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Abstract

La méthode des graphes fait appel autant à la théorie des algèbres
de quaternions qu'aux courbes elliptiques ou aux formes modu·
laires pour en arriver à déterminer tous les points supersinguliers
en une charactéristique donnée et ainsi d'obtenir une base de
S2(N).

La présente thèse vi.se donc à exposer le principe de la méthode
des graphes: elle se divise en deux grandes parties. Dans un pre­
mier temps, on introduit les bases essentielles de l'arithmétique
des quaternions. Cette partie est conçue pour répondre à la lois
aux besoins des néophytes (en présentant une introduction re­
lativement complète) et des initiés, en devenant une référence
courte et rapide. La seconde partie porte plus spécifiquement
sur la méthode des graphes en elle-même: après divers rappela,
notamment au niveau des formes modulaires et des courbes ellip­
tiques, le troi.sième chapitre se penche sur la méthode proprement
dite. Une dernière section montrera pour sa part une application
concrète de la théorie.

The graph method simultaneou.sly tules the theory of quaternion
algebras, elliptic curves and modular forros in order to determine
aU supersingular points in a given characteri8tic and hence to
obtain a basis of S2(N). The goal of this thesis is to expose the
principles of the graph method: it is therefore divided into two
main parts: First, we introduce the essentials of the arithmetic
01 quaternions. This part is made to fit two neeu: on one hand,
a good introduction for no'Vicesj on the other hand, a fast and
quick reference for those who are a.lready lamiliar with the subject.
The second part focusses on the graph method itaelf: after sorne
recalls, namely about modulor fof'fR8 and elliptic CUMIes, the third
chapter is more specifically oriented toward the method a.s the last
section gives a practical application of it.
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Introduction

A lot of people use the introduction of their manuaIs to justify the need of

writing ~yet-another-book-on-the-subject... '. This part will he easy for us, as

the graph method touches on two strong topies of aIgebraic number theory:

elliptic curves, which are fairly weil treated (especially since Wiles proved

Fermat's last theorem), and the arithmetic of quaternion algebras, somehow

more neglected. In that case, the researcher is confronted with a choiee:

either work with original articles a.nd therefore face the difficulty of various

notations and languages, or use one of the main references such as the book

of Marie-France Vignéras [Vig80], written in French.

We therefore saw a good occasion ta prepare a thesis which would present

an up-to-date synthesis on that particular matter. The first chapter may

serve either as a. quick introduction guide, providing important results for

the beginners, or as a concise reference for those who are already familiar

with the subject. Therefore, the emphasis will not be made on how the

theorical results themselves are obtained, but rather on how to use them in

1



2

practice.

INTRODUCTION

After presenting el1iptic curves and modular forros, we get to the heart of

the matter: the graph method developped in the rnid 1980's by J .-F. Mestre

and J. Oesterlé. It can sometimes be used to obtain explicit equations of

strong modular elliptic curves, which are fundamentals in number theory,

but mainly for computing spaces of modular forros of a. given level, their

Fourier expansion, and the action of Hecke operators on them.



Chapter 1

Quaternion Algebras

The study of qua.ternion algebras from an arithmetic point of view gained

its prominence around the 1930'5, thanks to the important work of Eichler.

Today, the subject has become an important part of modem number theory.

In this chapter, we use a. minimalist approach to introduce quaternion

algebras: our goal is to exploit them in regard ta the graph method.

One will therefore find only few justifications, as weIl as few comments

between definitions, lemmas or examples: this is done on purpose in arder

ta ease the reading.

Those less famillar with the subject or wanting to learn more about a.

particular aspect will always find complete referenee for each specifie result

3
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not thoroughly explained.

CHAPTER 1. QUATERNION ALGEBRAS

1.1 Basic Concepts

Let K he a field.

Definition 1.1 :

A K-algebra Ais said to be centralifits centerequals K.l A (:= {k. lAlk E K})

Definition 1.2 :

A K-algebra is said to be simple if it has no two-sided ideal except {O} and

itself.

Definition 1.3 :

A quaternion algebra H over K is a centrai simple K-algebra of degree 4

over K.

Remark: One can show that the following statement i5 indeed equivalent

to the definition of a quaternion algebra just given:

H is a central K -algebra of degree 4 over K such that there is a separable

K-algebra L of degree 2 over K for which there exists 8 E K\{O} and u. E H
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such that

{

• H = L +Lu
• 11.2 = (J

• um = mu, 'rJ-m E L

where m t---+ in is the nontrivial K -automorphism of L.

In this case, we write H = {L,8}.

5

Remark: One may write L =K(i), where i 2 =a E K\{O} ifChar(K) 1=

2, and i 2 +'i =a E K\{O} if Char(K) = 2 (this follows from Kummer theory

and Artin-Schreier theory respectively).

Setting 11. = j, one has H =K + Ki + Kj + Kij, where

i 2 + i = a, j'!. = 11.
2 =8, ij = j(I + il, if Char(K) = 2

and

.'J .'J 'J 8· . .. ·f Ch (K) ~ 2l- = a,)- = 11.- = ,7.J = -)'1. 1 ar 7"'"

Reference: For details, see [Vig80, 1..1, p.l-5]

Example 1.4 : M2(K)

M2(K), the K -algebra of 2x 2 matrices over a field K is a quaternion algebra.
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Example 1.5 : Hamilton's quaternions

Talee K := IR as the base field. The ring 1-l := IR + IRi + IR; + IRij defined

by the relations i:! = -1, j2 = -1 and ij = -ji is a quaternion algebra over

IR. Note that it is not isomorphic to M 2(IR) (sinee 1-l is a division ring).

Definition 1.6 :

The conjugation ~ -: ' is the K -anti-automorphism h H' h of H extending the

nontrivial K-automorphism ~ -; , of L determined by ü. = -u.

Lemma 1.7 : Basic properties of conjugation

Va,b E K, "Il, m E L, Vg,h E H,

• C!g + bh = ag + bh (Linearity)
• h = h (Involution)
• 9fi = hg (Anti-isomorphism)
.1 +mu=l-mu

Definition 1.8 :

The (reduced) 7race Tr(.) is defined by:

Tr: H -+ K
h H Tr(h) :=h+h

Definition 1.9 :

The (reduced) nonn N (.) is defined by:
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N: H ~ K
h t-4 N (h) := h . h

Remark: The trace and norm are well-defined since for all h EH,

deI - = - --- ---= deI --
Tr(h) = h+h=h+h=h+h=h+h = Tr(h).
SO, Tr(h) =Tr(h) and hence Tr(h) E K.

deI - = - ---= deI --
N(h) = h·h=h·h=h·h = N(h).
Sa, as above, N(h) = N(h) and therefore, N(h) E K.

Lemma 1.10 : Basic properties of the Trace and Norm

Va,b E K, "fig, hE H t

• N(gh) = N(g)N(h)
• N(h) i= 0 if and only if h E H X

•

In this case, we then have h-1 = Ti.. N(h)-l
• Tr(ag + bh) =a· Tr(g) + b· Tr(h)

Remark: For anelement h =w+xi+yj+zij, we get h= w-xi-yj-zij,

Example 1.11 :

With the matrices in M2(K), we have, if h:= [: ~] 1
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- [dh= -c

CHAPTER 1. QUATERNION ALGEBRAS

-b]a ,Tr(h)=a+d,N(h)=ad-bc

1.2 Internai structures

At first sight, the notions of this section ma.y inevitably sound familiar. One

will read the same words he is used to read, in a. context that seems to be

the same... But what if experience could sometimes betray us?

What if, all of a sudden, 'the set of integers would no longer form a ring'

or if 'ideals would not always be subrings 1 ?

[ndeed, all the above occurs with quaternion algebras. That is why we

suggest to the reader to keep his/her mind wide open, even if it means to

pretend a temporary amnesia, for he will meet many 'homophones' in the

next few pages.

That little warning completed, let us now introduce the actors we will

play with throughout this section: let R he a Dedekind ring, K be its field

of fractions and H he a quaternion algebra over K.

Definition 1.12 :

Let V be a vector space over K. AR-module L of Vis said to he an R-lattice

if L ç V and L is finitely generated.
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Definition 1.13 :

9

Let V he a vector space over K. An R-Iattice L of V is said to be complete

if K ®R L ~ V .

Definition 1.14 :

An idealof H is a complete R-Iattice.

Definition 1.15 :

An element h E H is said to he an integer over R if R[h) is an R-lattice of

H.

Lemma 1.16: Let h E H he given. Then,

h is an integer over R if and only if Tr(h) E R and N(h) belong to R.

Remark: In practice, one uses the ahove lemma instead of the definition

in order to identify integers.

Warning: The SUffi and product of two integers is not necessary an inte­

ger! For example, take R:= 7l , K:= ~ , H := M2(C)) ,

[ 0 2] [1/2 3/4]
a = 1/2 0 & b= -1 1/2

Here, a and b are integers, but neither Ca + b) or (a. b) is.
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Hence, the set of integers does not fonn a ring. For this reason, we will

focus on specifie subsets (called orders) having a ring structure.

Definition 1.17 :

An ideal 0 of H is said to be an order if 0 is itself a ring.

Remark: The concept of order is fundamental in the study of the arith­

metical properties of quaternion algebras. In our case, we will be ultimately

interested in working with quaternion algebras over the rationals. So, if we

set R := 7l., K:= Q and H to he a quaternion algebra over ~, it might be

a. good idea to explicitely rewrite the definition of an order in this case.

(

eoçH
o is an order of H Ç::::> e 0 ~s a ~ng

e 0 lS finltely generated as a 7l.-module
e O~z«) ~ H

Lemma 1.18 : Let 0 ç H he given. Then,

(

eReO

O
. cl e 'V h E 0, h is an integer
lS an or er Ç::::> 0 . .e lS a nng

eKO=H

Reference: [Vig80, proposition 4.2, p. 20}

Example 1.19 :

M2(Z) is an order of M~(Q).



1.2. INTERNAL STRUCTURES

Example 1.20 :

For the Hamilton's quaternion 1l, the ring 7l. [i,j, l+i~j+ij] is an order.

11

Definition 1.21 :

Let 0 be an arder of H. The units of 0 are the elements of 0 which have

an inverse in O. This group is denoted OX.

Lemma 1.22: Let 0 he an order of H. Then, an element h E 0 belongs

ta OX if and ooly if N(h) E RX.

Proof Simply remark that h-1 = li· N(h)-l.

o

Definition 1.23 :

An order 0 is said to he maximal if it is not properly contained in any other

order.

Definition 1.24 :

An order E is said to be an Eichler order if it is the intersection of two

maximal orders.

Definition 1.25 :

Let 1 be an ideal. Let 0, := 0,(1) := {h E Hlhl ç I} and
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Or := Or(I) := {h E Hllh ç I}. Theo, 0, and Or are called respectively

the Ieft and right arder of I. We also say that 1 is 'on the [eft of' 0, and

'on the right of' Or'

Definition 1.26 :

Let 1 be an ideal. The reduced norm N(I) is the fractional ideal of R

generated by the set {N(h)1 h El}.

Definition 1.27 :

Let 1 be an ideal. Then, 1 is said to he:

• two-sided if 0, =Or
• normal if 0, and Or are maximal
• integral if [Ç 0, and I ç Or
• principal if 3 h E H such that [ = O,h = hOr

Definition 1.28 :

Let 1 be an ideal of H. Its inverse is defined by

1-1 = {h E Hllh E O,(/)} = {h E HlhI ç Or(I)} = {h E Hllhl ç I}

Lemma 1.29 : Let 1 be an ideal of H. Then,

(i) 1-1 is also an ideal of H(..)!. Or(l) ç O,{I-l)
U • O,(I) ç Or(I-1)

(
O,.) • 1./-1 ç Oc(/)
n~ • 1-1 • I ç Or(I)
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Reference: See [Vig80, Lemme 4.3(3), p.21} for details.

1.3 Quaternion algebras over local fields

13

The goal of this section is to characterize aIl the quaternion algebras over a.

given local field. We first reduce the problem to quaternion division rings.

Then, we treat the cases where the base fields are respectively IR and (.

Then, after sorne recalls from valuation theory, we expose the main result.

Let IR+ denote the nonnegative real numbers and let K be a field.

Lemma 1.30: Let H he a qua.ternion algebra aver K. Then, either

H ~ M2(K) or H is a division ring.

Praof By Wedderbum's structure of simple rings theorem l, there exists

a unique n E IN· and a unique (up ta isomorphism) division algebra. D over

K sueh that H ~ Mn(D). But sinee H is of degree 4 over K, the only

possibilities for n are 1 and 2:

lSee. for example. (Wei73. theorem IX.l, p. 164)
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• If n = 1, then H ~ M1(D) ~ D. So, H ~ D with D being a division
algebra. Henee, H is also a division algebra.

• If n = 2, then H ~ M2(D). Renee, their center are isomorphic:
K =Center(H) ~Center(M2(D))~ D. We get that K ~ D and so
H :: M'l(K), as wanted.

o

Corollary 1.31: For a quaternion algebra H over K, the fol1owing are

equivalent:

(i) 3h E H\{O} such that N(h) =0
(ii) H ~ M'l(K)
(Hi) 3h E H\{O} such that Tr(h) = N(h) = 0

Proof

(i) => (H)

(ii) =* (Hi)

(iii) => (i)

"1 ­By hypothesis, 0 = N(h) = h· h.
So, h is a zero divisor and hence H cannot he a division ring.
Therefore, by the above lemma, H:: M2(K).

Set h := [~ ~]. Then, c1early, Tr(h) = N(h) = o.
TriviaL

o

We are now ready to classify the quaternion algebras over any algebraically

closed field:

Theorem 1.32 :

Let K be an algebraically c10sed field and H be a. quaternion algebra over

K. Then H ~ M2(K).
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Proof Say H = {L, 8}. Then, since K is algebraically closed, L cannat be a

field. So, L\{D} contains a non invertible element m. Therefore, N(m) = 0

(otherwise, m . (m. N(m)-l) = 1 with m . N(m)-l E L, so 'm would be

invertible). Final1y, H ~ M2(K) by above corollary.

o

Remark: M2(() is the only quaternion algebra over (.

We already know that 'ft (section LIon page 5) is a quaternion division

algebra. over IR. Indeed, much more is true...

Theorem 1.33 (Frobenius):

Any division quaternion algebra over IR is isomorphic to the Hamilton's

quaternion tl.

Reference: See [Vig80, corollary 2.5, p. 7] or [Hun74, corollary IX.6.S,

p. 461] for details.

Deftnition 1.34 :

A map 1•1: K -+ IR+ is said to be an a6soiute value on K if, for aIl
a t-+ lai
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a,b E K:

CHAPTER 1. QUATERNION ALGEBRAS

(i) lai =0 if and only if a =0
(ii) la. bl = lal·lbl
(iii) la + bl Sial + Ibl (Triangle inequality)

Definition 1.35 :

An absolute value 1-1 on K is said to be non-archimedean if, for all a, b E K:

(iii') la + bl ~ max (lai, Ibl) ( Strong triangle inequality)

Definition 1.36 :

The absolute value

1. Ir: K --t IR+

{
0 if a =0

a ~ laiT := l if a # 0

is called the trivial absolute value of K.

Definition 1.37 :

An absolute value 1-1 on K is said to be discrete if the image of K\{D} under

1 - 1 is a cyclic group.

Definition 1..38 :

A discrete valuation ring is a principal ideal ring that has exactly one nonzero

prime ideal.
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Definition 1.39 :

17

Let R he a commutative discrete valuation ring with identity and let p be

its only nonzero prime ideaL Then, RIp is called the residue field of R.

Definition 1.40 :

A field K with an absolute value 1·1 is called a local field if it satisfies the

following conditions:

(i) 1 • 1 is non-archimedean, discrete and non-trivial.
(ii) K is complete relative ta 1• 1.
(iii) The residue field of 1 . 1 is finite

Example 1.41 :

For every prime number p, the field of p-adic numbers ~p is a local field.

Example 1.42 :

IFn[[x]], the field of formai Laurent series in one indeterminate over the finite

field IFn, is a local field.

Theorem 1.43 :

Any local field is (isomorphic to) either IFn[[x]] for a finite field IFn, or to a

finite algebraic extension of C)p, for sorne p.

We are now ready ta state the classification theorem of quaternion

a1gebras over local fields
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Theorem 1.44 :

CH.4PTER 1. QUATERNION ALGEBRAS

Let K he a local field. Then, there is a. unique (up to isomorphism) quater­

nion division aIgebra over K.

Reference: See [Vig80, theorerns 1.1 and 1.3, p. 31-36) for details.

1.4 Quaternion algebras over global fields

Definition 1.45 :

A global field is a finite dimensional extension of one of the fol1owing fields:

• «), the field of rationa.l numbers
• IFp(x), the field of rational fractions in one indetermina.te with

coefficients in the finite field IFp , where p is a prime numher.

Definition 1.46 :

Let K be a global field.

Let E:= { ilfor sorne local field L, i : K --+ L, i embedding }. Two embed­

dings i, i' E e, say i : K ~ L and i': K ---. L'are said ta he equivalent

if 3/ : L --+ L' , / isomorphism such that i' = foi and we write i l"ttJ i'.

An equivalence cIass uoder ' f'W ' is called a place of K. Let v he any place

of K. We denote by iu : K --+ Ku a dense embedding of K in a. local field

Kv representing the place v. If Ku contains a field isomorphic to IR, then v

is said to he an infinite (or archimedean) place of K. Otherwise, v is said to

he a finite place of K.
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Example 1.47 : Places of ~

• Cnlyone infinite place '00' represented by the natura1 embedding
of () into IR

• The finite places are represented by the natura! embeddings of ~
iota ~P' the field of p-adic numbers, for every prime number p.

For more details, see (Vig80, section lIL1, p.58].

19

Definition 1.48 :

Let K he a global field and H he a quaternion algebra over K. Let v be

a. place of K and i l1 : K --+ K" be a representative of v. If H ®K K l1 is a

division ring, then v is said to be ramified in H.

Definition 1.49 :

Let K be a global field and H be a qua.ternion aJgebra over K.

Let Ram(H):= { vlv is a place of K ramified in H }

Definition 1.50 :

Let K be a global field and H he a quaternion algebra over K. The reduced

discriminant d of H is defined by

d:= II V
oER.unIH)

o lbai.~

Lemma 1.51 : Let K he a. global field and H he a quaternion algebra over

K. Then,IRam(H) 1< 00 (Le. the numher of places of K ramified in H is
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finite).

CHAPTER 1. QUATERNION ALGEB&4S

Reference: See [VigBO], lemma 111.1, p. 58

Theorem 1.52 :

Classification of Quaternion Algebras over Global Fields

Let K be a global field. Then,
• If H is a quaternion algebra over K, then IRam(H)1 is even (i.e. the

number of places of K ramified in H is even).
• Let S be a finite set of places of K such that 181 is even. Then there is

a unique H (up to isomorphism), H quaternion algebra over K such that
S=Ram(H).

Reference: See [VigSO] , theorem 3.1, p. 74

Definition 1.53 :

Let H be a quaternion algebra over~. H is said ta he definite if H is

ramified at 00. Otherwise, we say that H is indefinite.

Definition 1.54 :

Let p be a prime number. Let Hp•oo be the definite quaternion algebra over

~ such that Ram(Hp.00 ) = {p, oo} .

Remark: By the classification theorem over global fields (section 1.4,

on page 20) sinee IRam(Hpooo )1 = 2 is even, Hp•oo exists and is uniqueLy

determined (up ta isomorphism).
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Remark: We have that H2.oc = 'Ii, the Hamilton's quaternions (See

section LIon page 5).

Until now, our exposition of quaternion algebras has been very general,

first because we wanted to give a true self-contained introduction and aIso

because it wasn't more tedious ta treat the whale theary. But for the defini­

tion of the next concept, we will restrict ourself ta quaternion algebras over

Q in order to simplify the exposition. It is indeed this particular case that

we will he interrested in later 00.

Notation: Let 4)oc := IR

Definition 1.55 :

Let H be a. quaternion algebra over Q and L be a lattice of H. The quater­

nion algebra H flJ~ «)p over ~p -is denoted by Hp and the lattice L flJz 71.1' of

Hp is denoted hy Lp.

Until the end of the section, let p be a fixed prime.

Definition 1.56 :

Let rEIN he given, MEIN· be such that p AM and let N := rrr+l . M.

AIso, let L he the unique unramified quadratic field extension of ~p and R

he the set of integers in L.
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Definition 1.51 :

CHAPTER 1. QUATERNION ALGEBRAS

An order 0 of Hp,oc is said to have level N if, for every q, we have the

fol1owing isomorphism over 7l.q :

At first sight, this definition is not very intuitive. However, one can 'think'

about the level as follows:

Let K be a field, H a quaternion algebra over K and E be an Eichler

arder of H. Then, by definition, there are maximal orders " and 0' of H

such that E = 0 nO'. Then, the level of E is somehow a measure of the

'distance' between 0 and 0".

Later on, what we will want to do is to pick an Eichler order of a given

level. Hence, we better make sure of its existence, and this is exactly what

the fol1owing result shows in the case we will he treating:

Theorem 1.58 :

Let p he a. prime number and Ni be a positive integer such that p ANI­

Then, Hp,oc contains an Eichler arder of level pNt.

Reference: See [Vig80, p.39 and p. 84] as weil as [BD96, p.417] for the
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details. AIso, a method ta obtain explicitely the Eichler orders of a given

level N is explained in [Piz80, section 5, p. 368-371].

1.5 Class number

Definition 1.59 :

Two ideals 1 and J are said ta be left equivalent (respectively right equiva­

lent) if 3 h E HX such that 1 = hJ (respectively 1 = Jh). In this case, we

write 1 IVI J (respectively l "'-1.,. J).

Remark: Of course, ~1V1' and 'IV.,.' are equivalence relations on any set S

of ideals of H. We can therefore form left and right classes of ideals on S.

Definition 1.60 :

Let 0 be an arder, S, := {III ideal of H and 0 , = O} and S.,. := {Ill ideal

of H and Or = O}. The left classes (respectively right classes) of 0 a.re the

ideal classes of S, (respectively Sr).

Lemma 1.61: Let K be a field, H be a quaternion algebra over K and 0

be an order of H. Then, there is the same number of left and right classes

ofO.

Reference: See [Vig80, lemme 4.9(1), p. 25}.
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Convention: The ahove lemma allows us to get cid of the specification 'left'

or 'right' when talking about the 'numher of classes of 0'.

Lemma 1.62: Let K he a field and H be a quaternion aIgebra over K.

Theo, the c1ass number of ail maximal orders of H coincide.

Reference: See [Vig80, lemme 4.9(2), p. 25-26]

Definition 1.63 :

The class number h of H is the number of ideal classes of sorne maximal

order.

Theorem 1..64 : Finiteness of the class number

Let K be a global field and H he a quaternion algebra over K. Theo, the

class number h of H is finite.

Reference: See [Vig80}, theorem 5.4, p. 87.

Tbeorem 1..65 : Eichler's class number formula for indefinite quaternions

Let H he an indefinite quaternion algebra over C) and h be its class number.

Then, h = 1.

Reference: The result follows from the 'strong approximation theorem'

(See (Vig80, theorem 4.3, p. 81J for details).
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Theorem 1.66 : Eichler's class number formula for Hp.~

Let p he a prime number and h he the class number of Hp,oc' Then,

{
1 if p = 2

h = k(1 - (~3)) + t (1 - (~4)) +~ if p 1: 2

where (~) is the Legendre symbol.

Reference: See [Eic38} for the original proof (in German) or [Vig80,

proposition 3.2, p. 146] for a more general case.

Remark: Using the well-known properties of the Legendre's symbol 2 ,

one cao rewrite the above fonnula. for h in a case-by-case format that makes

calculations by hand quicker.

{
LÉJ if p = l(mod 12)

h = L&J +1 if p =2,3 or p =5, 7(mod 12)
L-&J +2 if p =11(mod 12)

where L~J is the 'fiaar function' (that is, L~J is the unique integer such that

L~J ~ i < l~J + 1).

Table Il . Value of sorne class number h of H. .
'p.~

p 2 3 5 7 Il 13 17 19 23 29 31 37 41 43 47 ...
h 1 1 1 1 2 1 2 2 3 3 3 3 4 4 5 ...

Note: As we cao see in the above table, the lowest value of p for which the

c1ass number is higher than one is when p =Il. This first nontrivial case will

2That can found. for example. in [ST87. p.242.250] or into your favorite book on basic
number theory.
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often be used in order to illustrate sorne parts of the theory: calculations

by hand will then be less tedious and therefore make our exposition less

laborious. Sometimes, we will even use various ways to compute the same

quantities: this will give us a flavour of the difference of complexity between

methods, which could not be done if we would use new examples each time.

Moreover, we believe that keeping p to be Il will make us appreciate how aIl

the small steps we do will soon transform into parts of a global procedure.

At the end, it might be a good idea to reread without interruption all the

examples where p = Il in order to see a full concrete application of the

method. As we just saw, Eichler's class formula for Hp,oc (see 1.5 on page

24) gives us a simple expression for the class number of a given maximal

order. [n fad, it can he extended as follows ta treat the case of any order.

Theorem 1.61 :

Let p he a prime number, NI E IN· be such that p ANI and let rEIN he

given. Let N := p'lr+lNI and 0 be an arder of level N in Hp•oc • Then, the

c1ass number h(N) of () is given by:

h(N) = [; (1 - ~) II (1 + })
"INt

q prim~

{

~(1- C;;')) fi (1 + (~4))
+ 'l1~l

qpnm~

o

+ { O

î(1 - (~3)) fi (1 + (~3 ))
'IINt

q primp

if 41N

if 4(N

if91N

if9(N
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where (~) is the Legendre symboL.
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In particular. the class number of any arder of a ftxed level N is inde­

pendent of the particular arder of level N.

Reference: See [Piz80, theorem 1.12, p. 346] for details.

1.6 Brandt matrices

Let p be a prime number and NI E IN be such that p INI • We let N := pNI •

Throughout this section, we will restrict our study ta the quaternion algebra

Hp•x . As above, let h(N) be the class number of level N. For each n E IN,

we will build from Hp,Xl a matrix B(n) = (bi/
n

)) E Atlh(N)(<<)) called the nth

Brandt matrïx3. These matrices are of primordial importance for our later

study of Hecke operators 7;.., but as in the best movie previews, let's keep

the suspense on for the moment...

We fix our guest star ta be an Eichler order 0 of Hp,:x of level N. Renee,

o has h(N) left classes of ideals. Let Il .. . lh(N} he representatives for each

of these classes (so, by definition, O,(li) = 0 for 1 ~ i ~ h(N)). Ta ease

the notation, let, for 1 ~ i < h(N), Oi := Ore/il and ei := 10fl. Lastly, let,

for 1 $ i,j $ h(N), A~;) := {a E Ij11ï/N(a). Z~~:: =n}.

3In the lltterature. they are sometimes called Eicbler-Brandt matrices.
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Definition 1.68 :

With the above notations, the general term b~j) of the nth Brandt matrix

B(n)h(N)xh(N) is defined by

Remark: For a generalization of the Brandt matrices to arbitrary quater­

nion algebras, see (VigSO, p.lOO].

Example 1.69 : N=11
Below are the first Brandt matrices when N = Il:

[ 1/4 1/4] [1 °1] [1 30 ]B(O) = 1/6 1/6 8(1) = 0 B(2) = 2

B(3) = Un B(4) =U:] B(5) = [~ n
From here, it's child's play to compute the eigenvalues an as well as other

important quantities related to each B(n). The following table reassemble

sorne of them.
Properties of B(n) for N =Il
~ Tr(B(n)) 1c(n) 1 an

0 5/12 5/12 0 5/12
1 2 1 1 1
2 1 3 -2 3
3 3 4 -1 4
4 9 7 2 7
5 7 6 1 6



Chapter 2

Elliptic Curves and Modular
Forms

As we did earlier, we will not be very general in this chapter: elliptic curves

and modular forros being quite familiar for many mathematicians, we will

assume that the basics of the subject are mastered by the reader. Those

who would want more information before beginning this new chapter could

find a good starting point in the article [Mur91] or on the web, at these two

URL adresses http://www.best.com/-cgd/home/fit/flt03.htm or

http://www.best.com/-cgd/home/flt/tlt05.htm. For more complete refer­

ences, one can find good help in [8il86], [Kna92] or [Kob93].

We will therefore present elliptic curves and modular forms in a very

precise manner, concentrating specifically on results regarding the graph

method. However, sorne classical elements will he mentionned, as we do in

29
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our first section.

2.1 General recalls on elliptic curves

As usual, let K he a. field.

Definition 2.1 :

Let m E 7l. and let E he an elliptic curve over K. The multiplication by m

map [ml is defined by:

[ml: E -+ E
P+ +P

... .... if m >0

...
(-ml tenn.

P ..... [mJP:=

Definition 2.2 :

m terro.ll

o if m =0
(-P)+ ... +(-P) if m<O

f

Let m E 71: t E be an elliptic curve and mE7/.· .

E[m] := {P E El [ml P = O}, the set of points of order m in E, is called

the rn-torsion subgroup of E.

Lemma 2.3 : Structure of the torsion subgroup
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Let m E 7l., K he a field and E he an elliptic curve over K. Theo,

(i) deg([m)) = m2

(ii) If Char(K) = 0 or (m, Char(K)) =1, then
E[m] ~ (71./mZ) x (71.lmlL)

(iii) If Char(K) = p, then
V n E IN·, E[pRj ~ {O} or V n E IN t

, E[pn] ~ 7l.{pTl71..

Reference: See (Sil86, corollary 6.4, p. 89) for details.
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Theorem 2.4 : On the value of IAut(E)1

Let E be an elliptic curve over K and Aut(E) he the automorphism group

of E. Then,

jAut(E)I =

2 if j(E) 1: 0, 1728
4 if j(E) = 1728
6 if j(E) = 0
12 if j(E) =0 = 1728
24 if j(E) = 0 = 1728

and Char(K) #: 2,3
and Char(K) i: 2,3
and Char(K) =3
and Char(K) =2

Sa, in aIl cases, Aut(E) is a finite group such that IAut( E) 1 1 24.

Reference: See (Sil86, theorem 10.1, p. 103]

Definition 2.5 :

Let N E IN" be given. The Hecke subgroup ro(N) is defined by:
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Theorem 2.6 :

Let p E IN be a prime number, K be a (perfect) field sucb that Char(K) = p

and E be an el1iptic curve over K. For each rEIN., let 4>r : E ~ E(pr)

and ~r : E(pr) --+ E be the p"-power Frobenius map and its dual. Then,

the fol1owing are equivalent:

(i) E[pr] =0 for one (all) r ~ l.
(H) ~r is (purely) inseparable for one (aH) r ~ 1.
(Hi) The multiplication by p map (Pl : E --+ E is purely inseparable

and j(E) E IFr .
(iv) Endf«E) is (isomorphic ta) a maximal order in the qua.ternion

aJgebra. H~oç.

Reference: See [Sil86, theorem 3.1(a), p. 137] a.nd [Gro87, p.124] for

details.

Detlnition 2.7 :

An elliptic curve satisfying the above equivalent conditions (i)-(iv) is said ta

be supersingular, or to have Basse invariant O. Otherwise, we say that E is

ordinary, or that E has Hasse invariant 1.

Theorem 2.8 : Characterization of supersingular elliptic curves over finite

fields

(i) Let K be a finite field such that Char{K) = 2. Then, the only supersin-
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gular elliptic curve over K is y2 + y = x3.

(ii) Let p E IN\{2} be a prime number, K be a finite field such that

C har(K) = p and E be an elliptic curve over K with Weierstrass equa­

tion E : y2 = f(x), for sorne cubic polynomial f(x) E K[x] having distinct

roots in Ï(. Then,

E is supersîngular <===> the coefficient of xP-l in f(x)(p-l}/2 equals 0

Reference: See [Sii86, theorem 4.1(2), p. 140] for aIl details.

CoroUary 2.9 : Supersingular curves in Legendre form

?

Let p E IN\{2} be a prime number, m:= (p-l}/2,Hp (t):= E~o (7)-ti , K

he a finite field such that Char(K) = p, À E K\{O, I} and

E : y2 = x(x - 1)(z - -X), an elliptic curve in the Legendre form over K.

Theo,

E is supersingular <===> Hp(À} =0

Proof By part (ii) of above theorem,

E is supersingular <===> the coefficient of xP-l in (x(x - 1)(z - À)(p-l)/2

equals zero

<===> the coefficient of x2m in (x(x - I)(x - À»m
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equals zero

<==> the coefficient of xm in (x - l)m(x - À)m

equals zero

<==> the coefficient of xm in

equals zero

<==> ~~ ( m.)(_l)m-i("") (_À)i =0-..Jl_0 Tll-l J

<==> (_l)m . E;~o (7)2 Ài = 0

<==> (_l)m . Hp(À) = 0

<==> Hp(À) =0

o

Example 2.10 : N =p = Il

Hence, m =5 and

Hu(t) - tS + 25ft + lOOt3 + lOOt2 + 25t + 1

_ t5 + 3t" + t3 + t2 + 3t + 1 (mod Il)

_ (t2
- t + l)(t + 1)(t - 2)(t + 5) (mod Il)

Bence, the only supersingular j-invariants in characteristic Il are j = 0 and

i = 1 = 1728.
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2.2 Number of supersingular elliptic curves
in characteristic p

Theorem 2.11 (Igusa):

Number of supersingular elliptic curves in characteristic p

Let p E IN he a prime number and h be the number (up to isomorphism) of

supersingular elliptic curves in characteristic p. Then,

{
Lf'2J if p == l(mod 12)

h = LITJ +1 if p = 2,3 or p == 5, 7(mod 12)
LËJ +2 if p == 11(mod 12)

Reference: Oddly enough, when Deuring first conjectured this result, he

thought that a direct computation of the number of supersingular invariant

of characteristic p was nicht leicht 1. In 1958, Jun-Ichi Igusa took up the

challenge: the key was indeed ta notice that the Hasse invariant satisfies a

differential equation of the Gauss-Legendre type. The result? The whole

article containing the proof [Igu58] is only two pages long! It is still the

same proof that one can read in today's litterature, for example in (Sil86,

theorem 4.1(c), p. 140-141].

Example 2.12 : p = Il

There are, up to îsomorphism, two supersingular elliptic curves in charac­

teristic p.

lNot easy at am



36 CHAPTER 2. ELLIPTIC CURVES AND MODULAR FORMS

Remark: It is on purpose that we used the letter ~h' in the above pro­

position just as we used it for the class number of a quaternion algebra.

It is not ambiguous. since a quick glance at the Eichler's class number

formula for Hp,~ (page 24) reveals that they are equaH We thus obtain

the fol1owing very important corollary:

Corollary 2.13 (Deuring): Quaternion algebras vs elliptic curves (Part

II)

Let p E IN he a prime number, hE be the number (up to isomorphism) of

supersingular elliptic curves in characteristic p and hQ be the class number

of Hp,x' Then, hE = hQ•

Remark: This is the second time that we establish a connection between

the seemingly unrelated quaternion algebras and el1iptic curves, We recall

that the first occurence was when we gave the equivalent definitions of a

supersingular elliptic curve E on page 32: we then ha<! that "End(E) is a

maximal order in Hp,oc". This time, however, the affirmation is as strong as

it is surprising. For the matter of being impressed, let's hoId our breath a

Little more as there is still more (thrill) to come...

The main consequence of this is of course to be able ta use quaternion

algebras to derive properties of elliptic curves, just as we are used to do with

modular forms. We must therefore aIways keep those relations in mind as

they will he a true helping hand Later on.
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2.3 Supersingular points
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Throughout the section, let p E IN he a prime number, lVI E (Nt he such

that p INI and N := pNl .

Definition 2..14 :

Let E (respectively E') be an elliptic curve over IFp containing a cyclic

suhgroup C (respectively C') of order Nl . The two couples (E,C) and

(E' , C') are said to be equivalent if 34> : E --+ E', <p IFp-isomorphism such

that f/J(C) =C'.

Definition 2..15 :

Let E be a supersingular elliptic curve over IFp and C he a fixed a cyclic

suhgroup of order N1• Let S denote the equivalence class (Ë,ë) of (E,C)

under the above equivalence relation. Theo, S is said to be a supersingular

point of Xo(N 1) in characteristic p.

Definition 2..16 :

Let S:= {SI Sis a supersingular point of Xo(Nt} in characteristic pl.

Definition 2.17 :

Let MN := EBsEs ll[S).

The set S just defined will play a crucial roLe throughout our study. Let '5
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first draw our attention ta ISI, the cardinality of S. In order to count its ele­

ments, we first need ta know the number of (non isomorphic) supersingular

elliptic curves over IFp : this is indeed Igusa's theorem (section 2.2 00 page

35). Then, for each ofthese curves, we must know aIl of its cyclic subgroups

of order NI (recall that we already koow their number by the ~structure

of the torsion subgroup' lemma (section 2.1 on page 30)). Finally, it only

remains ta identify among aIl couples (E, C) round the ones that are not

equivalent (in the sense defined above). One then gets the rather surprising

result:

Lemma 2.18 : Cardinality of S

Let h(N) he the class number of an arder 0 of level N in Hp,x.

Then, ISI = h(N).

Example 2.19 : N = p = Il

In this case, Nl = 1 (50 our cyclic subgroups have arder one). Therefore, 181
is in this particular case equal ta the number of supersingular elliptic curves

over IFp • So, by a previous example (section 2.2 on page 35), we get ISI = 2.

Definition 2.20 :

Let SES be given. Theo, the group of IFp-endomorphisms (respectively Fp

-automorphisms) of S is denoted by End{S) (respectively Aut{S)).
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Definition 2.21 :

For SES, we let 0:5 := IAU;(S>I •
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Lemma 2.22: Let S = (Ë, ë) E S be given. Then, in all cases, O:s E IN·

and O:s ~ 12. Moreover, if p :/= 2,3, we have Qs ~ 3.

Proof We surely have: Aut(S) ç Aut(E) => IAut(S)I ~ IAut(E)I => O:s ~

IAu~(E}I. But by the theorem on the value of IAut(E)1 (section 2.1 on page

31), we ha.ve that IAut(E)I is always even, that 2 ~ IAut(E)I ~ 24 in aU

eases and that IAut(E)1 ~ 6 if Char(IFp ) :/= 2,3.

Renee, as E IN· , O:s ~ 12 in all cases and as ~ 3 if p :/= 2,3, as wanted.

o

This lemma allows us ta define the following inner product on MN:

Definition 2.23 :

Let E xs[S] E MN and E ys[Sl E MN be given. We define the following
SES SES

inner product on MN:

/ L xs[S], E ys[SD) := L(as' xs' Ys)
\SES SeS SeS

Definition 2.24 :
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Let 8 E S be given. Define Eu := E l[8} and M~ := EiJf.L (That is,
Ses a.

M~ is the orthogonal complement of Ei6 with respect to the inner product

< .~ . > on MN).

Remark: A straight computation yields that

lv[~ ={L xs(8] E NIN IL Xs = o}
SeS SeS

2.4 Hecke and Atkin-Lehner operators

Definition 2.25 :

Let n E IN· be such that p ln. For each S := (Ë, ë) ES,

let C := {en ~ EIICn\= n and en nC= {O}} and

Tn : S ~ MN
S:=(Ë,ë) ~ Tn(8):= E (E/Cn,(C+Cn)/Cn)

CnEC

Definition 2.26 :

Let
Wp : S

S:= (Ë,ë)
--+S
~ Wp(S):= (-EP, -Cp)
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Then, we define the Atkin-Lehner involution Wp on MN by:

Wp : MN ~ MN

~ xs[S] ~ Wp ( E Xs[S]) := E Xs [Wp(S)]
SES SES SES
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Definition 2.27 :

Let q E IN· be such that qlN1 and (q, N1/q) = 1 and let q' := N1/q. We

then define Wq by:

Wq: S
S := (Ë,ë)

--+8
~ Wq(S):= (E/q'C, (E[q} + C)/q'C)

Then, we define the Atkin-Lehner involution W q on MN by:

Wq: MN --+ MN

~ xs[S] ~ Wq ( E xs[Sl) := L xs[Wq(S)}
SES SES SES

The operators 7:a 's, Wq 's and Wp possess many useful properties that

are easy consequences of their definitions.

Lemma 2.28 : Basic properties of Hecke and Atkin-Lehner operators
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(i) W p is an involution
(ii) Every Wq is an involution
(iii) The set of 7;.'s for which (n, N) = 1 together with the Wq's

generates a commutative semigroup of hermitian operators
(with respect to the inner product < ., . ».

(iv) \:In, mEIN- such that p ln and p lm,~ 0 T:n = Tm 0 ~

(v) \:In, mE IN· such that p ln,p lm and (n, m) = 1, Tmn = Tm 0 T;"
(vi) \:Iq, rEIN- such that qlNl , rlNl and (q, Nt/q) = (r, N1/r) =

(q, r) =1, Wqr =Wq 0 Wr

(vii) \:Id E IN- such that dlNl , 3 tPd : MN ---+ MN/d, 4>d morphism
such that 4Jd (E, è)) = (Ê, dG).

(viii) if> satisfies the following properties:
• lin E 'N- such that (n, N) = 1, 4Jd commutes with the
~'s.

• lIq E IN- such that qlNb q 1~ and (q, Nl/q) = 1,4Jd
commutes with the Wq's.
• "Vd E IN- such that dlNt and (d, NI/d) = 1,7d4Jd = 4>d(7j + Wcl)

2.5 Oldforms and newforms

We will now briefly introduce the notions of ~oldforms' ans ·newforms' due

to Atkin and Lehner. A complete exposition on the subject can be round in

[AL70] or in [Kna.92, chapter IX, section 7, p. 283]. We will then relate the

Hecke spaces MN and S2(ro(N», which will tum out to be a key result for

the graph method.

Definition 2.29 :

We let R:= {z E IHI[Re(z)1 ~ 1/2 and [z[ ~ l}.
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Lemma 2.30 : Fundamental domain in IH for SL2(Z)

R is a fundamental domain for the action of SL2 (71.) in IH.

Reference: {Kna92, theorem 8.5, p. 230].

Definition 2.31 :
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Let k E IN' and f, 9 E Sk be given. Then, we define the Petersson inner

product < .,. >p by:

i - kdxdy< {,g >p:= {(z)g(z) y -2
R Y

Definition 2.32 :

Let Tl, T2 E IN·, N E IN' be such that rlT21N and let f(z) be a.n eigen­

form for rO(r~:r). Theo, it is known that f(r2z) is an eigenform for ro(N)

with the same eigenvalues. For this reason, we caU f(r'lz) an old/orm.

Let Skld(foeN)) denote the linear span of the oldform and SketU(ro(N)) :=

(Sk'd(ro(N))).l. (That is, ~UI(ro(N)) is the orthogonal complement of

Skld(fo(N)) with respect to the Petersson inner product < .,. >p). The

eigenform belonging to Sk (ro(N) are said to he newJorms.

We now state an important and deep result that establishes a. strong

connexion between M1r and 82(r0(N) ).

Theorem 2.33 : An isomorphism with S'l(fo(N))

Let R2(N) ç S2(ro(N)) he the suhspace generated hy the newforms of level
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N and the oldforms arising from cusp forms of weight 2 and level pd, for dl Nt.

Then 3 'r/J : MXr ~ ( --+ R2(N),1/J isomorphism such that 'r/J is compatible

with the action of Hecke operators.

Reference: See [AL70] for details.

2.6 Brandt matrices and Hecke operators

The goal of this section, as the title indicates, is to establish a link between

Brandt matrices and Hecke operators. For this purpose, we first need the

fol1owing settings:

As usual, let p E IN be a prime number, Nt E IN- be such that p ANI

and N := pNl • Also, let n E IN-, h(N) := 181, {St, 82" •• , Sh(Nl} := Sand

S := 51. Choose a supersingular elliptic curve E over IFp containing a cyclic

subgroup C of order Nt such that S = (Ë, ë).

One of the equivalent conditions for E to be said supersingular (see

section 2.1 on page 32, statement (iv)) is that Endj: (E) is (isomorphic
p

to) a maximal order in the quaternion algebra. Hp,oc. Then, the ring of

endomorphisms End(S) of S is an Eichler order 0 of Ievel N in Hp,oc.

Now, in order to construct the nth Brandt matrix B(n), we have to find
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representatives of each of the left ideal classes of o. So, for 1 ~ i ~ h(N),

let li := Ham(Si, S), Ji := Ham(S, Si) and Oi := End(Si).

Theorem 2.34 : Quaternion Algebras vs Elliptic Curve (Part III)

Let p E IN be a prime number, NI E IN· he such that p INl and N:= pNI •

Then, with above notation,

V n E IN"~ = B(n)T

(where the nth Hecke operator ~ is here viewed as a matrix acting on MN).

Proof

We have:

Ole li) dei {Tl E HI1Jli ç li}

dei {Tl E HI1J 0 4> E Hom(Si, S), V4> E Hom(Sj, S)}

- {." E HI17 : S --+ St 17 homomorphism}

~ End(S)

dei 0

Henee, we have that lIt .• . lh are the desired representatives of the left ideal

classes of o. Similarly,
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de! {11 E "lq, 0 Tl E Hom(Si, S), 'Vq, E Hom(S" S)}

- {Tl E "111 :Si ---+ Si, Tl homomorphism}

deI End(Si)

We also have:

lë- 1
de! {17 E Hlli17li ç li}

- {17 E "117 :S ---+ Si, 11 homomorphism}

def
Hom(S,Si)

Collecting aIl the above informations yields tha.t the general term bij (n) of

the nth Brandt matrix is indeed the number of isogenies from Si to Sj such

that no two of them differs only by an automorphism of Sj. Finally, we have

recovered the matrix of the nth Hecke operator, as wanted.

o

Example 2.35 : N = 11

We recall that we already have computed the first few Brandt matrices when

N =p = 11 (see section 1.6 on page 28).
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Hence, in the light of the above theorem, we also know the corresponding

matrices of Hecke operators:

1i=[~ n.72=D~] .72=(; n.74=[~~] .75=[i ~]
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Chapter 3

Graph Method

In this chapter, we final1y arrive to the heart of our subject: aIl the various

results which seemed unrelated until now will be put together with a few

more specifie complements in order to give a global perspective on our puzzle.

3.1 A procedure to compute the first an 's

First, we need to recall the fol1owing result which will be of main importance

for the method we are about to explain.

Theorem 3.1 : Properties of j(T)

The j-function j(T) has the following properties:

49
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• j(r) is holomorphie on IH.

• j(T) is a modular fonction of weight o.
• The Fourier series of j(r) has the forro:

1 x
j(r) = - + 744 + L cnqn, where en E 7l. for aIl n E IN'.

q n=l

Reference: See [Kna92, corollary 8.2, p. 226-227] for the praof.

We first reduce to the case when Nl = 1. That is, N = p, a prime

number. Let f(q) := E anqR (where q := e211'i'T) be a. normalized newform of

weight 2 and level N, j = j(r) be the carresponding j-function and K ç \1:

be the extension of () generated by the an 's.

We now explain a procedure to compute the first coefficients an 's of

f(q). By the ~isomorphism with S2(ro(N))' theorem (section 2.5 on page

43) , there is an element E xs[5] E Mg, ~ K such that E xs[8] is mapped
SES SES

ta f(q).

On the other hand, we know by above theorem that for each supersingular

point S = (E, C) E S, the associated j-function is = is(r) has the farm:

is(r) = ~ + 744 + f: enqR, where Cn E 71. for al1 n E IN·.
q n=l
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Then, the following congruence of Laurent series holds:

( E xsis) f(q)~=E xs~ mod p
,SES . q SES J Js

for sorne prime ideal p of K lying over p.

51

This congruence really is the key point that sometimes allows us to

find the first few coefficients an of f(q). For instance, suppose that f(q)

corresponds to a modular curve of prime conductor LV. Then, all coefficients

an of f(q) lies in 7l.. Therefore, K =~,p = p and so E xs[SI E Mg, ® ~
SES

and aIl Xs are in 7l.. In this case, we always have that E xsis ::F O. This
SeS

impIies that we know aIl the an 's mod p.

But, for every prime r such that r < Il' /16, we have that 2vr < p/2

and so by virtue of the cIassical Hasse's inequality l , we have that larl <

2vr < p/2. Bence, we simultaneously know the value of ar mod p and that

jarl < p/2. So, the exact valne of a,. is known for every prime r sncb

that r < p2/16.

3.2 Construction of S

The procedure explained in this section will fully justify the appellation

"graph method". We will indeed construct a tree (in the sense of the graph

lSee for example [Kna92. theorem 10.5.. p. 296].
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theory): the vertices of our graph being the supersingular points 8 E S and

the edges, the 2-isogenies between them.

As in botanics, the first step in order for a tree to grow is to find a seed:

in our case, a supersingular point 8 1• Then, we search for the (at most three)

vertices Si directly connected to 51- Next, we take back each Si found and

again compute the supersingular points connected to Si hy a 2-isogeny. We

repeat this step with each new vertex found until we have aIl the points in

S. We recaU that we have seen (in section 2.3 on page 38) that ISI equals

the c1a.ss number h(N) of sorne order 0 of level N in Hp.oc, for which we

already have an explicit fonnula (See section 1.5 on page 26).

Therefore, we know right from the start how many vertices our tree

must have. So, the ahove procedure contains a finite oumher of steps and

terminates as soon as the h(N) vertices are found.

Let us first recaIl a useful special case of the dass numher formula that

will he of great helplater 00.

Theorem 3.2 (Baker, Heegner and Stark):

Imaginary quadratic fields having c1a.ss oumber one

Let d E IN- he squarefree and h be the c1ass oumber of Q(J -d). Then,

h = l {:::::? d E {l, 2,3, 7, Il, 19,43,67, 163}
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Reference: Consult [8T87, theorem 10.5, p. 194) for a complete proof (as

well as for interesting related results and remarks).

We will also need the fol1owing result from basic algebraic number theory:

Theorem 3.3 : Inert prirnes in quadratic fields

Let p E IN be prime and d E 7l be squarefree. Then,

(i) 2 is inert in ~(J-dl
<==>

d =3 (mod8)

(H) if p i= 2, p is inert in ~(J-dl
<==>

p ld & (-pd) = -1

where (~) is the Legendre symbol.

Reference: This is a special case of [Mar77, theorem 25, p. 74).

Now, ta simplify the exposition of the method, we will here suppose that

N is odd, that an explicit model of the curve Xo(Nt} is known as weIl as

the action of the Hecke operator 72 on that specifie model.

Step 1: The seed, SI

Our goal here is to find any supersingular point SI in S. By the
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equivalent definition (iii) of a supersingular elliptic curve, we know

that there are all defined over IFpz. Moreover, there is always at

least one lying in IFp : so one always has the possibility of

enumerating ail the elements of IFp until one hits a supersingular

value. However, this way is obviously time consuming since

there are few (aroud JP) such points. Therefore, one better

consider the special case he is working on in order to find

shortcuts.

For instance, suppose that NI = 1. That is, N = p is prime.

If: 3 d E {1,2,3, 7, Il, 19,43,67, 163} such that p is

is inert in «}(V-d).

Then: In this situation, we take as basepoint the j-invariant

of the elliptic curve with complex multiplication by

the ring of integers of «}(V-d).

EIse: Instead of working with quadratic imaginary fields

having c1ass number one, the second best thing to do

is to consider those who have a smaIl number of

classes. For them, we again consider the elliptic

curves with complex multiplication by their ring of

integers as well as the minimal polynomials of the

associated j-invariant. Then, after having solved

the polynomial equation in IFPl, we are back to the

above Lthen' case.
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Finally, in one way or the other, one can always find a super­

singular point S1 to start with.

Step II: The first branches

Since we assumed at the very beginning that the action of 72 on

Xo(Nd was known, it suffices to solve a cubic polynomial over

IFp% in order to know the supersingular points linked to S1 by

a 2-isogeny. There are, of course, at most three of them.

Remark : lt sometimes happens that we don't even have to do

that. For example, suppose again that N1 = 1 and that N =p =
-l(mod 6). In this case, pis always inert in 4)(N,50 that

j = 0 can he taken as our basepoint. In that case, we know that

aIl three 2-isogenies map SI to the curve 8 2 with complex multi­

plication by 7l[J=3), for which j = 243353 = 54000.

Step III: Ramiftcations

For each new Si found in the previous step, we repeat Step H.

Except that this time, we know that one of the three 2..isoge­

nies is the dual of the 2-isogeny from S1 to Si that we already

have encountered in the last step. Bence, in the worst case, we

don't have to solve a cubic, but rather a quadratic polynomial

over IFp%.

Again, apply Step II each time a new vertex is computed, until

we end up having all points.
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Remark: Now that the method is explained, it only remains to convince

ourselves that all supersîngular points are indeed reached by this process.

To do 50, it is enough to show that the graph of 72 (and more generally

~) is connex. But Jean-Pierre Serre noticed tbat the number of connex

components of the graph of 72 is smaller or equal to the multiplicity of the

eigenvalue a2 =3 of 72.

Indeed, far each connex camponent n ç S of the graph of 7;., let Vn :=

Eseo(S} E .NIN.

Then, we apply 72 to Vn and get 72(vn) = Esen Às[S], for sorne Às E 7l..

Remark that the sum stays over n (and not over S), since n is connex. We

then compute the value of a given Às:

Às deI 1{S' E SI there is a 2-isogeny cp : S'~ S} 1

But by the existence of the dual isogeny, we get:

Às = 1{S' E Si there is a 2-isogeny 1/J : S ~ S'} 1

But we alreacly know that this last quantity equals 3 for each S. Renee, we

get that

72(vn) deI L Às[S] = L 3[S] = 3 L [S] deI 3· Vn
Sen Sen SEn

That is, 72(vn) = 3 . Vn. So, Vn is an eigenvector of 72 belonging to the

eigenvalue a2 =3.

Moreover, all the vn's (corresponding ta each connex component (}) are
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obviously independent eigenvectors. Hence, the oumher of connex compo­

nents of 72 is smaller or equal to the multiplicity of a2 = 3, as wanted.

So we only have to show that the multipliclty of a2 = 3 is one. But

the subspace 1\t[~ of NIN has codimension l, so if a2 = 3 would have a

multiplicity greater than l, we would have 3 = la:! 1 < 2V2 < 3, which is a

contradiction. FinaJIy, we have shown that 72 is connex.

Example 3.4 : N = Il

We first notice that since Il J3 and (7~) = (ïi) . (131) = (_1)5 . 1 = -1,

it follows by the theorem on primes inert in quadratic fields that Il is inert

in ~(R). Renee, we ean take our first vertex ta he Sl := (Ëlt éd, where

El Îs the supersinguJar curve with j-invariant zero Ce.g. El : y'l = x 3 + 1).

Next, we need ta find a second supersingular point. But as we noticed

earlier, the three 2-isogenies from Sl are mapped ta 82 := (Ê2, é 2) , where

Ë2 is the class of supersingular elliptie curves with eomplex multiplication

by Z[v!=3) (e.g. E2 : y2 = x3 + x), for which the j-invariant is l.

Since we already know by previous examples that 181 = 2 when N = Il, we

are already done.

Renee, the ooly supersingular j-invariants in characteristic Il are 0 and l.

We reeall that we obtained this same result with another method using the

Legendre forro (in section 2.1 in page 34).

Remark: Fina1ly, let's mention that the tree we have built not only gives
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us all the supersingular points, but aiso informations on the second Hecice

operator 12. Indeed, since the vertices were the supersingular points and the

edges, the 2-isogenies, given any SES, we can explicitely count the number

of 2-isogenies from S to S'. This way, we obtain all the entries of T" and

hence, 72 itself.



Chapter 4

Application to Strong Modular
Curves

Our general goal in this chapter is to use the graph method to obtain an

explicite equation of an el1iptic curve arising from a newform of weight 2

and prime level.

:Je

So, we are given a newform f (q) := ~ anqB, where \:In E IN-, an E Z,
n=l

having weight 2 and prime level N. Hence, f(q) corresponds to a strong

modular curve e of conductor N.

The task of detennining explicitely the coefficients of e, even if all an 's

are given, is not in general a simple matter. However, the following step-by­

step method should ease, in most cases, our task.
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The procedure that we are about to explain will rely on quite a few

results and hence, in arder to keep the exposition as fluent as possible, no

recall to the theory has been made here 1.

4.1 Construction of rf

We already know by the theorem ~An isomorphism with S2(fo(N)))' (in sec­

tion 2.5 on page 43) that f(q) corresponds to an eigenvector vI:= E xs(8]
JfES

(where VS E S, Xs E Z) of Hecke operators.

Since we already have described a procedure to compute in this case the

first an 's (see section 3 on page 49), we can take for granted that they are

known.

Moreover, the construction of S we made (1n section 3.1 on page 51) by

building a certain tree gave us simultaneously all the supersingular points

and the matrix of 12 acting on MN. Therefore, we can compute the eigenspace

\12 associated to the eigenvalue a2.

• If dim(lt2) = 1, then we stop the procedure right away and
set V := \12.

• If dim(lt2) > 1, we apply the Hecke operator 13 on lt2 to obtain \13:
• If dim(~) = 1, we are done. Set V := V3
• [f dim(V3) > 1, apply successively 14,75,76, ... , one at a time,

until a space of dimension one is found. Theo, let V he that space.

l But as usual. references are given.
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Remark: Although the search of V might theorically require a large

number of steps, in practice, however, we know that dim(V2 ) ~ 6, for all

N ~ 80 000.

Since dim(V) = 1, by construction, the basis of V consists of a single

vector, say b. Sa, V is simply all the scalar multiples of b. Among them,

there is clearly a. unique (up to sign) vector rf := E K.[S) E V such that
sES

"'. E 7l, for aIl SES and such that the K..'s are relatively prime.

4.2 Geometrie interpretation of the lis '8

Since e is defined over ~ and that ~ has class number 1, it follows (cJ. [Sil86,

corollary 8.3, p. 226]) that E possesses a minimal Weierstrass equation Ew.

Moreover, sinee E is a. strong modular curve, there is a minimal modular

parametrization <p : .I~o(N) --+ e (c.f. [Kna92, p. 392]). Then, let a :=

~€w = ±N6 be the discriminant of Ew and n := deg(<p).

Now, P. Deligne and M. Rapoport in [DR73] showed the following deep

result:

"There is a model Xo(N)/z of JYo(N) defined over 7L suck that

XO(N)/ZI its reduction modulo N, is the union of two projective

Cines Co and COQ such that:
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• Co classifies the elliptic curves in characteristic N
having the "verschiebung n

• Cx classifies the elliptic curves in characteristic N
corresponding ta inseparable isogenies.

Then, the intersection ofCo and C.x are the supersingular points. "

So, let eN be the Néron model of e (c.f. (Sil86, appendix C.15, p. 357­

360}), ÈN be its reduction modulo N and Ë7FN be the identity component of

t N • Then, t7F.v is isomorphic (over IFN2) ta the multiplicative group Gm • It

can be shown that there is an extension (J of cp ta Xo(N)/z\S, such that (J

induces (by specialization and restriction) a regular applica.tion from ex\8
to tJFN' and hence a rational function 4> : Cx ~ C~ such that its poles

and zeros belong ta E. Let A:= E "5[8} E M'j, be the divisar of 4> (it is
SeS

defined up ta sign).

Until now, we ha.ve pointed out two special elements of M~, rI and A.

In the next section, we will see that they are far from independant.

4.3 An explicit equation for e

Tagether, the fol1owing two results due to J.-F. Mestre ([Mes86]) will make

us achieve our main goal: compute the value of the coefficients of E.

Lemma 4.1 (Mestre):
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A=±rf
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Reference: The proof can be found in [MesS6, p.228-229]. It uses the

famous result (see [Rib90]) conjectured by J.-P. Serre in 1985 and shown by

K. Ribet in 1986 that implied that "Fermat 's la.st theorem would follow from

the Shimura-Taniyama- Weil conjecture".

Theorem 4.2 (Mestre):

Let E he a strong modular elliptic curve with prime conductor N and

A:= E Às (8) E k/g, be as in the above construction. Then, 3 c.l, CG E 7l.
SeS

such that:

') 3 Col c6
E·y"=x --·X--. 48 864

(i) H $ Al-2 .(log (1~;8) +b),

where H := sup (~,M
and b:= (~g~~~)3 ~ 7.74316962

(H) Let 6.' := 4:7i7! . Then,
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{
A if e is supersingular at 2

tJ.' = A or 212 • A otherwise

(iii)

(iv)

(v)

-t

C4 = (E Àsis) (mod N)
Ses

CG =-(E Àsis)
6

(mod N)
/teS

n ·6 = E ..\~ ·IAut(S)I
SeS

To efficiently use the above theorem, we use the fol1owing steps:

• First compute V, and hence r f by the method explained in section
4 on page 60. Then, use the ract that A =±rf.

• Next, obtain n (the degree of cp) by (v).
• Obtain by (i) an upper bound for C4 and C6.

• Finally, deduce the value of C4 and C6 by (H).

Remark: The congruences (iü) in above theorem can be used to reduce

the computations.

So, as wanted, we round an explicit equation of the strong modular curve

e given the corresponding newform f(q).



Conclusion

- "Les bonnes idées n'ont pas d'âge:

elles n'ont que de l'avenir"

UGood ideas are ageless: they ooly a have future". This statement cer­

tainly applies to many mathematical topies, including, as we will see, the

graph method.

We already saw that this method is very useful to find explicit equations

of strong modular eurves associated to newforms of weight 2 and prime level

N. We must say that this application is only the tirst of many more...

Conversely, we are sometimes able to show with this method that a given

elliptic curve is modular. For instance, J.-F. Mestre, in [Mes85}, was able to

demonstrate that the curve

y2 + y = x J
- 7x +6

of conductor 5 077 was indeed modular. Although this curve seems quite
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ordinary, it is now known, from the work of J. E. Cremona ([Cre97]), ta

be the least modular curve2 to have a Mordell-Weil group of rank strictly

greater than 2.

The classification of quadratic imaginary fields having class number one

(3.2 on page 52) has been really useful in developping the graph method. In

return, the classification of quadratic imaginary fields having class number

three follows from that same method:

Theorem 4.3 (Mestre):

lmaginary quadratic fields having c1ass number three

Let d E IN- be squarefree and h be the class number of ~(v'-d). Theo,

h=3

d E {23,31,59,83, 107, 139,211,283,307,331,379,499,547,643,883,907}

Reference: [Mes86, theorem 4, p. 232]

Another utility ofthis method exposed in [Mes86, Section 4, p.232-237] is

to test Serre's conjecture. Although it is known ta imply Shimura-Taniyama­

Weil, no one has yet been able to prove or disprove it.

2w hen ordering elliptie C1UVe5 by increasing conductors
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Finally, even if this list of examples is not exhaustive, we certainly see

that applications to this method are as numerous as diversified.

There is however a last one that we honestly have to mention: the recent

method developped by M. Bertolini and H. Darmon to find rational points

on modular curves gave yet a new life to the graph method...
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List of Notation

P
IN
7l.
~

IR
IR+
«:
IFIl"
~p
T
ISI
Hom(A,B)
End(A)
Aut(A)
K
Ï(

Char(K)
Mn(R)
SLn(R)
MI.:
Sk
MI.:(ro(N))
SI.: (ro(N))
H
11.

Prime number
Natural numbers: {D,l, 2, ...}
Rationals integers
Rationals numbers
Real numbers
Nonnegative real numbers
Complex numbers
Field of pn elements
Field of p-adic numbers
Hecke algebra
Number of elements in the set S
{4> : A --+ BI 4> homomorphism}
{4> : A --+ AI <1> endomorphism}
{4> : A --+ AI <1> automorphism}
Field
A fixed algebraic closure of K
Characteristic of K
Ring of n x n matrices over the ring R
{A E Mn(R)ldet(A) = i}
Vector space of modular forros or weight k
Subspace of cusp forms of weight k
Space of modular forms of weight k and level N
Space of cusp forms of weight k and level N
Quaternion algebra over K
Hamilton's Quaternions
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Tr(h)
N(h)
1
o
E
h
Hp. x

(~)
IH
IH·
H(n)

L~J
h
E
S
MN
R
< ',' >p

(Reduced) Trace of h
(Reduced) norm of h
Ideal of H
Order of H
Eichler order of H
Class number of H
The quaternion algebra over Q such that
Ram(Hp•XJ ) = {p, oc}
Legendre symbol
Upper halE plane
Extended upper half plane
Class of holomorphie functions in fl
Floor function
Conjugate h
Elliptic curve over K
Supersingular point of J'Y'o( NI) in characteristic p
esEs Z[8]
Fundamental domain in IH for SL2(Z)
Petersson inner product

6
6
9
10
Il
24

20

25
6

37
37
42
43
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