
Stochastic Decoding of LDPC Codes over
GF(q)

Gabi Sarkis

Department of Electrical and Computer Engineering

McGill University

Montréal, Québec

August 2009

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of Master of Engineering

c© Gabi Sarkis, 2009

ACKNOWLEDGEMENTS

I would like to thank Professor Warren J. Gross for all the guidance and advice

he has given and continues to give me. I also would like to thank Professor Mannor

for his continued support, François, Saied, and Ali for all the help they provided

throughout my research. I am grateful to all my friends in Montréal for all the great

times we had together. Thank you, Dani, Marwan, François, and all the others who

make life here fun and interesting. Thank you Nicole for always being by my side. I

want to thank the Chahines and Bannas for being my family away from home. I will

always be grateful to Professor Lu of Purdue University for guiding me and helping

me choose my path. Finally, I want to thank my parents and brother without whose

support nothing would be possible.

- ii -

ABSTRACT

Non-binary LDPC codes have been shown to outperform commonly used codes

for many communications and storage channels. Currently proposed non-binary de-

coder architectures have very high complexity for high-throughput implementations

and sacrifice error-correction performance to maintain realizable complexity. In this

work, we present an alternative decoding algorithm based on stochastic computation

that has a very simple implementation and minimal performance loss when compared

to the sum-product algorithm. We demonstrate the performance of the algorithm

when applied to a GF(16) code and provide details of the hardware resources re-

quired for an implementation with synthesis results for the decoder nodes. We also

utilize two methods, originally used in binary stochastic decoding, to improve the

non-binary decoder throughput and decrease its maximum latency.

- iii -

ABRÉGÉ

Il a été démontré pour plusieurs types de canaux de télécommunication et de

stockage que les codes LDPC non-binaires ont une meilleure performance que les

codes les plus souvent utilisés. Par contre, les architectures de décodeur à haut débit

qui ont été proposées jusqu’à maintenant sont très complexes, et sacrifient la per-

formance de correction d’erreur de façon à maintenir une complexité acceptable. La

présente thèse décrit un nouvel algorithme de décodage qui utilise une représentation

stochastique des données pour arriver à une implémentation très simple, et souffrant

de très peu de perte de performance par rapport à l’algorithme somme-produit.

Nous rapportons la performance de l’algorithme appliqué à un code de GF(16), et

présentons le détail des ressources matérielles requises à l’implémentation, accom-

pagnés de résultats de synthèse circuit pour les noeuds du décodeur. Finalement,

nous utilisons deux méthodes originellement développées pour les décodeurs stochas-

tiques binaires pour améliorer le débit du décodeur non-binaire, et diminuer sa latence

maximale.

- iv -

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF FIGURES . vii

LIST OF TABLES . viii

1 Introduction . 1

1.1 Motivation . 1
1.2 Contribution . 2
1.3 Thesis Plan . 3

2 Literature Review . 4

2.1 Binary LDPC Codes . 4
2.1.1 Binary LDPC Decoding . 5

2.2 LDPC Codes over GF(q) . 8
2.2.1 SPA Decoding . 8
2.2.2 FFT-SPA and Log-FFT-SPA Decoding 11
2.2.3 LLR-SPA Decoding . 12
2.2.4 Extended Min-Sum (EMS) Decoding 13
2.2.5 Reduced Complexity EMS Decoding 16

2.3 Stochastic Decoding . 20
2.3.1 Binary LDPC Stochastic Decoding 20
2.3.2 Trellis-Based Stochastic Decoding 21

3 An Algorithm for Stochastic Decoding of LDPC over GF(q) 23

3.1 Node Equations . 23
3.1.1 Variable Node . 24
3.1.2 Permutation Node . 25
3.1.3 Check Node . 26

- v -

3.2 Noise-Dependent Scaling and Edge Memories 27
3.3 Algorithm Description . 29
3.4 Performance . 30
3.5 Binary Stochastic Decoding as a Special Case 31

4 Decoder Architecture . 35

4.1 Architecture Overview . 36
4.2 Variable Node . 36

4.2.1 Channel-Stream Generator 38
4.2.2 Belief Tracker . 39
4.2.3 Edge-Memories . 40

4.3 Permutation Node . 41
4.4 Check Node . 42
4.5 Likelihood-to-CDF Converter . 43
4.6 Complexity Analysis . 45
4.7 Synthesis Results . 47

5 Reducing the Number of Decoding Cycles 49

5.1 Tracking Forecast Memories . 49
5.1.1 TFM Architecture . 50
5.1.2 Reducing TFM Count . 52

5.2 Relaxed Half-Stochastic Decoding 52

6 Conclusion . 56

REFERENCES . 58

- vi -

LIST OF FIGURES
Figure page

2–1 Tanner graph of a binary code . 5

2–2 GF(q) LDPC Tanner graph . 9

3–1 Message propagation in the stochastic decoder. 29

3–2 Stochastic GF(q) decoding performance 32

4–1 Overall decoder architecture . 36

4–2 Degree-2 variable node architecture. 37

4–3 GF(4) Channel stream generator . 39

4–4 GF(4) belief tracker architecture. 41

4–5 Check node architecture. 43

4–6 Pipelined GF(4) likelihood-to-CDF converter 45

5–1 TFM-based decoder performance . 51

5–2 TFM architecture . 52

5–3 Reduced TFM decoder performance 53

5–4 RHS decoder performance . 55

- vii -

LIST OF TABLES
Table page

3–1 Average number of decoding cycles. 31

4–1 Total number of operations per iteration. 47

4–2 Synthesis results . 48

4–3 Variable node area use . 48

5–1 Average decoding cycles for modified decoders 54

- viii -

Chapter 1

Introduction

1.1 Motivation

With wireless communications and broadband Internet access becoming com-

monplace nowadays, we have come to expect fast and reliable methods for transfer-

ring data. To meet this expectation, the entire communication system, from end-user

portable devices to the fiber-optic Internet backbone and the storage systems in data

centers, must be resilient to errors introduced during data transmission and storage.

Such a requirement necessitates that the data include structured redundancy so that

when errors occur during transmission, the system can correct them and data cor-

ruption would be avoided.

Natural languages contain much redundancy and structure therefore it is possi-

ble to infer the intended word written even if it includes spelling error. For example

if the word “stochastc” were to be encountered, a reader would note the spelling

error and correct the word so that it is “stochastic”. Digital data does not contain

such structured redundancy, and therefore, contains no inherent protection against

errors.

- 1 -

1.2. Contribution

Error control coding (ECC) is a method for providing the required data protec-

tion. It adds structured redundant information to the data at the encoding stage

before transmission. The resulting coded data (codeword) is sent. The receiver de-

codes the received data using knowledge of the code structure to correct any errors

encountered.

ECC is so prevalent that it can be found in places ranging from spaceships

approaching the limits of the Solar System, to the digital music players in one’s

pocket.

One ECC scheme that has been shown to have excellent performance approach-

ing the theoretical limits is binary low-density parity-check (LDPC) coding [1]. A

more powerful version of these codes can be obtained by grouping bits of the orig-

inal message into symbols, similar to what is done in Reed-Solomon coding. The

symbol-based codes are called LDPC codes over GF(q), or non-binary codes.

While non-binary LDPC codes have been shown to have performance exceeding

that of most other codes over a variety of channels [2, 3, 4] , their decoding algorithms

are extremely complex, prohibiting their widespread use. As such, there exists a need

for a practically implementable decoding algorithm for LDPC codes over GF(q).

1.2 Contribution

In this thesis, we present a novel algorithm for decoding LDPC codes over GF(q)

that has a lower complexity than other algorithms currently discussed in literature.

To achieve this simpler design, binary stochastic decoding was generalized to func-

tion over GF(q). Simulations were performed and showed the proposed algorithm’s

performance matched the best performance in literature.

2

1.3. Thesis Plan

An architecture which implements the algorithm was developed, and modifica-

tions to enhance the decoder performance and further reduce its complexity were

investigated.

1.3 Thesis Plan

Chapter 2 starts by providing background information on binary and non-binary

LDPC decoding and reviewing the algorithms for decoding LDPC codes over GF(q)

currently in literature. Our algorithm is presented in Chapter 3 which also includes a

complexity analysis. Parts of this chapter were presented in the IEEE International

Conference on Communications [5]. The corresponding implementation is shown

with synthesis results in Chapter 4.

Further enhancements to increase the decoder throughput are presented in

Chapter 5.

3

Chapter 2

Literature Review

2.1 Binary LDPC Codes

Binary low-density parity-check (LDPC) codes are linear block codes charac-

terized by a sparse M × N parity check matrix H. They were first introduced by

Gallager [6] in 1963. However, due to their encoding and decoding complexity, these

codes were ignored for over 30 years until MacKay revived interest in them in the

late 90’s. MacKay [7] proved that LDPC codes had excellent performance approach-

ing the Shannon limit for large block lengths and rivaling the turbo codes of Goff et

al. [8]. Furthermore, he classified LDPC codes into regular and irregular codes and

showed that irregular codes perform better. A regular code’s H-matrix has constant

row and column weights; while an irregular code has no such constraint.

As noted in [9], LDPC codes are block codes, and are encoded using a generator

matrix G which satisfies HGT = 0. A codeword is generated from a message u using

x = uG. To check if a received vector y is a valid codeword, the syndrome vector z is

computed using z = yHT . If z = 0, then y is a valid codeword; otherwise, the decoder

- 4 -

2.1. Binary LDPC Codes

+ + +

= = = =
Variable Nodes

Check Nodes

Figure 2–1: Tanner graph of a binary code

attempts to correct it. Decoding of LDPC codes is done via a belief propagation

algorithm originally introduced by Gallager and later refined by MacKay.

2.1.1 Binary LDPC Decoding

Most LDPC decoders use bipartite graphs, called a Tanner graph, as a model

when implementing the belief propagation algorithm of [6] and [7]. Such graphs

are composed of two types of nodes: variable, also called equality, nodes and check

nodes. Figure 2–1 is an example of a Tanner graph section.

The received vector bits y correspond to the variable nodes, and the compu-

tations of the syndrome bits, also called check constraints, to the check nodes. A

connection between a variable node v and a check node c is made if the correspond-

ing parity-check matrix element h = H[c, v] is non-zero. Therefore, the weight of a

row in H determines the number of variable nodes connected to the corresponding

check node, which is called the check node degree dc. Similarly the column weight

determines the variable node degree dv. Connected nodes exchange messages until

all the checks are satisfied or a certain number of iterations has been reached.

5

2.1. Binary LDPC Codes

The decoder messages can be computed exchanged using various method, the

most direct of which is called the sum-product algorithm (SPA) and was implemented

by [7] for channels with independent noise samples. In this algorithm, the messages

are two element probability mass function (PMF) vectors such as P = [p(0), p(1)],

where p(0) is the probability of the bit being 1 and p(0) is the probability of it being 1.

For labeling messages we following the notation used in [10]: messages from variable

node v to check node c are denoted Uvc, and messages from c to v are denoted as

Vcv.

The first step in the SPA is to compute a likelihood vector L = [l(0), l(1)] for

every received bit i and use it initialize the corresponding variable node. l(k) =

P [xi = k|yi] is the likelihood of the transmitted bit being equal to k given yi was

received and its computation is dependent on the channel model and modulation

scheme used. For example, for an additive white Gaussian noise (AWGN) channel

with binary phase-shift keying (BPSK) the following is used [9]:

l(0) =
1√
2πσ

e−
(y+a)2

2σ2 , l(1) =
1√
2πσ

e−
(y−a)2

2σ2 (2.1)

The iterative decoding process begins by computing the variable node update

messages using [9]:

Uvc = L×
dv∏

i=1,i 6=c

Viv (2.2)

where × is a term-by-term product of vectors. Since each message Uvp is a PMF,

it must be normalized such that
1∑
i=0

Uvp[i] = 1. It should be noted the the message

from node c is not included in the computation. This is known as the extrinsic

information principle [9] and is the basis for all belief propagation techniques.

6

2.2. Binary LDPC Codes

Check node messages are more complex to compute, in [9] it is stated that Vcv[k],

k = 0 or 1, is computed by multiplying all input message values, while observing

the extrinsic information principle, and summing the results. Summations where the

indices of the product terms add up to k using modulo-2 addition are assigned to

Vcv[k]. This can be summarized as:

Vcv[k] =
∑

P
ij=k mod 2

dc∏
j=1,j 6=v

Ujc[ij] (2.3)

As mentioned in [10], this is a convolution of the incoming messages and can be

written as:

Vcv = ~dc
i=1,i 6=vUic (2.4)

where ~ is the convolution operator.

A method commonly used to simplify SPA decoding without affecting perfor-

mance is to use log-likelihood ratios (LLR) as messages [9]. To compute the LLR X̂

of a likelihood vector X, one uses x̂ = log P [x=1|y]
P [x=0|y] . This has the effect of changing

multiplications in (2.2) to additions, so that it becomes:

Ûvc = L̂+
dv∑

i=1,i 6=c

V̂iv (2.5)

and converting (2.3) into:

V̂cv = 2 tanh−1(
dc∏

i=1,i 6=v

tanh(
Ûic
2

)) (2.6)

7

2.2. LDPC Codes over GF(q)

2.2 LDPC Codes over GF(q)

Like binary codes, non-binary LDPC codes are defined by a sparse parity check

matrix H. However, the elements of H are elements of a Galois field GF(q) and

the arithmetic is GF(q) arithmetic. Most works in the literature restrict q such that

q = 2p since this greatly simplifies algorithms and their implementation.

Gallager [6] suggested that non-binary LDPC codes could be constructed using

modulo-q arithmetic. However, it was Davey et al [2] who first studied these codes

in detail and used operations over GF(q) for decoding.

Results from literature show that non-binary LDPC codes can outperform binary

LDPC codes of equivalent length and RS codes by up to multiple dBs even when the

errors introduced by the channel are correlated [3] and [11].

Many properties such as row and column weights and decodability over graphs

hold true for non-binary codes. In section 2.2.1, differences between binary and GF(q)

SPA decoding are presented. Various simplifications to GF(q) decoding algorithms

are discussed in sections 2.2.1 - 2.2.5.

2.2.1 SPA Decoding

While non-binary codes are also decoded over Tanner graphs, the decoding al-

gorithm is not a direct generalization of the binary case because the elements of H

are non-binary. As a result a check node constraint is:

dc∑
k=1

hkβk = 0 (2.7)

where hk is the element of H with indices corresponding to the check and variable

nodes of communicating with each other and βk is a GF(q) symbol corresponding

8

2.2. LDPC Codes over GF(q)

Variable Nodes

+Check Nodes

Permutation Nodes

= =

xx

Figure 2–2: A portion of a GF(q) Tanner graph showing the three node types.

to a check node input message . This is different from the binary case where the

check constraint is
∑dc

k=1 βk = 0. To accommodate this change, Davey et al [2] assign

values from H as labels to the graph edges connecting the variable and check nodes

and integrate the multiplication into the check node functionality. Declercq et al [10]

present a different approach: they introduce a third node type called the permutation

node which connects variable and check nodes and performs multiplication as shown

in Figure 2–2; therefore reverting the check node constraint to

dc∑
k=1

βk = 0 (2.8)

While the two approaches are functionally equivalent; the one in [10] results in

simpler equations and implementation since all check nodes of the same degree are

identical. Therefore, it is the one utilized in out work.

Due to the non-binary nature of the code, the messages transmitted between the

node types are q-element PMF vectors indexed using GF(q) symbols. For example

Uvp[β] is the probability of symbol β.

9

2.2. LDPC Codes over GF(q)

Like the binary SPA, The first step in GF(q) SPA is computing the channel

likelihood vector using L[β] =

p∏
k=1

l(ik = βk), where l(ik = βk) is the probability of

bit k in the received symbol being equal to bit k in the polynomial representation of

GF(2p) symbol β, and is computed just like in the binary case.

The variable node update message equation remains the same as equation (2.2)

from the binary case. However the messages arrive from permutation, not check,

nodes. The size of vectors also changes, and the equation shown in [10] is:

Uvp = L×
dv∏

i=1,i 6=p

Viv (2.9)

where × is the term-by-term product of vectors. Normalization is still needed in the

non-binary case so that

q∑
i=1

Uvp[i] = 1.

The permutation nodes implement multiplication by a GF(q) element when

passing messages from the variable to check nodes, and multiplication by its inverse

in the other direction. Since GF(q) are cyclic fields, the multiplication and division

can be performed by cyclic shifts of all values in a message except those indexed by

0 as in [10]. The equation corresponding to passing messages from variable to check

nodes can be written as:

Upc[i] = Uvp[i ∗ hp] (2.10)

where hp is the H matrix element corresponding to the permutation node, and ∗ is

GF(q) multiplication.

For messages passed in the other direction the following is used:

Upc[i] = Uvp[i ∗ h−1
p] (2.11)

where h−1
p is the GF(q) inverse of hp.

10

2.2. LDPC Codes over GF(q)

Since the parity check constraint does not include multiplication by elements of

H anymore, the check node update equation takes a similar form to the binary SPA

equation (2.3):

Vcv[k] =
∑

P
ij+k=0

dc∏
j=1,j 6=v

Ujc[ij] so that:

Vcv = ~dc
i=1,i 6=vUic (2.12)

where the addition in the constraint
∑
ij + k = 0 is over GF(q).

The complexity of computing the check node’s output messages using equa-

tion (2.12) is given by [10] as: O(dcq
dc−1), rendering a direct implementation of the

SPA impractical. Davey et al. [2] suggest using partial summations to evaluate

the equation as a method to reduce complexity. However it remain impractical as

Declercq et al. [10] show the complexity to be O(dcq
2).

2.2.2 FFT-SPA and Log-FFT-SPA Decoding

Since the complexity of equation (2.12) increases exponentially with both field

order q and check node degree dc, other methods for computing the check node output

must be utilized. The authors of works [3, 12, 13] have all proposed performing

the computation in the frequency domain. This can be accomplished using the

Fourier transform. If the codes are over GF(2p), the Fourier transform is a Hadamard

transform [14] which can be computed using W = F(U) = UHm, where Hm is the

Hadamard matrix which can be defined recursively as:

Hm =
1√
2

Hm−1 Hm−1

Hm−1 −Hm−1

 (2.13)

11

2.2. LDPC Codes over GF(q)

with H1 = 1.

As shown in [10], using this method equation (2.12) becomes:

Vcp = F

(
dc∏

i=1,i 6=p

F(Uic)

)
(2.14)

This reduces the complexity of computing a check node’s messages to O(dcpq)

when using the fast Hadamard transform as indicated by [10].

It should be noted that the normalization factor 1√
2

in the Hadamard matrix is

not needed since the variable node performs normalization on its output messages.

This was confirmed by our simulation results.

The performance of this decoding method is identical to that of the sum-product

algorithm.

Song et al. [3] proposed using logarithms to convert multiplications into addi-

tions in the FFT-SPA decoder. They perform all operations on the sign and mag-

nitude of the message elements independently. This enabled them to implement

a decoder using addition and subtraction only without any multipliers or dividers.

Without any approximations, this algorithm performs identically to SPA.

2.2.3 LLR-SPA Decoding

As in binary SPA, LLR messages can be used instead of PMFs to convert mul-

tiplications into additions. This was done by Wymeersch et al. in [15]. An LLR

message can be generated from a PMF one using:

Û [β] = log
U [β]

U [0]
, β ∈ GF(2p)

12

2.2. LDPC Codes over GF(q)

Using LLR messages, the initial likelihood vector L̂ for a received symbol x is

given by:

L̂[β] = log
l(x1 = β1)l(x2 = β2)...l(xp = βp)

l(x1 = 0)l(x2 = 0)...l(xp = 0)

=

p∑
k=1,βk 6=0

log
l(xk = 1)

l(xk = 0)
(2.15)

As noted in [15], if β contains zeros in its binary representation, as all but one

GF(q) element do, some terms cancel in the equation. Thus, the summation does

not include p terms.

The variable node update message uses additions in place of multiplications; so

equation (2.9) becomes:

Ûat = L̂+
dv∑

p=1,p 6=t

V̂pa (2.16)

No normalization is needed since LLR messages are used.

The permutation node is still implemented using cyclic shifts.

The check node update messages are computed using partial sums. As such, its

complexity is still O(dcq
2).

The performance of this decoding method is also identical to that of the sum-

product algorithm when no approximation are performed.

2.2.4 Extended Min-Sum (EMS) Decoding

The extended min-sum algorithm (EMS), presented in [10], reduces the complex-

ity of computing equation (2.12) by using LLR messages and reducing the number

of input messages considered in the computation. Only the largest nm values of each

Ûpc are considered, and these values are denoted û
(kc)
pc , kc = 1, 2, ..., nm and can be

13

2.2. LDPC Codes over GF(q)

found using:

û(kc)
pc = Ûpc[α

(kc)
c] (2.17)

where α
(kc)
c is the field element to which the likelihood û

(kc)
pc corresponds.

The nm most likely symbols of each of the dc − 1 check node inputs involved in

computing an output message are used to form dc − 1 sets. The Cartesian product

of these sets is the configuration set Conf(nm) which is formally defined in [10] as:

Conf(nm) = {αk = [α
(k1)
1 (x), ..., α

(kdc−1)
dc−1 (x)]T :

∀k = [k1, ..., kdc−1]
T ∈ {1, ..., nm}dc−1} (2.18)

The number of elements in Conf(nm) is |Conf(nm)| = ndc−1
m since only the largest nm

likelihood values are considered from each inbound message. Conf(1) contains only

one configuration, representing the vector of symbols with largest likelihood values

at each input of the node, and is called the order-0 configuration.

To further reduce the number of configuration considered when computing an

output message, Declercq et al. [10] restrict the computations to the following subset

of Conf(nm):

Conf(nm, nc) = Conf(nm)(0) ∪ Conf(nm)(1) ∪ ...

∪Conf(nm)(nc) (2.19)

where nc ≤ dc − 1 and Conf(nm)(k) is the subset of configurations that differ from

the order-0 configuration by k elements. The cardinality of Conf(nm, nc) is given in

14

2.2. LDPC Codes over GF(q)

[10] as:

|Conf(nm, nc)| =
nc∑
k=0

 dc − 1

k

 (nm − 1)k

≈

 dc − 1

nc

nncm (2.20)

The configurations which satisfy the check node equation (2.8) are denoted

Confidc (nm, nc) and are defined by:

Confidc (nm, nc) = {αk ∈ Conf(nm, nc) : idc +
dc−1∑
c=1

α(kc)
c = 0}

where idc ∈ GF(q).

A measure of reliability is also introduced in [10] and is computed using the

equation:

L(αk) =
dc−1∑
c=1

û(kc)
c

In the EMS algorithm, the variable and permutation node equations remain the

same as in LLR-SPA (Section 2.2.3). The check node update message becomes:

V̂dcp[idc1 , ..., idcp] = max
αk∈Sidc

{L(αk)} (2.21)

where the set Sidc is defined as

Sidc = Confidc (q, 1) ∪ Confidc (nm, nc)

The set of configurations Confidc (q, 1) is needed in the above equation to guarantee

that Sidc is never empty. To avoid numerically saturating the LLR values and main-

tain consistency with the LLR definition, the result from equation (2.21) needs to

15

2.2. LDPC Codes over GF(q)

be post-processed as:

V̂cp[β] = V̂cp[β]− V̂cp[0], β ∈ GF(q)

Since the EMS discards some messages when computing the check node mes-

sages, it results in a performance loss. To mitigate the degradation, Declercq et al.

[10] either use offset factors, or apply scaling to check node messages. The results

in [10] show that with correction, EMS performs within 0.1 dB of the SPA when nm

and nc are sufficiently large. It is also noted that the performance of EMS with a

scaling factor degrades with increasing SNR values, while the offset correction does

not show such a trend.

The complexity of computing a check node’s output messages with the EMS

algorithm with the corrections applied is given in [10] as O(dcq log q) = O(dcp2
p)

when q = 2p, which is lower any of the previously mentioned algorithms.

An similar approach to EMS is presented in [16]. The difference is that [16]

uses dynamic programming instead of configuration sets when computing the check

node messages. This reduces the complexity of computations and does not require

corrections the message values. [16].

2.2.5 Reduced Complexity EMS Decoding

Voicila et al. [17] describe a reduced complexity version of the EMS decoder. The

original EMS algorithm used only nm values when computing check node messages;

however, it stored and transmitted all q likelihood values for any message. The

new algorithm in [17] uses and stores only nm messages. The messages in this

algorithm are passed as vectors sorted in order of decreasing value of likelihood

and indexed from 0. Since the messages are sorted, the mapping of the index of

16

2.2. LDPC Codes over GF(q)

messages in the likelihood vector to GF(q) is not constant. Therefore, a mapping

vector is needed. For example, let A be an LLR message. B is a vector composed

of the largest nm values of A sorted in decreasing order. βB is the mapping vector

from indices of B to GF(q) elements. The authors in [17] also append a value γA

to B that represents an average likelihood of the discarded elements of A. Thus,

B = [B[0],B[1], ...,B[nm − 1], γA, ..., γA] and is of length q. However, since the last

q − nm elements of B all have the same value γA, that value needs only be stored

once. Also since B is sorted in decreasing order, γA ≤ B[nm − 1].

Assuming the LLR values in B correspond to a normalized PMF, the value of

γA is given in [17] as:

γA = log

q−1∑
i=0,A[i]/∈B

eA[i] − log(q − nm) (2.22)

The previous equation can be approximated using max∗(x1, x2) = log(ex1 +

ex2) ≈ max(x1, x2). Applying the approximation results in equation (2.22) becoming:

γA ≈ B[nm]− log(q − nm) (2.23)

The approximation used is known to over-estimate the LLR values. As a result,

an offset factor is used in [17]. Since, log(q − nm) is also constant for a particular

decoder, it can be combined with the offset factor. Equation 2.23 becomes:

γA ≈ B[nm]− offset (2.24)

The offset value is computed in [17] by maximizing the threshold of the LDPC code,

which in turn is computed via the density evolution algorithm.

The steps of the reduced complexity EMS algorithm as listed in [17] are:

17

2.2. LDPC Codes over GF(q)

1. Initialize the decoder by selecting the nm largest values from the initial likeli-

hood messages L̂.

2. Compute the variable node messages.

3. Perform the permutation node operations by modifying the mapping vector β.

This accomplished by a GF(q) multiplication.

4. Compute the check node messages.

5. Perform the inverse permutation operations.

Steps 2 and 4 are performed via a recursive implementation where each node is

decomposed into a number of elementary steps. Each elementary step has two inputs

and one output. The overall node output message is computed from a intermediate

message at the output of an elementary step and an input message. The node

construction as described in [17] is discussed below.

Variable Node: An elementary step in a variable node has inputs I and V,

and output U. Where I, V, and U have length nm and mapping vectors βV , βI , and

βU . An internal vector T of length 2nm is computed as follows:

T [k] = V [k] + Y, T [nm + k] = γV + I[k], k ∈ {0, ..., nm − 1}

where

Y =

 I[l] if βI [l] = βV [k] k, l ∈ {0, ..., nm − 1}

γI if βI [l] /∈ βV

The output message U is the largest nm values of T .

Check Node: An elementary step in a check node has inputs U and I, and

output V. These vectors are defined in a manner similar to that in the variable node.

If S(βV [i]) is defined as the set of GF(q) elements such that βV [i]⊕βU [j]⊕βI [p] = 0,

18

2.3. LDPC Codes over GF(q)

then the output V is:

V [i] = max
S(βV [i])

(U [j] + I[p]) (2.25)

Since U and I are sorted in decreasing order, the authors in [17] propose a

method that exploits the ordering to reduce the number of computations required

to find the largest nm values of (U [j] + I[p]). They propose constructing a virtual

matrix M whose elements are M [j, p] = U [j] + I[p]. The largest nm values in M are

all located in the upper anti-diagonal. The proposed algorithm steps are:

1. Initialization: The elements of the first column of M are shifted into a sorter.

2. The largest value is computed in the sorter and is sent as an output.

3. If the associated likelihood value of the GF(q) element satisfying the check

constraint already exists in the output vector, no action is taken. Otherwise,

the value is written to V.

4. The right neighbor of the M element from the previous step is introduced into

the sorter.

5. Steps 2-4 are repeated Kmax times or until all nm values in V correspond to

unique GF(q) elements.

It was determined in [17] that Kmax = 2nm yields very good results. In the

cases where Kmax iterations do not result in nm values in V, γV is used to pad the

output vector.

The results of a reduced complexity EMS decoder in [17] show that it performs

within a faction of a dB for sufficiently larger nm values. In these results we also

note that the algorithm performs worse on GF (256) than on GF (64) for a the same

value of nm.

19

2.3. Stochastic Decoding

2.3 Stochastic Decoding

Stochastic computation was introduced as method for designing low-precision,

lower-cost digital circuits [18]. Data is represented by a streams of random symbols

whose statistics represent the message being transmitted. Its main advantage is

that the symbols can be manipulated directly by simple circuitry to the change the

message the stream represents.

2.3.1 Binary LDPC Stochastic Decoding

Sharifi Tehrani et al. [19] introduced a low-complexity decoder based on stochas-

tic computation [18, 20] for decoding binary LDPC codes. The stochastic streams

passed in the decoder are Bernoulli sequences, where the number of occurrences of a

symbol (0 or 1) in the stream divided by the length of the stream corresponds to the

probability value of that symbol. For example a stream 0001001011 indicates that

p0 = 7/10 and p1 = 3/10.

In [19], the authors only track p1 since p0 = 1− p1, and define the node output

using only that probability value; so when pc is used, it refers to P [c = 1].

Since the stochastic messages are streams, an index t is used to refer to the

symbol’s location in a stream, e.g. U(t) is the symbol at location t in stream U .

Like the SPA decoder, a binary stochastic decoder implements a Tanner with

variable and check nodes. The stochastic variable node implements the SPA variable

node message by directly manipulating the input stochastic streams. In addition

to the streams from check nodes, the variable node has an input stream which is

generated using channel likelihood values as a PMF. The variable node update rule

20

2.3. Stochastic Decoding

is given in [19] as:

U vc(t) =

0 if V iv = 0,∀i : i 6= c

1 if V iv = 1,∀i : i 6= c

U vp(t− 1) otherwise

(2.26)

The output stream has a PMF that is equal to the SPA variable node’s output

message.

A stochastic check node’s output message is computed using:

V cv(t) = ⊕dci=1,i 6=vU ic (2.27)

where ⊕ is the XOR operator (GF(2) addition). The PMF of the resulting stream

for a degree-3 stochastic check node output is shown in [19] to be pcv = (1−p1c)p2c+

p1c(1− p2c) which is the same for a similar SPA node.

The authors in [19] note that if a stochastic decoder is implemented directly

using the previous two rules, it would have severely degraded performance. They

propose scaling the channel likelihood values and randomly shuffling the variable

node output streams as modifications for the decoder to function properly. With

these enhancements, the performance results in [19] show that the binary stochastic

decoder can match an SPA based one. These modifications are examined in more

detail in Section 3.2.

2.3.2 Trellis-Based Stochastic Decoding

Winstead et al. [21] presented another stochastic algorithm for decoding binary

codes that uses streams of integers as decoder messages.

21

2.3. Stochastic Decoding

The integers incoming into a variable node are checked against a constraint and

if they satisfy it, the node output is updated; otherwise, the old output value is

retained. This is similar to the binary stochastic update rule, but generalized for

integers and is summarized as:

U vp(t) =

 a if V iv = a,∀i : i 6= p

U vp(t− 1) otherwise
(2.28)

The check node input messages are used to encode the probabilities of the states

in a trellis according to a particular mapping. This trellis performs the convolution

in Equation (2.12).

The algorithm in [21] is used to decode a (16,11)-bit Hamming code, and a

(256,121) turbo block code.

22

Chapter 3

An Algorithm for Stochastic Decoding of LDPC

over GF(q)

This chapter describes in detail the stochastic algorithm for decoding LDPC

codes over GF(q). First the notation used and the nature of decoder messages are

presented. In Sections 3.1.1 - 3.1.3, the node equations are developed and compared

with those of the SPA. Two modifications critical to decoder functionality are pre-

sented in Section 3.2. The performance of the algorithm is presented in Section 3.4.

In Section 3.5, we show that the binary stochastic decoding algorithm of [22] is

a special case of our algorithm.

3.1 Node Equations

While a message in SPA for LDPC codes over GF(q) is a vector containing

the probabilities of each of the q possible symbols, in stochastic decoding messages

are represented using streams of GF(q) symbols. As in the binary stochastic case,

the number of occurrences of a symbol in a stream divided by the total number of

symbols in the stream corresponds to the probability value of that symbol. The PMF

of a symbol β as conveyed by a stream c of length m is calculated by the following

- 23 -

3.1. Node Equations

equation:

PMF[β] =
1

m

m∑
k=1

I(c[k] = β)

where I(c[k] = β) = 1 when c[k] = β and 0 otherwise.

A notation similar to the SPA is used when denoting the stochastic messages,

the difference being that messages are serial stochastic streams instead of vectors;

thus, an index t is used to denote the location of a symbol within a stream and the

stream label is over-lined, e.g. U vp(t).

3.1.1 Variable Node

A stochastic variable node of degree dv takes as inputs dv stochastic streams from

permutation nodes in addition to one generated based on channel likelihood values

associated with the node which we call the channel stream. As was proposed in [21],

the output of the node is updated if the inputs satisfy a constraint; otherwise, the

output remains unchanged from the previous iteration. To implement the constraint

at time t, we copy the input symbol to the output symbol on a certain edge if the

input symbols of all other incoming edges, including the channel stream, are equal

at time t.

For a variable node with output U vp and inputs V iv, the update rule is:

U vp(t) =

 a if V iv = a,∀i : i 6= p

U vp(t− 1) otherwise
(3.1)

24

3.1. Node Equations

If we assume that the inputs to a variable node are independent and use Equation

(3.1), PMF of an output stream is:

P [U vp(t) = c] =
dv∏

i=1,i 6=p

P [V iv(t) = c]

+(1−
∑

a∈GF(q)

dv∏
i=1,i 6=p

P [V iv(t) = a])P [U vp(t− 1) = c]

(3.2)

If the stochastic streams are assumed to be stationary as in [21], then P [U vp(t) =

c] = P [U vp(t− 1) = c] and the PMF of U vp(t) becomes:

P [U vp(t) = c] =

dv∏
i=1,i 6=p

P [V iv(t) = c]

∑
a∈GF(q)

dv∏
i=1,i 6=p

P [V iv(t) = a]

. (3.3)

Equation (3.3) is identical to the normalized output of the SPA variable node

in Equation (2.9). Therefore we conclude that Equation (3.1) is a valid update rule

for the stochastic variable node.

3.1.2 Permutation Node

The function of the permutation node is decoupling multiplication by elements of

H from the check node constraint. In the sum-product algorithm, this is achieved by

a cyclic shift of the message vector elements as in Section 2.2.1. Here, we demonstrate

that multiplying the stochastic stream from a variable to a check node by an element

of H accomplishes the same result. Assuming a permutation node p corresponding

to H element h = αi, the permutation node output message in an SPA decoder is

25

3.1. Node Equations

defined such that each element in the message vector is given by:

Upc[a] = Uvp[a.α
i], ∀ a ∈ GF(q).

In a stochastic decoder, when the permutation node multiplies all elements of

the input by h, the output PMF becomes:

P [Upc(t) = a] = P [U vp(t) = a.αi]

The SPA and stochastic output PMFs are identical and since the multiplica-

tive group of GF(q) is cyclic and multiplication is closed on GF(q), the stochastic

permutation node operation is equivalent to that of the SPA algorithm.

Similarly, it can be shown that for messages passed from check to variable nodes,

the inverse permutation node operation is multiplication by h−1.

It should be noted that h 6= 0, since a value of 0 in H signifies the lack of a

connection between a variable and a check node. Therefore, there are no permutation

nodes with a multiplier h = 0.

3.1.3 Check Node

When deriving the stochastic update message for a check node, we start with

a degree-three node and generalize the resulting equation to a check node of any

degree.

Let U1c and U2c be the node inputs, which are assumed to be independent, and

Vcp be its output. From Equation (2.12), the output of such a node when using the

SPA is given as:

P [Vcp = z|U1c, U2c] =
∑
x⊕y=z

P [U1c = x]P [U2c = y], (3.4)

26

3.2. Noise-Dependent Scaling and Edge Memories

where ⊕ is GF(q) addition.

In the stochastic node, we define the output as the GF(q) addition of inputs, i.e

V cp(t) = U1c(t)⊕ U2c(t). The PMF of the output is computed as:

P [V cp(t) = z] = P [U1c(t)⊕ U2c(t) = z] (3.5)

=
∑
x⊕y=z

P [U1c(t) = x]P [U2c(t) = y].

The PMFs (3.4) and (3.5) are identical; therefore it is concluded that GF(q)

addition is a valid update message for a degree-3 stochastic check node.

Since the output of a check node can be computed recursively [10], the previous

conclusion can be generalized to a check node of any degree, and the output messages

for these nodes are given as:

V cp(t) =
dc∑

i=1,i 6=p

U ic(t), (3.6)

where the summation is over GF(q).

As can be seen from Equation (3.6), the check node update message complexity

is O(dc − 1) which is linear in dc and indepent of the field order q. In Section 4.4,

we show that the complexity of computing all of a check node’s outgoing messages

remains linear in dc and is given as O(2dc − 2).

3.2 Noise-Dependent Scaling and Edge Memories

In stochastic decoding, switching activity in message streams can become very

low resulting in poor bit-error-rate performance. This phenomenon is called latch-up

and is caused by cycles in the graph that cause the stochastic streams to become

27

3.2. Noise-Dependent Scaling and Edge Memories

correlated invalidating the independent stream assumption used to derive Equa-

tions (3.1) and (3.6). Two solutions were proposed in [19]: noise-dependent scaling

and edge memories. Both of these methods are used to improve the performance of

the GF(q) decoder.

Noise-dependent scaling increases switching activity by scaling the channel like-

lihood values. For example, when transmitting data using BPSK modulation over

an AWGN channel the scaled likelihood of each received bit l′(i) is calculated by:

l′(i) = [l(i)]
2ασ2

n
Y ,

where l(i) is the unscaled bit likelihood, σ2
n is the noise variance, and the ratio α

Y

is determined offline to yield the best performance in the SNR range of interest.

Accordingly the equation for computing the channel likelihood values becomes:

L[β] =

p∏
k=1

[l(βk)]
2ασ2

n
Y . (3.7)

Edge memories (EM), in their simplest form, are finite depth buffers inserted

between variable nodes and permutation nodes and randomly reorder symbols in

the output streams of variable nodes; thus, they break correlation between streams

without affecting the overall stream statistics. The EM contents are updated with

the variable node output when the node update condition is satisfied, and remain

intact otherwise. The output of the EM is that of the variable node in the first case,

or a randomly selected symbols from its contents in the second. Due to the memory’s

finite length, older symbols are discarded when new ones are added.

Figure 3–1 demonstrates the message passing mechanism and the location of

edge memories within a stochastic decoder.

28

3.3. Algorithm Description

=Channel Stream

EM

+

x-1 x

EM

+

x-1x

Figure 3–1: Message propagation in the stochastic decoder.

3.3 Algorithm Description

The first step in decoding a received vector is to compute the channel likelihood

values based on received soft information and channel model. Furthermore, NDS

is applied to these values resulting in a scaled version which is then normalized.

Afterwards, each edge memory is initialized such that the distribution of its contents

has as its PMF the scaled channel likelihood values corresponding to the variable node

the edge memory is connected to. The iterative decoding process then begins and

the following steps describe the decoder functions performed during reach decoding

cycle.

1. Variable node messages are computed using Equation (3.1). Edge memory con-

tents are updated where appropriate and messages are sent from edge memories

to permutation nodes.

2. Permutation nodes multiply, over GF(q), the incoming messages by the ele-

ments of H and send the results to check nodes.

29

3.4. Performance

3. Check node messages are computed using Equation (3.6) and sent to permu-

tation nodes.

4. Permutation nodes multiply the incoming messages by the inverse of the ele-

ments of H and the send the results to the variable nodes.

5. Each variable node contains q counters C[a] corresponding to GF(q) elements

that are used to track the variable node belief. A counter corresponding to a

particular symbol is incremented when all of the variable node inputs, including

the channel stream, are equal to that symbol. The variable node belief is defined

as arg maxC[a].

The message streams are processed on a symbol-by-symbol basis, one symbol

each cycle (steps 1-5), until the algorithm converges or a maximum number of decod-

ing cycles is reached. The algorithm is said to converge if the variable node beliefs

satisfy the check constraints, i.e. the beliefs are used to perform syndrome checking.

The last step of the decoding algorithm is to present the variable node beliefs as the

decoder output.

3.4 Performance

Figure 3–2 demonstrates the performance of the stochastic decoder compared

to that of an SPA decoder when decoding a (256,128)-symbol, rate 1/2 LDPC code

over GF(16) [23], when using an AWGN channel, BPSK, and random source data.

The SPA decoder has a maximum of 1000 iterations, while the stochastic decoder’s

maximum is 106 decoding cycles (DC). The performance of the two decoders is very

similar and the two decoders perform identically for higher SNR values. The change

in the slope of the error rate graph was also observed in [23].

30

3.5. Binary Stochastic Decoding as a Special Case

SNR (dB) 2.0 2.5 3.0 3.5 4.0
DCavg (DCmax = 106) 22599 8888 4243 2329 1433
DCavg (DCmax = 105) 17958 8511 4209 2326 1433

Table 3–1: Average number of decoding cycles.

The maximum number of decoding cycles is much greater than the average

number of decoding cycles as shown in Table 3–1, with DCavg determining the

decoder throughput which is given in information bits per clock cycle. In Figure 3–2

we can see that, at higher SNRs, DCmax can be reduced with a small performance

loss.

It should be noted that the number of iterations in the SPA decoder and decoding

cycles in the stochastic decoder are not directly comparable. SPA iterations involve

complex operations, for example, the node operations in EMS [24] involve sorting

and iterating over incoming message elements; thus, requiring many clock cycles. In

a stochastic decoder, a decoding cycle is very simple and can be completed within a

single clock cycle. Also, due to the nature of stochastic computation, the proposed

implementation lends itself to pipelining (due to the random order of the messages,

the feedback loop in the graph is broken allowing pipelining [22]); thus, enabling

clock rates faster than those possible with the SPA. A detailed complexity analysis

is presented in Section 4.6.

3.5 Binary Stochastic Decoding as a Special Case

In this section we prove that GF(q) stochastic decoding of codes with q = 2

has the same output messages, stream statistics, and results as the binary stochastic

31

3.5. Binary Stochastic Decoding as a Special Case

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
rr

or
 R

at
e

Eb/N0 (dB)

SPA FER
EM, DCmax = 105 FER
EM, DCmax = 106 FER

SPA BER
EM, DCmax = 105 BER
EM, DCmax = 106 BER

Figure 3–2: FER and BER for a (256,128)-symbol (2,4)-regular LDPC code over
GF(16). EM length = 50, α

Y
= 0.5.

algorithm of [22]. We refer to the proposed algorithm as GF(2) stochastic decoding

and to that of [22] as binary stochastic decoding.

When operating over GF(2), we only have two symbols: 0 and 1. Therefore,

we only need to track the probability of one of them because the probabilities are

related by: P [x = 0] = 1− P [x = 1]. In this section we choose to track P [x = 1].

A GF(2) variable node has the following update rule derived from Equation (3.1):

U vp(t) =

0 if V iv = 0,∀i : i 6= p

1 if V iv = 1,∀i : i 6= p

U vp(t− 1) otherwise

(3.8)

32

3.5. Binary Stochastic Decoding as a Special Case

This is the same update rule proposed in [22].

Furthermore, starting with the GF(q) variable node output message PMF in

Equation (3.3), we obtain:

P [U vp(t) = c] =

dv∏
i=1,i 6=p

P [V iv(t) = c]

∑
a∈GF(2)

dv∏
i=1,i 6=p

P [V iv(t) = a]

=

dv∏
i=1,i 6=p

P [V iv(t) = c]

dv∏
i=1,i 6=p

P [V iv(t) = 0] +
dv∏

i=1,i 6=p

P [V iv(t) = 1]

=

dv∏
i=1,i 6=p

P [V iv(t) = c]

dv∏
i=1,i 6=p

(1− P [V iv(t) = 1]) +
dv∏

i=1,i 6=p

P [V iv(t) = 1]

(3.9)

Since we only track P [x = 1], from Equation (3.9) we have:

P [U vp(t) = 1] =

dv∏
i=1,i 6=p

P [V iv(t) = 1]

dv∏
i=1,i 6=p

(1− P [V iv(t) = 1]) +
dv∏

i=1,i 6=p

P [V iv(t) = 1]

(3.10)

Which matches exactly the output message PMF of binary stochastic decoding.

In binary LDPC codes, all non-zero H elements are equal to 1; thus, the per-

mutation and inverse permutation node multipliers are all equal to 1. Since multi-

plication by 1 does not affect the stochastic streams, the permutation nodes can be

removed when decoding binary codes.

33

3.5. Binary Stochastic Decoding as a Special Case

From Equation (3.6), we know that the update rule for a stochastic GF(2) check

node is:

V cp(t) =
dc∑

i=1,i 6=p

U ic(t), (3.11)

where the addition is performed over GF(2). GF(2) addition is an XOR operation;

thus making Equation (3.11) and the binary stochastic check node update rule iden-

tical. The probability of a degree-3 GF(2) check node output symbol being equal to

1 is calculated from the PMF (3.5) as:

P [V cp(t) = 1] = P [U1c(t)⊕ U2c(t) = 1] (3.12)

= P [U1c(t) = 1](1− P [U2c(t) = 1]) + (1− P [U1c(t) = 1])P [U2c(t) = 1].

which is the same as that of a degree-3 stochastic binary check node.

Based on this comparison, we conclude that the binary stochastic decoding of

[22] is a special case of GF(q) decoding when operating over GF(2). It should be

noted, however, that the architecture of the binary stochastic decoder in [22] differs

slightly from that of the GF(2) decoder due to optimizations used that are enabled

by the tracking of only one symbol instead of two.

34

Chapter 4

Decoder Architecture

In this chapter we propose an architecture for the major components of a stochas-

tic LDPC decoder. We limit the designed decoders to codes over GF(2p) as these

are the non-binary codes most commonly used in literature and such a constraint

greatly simplifies the implementation. In this chapter GF(2p) is used when describ-

ing items which only apply to codes over GF(2p); while GF(q) is used when there is

no restriction on the field order.

There are two common methods for representing GF(2p) symbols in a circuit:

the logarithm representation which uses the discrete logarithm of field elements and

since log 0 does not exist, the value 2p represents 0; and the polynomial representation

where coefficients of the element’s polynomial are used. The logarithm representation

results in simple multiplication circuitry; while the polynomial representation results

in simple addition and subtraction circuitry.

We use the polynomial representation for this architecture since it significantly

simplifies the check node implementation without a significant increase in the com-

plexity of the permutation node as shown in Sections 4.3 and 4.4.

- 35 -

4.2. Architecture Overview

+

x

=

Likelihood-to-CDF
Converter

=
-1xx-1x

Figure 4–1: Overall decoder architecture

We start this chapter with an architecture overview detailing the location and

interconnections of the major decoder blocks in Section 4.1. The details of each block

are then presented in Sections 4.2-4.5.

4.1 Architecture Overview

There are four major types of blocks in the stochastic decoder. The likelihood-

to-CDF converter receives soft information from the channel and converts it to a

cumulative distribution function (CDF) for each variable node. Only one such block

is needed in the decoder since data is received serially from the channel. Variable

nodes are initialized using the CDF values from the converter. They connect to

check nodes via permutation and inverse permutation nodes. Figure 4–1 details the

connections between the four block types.

4.2 Variable Node

Figure 4–2a shows the architecture of a degree-2 variable node. For reasons

of organizational clarity, this block also includes edge-memories, the channel-stream

generator, and the belief tracking circuitry.

36

4.2. Variable Node

=

EM

=

EM

CSG

BEL

CDF

01 01

out1 out0 belief

in0 in1

2p*t

p

p p

p p

p

p p

(a) Node

CSG Channel Stream Generator
Accepts 2p t-bit CDF values.

= Equality Check

BEL Belief Tracker

EM Edge Memory

And Gate

Multiplexor01

Symbol Path

(b) Legend

Figure 4–2: Degree-2 variable node architecture.

As mentioned in Section 3.3, the variable node components are initialized using

the scaled channel likelihood values. This is accomplished by sending a CDF to the

channel-stream generator (CSG). Using a cumulative distribution function (CDF),

as opposed to a PMF, greatly reduces the complexity of the CSG as shown in Sec-

tion 4.2.1. The CSG is used to initialize the edge-memories by generating a random

stream and writing the values to the edge-memories.

When a symbol arrives on in0, it is compared with the CSG output symbol. If

both symbols are equal, the value is added to the edge-memory and it is presented

as the node output to a permutation node connected to out1. On the other hand,

if the symbols are not equal, the edge-memory sets the value on out1. The symbol

coming from in1 follows a parallel path. When in0, in1, and the CSG symbol are

equal, the node belief is updated as described in Section 4.2.2.

37

4.2. Variable Node

When implementing a higher degree node one needs extra symbol paths identical

to the one indicated in Figure 4–2a. The outputs of the additional equality checks

are routed to the AND gate at the input of the belief tracker.

4.2.1 Channel-Stream Generator

The CSG’s function is to generate a stochastic stream whose PMF is the scaled

channel likelihood values. It includes a q̃-bit linear feedback shift-register (LFSR)

matching the quantization level of the CDF values. The LFSR generates a uniformly

distributed pseudo-random number every cycle which is compared with each CDF

value. The first GF(q) symbol whose CDF value is greater than the LFSR output,

is added to the channel stream. This can be accomplished using a priority encoder

whose inputs are the comparator outputs and whose output is the current channel-

stream symbol.

Storing and comparing the LFSR output with the last CDF value is superfluous

since that value is always the largest possible at the given quantization level. Thus,

it is not stored and the corresponding GF(q) symbol is added to the channel stream

when the generated random number is greater than all other CDF values. Figure 4–3

shows an implementation of a GF(4) CSG which only stores q − 1 = 3 CDF values.

Had a PMF been used instead of a CDF, an accumulator would have been

needed to sum all PMF values until the result exceeded the LFSR output. This

would have had to be performed for every decoding cycle, significantly degrading the

decoder throughput.

It should be noted that since the LFSR is always enabled and generating ran-

dom numbers, the LFSRs in all CSG units always provide the same output unless

initialized with different seeds. Simulations have shown that a single LFSR for all

38

4.2. Variable Node

LFSR

CDF()

CDF(1)

CDF(0)

Priority
Encoder

1

0

out

Figure 4–3: GF(4) Channel stream generator

CSGs can be used without a loss in performance. Therefore, multiple CSG blocks

can share the same LFSR. The ratio of CSG blocks to LFSRs is a parameter that

can be used to favor a lower number of logic gates or simpler chip routing.

4.2.2 Belief Tracker

A variable node’s belief is the most likely GF(q) symbol according to all incoming

messages. It represents the decoder output for that variable node and is used for

calculating the stopping criterion. Deciding which symbol is the belief value is the

belief tracker’s function.

The tracker contains an up-counter for each GF(q) element. A counter is incre-

mented when all node inputs, including the CSG symbol, are equal to the element

it represents. The symbol whose counter has the largest value is the variable node

belief.

It is prohibitively expense, in terms of resources used, to find the maximum

counter value using a comparator tree. A more efficient approach would be to store

the current belief in a register and compare the newly incremented symbol’s counter

to the belief’s. If the new counter is greater than the belief’s, the belief register

39

4.2. Variable Node

is updated. Figures 4–4a and 4–4b represent two architectures implementing the

aforementioned method for a GF(4) belief tracker.

The architecture in Figure 4–4a uses two multiplexers connected to the up-

counters. One multiplexer is controlled using the new input symbol; while the other

uses the belief register value. The outputs of the multiplexers are compared in

magnitude and the symbol corresponding to the larger value is used as the belief

value and is stored in the belief register.

The second architecture uses two registers, one for the belief symbol and one for

the maximum counter value, and one multiplexer connected to the up-counters and

controlled using the new input symbol. The multiplexer output is compared with the

maximum count register. The result of that comparison is used to select the larger

value, which will be stored in the maximum count register, and the corresponding

symbol, which will be stored in the belief register. The belief register is presented as

the tracker’s output.

Both architectures have similar resource requirements for smaller fields. However

as the field size grows, the multiplexers connected to the counters grow significantly

in size and complexity. As such, the two register approach is preferable for larger

fields.

4.2.3 Edge-Memories

As mentioned in Section 3.2, edge-memories are finite depth buffers, in which a

write causes the oldest value to be erased, and a read fetches data from a random

location in the memory.

40

4.3. Permutation Node

Counter 0

Counter 1

Counter 2

Counter 3

Belief symbol

Input symbol

Belief

(a) Two multiplexer architecture.

Counter 0

Counter 1

Counter 2

Counter 3

Belief symbol

Input symbol

Belief

Belief count

(b) Two register architecture

Figure 4–4: GF(4) belief tracker architecture.

Such a system can be implemented using a dlog2(q)e-bit wide FIFO whose read

pointer is modified so that it is the output of an LFSR or another random number

generator.

The state of the random number generator should be changed only when a write

to the edge-memory occurs. Otherwise, all edge-memories use the same read pointer

and the correlation between the stochastic message streams is no longer reduced.

4.3 Permutation Node

The GF(q) multiplication by a constant field element can be implemented using

either a LUT or a logic multiplier as shown in [25]. Both approaches are equiv-

alent in terms of complexity for GF(2p), with the LUT being the better for field-

programmable logic arrays (FPGA) especially if the field size is small.

We choose to use LUTs as they have a major advantage over the multipliers by

constant: they perform the multiplication using a single clock cycles where as the

multipliers require multiple cycles since they contain feedback shift-registers.

41

4.4. Check Node

Had the logarithm representation of GF(q) symbols been used, multiplication

would have been performed using real addition and subtraction. This is generally

less complex than LUTs. However, since the multiplication performed is always by

a constant, the LUTs can be kept small.

Let p = dlog2(q)e, then each permutation node requires two p×2p LUTs, one for

multiplication by h and the other by h−1. Similarly, two GF(2p) multipliers would

be needed if the combinatorial approach is used.

4.4 Check Node

Since we limit the decoding to GF(2p), addition and subtraction are the same

operation and we will use the term adder to refer to the arithmetic unit which

performs this operation. Also, because the polynomial representation of GF(2p) is

used, such an arithmetic unit can be implemented using parallel XORs as shown in

Figure 4–5a.

Check nodes are the major reason why the polynomial representation of GF(2p)

elements is used. The logarithm representation would have required the use of LUTs

to convert every input into the polynomial representation before performing the

addition and another set of LUTs to convert the results back into the logarithm

representation; thus, negating the advantage of not using LUTs in the permutation

node. Another approach, which might seem appealing at first, is to use LUTs to

perform the GF(2p) addition pairwise. This is not feasible as the size of the LUTs is

2p × 2p, and the latency of going through many of them will be high and will limit

the decoder frequency.

42

4.5. Likelihood-to-CDF Converter

P (t)ax,0
P (t)bx,0
P (t)cx,0

P (t)ax,1
P (t)bx,1
P (t)cx,1

P (t)ax,2
P (t)bx,2
P (t)cx,2

P (t)xd,0

P (t)xd,1

P (t)xd,2

(a) 3-input GF(8) adder

+ + + +

+

+

in0

in1

in2

in3

out0

out1

out2

out3

(b) dc = 4 check node. ⊕ is a GF(2p) adder.

Figure 4–5: Check node architecture.

Since, regardless of which representation is chosen, LUTs are used, it is best to

use the polynomial representation and limit the LUTs to permutation nodes as that

approach provides the lowest latency while using the least number of gates.

Computing the outgoing check node messages independently is wasteful of re-

sources as it requires dc(dc − 1) GF(2p) additions per check node. A more efficient

approach is to sum all incoming messages together, and when sending a message to

permutation node x, subtract the incoming message from x, so that output message

is computed using V cx(t) = S − Uxc(t), where S =
∑dc

i=1 U ic(t). This approach

requires only 2(dc − 1)1 GF(2p) adders as shown in Figure 4–5b.

4.5 Likelihood-to-CDF Converter

The likelihood-to-CDF converter, when operating over GF(2p), receives soft in-

formation regarding the values of bits received from the channel. It computes the

likelihood values and applies noise-dependent scaling (NDS) based on the channel

model. Then, it proceeds and combines the individual bit likelihood values into

1 (dc − 2) + 1 + (dc − 1) = 2(dc − 1) [26]

43

4.5. Likelihood-to-CDF Converter

symbol likelihood values. These values are then accumulated to generate a non-

normalized CDF, which is then divided by its last, and largest, value resulting in

a proper CDF that is sent to a variable node. Since this block requires knowledge

of the channel model to compute and combine the likelihood values, we present an

architecture for working with the AWGN channel with BPSK modulation.

Computing the NDS bit likelihoods directly involves exponentiation and division

which are expensive operations to implement in hardware. Since it was determined

via simulation that 6 bits of quantization for these values resulted in no performance

loss when compared to floating point simulations, 6×64 LUTs can be used to perform

this calculation. For the AWGN channel with BPSK modulation , two LUTs are

needed: one to compute the likelihood of the received bit being 0, and the other for

the likelihood of it being 1. In addition, using LUTs prevents overflow and saturation.

The LUT values are computed offline. For example, when using BPSK modulation

over an AWGN channel, the LUTs are populated using: ce−(x−b)2 α
Y where c = 26−1

26

preventing overflow, x is the received bit, b = 1 or − 1 depending on which LUT is

being populated, and α
Y

is the NDS factor.

Combining the bit likelihood values to compute the symbol likelihoods is an

operation akin to convolution: the likelihood of each bit being 0 or 1 is multiplied

by the likelihoods of all other bits being 0 or 1 according to the following equation:

L[β] =

p∏
k=1

l(ik = βk), where l(ik = βk) is the likelihood of bit k in the received

symbol i being equal to bit k in the polynomial representation of GF(2p) symbol β.

The symbol likelihood values are a non-normalized PMF. Since it was shown in

Section 4.2.1 that it is beneficial to use CDFs, the values in the non-normalized PMF

are accumulated such that cCDF[i] =
k=i∑
k=0

cPMF[k] where cCDF and cPMF are the

44

4.6. Complexity Analysis

LUT0

LUT1

D

D

D

D

D
2

D
2

D

D
2

D

X + D D D

0

a/b
CDFa

b

D

D
2

+

X

a/b

Unit delay

2-unit delay

Adder

Multiplier

Divide a by b

Cyclically select

inputs in the direction

of arrow, starting with

indicated input.

Figure 4–6: Pipelined GF(4) likelihood-to-CDF converter

non-normalized distribution functions. The received symbol CDF is computed using

CDF[i] = cCDF[i]/cCDF[2p − 1], where i = 0 to 2p − 1.

Figure 4–6 demonstrates a pipelined likelihood-to-CDF converter designed for

GF(4) and transmission over the AWGN channel with BPSK modulation.

4.6 Complexity Analysis

In this Section, we compare the number of operations performed per decoding

cycle by the proposed stochastic decoder with that of the FFT-SPA and Log-FFT-

SPA decoders of [3]. EMS and Reduced complexity EMS are not included in this

comparison as they focus on a subset of the GF(2p) symbols and we limit the analysis

to algorithms that include the entire field.

We start with the variable node which performs the most varied types of oper-

ations. Every decoding cycles, a variable node performs dv equality checks between

the CSG output and its inputs. The results of theses checks are combined using AND

45

4.7. Complexity Analysis

gates. The CSG performs 2p − 1 memory accesses and comparisons when generat-

ing a symbol. To update the node belief, the belief tracker reads the counter value

corresponding to the input symbol and increments it, which involves a real addition

and a memory write. The registers containing the maximum count and the belief

symbol are read and updated after the maximum count is compared with the new

symbol count. Therefore, the belief tracker performs 1 real addition, 1 comparison,

and 6 memory operations. Each of the dv edge-memories performs either a write

or a read. As such the total number of operations performed by each variable node

per decoding cycle is: dv + 2p comparisons, 2p + dv + 5 memory accesses, and 1 real

addition.

Each permutation node performs two GF(2p) multiplications, and each check

node performs 2dc − 2 GF(2p) additions.

Table 4–1 summarizes the comparison between the two SPA decoders and two

versions of the stochastic decoder: one which performs GF(2p) multiplication using

GF(2p) multipliers by constants, and one which uses look-up tables (LUT). The

decoders compared are for a code with nv variable nodes and nc check nodes. In

addition to arithmetic operations, the table shows equality checks and magnitude

comparisons in the logical comparison column, and LUT and register accesses in the

memory access column.

It is evident that stochastic decoding performs far fewer and simpler operations

per iteration than SPA based decoders. The one drawback it has is the large number

of iterations which is addressed in Chapter 5.

46

4.7. Synthesis Results

Algorithm

Multiplication Addition

Logical Memory Access

Real GF(2p) Real GF(2p) Comparison

FFT-SPA [3] 2p(d2v + 4dv)nv 0 (2pdv + 1)2pnv 0 N/A 0

Log-FFT-SPA [3] 0 0 (2p+ 4)2pdvnv 0 N/A 2p2pdvnv

Stochastic 0 2dvnv nv (2dc − 2)nc (dv + 2p)nv (2p + dv + 5)nv

Stochastic-LUT 0 0 nv (2dc − 2)nc (dv + 2p)nv (2p + 3dv + 5)nv

Table 4–1: Total number of operations per iteration.

4.7 Synthesis Results

The nodes were synthesized for the (256,128) GF(16) LDPC codes in simulations

using a 90nm library with a target frequency of 100MHz.

The variable nodes were by far the largest with each variable node occupying

30338 µm2. The LDPC code used an equal number of four different values for

permutation node multipliers: {1, α3, α7, α11}. This resulted in permutation nodes

with different sizes since the synthesizer implemented the LUTs as combinatorial

logic and was able to optimize some better than the others. The permutation node

with multiplier 1 does not occupy any area since it is just a connection between the

variable and check nodes. The node with α3 occupied 71 µm2, that with α7 also

occupied 71 µm2, and the node with α11 occupied 78 µm2. These estimates include

the forward and inverse permutation node LUTs. Each check node required 158 µm2.

These area estimates are for synthesized logic only, routed area was not cal-

culated. Control logic area was not computed as it would be minuscule compared

to the node area. Also, The likelihood-to-CDF was not include either for the same

reason.

47

4.7. Synthesis Results

Var. Nodes Perm. Nodes Check Nodes Total
Area (µm2) 7,766,528 28,160 20,224 7,814,912

Gate Count (1× NAND) 1,769,141 6,414 4607 1,780,162

Table 4–2: Synthesis results

Table 4–2 shows the area and estimated gate count for all nodes in the decoder

in addition to an estimated total.

The synthesis results show that variable nodes occupy most (99%) of the decoder

area. As can be seen from Table 4–3, the majority of the variable node area is

composed of the EMs and CSG. Therefore, any scheme which can simplify these two

components or reduce their count can significantly decrease the decoder area.

EMs CSG Belief Tracker Other Total
Area (µm2) 15023 9693 5419 203 30338

% of node area 49.5 32.0 17.9 0.6 100

Table 4–3: Variable node area use

48

Chapter 5

Reducing the Number of Decoding Cycles

In section 3.4, we saw that the average and maximum number of decoding cycles

for the stochastic decoder were large compared with those of the SPA decoder. This

limits the decoder applications since it decreases throughput and increases maximum

latency.

In this chapter, we study two methods for reducing the number of decoding

cycles that were first used for binary stochastic LDPC decoding in [27] and [28].

In sections 5.1 and 5.2 we generalize these two techniques to GF(q) decoders and

investigate their performance and some simplifications which reduce the resources

needed.

5.1 Tracking Forecast Memories

Tracking forecast memories (TFM) were first introduced in [27] as a replacement

for edge-memories in order to reduce chip area. While they do not necessarily reduce

area requirements for LDPC codes over GF(q), they significantly increase the rate

at which the decoder converges.

- 49 -

5.1. Tracking Forecast Memories

TFMs replace edge-memories in the decoder without further changes to its ar-

chitecture. They modify the variable node output using the successive relaxation

method [29]. A TFM operating over GF(q) contains q registers storing a PMF which

corresponds to the variable node output. When a GF(q) symbol x is written to a

TFM at time t, each PMF register is updated according to the following rule:

PMFt[i] =

 (1− β)PMFt−1[i] + β if i = x

(1− β)PMFt−1[i] otherwise
(5.1)

In equation (5.1), i ∈ GF (q) and β ≤ 1 is the relaxation factor. β is computed

offline via simulation and values of the form 2−k, k ∈ N are desirable since they result

in simpler hardware implementation as will be explained in section 5.1.1. The PMF

values are used to generate the TFM output symbol when a read is requested.

Figure 5–1 demonstrates that a TFM-based decoder with DCmax = 104 out-

performs a regular EM-based one operating with DCmax = 105, and the TFM-based

decoder with DCmax = 106 matches the SPA curve. Table 5–1 shows that this per-

formance is achieved with a significantly lower average cycle count. Further reduction

in DCmax was not possible as the decoder performance was extremely degraded when

DCmax = 103. This is to be expected since the average number of iterations is larger

than or very close to 103 for the SNR range simulated. All the TFM-based decoders

used in the examples use β = 1/16.

5.1.1 TFM Architecture

From equation (5.1) it is evident that the PMF values stored in a GF(q) TFM are

updated independently of each other. This forms the basis of the block’s architecture:

a TFM is divided into sub-blocks, called TFM[i], where i ∈ GF(q). Each TFM[i]

50

5.1. Tracking Forecast Memories

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fr
am

e
E

rr
or

 R
at

e

Eb/N0 (dB)

SPA
EM, DCmax = 105

EM, DCmax = 106

TFM, DCmax = 104

TFM, DCmax = 106

Figure 5–1: TFM-based decoder performance

tracks the PMF value associated with i and provides that value as output. The

outputs are used as a PMF to generate a discrete random variable that is the TFM

output symbol. Figure 5–2 shows the architecture of a GF(q) TFM.

In the block diagram of a TFM[i], we notice that the multiplication of the

PMF[i] value by (1−β) is implemented as PMF[i]−β ∗PMF[i]. This eliminates the

need for a real multiplier circuit if β = 2−k since the multiplication can be simply

accomplished by shifting the bits of PMF[i] by k positions to the right

51

5.2. Relaxed Half-Stochastic Decoding

PMF[i]
wr_en

X
=

+

PMF[i]

0 1

1 0

sym_in

i

0

TFM[0]

TFM[1]

TFM[i]

Discrete RV Generator

sym_out

+
-

Figure 5–2: TFM architecture

5.1.2 Reducing TFM Count

It was noted in simulations that a number of TFMs in the decoder can be

replaced by registers that only store the last written value, i.e. directly implementing

equation (3.1), without a major degradation in performance. Figure 5–3 shows the

resulting decoder performance when every 2nd (50% TFM), 3rd (66% TFM), or 4th

(75% TFM) TFM is replaced with a register compared with the original decoder

(100% TFM). In these simulations β = 1/16 and DCmax = 104.

Since TFMs contain many registers and, thus, occupy a large portion of the

decoder, reducing their count would reduce the decoder area significantly.

5.2 Relaxed Half-Stochastic Decoding

Relaxed Half-Stochastic (RHS) decoding, first introduced in [28], stemmed from

the observation that the variable node constraint (3.1) is not frequently satisfied

in binary stochastic decoding, especially as the node degree increases. As such, it

52

5.2. Relaxed Half-Stochastic Decoding

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fr
am

e
E

rr
or

 R
at

e

Eb/N0 (dB)

SPA
100% TFM

75% TFM
66% TFM
50% TFM

Figure 5–3: Reduced TFM decoder performance, DCmax = 104

increases the number of decoding cycles required for decoder convergence. Going to

higher field orders exacerbates this issue. To solve this problem Leduc-Primeau et al.

[28], replaced the stochastic variable node with an SPA one. The SPA variable node

has two major advantages: first, it modifies its output message statistics every cycle,

not just when the update constraint is satisfied; second, it eliminates the correlation

between stochastic streams. The node has a TFM on each input to convert the

stochastic streams into probability values, and it uses the SPA output message as a

PMF to generate a stochastic stream symbol.

The same approach can be used for LDPC codes over GF(q). A GF(q) SPA

variable node is connected to the output of the inverse permutation nodes using

53

5.2. Relaxed Half-Stochastic Decoding

SNR (dB) 2.0 2.5 3.0 3.5
EM (DCmax = 106), L = 50 22599 8888 4243 2329

TFM (DCmax = 106), β = 1/16 2923 1141 731 522
TFM (DCmax = 104), β = 1/16 1893 1100 730 522
RHS (DCmax = 106), β = 1/64 641 240 167 129
RHS (DCmax = 104), β = 1/64 373 228 167 129
RHS (DCmax = 103), β = 1/64 331 225 166 129

Table 5–1: Average decoding cycles for modified decoders

modified GF(q) TFMs. The input of these TFMs is the inverse permutation node

output symbol; however, unlike normal TFMs, their output is the stored PMF values

instead of a GF(q) symbol. A variable node output message calculated using (2.9)

is used as a PMF to generate the symbol sent to a permutation node. One can use

logarithms to convert the multiplications in equation (2.9) to additions, and since a

variable node output message is used as a PMF, it must be properly normalized.

From Table 5–1 and Figure 5–4, a conclusion similar to that of the TFM-based

decoder case arises; namely that the RHS decoder requires significantly fewer cycles

to converge. It also outperforms the TFM-base decoder in both metrics. An inter-

esting result is that the RHS decoder with DCmax = 103 outperforms the EM-based

one with DCmax = 105.

NDS degrades the RHS decoder’s performance; therefore, channel likelihood

values should not be scaled, just like in an SPA decoder. Also, an RHS variable

node’s belief is computed in the same manner as in the SPA variable node.

54

5.2. Relaxed Half-Stochastic Decoding

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fr
am

e
E

rr
or

 R
at

e

Eb/N0 (dB)

SPA
EM, DCmax = 105

EM, DCmax = 106

RHS, DCmax = 103

RHS, DCmax = 104

RHS, DCmax = 106

Figure 5–4: RHS decoder performance, β = 1/64

55

Chapter 6

Conclusion

In this thesis we presented an algorithm for decoding LDPC codes over GF(q)

which has much lower complexity than its counterparts in literature. We demon-

strated that its performance matches that of the SPA.

A decoder architecture based on the stochastic decoding algorithm that only

uses simple circuitry to compute node equations was provided, and an estimate of

the area required for its implementation was given. Analysis of synthesis results

showed that edge-memories were occupying a large area.

To increase the decoder throughput two enhancements were studied: TFMs and

RHS decoding. We showed that using either of these methods decreased the average

number of decoding cycles significantly and, thus, increased throughput and enabled

us to lower the decoder’s maximum latency. We also investigated an area reduction

scheme that removed some TFMs from the system and showed that the resulting

performance degradation was within tolerable limits.

Further work on this topic would include reducing the complexity of the TFM

implementation, investigating whether the belief tracker can be simplified by using

- 56 -

6.0. Relaxed Half-Stochastic Decoding

the EMs or TFMs already present in the node to replace the counters, and improving

the decoder performance for higher field orders.

57

REFERENCES

[1] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 619–637, 2001.

[2] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE
Commun. Lett., vol. 2, no. 6, pp. 165–167, 1998.

[3] H. Song and J. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes for
magnetic recording,” IEEE Trans. Magn., vol. 39, no. 2, pp. 1081–1087, 2003.

[4] I. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication
systems,” IEEE Photonics Technology Letters, vol. 17, no. 10, pp. 2224–2226,
2005.

[5] G. Sarkis, S. Mannor, and W. J. Gross, “Stochastic decoding of LDPC codes
over GF(q),” in Proc. IEEE International Conference on Communications ICC
’09, Jun. 14–18, 2009, pp. 1–5.

[6] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,
1963.

[7] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, 1999.

[8] S. Le Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral effi-
ciency modulation,” in Serving Humanity Through Communications Commu-
nications ICC 94, SUPERCOMM/ICC ’94, Conference Record IEEE Interna-
tional Conference on, May 1–5, 1994, pp. 645–649.

[9] C. Schlegel and L. Perez, Terllis and Turbo Coding. Wiley-IEEE Press, 2003.

[10] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes
over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, 2007.

[11] J. Chen, L. Wang, and Y. Li, “Performance comparison between non-binary
LDPC codes and Reed-Solomon codes over noise bursts channels,” in Proc.

- 58 -

International Conference on Communications, Circuits and Systems, L. Wang,
Ed., vol. 1, 2005, pp. 1–4 Vol. 1.

[12] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),”
in Proc. IEEE Information Theory Workshop, Mar. 31–Apr. 4, 2003, pp. 70–73.

[13] D. MacKay and M. Davey, “Evaluation of Gallager codes for short block length
and high rate applications,” in Proc. IMA Workshop Codes, Syst., Graphical
Models, 1999.

[14] X. Li and M. R. Soleymani, “A proof of the Hadamard transform decoding of
the belief propagation algorithm for LDPCC over gf(q),” in Proc. VTC2004-Fall
Vehicular Technology Conference 2004 IEEE 60th, vol. 4, Sep. 26–29, 2004, pp.
2518–2519.

[15] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of
LDPC codes over GF(q),” in Proc. IEEE International Conference on Commu-
nications, H. Steendam, Ed., vol. 2, 2004, pp. 772–776 Vol.2.

[16] X. Huang, S. Ding, Z. Yang, and Y. Wu, “Fast min-sum algorithms for decoding
of LDPC over GF(q),” in Proc. ITW ’06 Chengdu Information Theory Workshop
IEEE, S. Ding, Ed., 2006, pp. 96–99.

[17] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity,
low-memory EMS algorithm for non-binary LDPC codes,” in Proc. IEEE Inter-
national Conference on Communications ICC ’07, D. Declercq, Ed., 2007, pp.
671–676.

[18] B. Gaines, Advances in Information Systems Science. Plenum, New York, 1969,
ch. 2, pp. 37–172.

[19] S. Sharifi Tehrani, W. Gross, and S. Mannor, “Stochastic decoding of LDPC
codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, 2006.

[20] V. Gaudet and A. Rapley, “Iterative decoding using stochastic computation,”
Electronics Letters, vol. 39, no. 3, pp. 299–301, Feb. 2003.

[21] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iterative de-
coders,” in Proc. International Symposium on Information Theory ISIT, 2005,
pp. 1116–1120.

- 59 -

[22] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic LDPC
decoders,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5692–5703, Nov.
2008.

[23] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC
codes over GF(q) using their binary images,” IEEE Trans. Commun., vol. 56,
no. 10, pp. 1626–1635, October 2008.

[24] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard, “Architecture of
a low-complexity non-binary LDPC decoder for high order fields,” in Proc. Inter-
national Symposium on Communications and Information Technologies ISCIT
’07, F. Verdier, Ed., 2007, pp. 1201–1206.

[25] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2004.

[26] J. L. Fan, “Constrained coding and soft iterative decoding for storage,” Ph.D.
dissertation, Stanford University, Stanford, CA, December 1999.

[27] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J. Gross,
“Tracking forecast memories in stochastic decoders,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing ICASSP 2009,
Apr. 19–24, 2009, pp. 561–564.

[28] F. Leduc-Primeau, S. Hemati, W. Gross, and S. Mannor, “A relaxed half-
stochastic iterative decoder for LDPC codes,” to appear in the Proceedings
of IEEE Globecom 2009.

[29] S. Hemati and A. H. Banihashemi, “Dynamics and performance analysis of
analog iterative decoding for low-density parity-check (LDPC) codes,” IEEE
Trans. Commun., vol. 54, no. 1, pp. 61–70, Jan. 2006.

- 60 -

