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ABSTRACT 
We propose using a shape based algorithm to identify patterns in Dynamic Contrast 

Enhanced Magnetic Resonance Imaging (DCE-MRI) to assess tumor perfusion as well as 

automatically delineate the relevant tumor region for analysis. DCE-MRI allows for the imaging 

of blood perfusion in healthy tissue and in tumours. Previous work has shown that the change in 

the washout rate of the contrast agent in the tumour between pre-treatment imaging and after one 

round of chemotherapy appeared to be related to treatment outcome. The proposed method 

identifies the presence of pre-defined enhancement curves based on the Tofts-Kety model in DCE 

MRI data. The weight of each curve in the data is estimated using a non-negative least-squares 

algorithm. The weights of the curves are then used to predict the treatment outcome of the patient. 

Shape analysis provided meaningful spatial information about tumor perfusion and the dynamics 

of time series were captured. The therapeutic response of the patients in breast cancer was 

predicted, even outperforming the predictions based on established quantitative analysis from a 

previous study. The outcome was the same using either tumor regions of interest delineated by 

radiologist or automatically. The proposed analysis of DCE-MRI time series using predefined 

shapes based on the quantitative Tofts-Kety model can provides maps of perfusion characteristics 

such as slow and fast perfusion. The selection of pre-defined shapes and the interpretations of the 

weight maps can be adapted based on the application.  
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ABRÉGÉ 

Nous proposons d'utiliser un algorithme basé sur la forme pour identifier les modèles dans 

l'imagerie par résonance magnétique dynamique de contraste (DCE-MRI) afin d'évaluer la 

perfusion tumorale ainsi que de délimiter automatiquement la région tumorale pertinente pour 

l'analyse. La DCE-IRM permet l'imagerie de la perfusion sanguine dans les tissus sains et dans les 

tumeurs. Des travaux antérieurs ont montré que le changement du taux de lavage de l'agent de 

contraste dans la tumeur entre un examen avant le traitement et après un cycle de chimiothérapie 

semblait être relié au résultat du traitement. La méthode proposée identifie la présence de courbes 

de rehaussement de contraste prédéfinies basées sur le modèle Tofts-Kety dans les données DCE 

IRM. Le poids de chaque courbe dans les données est estimé à l'aide d'un algorithme des moindres 

carrés non négatifs. Les poids des courbes sont ensuite utilisés pour prédire le résultat du traitement 

du patient. L'analyse de la forme a fourni des informations spatiales importantes sur la perfusion 

tumorale et la dynamique du rehaussement a été décrite. La réponse thérapeutique des patientes 

atteintes d'un cancer du sein a été prédite, surpassant même les prédictions basées sur une analyse 

quantitative établie d'une étude précédente. Le résultat était le même en utilisant soit les régions 

tumorales d'intérêt délimitées par le radiologue, soit des régions définies automatiquement. 

L'analyse proposée des séries d’images DCE-MRI utilisant des formes prédéfinies basées sur le 

modèle quantitatif de Tofts-Kety peut fournir des cartes de caractéristiques de perfusion telles que 

la perfusion lente et rapide. La sélection de formes prédéfinies et les interprétations  

des cartes de poids peuvent être adaptées en fonction de l'application. 
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Chapter 1: Introduction 

1.1 Context and Motivation 
 

DCE-MRI is an MRI technique that involves a series of T1-weighted images followed by an 

intravenous injection of a contrast agent. This contrast agent allows for the visualization of 

perfusion characteristics in vivo. This is valuable in oncology as angiogenesis in tumours often 

produces leaky blood vessels. These blood vessels lead to an abnormal blood supply that manifests 

as a rapid enhancement in the DCE-MRI signal compared to healthy tissue (1).  

DCE-MRI is often performed with three-dimensional T1-weighted spoiled gradient echo 

imaging with a trade-off between spatial and temporal resolution (2). Sufficient temporal 

resolution is important to capture the passing of the contrast agent through blood vessels and into 

the surrounding intracellular interstitial space.  

Qualitative analysis of DCE-MRI data can include visualization of the individual images by a 

trained expert or observation of the time-variation in a region of interest, and is a mainstay in the 

clinical application of this approach (3). For example, averaging the voxels in a region of interest 

and inspecting at the average signal curve has been successful in characterizing lesions as either 

benign or malignant in breast (4) and in soft tissue tumours (5). Qualitative analysis is 

fundamentally subjective, time consuming and requires experience for interpretation.  

This has created an interest in employing computational algorithms to introduce a layer of 

objectivity to the analysis, to develop a potential imaging biomarker that is reproducible and 

validated, and to speed up the processing time. Semi quantitative methods are straightforward, and 

can involve computing the maximum enhancement (6) , the slope of the initial enhancement (7), 

or the initial area under the enhancement curve (to a pre-selected time-point) (8). The popular 

three-time-point method (9) is another form of semi-quantitative analysis, that relies on the signal 
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change between successive images at specific times (one pre-injection and two post-injection). 

Semi-quantitative analysis is fast, but inter-patient comparison is difficult as it does not account 

for variability in the scanner hardware or contrast agent injection protocols. 

Methods of quantitative analysis were developed to account for inter-patient and inter-

scanner variability and to provide quantitative parameters that could potentially be connected to 

biological or physical characteristics. Ideally, a T1 map would be required at each time-point in the 

series, but with some manipulation and pre-contrast proton-density-weighted images and T1 map, 

the dynamic T1-weighted signal can be converted to tissue contrast-agent concentration (10). 

Compartmental models such as the Tofts-Kety (11), extended Tofts-Kety (11), Larsson model 

(12), Brix model (13), Patlak approach (14), or two compartment exchange model (15) can be 

applied to extract several physical parameters that have garnered considerable interest in scientific 

literature. Quantitative DCE-MRI analysis is interesting but can be challenging due to the need for 

high temporal resolution (and the resulting trade-off with spatial resolution and/or signal-to-noise 

ratio), the need for a pre-injection T1 map, the challenges associated with determining the dynamics 

of contrast agent concentration in blood plasma (the so-called arterial input function), model 

selection, the non-linear nature of model analysis, and the potentially confounded interpretation of 

the parameters (e.g. the interpretation of KTrans in the flow-limited or permeability limited regime). 

And so, clinical use has generally favoured qualitative or semi-quantitative analysis, for the 

simplicity of the analysis, though KTrans mapping has emerged as a clinical tool (3). 

1.2 Aim of the Research 
 

A proposed alternative to analyze DCE-MRI data comes in the form of shape analysis. 

Several groups have proposed to extract characteristic time curves from the DCE data series (3), 

often known as sources, and produce maps of the spatial distribution of the presence of these 
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sources in the data, known as weight maps, effectively representing the DCE data using a small 

set of data-generated characteristic curves. The source or shape is a trend of signal as a function of 

time. This can allow for the spatial distribution of perfusion to be viewed as a mixture of these 

shapes at each voxel. 

In this work we exploit an observation by Tofts et al. that the parameter kep is sufficient to 

describe the unique shapes of time courses seen in tumours (16), to develop a technique to analyze 

DCE-MRI data. The method uses a small set of predetermined shapes derived from the Tofts-Kety 

model and identifies their weight within voxels based on a non-negative least-squares analysis. 

Values of kep are selected from previous literature reflecting malignant or benign tumours. We 

developed an easier approach to analysing DCE MRI data that provides meaningful spatial 

characterization of perfusion. In a key application, results suggest a predictive ability of this 

approach for the therapeutic outcome of neoadjuvant chemotherapy. Advantages of this method 

include robustness at low temporal resolution, faster processing speed, and an absence of need for 

independent T1 mapping. 

1.3 Outline 

 

Chapter 2 will cover the background physics required for acquisition and analysis of DCE 

MRI in greater detail. This will include fundamentals of MRI physics and DCE-MRI, basic notions 

about MR imaging in breast, and a review of the literature on shape analysis in DCE-MRI. Chapter 

3 will contain the main body of the work in the form of a manuscript to be submitted to Magnetic 

Resonance in Medicine. Chapter 4 expands the shape analysis method to 3 source curves and 

investigates an alternate use of the model to automatically generate regions of interest surrounding 

tumours. These additional results were produced over the course of the project but were not 

included in the manuscript for submission, out of concern for brevity and scope. Finally, Chapter 

5 will conclude this thesis by discussing applications, future work, and conclusions of this work. 
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Chapter 2: Background 

This chapter will cover the background physics required to understand the acquisition and 

processing of DCE-MRI data. It will begin by covering the fundamentals of MR physics, followed 

by the introduction of MR parameters and pulse sequences, including methods to generate T1 and 

T2-weighted images and the role contrast agents can play in these images. This chapter will 

conclude with an overview of relevant qualitative and quantitative techniques for analysis of 

contrast enhanced MRI. The clinical role of MRI regarding breast cancer will be introduced next, 

including the techniques used and some technical requirements 

2.1 MRI Physics 

 

The following section is an overview the fundamentals of MR physics based on the 

information presented in Chapters 12 and 13 from Jerrold T. Bushberg’s The Essential Physics of 

Medical Imaging (17) and Chapters 3 and 4 from Dwight G. Nishimura’s Principles of Magnetic 

Resonance Imaging (18). 

2.1.1 Origin of the MR signal 

 

The origin of the MR signal comes from the magnetic moments of certain atoms. Basic 

particles including protons, neutrons, and electrons have a quantum mechanical property called 

“spin”. Although the particles are not actually spinning, they have an angular momentum as if they 

were spinning, thus the name. This angular momentum can result in a non-zero magnetic moment. 

Atomic nuclei with a sum of neutrons and protons that are not even have a non-zero magnetic 

moment, characterized by their non-integer nuclear spin (!). Despite this, a single nuclear magnetic 

moment is not large enough to be experimentally observable, but the combined magnetic moment 

of a large number (~1015) of atoms would be. There are several candidate atoms with magnetic 
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moments, but to be biologically relevant they must have: a strong nuclear magnetic moment, large 

physiologic concentration, and large isotope abundance. Candidates of this include: 1H, 3He, 13C, 

17O, 19F, 23Na, and 31P. Hydrogen meets all these criteria by having the largest nuclear magnetic 

moment and abundance, thus being the best element for clinical utility and the principal focus for 

generating MR signals. The nucleus of a hydrogen atom is a proton, and proton and hydrogen will 

be used interchangeably throughout the rest of this thesis. 

2.1.2 The Effect of a Magnetic Field 

 

Classically, the proton can be considered as a small bar magnet. Hydrogen attached to 

unbound molecules of fat and water have random orientations of their magnetic moments. 

However, when placed inside a magnetic field of B0, the protons’ magnetic moments will align 

themselves either parallel or anti parallel to the B0. Nuclear spin is a quantum mechanical property, 

and protons having a spin of 
!
"
 can only exists in two states. Thus, the spins in the parallel direction 

are in a lower energy state (− !
"
 ) while the spins in the anti-parallel direction are in a higher energy 

state (+ !
"
). The difference between these two energy states is given by: 

$% = '
(
)*+# 

(2-1) 

Where ℎ	is plank’s constant (6.62607015 x 10-34 m2 kg/s), 
$
"%

 is the gyromagnetic ratio 

(42.58 MHz/T for hydrogen). The difference between the two energy states is small enough that 

thermal energy is enough to exceed the separation. This means that despite the tendency toward 

lower energy states, some spins can still occupy the higher energy state. Under thermal equilibrium 

there is a slight majority of protons in the parallel direction. This excess can be approximated by: 
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.&

.'
≈ .(

('+#
0*	1)2

	  

(2-2)  

Where 3* is the total number of nuclei spins, 3' is the total number of lower energy spins, 3& is 

the total number of higher energy spins, 
$
"%

 is the gyromagnetic ratio , ℎ is Planck’s constant, 4+is 

Boltzmann constant (1.380649×10-23 m2 kg s-2 K-1), and T is temperature in kelvin. From equation 

(2-2), it can be seen that the only adjustable variables are temperature T and magnetic field B0. 

Since in vivo imaging requires a specific temperature to keep the subject comfortable/alive, only 

B0 has room to be adjusted. A larger magnetic field increase the ratio 
,!
,"

, thus increasing the 

number of spins in the lower state. At 1.0 T the number of excess protons in the low energy state 

is approximately 3 per million. This may seem like a minuscule amount, but when considered that 

for a typical MRI scan volume there are about 1021 protons, there will be 3×1015 more protons in 

the low energy state. Since each proton has a magnetic moment either aligned in parallel or anti 

parallel with the field, a net excess of spins in the lower energy state provides the sample with a 

net magnetic moment M aligned with B0.  

In the external magnetic field spins also experience a torque in the perpendicular direction. 

This causes a precession similar to the wobbling of a spinning top and it occurs at an angular 

frequency proportional to B0 known as the Larmor frequency 5-. This is described by the Larmor 

Equation: 

6# =
7#

)8 =
(
)*+# 

(2-3) 

Where 9 is the gyromagnetic ratio unique to each element with a non-zero magnetic moment and 

B0 is the static magnetic field. The net magnetic moment of the sample will be equal to the 
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individual sum of all vector moments. Any perpendicular components of the nuclei are randomly 

oriented and sum to zero. Briefly irradiating the sample with a radiofrequency (RF) pulse B1 tuned 

to the Larmor frequency “excites” protons from the low energy to the high energy. This is the 

resonance of magnetic resonance imaging. 

This pulse is generated by a radiofrequency coil. Radiofrequency coils are essential 

components of the MRI system. They are highly sensitive antennas used to either transmit or 

receive signals. An RF transmit coil (Tx) generates the RF pulse that rotates the net magnetization 

away from its alignment with the main magnetic field. The receive coil (Rx) detects the precessing 

magnetization as an electric current induced via electromagnetic induction.  

From a classical perspective, the magnetic field of the RF pulse induces a torque on the 

magnetization M to rotate away from its equilibrium position. As the newly promoted samples 

return from their higher energy state to equilibrium conditions RF energy is released, which is then 

detected by the receive coils. The interaction of all these elements of protons in a magnetic field 

is shown in Figure 2-1.  
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Figure 2-1: An illustration of protons and their net magnetization in a hypothetical sample of pure 

protons (hydrogen nuclei). Protons would not be found in a pure sample like this in reality. 

 

2.1.3 Resonance 

 

The magnetic field generated by M is difficult to measure since it is much smaller than B0. 

M is a vector in 3D space and can also be broken down into two components: Mxy is the transverse 

magnetization perpendicular to the magnetic field and Mz is the longitudinal magnetization parallel 

to the magnetic field. At equilibrium, M is maximal and denoted as M0.. This can be changed by 

applying a RF pulse B1. 
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Figure 2-2: Illustration of magnetization vectors and components at equilibrium (left) and 

sometime after a 90-degree pulse. 

 

MRI physics can be modeled through either a classical or a quantum mechanical point of 

view. The classical model is sufficient for modeling and will be the focus of this chapter. In the 

classical physics model the RF pulse is composed of alternating magnetic field. Optimally, the B1 

is described as a single circularly polarized field synchronized with precession. The displacement 

of the magnetization away from magnetization occurs when the magnetic component of the RF 

pulse matches the precessional frequency of the protons. B1 applies a torque on M rotating it from 

the longitudinal direction onto the transverse plane. The degree of rotation of M is called the flip 

angle and the rate of rotation is :! = 9;.	, as per the Larmor equation. Common flip angles are 

90 degrees and 180 degrees. A 90-degree angle provides the largest possible Mxy and detectable 
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MR signal for the initial condition Mz(0) =M0. Such a large flip angle also requires the largest 

amount of time to displace. Fast MRI sequences use flip angles of 10 or less.  

The Mxy component of M will start rotating at an angular frequency :- around the Z axis. 

This rotation of the Mxy component induces an electromotive force in the receiver coil by 

producing a time varying magnetic field. Measuring this force in the receiver coil will produce a 

signal proportional to the magnitude of M0. Acquiring this at different locations will produce an 

image where contrast is created by the density of protons or M0 in the sample. Unfortunately, this 

will result in limited soft tissue contrast in a human body, as the density of protons is mostly 

uniform across most soft tissue. However, after excitation the protons experience a relaxation that 

brings their magnetic moment towards equilibrium, and this is exploited to generate additional 

contrast.  

2.1.4 T2 Relaxation 

 

After a B1 pulse, an initial phase coherence of proton magnetization is established resulting 

in Mxy. Rotating at the Larmor frequency, the transverse magnetic field induces a signal in the 

receiver coil. This signal is known as free induction decay (FID). A loss in the FID signal is caused 

by a loss of Mxy phase coherence due to inhomogeneities in the sample. This is caused by 

individual protons precessing at slightly different frequencies due to microscopic magnetic 

inhomogeneities in the sample. The loss follows an exponential decay given by 

</0(>) = </0(@)A
' #
$%	

(2-4) 

Where </0(B) is the transverse magnetic moment at time t for a sample that has Mxy(0) 

transverse magnetization at t=0. T2 is the exponential decay constant, or the time over which the 

signal decays to 37% of the initial transverse magnetization. This decay is strongly affected by the 
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molecular structure of the sample and characteristics of water bound protons. Small molecules 

have a large T2, and their slow FID is caused by molecular tumbling and diffusion. As molecular 

size increases, constrained motion and hydration layers will increase spin dephasing, shortening 

T2. Extrinsic field inhomogeneities such as an imperfect magnetic field or susceptibility agents in 

tissues add to the loss of phase coherence. These effects are not random and can be considered 

separate from the “pure” T2 processes, and result in a total transverse relaxation constant given by 

1
D"∗
=
1
D"
+
1
D"2

 

(2-5) 

 Where D"∗ is the total transverse relaxation constant, D"∗ is the spin dephasing due to random 

fluctuations and D"2 is the spin dephasing due to static processes. 

2.1.5 T1 Relaxation 

 

Longitudinal relaxation of the magnetization vector begins after the B1 excitation pulse. It 

occurs simultaneously to transverse relaxation but over a longer period of time. It also occurs 

exponentially given by the equation: 

<3(E) = <# + (F4(@) −F#)G
' 5
6.	  

(2-6) 

Where <3(B) is the longitudinal magnetic moment at time t, and T1 is the time needed for the 

recovery of 63% of its maximum value. However, since the signal is generated by Mxy, measuring 

Mz requires a particular sequence of events also referred to as a pulse sequence. At equilibrium, a 

90-degree pulse sets Mz to 0. After a delay time of ΔD, Mz is converted to Mxy by a second 90-

degree pulse. The recovered Mz is now the measurable Mxy, and the resulting peak amplitude is 

recorded. This sequence is repeated with different delay times ΔD to obtain data points on a curve 
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that is then fitted with equation (2-6) from which T1 can be estimated. T1 relaxation depends on 

the rate of energy dissipation into the surrounding molecular lattice, strongly dependent on physics 

characteristics of tissues and hydration layers. T1 values can typically range from 0.1 to 1 s for soft 

tissues and 1 to 4 s in aqueous tissues. As will be described in section 2.2.1, paramagnetic 

gadolinium chelated with complex macromolecules is effective in decreasing T1 relaxation time in 

nearby hydrogen protons in the tissue through the hydration layer that forms around the 

macromolecule, creating a spin-lattice energy sink and resulting in a rapid return to equilibrium. 

2.1.6 Basic Pulse sequences 

 

Generating contrast in MR images can be achieved by exploiting differences between the 

T1 and T2 relaxation time constants and proton density of tissues. MR imaging consist of a series 

of repeated sequences of magnetic field pulses to build complete data set over time. The time of 

repetition (TR) is the period between successive B1 excitation pulses. As described in a previous 

section, excitation of protons with B1 pulses results in the creation of an Mxy free induction decay 

signal. Under static effects (D"∗) the spin vectors will spread out in the transverse plane. This phase 

accumulation is proportional to time since the pulse. A 180-degree RF pulse or a gradient echo is 

used to reverse the polarity of the spins in order to create an “echo” to separate the RF energy 

deposition and returning signal. Since the spins started out in phase and gradually fell out of phase, 

the reversing pulse causes the spins to begin returning into phase, matching phase at TE or the 

“echo”. The resulting “spin” echo can be observed. TE is the time between delivery of the RF pulse 

and the reception of the echo signal. Since the echo is received at TE, the 180-degree RF pulse is 

delivered at TE/2.  

The inversion time (TI) is the time between an initial inversion and the 90-degree readout 

pulse that converts Mz to Mxy. During the inversion time, Mz regrows in the +z direction as it 



 

 13 

returns to equilibrium. If at TI, the Mz happens to be at or near zero at the time of the readout pulse, 

the Mxy will be at or near zero and contribute little to no signal. Since different tissues relax at 

different rates, their Mz will cross the zero boundary at different times, and TI can be chosen to 

selectively null particular tissues. On common example is to null the signal from fat tissue.  

It is common in MR imaging to desire to suppress the signal from fat in order to better 

visualize a tissue of interest. Water-fat separation can be done by exploiting either the water-fat 

resonance frequency difference, the short T1 of fat or both (19). These can include chemically 

selective fat suppression pulses, spatial-spectral pulses, short inversion time recovery imaging, 

chemical shift-based fat separation methods and fat suppression with balanced steady-state free 

precession. More detail on fat suppression can be found in a review by Bloy et al (19). 

This section will focus on a pulse sequence technique known as gradient echo (GRE) as it 

is the most used with DCE MRI. As the name implies GRE techniques use a magnetic field to 

generate transverse magnetization. The FID manipulated with a field gradient pulse has a 

transverse magnetization that dephases rapidly as the gradient is applied. The gradient echo 

generated is used twice in succession. First it is used with a negative polarity to enforce transverse 

dephasing of spinning protons, and then with a positive polarity to re-align the dephased protons 

and acquire a signal as shown in Figure 2-3. This sequence is particularly useful for emphasizing 

magnetic field inhomogeneities caused by paramagnetic tissues, diamagnetic tissues, or contrast 

agents. 
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Figure 2-3: Basic Gradient echo pulse sequence showing the initial excitation from a small flip 

angle, followed by a gradient that is inversed and the resulting echo that is received, adapted from 

(17).  

 

2.1.7 T1-weighted images 

 

T1-weighted images are MR images that obtain contrast based on the T1 characteristics of 

tissues. Clinically, T1-weighted imaging is usually done with spin-echo sequences that 

deemphasize T2 and the magnitude of proton density contributions relative to the signal. These 

sequences have characteristics that include a short TR (~500 ms) to maximize differences in 

longitudinal magnetization recovery, and a short TE to minimize T2 decay. Time (TR) between 

successive pulses maximize the signal difference between tissues based on their respective T1 

values. The Mz of each tissue is converted to Mxy at each repetition, and to minimize T2 decay and 

maintain differences in signal amplitude a short TE is used. For example, fat with short T1 has a 

large signal because of a greater recovery of Mz over the TR period. White and gray matter have 
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intermediate T1 values which results in an intermediate signal. T1-weighted images can show gray 

matter white matter contrast. Cerebral spinal fluid has a long T1 and the lowest signal amplitude in 

T1-weighted images, which can all be seen in Figure Figure 2-4 

 

Figure 2-4: T1-weighted image of the brain, from a patient with cancer of the brain. White and gray 

matter have intermediate T1 values which results in an intermediate signal. Cerebral spinal fluid 

has a long T1 and the lowest signal amplitude. 

 

2.1.8 Gradient echo signals with short TR 

 

A TR of less than 50 ms does not allow for transverse decay to fully occur (T2*) resulting in 

a steady state equilibrium of longitudinal and transverse magnetization from pulse to pulse. This 

is produced from previous RF signals and multiple signals are generated. These include: the FID 

signal at the end of each RF pulse, and the stimulated echo and spin echoes generated from the 

previous RF pulse. T1 weighting cannot be achieved to a great extent due to the small difference 

in longitudinal magnetization with small flip angles. At large flip angles T2* effects dominate 

making T1 weighting difficult. The effect of T2* can be reduced by “spoiling” the steady state 
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transverse magnetization through incoherent phase differences from pulse to pulse. This can also 

be done with gradient spoiling. This done by adding a phase shift to successive RF pulses. Since 

the RF transmitter and RF receiver are phase locked, the receiver discriminates the phase of the 

GRE from the SE generated by the previous pulse. Spoiled transverse magnetization gradient 

recalled echo (SPGR) is a common sequence in 3D volume acquisitions. It has a short TR and good 

contrast of anatomy provided by T1-weighting. Contrast agents produce greater contrast with 

SPGR sequences than with comparable T1-weighted sequences due to greater sensitivity to 

magnetic susceptibility. The signal from an SPGR will be explored further in section 2.2.1. 

2.2 Dynamic Contrast Enhanced MRI 
 

This section is an overview of relevant qualitative and quantitative techniques for analysis 

of contrast enhanced MRI. 

2.2.1 Contrast Agents 
 

DCE MRI requires a contrast agent which causes a signal enhancement by decreasing T1 

of nearby protons, through an indirect effect. The amount of signal enhancement is proportional 

to the concentration of the contrast agent of the tissue. The agent is typically injected intravenously, 

and thus, enhancement in tissues is also a function of perfusion characteristics. The effect of a 

contrast agent can be seen in  

Figure 2-5. The lesion is significantly more visible in the post contrast frame. As we will 

see in section 2.4.3 this is due to leaky blood vessels formed during tumour angiogenesis. 
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Figure 2-5: T1-weighted image pre (left) and post (right) injection of the contrast agent. The 

enhancement of the lesion is apparent in the post contrast image. Data from (20). 

 

The contrast agent in a tissue can be quantified in equation (10) 

I78*(B) =
J!(B) − J!-

K!
 

(2-7) 

R10 is the precontrast tissue relaxation rate, R1(t) is the tissue relaxation rate at time t, and r1 is the 

contrast agent’s relaxivity constant. Here R1 depends on time since it is affected by the contrast 

agent whose concentration varies with time. For gadobutrol, a common gadolinium-based contrast 

agent, r1 is 4.7 mM-1s-1 at 1.5 T and 3.6 mM-1s at 3.0 T (10). To quantify the contrast agent 

concentration a measurement of R1 is needed, but T1-weighted images alone do not provide actual 

measurement and cannot be used to measure R1. R1 can be obtained however, using 3D spoiled 
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gradient echo (SPGR). For this reason, SPGR is commonly used with DCE MR. The signal from 

SPGR is given by: 

S(B) = !-MN3O
1 − exp	(−DJ	 ∗ J!(B))

1 − TUMO ∗ exp	(−DJ ∗ J!(7))
 

(2-8) 

Where O is the flip angle, TR is the repetition time, R1(t) is the tissue relaxation rate at time t, and 

!- is the baseline MR signal, a combination of M0 along with other factors associated with scanner 

electronics. This equation contains two unknowns (S0 and R1(t)). Thus, multiple images must be 

acquired at different fit angles, then S0 and R1(t) may be solved using a system of equations. Pre 

contrast R1 (R10) must also be measured to be combined with R1(t), and there are approaches to do 

this with SPGR (21, 22). R1 quantification with multiple flip angles is possible but changing 

contrast agent concentrations makes acquiring multiple images per DCE-MRI frame not possible. 

One can circumvent this by first acquiring pre-contrast images using multiple flip angles and using 

those to calculate R10 and S0. Then R1(t) can derived from equation (2-8) to get: 

J!(B) = −
1
DJ ln X

!(B) − !-MN3O
!(B)TUMO − !-MN3O

Y 

(2-9) 

  Once R1(t) is obtained, the contrast agent concentration can be quantified at each timepoint 

using equation (2-9). 
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2.3 Shape Analysis in Dynamic Contrast Enhanced MRI 

 

2.3.1 Shape analysis 

 

Since contrast agents are administered intravenously, the DCE-MRI signal is a function of 

perfusion characteristics, so different voxels/tissues will have a different characteristic time-course 

curve shape. It turns out that even among voxels within lesions the curve shape varies and that 

some shapes can be indicative of malignancy (3). The most suspicious curve shapes usually have 

a sharp increase in signal followed by a rapid washout (23). Khalifa et al (24) proposed a 

classification of the shape types which can be seen in  

Figure 2-6 .  

 

Figure 2-6 : Proposed classification of shape types from Khalifa et al (24). Type I is characterized 

by persistent enhancement, type II characterized by an initial enhancement followed by a plateau, 

and type 3 is characterized by an initial enhancement followed by a washout. 
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There has been growing interest in identifying and classifying these shapes to classify 

lesions, known as shape analysis. The simplest method, is for an observer to visually look at the 

shape of the signal time curve in the tissue of image and classify them manually (23). Sometimes 

the tumours contain too many voxels, and only the most suspicious curves, or an average of many 

curves, are investigated (25) in the interest of efficiency. This can result in a loss of spatial 

information. Additionally, the classification is subjective as different individuals may classify 

shapes differently. A more in-depth look into shape analysis, its advantages and limitations can be 

found this review (3). 

2.3.2 Semi-Quantitative Techniques 

 

Signal time course curves have also been classified using semi-quantitative techniques. 

Semi-quantitative techniques include calculated parameters such as: area under signal-time curve, 

peak signal, time to peak and initial slope. One such method is the three timepoint (3TP) method 

(26). This involves acquiring images at 3 timepoints; pre injection, 2 minutes post injection and 6 

minutes post injection. Time course curves were classified based on the difference between the 

second and third timepoint. Lavini et al. classified curves into 7 shapes using various features (27). 

Another way of classifying lesions that has had success in discriminating between benign and 

malignant lesions is using the enhancement rate of the curve, and the area under the curve from 

zero to each timepoint. (28).  

Although these approaches seem promising, they are only somewhat comparable between 

scanners and patients. They are called semi quantitative because they do not account for things 

such as the injection protocol or systematic features of the scanners themselves. The injection 

protocol can vary between patients as the contrast agent dose is typically 0.1 mM/kg of body mass 

(29). Although higher concentrations would lead to a greater signal enhancement, the accuracy 
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would be worse because the relaxation rates would be so high the system relaxes completely 

between pulses, resulting in lesions that lose their visible structure and appear uniform. The peak 

concentration between two patients might not be comparable due to the difference in injection 

protocols. Despite this, semi-quantitative techniques have shown sensitivity to anti-angiogenic 

therapy-induced changes and extracting exact parameters may not be needed for this task (30). The 

same work concluded that semi-quantitative methods may even have an advantage over 

quantitative or pharmacokinetic methods in terms of noise tolerance. 

2.3.3 Quantitative Techniques 

 

Quantitative techniques aim to extract meaningful physical or biological characteristics 

such as flow (rate of blood supply volume per volume of tissue) or permeability (leakage of 

contrast agent from vasculature) that are comparability across protocols. These are essentially 

mathematical models that estimate physical characteristics by fitting pharmacokinetic models (a 

model that describes the movement of a drug throughout the body) to DCE data. Note that 

Gadolinium-based contrast agents are passive diffusing agents, so the pharmacological aspect is 

minimal (31). The computed characteristics are made comparable by including the injection 

protocol and other systematic features in the computational algorithms describing the data. They 

can include factors such as: injection speed, injected dose, scanning duration, systematic features 

such as the patient’s heart rate. Most of these models are two-compartment models based on Kety’s 

model (32). These include an intravascular compartment (plasma) and a peripheral compartment 

(extracellular extravascular space). There is an arterial input of the contrast agent to the 

intravascular compartment described by I;(B), and exchange can occur between the intravascular 

and peripheral compartments via rate constants k12 and k21. A visual diagram of this is shown in 

Figure 2-7. 
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Figure 2-7: Visual representation of two compartment model. Z<(E) described the arterial input 

into compartment 1. Exchange occurs between compartment 1 with concentration Z.(E) and 

compartment 2 with Z=(E) via 1.=	and 1=.. Elimination occurs from compartment Z.(E) via 1.#. 

 

It is common for models refer to I!(B) and I"(B) as I>(B) and I78*(B) respectively, and 

4!"	and 4!" as [7?;,* and 4@> respectively. The most common and simplest of these is the Tofts 

model (33) 

Z5A((E) = \6B<C(ZD(E) ∗ GE&'5 

(2-10) 

Where there are two fitting parameters: [F?;,* and 4@>. I>(B) is the amount of contrast agent in 

the plasma contained in the feeding blood vessel, also known as arterial input function. It accounts 

for the injection protocol and any systematic variations that may be present between patients or 

visits. It can be measured directly from blood extracted from arteries, approximated by a reference 
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tissue measurement, or replaced by a model or population average (24). The two fitting parameters 

can be related by another equation: 

1GD =
\6B<C(

]G
			 

(2-11) 

Where ve is the fraction of the voxel occupied by extracellular extravascular space. One major 

assumption of the Tofts model is that the feeding blood vessel occupies a negligible space in the 

voxel (34). This assumption does not hold for highly vascularized tissue such as the breast. This 

is addressed in the extended Tofts model (11) described by equation: 

Z5A((E) = \6B<C(ZD(E) ∗ GHE&'I5 + ]DZD(E) 

(2-12) 

Where vp is an additional fitting parameter describing the fraction of the volume occupied by blood 

plasma.  

Other such quantitative or pharmacokinetic models include: the Larsson model (12), where 

transfer between the intravascular and peripheral compartment is assumed to be reliant on a single 

rate constant, the Brix model (13), which includes several rate constants to describe the transfer of 

contrast agent between the intravascular and peripheral compartments, and the Patlak model (14), 

which uses a graphical approach to estimate the transfer rate constant between the two 

compartments. All of these have a single rate constant to account for both blood flow and 

permeability. The recent 2CXM model (15) includes many parameters for blood flow into the 

equation. For a more detailed breakdown of these models see a recent review by Khalifa et al. 

(24). 
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Temporal resolution of DCE-MRI can be a limitation in the accuracy of quantitative 

models. Henderson et al. (35) showed through simulations that in order to keep errors in estimation 

of kep and KTrans under 10%, a temporal resolution of 16 s or lower is needed. Similarly, Larsson et 

al. (36) found that stable estimates of the aforementioned parameters were possible with a temporal 

resolution of 12 s.  

2.3.4 Measuring the arterial input function 

 

One critical component present in all of the of the quantitative models is the term I>(B) or 

arterial input function (AIF). This is the keystone that accounts for the injection protocol that 

allows for quantitative methods to be comparable across scanners and patients. Uncertainties or 

errors in the AIF can propagate leading to inaccurate pharmacokinetic parameters. The AIF can be 

measured directly or indirectly. The direct approach consists of drawing blood samples from the 

patient during DCE-MRI acquisition. This is accurate but has some drawbacks. The recommended 

temporal resolution is 15 seconds per sample (24). Measuring the AIF requires a temporal 

resolution of at least 5 seconds (35) to capture the initial peak. The indirect approach involves 

using DCE-MRI data in an arterial blood vessel to estimate the arterial input function. This has the 

advantage of not having a limit to the number of samples as it is not invasive. The spatial resolution 

must also be high enough to avoid partial volume artifacts in the feeding artery. This is particularly 

difficult in breast tissue where arteries may not be in view and feeding vessels are capillaries that 

may be as small as 200 µm (37). Measuring the contrast agent in blood through direct or indirect 

methods will provide the concentration of the contrast agent in the whole blood or Cblood(t). The 

contrast agent is constrained by red blood cells and not uniformly distributed in the whole blood. 

To calculate I>(B), one needs to correct for this using the equation: 
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ZD(E) =
ZJKLLM(E)

^ − _G`aEbcdeE 

(2-13) 

Where hematocrit is the fraction of the blood occupied by red blood cells. This requires 

measurement from a blood sample, or more commonly, the use of an assumed value which may 

not capture the possible variability of individual patients.  

There are additional challenges to indirect approaches, manifesting as susceptibility to 

saturation effects, inflow effects, or improper RF spoiling. Saturation effects occur when the tracer 

concentration is higher than what the scanner electronics can detect. This can result in a truncated 

AIF peak (38). The blood inflow effect can have an impact on the sensitivity and accuracy of the 

AIF measured with DCE-MRI (39). The SPGR acquisition assumes that the imaged slice has a 

saturation of excited spins. However flowing blood can introduce a constant supply of fresh 1H 

into the slice creating a partial saturation. This will affect the estimated T1 and subsequently the 

contrast agent concentration.  

One solution is the prebolus technique (40) which consists of two contrast agent 

administrations, the first a low-dose then a high-dose, and allowed for the accurate measurement 

of high concentrations of contrast agents without saturation effects. Phase induced AIFs are also a 

proposed solution, which do not rely on signal magnitude, instead measuring the intravascular 

phase shift, and would not be as sensitive to saturation or inflow effects (41, 42). 

Reference region methods circumvent the need for measuring the AIF by using 

concentration time data from some well characterized tissue as a surrogate (43). The assumption 

is that the reference tissue and surrogate tissue have the same AIFs. This eliminates the 

measurement of the AIF, relaxing the need for high temporal resolution and therefore it becomes 

easier to have high spatial resolution  
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Model based approaches can be population-based AIFs which are published as functional 

forms. Commonly used models include; the Tofts-Kermode AIF (29), Parker AIF (44), Fritz 

Hansen AIF (45, 46), and Georgiou AIF (47). Tofts and Kermode fitted a bi-exponential equation 

to blood sample data to get: 

I>(B) = f ⋅ (h!i'N(7 + h"i'N)7)	 

(2-14) 

Where Tofts and Kermode determined that: D=0.1 mmol/kg, a1=3.99 kg/l, a2=4.78 kg/l, m1=0.144 

min-1 and m2 =0.0111 min-1. The main feature of this model is a single peak describing the passing 

of bolus. The Fritz Hansen model fit the bi-exponential but obtained different constants: D=1.0 

mmol/kg, a1=2.4 kg/l, a2=0.62 kg/l, m1=3.0 min-1, and m2=0.016 min-1. The Parker AIF model 

was obtained from DCE data in the descending aorta to obtain: 

I>(B) =
1

1 − jikhBUTKNBlX
AO

n,√2q
	Y i

'(7'F*)
)

"P*)
& Q@"+,
!&@"-(,"/) 	

"

,R!

 

(2-15) 

Where A1 = 0.809 mmol·min , A2 = 0.330 mmol·min T1 = 0.17046 min, T2 = 0.365 min, σ1 = 

0.0563 min, σ2 = 0.132 min, α = 1.050 mmol, β = 0.1685 min-1, s = 38.078 min-1, and τ = 0.483 

min. Here the curve has two peaks, one for the initial pass of the bolus and another for a recirculated 

second pass of the bolus, characterized by the two Gaussians in the function. The Georgiou AIF 

describes the initial passage and several subsequent recirculations of the bolus beyond just the first 

two described in the Parker AIF and used higher temporal resolution data to model the initial 

passing of the bolus more accurately.  
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Finally, averaged-AIFs are measured arterial input functions from patients that are 

averaged. They have been shown to be a useful alternative when patient specific AIFs are not 

available (38, 48). Both model based and averaged-AIFs have the same major limitation in that 

they cannot account for variability between patients. Finally the tissue from which the model was 

measured is also relevant: regions closer to the heart (i.e. head, neck, breast) have larger differences 

between individual patient AIFs, and may cause errors in calculated pharmacokinetic parameters 

(38). 

Acquired parameters such as KTrans or kep may not be accurate due to aforementioned 

limitations with model-based AIFs. However, the clinically useful components have been reported 

not to be the exact values themselves (49) but a change in the values in successive scans (49-51). 

A decrease in KTrans represents a decrease in tumour vasculature (52). This is associated with the 

antivascular/antiangiogenic effects of the therapeutic agents to some extent (53) . The changes in 

these parameters, which useful for monitoring changes that occur during chemotherapy, are still 

captured without ideal AIFs.  

2.4 Breast Cancer Imaging 

The section is an overview of the clinical role of MRI regarding breast cancer, including the 

techniques used and some technical requirements. 

Breast cancer is the most common malignant disease with a lifetime risk of 12.4% for women 

(54). The following paragraph is a summary of a review by Rodney et al (55). Most breast cancers 

are carcinomas, which come from breast epithelial elements. There are two types: in situ 

carcinomas and invasive carcinomas. In situ carcinomas may start from either ductal or lobular 

epithelium but remain there, with a negligible chance for metastasis. If the ductal or lobular 

malignancy extends beyond the epithelial boundaries, it is considered invasive, where it has the 
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potential for metastasis leading to death from cancer. Prognosis of breast cancers depends on the 

stage, which includes tumour size and quantity of lymph node involvement. Breast conservation 

treatment is only appropriate for the majority of stage I and II cancers, as with those the survival 

is equivalent with a mastectomy. Radiation adjuvant therapy is routine after breast conserving 

therapy and mastectomies in order to prevent the recurrence of the disease. Adjuvant 

chemotherapy or hormone therapy may also be used to block cell growth (55). Neoadjuvant 

chemotherapy can be used to decrease the size of a tumour giving more surgical options, and MRI 

commonly used be used to monitor its effectiveness (1). 

2.4.1 Breast MRI in Clinical Practice 

 

Typically, mammography and ultrasound are used for detection, but have low sensitivity 

and specificity in dense breast tissues, and in the presence of breast implants or post-surgical scars 

(56). MRI adds additional diagnostic value in the form of: detecting foci of multifocal, multicentric 

or contralateral disease (57). MRI also performs better than mammograms at recognition of 

invasive components in ductal carcinoma in situ, and detection of cancer in dense breast tissue 

(58). 

Breast MRI can also be used for screening, where MRI identified earlier stages of some 

diseases compared to mammography and that combined MRI and mammography is associated 

with improves survival rates (59).  

Preoperative MRI for local staging is common, but the detection of more disease does not 

always lead to improved outcomes (60). Furthermore, guidelines differ widely in their 

recommendations. Size estimates with MRI are more accurate than those with mammography or 

ultrasound. Using breast MRI, 75 percent of cancers are measured within 1cm of their pathological 

size (61). Assessing tumour size is beneficial for invasive lobular carcinoma and the depiction of 
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DCIS components related to invasive cancers is better compared to mammography. However, 

improved information in staging does not always lead to improved surgical outcomes (1). 

Clinical protocols are usually multiparametric and require a dedicated breast coil (59). 

Patients lie in the prone position with the breasts hanging in the recesses of the coil allowing for 

breast tissues to spread helping with detection of anomalies and reducing motion artifacts from 

breathing. These coils usually have 16 channels, to give a high signal-to-noise ratio.  

Contrast enhanced MRI such as DCE-MRI enables assessment of morphological and 

kinetic patterns of benign and malignant breast tumours (1). DCE-MRI evaluates the permeability 

of blood vessels using an intravenous contrast agent. Neo angiogenesis leads to the formation of 

leaky vessels that allow for faster extravasation of contrast agent. This manifests as a rapid local 

enhancement.  

2.4.2 Diffusion Weighted MRI 

 

Diffusion Weighted Imaging is another MRI technique that is used to differentiate tumours. 

Motion sensitizing gradients are applied to quantify the random movement of water in tissues (62). 

The degree of water movement in biological tissue is restricted by intracellular compartments, 

extracellular compartments, and tissue cellularity. Decreased water diffusion manifests as a higher 

DWI signal. The apparent diffusion coefficient (ADC) is the quantitative measurement of DWI. 

Cancers have low signal intensity on ADC maps. Mean ADCs are generally higher in benign 

tumours (62). Contrast material injection does not improve the diagnostic properties of ADC (63).  

2.4.3 Dynamic Contrast Enhanced MRI in breast cancer 

 

DCE-MRI scans typically employ T1-weighted images, which may be performed with or 

without fat suppression. They are usually acquired in the axial plane, as it is faster than sagittal 
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acquisition and provides a better overview. T1-weighted images should be obtained prior to 

contrast material injection. The maximum administered Gadolinium-based contrast agent should 

be 1 mmol per kilogram of body weight, and there is no evidence for higher performance with 

higher dose (64, 65). Most breast cancers show peak enhancement around 60-90 seconds after 

contrast material administration, and so the after-contrast images must be acquired in this 

timeframe. Images acquired without fat suppression require subtraction images to be created from 

pre and post contrast acquisitions (66). Motion artifacts, chemical shift artifacts and poor fat 

suppression may obscure small lesions (67). Breast MRI should depict all enhancing cancers 

greater or equal to 5 mm in size. In order to meet this standard, section thickness should be less 

than 2.5 mm, and in plane pixel size should be 1 × 1 mm or lower (68). Modern MRI units can 

easily obtain higher resolutions than this with an acquisition time per volume of 90 seconds or less. 

One T1-weighted image acquisition before contrast and one 90 seconds after contrast is sufficient 

for lesion detection, but more images can allow for breast lesion differentiation. One such is 

dynamic evaluation with time signal intensity curves. Dynamic evaluation documents the early 

inflow of contrast material in a lesion. Malignant lesions enhance, on average much later than 

benign lesions (69, 70).  

Although T1-weighted imaging is mainly used in breast, T2-weighted imaging has some 

niche applications. T2-weighted imaging with fat suppression can be used to visualize cysts and 

imaging without fat suppression can allow for better depiction of lesion morphology. Some 

tumours such as mucinous carcinoma, necrotic cancer, and metaplastic carcinoma have high signal 

intensity with T2-weighted imaging (60).  
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3.1 Abstract 
 

Purpose: To introduce a method for shape-recognition analysis of dynamic contrast enhanced 

(DCE)-MRI that is rooted in quantitative modeling. The approach can be used to assess tumour 

perfusion. An application is demonstrated for the potential prediction of therapy response in 

patients with breast cancer. 

Methods: The proposed method identifies the relative presence of pre-defined enhancement 

curves—based here on the Tofts-Kety model—in DCE-MRI data. The presence, or weight, of each 

of these curves in the data is estimated using a non-negative least-squares algorithm. In the 

example application, the weights were tested as markers of response to chemotherapy in a small 

group of patients with breast cancer. 

Results: Shape analysis provided meaningful spatial information about tumour perfusion, and the 

dynamics in the time course data were captured using a relatively sparse set of model-based shapes. 

There was relation between therapy response and weights of the shapes in patients with breast 

cancer suggesting predictive ability and outperforming quantitative analysis in this respect. The 

method is robust to variations in implementation of the analysis. 

Conclusions: A method was presented for analysis of DCE-MRI time course using predefined 

shapes based on the quantitative Tofts-Kety model. Our approach provides maps of the relative 

importance of perfusion characteristics such as slow and fast perfusion. The selection of pre-

defined shapes, and the interpretation of the weight maps can be adapted to the specific application. 

Keywords: dynamic contrast enhanced MRI, perfusion, shape analysis, model-based shapes, non-

negative least-squares 
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3.2 Introduction 
 

Characterization of tumour perfusion is an important clinical and research tool in the 

assessment of cancer. Dynamic contrast-enhanced (DCE) MRI exploits the dynamics of molecular 

contrast agents to study the perfusion characteristics of tissues and organs in vivo (24). The imaging 

consists of a series of T1-weighted images acquired after a bolus injection of a gadolinium-based 

tracer. The uptake and subsequent washout of the tracer produces a time-dependent signal 

enhancement curve for each voxel. These curves can then be analysed further using qualitative, 

semi-quantitative, or quantitative methods. 

 Quantitative analysis of DCE-MRI has the advantage of providing physiologically 

meaningful information that is robust—in theory—to variations in scanner hardware, acquisition 

settings, and injection protocol (3). Quantitative analysis involves fitting a tracer-kinetic model, 

such as the well-established Tofts-Kety model (33, 71), to the acquired data. But, it is technically 

demanding since it requires 1) T1 mapping to convert signal into tracer concentration, and 2) 

knowledge of the arterial input function, i.e. the time-course of tracer in blood plasma (72). 

Questions have arisen around the reproducibility of quantitative approaches since the results 

depend on the software implementation for analysis (73, 74). 

An alternative qualitative analysis method involves averaging the voxels in a region of 

interest and expert inspection of the average signal curve. This approach is popular because it is 

fast and technically simple. It has been successful in breast (4) achieving diagnostic indices of 91% 

sensitivity, 83% specificity and 86% diagnostic accuracy when evaluating the curve shape, and 

diagnostic indices of 91% sensitivity, 37% specificity and 58% diagnostic when evaluating the 

enhancement rate (the initial rate of growth of the time course curve following contrast agent 

administration). In soft tissue tumours (5) benign and malignant tissues were also able to be 

discriminated mostly based on the presence of liquefaction, time interval between start of arterial 
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and tumour enhancement, and lesion size. However, limitations of this approach include: the 

requirement for trained expert to select the region of interest that either contains the tumour, such 

that the results are operator-dependent, and it is too time consuming to employ on a voxel-by-

voxel basis and therefore may fail to capture intra-tumoural heterogeneity. 

To overcome the limitations of previous shape analysis work in DCE-MRI, automated 

approaches have been suggested that use semi-quantitative features of the signal curve to classify 

it into distinct categories based on curve shape. These shape classification approaches have found 

success in separating benign from malignant tumours in breast (9, 26) and soft tissue tumours (27). 

A major limitation is a lack of standardization. The classification shapes are arbitrarily defined and 

the number of shapes can vary from two to seven depending on the study (3). Furthermore, the 

specific criteria used for classifying the measured curves (e.g. maximum signal intensity, initial 

rate of enhancement, and time to enhancement) also differs between studies (3). 

This paper introduces a method that uses a tracer-kinetic model – specifically, the Tofts-

Kety model (75) – to define the classification shapes using a single parameter. We propose to 

analyze the observed signal enhancement time-curves as mixtures of the classification shapes. This 

decreases the number of classification shapes since many intermediate shapes can be generated as 

mixtures. We propose that this analysis technique can reliably distinguish regions of low and high 

perfusion, can be applied to data with low or high temporal resolution, and is robust to variations 

in the curve definitions. 

In this work, we applied the technique to a freely-available dataset in breast cancer (76) to 

demonstrate its utility: in this portion of the work, we hypothesized that the analysis would have 

the same predictive ability as prior quantitative analysis of this data using the Tofts-Kety model. 
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3.3 Theory 
 

In the proposed method, a set of classification shapes are pre-defined and identified in the 

measured time-course data using a fitting algorithm. The classification shapes are constructed 

using the Tofts-Kety model with parameter values taken from the literature. Prior work on the 

DCE quantitative model identified the kep parameter (the rate of contrast agent transfer from the 

interstitial space back to the plasma space) as the main determinant in the time-curve shape (16). 

Equation (3-1) is the Tofts-Kety model for the time-concentration curve, where I7 and I> are the 

tissue and plasma contrast agent concentration, respectively, and [7?;,* and 4@> are the 

compartmental model parameters. The arterial input function (AIF), from which I> is calculated, 

can come from a sample average or a model. 

I7(B) = [7?;,*r I>(s)
7

-
i'S12(7'T)ts 

(3-1) 

Once computed, the concentration-time curves are converted to signal-time curves M(B) 

considering the native tissue T1 (= 1 J!,-⁄ ) and contrast agent relaxivity K!, according to equations 

(3-2) and (3-3), where M- is a coefficient which presents the theoretical signal amplitude of the 

fully relaxed magnetization, O is the flip angle, and TR is the repetition time. The echo time (TE) 

is assumed to be short enough that J"∗ effects can be ignored. Each of these signal-time curves is 

then normalized to its maximum signal value such that the choice of M- is ad hoc. 

J!(B) = J!,- + K!I7(B) 

 (3-2) 

M(B) = M-
1 − i'TR∙V((7)

1 − cos(O) i'TR∙V((7)
sin(O) 
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  (3-3) 

Each parameter in the compartmental model impacts the shape of the concentration-time 

curve differently, as illustrated in Figure 1 (top). The noteworthy observation is that a constant 4@> 

results in a set of curves with the same basic shape, as expected since it is the rate constant of the 

impulse response of the system. Therefore, a set of shapes (with normalized amplitude) can be 

defined using unique values of 4@> as the shape parameter. A set of resulting normalized signal 

curves for 5 4@> values are plotted in Figure 1 (bottom), underlining the role of 4@> in determining 

the signal curve shape. 

 

 

Figure 3-1: Top row: Calculated model curves for the Tofts-Kety model, illustrating the impact of 

variations in each of the model parameters. Note that for the case of constant kep, the model shape 

is essentially constant. Bottom row: Calculated model curves for the Tofts-Kety model for a wide 
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range of kep values, showing the wide range of shapes that can be produced, from very slow and 

persistent enhancement (very low kep) to very fast, sharply declining enhancement (very high kep). 

 

The classification method assumes that signal time-curves in the acquired data are 

weighted mixtures of the predefined shapes. The number of curves is left as a choice to the user 

and can be based on a priori information about the data on hand. The problem of determining the 

weights can be represented as in equation (3-4), where z(B) are the measured data points and the 

M8(B) are the predefined curves. The weights {8 are computed using non-negative least squares 

(NNLS), details of which are described elsewhere (77). The NNLS algorithm returns the strictly 

positive weights that result in the best combination of the shapes to fit the data.  

|(E) =}~A�A(E) + Ä	
A

 

(3-4) 

Prior to estimation of the weights, the data are pre-processed. First, the background signal 

is removed by subtraction of a pre-contrast frame, to isolate the enhancement. Finally, these voxel-

wise signal enhancement data are normalized to the maximum enhancement signal in the tumour.  

 

3.4 Methods 
 

3.4.1 Simulations 
 

Experimental simulations were performed to evaluate the sensitivity of the proposed 

method to a range of theoretical input curves. This helped address the question of the number of 

individual curves to use in the analysis. Simulated time-intensity curve data were produced using 

the Tofts-Kety model over a range of kep values from 0.001 to 1.0 min-1, in steps of 0.001 min-1. A 

temporal resolution of 0.5s was used in this simulation. The curves were then processed using the 
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proposed shape analysis method to assess its behaviour in reflecting the underlying data 

characteristics. Up to 5 predefined model curves were used, and the values of the weights and the 

goodness-of-fit were measured.  

A second set of calculations explored the impact of modifying the temporal resolution of 

the acquired time course data on the analysis. The set of simulated enhancement time-course 

curves previously generated using the Tofts-Kety model was downsampled to temporal resolutions 

of 1, 5, 10, 30, and 60 seconds before being analyzed with a two-component model. The effect of 

temporal resolution was assessed by comparing the weights from the shape-recognition analysis 

and the fitting residuals normalized by the number of datapoints. 

3.4.2 Experimental 
 

To demonstrate the shape-based DCE-MRI analysis method, it was applied to patient data 

from the freely available "QIN Breast DCE-MRI" dataset from the Cancer Imaging Archive (12). 

This is a dataset acquired from 10 patients with breast cancer who underwent neoadjuvant 

chemotherapy, at two time points (pre-treatment and following one cycle of therapy). In the 

original work with this data, quantitative DCE-MRI analysis was moderately predictive of 

pathological response to neoadjuvant chemotherapy at pre- and intra-treatment MRI exams. Our 

hypothesis was that the shape-recognition weights that characterized the perfusion characteristics 

of these tumours would be different for patients showing pathologic complete response (pCR) 

from those of non-pCR patients, at one or both imaging time-points. Among these patients, 3 

showed pCR. We used images from the pre-treatment exam (visit 1) and after the first cycle of 

treatment (visit 2). 

In analyzing the breast cancer dataset, we designed our model shapes using kep values from 

Eliat et al. (78) to define two concentration-time curves described as low permeability (4@> = 0.27 

min-1) and high permeability (4@>,= 0.90 min-1) values reflecting benign and malignant tumours, 
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respectively. The Eliat study reported KTrans and ve such that kep was calculated using 4@> =

[7?;,* Å@⁄ . NNLS analysis was used to compute the weights voxel by voxel and we evaluated 

whether the mean weight of non-zero voxels (denoted as “MeanNZ”) in the tumour ROI can 

predict therapy response. We used patient-specific T1 values (ranging from 1600 ms to 2500 ms) 

and the AIF provided in the "QIN Breast DCE-MRI" dataset to define classification shapes. 

We also repeated the experiment with in vivo data using kep (curve-shape) parameter values 

from other studies, namely Furman-Haran et al. (79), Tofts et al. (75), and Vincensini et al. (80) 

studies. The values used and generated curves can be seen in Figure 3-2.  

 

Figure 3-2: Plots of the normalized signal-time curves used in the shape analysis of in vivo breast 

cancer data. The thicker lines are shapes are calculated using the Tofts (75), Vincensini (17), 

Furman (15) and Eliat (78) studies with the Parker AIF and T1 = 1.81 ms. The faint lines are patient 
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specific shapes calculated using AIFs and T1 provided with the dataset. Symbols are included to 

illustrate the data time-points. 

 

Using the same in vivo data, we evaluated whether the observations of the proposed method 

were sensitive to variations in the T1 value or the AIF time-course used to construct the pre-defined 

shapes. We repeated the analysis using shapes defined with fixed T1 values of 1000 ms and 100 

ms (instead of patient-specific T1 values). We also performed the analysis with the patient-specific 

T1 and shapes defined using the population-based AIF model and parameters from Parker et al. 

(44) and finally with a combination of the Parker AIF and T1 = 1000 ms. 

The analysis was also performed with three curves: the two original curves, plus the AIF as 

an extra curve. The Tofts-Kety model assumes that the volume occupied by blood vessels is 

negligible in every voxel, which may not be true for highly vascularized tissue such as the breast. 

Simulations have shown that the Tofts-Kety model is not accurate in highly vascularized tissues 

(34) and that the Extended Tofts Model (71), which includes an additional AIF term, is more 

accurate in highly perfused tissues. Thus, the inclusion of an AIF curve may lead to a model that 

better fits the data. 

For all variations of the in vivo experiments, the weight maps were analyzed by looking at 

descriptive parameters like the mean, median, and standard deviation. Univariate analysis was 

used to determine if the weight map parameters were related to treatment outcome. The area under 

receiver-operating characteristic (AUROC) curve was used to measure and compare predictive 

power of the shape analysis method with the aforementioned variations.  

The goodness-of-fit of the model was assessed in each voxel. The model curve was generated 

by scaling the low and high perfusion components by their respective weights. The residuals and 

coefficients of determination (R2) between the model and the data were calculated for each voxel. 

They were analyzed by looking at their mean, median, standard deviation, and their distribution 
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on histogram plots. The R2 values of individual voxels were plotted in histograms to visualize their 

distribution.  

3.5 Results 

 

3.5.1 Simulations 
 

Simulations revealed that the algorithm consistently models a signal based on an 

underlying Tofts-Kety two-compartment model with a mix of two shapes, at most. This result was 

independent of the number of pre-defined shapes in the analysis, and models with up to 6 shapes 

were tested. When using two shapes, the algorithm uses a mixture of the two only when the shape 

of the underlying data is characterized by a kep between that of the two curves (Figure 3-3). When 

the algorithm is used with three shapes, only two are assigned non-zero weights for any given data 

(Figures. 3-3 and 3-4). The algorithm maintains this behaviour with more shapes (Figure. 3-4). 

Interestingly, temporal resolution had very little impact on the analysis results. When using 

two shapes and varying the temporal spacing of the simulated input data from 1 second to 60 

seconds, the calculated weights barely changed. The goodness-of-fit was affected slightly. The 

normalized fit residuals were always below 1% per point for simulated data curves with kep 

between the values used in the two-component model. Normalized fit residuals increased for data 

outside the range covered by the two kep values, and the increase was greater for low-temporal-

resolution data, up to 6.5% per point at 60-second temporal resolution. 

3.5.2 Experimental 
 

In vivo data were analyzed with two pre-defined shapes, calculated using kep = 0.27 min-1 

for low perfusion and 0.90 min-1 for high perfusion from the Eliat Model. These kep values were 

selected to reflect perfusion levels characteristic of benign and malignant disease (78). The 

resulting shapes were previously shown in Figure 3-2. 
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Figure 3-3: Simulation results from fitting single-component Tofts-Kety model curves using two 

(left column) and three (right column) pre-defined analysis shapes. Top row: the shapes (with 

associated kep values). Middle row: weights resulting from the analysis. For a range of input 

(theoretical) model kep values from 0.001 to 1.0 min-1 the model only ever returns non-zero weights 

for at most two of the pre-defined shapes. The weight assigned to a given curve peaks at the kep 

value of the curve. Bottom row: fitting residuals. The residuals are lowest at or between the kep of 

the pre-defined analysis shapes, suggesting that the minimum and maximum kep values should 

cover the expected range of shapes. 
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Figure 3-4: Effect of varying the number of reference curves (sources) used in weighted fitting on 

the analysis for 3, 4, and 5 sources. Shows that for any given input curve from a single kep value, 

the analysis method uses at most two pre-defined curves with distinct kep values in the fit. 

Simulations were performed with up to 5 curves producing results leading to the same conclusion. 

 

The weight maps clearly display distinct areas of signal that reflect the location of the 

tumour. These distinct areas varied between patients. The low and high perfusion weight maps 

highlight different areas of the tumours. Normal tissue generally had high fitting residuals and very 

low weights for both components, indicating that the model did not recognize it as low- or high-

perfusion tumour (based on the definition of the shapes in the analysis). The appearance of the 

weight maps was different between patients showing pathologically complete response (N=3) and 

those who did not (N=7). Examples from two patients in each group are shown in Figure 3-5, 

highlighting the difference especially in high perfusion content. Tumours that were later identified 

as complete responders had smaller amounts of high perfusion weights (green) at visit 2 than the 

non-complete responders. 

There was a clear relationship between therapy response and the mean value of the weights 

over all pixels with non-zero weight values (“MeanNZ”), from the low perfusion channel at visit 

1 (pre-treatment) and the high-perfusion channel at visit 2 (after 1 cycle). The MeanNZ for the 

low-permeability shape at visit 1 and for the high-permeability shape at visit 2 were both able to 
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separate pCR from non-pCR patients (Figure. 3-6, Standard). The high-permeability shape at visit 

1, and the low-permeability shape at visit 2, did not have predictive value.  

Incorporating the AIF as a separate time-course in the model did not lead to meaningful 

improvement in the R2 values of the fit or in the predictability of therapy response. 

 

Figure 3-5: Fused weight maps for two-shape (low/high) perfusion analysis. The low perfusion 

weight is represented by the intensity in the blue channel, while the high perfusion weight is in the 

green channel. In these data from breast cancer patients (freely available from TCIA (76)) there 

appears to be a pattern of perfusion that reflects response to treatment. 

 

Tests of the robustness of the algorithm on patient data revealed that it is quite robust to 

most of the assumptions made in defining the source time-curves. Modifying the T1 value used in 

this calculation did not impact the results unless the estimated T1 was assigned a low value (< 100 

ms), suggesting the T1 value assumed in the curve definitions does not affect results (within a 

reasonable range) and that T1 mapping is therefore unnecessary. Overestimation of the T1 value 

did not have an impact on the assigned weights for high perfusion component at visit 2, and a slight 

impact on the weights of the low perfusion component at visit 1. The separation based on therapy 

response was not impacted by the T1 selection. These results are shown in Figure 3-6 (“T1 = 

1000ms”, “T1 = 100ms”) 
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Figure 3-6: The mean values of the weights from the two-component analysis of in vivo data can 

distinguish between patients depending on their pathological response. The distinction is observed 

on the low-permeability weight at visit 1 in panel (a) (pre-therapy), and the high permeability 

weight at visit 2 in panel (b) (after 1 cycle of chemotherapy). The analysis is also quite robust to 

the choice of T1 value and AIF used in the definition of the analysis shapes, suggesting that the 

method is quite robust. The area under the ROC curve is 1 for all cases except two: at visit 1, using 

the Parker AIF to define the shapes. 

 

The choice of the arterial input function (AIF) had a noticeable effect on the pre-defined 

shapes, and this altered the discrimination power of the analysis on this dataset. This can be seen 

in the two right-most columns of Figure 6 (“Parker AIF”, and “Parker AIF, T1=1000ms”), where 

the discriminatory power is much reduced. The area under the receiver operating characteristic 

curve (AUROC) is 1 for all but these two cases in Figure 6a, and all cases in Figure 6b; however, 

the AUROC drops to 0.952 for the low permeability shape at visit 1 when Parker’s population-

based AIF is used in defining the source shapes. 

The distribution of R2 values between the model fit and data for individual voxels for non-

pCR in visits 1 and 2 were similar and mostly around 0.9, showing that the model fits the data well 

in general. The distribution of R2 values for pCR patients is around 0.9 as well for visit 1 but is 

centered around 0.7 for visit 2. These can be seen in Figure 3-7. There was also a high number of 
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counts in the ‘zero’ bin for non-PCR patients. These zero values come from a single patient and 

are associated with a non-enhancing region in the center of a large tumour.  

 

Figure 3-7: Histograms of the R2 values of individual voxels from shape analysis with kep 

parameters from the Eliat model. The patients are separated in to pCR and non-pCR visits 1 and 

two, as well all visit 1 and all visit 2. Shape analysis done on pCR-visit 2 scans are the only ones 

that do not have R2 values centered around 0.9, indicating that the model fit is not as good. 
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3.6 Discussion 

 

In this work, we have introduced a novel technique for shape-based analysis of DCE time-

courses, and more importantly have shown that this method may have predictive value in assessing 

the response of breast cancer treated with neoadjuvant chemotherapy. The discrimination between 

pathologically complete response and non-response was very strong across a range of analyses. 

This surprisingly strong result must be taken with some reservations, as it was obtained in a small 

dataset. In addition, certain modifications to the analysis reduced the discriminatory power of the 

method, reducing the area under the receiver-operating curve for the predictive value of pre-

treatment imaging from 1.0 to 0.952.  

The original study on this dataset had shown that responders and non-responders could be 

separated based on DCE-MRI parameter values of kep and KTrans following their first course of 

treatment and on the change in kep and KTrans between visit 1 and visit 2 imaging. The highest pre-

treatment AUROC was reported as 0.857 (76). Interestingly this is lower than the lowest AUROC 

of 0.952 from our shape analysis method. These results strongly suggest that shape analysis of 

perfusion MRI based on representative quantitative model curves could be a powerful analysis tool 

for prediction or early assessment of treatment response. 

MRI based on representative quantitative model curves could be a powerful analysis tool 

for prediction or early assessment of treatment response. 

In addition to the clinical data, shape analysis was run on a set of simulated DCE-data 

generated using an underlying two-compartment Toft-Kety model. Running shape analysis on this 

simulated DCE data revealed that regardless of how many shapes were used, each simulated input 

time course was described by a maximum of two shapes with non-zero weights. This reflects the 

behavior of NNLS, which prefers to select sparse solution with as few non-zero solutions as 
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possible (81). This suggests that two shapes would be sufficient when considering how many initial 

source shapes to select when using NNLS. 

Our shape analysis approach avoids the limitation of quantitative model DCE analysis that 

requires high temporal resolution for a good fit. Accurate fitting of such models requires a temporal 

resolution of 5 seconds or better (82), while most clinical protocols have a temporal resolution of 

15–90 seconds (68). As a result, Tofts-Kety model analysis is usually limited to research. 

However, the minimal effect of temporal resolution on the goodness-of-fits in the simulation our 

method suggests that our method can be applied to clinical data of lower temporal resolution. 

Analysis of the goodness-of-fit showed the R2 value decreasing for responders at the second 

visit. This suggests that the model does not describe the data as well. We speculate that this caused 

by changes in the tumor microenvironment. Additionally, the shape analysis model fails to 

describe normal tissue and non-enhancing (perhaps necrotic) tumour tissue, assigning weights 

close to zero for both shapes and resulting in very poor fit reflected in low R2 values. 

A potential limitation of this technique is that the parameter values used in predicting 

therapy response were not necessarily designed for this kind of assessment. For example, 

Vincensini had reported kep values that were indicative of tumour histological subtype. We applied 

the parameters from this study to predict therapy response. The same question can be asked for 

models where reported values were indicative of benign/malignant classification. It may possible 

that our method predicts tumour subtype or grade, and that subtype or grade predicts therapy 

response. 

In addition to tumours and tumour grading, shape analysis can also be used to assess the 

activity of inflammatory processes (83) and even the effect of drugs (84). Although the most 

common application has been in breast, studies have also been done in other tissues including, 

liver, brain, prostate, and abdomen (27). Thus, the selection of predefined shapes and interpretation 
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of weight maps from the proposed method is not limited to only breast tumours and can be adapted 

and applied to other types of analyses.  

The main goal of this work was to design a method with clinical utility to analyze DCE-

MRI data, but this method has potential to be applied as a research tool as well. One way could be 

to obtain data-based curves by using methods such as clustering, and then using NNLS to find 

weight maps for the cluster centers. This is different from current clustering methods which try to 

extract parameters from the clustered curves. 

Other methods of analysis include analyzing the tumours through image segmentation or 

texture analysis or voxel wise changes but did not achieve the same performance as quantitative 

Tofts-Kety model or shape analysis in this dataset. Analysis of voxel wise features such as tumour 

deformations achieved an AUROC of 0.73 as predictors of therapy response in breast cancer (85). 

A prediction model based on a combination of clinical information, subjective radiological 

findings, and first- and second-order texture features achieved an AUROC of 0.78 for therapy 

response in breast cancer (85).  

One limitation of this method includes the availability of an arterial input functions for use 

in our model. The dataset used in this study included an averaged arterial input function determined 

from signal time course of 3 patients (86). To test the robustness, we ran the analysis using the 

Parker functional form AIF. The result was an AUROC lower than with the AIF included with the 

data. This is a limitation for datasets where a direct or population averaged AIF is not available, 

and functional forms are necessary.  

Another limitation of the method is the need for contouring the lesions. The data set used 

in this study contained regions of interest with lesions manually delineated by experts. Manual 

contouring is a time-consuming process, requires expertise to perform, and is likely to be operator-
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dependent. One solution would be to implement an algorithm to automatically contour the tumors, 

and this solution is employed in some quantitative studies with moderate success (87) . These 

algorithms can involve selecting the voxels with the highest enhancement, selecting all voxels over 

a threshold of enhancement, or selecting an area around the highest enhancement voxel. 

3.7 Conclusion 

 

Shape analysis allows for the analysis of DCE-MRI data using predefined shapes based on 

the quantitative Tofts-Kety model. It uses NNLS to classify measured time course data as mixtures 

of shapes. It is fast and robust to variations in flip angle and T1. In a DCE MRI dataset from 10 

patients with breast cancer, shape analysis was able to identify complete responders prior to 

treatment and after one cycle of neo-adjuvant chemotherapy, outperforming previously established 

quantitative analysis based on the quantitative Tofts-Kety model. This method could be a powerful 

tool in early assessment of treatment response. The selection of predefined shapes and the 

interpretation of weight maps can be adapted to the specific application.  
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Chapter 4: Further Analysis with Additional Shape Types and 
Automatic Tumour Delineation 

 

4.1 Shape Analysis with 3 input shapes 
 

4.1.1 Introduction 
 

Vincensini reported kep parameters that reflected breast tumour subtype (80) which were 

used for shape analysis in Chapter 3. These subtypes were invasive ductal carcinoma (IDC), 

invasive lobular carcinoma (ILC) and benign tumours. The kep parameters used in this study were 

applied to predict therapy response, and the results reported in Chapter 3 suggest that time-intensity 

curves decomposed using our method based on published kep values are related to outcomes. This 

brings about an interesting question of whether these kep parameters be used to determine tumour 

subtype, or are they only useful for predicting therapy response. 

As described in sections 2.4 Invasive lobular carcinoma is the second most common type 

of breast cancer (88). Its clinical, biological, and prognostic values make it a separate entity from 

invasive ductal carcinoma (IDC). Patients with IDC were more likely to experience pCR when 

undergoing neoadjuvant chemotherapy compared to ILC (89). 

Tofts also proposed an extension to his model for tissue that is highly vascularized (11). 

This is expanded on in greater detail in Chapter 2. The Extended Tofts model consists of adding 

an additional term containing the arterial input function multiplied by the fraction of the voxel 

occupied by blood vessels. Conceptually, this is similar to having the AIF as a third shape 

component in shape analysis that can have a weight in each voxel. 
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The objective of the work presented in this chapter was to investigate whether additional 

input shapes on the shape-based analysis improves the outcome of the analysis. This was first done 

with 3 shapes derived from 3 kep values reported by Vincensini et al. Then the analysis was 

repeated with 2 shapes from kep values from Eliat et al, as was done in Chapter 3 and the Parker 

AIF (44) component as a third shape. 

4.1.2 Methods 

 

Shape analysis was run using 3 shapes instead of 2, with the parameters being taken from 

Vincensini et al. Vincensini et al kep values for IDC, ILC and benign tumours which were 1.32 

min-1, 0.66 min-1, and 0.32 min-1 respectively (80). In the previous analysis reported in Chapter 3, 

values of 1.32 min-1 and 0.32 min-1 kep were used for the high and low shapes respectively. The 

mean value of the weights over all pixels with non-zero weight values were compared at each of 

the visits to see if the separation seen before was maintained. Separation was quantified by 

calculating AUROC. 

Shape analysis was also run using 2 shapes based on values from the Eliat study (78), and 

the average AIF supplied with the dataset as a third shape. The mean value of the weights over all 

pixels with non-zero weight values were compared at each of the visits to see if the separation seen 

in section 3.5.2 was maintained. Separation was quantified by calculating the AUROC. 

4.1.3 Results 
 

Following analysis of the dataset with three kep shapes describing breast cancer tumour 

type, the separation (AUROC = 1) at visit 1 is maintained by inspection of the mean non-zero 

weights of the highest kep shape (1.32 min-1) which was the kep value for IDC. In this case, in 

contrast to the result observed in section 3.5.2 the separation at visit 2 is reflected in the 

intermediate kep (0.66 min-1), which was the kep value reported for ILC. R2 values are also slightly 



 

 53 

higher than the 2-shape analysis from section 3.5.2. The lowest kep shape (benign) no longer 

separated pCR and non-pCR patients. This is shown in Figure 4-1. The 2-shape analysis in Chapter 

3 had mean R2 values of 0.81 and 0.70 for visit 1 and visit 2 respectively, while the 3-shape analysis 

had R2 values of 0.82 and 0.71 for visit 1 and visit 2 respectively. 

 

Figure 4-1: Shape analysis with 3 shapes reflecting different types of breast cancer. The mean 

weights of non-zero voxels for each shape are plotted for each patient at visit 1 (left) and visit 2 

(right). The AUROC curve for each shape and visit is plotted below each figure. Each patient’s 

response to neo-adjuvant chemotherapy is labelled as pCR (blue) or non-pCR (orange). Separation 

of pCR and non-pCR patients occurs in the mean weights for the IDC shape in visit 1 and in the 

mean weights of the ILC shape for visit 2. This is reflected in AUROC values of 1. 

 

Conducting the analysis with two shapes generated with kep from the Eliat study (74) and 

the population average AIF as a third shape did not change the separation between of pCR and 

non-pCR observed in 2 shape analysis. The AIF term was characterized by small weights in most 
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voxels, and the meanNZ weights did not show any separation of pCR and non-PCR patients. This 

is shown in Figure 4-2. The 2-shape analysis in Chapter 3 had mean R2 values of 0.81 and 0.70 for 

visit 1 and visit 2 respectively, while the 2-shape analysis with an AIF term had R2 values of 0.81 

and 0.71 for visit 1 and visit 2 respectively. 

 

Figure 4-2: Shape analysis with the AIF as a third shape. The mean weights of non-zero voxels for 

each shape are plotted for each patient at visit 1 (left) and visit 2 (right). Each patient’s therapy 

response is labelled as pCR (blue) or non-pCR (orange). The AUROC curve for each shape and 

visit is plotted bellow each figure. Separation of pCR and non-pCR patients occurs in the mean 

weights of high-perfusion shapes for visit 2, and the mean weights for low-perfusion shapes in 

visit 1. This is reflected in AUROC values of 1. The AIF term was characterized by small weights 

and appears to separate responders from non-responders at visit 2.  

4.1.4 Discussion 

 

Conducting shape analysis with 3 shapes representative of breast tumour subtypes yielded 

interesting results. The low perfusion shape (kep=0.32 min-1) previously used in Chapter 3 no 
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longer showed the response separation at visit 1 and instead the separation was present in the 

weights of the shape with an intermediate kep=0.66 min-1. This suggest that the range of kep values 

used to define shapes might be more flexible than initially proposed in Chapter 3. 

The question of whether our analysis might be instead identifying tumour subtype, which 

in turn is related to response to chemotherapy, is impossible to assess in a dataset where tumour 

subtypes were unavailable. If the weights of the shapes were indicative of the tumour subtype, the 

results would suggest that high ILC and low IDC weights might be associated with a positive 

response to chemotherapy. The responders at visit 1 had more ILC weight, and the responders at 

visit 2 had less IDC weights. However, the opposite is reported in literature: ILC has a lower 

chance of pCR than IDC when treated with neoadjuvant chemotherapy (89). It is therefore unlikely 

that that our shape recognition method is capturing histological subtype, and that instead we are 

observing meaningful mixtures of kep values within voxels. 

 In addition to running the analysis with 3 shapes, 2 shape analysis was done using the AIF 

as the third shape. Including an AIF shape in the analysis did not change the separation or the 

quality of fit meaningfully. In fact, the AIF shape had low mean weights in both visits, not being 

assigned as part of the model in most voxels.  

4.2 Semi-Automatic Region of Interest Generation 

 

4.2.1 Introduction 
 

The dataset used for this study included regions of interest (ROIs) of the breast cancer 

tumours delineated by an expert. Not all available datasets have ROIs, and this is a major obstacle 

in applying the proposed analysis to those datasets. Manual contouring is time consuming and is 

likely to be an operator dependent process. The need for an expert to manually contour the tumours 

is also a barrier to the proposed analysis in prospective studies and deployment in the clinic.  
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 The objective of the work presented in this section is to propose a semi-automatic technique 

for contouring the tumour, where the only manual input is a quick and rough contour around the 

tumour. 

4.2.2 Methods 
 

The semi-automatic contours were generated by first drawing a rough mask over the 

tumour at every slice. The rough mask contained the entire area of rapid enhancement, and a 

generous amount of surrounding tissue to ensure that the whole lesion was captured. Shape 

analysis using Eliat et al. kep values (78) was then conducted on the voxels within the rough mask, 

and the goodness-of-fit was evaluated at each voxel as described in Chapter 3. The voxels were 

only included in the meanNZ calculation if their R2 of the model fit to the data is over 0.5. The 

threshold of 0.5 was chosen as that is the R2 threshold where the model explains 50% of the 

variance. The semi-automatic contours were compared to the manual contours provided with the 

data set by calculating the DICE coefficient (90) between the two masks. This process can be seen 

in Figure 4-3. 

This method’s ability to reproduce the relationship between therapy response and the 

weight of shapes was compared with the manual ROIs, and a commonly used simpler ROI method 

based on a threshold of enhancement. This threshold ROI method begins by first drawing a rough 

mask over the tumour at every slice. The rough mask contained the entire area of rapid 

enhancement, and a generous amount of surrounding tissue to ensure that the whole lesion was 

captured. Relative enhancement was the given by: 

JiÇhBNÅi	!NÉ3hÇ	Ñ3ℎh3Tiki3B =
!>W*7ÖÖÖÖÖÖ + !>?@ÖÖÖÖÖ

!>W*7ÖÖÖÖÖÖ 	 

(4-1) 
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Where !>W*7ÖÖÖÖÖÖ is the average signal over all timepoints after the contrast agent is administered and 

!>?@ÖÖÖÖÖ is the average signal over all timepoints before the contrast agent is administered. The voxels 

were only included in the meanNZ calculation if relative threshold enhancement is greater than a 

chosen threshold.  

 

Figure 4-3: Pipeline for semiautomated region of interest. A rough contour (yellow) is drawn 

around the tumour, followed by two component shape analysis. Then the shape analysis is 

restricted voxels that had an R2 value above 0.5. The last image shows the final contour o the semi-

automatic ROI (yellow). 

 

4.2.3 Results 
 

The semi-automatic tumour masks seemed to conform to the tumour very well. This was 

reflected by high DICE coefficients between the manual and semi-automatic masks. Interestingly, 

every automatic tumour mask was slightly smaller than the manual masks provided with the 

published dataset. Both these observations are shown Figure 4-4. When looking at the mean 

weights generated with the semi-automatic ROIs, the same separation of pCR and non-pCR is 

reproduced in the automatic masks as in the manual masks (reported in Chapter 3). The mean 

weight is the semi-automatic masks and the same analysis originally reported in Chapter 3 are 

shown in Figure 4-4. The separation was not present using masks based on a simpler thresholding 
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technique. Using a mask generated based on a threshold of a percent of the maximum enhancement 

led to at best only separation of pCR and non-PCR patients based on the mean weights of the high 

perfusion shapes at visit 2. An example of a 70% threshold is shown in Figure 4-6, but no threshold 

value was able to reproduce the separation at visit 1 seen in the manual and goodness-of-fit based 

masks.  
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Figure 4-4 The DICE coefficients between the manual contours and the semi-automatic contours 

based on goodness-of-fit is shown in sub plot A. Patients are separated by visit, and each tumour 

is plotted by a unique colour that is maintained between visits. The size of the manual and semi-

automatic tumour contours is plotted in subplot B. Manual and semiautomatic contours sizes for 

the same tumours are connected by a black line. The DICE coefficients are high, reflecting good 

conformity between manual and semi-automatic masks. All semi-automatic masks are smaller than 

their manually drawn counterparts. 
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Figure 4-5: Mean weights with semi-automatic (top) ROI and manual (bottom) contoured tumours. 

The mean weights of non-zero voxels for each shape are plotted for each patient at visit 1 (left) 

and visit 2 (right). Each patient’s therapy response is labelled as pCR (blue) or non-pCR (orange). 

Separation of pCR and non-pCR patients occurs in the mean weights for low-perfusion shapes in 

visit 1 and in the mean weights of high-perfusion shapes for visit 2 for both of the contouring 

techniques. The mean weights are similar to those seen with manual ROI, and the separation of 

therapy response is still present.  

 

 

Manual Contouring

Semi Automatic Contouring 
based on Goodness of Fit
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Figure 4-6: Mean weights with semi-automatic threshold ROI. The threshold used was 70% of the 

maximum enhancement. The mean weights of non-zero voxels for each shape are plotted for each 

patient at visit 1 (left) and visit 2 (right). Each patient’s therapy response is labelled as pCR (blue) 

or non-pCR (orange). Separation of pCR and non-pCR patients occurs only in the mean weights 

of high-perfusion shapes for visit 2. 

 

4.2.4 Discussion 
 

To address the obstacle of defining ROIs in datasets without them, a method of semi-

automatically generating the ROIs was investigated. The semi-automatic delineation based on 

goodness-of-fit was able to not only create masks that agreed with the expert contouring of the 

tumour but was also able to reproduce the treatment response relation using the set of manual 

ROIs. Simpler methods used to generate ROIs were not able to reproduce this result as shown in 

Figure 4-6. Interestingly every automatic mask appeared to have fewer voxels and always a subset 

of the manual mask. One limitation is the fact that this automatic tumour delineation is discarding 

voxels that the model does not explain, by thresholding to select only voxels with a high coefficient 

of determination. This design choice should be validated in other datasets.  
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Chapter 5: Discussion & Conclusion 
 

5.1 Discussion 
 

In Chapter 3 we showed a two-component shape analysis method of analysing breast DCE-

MRI data based on shapes defined using the Tofts-Kety model. This method was able to separate 

patients with breast cancer as complete responders and non-responders to neoadjuvant 

chemotherapy in a publicly available dataset. This method is fast, with a processing time of a few 

minutes for 10 patients, and robust to variations or errors in the acquisition. Shape analysis was 

run with several kep values defining the shapes, and all selected shapes resulted in the same 

relationship between therapeutic response and mean weights. An insensitivity to lower temporal 

resolutions makes this method suitable to apply to clinical data. This method may be a useful tool 

in predicting therapy response in breast cancers as early as the pre-treatment scan and could be an 

aid to decisions made by doctors.  

One barrier to this method and any quantitative DCE-MRI analysis is the requirement of 

accurate ROIs delineating the lesions. Contouring of ROIs is usually done manually by an expert 

but is a time-consuming process. Chapter 4 showed that commonly used algorithms to generate 

ROIs, such as an approach based on a simple threshold of maximum enhancement, failed to capture 

enough voxels to reproduce the separation we saw with the manual ROIs in this data set. We 

proposed and implemented a semi-automatic ROI algorithm based on a threshold of R2 values of 

the goodness-of-fit of shape analysis coupled with a rough manual delineation. This created masks 

with high conformity to the original manual masks, reflected by a high Dice coefficient. 

Additionally, these masks captured the relationship seen with the manual masks between the mean 

weights of the shapes and the eventual therapeutic response. This method is faster than manual 

contouring with comparable results.  
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Shape based classification has already seen success in other tissues (27). Our group has 

tested a version of this approach in liver, which has shown promising preliminary results in 

identifying cellular growth patterns in colorectal cancer hepatic metastases (unpublished result). 

DCE is also of interest in soft tissue tumors, where we might obtain grading information. There is 

evidence for a connection between DCE-MRI quantitative observations of KTrans and kep and 

already established histological analysis of microvessel density and percentage of Ki-67 antigen 

positive cells (91). Another potential application of this analysis is the differentiation of pseudo-

progression vs true progression in cerebral metastasis, which showed promise using DCE MRI 

quantitative parameters such as KTrans (92). 

5.2 Future Work 
 

One immediate area of improvement on this study is the application to other datasets. 

Previously, a constraint was that come candidate datasets did not have ROIs supplied. A ROI 

generation method based on simple enhancement-based thresholding that we tried was not 

successful at replicating the results of shape analysis with manual ROIs in the original dataset. 

Now, with the semi-automated ROI algorithm proposed in Chapter 3, application of shape analysis 

to these other data sets is possible. This ROI generation method itself can benefit from additional 

work. The design choice of discarding data that is not explained by the model (described in section 

4.2) should be validated in other data sets.  

To test the robustness to a lack of a high quality measured AIF, a literature AIF by Parker 

et al. (44) was used, with mixed results Chapter 3. There are other AIFs available that were not 

investigated, including the Georgiou AIF (47). Since the publication of the Parker AIF in 2006, 

DCE-MRI acquisitions have improved in quality, and Georgiou et al. took advantage of this to 
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publish a functional form of an AIF that better captures the successive passes of the contrast agent 

bolus that are averaged out in the Parker and averaged AIFs.  

Finally, several values of kep have been reported in literature for benign, malignant, or other 

subtypes of breast cancers (71, 78-80). kep values from these studies were all used in shape analysis 

(in Chapter 4) with all producing the separation between pCR and non-pCR based on the mean 

weights of shapes. Although the reported kep values for malignant diseases among all of these 

studies differed slightly, the reported kep values for benign lesions was stable around 0.3 min-1. 

However, as reported in a Chapter 4 using 3 shapes revealed that the value for the low kep can be 

much higher (0.66 min-1) and maintain the separation. This opens the question of what range of 

values of kep for either high or low shapes is sufficient to retain the separation between responders 

and non-responders, or to ensure separation on future datasets. 

Another limitation of this work is that the analysis focused on the main enhancing region 

or the tumour, while there were other smaller enhancing “bright spots” in the scan in the 

surrounding tissue that were not included in the expert’s manual contour. It would be interesting 

to see the weights of shapes assigned to these spots and the quality of the fit.  

5.3 Conclusion 
 

A method was presented in this thesis for shape analysis of DCE-MRI that exploits model-

based shapes and can separate patients based on eventual response to chemotherapy at least as 

early as after one cycle of chemotherapy. Simulations and clinical data showed that this method is 

fast and robust to inaccuracies in acquisition parameters. Along with this, a semi-automatic 

approach for delineating regions of interest around rapidly enhancing lesions based on the 

goodness-of-fit of the shape analysis method was also presented. Going forward, this method is 
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promising as an alternative to quantitative model-based analysis of DCE-MRI that retains 

information from a physical description of the enhancement dynamics. 
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