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ABSTRACT

We propose using a shape based algorithm to identify patterns in Dynamic Contrast
Enhanced Magnetic Resonance Imaging (DCE-MRI) to assess tumor perfusion as well as
automatically delineate the relevant tumor region for analysis. DCE-MRI allows for the imaging
of blood perfusion in healthy tissue and in tumours. Previous work has shown that the change in
the washout rate of the contrast agent in the tumour between pre-treatment imaging and after one
round of chemotherapy appeared to be related to treatment outcome. The proposed method
identifies the presence of pre-defined enhancement curves based on the Tofts-Kety model in DCE
MRI data. The weight of each curve in the data is estimated using a non-negative least-squares
algorithm. The weights of the curves are then used to predict the treatment outcome of the patient.
Shape analysis provided meaningful spatial information about tumor perfusion and the dynamics
of time series were captured. The therapeutic response of the patients in breast cancer was
predicted, even outperforming the predictions based on established quantitative analysis from a
previous study. The outcome was the same using either tumor regions of interest delineated by
radiologist or automatically. The proposed analysis of DCE-MRI time series using predefined
shapes based on the quantitative Tofts-Kety model can provides maps of perfusion characteristics
such as slow and fast perfusion. The selection of pre-defined shapes and the interpretations of the

weight maps can be adapted based on the application.
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ABREGE

Nous proposons d'utiliser un algorithme basé sur la forme pour identifier les modeles dans
l'imagerie par résonance magnétique dynamique de contraste (DCE-MRI) afin d'évaluer la
perfusion tumorale ainsi que de délimiter automatiquement la région tumorale pertinente pour
l'analyse. La DCE-IRM permet I'imagerie de la perfusion sanguine dans les tissus sains et dans les
tumeurs. Des travaux antérieurs ont montré que le changement du taux de lavage de l'agent de
contraste dans la tumeur entre un examen avant le traitement et aprés un cycle de chimiothérapie
semblait étre relié¢ au résultat du traitement. La méthode proposée identifie la présence de courbes
de rehaussement de contraste prédéfinies basées sur le modele Tofts-Kety dans les données DCE
IRM. Le poids de chaque courbe dans les données est estimé a 1'aide d'un algorithme des moindres
carrés non négatifs. Les poids des courbes sont ensuite utilisés pour prédire le résultat du traitement
du patient. L'analyse de la forme a fourni des informations spatiales importantes sur la perfusion
tumorale et la dynamique du rehaussement a été décrite. La réponse thérapeutique des patientes
atteintes d'un cancer du sein a été prédite, surpassant méme les prédictions basées sur une analyse
quantitative établie d'une étude précédente. Le résultat était le méme en utilisant soit les régions
tumorales d'intérét délimitées par le radiologue, soit des régions définies automatiquement.
L'analyse proposée des séries d’images DCE-MRI utilisant des formes prédéfinies basées sur le
modele quantitatif de Tofts-Kety peut fournir des cartes de caractéristiques de perfusion telles que
la perfusion lente et rapide. La sélection de formes prédéfinies et les interprétations

des cartes de poids peuvent étre adaptées en fonction de 'application.
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Chapter 1: Introduction

1.1 Context and Motivation

DCE-MRI is an MRI technique that involves a series of 7;-weighted images followed by an
intravenous injection of a contrast agent. This contrast agent allows for the visualization of
perfusion characteristics in vivo. This is valuable in oncology as angiogenesis in tumours often
produces leaky blood vessels. These blood vessels lead to an abnormal blood supply that manifests

as a rapid enhancement in the DCE-MRI signal compared to healthy tissue (1).

DCE-MRI is often performed with three-dimensional 7;-weighted spoiled gradient echo
imaging with a trade-off between spatial and temporal resolution (2). Sufficient temporal
resolution is important to capture the passing of the contrast agent through blood vessels and into

the surrounding intracellular interstitial space.

Qualitative analysis of DCE-MRI data can include visualization of the individual images by a
trained expert or observation of the time-variation in a region of interest, and is a mainstay in the
clinical application of this approach (3). For example, averaging the voxels in a region of interest
and inspecting at the average signal curve has been successful in characterizing lesions as either
benign or malignant in breast (4) and in soft tissue tumours (5). Qualitative analysis is

fundamentally subjective, time consuming and requires experience for interpretation.

This has created an interest in employing computational algorithms to introduce a layer of
objectivity to the analysis, to develop a potential imaging biomarker that is reproducible and
validated, and to speed up the processing time. Semi quantitative methods are straightforward, and
can involve computing the maximum enhancement (6) , the slope of the initial enhancement (7),
or the initial area under the enhancement curve (to a pre-selected time-point) (8). The popular

three-time-point method (9) is another form of semi-quantitative analysis, that relies on the signal



change between successive images at specific times (one pre-injection and two post-injection).
Semi-quantitative analysis is fast, but inter-patient comparison is difficult as it does not account

for variability in the scanner hardware or contrast agent injection protocols.

Methods of quantitative analysis were developed to account for inter-patient and inter-
scanner variability and to provide quantitative parameters that could potentially be connected to
biological or physical characteristics. Ideally, a 7; map would be required at each time-point in the
series, but with some manipulation and pre-contrast proton-density-weighted images and 77 map,
the dynamic 7;-weighted signal can be converted to tissue contrast-agent concentration (10).
Compartmental models such as the Tofts-Kety (11), extended Tofts-Kety (11), Larsson model
(12), Brix model (13), Patlak approach (14), or two compartment exchange model (15) can be
applied to extract several physical parameters that have garnered considerable interest in scientific
literature. Quantitative DCE-MRI analysis is interesting but can be challenging due to the need for
high temporal resolution (and the resulting trade-off with spatial resolution and/or signal-to-noise
ratio), the need for a pre-injection 77 map, the challenges associated with determining the dynamics
of contrast agent concentration in blood plasma (the so-called arterial input function), model
selection, the non-linear nature of model analysis, and the potentially confounded interpretation of
the parameters (e.g. the interpretation of K77 in the flow-limited or permeability limited regime).
And so, clinical use has generally favoured qualitative or semi-quantitative analysis, for the

simplicity of the analysis, though K" mapping has emerged as a clinical tool (3).

1.2 Aim of the Research

A proposed alternative to analyze DCE-MRI data comes in the form of shape analysis.
Several groups have proposed to extract characteristic time curves from the DCE data series (3),

often known as sources, and produce maps of the spatial distribution of the presence of these



sources in the data, known as weight maps, effectively representing the DCE data using a small
set of data-generated characteristic curves. The source or shape is a trend of signal as a function of
time. This can allow for the spatial distribution of perfusion to be viewed as a mixture of these
shapes at each voxel.

In this work we exploit an observation by Tofts et al. that the parameter kep is sufficient to
describe the unique shapes of time courses seen in tumours (16), to develop a technique to analyze
DCE-MRI data. The method uses a small set of predetermined shapes derived from the Tofts-Kety
model and identifies their weight within voxels based on a non-negative least-squares analysis.
Values of kep are selected from previous literature reflecting malignant or benign tumours. We
developed an easier approach to analysing DCE MRI data that provides meaningful spatial
characterization of perfusion. In a key application, results suggest a predictive ability of this
approach for the therapeutic outcome of neoadjuvant chemotherapy. Advantages of this method
include robustness at low temporal resolution, faster processing speed, and an absence of need for

independent 7; mapping.

1.3 Outline

Chapter 2 will cover the background physics required for acquisition and analysis of DCE
MRI in greater detail. This will include fundamentals of MRI physics and DCE-MRI, basic notions
about MR imaging in breast, and a review of the literature on shape analysis in DCE-MRI. Chapter
3 will contain the main body of the work in the form of a manuscript to be submitted to Magnetic
Resonance in Medicine. Chapter 4 expands the shape analysis method to 3 source curves and
investigates an alternate use of the model to automatically generate regions of interest surrounding
tumours. These additional results were produced over the course of the project but were not
included in the manuscript for submission, out of concern for brevity and scope. Finally, Chapter

5 will conclude this thesis by discussing applications, future work, and conclusions of this work.
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Chapter 2: Background

This chapter will cover the background physics required to understand the acquisition and
processing of DCE-MRI data. It will begin by covering the fundamentals of MR physics, followed
by the introduction of MR parameters and pulse sequences, including methods to generate 77 and
T>-weighted images and the role contrast agents can play in these images. This chapter will
conclude with an overview of relevant qualitative and quantitative techniques for analysis of
contrast enhanced MRI. The clinical role of MRI regarding breast cancer will be introduced next,

including the techniques used and some technical requirements

2.1 MRI Physics

The following section is an overview the fundamentals of MR physics based on the
information presented in Chapters 12 and 13 from Jerrold T. Bushberg’s The Essential Physics of
Medical Imaging (17) and Chapters 3 and 4 from Dwight G. Nishimura’s Principles of Magnetic

Resonance Imaging (18).

2.1.1 Origin of the MR signal

The origin of the MR signal comes from the magnetic moments of certain atoms. Basic
particles including protons, neutrons, and electrons have a quantum mechanical property called
“spin”. Although the particles are not actually spinning, they have an angular momentum as if they
were spinning, thus the name. This angular momentum can result in a non-zero magnetic moment.
Atomic nuclei with a sum of neutrons and protons that are not even have a non-zero magnetic
moment, characterized by their non-integer nuclear spin (S). Despite this, a single nuclear magnetic
moment is not large enough to be experimentally observable, but the combined magnetic moment

of a large number (~10') of atoms would be. There are several candidate atoms with magnetic



moments, but to be biologically relevant they must have: a strong nuclear magnetic moment, large
physiologic concentration, and large isotope abundance. Candidates of this include: 'H, *He, !*C,
170, F, Na, and *'P. Hydrogen meets all these criteria by having the largest nuclear magnetic
moment and abundance, thus being the best element for clinical utility and the principal focus for
generating MR signals. The nucleus of a hydrogen atom is a proton, and proton and hydrogen will

be used interchangeably throughout the rest of this thesis.

2.1.2 The Effect of a Magnetic Field

Classically, the proton can be considered as a small bar magnet. Hydrogen attached to
unbound molecules of fat and water have random orientations of their magnetic moments.
However, when placed inside a magnetic field of By, the protons’ magnetic moments will align

themselves either parallel or anti parallel to the Bo. Nuclear spin is a quantum mechanical property,

and protons having a spin of % can only exists in two states. Thus, the spins in the parallel direction
are in a lower energy state (— % ) while the spins in the anti-parallel direction are in a higher energy

state (+ %). The difference between these two energy states is given by:

Y
AE =h—B
2 ©

(2-1)

Where his plank’s constant (6.62607015 x 103 m? kg/s), % is the gyromagnetic ratio

(42.58 MHz/T for hydrogen). The difference between the two energy states is small enough that
thermal energy is enough to exceed the separation. This means that despite the tendency toward
lower energy states, some spins can still occupy the higher energy state. Under thermal equilibrium

there is a slight majority of protons in the parallel direction. This excess can be approximated by:



n, YhB,

XNe—————
n_ ‘4m kgT

(2-2)

Where ng is the total number of nuclei spins, n_ is the total number of lower energy spins, n, is

the total number of higher energy spins, % is the gyromagnetic ratio , h is Planck’s constant, kpis

Boltzmann constant (1.380649x102* m? kg s2 K™!), and T is temperature in kelvin. From equation
(2-2), it can be seen that the only adjustable variables are temperature 7 and magnetic field Bo.
Since in vivo imaging requires a specific temperature to keep the subject comfortable/alive, only

By has room to be adjusted. A larger magnetic field increase the ratio %, thus increasing the

number of spins in the lower state. At 1.0 T the number of excess protons in the low energy state
is approximately 3 per million. This may seem like a minuscule amount, but when considered that
for a typical MRI scan volume there are about 102! protons, there will be 3x10'> more protons in
the low energy state. Since each proton has a magnetic moment either aligned in parallel or anti
parallel with the field, a net excess of spins in the lower energy state provides the sample with a

net magnetic moment M aligned with B.

In the external magnetic field spins also experience a torque in the perpendicular direction.
This causes a precession similar to the wobbling of a spinning top and it occurs at an angular
frequency proportional to B9 known as the Larmor frequency f;,. This is described by the Larmor

Equation:

_%_ VY
2n 2m °

fo
(2-3)
Where y is the gyromagnetic ratio unique to each element with a non-zero magnetic moment and

By is the static magnetic field. The net magnetic moment of the sample will be equal to the

6



individual sum of all vector moments. Any perpendicular components of the nuclei are randomly
oriented and sum to zero. Briefly irradiating the sample with a radiofrequency (RF) pulse B tuned
to the Larmor frequency “excites” protons from the low energy to the high energy. This is the

resonance of magnetic resonance imaging.

This pulse is generated by a radiofrequency coil. Radiofrequency coils are essential
components of the MRI system. They are highly sensitive antennas used to either transmit or
receive signals. An RF transmit coil (Tx) generates the RF pulse that rotates the net magnetization
away from its alignment with the main magnetic field. The receive coil (Rx) detects the precessing

magnetization as an electric current induced via electromagnetic induction.

From a classical perspective, the magnetic field of the RF pulse induces a torque on the
magnetization M to rotate away from its equilibrium position. As the newly promoted samples
return from their higher energy state to equilibrium conditions RF energy is released, which is then
detected by the receive coils. The interaction of all these elements of protons in a magnetic field

is shown in Figure 2-1.
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Figure 2-1: An illustration of protons and their net magnetization in a hypothetical sample of pure

protons (hydrogen nuclei). Protons would not be found in a pure sample like this in reality.

2.1.3 Resonance

The magnetic field generated by M is difficult to measure since it is much smaller than By.
M is a vector in 3D space and can also be broken down into two components: Myy is the transverse
magnetization perpendicular to the magnetic field and M, is the longitudinal magnetization parallel
to the magnetic field. At equilibrium, M is maximal and denoted as My.. This can be changed by

applying a RF pulse B;.



Figure 2-2: Illustration of magnetization vectors and components at equilibrium (left) and

sometime after a 90-degree pulse.

MRI physics can be modeled through either a classical or a quantum mechanical point of
view. The classical model is sufficient for modeling and will be the focus of this chapter. In the
classical physics model the RF pulse is composed of alternating magnetic field. Optimally, the By
is described as a single circularly polarized field synchronized with precession. The displacement
of the magnetization away from magnetization occurs when the magnetic component of the RF
pulse matches the precessional frequency of the protons. By applies a torque on M rotating it from
the longitudinal direction onto the transverse plane. The degree of rotation of M is called the flip
angle and the rate of rotation is w; = yBy , as per the Larmor equation. Common flip angles are

90 degrees and 180 degrees. A 90-degree angle provides the largest possible Myy and detectable



MR signal for the initial condition M,(0) =My. Such a large flip angle also requires the largest

amount of time to displace. Fast MRI sequences use flip angles of 10 or less.

The Mxy component of M will start rotating at an angular frequency w, around the Z axis.
This rotation of the Myy component induces an electromotive force in the receiver coil by
producing a time varying magnetic field. Measuring this force in the receiver coil will produce a
signal proportional to the magnitude of Mo. Acquiring this at different locations will produce an
image where contrast is created by the density of protons or My in the sample. Unfortunately, this
will result in limited soft tissue contrast in a human body, as the density of protons is mostly
uniform across most soft tissue. However, after excitation the protons experience a relaxation that
brings their magnetic moment towards equilibrium, and this is exploited to generate additional

contrast.

2.1.4 T: Relaxation

After a B pulse, an initial phase coherence of proton magnetization is established resulting
in Myy. Rotating at the Larmor frequency, the transverse magnetic field induces a signal in the
receiver coil. This signal is known as free induction decay (FID). A loss in the FID signal is caused
by a loss of Myy phase coherence due to inhomogeneities in the sample. This is caused by
individual protons precessing at slightly different frequencies due to microscopic magnetic

inhomogeneities in the sample. The loss follows an exponential decay given by

Mxy ® = Mxy 0) e_%
(2-4)

Where My, (t) is the transverse magnetic moment at time t for a sample that has Mxy(0)
transverse magnetization at t=0. 72 is the exponential decay constant, or the time over which the

signal decays to 37% of the initial transverse magnetization. This decay is strongly affected by the
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molecular structure of the sample and characteristics of water bound protons. Small molecules
have a large 72, and their slow FID is caused by molecular tumbling and diffusion. As molecular
size increases, constrained motion and hydration layers will increase spin dephasing, shortening
T>. Extrinsic field inhomogeneities such as an imperfect magnetic field or susceptibility agents in
tissues add to the loss of phase coherence. These effects are not random and can be considered

separate from the “pure” 72 processes, and result in a total transverse relaxation constant given by

(2-5)

Where T, is the total transverse relaxation constant, T, is the spin dephasing due to random

fluctuations and T, is the spin dephasing due to static processes.
2.1.5 T; Relaxation

Longitudinal relaxation of the magnetization vector begins after the B1 excitation pulse. It
occurs simultaneously to transverse relaxation but over a longer period of time. It also occurs

exponentially given by the equation:

M, (£) = My + (M, (0) — My)e ™1
(2-6)
Where M,(t) is the longitudinal magnetic moment at time t, and 77 is the time needed for the
recovery of 63% of its maximum value. However, since the signal is generated by Mxy, measuring
M; requires a particular sequence of events also referred to as a pulse sequence. At equilibrium, a
90-degree pulse sets Mz to 0. After a delay time of AT, Mz is converted to Mxy by a second 90-
degree pulse. The recovered Mz is now the measurable Mxy, and the resulting peak amplitude is

recorded. This sequence is repeated with different delay times AT to obtain data points on a curve
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that is then fitted with equation (2-6) from which 77 can be estimated. 7, relaxation depends on
the rate of energy dissipation into the surrounding molecular lattice, strongly dependent on physics
characteristics of tissues and hydration layers. 77 values can typically range from 0.1 to 1 s for soft
tissues and 1 to 4 s in aqueous tissues. As will be described in section 2.2.1, paramagnetic
gadolinium chelated with complex macromolecules is effective in decreasing 77 relaxation time in
nearby hydrogen protons in the tissue through the hydration layer that forms around the

macromolecule, creating a spin-lattice energy sink and resulting in a rapid return to equilibrium.

2.1.6 Basic Pulse sequences

Generating contrast in MR images can be achieved by exploiting differences between the
T and T> relaxation time constants and proton density of tissues. MR imaging consist of a series
of repeated sequences of magnetic field pulses to build complete data set over time. The time of
repetition (TR) is the period between successive By excitation pulses. As described in a previous
section, excitation of protons with By pulses results in the creation of an Myy free induction decay
signal. Under static effects (T,) the spin vectors will spread out in the transverse plane. This phase
accumulation is proportional to time since the pulse. A 180-degree RF pulse or a gradient echo is
used to reverse the polarity of the spins in order to create an “echo” to separate the RF energy
deposition and returning signal. Since the spins started out in phase and gradually fell out of phase,
the reversing pulse causes the spins to begin returning into phase, matching phase at 7E or the
“echo”. The resulting “spin” echo can be observed. TE is the time between delivery of the RF pulse
and the reception of the echo signal. Since the echo is received at TE, the 180-degree RF pulse is

delivered at TE/2.

The inversion time (77) is the time between an initial inversion and the 90-degree readout

pulse that converts M, to Myy. During the inversion time, M, regrows in the +z direction as it
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returns to equilibrium. If at 77, the M, happens to be at or near zero at the time of the readout pulse,
the Myy will be at or near zero and contribute little to no signal. Since different tissues relax at
different rates, their M, will cross the zero boundary at different times, and 77 can be chosen to

selectively null particular tissues. On common example is to null the signal from fat tissue.

It is common in MR imaging to desire to suppress the signal from fat in order to better
visualize a tissue of interest. Water-fat separation can be done by exploiting either the water-fat
resonance frequency difference, the short 77 of fat or both (19). These can include chemically
selective fat suppression pulses, spatial-spectral pulses, short inversion time recovery imaging,
chemical shift-based fat separation methods and fat suppression with balanced steady-state free

precession. More detail on fat suppression can be found in a review by Bloy et al/ (19).

This section will focus on a pulse sequence technique known as gradient echo (GRE) as it
is the most used with DCE MRI. As the name implies GRE techniques use a magnetic field to
generate transverse magnetization. The FID manipulated with a field gradient pulse has a
transverse magnetization that dephases rapidly as the gradient is applied. The gradient echo
generated is used twice in succession. First it is used with a negative polarity to enforce transverse
dephasing of spinning protons, and then with a positive polarity to re-align the dephased protons
and acquire a signal as shown in Figure 2-3. This sequence is particularly useful for emphasizing
magnetic field inhomogeneities caused by paramagnetic tissues, diamagnetic tissues, or contrast

agents.
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Figure 2-3: Basic Gradient echo pulse sequence showing the initial excitation from a small flip

angle, followed by a gradient that is inversed and the resulting echo that is received, adapted from

(17).

2.1.7 T;-weighted images

Ti-weighted images are MR images that obtain contrast based on the 77 characteristics of
tissues. Clinically, 7/-weighted imaging is usually done with spin-echo sequences that
deemphasize 7> and the magnitude of proton density contributions relative to the signal. These
sequences have characteristics that include a short 7R (~500 ms) to maximize differences in
longitudinal magnetization recovery, and a short 7E to minimize 72 decay. Time (7R) between
successive pulses maximize the signal difference between tissues based on their respective 77
values. The Mz of each tissue is converted to Mxy at each repetition, and to minimize 7> decay and
maintain differences in signal amplitude a short 7F is used. For example, fat with short 77 has a

large signal because of a greater recovery of Mz over the 7R period. White and gray matter have
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intermediate 77 values which results in an intermediate signal. 7;-weighted images can show gray
matter white matter contrast. Cerebral spinal fluid has a long 77 and the lowest signal amplitude in

Ti-weighted images, which can all be seen in Figure Figure 2-4

Figure 2-4: T;-weighted image of the brain, from a patient with cancer of the brain. White and gray
matter have intermediate 77 values which results in an intermediate signal. Cerebral spinal fluid

has a long 7 and the lowest signal amplitude.

2.1.8 Gradient echo signals with short TR

A TR of less than 50 ms does not allow for transverse decay to fully occur (7>*) resulting in
a steady state equilibrium of longitudinal and transverse magnetization from pulse to pulse. This
is produced from previous RF signals and multiple signals are generated. These include: the FID
signal at the end of each RF pulse, and the stimulated echo and spin echoes generated from the
previous RF pulse. 77 weighting cannot be achieved to a great extent due to the small difference
in longitudinal magnetization with small flip angles. At large flip angles 7>* effects dominate

making 7; weighting difficult. The effect of 7>* can be reduced by “spoiling” the steady state
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transverse magnetization through incoherent phase differences from pulse to pulse. This can also
be done with gradient spoiling. This done by adding a phase shift to successive RF pulses. Since
the RF transmitter and RF receiver are phase locked, the receiver discriminates the phase of the
GRE from the SE generated by the previous pulse. Spoiled transverse magnetization gradient
recalled echo (SPGR) is a common sequence in 3D volume acquisitions. It has a short 7R and good
contrast of anatomy provided by 7;-weighting. Contrast agents produce greater contrast with
SPGR sequences than with comparable 77-weighted sequences due to greater sensitivity to

magnetic susceptibility. The signal from an SPGR will be explored further in section 2.2.1.

2.2 Dynamic Contrast Enhanced MRI

This section is an overview of relevant qualitative and quantitative techniques for analysis

of contrast enhanced MRI.

2.2.1 Contrast Agents

DCE MRI requires a contrast agent which causes a signal enhancement by decreasing T
of nearby protons, through an indirect effect. The amount of signal enhancement is proportional
to the concentration of the contrast agent of the tissue. The agent is typically injected intravenously,
and thus, enhancement in tissues is also a function of perfusion characteristics. The effect of a

contrast agent can be seen in

Figure 2-5. The lesion is significantly more visible in the post contrast frame. As we will

see in section 2.4.3 this is due to leaky blood vessels formed during tumour angiogenesis.
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Pre-Contrast Post-Contrast

Figure 2-5: T;-weighted image pre (left) and post (right) injection of the contrast agent. The

enhancement of the lesion is apparent in the post contrast image. Data from (20).

The contrast agent in a tissue can be quantified in equation (10)

Ry (t) — Ry

L6

Ctis ) =

(2-7)

Rio1s the precontrast tissue relaxation rate, R;(?) is the tissue relaxation rate at time t, and 7; is the
contrast agent’s relaxivity constant. Here R; depends on time since it is affected by the contrast
agent whose concentration varies with time. For gadobutrol, a common gadolinium-based contrast
agent, 77 is 4.7 mM-'s! at 1.5 T and 3.6 mM!s at 3.0 T (10). To quantify the contrast agent
concentration a measurement of R; is needed, but 77-weighted images alone do not provide actual

measurement and cannot be used to measure R;. R; can be obtained however, using 3D spoiled
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gradient echo (SPGR). For this reason, SPGR is commonly used with DCE MR. The signal from

SPGR is given by:

1—exp (—TR *R,(t))
1 —cosO = exp (=TR * Ry(y))

S(t) = Sysiné

(2-8)

Where 6 is the flip angle, TR is the repetition time, R;(t) is the tissue relaxation rate at time t, and
S, 1s the baseline MR signal, a combination of Mo along with other factors associated with scanner
electronics. This equation contains two unknowns (S0 and R;(t)). Thus, multiple images must be
acquired at different fit angles, then So and R:(t) may be solved using a system of equations. Pre
contrast R; (R;0) must also be measured to be combined with R;(t), and there are approaches to do
this with SPGR (21, 22). R; quantification with multiple flip angles is possible but changing
contrast agent concentrations makes acquiring multiple images per DCE-MRI frame not possible.
One can circumvent this by first acquiring pre-contrast images using multiple flip angles and using

those to calculate R;o and So. Then R;(?) can derived from equation (2-8) to get:

R,(6) = 1 | S(t) — Sysinb
=" S(t)cosf — S,sinb

(2-9)

Once R(1) is obtained, the contrast agent concentration can be quantified at each timepoint

using equation (2-9).
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2.3 Shape Analysis in Dynamic Contrast Enhanced MRI

2.3.1 Shape analysis

Since contrast agents are administered intravenously, the DCE-MRI signal is a function of
perfusion characteristics, so different voxels/tissues will have a different characteristic time-course
curve shape. It turns out that even among voxels within lesions the curve shape varies and that
some shapes can be indicative of malignancy (3). The most suspicious curve shapes usually have
a sharp increase in signal followed by a rapid washout (23). Khalifa et al (24) proposed a

classification of the shape types which can be seen in

Figure 2-6 .
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Figure 2-6 : Proposed classification of shape types from Khalifa ef a/ (24). Type 1 is characterized
by persistent enhancement, type II characterized by an initial enhancement followed by a plateau,

and type 3 is characterized by an initial enhancement followed by a washout.
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There has been growing interest in identifying and classifying these shapes to classify
lesions, known as shape analysis. The simplest method, is for an observer to visually look at the
shape of the signal time curve in the tissue of image and classify them manually (23). Sometimes
the tumours contain too many voxels, and only the most suspicious curves, or an average of many
curves, are investigated (25) in the interest of efficiency. This can result in a loss of spatial
information. Additionally, the classification is subjective as different individuals may classify
shapes differently. A more in-depth look into shape analysis, its advantages and limitations can be

found this review (3).

2.3.2 Semi-Quantitative Techniques

Signal time course curves have also been classified using semi-quantitative techniques.
Semi-quantitative techniques include calculated parameters such as: area under signal-time curve,
peak signal, time to peak and initial slope. One such method is the three timepoint (3TP) method
(26). This involves acquiring images at 3 timepoints; pre injection, 2 minutes post injection and 6
minutes post injection. Time course curves were classified based on the difference between the
second and third timepoint. Lavini et al. classified curves into 7 shapes using various features (27).
Another way of classifying lesions that has had success in discriminating between benign and
malignant lesions is using the enhancement rate of the curve, and the area under the curve from

zero to each timepoint. (28).

Although these approaches seem promising, they are only somewhat comparable between
scanners and patients. They are called semi quantitative because they do not account for things
such as the injection protocol or systematic features of the scanners themselves. The injection
protocol can vary between patients as the contrast agent dose is typically 0.1 mM/kg of body mass

(29). Although higher concentrations would lead to a greater signal enhancement, the accuracy
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would be worse because the relaxation rates would be so high the system relaxes completely
between pulses, resulting in lesions that lose their visible structure and appear uniform. The peak
concentration between two patients might not be comparable due to the difference in injection
protocols. Despite this, semi-quantitative techniques have shown sensitivity to anti-angiogenic
therapy-induced changes and extracting exact parameters may not be needed for this task (30). The
same work concluded that semi-quantitative methods may even have an advantage over

quantitative or pharmacokinetic methods in terms of noise tolerance.

2.3.3 Quantitative Techniques

Quantitative techniques aim to extract meaningful physical or biological characteristics
such as flow (rate of blood supply volume per volume of tissue) or permeability (leakage of
contrast agent from vasculature) that are comparability across protocols. These are essentially
mathematical models that estimate physical characteristics by fitting pharmacokinetic models (a
model that describes the movement of a drug throughout the body) to DCE data. Note that
Gadolinium-based contrast agents are passive diffusing agents, so the pharmacological aspect is
minimal (31). The computed characteristics are made comparable by including the injection
protocol and other systematic features in the computational algorithms describing the data. They
can include factors such as: injection speed, injected dose, scanning duration, systematic features
such as the patient’s heart rate. Most of these models are two-compartment models based on Kety’s
model (32). These include an intravascular compartment (plasma) and a peripheral compartment
(extracellular extravascular space). There is an arterial input of the contrast agent to the
intravascular compartment described by C,(t), and exchange can occur between the intravascular
and peripheral compartments via rate constants ki and ko1. A visual diagram of this is shown in

Figure 2-7.
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Figure 2-7: Visual representation of two compartment model. C,(t) described the arterial input
into compartment 1. Exchange occurs between compartment 1 with concentration C4(t) and

compartment 2 with €, (t) via k4, and k5. Elimination occurs from compartment €, (t) via k4.

It is common for models refer to C;(t) and C,(t) as C,(t) and C;5(t) respectively, and

ki, and k;, as K™ and k,,, respectively. The most common and simplest of these is the Tofts

model (33)

Cuis () = KTTmSCy (£) + ebont

(2-10)
Where there are two fitting parameters: K77%" and kep. C,(t) is the amount of contrast agent in
the plasma contained in the feeding blood vessel, also known as arterial input function. It accounts

for the injection protocol and any systematic variations that may be present between patients or

visits. It can be measured directly from blood extracted from arteries, approximated by a reference
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tissue measurement, or replaced by a model or population average (24). The two fitting parameters

can be related by another equation:

(2-11)

Where v is the fraction of the voxel occupied by extracellular extravascular space. One major
assumption of the Tofts model is that the feeding blood vessel occupies a negligible space in the
voxel (34). This assumption does not hold for highly vascularized tissue such as the breast. This

is addressed in the extended Tofts model (11) described by equation:

Cus(8) = KTTansC, (£) + elken)t 1 1,C,.(£)
(2-12)
Where v, is an additional fitting parameter describing the fraction of the volume occupied by blood

plasma.

Other such quantitative or pharmacokinetic models include: the Larsson model (12), where
transfer between the intravascular and peripheral compartment is assumed to be reliant on a single
rate constant, the Brix model (13), which includes several rate constants to describe the transfer of
contrast agent between the intravascular and peripheral compartments, and the Patlak model (14),
which uses a graphical approach to estimate the transfer rate constant between the two
compartments. All of these have a single rate constant to account for both blood flow and
permeability. The recent 2CXM model (15) includes many parameters for blood flow into the
equation. For a more detailed breakdown of these models see a recent review by Khalifa et al.

(24).
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Temporal resolution of DCE-MRI can be a limitation in the accuracy of quantitative
models. Henderson et al. (35) showed through simulations that in order to keep errors in estimation
of kep and K under 10%, a temporal resolution of 16 s or lower is needed. Similarly, Larsson et
al. (36) found that stable estimates of the aforementioned parameters were possible with a temporal

resolution of 12 s.

2.3.4 Measuring the arterial input function

One critical component present in all of the of the quantitative models is the term C,, (t) or
arterial input function (AIF). This is the keystone that accounts for the injection protocol that
allows for quantitative methods to be comparable across scanners and patients. Uncertainties or
errors in the AIF can propagate leading to inaccurate pharmacokinetic parameters. The AIF can be
measured directly or indirectly. The direct approach consists of drawing blood samples from the
patient during DCE-MRI acquisition. This is accurate but has some drawbacks. The recommended
temporal resolution is 15 seconds per sample (24). Measuring the AIF requires a temporal
resolution of at least 5 seconds (35) to capture the initial peak. The indirect approach involves
using DCE-MRI data in an arterial blood vessel to estimate the arterial input function. This has the
advantage of not having a limit to the number of samples as it is not invasive. The spatial resolution
must also be high enough to avoid partial volume artifacts in the feeding artery. This is particularly
difficult in breast tissue where arteries may not be in view and feeding vessels are capillaries that
may be as small as 200 um (37). Measuring the contrast agent in blood through direct or indirect
methods will provide the concentration of the contrast agent in the whole blood or Cyiood(t). The
contrast agent is constrained by red blood cells and not uniformly distributed in the whole blood.

To calculate C,, (t), one needs to correct for this using the equation:
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Chiooa(t)
1 — Hematocrit

C,(0) =

(2-13)

Where hematocrit is the fraction of the blood occupied by red blood cells. This requires
measurement from a blood sample, or more commonly, the use of an assumed value which may

not capture the possible variability of individual patients.

There are additional challenges to indirect approaches, manifesting as susceptibility to
saturation effects, inflow effects, or improper RF spoiling. Saturation effects occur when the tracer
concentration is higher than what the scanner electronics can detect. This can result in a truncated
AITF peak (38). The blood inflow effect can have an impact on the sensitivity and accuracy of the
AIF measured with DCE-MRI (39). The SPGR acquisition assumes that the imaged slice has a
saturation of excited spins. However flowing blood can introduce a constant supply of fresh 'H
into the slice creating a partial saturation. This will affect the estimated T and subsequently the

contrast agent concentration.

One solution is the prebolus technique (40) which consists of two contrast agent
administrations, the first a low-dose then a high-dose, and allowed for the accurate measurement
of high concentrations of contrast agents without saturation effects. Phase induced AIFs are also a
proposed solution, which do not rely on signal magnitude, instead measuring the intravascular

phase shift, and would not be as sensitive to saturation or inflow effects (41, 42).

Reference region methods circumvent the need for measuring the AIF by using
concentration time data from some well characterized tissue as a surrogate (43). The assumption
is that the reference tissue and surrogate tissue have the same AIFs. This eliminates the
measurement of the AIF, relaxing the need for high temporal resolution and therefore it becomes

easier to have high spatial resolution
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Model based approaches can be population-based AlFs which are published as functional
forms. Commonly used models include; the Tofts-Kermode AIF (29), Parker AIF (44), Fritz
Hansen AIF (45, 46), and Georgiou AIF (47). Tofts and Kermode fitted a bi-exponential equation

to blood sample data to get:

Cy(t) =D - (a;e™™t! + aze™™2h)

(2-14)
Where Tofts and Kermode determined that: D=0.1 mmol/kg, a;=3.99 kg/1, a>=4.78 kg/1, m;=0.144

min™!' and m>=0.0111 min'!. The main feature of this model is a single peak describing the passing
of bolus. The Fritz Hansen model fit the bi-exponential but obtained different constants: D=1.0
mmol/kg, a;=2.4 kg/l, a;=0.62 kg/l, m;=3.0 min’!, and m»=0.016 min’!. The Parker AIF model

was obtained from DCE data in the descending aorta to obtain:

(t=Tn)? ) ae Bt
C,(t) = ! A e 20h  1+eS(D
p 1 — Hematocrit o221

(2-15)

Where 47 = 0.809 mmol'min , 42 = 0.330 mmol-min 7; = 0.17046 min, 7> = 0.365 min, o, =
0.0563 min, 6, = 0.132 min, o = 1.050 mmol, # = 0.1685 min’!, s = 38.078 min’!, and 7 = 0.483
min. Here the curve has two peaks, one for the initial pass of the bolus and another for a recirculated
second pass of the bolus, characterized by the two Gaussians in the function. The Georgiou AIF
describes the initial passage and several subsequent recirculations of the bolus beyond just the first
two described in the Parker AIF and used higher temporal resolution data to model the initial

passing of the bolus more accurately.
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Finally, averaged-AlFs are measured arterial input functions from patients that are
averaged. They have been shown to be a useful alternative when patient specific AIFs are not
available (38, 48). Both model based and averaged-AlFs have the same major limitation in that
they cannot account for variability between patients. Finally the tissue from which the model was
measured is also relevant: regions closer to the heart (i.e. head, neck, breast) have larger differences
between individual patient AIFs, and may cause errors in calculated pharmacokinetic parameters

(38).

Acquired parameters such as K7™ or ke, may not be accurate due to aforementioned
limitations with model-based AIFs. However, the clinically useful components have been reported
not to be the exact values themselves (49) but a change in the values in successive scans (49-51).
A decrease in K7 represents a decrease in tumour vasculature (52). This is associated with the
antivascular/antiangiogenic effects of the therapeutic agents to some extent (53) . The changes in
these parameters, which useful for monitoring changes that occur during chemotherapy, are still

captured without ideal AIFs.

2.4 Breast Cancer Imaging

The section is an overview of the clinical role of MRI regarding breast cancer, including the

techniques used and some technical requirements.

Breast cancer is the most common malignant disease with a lifetime risk of 12.4% for women
(54). The following paragraph is a summary of a review by Rodney et al (55). Most breast cancers
are carcinomas, which come from breast epithelial elements. There are two types: in situ
carcinomas and invasive carcinomas. /n situ carcinomas may start from either ductal or lobular
epithelium but remain there, with a negligible chance for metastasis. If the ductal or lobular

malignancy extends beyond the epithelial boundaries, it is considered invasive, where it has the
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potential for metastasis leading to death from cancer. Prognosis of breast cancers depends on the
stage, which includes tumour size and quantity of lymph node involvement. Breast conservation
treatment is only appropriate for the majority of stage I and II cancers, as with those the survival
is equivalent with a mastectomy. Radiation adjuvant therapy is routine after breast conserving
therapy and mastectomies in order to prevent the recurrence of the disease. Adjuvant
chemotherapy or hormone therapy may also be used to block cell growth (55). Neoadjuvant
chemotherapy can be used to decrease the size of a tumour giving more surgical options, and MRI

commonly used be used to monitor its effectiveness (1).

2.4.1 Breast MRI in Clinical Practice

Typically, mammography and ultrasound are used for detection, but have low sensitivity
and specificity in dense breast tissues, and in the presence of breast implants or post-surgical scars
(56). MRI adds additional diagnostic value in the form of: detecting foci of multifocal, multicentric
or contralateral disease (57). MRI also performs better than mammograms at recognition of
invasive components in ductal carcinoma in situ, and detection of cancer in dense breast tissue

(58).

Breast MRI can also be used for screening, where MRI identified earlier stages of some
diseases compared to mammography and that combined MRI and mammography is associated

with improves survival rates (59).

Preoperative MRI for local staging is common, but the detection of more disease does not
always lead to improved outcomes (60). Furthermore, guidelines differ widely in their
recommendations. Size estimates with MRI are more accurate than those with mammography or
ultrasound. Using breast MRI, 75 percent of cancers are measured within 1cm of their pathological

size (61). Assessing tumour size is beneficial for invasive lobular carcinoma and the depiction of
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DCIS components related to invasive cancers is better compared to mammography. However,

improved information in staging does not always lead to improved surgical outcomes (1).

Clinical protocols are usually multiparametric and require a dedicated breast coil (59).
Patients lie in the prone position with the breasts hanging in the recesses of the coil allowing for
breast tissues to spread helping with detection of anomalies and reducing motion artifacts from

breathing. These coils usually have 16 channels, to give a high signal-to-noise ratio.

Contrast enhanced MRI such as DCE-MRI enables assessment of morphological and
kinetic patterns of benign and malignant breast tumours (1). DCE-MRI evaluates the permeability
of blood vessels using an intravenous contrast agent. Neo angiogenesis leads to the formation of
leaky vessels that allow for faster extravasation of contrast agent. This manifests as a rapid local

enhancement.

2.4.2 Diffusion Weighted MRI

Diffusion Weighted Imaging is another MRI technique that is used to differentiate tumours.
Motion sensitizing gradients are applied to quantify the random movement of water in tissues (62).
The degree of water movement in biological tissue is restricted by intracellular compartments,
extracellular compartments, and tissue cellularity. Decreased water diffusion manifests as a higher
DWI signal. The apparent diffusion coefficient (ADC) is the quantitative measurement of DWI.
Cancers have low signal intensity on ADC maps. Mean ADCs are generally higher in benign

tumours (62). Contrast material injection does not improve the diagnostic properties of ADC (63).

2.4.3 Dynamic Contrast Enhanced MRI in breast cancer

DCE-MRI scans typically employ 7;-weighted images, which may be performed with or

without fat suppression. They are usually acquired in the axial plane, as it is faster than sagittal

29



acquisition and provides a better overview. 7;-weighted images should be obtained prior to
contrast material injection. The maximum administered Gadolinium-based contrast agent should
be 1 mmol per kilogram of body weight, and there is no evidence for higher performance with
higher dose (64, 65). Most breast cancers show peak enhancement around 60-90 seconds after
contrast material administration, and so the after-contrast images must be acquired in this
timeframe. Images acquired without fat suppression require subtraction images to be created from
pre and post contrast acquisitions (66). Motion artifacts, chemical shift artifacts and poor fat
suppression may obscure small lesions (67). Breast MRI should depict all enhancing cancers
greater or equal to 5 mm in size. In order to meet this standard, section thickness should be less
than 2.5 mm, and in plane pixel size should be 1 x 1 mm or lower (68). Modern MRI units can
easily obtain higher resolutions than this with an acquisition time per volume of 90 seconds or less.
One T;-weighted image acquisition before contrast and one 90 seconds after contrast is sufficient
for lesion detection, but more images can allow for breast lesion differentiation. One such is
dynamic evaluation with time signal intensity curves. Dynamic evaluation documents the early
inflow of contrast material in a lesion. Malignant lesions enhance, on average much later than

benign lesions (69, 70).

Although T;-weighted imaging is mainly used in breast, 72-weighted imaging has some
niche applications. T>-weighted imaging with fat suppression can be used to visualize cysts and
imaging without fat suppression can allow for better depiction of lesion morphology. Some
tumours such as mucinous carcinoma, necrotic cancer, and metaplastic carcinoma have high signal

intensity with 72-weighted imaging (60).
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3.1 Abstract

Purpose: To introduce a method for shape-recognition analysis of dynamic contrast enhanced
(DCE)-MRI that is rooted in quantitative modeling. The approach can be used to assess tumour
perfusion. An application is demonstrated for the potential prediction of therapy response in
patients with breast cancer.

Methods: The proposed method identifies the relative presence of pre-defined enhancement
curves—based here on the Tofts-Kety model—in DCE-MRI data. The presence, or weight, of each
of these curves in the data is estimated using a non-negative least-squares algorithm. In the
example application, the weights were tested as markers of response to chemotherapy in a small

group of patients with breast cancer.

Results: Shape analysis provided meaningful spatial information about tumour perfusion, and the
dynamics in the time course data were captured using a relatively sparse set of model-based shapes.
There was relation between therapy response and weights of the shapes in patients with breast
cancer suggesting predictive ability and outperforming quantitative analysis in this respect. The
method is robust to variations in implementation of the analysis.

Conclusions: A method was presented for analysis of DCE-MRI time course using predefined
shapes based on the quantitative Tofts-Kety model. Our approach provides maps of the relative
importance of perfusion characteristics such as slow and fast perfusion. The selection of pre-
defined shapes, and the interpretation of the weight maps can be adapted to the specific application.
Keywords: dynamic contrast enhanced MRI, perfusion, shape analysis, model-based shapes, non-

negative least-squares
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3.2 Introduction

Characterization of tumour perfusion is an important clinical and research tool in the
assessment of cancer. Dynamic contrast-enhanced (DCE) MRI exploits the dynamics of molecular
contrast agents to study the perfusion characteristics of tissues and organs in vivo (24). The imaging
consists of a series of 7;-weighted images acquired after a bolus injection of a gadolinium-based
tracer. The uptake and subsequent washout of the tracer produces a time-dependent signal
enhancement curve for each voxel. These curves can then be analysed further using qualitative,
semi-quantitative, or quantitative methods.

Quantitative analysis of DCE-MRI has the advantage of providing physiologically
meaningful information that is robust—in theory—to variations in scanner hardware, acquisition
settings, and injection protocol (3). Quantitative analysis involves fitting a tracer-kinetic model,
such as the well-established Tofts-Kety model (33, 71), to the acquired data. But, it is technically
demanding since it requires 1) 77 mapping to convert signal into tracer concentration, and 2)
knowledge of the arterial input function, i.e. the time-course of tracer in blood plasma (72).
Questions have arisen around the reproducibility of quantitative approaches since the results
depend on the software implementation for analysis (73, 74).

An alternative qualitative analysis method involves averaging the voxels in a region of
interest and expert inspection of the average signal curve. This approach is popular because it is
fast and technically simple. It has been successful in breast (4) achieving diagnostic indices of 91%
sensitivity, 83% specificity and 86% diagnostic accuracy when evaluating the curve shape, and
diagnostic indices of 91% sensitivity, 37% specificity and 58% diagnostic when evaluating the
enhancement rate (the initial rate of growth of the time course curve following contrast agent
administration). In soft tissue tumours (5) benign and malignant tissues were also able to be

discriminated mostly based on the presence of liquefaction, time interval between start of arterial
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and tumour enhancement, and lesion size. However, limitations of this approach include: the
requirement for trained expert to select the region of interest that either contains the tumour, such
that the results are operator-dependent, and it is too time consuming to employ on a voxel-by-
voxel basis and therefore may fail to capture intra-tumoural heterogeneity.

To overcome the limitations of previous shape analysis work in DCE-MRI, automated
approaches have been suggested that use semi-quantitative features of the signal curve to classify
it into distinct categories based on curve shape. These shape classification approaches have found
success in separating benign from malignant tumours in breast (9, 26) and soft tissue tumours (27).
A major limitation is a lack of standardization. The classification shapes are arbitrarily defined and
the number of shapes can vary from two to seven depending on the study (3). Furthermore, the
specific criteria used for classifying the measured curves (e.g. maximum signal intensity, initial
rate of enhancement, and time to enhancement) also differs between studies (3).

This paper introduces a method that uses a tracer-kinetic model — specifically, the Tofts-
Kety model (75) — to define the classification shapes using a single parameter. We propose to
analyze the observed signal enhancement time-curves as mixtures of the classification shapes. This
decreases the number of classification shapes since many intermediate shapes can be generated as
mixtures. We propose that this analysis technique can reliably distinguish regions of low and high
perfusion, can be applied to data with low or high temporal resolution, and is robust to variations
in the curve definitions.

In this work, we applied the technique to a freely-available dataset in breast cancer (76) to
demonstrate its utility: in this portion of the work, we hypothesized that the analysis would have

the same predictive ability as prior quantitative analysis of this data using the Tofts-Kety model.
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3.3 Theory

In the proposed method, a set of classification shapes are pre-defined and identified in the
measured time-course data using a fitting algorithm. The classification shapes are constructed
using the Tofts-Kety model with parameter values taken from the literature. Prior work on the
DCE quantitative model identified the k., parameter (the rate of contrast agent transfer from the
interstitial space back to the plasma space) as the main determinant in the time-curve shape (16).
Equation (3-1) is the Tofts-Kety model for the time-concentration curve, where C; and C, are the
tissue and plasma contrast agent concentration, respectively, and K'"%" and k,, are the

compartmental model parameters. The arterial input function (AIF), from which C, is calculated,

can come from a sample average or a model.

t
Cc(t) = K”“"Sf Cy(7) e ken(t-D g
0

(-1

Once computed, the concentration-time curves are converted to signal-time curves s(t)
considering the native tissue 77 (= 1/R; ) and contrast agent relaxivity 7y, according to equations
(3-2) and (3-3), where s, is a coefficient which presents the theoretical signal amplitude of the
fully relaxed magnetization, 6 is the flip angle, and TR is the repetition time. The echo time (TE)
is assumed to be short enough that R; effects can be ignored. Each of these signal-time curves is
then normalized to its maximum signal value such that the choice of s, is ad hoc.

Ry (t) = Ry + 11 Ce(2)
(3-2)

1 — cos(@) e TRR:(O)

s(t) = s, sin(0)
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(3-3)

Each parameter in the compartmental model impacts the shape of the concentration-time
curve differently, as illustrated in Figure 1 (top). The noteworthy observation is that a constant k.,
results in a set of curves with the same basic shape, as expected since it is the rate constant of the
impulse response of the system. Therefore, a set of shapes (with normalized amplitude) can be
defined using unique values of k., as the shape parameter. A set of resulting normalized signal
curves for 5 k., values are plotted in Figure 1 (bottom), underlining the role of k., in determining

the signal curve shape.
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Figure 3-1: Top row: Calculated model curves for the Tofts-Kety model, illustrating the impact of
variations in each of the model parameters. Note that for the case of constant &, the model shape

is essentially constant. Bottom row: Calculated model curves for the Tofts-Kety model for a wide
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range of k., values, showing the wide range of shapes that can be produced, from very slow and

persistent enhancement (very low k) to very fast, sharply declining enhancement (very high k).

The classification method assumes that signal time-curves in the acquired data are
weighted mixtures of the predefined shapes. The number of curves is left as a choice to the user
and can be based on a priori information about the data on hand. The problem of determining the
weights can be represented as in equation (3-4), where y(t) are the measured data points and the
s;(t) are the predefined curves. The weights w; are computed using non-negative least squares
(NNLS), details of which are described elsewhere (77). The NNLS algorithm returns the strictly

positive weights that result in the best combination of the shapes to fit the data.

YO = ) wisi() + €

(3-4)

Prior to estimation of the weights, the data are pre-processed. First, the background signal
is removed by subtraction of a pre-contrast frame, to isolate the enhancement. Finally, these voxel-

wise signal enhancement data are normalized to the maximum enhancement signal in the tumour.

3.4 Methods
3.4.1 Simulations

Experimental simulations were performed to evaluate the sensitivity of the proposed
method to a range of theoretical input curves. This helped address the question of the number of
individual curves to use in the analysis. Simulated time-intensity curve data were produced using
the Tofts-Kety model over a range of ke, values from 0.001 to 1.0 min™!, in steps of 0.001 min!. A
temporal resolution of 0.5s was used in this simulation. The curves were then processed using the
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proposed shape analysis method to assess its behaviour in reflecting the underlying data
characteristics. Up to 5 predefined model curves were used, and the values of the weights and the
goodness-of-fit were measured.

A second set of calculations explored the impact of modifying the temporal resolution of
the acquired time course data on the analysis. The set of simulated enhancement time-course
curves previously generated using the Tofts-Kety model was downsampled to temporal resolutions
of 1, 5, 10, 30, and 60 seconds before being analyzed with a two-component model. The effect of
temporal resolution was assessed by comparing the weights from the shape-recognition analysis

and the fitting residuals normalized by the number of datapoints.

3.4.2 Experimental

To demonstrate the shape-based DCE-MRI analysis method, it was applied to patient data
from the freely available "QIN Breast DCE-MRI" dataset from the Cancer Imaging Archive (12).
This is a dataset acquired from 10 patients with breast cancer who underwent neoadjuvant
chemotherapy, at two time points (pre-treatment and following one cycle of therapy). In the
original work with this data, quantitative DCE-MRI analysis was moderately predictive of
pathological response to neoadjuvant chemotherapy at pre- and intra-treatment MRI exams. Our
hypothesis was that the shape-recognition weights that characterized the perfusion characteristics
of these tumours would be different for patients showing pathologic complete response (pCR)
from those of non-pCR patients, at one or both imaging time-points. Among these patients, 3
showed pCR. We used images from the pre-treatment exam (visit 1) and after the first cycle of
treatment (visit 2).

In analyzing the breast cancer dataset, we designed our model shapes using k., values from

Eliat et al. (78) to define two concentration-time curves described as low permeability (k,, = 0.27

min™') and high permeability (k,,,= 0.90 min') values reflecting benign and malignant tumours,

ep»
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respectively. The Eliat study reported K" and ve such that k., was calculated using k., =

Ktrans /y,. NNLS analysis was used to compute the weights voxel by voxel and we evaluated
whether the mean weight of non-zero voxels (denoted as “MeanNZ”) in the tumour ROI can
predict therapy response. We used patient-specific 7; values (ranging from 1600 ms to 2500 ms)
and the AIF provided in the "QIN Breast DCE-MRI" dataset to define classification shapes.

We also repeated the experiment with in vivo data using k., (curve-shape) parameter values
from other studies, namely Furman-Haran et al. (79), Tofts et al. (75), and Vincensini et al. (80)

studies. The values used and generated curves can be seen in Figure 3-2.
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Figure 3-2: Plots of the normalized signal-time curves used in the shape analysis of in vivo breast
cancer data. The thicker lines are shapes are calculated using the Tofts (75), Vincensini (17),

Furman (15) and Eliat (78) studies with the Parker AIF and 77 = 1.81 ms. The faint lines are patient
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specific shapes calculated using AIFs and 7 provided with the dataset. Symbols are included to

illustrate the data time-points.

Using the same in vivo data, we evaluated whether the observations of the proposed method
were sensitive to variations in the 77 value or the AIF time-course used to construct the pre-defined
shapes. We repeated the analysis using shapes defined with fixed 7; values of 1000 ms and 100
ms (instead of patient-specific 77 values). We also performed the analysis with the patient-specific
T and shapes defined using the population-based AIF model and parameters from Parker ef al.
(44) and finally with a combination of the Parker AIF and 77 = 1000 ms.

The analysis was also performed with three curves: the two original curves, plus the AIF as
an extra curve. The Tofts-Kety model assumes that the volume occupied by blood vessels is
negligible in every voxel, which may not be true for highly vascularized tissue such as the breast.
Simulations have shown that the Tofts-Kety model is not accurate in highly vascularized tissues
(34) and that the Extended Tofts Model (71), which includes an additional AIF term, is more
accurate in highly perfused tissues. Thus, the inclusion of an AIF curve may lead to a model that
better fits the data.

For all variations of the in vivo experiments, the weight maps were analyzed by looking at
descriptive parameters like the mean, median, and standard deviation. Univariate analysis was
used to determine if the weight map parameters were related to treatment outcome. The area under
receiver-operating characteristic (AUROC) curve was used to measure and compare predictive
power of the shape analysis method with the aforementioned variations.

The goodness-of-fit of the model was assessed in each voxel. The model curve was generated
by scaling the low and high perfusion components by their respective weights. The residuals and
coefficients of determination (R?) between the model and the data were calculated for each voxel.

They were analyzed by looking at their mean, median, standard deviation, and their distribution
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on histogram plots. The R?values of individual voxels were plotted in histograms to visualize their

distribution.

3.5 Results

3.5.1 Simulations

Simulations revealed that the algorithm consistently models a signal based on an
underlying Tofts-Kety two-compartment model with a mix of two shapes, at most. This result was
independent of the number of pre-defined shapes in the analysis, and models with up to 6 shapes
were tested. When using two shapes, the algorithm uses a mixture of the two only when the shape
of the underlying data is characterized by a k¢, between that of the two curves (Figure 3-3). When
the algorithm is used with three shapes, only two are assigned non-zero weights for any given data
(Figures. 3-3 and 3-4). The algorithm maintains this behaviour with more shapes (Figure. 3-4).

Interestingly, temporal resolution had very little impact on the analysis results. When using
two shapes and varying the temporal spacing of the simulated input data from 1 second to 60
seconds, the calculated weights barely changed. The goodness-of-fit was affected slightly. The
normalized fit residuals were always below 1% per point for simulated data curves with k.,
between the values used in the two-component model. Normalized fit residuals increased for data
outside the range covered by the two k., values, and the increase was greater for low-temporal-

resolution data, up to 6.5% per point at 60-second temporal resolution.

3.5.2 Experimental

In vivo data were analyzed with two pre-defined shapes, calculated using ke, = 0.27 min!
for low perfusion and 0.90 min'! for high perfusion from the Eliat Model. These ke, values were
selected to reflect perfusion levels characteristic of benign and malignant disease (78). The

resulting shapes were previously shown in Figure 3-2.
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Figure 3-3: Simulation results from fitting single-component Tofts-Kety model curves using two

(left column) and three (right column) pre-defined analysis shapes. Top row: the shapes (with

associated ke, values). Middle row: weights resulting from the analysis. For a range of input

(theoretical) model k., values from 0.001 to 1.0 min™! the model only ever returns non-zero weights

for at most two of the pre-defined shapes. The weight assigned to a given curve peaks at the ke,

value of the curve. Bottom row: fitting residuals. The residuals are lowest at or between the k., of

the pre-defined analysis shapes, suggesting that the minimum and maximum k., values should

cover the expected range of shapes.
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Figure 3-4: Effect of varying the number of reference curves (sources) used in weighted fitting on
the analysis for 3, 4, and 5 sources. Shows that for any given input curve from a single 4., value,
the analysis method uses at most two pre-defined curves with distinct k., values in the fit.

Simulations were performed with up to 5 curves producing results leading to the same conclusion.

The weight maps clearly display distinct areas of signal that reflect the location of the
tumour. These distinct areas varied between patients. The low and high perfusion weight maps
highlight different areas of the tumours. Normal tissue generally had high fitting residuals and very
low weights for both components, indicating that the model did not recognize it as low- or high-
perfusion tumour (based on the definition of the shapes in the analysis). The appearance of the
weight maps was different between patients showing pathologically complete response (N=3) and
those who did not (N=7). Examples from two patients in each group are shown in Figure 3-5,
highlighting the difference especially in high perfusion content. Tumours that were later identified
as complete responders had smaller amounts of high perfusion weights (green) at visit 2 than the
non-complete responders.

There was a clear relationship between therapy response and the mean value of the weights
over all pixels with non-zero weight values (“MeanNZ”), from the low perfusion channel at visit
1 (pre-treatment) and the high-perfusion channel at visit 2 (after 1 cycle). The MeanNZ for the

low-permeability shape at visit 1 and for the high-permeability shape at visit 2 were both able to
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separate pCR from non-pCR patients (Figure. 3-6, Standard). The high-permeability shape at visit
1, and the low-permeability shape at visit 2, did not have predictive value.
Incorporating the AIF as a separate time-course in the model did not lead to meaningful

improvement in the R? values of the fit or in the predictability of therapy response.

Non Complete Responders Complete Responders

r 1 r 1

BCO1-V1 BC14-V1 BC15-V1

Visit 1

Pre-Treatment

BC15-V2
Visit 2

After First
Chemo Cycle

Figure 3-5: Fused weight maps for two-shape (low/high) perfusion analysis. The low perfusion
weight is represented by the intensity in the blue channel, while the high perfusion weight is in the
green channel. In these data from breast cancer patients (freely available from TCIA (76)) there

appears to be a pattern of perfusion that reflects response to treatment.

Tests of the robustness of the algorithm on patient data revealed that it is quite robust to
most of the assumptions made in defining the source time-curves. Modifying the 77 value used in
this calculation did not impact the results unless the estimated 7; was assigned a low value (< 100
ms), suggesting the 77 value assumed in the curve definitions does not affect results (within a
reasonable range) and that 7; mapping is therefore unnecessary. Overestimation of the 7; value
did not have an impact on the assigned weights for high perfusion component at visit 2, and a slight
impact on the weights of the low perfusion component at visit 1. The separation based on therapy
response was not impacted by the 77 selection. These results are shown in Figure 3-6 (“7; =

1000ms”, “T; = 100ms™)
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Figure 3-6: The mean values of the weights from the two-component analysis of in vivo data can
distinguish between patients depending on their pathological response. The distinction is observed
on the low-permeability weight at visit 1 in panel (a) (pre-therapy), and the high permeability
weight at visit 2 in panel (b) (after 1 cycle of chemotherapy). The analysis is also quite robust to
the choice of 77 value and AIF used in the definition of the analysis shapes, suggesting that the
method is quite robust. The area under the ROC curve is 1 for all cases except two: at visit 1, using

the Parker AIF to define the shapes.

The choice of the arterial input function (AIF) had a noticeable effect on the pre-defined
shapes, and this altered the discrimination power of the analysis on this dataset. This can be seen
in the two right-most columns of Figure 6 (“Parker AIF”, and “Parker AIF, 7/=1000ms”), where
the discriminatory power is much reduced. The area under the receiver operating characteristic
curve (AUROC) is 1 for all but these two cases in Figure 6a, and all cases in Figure 6b; however,
the AUROC drops to 0.952 for the low permeability shape at visit 1 when Parker’s population-
based AIF is used in defining the source shapes.

The distribution of R? values between the model fit and data for individual voxels for non-
pCR in visits 1 and 2 were similar and mostly around 0.9, showing that the model fits the data well
in general. The distribution of R? values for pCR patients is around 0.9 as well for visit 1 but is

centered around 0.7 for visit 2. These can be seen in Figure 3-7. There was also a high number of
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counts in the ‘zero’ bin for non-PCR patients. These zero values come from a single patient and

are associated with a non-enhancing region in the center of a large tumour.
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Figure 3-7: Histograms of the R? values of individual voxels from shape analysis with k.
parameters from the Eliat model. The patients are separated in to pCR and non-pCR visits 1 and
two, as well all visit 1 and all visit 2. Shape analysis done on pCR-visit 2 scans are the only ones

that do not have R? values centered around 0.9, indicating that the model fit is not as good.
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3.6 Discussion

In this work, we have introduced a novel technique for shape-based analysis of DCE time-
courses, and more importantly have shown that this method may have predictive value in assessing
the response of breast cancer treated with neoadjuvant chemotherapy. The discrimination between
pathologically complete response and non-response was very strong across a range of analyses.
This surprisingly strong result must be taken with some reservations, as it was obtained in a small
dataset. In addition, certain modifications to the analysis reduced the discriminatory power of the
method, reducing the area under the receiver-operating curve for the predictive value of pre-
treatment imaging from 1.0 to 0.952.

The original study on this dataset had shown that responders and non-responders could be
separated based on DCE-MRI parameter values of k., and K7 following their first course of
treatment and on the change in k., and K" between visit 1 and visit 2 imaging. The highest pre-
treatment AUROC was reported as 0.857 (76). Interestingly this is lower than the lowest AUROC
of 0.952 from our shape analysis method. These results strongly suggest that shape analysis of
perfusion MRI based on representative quantitative model curves could be a powerful analysis tool
for prediction or early assessment of treatment response.

MRI based on representative quantitative model curves could be a powerful analysis tool
for prediction or early assessment of treatment response.

In addition to the clinical data, shape analysis was run on a set of simulated DCE-data
generated using an underlying two-compartment Toft-Kety model. Running shape analysis on this
simulated DCE data revealed that regardless of how many shapes were used, each simulated input
time course was described by a maximum of two shapes with non-zero weights. This reflects the

behavior of NNLS, which prefers to select sparse solution with as few non-zero solutions as
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possible (81). This suggests that two shapes would be sufficient when considering how many initial
source shapes to select when using NNLS.

Our shape analysis approach avoids the limitation of quantitative model DCE analysis that
requires high temporal resolution for a good fit. Accurate fitting of such models requires a temporal
resolution of 5 seconds or better (82), while most clinical protocols have a temporal resolution of
15-90 seconds (68). As a result, Tofts-Kety model analysis is usually limited to research.
However, the minimal effect of temporal resolution on the goodness-of-fits in the simulation our

method suggests that our method can be applied to clinical data of lower temporal resolution.

Analysis of the goodness-of-fit showed the R? value decreasing for responders at the second
visit. This suggests that the model does not describe the data as well. We speculate that this caused
by changes in the tumor microenvironment. Additionally, the shape analysis model fails to
describe normal tissue and non-enhancing (perhaps necrotic) tumour tissue, assigning weights

close to zero for both shapes and resulting in very poor fit reflected in low R? values.

A potential limitation of this technique is that the parameter values used in predicting
therapy response were not necessarily designed for this kind of assessment. For example,
Vincensini had reported k., values that were indicative of tumour histological subtype. We applied
the parameters from this study to predict therapy response. The same question can be asked for
models where reported values were indicative of benign/malignant classification. It may possible
that our method predicts tumour subtype or grade, and that subtype or grade predicts therapy
response.

In addition to tumours and tumour grading, shape analysis can also be used to assess the
activity of inflammatory processes (83) and even the effect of drugs (84). Although the most
common application has been in breast, studies have also been done in other tissues including,

liver, brain, prostate, and abdomen (27). Thus, the selection of predefined shapes and interpretation
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of weight maps from the proposed method is not limited to only breast tumours and can be adapted

and applied to other types of analyses.

The main goal of this work was to design a method with clinical utility to analyze DCE-
MRI data, but this method has potential to be applied as a research tool as well. One way could be
to obtain data-based curves by using methods such as clustering, and then using NNLS to find
weight maps for the cluster centers. This is different from current clustering methods which try to
extract parameters from the clustered curves.

Other methods of analysis include analyzing the tumours through image segmentation or
texture analysis or voxel wise changes but did not achieve the same performance as quantitative
Tofts-Kety model or shape analysis in this dataset. Analysis of voxel wise features such as tumour
deformations achieved an AUROC of 0.73 as predictors of therapy response in breast cancer (85).
A prediction model based on a combination of clinical information, subjective radiological
findings, and first- and second-order texture features achieved an AUROC of 0.78 for therapy

response in breast cancer (85).

One limitation of this method includes the availability of an arterial input functions for use
in our model. The dataset used in this study included an averaged arterial input function determined
from signal time course of 3 patients (86). To test the robustness, we ran the analysis using the
Parker functional form AIF. The result was an AUROC lower than with the AIF included with the
data. This is a limitation for datasets where a direct or population averaged AIF is not available,

and functional forms are necessary.

Another limitation of the method is the need for contouring the lesions. The data set used
in this study contained regions of interest with lesions manually delineated by experts. Manual

contouring is a time-consuming process, requires expertise to perform, and is likely to be operator-
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dependent. One solution would be to implement an algorithm to automatically contour the tumors,
and this solution is employed in some quantitative studies with moderate success (87) . These
algorithms can involve selecting the voxels with the highest enhancement, selecting all voxels over

a threshold of enhancement, or selecting an area around the highest enhancement voxel.

3.7 Conclusion

Shape analysis allows for the analysis of DCE-MRI data using predefined shapes based on
the quantitative Tofts-Kety model. It uses NNLS to classify measured time course data as mixtures
of shapes. It is fast and robust to variations in flip angle and 7;. In a DCE MRI dataset from 10
patients with breast cancer, shape analysis was able to identify complete responders prior to
treatment and after one cycle of neo-adjuvant chemotherapy, outperforming previously established
quantitative analysis based on the quantitative Tofts-Kety model. This method could be a powerful
tool in early assessment of treatment response. The selection of predefined shapes and the

interpretation of weight maps can be adapted to the specific application.

3.8 Acknowledgments

The authors acknowledge the input of colleagues Véronique Fortier, Caroline Reinhold, Jan
Seuntjens, Mikaél Simard, Martin Vallieres, and Stella Xing in discussing this work. Funding was
provided by the Research Institute of the McGill University Health Centre (Montreal General
Hospital Foundation) and a Discovery Grant from the Natural Science and Engineering Research
Council (NSERC). ZA acknowledges fellowship funding from the NSERC CREATE Medical
Physics Regional Training Network (Grant no. 432290) and the McGill University Faculty of

Medicine Fellowships.

50



Chapter 4: Further Analysis with Additional Shape Types and
Automatic Tumour Delineation

4.1 Shape Analysis with 3 input shapes
4.1.1 Introduction

Vincensini reported ke, parameters that reflected breast tumour subtype (80) which were
used for shape analysis in Chapter 3. These subtypes were invasive ductal carcinoma (IDC),
invasive lobular carcinoma (ILC) and benign tumours. The ke, parameters used in this study were
applied to predict therapy response, and the results reported in Chapter 3 suggest that time-intensity
curves decomposed using our method based on published ke, values are related to outcomes. This
brings about an interesting question of whether these ke, parameters be used to determine tumour

subtype, or are they only useful for predicting therapy response.

As described in sections 2.4 Invasive lobular carcinoma is the second most common type
of breast cancer (88). Its clinical, biological, and prognostic values make it a separate entity from
invasive ductal carcinoma (IDC). Patients with IDC were more likely to experience pCR when

undergoing neoadjuvant chemotherapy compared to ILC (89).

Tofts also proposed an extension to his model for tissue that is highly vascularized (11).
This is expanded on in greater detail in Chapter 2. The Extended Tofts model consists of adding
an additional term containing the arterial input function multiplied by the fraction of the voxel
occupied by blood vessels. Conceptually, this is similar to having the AIF as a third shape

component in shape analysis that can have a weight in each voxel.
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The objective of the work presented in this chapter was to investigate whether additional
input shapes on the shape-based analysis improves the outcome of the analysis. This was first done
with 3 shapes derived from 3 ke, values reported by Vincensini et al. Then the analysis was
repeated with 2 shapes from ke, values from Eliat et al/, as was done in Chapter 3 and the Parker

AIF (44) component as a third shape.

4.1.2 Methods

Shape analysis was run using 3 shapes instead of 2, with the parameters being taken from
Vincensini ef al. Vincensini et al kep values for IDC, ILC and benign tumours which were 1.32
min’!, 0.66 min!, and 0.32 min™! respectively (80). In the previous analysis reported in Chapter 3,
values of 1.32 min! and 0.32 min™! k., were used for the high and low shapes respectively. The
mean value of the weights over all pixels with non-zero weight values were compared at each of
the visits to see if the separation seen before was maintained. Separation was quantified by

calculating AUROC.

Shape analysis was also run using 2 shapes based on values from the Eliat study (78), and
the average AIF supplied with the dataset as a third shape. The mean value of the weights over all
pixels with non-zero weight values were compared at each of the visits to see if the separation seen

in section 3.5.2 was maintained. Separation was quantified by calculating the AUROC.
4.1.3 Results

Following analysis of the dataset with three ke, shapes describing breast cancer tumour
type, the separation (AUROC = 1) at visit 1 is maintained by inspection of the mean non-zero
weights of the highest ke, shape (1.32 min!) which was the ke, value for IDC. In this case, in
contrast to the result observed in section 3.5.2 the separation at visit 2 is reflected in the

intermediate kep (0.66 min''), which was the ke, value reported for ILC. R? values are also slightly
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higher than the 2-shape analysis from section 3.5.2. The lowest ke, shape (benign) no longer
separated pCR and non-pCR patients. This is shown in Figure 4-1. The 2-shape analysis in Chapter
3 had mean R? values of 0.81 and 0.70 for visit 1 and visit 2 respectively, while the 3-shape analysis

had R? values of 0.82 and 0.71 for visit 1 and visit 2 respectively.
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Figure 4-1: Shape analysis with 3 shapes reflecting different types of breast cancer. The mean
weights of non-zero voxels for each shape are plotted for each patient at visit 1 (left) and visit 2
(right). The AUROC curve for each shape and visit is plotted below each figure. Each patient’s
response to neo-adjuvant chemotherapy is labelled as pCR (blue) or non-pCR (orange). Separation
of pCR and non-pCR patients occurs in the mean weights for the IDC shape in visit 1 and in the
mean weights of the ILC shape for visit 2. This is reflected in AUROC values of 1.

Conducting the analysis with two shapes generated with ke, from the Eliat study (74) and
the population average AIF as a third shape did not change the separation between of pCR and

non-pCR observed in 2 shape analysis. The AIF term was characterized by small weights in most
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voxels, and the meanNZ weights did not show any separation of pCR and non-PCR patients. This
is shown in Figure 4-2. The 2-shape analysis in Chapter 3 had mean R? values of 0.81 and 0.70 for
visit 1 and visit 2 respectively, while the 2-shape analysis with an AIF term had R? values of 0.81

and 0.71 for visit 1 and visit 2 respectively.
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Figure 4-2: Shape analysis with the AIF as a third shape. The mean weights of non-zero voxels for
each shape are plotted for each patient at visit 1 (left) and visit 2 (right). Each patient’s therapy
response is labelled as pCR (blue) or non-pCR (orange). The AUROC curve for each shape and
visit is plotted bellow each figure. Separation of pCR and non-pCR patients occurs in the mean
weights of high-perfusion shapes for visit 2, and the mean weights for low-perfusion shapes in
visit 1. This is reflected in AUROC values of 1. The AIF term was characterized by small weights

and appears to separate responders from non-responders at visit 2.
4.1.4 Discussion
Conducting shape analysis with 3 shapes representative of breast tumour subtypes yielded

interesting results. The low perfusion shape (kep=0.32 min') previously used in Chapter 3 no
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longer showed the response separation at visit 1 and instead the separation was present in the
weights of the shape with an intermediate kep=0.66 min™!. This suggest that the range of ke, values

used to define shapes might be more flexible than initially proposed in Chapter 3.

The question of whether our analysis might be instead identifying tumour subtype, which
in turn is related to response to chemotherapy, is impossible to assess in a dataset where tumour
subtypes were unavailable. If the weights of the shapes were indicative of the tumour subtype, the
results would suggest that high ILC and low IDC weights might be associated with a positive
response to chemotherapy. The responders at visit 1 had more ILC weight, and the responders at
visit 2 had less IDC weights. However, the opposite is reported in literature: ILC has a lower
chance of pCR than IDC when treated with neoadjuvant chemotherapy (89). It is therefore unlikely
that that our shape recognition method is capturing histological subtype, and that instead we are

observing meaningful mixtures of ke, values within voxels.

In addition to running the analysis with 3 shapes, 2 shape analysis was done using the AIF
as the third shape. Including an AIF shape in the analysis did not change the separation or the
quality of fit meaningfully. In fact, the AIF shape had low mean weights in both visits, not being

assigned as part of the model in most voxels.

4.2 Semi-Automatic Region of Interest Generation

4.2.1 Introduction

The dataset used for this study included regions of interest (ROIs) of the breast cancer
tumours delineated by an expert. Not all available datasets have ROIs, and this is a major obstacle
in applying the proposed analysis to those datasets. Manual contouring is time consuming and is
likely to be an operator dependent process. The need for an expert to manually contour the tumours

is also a barrier to the proposed analysis in prospective studies and deployment in the clinic.
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The objective of the work presented in this section is to propose a semi-automatic technique
for contouring the tumour, where the only manual input is a quick and rough contour around the

tumour.

4.2.2 Methods

The semi-automatic contours were generated by first drawing a rough mask over the
tumour at every slice. The rough mask contained the entire area of rapid enhancement, and a
generous amount of surrounding tissue to ensure that the whole lesion was captured. Shape
analysis using Eliat ef al. kep values (78) was then conducted on the voxels within the rough mask,
and the goodness-of-fit was evaluated at each voxel as described in Chapter 3. The voxels were
only included in the meanNZ calculation if their R? of the model fit to the data is over 0.5. The
threshold of 0.5 was chosen as that is the R? threshold where the model explains 50% of the
variance. The semi-automatic contours were compared to the manual contours provided with the
data set by calculating the DICE coefficient (90) between the two masks. This process can be seen
in Figure 4-3.

This method’s ability to reproduce the relationship between therapy response and the
weight of shapes was compared with the manual ROIs, and a commonly used simpler ROI method
based on a threshold of enhancement. This threshold ROI method begins by first drawing a rough
mask over the tumour at every slice. The rough mask contained the entire area of rapid
enhancement, and a generous amount of surrounding tissue to ensure that the whole lesion was

captured. Relative enhancement was the given by:

Spost + Spre
S

post

Relative Signal Enhancement =

(4-1)
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Where S5 1s the average signal over all timepoints after the contrast agent is administered and

Spre 1s the average signal over all timepoints before the contrast agent is administered. The voxels

were only included in the meanNZ calculation if relative threshold enhancement is greater than a

chosen threshold.

RZ
greater

Y\ thana
Rough Mask : y threshold

Figure 4-3: Pipeline for semiautomated region of interest. A rough contour (yellow) is drawn
around the tumour, followed by two component shape analysis. Then the shape analysis is
restricted voxels that had an R? value above 0.5. The last image shows the final contour o the semi-

automatic ROI (yellow).

4.2.3 Results

The semi-automatic tumour masks seemed to conform to the tumour very well. This was
reflected by high DICE coefficients between the manual and semi-automatic masks. Interestingly,
every automatic tumour mask was slightly smaller than the manual masks provided with the
published dataset. Both these observations are shown Figure 4-4. When looking at the mean
weights generated with the semi-automatic ROIs, the same separation of pCR and non-pCR is
reproduced in the automatic masks as in the manual masks (reported in Chapter 3). The mean
weight is the semi-automatic masks and the same analysis originally reported in Chapter 3 are

shown in Figure 4-4. The separation was not present using masks based on a simpler thresholding
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technique. Using a mask generated based on a threshold of a percent of the maximum enhancement
led to at best only separation of pCR and non-PCR patients based on the mean weights of the high
perfusion shapes at visit 2. An example of a 70% threshold is shown in Figure 4-6, but no threshold
value was able to reproduce the separation at visit 1 seen in the manual and goodness-of-fit based

masks.
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Figure 4-4 The DICE coefficients between the manual contours and the semi-automatic contours
based on goodness-of-fit is shown in sub plot A. Patients are separated by visit, and each tumour
is plotted by a unique colour that is maintained between visits. The size of the manual and semi-
automatic tumour contours is plotted in subplot B. Manual and semiautomatic contours sizes for
the same tumours are connected by a black line. The DICE coefficients are high, reflecting good
conformity between manual and semi-automatic masks. All semi-automatic masks are smaller than

their manually drawn counterparts.
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Semi Automatic Contouring
based on Goodness of Fit
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Figure 4-5: Mean weights with semi-automatic (top) ROI and manual (bottom) contoured tumours.
The mean weights of non-zero voxels for each shape are plotted for each patient at visit 1 (left)
and visit 2 (right). Each patient’s therapy response is labelled as pCR (blue) or non-pCR (orange).
Separation of pCR and non-pCR patients occurs in the mean weights for low-perfusion shapes in
visit 1 and in the mean weights of high-perfusion shapes for visit 2 for both of the contouring
techniques. The mean weights are similar to those seen with manual ROI, and the separation of

therapy response is still present.
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Figure 4-6: Mean weights with semi-automatic threshold ROI. The threshold used was 70% of the
maximum enhancement. The mean weights of non-zero voxels for each shape are plotted for each
patient at visit 1 (left) and visit 2 (right). Each patient’s therapy response is labelled as pCR (blue)
or non-pCR (orange). Separation of pCR and non-pCR patients occurs only in the mean weights

of high-perfusion shapes for visit 2.

4.2.4 Discussion

To address the obstacle of defining ROIs in datasets without them, a method of semi-
automatically generating the ROIs was investigated. The semi-automatic delineation based on
goodness-of-fit was able to not only create masks that agreed with the expert contouring of the
tumour but was also able to reproduce the treatment response relation using the set of manual
ROIs. Simpler methods used to generate ROIs were not able to reproduce this result as shown in
Figure 4-6. Interestingly every automatic mask appeared to have fewer voxels and always a subset
of the manual mask. One limitation is the fact that this automatic tumour delineation is discarding
voxels that the model does not explain, by thresholding to select only voxels with a high coefficient

of determination. This design choice should be validated in other datasets.
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Chapter S: Discussion & Conclusion

5.1 Discussion

In Chapter 3 we showed a two-component shape analysis method of analysing breast DCE-
MRI data based on shapes defined using the Tofts-Kety model. This method was able to separate
patients with breast cancer as complete responders and non-responders to neoadjuvant
chemotherapy in a publicly available dataset. This method is fast, with a processing time of a few
minutes for 10 patients, and robust to variations or errors in the acquisition. Shape analysis was
run with several ke, values defining the shapes, and all selected shapes resulted in the same
relationship between therapeutic response and mean weights. An insensitivity to lower temporal
resolutions makes this method suitable to apply to clinical data. This method may be a useful tool
in predicting therapy response in breast cancers as early as the pre-treatment scan and could be an

aid to decisions made by doctors.

One barrier to this method and any quantitative DCE-MRI analysis is the requirement of
accurate ROIs delineating the lesions. Contouring of ROIs is usually done manually by an expert
but is a time-consuming process. Chapter 4 showed that commonly used algorithms to generate
ROIs, such as an approach based on a simple threshold of maximum enhancement, failed to capture
enough voxels to reproduce the separation we saw with the manual ROIs in this data set. We
proposed and implemented a semi-automatic ROI algorithm based on a threshold of R? values of
the goodness-of-fit of shape analysis coupled with a rough manual delineation. This created masks
with high conformity to the original manual masks, reflected by a high Dice coefficient.
Additionally, these masks captured the relationship seen with the manual masks between the mean
weights of the shapes and the eventual therapeutic response. This method is faster than manual

contouring with comparable results.
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Shape based classification has already seen success in other tissues (27). Our group has
tested a version of this approach in liver, which has shown promising preliminary results in
identifying cellular growth patterns in colorectal cancer hepatic metastases (unpublished result).
DCE is also of interest in soft tissue tumors, where we might obtain grading information. There is
evidence for a connection between DCE-MRI quantitative observations of K" and ke, and
already established histological analysis of microvessel density and percentage of Ki-67 antigen
positive cells (91). Another potential application of this analysis is the differentiation of pseudo-
progression vs true progression in cerebral metastasis, which showed promise using DCE MRI

quantitative parameters such as K" (92).

5.2 Future Work

One immediate area of improvement on this study is the application to other datasets.
Previously, a constraint was that come candidate datasets did not have ROIs supplied. A ROI
generation method based on simple enhancement-based thresholding that we tried was not
successful at replicating the results of shape analysis with manual ROIs in the original dataset.
Now, with the semi-automated ROI algorithm proposed in Chapter 3, application of shape analysis
to these other data sets is possible. This ROI generation method itself can benefit from additional
work. The design choice of discarding data that is not explained by the model (described in section

4.2) should be validated in other data sets.

To test the robustness to a lack of a high quality measured AIF, a literature AIF by Parker
et al. (44) was used, with mixed results Chapter 3. There are other AIFs available that were not
investigated, including the Georgiou AIF (47). Since the publication of the Parker AIF in 2006,

DCE-MRI acquisitions have improved in quality, and Georgiou ef al. took advantage of this to
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publish a functional form of an AIF that better captures the successive passes of the contrast agent

bolus that are averaged out in the Parker and averaged AIFs.

Finally, several values of kep have been reported in literature for benign, malignant, or other
subtypes of breast cancers (71, 78-80). kep values from these studies were all used in shape analysis
(in Chapter 4) with all producing the separation between pCR and non-pCR based on the mean
weights of shapes. Although the reported kep values for malignant diseases among all of these
studies differed slightly, the reported kep values for benign lesions was stable around 0.3 min’!.
However, as reported in a Chapter 4 using 3 shapes revealed that the value for the low kep can be
much higher (0.66 min™') and maintain the separation. This opens the question of what range of
values of kep for either high or low shapes is sufficient to retain the separation between responders

and non-responders, or to ensure separation on future datasets.

Another limitation of this work is that the analysis focused on the main enhancing region
or the tumour, while there were other smaller enhancing “bright spots” in the scan in the
surrounding tissue that were not included in the expert’s manual contour. It would be interesting

to see the weights of shapes assigned to these spots and the quality of the fit.

5.3 Conclusion

A method was presented in this thesis for shape analysis of DCE-MRI that exploits model-
based shapes and can separate patients based on eventual response to chemotherapy at least as
early as after one cycle of chemotherapy. Simulations and clinical data showed that this method is
fast and robust to inaccuracies in acquisition parameters. Along with this, a semi-automatic
approach for delineating regions of interest around rapidly enhancing lesions based on the

goodness-of-fit of the shape analysis method was also presented. Going forward, this method is
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promising as an alternative to quantitative model-based analysis of DCE-MRI that retains

information from a physical description of the enhancement dynamics.
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