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Abstract:  

In this thesis I will investigate the harmonic syntax of rock music by examining and 

comparing corpora and implementing various statistical models. I will begin with an introduction 

to harmonic syntax and discuss several models of harmonic syntax that music theorists have 

used. In particular, I will consider Christopher White and Ian Quinn’s article “Chord Context and 

Harmonic Function in Tonal Music” and discuss the statistical model that they used and their 

results. Following this, I will introduce a corpus of rock music that was built by David 

Temperley and Trevor de Clercq in 2011 and examine their article “A Corpus Analysis of Rock 

Harmony”. Then, I will expand De Clercq and Temperley’s rock corpus and create a larger 

corpus called the Expanded Rock Corpus (ERC). Following this, I will replicate the basic 

statistical analyses that they conducted. After presenting patterns in the larger corpus with 

histograms, heat maps and dendrograms, I will implement two statistical models and attempt to 

model the harmonic syntax of the ERC. In particular, following the work of Tsushima et al. in 

“Generative statistical models with self-emergent grammar of chord sequences”, I will 

implement Hidden Markov models and Probabilistic Context-Free Grammar models and attempt 

to capture the non-local and hierarchical harmonic dependencies in the ERC. Finally, I will 

discuss several difficulties and issues that I encountered while implementing these models on the 

ERC and conclude by discussing several directions for further research. 
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Resume: 

Dans cette thèse, j'étudierai la syntaxe harmonique de la musique rock en examinant et en 

comparant des corpus et en mettant en œuvre divers modèles statistiques. Je commencerai par 

une introduction à la syntaxe harmonique et discuterai de plusieurs modèles de syntaxe 

harmonique utilisés par les théoriciens de la musique. En particulier, j'examinerai l'article de 

Christopher White et Ian Quinn intitulé "Chord Context and Harmonic Function in Tonal Music" 

et discuterai du modèle statistique qu'ils ont utilisé et des résultats qu'ils ont obtenus. Ensuite, je 

présenterai un corpus de musique rock constitué par David Temperley et Trevor de Clercq en 

2011 et j'examinerai leur article "A Corpus Analysis of Rock Harmony". Ensuite, je développerai 

le corpus rock de De Clercq et Temperley et créerai un corpus plus large appelé Expanded Rock 

Corpus (ERC). Ensuite, je reproduirai les analyses statistiques de base qu'ils ont effectuées. 

Après avoir présenté des modèles dans le corpus élargi à l'aide d'histogrammes, de cartes 

thermiques et de dendrogrammes, je mettrai en œuvre deux modèles statistiques et tenterai de 

modéliser la syntaxe harmonique de l'ERC. En particulier, en suivant le travail de Tsushima et al. 

dans "Generative statistical models with self-emergent grammar of chord sequences", je mettrai 

en œuvre des modèles de Markov cachés et des modèles de grammaire contextuelle libre 

probabiliste et j'essaierai de capturer les dépendances harmoniques non locales et hiérarchiques 

dans l'ERC. Enfin, je discuterai de plusieurs difficultés et problèmes que j'ai rencontrés lors de la 

mise en œuvre de ces modèles sur l'ERC et je conclurai en discutant de plusieurs directions pour 

des recherches ultérieures. 
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1. Introduction to Harmonic Syntax and Models of Harmonic Syntax 

In this chapter, I will introduce the concept of harmonic syntax and discuss several 

models that have been used to study the harmonic syntax of classical and popular music. I will 

also discuss the connection between syntax in language and the various statistical models that 

music theorists have used to study harmonic syntax. 

1.1 Syntax in Music and Language 

In music and language, the concept of syntax refers to the rules for arranging a sequence of 

items. These rules in both language and music vary across different languages, time periods and 

different genres of music and have been investigated by both linguists and music theorists. In 

“Musical Syntax I: Theoretical Perspectives”, Rohrmeier and Pearce define musical syntax as “a 

formal characterization of the principles governing permissible sequential structure in music.” 1  

These principles can refer to many parameters of music including melody, harmony and rhythm. 

They also note how musical syntax “characterizes sequences of musical events generated from a 

lexicon of building blocks and a set of rules governing how the building blocks are combined.”2 

In this thesis, I will focus on the musical feature of harmony and study the harmonic syntax of 

rock music.  

In an effort to understand the harmonic syntax of music, music theorists have used a variety 

of models. In introducing some of the models that theorists have used to understand harmonic 

syntax, I will explain how some models are able to account for more of the complexity of the 

 
1 Martin Rohrmeier and Marcus Pearce, “Musical Syntax I: Theoretical Perspectives,” in Springer Handbook of 
Systematic Musicology, ed. Rolf Baber (Berlin: Springer, 2018), 475. 

2 Ibid. 
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underlying harmonic syntax than others. In the remainder of this chapter, I will introduce several 

models that music theorists have used to study harmonic syntax. 

1.2 Markov and n-gram Models 

The first and simplest model that music theorists have used to study harmonic syntax is 

called an n-gram or Markov model. These models are widely used in linguistics, finance, 

ecology and many other disciplines. In modeling harmonic syntax, n-gram models give the 

probability that a chord will occur next in a sequence of chords given some number of chords. 

This probability ultimately gives us a rough model of how the harmonic syntax of a sequence of 

chords is behaving on a local level. In using n-gram or Markov models, the length of the context 

of the preceding items in the sequence (which is referred to as the order of the model) is often 

varied. As a general trend, increasing the order of the model, that is the number of preceding 

elements, often increases the accuracy that the model is able to correctly predict the next element 

in a sequence. A Markov model of order one, or a 1-gram model, only takes the previous element 

into account when making a prediction for the next element in the sequence and provides a very 

rough estimate of how the harmonic syntax is behaving. One drawback of Markov models is that 

they are not able to account for any of the nonlocal dependencies in the sequences they model as 

they only provide the probability of the next chord based on the sequence of some previous 

number of chords. In other words, they only use the transition probabilities between consecutive 

elements in a sequence to determine which chord comes next and don’t consider the ways in 

which nonconsecutive elements in the sequence could be related to one another. One example of 

work done by music theorists that uses n-gram or Markov models to study harmonic syntax is 
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from Trevor de Clercq and David Temperley’s article “A corpus analysis of rock harmony” and 

is discussed in the following sections.3 

While n-gram or Markov models are simple models which are able to capture the 

occurrence of various surface level harmonic progressions in a corpus of music, they are unable 

to capture the nonlocal and hierarchical dependencies of harmonic progressions. Many theorists 

including Rohrmeier and Patel have noted that musical syntax, and in particular harmonic 

syntax, is similar to the syntax in language in that it is fundamentally a hierarchical 

phenomenon.45 As a result, music theorists have implemented more complex models in order to 

account for the multi-level complexity of the underlying harmonic syntax that they are modeling. 

One example of a model that theorists have used to account for the nonlocal and hierarchical 

dependencies of harmonic syntax is a more sophisticated version of a Markov model called a 

Hidden Markov Model. 

1.2 Hidden Markov models (HMMs): 

Hidden Markov models (HMMs) are similar to Markov or n-grams models but use latent 

or hidden states in order to account for some of the nonlocal or hierarchical dependencies in the 

sequences that they model. In this thesis, the latent or hidden states that the HMMs use to model 

a sequence of chord progressions will correspond to unknown syntactic chord categories like 

“Tonic” or “Dominant”. However, while music theorists traditionally assign specific chords to 

 
3 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1 
(2011): 64 

4 Martin Rohrmeier, “Towards a Generative Syntax of Tonal Harmony,” Journal of Mathematics and Music, vol. 5, 
no. 1 (2011): 35 

5 Aniruddh D. Patel, “Syntax,” in Music, Language, and the Brain, (Oxford University Press, 2007), 239-298.  
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syntactic categories like “Tonic” and “Dominant”, using a sequence of chord progressions, 

HMMs will infer syntactic categories that best fit the sequences of chords from the data. For 

instance, after running a HMM on a sequence of chords from some genre of music, the HMM 

may find that the chords I, bVII and bII belong together in one syntactic category which could 

play the role of a traditional “Tonic” category in classical music. In addition to inferring 

syntactic categories from the sequence of chord progressions, the HMM will also determine the 

likelihood of moving between different syntactic categories or staying in the same category. 

One example of a HMM that was used to model the harmonic syntax of popular music 

from the McGill Billboard corpus was given in “Generative Statistical Models with Self-

Emergent Grammar of Chord Sequences”. In the paper, Tsushima et al. implemented a HMM on 

the McGill Billboard Corpus and derived four hidden states – “Tonic”, “Subdominant”, 

“Dominant” and “Others”, the output probabilities (the red bars in Figure 1) and the transition 

probabilities (the probabilities associated to the blue arrows in Figure 2). It is important to note 

that before running their HMM, Tsushima et al. first transposed the keys of all of works in the 

corpus to C major.  

 

Figure 1: Composition of the Four Hidden States from Tsushima et al. 6 

 
6 Tsushima et al, “Generative Statistical Models with Self-Emergent Grammar of Chords Sequences”, Journal of 
New Music Research, vol. 47, no. 3 (2018): 17. 
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Figure 2: Diagram of the Transition Probabilities from Tsushima et al. 7 

In looking at the composition of the hidden states in Figure 1, it is clear how the state with a high 

percentage of I chords is “Tonic”, IV chords is “Subdominant” and V chords is “Dominant”. The 

fact that the HMM tells us that vi and iii chords function like “Tonic” chords in this corpus and 

that ii7 and IV7 chords function as “Subdominant” chords reflects how our harmonic system 

consists of chords built of stacked thirds which causes chords with roots a third apart to share 

some scale degrees and behave in a similar way. It is also interesting how 82% of the time, 

chords in the “Dominant” category move to chords in the “Tonic” but how chords in the “Tonic” 

category only move to chords in the “Dominant” category 16% of the time. This strong 

unidirectional tendency is an aspect of the harmonic syntax which I will return to when 

discussing the harmonic syntax of rock music in subsequent chapters. It is important to note that 

while these observations might be valid for the harmonic syntax of songs in the McGill Billboard 

corpus, they are not necessarily valid for the harmonic syntax of music from that time period in 

general. Since the McGill Billboard corpus contains harmonic information for 730 songs taken 

from the Billboard Hot 100 Singles charts from August 1958 through November 1991, the 

dataset represents a sample of songs which were popular during this period of time. As a result, 

the corpus does not necessarily provide a full picture of the popular music in this time period but 

 
7 Ibid. 
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rather an approximation which also does not provide equal representation of all artists from 

different backgrounds in this time period.  

1.3 Probabilistic Context-free Grammars 

Having introduced HMMs and given an example, I will now introduce another more 

sophisticated model that music theorists have used to study the concept of harmonic syntax 

called context-free grammars and their probabilistic counterparts called probabilistic context-free 

grammars. Since these models have even more explanatory power than Markov models and 

HMMs, they will be able to model the harmonic syntax of the chord sequences in the corpus in 

even more depth.  

Probabilistic context-free grammars are closely related to formal grammars. A formal 

grammar consists of a set of rules describing how to form strings from an alphabet and can be 

thought of as a formalization and generalization of modern languages. Here, an alphabet refers to 

some set of symbols (which in the case of this thesis are chords) and strings refer to lists of 

symbols from the alphabet (which in the case of this thesis are harmonic progressions). In the 

appendix of their chapter “Musical Syntax I: Theoretical Perspectives”, Rohrmeier and Pearce 

summarize the notion of a formal grammar as follows: “A formal grammar consists of a set of 

nonterminal symbols (variables), terminal symbols (elements of the surface), production rules, 

and a starting symbol to derive productions.”8 Consider the following example of a formal 

 
8 Martin Rohrmeier and Marcus Pearce, “MusicalSyntax I: Theoretical Perspectives,” in Springer Handbook of 
Systematic Musicology, ed. Rolf Baber (Berlin: Springer, 2018), 483. 
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grammar which is a toy subset of the English language show below in Figure 3:

 

Figure 3: An Example of a Formal Grammar 
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Here, the nonterminal symbols S, NP, VP, N, V and Adj stand for subject, noun phrase, 

verb phrase, noun, verb and adjective. Since the sentence “great linguists generate great green 

ideas” was derived from the terminal and nonterminal by applying the production rules, the 

sentence is syntactically correct in this formal grammar.  On the other hand, the sentence “ideas 

ideas great hate” is syntactically incorrect since it cannot be derived from the terminals and 

nonterminals through the application of the production rules.  

In order to understand probabilistic context-free grammars, it is instructive to mention 

context-free grammars. Context-free grammars are a special class of formal grammars in which 

words are generated with the application of recursive production rules. An example of a context-

free language is the set of well-formed parentheses, { (), ()(), (()), (())(),…}.This context-free 

language has terminal symbols “(“ and “)”, start symbol “S”  and is generated by the production 

rules: 

S --> SS 

S --> (S) 

S --> () 

This formal grammar is an example of a context-free grammar because it contains production 

rules which expand the non-terminal symbol S into a string that also contains the non-terminal 

symbol S. If this formal grammar had no production rules that had the non-terminal S on the 

right-hand side of their production rules, then it would not be a context-free grammar. The fact 

that this formal grammar contains recursive production rules is ultimately the property that 

allows grammars of this type to capture the hierarchical relationship between the terminal 

elements in the grammar. In the PCFG used in this thesis, the terminal elements of the context-

free grammar will be chords. 
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While a context-free grammar of a set of symbols contains a set of production rules, 

computational linguists have extended this idea to something called a probabilistic context-free 

grammar (PCFG) which assigns each production rule in the grammar a probability based on how 

often the production rule is used in the grammar describing the language. For a collection of 

sentences in a language or a sequence of chords, a probabilistic context-free grammar assigns 

probabilities to each production rule. Thus, the probabilities of the production rules are 

parameters of the model and are determined through an optimization algorithm on the dataset. In 

this thesis, a PCFG will provide a set of rewrite rules and their associated probabilities for the 

allowable ways in which a chord can be expanded or substituted for other chords. As a result of 

these rewrite rules, this model will be able to model the hierarchical relationships of the 

harmonic syntax of chord sequences in the corpus. To illustrate how the harmonic syntax 

governing a sequence of chords could be hierarchical in nature, consider the following analysis 

of the A section of the Jazz-standard “Afternoon in Paris” taken from “A Generalized Parsing 

Framework for Generative Models of Harmonic Syntax” by Daniel Harasim, Martin Rohrmeier 

and Timothy J. O’Donnell as reproduced in Figure 4 below: 
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Figure 4: A Hierarchical Analysis of the A section of the Jazz-standard “Afternoon in Paris”9 

Given this sequence of chords, the authors used a context-free grammar to model the 

hierarchical relationship of the harmonic syntax of this sequence of chords and to create a 

diagram called a parse tree which is shown in Figure 4. This parse tree models the hierarchical 

relationships in this sequence of chords. In Figure 4, the Subdominant, dominant, and tonic 

phrases are denoted by the scale degrees II, V, and I, respectively and the subscripts denote the 

key in which each of these progressions is in. For the sequences of chord progressions in the 

corpus, I will implement a PCFG which will consist of a collection of rewrite rules and the 

associated probabilities of each rewrite rule occurring (which is based on the sequence of chord 

progressions in the corpus). For instance, a few of the rewrite rules and their associated 

 
9 Daniel Harasim, Martin Rohrmeier and Timothy J. O’Donnell, “A Generalized Parsing Framework for Generative 
Models of Harmonic Syntax,” 19thInternational Society of Music Information Retrieval Conference (Paris, 2018): 
152. 
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probabilities for a PCFG for the sequence of chords at the lowest level in Figure 4 could be of 

the form: 

 
 

Figure 5: Hypothetical Rewrite Rules and their Associated Probabilities for a PCFG Modeling 

the Chord Progression in Figure 3 

In this PCFG, the rewrite rules for the IC says that 10% of the time IC can be rewritten as 

IC followed by IC, 20% it is rewritten as VC followed by IC and 70% of the time it is written as 

C^{Δ}. Similarly, in this probabilistic context-free grammar the rewrite rules for the VBb says 

that 20% of the time VBb can be rewritten as IIBb followed by VBb and 80% it is rewritten as F7. I 

will obtain these rewrite rules for a PCFG and their associated probabilities from the input 

sequence of chords by training the model. Ultimately, these rewrite rules and their associated 

probabilities will provide a detailed model of the harmonic syntax in the rock corpus which is 

able to account for some of the hierarchical dependencies in the harmonic syntax. 
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One connection between HMM and PCFGs is that the algorithm used to determine the 

production probabilities in the PCFG called the “inside-outside algorithm” is a generalization of 

the “forward-backward algorithm” which is used to compute the posterior marginals of all the 

hidden states given a sequence of observations/emissions in a Hidden Markov model.10 For a 

more detailed discussion of the algorithms used to train the HMM and PCFG I refer the 

interested reader to the appendix. 

  

 
10 Daniel Jurafsky and James Martin, Speech and Language Processing: An Introduction to Natural Language 
Processing, Computational Linguistics, and Speech Recognition (2023), 179. 
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2. Introduction to White and Quinn’s Article and de Clercq and Temperley Rock Corpus 

In this chapter I will introduce and discuss some recent work done by Christopher White 

and Ian Quinn in which they applied composite Hidden Markov Models to the Kostka-Payne, 

McGill Billboard and Bach Chorale corpora in order to question the generalizability of the 

traditional three-function model for harmonic syntax in classical music. 

2.1 Kostka-Payne Corpus 

The first corpus that White and Quinn study is the Kostka-Payne corpus which is a 

corpus of common-practice music excerpts. The data from the corpus comes from the workbook 

accompanying Stefan Kostka and Dorothy Payne’s theory textbook Tonal Harmony, 3rd edition 

(McGraw-Hill, 1995). The corpus consists of 46 excerpts from various Beethoven string 

quartets, Bach chorales and Chopin Mazurkas. The analyses were done by the authors and are in 

conventional Roman numeral notation. For the Kostka-Payne corpus, White and Quinn first 

created a three-state composite HMM to see if the model would produce the traditional tonic, 

dominant and sub/predominant functions. After training the model, they produced the two 

models which are reproduced in Figure 6 below. Here, higher-transition probabilities are 

represented by thicker arrows and the composition of each hidden state or syntactic category is 

represented by the pie charts where the numbers represent roots of chords (which could be either 

major or minor). 
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Figure 6: White and Quinn’s Example 6: Composite HMMs with Three Hidden States for the 

Kostka-Payne Corpus11 

In the model on the left, it is apparent that moving clockwise from the top left diagram, 

the chord categories could correspond to tonic, predominant and dominant functions. White and 

Quinn also note how none of the arrows are particularly thick which suggests that no motion 

between syntactic categories is entirely unidirectional. In the model on the right, White and 

Quinn note how there are some unidirectional arrows and how the lexical probabilities are more 

uniformly distributed. In analyzing different three-state models for the Kostka-Payne corpus, 

White and Quinn created a composite HMM based on 300 different HMMs, in which they used a 

different expectation-maximization algorithm to train their composite model known as k-

medoids. For more details see their “Chord Context and Harmonic Function in Tonal Music”.12 

Ultimately, they found that their composite three hidden state model was incoherent and found a 

coherent composite four hidden state model which is reproduced in Figure 7 below.  

 
11 Christopher White and Ian Quinn, “Chord Context and Harmonic Function in Tonal Music” Journal of New Music 
Research, vol. 40, no. 2, (2018): 321. 

12 Ibid, 355A. 
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Figure 7: White and Quinn’s Example 7: Composite HMMs with Three Hidden States for the 

Kostka-Payne Corpus13 

Here, the states from the upper left moving clockwise are Tonic, Pre-predominant, Pre-

dominant and Dominant/Pretonic which are denoted as T, P-, P and D/T-. White and Quinn go on 

to observe how their four-state model reflects Kostka and Payne’s notion of the “three common 

functions” of a IV chord: proceeding to I, proceeding to V, or proceeding to ii, which will in turn 

proceed to V.14 They also note how their four-state model is very similar to a model of harmonic 

function created by Allen Irvine McHose in his 1947 textbook “The Contrapuntal-Hrmonic 

Technique of the 18th Century” that was also based on a corpus which was a novel concept in its 

time. McHose’s Four-Chord Classification is reproduced below. 

 
13 Ibid, 322. 

14 Ibid, 320. 



 16 

 

Figure 8: Model of Harmonic Function Created by Allen Irvine McHose15  

Despite their four state model’s similarities with other models of harmonic function, they note 

how their model is peculiar in the way in which it conflates dominant and subdominant functions 

and derives a pretonic syntactic category from the Kostka-Payne corpus which suggests how 

dominant and subdominant functions tend to occur in the same contexts in the corpus.  

2.2 McGill Billboard Corpus 

Following their analysis of the Kostka-Payne corpus, White and Quinn constructed 

several models for the McGill Billboard Corpus which contains harmonic progressions for 730 

songs taken from the Billboard Hot 100 Singles charts from August 1958 through November 

1991. In particular, they found that their best composite HMM was an eight-state HMM which 

had the states T, T+, S, S+, with two peripheral pairs, P/Q and X/W. Here S and T are 

subdominant and tonic categories and T+ and S+ are post-tonic and post-subdominant categories 

which contain chords that follow chords in the tonic and subdominant categories.  In discussing 

 
15 Allen Irvine McHose, The Contrapuntal Harmonic Technique of the 18th Century (F.S. Crofts & Company, 1947), 
221. 
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their model, they note how the main circuit of the T, T+, S, S+ of states or syntactic categories 

account for the majority of the chord transitions (67.2%) while the X/W accounts for 22.7%, P/Q 

accounts for 2.3%, and the remaining transitions are accounted for by improbable (but possible) 

moves between these three different circuits. A transition diagram of their eight-state HMM of 

the McGill Billboard Corpus is reproduced in Figure 9 below: 

 

Figure 9: A Reproduction of Example 10 from White and Quinn’s Article16 

In discussing their model, they note that the main circuit of states, T, T+, S, S+, contains 

two primary poles, T and S, which are very similar to the traditional tonic and subdominant 

functions, and in which the most frequently represented chord in T is I and how S is most 

frequently represented by IV chords. They note how T+ manifests itself as a number of chords 

 
16 Ibid, 324. 
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such as V, bVII, vi, etc… and how S+ manifests itself tends to manifest itself as chords that are 

closely related to V.  

2.3 Bach Chorale Corpus 

Finally, White and Quinn also used HMMs to model the harmonic syntax of the Bach 

Chorale corpus which consists of the 370 Bach chorales. Instead of providing their model with 

roman numerals, they provided it with 35,139 salami slices which were taken from chorales in 

the corpus which were later mapped onto chords. From this data, they found that their best 

composite HMMs had 3 and 13 hidden states. They found that the three-state model closely 

resembled the traditional I-IV-V harmonic function model. The transition diagram for their 

three-state model is reproduced in Figure 10 below: 

 

Figure 10: White and Quinn’s Composite HMM with Three Hidden States for the Bach Chorale 

Corpus17 

 
17 Ibid, 328. 
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White and Quinn then introduced their thirteen-state composite HMM. In discussing this model, 

they note how the advantage of the 13-state model is that it can capture the traditional I-IV-V 

tonal relationships while also adding some new pathways and detours which are unique to the 

harmonic syntax of the Bach Chorale Corpus. In addition to the traditional tonic, subdominant 

and dominant functional categories, their thirteen-state model adds a Tx (tonic expansion) 

category which contains mostly I triads along with several vi and iii chords. They note how this 

category allows the model to capture various passing and neighbor motions in the corpus. They 

also include a category denoted D+ (late dominants) which is comprised of most V7 chords as 

well as categories denoted T+ (late tonics) which contains chords such as I4/2 and p (weak 

predominant) and px (predominant expansion).18 In this context, they define late tonics as a 

passing function that progresses from tonic to weak predominant and late dominants as a passing 

function between dominant and tonic. The remaining functional categories are summarized in 

their example 23 on pg. 330 which is reproduced in Figure 11 below along with the transition 

diagram of their HMM model:  

 
18 Ibid, 329. 
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Figure 11: White and Quinn’s Composite HMM with Thirteen Hidden States for the Bach 

Chorale Corpus19 

 
19 Ibid, 330. 
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Figure 12: A Summary of the 13 Hidden States (Quinn and White’s Example 23)20 

 
20 Ibid, pg. 331. 
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2.4 White and Quinn’s Discussion of Rock Syntax 

Having introduced and briefly summarized White and Quinn’s construction of several 

composite HMMs for the Kostka-Payne, McGill Billboard and Bach Chorale corpora, I will now 

turn our attention to rock music and summarize White and Quinn’s discussion of rock syntax. 

While discussing the difference between the harmonic syntax of the McGill Billboard corpus and 

the syntax of other genres of music White and Quinn noted: 

“Temperley and DeClercq, in a corpus study of rock harmony, emphasize many aspects 

of this difference: rock harmony does not have strong unidirectional tendencies (e.g., V 

progresses to IV as much as IV progresses to V), and, in many cases, IV (rather than V) 

functions as the primary nontonic triad. On the other hand, several analysts have 

attempted to theorize pop/rock harmonic syntax as an extension of common-practice 

norms. Nicole Biamonte and Chris Doll, for instance, argue for including modal 

harmonies into functional models, with bVII functioning as dominant (Doll’s ‘rogue 

dominant’) or as IV/IV (Biamonte’s ‘Double Plagal’ progression). Going even further, 

Drew Nobile entirely dissociates traditional harmonic functions from the scale-degree 

content of chords. In Nobile’s formalization, almost any chord can function as a tonic, 

dominant, or predominant: ‘a chord’s function is given more by formal considerations—

i.e., what role it plays within the form—than by its internal structure or any specific 

voice-leading motion.’ Nobile allows for predominant V chords, dominant IV chords, and 

so on.”21 

From this, it is clear that there are several notions which theorists have posited which 

characterize rock music such as the lack of strong unidirectional tendencies, IV rather than V 

 
21 (White and Quinn Chord context and harmonic function in tonal music, pg. 322) 
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functions as primary nontonic triad and bVII functioning as a dominant. We will now look more 

closely at De Clercq and Temperley’s article and examine how they arrived at their conclusions. 
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3. Introduction to De Clercq and Temperley’s Rock Corpus  

In this chapter I will provide an overview of the article by De Clercq and Temperley. In 

“A corpus analysis of rock harmony” they built a corpus of 100 rock songs that were selected 

from the Rolling Stone magazine’s list of the ‘500 Greatest Songs of All Time”.22 Their corpus 

consists of harmonic analyses for all of the songs done by both authors.  

3.1 Discussion of de Clercq and Temperley’s Corpus 

In constructing the corpus, De Clercq and Temperley use a subset of the Rolling Stone 

magazine’s list of the “500 Greatest Songs of All Time” which they note is one of the few lists 

that contains general ‘rock’ music without stylistic modifiers like ‘hard rock’. However, it is 

important to note how the corpus includes blues, country, R&B and hip hop as well as rock and 

that the majority of the songs in the corpus are from the late 1960s and 1970s and are from artists 

who are both white and male. The list that De Clercq and Temperley chose to pick songs from 

was a compilation of the top 50 rock songs chosen by 172 ‘rock stars and leading authorities.23 

However, it is important to note the lack of transparency in the use of unnamed and hand-picked 

industry insiders to determine the composition of the corpus is in itself methodologically 

problematic. In addition, while the corpus that De Clercq and Temperley constructed contains 

songs that were perceived by the unnamed industry insiders to be the popular or the greatest rock 

songs, there is no objective measure for the popularity of the songs in the corpus. Therefore, 

White and Quinn’s conclusions about the harmonic syntax of rock and are not necessarily 

representative of the harmonic syntax of the genre as a whole. 

 
22 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1 
(2011): 47. 

23 Ibid, 51. 
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After determining the list of songs to include in the corpus, De Clercq and Temperley 

both independently conducted harmonic analyses and constructed a dataset that contains both of 

their harmonic analyses in order to reduce the effect of idiosyncrasies. After doing this, they 

compared harmonic analyses and found that their harmonic analyses agreed completely on 39 of 

the 100 songs and that all of their harmonic analyses agreed on the relative root of each song. 

They also found that one song, Public Enemy’s ‘Bring the Noise” did not contain any triadic 

harmony, so they decided to remove it from the list of 100 songs. Each of the harmonic analyses 

in their corpus of 99 songs identifies the key center and contained a sequence of roman numerals. 

The text file of Temperley’s analysis of Nirvana’s “Smells like Teen Spirit” is shown below: 

 

Figure 13: Example of the Format of a Song in De Clercq and Temperley’s Corpus24 

 

3.2 Discussion of de Clercq and Temperley’s Analysis of their Rock Corpus 

In analyzing the harmonies in the Rock corpus, De Clercq and Temperley first examined 

the overall distribution of chromatic relative roots. In order to do this, they found the sheer 

number of occurrences of each root and found the proportion of that number to the total number 

of roots. From this, they found that major and minor chords built on the chromatic roots I, IV, V, 

bVII and then VI were most frequently used. Next, they considered chord transitions within a 

 
24 “Harmonic Analyses,” A Corpus Study of Rock Music, accessed November 25, 2023, 
http://rockcorpus.midside.com/harmonic_analyses.html. 
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single key (they did not record transitions from one key to another). From this, they found that 

the most frequent chords to precede the tonic were IV, V and then bVII and found that the ‘pre-

tonic’ distribution (chord approaching I) and the ’post-tonic’ distribution (chords approached 

from I) as well as the overall distribution of chords roots (excluding the tonic) were similar. As a 

result, they wrote, “In light of this data, one might conclude that rock is not governed by rules of 

‘progression’ at all; rather, there is simply an overall hierarchy of preference for certain 

harmonies over others, regardless of context.”25 For reference, I have reproduced their table of 

chord transition counts in Figure 14 below: 

 

Figure 14: De Clercq and Temperley’s Table of Chord Transitions in the Rock corpus26 

Following this, they considered trigrams leading up to the tonic and found that the trigram IV-V- 

I was the most frequently occurring trigram, which occurred 352 times, and was followed by V-

 
25 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1 
(2011): 61. 

26 Ibid. 
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IV-I which occurred 292 times. Their table of the most frequent trigram occurrences is also 

reproduced in Figure 15 below: 

 

Figure 15: De Clercq and Temperley’s Table of Trigrams27 

They also considered the co-occurrence of chords in the corpus. In order to measure this, they 

created a 99-dimensional chord vector for each of the 12 relative roots with zeros and ones for 

whether a particular chord is present each of 99 songs in the corpus. They then measured the 

correlations between each root with the other 11 and produced a 12x12 correlation matrix and 

highlighted values that were .35 or above which they deemed to be significant. From this they 

found that the roots bVII, bIII and bVI tended to co-occur as the three pairs were correlated. In 

finding this, they suggested that these co-occurrences offered some evidence as to some kind of 

modal organization that could be thought of as similar to the major and natural minor modes in 

the traditional common practice. 

In summary, De Clercq and Temperley found a greater frequency of IV and V as frequent 

pre-tonic chords from their analysis of chord-to-chord transitions and a high frequency of VI and 

bVII chords in the overall frequency of chords in the corpus. They also found that the most 

 
27 Ibid, 63. 



 28 

frequently occurring asymmetrical root motions characteristic of the common-practice period 

were noticeably absent in rock. They also observed that the harmonies in the corpus were 

overwhelmingly in root position, major triads were more frequently occurring than minor triads, 

and that root motion by ascending or descending fourth was most common. In analyzing trends 

across the decades, they also found that the harmony of the songs in the 1950s was mostly 

confined to the use of I, IV and V whereas the distribution of chords used between the 1960’s 

and 2000 was broader. 

3.3 Suggestions for further directions 

In the final sections of their article, De Clerc and Temperley suggested several possible 

directions for further research. The first direction they suggested was to gather more data from 

Rolling Stone list and conduct more harmonic analyses. They noted that doing this would help to 

determine larger-level harmonic patterns or more hierarchical relationships in the corpus which 

would involve constructing a new model. They also note that other scholars have suggested that 

“rock music reflects a strong preference for the placement of tonic harmony in metrically strong 

positions and that this is an important cue for tonal orientation” and that the corpus could be used 

to analyze this because it includes metric structure as well as the chords. 28 29  

In the final section of their article, De Clercq and Temperley also note that one of the 

possible criticisms of their project is that they treated the harmonic structure of the songs in the 

corpus as “flat” or viewed the harmonic structure of the works only as a one-level sequence of 

 
28 Ibid, 68. 

29 Walter Everett, “Making Sense of Rock’s Tonal Systems,” Music Theory Online, vol. 10, no. 4 (December 2004): 
10. 
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harmonies.30 In discussing this, they note how many other authors such as (Brown 1997; Burns 

2008; Everett 2008) analyze rock in a hierarchical (e.g. Schenkerian) manner and distinguish 

structural from elaborative harmonies.31 While they justify their approach by noting that their 

“single-level” harmonic analysis is relatively immune to differences in opinion (which could 

arise from the high degree of subjectivity that could arise in reductive analysis) they note that a 

hierarchical approach to understanding the harmony of the songs in the corpus could offer new 

insights. My implementation of self-emergent midden Markov models and probabilistic context-

free grammar models which are discussed in Chapter 5 will attempt to account for the 

hierarchical nature of the harmony in the Expanded Rock Corpus. 

  

 
30David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1 
(2011): 68. 

31 Ibid. 
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4. The Expanded Rock Corpus and Patterns in the Data 

In this chapter, I will discuss how I expanded De Clercq and Temperley’s rock corpus. 

The rock corpus that De Clercq and Temperley studied in their 2011 article consisted of the top 

20 songs in each of the five decades from the Rolling Stone magazine’s list of “500 Greatest 

Songs of All Time”. Since the publication of their article, De Clercq and Temperley added the 

next highest ranked songs from the RS 500 list and created a corpus of harmonic analyses of 200 

songs.32 After determining which songs of the RS 500 De Clercq and Temperley did not include 

in their corpus of 200 songs, I produced harmonic analyses for an additional 239 songs which 

together with De Clercq and Temperley’s harmonic analyses of 200 songs make up the 439 

songs of the Expanded Rock Corpus. These additional 239 songs that I added were taken from 

Rolling Stone’s “500 Greatest Songs of All Time” based on De Clercq and Temperley’s 2021 

revised list.33 Since the Expanded Rock Corpus has more than four times as many songs as the 

original corpus which De Clercq and Temperley studied in their 2011 article, I will replicate the 

analyses that they performed and compare my findings from the Expanded Rock Corpus with the 

results from the 2011 article.  

4.1 Harmonic Analyses of the Songs in the Expanded Rock Corpus 

While De Clercq and Temperley conducted harmonic analyses by ear and recorded 

metrical data associated with the harmonies, due to time constraints I used pre-existing guitar 

tabs from “https://www.ultimate-guitar.com/” which provided a list of chords for each song 

which I converted into harmonic analysis by hand. The main drawback of this method is that 

 
32 David Temperley and Trevor De Clercq, ““Statistical Analysis of Harmony and Melody in Rock Music,” Journal of 
New Music Research, vol. 42, no. 3 (2013): 187 

33 “The Corpus,” A Corpus Study of Rock Music, accessed June 3, 2023, http://rockcorpus.midside.com/.  
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there are often multiple existing guitar tabs for each song, some of which were found to be 

inaccurate. To mitigate this issue, I used the official guitar tabs from a premium subscription to 

“Ultimate Guitar Com.”34 These guitar tabs were created by the UG team which was formed in 

2016 and consists of more than 30 people each of which has over ten years of guitar experience 

and half of which have music degrees. After using one of the UG team’s official tabs I also 

verified that the tab was an accurate or close approximation of the chords of the song. In the 

instances in which the premium version of the guitar tab was not available I used the guitar tab 

with the highest user rating. While De Clercq and Temperley recorded the metrical placement of 

harmonies, I did not and also only recorded chord changes meaning that my data does not 

include repeated chords. While there are likely errors in the corpus as a result of inaccurate guitar 

tabs or human error, I decided that in creating a large enough corpus these errors would have a 

minimal effect on underlying harmonic trends in the corpus. 

4.2 Patterns in the Expanded Rock Corpus 

Now, I will replicate the basic statistical analysis that De Clercq and Temperley 

performed on their rock corpus but on the Expanded Rock Corpus and analyze the distribution of 

chromatic relative roots, chord transitions, trigrams, the proportions of chromatic roots in each 

decade, and other patterns. After loading the corpus data, which was compiled in an excel 

spreadsheet, into the programming language Python, I calculated the frequency of the top 20 

chords in the corpus, which is summarized in the histogram below. 

 
34 “Tabs,” Ultimate Guitar Com, accessed June 3, 2023, https://www.ultimate-guitar.com/explore 
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Figure 16: Frequency of the Top 20 Chords in the Expanded Rock Corpus 

It is interesting to note how the IV chord occurs a little under twice as frequently as the V chord. 

This confirms De Clercq and Temperley’s previous observation that the IV chord is prevalent in 

rock harmony. Following the I, IV, V and i chords, it is interesting to note that the next prevalent 

chords in the corpus are bVII, vi, bVI, ii and bIII. The prevalence of bVII, bVI and vi also 

confirms De Clercq and Temperley’s previous observations and illustrate how the chords that 

make up rock harmony are clearly different from those of common-practice harmony.  

After examining the most frequently occurring chords in the corpus, I decided to follow 

De Clercq and Temperley’s investigation of the frequency of the chromatic roots in the corpus. 

Like De Clercq and Temperley, I defined the chromatic relative root of chords in the corpus as 

any chord built on that root. The frequency of the relative chromatic roots in the RS 5x20 corpus 

and the Expanded Rock Corpus is shown in the histograms below. 
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Figure 17: Frequency of Chords on the Chromatic Roots in De Clercq and Temperley’s Rock 

Corpus 

 

 

Figure 18: Frequency of Chords on the Chromatic Roots in the Expanded Rock Corpus 

Here, the values on the y-axis represent the frequency of the chord in the corpus and the labels 

on the x-axis in both figures represent the set of major and minor chords built on each of the 

twelve chromatic scale degrees. Temperley and De Clercq also observed that the most frequently 

occurring chromatic roots are I, IV, V, bVII and VI and the analysis of the distribution of the 

twelve chromatic roots in the larger corpus above closely resembles their observations.  
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 Next, I found the top ten most frequency occurring chords in the corpus and tracked their 

frequency across the decades. These frequencies are summarized in the bar plots below: 

 

 

  

 

Figure 19: Frequency of the Top Ten Chords in each Decade 

Here, the order of chords on the x-axis begins with the most frequently occurring chord in the 

corpus and ends with the 10th most frequently occurring chord in the corpus. Since there is not an 

equal number of songs in each decade (and only a few songs from the 1940s and 2000s) the 

frequency histograms are not exactly representative of the frequency of the top ten chords in the 

corpus in songs from each decade. In an effort to mitigate the fact that there are a different 

number of songs in each decade, I also calculated the percentage that each of these top ten chords 

made up of all of the chords in a particular decade. These histograms are shown below: 
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Figure 20: Percentages of the Top Ten Chords in each Decade 

Comparing the two sets of histograms, it is clear that the I and IV chords make up the majority of 

the chords in all of the decades. This might be due to the fact that a large number of works in the 

corpus utilized guitars which are tuned in fourths or because of the strong influence of blues 

music on rock music. One trend that these histograms illustrate is that between the 1950s and 

1990s, more of the top ten chords outside of I, IV, V and i are used suggesting that there is more 

harmonic diversity in the songs from these decades. While there are less songs in the corpus 

from the 1940s and 1950s compared with the 1980s and 1990s, the increase in harmonic 

diversity could also be attributed to the genre’s predilection for modal mixture and subversion.35 

 
35 Chris McDonald, "Exploring Modal Subversions in Alternative Music." Popular Music 19, no. 3 (2000): 355. 
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Following this, I investigated chord transitions between major triads based on each chromatic 

root and between classes of chords built on each of the twelve chromatic roots. The results for 

the Expanded Rock Corpus are summarized in the heat map below. 

 

Figure 21: A Heatmap for the Frequency of Bigrams of Chromatic Roots in the Expanded Rock 

Corpus 
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This heat map of bigrams of chromatic roots illustrates how the bigrams I - IV and IV - I are the 

most common and occur 4813 and 4995 times respectively in the Expanded Rock Corpus. The 

next most frequently occurring bigrams are V - I , I - V, IV - V and V - IV which occur 3324, 

2384, 1980 and 1397 times respectively. These observations suggest that the majority of bigrams 

between classes of chords on chromatic roots follow the harmonic syntax of common-practice 

tonal music. However, observing the set of the next most frequently occurring chromatic bigrams 

suggests that the syntax of rock music differs from the harmonic syntax of common-practice 

tonal music. For instance, the some of the next most frequently occurring chromatic bigrams 

include I - bVII, bVII - I, bVII - IV, which occur 1513, 1294 and 670 times respectively. The fact 

that these are some of the next most frequently occurring bigrams following suggests how bVII 

often serves as a modal substitute of V.  

 Similar to how I first calculated the empirical distribution of top ten chords in the corpus 

before converting it to percentages, I then found the top chromatic bigrams and calculated the 

percentage that they make up in the total number of bigrams in the corpus. To illustrate these 

findings, I will use a histogram with both positive and negative values. The positive values in the 

histogram correspond to the percentages that the chromatic bigram occur which listed on the X-

axis in Figure 22 below. The negative values in the histogram, or the values that are shown by 

the red bars, represent the percentage of the total number of chromatic bigrams that the bigram 

on the x-axis occurs in the opposite direction of those on the x-axis. For instance, the chromatic 

bigrams I - IV and IV - I each make up roughly 15% of the total number of chromatic bigrams in 

the corpus. The histogram of the most frequent bigrams and the reverse bigrams are shown in the 

histogram below.  
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Figure 22: Tornado Diagram of the Top 5 Chromatic Chord Bigrams 

Another observation that can be drawn from this histogram is that for each of these five most 

frequently occurring bigrams, the inverse bigram occurs roughly the same percentage of times 

which supports the conception that the harmonic syntax of rock music has strong bidirectional 

tendencies. Comparing my results for the chord transitions between classes of chords on the 

twelve chromatic roots with De Clercq and Temperley’s on the RS 5x20 corpus, I found that the 

results qwew similar. I have again reproduced a copy of table 3 from De Clercq and Temperley’s 

article below for comparison: 



 39 

 

Figure 23: De Clercq and Temperley’s table of chord transitions in the Rock corpus36 

For instance, in De Clercq and Temperley’s table, the values for the bigrams I-IV and IV-I are 

1052 and 1162, I-V and V-I are 710 and 788, I-bVII and bVII-I are 470 and 386 and the values 

for the bigrams I-II and II-I are 132 and 120. Since the two values in each of the bigrams are 

roughly similar, my results parallel De Clercq and Temperley’s. After investigating chromatic 

bigrams in the corpus, I began to investigate the larger harmonic patterns. The top twenty 

trigrams of between the chord classes on the chromatic roots are shown in Figure 24 below: 

 
36 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1 
(2011): 61. 
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Figure 24: Frequency of the Top Twenty Trigrams in the Expanded Rock Corpus 

 

This histogram of the top twenty trigrams in the corpus illustrates how the most frequently 

occurring trigrams are between the chromatic roots I, IV and V. The fact that the trigrams bVII - 

IV - I, II - IV - I and bVI - bVII - I all occur with similar frequencies around 400 and all end on 

the chromatic root suggest that these are the typical cadential formulations in the music in the 

Expanded Rock Corpus.  

Finally, following De Clercq and Temperley’s work I created and investigated chord 

vectors. Given the 439 songs in the corpus, I created a 439-dimensional vector for each major 

chord on the twelve chromatic roots and used roman numeral notation to denote each of these 

twelve vectors. I then put a ‘1’ or ‘0’ in each position of each vector if the chord appeared in the 

song (thus ignoring the number of times the chord occurs in the song). Following this, I 

calculated the correlation between each of the vectors. Since the correlation between two vectors 

indicates a degree of similarity between them, the correlation between two chords representing 
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two major triads on each relative root indicates the degree to which the chords are likely to occur 

in the same songs. Correlation values are between -1.0 and 1.0, where the correlation is positive 

if two chords co-occur and negative if they don’t. Any correlation above .35 suggests that there 

is some correlation between the two chords. The correlations between the chord vectors are 

summarized in the heatmap below: 

 

Figure 25: Heat Map of the Correlation Between the Chromatic Root Vectors 

These results suggest that the following pairs of vectors tend to co-occur:  

(bII, bV), (II, IV), (bIII, bVII), (bIII, bVI), (III, IV), (IV, V) and (bVI, bVII) 

One observation about these pairs of vectors is that most of the intervals between their roots are 

fourths and seconds which might suggest that chords a fourth or second apart tend to occur 
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together. In order to better determine if certain vectors occurred together, I also produced a heat 

map with a dendrogram for the vectors, which is shown in Figure 26 below: 

 

Figure 26: Heat Map with a Dendrogram of the Correlation Between the Chromatic Root Vectors 

 

This heat map and dendrogram clearly suggests that the chromatic roots are roughly clustered 

into the following two groups: [I, IV, V, VII, III, II, VI] and [bII, bV, bIII, bVI, bVII]. This 

broad grouping confirms De Clercq and Temperley’s observation that the chords based on the 

roots bVII, bIII and bVI tend to occur together and that the chords based on the roots II, VI and 
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III tend to occur together. The rough grouping from the heat map and dendrogram both confirms 

and expands upon De Clercq and Temperley’s observation. The finer groupings of the 

dendrogram are as follows (where the brackets correspond to subsequent subgroupings):  

[[I, [IV, V]], [VII, [III, [II, VI]]]] 

[[bII, bV], [bIII, [bVI, bVII]]] 

In addition to measuring the correlation between chord vectors and producing a dendrogram to 

capture the correlation between chord vectors, I also implemented K-means clustering on rows of 

the chord vector matrix; that is, on the set of 439 vectors for the songs which contain information 

about whether each of the twelve chromatic roots is present in the song in order to determine if 

these vectors for the songs could be clustered into groups. Using a “within-cluster sum of square 

distances” which measures the distances of each data point in all clusters to their respective 

centroids, I determined that the optimal number of clusters to use to try and cluster the song 

vectors was three. After running K-means clustering with K = 3, I then used principal component 

analysis (PCA) with two principal components in order to reduce the dimension of the data to try 

and visualize the results. The two axes of the plot represent the two principal components which 

are comprised of the different weighted combinations of the axes of the original data. The 

resulting scatter plot with K clusters and the composition of the two principal components are 

shown in Figure 27 below: 
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Figure 27: Principal Component Analysis and K-means Clustering on the Chord Vectors of the 

Songs in the Expanded Rock Corpus 

Here, each dot in the left portion of Figure 27 represents a song which is labeled with its date and 

the X represents the center of each cluster. While the songs do not appear to group into clearly 

defined clusters, the composition of the two principal components (the high percentage of bVII 

and bVI in PCA2 and higher percentage of I, IV, and V in PCA1 suggest that these chords are 

important in determining the differences between groups of songs in the corpus which is 

reflective of how some progressions in the corpus are based on bVII and bVI while others are 

based on I, IV and V. 
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5. Hidden Markov Models and Probabilistic Context-Free Grammar Models on the 

Expanded Rock Corpus 

Having introduced the Expanded Rock Corpus and discussed some of the patterns in the 

data, I will now discuss the implementation of Hidden Markov Models and Probabilistic 

Context-Free Grammar models. 

5.1 Setting up the HMMs and PCFGs 

Following the work of Hiroaki Tsushima et al. in “Generative Statistical Models with 

Self-Emergent Grammar of Chord Sequences”, I implemented Hidden Markov Models and 

Probabilistic Context-Free Grammar models that were coded in C++. Since the models for the 

self-emergent HMM and PCFG from Tsushima et al.’s work were not compatible with the 

format of the data from the De Clercq and Temperley Rock corpus, I first implemented a find-

and-replace algorithm in Python to convert the harmonic analyses in the rock corpus to pitch-

class numbers that resulted after the chords in each of the analyses had been transposed to C 

major. An example of a harmonic analysis in this new format is shown below: 

 

Figure 28: Example of the Data Format in Tsushima et al.  
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Here, each of the numbers are the pitch-class numbers which are followed by the chord quality. 

Following this, I created a file containing the top 20 most frequently used chords in the corpus 

which was used as an input for both models. This was a necessary step as ultimately it would be 

too computationally expensive and unwieldy to model the harmonic syntax of the corpus on 

every chord that occurred in the corpus. As a result, the HMM and PCFG models that I 

implemented were based only on top 20 chords in the corpus. In addition to specifying the 

number of symbols or top chords, I also specified the number of hidden states or syntactic 

categories that the models would have. Finally, I also specified the number of iterations on which 

the expectation-maximalization algorithm would run, and usually specified a number greater 

than or equal to 50 to ensure the that the models would converge or produce the optimal set of 

parameters. Using these most frequently occurring chords, both models were trained using the 

expectation-maximization algorithm. The resulting parameters were output in a file which 

contained the composition of each hidden state or syntactic category in terms of the top 20 

symbols as well as the transition probabilities between all of these states. For the PCFG, I used 

the same files and specifications. The resulting parameters were output to a file which contained 

the composition of each of the syntactic categories and the list of production rules and their 

associated probabilities.  

5.2 Results of the Hidden Markov Model on the Expanded Corpus 

Running the HMM using the top 20 chords in the corpus, 5 syntactic categories and 50 iterations 

of the EM algorithm produced the following results:  
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Figure 29a: Composition of the “Subdominant” Hidden State 

 

Figure 29b: Composition of the “Tonic” Hidden State 
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Figure 29c: Composition of the “Other” Hidden State 

 

Figure 29d: Composition of the “Dominant” Hidden State 
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Figure 29e: Composition of the “Submediant” Hidden State 

 

Figure 30: Table of Transition Probabilities Between Hidden States 

In Figure 29, each pie chart represents the composition of one of the five hidden states of the 

HMM and the labels are the pitch class and followed by the chord quality. The labels in the pie 

charts correspond to the major, minor or seventh chords built on the chromatic pitch class 

associated with each number. The transition probabilities between each of the syntactic 

categories is given in Figure 30. Each of the main syntactic categories that arise could be labeled 

as “Tonic”, “Subdominant”, “Dominant”, “Submediant” and “Other” in the theory of common 

practice harmonic syntax. While the composition of the “Tonic” and “Dominant” categories is 

similar to the composition of “Tonic” and “Dominant” syntactic categories in common practice 

harmony, note how 20% of the “Dominant” category consists of “10:maj” or “bVII” chords. 

Furthermore, note how there is a “submediant” category which primarily consists of “vi” chords. 

79%

8%
6%
3%
2%

2%
0%

5: "Submediant"

9:min other 7:maj 9:min7 0:maj7 8:maj 10:maj

5:maj 7:maj7 0:maj 0:min 2:min 3:maj 4:maj

4:min 7:min 2:min7 5:min 5:maj7 0:min7 5:maj6
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The probabilities in the transition matrix also seem to suggest that the harmonic syntax is similar 

to that of music from the classical era as chords in the “Dominant” category always move to 

chords in the tonic category, chords in the “Subdominant” category always move to chords in the 

“Dominant” category and chords in the “Submediant” category always move to chords in the 

“Subdominant” category.  

These results can be viewed in light of Walter Everett’s “Classification of Rock’s 

Preeminent Tonal Systems” which uses various characteristics to classify the prominent tonal 

systems in rock music. While introducing these systems, Everett notes that while the underlying 

principles of tonality often apply to rock music, the genre has evolved different ways of relating 

to that tonal background.37 In particular, Everett develops the following classification of rock’s 

preeminent tonal systems. 

 

Figure 31: Everett’s Classification of Rock’s Preeminent Tonal Systems38 

 
37 Walter Everett, “Making Sense of Rock’s Tonal Systems,” Music Theory Online, Volume 10, no. 4 (December 
2004) 

38 Ibid. 
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Everett notes how he classifies the tonal systems in rock music in terms of their dependencies 

upon harmonic and voice-leading functions and how each subsequent classification on the list is 

progressively removed from common practice tonal behaviors.39 However, Biamonte in 

“Pop/Rock Tonalities” notes that the ordering of the categories primarily follow the tonal 

conventions of classical music rather than rock music and offers the revised and simplified set of 

categories shown below: 

 

Figure 32: Biamonte’s Classification of Tonal and Harmonic Structures in Pop/Rock 

(after Everett 2004)40 

 
39 Ibid, 2.  

40 Nicole Biamonte, “Pop/Rock Tonalities” in Tonality Since 1950, ed. Wörner, Scheideler, and Rupprecht, Franz 
Steiner Verlag, 95. 
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The results of the composition of hidden states and transition matrix from the HMM run on the 

Expanded Rock Corpus suggest how harmonic syntax of the songs in the corpus could 

predominantly fall into Everett’s first category of tonal systems in rock as there are major and 

minor-mode systems with common-practice harmonic behavior which are at times inflected with 

minor-mode or chromatic mixture like bVII and bII. Furthermore, the results of the HMM 

suggests that the songs in the corpus fall into Biamonte’s “expanded major mode” tonal system 

and that the basic harmonic units utilize functional harmony. 

It is important to note that while the results of the HMM appear to capture some 

information about the harmonic syntax of the songs in the corpus, there is a fair amount of 

overlap between the composition of the syntactic categories. For instance, the “Subdominant” 

category consists of 23% “V” chords and the “Dominant” category is comprised of 38% “V” 

chords. Also, the “Other” category is comprised of 33% “IV” chords and the “Subdominant” 

category is comprised of 63% “IV” chords. The fact that several chords belong to multiple 

syntactic categories ultimately makes it difficult to understand how the chord is functioning in 

the harmonic syntax. Therefore, it appears that this HMM does not clearly and definitively 

capture the harmonic syntax of the songs in the corpus. It is interesting to note that White and 

Quinn also mentioned this issue of overlapping syntactic categories in their article and devised a 

more complicated composite HMM to work around this issue.41 

While creating a composite HMM similar to White and Quinn’s was not practical, I 

decided to implement a resampling technique to artificially augment the dataset, and further 

 
41 Christopher White and Ian Quinn, “Chord Context and Harmonic Function in Tonal Music” Journal of New Music 
Research, vol. 40, no. 2, (2018): 318. 
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decreased the number of syntactic categories to four in effort to obtain results with more clearly 

defined syntactic categories. This involved randomly selecting with replacement songs from De 

Clercq and Temperley’s corpus 20,000 times and adding each selected song to a new larger 

dataset. The results from running a HMM with four syntactic categories on this larger dataset are 

shown below. 

 

Figure 32: Transition Matrix for HMM on the Resampled Data 

 

 

Figure 33: Composition of the Four Syntactic Categories 
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Here, the composition of the four syntactic categories in the figure above are represented in 

terms of bar plots instead of pie-charts and labels on the x-axis correspond to the different chords 

in pitch class notation and the y-axis corresponds to the percentage of which the chord makes up 

the syntactic category. Also, the labels for the syntactic categories in Figures 32 and 33 are the 

most common chords in the category and the labels “V, V6, V7, other – Dominant” refers to the 

fact that this syntactic category could be considered as “Dominant” and is primarily composed of 

V, V6, V7 and other chords. These results indicate a clearer picture of the harmonic syntax of the 

songs in the corpus as there is far less overlap in the composition of the syntactic categories. 

They also indicate how the harmonic syntax of the songs in the corpus is similar to the harmonic 

syntax of classical music. However, it is important to note how in the 20,000 elements in the 

resampled dataset, there were only 100 unique songs. Given that the model is only training on 

these 100 songs, any harmonic features unique to these 100 songs would greatly influence the 

results of the model. Therefore, the results of the model are not representative of the harmonic 

syntax of rock music.   

At this point, I decided that even resampling the Expanded Rock Corpus and running the 

model would still produce inaccurate or biased results that would not be able to capture the 

harmonic syntax of the songs in the corpus and decided to move on to the PCFG model.  

5.3 Results of the Probabilistic Context-Free Grammar on the Expanded Corpus 

After running the HMMs on the Expanded Rock Corpus, I implemented the PCFG model 

on the corpus. The PCFG model uses the syntactic categories that were generated by training the 

HMM and outputs the probabilities of the production rules. Using the HMM syntactic categories 

that were produced from running the model on the top 20 chords with 5 syntactic categories and 

100 iterations of the EM algorithm, the PCFG produced the following results: 
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 Figure 34: Table of Production Rules with their Associated Probabilities for the PCFG 

 

In Figure 34, the 0s refer to the “Subdominant” category, the 1s to the “Tonic” category, the 2s 

to the “Other” category, the 3s to the “Dominant” category and the 4s to the “Submediant” 

category. In each of the five groups of columns, the first column represents the symbol on the 

left-hand side of the production rules, the following two columns represent the two symbols that 

this symbol is replaced by, and the last column contains the probability of this production rule. 

For instance, in this PCFG, the production rule which replaces a chord in the “Subdominant” 

category with a chord in the “Tonic” category and a chord in the “Dominant” category occurs 

6% of the time because the 9th row in the “Subdominant” section of the table contains a “0” 

followed by a “1” and “3” which is followed by “.06”. It is important to note that in each of the 

categories, the probabilities of the production rules that would produce the chord symbols (that is 

the bottom rows containing the roman numerals) are zero except for the “other” symbol. This 
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means that the grammar does not produce any of the top 20 chords in the corpus which is clearly 

incorrect. In the following section, I will further discuss some of the issues with the results from 

these models, problems that were encountered while implementing the models that may have 

affected the result, and further steps that could be taken to achieve better results using these 

models.   

5.5. Problems Encountered while Implementing the HMM and PCFG on the Expanded 

Corpus 

One issue that I encountered that could have affected the performance of both models 

was finding the correct format of the data to run the model on. Given that both the HMM and 

PCFG grammars dealt with input data that was in multiple formats, (for instance a “I” chord 

could be formatted as both “0:” and “0:maj”) and that the Readme.txt file that I was provided 

with by Eita Nakamura through email correspondence did not indicate when to use each type of 

format, it was very difficult to determine if the data that the model was training on was in the 

right format and involved a lot of guessing and checking. In addition to the ambiguous 

formatting of the data that HMM and PCFG models accepted, there was also the issue of 

converting the data from the format that De Clercq and Temperley used.  

 Aside from the format of the data, another reason the that the models did not perform 

well could have been due to the small size of the corpus. For comparison, the datasets that were 

used by in Tsushima et al. in their “Generative Statistical Models with Self-Emergent Grammar 

of Chord Sequences” consist of 3000 chord progressions for the J-pop data and 1531 chord 

progressions for the Billboard data whereas the Expanded Rock Corpus only consists of 439 

songs. 
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Another reason why the models that I implemented did not perform well could have been 

the result of the initial randomness that is inherent in training HMM models. Before the 

parameters of the HMM and PCFG are adjusted to fit the training data, they are initialized to 

some initial values according to a prespecified distribution. As a result, training the model with 

the EM algorithm multiple times on the same data will produce similar but not identical results. 

One important difference between the HMM I implemented and the one that White and Quinn 

implemented in their article is that the HMM they implemented was a composite HMM and was 

trained with a different optimization algorithm. Their composite HMM consisted of 300 HMMs, 

each of which had different randomized parameters and was trained on a training subset and used 

to classify each chord in the testing subset into one of k different syntactic categories. They then 

looked at how each of the 300 HMMs classified each chord and derived new syntactic categories 

for the composite HMM using a k-medoids algorithm. As a result of using a k-medoids 

algorithm, they were also able to quantify the extent to which each of the syntactic categories 

overlapped. For a more detailed discussion of their approach, I refer the interested reader to pg. 

318 and pg. 335 of their article.42 The fact that White and Quinn calculated silhouette widths in 

order to measure the extent to which the syntactic categories of their HMMs were overlapping 

suggests that they most likely also encountered the issue of overlapping syntactic categories that 

I encountered when running a single HMM on the Expanded Rock Corpus data. While 

implementing a composite HMM similar to White and Quinn’s would have most likely produced 

better results for the Expanded Rock Corpus, I decided that it would ultimately be difficult and 

would most likely require more computational power than I had available.  

 
42 Ibid, 318-335. 
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6. Conclusion and Summary of Findings 

In this thesis I first introduced the concept of harmonic syntax and discussed several 

models that music theorists have used to study it; I discussed n-gram and Markov models, hidden 

Markov models and probabilistic context-free grammars. Following this, I discussed White and 

Quinn’s previous work using a composite HMM to study the harmonic syntax of the Kostka-

Payne, McGill Billboard and Bach Chorale Corpuses. Following this, I assessed the work of De 

Clercq and Temperley and their corpus of rock music and subsequently expanded their corpus to 

create the Expanded Rock Corpus. I then replicated the basic statistical analysis that De Clercq 

and Temperley performed on their corpus on the Expanded Rock Corpus and found that the 

distribution of chord roots was similar to De Clercq and Temperley’s analysis in that the I, IV 

and V followed by bVII, VI and II were the most frequently occurring chord roots. I also found 

that the most frequently occurring bigrams of chord roots were V - I, I - V, IV - V and V - IV 

followed by I - bVII, bVII - I and bVII - IV which were similar to the values that De Clercq and 

Temperley found. I also observed how the top five chord root bigrams in the corpus had strong 

bidirectional tendencies. Following this, I created chord vectors for the twelve chord roots, 

measured the correlation between chord vectors and found the vectors tended to group together 

as follows:  

[[I, [IV, V]], [VII, [III, [II, VI]]]] [[bII, bV], [bIII, [bVI, bVII]]] 

After conducting basic statistical analyses, I implemented HMMs and PCFGs on the Expanded 

Rock Corpus and found that while the results from the HMM suggested that the harmonic syntax 

of the works in the corpus were similar to the harmonic syntax of common practice music, the 

composition of the syntactic categories were different. In particular, I observed that the 



 59 

“Dominant” category from one of the HMMs also contained “bVII” chords. I also found that 

after running the PCFG on the Expanded Rock Corpus, the results from the PCFG were 

inconclusive. Finally, I discussed several of the issues from these models and problems that were 

encountered while implementing them that may have affected the results.  

In conclusion, while this thesis was unable to definitively provide a detailed description 

of the harmonic syntax of rock music using HMM and PCFGs, White and Quinn’s work using 

composite HMMs and the work of Tsushima, Hiroaki, et al. using larger datasets illustrate that it 

is possible to use these models to model the harmonic syntax of rock music. One further 

direction of research could involve expanding the Expanded Rock Corpus and implementing 

composite HMMs in order to better understand the harmonic syntax of rock music. Another 

direction for future research might focus on conducting more basic statistical analysis on the 

Expanded Rock Corpus and could investigate if there are trends in the frequency of chromatic 

roots or specific chords over time. Finally, another direction of future research could use other 

statistical clustering methods such as fuzzy clustering to determine how chromatic roots, chords 

or individual songs group together. 
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7. Appendix 

 

7.1 Link to Expanded Rock Corpus, Further Discussion of Algorithms and Code Base 

https://github.com/giwdulttam/Expanded-Rock-Corpus
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7.2 Discussion of the “Forward-Backward” Algorithm for Training HMMs: 

 
In this algorithm X_t for t in {1,…,T} are random variables and correspond to the hidden 

state variable taking on some value at time t in the sequence. In our case X_t will take on a value 

in a hidden or syntactic category (tonic, dominant, etc…) and P(X_t) is the probability of it 

taking on some value. The distribution of the random variable X_t is the collection of 

probabilities of X_t taking on values (which in this thesis are tonic, dominant, etc..); since it 

takes on a discrete set of values one could imagine this as a vertical bar graph. 

This algorithm computes the marginal posterior probabilities of all hidden state variables 

given a sequence of observations. For a given hidden variable X_t of a HMM, it computes P(X_t 

| o_{1:T}) – that is, the probability of a certain hidden variable taking on some value given that I 

have a series of observations o_{1:T}. In order to compute this posterior marginal, the algorithm 

will compute the probability of the hidden variable X_t having a certain value given the 

observations o_{1:t} where t < T. Then it will compute a set of backward probabilities; that is, 

the probability P(o_{t+1 : T} | X_t) of observing the remaining observations o_{t+1:T} given 

that that the hidden variable X_t has some value or is at some state or chord category. Combining 

these two probabilities through Bayes’ rule, I can obtain the probability: P(X_t | o_{1:T}), which 

is the distribution of X_t given the sequence of observations: 

 

In this case, the posterior marginal P(X_t | o_{1:T}) is the distribution over the possible syntactic 

chord categories (tonic, dominant, etc…) that the process will take on at some point in the 

sequence t given that I have the sequence of chords o_{1:T}. These marginal posterior   
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probabilities are shown by the probabilities on the blue arrows in the diagram of the HMM in 

Figure 2. 

 In the algorithm outlined above, the Bayes' Rule, also known as Bayes' Theorem or 

Bayes' Law, is used to provide a way to updating the probability of an event occurring given that 

some other event has occurred. In particular, it provides a convenient formula to express this 

conditional probability in terms of probabilities are more likely to be known or easier to 

compute. In particular, it allows us to express the posterior probability of an event as an 

expanded version of the join density of the events over the marginal probability of the event that 

is being conditioned on. This can be represented as follows:  

  

 P (B | A) P (A) 

P (A | B)  =  --------------------------- 

                     P (B) 
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7.5 Python Code to Find Patterns in the Expanded Corpus 
 

1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 

# -*- coding: utf-8 -*- 
"""Python Code for Rock Corpus Analysis 
 
Automatically generated by Colaboratory. 
 
Original file is located at 
    https://colab.research.google.com/drive/1AXDoMCDpEMQdKL2MUmvPYYQEOiH9-dLO 
 
#Import the Corpus 
""" 
 
from google.colab import files 
uploaded = files.upload() 
 
import pandas as pd 
big_frame = pd.read_excel('Expanded Rock Corpus.xlsx', index_col=0) 
 
big_frame 
 
analysis_dates = big_frame[['Date','Harmonic Analysis']].to_numpy() 
 
analysis = big_frame['Harmonic Analysis'].to_numpy() 
 
date = big_frame[['Date']].to_numpy() 
 
analyses_Copy = analysis 
 
for i in range(len(analyses_Copy)): 
  analyses_Copy[i] = analyses_Copy[i].replace("[C]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[C#]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[Db]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[D]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[Eb]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[E]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[F]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[F#]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[G]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[G#]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[Ab]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[A]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[A#]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[Bb]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[B]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[Gb]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("modulation", "") 
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 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 

 
 
  analyses_Copy[i] = analyses_Copy[i].replace("|", "") 
  analyses_Copy[i] = analyses_Copy[i].replace(".", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[4/4]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[2/4]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[0]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[R]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[12/8]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[7/8]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("R", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[3/4]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[6/8]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("[5/4]", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Vr5' is defined but never 
used", "") 
  analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Ch5' is defined but never 
used", "") 
 
  analyses_Copy[i] = analyses_Copy[i].split() 
 
analyses_Copy 
 
#make numpy arrays for each decade 
 
df_1940s = [] 
df_1950s = [] 
df_1960s = [] 
df_1960s = [] 
df_1970s = [] 
df_1980s = [] 
df_1990s = [] 
df_2000s = [] 
 
for i in range(analysis_dates.shape[0]): 
  if(1940 <= analysis_dates[i,0] < 1950): 
    df_1940s.append(analyses_Copy[i]) 
 
  if(1950 <= analysis_dates[i,0] < 1960): 
    df_1950s.append(analyses_Copy[i]) 
 
  if(1960 <= analysis_dates[i,0] < 1970): 
    df_1960s.append(analyses_Copy[i]) 
 
  if(1970 <= analysis_dates[i,0] < 1980): 
    df_1970s.append(analyses_Copy[i]) 
 
  if(1980 <= analysis_dates[i,0] < 1990): 
    df_1980s.append(analyses_Copy[i]) 
 
  if(1990 <= analysis_dates[i,0] < 2000): 
    df_1990s.append(analyses_Copy[i]) 
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 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

 
  if(2000 <= analysis_dates[i,0]): 
    df_2000s.append(analyses_Copy[i]) 
 
"""#Determine frequency counts of symbols and build dictionary to replace on top 50 
or so....""" 
 
from collections import Counter 
 
c = Counter() 
 
for d in analyses_Copy: #*** 
  c.update(d) 
 
# for k, v in c.items(): 
#   print(f'{k} = {v}') 
 
#create lists of chords that are on each chromatic root 
 
zero = ['I', 'I7', 'I6', 'V7/IV', 'i', 'i6', 'I64', 'Va/IV', 'Isus4', 'Id7', 
'V42/IV', 'i7', 'V11/IV', 'ii7/bVII', 'Id7#9', 'Isus2', 'I42', 'i42', 'Id42',  
'V/IV', 'I#9', 'I9', 'i64'] 
one = ['bII', 'bIId7', 'viio/ii', 'bII7'] 
two = [ 'V7/V', 'II', 'V/V', 'ii', 'ii7', 'II7', 'IId7', 'ii65', 'iio6', 'ii11', 
'V6/V', 'II65', 'ii64', 'iis4', 'ii42', 'II9', 'V/v', 'II11', 'iih43', 'iih42', 
'ii9'] 
three = ['bIII', 'bVId7/V', 'biii7', 'biii', 'bIII7', 'bIII64',  'V/bVI', 'V42/bVI', 
'bIII6'] 
four = ['V/VI', 'iii', 'III', 'V/vi', 'V7/vi', 'III7', 'iii64', 'iii7', 'bIV', 
'iii6', 'V6/vi', 'biv7', 'III64', 'iii43',  'Va7/vi',  'Va65/vi'] 
five = ['IV', 'IVd7', 'iv', 'IV9', 'IV64', 'IV6', 'IV7', 'iv7', 'iv6', 'Iv7', 'Iv', 
'iV', 'IV42', 'bVb5', '#IV', 'IVsus4', 'IVssu4', 'IVssus4', 'iv64'] 
six = ['bV', 'viix7/V', 'viio/V', 'viix43/V', 'bV7', 'bVd42', 'viix42/V', 'V/VII', 
'V42/VII', 'bv', 'V+11', 'v64'] 
seven = ['V', 'V7', 'V7s4', 'V64', 'V7sus4', 'V43', 'v', 'V13', 'V6', 'v7', 'Vs4', 
'V11', 'Vsus4', 'iv/ii', 'V42', 'V65', 'V9', 'v6', 'v9', 'v7s4',  'iv6/ii'] 
eight = ['bVI', 'bVI7', 'bVId7', 'bVi7', 'bvi', 'bVI6', 'bVIb5', 'bVi', 'bVIs4', 
'V7/bII', 'viix7/vi'] 
nine = ['vi7','vi', 'VI', 'V/ii', 'VI7', 'V7/ii', 'V7/ii', 'V43/ii', 'vi6', 'VId7', 
'vi64', 'V6/ii', 'vi42', 'vih7', 'VI6', 'VI9', 'ii/IV'] 
ten = ['bVII', 'bVII7', 'bVIId7', 'bVId7/ii', '#VI', 'bvii', 'ii7/bVII', 'bViI', 
'bVI64/ii', 'V7/bIII', 'bVII64', 'bVII6', 'bVII9', 'bvii7',  'IV/IV'] 
eleven = ['V7/iii', 'VII', 'vii', 'viix43', 'VII7', 'iih7/vi', 'ii7/vi', 'viix42', 
'V7/III', 'vii7', 'VII9', 'V/iii', 'viix7', 'viio6', 'vii64'] 
 
dictionary_of_chords_and_counts = dict(c) 
dictionary_of_chords_and_counts 
 
from itertools import chain 
from collections import Counter 
import operator 
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154 
155 
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174 
175 
176 
177 
178 
179 
180 
181 
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200 
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chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy))) #*** 
 
print(chord_counts_dict) 
 
 
most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get, 
reverse=True) 
 
top_20_chords = most_frequent_chords[0:20] 
top_10_chords = most_frequent_chords[0:10] 
 
 
top_20_chord_dic = dict((k, chord_counts_dict[k]) for k in top_20_chords) 
top_10_chord_dic = dict((k, chord_counts_dict[k]) for k in top_10_chords) 
 
"""#Create Histogram of Top Chords""" 
 
import matplotlib.pyplot as plt 
 
plt.bar(list(top_20_chord_dic.keys()), top_20_chord_dic.values(), color='g') 
 
plt.title("Frequency of Top 20 Chords") 
plt.show() 
 
from itertools import chain 
from collections import Counter 
import operator 
 
 
#counts chords in analyses_Copy 
chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy))) 
 
print(chord_counts_dict) 
 
 
most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get, 
reverse=True) 
 
print(len(most_frequent_chords)) 
 
top_50_chords = most_frequent_chords[0:50] 
# top_50_chords 
 
chromatic_roots_maj = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI', 
'VI', 'bVII', 'VII'] 
chromatic_roots_counts_maj = [] 
 
chromatic_roots_min = ['i', 'bii', 'biii', 'iii', 'iv', 'bv', 'v', 'bvi', 'vi', 
'bvii', 'vii'] 
chromatic_roots_counts_min = [] 
 
#counts instances of chords from chord_counts_dict 
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for i in range(len(chromatic_roots_maj)): 
  chromatic_roots_counts_maj.append(chord_counts_dict[chromatic_roots_maj[i]]) 
 
#count number of chromatic roots 
 
zero_counts = [] 
one_counts = [] 
two_counts = [] 
three_counts = [] 
four_counts = [] 
five_counts = [] 
six_counts = [] 
seven_counts = [] 
eight_counts = [] 
nine_counts = [] 
ten_counts = [] 
eleven_counts = [] 
 
for i in zero: 
  zero_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in one: 
  one_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in two: 
  two_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in three: 
  three_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in four: 
  four_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in five: 
  five_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in six: 
  six_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in seven: 
  seven_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in eight: 
  eight_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in nine: 
  nine_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in ten: 
  ten_counts.append(dictionary_of_chords_and_counts[i]) 
 
for i in eleven: 
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  eleven_counts.append(dictionary_of_chords_and_counts[i]) 
 
zeros = sum(zero_counts) 
ones = sum(one_counts) 
twos = sum(two_counts) 
threes = sum(three_counts) 
fours = sum(four_counts) 
fives = sum(five_counts) 
sixes = sum(six_counts) 
sevens = sum(seven_counts) 
eights = sum(eight_counts) 
nines = sum(nine_counts) 
tens = sum(ten_counts) 
elevens = sum(eleven_counts) 
 
 
 
total_chromatic_roots = ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 
'seven', 'eight', 'nine', 'ten', 'eleven'] 
 
total_chromatic_roots_counts = [] 
total_chromatic_roots_counts.append(zeros) 
total_chromatic_roots_counts.append(ones) 
total_chromatic_roots_counts.append(twos) 
total_chromatic_roots_counts.append(threes) 
total_chromatic_roots_counts.append(fours) 
total_chromatic_roots_counts.append(fives) 
total_chromatic_roots_counts.append(sixes) 
total_chromatic_roots_counts.append(sevens) 
total_chromatic_roots_counts.append(eights) 
total_chromatic_roots_counts.append(nines) 
total_chromatic_roots_counts.append(tens) 
total_chromatic_roots_counts.append(elevens) 
 
total_chromatic_roots_counts 
 
total_chromatic_roots 
 
chromatic_roots_counts_maj 
 
TandDC = [3058, 46, 336, 240, 174, 2104, 23, 1516, 372, 674, 748, 38] 
 
 
plt.bar(total_chromatic_roots, total_chromatic_roots_counts, color='g') 
plt.title("Frequency of Chromatic Roots in Expanded Rock Corpus") 
plt.show() 
 
plt.bar(chromatic_roots_maj, TandDC, color='b') 
plt.title("Frequency of Chromatic Roots in TDC Rock Corpus") 
plt.show() 
 
"""#Bar Graph of number of unique chords in songs by decade - NOT CHROMATIC""" 
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#get top 10 overall chords in corpus 
top_10_chord_dic 
top_10_chords 
 
from itertools import chain 
from collections import Counter 
import operator 
 
 
#******* --> go through each df_1990s and get number of times one of the top 10 
overall chords occurs 
 
 
 
decades = [df_1940s, df_1950s, df_1960s, df_1970s, df_1980s, df_1990s, df_2000s] 
 
dec = ['1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'] 
 
 
count = [0,0,0,0,0,0,0,0,0,0] 
 
 
 
for i in range(len(decades)): 
  count = [0,0,0,0,0,0,0,0,0,0] 
 
  for j in range(len(decades[i])): 
    for k in range(len(decades[i][j])): 
 
      if(decades[i][j][k] == 'I'): 
        count[0] = count[0] + 1 
 
      if(decades[i][j][k] == 'IV'): 
        count[1] = count[1] + 1 
 
      if(decades[i][j][k] == 'V'): 
        count[2] = count[2] + 1 
 
      if(decades[i][j][k] == 'bVII'): 
        count[3] = count[3] + 1 
 
      if(decades[i][j][k] == 'VI'): 
        count[4] = count[4] + 1 
 
      if(decades[i][j][k] == 'II'): 
        count[5] = count[5] + 1 
 
      if(decades[i][j][k] == 'III'): 
        count[6] = count[6] + 1 
 
      if(decades[i][j][k] == 'bVI'): 
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        count[7] = count[7] + 1 
 
      if(decades[i][j][k] == 'bIII'): 
        count[8] = count[8] + 1 
 
      if(decades[i][j][k] == 'VII'): 
        count[9] = count[9] + 1 
 
  plt.bar(top_10_chords, count, color='g') 
 
  plt.title("Frequency of Top 10 Chord in the " + dec[i]) 
  plt.show() 
 
count_40 = [0,0,0,0,0,0,0,0,0,0] 
count_50 = [0,0,0,0,0,0,0,0,0,0] 
count_60 = [0,0,0,0,0,0,0,0,0,0] 
count_70 = [0,0,0,0,0,0,0,0,0,0] 
count_80 = [0,0,0,0,0,0,0,0,0,0] 
count_90 = [0,0,0,0,0,0,0,0,0,0] 
count_20 = [0,0,0,0,0,0,0,0,0,0] 
 
count = [count_40, count_50, count_60, count_70, count_80, count_90, count_20] 
 
decades = [df_1940s, df_1950s, df_1960s, df_1970s, df_1980s, df_1990s, df_2000s] 
 
dec = ['1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'] 
 
 
for i in range(len(decades)): 
  for j in range(len(decades[i])): 
    for k in range(len(decades[i][j])): 
 
      if(decades[i][j][k] == 'I'): 
        count[i][0] = count[i][0] + 1 
 
      if(decades[i][j][k] == 'IV'): 
        count[i][1] = count[i][1] + 1 
 
      if(decades[i][j][k] == 'V'): 
        count[i][2] = count[i][2] + 1 
 
      if(decades[i][j][k] == 'bVII'): 
        count[i][3] = count[i][3] + 1 
 
      if(decades[i][j][k] == 'VI'): 
        count[i][4] = count[i][4] + 1 
 
      if(decades[i][j][k] == 'II'): 
        count[i][5] = count[i][5] + 1 
 
      if(decades[i][j][k] == 'III'): 
        count[i][6] = count[i][6] + 1 
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      if(decades[i][j][k] == 'bVI'): 
        count[i][7] = count[i][7] + 1 
 
      if(decades[i][j][k] == 'bIII'): 
        count[i][8] = count[i][8] + 1 
 
      if(decades[i][j][k] == 'VII'): 
        count[i][9] = count[i][9] + 1 
 
 
for i in range(len(count)): 
  print(count[i]) 
 
total_1940s = sum(count_40) 
total_1950s = sum(count_50) 
total_1960s = sum(count_60) 
total_1970s = sum(count_70) 
total_1980s = sum(count_80) 
total_1990s = sum(count_90) 
total_2000s = sum(count_20) 
 
 
count = [count_40, count_50, count_60, count_70, count_80, count_90, count_20] 
totals = [total_1940s, total_1950s, total_1960s, total_1970s, total_1980s, 
total_1990s, total_2000s] 
percentages = [] 
 
 
for i in range(len(count)): 
  for j in range(len(count[i])): 
    count[i][j] = count[i][j] / totals[i] 
 
for i in range(len(count)): 
  for j in range(len(count[i])): 
    count[i][j] = count[i][j]*100 
 
count 
 
for i in range(len(count)): 
 
  plt.bar(top_10_chords, count[i], color='g') 
  plt.title("Percentages of Top 10 Chord of: " + dec[i]) 
  plt.show() 
 
import numpy as np 
 
def euclidean(v1, v2): 
    return sum((p-q)**2 for p, q in zip(v1, v2))/10 ** .5 
 
 
euclid_dist_matrix = np.zeros((7,7)) 
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for i in range(len(count)): 
  for j in range(len(count)): 
    if(i!=j): 
      euclid_dist_matrix[i][j] = euclidean(count[i], count[j]) 
 
 
euclid_dist_matrix 
 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
ax = sns.heatmap(euclid_dist_matrix, annot=True, xticklabels=dec, yticklabels=dec, 
vmin=0, vmax=500, fmt='.3g') 
 
plt.title("Euclidean Distance Between Histograms of Top 10 Chords in each Decade") 
plt.show() 
 
cg = sns.clustermap(euclid_dist_matrix, annot=True, xticklabels=dec, 
yticklabels=dec, vmin=0, vmax=500, fmt='.3g') 
 
plt.title("Clustermap of Similarity of Top 10 Chords in Corpus by Decade based on 
Euclidean Distance between Histograms") 
 
"""#Chord Transition Matrix in Expanded Rock Corpus""" 
 
analyses_Copy_original = analyses_Copy 
 
"""NLPTK to check if certain bigrams occur...""" 
 
#Create a copy of analysis_Copy that just uses chromatic roots --> calculate bigrams 
and trigrams from this 
# ***** this will convert analyses_Copy to a list of chromatic numbers ***** 
 
for i in range(analyses_Copy.shape[0]): 
  for j in range(len(analyses_Copy[i])): 
    if analyses_Copy[i][j] in zero: 
      analyses_Copy[i][j] = 'I' 
    if analyses_Copy[i][j] in one: 
      analyses_Copy[i][j] = 'bII' 
    if analyses_Copy[i][j] in two: 
      analyses_Copy[i][j] = 'II' 
    if analyses_Copy[i][j] in three: 
      analyses_Copy[i][j] = 'bIII' 
    if analyses_Copy[i][j] in four: 
      analyses_Copy[i][j] = 'III' 
    if analyses_Copy[i][j] in five: 
      analyses_Copy[i][j] = 'IV' 
    if analyses_Copy[i][j] in six: 
      analyses_Copy[i][j] = 'bV' 
    if analyses_Copy[i][j] in seven: 
      analyses_Copy[i][j] = 'V' 
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    if analyses_Copy[i][j] in eight: 
      analyses_Copy[i][j] = 'bVI' 
    if analyses_Copy[i][j] in nine: 
      analyses_Copy[i][j] = 'VI' 
    if analyses_Copy[i][j] in ten: 
      analyses_Copy[i][j] = 'bVII' 
    if analyses_Copy[i][j] in eleven: 
      analyses_Copy[i][j] = 'VII' 
 
from nltk import bigrams 
from collections import Counter 
 
bgrms = [] 
 
for i in range(analyses_Copy.shape[0]): 
  bgrms.append(list(bigrams(analyses_Copy[i]))) 
 
bgrms 
 
import itertools 
 
all_chromatic_bigrams = list(itertools.permutations(('I', 'bII', 'II', 'bIII', 
'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII', 'VII'), 2)) 
all_chromatic_bigrams 
 
import numpy as np 
import operator 
import itertools 
 
Ant_Cons = pd.DataFrame(np.zeros((12,12)), columns = chromatic_roots_maj) 
Ant_Cons.set_axis(chromatic_roots_maj, axis='index') 
 
#create dictionary to store counts of bigrams 
keyList = all_chromatic_bigrams 
# Using Dictionary comprehension 
bigram_count = {key: 0 for key in keyList} 
print(bigram_count) 
 
 
#sets the key = 0 for all chromatic bigrams 
 
for i in range(len(bgrms)): 
  for j in range(len(bgrms[i])): 
    for k in range(len(all_chromatic_bigrams)): 
      if(bgrms[i][j] == all_chromatic_bigrams[k]): 
        bigram_count[all_chromatic_bigrams[k]] += 1 
 
bigram_count 
 
#counts of chroamtic bigrams 
 
names = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII', 
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       'VII'] 
numbers = [0,1,2,3,4,5,6,7,8,9,10,11] 
 
dic = dict(zip(names, numbers)) 
dic 
 
list(bigram_count.keys())[0][0] 
 
for i in range(len(all_chromatic_bigrams)): 
  Ant_Cons.at[dic.get(list(bigram_count.keys())[i][0]), 
list(bigram_count.keys())[i][1]] = bigram_count.get(list(bigram_count.keys())[i]) 
 
# Commented out IPython magic to ensure Python compatibility. 
import seaborn as sns 
# %matplotlib inline 
 
plt.figure(figsize=(15,15)) 
sns.heatmap(Ant_Cons, annot=True, fmt='g') 
sns.heatmap(Ant_Cons, xticklabels=names, yticklabels=names) 
plt.title('Chord Transitions in the Expanded Rock Corpus: (Rows --> Columns)') 
 
"""#Got top bigrams to create tornado charts in excel""" 
 
bigram_count 
 
d = Counter (bigram_count) 
total = sum(d.values()) 
d.most_common() 
 
print('Total Number of Bigrams:', total) 
for k, v in d.most_common(10): 
  print('%s: %i' % (k, v)) 
 
bigram_count[('II', 'I')] 
 
x = range(5) 
 
top_bigram = ['I - IV', 'I - V', 'I - bVII', 'I - VI', 'I - II'] 
positive_data = [4813/37254, 2384/37254, 1513/37254, 1041/37254, 817/37254] 
negative_data = [-4995/37254, -3324/37254, -1294/37254, -492/37254, -608/37254] 
 
fig = plt.figure() 
ax = plt.subplot(111) 
ax.bar(x, negative_data, width=1, color='r') 
ax.bar(x, positive_data, width=1, color='b') 
 
plt.xticks(ticks = [0,1,2,3,4], labels = top_bigram, rotation = 'vertical') 
 
plt.title('Percentage of Most Common Chromatic Bigrams - (37,254 Total Occurences)') 
plt.xlabel('Bigrams') 
plt.ylabel('Percentage of Total') 
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colors = {'Foward':'blue', 'Backward':'Red'} 
labels = list(colors.keys()) 
handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in labels] 
plt.legend(handles, labels) 
 
plt.show() 
 
"""#Group data from each songs into segments of trigrams --> nested array 
 
""" 
 
# all_trigrams = [] 
 
# for i in range(len(analyses_Copy)): 
#   for j in range(len(analyses_Copy[i])-3): 
#     all_trigrams.append(analyses_Copy[i][j:j+3]) 
 
# all_trigrams 
 
from nltk import trigrams 
from collections import Counter 
 
trigrms = [] 
 
for i in range(analyses_Copy.shape[0]): 
  trigrms.append(list(trigrams(analyses_Copy[i]))) 
 
trigrms 
 
all_chromatic_trigrams = list(itertools.permutations(('I', 'bII', 'II', 'bIII', 
'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII', 'VII'), 3)) 
all_chromatic_trigrams 
 
#create dictionary to store counts of bigrams 
keylist = all_chromatic_trigrams 
# Using Dictionary comprehension 
trigram_count = {key: 0 for key in keylist} 
print(trigram_count) 
 
for i in range(len(trigrms)): 
  for j in range(len(trigrms[i])): 
    for k in range(len(all_chromatic_trigrams)): 
      if(trigrms[i][j] == all_chromatic_trigrams[k]): 
        trigram_count[all_chromatic_trigrams[k]] += 1 
 
trigram_count 
 
import heapq 
top_trigrams = heapq.nlargest(20, trigram_count, key=trigram_count.get) 
top_trigrams 
 
top_trigrams_list = [] 
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for i in range(len(top_trigrams)): 
  top_trigrams_list.append(str(top_trigrams[i])) 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
fig = plt.figure(figsize = (10, 5)) 
 
# creating the bar plot 
plt.bar(top_trigrams_list, top_trigram_counts, color ='g', 
        width = 0.4) 
 
plt.xlabel("Top 20 Trigrams") 
plt.ylabel("Frequency") 
plt.title("Frequency of Top 20 Trigrams of Chromatic Roots") 
plt.xticks(rotation='vertical') 
plt.show() 
 
"""#Get Histograms of Occurences of Chords / Bigrams for Each Decade --> Clustering 
to Produce Histograms and track historical trends 
 
#*** Everything Below is Chord Vectors**** 
 
#Correlation between chord vectors of all works 
""" 
 
if('V' in analyses_Copy[1]): 
  print("yes") 
 
chromatic_roots_maj = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI', 
'VI', 'bVII', 'VII'] 
 
I = np.zeros(436) 
bII = np.zeros(436) 
II = np.zeros(436) 
bIII = np.zeros(436) 
III = np.zeros(436) 
IV = np.zeros(436) 
bV = np.zeros(436) 
V = np.zeros(436) 
bVI = np.zeros(436) 
VI = np.zeros(436) 
bVII = np.zeros(436) 
VII = np.zeros(436) 
 
for i in range(analyses_Copy.shape[0]): 
  if('I' in analyses_Copy[i]): 
    I[i] = 1 
  if('bII' in analyses_Copy[i]): 
    bII[i] = 1 
  if('II' in analyses_Copy[i]): 
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    II[i] = 1 
  if('bIII' in analyses_Copy[i]): 
    bIII[i] = 1 
  if('III' in analyses_Copy[i]): 
    III[i] = 1 
  if('IV' in analyses_Copy[i]): 
    IV[i] = 1 
  if('bV' in analyses_Copy[i]): 
    bV[i] = 1 
  if('V' in analyses_Copy[i]): 
    V[i] = 1 
  if('bVI' in analyses_Copy[i]): 
    bVI[i] = 1 
  if('VI' in analyses_Copy[i]): 
    VI[i] = 1 
  if('bVII' in analyses_Copy[i]): 
    bVII[i] = 1 
  if('VII' in analyses_Copy[i]): 
    VII[i] = 1 
 
from string import ascii_letters 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
sns.set_theme(style="white") 
d = pd.DataFrame({'I' : I, 'bII': bII, 'II':II, 'bIII':bIII, 'III':III, 'IV':IV, 
'bV':bV, 'V':V, 'bVI':bVI, 'VI':VI, 'bVII':bVII, 'VII':VII}) 
 
# Compute the correlation matrix 
corr = d.corr() 
# Generate a mask for the upper triangle 
mask = np.triu(np.ones_like(corr, dtype=bool)) 
# Set up the matplotlib figure 
f, ax = plt.subplots(figsize=(11, 9)) 
# Generate a custom diverging colormap 
cmap = sns.diverging_palette(230, 20, as_cmap=True) 
# Draw the heatmap with the mask and correct aspect ratio 
 
corr = corr.replace(np.nan, 0) 
 
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, 
            square=True, linewidths=.5, cbar_kws={"shrink": .5}) 
plt.title('Correlation between Chromatic Roots vectors (1940-2000)') 
 
cg = sns.clustermap(corr, annot=True, xticklabels=chromatic_roots_maj, 
yticklabels=chromatic_roots_maj, vmin=-1, vmax=1, fmt='.3g') 
 
plt.title("Clustermap Between the Chromatic Chord Vectors") 
 
"""#Redo Correlation matrix of chromatic roots""" 
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# import pandas as pd 
# import seaborn as sns 
# import matplotlib.pyplot as plt 
# from sklearn.preprocessing import StandardScaler 
# from sklearn.cluster import KMeans 
# from sklearn.decomposition import PCA 
# scaler =StandardScaler() 
 
 
# features =scaler.fit(d) 
# features =features.transform(d) 
 
# # Convert to pandas Dataframe 
# scaled_df =pd.DataFrame(features,columns=d.columns) 
# # Print the scaled data 
# scaled_df 
 
# X=scaled_df.values 
 
# wcss = {} 
# for i in range(1, 11): 
#     kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) 
#     kmeans.fit(X) 
#     wcss[i] = kmeans.inertia_ 
 
# plt.plot(wcss.keys(), wcss.values(), 'gs-') 
# plt.xlabel("Values of 'k'") 
# plt.ylabel('WCSS') 
# plt.show() 
 
# kmeans=KMeans(n_clusters=8) 
# kmeans.fit(X) 
 
# dates 
 
"""#Perform Clustering on Chord Vectors""" 
 
#Make chord vectors for songs based on the top 20 most common chords 
#create 20 dim vectors of counts for top 20 chords in each song 
 
songs = [] 
 
for i in range(analyses_Copy.shape[0]): 
  top = np.zeros(20) 
  for j in range(len(analyses_Copy[i])): 
      if(analyses_Copy[i][j] == 'I' ): 
        top[0] += 1 
      if(analyses_Copy[i][j] == 'IV' ): 
        top[1] += 1 
      if(analyses_Copy[i][j] == 'V' ): 
        top[2] += 1 
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      if(analyses_Copy[i][j] == 'i' ): 
        top[3] += 1 
      if(analyses_Copy[i][j] == 'bVII' ): 
        top[4] += 1 
      if(analyses_Copy[i][j] == 'vi' ): 
        top[5] += 1 
      if(analyses_Copy[i][j] == 'bVI' ): 
        top[6] += 1 
      if(analyses_Copy[i][j] == 'ii' ): 
        top[7] += 1 
      if(analyses_Copy[i][j] == 'bIII' ): 
        top[8] += 1 
      if(analyses_Copy[i][j] == 'V7' ): 
        top[9] += 1 
      if(analyses_Copy[i][j] == 'III' ): 
        top[10] += 1 
      if(analyses_Copy[i][j] == 'iii' ): 
        top[11] += 1 
      if(analyses_Copy[i][j] == 'v' ): 
        top[12] += 1 
      if(analyses_Copy[i][j] == 'ii7' ): 
        top[13] += 1 
      if(analyses_Copy[i][j] == 'I7' ): 
        top[14] += 1 
      if(analyses_Copy[i][j] == 'iv' ): 
        top[15] += 1 
      if(analyses_Copy[i][j] == 'IV7' ): 
        top[16] += 1 
      if(analyses_Copy[i][j] == 'i7' ): 
        top[17] += 1 
      if(analyses_Copy[i][j] == 'vi7' ): 
        top[18] += 1 
      if(analyses_Copy[i][j] == 'IV6' ): 
        top[19] += 1 
  songs.append(top) 
 
songs 
 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler 
from sklearn.cluster import KMeans 
from sklearn.decomposition import PCA 
 
wcss = {} 
for i in range(1, 10): 
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) 
    kmeans.fit(songs) 
    wcss[i] = kmeans.inertia_ 
 
plt.plot(wcss.keys(), wcss.values(), 'gs-') 
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900 
901 
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plt.xlabel("Values of 'k'") 
plt.ylabel('WCSS') 
plt.show() 
 
kmeans=KMeans(n_clusters=3) 
kmeans.fit(songs) 
 
kmeans.cluster_centers_ 
kmeans.labels_ 
 
pca=PCA(n_components=2) 
 
reduced_X=pd.DataFrame(data=pca.fit_transform(songs),columns=['PCA1','PCA2']) 
 
centers=pca.transform(kmeans.cluster_centers_) 
 
# Commented out IPython magic to ensure Python compatibility. 
# %pip install adjustText 
 
from adjustText import adjust_text 
 
plt.rcParams.update({'font.size': 8}) 
 
plt.figure(figsize=(7,5)) 
 
# Scatter plot 
plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'],c=kmeans.labels_) 
plt.scatter(centers[:,0],centers[:,1],marker='x',s=300,c='red') 
plt.xlabel('PCA1') 
plt.ylabel('PCA2') 
plt.title('Song Clusters') 
 
 
for i in range(len(songs)): 
    plt.annotate(date[i], (reduced_X['PCA1'][i], reduced_X['PCA2'][i] + 0.2), 
arrowprops={"arrowstyle":"->", "color":"gray"}) 
 
 
plt.rcParams.update({'font.size': 10}) 
 
pca.components_ 
 
component_df=pd.DataFrame(pca.components_,index=['PCA1',"PCA2"],columns=top_20_chord
s) 
sns.heatmap(component_df) 
plt.show() 
 
"""#Turn training and testing data into from strings to encoded data:""" 
 
!pip install Scikit-learn 
import sklearn 
from sklearn import preprocessing 
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top_50_chords = np.append(top_50_chords, 'other') 
top_50_chords 
 
top_10_chords = np.append(top_10_chords, 'other') 
top_10_chords 
 
le = preprocessing.LabelEncoder() 
le.fit(top_10_chords) 
list(le.classes_) 
 
#transform training and testing data 
 
train_data = le.transform(analyses_Copy) #*** 
train_data = np.expand_dims(train_data, axis=1) 
 
test_data = le.transform(analyses_Copy)   #*** 
test_data = np.expand_dims(test_data, axis=1) 
 
test_data.shape 
 
total_train = np.squeeze(train_data) 
total_test = np.squeeze(test_data) 
 
 
total_data = np.concatenate((total_train, total_test), axis = 0) 
 
total_data = np.expand_dims(total_data, axis=1) 

 

7.6 Python Code to Find and Replace Algorithm 
 

  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 

# -*- coding: utf-8 -*- 
"""Copy of Roman Numerals --> Chords.ipynb 
 
Automatically generated by Colaboratory. 
 
Original file is located at 
    https://colab.research.google.com/drive/1_FS2SCKXl9SOw44MKbuKhx7jmm3AJcU2 
 
#Load Rock Corpus Data 
""" 
 
from google.colab import files 
uploaded = files.upload() 
 
import pandas as pd 
big_frame = pd.read_excel('Expanded Rock Corpus.xlsx', index_col=0) 
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 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 

# iterating the columns 
# for col in big_frame.columns: 
#     print(col) 
 
big_frame['Harmonic Analysis'] = big_frame['Harmonic Analysis'].map(str) 
big_frame['Harmonic Analysis'][2] 
 
big_frame['Harmonic Analysis'] 
 
# analyses = [] 
 
# for i in range(len(big_frame['Harmonic Analysis'])): 
#   analyses.append(big_frame['Harmonic Analysis'][i]) 
 
analyses = big_frame['Harmonic Analysis'] 
 
analyses_copy = analyses 
 
analyses_Copy = analyses_copy 
analyses_Copy 
 
analyses_Copy.iloc[0] 
 
analyses_Copy[2] 
 
from functools import reduce 
 
replacement_dict = {"[C]": "", 
                    "[C#]": "", 
                    "[Db]": "", 
                    "[D]": "", 
                    "[Eb]": "", 
                    "[E]": "", 
                    "[F]": "", 
                    "[F#]": "", 
                    "[G]": "", 
                    "[G#]": "", 
                    "[Ab]": "", 
                    "[A]": "", 
                    "[A#]": "", 
                    "[Bb]": "", 
                    "[B]": "", 
                    "|": "", 
                    ".": "", 
                    "[4/4]": "", 
                    "[2/4]": "", 
                    "[0]": "", 
                    "[R]": "", 
                    "[12/8]": "", 
                    "[7/8]": "", 
                    "R": "", 
                    "[3/4]": "", 
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 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 

                    "[6/8]": "", 
                    "[5/4]": "", 
                    "Warning: 'Vr5' is defined but never used": "", 
                    "Warning: 'Ch5' is defined but never used": "", 
                    "Warning:": "", 
                    "Ch2": "", 
                    "is": "", 
                    "defined": "", 
                    "but": "", 
                    "never": "", 
                    "used": "" 
 
                    } 
 
 
 
  # analyses_Copy[i] = analyses_Copy[i].replace("[C]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[C#]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[Db]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[D]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[Eb]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[E]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[F]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[F#]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[G]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[G#]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[Ab]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[A]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[A#]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[Bb]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[B]", "") 
 
  # analyses_Copy[i] = analyses_Copy[i].replace("|", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace(".", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[4/4]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[2/4]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[0]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[R]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[12/8]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[7/8]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("R", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[3/4]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[6/8]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("[5/4]", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Vr5' is defined but never 
used", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Ch5' is defined but never 
used", "") 
 
  # analyses_Copy[i] = analyses_Copy[i].replace("Warning:", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("Ch2", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("Ch5", "") 
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173 

  # analyses_Copy[i] = analyses_Copy[i].replace("is", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("defined", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("but", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("never", "") 
  # analyses_Copy[i] = analyses_Copy[i].replace("used", "") 
 
 
 
 
 
for i in range(len(analyses_Copy)): 
  analyses_Copy.iloc[i] = reduce(lambda x, y: x.replace(*y), [analyses_Copy.iloc[i], 
*list(replacement_dict.items())]) 
  analyses_Copy.iloc[i] = analyses_Copy.iloc[i].split() 
 
print(analyses_Copy) 
 
"""#Determine frequency counts of symbols and build dictionary to replace on top 50 or 
so....""" 
 
from collections import Counter 
 
c = Counter() 
 
for d in analyses_Copy: 
  c.update(d) 
 
for k, v in c.items(): 
  print(f'{k} = {v}') 
 
from itertools import chain 
from collections import Counter 
import operator 
 
chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy))) 
 
print(chord_counts_dict) 
 
 
most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get, 
reverse=True) 
 
print(len(most_frequent_chords)) 
 
top_20_chords = most_frequent_chords[0:20] 
top_20_chords 
 
"""#Now get top 50 Chords:""" 
 
from itertools import chain 
from collections import Counter 
import operator 
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199 
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201 
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224 
225 

 
chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy))) 
 
print(chord_counts_dict) 
 
 
most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get, 
reverse=True) 
 
print(len(most_frequent_chords)) 
 
top_50_chords = most_frequent_chords[0:50] 
top_50_chords 
 
"""#(Treat the chords that are not in the top 20 as in the "Other" Category) 
 
#Go through each element in the list and see if it has a [X] character -- if it does, 
switch to the [X] dictionary and start converting using that dictionary... 
""" 
 
# #find and replace roman numerals with chords for determined keys 
 
# C = { 
 
# 'I': '0:', 
#  'IV': '5:', 
#  'V': '7:', 
#  'i' : '0:m', 
#  'bVII': '10:', 
#  'vi': '9:m', 
#  'bVI': '8:', 
#  'ii': '2:', 
#  'bIII': '3', 
#  'iii': '3:m', 
#  'iv': '5:', 
#  'V7': '7:7', 
#  'v': '7:m', 
#  'IV6': '5:6', 
#  'ii7': '2:m7', 
#  'IV64': '5:6', 
#  'I6': '0:6', 
#  'I64': '0:6', 
#  'V6': '7:6', 
#  'vi7': '5:7' 
 
#     } 
 
 
# # dict_of_mappings = {"[C]": C, "[C#]": Cs, "[Db]": Db, "[D]": D, "[Eb]":Eb, "[E]":E 
, "[F]":F, "[F#]": Fs, "[Gb]":Gb, "[G]":G, "[G#]":Gs, "[Ab]":Ab, "[A]":A, "[B]":B} 
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226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
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243 
244 
245 
246 
247 
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249 
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253 
254 
255 
256 
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269 
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272 
273 
274 
275 
276 
277 

# chord_numbers = ['0:','5:','7:','0:m','10:','9:m','8:','2:', 
'3:','3:m','5:','7:7','7:m', 
# '5:6', 
# '2:m7', 
# '5:6', 
# '0:6', 
# '0:6', 
# '7:6', 
# '5:7'] 
 
# chord_numbers 
 
"""#Update the the data with terms from the dictionary 
 
""" 
 
# for i in range(len(analyses_Copy)): 
#   for j in range(len(analyses_Copy[i])): 
#     for k in range(len(C)): 
#       if(analyses_Copy[i][j] == list(C)[k]): 
#         analyses_Copy[i][j] = list(C.values())[k] 
 
# analyses_Copy 
 
from collections import Counter 
 
c = Counter() 
 
for d in analyses_Copy: 
  c.update(d) 
 
for k, v in c.items(): 
  print(f'{k} = {v}') 
 
"""#Create dictionary of top 50 chords and convert to numbers format....""" 
 
top_20_chords 
 
# D = { 
 
#  'I': '0:', 
#  'IV': '5:', 
#  'V': '7:', 
#  'i' : '0:m', 
#  'bVII': '10:', 
#  'vi': '9:m', 
#  'bVI': '8:', 
#  'ii': '2:', 
#  'bIII': '3', 
#  'V7': '7:7', 
#  'III': '4:', 
#  'iii': '4:m', 
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303 
304 
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308 
309 
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#  'v': '7:m', 
#  'ii7': '2:m7', 
#  'I7': '0:7', 
#  'iv': '5:m', 
#  'IV7': '5:7', 
#  'i7': '0:m7', 
#  'vi7': '9:m7', 
#  'IV6': '5:6' 
 
 
# } 
 
D = { 
 
 'I': '0:maj', 
 'IV': '5:maj', 
 'V': '7:maj', 
 'i' : '0:min', 
 'bVII': '10:maj', 
 'vi': '9:min', 
 'bVI': '8:maj', 
 'ii': '2:maj', 
 'bIII': '3:maj', 
 'V7': '7:maj7', 
 'III': '4:maj', 
 'iii': '4:min', 
 'v': '7:min', 
 'ii7': '2:min7', 
 'I7': '0:maj7', 
 'iv': '5:min', 
 'IV7': '5:maj7', 
 'i7': '0:min7', 
 'vi7': '9:min7', 
 'IV6': '5:maj6' 
 
 
} 
 
#find and replace roman numerals with chords for determined keys 
 
 
 
C = { 
 
'I': '0:', 
 'IV': '5:', 
 'V': '7:', 
 'i' : '0:m', 
 'bVII': '10:', 
 'vi': '9:m', 
 'bVI': '8:', 
 'ii': '2:', 
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332 
333 
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336 
337 
338 
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340 
341 
342 
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344 
345 
346 
347 
348 
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350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
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377 
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380 
381 

 'bIII': '3', 
 'iii': '3:m', 
 'iv': '5:m', 
 'V7': '7:7', 
 'v': '7:m', 
 'IV6': '5:6', 
 'ii7': '2:m7', 
 'IV64': '5:6', 
 'I6': '0:6', 
 'I64': '0:6', 
 'V6': '7:6', 
 'vi7': '5:7', 
 'IVd7': '5:dim7', 
 'v7': '7:m7', 
 'V11': '11:', 
 'II': '2:', 
 'iv6': '5:m6', 
 'Id7': '0:dim7', 
 'IV7': '5:7', 
 'V42/IV':'0:42', 
 'bII':'1:', 
 'V+11':'7:11', 
 'V/V':'2:', 
 'vi64':'9:m64', 
 'bVI6':'8:6', 
 'bVII6':'10:6', 
 'Id9':'0:dim9', 
 'iv64':'5:m64', 
 'V/vi':'4:', 
 'Vs4':'7:sus4', 
 'IV9':'5:9', 
 'i7':'0:m7', 
 'v7s4':'7:msus4', 
 'V7/IV':'0:7', 
 'bVII64':'10:64', 
 'V7/ii':'9:7', 
 'III':'4:', 
 'V64':'7:64', 
 'ii65':'2:m65', 
 'V7/vi':'4:7', 
 'I7':'0:7', 
 'iii7':'3:m7' 
 
} 
 
import numpy as np 
top50 = np.array(list(C.values())) 
top20 = np.array(list(D.values())) 
 
print(D.values()) 
 
for i in range(len(analyses_Copy)): 



 89 

382 
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387 
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397 
398 
399 
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401 
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403 
404 
405 
406 
407 
408 
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416 
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424 
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426 
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  for j in range(len(analyses_Copy.iloc[i])): 
    for k in range(len(D)): 
      if(analyses_Copy.iloc[i][j] == list(D)[k]): 
        analyses_Copy.iloc[i][j] = list(D.values())[k] 
 
analyses_Copy 
 
"""#Export analyses_Copy which is a nested list into a series of .txt files 
 
#(This gives a .txt files with all the songs) 
""" 
 
# with open('analyses_Copy_formatted.txt', 'w') as file: 
#     for item in analyses_Copy: 
#             file.write("// new_song.txt \n") 
#             file.write(" \n".join(map(str,item))) 
#             file.write("\n") 
 
"""#Split up all the songs into train and test and make 2 .txt files""" 
 
with open('Large_Train.txt', 'w') as file: 
    for item in analyses_Copy: 
            # file.write("// new_song.txt \n") 
            file.write(" \n".join(map(str,item))) 
            file.write("\n") 
 
analyses_Copy_train = analyses_Copy.iloc[0:218] 
analyses_Copy_test = analyses_Copy.iloc[218:436] 
 
analyses_Copy.shape 
 
with open('Rock_Train.txt', 'w') as file: 
    for item in analyses_Copy_train: 
            # file.write("// new_song.txt \n") 
            file.write(" \n".join(map(str,item))) 
            # file.write("\n") 
 
with open('Rock_Test.txt', 'w') as file: 
    for item in analyses_Copy_test: 
            # file.write("// new_song.txt \n") 
            file.write(" \n".join(map(str,item))) 
            # file.write("\n") 
 
with open('Symbol_Rock_20.txt', 'w') as file: 
    for item in top20: 
            # file.write("// new_song.txt \n") 
            file.write("".join(map(str,item))) 
            file.write("\n") 
    file.write("end") 
 
with open('Symbol_Rock_50.txt', 'w') as file: 
    for item in top50: 
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            # file.write("// new_song.txt \n") 
            file.write("".join(map(str,item))) 
            file.write("\n") 
    file.write("end") 
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