumor resection, Artificial intelligence, Artificial neural networks, Machine 

learning, Simulation, Surgical training, Virtual reality, Neurofeedback 
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RÉSUMÉ 

Contexte : L'enseignement de la neurochirurgie a été facilité ces dernières années par des 

simulateurs chirurgicaux en réalité virtuelle, qui offrent un environnement de formation sûr aux 

stagiaires. L'électroencéphalographie (EEG) a été utilisée pour évaluer l'activité électrique du 

cerveau pendant la performance chirurgicale. Lorsqu'elles sont divisées en différentes bandes de 

fréquences, les données EEG se prêtent bien à l'analyse par apprentissage automatique, une 

branche de l'intelligence artificielle. Bien que la classification de l'apprentissage automatique soit 

traditionnellement difficile à interpréter, les progrès des techniques d'interprétabilité des modèles, 

telles que celles utilisant les valeurs de Shapley, permettent de déterminer l'importance de chaque 

métrique d'entrée pour la classification globale du modèle. Bien que l'EEG ait été largement utilisé 

pour explorer l'expertise dans la formation par simulation sportive et aéronautique, il n'a pas encore 

été utilisé pour classer l'expertise chirurgicale.  

Objectif : Les objectifs de cette étude étaient (a) de développer un modèle d'apprentissage 

automatique pour différencier avec précision les individus qualifiés et moins qualifiés en utilisant 

les données de performance EEG enregistrées lors d'une tâche de chirurgie simulée, (b) d'explorer 

l'importance relative des bandes passantes EEG sélectionnées expertise, et (c) pour mieux 

comprendre les différences dans les bandes EEG entre les individus qualifiés et moins qualifiés.  

Hypothèse : Les enregistrements EEG lors d'une tâche de chirurgie en réalité virtuelle prédisent 

avec précision le niveau d'expertise de l'interprète.  

Méthodes : Vingt-et-un participants ont effectué trois résections simulées de neuroblastome sur la 

plateforme NeuroVR™ (CAE Healthcare, Montréal, Canada) tandis que les données EEG étaient 
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enregistrées simultanément. Les participants ont été divisés en 2 groupes. Le groupe qualifié était 

composé de cinq neurochirurgiens et de cinq résidents en neurochirurgie (années d'études 

supérieures 4-6) et le groupe moins qualifié était composé de six résidents juniors (années d'études 

supérieures 1-3) et de cinq étudiants en médecine. Un total de 13 métriques de bandes de 

fréquences et de rapports EEG (par exemple, thêta, alpha, bêta, rapport thêta/bêta) ont été générés. 

Des modèles d'apprentissage automatique ont été formés à l'aide d'une activité EEG pour 

différencier les groupes qualifiés et moins qualifiés. L'importance relative de chaque mesure EEG 

a été calculée à l'aide des valeurs de Shapley.  

Résultats : Sept modèles ont été entraînés avec le réseau de neurones artificiels atteignant une 

précision de test de 100 % (AUROC = 1,0). L'interprétation du modèle via l'analyse de Shapley a 

identifié un faible alpha (8 à 10 Hz) comme la mesure la plus importante pour classer l'expertise. 

Les chirurgiens qualifiés ont affiché un alpha faible (p = 0,044) plus élevé que le groupe moins 

qualifié. De plus, le bêta (13-30 Hz), le bêta 1 (15-18 Hz), le bêta 2 (19-22 Hz) et le rapport 

thêta/bêta (TBR) se sont avérés être des métriques importantes pour discerner l'expertise. Les 

chirurgiens qualifiés ont montré un TBR significativement plus faible (p = 0,048) et des bêta, bêta 

1 et bêta 2 significativement plus élevés (p = 0,049, 0,014, 0,015 respectivement).  

Conclusion : Les algorithmes d'apprentissage automatique différencient avec succès l'activité 

EEG entre les groupes qualifiés et moins qualifiés au cours d'une tâche chirurgicale bimanuelle 

simulée. De plus, notre méthodologie aide à comprendre quels composants de l'EEG contribuent 

à l'expertise. Les résultats de cette étude peuvent être utilisés pour éclairer les futures recherches 

sur l'enseignement des compétences chirurgicales et développer des systèmes de tutorat 
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intelligents pour fournir aux stagiaires un neurofeedback sur la simulation chirurgicale en réalité 

virtuelle. 

Key words: Résection d'une tumeur cérébrale, Intelligence artificielle, Réseaux de neurones 

artificiels, Machine learning, Simulation, Formation chirurgicale, Réalité virtuelle, Neurofeedback 
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BACKGROUND 

Surgical Education 

History of Surgical Education 

Prior to the 19th century, surgery was largely carried out by barber-surgeons and consisted 

primarily of bloodletting and debridement.1 It was not until the advent of the 19th and 20th centuries, 

with the rise of anaesthesia and antisepsis, that surgery in its modern scientific form developed. 

With this increased complexity arose the need for more stringent surgical education through 

apprenticeships, which would start at puberty and last 5-7 years.2 In this way, students learned to 

conduct surgery by observing surgery in clinical settings and then replicating the procedure. Since 

no formal curricula or guidelines were developed, students varied greatly in the quality, length of 

training, and setting of their education, and no equitable system was in place to dictate who to 

train.2 

In seeking to rectify the lack of basic clinical sciences in American surgical education 

relative to his native German system, and by embracing Sir William Osler’s concept of clinical 

clerkships, William Halsted at Johns Hopkins spearheaded the move to a graded responsibility 

system. The Halstedian model, also called the “see one, do one, teach one” model, systematically 

assigned increasing responsibility to trainees while not guaranteeing that students will advance to 

the next stage.1 This model, however, tended to concentrate on students with a stronger aptitude 

for surgical skills and at times only 1 of 8 students would eventually become a staff surgeon.1 In 

1939, Edward Churchill at the Massachusetts General Hospital proposed an alternative graduated 
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teaching system which called for the simultaneous training of multiple trainees rather than only a 

few individuals.1 This model is still the primary method of training surgeons in the modern day.2 

The dawn of the 21st century began to unravel some of the limitations of this training 

system. The discovery of novel diseases and surgical treatments, development of innovative 

surgical technologies, and the increasing trends of litigation and patient-centred care and ensuing 

paperwork1 have necessitated that surgical residents learn more in less time. Furthermore, noting 

the danger of overworked trainees on patient safety, the United States introduced a weekly limit 

of 80 hours for medical residents and limited each shift to a maximum of 30 hours in 2003.3 Other 

such limits on residency training time were instituted in Europe in 1993, limiting work to an 

average of 48 hours, and more recently in Canada, where the National Steering Committee on 

Resident Duty Hours offered guidelines in 2013 that included a limit on the maximum working 

hours of 60 – 90 hours and a 24 – 26 hour limit on shift time.3 While this trend of introducing 

workplace limits on resident working hours has been generally regarded as praiseworthy in light 

of its benefits on mental health and burnout rate reduction in residents, it has also been criticized 

as further decreasing training time for surgeons.4 This is particularly troubling given the 

comparatively short time span of a modern residency program relative to a practicing surgeon’s 

career, which in turn is problematic given the modern pace of advancement in surgical techniques 

and technology.5 

To address gaps in surgical technical skill and ensure the incorporation of the ever-

increasing body of surgical knowledge into practice, surgical organizations offer post-graduate 

educational programs which render certificates of completion.1 Also, advancements in technology 

has permitted advancements in surgical education tools. Surgical simulation, for example, has been 
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made more accessible due to tissue engineering,6 additive manufacturing,7 and virtual reality8 

technology. These technologies have resulted in some surgical training centres supplementing the 

traditional training model with surgical simulation.4,9 

Virtual Reality Simulation 

There has been a shift in recent years towards more simulated training in supplementing 

traditional surgical education,10 driven by increased operating room costs and the desire to limit 

patient risk.4 As a result, simulation is not just a technique for trainees but is likewise applicable 

to experts wishing to acquire new techniques.11 Also, simulation is particularly important at times 

when less clinical interaction is possible, and has therefore gained interest during the COVID-19 

pandemic.12 

Simulators are usually classified as high- or low-fidelity, depending on a subjective 

appraisal of their realism and range of features.13 Surgical simulation has consisted mostly of the 

use of lower-fidelity bench-top and 3D-printed models, as well as high-fidelity cadaveric, animal, 

virtual reality, and robotic models.4 The non-reusability of animal model systems, the expenditure 

of animals in this cause, and concern over potential infection of trainees by animal-borne diseases 

such as bovine encephalopathy, have made virtual reality (VR) simulation an especially 

fashionable option in the high-fidelity sphere.14 

Virtual reality simulation provides a safe training environment and allows for self-guided 

learning using a computer-generated graphical training procedure.15 There is considerable 

evidence that training on a virtual reality simulator improves surgical practice.15 For example, VR 

simulation has been shown to decrease operative time while improving surgical performance.16 
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Performance-related measures have also been shown to improve with real operating room surgical 

expertise.17 Furthermore, there is the future potential for patient-specific VR simulation, wherein 

a training procedure is customized to a planned case by way of imaging. To this end, a patient is 

imaged using magnetic resonance imaging (MRI) or a similar technology, and this data is 

incorporated into the training program. Such an option would supplement a surgeon’s mental 

preparation for a case with physical preparation and may further provide an avenue for patient 

communication concerning a surgical procedure.18 

As with the aforementioned methods of surgical simulation, several limitations exist in the 

virtual reality model. For instance, currently, there is a large cost associated with developing the 

virtual reality simulator itself and given the high spatial acuity and the need for haptic feedback, 

such systems are usually dependent on more expensive computational hardware. This translates 

into a higher cost of acquisition.19 There is also a large cost associated with developing and 

validating training procedures which may limit the range of procedures available for practice.20 

Furthermore, not all simulators include a full haptic feedback system, which provides real-time 

tactical force feedback based on the trainee’s actions.19 This can be problematic given the 

dependency of surgeons on haptic feedback in guiding their procedures, and the fact that the 

presence of haptic feedback is thought to reduce surgical error and as a result increase patient 

safety.21 Furthermore, some VR simulators lack realism in their graphical output.19 

As with other simulators, VR simulators are assessed on reliability and validity. Reliability 

measures the extent to which each simulation is reproducible, and consists of three types: inter-

observer, intra-observer, and test-retest reliability.14 Inter-observer reliability measures 

reproducibility between trainees, whereas intra-observer reliability measures the reproducibility of 
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a single trainee’s results. Test-retest reliability measures the correlation between multiple instances 

of a trainee’s performance. In contrast, validity measures the simulator’s ability to teach what it 

purports to and is composed of three primary types: face, content, and construct validity.14 Face 

validity measures how realistic the simulation is. Content validity measures the extent to which it 

simulates all aspects of a given surgical procedure. Finally, construct validity measures its ability 

to classify expertise.14 A common theme in surgical simulation is a lack of reproducible validation 

studies of simulators, although work is being done to address this.14 

The NeuroVR™ simulator (CAE, Montreal, Canada) is a notable counter-example to this 

last limitation and is a VR platform for neurosurgical simulation that has been relatively well 

validated.22 It was developed during a long-term collaboration between the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre and the National Research Council of 

Canada starting in 2008, and in consultation with a network of experts on neurosurgery and 

neurosurgical education. Equipped with endoscopic and stereoscopic views as well as bimanual 

surgical tools, the NeuroVR™ has been marketed as “the world’s most advanced simulator for 

neurosurgery.”23 It further features a 1280x1024 pixel surgical view and auditory, visual, and full 

haptic feedback systems.24 Additionally, the NeuroVR™ allows for the recording and exportation 

of psychomotor performance metrics, which have in turn been used to validate the device by 

objectively characterizing the expertise of trainees.22,25 See Figure 1 for an illustration of a 

simulated brain tumor resection on the NeuroVR™ platform. 

Objective Assessment of Expertise 

To address the aforementioned gaps, a recent trend in surgical education has been a 

renewed focus on surgical outcomes rather than completion of curricula,26 coupled with the move 
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towards a competency-based, as opposed to a time-based, training system.27 To adequately begin 

to assess competence, a working definition of competence as it is applied in surgery was required, 

given that the expectations that patients had of surgeons differ drastically from what is expected 

of other professions.5 As such, surgical competence has been defined as the capacity to apply 

knowledge and technical skills to new and familiar tasks5 and is founded on five pillars: problem-

solving, effective communication, teamwork, ethical integrity, and the technical ability to safely 

operate.5,27 Although competence, as opposed to expertise or mastery, may otherwise seem to be 

a rather underwhelming bar to meet for surgeons aiming to treat life-threatening, this stringent 

definition ensures that surgeons are able to meet their patients’ expectations.27 

It has been shown that subpar technical skills are associated with worse patient outcomes.28 

Thus, several global rating scales (GRS) have been developed to address the technical pillar of 

competency.29 The gold-standard of these systems is the objective structured assessment of 

technical skills (OSATS-GRS),30 which consists of both a surgery-specific checklist and a global 

rating five-point Likert scale.30,31 These objective assessments have been shown to reliably 

distinguish between different levels of surgical experience,31 but are costly to implement, 

particularly when done as an examination outside of normal operating room duties.30,31  

This limitation has given rise to research into objective computer-aided skill evaluation 

(OCASE) of surgical technical skill (OCASE-T).29 In this approach, surgeons are monitored using 

cameras,30,32 physiological sensors,33 tool motion sensors,34 tissue manipulation sensors,35 and 

electroencephalography (EEG).36,37 This data is then passed through an automated classification 

system that is trained on surgical learners of various experience levels in order to automatically 

assess their expertise.34 Such approaches have been used to achieve accuracies upward of 98% in 
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classifying trainees between expert, intermediate, or novice levels.29 In order for the system to 

have the desired effect of improving surgical skill, as opposed to only assessing it, it is necessary 

to provide feedback to the learner concerning the classification and reasons for such a decision.29 
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Electroencephalography 

Electroencephalography (EEG) is a technique used to measure the electrical activity of 

cortical neurons spontaneously or during an event.38 Differential amplifiers are used to amplify 

small voltage potential differences to render them detectable.39 Although EEG does not have the 

granular capacity to detect single neurons, it can detect the simultaneous summation of post-

synaptic potentials of neuron clusters (as opposed to action potentials, which do not summate and 

as such are thought to only slightly contribute to the total EEG signal).40 To this end, electrodes 

are often placed on the scalp and EEG is able to monitor the local electrical activity surrounding 

each electrode.39 

Much processing goes into transforming raw EEG signal into meaningful insight. For 

instance, raw EEG signal is captured in the time domain and consists of waves of various 

frequencies, amplitudes, and shapes. To permit more meaningful analysis, it is transformed into 

the frequency-domain using the Fast Fourier Transform (FFT) algorithm. Moreover, raw EEG 

signal is ordinarily contaminated with irrelevant electrical signals from the body, such as those 

from eye movements,41 eyeblinks,41 muscular activity,42 and cardiac rhythm.43 These are each 

removed using specialized software. The raw EEG is also contaminated with electrical signals 

from the environment, such as those associated with power outlets at the 50 or 60 Hz level.44 These 

artefacts are removed by passing the data through a Notch filter which filters out the particular 

frequencies.45 The data is then sorted into frequency bands that have been derived empirically and 

each associated with meaningful psychological traits (Table 1). The full EEG processing workflow 

employed in this study is illustrated in Figure 2. 
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EEG is commonly used as a clinical test, in diverse applications such as diagnosing 

diseases, monitoring general seizure activity, and monitoring sleep stages and quality.46 The 

primary advantages of EEG include its high sampling rate and relatively low cost. In addition, 

EEG has a notable advantage over other biosensors in that it is predictive of motor action,47 which 

could potentially be utilized to prevent fatal errors in surgery. However, its limitations include 

poor spatial acuity and difficulty in monitoring subcortical structures.48 

Band significances 

Bandpass filters are commonly used to focus in on a particular range of frequencies for 

analysis.40 EEG data, divided into various frequency bands, are associated with various cognitive 

processes. For instance, certain bands are associated with learning and memory, whereas others 

are associated with tranquillity.49 The most commonly studied frequency bands include alpha, beta, 

theta, delta, and sigma,40 although the exact frequency ranges and significances for each of these 

bands is not always agreed upon and may differ between individuals.40 

Specifically, this study included delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta 

(13-30 Hz) bands, as well as the sensorimotor rhythm (SMR, 12-15 Hz). Low (4-6 Hz) and high 

theta bands (6-8 Hz) and beta 1 (15-18 Hz), 2 (19-22 Hz), and 3 (23-36 Hz) bands were also 

included. Furthermore, a composite metric known as the theta/beta ratio (TBR) that has been 

associated with technical expertise was calculated as the square of the theta band divided by the 

square of the 13-21 Hz beta band.50 Table 1 illustrates these EEG frequency bands and their 

respective significances based on a survey of the literature.49,51,52,53 A strategic positioning of 

electrodes around the neural areas associated with the trait assessed has been shown to increase 

the utility of training procedures based on EEG signals. For example, electrodes focused around 
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the front-parietal neural network, important in attention, may be overrepresented in a training 

procedure for attention-deficit/hyperactivity disorder (ADHD).54 

Furthermore, in addition to individual frequency bands, the relationship and 

interdependence between different frequency bands has been implicated in neural function in a 

process known as cross-frequency coupling (CFC). For instance, in a particular type of CFC 

known as phase-amplitude coupling (PAC), the phase of a lower frequency bands affects the power 

of a higher frequency bands, synchronizing the amplitude of the faster bands with the phase of 

slower bands.55 PAC has been detected in various brain regions, such as the basal ganglia and 

hippocampus, and associated with various forms of cognitive functioning, including attention, 

visual perception, and memory processing.56 These brain regions and functions play a role in 

surgical performance, and thus it may be important to note the potential effects of CFC in a full 

EEG analysis of surgical expertise. 

Temporal, Spatial, and Spectral Analyses 

A complete EEG analysis usually includes a combination of temporal, spatial, and spectral 

analysis and typically includes about 21 electrodes, with less electrodes resulting in lower spatial 

acuity. 

Temporal analysis examines EEG band variance with time. As a timeseries signal, EEG 

naturally lends itself to this sort of analysis. The most common type of temporal EEG analysis 

involves event-related potentials (ERPs), which attempt to quantify the psychological response to 

a stimulus to capture sensory and cognitive processes.57 In this analysis, EEG waves are 

synchronized with physical events in order to objectively map neural response across individuals. 
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Human ERPs are divided into sensory, which are exhibited immediately following a stimulus, and 

cognitive, which occur afterwards and are associated with the subject’s perception of the 

stimulus.57 The shape, frequency, and type of waves are all considered in characterizing response. 

The main limitation of this analysis is the technical requirement of synchronizing EEG recordings 

to events via time stamps, which has historically been arduous but has been facilitated in recent 

years with more advanced software technology. Interestingly, features extracted from this sort of 

analysis have been shown to be more important than those from the two other analytical methods 

in a motor imagery classification task.58 See Figure 3 for sample temporal EEG data. 

Spatial analysis arises from the use of multiple EEG electrodes and encompasses the impact 

of the relative location of each electrode to the EEG signal. To this end, a system known as the 10-

20 System has been developed to standardize the placement of electrodes on subjects’ heads.38 

This system relies on four skull landmarks: the nasion (Nz) at the bridge of the nose; the inion (Iz), 

the bony extrusion at the back of the head; and the two pre-auricular points beside each ear (LPA 

and RPA).59 See Figure 4 for an illustration of the 10-20 system. The advantage of this analysis is 

the ability to better localize EEG signals to particular cortical areas. However, this sort of analysis 

has the limitation of requiring multiple electrodes, which results in increased setup time, costs, and 

general inconvenience due to potential wiring. These limitations are usually well worth the effort 

and it is very common to use multiple electrodes in both academic and therapeutic practice to 

enable this form of analysis. 

Spectral analysis considers the power spectral density of the EEG signal as a function of 

frequency.60 This sort of analysis may consist of averaging out temporal differences in EEG signal 

across frequency band in a given time span so as to only consider overall trends. Spectral analysis 
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arose out of the relative lack of computational resources in the 20th century but continues to be the 

most popular form of EEG analysis in use today. Although it may depend on less data than the 

aforementioned types of analysis, spectral analysis provides a big picture overview and lends itself 

well to neurofeedback.61 Nonetheless, it is important to emphasize the importance of all of these 

forms of analysis to a more complete understanding of neural activity. 

Neurofeedback 

Neurofeedback is a technique used to increase a subject’s self-awareness of their neuronal 

activity in order to facilitate signal change, all in an effort to promote optimal context-dependent 

brain functioning, such as relaxation or concentration. Neurofeedback is usually done with EEG 

data, however more modern advances have experimented with the use of magnetic resonance 

imaging (MRI) to this end.62 Rooted in operant conditioning, neurofeedback calls for EEG patterns 

to be recorded, analysed and fed-back live in the form of visual and/or audio cues to the 

participant.63 This process promotes the learning of correlations between the participant’s internal 

mental state and recorded neural signal, facilitating voluntary control over the precipitation and 

maintenance of particular states62 and has been linked to underlying physiological transformations, 

such as increases in white and grey matter in the brain.64 

There are several major neurofeedback training protocols, each characterized by the 

frequency band that they target, and include alpha, beta, alpha/theta, delta, theta, and SMR. Alpha 

training improves relaxation and is usually used for the treatment of pain, stress, or anxiety.62 Beta 

training is usually carried out with the goal of increasing focus, attention, and cognitive 

processing.62 Next, alpha/theta is one of the primary neurofeedback types to control stress and is 

usually done using auditory feedback with closed eyes with the goal of decreasing alpha while 
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increasing theta. The delta protocol strives to increase comfort, reduce pain, and promote sleep. 

Also, the theta training promotes relaxation by increasing alpha and theta waves while decreasing 

high beta, which is associated with concentrated thinking62. Finally, SMR training is thought to 

improve concentration by decreasing theta waves, which are associated with wandering, and 

increasing SMR, which is associated with calmness and focus65. 

Although initially established as a treatment for certain neurological disorders such as 

ADHD, anxiety, and Post-Traumatic Stress Disorder,66 much research has investigated the use of 

neurofeedback in improving technical expertise such as in athletics61,67 and pilot68 simulation 

training. This is known as peak performance training and is utilized by artists, athletes, musicians, 

and executives but under-utilized by surgeons, which the author feels is unfortunate, given the 

high stakes at play in surgery relative to the aforementioned fields. However, this is to be expected 

since surgical training curricula have traditionally aimed to develop competence in trainees, and 

although competence is set at a high-standard in surgery, it is not at the level of excellence that is 

expected of elite athletes or fighter pilots.69 Surgical simulation training has enabled the possibility 

of supplementing surgical practice with neurofeedback in order to train surgeons more holistically. 

Furthermore, this transition may be facilitated by the proliferation of neurofeedback training tools, 

with many options now being available commercially.70 For instance, the Muse headband offers a 

relatively inexpensive option that functions through auditory feedback, playing a particular genre 

of music corresponding to whether a subject is within the optimal range or not.70 

Neurofeedback protocols are usually initiated via an EEG to establish baseline levels. 

Comparing these baseline recordings with a database replete of other individuals with similar 

demographical characteristics, it is possible to identify bandwidths that are under- or over- 
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stimulated. A neurofeedback training protocol is then initiated to increase or reduce these 

bandwidths respectively. However, it is unclear as to the order of training in the case of multiple 

sub-optimal bands. Thus, the elucidation of the relative contribution of each EEG frequency band 

to the final training goal may facilitate the integration of neurofeedback in a training protocol.62 In 

the present study, a greater understanding of the relative contribution of each EEG frequency band 

to surgical expertise, may lead to the development of an evidence-based system of neurofeedback 

training for surgical training during virtual reality simulation.62 To this end, large EEG datasets 

can be analysed by artificial intelligence (AI) to deconstruct the frequency bands important in 

expert surgical performance.61 A potential neurofeedback training protocol making use of the 

results of this study is illustrated in Figure 5. 
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Artificial Intelligence 

Artificial intelligence (AI) is the use of computers to mimic human behavior. AI traces its 

computational roots to the 1950s, when Alan Turing, in an attempt to answer the question of 

whether a machine can think, proposed what became known as his eponymous Turing Test.71 A 

machine passes the test and attains true intelligence if it is able to deceive a person into believing 

that it is human from behind a veil.72 This test has inspired generations of artificial intelligence 

practitioners and has led to ground-breaking developments, particularly in language understanding 

and generation.73 

Since then, AI has gone through several “AI winters” where it has seen periods of relative 

inadvertence. However, recent advances in computing capacity, data storage, and computer 

analytics have elevated AI capabilities and have once again brought this discipline to the corporate 

and commercial spotlight.74 With the ability to automate specialized work, reducing costs and 

accelerating growth in the process, AI has the potential to revolutionize many aspects of human 

life.74 Prevalent branches of AI include natural language processing (NLP), robotics, and computer 

vison (CV), which have respectively spearheaded advancements in chatbots, robot-assisted 

surgery, and autonomous vehicles. See Figure 6 for an illustration of the relationship between AI 

and selected subbranches. 

In healthcare, artificial intelligence is projected to assist in facilitating physician-patient 

interactions by supplementing triage,75 diagnosis,76 prognosis and survivorship prediction,77 and 

medical or surgical education.78 Smart scribes are also expected to utilize voice recognition to 

automate clinical documentation, mitigating legal challenges and liberating physicians for full 

engagement with patients while decreasing clinical burnout.79,80 
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Machine Learning 

The rise of sensors, data pipelines, larger data storage capacities, and more advanced data 

analytical tools has resulted in a move away from explicitly programmed expert systems to data-

based learning (machine learning, ML). This new field has reinvigorated artificial intelligence 

research and it has resulted in systems which exhibit more generalizability than previously 

possible, thus addressing a key limitation of AI research. Notably, biomedical data collection and 

storage in the form of electronic medical records and associated medical test and imaging results,77 

genetic tests,81 and internet of things (IoT) biosensors82 have made the applications of this field 

particularly exciting in healthcare. See Figure 6 for an illustration of the relationship of ML with 

other branches of artificial intelligence. 

Machine learning is generally divided into four subcategories based on how algorithms are 

trained: reinforcement learning (RL), supervised learning (SL), unsupervised learning (UL), and 

semi-supervised learning. Reinforcement learning is the learning of behaviour in order to 

maximize a quantitative reward signal and minimize a punishment signal. In this system, an agent 

is fit with sensors and allowed to interact with its environment and learns to successfully navigate 

the challenges in its environment by seeking to maximize its reward function.83 In supervised 

machine learning, an algorithm is trained by being exposed to multiple examples of a series of 

observations associated with human-labeled classes. In contrast, unsupervised learning aims to 

address this costly limitation of human-labeled classes by learning patterns from unlabelled data, 

usually through cluster analysis.84 Semi-supervised learning combines principles from the two 

aforementioned approaches by training algorithms using a seed amount of labeled data and a 

relatively large amount of unlabeled data.84 
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Nonetheless, supervised learning continues to be the most popular subbranch of machine 

learning.85 Supervised learning algorithms aim to conduct either classification or regression.76 

Classification is the goal of assigning a discrete category to a particular observation, whereas 

regression is the estimation of a continuous dependent variable based on an observation.76 To these 

ends, several types of ML models exist but the seven most common types in healthcare in order of 

popularity are support vector machines (SVMs), artificial neural networks (ANNs), logistic 

regression (LR), linear discriminant analysis (LDA), Random Forest (RF), Naïve Bayes (NB), and 

K-Nearest Neighbors (KNN).86 Each model utilizes a slightly different mathematical analytical 

method to arrive at classifications or regression results.87 The particular model type that is chosen 

for a task is empirically determined and dependent on the nature of the data present and the amount 

of computing resources available during training and deployment.88 

Linear SVMs work on linearly separable data by selecting a hyperplane that maximizes the 

minimum margin, which is the minimum distance between a particular class label and the 

classification cut-off, whereas kernel SVMs work on non-linear data using a predefined kernel 

function to map data to higher dimensional representations.89  Artificial neural networks are 

inspired by their biological counterparts and are discussed extensively in the following section. 

Logistic regression is used for binary classification and is based on fitting the input data on a 

sigmoid function. Since it predicts the probability of being in the target class, a cut-off value of 

0.5 is usually assigned in order to assign discrete classes.89 Linear discriminant analysis reduces 

the dimensionality of the problem by creating a new dimension and projecting the data on that 

dimension in such a way so as to maximize the separation of the categories. It does so by seeking 

to maximize the distance between the sample means while reducing the variability in each 

category.89 Next, Random Forests work by generating a myriad of decision trees, each based on a 
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random subsample of the total training data, and then tallying the number of classifications of each 

class from these trees. The class with the most tallies is designated as the model output.89,90 Naïve 

Bayes models generalize the Bayes rule to an arbitrary number of input variables and returns the 

probability of an output value given the input values. They have subtypes that are specialized to 

different data distributions, including Bernoulli, multinomial, and Gaussian.89 Finally, K Nearest 

Neighbors works by assigning a class depending on the weighted average of the closest K 

examples in the sample. It has the notable disadvantage of being relatively slow at run-time since 

it does not train over data in advance, and thus may be impractical in applications where real-time 

feedback is necessary.89 

In classification tasks, supervised learning algorithms first go through a training phase 

wherein they are fed labeled training data, allowing them to adjust their algorithmic parameters in 

such a way so as to progressively improve their ability at classifying examples. In the case of 

neural networks, this is done by identifying this step as a minimization problem and defining a 

loss function which quantifies the distance between the model’s current predictions and the true 

predictions.91 The loss function is minimized, leading to optimal performance given the current 

training parameters. Afterwards, a model is tested on previously withheld testing data and 

generally outputs a list of probabilities associated with each predefined possible class. The class 

associated with the highest output probability is then taken as the model’s prediction for that 

example.88 A notable exception exists in binary classification, where only one probability 

corresponding to a target class is generally output, since the opposite probability is mutually 

exclusive. The workflow for regression tasks is very similar, with only slight differences in the 

type of loss function used and the class labels. 
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As with all artificial intelligence constructs, machine learning currently has a number of 

major limitations. For example, it is estimated that over 80% of enterprise data is unstructured, 

meaning that it cannot be represented in tabular form, which poses a challenge given the relative 

weakness of machine learning in analyzing this sort of data.92 Notably, this includes audio, emails, 

and physician notes.77 Furthermore, data silos make accruing enough data to train larger models 

difficult, although a recent trend of democratizing data93 is promising and a field known as 

federated learning94 is making it possible to train on data held in remote devices. Furthermore, 

maintaining confidentiality is integral when collecting training data. This is particularly 

concerning as malicious techniques have been recently developed that are capable of recreating 

training data from final models,95 and is even more pressing in healthcare, where one must stay 

compliant with Health Insurance Portability and Accountability Act (HIPAA) regulations and 

maintain the trust of patients.96 Also, biases in the dataset utilized for training may result in biased 

predictions, in a phenomenon known as garbage in, garbage out (GIGO). This has been particularly 

concerning in healthcare, as such biases could lead to life-threatening recommendations.97 Finally, 

as a fast-moving field, legislation and ethical research has struggled to keep up with the pace of 

advancements in machine learning.98 

Artificial Neural Networks 

Artificial neural networks are a special type of machine learning structure inspired by the 

biological structure of the human brain. Nodes, called neurons, are connected by synapses, known 

as weights. These weights are often stochastically initialized, which contributes to the fact that 

multiple identical training trials may yield different final neural networks.99 
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In a traditional sequential neural network, the first layer in a neural network is known as 

an input layer and corresponds to the data being input, with one neuron being assigned to each 

input metric. The last layer in a neural network is known as the output layer and corresponds to 

the type of output, which may vary widely from a probability to a continuous variable to an image. 

In between these two layers is a number of hidden layers, each with a number of neurons. More 

modern neural networks, such as LSTMs100 or Transformers,101 may exhibit more complex 

structural characteristics in that they are not strictly sequential. 

As metrics propagate through a neural network, they are transformed appropriately. The 

internal structure of each neuron may vary, but generally, each neuron takes a number of inputs 

and multiplies them by their respective learned weights. Then, a neuron summates all of its inputs 

to one value, adds to it a learned bias value, and then applies an activation function to it.99 The role 

of activation functions is to introduce nonlinearity into the system, thus increasing the potential 

complexity of the relationship between the input metrics and the output results, while also 

controlling for a class of quantitative problems associated with propagation known as vanishing 

or exploding gradient problems.102 Several activation functions have been established in the 

literature, although the rectified linear unit (ReLU), sigmoid, and the hyperbolic tan (Tanh) 

functions are very common.103 The role of the bias term, on the other hand, is to mathematically 

shift the activation function left or right, effectively increasing the potential complexity of the 

relationships mapped. For example, whereas changing the weight to multiply the summed values 

by may not affect a hypothetical final sum of 0, adding a bias would enable this final sum to be 

mappable to any other value. 
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When the metrics reach the output layer, a loss function which is defined a priori is applied. 

This loss function quantifies the distance between the current prediction and the true value. A 

popular loss function for classification is binary cross entropy, whereas a popular loss function for 

regression may be mean squared error (MSE).104 Then, the backpropagation technique, derived 

from the Chain Rule of calculus, is used in conjunction with a technique known as stochastic 

gradient descent (SGD) to smoothly adjust the weights between each neuron so as to decrease the 

current loss. This is done progressively, with multiple passes (epochs) of the training data going 

through the neural network in batches.105 

Various metrics exist to assess the success of a neural network. For example, accuracy, the 

area under the received operating curve (AUROC), F-measure, and mean absolute error (MAE), 

are all used to this end.77 However, certain metrics are thought to be better than others in certain 

circumstances. For instance, accuracy may not be a good measure of success given extreme class 

imbalances, as the correct prediction of only a few overrepresented classes would then enable the 

achievement of a relatively high accuracy at the expense of the underrepresented classes. In this 

case, a metric which takes this sort of bias into account, such as AUROC, is advised.106 

Neural networks are characterized by their inherent flexibility and the relatively large 

number of possible parameters to adjust.107 These parameters, not learned during the training 

process and instead set manually by the machine learning practitioner, are known as 

hyperparameters. Usually, a procedure is set whereby hyperparameters are tuned by trying various 

combinations iteratively while seeking to minimize each model’s loss. Furthermore, they are also 

characterized by their relatively large number of potential trainable parameters, with some 
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networks being trained with upwards of a trillion parameters.108 Figure 7 illustrates an example 

neural network. 

Deep Learning 

The latest wave of interest in artificial intelligence has been a result of the success of deeper 

neural networks.109 To distinguish this sort of artificial intelligence from its more basic machine 

learning counterpart, the term deep learning was coined.109 Although there exists controversy over 

what exactly constitutes a deep model, a rough guideline posits that it is a neural network with 

three or more hidden layers.110 The relationship between deep learning and artificial intelligence 

as well as machine learning is illustrated in Figure 6. 

Traditional machine learning workflows include a time-consuming and unscalable step 

known as feature engineering. Feature engineering is the manual selection and curation of input 

metrics for a model and constitutes up to 80% of total modelling time.77 Deep learning models, in 

contrast, are able to circumvent the need for this step by extracting metrics from less processed 

data.109 However, this circumvention contributes to the increased difficulty with which these 

models may be understood due to the selection of non-human interpretable abstractions and may 

introduce elements of bias that are carefully avoided with manual feature selection.77 

Deeper networks are usually associated with increased predictive power and accuracy. 

However, they are also associated with increased complexity and difficulty in interpretability due 

to their potential abstract representations of the input metrics. This is particularly challenging in 

healthcare, where a dilemma may exist between using a more powerful deep learning model, and 

the need to be able to justify the decision made. However, there are ways to control for this, such 
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as partial feature engineering where a DL practitioner designs several metrics but also allows the 

model flexibility to generate its own.77 Furthermore, the field of model interpretability seeks to 

address this issue. 

Model Interpretability 

Traditionally, a key limitation of more complex machine and deep learning models has 

been the inability to interpret their decision-making process.111 As a result, many machine learning 

models, especially those associated with deep learning, were classified as black boxes. This has 

unique implications in healthcare, where decisions can have grave consequences and as such 

patients often demand that individual healthcare providers be able to take responsibility for 

them.112 Trust in these systems by healthcare professionals may be undermined by the potential 

for bias, the lack of domain technical expertise, and lack of knowledge pertaining to machine 

learning principles.112,113 Historically this issue was circumvented by limiting oneself to more 

simple models, which were relatively simple to interpret.111 However, a dilemma has arisen where 

a balance must be struck between the use of more complex models, which were often more 

powerful yet less interpretable, and the ability to explain decisions to patients.112 

To address this issue, statisticians and computer scientists have developed tools to allow 

for the interpretation of the decision-making process of more complicated machine learning 

models in a trend known as interpretable ML.112 A model in healthcare is classified as interpretable 

if it is possible to evaluate the reasoning behind its output, thus empowering healthcare providers 

with the ability to accept or reject its recommendations on a more informed basis.114 
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Interpretability methods can be classified in several ways. A common approach is to 

classify them based on which step they are employed within the training process. Pre-model 

interpretability methods are applied before a model is built and include techniques such as 

descriptive statistics and clustering methods.112 By understanding the characteristics of the data at 

hand, and the model’s inherent dependence on said data, one can extrapolate the potential biases 

the model would pick up on. It is then possible to alter the properties of the data at hand through 

various techniques, such as subsampling, to arrive at a less biased model. In an alternative approach 

to pre-model interpretability, one may train a model that is inherently simple to interpret due to its 

structural properties, such as a decision tree, or limit the potential complexity of a model by 

introducing interpretability constraints such as sparsity.112 Sparsity refers to a constraint on the 

maximum number of input metrics that are used in the final classification, thus only allowing for 

the learning of relatively less complex relationships. In contrast, post-hoc, or post-model, methods 

facilitate the interpretation of a model after its training. Various techniques exist, such as the 

training of an intrinsically interpretable model to mimic the predictions of the complex model and 

then interpreting this relatively more interpretable model. If the approximation is sufficiently 

similar to the original model, it will preserve its statistical properties, thus making this a valid 

method of interpretation.115 Alternatively, one may examine the learned model weights.115 

Interpretability methods can be classified as model-specific or model-agnostic. Model-

specific methods derive explanations that are dependent on a model’s internal structure. An 

example of this type of method was proposed by Julian Olden in 2004 and is known as Olden’s 

Method or the Connection Weight Product method.116 It is specific to neural networks.116 In this 

method, each metric of a neural network is traced through the associated weights and neurons to 

determine its contribution in the output layer. See Equation 1 and the associated explanation in 
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the Model Interpretability Case Study section of the Discussion for a more detailed account of this 

method, and Figure 8 for a sample interpretation. In contrast, some have argued for the use of 

model-agnostic methods due to their relative versatility.117 These are generally post-hoc model 

interpretation methods that operate on the principle that a feature’s importance can be determined 

by measuring the change in a model’s accuracy after the feature is prodded. More important 

metrics will have larger effects on a model’s accuracy with only slight modifications.115 

Interpretability methods have also been classified based on their scope of interpretability. 

Global interpretability methods aim to explain a model’s outputs over a population in general 

terms. In contrast, local interpretability explains how a model comes to any one particular 

output.118 Both are important and have their applications in healthcare.112 For instance, one might 

elect to run a global interpretability method upon initial modelling to ensure that no striking biases 

exist and that the model does not operate in counter-intuitive terms. Then, upon the use of a model 

in clinical practice, one may interpret the decision-making process of the model on a one-by-one 

basis before presenting their results to the patient. This way, these interpretability methods serve 

to provide layers of safety for the end user. 

It is now, at least in the case of smaller models, possible to determine the relative 

importance of each input metric to the model’s final classification, in an explanation measure 

called feature importance.111 When combined with a carefully curated set of meaningful metrics, 

this represents an opportunity to better understand a model’s decision-making process.119 Two 

especially well-known approaches exist in this regard: Local Interpretable Model-agnostic 

Explanations (LIME)120 and Shapley Additive Explanations (SHAP).111 The first type depends on 

the production of a model that can approximate a model’s output for only one particular instance. 
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It works by perturbing the input data and assessing the resulting changes in the model output.120 

In contrast, the Shapley explanations method treats the features of a machine learning problem as 

players in a coalitional game from game theory. A specific value, called a Shapley value, is 

assigned to each feature, and demonstrates its contribution to the result. However, while Shapley 

values produce high quality explanations, their exact computation can be implemented efficiently 

only in certain (decision tree-based) model types, whereas they must be approximated when using 

other models.111 See Equation 2 for the mathematical formulation of the Shapley values and 

Figure 9 for a sample model interpretation using Shapley values. 
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THESIS HYPOTHESIS AND SPECIFIC OBJECTIVES 

The challenges of 21st century medicine, including the advent of novel surgical treatments 

and the discovery of novel diseases and advancements in surgical technologies, against a backdrop 

of increasing litigation and ensuing paperwork, has called for more learning in less time on the 

part of surgical residents.1 In addressing these challenges, traditional surgical education has been 

supplemented with surgical simulation.10 Virtual reality simulation presents several key 

advantages in this regard, including its propensity towards reusability, the absence of animal 

sacrifice and related ethical dilemmas, and the lack of risk of potential infections associated with 

animal or cadaver models.14 

In order to maximize the efficiency of such a system, and in line with the trend towards 

competency-based medical education, objective methods of classifying surgical expertise are 

required.27 The gold-standard of these systems, known as the objective structured assessment of 

technical skills (OSATS),30 consists of both a surgery-specific checklist and a global rating five-

point Likert scale.30,31 This system has had some success but is relatively costly to administer since 

it requires the independent assessment of surgical performance by multiple surgical personnel.31 

To mitigate this issue, several automated methods are currently under development to track 

surgical performance in the hopes of objectively quantifying surgical expertise.29 These 

methodologies have relied on tracking surgeons via several key technologies, such as cameras,30,32 

physiological sensors,33 tool motion sensors,34 tissue manipulation sensors,35 and 

electroencephalography (EEG).36,37 

Relatively less focus has been placed on the potential of electroencephalography (EEG), 

the recording of neural electrical activity using electrodes, in this regard. This is despite the fact 
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that EEG has the marked advantage over other biosensors of being predictive of movement,47 

which could potentially be utilized to prevent fatal errors in surgery, whilst being relatively low 

cost and having a relatively high sampling rate.40 Furthermore, EEG has the potential to be used 

to improve technical skills using a technique known as neurofeedback, where EEG frequency 

bands are fed back to participants in order to increase their psychological self-awareness and 

facilitate active change in EEG activity.121 

Although EEG has been used in assessing surgical performance,122 it has not been applied 

to classify surgical expertise. A large data analytical task such as this lends itself to applications in 

artificial intelligence (AI), the mimicking of human behaviour using digital computers. 

Specifically, a branch of AI known as machine learning (ML) allows for algorithms to be trained 

using data rather than by programming predefined rules. It has been been applied extensively in 

neurosurgical care and EEG analysis, where it has been used to facilitate the surgical treatment of 

epilepsy, brain tumors, Parkinson’s disease, and brain injury.123 Furthermore, our group has 

already utilized ML methodologies to construct Intelligent Tutoring Systems for surgical education 

by classifying surgical expertise using tool motion sensors.34,78,119 

Such complex systems have traditionally been difficult to implement in healthcare settings 

due to the difficulty with which their classifications are interpreted and the need to ensure 

objectivity for the highest quality of patient care.112 However, recent advances in model 

interpretability methods have enabled exploration of the underlying decision-making systems in 

complex algorithms.112,115 One example of this is the Shapley model interpretability method, which 

aims to assign a relative value to each input metric in a given classification task.111  
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This study addresses multiple questions. Is it possible to accurately distinguish between 

different levels of surgical expertise in an artificial reality surgical simulation using only EEG 

data? Which machine learning model type is best equipped to handle such a classification task? 

What are the differences in EEG frequency band power levels between skilled and less skilled 

surgeons? What is the relative contributions of each EEG frequency band to a final skilled 

classification? 

The hypothesis tested in this study was that EEG signals recorded during surgical 

performance on a simulated brain tumor resection task would provide an accurate classification of 

surgical expertise using machine learning algorithms. We thus set several objectives: 

1. To compare the most common types of machine learning models in their ability to 

classify expertise using EEG data 

2. To generate a model capable of accurately distinguishing between skilled and less-

skilled participants on a virtual neurosurgical simulation 

3. To statistically analyze differences in EEG frequency bands between skilled and less-

skilled participants 

4. To use model interpretability methods to assess the relative contribution of each EEG 

frequency band to final expertise classification 

This pilot study aims to provide insight on the utility of EEG data in surgical expertise 

classification, with the goal of ascertaining the educational utility of EEG in a modern surgical 

residency program. Using virtual reality, artificial intelligence, and model interpretability methods, 

we shed light on the psychological profile of surgical trainees and how this knowledge may be 

used in training programs. Finally, we build on our results to provide guidelines for how a 

neurofeedback mechanism for training surgical residents may be established. 
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Abstract 

Virtual reality surgical simulators have facilitated neurosurgical education by providing a 

safe training environment. Electroencephalography (EEG) has been employed to assess 

neuroelectric activity during surgical performance. Machine learning (ML) has been widely 

applied in analyzing EEG data split into frequency bands. Modern model interpretability 

techniques, such as those utilizing Shapley values, have enabled the analysis of more complex ML 

models. Although EEG is widely used in fields requiring expert performance, it has yet been used 

to classify surgical expertise. Thus, the goals of this study were to (a) develop an ML model to 

accurately differentiate skilled and less-skilled performance using EEG data recorded during a 

simulated surgery, (b) explore the relative importance of each EEG bandwidth to expertise, and 

(c) analyze differences in EEG band powers between skilled and less-skilled individuals. We 

hypothesized that EEG recordings during a virtual reality surgery task would accurately predict 

the expertise level of the participant. Twenty-one participants performed three simulated brain 

tumor resection procedures on the NeuroVR™ platform (CAE Healthcare, Montreal, Canada) 

while EEG data was recorded. Participants were divided into 2 groups. The skilled group was 

composed of five neurosurgeons and five senior neurosurgical residents (post-graduate years 4-6) 

and the less-skilled group was composed of six junior residents (post-graduate years 1-3) and five 

medical students. A total of 13 metrics from EEG frequency bands and ratios (e.g., theta, alpha, 

beta, theta/beta ratio) were generated. Machine learning models were trained using EEG activity 

to differentiate between skilled and less-skilled groups. The relative importance of each EEG 

metric was calculated using Shapley values. Seven model types were trained, with the artificial 

neural network achieving a testing accuracy of 100% (AUROC = 1.0). Model interpretation via 

Shapley analysis identified low alpha (8–10 Hz) as the most important metric for classifying 
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expertise. Skilled surgeons displayed higher (p = 0.044) low-alpha than the less-skilled group. 

Furthermore, skilled surgeons displayed significantly lower TBR (p = 0.048) and significantly 

higher beta (13–30 Hz, p = 0.049), beta 1 (15–18 Hz, p = 0.014), and beta 2 (19–22 Hz, p = 0.015), 

thus establishing these metrics as important markers of expertise. 

 

KEY WORDS: Electroencephalography, Artificial Intelligence, Machine Learning, Education, 

Virtual Reality, Neurofeedback  
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1.0 Introduction 

The subpial resection of human brain tumors adjacent to important cortical structures is a 

challenging operative procedure and one in which neurosurgical trainees are expected to acquire 

proficiency.124 Technical errors in this complex bimanual psychomotor skill include subpial vessel 

hemorrhage and injury to adjacent normal cortex can result in significant patient morbidity.28,124 

To aid learners in the mastery of this technical skill necessary to safely and efficiently carry out 

these procedures our group has helped develop24 and validate virtual reality simulators125 along 

with creating complex and realistic virtual reality tumor resection tasks.126 Virtual reality surgical 

simulators employed in neurosurgical education provide a safe training environment and allow for 

self-guided learning.15 These learning tools are particularly relevant during times when trainees 

have less clinical interaction such as during the present  COVID-19 pandemic.12  

Electroencephalography (EEG), the use of electrodes to assess neural electrical activity, 

has been used to continuously assess brain activity during surgical performance.37 EEG data 

analysis is conducted by transforming the raw data into a variety of frequency bands (e.g., alpha, 

theta) that are associated with various cognitive processes such as attention, memory, learning and 

psychomotor efficiency.62,127 Theta frequencies, for example, are associated with learning and 

memory, whereas alpha frequencies are associated with tranquillity.49 The understanding of how 

each frequency band contributes to surgical expertise, may allow the development and 

implementation to neurofeedback training interventions to improve technical skills performance.61 

EEG has been used in surgery,36 sport,61,128,129 and flight simulation training68 to predict 

expertise and/or to improve performance using neurofeedback. Christie et al. (2020) utilized EEG 

neurofeedback to improve ice hockey shooting performance and reported significantly higher rates 
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of improvement in the treatment group compared to controls.61 Neurofeedback training is based 

on the principles of operant conditioning, where EEG is recorded, analysed and fed-back live in 

the form of visual and/or audio cues to the participant.63 This feedback enables the participant to 

progressively learn how their internal mental state correlates with the neural signal, facilitating 

voluntary control over entry to, and maintenance of, particular states.62 

Neurofeedback has been shown to increase the amount of white and grey matter in the 

brain in addition to significantly enhancing visual and auditory sustained attention.64 Despite it’s 

use in other fields that require expert performance, few studies have explored neurofeedback in 

surgery.36,130 This may be related to the focus of  present surgical training curricula on the 

development of  competence in trainees, rather than  expertise.69,131 Technical surgical skills 

education is evolving from an apprenticeship model where trainees working with intraoperative 

surgical educators are progressively given more operative responsibility towards a competency-

based quantifiable framework. Linking neurosurgical psychomotor bimanual skill performance in 

virtual reality simulator scenarios to resident specific training in operating room environments 

continues to be difficult.10 However, the utilization of EEG monitoring during virtual reality 

neurosurgical procedures to outline the EEG frequency band composites of expertise and the 

utilization of these composites in neurofeedback may result in new formative paradigms for 

surgical education.62
 

Large EEG data sets can be analysed  by artificial intelligence to deconstruct the frequency 

bands important in skilled bimanual performance.132 Artificial intelligence is the use of computers 

to mimic human decisions. Machine learning is one branch of artificial intelligence that imitates 

human behavior without the need for a predefined list of rules to follow.  Several machine learning 
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algorithms can be trained to discover patterns within a training dataset and their pattern recognition 

abilities are tested on a separate testing dataset.86 

There are many different types of machine learning algorithms, which are based on 

different mathematical analytical methods applied to the data.87 Some of the most utilized machine 

learning algorithms include support vector machines, neural networks, logistic regression, linear 

discriminant analysis, Random Forest, Naïve Bayes, and K-Nearest Neighbors.107 Machine 

learning  has been applied in neurosurgical care, to assist in the surgical treatment of epilepsy, 

brain tumors, Parkinson’s disease, and brain injury.123 These algorithms are beginning to play roles 

throughout the whole arc of neurosurgical care: from presurgical planning to intraoperative 

guidance, neurological monitoring, and outcome prediction.123 Our group has employed a number 

of machine learning algorithms to assess and train surgical learners.34,119,133,134 Machine learning 

algorithms can be utilized to classify groups into different levels of surgical expertise with greater 

granularity and precision than previously demonstrated.34,119  

Machine learning models have traditionally been considered black boxes and deciphering 

their decision-making process has been difficult. Advances in the field of model interpretability 

have  helped to mitigated this problem90,135 and for  less complex models, it is possible to determine 

the relative importance of each input metric to the model’s final classification.111 One useful 

interpretability method is Shapley interpretation, where the features of a machine learning problem 

are treated as players in a coalitional game from game theory. A specific value called a Shapley 

value, is assigned to each feature, and represents its contribution to the final classification result. 

However, while Shapley values produce high quality explanations, their exact computation can be 
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implemented efficiently only in certain (decision tree-based) models, whereas they must be 

approximated when using other models.111 

The hypothesis tested in this study was that EEG signals recorded during surgical 

performance on a simulated brain tumor resection task would provide an accurate classification of 

surgical expertise using machine learning algorithms. The specific objectives were 1) to determine 

which machine learning algorithm provided the greatest precision in classifying skilled from less-

skilled performance on a virtual reality brain tumor resection procedure, 2) to outline which EEG 

frequency bands were most relevant to this classification, and 3) to gain insight into EEG frequency 

bands differences in between skilled and less-skilled individuals. 

  



  53 

2.0 Methods 

2.1 Study Participants 

A total of 24 individuals from one institution were enrolled in this study including 6 

neurosurgeons, 6 senior neurosurgical residents (post-graduate years 4-6), 6 junior neurosurgical 

residents (post-graduate years 1-3), and 6 medical students. Data were collected at a single time 

point and no follow-up data were collected. Collected demographic data included age, gender, 

handedness, resident training level, and hours of video games and musical instruments played 

weekly. Participants rated the tumor resection procedure difficulty after each tumor resection on a 

five-point Likert scale. All participants had previous experience with the NeuroVR™ 

neurosurgical simulator in a previous study.136 Since previous research suggests differential EEG 

patterns between left- and right-handed individuals,137 2 left-handed participants (1 senior resident 

and 1 medical student) were excluded. One neurosurgeon’s data was not utilized due to excessive 

noise affecting the EEG recording. See Figure 10 for an illustration of the inclusion and exclusion 

of participants. The remaining 21 participants were classified a priori as skilled (neurosurgeons 

and senior residents), or less-skilled (junior residents and medical students) groups based on their 

patient intraoperative experience with the selected brain tumor procedure. Before starting the 

study, all participants signed a consent form approved by the McGill University Health Centre 

Research Ethics Board, Neurosciences-Psychiatry. This study follows Consolidated Standards of 

Reporting Trials involving Artificial Intelligence (CONSORT-AI)138 and the best practices for 

Machine Learning to Assess Surgical Experience (MLASE) reporting guidelines.139 
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2.2 NeuroVR™ Simulator and Simulation Scenario 

The NeuroVR™ platform (CAE Healthcare, Montreal, Canada), is a high-fidelity virtual 

reality neurosurgical simulator, providing 3D visual operative experience with haptic feedback 

(Figure 1A). The virtual reality simulated brain tumor resection scenario consisted of identical 

tumors and stiffness with random bleeding points.20 The color, stiffness, and elliptical structure 

chosen for each tumor was a simulated glioma-like brain tumor embedded in a simulated cortical 

surface (Figure 1B). The task was specifically designed to model patient brain tumor resection 

procedures. Participants were provided with written and verbal instructions and asked to complete 

a tumor resection while minimizing bleeding and injury to the surrounding simulated normal 

tissue. 

2.3 Study Sequence 

Participants were equipped with one active electrode placed on the scalp at Cz in 

accordance with the International 10–20 system38 and referenced to linked ears (Figure 1A). The 

ProComp Infinity (Thought Technology Ltd., Montreal, Canada) continuously acquired EEG data 

at a sampling frequency of 256 Hz. Impedance values were kept below 5 kΩ.  

EEG data collection began with a 2-minutes eyes-closed, and a 2-minutes eyes-open 

baseline recording. Following this baseline, participants resected 6 simulated brain tumors on the 

NeuroVR™ platform (CAE Healthcare, Montreal, Canada) (Figure 1B). Participants utilized a 

simulated surgical aspirator in the dominant hand for tumor resection and a simulated sucker in 

the non-dominant hand to control bleeding (Figure 1C).136 Participants began by resecting tumors 

1 and 2 (2 minutes were allocated per tumor resection). This was followed by a 90-second rest 
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period in which participants were instructed to close their eyes and to relax prior to the next task. 

This sequence was then repeated for scenario two (tumor 3 and tumor 4) and three (tumor 5 and 

tumor 6). All simulated tumors were identical except for tumor 4, which included uncontrollable 

intraoperative bleeding resulting in simulated patient cardiac arrest.20 Due to the acute stress that 

participants experienced during resection of tumor 4 and impact this may have had on subsequent 

performance, only data from tumors 1-3 were included in this analysis, thus totalling 6 minutes of 

data per participant. Future research will explore differences in expertise under simulated stress. 

Participants completed a post simulated operative questionnaire utilizing a five-point Likert scale 

to indicate their perception of the difficulty of each tumor resection. 

2.4 Feature Selection 

Fast Fourier Transform (FFT) was used to separate the raw EEG signal into various power 

spectra bandwidths using Biograph Infinity software (Thought Technology Ltd., Montreal, 

Canada). The 13 metrics included: delta (2–4 Hz), theta (4–8 Hz), low theta (4–6 Hz), high theta 

(6-8 Hz), alpha (8–12 Hz), low alpha (8–10 Hz), high alpha (10–12 Hz), beta (13–30 Hz), 

sensorimotor rhythm (SMR, 12–15 Hz), beta 1 (15–8 Hz), beta 2 (19–22 Hz), beta 3 (23–36 Hz).  

The theta/beta ratio (TBR) has been found to be associated with cognitive processing capacity and 

was thus felt to be an important feature to assess.50 The TBR is calculated by dividing the square 

of theta (4–8 Hz) divided by the square of beta (13–21 Hz). All metrics were averaged across each 

tumor resection per participant. See Table 2 for a detailed analysis of each analyzed feature 

separated by expertise level. 
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2.5 Training 

Three datapoints were collected per participant, corresponding to the average value of the 

13 generated metrics during each tumor resection simulation.20  Thus, a total of 63 datapoints from 

21 participants were available for analysis. Data were randomly divided into training (16 

participants, 48 tumors, 76%) and testing datasets (5 participants, 15 tumors, 24%). The testing 

dataset was composed of 1 neurosurgeon (10 years in practice), 1 senior (post-graduate year 4), 2 

junior residents (both post-graduate year 1), and 1 medical student. Statistical comparison of these 

two datasets revealed no differences in age, years of practice, gender, or proportion of skilled or 

less-skilled individuals (p = 0.182, 0.411, 0.993, and 0.696 respectively). Data was normalized by 

centering to the mean and scaling component-wise to unit variance, and then shuffled.140 

Seven machine learning algorithms were trained on the training set: Artificial Neural 

Network (ANN), Naïve Bayes (NB), Linear Discriminant Analysis (LDA), Logistic Regression 

(LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF).141 

These models represent the seven most common algorithms used in the field of artificial 

intelligence in healthcare.99 Leave-one-out cross validation was used (Figure 11). This involved 

the iterative withholding of a participant in the training set, whose membership is predicted by a 

trained model on all other participant data. This process is repeated until all individuals have been 

classified. Hyperparameters of each model were manipulated until the training accuracy peaked. 

A final training was done for each model on the whole training dataset using the optimized 

hyperparameters. Finally, the trained models were tested on the testing dataset for independent 

validation.  



  57 

Since the ANN model provided the highest accuracy, it was selected for interpretation (see 

Figure 7 for an illustration of the model). A Shapley explainer model was trained to compute the 

average expected marginal contribution of each EEG metric to each testing participant’s tumor 

resection classification for the model.111 Shapley values were plotted (Figure 9). All modelling 

and interpretability were performed using Scikit-Learn, Tensorflow, and Keras, in Python code 

written by the authors. A Tensorflow/Keras Sequential Model was utilized for the artificial neural 

network, whereas Scikit-Learn models were used for all other model types and for the pre-

processing of data.  

2.6 Statistical Analysis 

Pearson’s Chi-squared test was used to test differences in proportions, such as gender and 

expertise differences across the training/testing split and differences in gender across expertise. 

Unpaired two-tailed T-Tests were used to compare participant age across expertise groups and 

training/testing split. A Kruskal-Wallis test was used to compare tumor difficulty ratings between 

expertise groups, due to the scale’s discontinuity. Regression analysis was conducted on 

correlations between age and each of the EEG metrics as well as years in practice and each of the 

EEG metrics. All findings were assessed at the 0.05 alpha level for significance. 
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3.0 Results 

Demographic information is presented in Table 3. Eighteen (87.7%) of the participants 

were male, with mean age (SD) of the skilled and less-skilled group being 37.2 (8.1) and 26.2 (3.0) 

which were significantly different (p < 0.001). Three participants (12.5%) played musical 

instruments, whereas 8 (33%) reported playing video games. On the night before participating 

average sleep time was 6.0 ± 1.5 hours, suggesting participants were relatively well rested. No 

differences in sleep between expertise groups was found (p = 0.309). Skilled and less-skilled 

participants rated the tumor resection procedure difficulty, with mean (SD) of 3.17 (0.83) and 3.70 

(0.89) on average on the five-point Likert scale, respectively. Statistical analysis revealed no 

difference (p = 0.851, 0.067, and 0.110 respectively) in their subjective perception of the difficulty 

of each tumor resection procedure following operation, with a greater number signifying greater 

difficulty (Table 1). 

The EEG data exhibited high fidelity, except for the previously mentioned subject that was 

removed due to inadequate EEG placement (Figure 10), and all background rhythms were normal. 

The classification accuracies for training and testing are illustrated in Table 4 and the final 

confusion matrices of the ANN modelling are shown in Figure 12. The sensitivity and specificity, 

as well as the F-Measure (the harmonic mean between the precision and the sensitivity), are 

reported. A receiver operating curve (ROC) was constructed for each testing model to calculate 

the area under the ROC (AUROC). Due to the slight class imbalance that was present in the testing 

set (3 less-skilled vs. only 2 skilled), metrics such as F-Measure and AUROCs are more 

representative of the results relative to accuracy. 
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The best performing model, ANN, was selected for model interpretation. Shapley value 

interpretations are plotted in order of magnitude in Figure 9. The low alpha band was most 

important in expertise classification and the TBR, a composite of the theta and beta band, was the 

least important metric. 

To explore EEG activity further, we averaged the EEG results across the 3 tumor resections 

by participant. Then, we compared the skilled and less-skilled groups using unpaired two tailed T-

Tests (Table 2).  Significantly higher average values of low alpha, overall beta, beta 1, and beta 2 

(p = 0.0443, 0.0485, 0.0141, 0.0148, respectively) were found for the skilled compared to the less-

skilled group.  In addition, a significantly lower TBR was found for the skilled compared to the 

less-skilled group (p=0.0484).  
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4.0 Discussion 

The combination of virtual reality simulation, EEG, and machine learning provides an 

opportunity to classify surgical expertise. This study demonstrates that an artificial neural network 

model can predict skilled and less-skilled participant levels of expertise based on EEG recordings 

with high fidelity during the performance of virtual reality simulated brain tumor resections. We 

utilized the Shapley model interpretability technique111 to conduct an analysis of the metrics that 

the model identified as important in classification, thus allowing a determination of the relative 

importance of EEG bands in expertise classification (Figure 9). A statistical analysis in average 

EEG bands provided the differences between skilled and less-skilled EEG activity (Table 2). 

Since low alpha is associated with calmness and neural efficiency,49 our findings suggest 

that skilled participants may have acquired abilities resulting in operating with greater composure 

and purpose than less-skilled participants.67 Neural efficiency is related to the neural efficiency 

hypothesis, which states that skilled individuals tend to exhibit lower neural activity during the 

same cognitive task compared to less-skilled individuals.142 This result reinforces the concept that 

skilled surgical performance involves cognitive elements such as enhanced composure and 

focus.143 

Although beta waves were relatively less important on our Shapley classification, most 

beta bands (beta 1, beta 2, and overall beta) were significantly different between groups. Skilled 

participants consistently had higher levels of beta waves (Table 2), suggesting that skilled 

participants may more consistently operate with greater attention and problem-solving abilities.144 

Skilled participants exhibited significantly lower (p = 0.0484) TBR, consistent with usage of TBR 

as a means of assessing expertise in several other fields. The TBR is considered a marker of 
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cognitive processing capacity, a quality of importance in bimanual psychomotor surgical 

performance.50 Our model did not put a high emphasis on the TBR (lowest Shapley value of the 

13 metrics, Figure 9), which may relate to TBR being a composite measure derived from its 

interactions with two or more other metrics inputted into the model.  In contrast, a model based 

primarily on TBR may be able to outline this metric as important in expertise classification. 

Several of our models were unable to accurately classify expertise, particularly during the 

testing phase. On examining the testing misclassifications, all the models that were generated 

accurately classified neurosurgeons and medical students—the extreme ranges of surgical skill 

levels in this investigation—but failed to accurately classify senior residents (6/32 

misclassifications) and junior residents (26/32 misclassifications). In this study residents were 

assigned to a group based on their year of training. The a priori classification system used in this 

study to place participants into the skilled or less skilled groups may not have been able to 

accurately outline the actual surgical skills of individuals especially between the third and fourth 

year of neurosurgical training in which training of subpial resection may be variable.  A more 

comprehensive method to classify trainee expertise level using quantitative assessment across a 

defined series of operative skills may improve the accuracy of these machine learning 

classification systems. However, our artificial neural network was able to achieve perfect testing 

accuracy, demonstrating the robustness of our final model and suggesting that this model has better 

classification precision and granularity. By calculating Shapley values and plotting them from the 

most to the least important EEG metric assessed, the Shapley graph allows for the prioritization of 

metrics for surgical training. In developing a neurofeedback method that builds on our system, to 

maximize training efficacy, we would recommend focusing the training protocol by iteratively 

training on the EEG metrics in order of their Shapley values.  
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4.1 Strengths 

By assessing several different model types and ordering them based on testing AUROC, 

we provide evidence that artificial neural networks are the most adept at analyzing averaged EEG 

data from surgical simulation. Several advantages are intrinsic to EEG monitoring systems. First, 

since EEG waves may precede action, EEG band frequency data may be utilized to predict future 

bimanual psychomotor performance and with the application of a feedback system help improve 

task execution and potentially mitigate potential technical skill errors.145 Since EEG has a high 

sampling rate (256 Hz in this study, but potentially much higher), classifications may be possible 

in real-time, thus allowing for real-time feedback. Although we did not exploit this rapid sampling 

rate in the present study, by averaging EEG results, we were able to achieve accurate classifications 

with 2-minute tumor resections data, allowing for personalized post-hoc feedback training. EEG 

data classification results provides an opportunity for continuous neurofeedback which could 

provide users with increased self-awareness of their EEG patterns during operative performance. 

By interpreting which EEG metrics the model finds most useful in classifying specific skilled 

operative performance and alerting learners to these metrics as per neurofeedback methodology, 

surgical trainees could self-modify their own EEG metrics to approximate these EEG frequency 

metrics and improve task execution.146 A proposed neurofeedback system using the algorithms 

developed in this study is outlined in Figure 5. It is possible to collect EEG data concurrently and 

integrate these with other artificial intelligence derived  biometrics performance platforms34 to 

build a holistic model to both improve our understanding of surgical expertise in a specific surgical 

setting and suggest modulation of trainee performance to achieve optimal performance.34 
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4.2 Limitations 

There are limitations to this pilot study. Virtual reality simulation allows detailed 

assessment of bimanual psychomotor technical skills however these systems are unable to recreate 

the many elements of the dynamic and interactive operating room environment. While spectral 

analysis is a established technique of quantitating  EEG patterns,60 these evaluations  provide an 

incomplete assessment of motor, sensory and cognitive interaction in complex bimanual 

psychomotor skills involved in surgical procedures. In this study we utilized only one EEG 

electrode to obtain average spectral band data associated for each of the three individual tumor 

resections. The advantages of using a single electrode included less interference with the 

participants perception of a realistic operative experience, simplicity of EEG scalp application 

resulting in decreased start-up time and improved cost-effectiveness.51 Disadvantages included the 

inability to assess conduct EEG spatial analysis, which outlines physiological brain locations 

underlying the EEG information. This is a notable limitation as spatial analysis is standard protocol 

in practice and has numerous advantages, as outlined in the relevant section on Temporal, Spatial 

and Spectral Analyses. However, using one electrode and an ANN machine learning algorithm 

model we were still able to classify skilled and less-skilled participants with 100% accuracy. 

Utilizing multiple electrodes in future studies will provide temporal and spatial data and further 

our understanding of the relationship between EEG and surgical expertise. EEG data lends itself 

to timeseries analysis and specialized deep learning algorithms such as the long-short term memory 

(LSTM) models. Since one of our goals was the implementation of an AI-powered  individualized 

EEG neurofeedback platform to improve learner skill acquisition, the utilization  of  EEG mean 

data91 rather than EEG timeseries information was felt to be easier for trainees to understand and 

learn. Since EEG137 and hand ergonomics25 exhibit differences between left and right-handed 
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individuals, left-handed participants were excluded from this investigation preventing our 

commenting on their EEG patterns during simulated resection. This study involved only a small 

number of participants from one institution, which limits the generalization of our results. Using 

larger datasets from multiple institutions, including individuals with quantifiable levels of 

expertise, would enhance the robustness of models and the precision and granularity of the 

classification. 

Another limitation of this study was the lack of control groups, which would ensure that 

what was classified was in fact the neural underpinnings of surgical expertise rather than potential 

confounders such as “familiarity” or “pleasure”. A control group of expert video game players, for 

example, could have been recruited and required to perform the same procedures as the participants 

but without having any of the requisite surgical expertise, thus elucidating the difference between 

general technical expertise and surgical expertise. Furthermore, the same participants could have 

served as their own controls during a sham procedure where they would be instructed to move 

their instruments stochastically across the surgical view and not operate at all, thus elucidating the 

difference between neural signals during surgical operation and those during other motor 

movements. 

It has been shown that higher participant age is associated with changes in EEG patterns, 

such as increasing beta activity and decreased alpha activity.147,148 In this study the testing group, 

which included 5 participants and 15 assessed tumor resections, was composed of a 29-year-old 

senior and 29- and 30-year-old junior neurosurgical residents. Our ANN model’s ability to 

accurately classify skilled and less-skilled performance despite the overlap in ages suggests that 

the model was not classifying based on age-related factors.  
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Although regression analysis of EEG frequency bands during eyes closed and open 

baselines reveals significant correlation between some band frequencies and participant age, these 

correlations were rarely as strong as their years in practice counterparts (Tables 5 and 6). 

Moreover, alpha peak frequency (IAF), a robust metric of brain maturation,149 did not significantly 

correlate with eyes closed or open baselines and age (p=0.1204 and 0.4004 respectively). Applying 

our accurate ANN model to the eyes open and closed baselines EEG data yielded classification 

accuracies of only 40 and 60%, respectively (results not shown). Taken together these results 

support the conclusion that the ANN model’s ability to classify surgical performance in the 

simulation utilized in this trial is based on this model’s ability to use EEG frequency wave rather 

than age-dependent EEG data. 

4.3 Future Directions 

Studies involving the utilization of more frequent EEG analysis by multiple electrodes will 

provide more extensive EEG data which will improve our understanding of the relationship 

between specific temporal and spatial EEG frequency bands and surgical expertise. One may 

strategically place the electrodes to minimize their number and thus associated time and costs 

while maximizing the resulting spatial acuity, such as by placing just 6 symmetrical electrodes on 

F3, F4, P3, P4, T3, and T4 (Figure 4). The utilization of specialized deep learning algorithms such 

as the long-short term memory (LSTM) models for timeseries analysis may result in the 

development of continuous monitoring of expertise systems which provides personalized feedback 

and may allow for tutoring and risk detection. The combination of the EEG-dependent ANN model 

outlined in this study and AI-powered intelligent tutoring platforms, such as the Virtual Operative 

Assistant (VOA) which utilizes safety and efficiency metrics generated from the support vector 
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machine algorithm78 for competency evaluation could be assessed in randomized controlled trials. 

These investigations could help determine which system or combination of systems is more 

effective in formative surgical training.  Artificial intelligent EEG classification systems based on 

machine and deep learning powered educational platforms could be implemented during human 

operative procedures, resulting in the development of AI-powered “Smart Operating Rooms”. 

These platforms could offer trainees continuous monitoring of their bimanual psychomotor 

surgical skills while providing personalized expert-level coaching, error detection, and mitigation 

of patient risk.  
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5.0 Conclusion 

Machine learning algorithms successfully differentiated EEG activity between skilled and 

less-skilled groups during a simulated bimanual surgical task. Our methodology aids in the 

understanding the components of EEG which contribute to bimanual technical expertise. This 

system may enhance the ability of surgical educators to develop more quantitative, formative, and 

summative assessment paradigms to deal with future challenging pedagogic requirements. 

Machine learning-powered EEG classification systems offer objective, and generalizable 

continuous monitoring which can be adapted to the evaluation and training of all procedural-based 

bimanual technical skills interventions. 
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DISCUSSION 

Model Interpretability Case Study: Olden’s vs SHAP 

Model interpretability techniques, as discussed in the dedicated section under Artificial 

Intelligence, offer different methods of understanding the inner workings of a machine learning 

algorithm. The Neurosurgical Simulation and Artificial Intelligence Learning Centre has 

traditionally made use of a model-specific method known as Olden’s method or the Connection 

Weight Product (CWP) method in interpreting models.34,119,150 More recent modelling in the 

literature has included a model-agnostic method based on Shapley values known as Shapley 

Additive Explanations (SHAP).111 

A comparison can be made between the underlying theories behind Olden’s method and 

SHAP. The CWP traces the contribution of each input metric to the final output nodes via the 

trained model weights. It is mathematically defined in Equation 1, where the CWP of a particular 

input metric x in a total of m metrics is equal to the sum of all product weights connecting input 

node x with hidden layer node y and output layer node z. Wx,y and Vy,z thus represent weights 

between the input node and hidden layer, and the hidden layer node and output layer node, 

respectively. The sign of the connection weight product indicates whether a metric’s z-score value 

should be positive (if sign is positive) or negative (if sign is negative) to increase the likelihood of 

classification in the corresponding group. 

𝐶𝑊𝑃𝑥 = ∑ 𝑤𝑥,𝑦

𝑚

𝑦=1

𝑣𝑦,𝑧 

Equation 1: Connection Weight Product 
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In contrast, SHAP treats the input metrics of a machine learning problem as players in a 

coalitional game from game theory. A coalition game, also known as a cooperative game, is a 

game wherein groups of players compete to maximize the output value.151 Thus, Shapley values 

aim to answer the question, how much did each individual member of a game contribute to the 

final output value?111 This can be a difficult question to answer due to interactions between 

members. To calculate a Shapley value, one must find the marginal contribution of a player in each 

possible permutation of players that includes this player. A marginal contribution is the difference 

between an output value that includes and that which excludes a particular player. The mean 

marginal contribution is taken as the Shapley value for that player. This is done for all members 

and is not a trivial calculation given the factorial nature of permutations. In fact, their exact 

computation can be implemented efficiently only in certain (decision tree-based) models, whereas 

they must be approximated using other models.111 Mathematically, the Shapley value Φ𝑖(𝜈) of 

player i in a coalition game (N, v) is shown in Equation 2, with σ representing a player set (i.e. a 

subset of the input metrics) and the set of permutations of N (i.e. all input metrics) denoted as 

Π(N).152 The summated term, 𝑣(𝑃σ(𝑖) ∪  {i}) − 𝑣(𝑃σ(𝑖)), represents the marginal contribution of 

a player i to a coalition, as the difference between the output value that includes (𝑣(𝑃σ(𝑖) ∪ {i})) 

and the output value that excludes (𝑣(𝑃σ(𝑖))) player i. 

Φ𝑖(𝜈) =
1

𝑛!
∑ 𝑣(𝑃σ(𝑖) ∪ {i}) − 𝑣(𝑃σ(𝑖))

σϵΠ(N)

 

Equation 2: Shapley Value 

A comparison can also be made between the results from the Shapley value method 

(Figure 9) and the Connection Weight Product method (Figure 8), which in the context of the 
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present study reveals striking similarities and differences. For instance, they both ranked beta 1 as 

more important than beta 3. This was to be expected, as although beta 1 was significantly different 

across expertise groups (p = 0.0141), beta 3 was not (p = 0.3635) (Table 2). Furthermore, the 

lower frequency beta bands, as opposed to the higher frequency beta 3 band, are more associated 

with positive cognitive processes, such as attention, memory formation, and performance (Table 

1). In contrast, beta 3 is associated with relatively negative cognitive traits such as worry and 

anxiety (Table 1). This suggests that more positive cognitive traits characterize the difference 

between skilled and less-skilled individuals. 

Moreover, both interpretability methods ranked TBR relatively low (Figures 8 and 9). 

Although it was expected that TBR rank relatively high based on conventional neuroscientific 

data, as well as its relative difference across expertise groups as illustrated in Table 1, an analysis 

through an artificial intelligence lens reveals that this is not the case. However, as a composite 

metric, TBR is composed of both theta and beta metrics, which are both found in their pure form 

in the neural network as well. As such, the final neural network model could have learned to assign 

a low weight to the TBR input neuron, as it could derive the same information from other neurons. 

Indeed, this is precisely what the relatively low rank assigned to TBR by the Connection Weight 

Product seems to indicate. 

Furthermore, low alpha, the highest ranked metric by Shapley standards is the third highest 

on CWP, and even though it is almost double the second highest metric according to Shapley 

analysis (Figure 9), it is relatively similar to the first and second highest metrics under Olden’s 

method (Figure 8). Low alpha was found to be significantly different across expertise groups (p = 

0.0443) and as such this was to be expected. Also, the relatively high appraisal of one metric by 
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two independent systems gives the machine learning practitioner more confidence in the result, 

while also giving credence to both methods as valid forms of understanding algorithms. 

Given this finding, it may be tempting to claim that the primary difference between skilled 

and less-skilled participants is that skilled participants expend less mental resources in achieving 

the same motor action. However, this is an erroneous conclusion that arises from an incorrect 

understanding of model interpretability tools. Rank order lists of metrics (feature importance lists) 

generated via model interpretability methods cannot be used to conclusively elucidate the 

importance of each metric to a list. Rather, such interpretability methods only make claims about 

the particular model upon which they were applied. Thus, in this case, it may be concluded that 

the final neural network places particularly high influence on the low alpha metric, and that as a 

result a neurofeedback regime that makes use of this particular model should be focused on the 

low alpha metric for training purposes. However, to generalize this to all possible models would 

be erroneous. 

Although model interpretation methods have generally tended to rely more on Shapley 

values in recent times,117 the Connection Weight Product has merit for simpler models. It is able 

to provide directed feedback as to the contribution of each individual metric, while being much 

simpler and more efficient to calculate. Thus, there is still a role for the CWP method as simple 

models may sometimes outperform their more complex counterparts, particularly when there is 

relatively less data upon which to train a model, or when the situation modeled is simpler. 

However, CWP does have limits. For example, deeper learning methods such as Long-Short Term 

Memory (LSTM) type models cannot be interpreted using the CWP model as connections between 

neurons are more complicated. Furthermore, since it is model-specific, it cannot be used on any 

non-neural network model type.  
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Timeseries-based analysis of EEG 

As mentioned in the Temporal, Spatial, and Spectral Analyses section on EEG, there are a 

variety of potential ways to analyze EEG data. The present study made use only of spectral analysis 

due to present limitations of electrode number and computational availability. However, a more 

comprehensive machine learning classification approach would factor in data from all three 

analysis types. Given the fact that there are numerous advantages associated with the use of only 

one electrode, additional work may focus on temporal analysis at the expense of spatial analysis. 

Furthermore, temporal analytic data has been shown to be the most important in output 

classification amongst the three types of analysis.58 

Different types of events in surgery may be investigated. One such analysis may involve 

timestamping surgical tool usage, while others may involve timestamping the phase of a relatively 

linear surgical operation. Thereafter, it would be possible to compare the event response in a 

timeseries EEG analysis, by considering the shape of waveforms, as opposed to analyzing EEG 

band means. This would add another layer of analysis to expertise that makes use of relatively 

more data, and as such, may provide more accurate classification of expertise. An example of a 

potential temporal analysis of EEG is found in Figure 3. 

However, this sort of analysis may be more difficult to use for the purposes of 

neurofeedback. Although the metrics inputted into a machine learning algorithm may theoretically 

be abstract to the point of incomprehension, they should generally be developed such that they can 

be understood and taught by surgical educators. This is particularly important if the ultimate goal 

of the research is to provide workable training routines via neurofeedback, as neurofeedback 

depends on the availability of trainable metrics, and it may be relatively more difficult to inculcate 

particular waveforms in trainees rather than train to meet particular EEG band thresholds.  



  73 

Thesis Conclusion 

Summary 

The present thesis represents evidence for the utility of electroencephalography (EEG) in 

surgical education. Our results are consistent with the hypothesis that EEG recordings during the 

virtual reality simulated surgery assessed can accurately classify the surgical expertise of 

participants using machine learning algorithms. Furthermore, all four objectives were achieved. 

Firstly, seven model types were trained, corresponding to the seven most common model types in 

the applications of machine learning in healthcare and were compared in their ability to classify 

expertise using EEG data. The Support Vector Machine (SVM) and the artificial neural network 

(ANN) were the best performing models (AUROC = 0.833 and 1.0 respectively), while 

considerably poorer results were achieved with other model types, such as the Naïve Bayes and 

Random Forest (AUROC = 0.639 and 0.583 respectively). Next, our artificial neural network 

fulfilled our criteria of a model capable of accurately distinguishing between skilled and less-

skilled participants on a virtual neurosurgical simulation, although a study with a larger sample 

size is needed to validate its accuracy further. Thirdly, a statistical analysis of differences in EEG 

frequency bands between skilled and less-skilled participants revealed significant differences. 

Specifically, skilled surgeons displayed higher (p = 0.044) low alpha (8–10 Hz) than the less-

skilled group. Furthermore, skilled surgeons displayed significantly lower theta/beta ratio (TBR) 

(p = 0.048), confirming the literature on this ratio as a marker of technical expertise. Skilled 

surgeons also displayed significantly higher beta (13–30 Hz, p = 0.049), beta 1 (15–18 Hz, p = 

0.014), and beta 2 (19–22 Hz, p = 0.015), thus establishing these metrics as important markers of 
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expertise. Finally, Shapley model interpretation identified low alpha (8–10 Hz), which is identified 

with neural efficiency, as the most important metric for classifying expertise. 

Artificial intelligence has been advancing at a faster rate than legislation or research on its 

ethics and morality.98 Therefore, in order to best facilitate integration of such machine learning 

systems into the medical or surgical education curricula, it would be prudent to conduct more 

studies into the ethical and social consequences of the use of AI in medical or surgical education. 

The social ramifications of an approach to objectively quantify expertise using a myriad of 

biosensors are unclear. Surgical trainees and other healthcare practitioners have to prepare for a 

large number of examinations and as such the advent of self-administered expertise examinations 

may only add to their heavy workload. In addition, the state of being equipped with many sensors 

ranging from tool motion sensors, physiological heart and breathing rate sensors, and EEG and the 

ensuing vulnerability and personal accountability remains unexplored. Furthermore, certain 

unprecedented policies may begin to be explored as quantifying expertise becomes easier. For 

instance, the disqualification of medical students pursuing surgical education based on their natural 

talent or lack thereof as assessed by an AI algorithm, may begin to be justified by the potential for 

decreased harm to patients and decreased stress to students, though it is important to not undermine 

the incredible human potential for personal growth and development here. Such approaches to 

medical education have wide-reaching consequences and may alter the criteria by which technical 

specialists are recruited in general. 

The author is not an advocate for the total replacement of human interaction in favor of a 

computerized approach to surgical expertise assessment. While self-administered tests and training 

procedures present their own advantages, such as convenience and relative economics, a hybrid 



  75 

approach combining human feedback with AI may be optimal. This is a general guideline in AI 

research and is not limited to healthcare, although the unique combination of art and science 

present in healthcare makes it a prime candidate.153 While an AI algorithm may be able to teach 

the science of a surgical procedure, for example, bedside manners will likely remain in the purview 

of surgical educators.153 

Future Directions 

Several studies may be done to validate the findings of this pilot study. This study may be 

replicated with a larger sample size to ensure generalizability. The use of more than one electrode 

would enable spatial analysis in addition to the possible temporal and spectral analyses that may 

be conducted with only one electrode. In this case, it may be preferable to put emphasis on 

electrodes on the temporal and occipital lobes as EEG data from these areas has previously been 

shown to elucidate expertise154. 

Although it was previously unknown which neurofeedback training protocol may be 

optimal in surgical training, the present results suggest that alpha neurofeedback may be the most 

beneficial. Thus, a neurofeedback protocol that makes use of this ordering may be performed and 

compared with an alternative order in its effectiveness.  

As suggested in the aforementioned section on Timeseries-based analysis of EEG, an 

event-based study may be conducted in which particular phases of a surgery are timestamped and 

responses between skilled and less-skilled participants recorded as waveforms. This would enable 

a more granular understanding of psychological expertise as applied to surgery. 
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Moreover, although this study investigated the resection of a glioma-like brain tumor, other 

more complex surgical procedures, and those of other surgical specialties along with technical 

medical procedures could be assessed. This may elucidate the differences, for example, between 

skilled and less-skilled individuals across different gradations of procedural complexity. It is 

possible that the psychological profile of expert surgeons somehow renders them more immune to 

abrupt changes or otherwise stressful events in surgery. Such a study may thus enable the training 

of resistance to, and perseverance in the face of, stressful events.20 

Finally, in an attempt to lay out a more holistic picture of expertise, it would be interesting 

to combine the results of classifiers based on several modalities. The NeuroSim group has 

previously shown that tool motion sensors may be used to accurately predict expertise.34 

Combining this result with the present study, and in addition to other sensors such as physiological 

heart rate sensors, may result in more accurate classifications and more personalized feedback. 
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APPENDIX 

Figures 

 

Figure 1. Virtual neurosurgical experimental setup 

(a) A participant performing a simulated brain tumor resection procedure on the NeuroVR™ 

virtual reality simulation platform whilst equipped with an EEG electrode. Note that the surgical 

view is perpendicular to the surgical tools. (b) Surgical view demonstrating the simulated surgical 

aspirator and simulated suction device. (c) Experimental setup with haptic feedback outlining the 

aspirator held by the dominant hand and sucker in the non-dominant hand. 
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Figure 2. EEG processing workflow 

(a) EEG data is collected via electrodes on the scalp. (b) The Fast Fourier Transform (FFT) is used 

to decompose the raw EEG signal from the time domain into the frequency domain using 

Biogragh® Infiniti software from Thought Technology. (c) The resulting pure EEG frequency 

domain signal is split into various 1 Hz wide bins. (d) Artefacts in the recorded EEG signal, arising 

from electrophysiological sources such as eye movements,41 eyeblinks,41 muscular activity,42 and 

cardiac rhythm,43 as well as environmental electrical activity, are filtered out using Biograph® 

Infiniti software or other specialized tools. (e) Finally, various 1 Hz bins are summed together to 

form EEG bandwidths in accordance with guidelines from the literature. Specifically, this study 

calculated delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (13-30 Hz) bands, as well as 

the sensorimotor rhythm (SMR, 12-15 Hz). Low (4-6 Hz) and high theta bands (6-8 Hz) and beta 

1 (15-18 Hz), 2 (19-22 Hz), and 3 (23-36 Hz) bands were further calculated. Furthermore, a 

composite metric known as the theta/beta ratio (TBR) was calculated as the square of the theta 

band divided by the square of the 13-21 Hz band. A full list of calculated metrics is found in Table 

1. 
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Figure 3. Timeseries-based (temporal) analysis of EEG 

An example of a temporal representation of specially curated EEG signal wavelets. The horizontal 

axis represents time as increments of 1/256 s, in line with a 256 Hz sampling protocol, for a total 

of a quarter of a second. The vertical axis represents the EEG power in microvolts of each 

individual metric. Much more information is present here than is available through a spectral 

analysis and as such, it may be possible to train much more accurate machine learning models 

using this representation. Furthermore, unlike spectral analysis, models trained using this 

representation may be able to deliver more classifications in a given unit of time as no averaging 

of data is required. Lastly, this approach is particularly powerful when timestamped to particular 

surgical events, such as a phase in a tumor resection, or the use of a certain tool. By averaging out 

inter-subject differences, it is possible to find the event-related potential (ERP) of a particular 

component of a surgery.  
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Figure 4. 10-20 System for EEG electrode placement 

A standardized set of guidelines on how to place electroencephalography (EEG) electrodes on the 

human head. This system relies on four key skull markers: the nasion (Nz) at the bridge of the 

nose; the inion (Iz), the bony extrusion at the back of the head; and the two pre-auricular points 

beside each ear (LPA and RPA).59 Electrodes on the left side of the head are characterized by odd 

numbers, while those on the right side are denoted by even numbers. Fp, F, C, T, P, and O denote 

prefrontal, frontal, central, temporal, parietal, and occipital electrodes respectively and correspond 

to cortical regions. Z refers to electrodes placed along the midline sagittal plane of the skull. The 

10-20 refers to the fact that electrodes are placed at a distance of 10% and 20% of the total skull 

width away from each pre-auricular point. Although more granular standardized systems, like the 

10-10 and 10-5 systems, exist, they are based on the 10-20 system.59 The Cz location was used in 

the present study. 
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Figure 5. Proposed neurofeedback training protocol in surgical simulation training 

(a) Learners perform a surgical procedure(s) on a virtual reality simulator while equipped with 

an EEG electrode(s), allowing for raw EEG signal capture. (b) The raw signal is processed and 

specific metrics such as EEG waves bands are extracted. (c) The extracted metrics are fed into a 

machine learning model, which objectively classifies the individual’s performance as skilled or 

less-skilled. (d) The expertise classification, along with the resultant explanation of why it was 

assigned as such, is displayed to the trainee. Training is iteratively done in the order of the model 

interpretability rankings.  
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Figure 6. Artificial intelligence Venn diagram 

This Venn diagram illustrates the relationship between artificial intelligence (AI), machine 

learning (ML), deep learning (DL), and data science, as well as several selected branches of AI. 

Artificial intelligence is the development of knowledge-based systems that mimic human 

behaviour. Machine learning is a branch of AI that develops such systems by training them on data 

rather than having them be programmed through expert-based rules. Deep learning is a subset of 

machine learning that is characterized by more complex algorithms and larger data requirements. 

Artificial intelligence fields, such as natural language processing (NLP), computer vision (CV), 

and robotics, may or may not make use of ML or DL. Data science is a modern interdisciplinary 

field that uses the scientific method, as well as statistics, algorithms, and advanced mathematical 

principles to derive insight from data. Artificial intelligence and ML/DL play an active role in a 

data scientist’s toolkit. 
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Figure 7. The structure of the final artificial neural network model 

This model predicts surgical expertise on a binary basis based on EEG data. Thirteen input neurons 

are each fed one EEG frequency band, or the theta/beta ratio (TBR), and are fully connected to a 

dense layer of 50 fully connected neurons, which were in turn fully connected to one output neuron. 

The output layer predicted the probability that the surgical resection was performed at the less-

skilled level. Given that it is a binary classification, a 0.5 threshold was implemented, above of 

which the less-skilled class was assigned. The ANN model was compiled using the well-known 

Adam optimizer155 and the binary cross entropy function as a loss function. It was fit using up to 

1000 epochs through the training data with an early stopping procedure implemented to cut the 

training process short if the model’s loss function did not significantly decrease after any given 

run of 30 epochs. 
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Figure 8. Connection Weight Product (CWP) interpretability plot 

Bar plot illustrating the contribution of each frequency band as calculated by Connection Weight 

Product (CWP) on the final artificial neural network, in descending order.116 The CWP traces the 

contribution of each input metric to the final output classification via the trained model weights. 

A higher final output classification represents less-skilled performance. The sign of the CWP is 

represented by the color red (positive) or blue (negative). Thus, a negative connection weight 

product signifies that a high amount of that metric is associated with expertise; whereas a positive 

connection weight product signifies that a high amount of that metric is associated with less-skilled 

trainees. Metrics assigned smaller CWPs do not contribute as much to the neural network’s 

expertise classification, relative to those with larger CWPs. Beta 1 was deemed the most important 

metric to expertise classification, with a higher beta 1 being associated with skilled performance. 

In contrast, beta 3 was the second most important metric, but a higher amount of beta 3 was 

associated with less-skilled performance. Low alpha, the most important metric according to the 

Shapley interpretability method (Figure 9), also ranked relatively highly here at third place. 
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Figure 9. Shapley interpretability plot 

Bar plot illustrating the contribution of each frequency band as calculated by Shapley analysis on 

the final artificial neural network, in descending order. Shapley values are borrowed from game 

theory and attempt to quantify the marginal contribution of each player to the final result of a 

game, with a greater values representing greater contributions.111 In the case of a machine learning 

model, a player is an input metric and a final result is the overall model classification. Shapley 

interpretability thus allows for a model-agnostic interpretation of feature importance. Shapley 

values were calculated using the KernalExplainer algorithm from the SHAP (Shapley additive 

explanations) Python package. The low alpha band was by far the most important factor in 

expertise classification. 



  86 

 

Figure 10. Inclusion and exclusion of participants 

Six neurosurgeons, 6 senior neurosurgical residents (post-graduate year 4-6), 6 junior 

neurosurgical residents (post-graduate year 1-3), and 6 medical students who expressed an interest 

in neurosurgery were recruited. Two groups were defined a priori. The skilled group included 

post-graduate year 4 or higher.  The less-skilled group included post-graduate years 1-3 and 

medical students. To ensure homogeneity in handedness, two left-handed trainees were excluded 

(1 skilled and 1 less-skilled participants). To ensure high fidelity of EEG data, one skilled 

participant was excluded, for a final sample size of 21 (10 skilled and 11 less-skilled participants). 
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Figure 11. Leave-one-out-cross-validation (LOOCV) 

Leave-one-out-cross-validation (LOOCV) is a best-practice method within machine learning 

research that maximizes the amount of training data available for modelling. The purpose of this 

procedure, as with all validation splits, is to allow for tuning of untrainable characteristics, such as 

the number of neurons in a hidden layer and the number of hidden layers, in a process known as 

hyperparameter tuning. Following the removal of a testing set, the remaining subjects are 

ordinarily divided into a training set and a validation set. This further decreases the size of the set 

available for training, which potentially could result in worse modelling outcomes, especially with 

an already small sample size. To combat this, LOOCV calls for a set of models to be iteratively 

trained on all but one participant, who is withheld for validation. The model results are averaged 

to arrive at final training accuracy scores. Lastly, one final model is trained on the whole training 

data using the hypertuned parameters and then tested on the testing dataset. This method is only 

practical for models with sufficiently small sample size as it would otherwise require a prohibitive 

amount of compute resources. 



  88 

 

Figure 12. Confusion matrices of the training and testing results of the artificial neural 

network 

The first confusion matrix illustrates the averaged results from 16 different neural network models, 

which were trained on tumor resections from 15 participants, leaving one participant for validation 

in a leave-one-out-cross-validation (LOOCV) fashion (8 skilled and 8 less-skilled in total). Each 

participant carried out three simulated tumor resections for a total of 48 training procedures. One 

skilled participant, corresponding to a fourth-year neurosurgical resident, was misclassified as less-

skilled during one of their surgical resections, rendering a final training accuracy of 97.9%. A final 

neural network was trained on all available training data based on the hypertuned parameters 

arrived at from the LOOCV procedure. The second confusion matrix illustrates the final testing 

results of this neural network. It achieved 100% accuracy on the 5 testing participants (2 skilled 

and 3 less-skilled participants). 
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Tables 

Table 1. EEG frequency band significances 

A complete list of the EEG frequency bands used in this study and their respective significances 

based on a survey of the literature. EEG band frequencies may differ between individuals and are 

demarcated slightly differently from one source to another, so representative sources have been 

used.40 Notably, although beta 2 has been defined as 19-22 Hz in this study, it has also been 

reported it as 16.5-20 Hz.156 Likewise, beta 3 has been defined as 23-36 Hz, while it has also been 

reported as 20.5-28 Hz.156 Furthermore, different software products calculate the theta/beta ratio 

(TBR) in slightly different ways.157 

Name 
 

Frequency (Hz) Significance 

Delta (δ) 
 

0.5-4158  Slow-wave sleep62 

Theta (θ) 
 

4-862 Learning, memory, and intuition62 

   Low Theta 
 

4-6159  Memory160,161 

   High Theta 
 

6-8162  Spatial attention163 

Alpha (α) 
 

8-12164 Calmness, tranquility,62 visual 

processing127 

   Low Alpha 
 

8-10164 Neural efficiency,165 recall62 

   High Alpha 
 

10-1249 Optimize cognitive performance62 

Sensorimotor 

Rhythm (SMR) 

 
12-1565 Mental alertness, immobility62 

Beta (β) 
 

13-3051 Focused attention51 

   Beta 1 
 

15-1865 Memory formation166 

   Beta 2 
 

19-22156 Energy, anxiety, and performance167 

   Beta 3 
 

23-36156 Worry, anxiety62 

Theta Beta Ratio 

(TBR) 

 
(4-8)2 / (13-21)2 50 Creative/intuitive image-based 

thought versus logical/rational 

language-based thought50,168 
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Table 2. EEG band means across expertise 

A comparison between skilled and less-skilled groups on the 13 curated EEG bandwidth metrics 

selected for this study. Band means were averaged across all three tumor resections per participant. 

Unpaired two-tailed t-tests were conducted to compare differences between each group, except 

when the condition of normality was suspect, in which case a Wilcoxon Test was used (Mann-

Whitney). Means ± SEs are reported. Significant differences (p < 0.05) are denoted by an asterisk. 

EEG Metrics Skilled (n=10) 

(uV) 

Less-skilled (n=11) 

(uV) 

p-Value 

1. Delta (2-4 Hz) 7.92±0.31 8.27±0.47 0.5338 

2. Theta (4-8 Hz) 8.21±0.44 7.91±0.45 0.6290 

   3. Low Theta (4-6 Hz) 6.00±0.24 6.07±0.33 0.8703 

   4. High Theta (6-8 Hz) 5.60±0.40 5.14±0.34 0.3688 

5. Alpha (8-12 Hz) 6.87±0.57 5.77±0.40 0.1183 

   6. Low Alpha (8-10 Hz) 5.37±0.43 4.33±0.26 0.0443* 

   7. High Alpha (10-12 Hz) 4.30±0.43 3.81±0.33 0.3671 

8. SMR (12-15Hz) 4.14±0.35 3.56±0.17 0.1323 

9. Beta (13-30 Hz) 7.94±0.46 6.75±0.36 0.0485* 

   10. Beta 1 (15-18 Hz) 3.76±0.25 3.02±0.14 0.0141* 

   11. Beta 2 (19-22 Hz) 3.37±0.18 2.78±0.15 0.0148* 

   12. Beta 3 (23-36 Hz) 5.96±0.45 5.43±0.38 0.3635 

13. TBR Mean (4-8 Hz)2/(13-21Hz)2 1.93±0.13 2.67±0.33 0.0484* 
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Table 3. Participant demographics stratified by expertise level 

Demographic data and tumor difficulty ratings (on a five-point Likert scale) of the 10 skilled and 

11 less-skilled participants. A two-tailed unpaired T-Test was used to compare age and years in 

practice differences across expertise groups. A Kruskal-Wallis non-parametric test was used to 

compare tumor difficulty ratings. Years in practice calculation assumes 4 years of medical school, 

6 years of residence training, and 2 years of fellowship, as is standard in neurosurgical education. 

Significant differences of p < 0.05 are denoted by an asterisk. Skilled participants were 

significantly older (p = 0.0005) and more experienced (0.0001) than less-skilled participants. Since 

expertise categories were based on education level attained and education level was highly 

correlated to age, these differences are expected. There were no significant differences (p > 0.05) 

in the participants’ subjective ratings of each tumor’s difficulty. Skilled and less-skilled 

participants found each tumor moderately difficult. 

  Skilled Less-skilled P value 

Composition 5 Neurosurgeons 6 Junior Residents   
 

5 Senior Residents 5 Medical Students 
 

Age ± SD 37.2 ± 8.1 26.2 ± 3.0 0.0005* 

Gender, No 

(%) 

   

   Male 8 (80%) 10 (90.9%) 
 

   Female 2 (20%) 1 (9.1%) 
 

Years in 

Medicine 

(range) 

15.45 (8 – 26) 4.55 (3 – 7) 0.0001* 

Difficulty 

ratings ± SD 

   

   Tumor 1 3.40±0.93 3.36±0.90 0.8603 

   Tumor 2 2.90±0.70 3.72±1.06 0.0783 

   Tumor 3 3.10±0.87 3.72±0.72 0.1392 
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Table 4. Modelling results 

The seven most common machine learning model types in healthcare are compared in their ability 

to distinguish between skilled and less-skilled participants on a virtual reality surgical simulation. 

Models are ordered by the area under the receiver operating curve (AUROC). Training accuracy, 

testing accuracy, sensitivity, specificity, F-Measures and AUROCs are reported. All metrics 

reported other than the training accuracy are derived from the testing set. Algorithm prediction 

sensitivity and specificity are provided. The F-Measure is the harmonic mean of the precision (true 

positives over all positives) and the sensitivity. Testing accuracies varied from 67% to 100%, with 

the artificial neural network (ANN) classifying all participants in the testing set correctly. 

Classifier Training 

Accuracy 

Accuracy Sensitivity Specificity F-

Measure 

AUROC 

Artificial Neural 

Network 

0.979 1.0 1.0 1.0 1.0 1.0 

Support Vector 

Machine 

0.958 0.667 1.0 0.8 0.800 0.833 

Logistic 

Regression 

0.934 0.556 1.0 0.733 0.714 0.778 

K Nearest 

Neighbors 

0.833 0.556 1.0 0.733 0.714 0.778 

Linear 

Discriminant 

Analysis 

0.896 0.733 0.778 0.667 0.738 0.722 

Naïve Bayes 0.833 0.778 0.5 0.667 0.571 0.639 

Random Forest 0.833 0.667 0.500 0.600 0.667 0.583 
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Table 5. Regression analysis of EEG bands during eyes closed baseline across age and years 

in practice 

An ANCOVA was conducted to test differences in correlation between age and years in practice 

with each of the metrics used in the study, as well as the IAF (alpha peak frequency). R2 

coefficients and P values are presented. The final column constitutes p values from a comparison 

of the two regression lines. Significant differences at the 0.05 level are indicated with an asterisk. 

We observe correlations between all beta waves plus the TBR with years in practice. In contrast, 

beta 3 did not significantly correlate with age. Correlation coefficients were generally higher, albeit 

insignificantly so, in years of practice comparisons. The alpha peak frequency (IAF) is seen as a 

robust metric of brain maturation,149 and there is no correlation between IAF and age. This 

information provides evidence that differences in beta waves between the skilled and less-skilled 

classes outlined in Table 3 were more related to their difference in experience than their difference 

in age. 

EEG Bandwidth 

(mean) 

Years in 

Practice R2 

Years in Practice 

p Value 

Age R2 Age p 

Value 

Comparison 

Delta 0.0632 0.2715 0.1467 0.087 0.9199 

Theta 0.0125 0.6298 0.0053 0.7533 0.9272 

Low Theta 0.0567 0.2987 0.1554 0.0770 0.6876 

High Theta 0.0644 0.2669 0.0053 0.7548 0.7407 

Alpha 0.0024 0.8319 0.0009 0.8972 0.3047 

Low Alpha 0.0372 0.4023 0.0130 0.6226 0.5093 

High Alpha 0.0144 0.6039 0.0289 0.4611 0.3634 

SMR 0.0386 0.3931 0.0085 0.6915 0.2998 

Beta 0.3105 0.0087* 0.1900 0.0482* 0.5079 

Beta 1 0.4021 0.0020* 0.2659 0.0167* 0.6807 

Beta 2 0.4433 0.0010* 0.3256 0.0069* 0.8362 

Beta 3 0.2623 0.0176* 0.1522 0.0804 0.5036 

TBR 0.2780 0.0140* 0.2720 0.0153* 0.4255 

IAF 0.1618 0.0707 0.1221 0.1204 0.5732 
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Table 6. Regression analysis of EEG bands during eyes open baseline across age and years 

in practice 

An ANCOVA was conducted to test differences in correlation between age and years in practice 

with each of the metrics used in the study, as well as the IAF (alpha peak frequency). R2 

coefficients and P values are presented. The final column constitutes p values from a comparison 

of the two regression lines. Significant differences at the 0.05 level are indicated with an asterisk. 

We observe correlations between all beta waves plus the TBR with years in practice. In contrast, 

neither overall beta nor beta 3 significantly correlated with age, although low theta did. Correlation 

coefficients were generally higher, albeit insignificantly so, in years of practice comparisons. 

Furthermore, the alpha peak frequency (IAF) is seen as a robust metric of brain maturation,149 and 

there is no correlation between this metric and age. This is evidence that differences in beta waves 

between the skilled and less-skilled classes observed between the skilled and less-skilled classes 

in Table 3 were more related to their difference in experience than their difference in age. 

EEG Bandwidth 

(mean) 

Years in 

Practice R2 

Years in Practice 

p Value 

Age R2 Age p 

Value 

Comparison 

Delta 0.020 0.5383 0.078 0.2218 0.7434 

Theta 0.019 0.5477 0.105 0.1518 0.6743 

Low Theta 0.084 0.2026 0.219 0.0324* 0.5946 

High Theta 0.0002 0.9476 0.032 0.4377 0.8854 

Alpha 0.007 0.7155 0.002 0.8597 0.6085 

Low Alpha 0.027 0.4740 0.002 0.8667 0.9880 

High Alpha 0.0001 0.9614 0.011 0.6476 0.2676 

SMR 0.032 0.4380 0.005 0.7624 0.4359 

Beta 0.300 0.0101* 0.162 0.0703 0.4443 

Beta 1 0.258 0.0186* 0.144 0.0898 0.6067 

Beta 2 0.428 0.0013* 0.253 0.0202* 0.6021 

Beta 3 0.256 0.0193* 0.139 0.0967 0.3423 

TBR 0.278 0.0140* 0.271 0.0155* 0.3291 

IAF 0.051 0.3241 0.038 0.4004 0.5733 
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