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Higher-order passive scalar (temperature) structure functions are measured in the turbulent wake of a

circular cylinder at a Taylor-microscale Reynolds number (R�) of 370. The scalar is injected by two

different means: (i) heating of the cylinder and (ii) use of a mandoline. Even though the second-order

statistics (e.g., power spectra, second-order structure functions) of the scalar field are experimentally

indistinguishable in the inertial and dissipative ranges, we observe notable differences in the inertial-range

scaling exponents (�n) of the scalar structure functions at higher orders. The implication is therefore that

the variations in previous estimates of �n may be attributable to differences in the scalar field initial

conditions (and may not be deemed characteristic of a universal nature of the small-scale statistics of

turbulent passive scalars).
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Over the last 15–20 years, there have been significant
advances in the understanding of passive scalar mixing
within turbulent flows. Some of these include (i) the real-
ization that the internal intermittency (i.e., strong fluctua-
tions in the dissipation rate) of a passive scalar arises
independently of the velocity field, and (ii) the elucidation
of the structure of passive scalar fields by studying multi-
point correlation functions. In general, it has been con-
cluded that many aspects of the scaling and structure of a
turbulent passive scalar field arise from the mixing process
itself, rather than from the nature of the velocity field that
performs the mixing [1,2].

Of particular interest is the nature of the internal inter-
mittency of a passive scalar field. As alluded to above, it is
now known that passive scalars can exhibit internal inter-
mittency when advected by Gaussian (i.e., nonintermittent)
velocity fields [3–6]. Perhaps the most straightforward
measures of internal intermittency of a passive scalar (�)
field are the structure function scaling exponents (�n). The
latter are defined in terms of the structure functions:

hð�r�Þni � h½�ðxÞ � �ðxþ rÞ�ni;
where r is the separation between two points and n is the
structure function order. In the inertial-convective sub-
range, it is observed that hð�r�Þni / r�n for large enough
Reynolds and Péclet numbers. Of particular interest is the
dependence of the inertial-range structure function scaling
exponent (�n) on the structure function order (n).
Kolmogorov-Obukhov-Corrsin (KOC) theory [7–9], which
does not account for internal intermittency, predicts that
�n ¼ n=3. However, it is well known [2] that �n increases
at a rate slower than n=3 due to the effects of internal
intermittency.

The objective of the present work is to determine the
effect of the scalar injection method on the higher-order
passive scalar structure function scaling exponents. KOC

theory predicts that, in the limit of infinite Reynolds num-
ber, small-scale (i.e., inertial and dissipation range) statis-
tics of the passive scalar field should be independent of the
large-scale nature of the scalar field. Though KOC theory
is extraordinarily successful in some respects (e.g., pre-
dicting the behavior of second-order quantities), it has
other shortcomings, such as not accounting for the small-
scale anisotropies of the scalar field in turbulent flows with
mean scalar gradients [2]. The present work was motivated
by that of Gylfason and Warhaft (2004) [10], who mea-
sured both longitudinal and transverse passive scalar struc-
ture functions (of orders 2 though 10) in grid turbulence
with a mean scalar gradient over the Reynolds number
range 150 � R� � 700. They found no dependence of �n

on the orientation of the separation r (i.e., whether it be
measured parallel or perpendicular to the direction of the
mean scalar gradient), nor did they observe evidence for
saturation of �n (i.e., �n tending to a maximum value) up to
n ¼ 10. Lastly, in their compilation of data from previous
research, they noted significant scatter in the values of �n,
which they attributed to either (i) convergence problems at
higher orders, (ii) effects of flow or computational domain
sizes causing clipping of large, rare fluctuations, or
(iii) differences in initial or boundary conditions. The
present work will answer whether the last of these factors
may be responsible for the observed differences in �n

determined by previous researchers. It will do so by mea-
suring �n in two hydrodynamically identical flows, in
which the passive scalar is injected using two different
techniques.
The experiments described herein were conducted in the

85� 122� 274 cm3, low-background turbulence, open-
circuit, suction-type wind tunnel in the Aerodynamics
Laboratory at McGill University. The hydrodynamic
wake was generated by placing a 7.30 cm diameter (D)
circular cylinder at the entrance of the test section. The
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scalar (temperature) field was generated by one of two
methods: either by heating the cylinder or by use of a
‘‘mandoline’’ (introduced in [11]). In the former case, the
cylinder was heated by a 1.5 kW heating element located at
the cylinder’s axis. In the latter case, an array of fine,
parallel, heated wires (the mandoline) was placed down-
stream of, and oriented parallel to, the cylinder.
Mandolines have also been used in [12–14] to study the
passive scalar field in the turbulent wake of a cylinder. The
mandoline used herein was constructed from thirteen 36
AWG (0.127 mm diameter) nichrome (type A) wires,
spaced every 7.6 mm (¼M�), such that the mandoline
width (w) is 91.4 mm. The wires were heated using a
variable dc power supply providing a total power input of
1.2 kW. The mandoline wires are small enough to have a
negligible impact on the velocity field [12]. When in use,
the mandoline was located at a downstream distance of
x�=D ¼ 10. A schematic of the experiment is given in
Fig. 1.

Hot-wire anemometry and cold-wire thermometry were
used to measure the longitudinal velocity and temperature
fields, respectively. The longitudinal velocity component
was measured using a DISA 56C01 constant-temperature
hot-wire anemometer operated at an overheat of 1.8. The
hot-wire sensor was made of 3 �m diameter tungsten wire
with a copper coating. The hot-wire calibration accounted
for the variable temperature of the flow using a modified
King’s Law with temperature-dependent coefficients [15].
The temperature field was measured using a cold-wire
thermometer built at Université Laval (Québec, Canada)
based on a constant-current anemometer circuit [16]. The
cold-wire sensor consisted of a Wollaston wire with a
0:63 �m diameter platinum core operated with a current
of 100 �A. Two types of measurements were made:
(i) simultaneous velocity-temperature measurements con-
sisting of 8:192� 107 samples (¼5000 blocks�
16384 samples per block) of each quantity, and (ii) indi-
vidual temperature measurements consisting of 1:2288�
108 samples (¼7500 blocks� 16384 samples per block).
All data were recorded at frequencies 2–2.5 times the low-
pass filter frequency. For further details on the experimen-
tal method, see [12]. Finally, all measurements were re-
corded at a downstream distance of x=D ¼ 30, as well
being directly downstream of the cylinder axis, and at the

center of the wind tunnel (y=D ¼ 0 and z=D ¼ 0,
respectively).
It is worth remarking that the measurement location is

sufficiently far downstream for the small-scale details of
the temperature’s injection to be ‘‘forgotten.’’ Probability
density functions (PDFs) of the fluctuating temperature, �,
(not shown) indicate that the scalar is well mixed at the
current measurement location—i.e., the PDFs are smooth
and unimodal in both cases. (If the scalar field were not
well mixed, the PDF of � would be bimodal, with a sharp
peak corresponding to T1 and another broader peak cor-
responding to temperature measurements in the poorly
mixed thermal wake.) Furthermore, note that the mean
temperature profiles (not shown) are smooth and quasi-
Gaussian. (See [17] or [12], for example, for typical mean
temperature profiles in thermal wakes generated by means
of a heated cylinder or a mandoline, respectively.)
The flow parameters are summarized in Table I. Figure 2

shows the (nondimensional) power spectra of the velocity
and temperature fields. Note the difference in the scalar
field initial conditions, observed at low wave numbers in
the power spectra of temperature. However, in the inertial
and dissipative ranges, the temperature spectra are virtually
indistinguishable, indicating the validity of KOC theory for
second-order statistics. Furthermore, this observation val-
idates the fact that the scalar field is well mixed at the
measurement location. (Were this not the case, small-scale
features relating to the two different scalar injection
mechanisms would be observed.)

FIG. 1. Schematic of the experiment. The hot- and cold-wire
sensors (not shown) were placed at x=D ¼ 30 and y=D ¼ 0.
Reproduced from [12].

TABLE I. Flow parameters. The upper half of the Table de-
scribes the velocity statistics, whereas the lower half specifies the
temperature statistics. Note that U refers to the instantaneous
longitudinal velocity, u refers to the (instantaneous) longitudinal
velocity fluctuation, and angular brackets denote time averages.
‘ and ‘� are the hydrodynamic and thermal integral length
scales, respectively, " is the dissipation rate of turbulent kinetic
energy, � is the Kolmogorov length scale, and "� is the smearing
(or dissipation) rate of scalar variance. The cylinder diameter
(D) is 73.0 mm, the kinematic viscosity (�) is 15:7�
10�6 m2 s�1, and the thermal diffusivity (�) is 22:2�
10�6 m2 s�1.

U1 ½ms�1� 10.3

ReDf¼ U1D=�g 47 700

hUiy=D¼0 ½ms�1� 8.42

urms�y=D¼0 ½ms�1� 1.01

‘y=D¼0 ½m� 0.132

"y=D¼0f¼ 15�hð@u=@xÞ2ig ½m2 s�3� 7.37

�f¼ ð�3="Þ1=4g ½mm� 0.15

R�f¼ hu2i½15=�"�1=2g 370

Heat. Cyl. Mand.

�rms�y=D¼0 ½K� 0.195 0.164

‘��y=D¼0 ½m� 0.134 0.052

"�y=D¼0f¼ 3�hð@�=@xÞ2ig ½K2 s�1� 0.155 0.158

��f¼ �ð�=�Þ�3=4g ½mm� 0.20
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Figure 3 plots the measured (longitudinal) temperature
structure functions for scalar fields generated using the
heated cylinder and the mandoline. Note that they all
exhibit clear inertial-convective subranges, approximately
one decade in extent. Furthermore, note that the difference
in initial conditions permeates increasingly farther down
the turbulent cascade as the structure function order in-

creases. At second-order, the difference in the structure
functions is effectively imperceptible in the inertial and
dissipation ranges, whereas differences extend into the
dissipation range at eighth order.
We furthermore verify the convergence of the data by

considering PDFs of increments of �. Figure 4 plots
ð�r�ÞnPð�r�Þ for n ¼ 8. The area under the
ð�r�ÞnPð�r�Þ curve is equal to hð�r�Þni. It can therefore
be observed from these curves that the integral is indeed
closed at our highest order because we have recorded
enough data to resolve the tails of the PDFs with sufficient
accuracy.
Given our structure functions, the scaling exponents

were calculated by least-squares fitting a power law to
the inertial-convective subrange of the flow. The latter
was determined from the mixed velocity-temperature
structure functions (not shown), hð�ruÞð�r�Þ2i, in analogy
with the method of [18]. The compensated structure func-
tion hð�ruÞð�r�Þ2i=ð� 4

3 "�rÞ was then plotted [19]. The

two separations at which the compensated mixed structure
function fell to 90% of its peak value were found and
defined as the start and end of the inertial-convective
subrange. Power laws were then fit to the structure function
data between the two aforementioned separations.
The results are tabulated in Table II as well as plotted in

Fig. 5. It is clear from both the table and the figure that the
scaling exponents are notably different. Given that both
flows are hydrodynamically identical, this can only be
attributed to the different thermal injection mechanisms.
Lastly, Fig. 5 plots the present results along with those of

other researchers. It is clear that there is considerable
scatter in the results—an observation consistent with the
hypothesis that �n depends on the scalar field initial or
boundary conditions. Furthermore, note that the scatter in
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FIG. 3. Longitudinal temperature structure functions (of orders
2, 4, 6, and 8), nondimensionalized by Kolmogorov variables.�:
Heated cylinder. þ: Mandoline.
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FIG. 4. ð�r�Þ8 � PDFð�r�Þ for an inertial-convective sub-
range separation of r=� ¼ 65. In the interest of clarity, the
curves have been scaled. �: Heated cylinder (left axis). þ:
Mandoline (right axis).
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FIG. 2. One-dimensional longitudinal velocity (upper curve,
right axis) and temperature spectra (lower curves, left axis),
nondimensionalized by Kolmogorov variables. For the tempera-
ture spectra, the dashed line corresponds to the scalar field
generated by the heated cylinder, whereas the dotted line corre-
sponds to the case using the mandoline. �1 is the longitudinal
wave number.
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the compiled results for the scaling exponents of the ve-
locity field, 	n, is smaller.

Even though the second-order statistics of the scalar
field are experimentally indistinguishable in the inertial
and dissipative ranges, we observe notable differences in
the inertial-convective range scaling exponents (�n) of the
scalar structure functions at higher orders. This conclusion,
though conflicting with KOC theory, is consistent with
other contradictions, such as the persistent skewness of
the scalar derivative (in the direction of a mean scalar
gradient). Nevertheless, though the Reynolds number
herein (as well as in most other experiments) is moderately
high, there remains the possibility that the present results
could derive from the finite Reynolds number of the flow.
However, should this not be a low-Reynolds-number ef-
fect, the implication would be that variations in previous
estimates of �n were attributable to differences in the scalar
field initial conditions and therefore indicative of a lack of

small-scale universality for turbulent passive scalars. In
either case, the present results demonstrate that previous
estimates of �n (all measured or simulated at finite
Reynolds numbers) are sensitive to the scalar field initial
conditions and are therefore not representative of a univer-
sal behavior of turbulent passive scalar fields.
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FIG. 5. Inertial-range scaling exponents for velocity, 	n(upper
curves, left axis), and temperature, �n (lower curves, right axis).
	n–m: Present work. �: [20]. v: [21]. ): [22]. x: [23]. �n–d:
Present work, heated cylinder. j: Present work, mandoline. �:
[24]. �: [25]. h: [13]. þ: [10]. e: [26]. 4: [27].

TABLE II. Inertial-range velocity (	n) and temperature (�n)
structure function scaling exponents. The values listed are aver-
ages obtained from repetitions of the experiment. The error bars
are defined as the maximum deviation between individual ob-
servations and their average.

	n �n

n Heated Cylinder Mandoline

2 0.74 0:63� 0:005 0:62� 0:005
4 1.34 0:96� 0:01 0:94� 0:02
6 1.83 1:19� 0:01 1:12� 0:03
8 2.23 1:39� 0:02 1:23� 0:04
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