
Investigating the Harmonic Syntax of Rock Music: A Corpus Study

Matthew Ludwig

Schulich School of Music

McGill University, Montreal

December 2023

A thesis submitted to McGill University in partial fulfillment of the requirements for the degree

of Master of Music Theory

© 2023 Matthew Ludwig

 ii

Abstract:

In this thesis I will investigate the harmonic syntax of rock music by examining and

comparing corpora and implementing various statistical models. I will begin with an introduction

to harmonic syntax and discuss several models of harmonic syntax that music theorists have

used. In particular, I will consider Christopher White and Ian Quinn’s article “Chord Context and

Harmonic Function in Tonal Music” and discuss the statistical model that they used and their

results. Following this, I will introduce a corpus of rock music that was built by David

Temperley and Trevor de Clercq in 2011 and examine their article “A Corpus Analysis of Rock

Harmony”. Then, I will expand De Clercq and Temperley’s rock corpus and create a larger

corpus called the Expanded Rock Corpus (ERC). Following this, I will replicate the basic

statistical analyses that they conducted. After presenting patterns in the larger corpus with

histograms, heat maps and dendrograms, I will implement two statistical models and attempt to

model the harmonic syntax of the ERC. In particular, following the work of Tsushima et al. in

“Generative statistical models with self-emergent grammar of chord sequences”, I will

implement Hidden Markov models and Probabilistic Context-Free Grammar models and attempt

to capture the non-local and hierarchical harmonic dependencies in the ERC. Finally, I will

discuss several difficulties and issues that I encountered while implementing these models on the

ERC and conclude by discussing several directions for further research.

 iii

Resume:

Dans cette thèse, j'étudierai la syntaxe harmonique de la musique rock en examinant et en

comparant des corpus et en mettant en œuvre divers modèles statistiques. Je commencerai par

une introduction à la syntaxe harmonique et discuterai de plusieurs modèles de syntaxe

harmonique utilisés par les théoriciens de la musique. En particulier, j'examinerai l'article de

Christopher White et Ian Quinn intitulé "Chord Context and Harmonic Function in Tonal Music"

et discuterai du modèle statistique qu'ils ont utilisé et des résultats qu'ils ont obtenus. Ensuite, je

présenterai un corpus de musique rock constitué par David Temperley et Trevor de Clercq en

2011 et j'examinerai leur article "A Corpus Analysis of Rock Harmony". Ensuite, je développerai

le corpus rock de De Clercq et Temperley et créerai un corpus plus large appelé Expanded Rock

Corpus (ERC). Ensuite, je reproduirai les analyses statistiques de base qu'ils ont effectuées.

Après avoir présenté des modèles dans le corpus élargi à l'aide d'histogrammes, de cartes

thermiques et de dendrogrammes, je mettrai en œuvre deux modèles statistiques et tenterai de

modéliser la syntaxe harmonique de l'ERC. En particulier, en suivant le travail de Tsushima et al.

dans "Generative statistical models with self-emergent grammar of chord sequences", je mettrai

en œuvre des modèles de Markov cachés et des modèles de grammaire contextuelle libre

probabiliste et j'essaierai de capturer les dépendances harmoniques non locales et hiérarchiques

dans l'ERC. Enfin, je discuterai de plusieurs difficultés et problèmes que j'ai rencontrés lors de la

mise en œuvre de ces modèles sur l'ERC et je conclurai en discutant de plusieurs directions pour

des recherches ultérieures.

 iv

Acknowledgements:

I would like to thank my supervisor, Jon Wild for helping me find and for allowing me to pursue

a topic involving statistics and music theory. I would also like to acknowledge Eita Nakamura

for his generosity in letting me use his code from his paper “Generative statistical models with

self-emergent grammar of chord sequences” and for assisting me while setting up the model on

the Expanded Rock Corpus data. I would also like to thank the Schulich School of Music for the

generous support they provided through the Max Stern Fellowship without which the thesis

would not have been possible. I would also like to thank my friends Philipp, Hamid and Linglan

for the many insightful conversations surrounding statistics and machine learning which

generated many ideas that took form in this thesis. Finally, I would like to thank my parents and

brother for their unconditional support.

 v

Table of Contents

Abstract: ... ii

Resume: .. iii

Acknowledgements ... iv

1. Introduction to Harmonic Syntax and Models of Harmonic Syntax 1

1.1 Syntax in Music and Language .. 1

1.2 Markov and n-gram Models .. 2

1.2 Hidden Markov models (HMMs): ... 3

1.3 Probabilistic Context-free Grammars ... 6

2. Introduction to White and Quinn’s Article and de Clercq and Temperley Rock Corpus 13

2.1 Kostka-Payne Corpus .. 13

2.2 McGill Billboard Corpus ... 16

2.3 Bach Chorale Corpus ... 18

2.4 White and Quinn’s Discussion of Rock Syntax .. 22

3. Introduction to De Clercq and Temperley’s Rock Corpus .. 24

3.1 Discussion of de Clercq and Temperley’s Corpus ... 24

3.2 Discussion of de Clercq and Temperley’s Analysis of their Rock Corpus 25

3.3 Suggestions for further directions .. 28

4. The Expanded Rock Corpus and Patterns in the Data ... 30

4.1 Harmonic Analyses of the Songs in the Expanded Rock Corpus ... 30

4.2 Patterns in the Expanded Rock Corpus ... 31

5. Hidden Markov Models and Probabilistic Context-Free Grammar Models on the Expanded
Rock Corpus ... 45

5.1 Setting up the HMMs and PCFGs ... 45

5.2 Results of the Hidden Markov Model on the Expanded Corpus 46

5.3 Results of the Probabilistic Context-Free Grammar on the Expanded Corpus 54

5.5. Problems Encountered while Implementing the HMM and PCFG on the Expanded Corpus
 ... 56

6. Conclusion and Summary of Findings ... 58

7. Appendix .. 60

 vi

7.1 Link to Expanded Rock Corpus, Further Discussion of Algorithms and Code Base 60

7.2 Discussion of the “Forward-Backward” Algorithm for Training HMMs: 61

7.5 Python Code to Find Patterns in the Expanded Corpus .. 63

7.6 Python Code to Find and Replace Algorithm .. 81

Bibliography .. 91

 1

1. Introduction to Harmonic Syntax and Models of Harmonic Syntax

In this chapter, I will introduce the concept of harmonic syntax and discuss several

models that have been used to study the harmonic syntax of classical and popular music. I will

also discuss the connection between syntax in language and the various statistical models that

music theorists have used to study harmonic syntax.

1.1 Syntax in Music and Language

In music and language, the concept of syntax refers to the rules for arranging a sequence of

items. These rules in both language and music vary across different languages, time periods and

different genres of music and have been investigated by both linguists and music theorists. In

“Musical Syntax I: Theoretical Perspectives”, Rohrmeier and Pearce define musical syntax as “a

formal characterization of the principles governing permissible sequential structure in music.” 1

These principles can refer to many parameters of music including melody, harmony and rhythm.

They also note how musical syntax “characterizes sequences of musical events generated from a

lexicon of building blocks and a set of rules governing how the building blocks are combined.”2

In this thesis, I will focus on the musical feature of harmony and study the harmonic syntax of

rock music.

In an effort to understand the harmonic syntax of music, music theorists have used a variety

of models. In introducing some of the models that theorists have used to understand harmonic

syntax, I will explain how some models are able to account for more of the complexity of the

1 Martin Rohrmeier and Marcus Pearce, “Musical Syntax I: Theoretical Perspectives,” in Springer Handbook of
Systematic Musicology, ed. Rolf Baber (Berlin: Springer, 2018), 475.

2 Ibid.

 2

underlying harmonic syntax than others. In the remainder of this chapter, I will introduce several

models that music theorists have used to study harmonic syntax.

1.2 Markov and n-gram Models

The first and simplest model that music theorists have used to study harmonic syntax is

called an n-gram or Markov model. These models are widely used in linguistics, finance,

ecology and many other disciplines. In modeling harmonic syntax, n-gram models give the

probability that a chord will occur next in a sequence of chords given some number of chords.

This probability ultimately gives us a rough model of how the harmonic syntax of a sequence of

chords is behaving on a local level. In using n-gram or Markov models, the length of the context

of the preceding items in the sequence (which is referred to as the order of the model) is often

varied. As a general trend, increasing the order of the model, that is the number of preceding

elements, often increases the accuracy that the model is able to correctly predict the next element

in a sequence. A Markov model of order one, or a 1-gram model, only takes the previous element

into account when making a prediction for the next element in the sequence and provides a very

rough estimate of how the harmonic syntax is behaving. One drawback of Markov models is that

they are not able to account for any of the nonlocal dependencies in the sequences they model as

they only provide the probability of the next chord based on the sequence of some previous

number of chords. In other words, they only use the transition probabilities between consecutive

elements in a sequence to determine which chord comes next and don’t consider the ways in

which nonconsecutive elements in the sequence could be related to one another. One example of

work done by music theorists that uses n-gram or Markov models to study harmonic syntax is

 3

from Trevor de Clercq and David Temperley’s article “A corpus analysis of rock harmony” and

is discussed in the following sections.3

While n-gram or Markov models are simple models which are able to capture the

occurrence of various surface level harmonic progressions in a corpus of music, they are unable

to capture the nonlocal and hierarchical dependencies of harmonic progressions. Many theorists

including Rohrmeier and Patel have noted that musical syntax, and in particular harmonic

syntax, is similar to the syntax in language in that it is fundamentally a hierarchical

phenomenon.45 As a result, music theorists have implemented more complex models in order to

account for the multi-level complexity of the underlying harmonic syntax that they are modeling.

One example of a model that theorists have used to account for the nonlocal and hierarchical

dependencies of harmonic syntax is a more sophisticated version of a Markov model called a

Hidden Markov Model.

1.2 Hidden Markov models (HMMs):

Hidden Markov models (HMMs) are similar to Markov or n-grams models but use latent

or hidden states in order to account for some of the nonlocal or hierarchical dependencies in the

sequences that they model. In this thesis, the latent or hidden states that the HMMs use to model

a sequence of chord progressions will correspond to unknown syntactic chord categories like

“Tonic” or “Dominant”. However, while music theorists traditionally assign specific chords to

3 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1
(2011): 64

4 Martin Rohrmeier, “Towards a Generative Syntax of Tonal Harmony,” Journal of Mathematics and Music, vol. 5,
no. 1 (2011): 35

5 Aniruddh D. Patel, “Syntax,” in Music, Language, and the Brain, (Oxford University Press, 2007), 239-298.

 4

syntactic categories like “Tonic” and “Dominant”, using a sequence of chord progressions,

HMMs will infer syntactic categories that best fit the sequences of chords from the data. For

instance, after running a HMM on a sequence of chords from some genre of music, the HMM

may find that the chords I, bVII and bII belong together in one syntactic category which could

play the role of a traditional “Tonic” category in classical music. In addition to inferring

syntactic categories from the sequence of chord progressions, the HMM will also determine the

likelihood of moving between different syntactic categories or staying in the same category.

One example of a HMM that was used to model the harmonic syntax of popular music

from the McGill Billboard corpus was given in “Generative Statistical Models with Self-

Emergent Grammar of Chord Sequences”. In the paper, Tsushima et al. implemented a HMM on

the McGill Billboard Corpus and derived four hidden states – “Tonic”, “Subdominant”,

“Dominant” and “Others”, the output probabilities (the red bars in Figure 1) and the transition

probabilities (the probabilities associated to the blue arrows in Figure 2). It is important to note

that before running their HMM, Tsushima et al. first transposed the keys of all of works in the

corpus to C major.

Figure 1: Composition of the Four Hidden States from Tsushima et al. 6

6 Tsushima et al, “Generative Statistical Models with Self-Emergent Grammar of Chords Sequences”, Journal of
New Music Research, vol. 47, no. 3 (2018): 17.

 5

Figure 2: Diagram of the Transition Probabilities from Tsushima et al. 7

In looking at the composition of the hidden states in Figure 1, it is clear how the state with a high

percentage of I chords is “Tonic”, IV chords is “Subdominant” and V chords is “Dominant”. The

fact that the HMM tells us that vi and iii chords function like “Tonic” chords in this corpus and

that ii7 and IV7 chords function as “Subdominant” chords reflects how our harmonic system

consists of chords built of stacked thirds which causes chords with roots a third apart to share

some scale degrees and behave in a similar way. It is also interesting how 82% of the time,

chords in the “Dominant” category move to chords in the “Tonic” but how chords in the “Tonic”

category only move to chords in the “Dominant” category 16% of the time. This strong

unidirectional tendency is an aspect of the harmonic syntax which I will return to when

discussing the harmonic syntax of rock music in subsequent chapters. It is important to note that

while these observations might be valid for the harmonic syntax of songs in the McGill Billboard

corpus, they are not necessarily valid for the harmonic syntax of music from that time period in

general. Since the McGill Billboard corpus contains harmonic information for 730 songs taken

from the Billboard Hot 100 Singles charts from August 1958 through November 1991, the

dataset represents a sample of songs which were popular during this period of time. As a result,

the corpus does not necessarily provide a full picture of the popular music in this time period but

7 Ibid.

 6

rather an approximation which also does not provide equal representation of all artists from

different backgrounds in this time period.

1.3 Probabilistic Context-free Grammars

Having introduced HMMs and given an example, I will now introduce another more

sophisticated model that music theorists have used to study the concept of harmonic syntax

called context-free grammars and their probabilistic counterparts called probabilistic context-free

grammars. Since these models have even more explanatory power than Markov models and

HMMs, they will be able to model the harmonic syntax of the chord sequences in the corpus in

even more depth.

Probabilistic context-free grammars are closely related to formal grammars. A formal

grammar consists of a set of rules describing how to form strings from an alphabet and can be

thought of as a formalization and generalization of modern languages. Here, an alphabet refers to

some set of symbols (which in the case of this thesis are chords) and strings refer to lists of

symbols from the alphabet (which in the case of this thesis are harmonic progressions). In the

appendix of their chapter “Musical Syntax I: Theoretical Perspectives”, Rohrmeier and Pearce

summarize the notion of a formal grammar as follows: “A formal grammar consists of a set of

nonterminal symbols (variables), terminal symbols (elements of the surface), production rules,

and a starting symbol to derive productions.”8 Consider the following example of a formal

8 Martin Rohrmeier and Marcus Pearce, “MusicalSyntax I: Theoretical Perspectives,” in Springer Handbook of
Systematic Musicology, ed. Rolf Baber (Berlin: Springer, 2018), 483.

 7

grammar which is a toy subset of the English language show below in Figure 3:

Figure 3: An Example of a Formal Grammar

 8

Here, the nonterminal symbols S, NP, VP, N, V and Adj stand for subject, noun phrase,

verb phrase, noun, verb and adjective. Since the sentence “great linguists generate great green

ideas” was derived from the terminal and nonterminal by applying the production rules, the

sentence is syntactically correct in this formal grammar. On the other hand, the sentence “ideas

ideas great hate” is syntactically incorrect since it cannot be derived from the terminals and

nonterminals through the application of the production rules.

In order to understand probabilistic context-free grammars, it is instructive to mention

context-free grammars. Context-free grammars are a special class of formal grammars in which

words are generated with the application of recursive production rules. An example of a context-

free language is the set of well-formed parentheses, { (), ()(), (()), (())(),…}.This context-free

language has terminal symbols “(“ and “)”, start symbol “S” and is generated by the production

rules:

S --> SS

S --> (S)

S --> ()

This formal grammar is an example of a context-free grammar because it contains production

rules which expand the non-terminal symbol S into a string that also contains the non-terminal

symbol S. If this formal grammar had no production rules that had the non-terminal S on the

right-hand side of their production rules, then it would not be a context-free grammar. The fact

that this formal grammar contains recursive production rules is ultimately the property that

allows grammars of this type to capture the hierarchical relationship between the terminal

elements in the grammar. In the PCFG used in this thesis, the terminal elements of the context-

free grammar will be chords.

 9

While a context-free grammar of a set of symbols contains a set of production rules,

computational linguists have extended this idea to something called a probabilistic context-free

grammar (PCFG) which assigns each production rule in the grammar a probability based on how

often the production rule is used in the grammar describing the language. For a collection of

sentences in a language or a sequence of chords, a probabilistic context-free grammar assigns

probabilities to each production rule. Thus, the probabilities of the production rules are

parameters of the model and are determined through an optimization algorithm on the dataset. In

this thesis, a PCFG will provide a set of rewrite rules and their associated probabilities for the

allowable ways in which a chord can be expanded or substituted for other chords. As a result of

these rewrite rules, this model will be able to model the hierarchical relationships of the

harmonic syntax of chord sequences in the corpus. To illustrate how the harmonic syntax

governing a sequence of chords could be hierarchical in nature, consider the following analysis

of the A section of the Jazz-standard “Afternoon in Paris” taken from “A Generalized Parsing

Framework for Generative Models of Harmonic Syntax” by Daniel Harasim, Martin Rohrmeier

and Timothy J. O’Donnell as reproduced in Figure 4 below:

 10

Figure 4: A Hierarchical Analysis of the A section of the Jazz-standard “Afternoon in Paris”9

Given this sequence of chords, the authors used a context-free grammar to model the

hierarchical relationship of the harmonic syntax of this sequence of chords and to create a

diagram called a parse tree which is shown in Figure 4. This parse tree models the hierarchical

relationships in this sequence of chords. In Figure 4, the Subdominant, dominant, and tonic

phrases are denoted by the scale degrees II, V, and I, respectively and the subscripts denote the

key in which each of these progressions is in. For the sequences of chord progressions in the

corpus, I will implement a PCFG which will consist of a collection of rewrite rules and the

associated probabilities of each rewrite rule occurring (which is based on the sequence of chord

progressions in the corpus). For instance, a few of the rewrite rules and their associated

9 Daniel Harasim, Martin Rohrmeier and Timothy J. O’Donnell, “A Generalized Parsing Framework for Generative
Models of Harmonic Syntax,” 19thInternational Society of Music Information Retrieval Conference (Paris, 2018):
152.

 11

probabilities for a PCFG for the sequence of chords at the lowest level in Figure 4 could be of

the form:

Figure 5: Hypothetical Rewrite Rules and their Associated Probabilities for a PCFG Modeling

the Chord Progression in Figure 3

In this PCFG, the rewrite rules for the IC says that 10% of the time IC can be rewritten as

IC followed by IC, 20% it is rewritten as VC followed by IC and 70% of the time it is written as

C^{Δ}. Similarly, in this probabilistic context-free grammar the rewrite rules for the VBb says

that 20% of the time VBb can be rewritten as IIBb followed by VBb and 80% it is rewritten as F7. I

will obtain these rewrite rules for a PCFG and their associated probabilities from the input

sequence of chords by training the model. Ultimately, these rewrite rules and their associated

probabilities will provide a detailed model of the harmonic syntax in the rock corpus which is

able to account for some of the hierarchical dependencies in the harmonic syntax.

 12

One connection between HMM and PCFGs is that the algorithm used to determine the

production probabilities in the PCFG called the “inside-outside algorithm” is a generalization of

the “forward-backward algorithm” which is used to compute the posterior marginals of all the

hidden states given a sequence of observations/emissions in a Hidden Markov model.10 For a

more detailed discussion of the algorithms used to train the HMM and PCFG I refer the

interested reader to the appendix.

10 Daniel Jurafsky and James Martin, Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition (2023), 179.

 13

2. Introduction to White and Quinn’s Article and de Clercq and Temperley Rock Corpus

In this chapter I will introduce and discuss some recent work done by Christopher White

and Ian Quinn in which they applied composite Hidden Markov Models to the Kostka-Payne,

McGill Billboard and Bach Chorale corpora in order to question the generalizability of the

traditional three-function model for harmonic syntax in classical music.

2.1 Kostka-Payne Corpus

The first corpus that White and Quinn study is the Kostka-Payne corpus which is a

corpus of common-practice music excerpts. The data from the corpus comes from the workbook

accompanying Stefan Kostka and Dorothy Payne’s theory textbook Tonal Harmony, 3rd edition

(McGraw-Hill, 1995). The corpus consists of 46 excerpts from various Beethoven string

quartets, Bach chorales and Chopin Mazurkas. The analyses were done by the authors and are in

conventional Roman numeral notation. For the Kostka-Payne corpus, White and Quinn first

created a three-state composite HMM to see if the model would produce the traditional tonic,

dominant and sub/predominant functions. After training the model, they produced the two

models which are reproduced in Figure 6 below. Here, higher-transition probabilities are

represented by thicker arrows and the composition of each hidden state or syntactic category is

represented by the pie charts where the numbers represent roots of chords (which could be either

major or minor).

 14

Figure 6: White and Quinn’s Example 6: Composite HMMs with Three Hidden States for the

Kostka-Payne Corpus11

In the model on the left, it is apparent that moving clockwise from the top left diagram,

the chord categories could correspond to tonic, predominant and dominant functions. White and

Quinn also note how none of the arrows are particularly thick which suggests that no motion

between syntactic categories is entirely unidirectional. In the model on the right, White and

Quinn note how there are some unidirectional arrows and how the lexical probabilities are more

uniformly distributed. In analyzing different three-state models for the Kostka-Payne corpus,

White and Quinn created a composite HMM based on 300 different HMMs, in which they used a

different expectation-maximization algorithm to train their composite model known as k-

medoids. For more details see their “Chord Context and Harmonic Function in Tonal Music”.12

Ultimately, they found that their composite three hidden state model was incoherent and found a

coherent composite four hidden state model which is reproduced in Figure 7 below.

11 Christopher White and Ian Quinn, “Chord Context and Harmonic Function in Tonal Music” Journal of New Music
Research, vol. 40, no. 2, (2018): 321.

12 Ibid, 355A.

 15

Figure 7: White and Quinn’s Example 7: Composite HMMs with Three Hidden States for the

Kostka-Payne Corpus13

Here, the states from the upper left moving clockwise are Tonic, Pre-predominant, Pre-

dominant and Dominant/Pretonic which are denoted as T, P-, P and D/T-. White and Quinn go on

to observe how their four-state model reflects Kostka and Payne’s notion of the “three common

functions” of a IV chord: proceeding to I, proceeding to V, or proceeding to ii, which will in turn

proceed to V.14 They also note how their four-state model is very similar to a model of harmonic

function created by Allen Irvine McHose in his 1947 textbook “The Contrapuntal-Hrmonic

Technique of the 18th Century” that was also based on a corpus which was a novel concept in its

time. McHose’s Four-Chord Classification is reproduced below.

13 Ibid, 322.

14 Ibid, 320.

 16

Figure 8: Model of Harmonic Function Created by Allen Irvine McHose15

Despite their four state model’s similarities with other models of harmonic function, they note

how their model is peculiar in the way in which it conflates dominant and subdominant functions

and derives a pretonic syntactic category from the Kostka-Payne corpus which suggests how

dominant and subdominant functions tend to occur in the same contexts in the corpus.

2.2 McGill Billboard Corpus

Following their analysis of the Kostka-Payne corpus, White and Quinn constructed

several models for the McGill Billboard Corpus which contains harmonic progressions for 730

songs taken from the Billboard Hot 100 Singles charts from August 1958 through November

1991. In particular, they found that their best composite HMM was an eight-state HMM which

had the states T, T+, S, S+, with two peripheral pairs, P/Q and X/W. Here S and T are

subdominant and tonic categories and T+ and S+ are post-tonic and post-subdominant categories

which contain chords that follow chords in the tonic and subdominant categories. In discussing

15 Allen Irvine McHose, The Contrapuntal Harmonic Technique of the 18th Century (F.S. Crofts & Company, 1947),
221.

 17

their model, they note how the main circuit of the T, T+, S, S+ of states or syntactic categories

account for the majority of the chord transitions (67.2%) while the X/W accounts for 22.7%, P/Q

accounts for 2.3%, and the remaining transitions are accounted for by improbable (but possible)

moves between these three different circuits. A transition diagram of their eight-state HMM of

the McGill Billboard Corpus is reproduced in Figure 9 below:

Figure 9: A Reproduction of Example 10 from White and Quinn’s Article16

In discussing their model, they note that the main circuit of states, T, T+, S, S+, contains

two primary poles, T and S, which are very similar to the traditional tonic and subdominant

functions, and in which the most frequently represented chord in T is I and how S is most

frequently represented by IV chords. They note how T+ manifests itself as a number of chords

16 Ibid, 324.

 18

such as V, bVII, vi, etc… and how S+ manifests itself tends to manifest itself as chords that are

closely related to V.

2.3 Bach Chorale Corpus

Finally, White and Quinn also used HMMs to model the harmonic syntax of the Bach

Chorale corpus which consists of the 370 Bach chorales. Instead of providing their model with

roman numerals, they provided it with 35,139 salami slices which were taken from chorales in

the corpus which were later mapped onto chords. From this data, they found that their best

composite HMMs had 3 and 13 hidden states. They found that the three-state model closely

resembled the traditional I-IV-V harmonic function model. The transition diagram for their

three-state model is reproduced in Figure 10 below:

Figure 10: White and Quinn’s Composite HMM with Three Hidden States for the Bach Chorale

Corpus17

17 Ibid, 328.

 19

White and Quinn then introduced their thirteen-state composite HMM. In discussing this model,

they note how the advantage of the 13-state model is that it can capture the traditional I-IV-V

tonal relationships while also adding some new pathways and detours which are unique to the

harmonic syntax of the Bach Chorale Corpus. In addition to the traditional tonic, subdominant

and dominant functional categories, their thirteen-state model adds a Tx (tonic expansion)

category which contains mostly I triads along with several vi and iii chords. They note how this

category allows the model to capture various passing and neighbor motions in the corpus. They

also include a category denoted D+ (late dominants) which is comprised of most V7 chords as

well as categories denoted T+ (late tonics) which contains chords such as I4/2 and p (weak

predominant) and px (predominant expansion).18 In this context, they define late tonics as a

passing function that progresses from tonic to weak predominant and late dominants as a passing

function between dominant and tonic. The remaining functional categories are summarized in

their example 23 on pg. 330 which is reproduced in Figure 11 below along with the transition

diagram of their HMM model:

18 Ibid, 329.

 20

Figure 11: White and Quinn’s Composite HMM with Thirteen Hidden States for the Bach

Chorale Corpus19

19 Ibid, 330.

 21

Figure 12: A Summary of the 13 Hidden States (Quinn and White’s Example 23)20

20 Ibid, pg. 331.

 22

2.4 White and Quinn’s Discussion of Rock Syntax

Having introduced and briefly summarized White and Quinn’s construction of several

composite HMMs for the Kostka-Payne, McGill Billboard and Bach Chorale corpora, I will now

turn our attention to rock music and summarize White and Quinn’s discussion of rock syntax.

While discussing the difference between the harmonic syntax of the McGill Billboard corpus and

the syntax of other genres of music White and Quinn noted:

“Temperley and DeClercq, in a corpus study of rock harmony, emphasize many aspects

of this difference: rock harmony does not have strong unidirectional tendencies (e.g., V

progresses to IV as much as IV progresses to V), and, in many cases, IV (rather than V)

functions as the primary nontonic triad. On the other hand, several analysts have

attempted to theorize pop/rock harmonic syntax as an extension of common-practice

norms. Nicole Biamonte and Chris Doll, for instance, argue for including modal

harmonies into functional models, with bVII functioning as dominant (Doll’s ‘rogue

dominant’) or as IV/IV (Biamonte’s ‘Double Plagal’ progression). Going even further,

Drew Nobile entirely dissociates traditional harmonic functions from the scale-degree

content of chords. In Nobile’s formalization, almost any chord can function as a tonic,

dominant, or predominant: ‘a chord’s function is given more by formal considerations—

i.e., what role it plays within the form—than by its internal structure or any specific

voice-leading motion.’ Nobile allows for predominant V chords, dominant IV chords, and

so on.”21

From this, it is clear that there are several notions which theorists have posited which

characterize rock music such as the lack of strong unidirectional tendencies, IV rather than V

21 (White and Quinn Chord context and harmonic function in tonal music, pg. 322)

 23

functions as primary nontonic triad and bVII functioning as a dominant. We will now look more

closely at De Clercq and Temperley’s article and examine how they arrived at their conclusions.

 24

3. Introduction to De Clercq and Temperley’s Rock Corpus

In this chapter I will provide an overview of the article by De Clercq and Temperley. In

“A corpus analysis of rock harmony” they built a corpus of 100 rock songs that were selected

from the Rolling Stone magazine’s list of the ‘500 Greatest Songs of All Time”.22 Their corpus

consists of harmonic analyses for all of the songs done by both authors.

3.1 Discussion of de Clercq and Temperley’s Corpus

In constructing the corpus, De Clercq and Temperley use a subset of the Rolling Stone

magazine’s list of the “500 Greatest Songs of All Time” which they note is one of the few lists

that contains general ‘rock’ music without stylistic modifiers like ‘hard rock’. However, it is

important to note how the corpus includes blues, country, R&B and hip hop as well as rock and

that the majority of the songs in the corpus are from the late 1960s and 1970s and are from artists

who are both white and male. The list that De Clercq and Temperley chose to pick songs from

was a compilation of the top 50 rock songs chosen by 172 ‘rock stars and leading authorities.23

However, it is important to note the lack of transparency in the use of unnamed and hand-picked

industry insiders to determine the composition of the corpus is in itself methodologically

problematic. In addition, while the corpus that De Clercq and Temperley constructed contains

songs that were perceived by the unnamed industry insiders to be the popular or the greatest rock

songs, there is no objective measure for the popularity of the songs in the corpus. Therefore,

White and Quinn’s conclusions about the harmonic syntax of rock and are not necessarily

representative of the harmonic syntax of the genre as a whole.

22 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1
(2011): 47.

23 Ibid, 51.

 25

After determining the list of songs to include in the corpus, De Clercq and Temperley

both independently conducted harmonic analyses and constructed a dataset that contains both of

their harmonic analyses in order to reduce the effect of idiosyncrasies. After doing this, they

compared harmonic analyses and found that their harmonic analyses agreed completely on 39 of

the 100 songs and that all of their harmonic analyses agreed on the relative root of each song.

They also found that one song, Public Enemy’s ‘Bring the Noise” did not contain any triadic

harmony, so they decided to remove it from the list of 100 songs. Each of the harmonic analyses

in their corpus of 99 songs identifies the key center and contained a sequence of roman numerals.

The text file of Temperley’s analysis of Nirvana’s “Smells like Teen Spirit” is shown below:

Figure 13: Example of the Format of a Song in De Clercq and Temperley’s Corpus24

3.2 Discussion of de Clercq and Temperley’s Analysis of their Rock Corpus

In analyzing the harmonies in the Rock corpus, De Clercq and Temperley first examined

the overall distribution of chromatic relative roots. In order to do this, they found the sheer

number of occurrences of each root and found the proportion of that number to the total number

of roots. From this, they found that major and minor chords built on the chromatic roots I, IV, V,

bVII and then VI were most frequently used. Next, they considered chord transitions within a

24 “Harmonic Analyses,” A Corpus Study of Rock Music, accessed November 25, 2023,
http://rockcorpus.midside.com/harmonic_analyses.html.

 26

single key (they did not record transitions from one key to another). From this, they found that

the most frequent chords to precede the tonic were IV, V and then bVII and found that the ‘pre-

tonic’ distribution (chord approaching I) and the ’post-tonic’ distribution (chords approached

from I) as well as the overall distribution of chords roots (excluding the tonic) were similar. As a

result, they wrote, “In light of this data, one might conclude that rock is not governed by rules of

‘progression’ at all; rather, there is simply an overall hierarchy of preference for certain

harmonies over others, regardless of context.”25 For reference, I have reproduced their table of

chord transition counts in Figure 14 below:

Figure 14: De Clercq and Temperley’s Table of Chord Transitions in the Rock corpus26

Following this, they considered trigrams leading up to the tonic and found that the trigram IV-V-

I was the most frequently occurring trigram, which occurred 352 times, and was followed by V-

25 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1
(2011): 61.

26 Ibid.

 27

IV-I which occurred 292 times. Their table of the most frequent trigram occurrences is also

reproduced in Figure 15 below:

Figure 15: De Clercq and Temperley’s Table of Trigrams27

They also considered the co-occurrence of chords in the corpus. In order to measure this, they

created a 99-dimensional chord vector for each of the 12 relative roots with zeros and ones for

whether a particular chord is present each of 99 songs in the corpus. They then measured the

correlations between each root with the other 11 and produced a 12x12 correlation matrix and

highlighted values that were .35 or above which they deemed to be significant. From this they

found that the roots bVII, bIII and bVI tended to co-occur as the three pairs were correlated. In

finding this, they suggested that these co-occurrences offered some evidence as to some kind of

modal organization that could be thought of as similar to the major and natural minor modes in

the traditional common practice.

In summary, De Clercq and Temperley found a greater frequency of IV and V as frequent

pre-tonic chords from their analysis of chord-to-chord transitions and a high frequency of VI and

bVII chords in the overall frequency of chords in the corpus. They also found that the most

27 Ibid, 63.

 28

frequently occurring asymmetrical root motions characteristic of the common-practice period

were noticeably absent in rock. They also observed that the harmonies in the corpus were

overwhelmingly in root position, major triads were more frequently occurring than minor triads,

and that root motion by ascending or descending fourth was most common. In analyzing trends

across the decades, they also found that the harmony of the songs in the 1950s was mostly

confined to the use of I, IV and V whereas the distribution of chords used between the 1960’s

and 2000 was broader.

3.3 Suggestions for further directions

In the final sections of their article, De Clerc and Temperley suggested several possible

directions for further research. The first direction they suggested was to gather more data from

Rolling Stone list and conduct more harmonic analyses. They noted that doing this would help to

determine larger-level harmonic patterns or more hierarchical relationships in the corpus which

would involve constructing a new model. They also note that other scholars have suggested that

“rock music reflects a strong preference for the placement of tonic harmony in metrically strong

positions and that this is an important cue for tonal orientation” and that the corpus could be used

to analyze this because it includes metric structure as well as the chords. 28 29

In the final section of their article, De Clercq and Temperley also note that one of the

possible criticisms of their project is that they treated the harmonic structure of the songs in the

corpus as “flat” or viewed the harmonic structure of the works only as a one-level sequence of

28 Ibid, 68.

29 Walter Everett, “Making Sense of Rock’s Tonal Systems,” Music Theory Online, vol. 10, no. 4 (December 2004):
10.

 29

harmonies.30 In discussing this, they note how many other authors such as (Brown 1997; Burns

2008; Everett 2008) analyze rock in a hierarchical (e.g. Schenkerian) manner and distinguish

structural from elaborative harmonies.31 While they justify their approach by noting that their

“single-level” harmonic analysis is relatively immune to differences in opinion (which could

arise from the high degree of subjectivity that could arise in reductive analysis) they note that a

hierarchical approach to understanding the harmony of the songs in the corpus could offer new

insights. My implementation of self-emergent midden Markov models and probabilistic context-

free grammar models which are discussed in Chapter 5 will attempt to account for the

hierarchical nature of the harmony in the Expanded Rock Corpus.

30David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1
(2011): 68.

31 Ibid.

 30

4. The Expanded Rock Corpus and Patterns in the Data

In this chapter, I will discuss how I expanded De Clercq and Temperley’s rock corpus.

The rock corpus that De Clercq and Temperley studied in their 2011 article consisted of the top

20 songs in each of the five decades from the Rolling Stone magazine’s list of “500 Greatest

Songs of All Time”. Since the publication of their article, De Clercq and Temperley added the

next highest ranked songs from the RS 500 list and created a corpus of harmonic analyses of 200

songs.32 After determining which songs of the RS 500 De Clercq and Temperley did not include

in their corpus of 200 songs, I produced harmonic analyses for an additional 239 songs which

together with De Clercq and Temperley’s harmonic analyses of 200 songs make up the 439

songs of the Expanded Rock Corpus. These additional 239 songs that I added were taken from

Rolling Stone’s “500 Greatest Songs of All Time” based on De Clercq and Temperley’s 2021

revised list.33 Since the Expanded Rock Corpus has more than four times as many songs as the

original corpus which De Clercq and Temperley studied in their 2011 article, I will replicate the

analyses that they performed and compare my findings from the Expanded Rock Corpus with the

results from the 2011 article.

4.1 Harmonic Analyses of the Songs in the Expanded Rock Corpus

While De Clercq and Temperley conducted harmonic analyses by ear and recorded

metrical data associated with the harmonies, due to time constraints I used pre-existing guitar

tabs from “https://www.ultimate-guitar.com/” which provided a list of chords for each song

which I converted into harmonic analysis by hand. The main drawback of this method is that

32 David Temperley and Trevor De Clercq, ““Statistical Analysis of Harmony and Melody in Rock Music,” Journal of
New Music Research, vol. 42, no. 3 (2013): 187

33 “The Corpus,” A Corpus Study of Rock Music, accessed June 3, 2023, http://rockcorpus.midside.com/.

 31

there are often multiple existing guitar tabs for each song, some of which were found to be

inaccurate. To mitigate this issue, I used the official guitar tabs from a premium subscription to

“Ultimate Guitar Com.”34 These guitar tabs were created by the UG team which was formed in

2016 and consists of more than 30 people each of which has over ten years of guitar experience

and half of which have music degrees. After using one of the UG team’s official tabs I also

verified that the tab was an accurate or close approximation of the chords of the song. In the

instances in which the premium version of the guitar tab was not available I used the guitar tab

with the highest user rating. While De Clercq and Temperley recorded the metrical placement of

harmonies, I did not and also only recorded chord changes meaning that my data does not

include repeated chords. While there are likely errors in the corpus as a result of inaccurate guitar

tabs or human error, I decided that in creating a large enough corpus these errors would have a

minimal effect on underlying harmonic trends in the corpus.

4.2 Patterns in the Expanded Rock Corpus

Now, I will replicate the basic statistical analysis that De Clercq and Temperley

performed on their rock corpus but on the Expanded Rock Corpus and analyze the distribution of

chromatic relative roots, chord transitions, trigrams, the proportions of chromatic roots in each

decade, and other patterns. After loading the corpus data, which was compiled in an excel

spreadsheet, into the programming language Python, I calculated the frequency of the top 20

chords in the corpus, which is summarized in the histogram below.

34 “Tabs,” Ultimate Guitar Com, accessed June 3, 2023, https://www.ultimate-guitar.com/explore

 32

Figure 16: Frequency of the Top 20 Chords in the Expanded Rock Corpus

It is interesting to note how the IV chord occurs a little under twice as frequently as the V chord.

This confirms De Clercq and Temperley’s previous observation that the IV chord is prevalent in

rock harmony. Following the I, IV, V and i chords, it is interesting to note that the next prevalent

chords in the corpus are bVII, vi, bVI, ii and bIII. The prevalence of bVII, bVI and vi also

confirms De Clercq and Temperley’s previous observations and illustrate how the chords that

make up rock harmony are clearly different from those of common-practice harmony.

After examining the most frequently occurring chords in the corpus, I decided to follow

De Clercq and Temperley’s investigation of the frequency of the chromatic roots in the corpus.

Like De Clercq and Temperley, I defined the chromatic relative root of chords in the corpus as

any chord built on that root. The frequency of the relative chromatic roots in the RS 5x20 corpus

and the Expanded Rock Corpus is shown in the histograms below.

 33

Figure 17: Frequency of Chords on the Chromatic Roots in De Clercq and Temperley’s Rock

Corpus

Figure 18: Frequency of Chords on the Chromatic Roots in the Expanded Rock Corpus

Here, the values on the y-axis represent the frequency of the chord in the corpus and the labels

on the x-axis in both figures represent the set of major and minor chords built on each of the

twelve chromatic scale degrees. Temperley and De Clercq also observed that the most frequently

occurring chromatic roots are I, IV, V, bVII and VI and the analysis of the distribution of the

twelve chromatic roots in the larger corpus above closely resembles their observations.

 34

 Next, I found the top ten most frequency occurring chords in the corpus and tracked their

frequency across the decades. These frequencies are summarized in the bar plots below:

Figure 19: Frequency of the Top Ten Chords in each Decade

Here, the order of chords on the x-axis begins with the most frequently occurring chord in the

corpus and ends with the 10th most frequently occurring chord in the corpus. Since there is not an

equal number of songs in each decade (and only a few songs from the 1940s and 2000s) the

frequency histograms are not exactly representative of the frequency of the top ten chords in the

corpus in songs from each decade. In an effort to mitigate the fact that there are a different

number of songs in each decade, I also calculated the percentage that each of these top ten chords

made up of all of the chords in a particular decade. These histograms are shown below:

 35

Figure 20: Percentages of the Top Ten Chords in each Decade

Comparing the two sets of histograms, it is clear that the I and IV chords make up the majority of

the chords in all of the decades. This might be due to the fact that a large number of works in the

corpus utilized guitars which are tuned in fourths or because of the strong influence of blues

music on rock music. One trend that these histograms illustrate is that between the 1950s and

1990s, more of the top ten chords outside of I, IV, V and i are used suggesting that there is more

harmonic diversity in the songs from these decades. While there are less songs in the corpus

from the 1940s and 1950s compared with the 1980s and 1990s, the increase in harmonic

diversity could also be attributed to the genre’s predilection for modal mixture and subversion.35

35 Chris McDonald, "Exploring Modal Subversions in Alternative Music." Popular Music 19, no. 3 (2000): 355.

 36

Following this, I investigated chord transitions between major triads based on each chromatic

root and between classes of chords built on each of the twelve chromatic roots. The results for

the Expanded Rock Corpus are summarized in the heat map below.

Figure 21: A Heatmap for the Frequency of Bigrams of Chromatic Roots in the Expanded Rock

Corpus

 37

This heat map of bigrams of chromatic roots illustrates how the bigrams I - IV and IV - I are the

most common and occur 4813 and 4995 times respectively in the Expanded Rock Corpus. The

next most frequently occurring bigrams are V - I , I - V, IV - V and V - IV which occur 3324,

2384, 1980 and 1397 times respectively. These observations suggest that the majority of bigrams

between classes of chords on chromatic roots follow the harmonic syntax of common-practice

tonal music. However, observing the set of the next most frequently occurring chromatic bigrams

suggests that the syntax of rock music differs from the harmonic syntax of common-practice

tonal music. For instance, the some of the next most frequently occurring chromatic bigrams

include I - bVII, bVII - I, bVII - IV, which occur 1513, 1294 and 670 times respectively. The fact

that these are some of the next most frequently occurring bigrams following suggests how bVII

often serves as a modal substitute of V.

 Similar to how I first calculated the empirical distribution of top ten chords in the corpus

before converting it to percentages, I then found the top chromatic bigrams and calculated the

percentage that they make up in the total number of bigrams in the corpus. To illustrate these

findings, I will use a histogram with both positive and negative values. The positive values in the

histogram correspond to the percentages that the chromatic bigram occur which listed on the X-

axis in Figure 22 below. The negative values in the histogram, or the values that are shown by

the red bars, represent the percentage of the total number of chromatic bigrams that the bigram

on the x-axis occurs in the opposite direction of those on the x-axis. For instance, the chromatic

bigrams I - IV and IV - I each make up roughly 15% of the total number of chromatic bigrams in

the corpus. The histogram of the most frequent bigrams and the reverse bigrams are shown in the

histogram below.

 38

Figure 22: Tornado Diagram of the Top 5 Chromatic Chord Bigrams

Another observation that can be drawn from this histogram is that for each of these five most

frequently occurring bigrams, the inverse bigram occurs roughly the same percentage of times

which supports the conception that the harmonic syntax of rock music has strong bidirectional

tendencies. Comparing my results for the chord transitions between classes of chords on the

twelve chromatic roots with De Clercq and Temperley’s on the RS 5x20 corpus, I found that the

results qwew similar. I have again reproduced a copy of table 3 from De Clercq and Temperley’s

article below for comparison:

 39

Figure 23: De Clercq and Temperley’s table of chord transitions in the Rock corpus36

For instance, in De Clercq and Temperley’s table, the values for the bigrams I-IV and IV-I are

1052 and 1162, I-V and V-I are 710 and 788, I-bVII and bVII-I are 470 and 386 and the values

for the bigrams I-II and II-I are 132 and 120. Since the two values in each of the bigrams are

roughly similar, my results parallel De Clercq and Temperley’s. After investigating chromatic

bigrams in the corpus, I began to investigate the larger harmonic patterns. The top twenty

trigrams of between the chord classes on the chromatic roots are shown in Figure 24 below:

36 David Temperley and Trevor De Clercq, “A Corpus Analysis of Rock Harmony,” Popular Music, vol. 30, no. 1
(2011): 61.

 40

Figure 24: Frequency of the Top Twenty Trigrams in the Expanded Rock Corpus

This histogram of the top twenty trigrams in the corpus illustrates how the most frequently

occurring trigrams are between the chromatic roots I, IV and V. The fact that the trigrams bVII -

IV - I, II - IV - I and bVI - bVII - I all occur with similar frequencies around 400 and all end on

the chromatic root suggest that these are the typical cadential formulations in the music in the

Expanded Rock Corpus.

Finally, following De Clercq and Temperley’s work I created and investigated chord

vectors. Given the 439 songs in the corpus, I created a 439-dimensional vector for each major

chord on the twelve chromatic roots and used roman numeral notation to denote each of these

twelve vectors. I then put a ‘1’ or ‘0’ in each position of each vector if the chord appeared in the

song (thus ignoring the number of times the chord occurs in the song). Following this, I

calculated the correlation between each of the vectors. Since the correlation between two vectors

indicates a degree of similarity between them, the correlation between two chords representing

 41

two major triads on each relative root indicates the degree to which the chords are likely to occur

in the same songs. Correlation values are between -1.0 and 1.0, where the correlation is positive

if two chords co-occur and negative if they don’t. Any correlation above .35 suggests that there

is some correlation between the two chords. The correlations between the chord vectors are

summarized in the heatmap below:

Figure 25: Heat Map of the Correlation Between the Chromatic Root Vectors

These results suggest that the following pairs of vectors tend to co-occur:

(bII, bV), (II, IV), (bIII, bVII), (bIII, bVI), (III, IV), (IV, V) and (bVI, bVII)

One observation about these pairs of vectors is that most of the intervals between their roots are

fourths and seconds which might suggest that chords a fourth or second apart tend to occur

 42

together. In order to better determine if certain vectors occurred together, I also produced a heat

map with a dendrogram for the vectors, which is shown in Figure 26 below:

Figure 26: Heat Map with a Dendrogram of the Correlation Between the Chromatic Root Vectors

This heat map and dendrogram clearly suggests that the chromatic roots are roughly clustered

into the following two groups: [I, IV, V, VII, III, II, VI] and [bII, bV, bIII, bVI, bVII]. This

broad grouping confirms De Clercq and Temperley’s observation that the chords based on the

roots bVII, bIII and bVI tend to occur together and that the chords based on the roots II, VI and

 43

III tend to occur together. The rough grouping from the heat map and dendrogram both confirms

and expands upon De Clercq and Temperley’s observation. The finer groupings of the

dendrogram are as follows (where the brackets correspond to subsequent subgroupings):

[[I, [IV, V]], [VII, [III, [II, VI]]]]

[[bII, bV], [bIII, [bVI, bVII]]]

In addition to measuring the correlation between chord vectors and producing a dendrogram to

capture the correlation between chord vectors, I also implemented K-means clustering on rows of

the chord vector matrix; that is, on the set of 439 vectors for the songs which contain information

about whether each of the twelve chromatic roots is present in the song in order to determine if

these vectors for the songs could be clustered into groups. Using a “within-cluster sum of square

distances” which measures the distances of each data point in all clusters to their respective

centroids, I determined that the optimal number of clusters to use to try and cluster the song

vectors was three. After running K-means clustering with K = 3, I then used principal component

analysis (PCA) with two principal components in order to reduce the dimension of the data to try

and visualize the results. The two axes of the plot represent the two principal components which

are comprised of the different weighted combinations of the axes of the original data. The

resulting scatter plot with K clusters and the composition of the two principal components are

shown in Figure 27 below:

 44

Figure 27: Principal Component Analysis and K-means Clustering on the Chord Vectors of the

Songs in the Expanded Rock Corpus

Here, each dot in the left portion of Figure 27 represents a song which is labeled with its date and

the X represents the center of each cluster. While the songs do not appear to group into clearly

defined clusters, the composition of the two principal components (the high percentage of bVII

and bVI in PCA2 and higher percentage of I, IV, and V in PCA1 suggest that these chords are

important in determining the differences between groups of songs in the corpus which is

reflective of how some progressions in the corpus are based on bVII and bVI while others are

based on I, IV and V.

 45

5. Hidden Markov Models and Probabilistic Context-Free Grammar Models on the

Expanded Rock Corpus

Having introduced the Expanded Rock Corpus and discussed some of the patterns in the

data, I will now discuss the implementation of Hidden Markov Models and Probabilistic

Context-Free Grammar models.

5.1 Setting up the HMMs and PCFGs

Following the work of Hiroaki Tsushima et al. in “Generative Statistical Models with

Self-Emergent Grammar of Chord Sequences”, I implemented Hidden Markov Models and

Probabilistic Context-Free Grammar models that were coded in C++. Since the models for the

self-emergent HMM and PCFG from Tsushima et al.’s work were not compatible with the

format of the data from the De Clercq and Temperley Rock corpus, I first implemented a find-

and-replace algorithm in Python to convert the harmonic analyses in the rock corpus to pitch-

class numbers that resulted after the chords in each of the analyses had been transposed to C

major. An example of a harmonic analysis in this new format is shown below:

Figure 28: Example of the Data Format in Tsushima et al.

 46

Here, each of the numbers are the pitch-class numbers which are followed by the chord quality.

Following this, I created a file containing the top 20 most frequently used chords in the corpus

which was used as an input for both models. This was a necessary step as ultimately it would be

too computationally expensive and unwieldy to model the harmonic syntax of the corpus on

every chord that occurred in the corpus. As a result, the HMM and PCFG models that I

implemented were based only on top 20 chords in the corpus. In addition to specifying the

number of symbols or top chords, I also specified the number of hidden states or syntactic

categories that the models would have. Finally, I also specified the number of iterations on which

the expectation-maximalization algorithm would run, and usually specified a number greater

than or equal to 50 to ensure the that the models would converge or produce the optimal set of

parameters. Using these most frequently occurring chords, both models were trained using the

expectation-maximization algorithm. The resulting parameters were output in a file which

contained the composition of each hidden state or syntactic category in terms of the top 20

symbols as well as the transition probabilities between all of these states. For the PCFG, I used

the same files and specifications. The resulting parameters were output to a file which contained

the composition of each of the syntactic categories and the list of production rules and their

associated probabilities.

5.2 Results of the Hidden Markov Model on the Expanded Corpus

Running the HMM using the top 20 chords in the corpus, 5 syntactic categories and 50 iterations

of the EM algorithm produced the following results:

 47

Figure 29a: Composition of the “Subdominant” Hidden State

Figure 29b: Composition of the “Tonic” Hidden State

5:maj
63%

7:maj
23%

other
12%

0:maj
1%

1: "Subdominant"

5:maj 7:maj other 0:maj 0:maj7 10:maj 5:min

7:maj7 9:min7 8:maj 9:min 0:min 2:min 3:maj

4:maj 4:min 7:min 2:min7 5:maj7 0:min7 5:maj6

0:maj
96%

0:maj7
2%

other
1%

5:min
1%

2: "Tonic"

0:maj 0:maj7 other 5:min 5:maj 7:maj 7:maj7

0:min 10:maj 9:min 8:maj 2:min 3:maj 4:maj

4:min 7:min 2:min7 5:maj7 0:min7 9:min7 5:maj6

 48

Figure 29c: Composition of the “Other” Hidden State

Figure 29d: Composition of the “Dominant” Hidden State

33%

24%
14%

14%

8%
7%

3: "Other"

5:maj other 7:maj7 7:maj 0:maj7 10:maj 0:maj

0:min 9:min 8:maj 2:min 3:maj 4:maj 4:min

7:min 2:min7 5:min 5:maj7 0:min7 9:min7 5:maj6

42%

38%

20%
0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%

4: "Dominant"

7:maj7 7:maj 10:maj 5:maj 0:maj other 5:min

0:maj7 0:min 9:min 8:maj 2:min 3:maj 4:maj

4:min 7:min 2:min7 5:maj7 0:min7 9:min7 5:maj6

 49

Figure 29e: Composition of the “Submediant” Hidden State

Figure 30: Table of Transition Probabilities Between Hidden States

In Figure 29, each pie chart represents the composition of one of the five hidden states of the

HMM and the labels are the pitch class and followed by the chord quality. The labels in the pie

charts correspond to the major, minor or seventh chords built on the chromatic pitch class

associated with each number. The transition probabilities between each of the syntactic

categories is given in Figure 30. Each of the main syntactic categories that arise could be labeled

as “Tonic”, “Subdominant”, “Dominant”, “Submediant” and “Other” in the theory of common

practice harmonic syntax. While the composition of the “Tonic” and “Dominant” categories is

similar to the composition of “Tonic” and “Dominant” syntactic categories in common practice

harmony, note how 20% of the “Dominant” category consists of “10:maj” or “bVII” chords.

Furthermore, note how there is a “submediant” category which primarily consists of “vi” chords.

79%

8%
6%
3%
2%

2%
0%

5: "Submediant"

9:min other 7:maj 9:min7 0:maj7 8:maj 10:maj

5:maj 7:maj7 0:maj 0:min 2:min 3:maj 4:maj

4:min 7:min 2:min7 5:min 5:maj7 0:min7 5:maj6

 50

The probabilities in the transition matrix also seem to suggest that the harmonic syntax is similar

to that of music from the classical era as chords in the “Dominant” category always move to

chords in the tonic category, chords in the “Subdominant” category always move to chords in the

“Dominant” category and chords in the “Submediant” category always move to chords in the

“Subdominant” category.

These results can be viewed in light of Walter Everett’s “Classification of Rock’s

Preeminent Tonal Systems” which uses various characteristics to classify the prominent tonal

systems in rock music. While introducing these systems, Everett notes that while the underlying

principles of tonality often apply to rock music, the genre has evolved different ways of relating

to that tonal background.37 In particular, Everett develops the following classification of rock’s

preeminent tonal systems.

Figure 31: Everett’s Classification of Rock’s Preeminent Tonal Systems38

37 Walter Everett, “Making Sense of Rock’s Tonal Systems,” Music Theory Online, Volume 10, no. 4 (December
2004)

38 Ibid.

 51

Everett notes how he classifies the tonal systems in rock music in terms of their dependencies

upon harmonic and voice-leading functions and how each subsequent classification on the list is

progressively removed from common practice tonal behaviors.39 However, Biamonte in

“Pop/Rock Tonalities” notes that the ordering of the categories primarily follow the tonal

conventions of classical music rather than rock music and offers the revised and simplified set of

categories shown below:

Figure 32: Biamonte’s Classification of Tonal and Harmonic Structures in Pop/Rock

(after Everett 2004)40

39 Ibid, 2.

40 Nicole Biamonte, “Pop/Rock Tonalities” in Tonality Since 1950, ed. Wörner, Scheideler, and Rupprecht, Franz
Steiner Verlag, 95.

 52

The results of the composition of hidden states and transition matrix from the HMM run on the

Expanded Rock Corpus suggest how harmonic syntax of the songs in the corpus could

predominantly fall into Everett’s first category of tonal systems in rock as there are major and

minor-mode systems with common-practice harmonic behavior which are at times inflected with

minor-mode or chromatic mixture like bVII and bII. Furthermore, the results of the HMM

suggests that the songs in the corpus fall into Biamonte’s “expanded major mode” tonal system

and that the basic harmonic units utilize functional harmony.

It is important to note that while the results of the HMM appear to capture some

information about the harmonic syntax of the songs in the corpus, there is a fair amount of

overlap between the composition of the syntactic categories. For instance, the “Subdominant”

category consists of 23% “V” chords and the “Dominant” category is comprised of 38% “V”

chords. Also, the “Other” category is comprised of 33% “IV” chords and the “Subdominant”

category is comprised of 63% “IV” chords. The fact that several chords belong to multiple

syntactic categories ultimately makes it difficult to understand how the chord is functioning in

the harmonic syntax. Therefore, it appears that this HMM does not clearly and definitively

capture the harmonic syntax of the songs in the corpus. It is interesting to note that White and

Quinn also mentioned this issue of overlapping syntactic categories in their article and devised a

more complicated composite HMM to work around this issue.41

While creating a composite HMM similar to White and Quinn’s was not practical, I

decided to implement a resampling technique to artificially augment the dataset, and further

41 Christopher White and Ian Quinn, “Chord Context and Harmonic Function in Tonal Music” Journal of New Music
Research, vol. 40, no. 2, (2018): 318.

 53

decreased the number of syntactic categories to four in effort to obtain results with more clearly

defined syntactic categories. This involved randomly selecting with replacement songs from De

Clercq and Temperley’s corpus 20,000 times and adding each selected song to a new larger

dataset. The results from running a HMM with four syntactic categories on this larger dataset are

shown below.

Figure 32: Transition Matrix for HMM on the Resampled Data

Figure 33: Composition of the Four Syntactic Categories

 54

Here, the composition of the four syntactic categories in the figure above are represented in

terms of bar plots instead of pie-charts and labels on the x-axis correspond to the different chords

in pitch class notation and the y-axis corresponds to the percentage of which the chord makes up

the syntactic category. Also, the labels for the syntactic categories in Figures 32 and 33 are the

most common chords in the category and the labels “V, V6, V7, other – Dominant” refers to the

fact that this syntactic category could be considered as “Dominant” and is primarily composed of

V, V6, V7 and other chords. These results indicate a clearer picture of the harmonic syntax of the

songs in the corpus as there is far less overlap in the composition of the syntactic categories.

They also indicate how the harmonic syntax of the songs in the corpus is similar to the harmonic

syntax of classical music. However, it is important to note how in the 20,000 elements in the

resampled dataset, there were only 100 unique songs. Given that the model is only training on

these 100 songs, any harmonic features unique to these 100 songs would greatly influence the

results of the model. Therefore, the results of the model are not representative of the harmonic

syntax of rock music.

At this point, I decided that even resampling the Expanded Rock Corpus and running the

model would still produce inaccurate or biased results that would not be able to capture the

harmonic syntax of the songs in the corpus and decided to move on to the PCFG model.

5.3 Results of the Probabilistic Context-Free Grammar on the Expanded Corpus

After running the HMMs on the Expanded Rock Corpus, I implemented the PCFG model

on the corpus. The PCFG model uses the syntactic categories that were generated by training the

HMM and outputs the probabilities of the production rules. Using the HMM syntactic categories

that were produced from running the model on the top 20 chords with 5 syntactic categories and

100 iterations of the EM algorithm, the PCFG produced the following results:

 55

 Figure 34: Table of Production Rules with their Associated Probabilities for the PCFG

In Figure 34, the 0s refer to the “Subdominant” category, the 1s to the “Tonic” category, the 2s

to the “Other” category, the 3s to the “Dominant” category and the 4s to the “Submediant”

category. In each of the five groups of columns, the first column represents the symbol on the

left-hand side of the production rules, the following two columns represent the two symbols that

this symbol is replaced by, and the last column contains the probability of this production rule.

For instance, in this PCFG, the production rule which replaces a chord in the “Subdominant”

category with a chord in the “Tonic” category and a chord in the “Dominant” category occurs

6% of the time because the 9th row in the “Subdominant” section of the table contains a “0”

followed by a “1” and “3” which is followed by “.06”. It is important to note that in each of the

categories, the probabilities of the production rules that would produce the chord symbols (that is

the bottom rows containing the roman numerals) are zero except for the “other” symbol. This

 56

means that the grammar does not produce any of the top 20 chords in the corpus which is clearly

incorrect. In the following section, I will further discuss some of the issues with the results from

these models, problems that were encountered while implementing the models that may have

affected the result, and further steps that could be taken to achieve better results using these

models.

5.5. Problems Encountered while Implementing the HMM and PCFG on the Expanded

Corpus

One issue that I encountered that could have affected the performance of both models

was finding the correct format of the data to run the model on. Given that both the HMM and

PCFG grammars dealt with input data that was in multiple formats, (for instance a “I” chord

could be formatted as both “0:” and “0:maj”) and that the Readme.txt file that I was provided

with by Eita Nakamura through email correspondence did not indicate when to use each type of

format, it was very difficult to determine if the data that the model was training on was in the

right format and involved a lot of guessing and checking. In addition to the ambiguous

formatting of the data that HMM and PCFG models accepted, there was also the issue of

converting the data from the format that De Clercq and Temperley used.

 Aside from the format of the data, another reason the that the models did not perform

well could have been due to the small size of the corpus. For comparison, the datasets that were

used by in Tsushima et al. in their “Generative Statistical Models with Self-Emergent Grammar

of Chord Sequences” consist of 3000 chord progressions for the J-pop data and 1531 chord

progressions for the Billboard data whereas the Expanded Rock Corpus only consists of 439

songs.

 57

Another reason why the models that I implemented did not perform well could have been

the result of the initial randomness that is inherent in training HMM models. Before the

parameters of the HMM and PCFG are adjusted to fit the training data, they are initialized to

some initial values according to a prespecified distribution. As a result, training the model with

the EM algorithm multiple times on the same data will produce similar but not identical results.

One important difference between the HMM I implemented and the one that White and Quinn

implemented in their article is that the HMM they implemented was a composite HMM and was

trained with a different optimization algorithm. Their composite HMM consisted of 300 HMMs,

each of which had different randomized parameters and was trained on a training subset and used

to classify each chord in the testing subset into one of k different syntactic categories. They then

looked at how each of the 300 HMMs classified each chord and derived new syntactic categories

for the composite HMM using a k-medoids algorithm. As a result of using a k-medoids

algorithm, they were also able to quantify the extent to which each of the syntactic categories

overlapped. For a more detailed discussion of their approach, I refer the interested reader to pg.

318 and pg. 335 of their article.42 The fact that White and Quinn calculated silhouette widths in

order to measure the extent to which the syntactic categories of their HMMs were overlapping

suggests that they most likely also encountered the issue of overlapping syntactic categories that

I encountered when running a single HMM on the Expanded Rock Corpus data. While

implementing a composite HMM similar to White and Quinn’s would have most likely produced

better results for the Expanded Rock Corpus, I decided that it would ultimately be difficult and

would most likely require more computational power than I had available.

42 Ibid, 318-335.

 58

6. Conclusion and Summary of Findings

In this thesis I first introduced the concept of harmonic syntax and discussed several

models that music theorists have used to study it; I discussed n-gram and Markov models, hidden

Markov models and probabilistic context-free grammars. Following this, I discussed White and

Quinn’s previous work using a composite HMM to study the harmonic syntax of the Kostka-

Payne, McGill Billboard and Bach Chorale Corpuses. Following this, I assessed the work of De

Clercq and Temperley and their corpus of rock music and subsequently expanded their corpus to

create the Expanded Rock Corpus. I then replicated the basic statistical analysis that De Clercq

and Temperley performed on their corpus on the Expanded Rock Corpus and found that the

distribution of chord roots was similar to De Clercq and Temperley’s analysis in that the I, IV

and V followed by bVII, VI and II were the most frequently occurring chord roots. I also found

that the most frequently occurring bigrams of chord roots were V - I, I - V, IV - V and V - IV

followed by I - bVII, bVII - I and bVII - IV which were similar to the values that De Clercq and

Temperley found. I also observed how the top five chord root bigrams in the corpus had strong

bidirectional tendencies. Following this, I created chord vectors for the twelve chord roots,

measured the correlation between chord vectors and found the vectors tended to group together

as follows:

[[I, [IV, V]], [VII, [III, [II, VI]]]] [[bII, bV], [bIII, [bVI, bVII]]]

After conducting basic statistical analyses, I implemented HMMs and PCFGs on the Expanded

Rock Corpus and found that while the results from the HMM suggested that the harmonic syntax

of the works in the corpus were similar to the harmonic syntax of common practice music, the

composition of the syntactic categories were different. In particular, I observed that the

 59

“Dominant” category from one of the HMMs also contained “bVII” chords. I also found that

after running the PCFG on the Expanded Rock Corpus, the results from the PCFG were

inconclusive. Finally, I discussed several of the issues from these models and problems that were

encountered while implementing them that may have affected the results.

In conclusion, while this thesis was unable to definitively provide a detailed description

of the harmonic syntax of rock music using HMM and PCFGs, White and Quinn’s work using

composite HMMs and the work of Tsushima, Hiroaki, et al. using larger datasets illustrate that it

is possible to use these models to model the harmonic syntax of rock music. One further

direction of research could involve expanding the Expanded Rock Corpus and implementing

composite HMMs in order to better understand the harmonic syntax of rock music. Another

direction for future research might focus on conducting more basic statistical analysis on the

Expanded Rock Corpus and could investigate if there are trends in the frequency of chromatic

roots or specific chords over time. Finally, another direction of future research could use other

statistical clustering methods such as fuzzy clustering to determine how chromatic roots, chords

or individual songs group together.

 60

7. Appendix

7.1 Link to Expanded Rock Corpus, Further Discussion of Algorithms and Code Base

https://github.com/giwdulttam/Expanded-Rock-Corpus

 61

7.2 Discussion of the “Forward-Backward” Algorithm for Training HMMs:

In this algorithm X_t for t in {1,…,T} are random variables and correspond to the hidden

state variable taking on some value at time t in the sequence. In our case X_t will take on a value

in a hidden or syntactic category (tonic, dominant, etc…) and P(X_t) is the probability of it

taking on some value. The distribution of the random variable X_t is the collection of

probabilities of X_t taking on values (which in this thesis are tonic, dominant, etc..); since it

takes on a discrete set of values one could imagine this as a vertical bar graph.

This algorithm computes the marginal posterior probabilities of all hidden state variables

given a sequence of observations. For a given hidden variable X_t of a HMM, it computes P(X_t

| o_{1:T}) – that is, the probability of a certain hidden variable taking on some value given that I

have a series of observations o_{1:T}. In order to compute this posterior marginal, the algorithm

will compute the probability of the hidden variable X_t having a certain value given the

observations o_{1:t} where t < T. Then it will compute a set of backward probabilities; that is,

the probability P(o_{t+1 : T} | X_t) of observing the remaining observations o_{t+1:T} given

that that the hidden variable X_t has some value or is at some state or chord category. Combining

these two probabilities through Bayes’ rule, I can obtain the probability: P(X_t | o_{1:T}), which

is the distribution of X_t given the sequence of observations:

In this case, the posterior marginal P(X_t | o_{1:T}) is the distribution over the possible syntactic

chord categories (tonic, dominant, etc…) that the process will take on at some point in the

sequence t given that I have the sequence of chords o_{1:T}. These marginal posterior

 62

probabilities are shown by the probabilities on the blue arrows in the diagram of the HMM in

Figure 2.

 In the algorithm outlined above, the Bayes' Rule, also known as Bayes' Theorem or

Bayes' Law, is used to provide a way to updating the probability of an event occurring given that

some other event has occurred. In particular, it provides a convenient formula to express this

conditional probability in terms of probabilities are more likely to be known or easier to

compute. In particular, it allows us to express the posterior probability of an event as an

expanded version of the join density of the events over the marginal probability of the event that

is being conditioned on. This can be represented as follows:

 P (B | A) P (A)

P (A | B) = ---------------------------

 P (B)

 63

7.5 Python Code to Find Patterns in the Expanded Corpus

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46

-*- coding: utf-8 -*-
"""Python Code for Rock Corpus Analysis

Automatically generated by Colaboratory.

Original file is located at
 https://colab.research.google.com/drive/1AXDoMCDpEMQdKL2MUmvPYYQEOiH9-dLO

#Import the Corpus
"""

from google.colab import files
uploaded = files.upload()

import pandas as pd
big_frame = pd.read_excel('Expanded Rock Corpus.xlsx', index_col=0)

big_frame

analysis_dates = big_frame[['Date','Harmonic Analysis']].to_numpy()

analysis = big_frame['Harmonic Analysis'].to_numpy()

date = big_frame[['Date']].to_numpy()

analyses_Copy = analysis

for i in range(len(analyses_Copy)):
 analyses_Copy[i] = analyses_Copy[i].replace("[C]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[C#]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[Db]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[D]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[Eb]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[E]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[F]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[F#]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[G]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[G#]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[Ab]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[A]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[A#]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[Bb]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[B]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[Gb]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("modulation", "")

 64

 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98

 analyses_Copy[i] = analyses_Copy[i].replace("|", "")
 analyses_Copy[i] = analyses_Copy[i].replace(".", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[4/4]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[2/4]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[0]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[R]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[12/8]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[7/8]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("R", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[3/4]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[6/8]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("[5/4]", "")
 analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Vr5' is defined but never
used", "")
 analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Ch5' is defined but never
used", "")

 analyses_Copy[i] = analyses_Copy[i].split()

analyses_Copy

#make numpy arrays for each decade

df_1940s = []
df_1950s = []
df_1960s = []
df_1960s = []
df_1970s = []
df_1980s = []
df_1990s = []
df_2000s = []

for i in range(analysis_dates.shape[0]):
 if(1940 <= analysis_dates[i,0] < 1950):
 df_1940s.append(analyses_Copy[i])

 if(1950 <= analysis_dates[i,0] < 1960):
 df_1950s.append(analyses_Copy[i])

 if(1960 <= analysis_dates[i,0] < 1970):
 df_1960s.append(analyses_Copy[i])

 if(1970 <= analysis_dates[i,0] < 1980):
 df_1970s.append(analyses_Copy[i])

 if(1980 <= analysis_dates[i,0] < 1990):
 df_1980s.append(analyses_Copy[i])

 if(1990 <= analysis_dates[i,0] < 2000):
 df_1990s.append(analyses_Copy[i])

 65

 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

 if(2000 <= analysis_dates[i,0]):
 df_2000s.append(analyses_Copy[i])

"""#Determine frequency counts of symbols and build dictionary to replace on top 50
or so...."""

from collections import Counter

c = Counter()

for d in analyses_Copy: #***
 c.update(d)

for k, v in c.items():
print(f'{k} = {v}')

#create lists of chords that are on each chromatic root

zero = ['I', 'I7', 'I6', 'V7/IV', 'i', 'i6', 'I64', 'Va/IV', 'Isus4', 'Id7',
'V42/IV', 'i7', 'V11/IV', 'ii7/bVII', 'Id7#9', 'Isus2', 'I42', 'i42', 'Id42',
'V/IV', 'I#9', 'I9', 'i64']
one = ['bII', 'bIId7', 'viio/ii', 'bII7']
two = ['V7/V', 'II', 'V/V', 'ii', 'ii7', 'II7', 'IId7', 'ii65', 'iio6', 'ii11',
'V6/V', 'II65', 'ii64', 'iis4', 'ii42', 'II9', 'V/v', 'II11', 'iih43', 'iih42',
'ii9']
three = ['bIII', 'bVId7/V', 'biii7', 'biii', 'bIII7', 'bIII64', 'V/bVI', 'V42/bVI',
'bIII6']
four = ['V/VI', 'iii', 'III', 'V/vi', 'V7/vi', 'III7', 'iii64', 'iii7', 'bIV',
'iii6', 'V6/vi', 'biv7', 'III64', 'iii43', 'Va7/vi', 'Va65/vi']
five = ['IV', 'IVd7', 'iv', 'IV9', 'IV64', 'IV6', 'IV7', 'iv7', 'iv6', 'Iv7', 'Iv',
'iV', 'IV42', 'bVb5', '#IV', 'IVsus4', 'IVssu4', 'IVssus4', 'iv64']
six = ['bV', 'viix7/V', 'viio/V', 'viix43/V', 'bV7', 'bVd42', 'viix42/V', 'V/VII',
'V42/VII', 'bv', 'V+11', 'v64']
seven = ['V', 'V7', 'V7s4', 'V64', 'V7sus4', 'V43', 'v', 'V13', 'V6', 'v7', 'Vs4',
'V11', 'Vsus4', 'iv/ii', 'V42', 'V65', 'V9', 'v6', 'v9', 'v7s4', 'iv6/ii']
eight = ['bVI', 'bVI7', 'bVId7', 'bVi7', 'bvi', 'bVI6', 'bVIb5', 'bVi', 'bVIs4',
'V7/bII', 'viix7/vi']
nine = ['vi7','vi', 'VI', 'V/ii', 'VI7', 'V7/ii', 'V7/ii', 'V43/ii', 'vi6', 'VId7',
'vi64', 'V6/ii', 'vi42', 'vih7', 'VI6', 'VI9', 'ii/IV']
ten = ['bVII', 'bVII7', 'bVIId7', 'bVId7/ii', '#VI', 'bvii', 'ii7/bVII', 'bViI',
'bVI64/ii', 'V7/bIII', 'bVII64', 'bVII6', 'bVII9', 'bvii7', 'IV/IV']
eleven = ['V7/iii', 'VII', 'vii', 'viix43', 'VII7', 'iih7/vi', 'ii7/vi', 'viix42',
'V7/III', 'vii7', 'VII9', 'V/iii', 'viix7', 'viio6', 'vii64']

dictionary_of_chords_and_counts = dict(c)
dictionary_of_chords_and_counts

from itertools import chain
from collections import Counter
import operator

 66

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy))) #***

print(chord_counts_dict)

most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get,
reverse=True)

top_20_chords = most_frequent_chords[0:20]
top_10_chords = most_frequent_chords[0:10]

top_20_chord_dic = dict((k, chord_counts_dict[k]) for k in top_20_chords)
top_10_chord_dic = dict((k, chord_counts_dict[k]) for k in top_10_chords)

"""#Create Histogram of Top Chords"""

import matplotlib.pyplot as plt

plt.bar(list(top_20_chord_dic.keys()), top_20_chord_dic.values(), color='g')

plt.title("Frequency of Top 20 Chords")
plt.show()

from itertools import chain
from collections import Counter
import operator

#counts chords in analyses_Copy
chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy)))

print(chord_counts_dict)

most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get,
reverse=True)

print(len(most_frequent_chords))

top_50_chords = most_frequent_chords[0:50]
top_50_chords

chromatic_roots_maj = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI',
'VI', 'bVII', 'VII']
chromatic_roots_counts_maj = []

chromatic_roots_min = ['i', 'bii', 'biii', 'iii', 'iv', 'bv', 'v', 'bvi', 'vi',
'bvii', 'vii']
chromatic_roots_counts_min = []

#counts instances of chords from chord_counts_dict

 67

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

for i in range(len(chromatic_roots_maj)):
 chromatic_roots_counts_maj.append(chord_counts_dict[chromatic_roots_maj[i]])

#count number of chromatic roots

zero_counts = []
one_counts = []
two_counts = []
three_counts = []
four_counts = []
five_counts = []
six_counts = []
seven_counts = []
eight_counts = []
nine_counts = []
ten_counts = []
eleven_counts = []

for i in zero:
 zero_counts.append(dictionary_of_chords_and_counts[i])

for i in one:
 one_counts.append(dictionary_of_chords_and_counts[i])

for i in two:
 two_counts.append(dictionary_of_chords_and_counts[i])

for i in three:
 three_counts.append(dictionary_of_chords_and_counts[i])

for i in four:
 four_counts.append(dictionary_of_chords_and_counts[i])

for i in five:
 five_counts.append(dictionary_of_chords_and_counts[i])

for i in six:
 six_counts.append(dictionary_of_chords_and_counts[i])

for i in seven:
 seven_counts.append(dictionary_of_chords_and_counts[i])

for i in eight:
 eight_counts.append(dictionary_of_chords_and_counts[i])

for i in nine:
 nine_counts.append(dictionary_of_chords_and_counts[i])

for i in ten:
 ten_counts.append(dictionary_of_chords_and_counts[i])

for i in eleven:

 68

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

 eleven_counts.append(dictionary_of_chords_and_counts[i])

zeros = sum(zero_counts)
ones = sum(one_counts)
twos = sum(two_counts)
threes = sum(three_counts)
fours = sum(four_counts)
fives = sum(five_counts)
sixes = sum(six_counts)
sevens = sum(seven_counts)
eights = sum(eight_counts)
nines = sum(nine_counts)
tens = sum(ten_counts)
elevens = sum(eleven_counts)

total_chromatic_roots = ['zero', 'one', 'two', 'three', 'four', 'five', 'six',
'seven', 'eight', 'nine', 'ten', 'eleven']

total_chromatic_roots_counts = []
total_chromatic_roots_counts.append(zeros)
total_chromatic_roots_counts.append(ones)
total_chromatic_roots_counts.append(twos)
total_chromatic_roots_counts.append(threes)
total_chromatic_roots_counts.append(fours)
total_chromatic_roots_counts.append(fives)
total_chromatic_roots_counts.append(sixes)
total_chromatic_roots_counts.append(sevens)
total_chromatic_roots_counts.append(eights)
total_chromatic_roots_counts.append(nines)
total_chromatic_roots_counts.append(tens)
total_chromatic_roots_counts.append(elevens)

total_chromatic_roots_counts

total_chromatic_roots

chromatic_roots_counts_maj

TandDC = [3058, 46, 336, 240, 174, 2104, 23, 1516, 372, 674, 748, 38]

plt.bar(total_chromatic_roots, total_chromatic_roots_counts, color='g')
plt.title("Frequency of Chromatic Roots in Expanded Rock Corpus")
plt.show()

plt.bar(chromatic_roots_maj, TandDC, color='b')
plt.title("Frequency of Chromatic Roots in TDC Rock Corpus")
plt.show()

"""#Bar Graph of number of unique chords in songs by decade - NOT CHROMATIC"""

 69

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

#get top 10 overall chords in corpus
top_10_chord_dic
top_10_chords

from itertools import chain
from collections import Counter
import operator

#******* --> go through each df_1990s and get number of times one of the top 10
overall chords occurs

decades = [df_1940s, df_1950s, df_1960s, df_1970s, df_1980s, df_1990s, df_2000s]

dec = ['1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s']

count = [0,0,0,0,0,0,0,0,0,0]

for i in range(len(decades)):
 count = [0,0,0,0,0,0,0,0,0,0]

 for j in range(len(decades[i])):
 for k in range(len(decades[i][j])):

 if(decades[i][j][k] == 'I'):
 count[0] = count[0] + 1

 if(decades[i][j][k] == 'IV'):
 count[1] = count[1] + 1

 if(decades[i][j][k] == 'V'):
 count[2] = count[2] + 1

 if(decades[i][j][k] == 'bVII'):
 count[3] = count[3] + 1

 if(decades[i][j][k] == 'VI'):
 count[4] = count[4] + 1

 if(decades[i][j][k] == 'II'):
 count[5] = count[5] + 1

 if(decades[i][j][k] == 'III'):
 count[6] = count[6] + 1

 if(decades[i][j][k] == 'bVI'):

 70

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

 count[7] = count[7] + 1

 if(decades[i][j][k] == 'bIII'):
 count[8] = count[8] + 1

 if(decades[i][j][k] == 'VII'):
 count[9] = count[9] + 1

 plt.bar(top_10_chords, count, color='g')

 plt.title("Frequency of Top 10 Chord in the " + dec[i])
 plt.show()

count_40 = [0,0,0,0,0,0,0,0,0,0]
count_50 = [0,0,0,0,0,0,0,0,0,0]
count_60 = [0,0,0,0,0,0,0,0,0,0]
count_70 = [0,0,0,0,0,0,0,0,0,0]
count_80 = [0,0,0,0,0,0,0,0,0,0]
count_90 = [0,0,0,0,0,0,0,0,0,0]
count_20 = [0,0,0,0,0,0,0,0,0,0]

count = [count_40, count_50, count_60, count_70, count_80, count_90, count_20]

decades = [df_1940s, df_1950s, df_1960s, df_1970s, df_1980s, df_1990s, df_2000s]

dec = ['1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s']

for i in range(len(decades)):
 for j in range(len(decades[i])):
 for k in range(len(decades[i][j])):

 if(decades[i][j][k] == 'I'):
 count[i][0] = count[i][0] + 1

 if(decades[i][j][k] == 'IV'):
 count[i][1] = count[i][1] + 1

 if(decades[i][j][k] == 'V'):
 count[i][2] = count[i][2] + 1

 if(decades[i][j][k] == 'bVII'):
 count[i][3] = count[i][3] + 1

 if(decades[i][j][k] == 'VI'):
 count[i][4] = count[i][4] + 1

 if(decades[i][j][k] == 'II'):
 count[i][5] = count[i][5] + 1

 if(decades[i][j][k] == 'III'):
 count[i][6] = count[i][6] + 1

 71

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

 if(decades[i][j][k] == 'bVI'):
 count[i][7] = count[i][7] + 1

 if(decades[i][j][k] == 'bIII'):
 count[i][8] = count[i][8] + 1

 if(decades[i][j][k] == 'VII'):
 count[i][9] = count[i][9] + 1

for i in range(len(count)):
 print(count[i])

total_1940s = sum(count_40)
total_1950s = sum(count_50)
total_1960s = sum(count_60)
total_1970s = sum(count_70)
total_1980s = sum(count_80)
total_1990s = sum(count_90)
total_2000s = sum(count_20)

count = [count_40, count_50, count_60, count_70, count_80, count_90, count_20]
totals = [total_1940s, total_1950s, total_1960s, total_1970s, total_1980s,
total_1990s, total_2000s]
percentages = []

for i in range(len(count)):
 for j in range(len(count[i])):
 count[i][j] = count[i][j] / totals[i]

for i in range(len(count)):
 for j in range(len(count[i])):
 count[i][j] = count[i][j]*100

count

for i in range(len(count)):

 plt.bar(top_10_chords, count[i], color='g')
 plt.title("Percentages of Top 10 Chord of: " + dec[i])
 plt.show()

import numpy as np

def euclidean(v1, v2):
 return sum((p-q)**2 for p, q in zip(v1, v2))/10 ** .5

euclid_dist_matrix = np.zeros((7,7))

 72

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

for i in range(len(count)):
 for j in range(len(count)):
 if(i!=j):
 euclid_dist_matrix[i][j] = euclidean(count[i], count[j])

euclid_dist_matrix

import seaborn as sns
import matplotlib.pyplot as plt

ax = sns.heatmap(euclid_dist_matrix, annot=True, xticklabels=dec, yticklabels=dec,
vmin=0, vmax=500, fmt='.3g')

plt.title("Euclidean Distance Between Histograms of Top 10 Chords in each Decade")
plt.show()

cg = sns.clustermap(euclid_dist_matrix, annot=True, xticklabels=dec,
yticklabels=dec, vmin=0, vmax=500, fmt='.3g')

plt.title("Clustermap of Similarity of Top 10 Chords in Corpus by Decade based on
Euclidean Distance between Histograms")

"""#Chord Transition Matrix in Expanded Rock Corpus"""

analyses_Copy_original = analyses_Copy

"""NLPTK to check if certain bigrams occur..."""

#Create a copy of analysis_Copy that just uses chromatic roots --> calculate bigrams
and trigrams from this
***** this will convert analyses_Copy to a list of chromatic numbers *****

for i in range(analyses_Copy.shape[0]):
 for j in range(len(analyses_Copy[i])):
 if analyses_Copy[i][j] in zero:
 analyses_Copy[i][j] = 'I'
 if analyses_Copy[i][j] in one:
 analyses_Copy[i][j] = 'bII'
 if analyses_Copy[i][j] in two:
 analyses_Copy[i][j] = 'II'
 if analyses_Copy[i][j] in three:
 analyses_Copy[i][j] = 'bIII'
 if analyses_Copy[i][j] in four:
 analyses_Copy[i][j] = 'III'
 if analyses_Copy[i][j] in five:
 analyses_Copy[i][j] = 'IV'
 if analyses_Copy[i][j] in six:
 analyses_Copy[i][j] = 'bV'
 if analyses_Copy[i][j] in seven:
 analyses_Copy[i][j] = 'V'

 73

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

 if analyses_Copy[i][j] in eight:
 analyses_Copy[i][j] = 'bVI'
 if analyses_Copy[i][j] in nine:
 analyses_Copy[i][j] = 'VI'
 if analyses_Copy[i][j] in ten:
 analyses_Copy[i][j] = 'bVII'
 if analyses_Copy[i][j] in eleven:
 analyses_Copy[i][j] = 'VII'

from nltk import bigrams
from collections import Counter

bgrms = []

for i in range(analyses_Copy.shape[0]):
 bgrms.append(list(bigrams(analyses_Copy[i])))

bgrms

import itertools

all_chromatic_bigrams = list(itertools.permutations(('I', 'bII', 'II', 'bIII',
'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII', 'VII'), 2))
all_chromatic_bigrams

import numpy as np
import operator
import itertools

Ant_Cons = pd.DataFrame(np.zeros((12,12)), columns = chromatic_roots_maj)
Ant_Cons.set_axis(chromatic_roots_maj, axis='index')

#create dictionary to store counts of bigrams
keyList = all_chromatic_bigrams
Using Dictionary comprehension
bigram_count = {key: 0 for key in keyList}
print(bigram_count)

#sets the key = 0 for all chromatic bigrams

for i in range(len(bgrms)):
 for j in range(len(bgrms[i])):
 for k in range(len(all_chromatic_bigrams)):
 if(bgrms[i][j] == all_chromatic_bigrams[k]):
 bigram_count[all_chromatic_bigrams[k]] += 1

bigram_count

#counts of chroamtic bigrams

names = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII',

 74

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

 'VII']
numbers = [0,1,2,3,4,5,6,7,8,9,10,11]

dic = dict(zip(names, numbers))
dic

list(bigram_count.keys())[0][0]

for i in range(len(all_chromatic_bigrams)):
 Ant_Cons.at[dic.get(list(bigram_count.keys())[i][0]),
list(bigram_count.keys())[i][1]] = bigram_count.get(list(bigram_count.keys())[i])

Commented out IPython magic to ensure Python compatibility.
import seaborn as sns
%matplotlib inline

plt.figure(figsize=(15,15))
sns.heatmap(Ant_Cons, annot=True, fmt='g')
sns.heatmap(Ant_Cons, xticklabels=names, yticklabels=names)
plt.title('Chord Transitions in the Expanded Rock Corpus: (Rows --> Columns)')

"""#Got top bigrams to create tornado charts in excel"""

bigram_count

d = Counter (bigram_count)
total = sum(d.values())
d.most_common()

print('Total Number of Bigrams:', total)
for k, v in d.most_common(10):
 print('%s: %i' % (k, v))

bigram_count[('II', 'I')]

x = range(5)

top_bigram = ['I - IV', 'I - V', 'I - bVII', 'I - VI', 'I - II']
positive_data = [4813/37254, 2384/37254, 1513/37254, 1041/37254, 817/37254]
negative_data = [-4995/37254, -3324/37254, -1294/37254, -492/37254, -608/37254]

fig = plt.figure()
ax = plt.subplot(111)
ax.bar(x, negative_data, width=1, color='r')
ax.bar(x, positive_data, width=1, color='b')

plt.xticks(ticks = [0,1,2,3,4], labels = top_bigram, rotation = 'vertical')

plt.title('Percentage of Most Common Chromatic Bigrams - (37,254 Total Occurences)')
plt.xlabel('Bigrams')
plt.ylabel('Percentage of Total')

 75

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

colors = {'Foward':'blue', 'Backward':'Red'}
labels = list(colors.keys())
handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in labels]
plt.legend(handles, labels)

plt.show()

"""#Group data from each songs into segments of trigrams --> nested array

"""

all_trigrams = []

for i in range(len(analyses_Copy)):
for j in range(len(analyses_Copy[i])-3):
all_trigrams.append(analyses_Copy[i][j:j+3])

all_trigrams

from nltk import trigrams
from collections import Counter

trigrms = []

for i in range(analyses_Copy.shape[0]):
 trigrms.append(list(trigrams(analyses_Copy[i])))

trigrms

all_chromatic_trigrams = list(itertools.permutations(('I', 'bII', 'II', 'bIII',
'III', 'IV', 'bV', 'V', 'bVI', 'VI', 'bVII', 'VII'), 3))
all_chromatic_trigrams

#create dictionary to store counts of bigrams
keylist = all_chromatic_trigrams
Using Dictionary comprehension
trigram_count = {key: 0 for key in keylist}
print(trigram_count)

for i in range(len(trigrms)):
 for j in range(len(trigrms[i])):
 for k in range(len(all_chromatic_trigrams)):
 if(trigrms[i][j] == all_chromatic_trigrams[k]):
 trigram_count[all_chromatic_trigrams[k]] += 1

trigram_count

import heapq
top_trigrams = heapq.nlargest(20, trigram_count, key=trigram_count.get)
top_trigrams

top_trigrams_list = []

 76

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

for i in range(len(top_trigrams)):
 top_trigrams_list.append(str(top_trigrams[i]))

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize = (10, 5))

creating the bar plot
plt.bar(top_trigrams_list, top_trigram_counts, color ='g',
 width = 0.4)

plt.xlabel("Top 20 Trigrams")
plt.ylabel("Frequency")
plt.title("Frequency of Top 20 Trigrams of Chromatic Roots")
plt.xticks(rotation='vertical')
plt.show()

"""#Get Histograms of Occurences of Chords / Bigrams for Each Decade --> Clustering
to Produce Histograms and track historical trends

#*** Everything Below is Chord Vectors****

#Correlation between chord vectors of all works
"""

if('V' in analyses_Copy[1]):
 print("yes")

chromatic_roots_maj = ['I', 'bII', 'II', 'bIII', 'III', 'IV', 'bV', 'V', 'bVI',
'VI', 'bVII', 'VII']

I = np.zeros(436)
bII = np.zeros(436)
II = np.zeros(436)
bIII = np.zeros(436)
III = np.zeros(436)
IV = np.zeros(436)
bV = np.zeros(436)
V = np.zeros(436)
bVI = np.zeros(436)
VI = np.zeros(436)
bVII = np.zeros(436)
VII = np.zeros(436)

for i in range(analyses_Copy.shape[0]):
 if('I' in analyses_Copy[i]):
 I[i] = 1
 if('bII' in analyses_Copy[i]):
 bII[i] = 1
 if('II' in analyses_Copy[i]):

 77

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

 II[i] = 1
 if('bIII' in analyses_Copy[i]):
 bIII[i] = 1
 if('III' in analyses_Copy[i]):
 III[i] = 1
 if('IV' in analyses_Copy[i]):
 IV[i] = 1
 if('bV' in analyses_Copy[i]):
 bV[i] = 1
 if('V' in analyses_Copy[i]):
 V[i] = 1
 if('bVI' in analyses_Copy[i]):
 bVI[i] = 1
 if('VI' in analyses_Copy[i]):
 VI[i] = 1
 if('bVII' in analyses_Copy[i]):
 bVII[i] = 1
 if('VII' in analyses_Copy[i]):
 VII[i] = 1

from string import ascii_letters
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

sns.set_theme(style="white")
d = pd.DataFrame({'I' : I, 'bII': bII, 'II':II, 'bIII':bIII, 'III':III, 'IV':IV,
'bV':bV, 'V':V, 'bVI':bVI, 'VI':VI, 'bVII':bVII, 'VII':VII})

Compute the correlation matrix
corr = d.corr()
Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))
Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)
Draw the heatmap with the mask and correct aspect ratio

corr = corr.replace(np.nan, 0)

sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
 square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.title('Correlation between Chromatic Roots vectors (1940-2000)')

cg = sns.clustermap(corr, annot=True, xticklabels=chromatic_roots_maj,
yticklabels=chromatic_roots_maj, vmin=-1, vmax=1, fmt='.3g')

plt.title("Clustermap Between the Chromatic Chord Vectors")

"""#Redo Correlation matrix of chromatic roots"""

 78

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
scaler =StandardScaler()

features =scaler.fit(d)
features =features.transform(d)

Convert to pandas Dataframe
scaled_df =pd.DataFrame(features,columns=d.columns)
Print the scaled data
scaled_df

X=scaled_df.values

wcss = {}
for i in range(1, 11):
kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
kmeans.fit(X)
wcss[i] = kmeans.inertia_

plt.plot(wcss.keys(), wcss.values(), 'gs-')
plt.xlabel("Values of 'k'")
plt.ylabel('WCSS')
plt.show()

kmeans=KMeans(n_clusters=8)
kmeans.fit(X)

dates

"""#Perform Clustering on Chord Vectors"""

#Make chord vectors for songs based on the top 20 most common chords
#create 20 dim vectors of counts for top 20 chords in each song

songs = []

for i in range(analyses_Copy.shape[0]):
 top = np.zeros(20)
 for j in range(len(analyses_Copy[i])):
 if(analyses_Copy[i][j] == 'I'):
 top[0] += 1
 if(analyses_Copy[i][j] == 'IV'):
 top[1] += 1
 if(analyses_Copy[i][j] == 'V'):
 top[2] += 1

 79

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

 if(analyses_Copy[i][j] == 'i'):
 top[3] += 1
 if(analyses_Copy[i][j] == 'bVII'):
 top[4] += 1
 if(analyses_Copy[i][j] == 'vi'):
 top[5] += 1
 if(analyses_Copy[i][j] == 'bVI'):
 top[6] += 1
 if(analyses_Copy[i][j] == 'ii'):
 top[7] += 1
 if(analyses_Copy[i][j] == 'bIII'):
 top[8] += 1
 if(analyses_Copy[i][j] == 'V7'):
 top[9] += 1
 if(analyses_Copy[i][j] == 'III'):
 top[10] += 1
 if(analyses_Copy[i][j] == 'iii'):
 top[11] += 1
 if(analyses_Copy[i][j] == 'v'):
 top[12] += 1
 if(analyses_Copy[i][j] == 'ii7'):
 top[13] += 1
 if(analyses_Copy[i][j] == 'I7'):
 top[14] += 1
 if(analyses_Copy[i][j] == 'iv'):
 top[15] += 1
 if(analyses_Copy[i][j] == 'IV7'):
 top[16] += 1
 if(analyses_Copy[i][j] == 'i7'):
 top[17] += 1
 if(analyses_Copy[i][j] == 'vi7'):
 top[18] += 1
 if(analyses_Copy[i][j] == 'IV6'):
 top[19] += 1
 songs.append(top)

songs

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

wcss = {}
for i in range(1, 10):
 kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
 kmeans.fit(songs)
 wcss[i] = kmeans.inertia_

plt.plot(wcss.keys(), wcss.values(), 'gs-')

 80

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

plt.xlabel("Values of 'k'")
plt.ylabel('WCSS')
plt.show()

kmeans=KMeans(n_clusters=3)
kmeans.fit(songs)

kmeans.cluster_centers_
kmeans.labels_

pca=PCA(n_components=2)

reduced_X=pd.DataFrame(data=pca.fit_transform(songs),columns=['PCA1','PCA2'])

centers=pca.transform(kmeans.cluster_centers_)

Commented out IPython magic to ensure Python compatibility.
%pip install adjustText

from adjustText import adjust_text

plt.rcParams.update({'font.size': 8})

plt.figure(figsize=(7,5))

Scatter plot
plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'],c=kmeans.labels_)
plt.scatter(centers[:,0],centers[:,1],marker='x',s=300,c='red')
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.title('Song Clusters')

for i in range(len(songs)):
 plt.annotate(date[i], (reduced_X['PCA1'][i], reduced_X['PCA2'][i] + 0.2),
arrowprops={"arrowstyle":"->", "color":"gray"})

plt.rcParams.update({'font.size': 10})

pca.components_

component_df=pd.DataFrame(pca.components_,index=['PCA1',"PCA2"],columns=top_20_chord
s)
sns.heatmap(component_df)
plt.show()

"""#Turn training and testing data into from strings to encoded data:"""

!pip install Scikit-learn
import sklearn
from sklearn import preprocessing

 81

top_50_chords = np.append(top_50_chords, 'other')
top_50_chords

top_10_chords = np.append(top_10_chords, 'other')
top_10_chords

le = preprocessing.LabelEncoder()
le.fit(top_10_chords)
list(le.classes_)

#transform training and testing data

train_data = le.transform(analyses_Copy) #***
train_data = np.expand_dims(train_data, axis=1)

test_data = le.transform(analyses_Copy) #***
test_data = np.expand_dims(test_data, axis=1)

test_data.shape

total_train = np.squeeze(train_data)
total_test = np.squeeze(test_data)

total_data = np.concatenate((total_train, total_test), axis = 0)

total_data = np.expand_dims(total_data, axis=1)

7.6 Python Code to Find and Replace Algorithm

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

-*- coding: utf-8 -*-
"""Copy of Roman Numerals --> Chords.ipynb

Automatically generated by Colaboratory.

Original file is located at
 https://colab.research.google.com/drive/1_FS2SCKXl9SOw44MKbuKhx7jmm3AJcU2

#Load Rock Corpus Data
"""

from google.colab import files
uploaded = files.upload()

import pandas as pd
big_frame = pd.read_excel('Expanded Rock Corpus.xlsx', index_col=0)

 82

 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69

iterating the columns
for col in big_frame.columns:
print(col)

big_frame['Harmonic Analysis'] = big_frame['Harmonic Analysis'].map(str)
big_frame['Harmonic Analysis'][2]

big_frame['Harmonic Analysis']

analyses = []

for i in range(len(big_frame['Harmonic Analysis'])):
analyses.append(big_frame['Harmonic Analysis'][i])

analyses = big_frame['Harmonic Analysis']

analyses_copy = analyses

analyses_Copy = analyses_copy
analyses_Copy

analyses_Copy.iloc[0]

analyses_Copy[2]

from functools import reduce

replacement_dict = {"[C]": "",
 "[C#]": "",
 "[Db]": "",
 "[D]": "",
 "[Eb]": "",
 "[E]": "",
 "[F]": "",
 "[F#]": "",
 "[G]": "",
 "[G#]": "",
 "[Ab]": "",
 "[A]": "",
 "[A#]": "",
 "[Bb]": "",
 "[B]": "",
 "|": "",
 ".": "",
 "[4/4]": "",
 "[2/4]": "",
 "[0]": "",
 "[R]": "",
 "[12/8]": "",
 "[7/8]": "",
 "R": "",
 "[3/4]": "",

 83

 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

 "[6/8]": "",
 "[5/4]": "",
 "Warning: 'Vr5' is defined but never used": "",
 "Warning: 'Ch5' is defined but never used": "",
 "Warning:": "",
 "Ch2": "",
 "is": "",
 "defined": "",
 "but": "",
 "never": "",
 "used": ""

 }

 # analyses_Copy[i] = analyses_Copy[i].replace("[C]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[C#]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[Db]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[D]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[Eb]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[E]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[F]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[F#]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[G]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[G#]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[Ab]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[A]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[A#]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[Bb]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[B]", "")

 # analyses_Copy[i] = analyses_Copy[i].replace("|", "")
 # analyses_Copy[i] = analyses_Copy[i].replace(".", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[4/4]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[2/4]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[0]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[R]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[12/8]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[7/8]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("R", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[3/4]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[6/8]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("[5/4]", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Vr5' is defined but never
used", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("Warning: 'Ch5' is defined but never
used", "")

 # analyses_Copy[i] = analyses_Copy[i].replace("Warning:", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("Ch2", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("Ch5", "")

 84

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

 # analyses_Copy[i] = analyses_Copy[i].replace("is", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("defined", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("but", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("never", "")
 # analyses_Copy[i] = analyses_Copy[i].replace("used", "")

for i in range(len(analyses_Copy)):
 analyses_Copy.iloc[i] = reduce(lambda x, y: x.replace(*y), [analyses_Copy.iloc[i],
*list(replacement_dict.items())])
 analyses_Copy.iloc[i] = analyses_Copy.iloc[i].split()

print(analyses_Copy)

"""#Determine frequency counts of symbols and build dictionary to replace on top 50 or
so...."""

from collections import Counter

c = Counter()

for d in analyses_Copy:
 c.update(d)

for k, v in c.items():
 print(f'{k} = {v}')

from itertools import chain
from collections import Counter
import operator

chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy)))

print(chord_counts_dict)

most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get,
reverse=True)

print(len(most_frequent_chords))

top_20_chords = most_frequent_chords[0:20]
top_20_chords

"""#Now get top 50 Chords:"""

from itertools import chain
from collections import Counter
import operator

 85

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

chord_counts_dict = dict(Counter(chain.from_iterable(analyses_Copy)))

print(chord_counts_dict)

most_frequent_chords = sorted(chord_counts_dict, key=chord_counts_dict.get,
reverse=True)

print(len(most_frequent_chords))

top_50_chords = most_frequent_chords[0:50]
top_50_chords

"""#(Treat the chords that are not in the top 20 as in the "Other" Category)

#Go through each element in the list and see if it has a [X] character -- if it does,
switch to the [X] dictionary and start converting using that dictionary...
"""

#find and replace roman numerals with chords for determined keys

C = {

'I': '0:',
'IV': '5:',
'V': '7:',
'i' : '0:m',
'bVII': '10:',
'vi': '9:m',
'bVI': '8:',
'ii': '2:',
'bIII': '3',
'iii': '3:m',
'iv': '5:',
'V7': '7:7',
'v': '7:m',
'IV6': '5:6',
'ii7': '2:m7',
'IV64': '5:6',
'I6': '0:6',
'I64': '0:6',
'V6': '7:6',
'vi7': '5:7'

}

dict_of_mappings = {"[C]": C, "[C#]": Cs, "[Db]": Db, "[D]": D, "[Eb]":Eb, "[E]":E
, "[F]":F, "[F#]": Fs, "[Gb]":Gb, "[G]":G, "[G#]":Gs, "[Ab]":Ab, "[A]":A, "[B]":B}

 86

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

chord_numbers = ['0:','5:','7:','0:m','10:','9:m','8:','2:',
'3:','3:m','5:','7:7','7:m',
'5:6',
'2:m7',
'5:6',
'0:6',
'0:6',
'7:6',
'5:7']

chord_numbers

"""#Update the the data with terms from the dictionary

"""

for i in range(len(analyses_Copy)):
for j in range(len(analyses_Copy[i])):
for k in range(len(C)):
if(analyses_Copy[i][j] == list(C)[k]):
analyses_Copy[i][j] = list(C.values())[k]

analyses_Copy

from collections import Counter

c = Counter()

for d in analyses_Copy:
 c.update(d)

for k, v in c.items():
 print(f'{k} = {v}')

"""#Create dictionary of top 50 chords and convert to numbers format...."""

top_20_chords

D = {

'I': '0:',
'IV': '5:',
'V': '7:',
'i' : '0:m',
'bVII': '10:',
'vi': '9:m',
'bVI': '8:',
'ii': '2:',
'bIII': '3',
'V7': '7:7',
'III': '4:',
'iii': '4:m',

 87

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

'v': '7:m',
'ii7': '2:m7',
'I7': '0:7',
'iv': '5:m',
'IV7': '5:7',
'i7': '0:m7',
'vi7': '9:m7',
'IV6': '5:6'

}

D = {

 'I': '0:maj',
 'IV': '5:maj',
 'V': '7:maj',
 'i' : '0:min',
 'bVII': '10:maj',
 'vi': '9:min',
 'bVI': '8:maj',
 'ii': '2:maj',
 'bIII': '3:maj',
 'V7': '7:maj7',
 'III': '4:maj',
 'iii': '4:min',
 'v': '7:min',
 'ii7': '2:min7',
 'I7': '0:maj7',
 'iv': '5:min',
 'IV7': '5:maj7',
 'i7': '0:min7',
 'vi7': '9:min7',
 'IV6': '5:maj6'

}

#find and replace roman numerals with chords for determined keys

C = {

'I': '0:',
 'IV': '5:',
 'V': '7:',
 'i' : '0:m',
 'bVII': '10:',
 'vi': '9:m',
 'bVI': '8:',
 'ii': '2:',

 88

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

 'bIII': '3',
 'iii': '3:m',
 'iv': '5:m',
 'V7': '7:7',
 'v': '7:m',
 'IV6': '5:6',
 'ii7': '2:m7',
 'IV64': '5:6',
 'I6': '0:6',
 'I64': '0:6',
 'V6': '7:6',
 'vi7': '5:7',
 'IVd7': '5:dim7',
 'v7': '7:m7',
 'V11': '11:',
 'II': '2:',
 'iv6': '5:m6',
 'Id7': '0:dim7',
 'IV7': '5:7',
 'V42/IV':'0:42',
 'bII':'1:',
 'V+11':'7:11',
 'V/V':'2:',
 'vi64':'9:m64',
 'bVI6':'8:6',
 'bVII6':'10:6',
 'Id9':'0:dim9',
 'iv64':'5:m64',
 'V/vi':'4:',
 'Vs4':'7:sus4',
 'IV9':'5:9',
 'i7':'0:m7',
 'v7s4':'7:msus4',
 'V7/IV':'0:7',
 'bVII64':'10:64',
 'V7/ii':'9:7',
 'III':'4:',
 'V64':'7:64',
 'ii65':'2:m65',
 'V7/vi':'4:7',
 'I7':'0:7',
 'iii7':'3:m7'

}

import numpy as np
top50 = np.array(list(C.values()))
top20 = np.array(list(D.values()))

print(D.values())

for i in range(len(analyses_Copy)):

 89

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

 for j in range(len(analyses_Copy.iloc[i])):
 for k in range(len(D)):
 if(analyses_Copy.iloc[i][j] == list(D)[k]):
 analyses_Copy.iloc[i][j] = list(D.values())[k]

analyses_Copy

"""#Export analyses_Copy which is a nested list into a series of .txt files

#(This gives a .txt files with all the songs)
"""

with open('analyses_Copy_formatted.txt', 'w') as file:
for item in analyses_Copy:
file.write("// new_song.txt \n")
file.write(" \n".join(map(str,item)))
file.write("\n")

"""#Split up all the songs into train and test and make 2 .txt files"""

with open('Large_Train.txt', 'w') as file:
 for item in analyses_Copy:
 # file.write("// new_song.txt \n")
 file.write(" \n".join(map(str,item)))
 file.write("\n")

analyses_Copy_train = analyses_Copy.iloc[0:218]
analyses_Copy_test = analyses_Copy.iloc[218:436]

analyses_Copy.shape

with open('Rock_Train.txt', 'w') as file:
 for item in analyses_Copy_train:
 # file.write("// new_song.txt \n")
 file.write(" \n".join(map(str,item)))
 # file.write("\n")

with open('Rock_Test.txt', 'w') as file:
 for item in analyses_Copy_test:
 # file.write("// new_song.txt \n")
 file.write(" \n".join(map(str,item)))
 # file.write("\n")

with open('Symbol_Rock_20.txt', 'w') as file:
 for item in top20:
 # file.write("// new_song.txt \n")
 file.write("".join(map(str,item)))
 file.write("\n")
 file.write("end")

with open('Symbol_Rock_50.txt', 'w') as file:
 for item in top50:

 90

 # file.write("// new_song.txt \n")
 file.write("".join(map(str,item)))
 file.write("\n")
 file.write("end")

 91

Bibliography

Burns, L. "Analytic Methodologies for Rock Music: Harmonic and Voice-Leading Strategies in

Tori Amos’s 'Crucify'." In Expression in Pop-Rock Music: Critical and Analytical Essays,

2nd ed., edited by W. Everett, Routledge, 2008.

Brown, Matthew. "Little Wing: A Study in Musical Cognition." In Understanding Rock: Essays

in Musical Analysis, edited by John Covach and Graeme M. Boone, 199-215. New York:

Oxford University Press, 1997.

Chomsky, Noam. “Three Models for the Description of Language,” IEEE Transactions on

Information Theory, vol. 2, no. 3 (1956): 113–124.

https://doi.org/10.1109/tit.1956.1056813.

De Clercq, Trevor. “Computational Musicology in Rock,” The Bloomsbury Handbook of Rock

Music Research, (2020): 149–164. https://doi.org/10.5040/9781501330483.ch-010.

De Clercq, Trevor, and David Temperley. “A Corpus Analysis of Rock Harmony,” Popular

Music, vol. 30, no. 1 (2011): 47–70. Edited by Martin Cloonan and Sarah Hill.

https://doi.org/10.1017/s026114301000067x.

Everett, Walter. “Making Sense of Rock’s Tonal Systems,” Music Theory Online, vol. 10, no. 4

(December 2004).

Everett, Walter. "Pitch Down the Middle." In Expression in Pop-Rock Music: Critical and

Analytical Essays, 2nd ed., edited by Walter Everett, Routledge, 2008.

 92

Granroth-Wilding, Mark, and Mark Steedman. “A Robust Parser-Interpreter for Jazz Chord

Sequences.” Journal of New Music Research, vol. 43, no. 4, 2014, pp. 355–374,

https://doi.org/10.1080/09298215.2014.910532.

Harasim, Daniel, Martin Rohrmeier, and Timothy J. O’Donnell. "A Generalized Parsing

Framework for Generative Models of Harmonic Syntax." In 19th International Society for

Music Information Retrieval Conference, Paris, France, 2018.

Jurafsky, Dan, and James H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition.

Pearson Prentice Hall, 2009.

McDonald, Chris. “Exploring Modal Subversions in Alternative Music.” Popular Music, vol. 19,

no. 3, 2000, pp. 355–363, https://doi.org/10.1017/s0261143000000210.

McHose, Allen Irvine. The Contrapuntal Harmonic Technique of the 18th Century. Eastman

School of Music Series. Hardcover, January 1, 1947.

Nobile, Drew. “Harmonic Function in Rock Music.” Journal of Music Theory, vol. 60, no. 2,

2016, pp. 149–180, https://doi.org/10.1215/00222909-3651838.

Patel, Aniruddh D. "Syntax." In Music, Language, and the Brain, 239–298. Oxford: Oxford

University Press, December 2007.

https://doi.org/10.1093/acprof:oso/9780195123753.003.0005.

 93

Pearce, Marcus, and Martin Rohrmeier. “Musical Syntax II: Empirical Perspectives.” Springer

Handbook of Systematic Musicology, 2018, pp. 487–505. Edited by Rolf Bader.

https://doi.org/10.1007/978-3-662-55004-5_26.

Rohrmeier, Martin. “Towards a Generative Syntax of Tonal Harmony.” Journal of Mathematics

and Music, vol. 5, no. 1, (2011), pp. 35–53,

https://doi.org/10.1080/17459737.2011.573676.

Rohrmeier, Martin, and Marcus Pearce. “Musical Syntax I: Theoretical Perspectives.” Springer

Handbook of Systematic Musicology, 2018, pp. 473–486. Edited by Rolf Bader.

https://doi.org/10.1007/978-3-662-55004-5_25.

Shanahan, Daniel, John Ashley Burgoyne, and Ian Quinn, eds. The Oxford Handbook of Music

and Corpus Studies. Oxford: Oxford University Press, 2022.

https://doi.org/10.1093/oxfordhb/9780190945442.001.0001.

Temperley, David. “Harmonic Analyses.” A Corpus Study of Rock Music,

http://rockcorpus.midside.com/harmonic_analyses.html

Temperley, David. The Musical Language of Rock. Oxford University Press, 2018.

Temperley, David, and Trevor De Clercq. “Statistical Analysis of Harmony and Melody in Rock

Music.” Journal of New Music Research, vol. 42, no. 3, 2013, pp. 187–204,

https://doi.org/10.1080/09298215.2013.788039.

 94

Tsushima, Hiroaki, et al. “Generative Statistical Models with Self-Emergent Grammar of Chord

Sequences.” Journal of New Music Research, vol. 47, no. 3, 2018, pp. 226–248,

https://doi.org/10.1080/09298215.2018.1447584.

White, Christopher William. The Music in the Data: Corpus Analysis, Music Analysis, and Tonal

Traditions. Routledge, 2023

White, Christopher William, and Ian Quinn. “Chord Context and Harmonic Function in Tonal

Music.” Music Theory Spectrum, vol. 40, no. 2 (2018),

https://doi.org/10.1093/mts/mty021.

