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Abstract )

A new finite element has been developed satisfying the required
continujty of the stress vector at bimaterial interface points in order
to alleviate the problem of high stress discontinuity predictions by the
conventional displacement finite element method. The formulation of
the element has been ¢arried out within the framework of the displace-

- ment method assuming perfect bond conditions at the interface and

isotropic, linear elastic materials. Two general finite element programs
have been developed incorporating the interface element, one for two-
dimensional plane-stress /plan“e—ﬁstrain and axisymmetric analyses and

one for three-dimensional andlyses. A series of validation tests have |
been carried out to assess the correctness of the stress distribution -

obtained by the new eJemeént at interfaces of highiy dissimilar mate-
rials. The results of ‘the tests are compared to analytical solutions

- and to results from analyses performed by 'the conventional displace-

ment gnethod. Overall, the proposed element has been demonstrated
to have a very satisfactory degree of reliability, especially in view of the
observed inability of the convéntional method to yield interpretable in-
terface stress values for most cases analysed. Finally, the new element
has been applied to the analysis of an-axisymmetric model of the knee
tibial implant. The superiority of the interface element over the con-
ventional method has been demonstrated in thls case by a convergence
study.
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Un' nouvel élément fini a été développé satisfaisant la contlnulte
requise du vecteur contrainte pour des points ‘donnés sur une interface

bimatérielle .afin d’éliminer le probléme de la diséontinuité des con-

Résumé - i“\

traintes calculées par la méthode conventionnelle des déplacements. La -,

formulation de I’élément a été basée sur la méthode des déplacements
et suppose des matériaux isotropes, linéaires et élastiques et des con-
ditions d’adhésion parfaite a 'interface. Deux programmes généraux
d’éléments finis ont été développés incorporant 1’élément d’interface:
'un pour des analyses de problemes bidimensionnels fcontrainte plane,
déformation plane et symétrie "axiale); 'autre pout des analyses de
problérhes tridimensionnels. Plusjeurs problémes de validation ont été
analysés pour évaluer la performance de I’élément nouveau.d des.inter-
faces de matériaux trés différents. Les résultats des essais sont com-
parés avec des SOhlth{lS théoriques et avec des résultats provenant-de
la méthode conventionnelle des déplacements. L’élément proposé a été
démontré tres satisfaisant, surtout en comparaison -avec I’ impuissance
observée de la méthode conventionnelle de produire des contraintes
d’interface interprétables pour la plupart des caf analysés. Finalement,
le nouvel élément a été utilisé pour 'analyse d’un modéle axisymétrique

de la prothése tibiale du genou. La superiorité de 1’élément d’interface.

vis-a-vis de la méthode conventionnelle a été demontree dans ce cas
par une étude de convergence. ’
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Chapter 1 | N

INTRODUCTION.

1.1 The problem of the interface between two highly
dissimilar materials -

Materials with different properties are often combined in the design of
engineering structures (e.g. reinforced concrete). The analysis of such
structures is usually carried out by transforming them into ‘equivalent’
unimaterial models or by using numerical techniques like the finite el-
ement method. In general, the approach towards structures composed
‘of different materials has been similar to that towards homogeneous
structures, because high variations in material properties are not ex-
pected; for example approx1mate values of elastic moduli for concrete
and reinforcing steel are 30000 MPa and 200000 MPa respectively.
Furthermore the interface stress distribution is not usually of primary
interest to the analyst. :

* However, recent advances in areas such as composite materials and
biomechanics havecreated a. need for.a different approach in the anal-
ysis of bimaterial structures In these cases, reliable stress calculations
at interfaces of typically h1ghly dissimilar materials are amdng the main
objectives of the analysis. In fibre-reinforced composite tnaterials, for

1
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example, the ratio of elastic moduli is approximately 25 (for a matrix
of Araldite CT200 and fibres of duralumin) (Soh [32]), while in biome-
chanical applications the ratio of elastic moduli is usually as high as
100 (for steel prosthesis and Polymethylmethylacrylate bone cement)

. (Shrivastava et al. [31]). In both cases, failure of the bimaterial inter-

face constitutes one of the maifl failure modes of the structure.(fibre
pull-out or delamination failure in composite materidls and prosthesis
loosening in biomechanics).

A stress analysis of such structures should be able to account for
the interface boundary conditions which are critical to the behaviour
‘of the whole structure.

3 ~
f

1.2 Finite element method for solving the problem

The finite element method.constit‘utez‘z one of the most powerful nu-
merical procedures currently available to stress analysts. Although
there are many different forms of the method, the displacement-based
method has emerged as the most popular in the field of structural me-
chanjcs (Cook [7]). A significant amount of research and numerous
computer programs have been devoted to this method. As a matter
of fact, most commercially available finite element computer packages
are implementations of the displacement method.

In the displacement method, however, interelement nodal stress
compatibility is not enforced. This means that elements sharing a
node usually predict different stress values at that node. In the cases of
homogeneous structures, these stress discontinuities, which are usually
small, can be ‘corrected’ by several proposed averaging and ‘smoothen-
ing’ techniques (for example Herrmann {12}, Hinton and Campbell [13],
Loubignac-et al. [18]).

*As it has been pointed out (Cook [7], Loubignac et al. [18]), how-

2



ever, these procedures cannot be applied to such stress fields as the
ones encountered at bimaterial interfaces or across sudden thickness
changes. Generally, when a structure consisting of different materials
is analysed by the conventional finite element method, severe viola-
tion of force equilibrium may take place at the intermaterial boundary
points when the stresses are computed on the basis of displacement
compatibility and constitutive relations alone (Salama and Utku [29]).
Any attempt, therefore, to ‘smoothen’ the discontinuity by averaging
methods would be inappropriate and erroneous. The usual procedure
. in these cases has been to repeat the analysis of the problem using a
finer mesh (Cook [7]). However, this procedure can be very time con-
suming, since the convergence rate will likely be very slow, especially
for cases that involve large differences in the properties of the adjacent
materials. . |

A different approach would be to use a formulation having stresses
as primary unknowns such as the mixed element or the hybrid element.
methods (e.g. Gallagher [9]; Zienkiewicz [38]). In this way stresses can
be continuous across element boundaries.  °

1.3 Previous displacement-based studies of the in-
terface problem

”»

With reference to the stress discontinuity obtained by the displace-
ment method at bimaterial interfaces, few alternatives to the costly
mesh refinement have been proposed so far. Salama and Utku [29]
have suggested the application of the method of best fit strain ten-
sors to the stress computation at intermaterial boundary points. In
this method, the displacements, are first computed in the usual way,
and.then, the strains and stresses are obtained through a procedure

N




that acccounts for the interface stress boundary conditions. Compat-
ibility, constitutive, and equilibrium- conditions are satisfied and the
proposed method seems quite successful. No conditions are imposed,
however, on the podal displacements at the interface so that.they may
not necessarily be tonsistent with the stress field satisfying the inter-
face boundary conditions. Furthermore, significant computer memory
is required due to the fact that a nodal set (list of nodes coinciding
with the vertices of all elements meeting at that node) and a set of
nodal lines (list of lines joining the node with the other nodes in the
nodal set) for each node ancl element, respectively, must be retained
in memory. That is, in addition to the usual information necessary for
a conventional displacement method analysis. Finally, the examples
chosen are not representative of the potential severity of the problem
of bimaterial interfaces; the stress discontihuity obtained by standard
finite element techniques was found to be small in these cases, and
therefore, the value of the proposed method could not be fully appreti-
ated. In the example of the vertical wedge, in particular, the analytical
solution developed for a unimaterial case was assumed to apply to the
bimaterial case as well, and, as such, was compared to the results of
the proposed method.

More recently, Soh [32] proposed a modification to the conventional
displacement method in order to achieve interface stress continuity.
His technique is based on the nine-node rectangular element which is
used to obtain the nodal displacements in the traditional way. The cal-
culation of the stresses at an interface is then achieved after imposing
the necessary and sufficient equilibrium and compatibility equations
at that boundary. This process involves the fitting of the original dis-.
placement functions for both adjacent elements onto a nine node region,
centered at the interface, and finally, reduces to the solution of a sys-
tem of 36 equations. In additign to the computational disadvantages of

4
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this method (use of nine-node elements, complex procedure for stress '
calculation), its superiority over the conventional method was not ap-
parent in the application presented. This application consists of the
analysis of the fibre-matrix interface of a fibre-reinforced medium. Re-
sults from the proposed method were compared to conventional finite
element analysis results and to results obtained from a photoelastic
test performed on the same structure. The only gase where there was
clear evidence of superiority of the proposed technique over the con-
ventional method was in the pred1ct10n of the location and magmtude
of the stress peak occurring at the ﬁbre tip.

‘1.4 Present study; objectives and organization of
report = !

1.4.1 Objectives

The growing demand for more reliable stress analyses in problems in-
volving interfaces of highly dissimilar materials renders the inefficiency
of the displacement based finite element method unacceptable. Bi-
material interfaces are becoming increasingly common, especially in
composite materials and in biomechanical applications. In the field of
Orthopaedic Biomechanics, in particular, the lack of reliability of the
displacement method concerning thé calculation of stresses at prosthe-
sis/cement and prosthesis/bone interfaces has been repeatedly pointed
out (e.g. Huiskes and Chao [15], Rohlmann et al. [28]). The present
study was initiated by the realization of the need for a modified tech-
niqye to determine interface stress distributions. »l

he main objective of this study is to formulate a finite element
capable of representing the correct stress and displacement boundary
conditions at a bimaterial interface. It was decided to carry out the




formulation of the element within the framework of the displacement
method. The main reason for this was that it is intended, at a later
stage, to incorporate the developed element into a large commercial
finite element package (these programs are almost exclusively based
on the displac&,;:‘menﬁ method). Hence, a widespread use of the element
can be facilitated, since such programs are readily available. It was
50 decided to address the interface problem directly at the formula-
tion stage, that is, before the displacements are computed. In this way,
the calculated displacement, strain, and stress fields will be consistent
and will satisfy the required interface boundary conditions, unlike the
proposed méthods of Salama and Utku [29] and Soh'[32], wherte tfle
displacements were computed before imposing the interface conditions.
For the purposes of this study, a condition. of perfect bond (no sepa-
ration and no slip) will be assumed at the interface between the two
materials. These materials will be considered isotropic, linear elastic.
After the development and validation of the element, a first appli-
cation will be carried out. It consists of the calculation of the prosthe-
sis/cement interface stress distribution-at a prosthetic knee joint.

1.4.2 Organization of report

A general introduction to the problem of the bimaterial interface, previ-
ous displacement-based studies, and the Qlain objectives of the present
study have been included in this chapter. _

The formulation of the interface element for the two-dimensional
case is presented in Chapter 2, as well as a difcussion on the boundary
conditions at a bimaterial interface. Finally, some notes on the finite
element program developed for the purpose of testing and applying the
two-dimensional interface element are also included in Chapter 2.

The validation tests carried out to assess the performance of the



@
!

proposed element are presented in Chapter 3, while Chapter 4 deals
with an.-application of the element to a real-case 1nterface problem from
the field of Biomechanics. ‘
A three-dimensional interface element has also been developed to-
gether with a three-dimensional finite element program. These are
presented in Chapter 5 together with a validation test.
Chapter 6 provides a summary of the conclusions and observations
made ini the course of this study, as well as recommendatlons for future
research. (




- Chapter 2 _ \} o

TWO-DIMENSIONAL
FORMULATION

2.1 Perfect-bond continuity and discontinuity -

conditions
2.1.1 Theoretical consitierations l
The modelling of perfect bonding between two elastic media in con-
tact is achieved through certain conditions on stress, strain, and dis- -
placements which must be satisfied at the bimaterial interface. These
cenditions will be presented in this section first for the general three-
dimensional case, and then specialized for the two-dimensional case.

In order to simplify the form of the equations, tensor, notation will
be used throughout this section; the basic rules are briefly presented
here, while a more detailed treatment is available in the literature (e.g.
Sokolnikoff [33]).. - _

Let the reference axes z,y, z be right handed rectangular Cartesian,
and let them be named also as z,, 2y, z3. Lower case subscripts (1, 7, k)
areindices ranging from 1 to 3 in three dimensions and from 1 to 2 in
two dimensions. A single subscript variable, for example u;, denotes

-
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the components of a first order tensor (i.e. a vector) while a double
substript variable, for example ¢,;, denotes the components of a second
order tensor. A subscript preceded by a commatdenotes partial dif-
ferentiation with respect to the coordinates; for example, u; , denotes
partial differentiation of u, with respect to ;. Finally, repeated indices
indicate summation over the coordinate range of these’indices, so that”
u;, stands for uy; + uz2 + uss (The summation rule will however be
suspended at some places.in the following presentation).

The term perfect bond is employed to express the condition that
no separation or slip is allowed at the<interface. In other words, per-
fect bond means that the displacement vector u, 18 continuous at-the
interface points. ’ :

Figure 2.1 shows a typical bimaterial interface with its local coordi-

. nate system (axes z, and z;3 lie in the plane of the int‘:érface, while axis

z, is'in the direction of the normal to the interface). With reference to

this figure and in view of the continuity of u,, the following terms are

also seen to be continuous at the interface : u; 5 and ui’:3.~-0n the other

hand, the u, ; terms are not required to be continuous at the interface.
From the strain-displacem’ent relations:

1
& = 5wy +ugs), - (21)

and taking into account the above mentioned continuity and discon-
tinuity of displacement gradients, it follows that in the strain tensor
representation at an interface point: N ‘

! [ » » .
€11 €12 €313 ) . i
% -

€12 €22 €23 |, - (2.2)
¥

€13 €23 €33

the components without an asterisk are those which must be con-,

v
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" tinuous, while those with an asterisk are permitted to be discontinu-

. e . . .
ous. Thus, the condition of perfect bond implies not only the interface

. displacement continuity but also the continuity of f;he" in-\plane axial

and shear strains. On the other hand, the out-of-plane strains can be
discontinuous, depending om the materia] properties of the adjacent
media. o _

The stress boundary conditions at the interface are determined from
the required continuity of the stress (traction) vector T,. Referring
again to. Fig. 2.1, the following equation relates the stress vectors of
media a and b at the interface {principle of action-reaction):

a b
<, T* = -T}, O (23)

where the superscripts a and b identify the two materials on the two
sides of the interface.
Now it may be recalled (Sokolnikoff [33]) that the stress vector on
a surface with outward normal n, is expressible in terms of the stress
),!
components by the following formula : ‘ :

T, =o,n;.° ’ (2.4)
Hence, since n} =,—n§’- at the interface, Eq.(2.3) becomes
b h _
. osmg = or,]nJ , (2.5)
The unit normal to the interface is tdken here parallel to the x° aX1s
so that ' . -
n¢ =<1,0,0> . (2.6)

Equatlons (2.5) and (2.6) yleld the condltlon that ‘at the mterface
one must have / \

11
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a __ b " a b a __ b
011 = 0315 Oy =012, 013~ 03 (2-7)

Thus, in the matrix representation of the stress tensor at an interface
point: ’ |
° 011 012 013 v,
o12 O3 033 |, (2.8)
013 O3 O3
the out-of-plane components identified by absence of asterisks are the
ones which are required to be continuous; the in-plane components
marked by asterisks are allowed to be discontinuous. It is'interesting
‘to compare the forms of Egs. (2.2) and (2.8) and conclude that, re-
gardless of the materials involved, if a stress component is required
to be continuous, the corresponding strain component is allowed to
be discontinuous; similarly, if a strain component is required to be
continuous, the corresponding stress component is permitted to be

_ discontinuous.

2.1.2 @nite element considerations

The convintional finite element displacement method by definition ac-
counts for the nodal displacement compatibility. Moreover, the dis-

_placement functions are usually chosep to be such as to also satisfy

the inter-element displacement compatibility. This inter-element com-
patibility therefore means that in so far as the strain compatibility is
concerned it js satisfied fully in the sense that the strain components
which must be continuous are indeed required by the formulation to
be continuous , whereas those which can be discontinuous are allowed
to assume different values at the inter-element. boundary.

On the other hand, as is well known, as far as’the stresses are con-
cerned generally no account is taken of the local stress equilibrium con-

[
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ditions either within the bulk of the material or at the interfaces. The
equilibrium is satisfied in the gross sense by ininimizing the total po-
. tential energy of the structure-with respect to its nodal displacements.
This minimization process results in a set of algehraic ‘equilibrium’
equations with the nodal displacements as unknowns Solution of this
system of equations furnishes the nodal dlsplacements (and unknown
reaction forces) corresponding to the loading applied to the structure.
Knowing the nodal displacements, the displacement and the strain field
within each individual element can be determined. Then knowing the
strain field, the stress field within an element can be determined by
invoking the constitutive law of the material of the element. For lin-
ear, 1sotrop1c elastic material behaviour, stresses are given in terrns of
gtrains by the following expressions:

o = A(E;l + €99 + 633) + 2[1«6;1,

022 = Mg}y + €22 + €33) + 2uers, \
o33 = A(e]y + €az + €33) + 2pess, (2.9)
o = 2pel,,
° 013 = 21‘813’“
O = 2peas, .

1]

in which A and” u are Lamé’s constants. Since at an inter-element
boundary, the strains £}},¢},, and ¢}; are allowed to be discontinuous
for the two elements on the two sides of the interface, all stress com-
ponents, with the exception of o093, are in general discontinuous even
if the material of the two elements is the same. So that when the
. material properties for the two elements are in fact different, which is 4
the case for a bimaterial interface, then without exception all stress
components are made discontinuous across the interface. '
If the interface stress continuity is to be enforced, {hen Eqgs. (2.7)

-

13 : I ,



!

must be satisfied. In view of the strain compatibility this implies that
the strain components must be related to satisfy the following condi-
tions:

(A% — Nehy) + (A = N)(eaz + €as) +2(nled; - pley) = 0,
S e 2(pety ~ pley,) = 0, (2.10)
2(pels - l‘bé"is) =0,
where the superscripts a and b identify the quantities related to the a
and b sides of the interface. ,

Now, ideally, the displacement functions should be chosen so as te
satisfy the above conditions at every point of the inter-element interface
boundary. However, this appears to be a rather difficult requirement to
meet, and in the present work the satisfaction of the above conditions,
is restricted to just one point of the interface boundary common to two
elements. o *

In two-dimensional plane stress or plane strain cases in the z; — z,

)ﬁplane, the interface surface is assumed to be a cylindrical surface with
normal perpendicular to the z; axis (i.e. lying in the z; — z; plane).
The stress and strain tensers are expressible respectively as : -

[""" Tnt } , (2.11)

- Ont U:t
and
* ¥
Er. € ‘
‘ nno Tet L (2.12)
& Ege  Eut

where n is the normal direction and t is the tangential direction de-
termined from the right-hand rule n x t = k, k being the unit vector
in the +z3; directiog and n and t being the unit vectors respectively
perpendicular and parallél to the interface (Fig. 2.2).

14 ’
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The two-dimensional stress-strain relations can be expressed as:

Onn = M(ehs + €u) + 2060, - o
g = Ai(Eh, + Eu) + 2060, @ (2.13)
Ont = 2UEnt, ’

~ —_

where )\, is defined to be:

M= 2p . for the plane stress case (0,;, =0), (2.14)
2u+ A
and : -
M =X ; for the plane strain case (g, = 0). (2.15)
It also follows that: , ’
— E,5 = 2,::;_\ ,\(g,m + €x) : in plane stress , (2.16)
and .
0zz = MEn, + €t ; in plane strain. (2.17)

*The interface continuity conditions on the stress vector, Eq. (2.7), can

now be expressed as:

(Acllegm - Alié'gm) + (X; - Ag)stt +~2(“a€?m - :u’belr,m) = 0’

\

. (2.18) -
2(p%en; — p'el,) = 0. ’

Note that in the finite element formulation of the interface element
to be presented, imposition of the interface stress compatibility con-
ditions, Egs. (2.10) or Egs. (2.18), is effected in an alternative way

using the matrix notation and material constants E and v rather than

" Aand p.

15
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Figure 2.2: Two-dimensional interface problem.
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2.2 Present plane-stress/plane-strain interface
.element

" .The proposed interface element is an element consisting of two adjoin-

ing quadrilateral elements, one on each side of the interface with

_ the interface as their common boundary. The stress continuity con-
ditions ar€ imposed at the midpoint of the interface side of thg ele-
ments. A midside node on the interface is a reasonable choice since
stress computations at boundaries are considered to be most accurate

" at midside points (Cook: [7]).

Considered md1v1dually, this interface node is the fifth node for each
of the two elements of the combined interface element.. Thus, each of
the two elements’is a five-node element, and its stiffness matrix can
be determined in the usual fashion as shown below. The difference is,
however, that instead of keeping the two degrees of freedom associated
with the fifth node as free, they are selected so as to satisfy the two
stress compatibility conditions, Eq. (2.18) or equivalently Eq. (2.7).

- This last step is the essence of the proposed formulation.

One of the five-node elements is shown in Filg. 2.3a together with
its “natural” coordinate system. The derivation of a potential energy
expression for the element follows the standard procedure presented in
any finite element text (e g. Cook [7]). Only a brief account is given
here.

In this section, as well as in all subsequent ones, the formulation
will be carried out in matrix notation, as it is very convenient for
computer implementation. Square brackets, [], will represent matrices,
while curly brackets, {}, will represent column vectors. No summation
over repeated indices will be assumed unless explicitly stated.

An isoparametric quadrilateral element in the x-y plane is a square
element in the { — 1 plane. The term isoparametric means that the

17
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transformation linking the £ — n coordinates with x-y coordinates is
the same as the one expressing the connection between the nodal dis-
placements and the displacement field within the element. Thus, one
has for the five-node element:

-

* = Niz;+ Nyzy+ Nizs + Nyzy + Nyzg,
Yy = N1+ Noyz + Nays + Nyys + Niys, (2.19)

and

u = Niuj + Nyuy + N3u; + Nyuy + Nsug, :
v = Njvi+ Nyvy + N3vs + Nyvy + Njvs, (220)
where (z;;;) - - - (25, y5) are the nodal coordinates and (‘ul, vy) - - - (us, vs)

are the nodal displacements of the element The shape functions N,
for the five-node element. are:

Nt = —¢(§-1)(n—-1)/4,

Ny = —€(6+1)(n—1)/4; ~
Ny = (£+1)(n+1)/4, (2.21)
Ny = —(6-1)(n+1)/4, :

Ny = (&-1)(n-1)/2

It can be verified that these shape functions have the property:
- . Q

TN, =1, (2.22)
which together with Eqs. (2.19) and (2.20) restated:
> Nz;=z and Y Ny =y |, \ (2.23)
18
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Figure 2.3: a) Five node quadrilateral isoparametric element;
b) Typical pair of five-node elements sharing an interface. )
-
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_ensure that the displacement functions chosen are capable of modelling

the r1g1d body displacement and rotation of the element. Moreover,
since the displacements along an element side depend only on the dis-
placements of the nodes belonging to that side, the inter-element dis-
placement (and strain) compatibility is satisfied regardless of the par-
ticular values of the nodal displacements and regardless of the material
properties of the elements.

Considering now the element a, belonging to the materlal a, the
strains are expressible as:

. ;au“_BNlu_i_BNz 4 +§_]£ (
Sz T gz T J LT g gz
a _ ov® N1 aNz 3N5
Eyy = ay = ay v + ay vy Ao+ 6y Vs, ‘ (224)
du® v
a —_ a __ —
7xy - zezy“(ay + ax)"‘
_ ON; oON; . ONj ONjs
= By oy Doy,
or, symbolically in the matrix notation as:
A{e’t = [B{A%, (2.25)
where {A°} is tilg vector of nodal displacements:
{Aa}T =< ul’vh tee )u5) Vs >, (2.26)
and ¢
{e*} =< i, €878 > - {2.27)

[B?] is the matrix (of size 3x10) whose elements are the derivatives of -

20
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the shape functions N;(1=1 to 5) with respect to z and y:

[ AN, Ny
Oz 0 dx 0
— N Ny | ..
Bl=] 0 %t 0 % : (2.28)
. Jdy 8z dy iz

However, since NV; are functions of £ and 7, the above differentiation
with respect to x and y cannot be carried out explicitly, but by using
the relations of the type:

ON;  JN;9¢ + A N; 0n
9z  O0f 8z On Oz

Thus, the problem of determining [B?| is reduced to first computing

8¢ 9n 8¢ 9y 0 gi
52y 5. and 59 5y However, again since x and y are assumed to be
9¢

functions of € and 5, we may easily compute %f etc. but computing gz
etc. requires (numerical) inversion of the so called Jacobian matrix [J]

given by: .

(2.29)

2z 3y
€ 3¢ | -
[J] = , . (2.30)
3z dy
° . dn 9n
Now since: ‘
96 9n 1 [z 9y
- 3z 0Oz 3¢ ¢ 10 i
= ; (2.31)
Q{ Q’l Sz QH O 1
dy dy dn Oy - .
we have: ; % o
Ty Ty 55 e
Ir)= |= =[P (232)
gy T2 %5 gﬁ
|

21



Combining Egs. (2.28), (2.29), and (2.32) the strain-displacement

3
ov

matrix [B?| can be written as:

[B] = (BB, (2.33)
where K \
d Ty Ty 0 0
[Bi.]—_— 0 0 Ty Ty , - (234)
" | Ta Toa Ty Ty
and A
%L‘gx 0 éal"g o ....1 -
S0 ghoo
[Bz] = . o (2.35)
0 % 0 %¢
N
0 g+ o g4

L J
‘The potential energy functional for the element is given by the %l-
lowing expression:

4

a 1 a
M= J,{e*} {o°}dV - P.E. of loads, (2:36)
where {g°} is the vector of the stress components:
{o°}T =< 02,0%,72, > . (2.37)

For a linear elastic material, the stress vector {o} is related to the
strain vector {¢} through Hooke’s law:

’

(0%} = (Be), (2.38),

22
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" where [E®] is the matrix of elastic moduli, which in the case of plan

B

°)?)

stress is:

and in the plane strain case is:

fop [p—

1+ v°)(1 - 20°)

0

#

0

2

1—-2°
f o

]

€

(2:39)

- (2.40)

Using Eq. (2.38j, the potential energy expression in Eq. (2.36) is

rewritten as:

a | 1 ’ a a a . Ve
M = 2 [, {e"Y" [E°]{e"}dV - P.E! of loads,

(2.41)

and by substituting in the above equation the‘strain—displacement re-

lation of Eq. (2.25) as:

Mo = S{A*)7([, (B [E][BIAV){A} - PE.ofloads. (2.42)

This functional is now"defined in terms of {A®}, since [B?] is given by
Eq.(2.33) and [E9] is given by Eq. (2.39) or (2.40). The equilibrium
equations are found by making the potential energy functional station-
ary with respect to the nodal displacements {A®}. This results in the

following formula for the stiffuess matrix of the element:

(k) = 1BV = ¢ [, [\ 1B LEe](Boact [3] dean,

23
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where, since the coefficients of [ B?] are functions of £ and 7, the ientegra-
tion.must be carried out with respect to these variables by substituting
dV = tdet[J]d £ d # and where the thickness t of the element is taken
to be constant. The integration is usually carried out numerically by
evaluatir;g the integrand at a selected number of Gajuss points within
the elements, weighting the quantities so obtained appropriately and
then summing them.

A typical pair of elements sharing a common interface is shown in

Fig. 2.3b. Node 7 is the interface fifth node of each element, where the
stress boundary conditions will be imposed. From Hooke’s law, Eq.
(2 38), the stresses at the two sides of node 7 are:

{0°} = [E*]{e"}, (2.44)

and .
(o' = Bl (2.45)
Substituting the stram-dlsplacement equations- (2.25) into Eqs."(2.44)
and (2.45) one aobtains:

{o°} = [B)[BAY, (2.46)

and . )
N ¢ T 12 2 W (2.47)

The boundary conditions derived in Section 2.1 require the continu--

ity of the normal and shear stress components at node 7. The local n-t
coordinate system shown in Fig. 2.3b has its origin on node 7 and the
n-axis is the normal to the interface side, while the t-axis is tangential
to the interface in the nodal difection 1-2. With reference to this n-t
system, the stress boundary conditions at node 7 are:

| o? ot ’ .
R 2.48
{ Tnt } { ot } (248)

)




In order to obtain these local stress components in the n-t-z sys-
tem, from the global components in the x-y-z system, the following

transformation must be carried out: s
{3 -mi, - oo

where | . _62 Yy ' . |
s \[T] = [ —ch cs c?—g? ] , (2.50)

with ¢ and s,as the direction cosines of the n axis with respect to the

global x-y axes.
By combining Eqs. (2.46), (2.47), (2.48), and (2.49), the equality of
the interface stress vector is then expressible as:

[T][E°] {B“]{sﬁ\-“} [TIE(B°1{A"}, (2.51)

L

Wthh by introducing the notation: ¥ ]
Q] = [T][E°][B*] and 1@'|= [T][E"][B"] (2-52)
can be rewritten as:
QU = @AY 253

A pair of five'node elements, such as the ones shown in Fig. 2.3b,
" form a new 7-node mt;erface element{ The local numbering of this
composite element 1is zfso shown 1n this*Fig. 2.3b. The objective now
" is to select the degrees of freedom “of the seventh.node of this element
_ so as to satisfy the interface stress equality conditions, Eqs. (2.53).

Equations (2.53) are now rewritten in such a way as to isolate the -
degrees of freedom of the interface node 7: . )

o

@l =eela () ey

- A9

N ‘ 25 ® .
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and ) -

C sy =@ e { W) sy
B where ’ ' ‘ .
’ '{de}T =< ul')”lau27v2)u3a031'“'47”4’“5’ 1)5, Ug, Vg > (256)

..is the vector of unrestrained nodal displacements of the composite ele-

ment, and [Q1% etc. are the matrices resulting from the decomposition
of [Q“] and [Q"] as follows .

[Qla]__[ 1,8 Qaz 0 000 Qs 1,5 1,6]
Q27 st Qz1 sz 0000 Q Q2,4 Qg,s Qg,a ’

o — | Qi @i : '
02 ] _'[ Q@30 Qg,lo} ’ ) (2'57-)

LI

Q1] = [0 0 Q% Q44 Qs Q16 Q18 "Q Ii,z 00
00 Qza Q5 4 Qgs Qie Qz7 st Qi1 Qi, 00

by QIQ 1,10
Q2] = [Q“ ok m] | (2.58)

Equations (2.54) and (2.55) can now be used to express the connec-
tion between < u7,v; >"and-{d°} which must exist by virtue of the
equahty of the stress vector at the interface node This connectlon is
expresmble as: -

Y | "; {‘u7 } = [LI{d} | ,. (2.‘59)

AUy

where

2] = [1Q2F - [@2°])[1Q1%] - [Q1Y]] . (2.60)
g
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] ( _
) Combining Egs. (2.54), (2.55) and (2.59), the degrees of freedom
* “of each of/the two eleme?ts a.and b can be expressed in terms of the
global defrees of freedom -of the interface element, {d°}:

{a°} = [F{&} ,
{a% = [R'{d} e : . (2.61)

/

where

R = (@@ + QL]

[R'] = [@'][@1"] + [Q2'][L]] - (2.62)

The potential energy of the interface element is formed by adding the
- potential energy expressions for elements a and b. Thus, using Eq.
(2.42) ’ '

ft, = S{A*) 7K} {67} + %{A”}T[K”]{A”} - P.E. of nodal loads.
- . (2.63)
Substitution for {A%} and {A’} in terms of {d°}, Eqs. (2.61), then

J

yi"elds: . .

I, = %{dC}T[[Ra}T (K°)[Re)+(RT[ KR {d} - P.I;). of nodal loads. -

g . i (2.64)
From Eq. (2.64) it then follows that ‘the Stiffness matrix of the
composite interface element is: :

(K] = [R*)T[K°)[R*] + [R)T[K][B'] (2.65)

v

The assembly of the global stiffness matrix and the calculation of the-

nodal displacements are done in the same way as in the conventional
method. The interface nodal displagements‘are not part of the global
displacement vector, since they were replaced by the stréss compati-
bility conditions, Eqs. (2.59). However, once the global displacements

27 e
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have been obtained, Eqgs. {2.59), (2.25), (2.46) and (2.47) can be used
to obtain respectively the displacements, strains {¢°} and {e’}, and
stresses {0®} and {0°} at H\e)interface-node. By virtue of the formu-
lation these values are in accbrdance with the required continuity. and

permissible discontinuity conditions of perfect bond.

From a computational point of view, the proposed procedure is not
very different from the standard technique. The global degrees of free-
dom of the structure, which constitute the most important factor in
cost considerations, remain exactly the-same as if regular quadrilat-
eral elements had been used instead of interface elements. Additional
computational effort is required only for the calculation of the [L] ma-
trices, which is, however, a simple procedure involving multiplication
of low order matrices. Thus, it.is to be appreciated that the inter-
face element enforces the stress and displacement compatibility at a
bimaterial boundary point at a minimal additional computational cost
without significantly affecting the usual displacement method proce-
dure For this reason, it is especially suited for insertion into a general-
purpose commercial finite element program that allows for user-defined
elements. )

The fundamentals of the'new element formulation have been pre-
sented in this section for the two-dimensional plane stress/plane strain.
case. The following section deals with- the modifications and special
considerations for the case of axisymmetric analysis.

2.3 Axisymmetric case

For the purposes of this study, an axisymmetric model is assumed to
consist of a structure of axisymmetric geometry subjected to axisym-
metric loading; the materials continue to be assumed as linear, isotropic
elastic. The case of axisymmetric structures subjeeted to nonaxisym-

33
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metric loading conditions will not be considered in this work.
Although an axisymmetric analysis deals physically with a three-

dimensional problem, the fact that all variables are independent of the -

circumferential coordinate allows for a mathematically correct two-

dimensional treatment. With reference to the cylindrical coordinate -

system shown in Fig. 2.4, the axisymmetric condition implies that:

Uy = O’
€y = Epz =0, . (266)
| o = 0g; =0.

The displacement components u and v now correspond to the radial
and axial, i.e. r and z, directions. The non-zero stress and strain
components may be written in the vector form as:

{U}T =< 07,09,02,T2r >

{S}T =< EryE45Ezy Yar > . (267)

where the strain components are related to the displacement field as
follows:

Vo
" or ’

Y] "= -:'ﬁ R ) /(2.68)‘

€zz = _Z_g )

" 7 8z Br

The stress-strain relationship (Hooke’s law) is:
{o} =[El{e} , . | / (2-69)
o 29 '
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Figure 2.4: Cylindrical coordinate system and typical axisymmetric element.
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where now: -
1-v v v 0
FE v 1—-v v .0
1+v)(1-2v)t v v 1—-v 0
: 1
0 0 0 L&

°

5= ¢

(2.70)

In the finite element implementation, the independence with respect
to the #-coordinate means that it is sufficient to consider the quantities
within any one radial, r-z, plane. We again consider isoparametric
quadrilateral elements (which are in fact ring elements of quadrilateral
cross-sections) and assume displacement functions and isoparametric
‘coordinate transformations as:

u=YNu, v=XNy , =~ = [(271)

and
r=) Nry 2z=) Nz |, ; (2.72)

where the summation extends to four terms for regular quadrilateral
elements and to five in cases of five-node quadrilateral elements used
for constructing the composite interface element. The shape functions
N; are exactly the same functions of £ and n as chosen before for the
two- dimensional cases. The development below assumes a five node
quadrilateral element. '

The strain field corresponding to the assumed displacement field,
Egs. (2.71), can be obtained by using Eqs. (2.68) and can be expressed

| (e} =(Bl{A} , - (2.73)

where {A} =< uy,v1,up,v2,-+-,us,95 > is the vector of nodal dis-
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placements of the element, and the [B] matrix is given by:

aN, aN;
~ ( ar 0 or 0

[B] - AN, aN;
0 0z 0 -0z

dN, AN, 8N, 4N,

=71 ar 8z or

-

(2.74)

Again, since V; are functions of ¢ and 7, the above differentiation
cannot be carried out explicitly, and one needs analoguous to the two-
dimensional cases the inverse of the Jacobian matrix:

or 9z
3¢ B¢
1=

Q:IQ:
3% .

Denoting the inverse as: .

Pll 1‘12 dr Or
Tl = -
Ir] [Fn Fzz]

‘ dz dz

the [B] matrix of Eq. (2.74) can be expressed as:

[B] = [B1][Bz]
where _
[’y T, 0 0 0O
{0 0 0 o0 f°
[B1] = 0 0 Iy Iy, 0 °
0

| Ty; Ty Ty Ty
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and

,
ER :
o0 &k 0

[Bg}]z 0 ¥ o - (2.79)
0, Y o 9
Ny 0 N, 0 .-

The potential energy of the element can then be expressed as:

2m 1 r1
I, = S{AY ([, [, (B [E||Blrdet[J]dgdn{A} - P.E. of loads.
(2.80)
from which it follows that [K], the stiffness matrix per radian of the
circumferential angle is: ‘

K= [ [ |BI[E|[Bldetidldedn . (281)

As before, Gaussian integration is necessary to evaluate the terms of
this stiffness matrix.

The formulation of the interface element. proceeds along the same
lines as for the two-dimensional elements. This.element consists of a
composite of two adjacent 5-node quadrilateral elements, one on each

side of the bimaterial interface with the fifth node at the middle of the o

interface side common to the two quadrilateral elements. The stress
continuity conditions still remain the same, requiring continuity of the
normal stress and the shear stress at an interface point. The two
degrees of freedom pertaining to the-fifth node (node no. 7) are again
so chosen as to satisfy the required continuity of the above two stress
components at this node. ¢
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The [Q] matrices in the stress continuity condition:

[Q°){a%} = [@{A"} , - (2.82)
are given by:

[@°] = [T)[E°][B*] and [Q"] =[T|[E")B"] , (2.83)

,where the [E] and [B] matrices for materials a and b are those given
respectively by Eqs. (2.70) and (2.77), and [T] is the transformation.

matrix given by:

7] = : (2.84)

¢z 0 s° 2cs
—cs 0 es c¢*— g2 ’

with ¢ and s as the direction cosines of the normal with respe'ct tor
and z axes.

Isolating the degrees of freedom of the common node no. 7, the
above equation may be written as:

@la 2eriey ez { U] sy

and o
@Iy =i+l { W) . s
where {d°} =< uy,vy, ug,ve,- - -, ug, ve > (2.87)

is the vector of nodal displacements of the composxte element. The
matrices [Ql“] etc. are expressible as:

[Ql“]— 18 11 2 0000 Q 14 w15 I,GJ/
Q27 Qza Q21 sz 0000 Q 3,4 Qg,s Qg,e ’
[Qza] — ,:Q;.,Q Q(II,IO] , - (288)
2,9 Qz,m
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00 Qz,s 24 W25 w26 W27 Qz,s 2,1 Qz,z 00

[sz] — [Q’i,g . 2,10 ] . (2.89)
Qho @310
The stress continuity conditions, Eq. (2.82), then lead to:
{ 7 } = [L){d?} (2.90)
7 [¢]
~ where ) )
L] = [[Q2°) - [Q2°]] '[[Q1°] - [QY']] . (2.91)

Substituting Eqs. (2.90) into Eqs. (2.85), the nodal displacement
vectors of the two individual eletnents may be written as:

(A%} = [R{a} (2.92)
= {a% = [R'{&} ,/ (2.93)
Wher_e: (R = [@°[Q1"] + [@¥[L] K - (294)
e R = @[] + [@2[Z]] . - (295)

Hence, by virtue of Eq. (2.81) and Eqs. (2.94) and (2.95) the
stiffness matrix of the composite element can now be written as:

K] = [RJT[K°)[R*] + [R')[K)(R] . (2.96)
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We thus see that the formulation of the axisymmetric interface com-
posite element is very similar to that for the corresfonding two- dimen- )
sional element except that the matrix sizes in the intermediate steps
are different because of the circumferential strain and stress terms.

It is also of interest to note that while the circumferential strain, €49,
must be continuous, the circumferential stress, o4y, is permitted to vary
discontinuously. '

2.4 Notes on the development of the program

A two-dimensional finite element program with plane-stress/plane-strain
and axisymmetric analysis capabilities has been developed for the pur-
pose of testing and validating the new element. The complete listing is
‘presented in Appendix B.1. This section consists of a brief description
of the elements and the subroutines incorporated into the program.

2.4.1 Library of elements

1. Spring element (BAR) : This is a one-dimensional linear element
resisting only axial forces. The formulation may be found in any
text, e.g. Cook [7].

2. Constant strain triangular element (CST) : The formulation for
jhis well-knowp element is based on Cook [7] for the plane-strcﬁs/plane-
strain case, and on Wilson [36] for the axisymmetric case.

3. Linear quadrilateral isoparametric element (QUAD4) : This el-
ement is based on the standard isoparametric formulation, e.g.
Cook [7]. The user has a choice of a 2x2 or a 3x3 Gauss inte-
gration scheme. There is also an option to include incompatible
bending modes in order to improve the bending performance of
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the element. The implementation of the incompatible modes is
based on the work of Wilson et al. [37] and Taylor et al. [34],
although caution must be exercised for distorted, non-rectangular
elements (Cook [7]). The QUAD4 element may be used for ei-
ther plane-stress/plane-strain or axisymmetric analyses. In the
axisymmetric case, the problem of the indeterminacy (1/r factor
at r=0) encountered at ‘core’ elements (i.e. elements with nodes
on the axis of symmetry) is resolved by setting the radius of the
nodal circle to a very small finite value (1.0x107%) (Wilson [36))..

Quadrilateral isoparametric interface element (QUADS) :

This element is based on“he formulation presented in this chap-
ter. It is a five node quadrilateral, its fifth node being at the

“midpoint of the interface side. Normal and shear stress conti-

o

nuity are enforced across the interface at this node. The user
has again the option to choose between two Gauss quadrature
schemes (2x2 or 3x3). The QUADS5 element may be used in ei-
ther plane-stress/plane-strain or axisymmetric analyses. Pairs of
QUADS elements sharing an interface are automatically combined
to form six-node composite elements satisfying continuity “of the
stress vector at the interface node.

2.4.2 Library of subroutines

A schematic flowchart is shown in Fig. 2.5 outlining the Main Program
functions. The functions of the subroutines will be briefly presented in
this subsection. All subroutines were developed by the author except
where an explicit reference is given.

GENER : Generation of nodes and elements. The user must specify

the first and last card in the sequence and the node or element
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Figure 2.5: Schematic flowchart of the main functions of the developed finite element

_ ‘program.
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number increment. The‘incremented nodal coordinates or element
nodes are automatically computed. The elements need not be in
element number sequence, as is the case with other programs (e. g

SAP IV).
-~ DATA : Printiﬁg of'the input data in sorted orcfer.g?
STIFF : Assembly of the global stiffness matrix. This subroutine

requestg the stiffness matrix of each element and assembles it 1nto

the global matrlx in symmetric banded format
BAR Calculatlon of the stiffness matrix for the BAR element.
CST : Calculation of the stiffness matrix for the CST element.

QUAD4 : Calculation of the stiffness matrix for the QUAD4 and
QUADS5 elements. The Gaussian integration scheme was adapfgd
from Cook [7].

Ty

QUAD4 and QUADS elements; adapted from Cook [7].

REL : Calculation of the interface stress compatibility conditions. It
computes the matrix: [L] according to the formulation of section
2.2,

o

"SHAPEF : Calculai:ic")n of the strain-displacement matrix for thfe

YOUNG : Calculation of the elasticity matrices for the cases of plane-

Q
T

" stress/plane-strain'and axisymmetry.

GREDUC : Reduction of the stiffness equation to upper triangular
form using the Gauss procedure. The symmetric banded format
is used; adapted from Hinton and Owen [14].

.
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BAKSUB : Calculation of the reactign and displacement vectors
) through back substitution. The symmetric banded format is used;
adapted from Hinton and Owen [14].

DISPL : Calculation of the interface nodal displacements and output
of the results for displacements and reactions.

FORCE : Calculation of the axial force and the elongation for the
BAR element.

v STR. : Calculation of the stressés for the CST element.
STRES : Calculation of the ;stre?:ﬂ—l)or the QUAD4 ard QUAD5

elements.
PRINC : Calculation of the principal stresses and their directions. °

TRANSF : Transformation of the stresses into the local n<t 1nterfa.ce
i coordinate system (Fig.- 2.2).

MATMAT : Caleulation of the product of two matrices.

MATYVEC : Calculation of the product between a matrix and a vec-
tor. ’

DOT : Calculation of the dot product between two vectors.

Subroutines TRIAX, QUADAX, SHAPAX,RELAX,STRAX, STRIAX
R are the axisymmetric counterparts of the plane subroutines CST, QUAD4
Mot SHAPEF, REL, TR, STRES, respectively.
Further modifi¢ations to the program are possible in order.to im-
prove its efficiency, since the primary concern during the present devel-
. opment was the correct implementation of the proposed method rather,

-6
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than the cost efficiency. The listing presented in Appendjx B.1 corre-

sponds to the version adapted te the FUJITSU FORTRAN compiler

at the Computing Center of McGill University.

41




P

TWO-DIMENSIONAL
ELEMENT

3.1 Intro duction

The evaluation of a new element usually follows a long procedure of
tests to assess its performance in ré’fe;rence to such criteria as accuracy
of results, convergence characteristics, numerical stability, etc. In the
presént study, priority was given to the assessment of the correctness of
the computed results, especially at bimaterial interfaces , since this was

essentially the motivation for the development of the interface element. =

Moreover, a series of patch tests that were successfully carried out using
the new- element guarantee convergence to exact solutions. A typical

: _arra.ngerﬁenf; used in a patch test is shown in Fig. 3.1. In the remainder
. of this chapter, the evaluation of the interface element will be made in

reference to the quality of the computed’results only .

The formulation of the interface element presented in the previ-
ous chapter ensures continuity of the stress vector at the intermaterial
boundary. The purpose of the validation tests described in this chapter

42
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is to establish the degree of accuracy of the interfacial stress values as
computed by the new element. A comparisén is also made between

- the performance of the proposed element and that of the conventional

linear method.

The determination of the correct stress distribution at a bimate-
rial interface by theoretical procedures is not always possible. In some
simple problems, however, %xisting or easily derivable closed-form so-
lutions allowed for a direct comparison with the results of the interface
element.

Four validation tests are presented in this chapter. The first one
(section 3.2) involves a bimaterial vertical wedge under tip loading.
Although a closed-form solution is not directly available for this case,
in a similar analysis, Salama and Utku [29] have used the theoretical
solution developed for a homogeneous structure to estimate the cor-
rect stress distribution at the bimaterial interface. This assumption is
further investigated in section 3.2. The remaining validation tests in-
volve a composite cantilever beam under vertical end load, an infinite
plate with a circular inclusion under uniaxial tension, and an annu-
lar composite disk under internal pressure, presented in sections 3.3,
3.4, and 3.5, respectively. In the three latter cases, theoretical closed-
form solutions are used to validate the results obtained from the new
element. |
" Furthermore, in order to compare between the performance of the
proposed element and that of the conventional linear quadrilateral, the
validation test problems were also analysed by the SAP-IV (Bathe et al.
[4]) finite'element program using linear quadrilateral elements (element
type 4 in SAP-IV). Although the developed program also includes that
element type, as was mentioned in the previous section, preference
was given to the SAP-IV program due to its superior cost-efficiency,
in view of the planned successive refinements. Furthermore, SAP-
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IV was chosen over the other major finite element program available

at McGill, MSC/NASTRAN [20], because NASTRAN’s quadrilateral

element (the QUAD4) is not a direct implementation of the standard
isoparametric procedure; reduced order integration is used for the shear
terms in order to improve perfo?mance in bending problems (MacNeal
[19]). ’

Since the validation tests do not reflect real cases, the units of dis-
placement and loading are arbitrary. The units of stress, however,
are consistent ,&nd are defined as: units of load/(square of units of

In all the problems, ghe elastic moduli between adjacent materials
are assigned in a ratio of 100. This value is comparable to the one
encountered in biomechanical applications (modulus of steel prosthesis
= 200,000-Mpa, modulus of bone cement = 2000 Mpa). Furthermore,
wherever mesh refinements have been carried out, the following con-
vention has been adopted in order to achieve“copsisi;ency : the sides of
all elements along the interface are reduced by half, while the aspect

ratios are maintained constant.
Y

3.2 Composite wedge under vertical load.

This example is, in the unimaterial case, an application of the clas-
sic problem of a force acting on the end of a wedge (Timoshenko and
Goodier [35]). Salama and Utku [29] have used the wedge problem (for
horizontal loading) to demonstrate the capabilities of their proposed
generalized best fit strain tensors method and they assumed the the-
oretical solution (developed for a one-material case) to apply in the
bimaterial case as well, in order to validate their results.

In this example, mesh refinement is used in an attempt to establish
a more reliable stress distribution and the theoretical one-material so-
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lution is included in the comparison in order to investigate the validity
of assumptions such as the one made.by Salama and U%ku

The meshes used for the analysis are shown in Fig. 3.2. They were
analysed by both SAP-IV and the program using the interface element.
The bimaterial interface is horizontal,and the material at the bottom
is 100 times stiffer (hard) than the material at the top (soft). The
Poisson’s ratios of both materials are 0.3 while the wedge thickness is
of unity. Only the symmetric half of the wedge is analysed. The load
is a vertical concentrated downwards unit force acting at the tip of.the
wedge.

The results at the interface are shown in Fig.3.3 and 3.4, for the
normal and shear stresses respectively. In these plots, the unique in-
terface stressses obtained by the new element are seen to be identical to
the stresses obtained by SAP-IV.on the soft side of the interface. Fur-
thermore, the stress discontinuity obtained by SAP-IV was very small
in this case, so that a single mesh refinement yielded very reasonable
values.

For both normal and shear stresses, the performance of the new
element was very satisfactory as its results followed the convergence
trend. The analytical one-material solution could be considered as an
acceptable first estimate of the interface stress distribution in this case,
although its use for validation of interface elements is questionable.

Generally, in this case, the new element yielded a continuous normal
and shear interface stress distribution that can be considered reason-
able, in view of the convergence pattern. Nevertheless, no distinct
superiority to SAP-IV can be claimed here, mainly because of the lack
of pronouced discontinuity in the SAP-IV values.

. Interestingly, if the relative stiffnesses of the materials are reversed,
that is, if the bottom material becomes the soft medium and the top
material becgmes the hard medium, then the unimaterial analytical so-
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. Figure 3.3: Composite wedge problem; normal stresses at the bimaterial interface. *
the strdss units are consistent: force units/square of length units.
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lution can no longer be considered an acceptable approximation of the
true interface stress distribution, as shown in Fig. 3.5. This demon-
strates the fact that, in the absence of exact solutions to problems
involving bimaterial interfaces, extreme care must be taken before de-
ciding to consider the unimaterial solution, especially when the region
of interest is bimaterial interface itself.

3.3 Bending of a composite cantilever beam

The second test case is shown in Fig. 3.6 along with the three different
meshes used. It is a cantilever beam of two materials loaded at its
tip by a concentrated vertical unit force. The length of the span is L
distance units, the depth is L/4 units, and the thickness is one unit.
The bimaterial interface is along the length of the beam, the stiffer
material (E = 30000 stress units) being at the bottom. Both materials
have a Poisson’s ratio of 0.3. Mesh 2 was analysed by both SAP-IV
and the developed program, while meshes 1 and 3, coarser and finer
respectively than mesh 2, were analysed by SAP-IV only in order to
observe convergence.

A general solution to the problem of bending of composite prismatic
bars has been developed by Muskhelishvili [23]. Based on that solu-
tion, a plane stress solution for the case of cantilever bimaterial beams
of rectangular cross-sections has been obtained and is included in Ap-
pendix A.2. According to this solution, in the problem at hand, the
transverse stress should be zero throughout the beam, while the shear

. stress should have a constant value of —5.5 x 10~% stress units.

In the finite element analysis of the problem the load was applied at
the tip rather than being parabolically distributed along the edge and
all the nodes on the fixed end were.constrained,rather than fixing only
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the end of the neutral axis, as was assumed in the theoretical solution.
It is expected that these simplifications will result in local deviations
from the anticipated results at the two ends of the beam, so that the re-
sults in these regions will not be considered in the comparison between
theoretical and finite element solutions.

Figg. 3.7 and 3.8 show the transverse stress distributions obtained
at the bimaterial interface. Because of the very high discontinuity in
the SAP-IV values across the interface (over two orders-of magnitude
in difference), separa’gﬁ;}plots using different scales were necessary for

the hard side, Fig. 3.7, and the soft side, Fig. 3.8. In view of the

fact that the theoretical normal stress has a’constant value of zero
units, it appears that mesh refinement does_little to improve the high
values obtained by SAP-IV on the hard side of the interface. The soft
side stresses, however, are more reasonable. The new interface element
predicted unique values on both sides of the interface, although shown
on different scales in Fig. 3.7 and 3.8. These unique values are almost
exact,and the superiority of the rew element is therefore evident.

The interface shear stress distribution is shown in Figs. 3.9 and 3.10.
In this case too, different scales had to be used for the SAR-IV results
on the hard side, Fig. 3.9 and on the soft side of the.interface, Fig.
3.10. The discontinuity obtained by SAP-IV is significant, although not
as pronouced as in the case of the normal stresses. Still, the stresses
predicted by SAP-IV on the hard side fail to show an indication of
convergence: they remain approximately three times higher than the
correct distribution even after the last refinement. On the other hand,
the soft side results of SAP-IV are again very reasona,b,le The new
element predicted unlque shear stress values which are alrnost identical
to the ones computed by SAP-IV on the seoft side of the interface, for

<

the same mesh size. These values-are very close to the correct stress,

distribution.

[
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he new element enforces continuity of the stress vector at a bima- -
terial interface, but it does not affect the stress component which is
not required to be continuous. In this problem, the bending stress, 0.,
must be discontinuous at the interface. Fig. 3.11 shows the variation
of the bending stress along the depth of the beam at three locations
along the cantilever span. Both SAP-IV and the interface element pre-
dicted identical values for the same mesh size. Furthermore, the use
of the new element along the bimaterial interface did not affect the
bending stresses above and below the interface, which are accuratcly
determined and are identical to the ones obtained.by SAP-IV.

The maximum vertical displacement of the structure (14.3 x 1072
units) was computed satisfactorily by both SAP-IV (14.9 x 10~2 units)
and by the program using the new element (14.6 x 1072 units) for mesh
2. Small differences between the analytical and t}Ie finite element meth-
ods are probably attributable to the different assumptions made in the
two methods concerning load application and boundary conditions. It
must be noted here that if interface stresses are the important variables
in an analysis by the conventional finite element method, convergence
should not be judged on the basis of displacements alone, since it has
been seen in this example-that although displacements are accurately
determined by SAP-IV, the interface stresses are highly discontinuous.

- Finally, if the order of the materials is reversed, that is if the hard
material is at the top and the soft material is at the bottom, then the
interface stress discontinuity obtginied by SAP-IV was reduced, but still

-remained relatively unaffected by meésh refinement. The new element,
again, yiéldedu values very close to the theoretical ones and comparable
to those obtained by SAP-IV on the soft side of the interface.
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Figure 3.11: Composite cantilever beam problem; variation of bending stresses along
the span and the depth of the beam. * the stress units are consistent: force
units/square of length units.
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3.4 Plate with circular inclusion

The problem of an infinite plate with a circular inclusion under uniaxial
tension, Fig. 3.12a, has been solved in Muskhelishvili’s classic work
[23]. The example used for this third validation test is based on that
problem and is shown in Fig. 3.12b. Only one quarter of the plate was
modelled, since the structure and the loading have two perpendicular
axes of symmetry.” The inclusion was assigned a modulus of elasticity
of 300 stress units and a Poisson’s ratio of 0.25. The surrounding
plate was taken to be 100 stiffer than the inclusion and was assigned a
Poisson’s ratio of 0.333. The structure was subjected to uniform unit
tension.

The model was analysed by both SAP-IV and the program using
the new element. The resulting interface normal and shear stress dis-
tributions are plotted in Fig. 3.13 and 3.14 respectively, together with
‘the theoretical distributions. The discontinuity obtained by SAP-IV
for both normal and shear stress components is evident. It is not as
pronouced, however, as in the previous example of the cantilever beam.

The normal and shear stresses calculated by SAP-IV on the soft
side of the interface are v:e\\ close to the theoretical distribution. One
the other hand, the stresses chtained on the hard side are significantly
higher in magnitude. The uniq\ue\ interface values obtained by the new

- element are very similarto the theoretical values and to the values’

computed by SAP-IV on the soft side. .

An important observation that can be made in this example is that
inthe case of the shear stresses, the theoretical distribution lies outside
the range defined by the distributions obtained by SAP-IV on the soft
and hard sides of the interface. The same observation was made in a
subsequent analysis of the same model with reversed relative stiffnesses,
that is, with hard inclusion and soft plate. The distribution of the
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interface normal stresses in that analysis is shawn in.Fig. 3.15. It can
be seen in Fig.. 3.15 that the stess discontinuity obtained by SAP-IV
was significantly reduced (approximately 20 per cent difference betwee
the hard side and the soft side values). Interestingly, the stresses on
the hard side of the interface were closer to the theoretical solution
than those on the soft side. ‘

3.5 Composite annular disk with internal pressure

This fourth validation test was used to assess the performance of the ax-
isymmetric interface element, formulated in Section 2.3. The problem
consists of an annular disk of unit thickness composed of two materials
(Fig. 3.16a). The inner annulus was assigned an elastic modulus of
30000 stress units and a Poisson’s ratio of 0.2. The outer annulus was
100 times softer than the inner annulus and had a Poisson’s ratio of
0.0. The load applied was a uniform’internal unit pressure.

An exact plane stress solution may be obtained for this problem,
based on Lamé’s wopk on the unimaterial case (e.g. Timoshenko and
Goodier [35]). The developed solution is outlined in Appendix A.1. Ac-
cording to that solution, the exact interface radial stress in the problem
at hand has a value of 0.004 pressure units. '

The problem was analysed by both SAP-IV and the developed pro-
gram using the new element. The finite ¢lement mesh is shown in Fig.’
3.16b. Table 3.1 summarizes the result from these analyses as well as
the theoretically expected results. It is evident from Table 3.1 that
SAP-IV fails to approximate the correct interface radial stress (0.004
units) by computing 0.14 units on the hard side and 0.0028 units on
the soft side. On the other hand, the. new element yields a unique
radial stress value (0.0038 units) that is very close to the exact value..
Although the mesh used in this analysis is very coarse, the point that
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is made is that, nevertheless, the new element computed an almost
exact radial stress value. T

The other interface stress and strain components that are included
in Table-3.1 indicate that the use of the new element does not affect
those stess and strain components that can be discontinuous (098, €rr)
while it permits the €g9 component to be continuous at the interface.

If the order of the materials is reversed, that is if the inner annulus is
softer, then the discontinuity obtained by SAP-IV is reduced; however,
the new element still predicts an interface radial stress value that is
closer to the theoretical one.

3.6 Concluding remarks

In view of the foregoing, several conclusions may be drawn concerning
the perfomance of the new element and that of the conventional linear
one. FEnforcing interface normal and shear stress continuity- in the
formulation of the element yields very reliable stress distributions at
interfaces where the adjacent materials differ by as much as 100 times in
elastic moduli. These distributions satisfy interelement equilibrium (at
an interface point) and have-been validated by comparison to existing
theoretical solutions.

Despite the fact that it eannot be claimed that the interface element
is always superior to the linear quadrilateral element, it was found that
its performance is very consistant, thus always assuring the user of a
reliable stress analy’sié. On the other hand, the stress discontinuity,

.obtained by the conventional finite element method is highly dependent
on material properties of adjacent media and on structure geometry,
loading, and size of mesh used.

The importance of the interface element is further enhanced in view
of the observed fact that the exact solution is not necessarily bounded
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Quantity | Theoretical .| =~ - Numerical Value
SAP-IV | New Element |.

ol 0.0040 . 0.1400 0.0038

at 0.0040 0.0028 .|  0.0038

‘ o | 0.6601 |- 06224 | 0,6870

r , N 0.0066 0.0085 0.0068
e ~4.27 x.107% | 5.17 x 1077 | —4.45 x 10~
‘ e 8.87 x 107% | 4.92 x 107% | 8.28 x 10~®
€8, 2.20 X 107° | 1.98 x 107% | 2.29 x 10~5
€ " °| 220 X105 |2.17 x 1075 | 2.26 x 10~°

[ . ° e

e

Table (3,.1: Ct;mposite annular disk problem; results at the bimaterial_interface.

w v . . .

~ 3




-

)

by the distributions obtained by the conventional method on either
side of the interface. An improvement over the performance of the
conventional linear element can, therefore, be claimed in cases where
the interface stress discontinuity, obtained by programs such as SAP-
IV, is high, thus rendering impossible the prediction of the range of
the correct stress distribution. In such cases, the traditional practices
of averaging or even using weighting techniques across bimaterial in-
terefaces are likely to have unpredictable results.

"More tests are certainly needed before this proposed element can
be unconditionally guaranteed. Early indications are, however, that it
‘can be very useful in analyses requiring’the calculation of the stress
distribution at a bimaterial interface. A suggested procedure at this
stage would be an initial analysis by the conventional method on a
relatively toarse mesh and, if significant discontinuities are detected, a
subsequent analysis by the proposed element on a locally refined mesh.

»
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Chapter 4 . A

4

BIOMECHANICAL :
APPLICATION: STRESS
ANALYSIS OF A PROSTHETIC
TIBIA M ODEL

4.1 Introduction.

o

Fixation of a deformed or fractured humakn joint by the insertioh of an
artificial prosthesis is an important and frequent orthopaedic surgical
procedure. It consists of surgically removing the damaged joint and
then fixing in its place an artificial prosthesis. The procedure is called
total joint replacement. Ideally, the prosthesis should be designed so
as to transmit the load in a manner simulating the physiological stress
distribution in the intact joint. Fulfillment of this objective is desirable

in order to avoid the possible adverse reaction of the host bone receiving

the prosthesis.
Another important design concern is that of the mechanical fixa-
tion of the prosthesis into the bone, as it directly effects the functional

longevity of the prosthetic implant. These design considerations be-
: (

)
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come very important inﬁ«’é/’ases of joints transmitting significant loads,’
for example the knee and hip joints. The objective of the present
chapter is to demonstrate the applicability of the newly developed
stress-compatible finite elements in determining the prosthesis inter-
face stresses in an axisymmetric model of the tibial part of the knee

kil

joint.
A resurfaced knee joint is shown schematically in Fig. 4.1~ Several .
types of fixation systems and prosthesis designs have been propesed
and are being presently used in knee resurfacing operations. The tibial
component of the prosthesis, which is relevant to the present analysis,
typically consists of a metal plate with one or morg stems protruding
from it. Although the single stem design has been favoured by several
researchers (Lewis et al. [17], Reilly et al. [27], Bartel et al. [3]), i
has the disadvantage of ‘tilting’ under unsymmetric loadings (Lewis et

4l. [17]). More recent studies seem to favour the multiple stem design

(Eftekhar [8], Cheal et al. {6]).

Now, as regards fixing the prosthesis to the bone, there are two tech-
niques of achieving it. The first consists in interposing a thin layer of
PMMA (Polymethylmethylacrylate ) bone cement between the stem(s)
and the bone and thus providing th\ necessary bond. Precoating is
applied to the metal surface to improve the bond strength (Ahmed et
al. [1]). In the second and more recent technique, the bone is allowed
to grow in a ‘weaving’ fashion on and around the surface of the stem
(or stems) possessing special porous coating. The disadvantage of the
cemented fixation lies mainly with the fact thht it is susceptible to early
loosening of the prosthesis. There is an oftigreported link between
clinical failure of the'system and loosening of the prosthesis because of
the cement fixation failure (e.g. Lewis et al. [17]). The bone ingrowth
method offers a stronger fixation but requires a longer immobilisation
period for the patient and complicates revision surgery (subsequent
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operation for replacement of the prosthesis) by making the removal of
the implant from the bone more difficult. \

Thus, in order to improve the performance of the cemented fixation,
it appears imperative to achieve a strong bond between the cement
" and the prosthesis, and also between the cement and the bone, and to
ensure that the stresses at these interfaces are below the bond strengths
of the joined materials. Therefore, the determination of the correct
prosthesis]cement interface stress distribution is an important initial
step in the design evaluation of an artificial joint. “

The objective of the present work is to establish the general validity
of previous analyses’in view of the uncertainty of stress computation by
the displacement finite element method at interfaces between dissimilar
materials (as is the case at the bone/cement dnd metal/cement inter-
faées). Fu éermore, the effect of mesh refinement on the interfacial
stress discontinuity obfained by conventional finite element programs
(such as the SAP-IV program) is also investigated. With reference
to the above-mentioned objectives, it will be possible to assess the
applicability of the developed interface element to real-case problems
and its potential contribution to the quality of the stress analyses in

biomechanical applications. . .
{ o

&~

4.2 Present finite element analysis model -

The specific objective of the present analysis is to evaluate the per-
formance of the displacémeqt based finite element method and that
of the new element with respect to the stress distribution at the im-
plant/cement interfaces of a prosthetic tibia model. In view of this
objective two types of finite element analyses were performed on an
axisymmetric model of a prosthetic tibia: one, using the SAP-IV pro-
gram and refined meshes, and two, by using the developed program

o
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incorporating the new element. »

The model chosen for the analysis is an axisymmetric representation
of a prostheticdally resurfaced proximal tibia. This choice was dictated
by the geometric and loading characteristics of the upper tibia , which
can be qualitatively approximated by an axisymmetric formulation.
Also at the time when this biomechanical application was carried out,
the program incorporating the three-dimensional version of the inter-
face element had not yet been completed. Therefore the analysis had -
to be limited to an axisymmetric case.

v

4.2.1 Geometry - *

The geometry used in the finite element model is the same as that used
by Shirazi-Adl and Ahmed [30], obtained from in-vitro measurements,
Fig. 4.2.

Only the proximal 40 mm of the tibia is included in the model, since
the effects of the insertion of the prosthesis on the stress distribution
are localised proximally. The choite.of a prosthesis model was obvious,
in view of the axisymmetric requi;;nents : a circular horizontal plate
with a central cylindrical stem. The thickness of the plate is taken to
be 2 mm and its radius is equal to 32 mm. The plafelies entirely on the
cancellous bone and no load is directly transferred %o:the cortical shell.
This is a ‘safe’ design assumption in view of the fact that in surgery it
is very difficult to achieve and guarantee the contact of the prosthesis
with the cortical shell. The length of the stem has been found to be -
critical in the load transfer mechanism and in the minimization of the
proximal bone and cement stresses; longer stems are reported to be
more desirable (Murase et al.. [21]) For this reason, a 25 mm long
stemn is used. The thickness of the cement layer is taken to be 3 mm all
around the prosthesfs for the purpose of this analysis (this thickness /
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Material E-modulus | Poisson’s Reference
number* type (MPa) ratio
1 cancellous bone 50 0.2 Goldstein et al. [10]
¢ 2 cancellous bone 100 0,2 Goldstein et al. [10]
3 cancellous bone 150 0.2 Goldstein et al. {10
4 cancellous bone 300 0.2 Goldstein et al._[10]
5 cortical bone 14000 0.3 Murray et al. [22]
6 cortical bone 7000 - 0.3 Murray et al. [22]
7 UHMWP 1000 0.35 | Parker [24]
8 stainless steel 200000 0.3 Popov [25]
9 PMMA bone cement 2000 0.3 Haas et al. [11]
* numbers refer to Fig. 4.2 ’
o
a
.{

N

Table 4.1: Material prope}ties used in the tibia model: The numbers refer to material

regions shown in Fig. 4.2.
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conforms to the value used by Lewis et al. {17]).

4.2.2 Material regions and properties

With reference to Fig. 4.2, the material regions indicated by numbers’
correspond to the properties listed in Table 4.1. The distribution of the
material properties within the cancellous bone is in accordance with
the results of Goldstein et al. [10]. All the materlals are assumed to
be linear elastic and isotropic.

4.2.3 Finite element meshes

The model of the resurfaced tibia is analysed by SAP-IV and by the
developed program. For a consistent comparison, the same finite ele-
ment mesh is used in both cases and is shown in Fig. 4.3. The elements
used are isoparametric axisymmetric ‘ring’ elements with quadrilateral
and triangular radial cross-sections. The ‘quadrilateral’ elements have
a linear displacement variation along their edges, while the ‘triangular’
elements are based on a constant strain formulation In the analysis
by the developed program, interface ring elements are used The inter-
face elements were used to model the cement/implant interface. These
elements have a quadrilateral cross-section and their formulation has
been described in Section 2.3. As was mentioned in Chapter 2, the use
of interface elements does not require additional degrees of freedom, so
that the mesh involved in the analysis by the developed program was
identical to the one used for the SAP-IV analysis.

In all, the model consists of 854 nodes and 887 axisymmetric ele-
ments, of which 162 have triangular cross-sections and 725 have quadri-
lateral cross-sections. In the analysis by the developed program, 55
pairs-of quadrilateral elements combining to form 55 interface elements
were used. The use of triangular elements was limited to areas of mesh -
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Figure 4.3: Axisymmetric finite element model of a resurfaced tibia-model; mesh 2.
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gradation and sharp geornetrical changes, since their performance is
considered tb be inferior to that of the quadrilateral elements. Care
was taken to maintain an aspect ratio (defined as the ratio of the
longest element dimension to the shortest one) of approximately one

A and a rectangular shape for most quadrllateral elements; exceptions
were unavoidable in the regions in and near the cortical shell, where,
for the present purposes accuracy in stress computations is not consid-.
ered to be of prime importance. The mesh is more refined around the
prosthesis/cement interface; this is the region of present interest and
the elements used here are small squares of 1 mim side.

4.2.4 Boﬁndary conditions

The boundary conditions imposed consisted in.fixing the distal end
of the tibia against longitudinal (vertical) movement. Since only the
proximal 40 mm of the bone (corresponding to the interest area of the
joint) have been modelled, the above-mentioned boundary condition -
implies that the load is expected to be transferred along the longitu-
dinal (axial) direction of the shaft in the diaphyseal (midshaft) region
of the tibia. This is, indeed, the observed load bearing mechanism in
the tibia. In accordance with the axisymmetric condition, nodes on
the axis of symmetry were fixed against radial movement. «

o~

¢

v J 4.2.5 Loading ‘ .

The model was analysed for a reference vertical compressive load of 1.0
N umforméy distributed over an annular ring of inner and outer radia
encompassing an area approximately equal to 900 mm?. Although a
more realistic loading condition would involve a symmqtrlcal loading
(simulating'the contact of the femoral condyles) or even a non- sym-
metrical one (in the case of ‘single condyle contact), the formulation
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of the SAP-IV program, as well as that of the developed program,
could not accommodate a non-axisymmetric loading. The choice of a
total load of 1 N allows for easy interpretation of the results in real
cases by a single multiplication of the obtained stress values by the
real load value in Newtons. The load is applied through a 7 mm thick-
Ultra-High Molecular Weight Polyethylene (UHMWP) articular sur-
face that lies on top of the horizontal plate of the prosthesxs (Eftekhar
[8], Shirazi-Adl and Ahmed [30]). &\

4.3 SAP-1IV analyses with mesh refinement

Despite the fact that mesh refinement is a powerful and usually the
only tool for validating finite element results, it has rarely been used
in biomechanical applications (Huiskes and Chao [15]). In the present
study, the results of mesh refinement by the conventional displacement
method (SAP-IV) are used to establish reliable interface stress distri-
butions in order to compare the results obtained on one hand by using
the SAP-IV program and on the other by using the developed program.

Two new meshes were created, one coarser and the other finer than
the one shown in Fig. 4.3 and considered as the ‘optimum’ one. The
convergence study was limited to the computation of stresses at or
around the horizontal interface region, as it was considered the most
critical region because of the presence of stress discontinuities. There- °
fore, only this area was chosen for the mesh refinement.

The three different meshes used are shown in Fig. 4.4. The inter-
mediate mesh (mesh 2) has been described in section 4.2. The coarse
mesh (mesh 1) ‘consists of 596 nodes and 606 axisymmetric elements.
Both the metal plate and the cement layer are modelled by only one
element across their respective thicknesses, keeping the aspect ratio 1.0
for the prosthesis elements and 1.5 for the cement elements.
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The fine mesh (mesh 3) consists of 1316 nohes and 1348 axisymmet-
ric elements. There are 4 layers of elements across the plate thickness

- and 6 layers of elements across the cement thickness. The aspect ratios

in the refined area are of unity (the element cross-sections are squares
of 0.5 mm sides).

The results from the convergence tests are shown in Figs. 4.5
through 4.8. These figures also include the results of the analysis of
mesh 2 by the new element, which will'be discussed in the next section.

Figures 4.5 and 4.6 show the distribution of normal stresses on the
cement and on on the prosthesis side of the interface respectively, while
Figures 4.7 and 4.8 show the distribution of shear stress on the cement
and prosthesis sides of the interface. In actual fact, both the rormal
and shear stresses must be continuous. However, the SAP-1V analysis
yielded such highly discontinuous results, that the stresses computed
on the two sides of the interface could not be included in the same
graph and separate plots with a different scale for each interface side

‘'were necessary. ® i

In the normal stress case , Figs. 4.5 and 4.6, in ﬁ‘articular, this
discontinuity is so severe that the metal side of the interface is com-
puted to be mostly in tension, while the cement one is predicted to
be mostly in compression. This illogical discrepancy is not alleviated,
even after’employing the finest mesh (mesh 3). The metal side tensile
stresses along the horizontal interface are clearly improbable in view of-
the applied vertical compressive load, and this fact accounts for their
dramatic reduction from a maximum value of approximately 1.6 x 1072
MPa/N for mesh 1 to a maximum value of approximately 0.3 x 1072

MPa/N for mesh 3. The cement side stresses, however, are not signifi-

cantly affected by changes in mesh size; in fact, the second refinement
hardly produces any changes, thus indicating a more stable and prob-
ablx more accurate stress distribution Excluding the high stresses in
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the edge region of the prosthesis , mesh 1 yielded a maximum compres-
sive stress of approximately 0.41 x 10™® MPa/N, mesh 2 approximately
0.37 x 107* MPa/N, and mesh 3 approximately 0.36 x 107 MPa/N.
The discontinuity is not as pronounced in the case of the shear
stresses, Figs. 4.7 and 4.8. Qualitatively similar stress distributions
are obtained on both sides of the interface. The numerical valugs are,
however, very different, so that different plots had again to be used for
the cement, Fig. 4.7, and the prosthesis, Fig. 4.8, sides of the interface.
The shear'stresses at the horizontal interface alternate between positive
values in the first third of the ‘cantilever span’ and negative values
in the remaining part. The maximum negative stress values on the
metal side range from approximately —1.7 x 10~ MPa/N in mesh 1,
to —0.9x 107* Mpa/N in mesh 2, to finally —0.6x 1073 MPa/N in mesh
3. The corresponding values on the cementgside are almost identical
for all three meshes (approximately —0.15 x 107 MPa/N).
« A general conclusion that can be drawn from the mesh refinement
studies carried out by the SAP-IV program ‘is that despite the three .
¢ different mesh sizes used, the stress discontinuity obtained at the ce-
ment/metal interface remains significantly high (approximately 900%).
An interesting observation , however, was that the convergence on the
- metal side was very slow compared to that on the cement side. As
a matter of fact, the cement side stresses obtained by the analysis of
mesh 2 can be considered relatively stable, since they only changed by
approximately 3% after the analysis of mesh 3. The consideration of
_ ‘mesh2as thg‘optimufn’ one 18, therefore, justified and the cement side
" stresses obtained by SAP-IV can be used as a relative standard for the
assessment of the results obtained by the pew‘element.
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4.4 Analysis W1th the new element and compar1
son with SAP-IV analyses

Y

|
, |
4.4.1 Comparison with SAP- IV results at the horizontal in- 1 .
terface ' i , /
L
l
ﬁ
|

The unique interface normal and shear stress values obtained from the
analysis of mesh 2 using the new interface element are also shown in
Figs. 4.5 through 4.8. T

From Fig. 4.6 it is evident that the normal stresses predicted by the
interface element are very close to those obtained by SAP-IV on the ’
cement side of the interface for the finest mesh, mesh 3. The normal
stress distribution is almost identical to the one predicted by SAP-
IV (cement side, mesh 3 : 2%, difference) for the last two thirds, of | ‘
the horizontal interface. In the first third, however, the interface WaSl /
found to be in tension, an observation in agreement with that made by
Lewis et al. [17] (where experimental evidence from in-vitro studies is
also presented). ‘

The shear stress distribution obtained by the new element at th
horizontal interface is, again, quite close to the one obtained by SAP
IV onsthe cement side, using the refined mesh. There is a 3% differen
between the maximum negative shear walues obtained by the new ele-
ment and by SAP-IV. The. positive shear values predicted by the n
element are, however, significantly lower than the respective SAP-1V
ones (approximately 65% difference).

Thus, in the present case of the tibial analysis, the new element
results (mesh 2) compare favourably with those obtained by SAP{IV
on the cement side of the interface provided a more refined mesh (mesh
3) is used. _ /

The unique.interface normal and shear stresses obtained by ulsing
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the interface element are isolated from the previcus figures afjd are
shown in Figs. 4.9 and 4.10.

4.4.2 \Resultsk at the vertical interface

In the \A tical interface (along the stem), both the normal apd the
shear stress'distributions are of great importance because of tﬁeir di-
rect impact on fixation efficiency. In this problem it is generally ex-
pected that normal stresses at the stem/cement region would be small.
The results obtained in this anafysis, Figs. 4.11 and 4.12, show the
vertical interface to be in radial compression over the distal half of the
stem, while in the proximal half the radial stresses vary fromh tensile
to compresswe and, finally, reach high tensile values near the/junction
with the horizontal plate, Fig. 4.11. The stress peak at the jynction is
probably caused by the sharp corner assumed in the model aAnd could
possibly be alleviated by a smoother design. This high tensile stress
at the tip and the fact that the stress changes from tensile tp compres-
sive over the proximal third of the stem suggests that the tip region
might be a site for separation (loosening) of the prosthesis depending
on the tensile strength of the metal/cement bond. Generally, the qual-
ity of interfacial bond developed between metal and cement depends
on different factors including metal type, prosthesis surface (precoat-
ing, etc.), and insertion procedure (cement curing, etc.)] Although a
quantitative interpretation of the results is not within $he objectives
of this study, a comparison of the peak tensile stress optained under
a load of 1 kN (0.36 MPa) with values reported for the tensile bond
strength (between 4 and 13 Mpa) (Keller et al. [16]) indicates that the
stresses are low.

The shear stress distribution at the vertical interface , Fig. 4.12,

(

tends to increase distally starting from minimal valuds at the top of
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“~the stem. Again, for a'body weight of 1 kN, the maximum shear stress,
" approximately 0.48 MPa, occurring at the stem l;ip is much lower than
reported values for shear bond strength (between 2 and 12 MPa) (Raab
et al. [26]). ( o :

- 4.5 Conclusions

This-analysis is not specifically aimed towards determining the actual
interface stress distribution of a prosthetic tibia. Such an objective
would require an anatomically correct three-dimensional model and
would involve a series of parametric tests to establish the contribution
of each variable (cemerit thickness, prosthesis design, material prop-
crties) to the stress field. The purpose of this study was mainly to
demonstrate the capabilities of the new element in a sample appli-

cation, and as such the discussion of the results will be limiited to a

qualitative interpretation and comparison of those obtained by using
the new element, SAP-IV, and others available in the literature.

The application of the SAP-IV program to the analysis of the ax-
isymmetric model of a resurfaced tibia resulted in a severe discontinu-
ity of the stress vector at the implant/cement interface (in violation
of the required continuity of this vector). This discontinuity remained
significant even after two successive mesh refin8ments. However, the
stresses obtained at the ‘softer’ cement side of the interface did-appear
to approach convergence after the second refinement and also com-
pared very well with those obtained by using the developed interface
element. From this point of view, the performance of the new-element
may be.considered satisfactory, especially since it alleviates the need
for mesh refinement; the latter becomes indispensable in analyses by
-the conventional finite element method in attempting to overcome the
ambiguity of the stress discontinuity.
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A similar analysis of a resurfaced tibia (for axisy mmetric geometry
but non- 'axisyrrimetric loading) has been carried out by Shrivastava et
al. [31] using an in-house developed program. Theis results (for a
diametrically symmetric loadmg) compare well with those obtained by
the new element. However, because of the differences in the manner of
loading and the model used, the cf)rnp_arison can only be qualitative.

- Despite the fact that there are numerous analyses of resurfaced knee
joints in the literature, very few. directly address the problem of the
implant/cement stress distribution. The high stress discontinuity ob-
tained at the interface by the conventional finite element method has
led researchers to estimate tire interface stress values by either extrap-
olating from the cement element centroidal stresses (Askew et al. {2])
or by accepting the cement element boundary stresses (Shrivastava et
al. [31]). The latter assumption’is now substantiated in view of th¢
observation made in the course of this study that the ‘soft’ side stresses
are more accurate than the ‘hard’ side ones. However, there can be
no general guarantee as to the accuracy of the résults obtained by a
conventional displacement method if a convergence study or other vali-
dation procedure is not carried out. Hence, the use of the new interface
element is strongly recommended for such biomechanical applications
or other analyses involving bimaterial interfaces.
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Chapter 5

o

THREE-DIMENSIONAL
INTERFACE ELEMENT -

}

~

5.1 Formulation -«

~

4

The formulation of .the two dimensional interface element has been " -

presented in Chapter 2. This formulation is extended here to three
dimensions and a solid interface element is developed. The present
section deals with the three dimensional formulation, while in Section
5.2 some notes on’the development of the 3-D finite element program
are discussed. Finally, Section 5.3 involves a validation analysis carried
out to test the solid interface element.

Let u, v, w be the displacement components corresponding to the x,.

¥, z directions of a Cartesian coordinate system. The stress and strain
components can be written as:

{U}T = < ?Iaay’ olz's T:z;ya Tyzy Tz >,
(5.1)
T -
{6} = < E4,Eyy €25 Vzys Vyzs Yz >
The strain components are related to the displacement field as fol-

lows :
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ou du Ov.

Er = ——"az y ’Yz:y : 83/ + ax )
ov v Jdw
= a z = 7 Y 5.2
: . By Ay Tvz = 55 + dy ( : )
| _ Ow 9w  Ou
.2 = 57 » V=T gy Tar

and the stresses are related to the strains through Hooke’s law:

B {0} =[E}{e} , ' (5.3)

where .
1—-v v v 0 0 0 ]
v 1—v v 0 0 0
\ P v v 1—v 0 0 0
[F] = 1-2)1-2v) (5.4)

Y <33

: | 0o o o . 0 o0 2

It has again been assumed that the materials involved are isotropic
| linear elastic. ' ) '
B ; The proposed solid interface element is composed of two adjoining

hexahedral elements, one on each side of the interface with the inter-
face as their common boundary (similarly to the 2-D case). In order for
the interelement interface to be unique for each couple of adjoining ele-
ments, that interface must be an-element face in the three dimensional
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case. The centroid of that face is chosen as the location where stress
compatibility is to be enforced (similar to the midside of the interface
edge in 2-D). Therefore, the interface element in 3-D consists of a pair
of nine-node hexahedral elements. A typical mne-node hexahedron is
shown in Fig. 5.1. |

Assuming coordinate transformations and isoparametric displace-
ment'functions as:

z=LNz, , y=XIMNy, , z=INz ’ (55)

and

— u=YXNu, , v=XNv, , w=XNw , - (546)

where the summation extends to eight terms for regular hexahedftal
elements and to nine in cases of.nine-node hexahedrons used to con-
struct the interface element. The shape functions N, for the nine-node
hexahedrons are selected such that the displacement fields along all
edges are linear, in order not to violate displacement compatlblhty
with oth€r neighbouring linear elements. This is achieved through the
following pracedure:

First, the shape functions of a standard 13-node hexahedron (extra

nodes at midsides and at centroid of face 1-2-3-4) are obtained. These
are (e.g. Cook [6]);

NE = n(1- O -n)(1-),
NE = st -1 -m)(1+9)
N® = %nc(l—f)(i— )(1+¢),
NE = —gno(l= €)1+ n)(1 =),




y S R

b

|

Figure 5.1: Typical 9-node hexahedral element and jts natural coordinate system.

e

®




NP = S0+ 8-n)1-g),
. NE = L1+ E1-n)1+g), - (5.7)
» N = S1- 6 +n)(1+),
NE = -0 +n)(1+9)
NE = (-6 7)1+,
_ ;ONB = —h-9u-nu-),
NE = el ©)1-n))(1+<)
NE = n(l- 9+ m(i- ), |
NE = =51 91 - (1 —¢)

The mjdsidenodes (10, 11, -12, 13) are deleted through the use of
the following assumed linear gelationships between the displacements
of the nodes involved: ‘

- Uy + Up ,
_ \\ N - U0 = 2 ’
O Tuy =2 ; Y ' (5.8)
a Uz + Uy
) Ujp = ] 2 3
Ug + Uy
U3 = 2

Substituting the above values into the formula © = LNV, u,:

ts
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7
N13+N13 N13 N13
u = (N113+ 10 5 ) (NZ}*S\i 10 11)u2+
| (5.9) -
N13 N13 N13+N13
- (N313+ 11 > 12) 3+(N4}3+ 12 ; 13)u4+

N513'U,5 + Né3u6 S R N913UQ.

The final shape functions of the nine-node hexahedral &1ements are,
therefore: ‘

NP = NP 4 B8P = L (1~ £)(1 =) (1~ ¢)(=n5 = — ),

N3 = N3+ MENE = 11— €)(1 = n)(1+ ¢) (ns — 1 +5¢),
zgﬁ{— + MEENE = 1(1 — €)(1 —n)(1 +¢)(—n¢ + 7 + ),

NP = NP+ ’—"113;“—'1‘—’13-:%(1_—6)(14—71)(1—'c)(n§+n-—c),

Ng = N§ = H(1+€)(1 = n)(1 - 5), - B10)
N = NB3 §(1+§)(“1 7)(L+¢),

N = NB 1(1+6)(1+n)(1+€),‘
Ng = Ng° = g(1+ &)1+ n)(1 ~¢),

Ng = Ng® = (1 - &1 ~n")(1—¢?
It can be gasily verified that these shape functions satisfy rigid body

e
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motion and constant strain states, since:
XN, =1 , XEN,¢=0 , ¥N,,=0 , XN, =0. (5.11)

The strain field corresponding to the assumed displacement field
. can be obtained through Eqs. (5.2) and can be expressed ap:

{e}=[B{a}, . , (5.12)

where {A} =< uy,ug, - ug, vy, vq, - - - vy, wy, Wy, - - - wy > is|the vector ‘
of nodal displacements pf the element, and the strain-displacement . |
matrix [B] is given by: - -
Q@
LA aN, . 9Ny :
9z 0.0 oz 0 0 dz 0 . 0 i
. |
an, am; EIA +
0 %+ 0 0 2 0 0 7 O
0 0 M 0 M ... 0 0 9N
9z Oz dz
[B] = ) . (5.13)
oNy 8N, g My Ny g ... Ny ANy \ ‘
"y oz dy Oz dy dz
0 &M Ny g 34Ny 4N 0 2No 8Ny
dz dy 9z dy 8z dy
oM, g ‘N, 9N g ANz .., 3No g 9Ny
L Jz2 oz dz dz 9z Jdz |

As was mentioned in the two-dimensional case, the above differen-
tiations cannot be carried out explicitly, NV, being functions of and &n
and ¢. Therefore, use is made again of the inverse of the Jacobian
matrix: '

( 9z dy 9z ]
¢ 3¢ a¢
=15 & &1 . (5.14)
9z 8y Oz
L 8¢ d¢ I¢
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~ ‘( l;:
Denoting the inverse with the same symbols as [
L1 T Tis o
[ ={Tu Tn Tn|=[" |,
[31 T2 I'ss !

'
{

the [B] matrix of Eq. (5.1.13) can be expressed a6

[B] = [B1][Bs]

«

where ,
| Fu‘ P12 P13 0 0 0 0 - 0- 0 ]
0 0 Q : le ng F23 0 0 0 )
' -0 0 0 0 0 0 J3 Iy I
[Bl] — 31 32 33

Tor Tag Ty Ty T2 'y 0 0 0
0 0 0 I3y Tsp I'sg Tgr Typ I'as
T3y T3 Tes 0 0 0 T T2 T |

o

in Chapter 2:

. (5.17)




/
/,/
(
and
N d N, .
%% 0 0 %—g 0 0 ge 0.0
N N. 3N,
0.0 %; 0 0 gho0 0
/\"“\)m
N U N
2
N IN- IN, ~
0 3—8? 0 0 %2 0 0 %2 0
B)=| 0 & 0 o0 = 0 0 Hr 0| . (518)
ON aN. ONy
0 > 0 0 &2 0 0 & o
3 IN- AN,
0 0 3"} 0 0o 2% 0 0 2
N dN- AN
0o 0o 2 o o & 0 o0 b
AN, A N- ' N
0 o oo o %k 0 0 %%

The strain energy of the element can then be expressed as:

"

1 ” \

= (aY([ [ [ 1B (BBl det (1] dedndsl{A},  (5.19)
from which it follows that the stiffness matrix is:

(Kl= [ [ [ [B(E][B]det [3] d¢ dnd c. (5.20)

As was the case in the two-dimensional formulation, Gaussian%integra-
tion is necessary to evaluate the terms of this stiffness matrix.

A typical solid interface element is shown in Fig. 5.2. It consists
of two adjacent nine-node hexahedral elements sharing the interface
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(face 1-2-3-4). Let n,t;,¢2 be a local coordinate system such that n
is the outward normal to the interface (face 1-2-3-4), ¢, is tangent to
the interface in the direction 1-2, and t, is tangent to the interface
in the direction 1-4. Iet the origin of the system be at the ninth
node of the element . With reference to this system and in view®of
the stress continuity conditions developed in Section 2.1, the required
stress boundary conditions at the interface are continuity of the o,
normal stress component and of thé two shear stress components, 7,
and 7,,. The three degrees of freedom pertaining to the ninth node
of each hexahedron (node 13) are again so chosen as to satisfy the
required continuity of the above three stress components at this node.

The [Q] matrices in the stress continuity condition:

[@{A%} = [@"{A" (5.21)

. \A
are given by:

(@] =\T][E"[B"] and [QY=[T|[EYB"),  (5.22)

where the [E] and [B] matrices for materials a and b are those given
respectively by Eqs. (5.4) and (5.13), and [T] is the transformation
matrix given by:

2{ m"{ n% ¢ 2£1m1 2m1m2 2n1€1
[T] = @122 mimyo MMy (élmz"-i— (fzml) (mlng + mznl) (nlfg + ngﬁl) y
€ly mamy ngny (€smy+ €yms) (mang + myng) (n3éy + nils)

. (5.23)
with l,, m,, n, the direction cosines between the axés of the local n,¢y,1,
system and those of the global x, y, z systejln. ,

Isolating the degrees of freedom of the cdmmon-node (node 13), the
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Figure 5.2: Typical pair of 9-node hexahedral elements sharing an interface.
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above equations may be written as:

Uis —_

QA = [QU{d} + Q2| vy (5.24)

wis

and ) _
Ui3

('A%} = [QU{d*} + [Q2°){ vis | (5.25)
w3
where {d°} =< U1, V1, Wi, Ug, Vg, W, * -+, U1, Vi, Wiz > is the vector of
nodal displacements of the comp0s1te mterface element
The matrices [Q1?] etc. are expressible as:

Q1] =
Qi1s Qs Q115,@11 Qi2 Qs

3000000 Qfy Q;; Q3
Q213 Q214 Qz 15 Q21 Qz,z Q3,3 000000 Qg,lo Qg,u Qg,lz
000000CQ

Q3,13 Q3,140Q3,15 Q3,1 Qg,z Qg,s 3,10 Qg,u @3,12
122 1,23 Q,(lr,24 chl,lﬁ Q?,n Qlf,ls Qlll,:i 15 @i O

000O00O0
’ Qg,zz Qg,zs AKQg,z‘; Qg,m Qg,ﬂ Qg,m'QgA Qg,s Qg,ﬁ 0000CGO0O
00000

Qg,zz Qg,za Qg,m Qg,re Qg,l? Qg,w Q§,4 Qg,s Qg,ﬁ 0
1,7 W18 Wi9 Wi 120 Q1,3}
Qg,’? Qg,s Qg,g Qg,m Qg,zo Q‘z‘,m
Q37 Q3g \Qg,g @310 @320 @321

5

Q1 25 Q1 26 @ 27 a
Q2% = Qz 25 @326 @227 , (5.26)

Q 5 Q Q327 .
3:2 3,26 ’ @.,}«WW@
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Q1) = " -

000 Q°, Q116 Q117 118 ngon Q21 Qs Qs
000 Q24 st Qze sz 217 Q218 Q219 Q5 2,20 Q221 Q27 st
000 Q, Q35 Q36 Qsm Q5 17 Q318 Q319 Qszo Q321 Q37 Qas

L‘O 000 00 Q Q, @55 @& 1,13 Q114 Q115 Q° 1,22 Q123 124
00000 Q21 sz st Q213 Q214 Q215 szz Q223 Q224
000O00O0

b
0 Q3,1 Qs,z 33 13 Q314 3,15 Q322 Q323 Q324
b b b .
110 g,u g,12 0‘0 0
Qg,m Qg,u §,12 000
3,10 Q311 312 000

b 1,25 Q1 ,26 Q1 27 C
[Q2b] = Qz ,25 Q ,26 Qz ,27 , (5-27)
Q3 25 Qs 26 Qe. 27

The stréss continuity condition, Eq. (5.21), then lead to

vis b = [L){d°Y}, - (5.28)

wis

where 5

L] = [[Q2"] - [@2°]]"'[[Q1*] - [@1")). - (5.29)
Substituting Eq. (5.28) into Eqgs. (5.24) 'and (5.25), the nodal dis-

placement vectors of the two 1nd1v1dual elements may be written as:

{ o ,
o (A= (R (5.30)
and
{a"} = [R'|{d°}, (5.31)
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where . : ] . ‘
' [R%] = [Q°)M[Q1°] + [Q°]'[@2%) (LI, (5.32)
and ‘ -

N (R =R+ [@7MQ2)L). (5.33)

Hence, by wvirtue of Eq. (5.20) and Eqs. (5.31) and (5.32), the
stiffness matrix of the composite interface element can be written as:

\ ) °

(K] = [R)[K®)(Re] + [RYT (KPR, (5.34)

It is clear from the above that the formulation of the three dimen-
sional interface element is essentially an extension of that of the two
dimensional one. The only difference lies in the order of the matrices
involved and in the fact that three stress components are required to
be continuous across the interface (calling for the appropriate selection
of three degrees of freedom to satisfy that condition).

5.2 Notes on the 3-D program

A three-dimensional finite element program has been developed in or-
der to test the new solid interface element. This program is similar
to the two-dimensional program described in Section 2.4 and listed in
Appendix B.1. The subroutines dealing with the stiffness matrix as-
sembly, decom\f)osition and back-substitution are essentially identical
to the two dimensional ones, except for the size of the matrices in-
volved. The only significant modifications that need to be addressed
in this section pertain to the library of elements. The-full listing of the
, three dimensional program is included in Appendix B.2.

The three-dimensional: elements included-in the program are the
isoparametric linear hexahedron, the isoparametric linear pentahedron,

"
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- Figure 5.5: Constant strain tetrahedral element.
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the constant strain tetrahedron, and the solid interface element. The
formulation of the last one been described in the previous section.

The linear hexahedral element (Fig. 5.3) is based on the standard
isoparametric formulation (e.g. Cook [7]).

In the development of the linear pentahedral element (Fig. 5.4) the
isoparametric assumption has also been made. The shape functions
are those given by Brebbia and Connors [5)]. ‘

The development of the pentahedral element stiffness matrix follows
the same procedure as that described in Section 5.1 for the nine-node
hexahedral element. However, in the nurgerical integration of the stiff-
ness matrix, a cubic integration order has been used (Brebbia and
Connors [5]).

The development of the tetrahedral element (Fig. 5.5) is based on
anr isoparametric constant strain formulation (Brebbia and Connors
[5]). Therefore, the integration of the stiffness matrix could be carried
out explicitly so that no numerical integration is necessary.

The pentahedral and terahedral elements have been tested individ-
ually by comparing them to equivalent ones in the MSC/NASTRAN
[20] finite element program (PENTA and TETRA respectively).

-

5.3 Validation test for the solid interface element

The new thre€dimensional interface element has been tested in a sam-
ple analysis the results of which are presented in this section. As was
the case in the two-dimensional validation tests (Chapter 3) and in the
sample biomechanical analysis (Chapter 4), the three-dimensional test
involves analyses of the same mesh by both the developed program and
the SAP-IV program and comparison of the results with the theoretical
solutions. '

g

. . 113



O

The problem chosen for this test has already been presented in
Chapter 3, It consists of an annular composite disk under internal
pressure (Fig. 3.16a). The relative scarcity of three dimensional exact
solutions involving bimaterial interfaces has led to the choice of this
essentially two dimensional problem.

The finite element mesh used in both analyses (by the devloped
program and by SAP-IV) is shown in Fig. 5.6. Because of symmetry
in geometry and in loading, only one quarter of the disk has been
modelled. The inner third of the annulus has again been assumed to
be 100 times stiffer than the outer part. In all, 24 solid elements have
been used; they are all hexahedrals except in the analysis by the new
element where four pairs of hexahedrals (nine-node element) have been
combined to form four interface elements. The boundary conditions
involved fixation of the nodes on the two axes of symmetry (x,y) against
motion normal to the respective axes, and fixation of all nodes against
motion in the vertical (z) direction to simulate axisymmetric plane
stress conditions. The applied load was again an internal unit pressure.

The theoretical solution to. this problem is presented in Appendix

A.1 According to that solutlon “the exact value of the interface radial

stress is 0.004 pressure units. The analysis by the developed solid inter-
face elementyielded a unique interface radial stréss of approximately
0.0039 pressure units. The analysis by SAP-IV yielded an interface
radial stress of 0.080 pressure units on the ‘hard’ side of the interface
and 0.0032 pressure units on the ‘soft’ side of the interface (Table 5.1).
The superiority of the new element is obvious from these results. It can
also be noted that, again, the ‘soft’ side stresses obtained by SAP-IV
are much more accurate than the ‘hard’ side values.

Unfortunately, because of time limitations, further three dimen-
sional v&lid:;;csm/tests could not be carried out. It appears, however,

that the pr ed interface element is as successful in three dimensions
Vi
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Figure 5.6: Composite annular disk under internal pressure; 3-d finite element mesh,
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Theoretical 3-D SAP-IV 3-D New Element
) hard side | soft side

0.0040 0.0080 0.0032 0.0039

< Table 5.1: Composite annular disk problem; Radial stresses at the bimaterial inter-
face (results from the 3-d analysis).
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Chapter 6

|

SUMMARY AND
CONCLUSIONS

=

6.1 Summary

An interface finite element has been formulated satisfying the required
continuity of the stress vector across a bimaterial interface. The stress
vector continuity is enforced at a point on the interface. This is
achieved by selecting the degrees of freedgm corresponding to that
point so as to'satisfy the required stress boundary conditions. Since
the element is based on the displacement method, displacement com-
patibility is satisfied at all points along the interface. Two general
"finite element programs have been developed incorporating the new
interface element: one for plane-stre‘és/pla@e—strain and axisymmetric
problems and one for three gimensional problems. A series of validation
tests have been performed that compare the results obtained by the
new element to those obtained by a conventional displacement based
prog@am (SAP-IV) and to the exact theoretical results. The interface
element was found to be very reliable in predicting stress distributions
at two-material interfaces. Furthermore, in view of the fact that the
conventional method was seen to yield unpredictable results when used

hs
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at bimaterial interfaces, the use of the new element can be proposed
in cases involving interfaces of higﬁly dissimilar materials. Finally, a
stress analysis of an axisymmetric resurfaced tibia model was carried
out using the developed element along the'cement/rﬁetal interface.

6.2 Conclusions

The conclusions of this stuvdy are presented here in two parts. First,
some observations are made concerning the use of the conventional dis-
placement method in bimaterial'interface problems. The conclusions
pertaining to the performance of the new element then follow.

6.2.1 + Analysis of bimaterial interface problems by the con-

. ventional displacement method
. ,

In a conventional displacement based finite element analysis, two dis-
tinct stress distributions are obtained on the two sides of a bimaterial
interface. The differences between the components of these distribu-
tions'that are required to be continuous are gradually decreased, as the

. mesh is refined. At the limit, these stress components are expected to

become identical, as coincidence with the exact stress distribution is
achieved. This exact solution, however, is not necessarily bounded by
any pair of discontinuous interface distributions obtained in the course
of mesh refinement. This fact is demonstrated in Fig. 3.5 (rectangular
plate with circular inclusion). It is therefore evident that in cases of
high stress discontinuity, it is virtually impossible to predict a reliable
range for the exact solution without extensive mesh refinement. Small
discontinuities, however, indicate reasonable results, since the degree
of discontinuity is generally associated with the degree of convergence.

- The ratio of the elastic moduli of the adjacent materials is not the
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only factor affecting stress discontinuity. It has been seen that the
type of structure and loading involved and the type of mesh used, as
well as the relative location of the material regions have a significant

bearing on tlie reliability of the stresses obtained. The cantilever beam

case, Section 3.3, is a/xplcal example of a structure yielding highly
discontinuous interface stresses despite successive refineménts. On the
other hand, the vertical wedge problem, Section 3.2, is arh example of
a structure where neither the mesh size nor the materpial| properties
significantly affect the very small interface discontinuit

The intuitive assumption of many researchers to accept the stresses
on the softer side as representative of the interface distribution is sup-
ported by most of the validation tests and by the convergence tests
for the axisymmetric analysis of the resurfaced tibia. This assumption
cannot be guaranteed to always apply, however, as was seen in Section
3.4. '

The conventional displacement based finite element method, there-
fore, cannot be generally relied upon to accurately determine the stress
distribution at bimaterial interfaces. ]

]

6.2.2 Conclusions concerning the new stress compatlble fi-

nite element (

The new element enforces the continuity of the stress vector at a point '

on the bimaterial interface. Consequently, interelement force equilib-
rium is satisfied at that point. Unique values are therefore obtained for
those interface stress components.that are required to be continuous.

The -interface stresses calculated by the new element were found
to be very reasonable and usually very accurate. The stress compo-
nents which are not required to be continuous at the interface are not
affected by the new element. Similarly, the stress distribution away
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from the interface is not affected either by the interface elements along
the intermaterial boundary. Therefore, the new element can be relied
upon to accurately determine the stress distribution at the interfaces
of highly dissimilar materials without affecting the stresses in.therest
of the structure. \ (‘?
No additional modelling effort is involved in the case of the interface
selements, since the same mesh can be used as that for an analysis_using
* conventional linear quadrilateral elements. Moreover, the use of the
new element does not incur significant additional computational cos,t,s,
since the global degrees of freedom of the problem refmain the same as
those for linear quadrilateral elements. .
\ In view of the foregoing, a proposed procedure for the analysis of
problems involving bimaterial interfaces would be to first carry out an
. initial analysis by the conventional displacment method on.a relatively
coarse mesh, and in the the event of detected high interface stress
discontinuities, to perform a subsequent analysis using the interface
element on a locally more refined mesh.

-~

6.3 Suggestions '%or further research

Further validatiom tests ané—-ﬂeceséa.ry, especially in the three dimen- .
sional case, for a bgtter assessment of the performancé of the interface
element. f '

a a
-~

As a second step towards developing a general interface element,
boundary conditions other than those of perfect bond should be con-
sidered. That is, the formulation should be extended to allow for sep-
aration and/or slip at the interface.

Finally, only static casés have been considered in this study. +Dy-

g

namic effects are very important, however}ib/ima.berial interfaces, so
that is envisaged to include such effects at a later stage. ‘

‘ﬁ ) - ' /
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Appendix A | 2

DERIVATION OF
CLOSED-FORM SOLUTIONS
USED IN THE VALIDATION
TESTS'

Bz

A.1 Interface radial streds distribution of a comn-
posite disk

The problem of a circular cylinder under internal and external pressure
is a well known one (Lamé problem) and analytical solutions are avail- -
able’ for the unimaterial case in elasticity textbooks (Timoshenko and
Goodier [34]). The example presented in the section on the validation
tests (Chapter 2) involves a two-material cylinder of unit height (Fig.{
A.1). The solution for the interface radial stress distribution for this -
case is briefly outlined here.

Stress-strain relations for plane stress state:

t

Opr = ’C(Err'*;ueﬂﬂ)a
ogp = Ic(l/é‘rri{—Ego), (A])

Ao
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9 = 0 (because of axisymmetry),
where, k& = E/(1 _,Vz)'

Strain—ciisplacement relations:

du

Epp = E—;,u:u(r), )
. (r+u)dfd—rdd uw, .
‘ = = = A2
. cao rdd r ’ (4.2)
Equilibfiurn equation:
80',.,- 1 87',-9 Orr — 099 -
- = 0. "~ (A
- or r 00 i r +tE=0 (4.3)
Since, body force R = 0 and 7,4 = 0, .
00, | Oy — Oy
= 0. Ad
or + r 0 (A4)

Substitution of equations (A.1) and (A.2) and (A .4) yields, after rear-
rangement, the displacement differential equation: -

v 1du u
w iAo (A5)
The solution to equation (A.5) is achieved through the transforma-
tion r = e*: s
B
u=Ar+ = (A.6)
where-A,B are constants depending on the boundary conditions. Fi-
nally, use of equations (A.1), (A.2) and (A.6) yields the stress distri-

bution:

Oy = ;c[(l +v)A - g({ ~ v,
B D -
o = k[(L+v)A+ ;5(1 -v)]. : (A.T)
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Figure A.1: Composite annular disk under external and internal pressure. -
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The boundary conditions imposed in this case are:

I

.y = —ipa atr = a, —
ol = —p, atr=c, (A.8)
u' = u'l at r = b (interface condition), .
ol = ol — —pyatr=b (interface condition),

where the superscripts refer to matefial regions.

The implemefltation of these boundary conditions into equations
(A.7) leads to the determination of constants A,B for both material
regions: ' '

v

AI — a2pa - bzpb
. (b2 — a?)kl(1 4 1)’
__a2b2 Pa— Db
B = (b% - az)(rcf(vl ——)1)’ (4:9)
AT c’p. — b'p,
(bz — c2)lc”(1 + VII)’
] g be(ps —po)

(c? — B3I (VT — 1)

Finally, the condition_of displacement compatibility, ul = u!! at the
interface (r = b) leads through the use of equations (A.6) and (A.9) to
the derivation of a closed-form solution for the interface radial stress,

Po:

b(a® + a®v! — bW + b?) B b(c? + 2yl — 21T + b?)
Pb (b — etk (0P — 1) (62 — )l (017 — 1)

— - 2a% n 2bc?
~ Pa (b2 — a?)el (v - 1) Pe (b2 — ) (L 11% — 1)

] . (A10)
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A.2 Plane stress solution for a bimaterial can-
tilever beam . )

—
The solution to the problem of the bending of a composite cantilever
beam hag been presented in Muskhelishvili’s work [22] for the case of a
circular cross-section. For the case of a rectangular cross-section (Fig.
A.2), as was the case of the example presented in Chapter 2, a similar
procedure can be followed, and it is briefly outlined here.
A.2.1 Exact solution for zero Poisson’s ratio
At first, an exact solution is sought to the case of zero Poisson’s ratio
(v = 0). The exact stress distribution will then be used to obtain a .
plane stress solution for the cases of non-zero values of Poigson’s ratio.
Assuming a displacement field of the form:
' €z? - 28 ~
u = A(— — ), g .
(2 -2 |
v = O, 173 (A] 1)
22 ) .
w = —Alz(lz - *2~) + x + zy’],
where A is a constant to be determined, a corresponding; stress field
can be found:
Ozz = Oyy = 0zy =0,
X | 2 ‘
Ozz = _BJ'(‘a_x' +¥°), (4-12)
dIx
| Oyz = -B](—a; + 2zy),
0., = —K,(€— 2)z.
X is a function which must be harmonic for equilibrium and B,, K,
é
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Figure A.2: Composite cantilever beam.
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are constants given by:

AE
Bi= =
AE . .
?2 = **23,' " ©r (Al&)
K1 = AE,,
K, = AE,.
Letting oy, = 0, then, 3y = —2zy , and
x = —zy% + f(z). c (AL14)
Since x is harmonic: 2
A%y 82 '
| gt g =0 (A.15)
Substituting Eq. (A.14) into (A.15) yields:
f'(z)—2z=0. , (A.16)
The function f(z) is therefore given by:
3
z
fJ (SE) = _é_ + Ctjx + CZJ', (A17)

where C;, and Cj, are constants to be determined. Substituting Eq.
(A.17) intd (A.14), the function X is described by:

X; = —zy? + 7 +C',,a:+C2] (A.18)

The stress field (Eqs. (A.12) can now be rewritten using Eqs. (A.18)
and (A.13): -

AEJ (“’ + Cz])

0.; = —AE,({ - 2)z.

q

|

N
|

Q

<

N
i
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Now, o,, must be zero at th;-t% and bottom surfaces, and also o,
must be continuous at the interface. These stress boundary conditions

can be written as:

o, =0 ; at z=—(dy—a), _ «Q‘
o, =0 ; at z=(dy+a), ; (A.20)
a;z = agz ; at rz=a.

Substituting Eqs. (A.19) into Eqs. (A.20), the constants C,;, and the
location a, of the neutral axis can be determined:

Cu = —(dy—a)?, ]
Crz = —=(dy+a)? (A.21)
' 4 - Eyd? — E,d?
& 2(E1dy + Eydy)
The applied load, W, can be expressed as: i
W= /-a(dl a) oz tdz + /(d2+“) 2ot dz, - (A.22)

and by substituting Eqs. (A.19) into Eq. (A.22), and making use of
Egs. (A.21), the constant A can be determined:

44
A= - A.23)°
( d3 + d E;;i’za + Eg;fza) ( )
The stress field is, therefore completely defined:
E
ol = =5 (- ¥
AE -

o, = --—2—2 2% — (dy + a)?, (A.24)

o), = —AE,\(¢— 2)z,

UZ: = —AEz(e )ZE
where a is deﬁned in Eqs (A.21) and A is given by Eq (A.23).

¢
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A.2.2 Plane stress solution for non-zero values of Poisson’s
ratio

In this plane stress solution, the stress field is assumed to have the

same form as in the case for zero Poisson’s ratio, and a displacement

field is sought satisfying the boundary conditions of the problem.
Hence, let the stress distribution be:

0l = :—%_‘El(xz + Cﬂ])’
ol, = —AEXL- z), (A.25)
Ozz — 0’

where C,, and A are given by Egs. (A.21) and (A.23) respectively.
The Strains are therefore given by: - ‘

( E;f = % - —;—%azz = v, A({ - 2)z,
= i'EJ— - ;:g]-au = —A(l~ 3)z, (A.26)
0% ~(1+v)
6{,_.2 = TE—']—(]. +\V_7) = —-—-5*——]:—_/1(332 + C;])
Invoking the strain-displacement conditions:
du ‘
€zz = 5;1 pe
ow
€2z Zja , (A27)
w29z oz’

The first two of Eqs. (A.26) then yield the following expressions for

the displacements:
22

u = AV](Ez)—é—+f(z), . *
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(A.28)

w = —A(lz - —2—):z:+g(:c).

Substituting Eqs. (A.28) into the third of Eqs. (A.26), the functions
f(2),9(z) can be expressed as:

-

Y P2 P
f(z) = ,A(“z—“g)'*'MJz'*‘NJs
L . 23
g(z) = "A(2+V_J)_6"+SJ‘”+QJ’ -

where MJ,N],S,, and Q; are constants to be determined. The dis-
placement field is now written as:

2 2 3
R A B L A B YRR
L A (A.30)
2 3 _

The boundary conditions that must be satisfied by the displace-
ments are prevention against rigid body translation and rotation at

‘the fixed end and continuity at the interface. These can be expressed
as: ‘

W = w' =0 ; at z=a and z2=0,
u' = uw? ;. at g =a, > (A3
w' = w? ; at z=gq,

Ju .

~2 =0 ; at z=a and 2z=0. /

dz, .
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Substituting Eqs. (A.30) into Eq. (A.31) the constants N,,M,, S,, and

@, can be determined: L' -
: ‘- — Avyla?
—Avyla?
o= e
2
: M, = Aulg—a
. » 2
2 )
M2 = AU2_2*', N (A32)
lw N , i a2 )
S1 = —A[(1+1)Cu + V1_2"]1
a2
- s . Sz = ——A[(l + 1/2)012 + U2—2—'],
; N ; . ’aa Ca?
j Q = A(2+V1)‘g+Aa[(1+V1)C11+V1—2—],

A

. 3 2
Q: = AQ2+w) + Ad(l +1)Cia + ng]

The displacement field is now fully defined and satisfies the bound-
ary conditions for the problem. The stress field represented in Eqgs.
(A.25) therefore constitutes a plane stress solution to the problem.

o

?

\

. S"{E’r
B e \ s
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\App,endix B

'LISTING OF SOURCE CODE oF
DEVELOPED FINITE
ELEMENT PROGRAMS

B.1 Two-dimensional program

TWO-DIMENSIONAL FINITE ELEMENT PROGRAM
FOR THE AN@\LYSIS OF PLANE STRESS, - . ,
PLANE STRAIN, AND AXISYMMETRIC PROBLEMS [

BY MICHAEL ANGELIDES Ny
MCGILL UNIVERSITY, ' ’ ,
DEPARTMENT OF CIVIL ENGINEERING
AND APPLIED MECHANICS

MARCH 1086 . i~

LIBRARY °OF ELEMENTS:

- BAR ELEMENT

- CONSTANT STRAIN TRIANGLE

- LINEAR QUADRILATERAL (ISOPARAMETRIC)
- INTERFACE ELEMENT

o000 ac0a0a0aaa
L]
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s

IMPLICIT REAL*8 (A-H,0-2)

INTEGER N,NEL,NDOF,NLOAD,DOF ,NGEN, INTER,MEQNS ,KEQNS , REDOF , NCOUNT
INTEGER NID(1000),BCX(1000),BCY(1000) ,ELID(1000),NTYPE(1000)
INTEGER N1(1000),¥2(1000),N3(1000),N4(1000) ,N6(1000) , NODRED ( 1000)
INTEGER ELIDB,N11,N22,N33,N44,N66,NELA(1000) , NELB(1000)

INTEGER NODFOR(10),KK1,KK2, IFPRE(2000) ,MM,NGAUS1,NGAUS2, INCOMP
DOUBLE PRECISION X(1000),Y(1000),XDEF (1000) , YDEF(1000)
DOUBLE PRECISION A(1000),E(1000),NU(1000),T(1000),FX(10), FY(10)
DOUBLE PRECISION KGLOB(300000) ,ASLOD (2000)

DOUBLE fzcxsmn LOAD (2000) , FIXED(2000) ,REACT (2000) , XDISP (2000)
DOUBLE “PRECISION KEL (20,20)

¥

1
1
CHARACTER*80 TITLE , |
COMMON/GLOB/X,Y,A,E,NU, T 4 {
DATA MSTIF/300000/
READ *,TITLE ‘
READ *,NCASE,N,NEL,NDOF,NLOAD,NGEN, INTER,NGAUS1,NGAUS?2, INCOMP
MEQNS=1000
KEQNS=1000
DOF=N*NDOF
IF(NGEN,.EQ. 1)THEN : '
CALL GENER(N,NDOF,BCX,BCY,NEL,NID,X,Y,XDEF , YDEF,ELID,
+ . erpz.m.m N3,N4,N6,A-E,NU,T,KEQNS,MEQNS) -
ELSE
READ *, (NID(I),X(I),Y¥(I),BCX(I),BCY(I),XDEF (D), YDEF(I)
+ I=1,N)
READ *, (ELID(I) NTYPE(I),N1(I),N2(I),N3(I),N4(I),N6(I),ACL),
+ E(I) ,NU(I), T(I),I=1,NEL)
_END IF ‘ .
IF(INTER .NE. O) THEN
READ *,(NELA(I),NELB(I),I=1,INTER)
END IF v
IF(NLOAD .NE. O) THEN
READ =, (NODFOR(I),FX(I),FY(I),I=1,NLOAD) J
END IF
DOF=N+NDOF X ’
NCOUNT=0.
DO 40 I=1,N .
NODRED (NID(I))=NID (I)-NCOUNT < : o
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IF(INTER .NE. O) THEN
DO 30 J=1,INTER
IF(NID(I) .EQ. g(NELA(J))) THEN
NODRED(NID(I))=0
NCOUNT=NCOUNT+1
END IF
30 CONTINUE
END IF
40 CONTINUE
REDOF=DOF-NDOF*INTER

CALL DATA(N.ND’OF .DOF ,BCX , BCY,NEL ,NID,X, Y, XDEF,YDEF,ELID,NTYPE, N1,

N2,N3,N4,N6,A ,E,NU,T,NODFOR,FX ,FY,KEQNS,MEQNS , NLOAD ,
INTER, NGAUS1,NGAUS2, TITLE, INCOMP,NCASE)
NBANDW=0
DO 900 I=1,MSTIF -
KGLOB(I)=0.0DO
900 CONTINUE o -
DO 1006 .I=1,NEL
MM=2%NTYPE(I) b
NCOND=1
IF(NTYPE(I) .EQ. 5) THEN
NCOND=0
DO 1000 J=1, INTER
IF(ELID(I) .EQ. NELA(J)) THEN
ELIDB=NELB(J)
N11=N1(ELIDB)
N22=N2 (ELIDB)
N33=N3 (ELIDB)
N44=N4 (ELIDB)
N65=N5 (ELIDB)
MM=12
CALL STIFF(ELID(I),ELIDB,NTYPE(I),N1(I) ,N2(I),N3(I),
N4(I) ,NB(I),N11,N22,N33,N44,N56,KGLOB,KEL,
MEQNS ,NEL,MM,NGAUS1, NGAUS2, NODRED , INCOMP,

o

+ NCASE,NBAND ,MSTIF,REDOF)
IF(NBAND .GT. NBANDW) NBANDW=NBAND
END IF
1000 CONTZNUE °
END IF
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IF(NCOND .EQ. 1) THEN ‘ -

CALL STIFF(ELID(I),ELIDB,NTYPE(I),N1(I) ,N2(X) N3(I),N4(I),N6(I)
,N11,N22,N33,N44,N56,KGLOB,KEL ,MEQNS,NEL , MM, NGAUS 1,
NGAUS2,NODRED, INCOMP ,NCASE ,NBAND , MSTIF , REDOF)

IF(NBAND .GT. NBANDW) NBANDW=NBAND

END IF

1006 CONTINUE
NHALF=NBANDW+1
DO 1020 I=1,REDOF
ASLOD (I)=0.0DO
1020 CONTINUE
‘ IF (NLOAD .NE. 0O) THEN
DO 1030 I=1,NLOAD
KK1=2*NODRED (NODFOR (I))-1
'KK2=KKi+1 . -
ASLOD (KK1) =FX(I)
. ASLOD (KK2) =FY(I) Y
1030 CONTINUE
END IF '
DO 1036 I=1,REDOF e
LOAD(I)=ASLOD(I)
1035 CONTINUE o,
DO 1040 I=1,N 0
K=NODRED {NID(I))
IF(K .NE. 0) THEN
IFPRE (2*K-1)=BCX(NID(I))
IFPRE(2+K) =BCY(NID(I))

%

FIXED (2+K-1)=XDEF (NID(I)) Z
FIXED(2+K) =YDEF(NID(I))
. END IF ‘
1040 CONTINUE  © 4
PRINT 1041

1041 FORMAT('-") -
PRINT 1042, NHALF )
1042 FORMAT(’- SEMI BANDWIDTH FOR STRUCTURE MODEL : ', I5)
CALL GREDUC (MEQNS, ASLOD,KGLOB,IFPRE,FIXED, NEQNS,MSTIF,REDQF,
+ NBANDW) ’
CALL BAKSUB(MEQNS,ASLOD,KGLOB, IFPRE,FIXED, XDISP,REACT ,NEQNS ,MSTIF,
+ REDOF , NBANDW) s
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s

CALL DISPL(N,DOF,NID,NODRED,N1,N2,N3,N4,N6,NELA,NELB, INTER,

+

XDISP,REACT, MEQNS,NCASE)

PRINT 1100
1100 FORMAT('1 ELEMENT STRESSES’)
DO 1200 I=1,NEL

t}

IF(NTYPE(I) .EQ 2)THEN
CALL FORCE(ELID(I) ,N1(I),N2(I),X(N1(I)) ,Y(N1(I)),X(N2(I)),
Y(N2(I)),A(I),E(I),MEQNS,XDISP)
ELSE
IF(NTYPE(I) .EQ. 3) THEN
IF(NCASE EQ. 4) THEN

CALL STRIAX(ELID(I),N1(I),N2(I),N3(I),X(N1(I)),Y(N1(I)),

X(N2(1)),Y(N2(I)) ,X(N3(I)),Y(N3(I)),E(I),
NU(I), XDISP ,MEQNS)
ELSE Z
CALL STR(ELID(I),N1(I),N2(I),N3(I),X(N1(I)),Y(N1(I)),
X(N2(I)),Y(N2(I)),X(N3(I)),Y(N3(I)) E(I) NU(I),
T(I),XDISP,MEQNS)
END IF
ELSE ;
IF(NTYPE(I) EQ. 4) THEN
X6=0.DO :
Y5=0.DO C/
-ELSE,
X6=X(N6(I))
Y6=Y(N6(I))
END IF
IF(NCASE .EQ. 4) THEN :
CALL STRAX(ELID(I),N1(I),N2(I),N3(I),N4(I),N5(I),

X(NI(I)) , Y(NL1(I)) ,X(N2(1)),Y(N2(I)),X(N3(I)),

Y(N3(I)),X(N4(I)),Y(N4(I)),X5,Y5,E(I),NUCI),
. XDISP,MEQNS,NTYPE(I))
ELSE “

CALL STRES(ELID(I),N1(I) ,N2(I} N3(I),N4(I),N6(I),

X(N1(I)),Y(N1(I)) , X(N2(I)),Y(N2(I)),X(N3(I)),

Y(N3(I)),X(N4(I)).Y(N4(I)),X6,Y5,E(I),NU(CI),
T(I),XDISP,MEQNS,NTYPE(I),INCOMP)
END IF
"END IF
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100
102
1056

« 110

END IF
1200 CONTINUE
PRINT 9000
9000 FORMAT('1’)
sSTOP

END

I\l

“3

SUBROUTINE DATA(N,NDOF,DOF,BCX,BCY,NEL,NID,X,Y, XDEF, YDEF,

+ 4+ +

INCOMP ,NCASE)
IMPLICIT REAL*8 (A-H,D-Z)
DOUBLE PRECISION NU

ELID,NTYPE,N1,N2,N3,N4,N6,A E,NU,T,NODFOR,FX ,FY,
KEQNS,MEQNS, NLOAD, INTER ,NGAUS1,NGAUS2, TITLE, .

DIMENSION BCX(KEQNS),BCY(KEQNS),NID(KEQNS),X(KEQNS).Y(KEQNS)
DIMENSION XDEF(KEQNS).YDEF(KEQNS),ELID(MEQNS).Nl(MEQNS).EY(KEQNS)
DIMENSION N2(MEQN§),A(MEQNS);E(MEQNS),NODFOR(KEQNS).FX(KEQNS)

DIMENSION N3(MEQN
DIMENSION NTYPE(MEQNS)
CHARACTER*6 TYPE(1000)
CHARACTER*80 TITLE

CHARACTER#*3 MODES

INTEGER DOF,BCX;BCY,ELID, INCOMP
PRINT’ 110, TITLE

FORMAT(’- PLANE STRESS ANALYSIS -
FORMAT(’ - PLANE STRAIN ANALYSIS -
FORMAT('- AXISYMMETRIC ANALYSIS -

IF(NCASE .EQ. 2) THEN
PRINT 100
ELSE
IF(NCASE .EQ. 3) THEN
PRINT 102
ELSE
IF(NCASE .EQ. 4) THEN.
PRINT 105
END IF
END IF
END IF
FORMAT('1',480)
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) .N4 (MEQNS) ,N6(MEQNS) , NU(MEQNS) , T(MEQNS)

DATA ECHO')
DATA ECHO')
DATA ECHO')



120

130

140

160

170

180

&

PRINT 120N
FORMAT('- NUMBER OF JOINTS',T32,':',Ib)

PRINT 130,NDOF

FORMAT('- NUMBER OF D.0.F. PER JOINT',T32,':',I3)
PRINT 140,DOF
FORMAT('- TOTAL NUMBER OF D.0.F.’,T32,'-',I6)
NRES=0
DO 160 I=1,N
NRES=NRES+BCX (I)+BCY(I) g
CONTINUE
PRINT 170,NRES
FORMAT('- NUMBER OF RESTRAINED D.O.F.',T32,':’,I5)
PRINT 180,DOF-NRES ’
FORMAT('- NUMBER OF UNRESTRAINED D.0.F.',T32,':',I5)" e
NEL1=0 “ -
NEL2=0 ;
NEL3=p . ’ »
NEL4=0 :

DO 186 I=1,NEL
IF(NTYPE(I) .EQ. 2) THEN
NEL1=NEL1+1
TYPE(I)=' BAR’ :
ELSE ’
IF(NTYPE(I) .EQ. 3) THEN
NEL2=NEr2+1
IF(NCASE .EQ. 4) THEN
TYPE(I)="TRIAX"
ELSE
TYPE(I)='C § T*
END IF
ELSE ) .
IF(NTYPE(I) .EQ. 4) THEN , N
NEL3=NEL3+1
TYPE(I)="QUAD4"
ELSE
NEL4=NEL4+1
TYPE(I)="QUAD5’
END IF
END IF

-
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END IF
185 CONTINUE
PRINT 190,NEL1
100 FORMAT('-~ NUMBER OF BAR ELEMENTS',T32,'-',16)
PRINT 195,NEL2
106 FORMAT('- NUMBER OF TRIANG ELEMENTS',T32,':',I6)
PRINT 196,NEL3
106 FORMAT('- NUMBER OF QUAD4 ELEMENTS',T32,'.',I5)
PRINT 197,NEL4
197 FORMAT('- NUMBER- OF INTERFACE ELEMENTS®,T32,':',I6)
PRINT 108,NGAUS1 ,NGAUST
198 FORMAT('- QUAD4 INTEGRATION ORDER',T32,°.',I2,' BY',I2)
PRINT 199,NGAUS2,NGAUS2
109 FORMAT(’- QUAD6 INTEGRATION4ORDER®,T32,°-',I2,’' BY',12)
IF (INCOMP .EQ. 1) THEN
MODES = 'YES'
ELSE’
MODES = °NO’
END IF
PRINT 200,MODES .
200 FORMAT('- INCOMPATIBLE BENDING MODES’ 132 'o ' A3)
PRINT 209
200 FORMAT('1 NODE COORDINATES')
PRINT 210
210 FORMAT('- NODE',T15,'X",T25,'Y’',T32,'X-BC’',T42, 'Y-BC',T66, 'X-DEF ',
+ 165, 'Y-DEF ")
PRINT 220, (NID(I),X(I),Y(I),BCX(I) ,BCY(I),XDEF(I),YDEF(I), I~1,N)
220 FORMAT('-',I3,T10,F7.3,T20,F7.3,T32,13,T42,13,T62,F7 1,T62,F7 1)

PRINT 230

230 FORMAT(’'1 ELEMENT INCIDENCES')
PRINT 240

240 FORMAT('- ELEMENT',T11, 'TYPE#4T17 *NODE-1°,T24, 'NODE-2',T31,
+ 'NODE-3',T38, 'NODE-4',T46, *NODE-6' ,T66,'AREA* ,T68, 'E’,
+ T77,'NU’,T87,'T") ’
PRINT 250, (ELID(I),TYPE(I),N1(I),N2(I),N3(I),N4(I) ,N6(I), A(I)
+ E(I),NU(I),T(I),I=1,NEL)

250 FORMAT('-",T4,13,T11,A6,T19,13,726,13,T33,13,740,13,T47,13,T563,
+ E9.2,763,E10.3,T76,F6.2,T83,E10.3) ‘
PRINT 260

)
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260

270

280

290

FORMAT('1 APPLIED LOADS')
IF(NLOAD .NE. 0) THEN
PRINT 270
FORMAT('- NODE’,T13,'X-FORCE',T28,’'Y-FORCE")
PRINT 280, (NODFOR(I),FX(I) ,FY(I),I=1,NLOAD)
FORMAT(’'-’,I4,T11,E10.3,T26,E10.3)
ELSE
PRINT 290
FORMAT('- NO CONCENTRATED LOADS APPLIED')
END IF .
RETURN
END

L)
SUBROUTINE STIFF(ELID,ELIDB.NTYPE,Nl.N2.N3,N4.N5,N11.N22.ﬁé3.N44.
N66,KGLOB,KEL ,MEQNS , NEL MM, NGAUS1, NGAUS2 , NODRED,
INCOMP,NCASE, NBAND ,MSTIF ,REDOF)
IMPLICIT REAL*8 (A-H,0-Z)
DOUBLE PRECISION KPRIM(4,4) ,KEL(MM,MM) ,NU
DOUBLE PRECISION KELA(10,10) ,KELB(10,10),KELARA(10,12)
DOUBLE PRECISION KELBRB(10,12).{ELI(lZ.l?).KEL2(12,12)
DOUBLE PRECISION KGLOB(MSTIF) -
DIMENSION TR(4,4),B(3,10)
DIMENSION Q(2,12),RA(10,12) ,RB(10,12) ,RAT(12,10)
DIMENSION RBT(12,10)
INTEGER N1,N2,N3,N4,N6,N11,N22,N33,N44 ,N566,ELID,ELIDB,NGLOB(12)
INTEGER NOD(6) ,NODRED (MEQNS) , INCOMP , REDOF .
COMMON/GLOB/X (1000) , Y (1000) , A (1000) , E{1000) , NU(1000) ,T(1000)
NFUNC(I,J)=(J-I)*(2+«REDOF + 1 - J + I)/2 + I ¢
NNTYPE=NTYPE
NDIM=NTYPE*2
NOD(1)=N1
NOD(2) =N2
NOD(3) =N3
NOD(4) =N4
IF(NTYPE .EQ. 2) THEN
CALL BAR(ELID,N1,N2,X(N1),Y(N1) X(N2),Y(N2) ,A(ELID) ,E(ELID),

+ KEL, TR,KPRIM)

ELSE
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a

v )

IF(NTYPE .EQ. 3) THEN
IF(NCASE .EQ. 4) THEN . : _
CALL TRIAX(ELID,N1i,N2,N3,X(N1),Y(N1).X(N2),Y(N2), ,X(N3),
Y(N3) .E(ELID) ,NU(ELID),KEL) J

ELSE
CALL CST(ELID,N1,N2,N3,X(N1),¥(N1),X(N2),¥(N2), X(N3),Y(N3),
E(ELID) ,WU(ELID),T(ELID),B,KEL)
END IF
ELSE .
IF(NTYPE .EQ. 4) THEN -
IF(NCASE .EQ. 4) THEN

CALL QUADAX(NGAUS1,ELID,NTYPE,N1,N2,N3,N4,N6 KEL,NDIM) «
ELSE .
CALL QUAD4(NGAUS1,ELID,NTYPE,N1,N2,N3,N4,N6 KEL NDIM, |
INCOMP) , , |
END IF . .
ELSE e £

IF(NCASE .EQ. 4) THEN
* CALL RELAX(ELID,ELIDB,N1,N2,N3,N4,N6,N11,N22,N33,N44,N56,
- Q)
CALLxQUADAX(NGAUS2ﬂELID.NTyPE.Ni.NZ.NS.N4.N5,KELA.NDIM)
CALL 'QUADAX(NGAUS2,ELIDB,NTYPE,N11,N22,N33,N44,N56,KELB,
NDIM)
ELSE
CALL REL(ELID,ELIDB,N1,N2,N3,N4,N6,N11,N22,N33,N44,N66,Q)
CALL QUAD4(NGAUS2,ELID,NTYPE,N1,N2,N3,N4,N6,KELA,NDIM,

~ INCOMP) ,
CALL QUAD4(NGAUS2,ELIDB,NTYPE,N11,N22,N33,N44,N66,KELB,
NDIM, INCOMP) ‘ .
END IF
- DO B0 LI=1,8

DO 60O LJ=1,12

RA(LI,LJ)=0.DO

RB(LI,LJ)=0.DO_
CONTINUE \
RA(7,1)=1.DO .
RA(8,2)=1.D0
RA(1,3)=1.D0 *
RA(2,4)=1.DO
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DO 66 LK=3,6
LM=LK+6
RA(LK,LM)=1.DO
66 CONTINUE
DO 68 KK=3,8
RB(KK,KK)=1.DO
C 58 CONTINUE
’ : RB(1,9)=1.D0
RB(2,10)=1.D0 .
DC 60 K=9,10
DO 60 L=1,12 <
MMM=K -8
RA(K,L)=Q(MMM,L)
RB(K,L)=Q(MMM,L)
80 CONTINUE
DO 80 M=1,10
. "% DO 80 N=1,12
RAT (N ,M)=RA(M,N)
RBT(N ,M)=RB(M,N)
80 CONTINUE -
CALL MATMAT(10,10,12,KELA,RA,KEFARA)
CALL MATMAT(12,10,12,RAT,KELARA,KEL1)
CALL MATMAT(10,10,12,KELB,RB,KELBRB)
CALL MATMAT(12,10,12,RBT,KELBRB, KEL2)
DO 90 Ki=1,12
DO Q0 K2=1,12
KEL (K1,K2) =KEL1 (K1 ,K2) +KEL2(K1 ,K2)
90 CONTINUE
END IF
END IF
END IF
IF(NTYPE .EQ. 6) THEN
NOD(1)=N4
NOD(2) =N22
NOD(3) =N33 ;
NOD(4) =N44
NOD(B5)=N2
NOD(8)=N3
NNTYPE=6

4
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END IF

DO 160 I=1,NNTYPE . -
J=2%I -1 .
K=2*1
NGLOB (J)=2+NODRED(NOD(I))-1
NGLOB (X) =2+«NODRED (NOD(I)) ' !

CONTINUE
NBAND=0
NNODE=MM/2
DO 200 INODE=1,NNODE .
DO 200 IDOFN=1,2 LS
NROWS=(NODRED (NOD (INODE))-1)*2 + IDOFN
NROWE=(INODE-1)*2 + IDOFN - »
DO 200 JNODE=1,NNODE
DO 200 JDOFN=1,2 ‘ -
. NCOLS=(NODRED (NOD (JNODE))-1)*2 + JDOFN
NCOLE=(JNODE-1)*2 + JDOFN
IF(NCOLS .LT. NROWS) GO TO 200 )
NDIFF=NCOLS-NROWS
IF(NDIFF .GT. NBAND) NBAND=NDIFF \ '
NPOS=NFUNC (NROWS, NCOLS) ¢
: KGLOB (NPOS) =KGLOB(NPGS) + KEL(NROWE , NCOLE)
CONTINUE
RETURN _ .

END ) o

SUBROUTINE BAR(ELID,Ni,N2,X1,Y1,X2,Y2,A,E,KEL,TR,KPRIM)

IMPLICIT REAL*8 (A-H,0-Z) .
INTEGER N1,N2,ELID,NGLOB(4) i

REAL*8 L,L2,C0S,SIN,C2,52,XDIF,YDIF,CS, KEL(4 4) ,K,LSMALL,TR(4,4)

REAL*8 KPRIM(4,4) - - . o
XDIF=X2-X1 P

YDIF=Y2-Y1
L2=XDIF*XDIF + YDIF*YDIF

L=DSQRT(L2)
C0S=XDIF/L
SIN=YDIF/L
C2=C0S*COs
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;a; N
S2=SIN*SIN .
CS=CO8*SIN
K = A*E/L
KEL(1,1)=C2*K-
KEL(1,2)=CS*K .
KEL(1,3)=-KEL(1,1)
KEL(1,4)=-KEL(1,2)
KEL(2,2)=52%K .
KEL(2,3)=-KEL(1,2)
KEL(2,4)=-KEL(2,2)
KEL(3,3)=KEL(1,1)
KEL(3,4)=KEL(1,2)
KEL(4,4)=KEL(2,2)
KEL(2,1)=KEL(1,2)
KEL(3,1)=KEL(1,3)
DO 1100 J=1,4
DO 1100 I=1,4
- KEL(T, J)=KEL(J,I)
1100 CONTINUE )
DO 1200 I=1,4
¢ DO 1200 J=1,4
TR(I, J)=00
» KPRIM(I,J)=0.0
1200 GONTINUE
TR(1,1)=C0S
TR(1,2)=SIN
TR(2,1)=-SIN
TR(2,2)=C0S
TR(3,3)=C0S
TR(4,3)=-SIN
TR(4,4)=C0S
KPRIM(1,1)=K
KPRIM(1,3)=-K
KPRIM(S,1)=-K
KPRIM(3,3)=K
RETURN ~
END ’
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SYBROUTINE CST(ELID,N1,§2,N3,X1,Y1,X2,Y2,X3,Y3,E,NU,T,B,KEL)
IMPLICIT REAL*8 (A-H,0-2)
INTEGER ELID- .
REAL*8 X1,Y1,X2,Y2,X3,Y3,NU,T,EM(3,3),B(3,8) ,KEL(68,8)
REAL*8 BT{6,3),BTE(8,3),K1(8,8),4
B(1,1)=Y2-Y3
B(1,2)=0.0
B(1,3)=Y3-Y1 ‘ ‘ .
B(1,4)=0.0 )
B(1,6)=Y1-Y2 . . : .
B(1-,6)=0.0
B(2,1)=0.0
B(2,2)=X3-X2
B(2,3)=0.0- . -
B(2,4)=X1-X3
B(2,6)=0.0
B(2,68)=X2-X1
B(3,1)=B(2,2)
B(3,2)=B(1,1)
B(3,3)=B(2,4)
B(3,4)=B(1,3)
B(3,6)=B(2,8)
B(3,6)=B(1,5) : , .
A= (X2*Y3-Y2%X3-X1%Y3+Y1#X3+X1%Y2-Y1%X2)/2.
D0.20 I=1,3 N
DO 20 J=1,6 P

B(I,J)=B(I,J)/(2.%4) -
CONTINUE . : »
D0 60 I=1,6 .

DO 60 J=1,3

BT(I,J)=B(J,I)

CONTINUE :

Q

" CALL YOUNG(EM,E,NU,3,0)

CALL MATMAT(®,3,3,BT,EM,BTE)
CALL MATMAT(6,3,8,BTE,B,K1)

D0 100 I=1,6 -~ -
DO 100 J=1,6 . LY e
KEL(I, J)=K1(I,J)*T*A . -
CONTINUE
&
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RETURN

END

LY

SUBROUTINE QUAD4(NGAUSS,NELEM,NORDER,N1,N2, N3 N4,NB, STIFEL NDIM,

INCOMP)

A

IMPLICIT REAL*8 (A-H,0-2) o

DOUBLE PRECISION JACOB,NU,KEL(14, 14)

DIMENSION XX(6),YY(6),PLACE(3,3) ,WGT(3,3),B(3, 14), BTE(14 3)

DIMENSION EM(3,3),STIFEL(NDIM,NDIM) ' : - ‘
COMMON/Q4/EN(B),JACOB(2,2)

COMMON/GLOB/X (1000) , Y(1000) ,A(1000) ,E(1000) , NU(1000) ,T(1000)

DATA

PLACE(I,I).PLACE(2.1),PLACE(2.3).PLACE(S,I).PLACE(S.Z)/
5*0.00000Q000000000D0/ y
PLACE(1,2)/-0.677350260189626D0/ .

DATA

DATA PLACE(2,2)/ 0.577350269189626D0,/ : *

DATA PLACE(1,3)/-0.774506669241483D0/ : : )

DATA PLACE(3,3)/ 0.774506669241483D0/

DATA WGT(1,1)/2.000000000000000D0/ , WGT (2,3) /0 . 888888888888889D0/

DATA WGT(1,2),WGT(2,2)/2%1.000000000000000D0/ ;

DATA WGT(2,1),WGT(3,1) ,WGT(3,2)/8%0.00000000000000009/ -

DATA WGT(1,3),WGT(3,3)/2%0.566666566565666D0/ (Tt$Vf

CALL YOUNG(EM, E(NELEM) ,NU(NELEM) ,3.0) ,

MORDER=2+NORDER : .

'NSIZE =-NDIM + 2¢INCOMP -~ "o

XX(1)=X(N1) ) ; ” '

XX(2)=X (N2) - . .

XX(3)=X(N3) . -

- XX(4)=X(N4) .

YY(1)=Y(N1)

YY(2) =¥ (N2) ,

YY(8)=Y(N3) ’ ) o x

YY(4)=Y(N4) ' -

IF (NORDER .NE. 4) THEN ' -
XX(6) =X (NE) - . ; i
YY(5)=Y(N5) ) .

END IF . - ' ,

DO 40 K=1 NSIZE -
DO. 40 L=K,NSIZE T
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KEL(K,L) =0.D0 _
40 CONTINUE ™%

DO 180 NA=1,NGAYSS .
¢ # : XI=PLACE(NA , NGAUSS)

DO

160 NB=1,NGAUSS
ET=PLACE (NB, NGAUSS)
CALL SHAPEF(XI,ET,XX,YY,DETJAC,B,NORDER , INCOMP)
DV=WGT(NA , NGAUSS) *WGT (NB ,NGAUSS) *T (NELEM) +DETJAC
KORDER = NSIZE/2 .
DO-80 J=1,KORDER , J
L=2%J
KeL-1 e
DO 60 N=1,3 .
BTE(K,N)=B(1,K)*EM({1,N) + B(3,K)*EM(3,N)
BTE(L,N)=B(2,L)*EM(2,N) + B(3,L)*EM(3,N)

80 CONTINUE
80 CONTINUE )
. DO 140 NROW=1,NSIZE
. DO 120 NCOE=NROW,NSIZE
DUM=0.D0
= DO 100 J=1,3
DUM=DUM + BTE(NROW,J)*B(J,NCOL)
100 CONTINUE .
KEL (NROW, NGOL) =KEL (NROW,NCOL) + DUMDV
120 CONTINUE
140 CONTINUE - 4
< 180 CONTINUE
180 CONTINUE ;
DO 200 K=1,NSIZE .
-, . "D0 200 L=K,NSIZE ‘ ‘
_ , KEL (L, K) =KEL (K, L) )
200 CONTINUE ‘
" IF(INCOMP .EQ. 1) THEN
, DO 340 K=1,4
‘ LL = NSIZE - K - )
) KK = LL + 1 - °
’ . DO 320 L=1,LL
~  IF(KEL(KK,L) .EQ. 0.) GO TO 320
. DUM = KEL(KK,L)/KEL(KK,KK) ‘%i§\
Y : . 153 (
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300
320

340

360

400

DO 300 M=1,L
° KEL(L,M) = KEL(L,M) - KEL(KK,M)*DUM
. CONTINUE
CONTINUE
CONTINUE
LL=NSIZE-4
DO 360 K=1,LL . .
DO 360fL=1,K
KEL(L,K) = KEL(K,L)
CONTINUE
END IF
DO 400 I = 1,MORDER
D9 400 J = 1,MORDER
STIFEL(I,J)=KEL(I,J)

CONTINUE o -
RETURNJg ;
END

/
SUBROUSZNE SHAPEF (XI,ET,XX,YY,DETJAC,B,NORDER, INCOMP) >
IMPLICIT REAL*8 (A-H,0-2) D o

DOUBLE PRECISION JACOB,NU
DIMENSION RXI(6),RET(6),RK(5),RL(5)
DIMENSION XX(6),YY(5),B(3,14),EM(3,3),ENXI(7),ENET(7)
COMMON/Q4/EN(6) , JACOB(2,2) .
COMMON/GLOB/X(1000),Y(1000) ,A(1000) ,E(1000) , NU(1000) ,T(1000) ’7}\
DATA RXI/-1.,1.,1.,-1.,1./,RET/-1.,-1.,1.,1.,1./ .
DATA RK/1.,1.,1.,1.,0./
RL(1)=1.
RL(2)=1.
RL(3)=0. ..
RL(4)#0.
RL(B)=-2.
IF(NORDER .EQ. 4) THEN
RL(1)=0.
RL(2)=0.
END IF ° 0 \
DO 20 L=1,NORDER  —
Fi=(1. + RXI(L)*XI)
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F2=(1., + RET(L)*ET) o,
F3=(1. - XI*XI)
F4=(1 - ET) .
EN(L)=RK (L)*F1%F2/4. - RL(L)*F3%F4/4.
ENXI(L)=RK(L)*RXI(L)*F2/4. + RL(L)*XI*F4/2.
ENET (L) =RK(L)*RET(L)*F1/4. + RL(L)*F3/4.
20 CONTINUE °
. MORDER = NORDER
IF(INCOMP .EQ. 1) THEN
LMIN = NORDER—+ 1
LMAX = NORDER + 2
ENXI(LMIN) = -2.DO%*XI
ENET(LMIN) = 0.DO
ENXI(LMAX) .= 0.DO
ENET(LMAX) = -2.DO+ET
MORDER = LMAX .
END. IF
,  NSIZE = 2+MORDER
DO 40 I=1,3
DO 40 J=1,NSIZE
B(I,J)=0.DO

40 CONTINUE -

JACOB(1,1)=0.D0
JACOB(1,2)=0.D0 A .
JACOB(2,1)=0.D0
+JACOB(2,2)=0.D0 ~
DO 60 L=1,NORDER
JACOB(1,1)=JACOB(1,1)+ENXI(L)*XX(L)-
JACOB(1,2)=JACOB (1,2)+ENXI(L)*YY(L) //‘\\
JACOB(2,1)=JACOB(2,1)+ENET(L)*XX (L)
) JACOB(2,2)=JACOB(2,2)+ENET(L)*YY(L) ’
60 CONTINUE -
DETJAC=JACOB(1,1)*JACOB(2,2)-JACOB(1,2)*JACOB(2,1)
F6=JACOB(1,1) /DETJAC
JACOB (1,1)=JACOB(2,2) /DETJAC
JACOB (1,2)=-JACOB(1,,2)/DETJAC
‘ JACOB(2,1)=-JACOB(2, 1) /DETJAC
N JACOB(2,2)=Fb ’
DO 80 J=1,MORDER

%
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Le2%]#
K=L-1 <
B(1,K)=JACOB(1,1)*ENXI(J) + JACOB{1,2)*ENET(J)
B(2,L)=JACOB(2,1)*ENXI(J) + JACOB(2,2)*ENET(J) .
B(3,K)=B(2,L)
B(3,L)=B(1,K) ,
' 80 CONTINUE ’ -
- RETURN- :
o END )

&

SUBROUTINE REL(NELEMi.NELEMZ.Nl,N2,N3.N4.N5.N11.N22,N38,N44.N55.Q)
IMPLICIT REAL*8 (A-H,0-Z) '
DOUBLE PRECISION NUA,NUB,NU
DIMENSION XA(6),YA(6),XB(5),YB(5),TRAN1(2,3) ,BA(3,14),BB(3,14)
. DIMENSION EA(3,3),EB(3,3),PROD1(3,10) , TRAN2(2,3),QA(2,10) ,QB(2,10)
“ DIMENSION Q1(2,2),Q2(2,12),Q(2,12) ,XX1(5),XX2(5),YY1(5),YY2(5)
COMMON/GLOB/X (1000) , Y (1000) , A (1000) ,E(1000) ,NU(1000) ,T(1000)
PI=DACOS(-1.DO)
o DETJAC=0.DO
XX1(1)=X(N1)
XX1(2)=X(N2)
- XX1(3)=X(N3) : &
XX1(4)=X(N4)
XX1(B)=X(N5)
YY1(1)=Y(N1)
YY1(2)=Y(N2)
YY1(3)=Y(N3)
YY1(4)=Y(N4)
YY1(6)=Y(NB)
XX2(1)=X(N11)
XX2(2) =x {N22)
XX2(3)=X(N33)
XX2(4)=X(N44)
XX2(5) =X (N55)
- YY2(1)=Y(N11) )
YY2(2) =Y (N22) ) .
YY2(3)=Y(N33) oY
YY2(4) =Y(N44) ‘“’p,
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" ET=-1 DO

80

S

a

YY2(5) =Y (N55) »

CALL TRANSF(NELEM1,XX1(1),XX1(2),YY1(1),YY1(2),TRAN1,2,3)

CALL TRANSF(NELEM2,XX2(1),XX2(2),YY2(1),YY2(2),TRAN2,2,3) .
XI=0.DO

CALL SHAPEF(XI,ET,XX1,YY1,DETJAC,BA,5,0) '
CALL YOUNG(EA,E(NELEM1),NU(NELEM1),3,0)
CALL SHAPEF(XI,ET,XX2,YY2,DETJAC,BB,5.,0)
CALL YOUNG(EB,E(NELEM2) ,NU(NELEM2),3,0)
CALL MATMAT(3,3,10,EA,BA,PROD1) _
CALL MATMAT(2,3,10,TRAN1,PROD1,QA) i
CALL MATMAT(3,3,10,EB,BB,PROD1)
CALL MATMAT(2,3,10,TRAN2,PROD1,QB)
F1=(QB(1,9)-QA(1,9))*(QB(2,10)-QA(2,10))
F2=(QB(1,10)-QA(1,10)) *(QB(2,9)-QA(2.9))
DETQ=(F1-F2)
Q1(1,1)=(QB(2,10)-GA(2"10))/DETQ
Q1(1,2)=-(QB(1,10)-QA(1,10))/DETQ
Q1(2,1)=-(QB(2,9)-QA(2,9))/DETQ
Q1(2,2)=(QB(1,9)-QA(1,9))/DETQ
DO 80 L=1,2 ) A '
Q2(L,1)=QA(L,7) .
Q2(L,2)=QA(L,8) -
Q2(L,3)=QA(L,1)-QB(L,3) ' ‘
Q2(L,4)=QA(L,2)-QB(L,4)
Q2(L,B6)=-QB(L,B)
.Q2(L,6)=-QB(L,8)
Q2(L,7)=-QB(L,7) -
Q2(L,8)=-4B(L,8)
Q2(L,9)=QA(L,3)-GB@., 1)
Q2(L,10)=QA(L,4)-QB(L,2) , Q
Q2(L,11)=QA(L,5) .
Q2(L,12)=QA(L,8)
CONTINUE
CALL MATMAT(2,2,12,Q1,Q2.,Q)
RETURN . -~ P
END
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, SUBROUTINE YOUNG(EM,E,NU,NDIM,NPLANE)
REAL*8 E,NU,EM(NDIM,NDIM),COEF1,COEF2
DO 20 I=1,NDIM ;
DO 20 J=1,NDIM
_ EM(I,J)=0.DO -
20 CONTINUE
IF(NDIM .EQ. 3) THEN
IF(NPLANE .EQ. O) THEN
COEF1=E/(1.DO-NU*NU)
EM(1,1)=COEF1
’ EM(1,2) =COEF 1+NU y
EM(2,1)=EM(1,2) .
EM(2, 2) =COEF1
EM(3,3)=COEF1*(1.D0-NU)/2.DO
ELSE
COEF2=E/((1.DO+NU)*(1.D0-2¢DO*NU))
EM(1,1)=COEF2*(1.D0-NU)
EM(1,2)=COEF2%NU
EM(2,1)=EM(1,2) /
EM(2,2)=EM(1,1)
\ EM(3,3)=COEF2*(1.D0-2,.DO*NU) /2.D0
. END IF
ELSE )
COEF2=E/ ((1.DO+NU) * (1. DO-2.DO*NU))
EM(1,1)=COEF2+(1.DO-NU)
EM(1,2) =COEF2+NU
EM(1,3)=EM(1,2) v
EM(2,1)=EM(1,2)
EM(2,2)=EM(1,1)
EM(2,3)=EM(1,2) (
EM(3,1)=EM(1,2) :
EM(3,2)=EM(1,2)
EM(3,3)=EM(1,1)
EM(4,4)=COEF2%(1.D0-2.D0O*NU)/2.D0
’ _ IF(NDIM .EQ. 6) THEN
EM(6,6)=EM(1,1)
EM(8,6)=EM(1,1)
END IF
END IF
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40
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RETURN
END <

1

SUBROUTINE MATVEC(N,M,A,Z,V,NEQNS,MEQNS)
DIMENSION A(NEQNS,MEQNS),Z(MEQNS)
REAL*8 SUM,A,V(N),Z ,
DO 40 I=1,N ‘

SUM=0.0

DO 20 J=1,M

SUM=SUM+A (X, J)*Z(J)

CONTINUE

V(I)=SUM
CONTINUE
RETURN
END

A8

SUBROUTINE DOT(N,A,B), PRODUC,MEQNS) {::;\
DIMENSION A (MEQNS),
REAL*8 A,B,PRODUC,§
SUM=0:0 ‘
DO 20 I=1,N

SUM=SUM + A(I)*B(I)
CONTINUE )
PRODUC=SUM
RETURN
END

~

SUBROUTINE MATMAT(M,N,K,A,B,C)

INTEGER M,N,X.R,S,I

DOUBLE PRECISION A(M,N),B(N,K),C(M,K),SUM
R=1

DO 80 WHILE (R .LE. M) /\
§=1 ’

DO 60 WHILE(S .LE. K)
SUM=0.0
I=1

159
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DO 40 WHILE(I ,LE. N) .
SUM=SUM+A (R, I)*B(I,5)
I=I+1 :

40 ' CONTINUE

C(R,5)=SUM
§=5+1-"
80 CONTINUE
Re=R+1
80 CONTINUE .
RETURN
END

SUBROUTINE GREDUC(MEQNS,ASLOD,ASTIF,IFPRE,FIXED,NEQNS,MSTIF,

+ REDOF , NBAND)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION ASLOD(2000),ASTIF(MSTIF) ,FIXED(2000)
DIMENSION IFPRE(2000)
INTEGER IEQNS,IEQN1,ICOLS,REDOF
. REAL*8 PIVOT,FACTOR
NFUNC(I,J)=(J-I)*#(2%REDOF + 1 - J +/)/2 + I -
NEQNS=REDOF | </
DO 50 IEQNS=1,NEGNS
NLOCA=IEQNS+NBAND
IF(NLOCA .GT. NEQNS) NLOCA=NEQNS
“IF(IFPRE(IEQNS) .EQ. 1) THEN
DO 40 IROWS=IEQNS,NLOCA
NPOS=NFUNC(IEQNS , IROWS)
ASLOD (IRGWS) =ASLOD ( IROWS) -ASTIF (NPOS) *F IXED ( TEQNS)
40 CONTINUE
NPOS3=NFUNC (IEQNS , IEQNS)
ASTIF(NPOS3)=0.DO
GO TO 6O
END IF .
NPOS=NFUNC (IEQNS , IEQNS)
PIVOT=ASTIF (NPOS)
IF(DABS(PIVOT) .LE..O.1E-8)THEN
, PRINT 100, IE
100 FORMAT('1',6X,  INCORRECT PIVOT',5X, 'EQUATION NUMBER :

160
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STOP

END IF
IF(IEQNS .EQ. NEQNS)THEN
GO TO 60
END IF- )
IEQN1=IEQNS+1 L
o DO 20 IROWS = IEQN1,NLOCA )
' NPOS=NFUNC(IEQNS, IROWS) *3
FACTR=ASTIF(NPOS)/PIVOT -
. IF(FACTR .EQ. 0.0) GO TO 20
DO‘ 10 ICOLS=IEQN1,NLOCA
IF (IROWS .GT. ICOLS) GO TO 10
NPOS2=NFUNC (IROWS, ICOLS) °
NP0OS3=NFUNC (IEQNS, ICOLS)
ASTIF (NPOS2)=ASTIF (NPOS2) -FACTR*ASTIF (NPDS3)
_16 CONTINUE
° ASLOD(IROWS)-ASLOD(IROWS)-FACTR*%gLOD(IEQNS)
20 CONTINUE .
50 CONTINUE

RETURN .
" END
C ‘ .
c i °
SUBROUTINE BAKSUB(MEQNS,ASLOD,ASTIF, IFPRE,FIXED,XDISP,REACT,
+ NEQNS,MSTIF ,REDOF, NBAND)
IMPLICIT REAL*8 (A-H,0-Z) o

DIMENSION ASLOD(2000),ASTIF(MSTIK), IFPRE(2000)
-+ DIMENSION FIXED(2000),XDISP(2000),REACT(2000)
INTEGER NEQN1,NBACK,NBAC1,REDOF
. REAL*8 PIVOT,RESID )
NFUNC(TL, J)=(3-I)*(2+«REDOF + 1 - J + I)/2 + I
NEQNS=REDOF
DO 6 IEQNS=1,NEQNS
REACT (IEQNS)=0.0
5 CONTINUE
4 NEQN1=NEQNS+1 °
DO 30 IEQNS=1,NEQNS
NBACK=NEQN1-IEQNS
NPOS=NFUNC (NBACK ,NBACK)
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PIVOT=ASTIF (NPOS)
RESID=ASLOD (NBACK)
{  1r(uBAck .EQ. NEQNS)GO T0 20
NBAC1=NBACK+1
NLOCA=NBACK+NBAND
IF(NLOGA .GT. NEQNS) NLOCA=NEQNS
DO 10 ICOLS=NBAC1,NLOCA
NPOS2=NFUNC(NBACK , ICOLS)
RESID=RESID-ASTIF (NPOS2) *XDISP(ICOLS)
10 CONTINUE
20  IF(IFPRE(NBACK) EQ. 0) THEN
XDISP (NBACK) =RESID/PIVOT
ELSE \ .
XDISP (NBKCK) =FIXED (NBACK)
REACT (NBACK)=-RESID ° /~S
END IF
30 CONTINUE
RETURN
END .

SUBROUTINE DISPL(N,DOF,NID,NODRED,N1,N2,N3, N4, N6, NELA, NELB, INTER,
+ XDISP,REACT,MEQNS, NCASE)
“IMPLICIT REAL*8 (A-H,0-Z)
INTEGER N,DOF,NID(MEQNS) ,NODRED(MEQNS) ,N1 (MEQNS) ,N2(MEQNS)
INTEGER N3(MEQNS),N4(MEQNS),N5(MEQNS) ,NELA(MEQNS) ,NELB (MEQNS)
INTEGER INTER,ELID,ELIDB,NOD1,NOD2,NOD3,NOD4,NOD6
INTEGER NOD11,NOD22,NOD33,N0D44,NODE5,NN(8)
DOUBLE PRECISION NU
DIMENSION XDISP(2000),REACT(2000),G(2,12),XR(12),XX(2)
DIMENSION XRDISP(2000),RREACT(2000)
- COMMON/GLOB/X(1000) ,Y(1000) ,A(1000) ,E(1000) , NU(1000) ,T(1000)
IF(INTER .NE. 0) THEN
DO 60 I=1,INTER
ELID=NELA(I)
° ELIDB=NELB(I)
NOD1=N1(ELID)
NOD2=N2(ELID)
NOR3=N3(ELID)

®
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60

© NN(4)=NOD44

NOD4=N4(ELID)
NODS5=N6 (ELID) N ) ~ .
NOD11=N1(ELIDB) ‘o Y '
NOD22=N2 (ELIDB)
NOD33=N3(ELIDB)
NOD44=N4 (ELIDB) ’
NOD56=N5 (ELIDB) '
IF(NCASE .EQ. 4) THEN -

CALL RELAX(ELID,ELIDB,NOD1,NOD2,NOD3,NOD4,NOD6.NOD11,NOD22

. ,NOD33,NOD44,NODES, Q)

ELSE

CALL REL(ELID,ELIDB,NOD1,NOD2,NOD3,NOD4,NOD6,NOD11,NOD22

,NOD33,NOD44,NOD66 , Q)

END IF
NN(1)5NOD4
NN (2)=NOD22
NN(3)=NOD33 _ s

o

NN(5)=NOD2 — . .
NN(6)=NOD3 ’
DO 40.L=1,86 -

LK=2+L~-1

LL=2+L °

XR (LK) =XDISP(2*NODRED (NN(L))-1)

XR(LL)=XDISP(2+«NODRED(NN(L))) _.
CONTINUE
CALL MATVEC(2,12,Q,XR,XX,2,12)
XRDISP(2%N6 (ELID) -1)=XX(1)
XRDISP(2*N5 (ELID))=XX(2)

CONTINUE
DO 80 I=1,N .

~

IF(NODRED(NID(I)) .NE. 0) THEN _
XRDISP(2*NID(I)-1)=XDISP(2*NODRED(NID(I))-1)
XRDISP(2*NID(I))=XDISP(2*NODRED(NID(I)))
RREACT(2*NID(I)-1)=REACT(2*NODRED(NID(I))-1)
RREACT (2+NID(I))=REACT(2xNODRED(NID(I)))

ELSE ’

" RREACT(2+NID(I)-1)=0. .

RREACT(2*NID(I))=Q.

o
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END IF ‘
80  CONTINUE -
DO 100 I=1,DOF
XDISP(I)=XRDISP(I) «
100  CONTINUE

ELSE - .
DO 200 I=1,DOF , : i
RREACT (I)=REACT(I) )
200 CONTINUE
END IF o .
PRINT 160 ,
160 FORMAT('1 REACTIONS AND"DISPLACEMENTS AT NODES')
PRINT 160 ’

160 FORMAT('- NODE’,T8, 'X-REACTION',T22, 'Y-REACTION',T50, X-DISPL';
+ _ 162,'Y-DISPL')
PRINT 170, (K,RREACT(2*K-1) ,RREACT(2*K) ,XDISP(2*K-1), XDISP(Z*K)
+ K=1,N) .

170 FORMAT('-',13,T8,E10.3,T22, ElO 3,749, ElO 3,T61,E10. 3)
RETURN
END

-

SUBROUTINE FORCE(ELID,N1,N2,X1,Y1,X2,Y2,A,E,MEQNS,XDISP)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XDISP(2000) .

INTEGER ELID

REAL*8 DELTA(4),XDIF,YDIF,L,C,S,K,TR(4,4) ,KPRIM(4,4) UPRIM(4)
REAL*8 FPRIM(4),KEL(4,4)

CALL BAR(ELID,N1,N2,X1,Y1,X2,Y2,A,E,KEL,TR,KPRIM)

DELTA (1) =XDISP(2%N1-1)
DELTA(2)=XDISP(2%N1)

DELTA(3)=XDISP(2*N2-1)
DELTA (4)=XDISP (2%N2)
PRINT 60,ELID,N1, N3 o ]

50 FORMAT('- ELEMENT NO. : ’,I3,2X,’BAR’,' - ',I3,’ TO ',I13)

DX=X2-X1 . ' ’3
DY=Y2-Y1 S Tl (

RL-DSQRT(DX*DX + DY*DY) .

COSB=DX/RL

~

Y

»
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~ INTEGER ELID

_REAL%8 EM(3,3),SMAX,SMIN,51552,53,54,ANGLE,NU,XDISP

" U(4)=XDISP(2*N2) '

- U(8)=XDISP(2%N3) ° > ’

IS

k4
SINB=DY/RL
EL=(DELTACS) -DELTA(1))*COSB + (DELTA(4)-DELTA(2))*SINB
FL=(EL/RL)*E*A
PRINT 200,RL - &
FORMAT('- MEMBER LENGTH ',T22,': ’,E10.3)
PRINT 220,EL . .
FORMAT(’- MEMBER ELONGATION ',T22,°: ',E10.3)
PRINT 240,FL ’ v
FORMAT('- MEMBER FORCE ',T22,': ',E10 3)
RETURN % '
END

SUBROUTINE STR(ELID,N1,N2,N3,X1,Y1,X2,Y2,X3,Y3,E,NU,T,XDISP,MEQNS)
IMPLICIT REAL#8 (A-H,0-17)
DIMENSION XDISP(2000)

REAL*8 KEL(G,G),U(G),DI(G).ENERGY;SIRESS(B).STRAIN(S).B(B,G)

REAL*8 E1,E2,E3,EMAXEMIN,PI .
PI=DACOS(-1.0D0) - -

L4
CALL YOUNG¢EM,E,NU,3,0)
CALL CST(ELID,N1,N2,N3,X1,Y1,X2,Y2,X3,Y3,E,NU,T.B,.KEL) -
U(1)=XDISP(2+N1-1) o ) n .
U(2)=XDISP(2*N1) o ) - -,
U(3)=XDISP(2*N2-1) . .

U(B)=XDISP(2*N3-1) - .

CALL MATVEC(3,6,B,U,STRAIN,3.6)

CALL MATVEC(3,3,EM,STRAIN,STRESS,3,3)

S1=(STRESS(1)+5TRESS(2))/2.

E1=(STRAIN(1)+STRAIN(2))/2.

§2=(STRESS(1)-STRESS(2))/2.

E2=(STRAIN(1)-STRAIN(2))/2. -

S3=DSQRT(52%S2 + STRESS(3)*STRESS(3))

E3=DSQRT(E2*E2 + STRAIN(3)*STRAIN(3)) .

SMAX=S1+83 ~ ' . , .
EMAX=E1+E3 &

- ) . 0
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SMINs§1-§3 . . v
EMIN=E1-E3 . .
L IE(S2 .EQ. 0.0) THEN ) )
. ANGLE=PI/2.
ELEE | ~
ANGLES (DATAN(STRESS(3)/52))/2. ° .
END IF
CALL MATVEC(6,6,KEL,U,D1,6,6) )
ENERGY=0.0 :
DO 20 I=1,6 .
. S ENERGY = ENERGY+D1(I)*U(I)
' 20 CONTINUE
- ENERGY=ENERGY/2.
. : "PRINT 60,ELID
" . 50.FORMAT(’- ELEMENT NO. :*,I3,' C.5.T.")
PRINT 60,STRESS(1),STRAIN(1)
" 80 FORMATi - §'1',T10,':’,E10.3,T30, "E 1',T37,':',E10.3)
. . ‘PRINT 70, STRESS(2) STRAIN(Z)
70 FORMAT('- § 2',T10,':’,E10.3,T30, E 2',T37,: ', E10.3)
PRINT 80, STRESS(3) STRAIN(S)
80 ‘FORMAT('- T XY',T10,':*,E10.3,T30, 'E XY',T37,': * ,E10.3)
R PRINT 90, SMAX,EMAX
' 90 FORMAT(’- S MAX',T10,':’',E10.3,T30,'E MAX',T37, ':’,E10.3)
- PRINT 100, SMIN,EMIN :
100, FORMAT(' -~ S MIN' .T10,":*E10.3,T30, 'E MIN’,T37, " :*,E10.3)
PRINT 110, ANGLE, ENERGY

i10 FORMA’I‘('- ANGLE',T10,':',E10.3,T30, 'STRAIN ENERGY ',’ -+ ' ,E10.3) .
RETURN
- " END . .
C =
C - -

. SUBROUTINE STRES(ELID Nl N2,N3,N4,N6,X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,
’ + .. YB,E,NU, T,XDISP ,MEQNS , NTYPE; INCOMP)
.~ IMPLICIT REAL*8 (A-H,0- z)
. . INTEGER ELID
¥ DOUBLE PRECISION" NU
DIMENSION XDISP(2000), XI(8),ET(8), EM(S 3) Nov(e) XX(6),YY(5)
DIMENSION XLOC(10), B(3;14) ,PROD(3, 10),5(3) , TRAN(3,3) ,SLOC(3)
CHARACTER+B TYPE

0

1
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° s DATA XI/-1 ,1.,1.,-1.,0.,0./
; ET(1)=-1. T
ET(2)=-1. ' ) . - .
ET(3)=1. ’ ' \
ET(4)=1. ° s R
. ET(B)=-1. .
ET(8)=0.
IF(NTYPE .EQ. 4) THEN
ET(5)=0. : T : iy
TYPE='QUAD4"
ELSE
TYPE="'QUADS "
END IF
PRINT 20,ELID,TYPE
20 FORMAT('- ELEMENT NO. :’,I3,2X,AB)
MSIZE=2*NTYPE S
’ NSIZE=NTYPE+1
‘ ' CALL YOUNG(EM,E,NU,3,0) -
NOD(1)=N1 . -
| NOD(2)=N2
| \ NOD(3)=N3
- NOD(4)=N4
| NOD(B)=N&
| NOD(8)=0 g .
; XX(1)=X1 ' )
XX(2)=X2 -
XX(3)=X3 '
XX(4)=x4 ,
XX (5)=X5 o -
YY(1)=Y1
YY(2)=Y2
YY(3)=Y3
YY (4)=Y4
YY(6)=Y5
DO 40 I=1,NTYPE
XLOC(2+I-1)=XDISP(2*NOD(I)-1)
XLOC(2*I)=XDISP (2+NOD(I))
40 CONTINUE ‘
PRINT 50
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60 FORMAT('-',T2,'NODE’,T12,'S 11',T24,°'S 22°,T36,'T XY',T48,'S MAX',
o ° 4 T60,'S MIN',T72,' ANGLE') /

1 DO 80 I=1,NSIZE
v /" CALL SHAPEF(XI(I) ET(I) ,XX,YY DETJAC,B, NTYFE, INCONP)

CALL MATMAT(3,3,MSIZE,EM,B,PROD)
CALL MATVEC(3,MSIZE,PROD,XLOC,S,3,MSIZE)
IF(NTYPE .EQ. 6) THEN
IF(I .EQ. 5) THEN
CALL. TRANSF(ELID,X1,X2,Y1,Y2,TRAN,3,3)
CALL MATVEC(3,3,TRAN,S,SLOC, 3,3)
S(1)=8LOC(1)
§(2)=sL0C(2)
S(3)=SL0OC(3)
END IF ) o - e
y et ENDIF .
CALL PRING(NOD(I),S)
80 CONTINUE .
PRINT 100 «
100 FORMAT('-") - ) .
RETURN . ‘ .
END L '

c ' \
SUBROUTINE PRINC(NODE,S) - \
IMPLICIT REAL*8 (A-H,0-Z) -
INTEGER NODE - | ) \
DIMENSION S(3) -~
PI=DACOS(-1.DO)
S1=(S(1)+5(2))/2. .
S2=(5(1):5(2))/2. J ' .
S3:DSQRT(52+52 + §(3)*5(3))
SMAX=S1+§3 > N
SMIN=S1-53 r. . o ' ’
IF(S2 .EQ. 0.DO) THEN
. ANGLE=PI/2.
ELSE
ANGLE=(DATAN(S(3)/S2))/2.
END IF
ANGLE=(ANGLE*180.D0) /P1I
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PRINT 40,NODE,S(1) ,5(2) ,5(3) . SMAX,SMIN , ANGLE
40 FORMAT("-',13,T9;E10.3,121,E10.3,733,E10.3,T46,E10.3,T67,£10. 3,
T60,E10.3) ’

RETURN

END

SUBROU'i‘INE 'TRANSF (EﬂID ,X1,X2,Y1,Y2, TRAN,NROW, NCOL)

¥

5

IMPLICIT REAL*8(A-H,0-2)
INTEGER ELID
DIMENSION TRAN(NRQW,NCQOL)

XA=X1-X2.
YA=Y2-Y1 )
RL = DSQRT(XA*XA + YA*YA)
C = YA/RL '
§ = XA/RL !
IF(NROW .EQ. 2) THEN
IF(NCOL .EQ. 3) THEN
TRAN(1,1) = CxC
TRAN(1,2) = S*S
TRAN(1,3) = 2.DOxC*S
TRAN(2,1) = -C*S
- TRAN(2,2) = CxS
TRAN(2,3) = C*C - Sx8
ELSE
TRAN(1,1) = CxC
TRAN(1,2) = 0.D0
TRAN(1,3) = S*§ \
TRAN(1,4) = 2.D0xC*g.
TRAN(2,1) = -C#S
TRAN(2,2) = 0.D0
TRAN(2,3) =" C*8
TRAN(2,4) = C*C - S=*§
END IF
END IF

IF(NROW .EQ. 3) THEN
TRAN(1,1) = CxC
TRAN(1,2) = 5%5
TRAN(173) = 2.DO*CxS

é

Y
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,(

TRAN(2,1) = TRAN(1,2)
TRAN(Z,2) .= TRAN(1,1)
TRAN(2,3) = -TRAN(1,3)
TRAN(3,1) = ~Cx*8

TRAN(3,2) = -TRAN(3,1)
TRAN(3,3) = C*C - 8*8

END IF ’ :
IF(NROW .EQ. 4) THEN . (k

TRAN(1,1) = CxC
TRAN(1,2) = 0.DO
TRAN(1,3) = §*S
TRAN(1,4) = 2.DO*C*S ) -
TRAN(2,1) = 0.DO
TRAN(2,2) = 1.DO -~
TRAN(2,3) = 0.DO
TRAN(2,4) = 0.DO
TRAN(3,1) = TRAN(1,3)
TRAN(3,2) = 0.DO
TRAN(3,3) = TRAN(1,1)

" TRAN(3,4) = -TRAN(1.4) .

" TRAN(4.1) = -C*S
TRAN(4,2) = 0.DO
TRAN(4,3) = -TRAN(4,1)
TRAN(4,4) = C*C -S*S

END IF

RETURN

END

SUBROUTINE TRIAX(ELID,N1,N2,N3,R1,Z1,R2,Z2,R3,Z3,E,NU,KEL)
IMPLICIT REAL*8 (A-H,0-Z)
" INTEGER ELID -
REAL*8 NU,KEL(6,8) ,EM(4,4) ,H(8,8) ,/F(6,6) ,HT(6,8) ,PROD(6,6)
CALL YOUNG(EM,E,NU,4,0) ,
RL = R2¢(Z3-Z1) + Ri%(Z2-Z3) + R3%(Z1-22)'
DO 20 I=1,8
DO, 20 J=1,6
H(I, J)=0.DO
KEL(I,J)=0.DO
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F(I,J3)=0.DO

20 CONTINUE
H(i,1) = (R2*Z3-R3*Z2)/RL
H(1,3) = (R3*Z1-R1%*Z3)/RL
H(1,6) = (R1#22-R2%Z1)/RL
H(2,2) = H(1,1)
H(2,4) = H(1,3)
H(2,8) = H(1,5)
H(3,1) = (Z2-23)/RL
H(3,3) = (23-Z1)/RL
H(3,6) = (Z1-Z2)/RL
N H(4,2) = H(3,1)
H(4,4), = H(3,3)
H(4,6) = H(3,5)
H(6,1) = (R3-R2)/RL
H(5,3) = (R1-R3)/RL
o H(5,56) = (R2-R1)/RL
H(6,2) = H(5,1)
H(6,4) = H(5,3)
H(6,8) = H(5,5)
" DO 40 I=1,6
DO 40 J=1,6
HT(I,J)=H(J,I)
40 CONTINUE

A = ((R2-K1)*(23-21) = (R3-R1)*(Z2-Z1))/2.D0

RC=(R1+R2+R3)/3.D0O
2C=(Z21+Z2+23)/3.D0

- F(1,3) =(EM(2,1) + EM(2,2))*A
F(1,5) = EM(2,2)*(ZC/RC)*A

F(1,8) =

F(3,3) =(EM(1,1)+EM(1,2)+EM(2,1)+EM(2,2)) *(RC)*A
F(3,b6) =(EM(1,2)+EM(2,2))*ZC*A
F(3,8) =(EM(1,3)+EM(2,3))*RC*A

v F(4,4) =
F(4,6) =

F(6,6) = EM(2,2)*ZC*2C/RC +

+

EM(2,3)*A

|
|
|
{ ' o F(1,1) = EM(2,2)*(1.DO/RC)*A
|
|
|

EM(4,4)*RC*A
F(4,4)

EM(4,4)*RC*A

F(6,68)= EM(2,3)*ZC*A .
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F(6,8) = EM(3,3)*RC*A
DO 60 I=1,6 .
'DO 60 J=I,8
F(J,1)=F(I,J)
CONTINUE
CALL MATMAT¢6,6,6,F,H,PROD)
CALL MATNAT(6,8,6,HT,PROD,KEL)
RETURN o
END ¥

SUBROUTINE QUADAX(NGAUSS,NELEM,NORDER,N1,N2,N3,N4,N5,STIFEL ,NDIM)
IMPLICIT REAL*8 (A-H,0-Z)
DOUBLE PRECISION JACOB,NU,KEL(10,10)
DIMENSION XX(B),YY(6),PLACE(3,3),WGT(3,3),B(4,10),BTE(10,4)
- DIMENSION EM(4,4),STIFEL(NDIM,NDIM)
COMMON/Q4/EN (6) , JACOB(2,2)
COMMON/GLOB/X (1000) , Y (1000) , A(1000) ,E(1000) , NU(1000) ,T(1000)
DATA PLACE(1,1),PLACE(2,1),PLACE(2,3),PLACE(3,1),PLACE(3,2)/
+ 5%0.000000000000000D0/
DATA PLACE(1,2)/-0.5773502691806826D0/
DATA PLACE(2,2)/ 0.5773502691896268D0/
DATA PLACE(1,3)/-0 7745968669241483D0/ -
DATA PLACE(3,3)/ 0.774596669241483D0/
DATA WGT(1,1)/2.000000000000000D0/ , WGT(2,3) /0 .88888888888888900/
DATA WGT(1,2),WGT(2,2)/2%1.000000000000000D0/
DATA WGT(2,1),WGT(3,1),WGT(3,2)/3%0.000000000000000D0/
DATA WGT(1,3) ,WGT(3,3)/2%0.655665665665666D0/
PI=DACOS(-1.DO)
CALL YOUNG(EM,E(NELEM),NU(NELEM),4,0)
MORDER=2+NORDER
NSIZE = NDIM
XX(1)=X(N1)
XX(2)=X(N2)
XX(3) =X (N3) &
XX(4)=X(N4) 4
YY(1)=Y(N1)
YY(2) =Y (N2)
YY(3) =Y(N3)
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40

50

80

80

100

120
140

YY(4)=Y(N4)
IF(NORDER NE. 4) THEN
XX(85)=X(N5)
YY(B)=Y(NB) . .
END IF. .
D0 40" K=1,NSIZE
DO 40 L=K,NSIZE
KEL(K,L) =0.D0
CONTINUE ’
DO 180 NA=1,NGAUSS
XI=PLACE(NA,NGAUSS)
. DO 160 NB=1,NGAUSS °
ET=PLACE (NB,NGAUSS)
CALL SHAPAX(XI.ET,XX,YY,DETJAC,B,NORDER)
R=0.DO
DO 50 NR=1,NORDER
R=R+EN(NR) *XX (NR)
CONTINUE
DV=WGT (NA, NGAUSS) *WGT (NB ,NGAUSS ) *DETJAC
KORDER = NSIZE/2
DO 80 J=1,KORDER ]
wl=2%J -
K=L-1
DO 60 N=1,3
BTE(K,N)=B(1,K)*EM(1,N) + B(2,K)*EM(2,N)
BTE(L,N)=B(3,L)*EM(3,N)
CONTINUE .
BTE(L,4)=B(4,L)*M(4,4)
BTE(K,4)=B(4,K)*EM(4.4)
CONTINUE
DO 140 NROW=i,NSIZE
DO 120 NCOL=NROW,NSIZE
DUM=0.D0
DO 100 J=1,4 ,
DUM=DUM + BTE(NROW,J)*B(J,NCOL)
CONTINUE
KEL (NROW, NCOL)=KEL (NROW,NCOL) + DUM*DV*R
CONTINUE
CONTINUE

5
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180"

180

200

400

CONTINUE
CONTINUE
DO 200 K=1,NSIZE
DO 200 L=K,NSIZE .
KEL(L,K)=KEL(K,L)
CONTINUE
DO 400 I = 1,MORDER
DO 400 J = 1,MORDER
STIFEL(I,J)=KEL(I,J) /
CONTINUE
RETURN
END ' ¢

»

SUBROUTINE SHAPAX(XI,ET,XX,YY,DETJAC,B,NORDER)
IMPLICIT REAL*8 (A-H,0-Z)

DOUBLE PRECISION JACOB,NU . Cov
DIMENSION RXI(5),RET(5).RK(6),RL(B)

DIMENSION XX(6),YY(6),B(4,10),EM(4,4),ENXI(6) ,ENET(5)
COMMON/Q4/EN(B) , JACOB(2,2)

COMMON/GLOB/X(1000) ,Y(1000) ,A(1000) ,E(1000) ,NU(1000),T (1000)

DATA RXI/-1.,1.,1.,-1.,1./,RET/~1.,-1.,1.,1.,1./
DATA RK/1.,1.,1.,17,0./
RL(1)=1,
RL(2)=1.
RL(3)=0.
RL(3)=0.
RL(5)=-2.
IF (NORDER .EQ. 4) THEN
,RL(1)=0.
RL(2)=0.
END IF
DO 20 L=1,NORDER
Fi=(1. + RXI(L)*XI)
F2=(1. + RET(L)*ET)
F3=(1. - XI*XI)
F4=(1. - ET)
EN(L)=RK(L)*F1*F2/4. -- RL(L)*F3%F4/4.
ENXI(L)=RK(L)*RXI(L)*F2/4. + RL(L)*XI*F4/2.

&5
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ENET(L)=RK(L)*RET(L)*F1/4. + RL(L)*F3/4.
20 GONTINUE '
MORDER=NORDER ’
NSIZE = 2*«MORDER :
DO 40 I=1,4 -
DO 40 J=1 ,NSIZE -
B(I,J)=0.DO

40 CONTINUE
JACOB(1,1)=0.D0

= JACO0B(1,2)=0.D0 ) “1
JACOB(2,1)=0.D0 -
JACOB(2,2)=0.D0

- DO 60 L=1,NORDER

JACOB(1,1)=JACOB(1,1)+ENXI(L)*XX(L)
JACOB(1,2)=JACOB(1,2)+ENXI(L)*YY(L)
JACOB(2,1)=JACOB(2, 1) +ENET(L) *XX (L)
JACOB(2,2)=JACOB(2,2)+ENET(L) *YY(L)

60 CONTINUE
DETJAC=JACOB(1,1)*JACOB(2,2)-JACOB(1,2)*JACOB(2,1)
F6=JACOB(1,1)/DETJAC
JACOB(1,1)=JACOB(2,2)/DETJAC
JACOB(1,2)=-JACOB(1,2)/DETJAC
JACOB(2,1)=-JACOB(2,1) /DETJAC
JACOB(2,2)=F5
DO 80 ‘J=1,MORDER

L=2#]
K=L-1
B(1,K)=JACOB(1,1)*ENXI(J) + JACOB(1,2)=*ENET(J)
B(3,L)=JACOB(2,1)*ENXI(J) + JACOB(2,2)*ENET(J)
B(4,K)=B(3,L)
B(4,L)=B(1,K)
80 CONTINUE
" ¥=0.D0
DO 100 I=1,MORDER
- XX(I) = 1.D-8
END IF
R=R+EN(I)*XX(I)

100 CONTINUE x///
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DO 1/'20 I=1,MORDER
L=2+I - 1
B(2,L)=EN(I)/R .

120 CONTINUE .

RETURN

END

[

1

SUBROUTINE RELAX(NELEM1,NELEM2,N1,N2,N3,N4 ,N6,N11,N22,433,N44,N55,
+ Q)
IMPLICIT REAL#*8 (A-H,0-2Z)
DOUBLE PRECISION NUA,NUB,NU
DIMENSION XA(B),YA(6),XB(6),YB(6),TRAN1(2,4),BA(4,10),BB(4,10)
DIMENSION EA(4,4),EB(4,4),PROD1(4,10),TRAN2(2,4),QA(2,10),QB(2,10)
DIMENSION Q1(2,2),Q2(2,12),Q(2,12),XX1(6),XX2(6),YY1(6),YY2(5)
COMMON/GLOB/X(1000) , Y(1000) ,A(1000) ,E(1000) ,NU(1000) ,T(1000)
PI=DACOS(-1.DO) .
PETJAC=0.DO
XX1(1)=X(N1)
XX1(2)gX(N2)
XX1(3)=X(N3)

rXX1(4)=X(N4) -
XX1(B)=X(NB)
YY1(1)=Y(N1)
YY1(2)=Y(N2)
YY1(3)=Y(N3)
YY1(4)=Y(N4)
YY1(6)=Y(NG)
XX2(1)=X(N11)
XX2(2)=x(N22)
XX2(3)=X(N33)
XX2(4)=X(N44)
XX2(B5)=X(N65)
YY2(1)=Y(N11)
YY2(2)=Y(N22)
YY2(3)=Y(N33)
YY2(4)=Y(N44)
YY2(5)=Y(NEb)
CALL TRANSF(NELEM1,XX1(1),XX1(2),YY1(1),YY1(2),TRAN1,2,4)
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‘(

" CALL MATMAT(2,4,10,TRAN2,PROD1,QB) . R

80

CALL TRANSF (NELEM2,XX2(1),XX2(2),¥YY2(1),YY2(2) ,TRAN2,2,4)
XI=0.DO

ET=-1.D0
CALL SHAPAX(XI,ET,XX1,YY1,DETJAC,BA.6)

CALL YOUNG(EA,E(NELEM1) NU(NELEM1),4,0)

CALL SHAPAX (XI,ET,XX2,YY2,DETJAC,BB,B)

CALL YOUNG(EB,E(NELEM2) ,NU(NELEM2),4,0)

CALL MATMAT(4,4,10,EA,BA,PROD1) ‘\?
CALL MATMAT(2,4,10,TRAN1,PROD1,QA)

CALL MATMAT(4,4,10,EB,BB,PROD1)

F1=(QB(1,9)-QA(1,9))*(QB(2,10)-QA(2,10))
F2=(QB(1,10) -QA(1,10))*(QB(2,0)-QA(2,9))
DETQ=(F1-F2) )
Q1(1,1)=(GB(2,10)-QA(2,10))/DETQ "~
Q1(1,2)=-(QB(1,10)-QA(1,10)) /DETQ
Q1(2,1)=-(QB(2,9)-QA(2,9))/DETQ
Q1(2,2)=(qB(1,9)-QA(1,9))/DETQ
DO 80 L=1,2
Q2(L,1)=QA(L,7) - ' .
Q2(L,2)=QA(L,8) '
Q2(L,3)=QA(L,1)-QB(L,3)
Q2(L,4)=QA(L,2)-QB(L,4)
Q2(L,6)=-QB(L,5)
Q2(L,8)=-QB(L,8)
Q2(L,7)=-QB(L,7)
Q2(L,8)=-QB(L,8)
Q2(L,9)=QA(L,3)-QB(L,1)
Q2(L,10)=QA(L,4)-QB(L,2)
Q2(L,11)=QA(L,5)
Q2(L,12)=QA(L,8) o
CONTINUE
CALL MATMAT(2.2,12,Q1,Q2.Q)
RETURN
END

SUBROUTINE STRIAX(ELID,N1,N2,N3,R1,Z1,R2,22,R3,Z3,E,NU,XDISP,
+ MEQNS)
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40

IMPLICIT REAL*8 (A-H,0-Z) Ce
INTEGER ELID
REAL*8 NU
DIMENSION EM(4,4),H(6,6),G(4,6),5(4)
DIMENSION XDISP(2000),XLOC(8),PROD1(4,8),PROD2(4,8)
DO 20 I=1,6 o ‘ =
D0 20 J=1,6 ’ .
H(I,J)=0.DO ) 1
CONTINUE ° . .
DO 40 I=1,4
" DO 40 J#1,8
G(I,J])=0.DO"
CONTINUE .
RL=R2%(23-Z1) + R1*(Z2-Z3) + R3%(Z1-Z2)
CALL YOUNG(EM,E,NU,4,0)
H(1,1)=(R2%Z3-R3%Z2)/RL
H(1,3)=(R3*Z1-R1%Z3) /RL
H(1,6)=(R1*Z2-R2%Z1) /RL
H(2,2)=H(1,1)
H(2,4)=H(1,3) T
H(2,6)=H(1,b)
H(3,1)=(#¢=23) /RL
H(3,3)=(Z3-71)/RL
H(3,5)=(Z1-22)/RL
H(4,2)=H(3,1)
H(4,4)=H(3,3)
H(4,8)=H(3,6)
H(5,1)=(R3-R2)/RL
H(5,3)=(R1-R3)/RL
H(6,6)=(R2-R1)/RL
H(6,2)=H(6,1) : ~
H(6,4)=H(6,3)
H(6,6)=H(5,5)
R=(R1+R2+R3)/3.DO
Z=(Z1+22+23)/3.DO
G(1,3)=1.DO
G(2,1)=1.DO/R
G(2,3)=1.D0 .
G(2,6)=Z/R
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G(3.6)=1.D0
G(4,4)=1.D0 ¢
\ G(4,5)=1.D0 . .
X1.OC(1)=XDISP(2*N1-1)
XLOC(2)=XDISP(2%N1)
XLOC(3)=XDISP(2*N2-1) .
XLOC(4)=XDISP(2*N2)
XLOC(6)=XDISP(2%xN3+1)
XLOC(6)=XDISP(2*N3) . .
CALL MATMAT(4.4,6,EM,G, PROD1) - ,
CALL MATMAT(4,6,6,PROD1,H,PROD2)
CALL MATVEC(4,6,PROD2,XL0C,S,4,6)
PI=DACOS(-1.D0) ;
S1=(8(1) + S(3))/2.D0
. S2=(s8(1) - s(3))/2.D0 . )
S3=DSQRT(S52%52 + S(4)*S(4)) . .
SMAX=51 + S3
SMIN=S1 - S3
IF(S2 .EQ. 0.0) THEN
ANGLE=PI1/2.D0

ELSE

ANGLE=(DATAN(S(4)/52))/2 DO
END IF .
PRINT 100,ELID *

100 FORMAT(*- ELEMENT NO. : *,13," TRIAX')
PRINT 120,5(1),5MAX .

120 FORMAT('- § R’,T10,': ',E10.3,T30,'S MAX’,T37,’: ',E10 3)
, PRINT 140,5(2),SMIN

140 FORMAT('- S TH’,T10,’: ',E10.3,T30,'S MIN®,T37,': '.E10 3)
PRINT 160,5(3),ANGLE S

160 FORMAT('- S Z',T10,': *',E10.3,T30, 'ANGLE' ,T37,’: ',E10.3)
PRINT 180,S(4)

180 FORMAT('~ T RZ',T10,’: ',E10 3)
RETURN
END

c

SUBROUTINE STRAX(ELID,N1 .N2,:N3,N4 ,N6,X1,Y1,X2,Y2,X3,Y3,X4,Y4,Xb,
+ © Y6,E,NU,XDISP,MEQNS ,NTYPE)

o
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IMPLICIT REAL*8 (A-H,0-Z)
INTEGER ELID .
DOUBLE PRECISION NU

DIMENSION XDISP(2000),XI(6),ET(8) ,EM(4,4),NOD(8) ,XX(5),YY(E)
DIMENSION XLOC(10),B(4,10)',PROD(4,10),5(4),TRAN(4,4),SLOC(4)

CHARACTER#5 TYPE
DATA XI/-1.,1.,1.,-1.,0.,0./
ET(1)=-1.
ET(2)=-1.
ET(3)=1.
ET(4)=1.
ET(5)=-1.
ET(8)=0.
IF (NTYPE .EQ. 4) THEN

ET(5)=0.

TYPE='QUAD4’
ELSE

TYPE="QUADG’ ,
END IF
PRINT 20,ELID,TYPE
FORMAT(' - ELEMENT. NO. :°,I3,2X,A6)
MSIZE=2+NTYPE -
NSIZE=NTYPE+1  »
CALL YOUNG(EM,E,NU,4,0)
NOD(1)=N1
NOD (2)=N2
NOD(3)=N3
NOD(4)=N4
NOD(5)=N5
NOD(6)=0,
XX(1)=x1
XX(2)=x2
XX(3)=X3
XX(4)=X4
XX (5)=X5
YY(1)=Y1
YY(2)=Y2
YY(3)=Y3
YY (4)=Y4 , .

o #
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YY(6)=Y6 .
DO 40 I=1 ,NTYPE t

YT 7 XLOC(2+#I-1)=XDISP(2+NOD(I)-1)

XLOC(Z*;) =XDISP (2%NOD(I))

40 CONTINUE

v 50 FORMAT('-',T2,’'NODE’,T12,'S R’,T24,'S TH®,T36,'S 2',T48,'T ZR’,

80

100

PRINT 60

T60, "S MAX’,T72,'S MIN',T84, 'ANGLE")
D0 80 I=1,NSIZE

CALL ,SHAPAX(XI(I) ,ET(I) ,XX,YY,DETJAC,B,NTYPE)

CALL MATMAT(4,4,MSIZE,EM,B,PROD)
CALL MATVEC(4,MSIZE,PROD, XLOC,S,4 ,MSIZE)
IF (NTYPE—- EG:6) THEN
IF(I .EQ. 6) THEN
CALL TRANSF(ELID,X1,X2,Y1,Y2,TRAN,4,4)
GALL MATVEC(4,4,TRAN,S,SLOC4,4)
S(1)=SLOC(1)
§(2)=SLOC(2)
§(3)=SLOC(3)
S(4)=SLOC(4) .

«——=—END IF

END IF
CALL PRINAX(NOD(I),S)
CONTINUE .
PRINT 100.
FORMAT(’-')
RETURN
END

SUBROUTINE PRINAX(NODE,S)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER KNODE
DIMENSION S(4>
PI=DACOS(-1.DO) -
S1=(5(1)+8(3)) /2.
S2=(S(1)-5(8))/2.
S3=DSQRT(S2+S2 + S(4)*S(4))
SMAX=S1+83

-
\
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SMIN=S1-53
IF(S2 .EQ. 0.DO) THEN
~ ANGLE=PI/2.
ELSE ‘ _
ANGLE=(DATAN(S(4)/s2))/2.
END IF
ANGLE= (ANGLE+180.D0)/PI ‘3
_PRINT 40,NODE,S(1),5(2),5(3).S(4),SMAX,SMIN, ANGLE
40 FORMAT('-',I3,T9,E10.3,T21,E10.3,733,E10.8,T46,E10.3,T67,E10.3,
+ ' z##feo,E10.3,181,E10.3)
RETURN o . ‘
END

)

SUBROUTINE GENER(N,NDOF,BCX,BCY,NEL,NID,X,Y,XDEF, YDEF,ELID,
+ NTYPE ,N1,N2,N3,N4,N6,A,E,NU, T,KEQNS , MEQNS)
IMPLICIT REAL*8 (A-H,0-2) .
DIMENSION BCX (KEQNS) ,BCY(KEQNS) ,NID(KEQNS) ,X (KEQNS) , Y (KEQNS)
DIMENSION XDEF (KEQNS) , YDEF(KEQNS) ,ELID (MEQNS) ,N1(MEQNS)
DIMENSION N2(MEQNS),N3 (MEQNS) , E(MEQNS) ,NU(MEQNS) , T(MEQNS)
DIMENSION N4 (MEQNS),N6 (MEQNS) . NTYPE (MEQNS) , A (MEQNS)
INTEGER BCX,BCY,ELID,BCX1,BCY1
REAL*8 NU,NU1
LL=1 ‘ _
DO 40 WHILE(LL .LE. N)
READ *,NID1,X1,Y1,BCX1,BCY1,XDEF1,YDEF1, KGEN
IF (KGEN .NE. 0) THEN
READ *,NID2,X2,Y2,KK -
KFACT=NID2-NID1 .
KFACT1=KFACT/KK + 1 )
DO 20 MM=1,KFACT1 ‘ .
NIDGEN = NID1 + (MM-1)*KK
NID(NIDGEN) = NIDGEN
X(NIDGEN) = X1 + (X2-X1)*(MM-1)/(KFACT/KK)
Y(NIDGEN) = Y1 + (Y2-Y1)*x(MM-1)/(KFACT/KK)
BCX(NIDGEN) = BCX1
BCY(NIDGEN) = BCY1
XDEF (NIDGEN) = XDEF1
YDEF (NIDGEN) = YDEF1

R
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CONTINUE
LM = KFACT1 ’ Ut -

ELSE
NID(NID1) = NID1 o
X(NID1) = Xi b
Y(NID1) = Y1 )

° BCX(NID1) = BCX1
BCY(NID1) = BCY1
XDEF(NID1) = XDEF1 :

TYDEF(NID1) = YDEF1 :

LM =1 \ﬁp«/
END IF
LL = LL + LM

e

40 CONTINUE
LL =1
DO 80 WHILE(LL .LE. NEL)® .

.60

-~

READ *.NELxD1.NNTYPE.NN1.NN2,NN3.NN4,NNQ?*«CEi.NU1,T1,
KGEN l
IF(KGEN .NE. 0) THEN -
READ *,NELID2,NNTYPE,NNN1,NNNZ,NNN3,NNN4 ,NNNG,KK
KELFAC = NELID2-NELID1
KEL1 = KELFAC/KK
KELF1 = KEL1 + 1
DO 60 MM = 1,KELF1
NELID = NELID1 + (MM-1)*KK
ELID(NELID) = NELID
NTYPE(NELID) = NNTYPE
N1(NELID) = NN1 + (MM-1)*(NNN1-NN1)/KEL1
N2(NELID) = NN2 + (MM-1)*(NNN2-NN2)/KEL1
N3(NELID) = NN3 + (MM-1)*(NNN3-NN3)/KEL1
N4(NELID) = NN4 + (MM-1)*(NNN4-NN4)/KEL1
N6(NELID) = NN6 + (MM-1)*(NNNG-NNB)/KEL1
A(NELID) = At
E(NELID) = E1°~
NU(NELID) = NU1
T(NELID) = T1
CONTINVE . . -
LM = XELF1 .
ELSE “

+

+ + + +
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ELID(M¥ELID1) = NELID1

NTYPE(NELID1) = NNTYPE

N1 (NELID1)' = NN1
N2(NELIDi) = NN2
N3(NELID1) = NN3
N4(NELID1) = NN4
N6(NELID1) = NNb

A(NELID1) = A1
E(NELID1) = Ei
NU(NELID1) = NU1
T(NELID1) = T§
LM = 1

END IF

LL = LL + LM

80 CONTINUE

RETURN
END

P~
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B.2 - Three-dimensional program

OQOOQOQQOQOQOQOQOQQOQ

| R
THREE-DIMENSIONAL FINITE ELEMENT PROGRAM ‘
FOR THE ANALYSIS OF ELASTIC SOLIDS

BY MICHAEL ANGELIDES

MCGILL UNIVERSITY
DEPARTMENT OF CIVIL ENGINEERING
AND APPLIED MECHANICS

"APRIL 1986 \\\

Y

LS

ELEMENT LIBRARY :
- BAR ELEMENT (BAR) ( i
- CONSTANT STRAIN TETRAHEDRAL (TETRA)
- ISOPARAMETRIC LINEAR PENTAHEDRAL (PENTA)
- ISOPARAMETRIC LINEAR HEXAHEDRAL (HEXA)
- ISOPARAMETRIC LINEAR HEXAHEDRAL WITH ENFORCED INTERELEMENT
NORMAL AND SHEAR STRESS CONTINUITY AT ONE FACE (INTER)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 NU,KGLOB(300, 300),LOAD(300) ,KEL(36,36)
INTEGER ELID(200),BCX{200),BCY(200) ,BCZ(200) ,DOF,ELIDB
CHARACTER*80 TITLE
DIMENSION NID(200),NTYPE(200)
DIMENSION NODFOR(100),FX(100),FY(100)
DIMENSION FZ(100),ASTIF(300,300),ASLOD(300) , IFPRE(300)
DIMENSION XDISP(300) ,REACT(300),PLOAD (300)

COMMON/GLOB1/X(200) , Y(200) , Z(200) ,E(200), NU(200)
COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) , N4(200) , N5(200) Né(200),
+ N7(200) ,N8(200)
COMMON/ELCON/NELA(100) ,NELB (100) , INTER

READ *,TITLE s
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READ *,N,NEL,NLOAD, INTER,NMAT,NGAUS1 , NGAUS2

LEGNS=300 L0
MEQNS=200

KEQNS=200

DOF=3*N

CALL GENER(N,BCX,BCY,BCZ,NEL,NID,X,Y,Z,ELID,NTYPE, NMAT,
. - N1,N2,N3,N4,N6,N6,N7,N8,E, NU,KEQNS ,MEQNS)

IF(INTER .NE. O) THEN

READ *,(NELA(I),NELB(I),I=1,LINTER)

END IF
IF(NLOAD .NE, O) THEN

READ = (NODFOR(I) FX(I) ,FY(I), FZ(I) I=1,NLOAD)

END IF

CALL DATA(N,DOF,BCX, BCY BCZ ,NEL,NID,X,Y,Z,ELID,NTYPE,
+ Ni,N2,N3,N4, N6, N6 N7, N8 E,NU ,NODFOR,FX,FY,FZ,
+ KEQNS ,MEQNS,NLOAD, INTER,NGAUS1 ,NGAUS2,TITLE)

DO $000 I=1,DOF
DO 1000 J=1,DOF
KGLOB(I, J)=0.DO
1000 CONTINUE
DO 1100 I=1,NEL
IF(NTYPE(I) .EQ. 4) THEN
MM=12
ELSE
IF (NTYPE(I) .EQ. 5) THEN
MM=18
ELSE

IF(NTYPE(I) .EQ. 6) THEN

MM=24
ELSE
MM=36
END IF
END IF
END IF
NCOND=1 .
IF(NTYPE(I) .EQ. ) THEN
NCOND=0
DO 1050 J=1,INTER

IF(ELID(I) .EQ. NELA(J)) THEN
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ELIDB=NELB(J) .
 CALL STIFF(ELID(I),ELIDB,NTYPE(I) ,KGLOB, LEQNS,MM,
+ NGAUS2,KEL) \
: END IF
g 1060 CONTINUE .
’ END IF S
. } IF(NCOND. .EQ. 1) THEN .
g CALL STIFF(ELID(I),ELIDB,NTYPE(I) KGLOB,LEQNS, MM,
+ ( NGAUS1,KEL)
END IF
1100 CONTINUE _
DO 1200 I=1,DOF . .
DO 1200 J=1,DOF
ASTIF (I,J)=KGLOB(I,J) - *
1200 CONTINUE ‘ g ’
DO 1300 I=1,DOF .
ASLOD(I)=0.D0
1300 CONTINUE
IF(NLOAD .NE. 0) THEN . . -
DO 1400 I=1,NLOAD . .
KX1=3*NID(NODFOR(I)) -2 -
KK2=KK1+1 ’
KK3=KK1+2
ASLOD (KK1)=FX(I)
) ASLOD (KK2)=FY(I)
T ASLOD (KK3)=FZ(I)
1400  CONTINUE
END IF .. -
v . b0 1600 I=1,DOF ) . ' '
PLOAD(I)=ASLOD(I) F
“ 1500 CONTINUE : :
: DO 1600 I=1,N
K=NID(I) - - 3
IFPRE(3%K~-2)=BCX (K) _ . °
IFPRE{3*K-1)=BCY (K) o
N IFPRE(3*K)=BCZ(K)
1600 CONTINUE .
CALL GREDUC (LEQNS, ASLOD, ASTIF, IFPRE,DOF)-
CALL BAKSUB(N,LEQNS,ASLOD,ASTIF, IFPRE,XDISP,REACT,DOF)

¢
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- © PRINT 2000
- 2000 FORMAT('1 ELEMENT STRESSES®)
DO 2500 I=1,NEL
IF(NTYPE(CI) EQ. 4) THEN
. CALL STETRA(ELID(I),XDISP,LEQNS)
ELSE . ,
'IF(NTYPE(I) .GE. 6) THEN
© «  CALL STRES(ELID(I),XDISP,LEQNS,NTYPE(I))
END IF
END IF
2500 CONTINUE
PRINT 9000 )
| 9000 FORMAT('1')
STOP
" - END .

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 NU,NUM \
INTEGER BCX,BCY,BCZ,ELID,BCX1,BCY1,BCZ1

: DIMENSION NIDMAT(10) ,EM(10),NUM(10)
LL=1 . ,
DO 30 WHILE(LL .LE. N)
READ *,NID1,X1,Y1,Z1,BCX1,BCY1,BCZ1,KGEN
IF(KGEN -.NE. O) THEN
READ *,NID2,X2,Y2,22.KK
KFACT=NID2-NID1
. KFACT1=KFACT/KK + 1
. > DO 20 MM=1,KFACT1
NIDGEN=NID1 + (MM-1)*KK
NID(NIDGEN)=NIDGEN
X(NIDGEN) =X1 + (X2-X1)*(MM-1)/(KFACT/XK)
YKNIDGEN)*YI{; (Y2-Y1)*(MM-1)/(KFACT/KK)
o ) » . / .
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SUBROUTINE GENER(N.BCX.BCY,BCZ.NEL.NID.X,Y.Z,ELID.NTYPE.ﬁﬁAT.
+ ’Nl.N2.N3,N4.NB,NG,N7,N8,E.NU.KEQNS,MEQNS}

" DIMENSION %gX(KEQNS),BCY(KEQNS).BCZ(KEQNS).NID(KEQNS).X(KEQNS)
DIMENSION Y(KEQNS),Z(KEQNS) ,ELID(MEQNS),N1 (MEQNS) , N2(MEQNS)
. DIMENSION N3(MEQNS) ,N4(MEQNS),N6(MEQNS),N6 (MEQNS) ,N7 (MEQNS)
p DIMENSION N8(MEQNS) ,E(MEQNS) ,NU(MEQNS) ,NTYPE(MEQNS) ,MAT(200)

¥
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Z(NIDGEN)=Z1 + (Z2-Z1)*(MM-1)/(XFACT/KK)
BCX(NIDGEN)=BCX1
BCY(NIDGEN)=BCY1
BCZ(NIDGEN)=BCZ1
20 CONTINUE ;
LM=KFACT1
ELSE, J
NID(LL)=NID1
X(LL) =X
Y(LL)=Y1
Z(LL)=Z1 -
BCX (LL)=BCX1
BCY(LL)=BCY1
BCZ(LL)=BCZ1
LM=1 : ’
END IF .
LL=LL+LM
30 CONTINUE
LL=1 . )
DO BO WHILE(LL .LE. NEL) TN
READ *,NELID1,NNTYPE,NN1,NN2,NN3,NN4,NNG,NN6,KNN7,NN8 ,MAT1, -

N KGEN ' )
IF(KGEN .NE. O) THEN -
READ *,NELID2, NNN1,NNN2,NNN3,NNN4,NNNG,NNNG,NNN7 , NNNS, KK

KELFAC=NELID2-NELID1
KEL1=KELFAC/KK ‘ :
KELF1=KEL1+41
. DO 40 MM=1,KELF1
NELID=NELID1 + (MM-1)*KK
ELID(NELID)=NELID
NTYPE(NELID)=NNTYPE
N1(NELID)=NN1 + (MM-1)+*(NNN1-NN1)/KEL1
N2(NELID)=NN2 + (MM-1)+*(NNN2-NN2)/KEL1
N3(NELID)=NN3 + (MM-1)*(NNN3-NN3)./KEL1
N4(NELID)=NN4 + (MM-1)%(NNN4-NN4)/KEL1
NG (NELID)=NN6 + (MM-1)*(NNN6-NNB)/KELI ) ,
8 N6 (NELID)=NN6 + (MM-1)+*(NNN6-NN6)/KEL1
- N7 (NELID)=NN7 + (MM-1)+*(NNN7-NN7)/KEL1
N8(NELID)=NN8 + (MM-1)*(NNN8-NN8)/KEL1

+ + + + + 4+ +
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MAT(NELID)=MAT1
40 CONTINUE
LM=KELF1
ELSE |
ELID(LL)=NELID1
NTYPE (LL)=NNTYPE
Ni{LL)=NN1 ' .
N2(LL)=NN2 »
N3(LL)=NN3 ‘ 5
N4(LL)=NN4
- N6(LL)=NNG .
N8 (LL)=NN6
N7 (LL)=NNT7 -
N8(LL)=NN8
MAT (LL)=MAT1
LM=1
END IF
LL=LL+LM
50 CONTINUE
READ *,(NIDMAT(I),EM(I),NUM(I),I=1,NMAT)
DO 80 I=1,NEL
E(I)=EM(MAT(I))
NU(I)=NUM(MAT(I))
80 CONTINUE -

RETURN
END

SUBROUTINE DATA(N.DOF,BCX,BCY,BCZ,NEL NID,X,Y,Z ,ELID NTYPE,
N1,N2,N3,N4,N6,N6,N7,N8,E, NU,NODFOR, FX,FY,FZ,

N KEQNS,MEQNS ,NLOAD , INTER, NGAUS1,NGAUS2, TITLE)-""

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 NU ,

INTEGER DOF,BCX,BCY,BCZ,ELID,GAUS1,GAUS2

CHARACTER*80 TITLE

CHARACTER*6 TYPE(200) )

DIMENSION BCX(KEQNS),BCY(KEQNS),BCZ(KEQNS) ,NID(KEQNS),X(KEQNS)

DIMENSION Y(KEQNS) ,Z(KEONS) ,ELID(MEQNS),N1(MEQNS) ,N2(MEQNS)

DIMENSION. N3 (MEQNS) , 4 (MEQNS) ,N6 (MEQNS) , N6 (MEGNS) , N7 (MEQNS)

}
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DIMENSION N8(MEQNS),FX(100),FY(100),FZ(100), NODFOR(100)
DIMENSION E(MEQNS),NU(MEQNS) , NTYPE(MEQNS)
PRINT 100,TITLE :
100 FORMAT(’1',A80)
PRINT 110
110 FORMAT('- 3-D STRESS ANALYSIS - DATA ECHO')
- PRINT 120,N . P -
120 FORMAT('- NUMBER OF NODES',T34,':',14)
PRINT 130,DOF
130 FORMAT(’- TOTAL NUMBER OF D.0.F.’,T34,":',I4) .
NRES=0 .
D0 160 I=1,N
NRES=NRES+BCX(I)+BCY (I)+BCZ(I) ]
160 CONTINUE
PRINT 180,NRES
" 180 FORMAT('- NUMBER OF RESTRAINED D.0.F.’,T34,':*,I4)
PRINT 200,DOF - NRES .
200 FORMAT(’- NUMBER OF UNRESTRAINED D.0.F.',T34,':',I14)
NEL4=0
NEL6=0
NEL6=0
NEL12=0
DO 220 I=1,NEL
‘IF(NTYPE(I) .EQ. 4) THEN
NEL4=NEL4+1 ’
TYPE(I)=" TETRA’
ELSE R
I/F(NTYPE(I) .EQ." ) THEN
7 NELG=sNELB+1 ..
TYPE(I)="PENTA® -,
ELSE
IF (NTYPE(I) .EQ. ‘6) THEN
NEL6=NEL6+1 i
_TYPE(I)=' HEXA'
ELSE ,
NELi2=NEL12+1 -
TYPE(I)="INTER’
END IF .
END IF :
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END IF
220 CONTINUE
PRINT 240,NEL4

240 FORMAT('®~- NUMBER OF TETRA ELEMENTS',T34,':',I4)
¢ PRINT 260, NELS
260 FORMAT('- NUMBER OF PENTA ELEMENTS', T34, ':',I4)

PRINT 280, NEL6
280 FORMAT(®- NUMBER OF HEXA ELENENTS ,T34,':',14)
PRINT 300,NEL12 -~ _
300 FORMAT(’- NUMBERL/ OF INTERFACE ELEMENTS®,T34,':',I4)
‘ PRINT 320,NGAUS1,NGAUS1
‘ 320 FORMAT(’- HEXA INTEGRATION ORDER’,T34,':’,I2," BY',I2)
; PRINT 340,NGAUS2,NGAUS2
' 340 FORMAT('- INTER INTEGRATION ORDER’,T34,':',I2," BY', I2)
PRINT 400,
<400 FORMAT('1 NODE COORDINATES')
PRINT 420 - ‘ )
- 420 FORMAT(’- NODE',T15,'X’,T26,'Y',T35,'Z’',T42,'X-BC*,T62, 'Y-BC',
+ T62,'Z-BC"’)
PRINT 440, (NID(I) ,X(I),Y(I),Z(I) ,BCX(I),.BCY(I),BCZ(I),I=1,N)
440 FORMAT('-',I3,T10,F7.1,T20,F7.1,T30,F7.1,T42,13,T62,13,T62,13)

~ PRINT 460
460 FORMAT(’1 ELEMENT INCIDENCES')
‘ PRINT 480 . .
) 480 FORMAT('- ELEMENT',Ti2, TYPE',T17,'NODE-1°,T24, *NODE-2°,T31,
+ *NODE-3' , T38, 'NODE-4',T46 , 'NODE-6" ,T62, ' NODE-8* , T69,
: + *NODE-7' , T66, 'NODE-8',178, 'E’,T88, 'NU’)
PRINT 6500, (ELID(I),TYPECI),N1(I) ,N2(I),N3(I),N4(I) ,N6(I) ,N6(I),
+ ' N7(I),N8(I),E(I),NU(I),I=1,NEL)
500 FORMAT(.-',T4,I3,T11,A5,T19,13,T26,13,T33,13,T40,13,T47, I3,
+ ' TB4,13,T61,13,T68,13,T74,E10.3,T87,F4.2)
PRINT 620 ' \
520 FORMAT('1 APPLIED LOADS') \
) IF(NLOAD .NE. 0) THEN
PRINT 540 .
. 640  FORMAT('- NODE®,T13,'X-FORCE’,T28,’Y-FORCE',T43,'Z-FORCE")

PRINT 660, (NODFOR(I) FX(I),FY(I),FZ(I),I=1,NLOAD)
660  FORMAT('-',14,T11,E10.3,T26,E10.3,T41,E10.3)
ELSE .

-

192

N




b80

PRINT 580
FQRMAT('- NO CONCENTRATED LOADS APPLIED')
END IF

RETURN
END

SUBROUTINE STIFF(ELID,ELIDB,NTYPE, KGLOB, LEQNS MM, NGAUSS ,KEL)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 KEL (MM,MM) ,KELA(27,27) ,KELB(27,27)

REAL*8 KELARA(27,36) ,KELBRB(27,36) ,KEL1(36,36),KEL2(386, 36)
REAL*8 KGLOB(LEQNS,LEQNS) ,NU

INTEGER ELID,ELIDB

DIMENSION Q(3,36) ,RA(27,36) RB(27 36) ,RAT(36,27) ,RBT(36,27)

VDIME)!SION NOD(12) ,NGLOB(36) ,B(6,12)

cm@mn/cmm/x(zoo) Y(200) ,Z(200)", E(200) ,NU(200)
COMMON/GLDB2/N1(200) ,N2(200) ,N3(200), N4(200) ,N6(200) ,N8(200) ,

+ N7(200) ,N8(200) _— o

100

3

IF(NTYPE .EQ., 4) THEN
CALL TETRA(ELID,B KEL)
NNTYPE=4
ELSE ) )
IF(NTYPE .EQ. 6) THEN
CALL PENTA(ELID,KEL)
NNTYPE=6 : -
ELSE
IF(NTYPE .EQ. 6) THEN
CALL HEXA(ELID,NTYPE,KEL,NGAUSS,24)

NNTYPE=8
ELSE »

CALL REL(ELID,ELIDB,Q)

CALL HEXA(ELID,NTYPE,KELA,NGAUSS,27) \

CALL HEXA(ELIDB,NTYPE ,KELB,NGAUSS,27)’

DO 100 LI=1,24
DO 100 LJ=1,386
RA(LI,LJ)=0.DO
RB(LI,LJ)=0.DO
CONTINUE
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RA(1,4)=1.DO
RA(2.6)=1.DO
RA(3,8)=1.D0
RA(4,22)=1.DO
RA(5,23)=1.DO
RA(8,24)=1.DO
RA(7.31)=1.DO
RA(8.32)=1.DO
RA(9.33)=1.DO
RA(10,13)=1.DO
RA(11,14)=1.DO
RA(12,15)=1.D0O
RA(13,1)=1.DO
RA(14,2)=1.DO
RA(165,3)=1.DO
RA(16,19)=1.DO
RA(17,20)=1.DO
RA(18,21)=1.DO
RA(19,34)=1.D0"
RA(20,35)=1.DO
RA(21,36)=1.DO
RA(22,16)=1.DO
RA(23,17)=1.DO
RA(24,18)=1.DO

_RB(1,22)=1.DO

RB(2,23)=17D0O
RB(3,24)=1.DO
RB(4,4)=1.D0
RB(5,5)=1.D0
RB(8,8)=1.D0
RB(7,13)=1.DO
RB(8,14)=1.D0
RB(9,16)=1.D0
RB(10,31)=1.DO
RB(11,32)=1.DO0 «
RB(12,33)=1.DO
RB(13,26)=1.D0O
RB(14,26)=1.DO
RB(16,27)=1.DO

~/
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120

140

180

o RB(16,7)=1.00

RB(17,8)=1.D0
RB(18,9)=1.D0
RB(19,10)=1.D0
RB(20,11)=1.DO
RB(21,12)=1,DO
RB(22,28)=1.D0
RB(23,29)=1.D0
RB(24,30)=1.DO
DOY120 K=25,27
DO 120 Le1,38
MMM=K-24
RA(K,L)=Q(MMM,L)
RB(K,L)=Q(MMM,L)
CONTINUE
DO 140 Mi=1,27
DO 140 M2=1,36

RAT(MZ,M1)=RA(M1 ,M2)
RBT (M2,M1)=RB(M1 ,M2)

CONTINUE

CALL MATMAT(27,27,36,KELA,RA,KELARA)
g}u,, MATMAT(36,27,368,RAT,KELARA ,KEL1)
LL MATMAT(27,27,36,KELB,RB,KELBRB)
CALL MATMAT(36,27,38,RBT,KELBRB, KEL2)

DO 160 Ki=1,36
N
DO 160 K2=1,36

CONTINUE
END IF
END IF

END IF
IF(NTYPE .EQ., 9) THEN

NOD(1)=N6(ELID)
NOD(2)=N1(ELID)
NOD(3)=N6(ELIDH)® )
NOD(4)=N7 (EL]DB) o
NOD(5)=N3(ELIDB)
NOD(8)=N8(ELID)
NOD(7)=N6(ELID)

o

i

}

KEL(K1,K2)=KEL1(K1,K2) + KEL2(K1,K2)




NOD(8) =N2(ELID)
NOD(9) =N6 (ELIDB)
» NOD(10)=N8(ELIDB)
. ‘ NOD(11)=N4(ELIDB) .
NOD(12)=N7(ELID) ‘ ¥
NNTYPE=12
ELSE
NOD(1)=N1(ELID)
NOD(2)=N2(ELID)
' NOD(3) =N3(ELID) S
NOD(4) =N4 (ELID)
IF(NTYPE .GT. 4)THEN
NOD (5)=N6 (ELID) -
NOD (8)=N8 (ELID) — ,
IF(NTYPE .EQ. 6)THEN
NOD(7)=N7 (ELID) ]
NOD(8) =N8 (ELID) -
END IF °
END IF \
END IF )
DO 200 I=1,NNTYPE
J=3%I-2
: K=3%I-1
* L=3%1
" NGLDOB(J)=3*NOD(I)-2
NGLOB (K)=3%NOD(I)-1
NGLOB (L)=3%NOD(I) -
200 CONTINUE ‘
DO 500 I=1,MM
' DO 500 I=1,MM
KGLOB(NGLOB(I),NGLOB(J))=KGLOB(NGLOB(I) ,NGLOB(J))+KEL(I,J)

28

500 CONTINUE ,
c
RETURN -
END o
- c
C S

SUBROUTINE TETRA(CELID,B,KEL)
IMPLICIT REAL*8(A-H,0-Z)
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INTEGER ELID
REAL*8 NU,KEL,JACOB
DIMENSION KEL(12,12),B(6,12),EM(6,68),JACOB(3,3)
DIMENSION GAMMA(3,3),BT(12,6),BTE(12,6)
COMMON/GLOB1/X (200) ,Y(200),Z(200) ,E(200) ,NU(200) )
COMMON/ GLOB2/N1(200) ,N2(200) ,N3(200) ,N4(200) ,N5(200) ,
+ ~ Ne(200),N7(200),88(200)
JACOB(1,1)=X(N1(ELID)) -X(N4(ELID)) o
JACOB(1,2)=Y(N1 (ELID)) -Y(N4(ELID))
JACOB(1.3)=Z(N1(ELID)) -Z(N4(ELID))
~ JACOB(2,1)=X(N2(ELID)) -X(N4(ELID))
JACOB(2, 2)=Y(N2(ELID)) -Y(N4(ELID))
JACOB(2, 3)=Z(N2(ELID)) -Z(N4(ELID))
JACOB(3, 1)=-X(N3 (ELID) ) +X(N4(ELID))
JACOB(3, 2)=-Y(N3(ELID))+Y(N4(ELID))
JACOB(3, 3)=-Z(N3(ELID) ) +Z(N4(ELID))
DETJAC=JACOB(1,1)*(JACOB(2,2)*JACOB(3,3)+~JACOB(2,3)*JACOB(3,2))-

+ JACOB(2,1)*(JACOB(1,2)*JACOB(3,3)-JACOB(1,3)*JACOB(3,2) )+
+ JACOB(3,1)*(JACOB(1,2)*JACOB(2,3)-JACOB(1,3)*JACOB(2,2))
IF(DETJAC .EQ. O)THEN )
PRINT 20 -

20 FORMAT('1',2X, '*#%% FATAL ERROR #*%*")
PRINT 2b,ELID
26  FORMAT('-',2X, "JACOBIAN MATRIX FOR ELEMENT NO. : ’,1Ib,

+ * IS ZERO') 0 .
PRINT 30
30 FORMAT('-',2X, 'POSSIBLE CAUSE : BAD NODAL NUMBERS',
+ * OR BAD NODAL CODRDINATES')
PRINT 31
31  FORMAT('1')
STOP
END IF
IF(DETJAC .LT. 1.D-5)THEN
PRINT 36

35  FORMAT("1°,2X, "*#% FATAL ERROR *¥x')_
PRINT 40,ELID
40  FORMAT('-',2X, *JACOBIAN MATRIX FOR ELEMENT NO..:*,IS,
+ * IS NEGATIVE®)
PRINT 45 : ~
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45

50

51

+ ' WHEN VIEWED FROM NODE 4°)

FORMAT(' -*,2X, "POSSIBLE CAUSE : CLOCKWISE NUMBERING',

+ * OF NODES')

PRINT 60O
FORMAT(®-",2X, 'NODES 1-2-3 SHOULD BE COUNTERCLOCKWISE'®, i

PRINT b1 0
FORMAT('1") '
STOP

- END IF

100

120

GAMMA(1,1)=(JACOB(2,2)*JACOB(3,3) - JACOB(2,3)#JACOB(3,2) ) /DETJAC
GAMMA (1 2) = (JACOB (1,3)*JACOB(3,2) -JACOB(1 ,2) *JACOB(3,3) ) /DETJAC
GAMMA(1,3)=(JACOB(1,2)*JACOB(2,3) - JACOB(1 ,3)*JACOB(2,2) ) /DETIAC
GAMMA(2,1) =(JACOB(2,3)*JACOB(3,1) - JACOB(2, 1) *JACOB(3,2) ) /DETJAC
GAMMA(2,2) =(JACOB(1,1)*JACOB(3,3) - JACOB(1,3)*JACOB(3,1)) /DETJAC
GAMMA (2,3)=(JACOB(1,3)*JACOB(2,1) -JACOB(1,1)*JACOB(2,3)) /DETJAC
GAMMA(3,1)=(JACOB(2,1)*JACOB(3,2) - JACOB(2,2)*JACOB(3,1)) /DETIAC
GAMMA(3,2) =(JACOB(1,2)*JACOB(3,1) - JACOB(1,1)*JACOB(3.2)) /DETIAC
GAMMA(3,3)=(JACOB(1,1)*JACOB(2,2) - JACOB(1 , 2)*JACOB(2,1) ) /DETJAC
DO 100 I=1,6 ® ) ,

DO 100 J=1,12 - :

B(I,J)=0.DO

CONTINUE
DO 120 I=1,2

I1J=3%I-2

IK=3%I-1 . ' v

IL=3%I

B(1,1J)=GAMMA(1,TI)

B(2,IK)=GAMMA(2,I)

B€3,IL)=GAMMA(3,T)

B(4,1J)=B(2,IK) ) A

B(4,IK)=B(1,1J)

B(5,IK)=B(3,IL)

B(5,IL)=B(2,IK)

B(8,1J)=B(3,IL) - / s ,

B(8,IL)=B(1,1J) ¥ .
CONTINUE - /
B(1,7)=-GAMMA(1,3) ' ' '
B(2,8)=-GAMMA(2,3) ¢
B(3,9)=-GAMMA(3,3)
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B(4,7)=-GAMMA(2,3)

B(4,8)=-GAMMA(1,3)

B(6,8)=-GAMMA(3,3)

B(6,9)=-GAMMA(2,3) . .
B(6,7)=-GAMMA (3;3) -
B(6,0)=-GAMMA(1,3)

B(1,10)=-GAMMA(1,1) -GAMMA(1,2)+GAMMA(1,3) &
B(27 11)=-GAMMA(2,1) -GAMMA (2, 2) +GAMMA (2,3)
B(3,12)=-GAMMA(3,1) -GAMMA (3, 2) +GAMMA (3,3)

" B(4,10)=B(2,11) >

140

B(4,11)=B(1,10)
B(5,11)=B(3,12)
B(6,12)=B(2,11)
B(68,10)=B(3,12)
B(8,12)=B(1,10)
DO 140 I=1,12
DO 140 J=1,6
BT(I,J)=B(J,I)
CONTINUE v
CALL YOUNG(EM,E(ELID) ,NU(ELID))
CALL MATMAT(12,6,6,BT,EM,BTE)
CALL MATMAT(12,6,12,BTE,B,KEL)
DO 180 I=1,12 -
DO 160 J=1,12
gg;(l.J)-XEL(I.J)*DETJAC/O.DO
CONTIN ,

RETURN
END

SUBROUTINE SHAPEF(XI,ET,ZET,B,ELID,NTYPE,DETJAC)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 JACOB(3,3),NU

DIMENSION RXI(9),RET(8) ,RZET(9),XX(9),YY(9),ZZ(9)
DIMENSION RC(9),RD(9) ,RE(9)

DIMENSION B(6,27) ,EM(6,6) ,ENXI(9) ,ENET(9) ,ENZET(9)
INTEGER ELID

COMMON/Q8/EN (9) ,GAMMA (3,3)
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COMMON/GLOB1/X (200) , Y(200) , Z(20Q) ,E(200) , NU(200)
COMMON/GLOB2/N1(200) ,H2(200) ,N3(200) ,N4(200) , N6(200) ,N6(200)
+ N7 (200) ,N8(200) )
DA%A RXI/-1.DO,-1.D0,-1.D0,-1.D0,1.D0,1.D0,1.D0,1.D0,-1.D0/
DATA RET/-1.D0O,-1.D0,1.D0,1.D0,-1.D0,-1.D0,1.D0,1.D0,~1.D0/
DATA RZET/-1.D0,1.D0,1.D0,-1.D0,-1.D0,1.D0,1.D0,-1.D0,-1.D0/
DATA RC/1.D0,1.D051.D0,1.D0,0.D0,0.D0,0.D0,0.D0,0.D0/
DATA RD/0.D0,0.D0,0.D0,0.D0,1.D0,1.D0,1.D0,1.D0,0.D0/
o DATA RE/0.D0,0.D0,0.D0,0.D0,0.D00,0.D0,0.D0,0.D0,4.D0/
IF(NTYPE .EQ. 6) THEN
NORDER=8 )
R ELSE
NORDER=9
END IF -
IF(NTYPE .EQ. B)THEN
NORDER=6
FF1=1.-XI-ET
FF2=1.-ZET
FF3=1.+2ZET
- ENXI(1)=-FF2/2.
ENXI(2)=FF2/2.
ENXTX3)=0.DO
ENXI(4)=-FF3/2.
ENXI(6)=FF3/2."
ENXI (8)=0.DO
ENET (1)=-FF2/2.
ENET(2)=0.DO
ENET (3)=FF2/2.
ENET (4)=-FF3/2.
ENET (5)=0.DO
ENET (6)=FF3/2.
ENZET(1)=-FF1/2.
ENZET(2)=-XI/2.
ENZET(3)=-ET/2.
ENZET(4)=FF1/2. v
* - ENZET(6)=XI/2.
ENZET(6)=ET/2.
ELSE ,
DO 40 I=1,NORDER

S
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Fi=1. + RXI(I)*XI

F2=1. + RET(I)*ET

-F3=1., + RZET(I)*ZET

F4=RET (I)*ET+RZET(I)*ZET- RET(I)*RZET(I)*ET*ZET

F6=(1.+ET)*(1.+ZET)

F6=1. + 2, *RET(I)*ET-2.*RET (I)*RZET (I)*ET*ZET

F7=ET*(1.+ZET)

F8=1. + 2.*RZET(I)*ZET-2. *RET(I)*RZET(I)*ET*ZET

FO=ZET*(1.+4ET)

IF(NTYPE .EQ. 6) THEN
EN(I)=F1%F2%F3/8.

ENXI(I)=RXI(I)*F2%F3/8.
ENET(I)=RET(I)*F1*F3/8.
ENZET(I)=RZET(I)*F1*F2/8.

ELSE > . 2]
EN(I)=F1xF2*F3*(RC(I)*F4+RD(I)+RE(I)*F5)/8.
ENXI(I)=RXI(I)*F2+F3*(RC(I)*F4+RD(I)+RE(I)*F5)/8.
ENET(I)-RET(I)*FI*F3*(RC(I)*F6+RD(I)+2 *RE(I)*F7)/8.
ENZET(I)=RZET(I)*F1%F2*(RC(I)*F8+RD(I)+2. *RE(I)*FQ)/&,

END IF

40  CONTINUE )
END IF g
NSIZE=3%*NORDER
DO 60 I=1,6 !
DO 60 J=1,NSIZE
B(I,J)=0.D0
60 CONTINUE
., DO 80 I=1,3 .
DO 80 J=1,3 \ - _
JACOB(I,J)=0. Do
80 CONTINUE
XX (1)=X(N1(ELID)) -
XX (2)=X(N2(ELID))
XX (3)=X(N3(ELID))
XX (4)=X(N4 (ELID))
XX(6)=X (N5 (ELID))
XX'(6)=X(N6 (ELID))
YY(1)=Y(N1(ELID))
YY(2)=Y(N2(ELID))
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YY (3)=Y(N3(ELID))
YY(4)=Y(N4(ERID))
YY(5)=Y(N6(ELID))
YY (8)=Y(N6 (ELID))
2Z(1)=Z(N1(ELID))
ZZ(2)=Z(N2(ELID))
'ZZ{3)=Z(N3(ELID))
2Z(4)=2(N4(ELID))
22 (5)=2(N5(ELID))
22(8)=2(N6 (ELID))

IF(NTYPE .GT. B)THEN

XX(7)=X (N7 (ELID))
XX(8)=X(N8(ELID))
YY(7)=Y(N7(ELID))

YY(8)=Y(N8(ELID)) .

ZZ(7)=Z(N7(ELID))
22(8)=Z (N8 (ELID))

XX(9)= (XX (1)+XX(2)+XX(3)+XX(4)) /4.
YY(Q)=(YY(1)+YY(2)+YY(3)+YY(4)) /4.
ZZ(9)=(ZZ(1)+2Z(2)+2ZZ(3)+ZZ(4)) /4.

END IF

DO 100 I=1,NORDER

JACOB(1,1)=JACOB(1,1) +
JACOB(1,2)=JACOB(1,2)4+

JACOB(1,3)=JACOBY(1,3)
JACOB(2,1)=JACOB(2,1)
JACOB(2,2)=JACOB(2,2)
JACOB(2,3)=JACOB(2,3)
JACOB(3,1)=JACOB(3,1)
JACOB(3,2)=JACOB(3,2)
JACOB(3,3)=JACOB(3,3)
100 CONTINUE )
DETJAC=JACOB(1,1)*(JACOB(2,2)*JACQB(3,3)-JACOB(2,3)*JACOB(3,2))~
+ JAcoB(z,1)*(JACOB(R,2)*JACDB(3,3)-JACUB(1.3)*JACOB(3,2))+
+ JACOB(3,1)*(JACOB(1,2)*JACOB(2,3)~JACOB(1,3)*JACOB(2,2))
GAMMA (1,1)=(JACOB(2,2)*JACOBL3,3) - JACOB(2,3)*JACOB(3,2)) /DETJAC
GAMMA (1,2)=(JACOB(1,3)*JACOB(3,2)-JACOB(1,2)*JACOB(3,3))/DETIAC
GAMMA(1,3)=(JACOB(1,2)*JACOB(2,3) -JACOB(1,3)*JACOB(2,2))/DETJAC
GAMMA (2,1)=(JACOB(2,3)*JACOB(3,1) -JACOB(2,1)*JACOB(3,3))/DETJAC

+ + 4+ + + 4+ o+

ENXI(I)*XX(I)
ENXI(I)*YY(I)
ENXI(I)*ZZ(I)
ENET(I)*XX(I)
ENET(I)*YY(I)
ENET(1)*ZZ(I)
ENZET (I)*XX(I)
ENZET(I)*YY(I)
ENZET(I)*ZZ(I)
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GAMMA (2,2)=(JACOB(1,1)*JACOB(3,3)-JACOB(1,3)*JACOB(3,1))/DETJAC
GAMMA (2,3)=(JACOB(1,3)*JACOB(2,1)-JACOB(1,1)*JACOB(2,3))/DETJIAC
GAMMA (3,1)=(JACOB(2,1)*JACOB(3,2)-JACOB(2,2)*JACOB(3,1))/DETJAC
cAMMA(s.z)p(JAcos(l.2)*JAcoB(3.1)-;ACOB(1,1)*JAcqs(3.2))/DETJﬁc
GAMMA (3,3)=(JACOB(1,1)*JACOB(2,2)-JACOB(1,2)*JACOB(2,1)) /DETJAC
DO 200 I=1,NORDER
J=3xI
K=3%1-1
L=3%1-2 .
B(1,L)=GAMMA(1,1)*ENXI(¥)+GAMMA(1,2)*ENET(I)+
+ GAMMA(1,3)*ENZET(I)
B(1,K)=0.D0
B(1,J)=0.D0
B(2,L)=0.DO
B(2,K)=GAMMA(2,1)*ENXI (I)+GAMMA (2,2)*ENET(I)+
+ GAMMA(2,3)*ENZET(I)
B(2,J)=0.D0
B(3,L)=0.D0 g ,
B(3,K)=0.DO -
B(3,J)=GAMMA(3,1)*ENXI (I)+GAMMA(3,2)*ENET(I)+
+ GAMMA (3,3)*ENZET(I) '
B(4,L)=B(2,K)
B(4,K)=B(1,L)
B(4,J)=0.D0 .
- B(5,L)=0.D0
B(6,K)=B(3,J)
.- B(8,1)=B(2,K)
B(6,L)=B(3,J)
B(6,K)=0.DO
B(6,J)=B(1,L)
200 CONTINUE

RETURN
END

SUBROUTINE PENTA(NELEM,KEL) *
IMPLICIT REAL#8 (A-H,D-Z) )
REAL*8 NU,KEL(18,18)
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DIMENSION PLACE1(4,3),B(6,18),BTE(18,8)
DIMENSION EM(6,6),PLACE2(2,2)

_COMMON/GLDBl/X(ZOO).Y(200).Z(200),E(200).NU(2OQ)

PLACE1(1,1)=1.D0/3.D0
PLACE1(1,2)=PLACE1(1,1)
PLACE1(1,3)=-9.D0/32.D0
PLACE1(2,1)=3.D0/5.D0
PLACE1(2,2)=1.D0/6.D0
PLACE1(2,3)=256.D0/96.D0
PLACE1(3,1)=PLACE1(2,2)
PLACE1(3,2)=PLACE1(2,1)
PLACE1(3,3)=PLACE1(2,3)
PLACE1(4,1)=PLACE1(2,2)
PLACE1(4,2)=PLACE1(2,2)
PLACE1(4,3)=PLACE1(2,3)
PLACE2(1,1)=1.D0/DSQRT(3.D0O)
PLACE2(1,2)=1.D0
PLACE2(2,1)=-PLACE2(1,1)
PLACE2(2,2)=1.D0
CALL YOUNG(EM,E(NELEM),NU(NELEM)) _
NSIZE=18 -
NORDER=6
DO 40 I=1,NSIZE

DO 40 J=1,NSIZE

KEL(I, J)=0.DO

CONTINUE
DO 200 NA=1,4

XI=PLACE1(NA,1) » -

ET=PLACE1(NA,2)
DO 180 NB=1,2
ZET=PLACE2(NB, 1)
CALL SHAPEF(XI,ET,ZET,B,NELEM,5,DETJAC)
DV=PLACE1(NA, 3) *PLACE2(NB, 2) *DETJAC
DO 100 J=1,NORDER

K=3%J-2 '
L=3%J-1
M=3%J
DO 80 I=1,3
BTE(K,I)=B(1,K)*EM(1,I)
SRS ]y
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80

100

110

120
140
180
200

220

‘BTE(L,I)=B(2,L)*EM(2,I)
BTE(M,I)=B(3,M)*M(3,1)
CONTINUE
BTE(K,5)=0.D0
®  BTE(L,8)=0.DO
BTE(M, 4)=0.D0
BTE(K,4)=B(4,K)*EM(4,4)
BTE(K,8)=B(6,K)*EM(8,8) .
BTE(L,4)=B(4,L)*EM(4,4)
BTE(L,6)=B(6,L)*EM(b,6)
- BTE(M,5)=B(6,M)*EM(6,6)
BTE(M, 6)=B(6,M)*EM(6,6)
CONTINUE -
DO 140 NROW=1,NSIZE °
v DO 120 NCOL=NROW,NSIZE
DUM=0.D0 _
DO 110 JR=1,6
DUM=DUM+BTE(NROW, JR) *B(JR,NCOL)
CONTINUE
KEL (NROW,NCOL) =KEL (NROW, NCOL) +DUM*DV
CONTINUE :
CONTINUE o
CONTINUE
CONTINUE
DO 220 K=1,NSIZE
DO 220 L=K,NSIZE
KEL(L,K) =KEL(K,L) -
CONTINUE

4]

RETURN ~

‘END

SUBROUTINE HEXK (NELEM,NTYPE,KEL ,NGAUSS,NM)
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 NU,KEL(NM,NM)

DIMENSION PLACE(4,4),WGT(4,4),B(6,27),BTE(27,6)
DIMENSION EM(6,8),B™27,6) '
COMMON/Q8/EN(9) , GAMMA(3,3)
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40

COMMON/GLOB1/X(200) ,Y(200) ,Z(200) ,E(200) ,NU(200)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CALL

IF(NTYPE .EQ. 6) THEN

PLACE(1,1) ,PLACE(2,1) ,PLACE(3,1) ,PLACE(4,1)/4%0.D0/
PLACE(3,2) ,PLACE(4,2) ,PLACE(2,3) ,PLACE(4,3)/4%0.D0/
PLACE(1,2)/-0.6773502691806626D0/ -
PLACE(2,2)/0.5773502691890626D0/
PLACE(1,3)/-0.774596669241483D0/
PLACE(3,3)/0.77456066689241483D0/
PLACE(1,4)/-0.861136311694063D0/
PLACE(2,4)/-0.330981043584856D0/
PLACE(3,4)/0.339981043584866D0/ -
PLACE(4,4)/0.8611363116594063D0/
WGT(1,1)/2.DO/.WGT(1.2).WGT(2.2)/2*1.5£/

WGT(2,1) ,WGT(3,1)4WGT(4,1) ,WGT(3,2)/4%0.D0/
WGT(4,2).WGT(4);6¢2*0.D0/.WGT(2.3)/0.888888888888889D0/
WGT(1,3) ,WGT(3%3)/2+0.566666666666668D0/

WGT(1,4) ,WGT(4,4)/2%0.34785648451374564D0/ '

WGT(2,4) ,WGT(3,4)/2%0.662146164862546D0/

YOUNG (EM,E(NELEM) , NU{NELEM))

NSIZE=24
NORDER=8

ELSE

NSIZE=27 =,

NORDER=9 >
END IF
DO 40 I=1 ,NSIZE

DO 40 J=1,NSIZE

KEL (X, J)=0.DO

CONTINUE

DO 200 NA=1,NGAUSS
XI=PLACE(NA,NGAUSS)
DO 180 NB=1,NGAUSS

K}

ET=PLACE(NB,NGAUSS)
DO 160 NC=1,NGAUSS
ZET=PLACE(NC,NGAUSS)
CALL SHAPEF(XI,ET,ZET,B,NELEM,NTYPE,DETJAC) )
DV=WGT(NA,NGAUSS) *WGT (NB, NGAUSS) *WGT(NC, NGAUSS) *DETJAC
DO 60 I=1,6
DO 60 J=1,NSIZE
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’ BT(J,I)=B(I,J)
60 CONTINUE o -
DO 100 J=1 ,NORDER °
K=3%J - 2 )
L=3%J - 1
M=3x] ) s
DO 80 I=1,3 )
. BTECK,I)=B(1,K)+*EM(1,1)
~ BTE(L,I)=B(2,L)+EM(2,I)
BTE(M, I)=B(3,M)+EM(3, 1)
80 CONTINUE ) .

BTE(K,5) =0.D0
BTE(L,8) =0.D0
_BTE(M,4)=0.D0
BTE(K,4) =B(4,K)*EM(4,4)
o °  BTE(K,8)=B(6,K)*EM(6.8) -
BTE(L,4)=B(4,L)*EM(4,4)
BTE(L,6)=B(5,L)*EM(6,6)- | .
BTE(M,b) =B(5,M) *EM(5,5) ‘

BTE(M,8) =B(6,M)*EM(6,6)
100 CONTINUE
DO "140 NROW=1,NSIZE 4 °
DO 120 NCOL=NROW, NSIZE
. DUM=0. DO L
DO 110 J=1,6 "
°  DUM=DUM+BTE (NROW, J)*B(J,NCOL)
110 © 'CONTINUE ‘
. - “ KEL(NROW,NCOL) =KEL(NROW,NCOL) + DUM+DY
120 CONTINUE S
140 CONT INUE g
160 CONTINUE
180 . CONTINUE
200 CONTINUE

D0 220 K=1,NSIZE
DO 220 L=K,NSIZE
KEL(L,K)=KEL(K,L) s
220 CONTINUE - ¢

RETURN . .
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SUBROUTINE REL(NELEM1,NELEM2,Q)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 NU

DIMENSION TRAN1(3,6), mmz(s 6).BA(6,27) ,BB{(S, 27)

DIMENSION EA(6,6),EB(6,8),PROD1(8,27)

DIMENSION QA(3,27),QB(3,27),Q1(3,3),Q2(3,36),Q(338),
COMMON/GLOB1/X(200) , Y (200) , Z(200) , E(200) ,NU(200)
COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) ,N4(200) ,N5(200) ,N6(200) ,

+ N7(200) ,N8(200)

CALL TRANSF (NELEM1,X(N1(NELEM1)), x(Nz(NELEm)) X(N3(NELEM1)),

+ ., X(N4(NELEM1)),Y(N1(NELEM1)),Y(N2(NELEM1)), Wak
Y(N3(NELEM1)),Y(N4(NELEM1)),Z(N1(NELEM1)),

+ . Z(N2(NELEM1)),Z (N3(NELEM1)),Z (N4 (NELEM1)) ,TRAN1,3,6)

XI=-1.DO

ET=0.DO

ZET=0.DO

CALL SHAPEF(XI,ET,ZET.BA,NELEM1,12,DETJAC)

PRINT 26,BA(2,8),BA(3,9),BA(4,10),BA(4,17) ,BA(6,11)
CALL YOUNG(EA,E(NELEM1) NU(NELEM1))

CALL SHAPEF(XI,ET,ZET,BB,NELEM2,12,DETJAC)

PRINT 26,BB(2,8),BB(3,9),BB(4,10),BB(4,17) ,BB(6,11)
FORMAT('-',2X,6(E10.3))

CALL YOUNG(EB,E(NELEM2P NU(NELEM2)) “
CALL MATMAT(6,6,27,EA,BA,PROD1) '
CALL MATMAT(3,6,27,TRAN1,PROD1,QA)

CALL MATMAT(6,.6,27,EB,BB,PROD1)

?

CALL MATMAT(3,6,27, TRAN1,PROD1,QB) ¥

A1i=QB(1,26) -QA(1,26) \ g T
‘A12=QB (1,26) -QA(1,26) ,

A13=QB(1,27) -QA(1,27) o !

-k71=QB(2,25)-QA(2,25)

A22=QB(2,26) -QA(2,26)

A23=QB(2,27) -QA(2,27)

A31=QB(3,26) -QA(3,26)

A32=QB(3,26)-QA(3,268)

A33=QB(3,27)-QA(3,27) o v
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PRINT 19

DETA=A11%(A22%A33-A23%A32)-A21%(A12%A33-A13%A32)+A31*(A12%xA23-

+

N ' S ooQi(1,1)=
- q1(1,2)=

Q1(1,3)=

4

A13%A22)
(A22%A33-A32%A23)/DETA
(A32%A13-A12%A33)/DETA
(A12%A23-A22%A13) /DETA

Q1(2, 1)¥EKI3*A31-A33%xA21)/DETA

Q1(2,2)=

Q1(2,.3)=

° Qi(3,1)=
Q1(3,2)=
Qi(3,3)=
DO 100 I=1,3

Q2(I1,

i Q2(1,
Q2(1,

Q2(1,

Qa2(1,

Q2(1,

Q2(1,

Q2(I,

Q2(I,

Q2(I,

Q2(1,

o Q2(1,
Q2(I,

Q2(1,

Q2(1,

Q2(1,

Q2(1,

Q2(1,

Q2(1,

o Qa(1,
< Q2(x,
Q2(I,

Q2(I,

Qa(1,

Q2(I,

Q2(1,

(A33%A11-A13*A31) /DETA
(A13%xA21-A23*%A11) /DETA
(A21%A32-A31%A22) /DETA
(A31*%A12-A11%A32)/DETA
(A11%A22-A21%A12)/DETA
1)=QA(I,13)
2)=QA(I,14)
3)=QA(I,16)
4)=QA(I,1)-QB(I,4)
5)=QA(I,2)-QB(I,6)
6)=QA(I,3)-QB(I,6)
7)=-QB(I,18)
8)=-QB(I,17) .
9)=-QB(I,18)
10)=-QB(I,19)
11)=-QB(I,20)
12)=-QB(I,21)
13)=QA(I,10)-QB(I,7)
14)=QA(I,11)-QB(1,8)
15)=QA(I,12)-QB(1,9)
16)=QA(I,22)
17)=QA(1,23)
18)=QA(I,24)
19)=QA(I1,18)
20)=QA(I,17)
21)=QA(I,18)
22)=QA(I,4)-QB(I,1)
23)=QA(I,6)-QB(I,2)
24)=QA(I,8)-QB(I,3)
26)=-QB(I,13)
26)=-QB(I,14)
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o

Q2(1,27)=-QB(I,16)

Q2(I,28)=-QB(I,22)

Q2(I,29)=-QB(I,23) - : o
Q2(I,30)=-QB(I,24)
Q2(I,31)=QA(I.7)-QB(I, 10)
Q2(I.32)=QA(I.8)-QB(I,11)
Q2(I,33)=QA(I.0)-QB(I,12)
Q2(I,34)=QA(I,10) J .
Q2(I,35)=QA(I,20)

Q2(I,36)=QA(1,21)

”

100 CONTINUE
CALL MATMAT(3,3,36,Q1,Q2,Q) . \/j .
! by 9
RETURN . . . ‘
END

SUBROUTINE TRANSF(NELEM,X1,X2,X3,X4,Y1,Y2,Y3,Y4,71,22,23,24,
+ TRAN, NROW,NCOL) .

IMPLICIT REAL*8(A-H,0-2) e
DIMENSION TRAN(NROW,NCOL) e i
REAL*8 L1,L2,L3,M1,M2,M3,N1,N2,N3 -

XA=(X1+X2)/2. \

YA=(Y14Y2) /2. .
ZA=(21+22) /2.

XB=(X2+X3) /2.

YB=(Y2+Y3) /2.

ZB=(22+23) /2.

XC=(X3+X4) /2.

YC=(Y3+4Y4)-/2. )

ZC=(23+24) /2. :

XD=(X4+X1) /2. s

YD=(Y4+Y1) /2.

ZD=(Z4+21) /2.

RL2=DSQRT ( (XB-XD) *(XB-XD) + (YB- YD)*(YB -YD) +(ZB ZD)*(ZB zn))

L2=(XB-XD) /RL2

M2=(YB-YD) /RL2

N2=(ZB-2ZD) /RL2 -
"RL3=DSQRT( (XC-XA) *(XC-XA) + (YC-YA)*(YC-YA) +(ZC-ZA)*(ZC-ZA))

7
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Ls-(xc-x:;(nLa g

M3=(YC-YAY/RL3
N3=(ZC-ZA) /RL3
X=(YB-YD)*(ZC-ZA) - (YC-YA) * (ZB-ZD)
Y= (ZB-2ZD)* (XC-XA) - (2C-ZA) * (XB-XD)
Z= (XB-XD)* (YC-YA) -~ (XC-XA)*(YB-YD)
RL1=DSQRT(X*X + Y*Y + Z*Z)
Li=X/RL1
Mi=Y/RL1
N1=Z/RL1
TRAN(1,1)=L1%L1
TRAN(1,2)=M1*M1 °
TRAN(1,3)=N1*N1
TRAN(1,4Q=2.DO*L1*M1 °
TRAN(1,5)®2.DO*M1%N1
TRAN(1,8)=2,DO*N1*L1
IF (NROW .EQ. 3) THEN
TRAN(2,1)=L1%L2
TRAN(2,2) =M1%M2
TRAN(2,3) =N1%N2
TRAN(2,4)=L1sM2 + L2%M1
TRAN(2,5)=M1*N2 + M2*N1
TRAN(2,6)=N1xL2 + N2xL1
TRAN(3,1) =L3%L1
TRAN(3,2) =M3*M1
TRAN(3,3)=N3*N1
TRAN(3,4)=L3*M1 + L1#M3
TRAN(3,5)=M3*N1 + M1x*N3
TRAN(3,8)=N3«L1 + N1*L3
ELSE '
TRAN(2,1)=L2%L2
TRAN(2,2) =M2+M2
TRAN(2,3) =N2+N2
TRAN(2,4)=2.D0*L2*M2
TRAN(2,5)=2.D0*M2+*N2
TRAN(3,6)=2.DO*N2%L2
TRAN(3,1)=L3+L3 -
TRAN(3,2)=M3%M3
TRAN(S3,3) =N3+N3




S}

TRAN(3,4)=2.DO*L3+M3
TRAN(3,5)=2.DO*M3xN3
TRAN(3,6)=2 .D0O*N3%L3
TRAN(4,1)=L1%L2
TRAN(4,2)=M1xM2
TRAN(4,3)=N1xN2
TRAN(4,4)=L1*M2 + L2#M1 \
TRAN(4,5)=M1%N2 + M2*N1 :
TRAN(4,68)=N1*L2 + N2*L1 {
TRAN(5,1)=L2%L3

- TRAN(5,2)=M2+M3
TRAN(5,3)=N2*N3
TRAN(5,4)=L2%M3 + M2*L3
TRAN(5,5)=M2*N3 + M3*N2
TRAN(5,6)=N2*L3 + N3xL2
TRAN(6,1)=L3%L1
TRAN(8,2) =M3*M1
TRAN(6,3) =N34N1
TRAN(8,4)=L3%M1 + L1%M3
TRAN(8,6)=M3*N1 + M1%N3
TRAN(6,6)=N3*L1 + N1*L3

» END IF
° c
RETURN" — = »
. END
c N v
c

SUBROUTINE STETRA(ELID,XDISP,LEQNS)
. IMPLICIT REAL*8(A-H,0-Z)
INTEGER ELID
REAL*8 NU,KEL
. DIMENSION B(6,12),S(6),XDISP(LEQNS) , XLOC(12)
: - DIMENSION EM(6,6),PROD(6,12),KEL(12,12),NOD(4)
COMMON/GLOB1/X (200) , ¥(200) ,2(200) ,E(200) ,NU(200)
-~~~ COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) ,N4(200) ,N5(200),
> ;oo N6(200) ,N7(200) ,N8(200) “
NOD(1)=N1(ELID)
NOD(2) =N2(ELID)
NOD(3)=N3(ELID)
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o NOD(4) =N4(ELID)
DO 20 I=1,4
XLOC (3+I-2)=XDISP(3*NOD(I)-2)
XLOC (3*I-1)=XDISP(3*NOD(I)-1)
XLOC (3*I)=XDISP(3*NOD(I))

' 20 CONTINUE .
CALL YOUNG(EM,E(ELID),NU(ELID))
CALL TETRA(ELID,B,KEL)

CALL MATMAT(6,6,12,EM,B,PROD)
CALL MATVEC(6,12,PROD,XL0C,S,6,12)
PRINT 40,ELID

40 FORMAT('~- ELEMENT NO. : ',I4,2X,'TETRA’)
PRINT 6O .
650 FORMAT('-',T2,'NCDE',T9,'S 11',T20,'S 22',T31,'S 33',T42,'T XY',
+ T63,°'T Y2',T64,'T ZX*,176,°S I',T86, 'S II’
CALL PRINC(O,ELID,S)
C ' 1
RETURN o
END
c
c -

SUBROUTINE STRES(NELEM, XDISP,LEQNS,NTYPE)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 NU

DIMENSION XDISP(LEQNS) ,XI(8),ET(8),ZET(8),5(6)

DIMENSION NOD(8),XLOC(27),B(8,27) ,EM(6,6),XX(3), PROD(G 27

CHARACTER*6 TYPE
COMMON/GLOB1/X (200),Y(200) ,Z(200) ,E(200) ,NU(200)

COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) ,N4(200) ,N5(200) ,N6(200) ,

+ N7(200) ,N8(200)

DATA XI/-1.D0,-1.D0,-1.D0,-1.D0,1.D0,1.D0,1.D0,1.D0/
.Do/
DATA 2ET/-1.D0,1.D0,1.D0,-1.D0,-1.D0,1.D0,1.D0,-1.D0/

DATA ET/-1.D0,-1.D0,1.D0,1.D0,-1.D0,-1.D0,1.R0,1

IF(NTYPE .EQ. 5)THEN
NT=8
NTIME=6
TYPE='PENTA’

ELSE ° .
NT=8
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IF(NTYPE .EQ. 6) THEN
NTIME=8
TYPE=' HEXA’ '
° . ELSE
NTIME=0
TYPE='INTER®
END IF ‘ : . .
END IF o
PRINT 20,NELEM,TYPE * !

20 FORMAT('- ELEMENT NO. : *,I3,2X,AS5) ! 7
MSIZE=3*NTIME -
NSIZE=NTIME+1
CALL YOUNG(EM,E(NELEM) , NU(NELEM))

NOD(1)=N1(NELEM) 0
NOD(2) =N2(NELEM)
NOD(3) =N3(NELEM)
NOD(4) =N4 (NELEM)
NOD(5) =NG&(NELEM)
NOD(68)=N6(NELEM)
IF(NTYPE .GT. 6)THEN °
NOD(7) =N7 (NELEM) )
_ NOD(8) =N8(NELEM) )
END IF
DO 100 I=1,NT
XLOC(3*I-2)=XDISP(3*NOD(I)-2)
N XLOC(3%I-1)=XDISP(3*NOD(I)-1)
XLOC (3*I)=XDISP(3*NOD(I))
\ 100 CONTINUE
IF(NTIME .EQ. ©) THEN ,
CALL DISPL(NELEM,XDISP,XX,LEQNS) ‘
XLOC(25)=XX(1) ° )
XLOC(26)=XX(2)
XLOC(27)=XX(3) ‘
END IF ' .
PRINT 160
160 FORMAT(’-',T2,’NODE’,T9,’'S 11',7T20,'S 22',131,°'S 33’,T42,'T XY',
+ T63,'T YZ',T64,'T ZX',T76,'8 1',T86,’8 II’',T97,'8 III’)
. IF(NTIME .EQ. 9) THEN -
_ CALL SHAPEF(-1.D0,0.D0,0.D0,B,NELEM,NTYPE,DETJAC)
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20

CALL MATMAT(6,8,MSIZE,EM,B,PROD)
CALL MATVEC(6,MSIZE,PROD,XLOC,S,8,MSIZE)
CALL PRINC(-1,NELEM,S) . ,
END IF . N
IF(NTYPE .EQ. B)THEN
XI1=1.D0/3.D0
ET1=1.D0/3.D0
CALL SHAPEF(XI1,ET1,0.DO,B,NELEM,6,DETJAC)
ELSE
CALL SHAPEF (0.D0,0.D0,0.DO,B,NELEM,NTYPE ,DETJAC)
END IF
CALL MATMAT(6,6,MSIZE,EM,B,PROD)
CALL MATVEC(®,MSIZE,PROD,XLOC,S,8,MSIZE)
CALL PRINC(O,NELEM,S)

RETURN
END

SUBROUTINE PRINC(NOD,NELEM,S)
IMPLICIT REAL*8 {A-H,0-2)
DIMENSION S(8),SP(8),SL(8)
DIMENSION TRAN(6,6),A(4),ZR(3)
REAL*8 NU
CHARACTER*1 A1,A2
COMMON/GLOB1 /X (200) ,Y(200) , Z(200) ,E(200) ,NU(200)
COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) ,N4(200) ,N5(200) ,N6(200),
N7(200) ,N8(200) 3
COMMON/ELCON/NELA (100) ,NELB(100) , INTER
Al='T1’ -
A2='C"* .
IF(NOD .LT. O) THEN s
NELID=NELEM o
I=1
D0 20 WHILE(NELEM .NE. NELB(I) .AND. I .LE. INTER) .
I=I+1
CONTINUE
IF(NELEM .EQ. NELB(I))THEN
NgLam-NELA(I) . -
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END IF
CALL TRANSF (NELEM, X(N1(NELEM)) ,X(N2(NELEM)) ,X(N3(NELEM)),

| + X(N4 (NELEM)) ,Y(N1(NELEM)),Y(N2(NELEM)) ,Y(N3(NELEM)) ,
| ¢ + Y(N4 (NELEM) ) ,Z(N1(NELEM)),Z(N2(NELEM) ) ,2(N3(NELEM)),
T4 Z(N4 (NELEM)) ,TRAN,8,8)
ALL MATVEC(6,8,TRAN,S,SL,6,8) -
. (1)=1.DO

A(2)=-(SL(1)+SL(2)+SL(3))
A(3)=SL(1)*SL(2)+SL(2)*SL(3)+SL{(1)*SL(3) -SL(4)*SL(4)-
+ SL(B) *SL(6) -SL(8)*SL(8)
A(4)=-(SL{1)*SL(2)*SL(3)+2.*SL(4)*SL(5)*SL(8)-SL(1)*SL(6)*SL(56)-
+ SL(2)*SL(8)*SL(8)-SL(3)*SL(4)*SL(4)) ’
CALL CUBIC(A,ZR) °
; PRINT 650,A1,(SL(I),I=1,6),(ZR(K),K=1,3) b
50 FORMAT('-’,A3,T6,E10.3,T17,E10.3,T28,E10.3,T39,E10.3,T60,E10.3,
+ ¥re1,E10.3,T72,E10.3,T83,E10.3,794,E10.3) ‘
ELSE
A(1)=1, -
A(2)=-(8(1)+8(2)+8(3)) ,
A(3)=5(1)*S(2)+S(2)*S(3)+5(1)*S(3) -5(4)*5(4)-5(56)*8(6)-5(6)*8(6)
A(4)=-(8(1)*S(2)*S(3)+2.*5(4)*5(6)*5(8)-S(1)*5(6) *5(6) -
+ 5(2)*5(8)*S(68)-5(3)*S(4)*5(4))
CALL CUBIC(A,ZR)
PRINT 100,A2,(S(I),I=1,8),(ZR(K),K=1,3)
100 FORMAT('-',A3,T6,E10.3,T17,E10.3,T28,E10.3,T39,E10.3,T60,E10.3,

+ T61,E10.3,T72,E10.3,783,E10.3,T94,E10.3)
END IF
c
RETURN
END i
c o
c

SUBROUTINE DISPL(NELEM,XDISP,XX,LEQNS)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION XDISP(LEGQNS),XX(3),XR(36)

DIMENSION Q(3,36),NN(12)

- COMMON/ELCON/NELA(100) ,NELB(100) , INTER 3
COMMON/GLOB2/N1(200) ,N2(200) ,N3(200) , N4{200) .N6(200) ,N6(200),

-+ N7(200) ,N8(200)
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DO 60 I-1.INTER-
IF(NELEM .EQ. NELA(I)) THEN
NELEM1=NELEM
NELEM2=NELB (I)
ELSE
IF(NELEM .EQ. NELB(I)) THEN
NELEM1=NELA(I)
NELEM2=NELEM
END IF
END IF
650 CONTINUE
CALL REL(NELEM1,NELEM2,Q)
NN{1)=NB5(NELEM1)
NN(2)=N1(NELEM1)
NN{3)=N6 (NELEM2)
NN{4)=N7 (NELEM?2)
NN(6)=N3 (NELEM2)
NN(6)=N8 (NELEM1) .
NN(7)=N6 (NELEM1)
NN(8)=N2(NELEM1)
NN(9)=N5 (NELEM2)
NN(10) =N8(NELEM2)
NN(11)=N4(NELEM2)
NN(12)=N7(NELEM1)
DO 100 I=1,12
LK=3%1I-2
LL=3%I-1
LM=3*I
XR(LK)=XDISP(3*NN(I)-2)
XR(LL)=XDISP(3*NN(I)-1)

z

-XR(LM)=XDISP(3*NN(I))
100 CONTINUE
_ CALL MATVEC(S,36,Q,XR,XX,3,368)
c
RETURN °
END
c
c N

SUBROUTINE YOUNG(EM,E,NU)

'




20

20

40

IMPLICIT REAL*8 (A-H,0-2Z)
REAL*8 NU p, =
DIMENSION EM(6,8)

D0 20 I=1,6
DO 20 J=1,8 -
EM(I,J)=0.D0

: 4
CONTINUE

COEF=E/ ( (1.DO+NU) (1 .D0-2.DO*NU))
EM(1,1)=COEF* (1 .DO-NU)
EM(1,2) =COEF*NU
EM(1,3)=EM(1,2)
EM(2,1)=EM(1,2) ’
EM(2,2)=EM(1,1)

EM(2,3)~EM(1,2)

EM(3,1)=EM(1,3)

EM(3,2)=EM(2, 3)

EM(3,3)=EM(1,1)
EM(4,4)=E/(2.D0*(1.DO+NU))
EM(6,6)=EM(4,4)

EM(6,6)=EM(4,4)

* RETURN

END

SUBROUTINE MATVEC(N,M,A,Z,V,NEQNS,MEQNS)
DIMENSION A(NEQNS,MEQNS),Z(MEGNS)
REAL*8 SUM,A,V(N),Z ’ .
DO 40 I=1, N - i \

-SUM=0.D0

DO 20 J=1,M .

SUM=SUM+A(I,J)*Z()J) -

_CONTINUE .

V(I)=SUM '
CONTINUE

RETURN I
END -
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SUBROUTINE MATMAT(M,N,K.A,B.C) , .-
INTEGER M,N,K,R,S,I
REAL*8 A(M,N),B(N,K), C(M,K),SUM

R=1
DO 30 WHILE(R. LE. M)
S=1" o
DO 20 WHILE(S .LE. K)
. SUM=0.DO
I=1
DO 10 WHILE(I .LE. N)
SUM=SUM+A(R, I)*B(T,S)
I=T+1 ’
_ CONTINUE
= C(R,8)=sUM
S=5+1 v
CONTINUE ' .
ResR+1
CONTINUE
RETURN
END

SUBROUTINE GREDUC (LEQNS,ASLOD,ASTIF,IFPRE, NEQNS)
IMPLICIT REAL*8 (A-H,0-Z) ,
DIMENSION ASLOD(LEQNS),ASTIF(LEQNS,LEQNS), IFPRE(LEQNS)
DO B0 IEQNS=1,NEQNS
IF(IFPRE (IEQNS) .EQ. 1) THEN
DO 40 IROWS=IEQNS,NEQNS
ASTIF(IROWS, IEQNS)=0.D0
CONTINUE
G0 TO 60
END IF
PIVOT=ASTIF(IEQNS,IEQNS)
IF(DABS(PIVOT) .LE. 0.1E-8)THEN
PRINT -100 -« .
FORMAT('1',6X, ' INCORRECT PIVGT')
sTop.  ° !

]
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END IF
IF(IEQNS .EQ. NEQNS) THEN
G0 TO 60
END IF
TEQN1=IEQNS+1~
DO 20 IROWS=IEQN1,NEQNS
* FACTR=ASTIF(IROWS,IEQNS)/PIVOT-
IF(FACTR .EQ.0.0) THEN
GO TO 20
END IF = ° *
DO 10 ICOLS=IEQNS,NEQNS
ASTIF(IROWS,ICOLS)=ASTIF (IROWS, ICOLS)-FACTR*ASTIF (IEQNS,
+ ) ) ICOLS)
10 CONTINUE : .
) ASLOD ( TROWS) = ASLOD (IROWS) -FACTR*ASLOD.( IEQNS)
20 CONTINUE
50 CONTINUE

RETURN
END °

%

SUBROUTINE BAKSUB(N,LEQNS,ASLOD,ASTIF,IFPRE, XDISP,REACT, NEQNS)

IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION ASLOD(LEQNS),ASTIF (LEQNS,LEQNS), IFPRE(LEQNS)

DIMENSION XDISP(LEQNS),REACT (LEQNS)

DO 6 IEGNS=1,NEQNS
REACT(IEQNS)=0.DO ,

5 CONTINUE

NEQN1=NEQNS+1 )

DO 30 IEQNS=1,NEQNS . .
NBACK=NEQN1-IEQNS : ;
PIVOT=ASTIF (NBACK, NBACK) .

RESID=ASLOD (NBACK) .
IF(NBACK .EQ. NEQNS) THEN

G0 TO 20 '
END IF '
NBAC1=NBACK+1
DO 10 ICOLS=NBAC1,NEQNS
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. [ ]

RESID=RESID-ASTIF (NBACK, ICOLS)+XDISP (ICOLS),
10.  CONTINUE
20  IF(IFPRE(NBACK) -EQ. 0) THEN ¢
XDISP (NBACK)=RESID/PIVOT
ELSE
XDISP (NBACK)=0.DO

REACT (NBACK)=-RESID A
 END IF
30 CONTINUE N
PRINT 200 )
200 FORMAT('1 REACTIONS AND DISPLACEMENTS AT NODES') '
PRINT 220
220 FORMAT('- NODE',T10,'X-REACTION',T24, 'Y<REACTION',T38, 'Z-REACTION’
+ |,T63, 'X-DISPL’,T77,'Y-DISPL' 191, ' Z-DISPL")
PRINT 240, (K,REACT (3%K-2) ,REACT(3%K-1) ,REACT(3*K) , XDISP(3*K-2) , '
+ XDISP(3*K-1),XDISP(3+K) ,K=1,N)
240 FORMAT('-*,I4,T10,E10.3,T24,E10.3,T38,E10.3,T61,E10.3,T75,E10.3,
+ 189, E10,3)
c
RETURN " ‘ -~
END ‘

RN

SUBROUTINE CUBIC(C,ZR) .

. IMPLICIT REAL*8 (A-H,0-2)

DIMENSION C(4),ZR(3)

. COMPLEX*16 OR,R,Z1,22,23,Y1,Y2,Y3,X1,X2, X3 ,RCON- ) ‘
A-c(2)/(3 DO*C(1))
B=C(3)/(3.D0*C(1))
G=C(4)/Cc(1) °
P=B-A*A"

- Q=2.DO*A%A*A - 3.DO*A*B + G
OR=Q*Q + 4.DO*P+P*P
R=(-Q + CDSQRT(OR))/2.D0
RCON=DCONJG (R) a
RPROD=R+HCON
IF(RPROD .EQ. 0.0) THEN

ZR(1)=-A
JZR(2)=-A
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ZR(3)=-A

ELSE

Z1=CDEXP(CDLOG(R) /3.

DO)

22=(-Z1 + CDSQRT(-3.D0%Z1%Z1))/2.DO
23=(-Z1 - CDSQRT(-3.D0%Z1%Z1))/2.DO

Y1=21 - P/Z1
Y2=22 - P/Z2
Y3=Z3 - P/Z3
X1=Y1 - A
X2=Y2 - A
X3=Y3 - A
ZR(1)=X1
8 . * ZR(2)=X2
_ 1 ZR(3)=X3
B END IF
c >
§ RETURN
c
c
END
[
Q
: ” ¢

oo
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