On the Controllability and Observability of
Flexible Beams Under Rigid-Body Motion

by

Kyung Sang Cho

B. Eng. (Sung Ky un Kwan Univerisity, Seoul). 1988

Department of Mechanical Engineering
McGill University, Montreal

("anada

A thesis submitted to the Faculty of Gradnate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Engineering

Nugust 5. 199]
© Kyung Sang Cho




o

Abstract

s thesis considers the transverse vibrational control of a single flexible beam under-
going farge planar rotational motion. The bean is modelled nsing a cubie spline technique,
which approximates the lineatly elastic, continuons beam with a finite number of nodal
points. 11 is shown that kinetic boundary conditions such as those associated with tip loads
can be induded in the cubic spline model. This spatial discretization method provides a
uselul linear relationship between displacement and curvature, which allows the use of strain
pages 1o measure curvature along the beam. An optimal control strategy is used to sup-
press the transverse vibirations while forcing the end tip to follow a prescribed trajectory.
A Kalman hlter is employed to optimally estimate state variables which are nov obtained
through direct measurement. These state variables can be classified into two groups: 1)
state vatiables corresponding to the time rate of change of curvature, which cannot he tnea-
stred using anv existing sensor and 2) state variables associated with curvature at certain
nodal points which, by having their values estimated rather than directly measured, results
in a smaller number of sensors needed o contiol the entire beam, thereby reducing the re-
quired data throughput capability and cost of the contiol hardware. Although. in principle,
the entite svsten has been proven to he state controllable and ohservable using as httle as
one sensot, numerical il conditioning ol the controllability and observability matrices can
prevent the Kalman filter from teconstincting the state estimates to a required accuracy.
Thus, numerical viability of this control scheme is demonstrated through extensive simula-
tion studies and guidelines for the number and location of sensors to achieve good numerical
conclitioning are given. These results show that the proposed approach is very suitable for
real time control of transverse vibrations of the flexible beam undergoing large rotational

motion at high speed.
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Résumé

Dans ce mémoire Fautenr, étudie lo commande de la vibration transyersale d'une poutie
flexible. en piésence de grands mouvements de rotation dans wn plan - La poutie est cons
truite selon wne technique de splines cubigues, Taquelle sert a obtenn une approvimation
d'une poutre continue. lin¢airement élestique. avant un nombre i de points nodaun - On
démontre que les conditions cinétiques de frontiere, telles gne celles relices an fant d avon
une masse a une extrémité, peuvent so touver dans le modele de sphine culngue Cette
méthode de disciétisation spatiale procure une 1elation lindae utile entre le déplacement
et la courbure, permettant ainsi Nutilisation de jauges extensométriques pour mesmer la
courbure le long de la poutre. On utilise une stratégie de commande optimale ponr 1épamer
les vibrations transversales. pendant que 'on force extiémité a snivie une tiajectone im
posée. On emploie un filtre de Kalman pour une estimation optimale des vatiables déiat,
laquelle n'est pas obtenue par mesurage direct. Ces vanables penvent ¢tie classées en deny
groupes: 1) variables correspondant a la vitesse de changement de la conthure, laguelle ne
peut ¢tre mesutée actuellement par aucun capteur 2) vatiables assocides i la combime a
certains points nodaux, dont la valeur étant estimée au lien d'étre meswée dinectement, tat
quun tres petit nombre de capteurs est nécessaire pour commander totalement la pontre
(e fait a pour conséquence de réduire la quantité d'information teqmse et I cont dua matériel
de commande. Quoique, en principe, tout le systeme a démontié qu'il peat ¢tre contiolable
et observable en nutilisant qu'un seul capteur. la mauvaise condition numéngne des matri
ces de controlabilité et d'observabilité peuvent empécher le filtie de Kalman de tétablin les
estimations d'état au degié de précision requise. Ainsic la viabilité numdérique de ce plan
de commande est démontrée par des nombienses ¢tudes de simulation, et des idications
sont donndées concernant le nombre et 'emplacement des capteurs pom attemdre de honnes
conditions numériques. Ces résultats démontrent que Papprochie proposée convient ties bien
pour la commande en temps réel des vibrations transversales dhune poutie fesible sonnnse

a de grands mouvements de rotation a vitesse élevée.
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Chapter 1

Introduction

1.1 Motivation

Duning the past decade, there nave bheen extensive studies on the modelling and contiol ol
lignt-weight 1obotic manipulators. to which conventional rigia-body models ate no longer
applicable. Light-weight manipulators offer advantages such as higher-speed performance.
higher pavioad-to-weight 1atio capacity, and lower energy consumption (Book and Majette
1983). Light-weight 1ohotic mampulators may be required to perform such specialized tasks
as space-structure construction and satellite manewvering. However. such light-weight robots
have verv light natural damping and non-negligible link flexibility, 1esulting in vibration and
bending effects that must be controlled to ensmie adequate pettormance. The developmient
of a proper control strategy tequites a suitable finite-dimensional model which takes into
account the dy nannes of link flexibility and, at the same time. makes on-line control practical.
Athough a namber of approaches exist to control lightweight robotic manipulators. thes
cemplov complex dynamic modelling procednres which may not be economical te implement

to suppress vibration and hending effects in real-time.

Fhe tesearch teported in this study is motivated by the need to develop a suitable inite-
dimensional dy namic model. whreh can be used to control a flexible beam in teal-time. under

large ngid-body motions Using the optimal contiol scheme. the Kalman filter is employved



to teconstinet state vattables with the smallest possible miniber ol incasmenents

1.2 Previous Work

In theorve the stinctural members ol hght-werght tobotic mampitators are distodmted

patameter or continuous svstems whieh requite an mhimite mnmber ol eenetalized coondinates
to completely describe then vibrational hehavior, s therelore dithoult to desien a contiolley
for this mhmte-dimensional svstem. Vations approaches have been proposed to matheniat

icallv: model and approximate this distiibuted-parameter ssstem with a linte dimensional
model. These approaches can be celassified into two ty pes: the finst s the normal mode anal

vais which negleets higher vibiration modes and nses onhv the hist few dommant modes, the
second is the hnite-clement method. which discretizes the continuons system mto a hnrte sel
of elements on which the displacement field 1s assumed to take on a sinple fonm. usnally as
multivatiate polynomial of a low degiee (up to thiee) In addition. recent studies (Dancose
Angeles and Hori 1939) employed the cubic-spline spatial discretization method  Fach ol

them are described below in some detail.

1.2.1 The Normal-Mode Analysis

Modelling of the beam is often achieved by the notmal-mode analvas whereln the vibration
of the heam is expressed as a finite sum of the principal modes obtained by solving eigenhine

tions of the system. while taking into consideration the boundary conditions Contiol is then
accomplished nsing state-space approaches including the fitst lew dominant vibration modes
(Cannon and Schmitz 198 1: Sakawa, Matsuno and Fukushima 19837, Book and Majette 1983,
Gordon: Benati and Moiro 1988). This method is computationalls elhiaent but has o lew
himitations for modelling and control. First. the normal-mode anals<is requites an accnate
mathematical model to ensure successiul non-collocated contiol. wheie the posttion ol one
end is to he seused and precisels positioned by the application of the torque at the hmh of

the beam. Howevero the exact mode shape of any phyvaical svsteny s diflionlt to deternnme
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i practice Secondv. the normal-mode analvsis determines the natural modes of a uniform
bean by finding the cigenfunctions of the governing partial ditferential equation. While this
technigue is apphcable to wimtorm beams, it s not suitable for nonuniform heams such as
those present in robotic manipulator links. Motcover, the measurement of certain state vari-
ables often tequires the use of a vision svstem which. although suitable for end point-tracking
control. is too slow at present for transverse vibiation control of the entite beam. Fially.
this end-point sensing gives non-minitum phase problems. resulting in unstable zeros. due
to the non-collocated sensors and actuators, making it unsuitable for svstems undergoing
large rigid bhody motions (Shehuka and Goldenberg 1989; Totfs. Swevers and De Schutter
1991) In fact, in the work reported by Cannon and Schmitz (1981), the flexible beam is

limited to rotate hotizontally from 0° to only 6° about its fixed end.

1.2.2 The Finite-Element Method

The other commonly used approach is the finite-clemient method, which discretizes the con-
tinuons beam by dividing the length of the heam into a finite set of smaller beams. Using
this method, governing equations ol the flexible heam are derived as a set of second-order
ordinary differential equations, 1ather than as a set of partial differential equations. This
method allows the modelling of beams which have non-homogeneous matetial properties,
non-uniform c1oss sections, and a vanety of boundary conditions such as hub and tip loads
(Bavo 1988; Menq and Chen 1988; Giovagnoni and Rossi 1989). However. the use of fi-
nite element methods generally produces a large system of ordinary differential equations to
model the systeny with sullicient hidelity, thereby requiring more expensive computational
and control hardware. Moreover. the use of a large number of equations in the associated
state-space modelling inevitably intioduces non-negligible numerical etiors and prevents one
from using a high sampling tate tor digital contiol. A lugh sampling rate is 1equited to ensure
that the sampling hequenay is larger than at least twice the highest 1esonant frequency of
ihe systemy i otder to avord unaceeptable sensitivity to plant disturbances. This technique
is suitable, therefore. only for open-loop simulation and may not be adequate for closed

loop control design. This method also often uses end-point sensing, which is unsuitable lor
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control of flexible beams undergoing large tigid-hody motions due to theit non niimnm

phase chatacteristics. 1t s, therefore, worthwhile examming an alterative approximation

techniques. hike the one based on cubice splines, which makes on-hine control feasible

1.2.3 The Cubic-Spline Technique

A new approach to the modetling of a flexible beam has been introduced by Dancose aned
et al. (1989). This method emplovs a cubic-spline technique that approximates the elastica
ol the continuous heam with a cubic spline passing through vanous nodal pomts along the
beam. It has been shown that this spatial discretization procedure allows one to model
nonuniform and nonsyimmetric heams with high accuracy. Mso. this method provides a very
useful linear relationship between displacement and curvature. thereby allowing, the use ol
accurate and fast strain gages to inler transverse displacement measmwements, This is i
contrast to other techniques using a computationally expensive vision system to measwe

end-tip displacement in three-dimensional space.

However, this method does not consider a variety of houndairy conditions which are
commonly present in tobots, such as with tip loads. Moreover. the control of the flexible
beam is obtained using an optimal regulator, where a control faw is used to diive the state 1o
zero for the given non-zero initial condition. Very rapid decay can he ol ained at the expense
of large contiol energy. increasing closed-loop bandwidth and. hence increasing sensitivity
to noise (Kailath 1980). Thus. it may not be applicable to the real-time contiol of the
flexible beam, which requires good transient response to the reference mput. Fuithermore,
the Kalman filter is designed to 1econstruct the entite state using all possible measmrements,
i.e., curvatures at each ol the nodal points along the heam and hub rotational angle. However.
it 1s not economical to use all accessible measuements lor suppressing vibration of the fiesible

beam. since this tequires a high data thioughput capability.




g,

S

1.3 Objectives

lu this thesis. the cubic-spline technique is extended to include the case with a tip mass.
while incorporating the associated boundary conditions. An optimal controller, rathet than
a x:-gnl.nm. is used to suppress the transverse vibration of the entire beam while forcing the
end tip to follow a prescribed trajectory. Furthermone, this scheme allows the 1eference hub
angle ax well as its celocity profile to be specified for a smooth transient response. Using
the Kalman filter. an investigation is also conducted 10 assess the feasibility of a reduced
number ol measurements at a selected number ol nodal points. Morveover. the problem of
sensing, which includes the number and location of the sensors and the selection of the
sampling rate, are considered. Finally, the flexible beam. carrving a tip mass and rotating
horizontally rom 0° to 1830° about its fixed end. is simulated to illustrate the effectiveness ol
the proposed control scheme. This is compaired with a simulation of an uncontrolled heam

to demonstrate the capability of the control system in suppressing transverse vibiations.

1.3.1 Extended Cubic-Spline Technique

In order to obtain the proper dynamic model of a single link flexible beam performing 1e-
alistic tasks, the careful consideration of associated houndary conditions must be carried
out. One very impottant example is that of a mass located at the end of the heam, which
is considered in detail in this thesis. Typical occurrences of end masses are manipulator
pavloads and aciuators located at the end of each link. Using Hamilton's principle, the
poverning partial differential equation of the damped-free beam, along with two geometric
houndary conditions and two kinetic boundary conditions, ate obtained. The kinetic bound-
ary conditions correspond to the shear force and bending moment caused by the tip mass.
The bending moment can usually be neglected due to the low moment of inettia of the tip
mass. The shear foree can be computed using the tip aceeleration, obtained by substituting
the cubie spline approximation into the governing partial differential equation. Theiefore,
the shear foree hboundary condition and the two geometric boundary conditions can then he

included in the formulation of the lincar relationship between displacement and curvature,

~
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so that the energy equations ol the beam can be determined from the cabic sphine eguations,

1.3.2 Control Capability

The dvnamic model obtained by applyving the Euler-Lagrange method is cast into a continuorns
time. constant-coefhdient. state-space deseription to design an optimal contiol sustem e
corresponding step-intvariant. discrete-time model is then obtained under the assumption
that the contiol signal is applied to the plant through a zeto-order hold Phe Walman hilter,
which is optimal in the sense that the variance of the estimation evror is mmmuzed (Frankhn,
Powell and Workman 1990: Astiom and Wittenmark 1981), is designed to obtam the osh

mate of the state variables that cannot be directly obtained thiough measmements  In
addition 1o estimating the time rate of change of curvature, it mav be henehcral 1o estimate
the curvature also at certain nodal points, rather than measuring it divectiv, thereby ehing

nating the need to use control hardware with very high data thronghput capainlity - "Fhus,
it is of practical importance to find the smallest possible number of mcasnrements which
allows the state to be estimated in real-time with a desired accuracy, This teconstinetion
procedure requires that the system be completely state-observable and controtlable to ensure
the uniqueness of a feedback gain vector. Although state-obsetvability and contiollabnlity
have already been theoretically proven in this situation (Balas 1978; Hughes and Shelton
1980). the Kalman filter can fail to allocate the steady-state observer gam matns due to
the numerical ill-conditioning of the controllability and observability mattices. Therelore, to
assess the numerical viability of the state estimates obtained by the Kalman hilter. extensive

simulation studies are performed.

1.3.3 Sensing Considerations

The nnmber of sensors and then positions can significantly aflect the dynamic performance
of the system and must be taken into consideration in both plant modethng and design
and implementation of the control system. The number of sensors. which corresponds to the

number of nodal points. is chosen as a compromise hetween the acamacy of the approsimation

O



and the dimension ol the equations of motion which permits real-time implementation of

control scheme,

When neatly colloceted sensors and actuators are used. that is. when the actuators and
sensors are located close to cach other. the controller will introduce additional damping to
the system. thereby inaeasing sensitivity to the higher 1esonant frequency greater than the
dosed-loop system bandwidth. Therefore. the highest open loop system resonant frequency
(o be controlled is nsed as the primary citerion for selecting the best sampling rate as

suggested by Franklin et al. (1990).

1.4 Outline of the Remaining Chapters

In Chapter 2, the problem formulation and the spatial discretization of the continuous beam
nsing, the cubic-spline method ate described. including the application of a variety of bound-
aty conditions. The finite-dimensional equations of motion of the rotating flexible heam are
furmulated using the Euler-Lagiange equations. In Chapter 3. the step-invariant discrete-
fime model of the continuous-time, linear. constant-coeflicient model of the system in state-
variable space is derived. The design of an optimal control system using the Kalman filter
is then discussed. In Chapter 1. the determination of the number and location of sensors is
discussed based on the state-observability of the system, and the selection of the sampling
tate is deseribed. Simulation results are presented and discussed. Finally, in Chapter 5, the

results are summarized and suggestions for further work are presented.



Chapter 2

Problem Formulation

The energy-based dynamics maodeling of a single flexible hbeam with a tip mass is achieved by

discretizing the lineatly elastic. continnous heam using a cubic spline. which approvimates

the elastica of the continuous heam with a hinite number of nodal points. "This spatial

™~ discretization method is applicable for the determination of the possible houndary conditions
and provides a very uselul lincar relationship between displacement and cnvature, This
relationship enables the use of fast and accurate strain gages for measurmg the cuvatie
along the bean. thereby avoiding the nse ot complex and compatationally expensive vision
svstems for measuring the tip displacement in the thiee-dimensional space. The detatled
| energy equations of the flexible heam. which are obtained by emploving the time-varving,
curvature vector and the cubic-spline approximation, ate used to detive the equations ol

motion using the Euler-Lagrange formnulations.
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Figure 2.1: Schematic of 1otating flexible beam

2.1 Derivation of the Kinetic and Potential Energies

The beam. rotating horizontally about its fixed end with a concentrated tip mass, is modeled
as a continuous and clamped-free beam of length [. as shown in Fig. 2.1. The kinetic and

potential energies of the beam. denoted by T and V', 1espectively. are given below:

- 2 b,oay ] : [
T = ;/ plo)s(e) [0 1F de 4 5000+ S MRS +5 1007 (2.1)
Z JU Z < &~
. Lot " 5
— — ] . . N )
| 5 A Elae ) u"(e ) da (2.2)
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where

0

0y

¢ length of the beam [m)

: mass density [hg/in’)

:cross-sectional area [in?)

¢ fleseral rigidity [kg m'/s%)

2 deflection of the beam from its nential asis |n)

..

cunnature of the beam [

moment of inertia of the hub [kg m?)
moment of inertia of the tip mass [kg m?
tip mass [kg]

rotation angle of the hub [radian]

rolation angle of the tip mass [radian]

Now we introduce the assumptions helow:

e The deflection u(.r. 1) is small compared with the length of the heam (<70 1) and am

longitudinal extension of the beam is nepligible,
BHg

e The cross-sectional dimensions are small compared with the length of the heam (< 0.11)

4
and, thus. the rotary inertia effects and shear deformation can be neglected (Timao '

shenko 1955),

o The centrifugal torce of the heam and tip mass can he neglecred for the Tmearsed

formulation of equations of motion,

o The hub is rigid.

-k

From these assumptions. expressions for the position vector rof an a1 bitran pomt on the

10




hearm along with its veloaty = and its velocity magnitade || ¢ || are detived from

r= i+ uj (2.%)

where the unit vectors 1 and j. fixed to the hub, are timevarving. whereas iy and ji. shown
m Fig. 2,10 are hxed to the inettial frame. Therefore. the position vector r can be derived

with tespect to the hxed-lrame veetors 1 and Jg as shown helow:
r= (4 cosl —usinfig + (esinf + ucos 0)j, (2.1)
P = [0 — ul)cosl = (04 ) sinOig+ [(10 + i) cos 0 + (i — uf)sinl)jo  (2.5)
| | Y= p o= t? + 2 + ul+ 200, (2.6)

The time rate of change ¢ of the neutral axis of the beam at the end carrying the mass is

also obtained from the partial derivative of the position vector r. i.e.,

()
;—)—l'—j = (cos O = u'(1.1) sin0)ig + (sinh 4+ w'(1. 1) cos 0)jo (2.7)
T h=l

Jd dr : ,

i — (— ._. .y . “- ( _ ’ . :( . 2'(1
Y i)-'),zl (=0sin@ — a'(1.1)sin0 — u'(/. 1) cos H)igy (2.8)

+(0cos O + i'(1.1) cos 0 = u'(1.1)0 sin 0)jo
0 2

2 (_)_()_r — (DL 2 1”2 )2 9 (
o =l (')J')J.:, =0+ (1) +u"“(L.1)o°, (2.9)

To be able to use the cubic-spline spatial discretization technique, the kinetic and poten-
tial energies are reformulated in terms of time-varying displacement function at the nodal

points along the beam and the angular velocity of the hub, namely,

I = T+ +T5+ N+ T+ 15+ T, (2.10)
(2.11)
ln—l Uit
- 5;" /'k Bl [u"(e. 1)) Hde (2.12)
wheire
l _‘u 1 f ,
no= S0ty / o) (e e (2.13)
— L:I. ’A
1
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I o= - / plods@eyuiir Dda {(21h

. L

Rl TP

I = uz/ a1 v (21
A=1 T

i ‘.)u-—l tigt ,

Iy = :I)"Z/ plo)ste)ecda (2 16)
= h=1 "4
I ) ) )y 5 .

I, = ;\l[u'(l.l)()'+l'/)'+ u‘(/.l)-%'_’/()u(/.l)] (217
| i ' ) ) )

I, = ;1,,,[()2 + 200U 0Y F ALY a0 (2 1Ny

o | A

I = 10" (2 19)

2.2 Spatial Discretization and Consideration of Bound-

. ary Conditions Using Cubic Splines

&

The displacement function (e f) m the mterval oy < e < ey s appronmmated by a cnbie

spline function as
() = (e — )+ Bl — o)+ i — ) F )y (2 20)

where vy is the abscissa of the Ath nodal point of the spline (Spath 1978). and

|
M= (= u?) (221)
O Ay A h
I; — l " 1) 2)0)
=S (2.22)
.All;‘ |
() = —= — = A (vl L, +20)) (224)
£ L =ty 2ol
Ay 6 +!
Dy = (2.21)
- where Aep = g — o4 and Moy = upyy — ug. Moreover. uy, and u werespedively the
i displacement and the curvature at the kth nodal point.

12



When the moment of mertia of the tip mass s not considered. the govermmeg, partial
differential equation and tomr honndarny conditions of the given model are veadily obtained

by application ol Hamilton™s prnciple, namel,

11 )()'u b )()"u 0 (2.2%)
A(r)y—— +in(1)— = 2,209
l o -
with the honndary conditions
w(ar b)) =10
at 1 = 1), (2.20)
::—"’ =)

and

P (r)22e =0
rll = /. ( )"J

X YA My
I,,(.I )T‘T = A‘['—“'_)-

(2.27)

where m(r) is the mass of the bheam per wnit length at an arbitrary point and M is the tip

mass. The geometric bonndary condition du/dv = 0 at the oot of the beam then leads 1o

du

— 2028
dr ( )

=ui(l)=0= II.I:(“J —uy) - %A.r,(u;’—}-Zu’l’)

r=0)

while the other geometrie houndary condition. i.e. u(0.1) = 0 as given by eq. (2.26). gives
200uf + ayu’y = 63u, (2.29)

whete ap = Ay and 4 = 1/,

Furthermore, the presence of a kinetie boundary condition at the tip, which is expressed
e terms of the shear loree, can be considered by finding the end-point acceleration of the

beam using the governing partial differential equation (Davis and Hirschorn 1938). This

vields
‘lf)"u )M {9 (ddu (2.30)
Cor,_, m(r) \dr\oe') ]| _, a
Phe cabic-spline approsimation provides a useful relation. namely,
n " " .
Wy = by = (] —ul ). (2.31)




-

¢ 9

Henceo eqe (2.30) hecomes

) AR T
\/(__L_' = —w-—‘v)w-—*l-(—“(“ff o)
ar| mily o
/“I(I)‘I j,"!__ 17 0, "
ey e CHE AR RO
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Using the preceding results, the detined bonndary condition. 1 e Seq (2270 can he expressed

N
)} NIGRIEA
I'.'I( ()-(——lé == I;‘I(/)(“:‘l —_— “:f‘l) — ~L_(___)__I__'L;L(',:: -y
dr’|, m(l)
and
T | T | XTI

with VL, and M, defined as

L 2(M 35 fm(D)

\l, = !
(M 32 /m(l))

(M2 /)

Vi P4 (M3 /)

" H
no 1 ‘ i it

SEEERIT

(24

“._' {(\j
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Furthermore, the continiity and smoothness conditions at the n nodal pors vield the

cursature-di.placement relation, inchuhng the houndeary conditions given In eags. (229) and

(2.35). as

A, u” =6C,u

where
( 200 o 0 . 0
ay 20 a, 0
A, = |0
0 R (I '_’(lf)_,} G, >
4] R Oy — 0, V], 'Zn:'_z fa,_ .\,

{238
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4 T PR
C, - [P AN P | e Rlv=b<tu=h) (2.10)
0
0 0 -y —3_,
a, =Ar,. A, =1/Ae,0 tore=liiin -1

n: =, Oy J,'E i3, + i,_H. forv=1....n-23

Ineq (2.38). woas the veetor of time-varving displacements and u” 1s the veetor of time-

varving cutvature at the nodal points, given by

r
u = [ Uyeov. ol ] € Ri-Y (2.11)
T
u’ = [u’,’ ..... T ] e Ri-1 (2.12)
Thos, eq. (2.38) leads 1o
( u = Nu" (2.13)
where
1
N = FC;‘A,, (2.11)
)

C,, bemg non simgular,

The displacement function uy(w, 1) can be expiessed also as a function ol u as shown

helow,
[0 |
By (!
(e )= (r—u) (e =a) (v — ) 1] ) (2.15)
(1)
| Dilt) ]
Dehming, sk’ (1) as
sty =1 (1 =ay)! (=) (r=ay) 1] (2.16)




and substituting eqs. (2.20)0 (2.22).(2.23) and (2 21) wto o (2000 give

- r’ 7

(u;f1LI —u )0

‘ uy /2
wpled) = sf(r) (2 17)
(vpgr = )/ Ny — (i) F 20N /0

L ty
(i) — i /6y ] [ 0 ]
, wil [2 0
= s () +s! (1) (2.18)
—(uf ) 20 Ny /6 (i — ug)/ Ay,
| 0 | i m |
which results in the refationship
ug (. t) = s{ UM u" + s/ Uju. (2 19)

where U”jis a 1 x (0 — 1) matrix whose only non-zero entries appear s (b - st and kth

columns, namely,

(0 ... 0 —%/6 K6 U ... 0]
0 ... 0 1/2 0 0 . 0
U’ = / (2 50)
0 ... 0 —ox/3 —a,/6 0 0
0 ... 0 0 00 ...

while Uy is a § x (n — 1) matrix whose only non-zeto entries appear imoits Ath and (4 1)t

columns, i.c..

0 0 ) g 0 0
0 .. 0 0 0 0 (0
UA = . ‘l ~)| J
] 0 =% 3 U ]
0 ... 0 | 0 0 .0

Finallv. nsing eq. (2. 13). the displacement function wy (1.1) hecomes
EAA

wp{r ) =s} (U, + U,N)ju” (252

10



To expiess the potential energy as a lunction of the curvatuie vector, the cubic spline
function defmed in eq. (2.20) is used. Taking the second derivative of the displacement

finction u( e ) with 1espect to x, the curvature function «”(a 1) is obtained. namely,

= 0w — )+ 20, (2.53)
%
(i = )/ Ay
= [(e—ay) ] : (2.51)
)
Now, we define
t] () =[(r—uap) 1] (2.55)
which leads to
uf =t ()P u” (2.56)
where
0 ... 0 =& 4 0 ... 0
F", = Pk . (2.57)
0 ... 0 1 0 0 ...0

Note that F7; is a 2 x (0 — 1) matiix whose only non-zero entries appear in its (k4 1)st and

hth columus.

The kinetic and potential energy equations of the flexible beam can then be reformulated

nsing eqs. (2.52) and (2.56). which allow the use of the cubic-spline technique, in terms of

the curvat ure vector.

2.3 The Euler-Lagrange Equations of Motion

When the terms due to the centrifugal force are neglected. the kinetic and potential energy

expressions ate given by

X l N2 o 1 . . " o .

A 5 [ I,()‘ + “//I(M//‘ + an + M".;)u”+20(‘71’ + 75 + ‘Y'i )u//] (2.5‘1)
|

- ;ll”lK"ll” (25())

t
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wheore

I = L+DL+1,+ P (2.00)

and the [y is the moment of inertia of the unflexed rigid heam. Moreover,

n—1 )
M’ =3 (N'U{+U"[ )P, (U", + U;N) (2.61)
h=1
=(N'U_, +U",_ )P, (U",_; +U,|N) (2 2)
M" = (N"U_, +U",_ )P, (U",_, +U, N (2.63)

where Py Py and P _jate | x | matrices, the first one being positive-delmite. the others
{ n—1

positive-semidefinite, namely,

A4t T
Po= [ st sl ] ) e (201)
P,,_l =\ Sy- [(I) S, _ I(I) (2.(!5)
nor = o sl (1) s) () (2.66)

where s, _, (1) denotes the derivative s _ (&) evaluated at = 1. The Yoy and 4P are also

derived from eqs. (2.15). (2.17). (2.18) and eq. (2.52). which vield

n—1 "—
4T = Zm"' (Zlm) (2.07)

¢ T . §
vy = m",_ +m!_ N (2 63)
I = m! N (264
‘Y.'i - ﬂ n~1 + lnn 1 < )
where
T T : -
m", = p/U" m; = p/ U, (270)
nr _ T 7 roo_ ! g~
m n-1 = pn—lU n—1 nln—l = p/r—-ILI”“| (lll}
sl — T " s ] — al b .
m n—1 == pn—IU n—1 ll],,-] == p ,,_..|Uu—l (..)..ll)
with
1 Th4t P
p, = PhoSp S, (1)(/: (2.7
T4

18
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o= wis!_ (2.7-1)
p“ 1 n—1
pllll—l = Im /S,,l,_l(/). (2.—‘.,.))

The positive definite stiflness matrix K is defined as

n—1

K=Y F/QF (2.76)
A=}
with

Qi = /'“' Bl ti(r) t5(r) de € R (2.77)

Jry
where Qq is positive definite.
The kinetie and potential energy expressions can be simplified using the Fuler-Lagrange

cquation as

T = %q”'Mq. V= éqTKq (2.78)
where
M= | M 7| k| K O (2.79)
~T 015, O
are the mass and stiffness matrices, with
M" = M'"'+M",+ M"; (2.80)
Y =E N tY s, (2.81)
while the vector of generalized coordinates is defined as
q=[u" 0] (2.82)
Finallv. the equation of motion of the heam is obiained as
Mg+ Kq = ¢(/) (2.83)
where
(1) = [0,y T(N ] (2.84)
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in which 7(7) is the applied torque and 0g,_yy is the (0 = 1)-dimensional zeto vedtor.

In order to rednce the model given by eq. (2.83) to one in which the coethcient of the term
containing the second derivative is the identity matris and the coellicient o q s symmetine,
the Cholesky decomposition (Dahlquist and Bidiek 1971) of M is petformed  Since M s
positive definite. it can he lactored as M = LY L. whete Lis lower trangalar Premult iplving

both sides of eq. (2.83) by LT, the transpose of L' pives
Lg+ L 'Kq=L"p. (2 85)
Letting v = Lq. the mathematical model given by eq. (2.83) 1educes (o
V+ Wy = (2 86)

where the new mass stiffness matrix Woand the new generalized force veeton Y are dehned

as
W=L"KL'. ¢y =L"¢ 2T

in which W is also positive definite.
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Chapter 3

Optimal Control System Design

The design of a contioller for the flexible beam must take into consideration the presence of
nncertain and time-varying parametets due to imperfect modelling of system dynamics, as
well as the presence of noise due to the imperfection of strain gages used for measurements.
Therelore, an optimal contiol approach is chosen to minimize these effects and to aid in the
determination of the desired pole location. The optimal contiol stiategy is two-fold: one
is the design of the walman filter. which minimizes the variance of state estimation errors,
while the other is the determination of the optimal contiol law to minimize the specified

performance criterion from the estimated states,

3.1 State-Space Model Description
The Lagrangian model of the flexible beam can be described as a continuous-time. linear,
constant-coeflicient svstem in state-variable space, namely,

x = Ax(!)+ bu(l). x(0) = x¢ (3.1)

y = Cx(!) (3.2)



!

¢

where
0 1
A = € REnx2m) (33)
-W O
0 On— 3
b = |ewn ows = Coe e (3 1)
L-tw 1
L

in which O and 1 denote the n x n zero and identity matrices, respectively, Moreover, 0 15
the n-dimensional zero vector, O(,_y) is the (n — 1)-dimensional zero veetor, and p denotes

the number of sensors. The state vector and scalar input aic also defined as

X = , u(t)y=r7(t). (3.5)

It is impractical to assume that all of the state variables are available through measiement

For instance, the state variables associated with the time rate of change of curvatute cannot
be measured directly with any existing sensor. Furthermore, the use of a large number of
sensors would require more complicated control hardware having a high data throughput
capability. The approach adopted here is to measure a subset of the state variables and to
estimate on-line the remaining ones. Therefore, the measured output through p sensors is

expressed as a linear combination of the available state variables, i.e.

y=C q (3.0)
q

where C’ = CL ¢ Rp=2n)

A digital control signal is assumed to be applied via a zero-order hold, the associated

discrete-time system being the step-invariant model given by

x(k+1) = ®x(k)+Tu(k)+ (k) (37)
y(k) = Hx(k)+ v(k) (3.8)
where

d = A (3.9)

A
r = (/0 eA"dn)b (3.10)
H = C (3.11)
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and the process noise w(k) and measmement noise v(A) me random. nncotrelated processes
with zeto mean value and the diagonal vartiance matrices given, respectively, by
. r . I a7
FlwMw(k)' '} =R,.. Flo(hv(k)'}=R,. (3.12)
n the foregoing equations. A is the sampling time interval. and A represents the kth sampling

tune step.

3.2 Optimal Observer

Let the state observer be given by

X(h+ 1) = ®X(k)+ Cu(k)+ Lo [y(k) — HX(L)] (3.13)
where L., is the steady-state, discrete-time, Kalman filter gain matrix. It is well known
(Middleton and Goodwin 1990) that if the pair (H,®) is observable, the eigenvalues of
(®— L. H) can be arbitrarily assigned by appropiiate design of the steady-state gain matrix,
L... It is also known (Luenberger 1971) that the observer does not impair the closed loop
stability. Therefore, the design of an optimal observer reduces to optimization of the steady-
state observer gain matrix L. 5o as to minimize the estimation error X = x — X governed
by

X(k+ 1) = [® — L Hx(k) + w(k) - Lov(k). (3.14)

To find the steady-state, discrete-time, Kalman filter gain Ly, (current. observer gain),
the patametric optimization problem associated with the covariance of the estimation er-
rot (Astrom and Wittenmark 1984; Franklin. Powell and Workman 1990) is solved in the

presence of noise.

3.3 Optimal Controller

The reference state x, is derived from the 1eference input r through the relation
x, (k) = T, r(k) (3.15)
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where T, s the constant state command matus which is determmed so that
lei X, (h) = x. (M) (31
in which X, (A) 15 the steady -state response of the unit step.
The control input is then generated by
u(h) = =k (X(h) = x, (k) (317)

whete X is the estimated state-vector and ko is the steady -state, disciete-time controbler

gain. which minimizes the cost function given hy

A ,
J = ;?:{x’<A~)Qx<A-) + qui(k)] (3 18)
~ A=0
under the constiaint
—xX(A+ 1)+ Bx(h)+ Du(k)y=0. k=0.1. ..\, (3 19)

It should be noted that Q is symmetric and positive semidefinite and ¢ is positive defimte,

Because ol its numerical simplicity and reliability, the eigenvalue-decomposition method
associated with the Hamiltonian matrix is used to find the optimal steady state control
gain k. instead of solving the discrete algebiaic Riceati equation, which can have multiple

solutions. The Hamilton equations ate:

X ¢+rQ'r'e-"y -r'r'e-! X (3 20)
o _&-T q)—l A T
A A+1 *Q A
where the Ais a discrete-time Lagrange multiplier and ® s invertible by definition. eq. (3.9).
The optimal control gain k<, can be calculated by determining the eigenvalnes of the Haml

tonian matrix.

3.4 Combined Optimal Controller and Observer

The control strategy nsed in this study is a combination of the state variable feedback

controller and the optimal state observer, Thus, an estimate of the state vector X is obtained

.)I



nsing the Kaliman hlter. namely.
X(k)=[® - Tk! — L HJx(k—-1)+L.y(k-1) (3.21)

Because the use of X, instead of X. does not allect the control gain according to separation
propetty (Kailath 1980). it is natwral to apply the optimal feedback gain k. to the estimated

slate vecetor X, that is
u(h) = =k [%(k) — x, (k)] (3.22)
Therelore, the model of the overall svstem becomes
x(k+ 1) = ®x(k) - Tk’ [%(k) = x, ()] (3.23)

which is shown in Figure 3.1 in block-diagram torm.

Control law Sensor

r X, (k) ~e(k) u (k) X (k) Y(k) +
— T '—%Q—’ -k7 Flexiblebeam [—™ H
+

u(k)

!

X (k)

Observer

Figure 3.1: Combination of observer and controller
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Chapter 4

Simulation of Flexible Beams Under

Large Rigid-Body Motion

Sensing considerations are essential to a successful real-time implementation of the proposed
contiol scheme. These considerations indlude the selection of the sampling rate and the
determination of the number and location of sensors (which are actually the number and

location of the nodal points of the approximating cubic spline).

The cubic-spline technique and optimal control scheme described in Chapters 2 and 3 will
he applied to the modelling and simulation of the flexible heam. The controller is designed
to suppress the transverse vibrations while forcing the end tip to follow the preseribed trajec
tory. State-observability and contiollability problems associated with the reduced number of
measurements are investigated through simulation studies in two cases, i.e., with and withont
tip mass for purposes ol comparison. In addition. an investigation is conducted to demon
strate the dynamic effects of link flexibility by applying an optimal torque input. compnted

for a closed-loop system ol an equivalent rigid beam. to the flexible heam i open-loop.
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Table 11

I he ocaunrence of masimum cutvature [m™4 for cach of the low vibration mode

“;;»H location in m || the 1Y mode | the 2% mode | the 3 mode | the '™ node

| 0.0 2.0 2.0 2.0 2.0

2 0.22 1.39660) -0.028065 -0.96375 -1.32262

3 0.:30 LISITH -0.63110 -1.31485 -0.79178

4 .50 0.67905 -1.12733 0.03937 1.41424

5 .52 0.63321 -1.43920 0.26103 1.37836

6 0.72 0.21030 -0.963827 1.51056 -1.106 16

7 0.80 0.12774 -0.60211 1.20901 -1.50758

4.1 Number and Location of Sensors

Normally. the accuracy of the approximation of the spatial discretization of the continuous

beam improves with an increase in the number of nodal points; however, a large number of

nodal points can produces a laige svstem of equations. thereby making the on-line control
unfeasible Thus. the propet selection of the number of sensors is a compromise between the
accuracy of the approximation and the feasibility of on-line implementation. Furthermore,
the positioning of the sensors can strongly affect the dynamic petformance ol the system and
must be considered in both the plant-modelling and design of the control system. Guidelines
for the minmmum number of sensors requited for satisfactory petformance have stated that
the munber must be at least as laige as the number of monitored vibration modes (Barsh and
Choe 1989). which is in [act the number ol generalized coordinates in the system represented

eq. (2.83).

However, a different approach for choosing the munber and location of sensors is taken.
Fitst. it is to be noted that the (' vibrational mode has ¢ points at which the bending moment
teaches a maximum. In addition. simulation results. some of which are presented later in
this thesis, have shown that locating a sensor at the position of maximum bending moment

provides the most accurate estimation. This is because this location yields the highest signal

[ 6™
-1
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Table L2: The ninnmber and location of sensors

no. of sensots | location in m Ill-lVillllIlll_:‘lﬂll—\.IIIll(‘ .I~Ill A']
| 00 _.;ﬂ(ﬁ) -
2 .22 -1 32202
3 0. 30 -1 3EISY
| 052 113920
H 0.72 151050
6 .50 -1 D07HN

to noise ratio, thus allowing the most accumate reconstiuction of the temainmg states. | hns,
the approach adopted in this thesis is to locate a sensor at each pomnt ol masimum hending
moment for all the modes to be controlled. Thus. once the number of vibration modes to be
controlled is specified, the number ol sensors as well as their location are readiiy deternmed
It should be realized. however. that the location of maxinmum bending moment tor diflerent
vibrational modes may be in fact so close together as to prevent the mounting ol mdividual

sensors (no. 4 and 5 in Table 1.1). In this case. only one sensor will be nsed for hoth pomts

In this thesis, the tourth mode of vibration is specified as the lighest mode to he con
trolled, which is consistent with the wourk of (Hughes 1987)0 who has stated that o practical
purposes, only the lower vibrational modes are important for vibrational control, The loca
tion of the points of maximum bending moment for all modes up 1o the lomth, tor the heam
under consideration, have been obtained using a normal mode analysis for a clamped firee
beam without a tip mass (Bishop 1960). and are shown in Table L1 In addition. the selected
number and location of the sensors are shown in Table 1.2, 1t is important to realize that
only a subset ol all the sensors will actually be phvsically tealized in the contiol hardware
the Kalman filter being used to estimate the values for the 1emaming sensors. as desanhed

in greater detail in Section 1.3.

N
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4.2 Selection of the Sampling Rate

Lhe selection of the sampling rate guarantecing adequate performance ol the digital con-
trol scheme is essential in the implementation of the continnous-time system by a digital
computer. A slower sampling rate leads to a loss of control information associated with
inter-sampling behavior, resulting in poor control performance.  An excessively fast sam-
pling tate gives numerical difficulties and requites more advanced control and high precision
compitational hardware. Hence. the tradeoffs must be carefully examined. Moreover, high
frequency resonances presented in this flexible beam that ate faster than closed-loop system

bandwidth must be considered for the selection of appropriate sampling rate.

The natural or resonance frequencies ol the open-loop svstem model are found by using
the equations of motion given in Chapter 2. The equation of motion obtained from the

Euler-Lagrange formulation was given as

Mq + Kq = ¢(/) (4.1)
where
MII KII Oux
M=| 7| K= ! (1.2)
,),F l' len 0
e()=[0" r(1)]", (4.3)

while 7(7) 1s the applied torque and 0 is the (n ~ I)-dimensional zero vector. Moreover, the

. " " . (e . .
matrices M- and K, the vector 4, and the scalar I; specific to this example are given as

[ 0.0220247 0.0282172 0.0251101 0.0311296 0.01 1281 0.0792:13 ]
0.0282172 0.0363372  0.0326511  0.0108893  0.0191239  0.106233
M = 0.025110 1 0.0326511  0.0298962  (.0331850 00181636 0.103083 kg '
0.0311296  0.0108893  0.0381850  0.0193267 0.02 11502 0.1 10069
0.00HE2SE 0.0191239  0.0181680  0.0211502 0.0118938 0.070235
| 00792130 0.1062350  0.1030830  0.1100690  0.0702851  0.125007 |
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: 0.53575H1

Ry

().H807O

L5977

02173
0

0
0.213
1.95979

0 H8HTHI

0

(

200129
(
(

—

266991

o

236052
0.290621
0.133861

| 0.72020

0
0
0.580751

2.2365

]

I = 199135 kg m?.

kg m's

05325
I 9]
0213

Nim'

The calculated resonance {requencies of the open-loop system with and without a tip

mass atre given in Table 1.3.

Table 1.3: The calculated natwal vibration lequencies

Mode Number

the I

the 20

the 3

the 1

the Hth

the o

Frequency with mass (Hz)

I'requency without mass (Hz)

0.7309

9.1581

11,7831

20.94.35

10.9813

IR.2876

80.5961

871222

1381216

[50. 1857

208 9190

231.8915

If the svstem having high 1esonance frequencies is lightly damped and the contiolles

introduces additional damping to those modes wlhich are taster than the bandwidth of the

P

30

system at hand. sensitive sampling rates 1elated to the resonant frequencies of the system

exist. The plant considered in this thesis contains high-frequency system dynamics with
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veny light stractural damping and. thus, the order of magnitude of the closed-loop system
bandwidth is much lower than the open-loop system resonances  In addition. the controller
adds damping to the svstem resonances. when nearly collocated sensors and actuator ate
used Thuas, the digital contioller using a sampling 1ate chosen according to the closed-loop
handwidth criterion may introduce unaceeptable sensitivities to plant disturbances, making
it impossible to obtam adequate control performance (Franklin et al. 1990). This is because
if the sampling rate selected according to the closed-loop handwidth of the system is less
than twice an impottant open loop system resonance, the contiolled system mav he more
sensitive to errors. Therefore, a relatively high sampling rate of 500 11z is chosen, assuming
that the highest open-loop system resonance to be controlled 1s the fourth natural vibration

mode.

4.3 Observability Considerations

It is often not practical to assume that the entire state vector is available through measure-
ments. In this thesis. an investigation is conducted to assess the possibility of a reduced
number of measurements taken at a selected number of nodal points. The Kalman filter is
used to optimally estimate the cursature at the other points as well as its time rate of change.
Whether we will be able to use partial measurements depends upon the state-observability
and contiollability of the system  In principle. one mav prove state-observability and con-
trollability by showing that the associated obsenability and contiollability matrices are each
of full tank. The observability and controllability has aheady been studied by Balas (1978)
and Huges and Shelton (1980). It has also been shown that a system having only one
seusor makes the system both state-controllable and observable. However. the numerical
ill-conditioning of the associated controllability and observability matrices can prevent the
Kalman filter from 1econstiucting the state estimates to a 1easonable accuracy., especially

when there is a tip mass, mahing the system unobservable for practical purposes.

IUis desirable to assess the numerical viability of the state estimation nsing a reduced

number of measurements. In addition. it is also benehicial to investigate the effectiveness of
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Table 1.1: The curvature and associated first time detivatinve for an mitial ewd pomt dis

placement of the beam

nodal point | v [m] | «” [m™'] | &" [m~'s7Y]
| 0.0 2.0 v
2 0.22 139660 0
3 0.30 | LISETH 0
| 0.52 | 0.67905 {)
H 0.72 | 0.21030 0
O 0.80 | 0.12771 0

locating the sensors at the points of maximum bending moment.

This shall be done by analyzing the response of the heam to an initial end-point dis
placement. with the hub fixed and without contiol input. Both cases. with and without
tip mass, shall be analyzed. The initial conditions are listed in Table L1 The results ol
Kalman filtering for both cases are shown in Fig. L1 and Fig. 1.2, 1espectively. For the
no mass on the tip case with two measurements, i.e., the curvatuie at the root of the heam
and the hub rotational angle. the Kalman filter soltware succeeds in allocating the optimal
steady-state gain matrix shown in Fig. 1.]. However, with tip mass, the sunulation results
show that the Kalman filter fails to find the steady-state observer gain matrix: that is. the
system, although mathematically observable. is not observable in a practical sense due 1o
roundofl eriors. Nevertheless, state estimation of the flexible beam with tip mass can be
accomplished if at least thice measurements are taken, these heing the curvatuies at the
the first and second nodal points. as well as the hub 1otational angle. Fig. 1.2 shows the
time history of a typical estimation etror for this case. It has heen found that the placing,
the sensors at the maximum bending moment points. including the root of the bheam, which
corresponds to a maxinmum bending moment for all vibration modes. gives good estimation

results.
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Estimation error with measurement of the first nodal point
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4.4 Uncontrolled Vibrating Beam

I the lateral carvate component u” is constrained to be zero in the system represented by
eq (281) in Chapter 20 the equation of motion of non-flexible beam is obtained as

1 0=r7(t) (L1

This can be deseribed as a continuous-time, linear, constant-coeflicient system in state-

variable space. namely,

z(1) = A,z(l)+b,u(t), z(0) =1z (1.5)
y(1) = c’z). (1.6)
where
[0 1]
A, = € R4 (4.7)
—O 0_
- 0 2 T 2
b, = e R T e (1.8)
|10

The state vector and scalar input are also defined as

Z = , u(t)y=r(1). (L9)

In order to find the computed torque input of this non-flexible beam, the associated step-
ivariant. discrete-time model is used. The computed torque of the non-flexible beam for a
step iuput of hub rotational angle is 1eadily obtained by employing the Kalman filter and is
applied to the open-loop system of the flexible beam. This is performed for both cases-with
and without a tip mass. The computed torques and their time responses of the non-flexible
system are shown in Figs. L3 and L5, The time 1esponses of the flexible heam obtained by
applying the same computed torque inputs of the non-flexible heams are also shown in Figs.
LEand LG, These show that large oscillations in the esponses of the hub rotational angle

and node displacements ave attiibuted to the negleeted link flexibility.
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Table 4.5: The material specification of the beam

Number of nodal points (n) 7
Material Aluminum
Mass density [kg/m3) 2712
Young’s modulus [GPa] 710
Moment of inertia of the hub [kg-in?| 0.000831
Moment of inertia of the tip mass [kg-m?] 0.90571936
Section moment of inertia of the heam [m] 2.25x1071
Moment of inertia of unflexed rigid beam [kg-m?] 0.2712

4.5 Compensator Simulation

A simulation study was performed for the rotating flexible beam shown in Fig. 4.7 and
described in Table 4.5, which exhibits high-frequency vibrations. A relatively high sam
pling rate of 500 Hz was chosen, based on the highest natural frequency of the beam to be

controlled, for both control and measurement loops.

The initial conditions used were

q0) = 0 (1 10)
q0) = 0 (4.11)

where 0 is the n-dimensional vector. Morcover, performing the calculations results in the
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Figure 4.7: Beam used in simulation

stcady-state, discrete-time, Kalman filter gain matrix Lo, and controller gain vector ko,

0.0095
0.0338
—0.0069
0.0033
—0.0084
—0.0017
—0.0037
—35.6900
21.3990
—T7.7234
0.4238
3.6538
-0.3160
1.6028

0.0006
0.0010
0.0015
0.0007
0.0003
0.0009
—0.0002
0.3392
—0.4260
0.2005
—0.0199
-0.0043
—0.0000
0.0011
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~0.0037 |
~0.0135
~0.0137
—0.0087
—0.0022
0 0045
0.0716
1.0485
~0.4360
~6.3134
~0.4091
~0.2632
—0.0083

0.0800 |



e

?

¢

— 196389
1.5337
0.8817

k'\ _ 0.0176 ()

-0.0063
0.0023
0.0017

—0.0053

—0.0001

-0.0018

0.0306

In order to avoid rapidly fluctuating system responses and. thus, to prevent the contiol
signal from exceeding its physical limits, a smoothed step input using a evcloidal motion
(Fig. 4.8) was employed to generate reference inputs for the hub rotational angle, 0, and
its angular velocity, 0,, namely,

]
0, = ()()(T _— bill(zn‘T)). ( Il i)
.)7‘-

-

0, = Oy(1 —cos(2m7)), 0< 7 < | (115)

where Oy is the amplitude of the hub rotational angle. Considetation of the time rate of
change for the given input offered the advantage of eliminating the small steady-state fin

tuations of the response, at the expense of a slightly longer settling time.

The simulation of the flexible heam without tip mass was also performed 1o compare
the results with those of the heaw with tip mass (Fig. 1L9) and (g, L10) both with
the measurement noise (See Appendix A). The mass at the tip had a mass equal to that ol
the beam. Without the mass at the tip. the optimal compensator showed that the settling

time was approximately 3 seconds and neither overshoot nor nndershoot appeared in the
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Figure 4.9: Hub rotational angle and its first time rate of optimally contiolled rotating

flexible beam

response of both the hub rotational angle and the hub angular velocity (Iig. 4.9). With the
mass at the tip, comparatively small overshoot and undershoot with steady-state fluctuations
occurred for the displacements at each nodal point (Figs. 4.9 and 4.10). However, it took
longer for the response to settle due to the incrtia of the tip mass, this hbemg approximately

5 seconds. The comparison of control torque inputs for both cases is also shown in IMig. 4 11.
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Chapter 5

Conclusions and Suggestions for

Further Work

A spatial disaetization method using the cubic-spline technique has been proposed for the
dynamic modelling of a continuons beam with a tip mass under large rigid-body motions. The
major advantages of this approach lie in the capability of considering a variety of boundary
conditions. as well as perntting the use of position sensors, 1ather than using vision svstems.
Moreover, this technique makes it possible to develop the dynamic modellimg of nonuniform
and nonsymmetric hbeams, which would be extremely difficult to model using an assumed-

mode method.

Using the optimal controllet with the Kalman filter. extensive simulations have been
implemented to assess the feasibility of 1eal-time control using the proposed modelling ap-
proach in the presence of measurement noise. Furthermore. the possibility of using a reduced
number of curvatute measurements is imvestigated. This includes the consideration of the
state-observabihty and controllability of the sate-space systemof the flexible heam associated
with a smaller number of measurements. A practical and intuitive guideline ot selectimg the
number and location ot the sensers was given by finding masimum bending moment points
for cach of the modes up to the cutofl vibration mode. <o that the svsten is state observable

and gives the best estimations. It has heen shown through extensive simulation studies that




k-ad

measuring cirvatures at the points which have masimm bendimg moment produces good
estimations with a reasonable degree of accmacy. In addition. « high samphing vate s e
lected to avoid sensitive plant disturbances 1elated to the high-frequency tesonances \n

optimal torque input of the closed loop system, assuming, a rigrd-hody hean, was applied
to the open-loop system of the flexible beam in otder to examine the dynamic eflects of
link flexibility. The optimal control strategy scheme, using the Nalman filter and the cubi
spline approximation technique s very suitable for on line control to suppress the transvere

vibrations of a flexible beam undergoing large rigid body motions. \u expenimental setu)

is currently being built to test the theoretical work reported in this thesis,

A few extensions ol this work to the lollowing:

e Lxperimental verification of the proposed method.

e Use of the Euler operator (Hori. Nikiforuk and Kanar 1989:; Middleton aned Goodw i
1990).

o Lixtend the formulation to include two-dimensional bending effects and torsion efledts
accompanying multi-body motion.

e Develop an adaptive control algorithim to cope with changes ol mass.,
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Appendix A

Derivation of Noise Covariance

Matrices

R. and R.. the disaete-time measutrement and process noise covariance matrices. espe
tively, are defined as
] I
R, = F{v(k)v(k)'} (N 1)
R, = L{e(k)e(k)") (\.2)
Motcover. they can be approximated by using the contmuons-1ime covarance matineces as

follows (Salgado. Middletion and Goodwin 1988):

R, ~ AL {v()v(!)!} = AR, (\.3)
| ]
R, ~ —F{e(t)e(t)'} = —R,, \.
S feltel)') = < (\1)
where A is the sampling interval,
Let us choose n-dimensional noise veetor w(f) to model the measuiement and PLOCESS
HOIse as
Ry
Aot
wir)=| (A5)
hopdy, J




F{ww'} =

0

covatiance mattix E{ww!} is clearly given as

3

0

0

Therefore, matrices R, , and R,, can be evaluated ftom the above covariance matiix.

whete a, s a normally distiibuted random vatiable having zeto mean and unit variance, and

‘ h, is @ constant which is used to define the amplitude of the noise. The corresponding noise

(A.6)




