Anomaly Detection from Videos :
A Deep Learning Approach

Seby Jacob

Master of Engineering

Department of Electrical and Computer Engineering

McGill University
Montreal,Quebec

August 15, 2018

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Engineering

(© Seby Jacob 2018

DEDICATION

This document is dedicated to my parents, Jacob and Mary, for their inexhaustible

enthusiasm in enabling my pursuit of happiness.

il

PREFACE

This thesis presents original scholarship by the author. The results, analysis and
views reported throughout, reflect work done largely by the author with assistance from
Prof.Martin D. Levine at McGill University. The algorithms presented were implemented

by the author except where explicitly denoted otherwise.

il

ACKNOWLEDGEMENTS

Work towards this thesis began in September 2016 and continued until May 2018 with
minor revisions performed until August 2018. All through this time, I have had to face
a number of obstacles and challenges. The support from my friends and family has been
invaluable in helping me conquer them all. First, I would like to thank my parents, Jacob
Raj and Dr Mary Dorothy, for their love and support, without which I would not have
been able to pursue my graduate studies at McGill University. Second, my advisor Prof.
Martin D. Levine has been indispensable to me, having given me the confidence to pursue
this work as well as the support and guidance I needed. Whenever I encounter an issue
or a roadblock, he is always available for consultation and advice, while remaining open
to new ideas and research directions. He regularly goes beyond what needs to be done
to send me interesting literature that would further this work. I especially appreciate his
ability to summarize complex problems into fundamental mathematical ideas to complement
my algorithmic thinking. I am extremely appreciative to Jan Binder and Nick Wilson for
their assistance with any computer related issues and for willing to accommodate some of
my esoteric requests. My colleague Michael Smith was of exceptional help to me during
the period of this work. He frequently shared his computational resources for running my
experiments when there were serious resource crunches. Relevant gratitude needs to be
expressed to my colleagues Nazanin Mohammadi and Dimitrios Gallos, who willingly shared
their expertise in theory and programming to help my research. Last, but not least, I would

like to thank all the McGill staff that helped make this journey of mine devoid of any hitches.

v

ABSTRACT

This thesis proposes an innovative solution to detect and localize anomalous events in
a video stream from a static camera. Anomalies are defined as events with a very low prob-
ability of occurrence in the scene or as events typically uncharacteristic of the scene. In this
work, we employ a constrained convolutional auto-encoder to learn the scene characteris-
tics. The autoencoder is trained on spatio-temporal video-volumes extracted from recorded
videos of the scene. Once the training is complete, each incoming video-volume can be tested
for its anomalous nature by analyzing the low-dimensional encodings and the quality of its
reconstruction from the auto-encoder.

Anomalies are heavily subjective to the scene being monitored. The most abnormal
event in one scene could be the most normal event in another. Hence, special care has been
taken to make the solution applicable for any scenario. Since training is unsupervised, this
work is extremely general purpose and can be deployed on any scene as is. Apart from the
discourse on a novel solution that is competitive with state-of-the-art methods, this work
also has an additional contribution. Specifically, we present a framework for generating un-
limited amounts of video data for anomaly detection from a static camera. This enables the
evaluation of any deep learning models, that were previously not adaptable for the problem
due to the limited training data available in benchmark datasets.

We present results from extensive experimentation on popular benchmark datasets to
show that our solution is effective and robust for anomaly detection. We also establish the
importance of having sufficient training data via the evaluation of models trained on training-
sets of varying sizes. Finally, the idiosyncratic nature of "What is an anomaly?" is subjected

to analysis using an experimental methodology.

ABREGE

Cette these propose une solution innovante pour détecter et localiser les événements
anormaux dans un flux vidéo provenant d’'une caméra statique. Les anomalies sont définies
comme des événements avec une trés faible probabilité d’occurrence dans la scéne ou comme
des événements atypiques . Dans cette étude, nous utilisons un auto-encodeur convolu-
tionnel limité pour analyser les caractéristiques de la scéne. Le codeur automatique re-
pose sur des volumes vidéo spatio-temporels extraits de vidéos enregistrées de la scéne.
Une fois I’entrainement terminé, chaque anomalie du volume vidéo entrant peut étre testée
en analysant les codages a faible dimension et la qualité de sa reconstruction a partir de
I’encodeur automatique.

Les anomalies sont fortement subjectives pour la scéne surveillée. L’événement le plus
anormal d’une scéne pourrait étre considéré comme étant le plus normal dans une autre. Par
conséquent, une attention particuliere a été apportée pour rendre la solution applicable a
tous les scénarios. Puisque la formation n’est pas supervisée, cette recherche est extrémement
générale et peut étre déployée sur n’importe quelle scéne. Hormis le travail sur une nouvelle
solution compétitive par rapport aux autres méthodes, ce dernier apporte également une
contribution supplémentaire. Nous présentons un cadre pour générer des quantités illimitées
de données vidéo afin de détecter des anomalies & partir d’'une caméra statique. Cela permet
d’évaluer de maniére exhaustive tous les modéles d’apprentissage, qui auparavant n’étaient
pas adaptées au probléme en raison des données de formation limitées disponibles dans les
ensembles de données de référence.

Nous présentons les résultats d’'une expérimentation basée sur des ensembles de don-
nées de référence populaires pour montrer que notre solution est efficace et solide en vue de
détecter des anomalies. Par ailleurs, nous établissons 'importance de disposer de données

de formation suffisantes & travers ’évaluation de modéles construits sur des ensembles de

vi

formation de différentes tailles. En définitive, la nature idiosyncratique de "Qu’est-ce qu’une

anomalie?" est soumise a une analyse en utilisant une méthodologie expérimentale.

vil

TABLE OF CONTENTS

DEDICATION ii
PREFACE e iii
ACKNOWLEDGEMENTS e iv
ABSTRACT e v
ABREGE vi
LIST OF TABLES xi
LIST OF FIGURES e e xii
1 Introduction 1
1.1 Background 1

1.2 Problem statement L 2

1.2.1 Anomaly detection 0oL 3

1.2.2 Deep learningo 3

1.2.3 The detailed problem statement 4

1.3 Terminology 4

2 Related work L 5
2.1 Modeling representations of videos)

2.2 Classical features for video representation 6

2.2.1 Object trajectory 6

2.2.2 Histograms of differential measures from images 7

2.2.3 Spatio-temporal features 8

224 Optical lowo 9

2.3 Deep learning for video representation 10

2.3.1 Neural network autoencoders 10

2.3.2 Convolutional networks and autoencoders 10

2.3.3 Convolutional long short term memory (LSTM) networks 11

2.3.4 Generativemodelso 12

3 Datasets e 13
3.1 Benchmark datasetso 13

3.1.1 University of California San Diego (UCSD) pedestrian dataset . . 13

viil

3.1.2 York anomalous behavior dataset 14

3.2 Artificial data for deep learning 19
3.2.1 Artificial data generationo 20
3.3 Chapter summary 22
The convolutional autoencoder L 23
4.1 Convolutional neural network 23
4.1.1 A brief history of convolutional neural networks and computer-vision 23
4.2 Understanding a convolutional neural network 25
4.2.1 Theinput 26
4.2.2 The convolutional layers 26
4.2.3 The pooling layers 27
4.2.4 The fully connected layers 28
4.3 Convolutional autoencoder 0L 31
4.4 Chapter summary 32
Data preparation 33
5.1 Raw data 33
5.2 Frames 33
5.3 Video units 34
54 Localization 35
5.5 Normalization o 37
5.6 Summary 37
The deep convolutional autoencoder 38
6.1 Encoder 38
6.1.1 Encoder architecture oL 38
6.2 Decoder 39
6.2.1 Decoder architecture oL 39
6.3 The convolutional auto-encoder 40
6.4 Chapter summary 42
Training oL 43
7.1 Overview of the objectives for this thesis 43
7.1.1 What is an anomaly? L. 43
7.2 The formulation of training 000 44
7.3 Training algorithm oo 48
7.3.1 Initializationo L 48
7.3.2 Initialize means and memberships 49
7.3.3 Stochastic optimization with means update 49
7.4 Feature space analysis 0o 51
7.5 Summary of the training algorithm 55

X

8 Results and analysis 56

8.1 Evaluation process 56
8.1.1 Training setup Lo 58

8.2 Artificial dataset 59
8.2.1 Anmalysis 60

8.3 Camouflage dataset 65

8.4 Boat-Sea dataset 69

8.5 Boat-River dataset 73

8.6 Canoe dataset 78

8.7 Train dataset 83

8.8 UCSD Ped 1 Dataset, 87

8.9 UCSD Ped 2 Dataset 92

8.10 Comparison with the state-of-the-art 97

9 Conclusion e 101
9.1 The proposed solution L 101

9.2 How important are the data? 101

9.3 What is an anomaly, really? L 107

9.4 Future direction 112
REFERENCES e 114

LIST OF TABLES

Table

3-1 Size and nature of benchmark datasets.
3-2 Deep CNNs that won the ILSVRC challenge.
8-1 Accuracy and F1l-score metric for artificial dataset.
82 Hyperparameters for evaluating the model on the artificial dataset.
8-3 Results from the Camouflage dataset.
8-4 Hyperparameters for evaluating the model on the Camouflage dataset.
8-5 Results from the Boat-Sea dataset.
86 Hyperparameters for evaluating the model on the Boat-Sea dataset.
8-7 Results from the Boat-River dataset.
8-8 Hyperparameters for evaluating the model on the Boat-River dataset.

8-9 Results from the Canoe dataset.
8-10 Hyperparameters for evaluating the model on the Canoe dataset.
8-11 Results from the Train dataset.
8-12 Hyperparameters for evaluating the model on the Train dataset.
8-13 Results from the UCSD Ped 1 dataset.
8-14 Hyperparameters for evaluating the model on the UCSD Ped 1 dataset.

8-15 Results from the UCSD Ped 2 dataset.
8-16 Hyperparameters for evaluating the model on the UCSD Ped 2 dataset.

8-17 Comparison of our algorithm vs the best pixel level AUC (Area under ROC
curve) in literature.

8-18 Comparison of our algorithm vs the best frame level AUC (Area under ROC
curve) in literature.

xi

66

98

98

Figure

3-1

32

3-3

34

3-5

3-6

3-7

3-8
3-9

LIST OF FIGURES
page

Examples of images from the UCSD Ped 1 collection. Top Row: Images from
the training set without any anomalies. Bottom Row: Images from the
test set with observed anomalies marked in red. From left to right, the
anomalies are a trolley, a van, skateboarding and bicycling. 14

Examples of images from the UCSD Ped 2 collection. Top Row: Images from
the training set without any anomalies. Bottom Row: Images from the test
set with observed anomalies marked in red. Left to right, the anomalies are
bicycling, van, skateboarding and bicycling. 15

Examples of images in the Boat-Sea dataset. On the left, a normal image
without any events. On the right, anomalous event of a boat to be detected. 16

Examples of images in the Train dataset. Left: a normal image without any
anomalies. Right: anomalous event of movement in the aisles. 17

Examples of images in the Boat-River dataset. On the left, a normal image
without any events. On the right, anomalous event of a boat to be detected. 17

Examples of images in the Canoe dataset. Left: a normal image without any
anomalies. Right: anomalous event of a canoe moving across the field of

Examples of images in the Camouflage dataset. Left: a normal image without
any anomalies. Right: anomalous event of a person moving across the field
of view. 18

Background for the artificial dataset. 21

Examples of training set images ordered in a timeline. The red arrows in the
figures are representative of the direction in which the shapes move on the

3-10 Images from the test set of the artificial dataset. The red arrows in the figures

4-1

are representative of the direction in which the shapes move on the road.

Top row: Pixel level ground truth annotations for the corresponding test

set images. Anomalous pixels are white in color. Bottom row: Examples of

test set images ordered in a timeline. 22

Convolutional filters of a trained VGGNet and feature maps from the first layer. 29

xii

4-3

4-4
o1
6-1
7-1

-2

73

8-1
82

8-3

84

8-9

86

87

3-8

An illustration of pooling operations.

An illustration of a convolutional neural network used for image classification.
Image basedon [1].

An illustration of a convolutional autoencoder.
[lustration of the data-subsampling to create spatio-temporal cuboids.
Encoder and decoder sections of the convolutional autoencoder.

[lustration of the anomalies in terms of probability density function from a
normal distribution.

[lustration of K-Means friendly datasets. Top row: K-Means friendly
dataset. Bottom row: Anisotropic data unsuitable for K-Means. Left
column: Dataset with clusters colored by original membership, Right
column: Dataset with clusters colored by membership obtained from
K-Means algorithm.

[lustration of Gaussian Mixture model on a 2-D feature space.
[lustration of negative log probability density on the normal distribution. . .
[lustration of the Mahalanobis distance evaluated on a normal distribution. .

Mahalanobis distances calculated from the validation-set on the artificial
dataset. The threshold level for the maximum F1 score from the distribution
is depicted in blue.

ROC curve for the artificial dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

ROC curve for the artificial dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

Illustration of spatio-temporal cuboid classification on the artificial dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for
correctly classified spatio-temporal cuboids, green hue is for misclassified
spatio-temporal cuboids. Lo

Mahalanobis distances evaluated from the validation-set on the Camouflage
dataset. The threshold level for the maximum F'1 score from the distribution
is depicted in blue.

ROC curve for the Camouflage dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

ROC curve for the Camouflage dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

xiii

62

66

89 Illustration of spatio-temporal cuboid classification on Camouflage dataset.
Red hue is for correctly classified spatio-temporal cuboids. It may be
recollected that the task at hand for the Camouflage dataset is to detect
the moving person.o

8-10 Mahalanobis distances evaluated from the validation-set on the Boat-Sea
dataset. The threshold level for the maximum F1 score from the distribution
is depicted in blue.o

8-11 ROC curve for the Boat-Sea dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

&8-12 ROC curve for the Boat-Sea dataset. Classification at the frame level. Dotted
blue line represents a random classifier.00

8-13 Mlustration of spatio-temporal cuboid classification on the Boat-Sea dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for
correctly classified spatio-temporal cuboids, green hue is for misclassified
spatio-temporal cuboids.o

814 Mahalanobis distances evaluated from the validation-set on the Boat-River
dataset. The threshold level for the maximum F1 score from the distribution
is depicted in blue.o

8-15 ROC curve for the Boat-River dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

8-16 ROC curve for the Boat-River dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

8-17 Mlustration of spatio-temporal cuboid classification on the Boat-River dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for
correctly classified spatio-temporal cuboids, green hue is for misclassified
spatio-temporal cuboids.o

8-18 Mahalanobis distances evaluated from the validation-set on the Canoe dataset.
The threshold level for the maximum F1 score from the distribution is
depicted in blue.

8-19 ROC curve for the Canoe dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

8-20 ROC curve for the Canoe dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

8-21 Mlustration of spatio-temporal cuboid classification on the Canoe dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for
correctly classified spatio-temporal cuboids, green hue is for misclassified
spatio-temporal cuboids. oL

Xiv

70

5

&8-22 Mahalanobis distances evaluated from the validation-set on the Train dataset.
The threshold level for the maximum F1 score from the distribution is
depicted in blue.

8-23 ROC curve for the Train dataset. Classification at the spatio-temporal cuboid
level. Dotted blue line represents a random classifier.

824 ROC curve for the Train dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

8-25 Mlustration of spatio-temporal cuboid classification on the Train dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for
correctly classified spatio-temporal cuboids, green hue is for misclassified
spatio-temporal cuboids.

826 Mahalanobis distances evaluated from the validation-set on the UCSD Ped 1
dataset. The threshold level for the maximum F1 score from the distribution
is depicted in blue.o

827 ROC curve for the UCSD Ped 1 dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

828 ROC curve for the UCSD Ped 1 dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

8-29 Mlustration of spatio-temporal cuboid classification on the UCSD Ped 1
dataset. (Score distribution thresholded to maximize the Fl-score). Red
hue is for correctly classified spatio-temporal cuboids, green hue is for
misclassified spatio-temporal cuboids.

8-30 Mahalanobis distances evaluated from the validation-set on the UCSD Ped 2
dataset. The threshold level for the maximum F1 score from the distribution
is depicted in blue.

8-31 ROC curve for the UCSD Ped 2 dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

8-32 ROC curve for the UCSD Ped 2 dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

8-33 Illustration of spatio-temporal cuboid classification on the UCSD Ped 2
dataset. (Score distribution thresholded to maximize the Fl-score). Red
hue is for correctly classified spatio-temporal cuboids, green hue is for
misclassified spatio-temporal cuboids.o

8-34 Comparison of the ROC curves of our algorithm vs SF [46], MDT [41], SR
[14], Detection at 150 FPS [40], SHD [79] , AMDN [77]. and GM [19].
Results from UCSD Ped 1 dataset.

XV

85

89

94

8-35 Comparison of the ROC curves of our algorithm vs SF [46], MDT [41], DA

9-1

9-2

9-3

94

9-5

9-6

[61], GM [19]. Results from the UCSD Ped 2 dataset.

The AUC score of the best classifiers for each dataset vs the ratio of training-
frames to testing-frames. L

The AUC score of the best classifiers for each challenging dataset vs the ratio
of training-frames to testing-frames. L.

The AUC scores of the classifier for varying training-set sizes of the artificial
dataset. AUC scores on the X-axis and the ratio of the training-frames to
the testing frames on the Y-axis.,

Comparison of the Mahalanobis distance scores for maximum F1 scores in
the Boat-River and Boat-Sea dataset for different values of K.

Comparison of the Mahalanobis distance scores for maximum F1 scores in
the Boat-River dataset for different runs of the expectation maximization
algorithm for fitting the Gaussian mixture model.

Comparison of the Mahalanobis distance scores for maximum F1 scores in
the Boat-Sea dataset for different runs of the expectation maximization
algorithm for fitting the Gaussian mixture model.

xXvi

Chapter 1
Introduction

1.1 Background

Modern society is swarmed by smart-phones and innumerable cameras. The amount of
video data being generated day to day has reached tremendous heights. For instance, 300
hours of video data are uploaded to YouTube every minute [5]. The high volume of video
data generates a proportional demand for top quality video-processing algorithms. Some
practical examples of video-processing applications include video surveillance systems, person
identification and tracking, action recognition, video annotation, and video summarization.
This thesis proposes a unique solution for implementing a general purpose, automatic, video
surveillance system.

The drop in prices for security cameras and hard-disk drives, coupled with increasing
security concerns has fueled a boom in the security and surveillance industry. The global
video surveillance market has grown from $18 billion in 2009 to $49 billion in 2018 [67].
Organizations, institutions, stores and even a large number of homes in developed cities make
use of closed circuit cameras to oversee their premises. However, most of these cameras are
not subject to active live monitoring. Even if they are, active live monitoring is a huge
waste of human effort, as noteworthy events seldom happen. Usually, the recorded data
are used only as hindsight after a crime or an unfortunate event has already occurred.
This realization has induced a need for developing reliable, real-time, video surveillance
algorithms. These algorithms must forward only the events of interest to a human arbiter,
who can then take immediate steps when necessary. This thesis details an effort in developing

a video surveillance solution that encapsulates these pertinent features.

1.2 Problem statement

The problem under consideration may be effectively summarized as: Anomaly detection
in surveillance videos. Surveillance videos are usually recorded using a static camera over-
looking a fixed scene where events occur. Events in a surveillance video can be categorized
into:

e Normal events

These are events characteristic to the scene. These events are not worthy of intervention
or any action from humans. Consequently, these are the most frequent events, or the
only type of events that occur in the scene.

e Abnormal or anomalous events

These events are uncharacteristic for the scene. They are unusual, irregular or suspi-
cious activities. Consequently, the occurrence of such an event requires human inter-
vention. These events do not occur frequently (or they never occur), and are hence
referred to as anomalous events.

Consider a static camera looking at an ATM cubicle. Normal events in this scene would
include people withdrawing money and doing bank transactions at the terminal. On the
other hand, anomalous events could include a gun being pulled on a customer, someone
destroying the terminal with a hammer, or a small group of people trying to play mini-golf
in the cubicle.

Given an ATM cubicle, someone pulling a gun or destroying the terminal are events
more probable than some people engaging in a casual game of mini-golf. Does this mean
that the mini-golf event is much more important to be detected than a gun being pulled on
someone? How can we assign a scale of abnormality to each event? Should it be based on how
urgently a situation demands human intervention, or how improbable the event actually is?

These questions raise an important issue: The subjective nature of the scale of abnormality.

Even though the scale of abnormality is subjective, all the examples of abnormal events
given above are irregular occurrences in an ATM cubicle. Therefore, they are all to be
classified as anomalous events by a video surveillance system.

1.2.1 Anomaly detection

In order to engineer a solution to detect anomalous events, we require a mathematical
notion for an anomalous event. Following the discussion above, an anomalous event can be
implicitly defined as an event with an extremely low probability of occurrence, when compared
to previous events observed in the scene. This definition stems from the assumption that
events which occur very rarely in a scene are potential threats that need attention. Detection
of an anomalous event includes two goals, namely, identifying an event as anomalous and
localizing the manifestation of the identified event within the monitored space.

Video surveillance can be employed anywhere a video camera can be installed. Hence,
a reliable video surveillance algorithm must be applicable to any scene. The algorithm must
perform well on any premises being monitored. Therefore, as an additional goal for this
work, we aspire to make our system unbiased to any scene it is monitoring.

1.2.2 Deep learning

When choosing a foundation to build the solution, it was an easy choice between deep
learning and classical video processing algorithms. Classical video processing algorithms are
limited to using general purpose hand-crafted feature extractors to learn the nature of the
scene. These feature extractors may not be able to successfully capture the behaviour of
certain scenes, as they require heavy fine-tuning to be adapted for each scene. Deep learning
may help solve this problem by extracting the relevant features that can best understand
the scene. Currently, deep learning is successfully utilized in high data volume computer-
vision tasks like image classification, object recognition, face recognition, image captioning,
image segmentation, video annotation, video captioning, etc. However, there are hardly any

reltable anomaly detection algorithms that employ deep learning. We chose deep learning

for this work, as this would further the field of deep learning and computer-vision research,

while harnessing its proven power in high data volume applications.

1.2.3 The detailed problem statement

Summarizing all the ideas in 1.2, the detailed problem statement is as follows: Automatic

detection and localization of events with very low likelihood of occurring in surveillance videos

from a static camera, using deep learning.

1.3

Terminology

Anomaly: Something that deviates from what is standard, normal, or expected.
Autoencoder: A model that is trained to reconstruct the input.

Convolution: Convolution can generally be defined as an integral that quantifies the
amount of overlap of one function ¢ as it is shifted over another function f. For the
purposes of this thesis, we restrict convolution to its definition in the computer-vision
domain. In computer-vision, convolution is a weighted multiplication of the image and
a kernel matrix to generate a feature-map.

Convolutional autoencoder: A deep learning model that uses convolutions to extract

features from an image, and uses the extracted features to reconstruct the image.

Cuboid: In this thesis, a cuboid represents a 3-dimensional array.

Spatio-temporal: Of both space and time.

Spatio-temporal cuboid: A cuboid that contains data specific to a point in space at a

given time.

Chapter 2
Related work

For a complete overview of anomaly detection, the reader is directed to the work of
Chandola et al. [10]. It presents a structural and comprehensive overview of the research on
anomaly detection in all types of data. They study the main algorithms used in every field,
while analyzing the nature of anomalies in each. Every method is deconstructed and the key
assumptions and conditions for its performance are examined.

In this chapter, we will restrict ourselves to examining the area of anomaly detection
from videos. We will highlight the main methods of video representation, problems, and
techniques that have been addressed in the field in two separate high-level branches, namely
the classical computer vision approach and the deep learning approach.

2.1 Modeling representations of videos

It is nearly impossible to process high-dimensional video data using a classifier due to
excessive computational complexity. Raw video data usually has a lot of redundancy in its
content. These facts demonstrate the need for representing video data in a low-dimensional
manifold to be processed fast and effectively. The low-dimensional representation must also
retain enough information to perform the given task well. The performance of any application
is usually related to the quality of the representation. However, selecting a representation
for a task can be heavily challenging due to the high degree of freedom in the 3-D space
from where video is captured. The existence of environmental variations and noise is also
counter-productive in helping us choose a good representation of the video data.

Before the emergence of deep learning as a popular method for feature extraction, pre-
defined (or hand-crafted) features were used to represent the video data in a relatively low-

dimensional manifold for anomaly detection. Popular methods like histograms of motion,

direction, and optical flow have been used for object detection and tracking in videos to
enable the detection of irregular behaviours.

However, these features need to be tuned each time a different scene is studied. In other
words, the pre-defined features might not be the best in capturing the pertinent motion
information given any scenario. This makes deep learning methods for feature extraction a
very good candidate, owing to its capability of producing robust features for any given data
input.

In the following sections, we will look at two different classes of anomaly detection
algorithms. First using classical computer vision, followed by deep learning methods.

2.2 Classical features for video representation

The word classical in the title is not to be confused with out-dated. Handcrafted fea-
tures are used widely in computer vision applications owing to their high efficiency, while
consistently providing low-computation algorithms. This section will review methods in the
literature that use classical vision algorithms for anomaly detection.

2.2.1 Object trajectory

Considering the assumption that anomalies are associated with motion, one of the main
methods used in anomaly detection is the study of object trajectories in the scene. The
authors of [30] detect and track objects whose trajectories are modeled by Hidden Markov
Models (HMMs). These time-series models are then subject to unsupervised clustering based
on the cross-likelihood-ratio [31]. A trajectory is classified as unusual based on the probability
of the trajectory, given the normal distribution of trajectories. However, this method breaks
down when clearly visible trajectories are unavailable or if the scene is crowded.

A similar framework is employed by |74] , which aims to detect deviant walking paths
in a shopping mall corridor. Person trajectories are modelled as a set of points in space and
then clustered using their similarities, measured by the Hausdorff distance. The walking

paths from clusters with very low memberships are then determined to be anomalies.

Adding a slight twist to the idea of using trajectories themselves, [18] describes a dy-
namic oriented graph classifier that detects important points in the trajectories and identifies
them as nodes. Each trajectory is then modelled as a graph in this space of nodes. Infre-
quent graphs are then classified as anomalies. [44| describes an automatic real-time model
for anomaly detection using the altruistic vector quantization algorithm (AVQ). The pro-
posed algorithm is capable of encoding the trajectories of moving blobs in any scene into a
prototype. The number of prototypes are determined autonomously. The learned prototypes
encapsulate the visual behaviour of dynamic objects in the scene. If any query prototype
significantly deviates from the learned prototypes, an alarm is raised.

2.2.2 Histograms of differential measures from images

One of the most popular works in anomaly detection using spatial histograms of motion
information is described in [85]. The authors employ spatio-temporal motion filtering of
video to compute the histograms. These histograms are classified into prototypes, from
which a prototype-segment co-occurrence matrix is computed. The inferred similarity of
features from test samples are calculated in the co-embedding space and isolated clusters are
labelled unusual.

The authors of [35] provide a framework for a video analysis tool for suspicious event
detection. As a first step, they suggest human labelling of suspicious activity in previous
video events. From the events labelled as aberrant, spatio-temporal intensity histograms
are learned. Any future event that creates similar spatio-temporal intensity histograms is
then classified as an anomaly. Unlike the latter, [82] proposes the use of semi-supervised,
adapted, HMMs for unusual event detection. This method involves learning a K-class HMM
and requires ground truth test labels supplied by a human. The HMM is trained to maximize
the likelihood of the motion histograms from the normal events. The HMM adapts its states
based on the information supplied by a human and is then later used to detect unusual

activity.

The monitoring of human activity has the parallel objective to detect and take action
when unusual activities take place. An instance of this timely intervention is coming to the
aid of a resident who has fallen down in an old peoples home. [21] describes such an applica-
tion, dedicated to detecting the fall of patients in such a facility. First, the segmentation of
moving objects is obtained by background elimination. This leaves only motion silhouettes
which are then studied for shape changes. An ellipsoid is approximated around each moving
object. A combination of the approximated ellipse and the horizontal and vertical projec-
tion histograms of the motion silhouette are used to train a supervised neural network to
accurately classify each type of motion. When an action is classified as a fall, the authorities
are alerted.

2.2.3 Spatio-temporal features

Inspired from the use of HMMs to model a time-series, [33| uses separate HMMs to
model different spatial regions in the frame. The motion variation of each local space-time
volume, coupled to its spatio-temporal statistical behaviour, is modelled to characterize the
behaviour of the scene. Anomalous events are detected as statistical deviations from the
norm.

The authors of [7] analyze events and behaviours at the pixel level after background
subtraction. In this work, events are considered to be random-variables influencing spatio-
temporal statistics. Based on the motion data at the pixel level, co-occurrence statistics
are learned across space-time for the scene. This is then used as a potential function in
a Markov Random Field (MRF) to describe the conditional probability of observations in
each spatio-temporal volume. The posterior probability for a new sample is then used for
classification.

Roshtkari and Levine, [55] define anomalies as spatio-temporal compositions having
low probability of occurrence with respect to the previous observations. In their work,
they sample spatio-temporal cuboids from the video at multiple scales and formulate the

problem as a bag-of-video-words by constructing a codebook and using a weighted codeword

assignment for each spatio-temporal volume. The prior probability of each codeword is
calculated using the frequency of codewords seen already. These statistics are used to predict
the probability of a spatio-temporal volume to be normal. Albeit simple, this method is fast
and demonstrates good performance on benchmark datasets.

On the other hand, Zhao and Li [83] extract spatio-temporal interest points from a
temporally sliding window in the video to learn a basis dictionary. This dictionary is learned
from the video using sparse coding and is updated in an online fashion when more data are
available. Each event query returns a reconstruction weight vector from the basis dictionary
which can be used to construct a normality measure. Since the dictionary can be learned
real-time and online, the algorithm needs to pass through the video only once. This also
makes sure that concept drift in the scene is taken care of (for example, a change of season).
2.2.4 Optical flow

The final class of major classical feature extraction from videos includes the use of
optical flow as a means of encoding motion statistics. A method for automatically detecting
unusual human events on stairs from video data is presented in [65]. They compute two
sets of features from a video of a person descending a stairwell. The first set includes
foot positions and velocities. Both feet are tracked using a state particle filter based on
histogram of oriented gradients. The second set of features are parameters of mean optical
flow in the foreground. These features are then used to train a HMM on normal stair use,
and a threshold on sequence likelihoods is used to detect unusual events in new data.

Similarly, [75] introduces a method to learn the velocity statistics of each pixel using
optical flow, which is later used to identify pixels with very fast motion not encountered
before. This method assumes high velocity pixels as representing abnormal behaviours.
On the other hand, [32] proposes a space-time MRF to detect abnormal activities in the
video. The normal patterns of activity at each local node are captured by the distribution of

optical flow that is used to train a mixture of probabilistic principal component analyzers.

For all incoming test samples, the learned model is used to compute a maximum a posteriori
estimate to evaluate a normality score at each local node.

Some other classical features seldom used in the domain include eigen-motion [20], visual
words, [69] and 2D contour angles [37].

2.3 Deep learning for video representation

The second class of techniques, used to extract features from videos, employ the use of
deep learning and neural networks. In recent years, feature extraction in computer vision
tasks have taken a favourable turn towards the use of deep learning, rather than classical
features. The availability of large computation banks and GPU arrays have assisted this
transition.

2.3.1 Neural network autoencoders

Sabokrou et al. has published a series of works in using autoencoders as a means of
feature extraction from videos for anomaly detection. In [59] and [60], they suggest the use
of a cascade classifier. A primitive first stage classifier, trained on the similarity statistics
between spatio-temporal cuboids using Structural Similarity (SSIM), is used to eliminate
75-80% of test samples very quickly. Cuboids that do not pass this test are then encoded by
a sparse encoder (from a trained autoencoder) and tested for being outliers.

Combining the best of both classical and deep learning features, [25] uses a combination
of histograms of oriented gradients and histograms of optical flow from the raw video frames
to train a deep autoencoder. Instead of using the encodings, when a new test sample is to be
tested, the reconstruction error is used to classify frames with very high pixel error rate as
frames comprising an anomalous event. This proposed method can only detect anomalous
frames and fails to localize the anomaly in the spatial extent of the frame.

2.3.2 Convolutional networks and autoencoders

Adding to their previous work, Sabokrou et al. uses a convolutional network, pre-trained

for the Imagenet classification task, to extract features from video-frames in [61]. The ex-

tracted features and spatial feature maps at intermediate layers are then used to fit two

10

Gaussian classifiers for anomaly detection. Similarly, [77] uses a convolutional autoencoder
to reduce the dimensions of image frames and dynamic images (motion image) to encode
the appearance and motion features. These features are fused to train a One-Class Sup-
port Vector Machine (SVM), which is then used to classify the query samples as normal or
abnormal.

The authors of [25] also present a convolutional autoencoder trained on temporal video
cuboid volumes. However, in contrast to the schemes above, they use the reconstruction
error on the test samples as a metric to enable the classification of unusual frames. These
works prove the use of 2-dimensional convolutional autoencoders as a reliable way for feature
extraction to represent videos.

Adding another dimension to the convolution kernels, the authors of [84] use 3-dimensional
convolution kernels to incorporate the temporal dimension as well. The encoded features
are used to train two decoders. One decoder is trained to predict future frames and another
decoder to reconstruct the input. The parallel training of these two branches makes sure
that the encoded features have a temporal understanding of the scene (as it should be able
to predict the future frames as well as reconstruct the input frames). Just as above, they
use the reconstruction error as a metric to be thresholded for anomaly assertions.

2.3.3 Convolutional long short term memory (LSTM) networks

Convolutional LSTM networks use the LSTM formulation to model the recurrent fea-
tures of the input. [13| demonstrates such a technique, later using the reconstruction error
to decide the normality score of the query samples. They show good performance met-
rics on benchmark datasets, but convolutional LSTM networks are costly to train and need
extremely large computational power to be trained and deployed.

Similarly, [45] uses a Convolutional LSTM network to predict the future frames. The
similarity between the predicted frames and the actual frames that arrive in the future is
used to evaluate a normality score for each pixel in the spatial extent of the frame. However,

this proposal also comes at an exorbitant computational cost.

11

2.3.4 Generative models

There has also been some exploration in training generative models to capture the
underlying distribution of video data. The intuition is that if the generative model can
generate samples from the training distribution, it is inevitable that the model will learn
the distribution itself. This is then leveraged to assert if an incoming sample belongs to the
usual or unusual events. 4] employs a trained Variational Autoencoder (VAE) to infer the
reconstruction probability of a test query while [62] and [17] train Generative Adversarial
Networks (GANs) and use its discriminator as a classifier to identify the anomalous samples.
However, none of these examples show any advantage of using a generative model, compared
to other methods.

In this thesis, we will use a deep 2-D convolutional autoencoder to represent the video

data in a low-dimensional manifold.

12

Chapter 3
Datasets

In this chapter, we will discuss the datasets used to evaluate our solution. We have
only used datasets with ground truth annotation of the anomalous events. The discussion
will be tackled in two parts. First, we will explore the benchmark datasets, followed by a
deliberation on the creation of an arbitrarily large dataset for anomaly detection.

3.1 Benchmark datasets

The era of deep learning has ushered in a need for high-volume datasets in computer
vision. This demand has been met sufficiently in most vision research areas. The number
of training observations in a high-volume dataset is usually comparable to the number of
parameters in a deep neural network. For instance, the Imagenet dataset [16] for image-
classification has about 1,034,908 annotated natural images over 1000 object classes. The
Street View House Numbers (SVHN) dataset [49] consists of 600,000 digit images for digit
classification in natural scenes. However, there are no such high-volume datasets for the
video surveillance task, making it quite difficult to employ deep learning toward this goal.
The benchmark datasets we use to evaluate our solution follow below.

3.1.1 University of California San Diego (UCSD) pedestrian dataset

The UCSD pedestrian dataset [9] contains videos overlooking walkways. The dataset
includes videos captured from stationary cameras at two locations. The data are avail-
able as 8-bit, greyscale video frames. The normal events include pedestrians on walkways.
Anomalies in the dataset consists of non-pedestrian entities and abnormal pedestrian pat-
terns. Some examples of non-pedestrian entities are bikers, skaters, people on wheelchairs
and small carts. People walking on the grass are also anomalies.

These videos are recorded in two different scenes, dividing the dataset accordingly into

two.

13

e UCSD Ped 1
The videos from the first scene are collected into a subset commonly referred in liter-
ature as UCSD Ped 1. This includes video clips of groups of people walking towards
and away from the camera. This section contains 34 training video samples and 36
testing video samples. Some examples are depicted in Fig 3—-1. There are about 6800
training frames and 7200 testing frames available from this scene.

e UCSD Ped 2
The videos from the second scene are commonly referred to as UCSD Ped 2. This in-
cludes video clips of people walking parallel to the camera plane. This section contains
16 training video samples and 12 testing video samples. Illustrations of this dataset

can be seen in Fig 3-2. This subset consists of 3200 training frames and 2400 testing

frames.

Figure 3-1 — Examples of images from the UCSD Ped 1 collection. Top Row: Images from
the training set without any anomalies. Bottom Row: Images from the test set with observed
anomalies marked in red. From left to right, the anomalies are a trolley, a van, skateboarding
and bicycling.

3.1.2 York anomalous behavior dataset

The York anomalous behaviour dataset [80] consists of videos from 8 different scenes.
They are all recorded from static cameras with challenging scenarios like varying illumination
effects, scene clutter, variable target appearance, rapid motion and camera jitter. Out of
the available 8 image sequences eliminate 3 sequences due to the lack of clearly defined

anomalous behaviours in them.

14

Figure 3—2 — Examples of images from the UCSD Ped 2 collection. Top Row: Images from
the training set without any anomalies. Bottom Row: Images from the test set with observed
anomalies marked in red. Left to right, the anomalies are bicycling, van, skateboarding and
bicycling.

It is key to note that the events to be detected as anomalies, according to this dataset,

are actually normal events when considering the nature of the scene. However, they are

classified to be anomalous due to the very low frequency with which they occur in the footage.

In other words, the anomalous events in the dataset are subjective to each scene.

Boat-Sea

This video contains 450 frames from a camera overlooking a bridge in the sea. A boat
floating into the scene is the only anomalous event in this sequence. Fig 3-3 contains
examples of frames from the dataset.

Train

This is an 18.5k frame sequence from a surveillance camera on a passenger train. Nor-
mal events include people sitting in the seats, whereas infrequent occurrences include

movement in the aisles. Fig 3-4 captures some illustrations from this dataset.

Boat-River

A very short sequence from a river with a boat coming across the camera plane as the
anomaly to be detected. Refer Fig 3-5 for examples.

Canoe

Very similar to the Boat-River dataset. A short sequence recorded over a river with a

canoe coming across the field of view as the anomaly. Illustrated in Fig 3-6.

15

e Camouflage

An interesting video where a person wearing camouflage that matches the background

is going to and fro across the frame. The task is to detect the person when he is in the

frame. Fig 3-7 has some instances from the data.

Dataset Color scheme | Total training frames | Total testing frames
UCSD Ped 1 | Greyscale 6800 7200

UCSD Ped 2 | Greyscale 3200 2400

Boat-Sea Color 200 250

Train Color 500 18000

Boat-River Color 100 235

Canoe Color 200 800

Camouflage | Color 20 1440

Table 3-1 — Size and nature of benchmark datasets.

Figure 3-3 — Examples of images in the Boat-Sea dataset. On the left, a normal image

without any events. On the right, anomalous event of a boat to be detected.

16

Figure 3-4 — Examples of images in the Train dataset. Left: a normal image without any
anomalies. Right: anomalous event of movement in the aisles.

Figure 3-5 — Examples of images in the Boat-River dataset. On the left, a normal image
without any events. On the right, anomalous event of a boat to be detected.

17

Figure 3-6 — Examples of images in the Canoe dataset. Left: a normal image without any
anomalies. Right: anomalous event of a canoe moving across the field of view.

Figure 3-7 — Examples of images in the Camouflage dataset. Left: a normal image without
any anomalies. Right: anomalous event of a person moving across the field of view.

18

3.2 Artificial data for deep learning

To understand the need for artificial data, we need to compare the benchmark datasets
in the video surveillance area to benchmarks in other computer-vision areas. Let us take
a brief look at the image classification domain. Imagenet Large Scale Visual Recognition
Challenge (ILSVRC) [58] is a very popular benchmark for image classification. ILSVRC has
been held every year since 2010 by the Imagenet project. Multiple software projects compete
in the challenge to correctly classify and detect objects in images.

AlexNet [34], the first successful attempt using deep learning to solve the challenge,
was a major breakthrough in the competition, to the extent that it is considered to be the
beginning of the recent deep learning revolution. The Imagenet dataset training split used in
the challenge consists of 1.3 million high-resolution images. Some popular, deep convolutional
networks that have held first place in the challenge over the years, can be studied from Table
3-2. From this observation, it is evident that the availability of a high-volume, top-quality
dataset enables the use of complex models with a large number of parameters. Unfortunately,
no such high-volume dataset exists in the field of video surveillance. Even if a full-length
surveillance footage is captured, the number of notable events might be very low. There
is also a lot of effort involved in annotating and generating the pixel level ground truth of
anomalies for evaluation. In this work, we ameliorate this situation by creating a program for

generating a high-resolution, high-volume, artificial dataset with ground-truth annotations.

CNN (Model) | Parameters in the convolutional layers
VGG-16 [64] 14 million
VGG-19 [64] 20 million
Xception-V1 [12] | 21 million
ResNet50 [26] 23 million

InceptionV3 [68] | 22 million
Table 3-2 — Deep CNNs that won the ILSVRC challenge.

19

3.2.1 Artificial data generation

Data from every surveillance camera has two components, namely the static component
and the dynamic component. The static component comprises the background of the scene
and the dynamic component encompasses all the motion in the scene. The dynamic com-
ponent includes moving objects and motion in the static components (for example: leaves
blowing in the wind). The artificial data we generate is founded on these basic assumptions.

The data are generated using a program written in Python [56]. The program initializes
a background simulating a surveillance camera over-looking a road as in Fig 3-8. This is the
static component of the scene. The dynamic nature of the scene is composed of randomly
colored shapes (circles and squares) moving along the two lanes of the road in queues. The
inter-shape distances in each queue is random. This is done with the intention of simulating
traffic on a busy road.

The program generates frames sequentially, moving the shapes one pixel at a time. This
simulates a high sampling rate from the imaginary camera. The length of the training dataset
can be determined by the user. This provides great flexibility and a source for high-volume
training data. Consequently, it enables the training of complex deep learning models.

e Training data
The training data consists of randomly colored squares and circles moving in two queues
along the road. The squares are moving left to right in the top half of the image and
the circles are moving right to left in the bottom half of the image. Some images from
the training dataset can be observed in Fig 3-9.

e Test data
The test data mostly consists of randomly colored squares and circles moving along
the road. The queues are interspersed with randomly colored triangles with a very low
probability that can be set by the user. The presence of the triangles are the anomalies
that are to be detected since the training data contains only squares and circles. Since

the anomalies are generated programmatically, the pixel level ground truth for the

20

anomalies can be generated as bitmaps. Some images from the test dataset can be
observed in Fig 3-10. As seen, the pixels occupied by triangles in the frames are
marked out as anomalies in the ground truth annotations.

It is imperative to note that the colours of the shapes are of no consequence to us. All
shapes are randomly colored. It is the shapes themselves that we are concerned about. The
task for any model is to accurately detect all the triangles from the test set as anomalies.

We intend to use the artificial data as a benchmark for experimentation to establish the

best model architecture and the best method for anomaly detection.

Figure 3-8 — Background for the artificial dataset.

TIME ———

Figure 3-9 — Examples of training set images ordered in a timeline. The red arrows in the
figures are representative of the direction in which the shapes move on the road.

21

TIME

Figure 3-10 — Images from the test set of the artificial dataset. The red arrows in the figures
are representative of the direction in which the shapes move on the road. Top row: Pixel
level ground truth annotations for the corresponding test set images. Anomalous pixels are
white in color. Bottom row: Examples of test set images ordered in a timeline.

3.3 Chapter summary

In this chapter, we discuss benchmark datasets available for anomaly detection. Fol-
lowing this, we establish that the benchmark datasets have a comparatively fewer number
of data points to facilitate the use of deep learning for our problem. To overcome this con-
straint, we create an artificial dataset that is programmatically generated. This generates
a big enough dataset to use deep learning for anomaly detection in videos. This chapter

concludes with a study on how the dataset is created.

22

Chapter 4
The convolutional autoencoder

4.1 Convolutional neural network

To really understand the significance of the Convolutional Neural Network (CNN), we
need to examine the history of neural networks and computer-vision.

4.1.1 A brief history of convolutional neural networks and computer-vision

It was in the year 1943, that McCulloch and Pitts [43] established that a mathematical
approximation of neurons (perceptrons) can be combined to construct a Turing machine
[27]. In 1958, Rosenblatt [54] showed that perceptrons could be trained to convergence if
the data were represented effectively. This rise in interest in neural networks was subdued
through a publication elucidating the limitations of neural networks by Minsky and Papert
[47] in 1969. The research on neural networks lay dead for over a decade until Hinton et al.
devised a learning algorithm for Boltzmann machines [3|. The widely used back-propagation
algorithm was introduced shortly after by Rumelhart et al. [57] (1986). This wave of new
research brought about the Neocognitron [22], a layered neural network which showed the
capability of visual pattern recognition. Subsequently, in 1998, the first formally titled Con-
volutional Neural Network (CNN), trained using back-propagation was proven effective for
document analysis by LeCun [36]. However, these networks were computationally intensive
and required excessive computational resources to be trained. This aspect of the programs
made them ultimately unusable for any practical applications during this time.

In parallel, computer-vision algorithms were becoming indispensable in a lot of practical
applications. Hubel and Wiesel |28] showed the behaviour of receptive fields of single neurons
in a cat’s striate cortex in 1959. They demonstrated how a cat’s brain reacted to differentials
across its field of vision compared to static information. This fact was embraced by the

field of computer-vision. It was shown that important features from a digital image could

23

also be extracted by using pixel differential operations. This led to the introduction of
the Sobel operator for edge detection in 1968 and the Canny algorithm for edge detection
in 1986 [8]. Similarly, the Harris corner detector was introduced [24] in 1988, also using
differential operations. Even though these algorithms performed very well in detecting edges
and corners, they were still only base level features, and were not enough to extract a high-
level understanding of the image. Local binary patterns [50] presented a notion of robust
features extracted from an image to effectively distinguish textures. This was somewhat
in parallel to the proposal of Histogram of Oriented Gradients (HOG) by McConnell in
a patent application in 1986. The ideas popularized by Hubel and Weisel also inspired
the Haar-like features [51] and the Viola-Jones algorithm for object detection [71]. The
Viola-Jones algorithm was an immediate hit, and was widely applied in a lot of practical
applications, as it was computationally perfunctory.

The key behind the HOG feature descriptor is that object shape and appearance could
be summarized by evaluating the distribution of intensity gradients and their orientations.
The image is divided into cells and sub-cells, and within each sub-cell, a histogram of
pixel-intensity gradient orientations is assembled. The histograms from each sub-cell are
concatenated to form the descriptor of that cell. These local histograms are subjected to
contrast-normalization by scaling the histograms by the average local intensity in the image,
providing better illumination invariance. Dalal and Triggs used this idea [15] to demonstrate
good numbers in pedestrian detection from static images. These features, however, were
all heavily subject to failure by a change in the scale of the images. Scale-Invariant Fea-
ture Transform (SIFT) was instituted by Lowe [39] to overcome these particular limitations.
SIFT features are invariant to uniform scaling, orientation and illumination changes. SIFT
proved to be robust in identifying objects even through clutter and partial occlusion. This
inspired a more robust, speedier operator for image feature extraction called Speeded Up
Robust Features (SURF) [6]. The SURF algorithm uses the idea of a pre-computed integral

image to speed up detection and feature extraction. SURF features have been successfully

24

employed in object recognition and localization, people and face detection, object tracking
and image-matching.

As convolutional neural networks were hard to train, and computationally exhaustive,
feature extractors like HOG, SIFT and SURF were used in high-level computer-vision tasks
like object recognition, localization and image-matching. Typically, generalized robust fea-
tures extracted from the images were used to train learning algorithms to perform the tasks.
The Euclidean distance between features of a test-image and a feature database was mini-
mized for image-matching, object recognition, and object localization.

There were some limitations within this method. Generalized features that seemed
to perform well in some datasets were being used for feature extraction in all tasks. In
convolutional neural networks, the feature selection is left to the model. This means that
the back-propagation algorithm is used to train the CNN to pick the most useful features
from the images so as to best achieve its training objective. The idea itself made a lot of
sense, but CNNs had a large number of parameters to be tuned, and the lack of big datasets
created problems with training bias and overfitting. Training of the convolutional neural
networks were also plagued by technical difficulties owing to gradient saturation [23].

Any advance of CNN technology required a demonstration of its prowess and a solu-
tion for the gradient saturation problem [23]. AlexNet [34] satisfied both requirements by
beating all other models in the ImageNet 2012 challenge. The ImageNet dataset was large
enough to effectively train a CNN with a large number of parameters. Alex used rectified
linear activation instead of sigmoid activation to solve the gradient saturation problem. Fast
forward 6 years, CNNs are everywhere, from optical character recognition to self-driving cars
and facial identification for securing personal devices.

4.2 Understanding a convolutional neural network

Like all deep neural networks, convolutional neural networks are hierarchical archi-

tectures. They are generally composed of convolutional layers, pooling layers and fully-

connected layers. A typical convolutional network has alternating convolutional and pooling

25

layers followed by fully connected layers. In the following sections, we will look at differ-
ent aspects of the convolutional neural network as a step towards finally understanding the
convolutional autoencoder.
4.2.1 The input

The input to a convolutional neural network is usually the normalized pixel intensities.
For color images, traditionally, the input images will be 3-dimensional arrays of floating
point values organized as : image height in pixels, image width in pixels, number of color
channels. Color images are usually comprised of three channels whereas greyscale images
consist of a single channel of pixel intensities.
4.2.2 The convolutional layers

For the scope of this work, we will examine only 2-dimensional convolutional layers. A
2-D convolutional layer (here-on referred to simply as a convolutional layer) has the following
parameters : number of filters, kernel-size, strides, padding, and an activation.

1. Number of filters: The number of feature detectors in this layer. The input will be

operated on (convolved) by these many feature detectors to generate feature maps.
2. Kernel-size: This specifies the height and width of the 2-D convolution window. In the
literature, kernels are mainly 3x3 matrices.

3. Strides: Determines the strides of the convolution along the height and width. For

example, a stride setting of (2,1) would imply that the convolution window moves 2
pixels along the height dimension after each row of convolution, and 1 pixel along the
width after each convolution.

4. Padding: Whether or not to apply padding on the input to generate an output of the
same height and width.

5. Activation : The activation function to be applied on each generated feature map to
produce the filtered output, while also adding to the non-linearity of the model.

The role of each of the above can be illustrated with an example. Consider a convo-

lutional layer with 32 filters, each of size 3x3, with strides (1,1) and padding with ReLLU

26

activation. Let the input to this layer be an RGB image of dimensions: (128,128,3). The
convolutional layer operates as follows. The input image is convolved with each of the 32
kernels, generating 32 different 128x128 output images. The size of each output image is
128x128 because the strides were 1 pixel in each dimension, with padding. This results in the
same spatial dimensions in the output as the input. Each of these output images are called
feature-maps. Fach pixel in the feature map is now filtered by an activation function. Since
we use a rectified linear unit as activation in this illustration, values in the feature maps be-
low zero are clipped to 0 while the positive values remain unchanged. Hence, the application
of this convolutional layer on the input, results in a tensor of dimensions: 128x128x32. The
output tensor is 32 activated feature-maps of size 128x128.

Some examples of convolutional kernels in a CNN and feature maps can be observed
in Fig 4-1. Fig 4-1-1 shows 64 convolutional filters from the first convolutional layer of a
VGGNet [64] trained on the Imagenet dataset. The filters are 3x 3 in dimensions. Convolving
an input image (Fig 4-1-2) with all the 64 filters result in 64 corresponding feature maps.
The resultant feature maps are presented in Fig 4-1-3. We note that some filters in Fig
4-1-1 identically match the Haar wavelets discussed in Section 4.1.1.
4.2.3 The pooling layers

Just like the convolutional layers, only 2-dimensional pooling is studied in this thesis.
Pooling layers are dimensionality reduction operators, acting as a filter to pass on fewer
(more important or average) activations. It helps reduce the parameters of the network and
hence enables a drop in overfitting. Some common pooling operators include spatial max-
pooling and spatial average-pooling. The pooling layers have only one parameter, the size of
the pooling operator. These are the factors by which to downscale (vertical, horizontal) the
feature maps. For example (2, 2) will halve the input activations in both spatial dimensions,
hence discarding 75% of all activations from the preceding layer.

1. Spatial max pooling: In each pooling step, the maximum activation from the pooling

windows in each feature map is passed on, while the other values are dropped.

27

2. Spatial average pooling: In each pooling step, the average activation from the pooling

windows in each feature map is passed on, while the other values are dropped.

Pooling operations are illustrated in Fig 4-2.
4.2.4 The fully connected layers

After all convolutional layers, the final activations are concatenated and passed on to the
fully connected layers. Fully connected layers are densely connected neural network layers,
which act as a transformation step from the image-feature domain to the target domain. If
the target is classification, the fully connected layers act as a feature transformation layer,
converting the features selected from the images to features that help achieve classification.
On the other hand, if the target is regression, the fully connected layers act as a feature
transformation layer to convert the image-features into features that enable regression.

Consider a CNN for classification that takes an input image of size 64x64x3, and the
final fully connected layer before the output layer is 1000 units. In this model, each image
of 12288 pixels is converted to a vector of 1000 features for the supervised task. In other
words, the CNN essentially acts as a feature descriptor that takes an image as input and
encodes it into a vector of features.

A commonly used convolutional neural network architecture can be seen in Fig 4-3.

28

(3) Feature maps obtained from applying the convolutional filters on the input image. 64 feature
maps for the corresponding 64 filters from (1).

Figure 4-1 — Convolutional filters of a trained VGGNet and feature maps from the first layer.

29

max pooling

2030

112 37
12120§30| 0O
8 (12120
34|70037]| 4 average pooling
112/100f 25 | 12 \ 131 8

79| 20

Figure 4-2 — An illustration of pooling operations.

Pooling Convolution pooling ~ FUlY Fully Output
+ReLU Connected Connected Predictions
1 Dog (0)
Cat (0)
. Boat (1)
10— y aird (0)
- P -0 -
0 N e o = = =
= Fuutat = ¥ bltarget — output)?
| |
Feature Extraction Classification

Figure 4-3 — An illustration of a convolutional neural network used for image classification.
Image based on [1].

30

4.3 Convolutional autoencoder

Convolutional neural networks are ordinarily used in supervised tasks, modelling a func-
tion f(f) : X — Y. On the other hand, convolutional autoencoders are used to model a
function f(#) : X — X i.e to reconstruct the input using a parametric model. The autoen-
coder is ideally a data compression technique, where high-dimensional data are reduced to a
lower dimensional feature space, while still retaining enough information to reconstruct the
high dimensional input.

A convolutional autoencoder has two parts, an encoder and a decoder. The encoder
has architecture similar to a normal convolutional neural network, mapping images to a low-
dimensional feature space. The encoder is defined by E(v): X € RY - Y e R" | N > n.
A decoder works in reverse, using transposed convolution [81] and upsampling layers, and
is defined by D(¢) : Y € R* - X € RY | N > n. A convolutional autoencoder can then
be seen as an encoder, followed by a decoder, such that the encoded features characterize
the input data in a lower dimensional feature space. Fig 4-4 depicts a typical convolutional
autoencoder.

Building a convolutional autoencoder can be tricky, since the model might just copy the
input to the output, hence delivering 100% performance. This can be constrained by making
sure that the dimensionality of the encoder output is much smaller than the dimensionality

of the input.

[

i
i
i
i Decoder 21
i
i
i
i
[]

I ——

Figure 4-4 — An illustration of a convolutional autoencoder.

31

A model for generalized anomaly detection, ideally formulated to understand the nature
of the scene being surveyed, should be able to summarize the scene in a lower dimensional
feature space, which can be subjected to analysis, such that an anomalous event can be
distinguished from the normal events in the scene. A convolutional autoencoder accurately
fits the description of such a model. This makes it a top candidate for study in this work.
4.4 Chapter summary

This chapter is aimed at generating a good understanding of the convolutional au-
toencoder. Hence, the initial part of the chapter examines a brief history of the classical
computer-vision techniques and convolutional neural networks, before exploring convolu-
tional neural networks in detail. Finally, everything is brought together to understand the

convolutional autoencoder as a candidate for performing anomaly detection in videos.

32

Chapter 5
Data preparation

5.1 Raw data

A static surveillance video camera generates and stores data in the following way. The
scene is sampled with a set frequency known as a sampling rate. If the sampling rate is 30
frames per second, the camera samples the scene 30 times every second and sends the frames
to a video encoder. These series of frames usually contain tremendous amounts of spatial
and temporal redundancy. A video encoder attempts to compress the frames to reduce the
redundancy and store the information in a more compact fashion, in the form of a video
file. When the video is played back, a video decoder reads the encoded video file into a
continuous stream of frames fit for human viewing.

Since our model is built on the foundation of feature extraction from images using
convolutions, we cannot operate directly on the video file. Consequently, the first step in
preparing the data is to use a decoder to extract sequential image frames from the video file.
5.2 Frames

Say the available surveillance footage starts at time ¢ = 0 seconds and ends at time t =
N seconds. N is typically a considerable number, owing to the nature of scene surveillance.
Scenes are usually subject to surveillance over long periods of time. When this footage is
converted to a continuous stream of image frames for analysis, the data matrix containing
all of these frames would be of dimensions: (image height, image width, N*sampling rate,
channels). Consider an example of surveillance footage featuring a scene in greyscale, of
resolution 256 * 256, from a camera with sampling rate 30 frames per second, for a week.
A week is comprised of 604800 seconds. Therefore by assignment, N = 604800. The video-
cuboid data matrix of all the frames would be of dimensions : (256,256,604800*30,1) =

(256,256,18144000,1).

33

This is a colossal amount of data to be modelled by an autoencoder directly and hence
we need to split the data-matrix into observations of smaller size.
5.3 Video units

Splitting a video-stream into smaller parts can be a difficult task. The simplest choice
is to divide the data into the existing component frames. We could train a convolutional
autoencoder by treating each frame as a separate observation, but this would rid the model
of any temporal information about the scene. It is reasonable to assume that it is necessary
to investigate the dynamics in a scene in order to detect anomalies. Therefore any charac-
terization of the scene should understand the temporal attributes of the scene as well. This
would mean that every observation used to train the convolutional autoencoder must contain
multiple frames such that the temporal disposition of the scene is captured.

As a solution, we may decide that we can divide the video stream into events. Unlike a
movie, where each event can be thought of as a continuous shot from the same camera-angle,
it is not straight-forward to split a surveillance stream into events. A surveillance stream is
usually a continuous shot of the same scene without changing the camera focus. Motion can
occur in any part of the frame and multiple events can take place in parallel. For example,
a scene overlooking a road can have a car moving in one direction and a bicycle moving in
another direction at the same time. Moreover, the time taken by the car to move across the
field of vision is much lower than the time taken by the bicycle if they are both covering the
same average distance.

In order to avoid presumptions in the process of scene modelling, we can forego the
human understanding of an event and sub-sample the data-matrix into standard observations
of uniform length. Most of these observations will not contain anything interesting. Hence
the term event is a little confusing as we are merely describing a time interval in each
observation. Thus, each of these observations are called units. The length of time in each
unit should be long enough for the model to get a temporal sense of the scene from each

observation, but short enough to facilitate the learning of the observation by an autoencoder.

34

In this thesis, this time is set to be 5 seconds (5% 30 frames if the video is sampled at 30 fps)
as it satisfies the above requirement for all the datasets we consider. Hence, the full video
data-matrix is densely sub-sampled into units comprising of frames encapsulating 5 seconds
of footage. Each unit is sampled with a stride of 1 second. For example, a video of 6 seconds
will be sub-sampled into two units; the first unit spanning from t =1 sto t = 5 s, and the
second unit spanning from ¢t =2 stot =6 s.

Each input to the convolutional autoencoder will now be of dimensions: (image-height,image-
width,150,number of channels).
5.4 Localization

Recalling the objectives of this work from Section 1.2.3, we wish to both detect anoma-
lous events and localize their occurrence in the spatial extent of the frame. To facilitate this,
the convolutional autoencoder can be trained on observations that are spatially sub-sampled
from each unit. This means we can analyze the observations from different locations in the
frame in every unit and classify each observation as an anomaly or not. The spatial sub-
sampling window must be large enough to capture the spatial identity of each observation,
but small enough to have a good resolution in locating the anomaly. The size of the window
will hence be proportional to the frame size. This sub-sampling should be done using a stride
value less than the size of the sub-sampling window itself. The stride is the number of pixels
the sampling window is moved to extract the next observation (This stride is similar to the
stride in convolution operation). Since each of the units have been spatially sub-sampled,
each sample can now be referred to as a spatio-temporal cuboid.

The process of sub-sampling the data is illustrated in Fig 5-1.

35

. P

128

Input:

Sequential Frames:

Dense subsampling

nto units:

Collect units into

temporal cuboids:

(Only unit 1 illustrated)

Spatial subsampling

of each unit:

Spatio-temporal

cuboids:

Figure 5-1 — Illustration of the data—subsgénpling to create spatio-temporal cuboids.

5.5 Normalization

The anomalous events, if any, will be in the dynamics of scene, as explained above.
Hence, it is advantageous to make our convolutional autoencoder focus only on the dynamic
nature of the scene. Once the data are completely sub-sampled, the mean frame of each
spatio-temporal cuboid evaluated and subtracted from each frame in the cuboid. This re-
moves the static information from each spatio-temporal cuboid and it is left with the dynamic
components only. Each of these mean-subtracted cuboids is now rescaled to lie in the range
[0,1]. Normalization of the cuboid assists in the convergence of the model.
5.6 Summary

This chapter discusses the sampling of the video data into spatio-temporal cuboids. The
video is first converted into sequential frames. The frames are densely sub-sampled into units
spanning 5 seconds each with a stride of 1 second. Each unit is then spatially subsampled
with a sampling window to obtain spatio-temporal cuboids. Each spatio-temporal cuboid is
now normalized by subtracting the mean frame of the cuboid from each of the component
frames. The normalized cuboids are then rescaled to lie in the range [0,1]. All the spatio-

temporal cuboids are then compiled into a dataset to train the convolutional autoencoder.

37

Chapter 6
The deep convolutional autoencoder

As concluded earlier, the video surveillance data from a static camera is used to train a
deep convolutional autoencoder. This chapter is devoted to understanding the convolutional
autoencoder used for our solution. From section 4.3, it is evident that all convolutional
autoencoders are composed of two blocks, an encoding block and the decoding block. We
will discuss both of these parts sequentially, in view of generating a complete understanding
of the model.

6.1 Encoder

The encoder is a function of the form F(y) : X € RY - Y € R" | N > n. It is
essentially a dimensionality reduction transformation of the input. The encoder receives a
spatio-temporal cuboid of dimensions : (cuboid-height, cuboid-width, frames, channels) as
input and transforms it into a vector of n features (the encoding), such that this vector of n
features can be used by the decoder to reconstruct the spatio-temporal cuboid.

6.1.1 Encoder architecture

The architecture of the encoder used in this work is illustrated in Fig 6-1-(1). It starts
with an input layer and the output is a flattening layer, that aggregates the output into an
n-dimensional vector. There are 4 convolutional layers arranged sequentially.

Each convolutional layer is preceded by a Gaussian noise layer to add noise to the input.
The noise layer adds small perturbations to the input so that the convolutional autoencoder
cannot simply memorize the best transformation of each input. The model is forced to learn
the structural and characteristic features of the input to perform the transformation [70].
Due to the random noise added to each input, the model never sees the same exact input
more than once, ensuring that the model learns the characteristics of the distribution of the

inputs rather than each individual input cuboid.

38

The outputs of each convolutional layer (feature maps) are subjected to dropout [66], a
technique proven to reduce over-fitting by eliminating co-dependence between feature maps.
The idea of dropout is simple. When the model is being trained, a pre-set percentage of
feature maps are randomly selected to be dropped out so that the model has to learn from
a different set of feature maps each time. This constrains the model to learn features that
are independently stronger.

The feature maps are activated by a leaky rectified linear unit layer [76] and subject to
batch normalization [29] to keep the co-variance shift of the features in check. The normalized
features are then filtered by average-pooling to reduce the dimensions of the feature-maps
in half. The output of the last convolutional layer is activated, normalized and flattened, to
return a single vector of n dimensions.

6.2 Decoder

The decoder is a function of the form D(¢) : Y € R" — X € RY | N > n. It essentially
operates in reverse of the encoder. The decoder receives a vector of n features as input
and it is transformed back into the spatio-temporal cuboid of dimensions: (cuboid-height,
cuboid-width, frames, channels) as output.

6.2.1 Decoder architecture

The architecture of the decoder used in this work is illustrated in Fig 6-1-(2). It starts
with an input layer and the output is a convolutional layer. The input is an n-dimensional
vector and the output is the spatio-temporal cuboid.

The first operation is a fully connected layer of neurons that transforms the n-dimensional
vector into a higher-dimensional vector which can then be reshaped into the feature map do-
main. The output of the reshape layer will be of dimensions: (height, width, feature-maps).
From this point, we can use up-sampling and convolutions to reach the target spatio-temporal
cuboid.

There are 5 convolutional layers in the decoder architecture. Except for the final convo-

lutional layer, all convolutional layers are preceded by an upsampling layer that uses bilinear

39

interpolation to double the feature-map size in both spatial dimensions. The up-sampled
feature-maps are then passed to the convolutional layers. The output of the convolutional
layers, just like in the encoder, are activated by a leaky rectified linear unit. Similarly, the
activated feature maps of the decoder are also batch-normalized.

The final convolutional layer is used only to transform the feature-maps to the frames.
It converts the feature-maps of dimensions: (cuboid-height, cuboid-width, feature-maps) to
the final spatio-temporal cuboid output of dimensions: (cuboid-height, cuboid-width, frames,
channels).
6.3 The convolutional auto-encoder

The autoencoder is a function of the form A(y,¢) : X € RY — X € RM. The
convolutional auto-encoder is the encoder and decoder in series. The input and output of
the auto-encoder are the spatio-temporal cuboids. Since we are not training a generative
model to generate new samples from the distribution, we only need the encodings of each
spatio-temopral cuboid in the low-dimensional feature space to evaluate its anomaly score.
The decoder is a necessary evil so that the encodings are representative of the input cuboid.
The parameters of the auto-encoder (v and ¢) are trained to reconstruct the input at the
output using gradient descent and back-propagation. The specific details for the training
process will be discussed in the next section. It should be noted that noise layers and dropout
layers are present only in the encoder. This is to make sure that the decoder can always

reliably reconstruct the encoding while training.

40

Inputlayer

GaussianNoise

| SpatialDropout2D |

LeakyRel.U

| BatchNormalization |

!

AveragePooling2D |

| SpatialDropout2D |

LeakyReL. U

BatchNormalization

!

AveragePooling2D |

GaussianNoise

| SpatialDropout2D |

LeakyRelL.U

BatchNormalization

!

AveragePooling2D |

GaussianNoise

LeakyReL.U

BatchNormalization |

(1) Encoder

41

Figure 6-1 — Encoder and decoder sections

Inputlayer

LeakyRelLU

UpSampling2D
LeakyRelLU

| BatchNormalization |

UpSampling2D

| BatchNormalization |
| BatchNormalization |

(2) Decoder

of the convolutional autoencoder.

6.4 Chapter summary
This chapter is a discussion about the detailed convolutional autoencoder architecture
used in this work. The encoder and decoder architectures are studied in detail to elucidate

the purpose of all the layers.

42

Chapter 7
Training

7.1 Overview of the objectives for this thesis

We will now recall the objectives of this thesis before the discussion of the training
method. This will help in connecting the training steps to the objectives we need to accom-
plish. As described earlier, we are trying to train a convolutional autoencoder on spatio-
temporal cuboids extracted from a surveillance video. We will then use the trained model
to detect anomalous events in the surveillance footage captured in the future.

The convolutional autoencoder encodes the high-dimensional spatio-temporal cuboids
into lower-dimensional vectors. The vectors are analyzed to evaluate whether the cuboid
belongs to an anomalous event. It is also imperative to note that the spatio-temporal cuboids
used to train the convolutional autoencoder are all normal cuboids with no anomalies.
7.1.1 What is an anomaly?

Probably, the most difficult aspect of this research was how to define the meaning of
“anomaly” from the point of view of mathematics. The decision to use a convolutional-
autoencoder was straightforward. The convolutional autoencoder is only used to reduce
the dimensionality of each cuboid so that we could reliably analyze each low-dimensional
encoding instead. However, what analysis needs to be performed on the encodings to classify
the corresponding cuboids as anomalous or normal? What needs to be done in the training
process to enable the analysis?

As concluded in the initial sections, anomalous events are events with a low probability
of occurrence. In terms of a probability density function, these will be the samples where
the probability density is extremely low. An illustration to this effect can be observed in Fig
7-1. Tt is to be noted that the probability density at a point is directly related to how often

the sample might be observed if an infinite number of random samples were drawn from the

43

distribution. We would like to translate this idea into a method that can be employed to
classify the encoding from each spatio-temporal cuboid. In simple terms, we wish to extract
from each low-dimensional encoding, a measure of the probability of its occurrence in the
distribution. The farther it is from the densest part of the distribution (the tree), the more

probable it is an anomaly, than not.

Normal distribution

0.35

0.30

0.25

PDF(X)

015

0.10

low probability low probability

A

Figure 7-1 — Illustration of the anomalies in terms of probability density function from a
normal distribution.

7.2 The formulation of training

Armed with the foresight of what needs to be done with the encodings to perform the
classification, we now need to train the convolutional autoencoder to enable this. In this
section, we will examine the formulation of the training objective which will help us achieve

our objective of anomaly detection.

44

To see how far an encoding lies from the mean of a fitted distribution (equivalent to a
cluster centroid), the encodings must lie in a space that is favourable for clustering and for
fitting multivariate distributions to it.

As far as clustering is concerned, K-Means [38] is the most popular algorithm. Given a
dataset {z;}i=1 N, 2 € RM | clustering aims to separate N data samples into K categories
using the following equation,

N
min Zsz — Ms,||; (7.1)

MERMXK {sieRF} <=

S.t. Sji € {0, 1},]-Tsi =1 V’i,j,

where s; is the assignment vector of data point ¢, which has only one non-zero element. We
let s5;,; denote the jth element of s; and the kth column of M, i.e., my, denotes the centroid
of the kth cluster.

In general, the K-Means algorithm works very well when the data-samples are spherically
scattered (same variance in all dimensions) around the centroids in the multivariate feature
space. These types of datasets are called K-Means friendly datasets. This situation can
be demonstrated in a 2-dimensional space very easily. In Fig 7-2, the top row illustrates
a K-Means friendly dataset that has been correctly clustered by the K-Means algorithm.
The left column of the figure represents the original memberships of the distribution (by
color) and the right column of the figure represents the memberships obtained by K-Means
algorithm. It can be observed that the anisotropic dataset in the bottom row is unsuitable
for K-Means owing to the incorrect class-memberships obtained when employing K-Means.

High-dimensional multivariate data are generally not K-Means friendly. Since we are us-
ing a convolutional-autoencoder as a nonlinear transformation to obtain encodings of spatio-
temporal cuboids in a multivariate feature space, we need to make sure that the transfor-
mation produces an approximately K-Means friendly space. To ensure this, we perform the
clustering in parallel to the training of the convolutional autoencoder, using the method

suggested in [78]. During training, a K-Means algorithm is performed to initialize a set of

45

K centroids = M on the encodings E(v, X). These M centroids are then updated and
used in the training objective function to guarantee that the multivariate feature space will
favour clustering. To guarantee this, the convolutional autoencoder is to be trained with the

following optimization objective in Eq:7.2 1 .

N

: A 2
miy 3 (DB @) 2 + 5 18w - Msil) 72

S.t. Sii € {0, 1}, 1T8i =1 \V/iaju

((-) : RM — R = reconstruction-loss (7.3)
D(¢) = Decoder (7.4)
E(v) = Encoder (7.5)
M = Means (7.6)
s = mean membership (7.7)

(7.8)

The reconstruction loss () : RM — R used in this work is the structural dissimilarity loss as
described in |72] and [73|. The structural dissimilarity is a much smoother metric to evaluate
the similarity between images when compared to the least-squares loss or cross-entropy loss
and in general, produces much better reconstructions of spatio-temporal cuboids. This fact

was verified in one of the many experiments done in this research.

! The training algorithm discussed in this section is inspired by [78].

46

-7 4

-6 - -2 0 2 -6 -4 -2 0 2

X X
Figure 7-2 — Illustration of K-Means friendly datasets. Top row: K-Means friendly dataset.
Bottom row: Anisotropic data unsuitable for K-Means. Left column: Dataset with clusters

colored by original membership, Right column: Dataset with clusters colored by membership
obtained from K-Means algorithm.

47

7.3 Training algorithm

Optimizing Eq. 7.2 is not a simple task ? . The constraints and the cost function are
both non-convex. There are multiple scalability issues that need to be considered. In this
section, we describe a practical optimization procedure that includes an empirically effective
initialization method, coupled with an alternating optimization algorithm.
7.3.1 Initialization

The training process starts by initializing the parameters v and ¢ of the encoder and
the decoder, respectively. For this initial pre-training stage, A in equation 7.2 is set to zero.

The resulting formulation to be optimized becomes:

N
min ;K(D(E(wi))ﬂ ;) (7.9)
((-) : RM — R = reconstruction-loss (7.10)
D(¢) = Decoder (7.11)
E(v) = Encoder (7.12)

The gradient for minimizing this equation for one sample x; is given by: VyL' = W,

where § = (v, ¢) is a collection of the network parameters. The network parameters can be

updated by :
0+ 60— avyL', (7.13)

where « is the learning rate.
The parameters v and ¢ are optimized using gradient descent for T" epochs. This initial-
ization makes sure that the encodings are in a space which enables accurate reconstruction

so that the convolutional autoencoder does not learn trivial encodings.

2 The training algorithm discussed in this section is inspired by [78].

48

7.3.2 Initialize means and memberships

After the first T' epochs of training, a set of means M and mean memberships {s} are
initialized. A set of K means M can be initialized by running the K-Means algorithm on the
encodings E(X) until convergence. The mean memberships {s} are generated by setting

1, if j = argmin ||[E(x;) — myl,,
Sj,i < k:{lz"'vK} (714)

0, otherwise.

7.3.3 Stochastic optimization with means update

A stochastic gradient descent algorithm using backpropagation cannot be used to jointly
optimize 7, ¢, M and {s} since the mean memberships variable {s} is constrained on a
discrete set, hence making the joint-objective non-differentiable. Hence, we need to alternate
the optimization of M, {s} and ~, ¢.

This is done by optimizing 7.2 (w.r.t.) one of M, {s} and =, ¢. while keeping the other
two sets of variables fixed.

Updating the convolutional autoencoder

The parameters of the convolutional autoencoder A(y,¢)=D(E(x)) , v and ¢, is op-
timized while keeping M, {s} fixed. This problem is similar to training a convolutional
autoencoder using a regularization term. This regularization term penalizes the network
more if it encodes a sample further away from its respective mean. This regularization en-
sures that the encodings lie in a clustering friendly space. To implement the gradient descent
for updating the network parameters, we look at the problem formulation for this step in

the alternating optimization procedure. For one data-point x;, the formulation is as follows:

mi(bn L'=((D(E(x;)), z;) + % | E(x;) — Ms;|. (7.15)
7,

49

The gradient of the above function over the network parameters is easily computable,

ie., VgL' = 8€(D(%(0w"))’wi) +)\8%(:") (E(x;) — Ms;), where 0 = (v, ¢) is a collection of the

network parameters and the gradients % and % can be calculated by back-propagation

[57]. Then, the network parameters are updated by :
0+ 60— avyl', (7.16)

where a > 0 is the learning rate for the stochastic gradient descent algorithm.

Updating the means

The matrix of cluster memberships {s} can be easily updated once M and the encoder
parameters ~y are fixed. The assignment of one sample {s;} can be easily updated by :

1, if j= argmin ||E(z;) — mgl,,
Sji < k:{lv"'rK} (717)

)

0, otherwise.

After {s;} and (¢,) are fixed, M can be updated in multiple ways. For instance, we may
use my, = (1/|Pi]) Ziep,i E(zx;), where Pj is the number of samples assigned to cluster k
from the first sample to the current sample i. This method is quite intuitive, but it can
cause a lot of issues for online updates, since the historical data (i.e., @1,...,x;) can be far
away from the actual cluster structure of the encodings. To overcome these issues, we can
utilize the idea in [63].

We adaptively change the learning rate of updating, m.,...,mg. Let us assume that
the clusters are approximately equal in the number of data memberships. The foundation
of the method is straightforward and intuitive. After updating M for a certain number of
samples, the centroids of clusters with more members should be updated more smoothly
while the other centroids are updated more aggressively.

To implement this, let pi be the membership count of cluster k before handling the

incoming sample x;. We now update my, by the following gradient step:

50

my, < my, — (i) (my, — E(x;)) k., (7.18)

where the gradient step size 1/pi controls the learning rate.
7.4 Feature space analysis

Once the training procedure is finished, we create a set of all the encodings of the
training samples as given by the encoder of the convolutional autoencoder. The feature
space is F' = E(X), where F(-) is the encoder and X is the set of spatio-temporal cuboids
extracted from the video surveillance footage.

F is the feature space of the encodings from the training set. This is the distribution of
normal features extracted from the surveillance videos. This feature space is now modelled
as a multivariate distribution (@) so that we can obtain a probability of the encodings of the
spatio-temporal cuboids from the test footage. Each spatio-temporal cuboid from the test
footage is encoded into the feature space and tested against the distribution). The cuboid
is classified as an anomaly if it has a very low probability of coming from Q.

Since we initialized K means for clustering the encodings in the feature space, we fit
a multivariate Gaussian mixture distribution model G [53] on F', with K Gaussians using
expectation maximization [48]. An illustration of a Gaussian mixture model on a 2-D space
can be seen in Fig 7-3. After the Gaussian mixture model is fitted to the data, we can
evaluate the negative weighted log-probabilities for any point in the feature space from the
Gaussian mixture model. As observed from Fig 7-3-(3), it can be observed that points far
away from the mean (centroid) have very high negative log probability density.

The negative log probability density on a normal distribution is illustrated in Fig 7-4.
As seen, the negative log probability is higher for low probability regions in the range. The
negative log probability value is also exponentially related to the distance of the sample from

the mean. Hence, after fitting a mixture of Gaussians on the feature space, we can use the

o1

negative log probability value as a metric that informs us how far the sample is from the

mean.

02

a [
2 . .
' ~
D_
-
-2 -
-4
—5 4
T T T T T T
-2 0 2 4] B
X

(2) Gaussian mixture model with 3 Gaussians fit-
ted on the data.

15 10

10
08

5
06

= 0
04

-5
-10 02
-15 0.0

-1s -10 -5 0 5 10 15
X

(3) Scaled negative log probability scores of the
2-d space on the fitted Gaussian mixture model.

Figure 7-3 — llustration of Gaussian Mixture model on a 2-D feature space.

93

040 Normal distribution

030

025

X
Prag4]
[a)
o

015

010

0.05

low probability i low probability
0.00 1 H 1
H H H
4 2) 2 3
X
(1) Normal distribution.
14
Negative log probability density
12

negative log probability density

low probability low probability

3 5 2 3

’
X

(2) Negative log probability density function on
the distribution.

Figure 7-4 — Illustration of negative log probability density on the normal distribution.

o4

7.5 Summary of the training algorithm

The entire training algorithm can be summarized in Algorithm 1.

network pass over all the training data samples.

One epoch is a

Algorithm 1: Alternating gradient descent optimization.

— e
WD

Initialization.
Fix A = 0.
for t =1 :7T epochs do
Update network parameters by optimizing (7.13).
end for
Initialize M and s to start.
Fix A = 1.
for t =1: R epochs do
Update network parameters by (7.16).
Update assignment by (7.17).
Update centroids by (7.18).

: end for
: Fit a Gaussian mixture model G, with K Gaussians on F' = F(X).

95

Chapter 8
Results and analysis

In this section, we look at the proposed solution with a critical eye. The results from the
proposed algorithm on all the datasets are presented and subjected to interpretive analysis.
8.1 Evaluation process

Prior to looking at the actual results, we review the process of evaluating the model in
detail. This will provide a background for portraying the results.

Once the spatio-temporal cuboids extracted from the training videos are used to train
the convolutional autoencoder using Algorithm 1, the evaluation process is initialized. An
evaluation set is first assembled by extracting spatio-temporal cuboids from the test videos
that contain the labelled anomalies. This set of spatio-temporal cuboids is called V. All
the datasets considered to evaluate this work are ground-truth annotated. Hence, we can
assemble a set of labels, which informs us of the anomalous nature of all members in V. This
set of labels is called Y.

The high dimensional spatio-temporal cuboids V' € R¥, are converted to the lower
dimensional encodings, F, € R™, using the encoder E(v) from the trained convolutional

autoencoder, such that :

F, = E(V,7) (8.1)

The multivariate Gaussian mixture model G is now queried for each encoding f, in the
set F, to determine which of the K Gaussians’ f, is a member of. Let g be the Gaussian to
which f, belongs to. The mean and covariance of the distribution g , namely, x, and X, are

used to evaluate the negative log probability density [for f, in g, by employing the equation:

26

1

| = —log(———" oxp3(fo—he) TS5 (fo—p) 8.9
5 det(27%,) P) 8.2)

1 1 Ty —1
— — 10 [lO ex —§(fv—,ug) EQ (fv—,ug) 83
g(Olet(%29)) g(exp) (8.3)

1 1

= —log(———=) + = (fo — Tzil v 8.4
sy * 30~)55 =) (5.

Since the first term in equation 8.4 is a constant for g, we can conlcude that:

Loc (fo = 1) S5 (fo — 11g) (8.5)

Now, for comparing the negative log probability density of two samples, we can use the

positive square root of the negative log probability density as well (monotonicity).

VEoc [(fo = 1)"Z5 (Fo = 1tg) (8.6)

Incidentally, the RHS of equation 8.6 is equal to the Mahalanobis distance [42], a measure
that "intuitively" evaluates the number of standard deviations from f, to p,. Hence, we can
use the Mahalanobis distance as a measure of the anomaly score for each spatio-temporal
cuboid. In other words, the greater the Mahalanobis distance, the higher the probability
that the spatio-temporal cuboid is an anomaly.

An illustration of Mahalanobis distances evaluated on a 1-D zero mean normal distri-
bution can be observed in Fig 8-1. The Mahalanobis distances from all the encodings in F;,
are evaluated and collected in a set M. M is then subjected to thresholding. We can use the
set of labels Y and the thresholded labels Y}, to evaluate the ability of the model to classify

the spatio-temporal cuboids V' as anomalies or not, based on M.

o7

5 Mahalanobis Distance

mahalanobis distance

low probability low probability

Figure 8-1 — Illustration of the Mahalanobis distance evaluated on a normal distribution.

8.1.1 Training setup

The training and validation for all the datasets were done using an 8-core Intel Xeon
CPU E5-1620 v3 @ 3.50GHz and a 12GB GeForce GTX Titan GPU ! . The code is written

in Python [56] and the training is implemented using Keras [11] and Tensorflow [2]

I The python code can be found here: https://github.com/BitFloyd/Anomaly-Detection-
DenseCuboid

58

8.2 Artificial dataset

The artificial dataset (described in Section 3.2) was developed in an effort to make
high-volume ground-truth annotated data available for anomaly detection in videos by using
deep learning. The results presented here, have been obtained from training the model using
60,000 frames and evaluating it on 6,500 frames. There are 100 anomalous events recorded in
all of the test frames. Let us recollect that the anomalous events we are seeking are triangles
moving across the scene (The training set consists only of squares and circles).

The distribution of the Mahalanobis distance metrics (M, as in Section 8.1) is captured
in Fig 8-2. The Mahalanobis distance scores of the anomalous spatio-temporal cuboids are
plotted in red, while the scores of normal cuboids are plotted in green. This color distinction
is based on the true labels Y and not the thresholded labels Y;;. The threshold line drawn in
blue is the threshold which gives us the maximum F1 score based on evaluating Y}, against
Y.

Evidently, and as expected, the anomalous cuboids have much higher Mahalanobis dis-
tance scores than the normal cuboids. To evaluate the efficacy of this score as a classification
metric, we can vary the threshold across the range of the score distribution, and calculate
classification scores such as accuracy, precision, recall and F1-score at each point. The ROC
curve obtained from this exercise is illustrated in Fig 8-3. Using the Mahalanobis distance as
the anomaly score for spatio-temporal cuboids , we can obtain a perfect classifier for frame
level anomaly detection (ROC curve for frame level anomaly detection is depicted in Fig
8-4).

It should be noted that these results are an evaluation of how good the model can be as
a classifier for each of the datasets. In other words, we are evaluating the performance of M
(extracted from the low-dimensional encodings of the spatio-temporal cuboids) as a metric

to classify the anomalous cuboids from the normal cuboids.

29

8.2.1 Analysis

Using our solution on the artificial video dataset gives us a near perfect classifier for de-
tecting and localizing the anomalies. The classification metrics of the model for the artificial
video dataset is given in Table 8-1.

Some frames from the evaluation set with the spatio-temporal cuboids classified as
anomalies are represented in Figure 8-5. The spatio-temporal cuboids are classified at the
threshold where the evaluation gives us the maximum F1-score. Cuboids with a score lower
than the threshold are classified as normal cuboids while a higher score is deemed to be
anomalous.

Let us now take a moment to understand the classified spatio-temporal cuboids repre-
sented in Figure 8-5. Recall that the existence of triangles are anomalies in the artificial
dataset. The figure depicts three different frames taken from the test set. The red hue is for
correctly classified spatio-temporal cuboids. The green hue is for the misclassified spatio-
temporal cuboids. If two cuboids are spatially overlapping in a frame, they are merged to
form a bigger rectangle. Hence the difference in size for the green and red rectangles.

As seen, the misclassified cuboids are only at the edges of turquoise circles. This is
because the pixelated corner of the circle resembles part of an edge of a triangle. This could
have been avoided if we had used higher resolution images to train the model. However,
higher resolution images in training would multiply the computational complexity of the
algorithm, resulting in a much higher training and evaluation time.

The hyperparameters for training the model on the artificial dataset is given in Table

8-2.

Maximum Accuracy | Maximum F1-Score

98.4 83.21
Table 8-1 — Accuracy and F1-score metric for artificial dataset.

60

Hyperparameter Value

n (Number of features in the encoding space) 32
K (Number of Gaussians, Number of cluster centroids) 20
R (Number of epochs) 25

Threshold of Mahalanobis distance score for maximum F1 score | 89.06

A 0.001
Table 8-2 — Hyperparameters for evaluating the model on the artificial dataset.

61

Mahalanobis distance score of anomaly & normal cuboids

1200
1000]

800

ANOMALY
NORMAL

o
1=}
S

Mahalanobis distance

400

200

7

0 50000 100000 150000 200000 250000

Cuboid index
Figure 82 — Mahalanobis distances calculated from the validation-set on the artificial

dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

62

Pixel level anomaly detection ROC curve when using Mahalanobis Distance
1.0 .

0.8 =

0.6 e

0.4 ”

True Positive Rate
\

0.2 -

- ROC curve (area = 0.99)

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 8-3 — ROC curve for the artificial dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 -
”~
-
-~
e
F
0.8 ==
g
g o
or e
g 0.6 ’/’
8 .
o ’/’
g 0.4 e
= 7
”
-~
-
-~
0.2 PR
e
R4
e ROC curve (area = 1.00)
0.0 “
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 84 — ROC curve for the artificial dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

63

Figure 8-5 — Illustration of spatio-temporal cuboid classification on the artificial dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for correctly classified
spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

64

8.3 Camouflage dataset
The results on the datasets that follow will be presented in the same template as above.

The results from the Camouflage dataset are given in Table 8-3.

Training frames 20

Testing frames 1440

Anomalies A person moving back and forth across the
scene.

Distribution of Mahalanobis distances Fig 86

ROC curve (pixel level) Fig 8-7

ROC curve (frame level) Fig 8-8

Maximum accuracy 100

Maximum F1-score 100

Examples of test-set images Fig 89

Analysis of misclassifications No misclassifications. This is because the
training set contains only static frames
without any motion. Any motion in the test
set is labelled as an anomaly, and hence, the
model is reduced to being a motion detec-
tor.

Notes Using a deep learning model for this dataset
is unnecessary.

Hyperparameters Table 84

Table 8-3 — Results from the Camouflage dataset.

65

Hyperparameter Value

n (Number of features in the encoding space) 128
K (Number of Gaussians, Number of cluster centroids) 4
R (Number of epochs) 60

Threshold of Mahalanobis distance score for maximum F1 score | 1.9

A 0.001
Table 8-4 — Hyperparameters for evaluating the model on the Camouflage dataset.

Mahalanobis distance score of anomaly & normal cuboids

120

100

ANOMALY

NORMAL

Mahalanobis distance

20

0 10000 20000 40000 50000 60000

Cuboid index

Figure 86 — Mahalanobis distances evaluated from the validation-set on the Camouflage

dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

66

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

10 pra
.’I
f"’

uJ 08 ,’r
st rd
-] -
-3 -
06 —
= -
v -
o -
o -
w 04 -
2 P
= ’fg

02 ”-'

-
’," ROC curve (area = 1.00)
0o *
0.0 02 0.4 0.6 R 10

False Positive Rate

Figure 8-7 — ROC curve for the Camouflage dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 -
”~
-~
-~
R
F
0.8 7
R
g o
o /’
@ 0.6 ,o’
= -
.g L’
o ’,"'
i)
S 0.4 ,’f
= -
-~
”
-~
=
0.2 -
-
R
e ROC curve (area = 1.00)
0.0 *
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 88 — ROC curve for the Camouflage dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

67

Figure 8-9 — Illustration of spatio-temporal cuboid classification on Camouflage dataset.
Red hue is for correctly classified spatio-temporal cuboids. It may be recollected that the
task at hand for the Camouflage dataset is to detect the moving person.

68

8.4 Boat-Sea dataset

Details on evaluating the model on the Boat-Sea dataset can be found in Table 8-5.

Training frames

200

Testing frames

250

Anomalies A boat floating into the scene.
Distribution of Mahalanobis distances Fig 8-10

ROC curve (pixel level) Fig 8-11

ROC curve (frame level) Fig 8-12

Maximum accuracy 94.03

Maximum F1-score 70.39

Examples of test-set images Fig 8-13

Analysis of misclassifications

It may be observed that the misclassifica-
tion of some spatio-temporal cuboids are be-
cause of the waves caused in the sea due to
the boat.

Notes The model can be made stronger for this
scene by having a larger training dataset.
This will enable the model to assimiliate all
the dynamic possibilities of the scene.
Hyperparameters Table 86

Table 85 — Results from the Boat-Sea dataset.

69

Hyperparameter Value
n (Number of features in the encoding space) 128

K (Number of Gaussians, Number of cluster centroids) 20

R (Number of epochs) 300
Threshold of Mahalanobis distance score for maximum F1 score | 68.3

A 0.01

Table 86 — Hyperparameters for evaluating the model on the Boat-Sea dataset.

Mahalanobis distance score of anomaly & normal cuboids

400

300

ANOMALY

NORMAL

Mahalanobis distance

e e e e e o

100

0 2000 4000 6000 8000 10000 12000

Cuboid index
Figure 8-10 — Mahalanobis distances evaluated from the validation-set on the Boat-Sea

dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

70

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

1.0 =
”
-~
”
e
-~
0.8 Pid
e
o e
o 0.6 Pl
= -
= o7
a -
o ’.v’
L]
> 0.4 I’I
= .
-~
”
”
e
0.2 -
”
PR
- ROC curve (area = 0.84)
0.0 “
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 811 — ROC curve for the Boat-Sea dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 -
-
F
-~
e
-
0.8 — -
z"',
e R
e P
w 0.6 /"
= i
)
.g ,’
(a8 ’f’
]
S 0.4 ,’f
= P
-
R
7
0.2 -
e
g
e ROC curve (area = 0.81)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-12 — ROC curve for the Boat-Sea dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

71

Figure 8-13 — Ilustration of spatio-temporal cuboid classification on the Boat-Sea dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for correctly classified
spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

72

8.5 Boat-River dataset

The details of model evaluation on the Boat-River dataset can be found in Table 8-7.

Training frames

100

Testing frames

235

Anomalies

A boat moving diagonally across the extent
of the frame.

Distribution of Mahalanobis distances Fig 8-14
ROC curve (pixel level) Fig 8-15
ROC curve (frame level) Fig 8-16
Maximum accuracy 87.4
Maximum F1-score 68.09
Examples of test-set images Fig 8-17

Analysis of misclassifications

It is evident that the misclassifications are
due to the wake of water caused by the
speeding boat.

Notes

The dataset does not label the wake due
to the boat as an anomaly. However, the
model is observing a wake in the water for
the first time. Hence it can be argued that
with respect to the training set, the wake is
indeed anomalous to this dataset. The boat
is the cause and the wake is the effect. If
the cause is an anomaly, why shouldn’t the
effect be? This is another evidence for the
highly subjective nature of what is consid-
ered to be an anomaly.

Hyperparameters

Table 8-8

Table 87 — Results from the Boat-River dataset.

73

Hyperparameter Value

n (Number of features in the encoding space) 128
K (Number of Gaussians, Number of cluster centroids) 20
R (Number of epochs) 300

Threshold of Mahalanobis distance score for maximum F1 score | 117.52

A 0.01
Table 8-8 — Hyperparameters for evaluating the model on the Boat-River dataset.

74

Mahalanobis distance score of anomaly & normal cuboids

30000
25000

20000

ANOMALY
NORMAL

Mahalanobis distance

10000

5000

0 10000 30000 40000

Cuboid index

Figure 8-14 — Mahalanobis distances evaluated from the validation-set on the Boat-River
dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

)

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

1.0 -
”~
”
”
5
-
0.8 e
/"
2 .
o i
a 0.6 ,o’
> -
= 7
u ”
(=9 ”’
]
= 0.4 ,”
= -,
”
,
”
)
0.2 ,’
”
R
’ ROC curve (area = 0.80)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-15 — ROC curve for the Boat-River dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 =
-~
”
-~
"
P
0.8 =
f’,
] ”
© L7
=4 ”
206 /,"
o+
= s
v 0.4 — -
= P
[Vi
”
”
-
0.2 g
”
/”
ROC curve (area = 0.79)
0.0 ~
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-16 — ROC curve for the Boat-River dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

76

Figure 8-17 — Illustration of spatio-temporal cuboid classification on the Boat-River dataset.
(Score distribution thresholded to maximize the F1l-score). Red hue is for correctly classified
spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

7

8.6 Canoe dataset

The details of evaluating the model on the Canoe dataset can be found in Table 8-9.

Training frames

200

Testing frames

800

Anomalies

A canoe consisting of a family moving from
left to right, across the frame.

Distribution of Mahalanobis distances Fig 8-18
ROC curve (pixel level) Fig 8-19
ROC curve (frame level) Fig 8-20
Maximum accuracy 93
Maximum F1-score 86.3
Examples of test-set images Fig 821

Analysis of misclassifications

It can be noticed that the incorrect classi-
fications are either due to the wake of the
boat on the river or the shadows of the pas-
sengers on the water.

Notes

Similarly to the Boat-River dataset, the ag-
itation of water due to the canoe or the
shadows of the passengers are not marked as
anomalies in the evaluation set. However, in
terms of the algorithm and the model, these
are anomalies. Just like the canoe and its
passengers, the model is encountering the
wake and the shadows of its passengers for
the first time. This is yet another example
of the uncertainty and subjective nature of
what is truly an anomaly.

Hyperparameters

Table 810

Table 89 — Results from the Canoe dataset.

78

Hyperparameter Value

n (Number of features in the encoding space) 32
K (Number of Gaussians, Number of cluster centroids) 10
R (Number of epochs) 80

Threshold of Mahalanobis distance score for maximum F1 score | 82.5

A 0.01
Table 8-10 — Hyperparameters for evaluating the model on the Canoe dataset.

79

Mahalanobis distance score of anomaly & normal cuboids

80000

60000

ANOMALY

NORMAL

Mahalanobis distance

20000

0 2000 4000 6000 8000 10000 12000 14000

Cuboid index

Figure 8-18 — Mahalanobis distances evaluated from the validation-set on the Canoe dataset.
The threshold level for the maximum F1 score from the distribution is depicted in blue.

80

True Positive Rate

Pixel lewel anomaly detection ROC curve when using Mahalanobis Distance

1.0

0.8 .7
e
PR
R
0.6 -7
R
R
Pt
0.4 ’/'
JRe
e
7
0.2 ,’
PR
PR
e ——— ROC curve (area = 0.97)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-19 - ROC curve for the Canoe dataset. Classification at the spatio-temporal cuboid
level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

True Positive Rate

10

s

0é

04

0z

00

F’#
.-*"’
-
f’#
-—"’
-
#’#
f’,
-
-~
-
-
-
-
#J’
f”
-
,_.«’ = ROC curve {area = 1.00)
#
0.0 0.2 04 0.6 0.8 10

False Positive Rate

Figure 8-20 — ROC curve for the Canoe dataset. Classification at the frame level
blue line represents a random classifier.

81

. Dotted

Figure 8-21 — Illustration of spatio-temporal cuboid classification on the Canoe dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for correctly classified
spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

82

8.7 Train dataset

The details of evaluation of the model on the Train dataset can be found in Table 8-11.

Training frames 200

Testing frames 18000

Anomalies Movement of people along the aisles of the
train.

Distribution of Mahalanobis distances Fig 822

ROC curve (pixel level) Fig 8-23

ROC curve (frame level) Fig 8-24

Maximum accuracy 86.8

Maximum F1-score 33.0

Examples of test-set images Fig 825

Analysis of misclassifications The misclassified regions are the windows

(due to the view variations), the shadows of
a few passengers, and the reflections of some
passengers.

Notes The performance of the model can proba-
bly be increased by extending the training
set of the data by a lot more frames so that
the model gets a chance to understand all
the varying components of the scene. Ex-
perimental support for the above claim can
be found in Section 9.2.

Hyperparameters Table 8-12

Table 811 — Results from the Train dataset.

83

Hyperparameter Value

n (Number of features in the encoding space) 256
K (Number of Gaussians, Number of cluster centroids) 20
R (Number of epochs) 300

Threshold of Mahalanobis distance score for maximum F1 score | 2989.86

A 0.001
Table 8-12 — Hyperparameters for evaluating the model on the Train dataset.

Mahalanobis distance score of anomaly vs normal cuboids

ANOMALY

NORMAL

Mahalanobis distance

Cuboid index

Figure 8-22 — Mahalanobis distances evaluated from the validation-set on the Train dataset.
The threshold level for the maximum F1 score from the distribution is depicted in blue.

84

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

1.0 7
”
”
”
d",
0.8 =
I“,
@
5 7
a8 -
206 //
=
= ~
3 -
o ’;
S 0.4 ”f
[P
-
’a
0.2 s
’/
f”
-’ ROC curve (area = 0.65)
”
0.0 *
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 823 — ROC curve for the Train dataset. Classification at the spatio-temporal cuboid
level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 L
Fs
-~
r
”
s
0.8 -
f’,
a ’
o ”
206 ’,1’
bt
o 0.4 ’f’
2 -,
(= e
-~
”
rd
0.2 7
F s
r""
” ROC curve (area = 0.61)
-~
0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-24 — ROC curve for the Train dataset. Classification at the frame level. Dotted
blue line represents a random classifier.

85

Figure 8-25 — Illustration of spatio-temporal cuboid classification on the Train dataset.
(Score distribution thresholded to maximize the Fl-score). Red hue is for correctly classified
spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

86

8.8 UCSD Ped 1 Dataset

The results from the UCSD Ped 1 dataset can be observed in Table 8-13.

Training frames

6800

Testing frames

7200

Anomalies

Bicycles, vehicles, skateboarders and people
on wheelchairs.

Distribution of Mahalanobis distances Fig 826
ROC curve (pixel level) Fig 8-27
ROC curve (frame level) Fig 8-28
Maximum accuracy 85.42
Maximum F1-score 37.21
Examples of test-set images Fig 829

Analysis of misclassifications

Misclassifications include crowds and pedes-
trians moving very close to anomalous
events like bicycles.

Notes

This is due to the fact that the misclassified
instances are also very few in the training
set. This dataset is another instance where
an extensive training set would have helped
the model identify the anomalies accurately.

Hyperparameters

Table 814

Table 813 — Results from the UCSD Ped 1 dataset.

87

Hyperparameter Value

n (Number of features in the encoding space) 32
K (Number of Gaussians, Number of cluster centroids) 20
R (Number of epochs) 110

Threshold of Mahalanobis distance score for maximum F1 score | 24.47

A 0.01
Table 8-14 — Hyperparameters for evaluating the model on the UCSD Ped 1 dataset.

88

Mahalanobis distance score of anomaly & normal cuboids

200

ANOMALY
NORMAL

Mahalanobis distance

50

0 100000 200000 300000 500000 600000 700000 800000

Cuboid index

Figure 8-26 — Mahalanobis distances evaluated from the validation-set on the UCSD Ped 1
dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

89

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

1.0 v
s
”
td
’
”~
’
0.8 —*
-~
s
Z e
o -
g 0.6 ’/,
= s
g -~
oo ;"
@ -,
> 0.4 ”/
= -’
td
-
-
e
0.2 ,,
’
e
- ROC curve (area = 0.74)
0.0 #
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 827 — ROC curve for the UCSD Ped 1 dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 5
-~
F
-
.7
”
0.8 —=
l",
e R
o ,
w 0.6 /’
= 7
4
_g ,’
[’f’
@
S 0.4 ,’r
= ’
-
Pig
P
0.2 -
F
g
PR ROC curve (area = 0.80)
0.0 #
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 828 — ROC curve for the UCSD Ped 1 dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

90

Figure 829 — Illustration of spatio-temporal cuboid classification on the UCSD Ped 1
dataset. (Score distribution thresholded to maximize the F1-score). Red hue is for correctly
classified spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

91

8.9 UCSD Ped 2 Dataset

The results from the UCSD Ped 2 dataset can be seen in Table 8-15.

Training frames

3200

Testing frames

2400

Anomalies Bicycles, vehicles and skateboarders.
Distribution of Mahalanobis distances Fig 8-30

ROC curve (pixel level) Fig 8-31

ROC curve (frame level) Fig 8-32

Maximum accuracy 88.03

Maximum F1-score 44.17

Examples of test-set images Fig 8-33

Analysis of misclassifications

Similarly to UCSD Ped 1, the misclas-
sifications include crowds and pedestrians
very close to anomalous events like bicycles.
Some pedestrians in less traversed areas are
also wrongly misclassified as anomalies.

Notes

This is due to the fact that the misclassified
instances are also very few in the training
set. Like UCSD Ped 1, this is also an in-
stance where an extensive training set would
have helped the model identify the anoma-
lies accurately.

Hyperparameters

Table 816

Table 815 — Results from the UCSD Ped 2 dataset.

92

Hyperparameter Value

n (Number of features in the encoding space) 32
K (Number of Gaussians, Number of cluster centroids) 20
R (Number of epochs) 75

Threshold of Mahalanobis distance score for maximum F1 score | 22.94

A 0.01
Table 8-16 — Hyperparameters for evaluating the model on the UCSD Ped 2 dataset.

93

Mahalanobis distance score of anomaly & normal cuboids

300

N
=}

0

ANOMALY

NORMAL

Mahalanobis distance

50

/

0 100000 200000 300000 400000 500000 600000 700000

Cuboid index

Figure 8-30 — Mahalanobis distances evaluated from the validation-set on the UCSD Ped 2
dataset. The threshold level for the maximum F1 score from the distribution is depicted in
blue.

94

Pixel level anomaly detection ROC curve when using Mahalanobis Distance

1.0 v
s
”
td
’
”~
’
0.8 —*
-~
s
Z e
o -
g 0.6 ’/,
= s
g -~
oo ;"
@ -,
> 0.4 ”/
= -’
td
-
-
e
0.2 ,,
’
e
- ROC curve (area = 0.79)
0.0 *
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-31 — ROC curve for the UCSD Ped 2 dataset. Classification at the spatio-temporal
cuboid level. Dotted blue line represents a random classifier.

Frame level anomaly detection ROC curve when using Mahalanobis Distance

1.0 51
-~
F
-
.7
”
0.8 —=
l",
e R
o ,
w 0.6 /’
= 7
4
_g ,’
[’f’
@
S 0.4 ,’r
= ’
-
Pig
P
0.2 -
F
g
PR ROC curve (area = 0.85)
0.0 #
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8-32 — ROC curve for the UCSD Ped 2 dataset. Classification at the frame level.
Dotted blue line represents a random classifier.

95

Figure 8-33 — Illustration of spatio-temporal cuboid classification on the UCSD Ped 2
dataset. (Score distribution thresholded to maximize the F1-score). Red hue is for correctly
classified spatio-temporal cuboids, green hue is for misclassified spatio-temporal cuboids.

96

8.10 Comparison with the state-of-the-art

Most of the literature dealing with anomaly detection from videos, compare the perfor-
mance of each algorithm on the basis of their results on the UCSD dataset. Consequently,
we compare our algorithm with some top candidates for the state of the art in the UCSD
datasets.

In Fig 834, ROC curves of our model are plotted along with the ROC curves from the
social force model [46], the mixture of dynamic textures model [41], sparse reconstruction [14],
fast detection at 150 fps model [40], statistical hypothesis detector [79], AMDN (Appearance
and motion deep-net) [77] and GM (Gaussian mixture variational autoencoder) [19]. These
results are from the UCSD Ped 1 dataset.

Similarly, in Fig 8-35, ROC curves from our algorithm can be observed along with the
same from the social force model [46], mixture of dynamic textures model [41], deep-anomaly
[61] and GM (Gaussian mixture variational autoencoder) [19]. These results are from the
UCSD Ped 2 dataset.

From both figures, and with the assistance of Tables 8-17 and 8-18 it may be concluded
that the results from our model can be considered competitive with all the other methods. It
also has to be acknowledged that GM [19] is much better than our model in the frame-level
evaluation since GM is a fusion model that treats the static training frames separately from
the temporal content of the data, only to combine the information later in the model.

The slightly lower results from our model in the frame-level can be attributed to the
fact that we are sampling our data in a spatio-temporal fashion. This means that some
frames are still classified as anomalous after the cause of the anomaly has disappeared from

the frame (but they exist in the spatio-temporal cuboids that sampled the event).

97

Dataset

Best pixel level AUC in literature | Pixel level AUC in our model

UCSD Ped 1

0.731 (SHD) 0.74

UCSD Ped 2

0.782 (GM) 0.79

Table 8-17 — Comparison of our algorithm vs the best pixel level AUC (Area under ROC
curve) in literature.

Dataset Best frame Level AUC in Literature | Frame level AUC in our model
UCSD Ped 1 | 0.95 (GM) 0.80
UCSD Ped 2 | 0.922 (GM) 0.85

Table 8-18 — Comparison of our algorithm vs the best frame level AUC (Area under ROC
curve) in literature.

98

True positive rate (TPR)

i3 MDT

i | =——a—SR

—k— 150 FPS ||
SHD

—&— AMDN

— A— GM
i QOURS

1 1 1 I
02 03 04 05 06 07 08 09 1
False positive rate (FPR)

(1) Comparison of our algorithm with the state
of the art algorithms in the frame level detection
rate. USCD1 dataset.

[—g— SF
1 &— MDT

——5SR i
09| —s—150 FPS|
SHD

08 _g—avDN | T
£ || _a_.GMv
E 0.7 Ours 1
2 H H
s 06| -
o
>
S 05| A oMK et e 1
g
a
o 0. .
2
=

03 5

i i i i i i >
04 05 06 07 08 09 1
False positive rate (FPR)

(2) Comparison of our algorithm with the state
of the art algorithms in the pixel level detection
rate. USCD1 dataset.

Figure 8-34 — Comparison of the ROC curves of our algorithm vs SF [46], MDT [41], SR
[14], Detection at 150 FPS [40], SHD [79] , AMDN [77]. and GM [19]. Results from UCSD
Ped 1 dataset.

99

g
o
T

o
'S

True positive rate
o
o

o
w

| —e—sr
bt f—e—~DT
Pz ! t I —&— AMDN

2 : i DA

0.1 + {
e H 5 — A —GM
' i i i i OURS
0.1 02 03 04 05 06 07 08 08 1

False positive rate

o
5]

(1) Comparison of our algorithm with the state
of the art algorithms in the frame level detection
rate. UCSD Ped 2 dataset.

-

o
©

e
=

e
~

o
[

b
w0

True positive rate (TPR)
o
IS

o
w
T

o
)

e
o

i i i i i I
01 02 03 04 05 06 07 08 09 1
False positive rate (FPR)

(2) Comparison of our algorithm with the state
of the art algorithms in the pixel level detection
rate. UCSD Ped 2 dataset.

Figure 8-35 — Comparison of the ROC curves of our algorithm vs SF [46], MDT [41]|, DA
[61], GM [19]. Results from the UCSD Ped 2 dataset.

100

Chapter 9
Conclusion

In this chapter, we will present the important issues and lessons understood from this
research work.

9.1 The proposed solution

This thesis presented an innovative solution for the detection and localization of anoma-
lous events in a video stream from a static camera. It is a novel algorithm, previously not
examined for this problem. Hence, this is a considerable addition to the field of research in
anomaly detection from videos, especially since it has been demonstrated to be competitive
with the state-of-the-art methods. The algorithm is general in nature and can be deployed to
any scene as is. Additionally, it is very easy to implement in simple programming languages
like Python [56] using software packages like Keras [11], Tensorflow [2| and Scikit-Learn [52].

The algorithm depends on some hyper-parameters that require tuning for its successful
employment (A, K, n and threshold of anomaly score). Since we are using a deep learning
model, the training set for the model must be large enough to suitably train the autoencoder
to convergence. However, despite these drawbacks, the proposed solution has proved to be
a compelling candidate for performing anomaly detection from videos.

9.2 How important are the data?

In parallel to evaluating the proposed solution, we also studied the importance of having
enough training data for the convolutional auto-encoder. In Fig 9-1, the AUC (Area Under
ROC Curve) score of the best classifiers obtained in each dataset is plotted against the ratio
of training frames to the test frames. However, all these datasets are not equally challenging.
In the Canoe, Camouflage, Boat-River and Boat-Sea datasets, the classifier is used to detect

an object previously non-existent in a fairly static scene. On the other hand, the Train,

101

UCSD Ped 1, UCSD Ped 2 and Artificial datasets are more challenging and features more
dynamic scenes from which anomalies need to be detected.

Fig 9-1 can be re-drawn by only preserving the data from the challenging datasets. Fig
9-2 depicts such a graph. A clearly evident trend can be observed in this plot, where the
AUC score is monotonically increasing with an increase in the ratio of the number of training
frames to the number of testing frames.

AUC-SCORE vs RATIO OF TRAINING FRAMES TO TEST FRAMES IN ALL DATASETS

Artificial
9230 []
\
I
[
[
I
[
|
I
I
I
[
I
[
[
[
[
[
[
[
0 [
= [
£ i
o [
= [
e [
S i
g [
|
F [
5] [
o I
5 [
[-4
[
[
[
[
[
[
[
[
[
[
UCSDPed2 [
[
L UCSDPed1 ’ [
Boat-sea [
[} i
oo Boat-river L4 i
! Canoe !
0425 . [] i I
0250 TTain ; i gCamouflage
883 e I I Y

065 074 079 080 084 097 099 100
AUC-SCORE

Figure 9-1 — The AUC score of the best classifiers for each dataset vs the ratio of training-
frames to testing-frames.

102

Since we also have access to a system from which "unlimited" training data can be
generated, we can use this to our advantage and generate training-sets of variable sizes. We
can use these training-sets to re-examine this apparent relationship between the ratio of
training and testing frames to the performance of the classifier. We ran an experiment by
training the model on training-sets of variable sizes from the artificial dataset, while keeping
the length of the test-set and hyper-parameters fixed. We used A = 0.01, K = 10 and n = 32
for all the models. The results of this exercise can be observed in Fig 9-3. This verifies our
understanding that more training data leads to better performing models.

It is well-known that when more training data are available, we can obtain better models.
This fact is specifically true for auto-encoders because they aim to map the input distribution
to a low-dimensional manifold and reconstruct it at the output. When the amount of avail-
able training data approaches "infinity" (in truth, a very large number), the auto-encoder
is able to learn the true distribution of the data. In other words, an "infinite" amount of
training data nullifies the training data bias.

Usually when models are trained on a dataset, we are concerned whether the size of the
dataset is big enough to represent the true distribution effectively. Hence, the criticism (if
any) of the model is most-likely biased towards not having sufficient data. Having a source
for datasets of variable length give us the ability to study the true merits or limits of the
model itself. The model can be analyzed and critiqued without the worry of data limitations.

Nearly all deep learning models have millions of parameters that require optimization.
This means that a tremendous amount of training data are required for the models. Looking
back at Table 3-1, we see how limited the training data from the benchmark datasets actu-
ally are. They have a very low number of training frames when compared to the number of
parameters in a model. This characteristic of the datasets forbids many deep learning algo-
rithms from being applied to the problem. Having a resource for "unlimited" data alleviates

all of these concerns and opens the field of play to any deep parameter-heavy model.

103

Collecting a large, ground-truth annotated video dataset of a natural scene is indeed
exasperating and often impossible. The UCSD dataset (used in this research) was released in
2008. A larger, more dynamic dataset of real videos, specifically aimed at deep learning has
not yet been developed. This has been a goal for this research. Our framework for limitless
ground-truth annotated video data is aimed at deep learning models. The user can control
the randomness, the activity rate and the length of the videos. This is a first of its kind for
anomaly detection from videos. Albeit simple, it is a very important stepping stone towards
developing very good models for anomaly detection from videos.

The difference between fundamental shapes (squares, circles and triangles) are more
evident than the difference between a person holding a coffee cup and a person weilding a
gun. So, if an anomaly detection model cannot detect triangles as anomalies from a dataset
that usually contains only squares and circles, it will most likely be unable to differentiate
a person holding a gun and a person holding a coffee cup. In short, if a model does not
perform well on the artificial data, it may be expected not to work well for real data.

The converse may also be true. A model might perform extremely well on simulated
data, but may fail for real data. However, developing more realistic video simulations for
anomaly detection using computer graphics engines could help in establishing concrete con-

lusions for this problem.

104

AUC-SCORE vs RATIO OF TRAINING FRAMES TO TEST FRAMES IN CHALLENGING DATASETS
Artificial

9.230 ,

RATIC OF TRAINING FRAMES TO TEST FRAMES

UCSDPed2
133 UCSDPed1 ®
{ i
0.944
g i
. |]
Tral__n i i
0.027 . | 1
0.65 074 079 0.9%

AUC-5CORE

Figure 9-2 — The AUC score of the best classifiers for each challenging dataset vs the ratio
of training-frames to testing-frames.

105

AUC-SCORE vs RATIO OF TRAINING FRAMES TO TEST FRAMES IN THE ARTIFICIAL DATASET

923]

!

g !
w

z !

3 o= ® |

5 L

= | |

5 ! '

= ! !

i I I

< 486 (] : :

= | |

E H H

9 ! !

= ! !

= | |

g 341 , i I

6 . . H

o I ! I

g ! I

I ! !

L 4 ! o

! | ! !

! I ! !

! | ! !

00 @ ! I ! !

| | | | |

078 0.85 0.89 093 095 0a7 099

AUC-5CORE

Figure 9-3 — The AUC scores of the classifier for varying training-set sizes of the artificial
dataset. AUC scores on the X-axis and the ratio of the training-frames to the testing frames
on the Y-axis.

106

9.3 What is an anomaly, really?

This is really a philosophical question. The proverb "one man’s food is another man’s
poison" comes to mind as a summary when considering the subjective nature of an anomaly.

Let us take the Canoe dataset as a simple example to do some thought experiments.
Fig 821 shows some examples of the results when using our model on the Canoe dataset.
The dataset! has labelled only the canoe and its passengers as anomalies. However, when
the canoe drifts into the scene, the reflection of the passengers can be seen in the water.
When the canoe passes, there is a wake in the water following the canoe. If the canoe and
its passengers (the cause) have been marked as anomalies, why is the wake or the reflection
of the passengers (effect) not marked as anomalies? The effect follows the cause. If the
cause is an anomaly, in our opinion, the effect must also be marked as anomalous. From a
practical point of view, we think that it is better to involve a human arbiter for anything
even remotely suspicious than to regret the choice of skipping an event in hindsight.

As an example of this subjective nature of an anomaly, we conducted some experiments.
The Boat-Sea (Fig 3-3) and Boat-River (Fig 3-5) datasets are quite similar. Both datasets
require the algorithm to detect a boat in an otherwise empty waterbody. We plotted the
thresholds of the Mahalanobis distance score that gives us the maximum F1 score in both
these datasets by varying K (the number of cluster centroids, Gaussians). All the other
hyper-parameters were kept constant (n = 32, A = 0.001). The result of this experiment can
be observed in Fig 9-4. It can be noted how different the thresholds (or, the optimum cut-off
anomaly score) for these datasets are. They are not just different, but even on a different
scale.

Additionally, we can compare the thresholds obtained by running the expectation max-
imization algorithm for fitting the Gaussian mixture model on the same trained encoder

(E(v)) multiple times. Upon observing Fig 9-6 and Fig 9-5, it is also evident how stochastic

! The person/group who annotated the dataset.

107

the thresholds can be. Apart from being just subjective, the threshold for determining what
truly might be an anomaly is also indefinite. This demonstrates how difficult it is to truly
"establish" what an anomaly is. It is uncertain not only in the domain of definitions and
human-interpretation of videos, but also in the feature-space domain.

This uncertainty and the stochastic nature of the data explains why the results from

our model on the benchmark datasets have a considerable variance.

108

NUMBER OF CLUSTERS

1 BOAT-SEA
" BOAT-RIVER

i

NUMBER OF CLUSTERS

=} 8 & a8

THRESHOLD FOR ANOMALY SCORE FOR MAXIMUM F1 score

5

Figure 9-4 — Comparison of the Mahalanobis distance scores for maximum F1 scores in the
Boat-River and Boat-Sea dataset for different values of K.

109

THRESHOLDS FOR EACH RUN OF EM AND EVALUATION ON THE SAME ENCODER

10
8
6
4
2
0

JHOIS-Td WNWIXVIN 04 dTOHSTYHL

14

12

10

RUN-INDEX

Figure 9-5 — Comparison of the Mahalanobis distance scores for maximum F1 scores in the

Boat-River dataset for different runs of the expectation maximization algorithm for fitting

the Gaussian mixture model.

110

THRESHOLDS FOR EACH RUN OF EM AND EVALUATION ON THE SAME ENCODER

60
50
4
3
2

JHOOS-T4 WNIWIXVIN 404 ATOHSIHHL

14

12

10

RUN-INDEX

L QO
= =
+
o ob
IR
O o
5 =
O o
&
~ g
5=
o
g &
Xl
gz
g2 3
=S
£3
n ‘4
2
S &
o g
g
5 8
Z =
.d% H
4 o —
Q%
me
= 2
at
=B
MS
]
[
hr
+ =
5 &
Sz
e
2 7° 9
arm
23
=T g
O%u
Cam
74.&.1
nﬂdm
9%%
] 0
o 1
55 2
0o ®
= MmO

9.4 Future direction

Video analysis, especially anomaly detection still has a long way to go before reliable,
real-time algorithms can be deployed on real world applications. Any solution that depends
on a set of hyperparameters has a risk of failure, especially when the data are high di-
mensional. The hyperparameters heavily affect the performance of the model and the high
dimensionality of the data makes debugging a cumbersome task. This problem could be
solved by the introduction of efficient hyperparameter search methods.

The field of anomaly detection also carries upon its shoulder, the uncertainty of sampling
the videos. To recall the concept: in a dynamic environment, we are quite unsure as to when
a particular event starts or ends. In a highly dynamic scene, there can be multiple events
and constant motion that can overlap spatially and temporally. For this research, we set the
sampling to 5 seconds of video in each spatio-temporal cuboid. Testing the effect of sampling
length on a model is quite difficult, considering the time required to train and evaluate the
model. We wish to further investigate other directions for solving the problem by avoiding
this sampling conundrum. A possible area of exploration might be a fusion model, that
looks at the spatial and temporal aspects of the scene separately at first and combining the
anomaly scores later. Specifically, the temporal model must sample the scene only when
motion exists. If the subject is standing still, the spatial model will be called upon, and
when the subject is moving, the temporal model will take over. To avoid extremely long
samples, the frame can be divided into grids and each grid can be monitored independently.

It is imperative to have a large natural dataset with good ground-truth annotations
for evaluating deep learning models. This work has ameliorated the situation somewhat by
providing a framework that can deliver unlimited artificial data with pixel level annotations.
However, it is different to testing models on real-world data. The research on generative
models has been picking up a lot of momentum recently. We must also investigate whether

generative models can be utilized to generate unlimited "fake, but real" data to train deep

112

networks. As this research has concluded, the ground-truth annotations are usually subjec-
tive to the observer as well. A clear and concise definition on what is actually considered to

be an anomaly must be reached to make the notion fully objective.

113

[1]
2]

131

4]

[5]
[6]

7]

18]

19]
[10]

[11]
[12]

[13]

REFERENCES
Kdnuggets: Intuitive explanation convolutional neural networks, 2018.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 265—283, Berkeley, CA, USA, 2016. USENIX Association.

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for
boltzmann machines. In Readings in Computer Vision, pages 522-533. Elsevier, 1987.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IFE, 2:1-18, 2015.

Salman Aslam. Youtube by the numbers, 2018.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404—417. Springer, 2006.

Yannick Benezeth, Pierre-Marc Jodoin, Venkatesh Saligrama, and Christophe Rosen-
berger. Abnormal events detection based on spatio-temporal co-occurences. In Confer-
ence on Computer Vision and Pattern Recognition. IEEE, 2009.

John Canny. A computational approach to edge detection. [IEFEE Transactions on
pattern analysis and machine intelligence, (6):679-698, 1986.

Antoni Chan and Nuno Vasconcelos. Ucsd pedestrian database. 2008.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 20009.

Francois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Francgois Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv
preprint, pages 1610-02357, 2017.

Yong Shean Chong and Yong Haur Tay. Abnormal event detection in videos using
spatiotemporal autoencoder. In International Symposium on Neural Networks, pages
189-196. Springer, 2017.

114

https://github.com/fchollet/keras

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

Yang Cong, Junsong Yuan, and Ji Liu. Sparse reconstruction cost for abnormal event
detection. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 3449-3456. IEEE, 2011.

Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented
histograms of flow and appearance. In European conference on computer vision, pages
428-441. Springer, 2006.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In C'VPR09, 2009.

Asimenia Dimokranitou. Adversarial autoencoders for anomalous event detection in
images. PhD thesis, 2017.

Duarte Duque, Henrique Santos, and Paulo Cortez. Prediction of abnormal behaviors for

intelligent video surveillance systems. In Computational Intelligence and Data Mining,
2007. CIDM 2007. IEEE Symposium on, pages 362-367. IEEE, 2007.

Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine. Video
anomaly detection and localization via gaussian mixture fully convolutional variational
autoencoder. arXiw preprint arXiw:1805.11223, 2018.

Homa Foroughi, Aabed Naseri, Alireza Saberi, and Hadi Sadoghi Yazdi. An eigenspace-
based approach for human fall detection using integrated time motion image and neural
network. In Signal Processing, 2008. ICSP 2008. 9th International Conference on, pages
1499-1503. IEEE, 2008.

Homa Foroughi, Hamid Reza Pourreza, et al. Intelligent video surveillance for monitor-
ing fall detection of elderly in home environments. In 11th Int. Conf. on Computer and
Information Technology, 2008.

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural networks, 1(2):119-130, 1988.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249-256, 2010.

Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, pages 10-5244. Citeseer, 1988.

Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury, and Larry S
Davis. Learning temporal regularity in video sequences. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 733-742, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

115

[27]
28]

29]

130]

31

32]

133

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Rolf Herken. The universal turing machine. a half-century survey. 1992.

David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s
striate cortex. The Journal of physiology, 148(3):574-591, 1959.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Fan Jiang, Ying Wu, and Aggelos K Katsaggelos. A dynamic hierarchical clustering
method for trajectory-based unusual video event detection. IEEE Transactions on Im-
age Processing, 18(4):907-913, 2009.

B-H Juang and Lawrence R Rabiner. A probabilistic distance measure for hidden
markov models. ATET technical journal, 64(2):391-408, 1985.

Jaechul Kim and Kristen Grauman. Observe locally, infer globally: a space-time mrf
for detecting abnormal activities with incremental updates. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2921-2928. IEEE,
2009.

Louis Kratz and Ko Nishino. Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097-1105, 2012.

Gal Lavee, Latifur Khan, and Bhavani Thuraisingham. A framework for a video analysis
tool for suspicious event detection. Multimedia Tools and Applications, 35(1):109-123,
2007.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEFE, 86(11):2278-2324, 1998.

He-Ping Li, Zhan-Yi Hu, Yi-Hong Wu, and Fu-Chao Wu. Behavior modeling and
abnormality detection based on semi-supervised learning method. Ruan Jian Xue

Bao(Journal of Software), 18(3):527-537, 2007.

Stuart Lloyd. Least squares quantization in pcm. [EEFE transactions on information
theory, 28(2):129-137, 1982.

David G Lowe. Object recognition from local scale-invariant features. In Computer
wiston, 1999. The proceedings of the seventh IEEE international conference on, volume 2,
pages 1150-1157. Ieee, 1999.

Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detection at 150 fps in matlab. In
Proceedings of the IEEE international conference on computer vision, pages 2720-2727,
2013.

116

[41]

[42]

[43]

[44]

[45]

[46]

47]
48]

49]

[50]

[51]

[52]

[53]

Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly detection
in crowded scenes. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1975-1981. IEEE, 2010.

Prasanta Chandra Mahalanobis. On the generalized distance in statistics. National
Institute of Science of India, 1936.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Alessandro Mecocci, Massimo Pannozzo, and Antonio Fumarola. Automatic detection
of anomalous behavioural events for advanced real-time video surveillance. In Computa-
tional Intelligence for Measurement Systems and Applications, 2003. CIMSA’03. 2003
IEEFE International Symposium on, pages 187-192. IEEE, 2003.

Jefferson Ryan Medel and Andreas Savakis. Anomaly detection in video using predic-
tive convolutional long short-term memory networks. arXiw preprint arXiv:1612.00390,
2016.

Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior detection
using social force model. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 935-942. IEEE, 2009.

Marvin Minsky and Seymour Papert. Perceptrons. 1969. Cited on, page 1, 1990.

Todd K Moon. The expectation-maximization algorithm. IFEFE Signal processing mag-
azine, 13(6):47-60, 1996.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning, volume 2011, page 5, 2011.

Timo Ojala, Matti Pietikdinen, and David Harwood. A comparative study of tex-
ture measures with classification based on featured distributions. Pattern recognition,
29(1):51-59, 1996.

Constantine P Papageorgiou, Michael Oren, and Tomaso Poggio. A general framework

for object detection. In Computer vision, 1998. sizth international conference on, pages
555-562. IEEE, 1998.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(0ct):2825-2830, 2011.

Douglas Reynolds. Gaussian mixture models. FEncyclopedia of biometrics, pages 827—
832, 2015.

117

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

(63]

[64]

|65]

[66]

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

Mehrsan Javan Roshtkhari and Martin D Levine. An on-line, real-time learning method
for detecting anomalies in videos using spatio-temporal compositions. Computer vision
and image understanding, 117(10):1436-1452, 2013.

Guido Rossum. Python reference manual. Technical report, Amsterdam, The Nether-
lands, The Netherlands, 1995.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211-252, 2015.

Mohammad Sabokrou, Mahmood Fathy, Mojtaba Hoseini, and Reinhard Klette. Real-
time anomaly detection and localization in crowded scenes. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 56—62, 2015.

Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, and Reinhard Klette. Deep-
cascade: cascading 3d deep neural networks for fast anomaly detection and localization
in crowded scenes. IEEE Transactions on Image Processing, 26(4):1992-2004, 2017.

Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Zahra Moayed, and Reinhard
Klette. Deep-anomaly: Fully convolutional neural network for fast anomaly detection
in crowded scenes. Computer Vision and Image Understanding, 2018.

Thomas Schlegl, Philipp Seebock, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and
Georg Langs. Unsupervised anomaly detection with generative adversarial networks
to guide marker discovery. In International Conference on Information Processing in
Medical Imaging, pages 146-157. Springer, 2017.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international
conference on World wide web, pages 1177-1178. ACM, 2010.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiw:1409.1556, 2014.

Jasper Snoek, Jesse Hoey, Liam Stewart, Richard S Zemel, and Alex Mihailidis. Auto-
mated detection of unusual events on stairs. Image and Vision Computing, 27(1-2):153—
166, 20009.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

118

67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

78]

[79]

Statistica. Size of the global video surveillance market from 2009 to 2019, by region (in
billion u.s. dollars), 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2818-2826, 2016.

Jagannadan Varadarajan and Jean-Marc Odobez. Topic models for scene analysis and
abnormality detection. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE
12th International Conference on, pages 1338-1345. IEEE, 20009.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096-1103. ACM, 2008.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I-1. IEEE, 2001.

Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEFE signal processing magazine, 26(1):98-117, 2009.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IFEFE transactions on image
processing, 13(4):600-612, 2004.

Arnold Wiliem, Vamsi Madasu, Wageeh Boles, and Prasad Yarlagadda. Detecting
uncommon trajectories. In Digital Image Computing: Techniques and Applications,
pages 398-404. IEEE, 2008.

Xinyu Wu, Yongsheng Ou, Huihuan Qian, and Yangsheng Xu. A detection system for
human abnormal behavior. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, pages 1204-1208. IEEE, 2005.

Bing Xu, Naiyan Wang, Tiangi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep rep-
resentations of appearance and motion for anomalous event detection. arXiv preprint
arXiv:1510.01553, 2015.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-friendly
spaces: Simultaneous deep learning and clustering. arXiv preprint arXiv:1610.04794,
2016.

Y. Yuan, Y. Feng, and X. Lu. Statistical hypothesis detector for abnormal event de-
tection in crowded scenes. IEEE Transactions on Cybernetics, 47(11):3597-3608, Nov
2017.

119

[30]

[81]

[82]

[83]

[84]

[85]

Andrei Zaharescu and Richard Wildes. Anomalous behaviour detection using spatiotem-
poral oriented energies, subset inclusion histogram comparison and event-driven process-
ing. In Furopean Conference on Computer Vision, pages 563-576. Springer, 2010.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional
networks. 2010.

Dong Zhang, Daniel Gatica-Perez, Samy Bengio, and Iain McCowan. Semi-supervised
adapted hmms for unusual event detection. In Computer vision and pattern recognition,
2005. CVPR 2005. IEEE computer society conference on, volume 1, pages 611-618.
[EEE, 2005.

Bin Zhao, Li Fei-Fei, and Eric P Xing. Online detection of unusual events in videos via
dynamic sparse coding. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 3313-3320. IEEE, 2011.

Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua. Spatio-
temporal autoencoder for video anomaly detection. In Proceedings of the 2017 ACM on
Multimedia Conference, pages 1933-1941. ACM, 2017.

Hua Zhong, Jianbo Shi, and Mirké Visontai. Detecting unusual activity in video. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pages II-11. IEEE, 2004.

120

	Dedication
	Preface
	Acknowledgements
	Abstract
	ABRÉGÉ
	List of Tables
	List of Figures
	Introduction
	Background
	Problem statement
	Anomaly detection
	Deep learning
	The detailed problem statement

	Terminology

	Related work
	Modeling representations of videos
	Classical features for video representation
	Object trajectory
	Histograms of differential measures from images
	Spatio-temporal features
	Optical flow

	Deep learning for video representation
	Neural network autoencoders
	Convolutional networks and autoencoders
	Convolutional long short term memory (LSTM) networks
	Generative models

	Datasets
	Benchmark datasets
	University of California San Diego (UCSD) pedestrian dataset
	York anomalous behavior dataset

	Artificial data for deep learning
	Artificial data generation

	Chapter summary

	The convolutional autoencoder
	Convolutional neural network
	A brief history of convolutional neural networks and computer-vision

	Understanding a convolutional neural network
	The input
	The convolutional layers
	The pooling layers
	The fully connected layers

	Convolutional autoencoder
	Chapter summary

	Data preparation
	Raw data
	Frames
	Video units
	Localization
	Normalization
	Summary

	The deep convolutional autoencoder
	Encoder
	Encoder architecture

	Decoder
	Decoder architecture

	The convolutional auto-encoder
	Chapter summary

	Training
	Overview of the objectives for this thesis
	What is an anomaly?

	The formulation of training
	Training algorithm
	Initialization
	Initialize means and memberships
	Stochastic optimization with means update

	Feature space analysis
	Summary of the training algorithm

	Results and analysis
	Evaluation process
	Training setup

	Artificial dataset
	Analysis

	Camouflage dataset
	Boat-Sea dataset
	Boat-River dataset
	Canoe dataset
	Train dataset
	UCSD Ped 1 Dataset
	UCSD Ped 2 Dataset
	Comparison with the state-of-the-art

	Conclusion
	The proposed solution
	How important are the data?
	What is an anomaly, really?
	Future direction

	References

