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Abstract

Many models that extend the Standard Model Higgs sector predict the existence of at least

one charged Higgs boson, in addition to the neutral Higgs boson expected from the Standard

Model. While many searches have been performed, a charged Higgs boson has not yet been

observed. Using simulated data, the sensitivity of a search for a charged Higgs boson after

the LHC Run 3 was studied. An analysis for a search in the channel pp → H+H− →

(W+γ)(W−γ) → (jjγ)(jjγ) with a charged Higgs with a mass greater than 100 GeV was

developed, and expected upper limits on the production cross-section times branching ratio

of this process, σ(pp→ H+H−)×BR(H± → W±γ)2, were calculated. Limits of 95.1−1.88 fb

were set for charged Higgs bosons with masses in the range 130 − 500 GeV.
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Résumé

Il existe de nombreux modèles théoriques qui prédisent l’existence non seulement du boson

Higgs neutre du Modèle Standard, mais aussi d’au moins un boson Higgs électriquement

chargé. Malgré les recherches déjà accomplies, des traces indiquant l’existence d’un tel

boson Higgs électriquement chargé n’ont pas jusqu’ici été révélées. En utilisant des données

simulées, les perspectives d’observer un boson Higgs chargé, en utilisant les données qui seront

enregistrées durant la période LHC Run 3, ont été étudiées. Une analyse a été développée

afin d’identifier des données compatible avec la réaction pp → H+H− → (W+γ)(W−γ) →

(jjγ)(jjγ) avec un Higgs chargé de masse plus grande que 100 GeV. De plus, des limites

attendues ont été calculées sur la valeure de la section efficace fois le rapport de branchement

de ce processus, σ(pp→ H+H−)× BR(H± → W±γ)2. Des limites entre 95.1− 1.88 fb ont

été obtenues pour des masses du Higgs chargé entre 130 − 500 GeV.
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Chapter 1

Introduction

The question of what matter is made of at the most fundamental scales has captivated

scientists and philosophers for millennia. However all discoveries of subatomic particles have

only occurred in the last 120 years, with particle collider experiments playing seminal roles in

many of these discoveries. Such experiments have come a long way, from Rutherford’s gold

foil experiment discovering the atomic nucleus [1], to more modern and powerful synchrotrons

[2] — which use electromagnetic fields to accelerate and steer particles into high energy

collisions — observing particles that only exist for fractions of a second. Currently, the

largest and most powerful particle collider is the Large Hadron Collider (LHC) [3] at the

European Organization for Nuclear Research (CERN), in Geneva, Switzerland.

In operation since 2008, the LHC collides individual protons at unprecedented energies,

and hosts several detectors that record the results of these collisions. In 2012, two of these

detectors, belonging to the ATLAS [4] and CMS [5] collaborations, were responsible for the

discovery of the long anticipated Higgs boson [6, 7]. The existence of the Higgs boson was

predicted by the Standard Model of particle physics (SM) [8], and its discovery solidified

the SM as the most complete and successful theory of physics on subatomic scales — a

distinction which the SM holds to this day. Indeed, before its discovery the Higgs boson was

the only particle predicted by the SM that had not yet been discovered.

1



1 Introduction 2

Despite the successes of the SM, however, it does not provide a complete account of all

phenomena observed in the universe. For instance, one of the most well known shortcomings

of the SM is that it does not predict or explain the nature of dark matter, a type of matter

much more abundant than the ”regular” matter described by the SM. Insights into the nature

of dark matter – and into several other problems not addressed by the SM – requires looking

beyond the SM. Thus, moving forward, the most pressing question in experimental particle

physics is what, if anything, will be found in particle collider experiments henceforth. From

a theoretical perspective, there are many models extending the SM that may hold the answer

to this question.

A subset of the extensions of the SM addresses its problems by postulating the existence of

more than one Higgs Boson. These extensions take advantage of the fact that the mechanism

by which the Higgs boson emerges in the SM is not unique. The work presented herein

focuses on one common prediction of models with several Higgs bosons: the existence of an

electrically charged Higgs boson. The observation of this particle and measurements of its

properties would have deep implications for the landscape of physics beyond the SM. Many

searches have already been performed for a charged Higgs boson, but none have found any

hints of the existence of such a particle (see Section 2.2 for some examples).

The objective of this work is to study the feasibility of observing a charged Higgs boson

– should one exist – using the LHC multi-purpose detectors, after the LHC Run 3. This

is done for a 4-jet-2-photon final state, produced by the decay of pair-produced charged

Higgs bosons into one photon and one W boson each, and the subsequent hadronic decay

of the W bosons. In addition to being a novel search channel, this final state is interesting

to study because of the capability of detectors to reconstruct all objects produced in the

reaction. To this end, this work develops a technique to search for this process and separate

it from potential background reactions. The sensitivity of the analysis developed to search

for the existence of a charged Higgs boson is quantified in terms of expected limits on the

production cross-section times branching ratio, σ(pp → H+H−) × BR(H± → W±γ)2, for



3

different charged Higgs boson test masses. Such limits represent upper limits on this quantity

in the event that the analysis described herein provides no evidence for a charged Higgs boson

when applied to real data.

The layout of the thesis is as follows. Chapter 2 elaborates on how the Higgs boson arises

in the SM, explores popular extensions to the SM Higgs sector, and presents the model under

study in this work. Details of the generation of simulated signal and background events are

explained in Chapter 3. Chapter 4 is dedicated to an explanation of the detector simulation

and how the generated datasets are processed into the samples that are analyzed. The

analysis technique used is detailed in Chapter 5, along with a discussion of the uncertainties

considered. Results are presented and are interpreted in the context of the Georgi-Machacek

model in Chapter 6. Finally, Chapter 7 presents a summary and outlook of the work.



Chapter 2

The Standard Model and Beyond

The SM [8] is a theory of the most fundamental constituents of the universe and their

interactions. It describes seventeen fundamental particles and three of the fundamental

forces through which they interact: the electromagnetic force, the weak nuclear force, and

the strong force. These seventeen particles can be divided into three categories.

The first category is that of vector bosons, which comprises four of the particles in the

SM. As bosons, their defining property is that they possess integer spin quantum number.

They are termed ”vector” bosons because they all have spin quantum number 1. They are

responsible for mediating the fundamental forces. The vector bosons in the SM are:

• the photon (γ): perhaps the most well-known member of the SM, the photon is re-

sponsible for mediating the electromagnetic interaction.

• the neutral Z boson (Z0): responsible for mediating the weak nuclear force.

• the charged W bosons (W+/−): responsible for mediating the weak nuclear force.

• the gluon (g): responsible for mediating the strong force.

The second category of known elementary particles is that of fermions, comprising twelve

particles in the SM. In contrast to bosons, fermions have half-integer spin quantum number

4
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Generation 1 2 3

leptons
electrons, e− muons, µ− tauons, τ−

electron neutrinos, νe muon neutrinos, νµ tau neutrinos, ντ

quarks
up, u charm, c top, t

down, d strange, s bottom, b

Table 2.1: Fermions of the SM. Fermions in the same row have the same electric charge, with
electron-type leptons having charge (in units of the elementary charge) −1, neutrinos being
neutral, up-type quarks having charge +2/3, and down type quarks having charge −1/3.

— in fact all fermions in the SM have spin 1/2 — and make up matter. Fermions in the

SM are divided into three generations of four fermions each (Table 2.1). Each generation is

further divided into two leptons — fermions that don’t interact via strong force — and two

quarks — fermions that do. The masses of the fermions generally increase as one goes to

the right in a row of Table 2.1. This is referred to as a normal mass hierarchy. It remains

unknown whether the neutrinos obey this hierarchy.

The number of fundamental particles described by the SM nearly doubles if one counts

antimatter particles. All electrically charged particles in the SM have an anti-particle partner

that shares all the same interactions and properties as the ”normal” particle, but has oppo-

site sign electric charge. It remains unknown whether neutrinos have antiparticle partners

distinct from themselves, or are their own antiparticles [9].

The final category is reserved for the Higgs boson, h. Strictly speaking, the Higgs boson

can be categorized with the vector bosons, as they are all bosons with integer spin. However

the Higgs boson is differentiated from the vector bosons since it has spin quantum number

0 (it is a scalar boson). The distinction of the Higgs boson from all other particles in the

SM manifests in another way: it is a boson, so it does not make up matter, yet it does not

mediate any fundamental forces either.

Despite these facts, the existence and properties of the Higgs boson have profound con-

sequences for the SM. In the SM it is responsible for giving mass to the W and Z bosons

and all fermions except neutrinos, and simultaneously allowing for the unification of the

electromagnetic and weak interactions above the electroweak scale [10]. Perhaps its most
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important feature, however, is that its existence prevents the divergence of the WW scatter-

ing amplitude, that would otherwise violate unitarity at energies much higher than the W

mass [11]. To do all of this there must exist at least one Higgs boson, but there is no reason

that several other Higgs bosons cannot exist and contribute to these phenomena as well.

The rest of this section is dedicated to a discussion of the Higgs boson within (Section

2.1) and beyond (Section 2.2) the SM, and of the particular model of a charged Higgs boson

studied in this work (Section 2.3).

2.1 The Standard Model Higgs Sector

The SM assumes the existence of one scalar Higgs field φ in nature [8]. The Higgs field trans-

forms under a subset of the SM symmetries, represented by the product group SU(2)×U(1).

This product group describes the unification of the weak nuclear force and the electromag-

netic force at high energies. At these energies, the four aforementioned weak and electro-

magnetic vector bosons are replaced by four massless vector gauge bosons that correspond

to this product group: W µ
i with i = 1, 2, 3 for SU(2), and Bµ for U(1). It is these bosons

that the Higgs field directly interacts with.

At low energies, the Higgs field exhibits a behaviour that is unique to it in the SM: it

acquires a non-zero vacuum expectation value (vev), denoted by 〈φ〉 = v. This means that

the numerical value of the field φ in the configuration that minimizes its potential energy is

non-zero, and results in the breaking of the SU(2) × U(1) symmetry of the SM [10]. The

breaking of this symmetry due to the non-zero vev of the Higgs field is called spontaneous

symmetry breaking. Perturbations around the minimum energy configuration are identified

with the Higgs boson, h.

The non-zero vev of the Higgs field causes the SU(2)×U(1) gauge bosons to be rearranged
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into the massive W and Z bosons, and the massless photon [10]:

W±
µ =

W1,µ ∓ iW2,µ√
2

, (2.1)

Zµ = z1W3,µ − z2Bµ, (2.2)

γµ = z2W3,µ + z1Bµ, (2.3)

where z1,2 are constants. The generation of masses through spontaneous symmetry breaking

is known as the Higgs mechanism. The masslessness of the photon indicates that the gauge

group representing electromagnetism — U(1)em — is a symmetry of the SM after the Higgs

field acquires a non-zero vev [8]. All interactions of the SM must therefore exhibit this U(1)em

symmetry, which manifests itself in the conservation of electric charge before and after any

reaction.

2.2 Extensions of the Standard Model Higgs Sector

Though the SM has proven to be a remarkably accurate theory, it is well known that it does

not describe every subatomic phenomenon observed in nature. Extensions of the SM are

developped with the intention of solving one or more of these shortcomings, by introducing

new particles and allowing them to interact with SM particles. The subset of SM extensions

that enlarges the SM Higgs sector does so by including new scalar fields that acquire non-zero

vevs and thus partake in spontaneous symmetry breaking.

Two of the more studied extensions of the Higgs sector are the Georgi-Machacek (GM)

model [12] and the Two-Higgs-Doublet Model (2HDM) [13]. The former is motivated by the

fact that the spontaneous symmetry breaking mechanism in the SM is the simplest possible

scenario. The GM model aims to provide an alternative that is consistent with observations,

in order to better understand different possible spontaneous symmetry breaking mechanism.

The 2HDM addresses the generation of neutrino masses while simultaneously predicting the
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existence of a particle that could contribute to the make up of dark matter.

Both of these models add a second scalar field χ to the SM, and are different in the

exact manner in which χ transforms under SU(2). In the SM, φ can be thought of as having

two components which transform into one another under an SU(2) transformation — it is

an SU(2) doublet. The field χ of the 2HDM is also a SU(2) doublet (hence the name of

the model), whereas the field χ of the GM model has three components that transform into

one another under an SU(2) transformation — it is an SU(2) triplet. They differ from one

another even more in the interactions they allow between the field χ and the SM particles:

the GM model allows χ to interact with all particles of the SM that φ interacts with, whereas

different variations of the 2HDM allow different interactions between χ and SM particles.

As a result of spontaneous symmetry breaking, these models predict the existence of a

scalar particle consistent with the Higgs boson of the SM and several other scalar particles.

Most notably, both models produce charged scalar particles — also referred to as charged

Higgs bosons. Other models that produce scalar particles in addition to the SM Higgs boson,

such as supersymmetric extensions to the SM [14], also predict the existence of charged Higgs

bosons. Results from searches for a charged Higgs boson can therefore be reinterpreted in

the context of several models, and can be used to constrain the parameter space of many

of these models. There have been several such searches, and in the absence of evidence for

the existence of a charged Higgs boson, both model-dependent and model-independent limits

have been set on its mass and cross-section times branching ratio for various processes. Some

existing experimental limits include

• the lower bound of 78.6 GeV on the mass of charged Higgs boson consistent with the

2HDM by LEP [15],

• a model independent limit on σVBF(H±) × BR(H± → W±Z) of 573 − 36 fb in the

mass range 200− 2000 GeV by CMS [16],

• a model independent limit on σ(pp → [b]t̄H±) × BR(H± → τν) of 1.9 pb to 15 fb in
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the mass range 200− 2000 GeV by ATLAS [17].

With much of the focus in particle physics on phenomena beyond the SM, and the

fact that an extended Higgs sector offers plausible descriptions for such phenomena, it is

worthwhile to develop analyses sensitive to an extended Higgs sector. Furthermore a charged

Higgs boson could provide evidence for — and have the potential to discriminate between —

some of the most prominent extensions of the SM Higgs sector. Understanding what kind of

signatures are characteristic of a charged Higgs boson and the sensitivity of current detectors

to these signatures can therefore help motivate specific searches for new physics, as well as

lay the ground work for analyses used by these searches.

2.3 The Model: A Generic Charged Higgs Boson

Experiments are agnostic to the specifics of spontaneous symmetry breaking; all that can

be observed in the laboratory are the decays of any Higgs boson, regardless of how they

emerge. This fact allows for phenomenological studies — such as this one — to be performed

without reference to a complete model of spontaneous symmetry breaking, and as a result

be applicable to many models extending the SM Higgs sector. In this section the effective

theory that enables the study presented herein is introduced, considering only experimentally

observable quantities without making reference to any underlying theory of spontaneous

symmetry breaking.

The decay of the charged Higgs that is under study — and therefore that needs to be

modelled — is described symbolically as

H± → W±γ, (2.4)

where the charged scalar has been represented by a complex field H+ (H+∗ = H−). The
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effective Lagrangian describing this process is

LH+ = DµH+D∗µH
− −m2

H±H+H− − Lint, (2.5)

Lint = gHWγH
+W−

µνF
µν + h.c., Dµ = ∂µ + ieAµ + igZZ

µ,

where mH± is the mass of the charged scalar, Zµ is the Z-boson field, gHWγ is an effective

coupling constant, W−
µν is the W−-boson field strength, Fµν is the electromagnetic field

strength, Aµ is the photon field, e is the fundamental charge, and gZ is a coupling constant.

The field strengths are given by W−
µν ≡ DA

µW
−
ν − DA

νW
−
µ and Fµν ≡ ∂µAν − ∂νAµ, where

DA
µ ≡ ∂µ − ieAµ.

This Lagrangian is largely model-independent. The couplings of the charged Higgs to the

photon must be present for a charged scalar to preserve the U(1)em electromagnetic gauge

symmetry of the SM — if they weren’t present the scalar could not be charged. Moreover

any pair production involving a photon has an identical pair production mode where the

Z-boson replaces the photon due to the definitions of the Z-boson and the photons in terms

of the SU(2) × U(1) gauge bosons (Equations 2.2 and 2.3). Furthermore, the coupling of

the charged Higgs to a photon and a W boson is also generic: even in a model (such as

the GM model [18]) where there are no tree level couplings between a charged Higgs and

these two bosons, such an interaction can be generated at loop level and the model presented

herein would represent the effective coupling of such a theory. Figure 2.1 shows the Feynman

diagram that describes the signal process.

The only model-dependence in this Lagrangian arises from the values of the couplings

gZ and gHWγ ; however, since the sensitivity of the search presented in this manuscript is

quantified in terms of limits on the production cross-section times branching fraction of the

process of interest, the precise values of these couplings are unimportant.

Since the γH+H− coupling is fixed by gauge invariance, the value of gZ is the only

free parameter, affecting the fraction of H+H− pairs that would be produced by an s-
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Figure 2.1: Feynman diagram for the process pp→ H+H− → W+γW−γ. The blobs at the
H±W∓γ vertices indicate that the decay of the charged Higgs is described by an effective
Lagrangian. In a full model the blob may be replaced by a vertex or a loop.

channel photon to those produced by an s-channel Z-boson. In the V H+H− interaction

(V = γ, Z) the Z-boson and the photon differ from one another only by their masses; the

Z-boson is massive whereas the photon is not. In the computation of cross-sections for

pp → V ∗ → H+H−, where ∗ means V is virtual, this difference manifests itself in the

propagator PV of V , as shown schematically in Equation 2.6.

PV ∼
1

p2 −m2
V

. (2.6)

For a mass mH± ≥ mZ , energy conservation at the V H+H− vertex requires p2 ≥ 4m2
H± .

The width of the Z-boson is only approximately 1/36th of its mass [19], so requiring p2 ≥

4m2
H± ' 4m2

Z ensures that p2 is very far away from the m2
Z pole. It is therefore expected

that the mediator should have little to no effect on decay kinematics.

By this reasoning, the pair-production kinematics of the charged Higgs will be influenced

by the mass of the virtual boson mediating the pair-production more strongly for lower

mH± . Such an influence would manifest itself in an excess of events in the di-Higgs invariant
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mass distribution close to the mass of the virtual boson. To verify the dependence of the

pair-production kinematics on the type of virtual boson exchange, the di-Higgs invariant

mass mH+H− is examined for decays involving only a photon and decays involving only a

Z boson as the virtual boson. This is done for the lightest mass analyzed, which, as will

be justified in Section 5, is mH± = 130 GeV. Charged Higgs four-vectors are pair-produced

using MadGraph [20] as described in Section 3.1. The di-Higgs invariant mass distributions

are shown in Figure 2.2(a) for mH± = 130 GeV, with Figure 2.2(b) showing the distributions

obtained assuming a higher charged Higgs mass to demonstrate any dependence on mH± .

(a) (b)

Figure 2.2: The di-Higgs invariant mass for (a) mH± = 130 GeV and (b) mH± = 200 GeV
with a photon and, separately, a Z boson mediating charged Higgs boson pair production.

This figure shows a slight difference in the distributions at low masses, where the charged

Higgs pair production mediated by Z bosons exhibit an excess over the production mediated

by photons. In the case where both photons and Z bosons are allowed to mediate the

production, the distribution interpolates between the two shown, with the exact distribution

depending on the relative values of e and gZ . Since the difference in kinematics in Figure

2.2(a) is small and disappears with increasing mH± , the exact value of gZ is interpreted as

being unimportant for the purpose of this work.

In the case of the coupling constant gγHW , its value only affects the charged Higgs decay

rate by scaling its value, but the kinematic distributions of the decay products are fixed by
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the kinematics of the charged Higgs. In order to set limits on the production cross-section

times branching ratio only the kinematic distributions are important, so the value of this

coupling constant is also irrelevant to the analysis.

It must be verified that the effective H±W∓γ coupling has the relevant symmetries of the

SM. The full symmetry group of the SM is SU(3)×SU(2)×U(1) [8] before symmetry break-

ing, with SU(3) representing the strong force. As described above, spontaneous symmetry

breaking reduces this group to SU(3) × U(1)em. Therefore this effective coupling must be

invariant under SU(3) and U(1)em. Furthermore, a quantum field theory must incorporate

special relativity — done by requiring Lorentz invariance of the theory — and must exhibit

Hermiticity — in order for probabilities derived from the theory to add to 1 [8].

• SU(3) gauge invariance: The electromagnetic field strength tensor F µν and the W

boson field strength tensor W µν are invariant under SU(3) since the electromagnetic

and weak vector bosons do not interact via the strong force. Similarly, since the charged

Higgs is part of a model of spontaneous symmetry breaking, it can only interact via the

electromagnetic and weak forces. As all fields in the H±W∓γ coupling are invariant

under SU(3), the coupling itself is invariant as well.

• U(1)em gauge invariance: The electromagnetic field strength tensor F µν is gauge invari-

ant by definition. Furthermore, since H+ and W− have opposite charges under U(1)em,

they transform oppositely under a U(1)em gauge transformation: if H+ → eiα(x) then

W−
µ → e−iα(x). The only subtlety arises from the W−-boson field strength. Under a

local U(1)em gauge transformation, W−
µν transforms as

W−
µν = DA

µW
−
ν −DA

νW
−
µ (2.7)

→ [∂µ − ieAµ + i∂µα(x)] (e−iα(x)W−
ν ) (2.8)

− [∂ν − ieAν + i∂να(x)] (e−iα(x)W−
µ )

= e−iα(x)∂µW
−
ν − ie−iα(x)Wν∂µα(x)− ieAµe−iα(x)W−

ν + i∂µα(x)e−iα(x)W−
ν (2.9)
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− e−iα(x)∂νW
−
µ + ie−iα(x)Wµ∂να(x) + ieAνe

−iα(x)W−
µ − i∂να(x)e−iα(x)W−

µ

= e−iα(x)W−
µν , (2.10)

so the combination H+W−
µν is also gauge invariant. Therefore, the effective coupling is

gauge invariant under the electromagnetic gauge group.

• Lorentz invariance: All Lorentz indices appearing in the H±W∓γ interaction term are

contracted, so the interaction is Lorentz invariant.

• Hermiticity: Every term in the Lagrangian 2.5 is either Hermitian or has its Hermitian

conjugate explicitly included. The Lagrangian is therefore Hermitian.

The effective field theory described by Equation 2.5 does not fully describe the charged

Higgs under study: in order to encode the total decay width of the charged Higgs, ΓH± , all

vertices involving the Higgs must be present in the Lagrangian. Doing so entails writing a

complete model that includes the charged Higgs and is not the aim of the work. Thus the

value of ΓH± required for the simulation of data is treated as an external input parameter, and

is not calculated based on all possible charged Higgs interactions according to a particular

model.

There are two experimentally relevant regions to consider; either ΓH± is larger or smaller

than the detector resolution. Each region requires a specifically tailored analysis technique.

This work focuses on the case where ΓH± is smaller than the detector resolution. In this

region the value of ΓH± does not affect the signal in the detector, thus allowing the results

obtained to be extended to any model in which a charged Higgs has a total decay width

smaller than the detector resolution. The detector energy resolutions, as quantified in Section

A.2, are dominated by the jet energy resolution. For energies around the charged Higgs

masses analyzed, this resolution is on the order of 10’s of GeV. Therefore, for the simulation

of the process of interest, the value of ΓH± is chosen to be 1 GeV.



Chapter 3

Data Simulation

The goal of this work is to lay the foundation for an analysis strategy to search for a charged

Higgs boson in proton-proton collisions, assuming an integrated data luminosity of 300 fb−1

[21]. In the context of the LHC, this quantity of data is forseen to be available after the

LHC Run 3, when protons will be collided at a center of mass energy of 14 TeV. The work

presented herein is based on simulated data samples of signal and background events, with

simulated signal events corresponding to the reaction described in Section 3.2.

This section provides a description of the software tools and specifications used to gener-

ate signal and background event samples. It comprises an explanation of the event simulation

chain in Section 3.1, followed by a definition of the signal under study in Section 3.2, and

concluded with a discussion of background considerations in Section 3.3.

3.1 Simulation Chain

Five programs are used in the generation of signal and background samples. The first of

these is FeynRules [22], used to define the extension to the SM described above. FeynRules

outputs the model in a Universal FeynRules Output (UFO) [23] format, that is read by

matrix-element (ME) generators for the simulation of events. As all of the background

15



3 Data Simulation 16

processes occur in the SM and UFO files for the SM are readily available, it is only necessary

to generate UFO files for the signal.

The aforementioned UFO file is then used by MadGraph [20] to generate kinematics for

signal events and all expected dominant SM background processes, with the exception of the

QCD background (defined in the caption of Table 3.1), which is generated using Sherpa [24].

MadGraph and Sherpa are ME generators, and events generated by them are referred to as

truth-level events. At this level, all decays and scatterings conserve momentum and energy

exactly.

Due to the fact that protons are composite particles, the collision of two protons is

actually a collision of its constituents: quarks and gluons. Of utmost importance in the

simulation of proton-proton collisions is the ability to describe which particles within the

protons will collide and with what fractions of the proton’s total energy. This information

cannot be calculated using perturbation theory, and is instead encoded in the empirically

determined parton distribution function (PDF). ME generators must make use of a PDF

set to produce physically plausible results. In this work, signal and background events are

generated from proton-proton collisions with the NNPDF23_lo_as_0130_qed [25, 26] PDF.

It is possible, and is in fact often the case, that the outgoing particles of a particular

SM process are unstable. This instability can mean one of two things, or both together:

among the outgoing particles there may be one or more particles that decay spontaneously

into lighter SM particles, or one or more strongly interacting particles. In the first case,

such particles will decay until there are no longer any spontaneously decaying particles in

the final state.

Instability in the second case is slightly more complicated. The strong force is confining,

meaning that particles that interact through it cannot exist independently, but must instead

always appear in bound states that are uncharged under the SU(3) group that represents the

strong force — in other words, they must appear in colorless bound states. At the LHC, how-

ever, the energies are too high for stable bound states (called hadrons) to form immediately
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after collisions. Instead, quarks and gluons produced in a hard-scattering interaction be-

tween two protons undergo so-called parton showering and hadronization processes, through

which large numbers of additional quarks and gluons are produced along the trajectories

of the original quarks and gluons [27]. This continues until there is sufficiently low kinetic

energy among the quarks and gluons to allow for hadrons to form. Phenomenologically, this

results in collimated jets of hadrons, which is what is observed in detectors.

MadGraph only generates event kinematics and estimates cross-sections and decay rates,

but it does not decay or hadronize outgoing truth-level particles. Unstable particle de-

cay, parton showers, and hadronization for samples generated with MadGraph are performed

using Pythia8 [28, 29]. Sherpa is able to decay outgoing particles and simulate parton show-

ers and hadronization processes as well as generate truth-level events, so simulated events

contributing to the QCD background include outgoing particle decay, parton showers, and

hadronization using Sherpa.

The final step in the simulation of event samples is the detector simulation. DELPHES

[30] provides fast detector simulations intended for phenomenological studies, and is used

to estimate the detector response to signal and background processes. Events produced by

the detector simulation are referred to as detector-level or reconstructed events. In contrast

to truth-level events, detector-level kinematics only approximately conserve energy and mo-

mentum. This is due to uncertainties in the reconstructed objects’ four-momenta as a result

of resolution effects of a real detector (see Section 4.2).

A final phenomenon that must be considered in the simulation of data samples is the

so-called pileup. At the LHC, proton bunches cross one another in the detectors millions of

times per second, with several tens of low-energy (soft) interactions occurring per proton

bunch crossing that are not head-on (hard) collisions. The presence of these simultaneous soft

interactions results in additional low-energy particles being detected. These extra particles

that do not originate from a hard-scatter event are what is referred to as pileup. At the

LHC, the amount of pileup is quantified by the average number of interactions per bunch
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crossing 〈µ〉. Pileup must be incorporated in the generation of simulated data samples for

an accurate simulation of proton-proton collisions at the LHC.

There are two steps necessary for the inclusion of pileup effects in the data simulation

chain. The first is to generate the physical events that cause the pileup. These are called

minimum bias events, referring to the fact that they only pass triggers — sets of conditions

for the recording of an event, determined by a combination of the sensitivity of the detectors,

and kinematic requirements enforced by reconstruction software — with the least stringent

criteria for selection, and hence triggers that produce the least biased sample of the physics

processes occurring in a bunch crossing. This first step is done using Pythia8. Next, these

minimum bias events must be mixed with the simulated signal and background event samples.

This was done by DELPHES as part of the detector response simulation.

Pileup can significantly alter the kinematic distributions of processes under study, espe-

cially when the average number of interactions per bunch crossing is as high as that expected

at the LHC Run 3. Therefore it is extremely important to apply event reconstruction tech-

niques in the analysis of the data that attempt to subtract the contribution of pileup to a

data sample. A discussion of the techniques employed to this end is saved until Chapter 4,

when the detector simulation is discussed in greater detail.

A center-of-mass energy of 14 TeV, with the energy evenly divided between both protons,

is assumed for the generation of all signal and background samples, with an average number

of interactions per bunch crossing of 〈µ〉 = 140 — these will be the conditions at the LHC

Run 3.

3.2 Signal

The signal process considered in this work is the pair-production of charged Higgs bosons,

decaying as in Equation 2.4, with the W bosons forced to decay hadronically. Therefore, the
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full process as generated at truth-level is

pp→ H+H− → (W+γ)(W−γ)→ (jjγ)(jjγ). (3.1)

This reaction is simulated for charged Higgs masses from 100 GeV to 250 GeV in increments

of 10 GeV, and from 300 GeV to 500 GeV in increments of 50 GeV. A total of 1.2 million

events are generated and analyzed for each signal test mass.

3.3 Background

Two categories of backgrounds are simulated. The first is the Standard Model background

category, comprising SM processes that can reproduce the final state of the signal process of

interest. Second, the fake signal background, in which physics objects are misidentified upon

reconstruction, must be considered.

3.3.1 Standard Model Backgrounds

Several SM processes resulting in the same final state particles as those from the process of

interest are considered as SM background processes. The full list of processes considered,

along with their cross-sections, is given in Table 3.1. The cross-sections listed in this table

are the estimates calculated by the ME generator used to simulate the events. Figure 3.1

shows an example Feynman diagram for each of the two types of background processes with

the largest cross-sections. While only two strongly interacting particles are depicted in these

diagrams, additional quarks and gluons can be produced at the particle shower stage. This

leads to the possible reconstruction of four or more jets in the event, making the final state

indistinguishable from that of the signal process.

The dominant background process will be the one that is observed most frequently in

an analysis of proton-proton collisions. While the cross-sections determine which process



3 Data Simulation 20

Process Cross-section (fb)

pp→≥ 2j + 2γ 1.61× 105

pp→ ggh 8.68
pp→ bb̄h 1.51
pp→ W±h 1.19
pp→ W+W−γγ 9.31× 10−1

pp→ Zh 6.47× 10−1

pp→ tt̄h→ W+bW−b̄h 2.87× 10−1

Process Cross-section (fb)

pp→ W±Zγγ 1.94× 10−1

pp→ ZZγγ 8.55× 10−2

pp→ W+W−h 5.93× 10−3

pp→ hh→ bb̄h 5.24× 10−3

pp→ W±Zh 2.42× 10−3

pp→ ZZh 1.73× 10−3

Table 3.1: All SM background processes considered in order of decreasing cross-section.
All weak gauge bosons are foreced to decay hadronically, and, unless explicitly stated, all
Higgs bosons are forced to decay to two photons. The cross-section for the first process is
calculated for matrix-element processes involving at least 2, and up to 5 jets (j). All further
jets are generated at the particle shower and hadronization stage of the event generation.
Events generated in the first process make up to so-called QCD background since all jets are
produced from QCD processes.

would occur most frequently purely from a theoretical standpoint, identifying the dominant

background requires a parameterization of the experimental likelihood that each background

would be observed when it occurs. Combining the theoretical likelihood for the occurrence

of a background process with the experimental efficiency of observation, ε, the dominant

background will be the one with the largest effective cross-section σeff = σε.

As σ is fixed by the SM, mitigating this type of background entails minimizing ε. The

methods applied to this end are discussed in Section 5.1.2.

A total of 1.2 million events are generated and analyzed for each background process

listed in Table 3.1.

3.3.2 Fake Signal Background

Particles produced in proton-proton collisions can be misidentified as the result of several

effects, such as detector imperfections, the granular nature of the information collected by a

typical detector, and limitations of the algorithms used to identify particles by interpreting

energy depositions. Of particular relevance to this work is the probability that a jet is

misidentified as a photon. It is assumed that this probability is 10−3 — a conservative
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Figure 3.1: Example Feynman diagrams for the two types of background processes with the
largest cross-section, the QCD background (left) and pp→ ggh→ ggγγ (right).

estimate approximating the fake rate observed by ATLAS with loose photon identification

requirements [31]. DELPHES is thus configured to misidentify 1 jet of every 1000 as a photon.

This effect is incorporated in the generation of all signal and background samples.



Chapter 4

Detector Simulation

In this chapter, the detector simulation performed by DELPHES is discussed in detail. In

Section 4.1, the coordinates used to map the detector and to parametrize particle four-

momenta are introduced, along with a breakdown of the different components of the detector.

The remainder of the chapter is dedicated to a description of how events are reconstructed:

Section 4.2 touches on the simulation of detector resolution effects, Section 4.3 outlines the

algorithms used to reconstruct jets and photons from energy depositions in the detector,

and finally Section 4.4 details the methods through which the pileup contamination of the

simulated samples is estimated, and how this contamination is mitigated.

4.1 Geometry of the Detector

As particle detectors used in collider experiments typically have a cylindrical geometry, it

is useful to parametrize four-vectors of physics object in terms of cylindrical coordinates.

Suppose the proton beam lies along the z-axis. The following variables are used to describe

the trajectory of a physics object in the detector:

• pT , the transverse momentum: The component of the momentum orthogonal to the

22
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beam axis,

p2
T = p2

x + p2
y. (4.1)

• η, the pseudorapidity: The angular separation of a physics object from the direction

orthogonal to the beam axis. It is defined as

η = tanh−1

(
pz
|~p|

)
. (4.2)

The value η = 0 corresponds to a physics object with momentum orthogonal to the

beam axis, whereas η →∞ corresponds to one parallel to the beam axis (Figure 4.1).

The pseudorapidity is used instead of the polar angle θ because, in the limit where

the momentum of a particle is much larger than its mass — an approximation which

is reasonable at LHC energies — the pseudorapidity transforms very simply under

Lorentz boosts: it changes by an additive constant [32]. This implies that differences

in η are Lorentz invariant, a useful property since the boosts along the beam axis of

the partons undergoing the hard-scatter are unknown.

• φ, the azimuthal angle. φ lies in the range [0, 2π) to cover the entire cylinder.

DELPHES simulates the response of an ideal detector — one with no gaps in its coverage,

and no dead material. It comprises four subdetectors intended to measure the four-momenta

of different types of particles. Starting with the subdetector closest to the beam and moving

outward, these are (Figure 4.2)

• the tracker, where charged particles deposit energy in hits along their trajectory. From

the hits in the tracker, tracks are reconstructed which map the trajectory of the charged

particle. The tracker is simulated to cover the pseusorapidity range |η|< 2.5. The

DELPHES simulation allows the user to define a track reconstruction efficiency for dif-

ferent species of charged particles. The only charged particles relevant to the signal
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Figure 4.1: The direction of motion of an object starting at the origin with the indicated
value of η. Here, the T axis represents any direction transverse to the beam.

|η|≤ 1.5 1.5 < |η|≤ 2.5 |η|> 2.5

pT < 0.1 GeV 0 0 0
0.1 GeV < pT < 1 GeV 0.7 0.6 0

pT > 1 GeV 0.95 0.85 0

Table 4.1: The charged hadron tracking efficiency used in the DELPHES simulation, as a
function of both η and pT .

process are charged hadrons, whose track reconstruction efficiency is the DELPHES de-

fault, described in Table 4.1.

• the barrel calorimeter, which is further divided into an electromagnetic calorimeter

(ECAL) and a hadronic calorimeter (HCAL). In the DELPHES idealization of a detec-

tor, electromagnetic objects such as photons, electrons and positrons are simulated

to deposit all of their energy in the ECAL, and hadrons deposit all of their energy

in the HCAL. In a real detector, there is some energy deposition by electromagnetic

(hadronic) objects in the HCAL (ECAL). Both the ECAL and HCAL in the DELPHES

simulation are assumed to be segmented into η× φ towers of size 0.1× 0.175, covering

the pseudorapidity range |η|< 2.5.
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• the end-cap calorimeter, where particles produced at large |η| (2.5 < |η|< 5) deposit

their energy. The end-cap calorimeter is distinguished from the barrel calorimeter in

its η × φ segmentation of 0.2× 0.35.

• the muon system, where the trajectory of muons is measured. It covers the pseudora-

pidity range |η|< 2.5.

(a) (b)

Figure 4.2: The DELPHES detector, visualized by the DELPHES event display. The tracker is
shown in yellow, the calorimeter (including both the barrel and end-cap calorimeters) in red
and purple, and the muon system in blue. The conical cut-out from the tracker depicts the
|η|= 2.5 boundary of the tracker.

As neither the process of interest nor the backgrounds involved muons, only the tracker

and the calorimeters are relevant to this work.

The DELPHES simulation reconstructs events by first generating measurements in each of

the different detector subsystems based on the truth-level event information. The informa-

tion recorded in the different subdetectors is then processed as described in the following

sections.
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4.2 Four-Momentum Smearing

One of the first steps in the DELPHES detector simulation is the slight alteration of truth-level

four-vectors – referred to as smearing – to simulate uncertainties in object reconstruction due

to detector resolutions. The amount of truth-level four-vector smearing is chosen to closely

simulate the spatial and energy resolutions achievable in a typical collider experiment, and

depends on the subdetectors in which a truth-level particle deposits energy. In DELPHES a

kinematic quantity x is smeared according to

xsmeared = xtruth + δx, (4.3)

where δx is a Gaussian distributed random variable with mean of 0 and width of σx. The

width σx is referred to as the resolution of x, and is the parameter of interest when quantifying

the smearing.

The knowledge of the experimental resolutions is necessary in order to perform the kine-

matic fit described in Section 5.2. A detailed account of the quantification of the experimental

resolutions is given in Appendix A.

4.3 Object Reconstruction

DELPHES uses a simplified particle flow algorithm, which combines tracker and calorimeter

information, to reconstruct the four-momenta of physics objects. The algorithm outputs

particle flow tracks and particle flow towers which are determined as follows.

First, every track that is reconstructed is also stored as a particle flow track, originating

from a charged particle. The particle flow tracks are then used to define the particle flow

towers.

Consider a given calorimeter tower. Let Ee and Eh be the total energy measured in the

ECAL and HCAL, respectively, for this particular calorimeter tower. Define Ee,track to be
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the sum of the energies of all charged particles that deposited energy in the ECAL at the

given tower, and that had their tracks reconstructed. Define Eh,track to be the HCAL analog.

Finally, define

Etower = max(0,∆Ee) + max(0,∆Eh), (4.4)

∆Ee/h = Ee/h − Ee/h,track. (4.5)

This quantity is calculated for each calorimeter tower, with Ee/h,track = 0 if there are no

tracks pointing to a particular tower. A particle flow tower with energy Etower is created

whenever Etower > 0. The collection of particle flow towers and tracks is used to reconstruct

all physics objects.

4.3.1 Photon Reconstruction

Photons are reconstructed from electromagnetic particle flow towers that have no associated

tracks pointing to them, provided they satisfied an isolation criterion:

For a photon γi the isolation variable is defined as

I(γi) =
1

pT (γi)

∑
i 6=j

∆R(i,j)<∆Rmax

pT (j)>pT,min

pT (γj), (4.6)

where

∆R(i, j) =
√

∆η2(i, j) + ∆φ2(i, j), (4.7)

and ∆Rmax and pT,min are taken to be the DELPHES defaults of 0.5 and 0.5 GeV respectively.

Photons with I(γi) > 0.12, which is also the DELPHES default, are rejected.

This isolation requirement ensures that reconstructed photons do not originate from a

hadronization process, in which case they would be expected to have nearby activity in the
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detector.

4.3.2 Jet Clustering

Because of the composite nature of jets, their signature in a detector is much less compact

than, say, a photon’s. Furthermore, when a detector measures the deposition of several jets

in close proximity, it can be difficult to tell where the signature of one jet ends and where

another begins. This task, and the reconstruction of jets in general, is left to so-called jet

algorithms, which cluster track and tower information into jets.

The anti-kt [33] jet algorithm is used to cluster the particle flow tracks and towers into

jets. This algorithm falls into a category of jet algorithms known as sequential clustering

algorithms, which define jets by iterated reference to a metric, quantifying the distance

between particles or pseudojets — objects composed of multiple particles, created before the

end of the algorithm. The algorithm is the same among all sequential clustering algorithms,

with the only difference between them being the metric used. Given a specific metric d, the

general sequential clustering algorithm is as follows [33]:

1. Beginning with input object i in a set, calculate the distance d(i, j) between i and every

other input object j in the set. Calculate furthermore the distance d(i, B) between

input object i and the beam line.

2. Determine min[d(i, B),minj d(i, j)].

3. If min[d(i, B),minj d(i, j)] = d(i, B), promote object i to be a jet and remove it from

the set of input objects. If min[d(i, B),minj d(i, j)] = minj d(i, j) = d(i, k) for some

k, combine input objects i and k into a pseudojet by adding their four-momenta, and

replace objects i and k with the pseudojet in the set of input objects.

4. Repeat until there are no input objects or pseudojets remaining in the set.
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In the anti-kt algorithm the distance metric used is

d(i, j) ≡ min

(
1

p2
T,i

,
1

p2
T,j

)
∆R2(i, j)

R2
, diB ≡

1

p2
T,i

, (4.8)

where R is called the radius parameter which sets the scale for the size of the jets in η − φ

space. At the end of the algorithm, jets are cones with radii R centered at the sum of the

four-momenta contained in the jet. The value R = 0.4 is used for this work, chosen to

minimize overlap between distinct objects while simultaneously maximizing the number of

particles belonging to a jet that are included in the reconstructed jet.

The anti-kT algorithm exhibits the important quality of infrared safety [33]. During

hadronization it is common that quarks emit low energy (∼ 1 GeV) gluons. Scattering

amplitudes that describe this process have low-energy, or infrared (IR), divergences that

make it a non-perturbative process; it is therefore desirable to work with observables that

are insensitive to such a common yet difficult process to describe [34]. As high-momentum

objects produce smaller values for the metric in Equation 4.8, these objects are clustered

together first. Therefore, the summing of object four-vectors by this jet algorithm ensures

that low energy objects do not have a significant effect on the reconstructed jet four-vectors.

4.4 Pileup Mitigation

Large amounts of pileup during LHC runs distort kinematic distributions and renders more

difficult the measurements of the four-momenta of particles from the hard-scatter, due to

the production and detection of many secondary low-energy particles that are not of inter-

est. To mitigate the impact of pileup on the final reconstructed event, special algorithms

are employed on an event-by-event basis. In the DELPHES detector simulation and event

reconstruction, the pileup mitigation algorithm consists of two techniques.

The first technique reduces pileup due to charged particles for which a track has been
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reconstructed. In the DELPHES simulation the hard-scatter always occurs at the geometrical

center of the detector (the location of a scatter is referred to as a vertex ). By contrast, as

is the case in a real experiment, interactions producing pileup occur over a spatial extend

around the hard-scatter event. This information can be used to identify tracks originating

from pileup. When a track is reconstructed, the vertex from which the track originated

can also be determined. If this vertex is further from the location of the hard-scatter than

the resolution with which the hard-scatter vertex can be determined, the track is assumed

to originate from pileup and is removed from the list of tracks considered for further anal-

ysis. The resolution used for this study is 100 microns, and is typical of current collider

experiments [35].

The second technique mitigates the pileup contribution from neutral particles, as well

as that from charged particles with no reconstructed tracks. This component of the pileup

causes an overall increase in the energy of reconstructed jets because it gets clustered into

the jets. To account for this, the component of a jet’s energy that originates from pileup is

estimated and subtracted from the jet energy. This is done by first calculating the jet area,

which parameterizes the susceptibility of a jet to pileup contamination.

Once particle flow towers and tracks are clustered into jets, the jet area is computed for

each jet using the active area algorithm [36]. After jets have been clustered, this algorithm

adds a large number of infinitesimal pT objects, called ghosts, to the collection of stable

particles before jet clustering, randomly and densely in the η − φ plane. Jets are then

clustered once more with the new collection of stable particles plus the set of ghosts, {gi}.

Thanks to the IR safety of the anti-kt algorithm the addition of infinitely soft objects does

not significantly alter the four-momenta of the reconstructed jets (indeed this area algorithm

is only compatible with IR safe jet algorithms). Given the number density of ghosts in the

η − φ plane, νg, the area of a jet j according to the specific distribution of ghosts, {gi}, is

A(j|{gi}) ≡
Ng(j)

νg
. (4.9)
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where Ng(j) is the number of ghosts clustered into j.

This definition of the jet area depends on the specific distribution of ghosts. Since the

distribution is generated randomly, this area need not be the same if the procedure is carried

out twice. To make this area more robust under the selection of a new set of ghosts, this area

is averaged over a large variety of ghost distributions, and the limit of large ghost number

density is taken:

A(j) ≡ lim
νg→∞

〈A(j|{gi})〉g. (4.10)

This is the scalar active area. It is extended to the four-vector active area Aµ(j) by defining

Aµ(j|{gi}) ≡
1

νg〈gT 〉
∑
i

gi,µ, (4.11)

where the sum is over all ghosts within j and 〈gT 〉 =
∑

i⊂j gi,T/Ng(j). Note that the

transverse component of this area corresponds to the scalar active area.

Given a measure of the jet area, one can define the second parameter required to estimate

the pileup contribution to a jet’s energy: an energy density of jets, ρ [37], given by

ρ ≡ Mdi

(
pi,T
Ai,T

)
, (4.12)

where Md represents a median over all reconstructed jets i in the event. This definition is

motivated by the fact that, in the presence of high pileup, there will be a large number of

reconstructed jets in each event that originate from pileup. All such jets have energies much

lower than jets originating from the hard-scatter. This separation between the energies of the

pileup jets and the hard-scatter jets, along with the large number of pileup jets, ensures that

ρ is pulled towards the energy density of the pileup jets. As such, it provides an estimate for

the energy density of the pileup jets, without accounting for the energy of the hard-scatter

jets. This is exactly the quantity that needs to be subtracted from the reconstructed jet
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energy.

The four-momentum of each jet in the event is then corrected by subtracting the portion

of pileup contamination estimated to be within that jet’s area:

p′
µ
jet = pµjet − ρA

µ
jet. (4.13)

Any jet with pT < ρAT , or with transverse momentum below a specified threshold (20 GeV

is used in this work) is removed from the event and therefore not considered further in the

analysis.

Jets remaining after the mitigation of pileup are converted to photons at the rate men-

tioned in Section 3.3. Converted jets are removed from the list of reconstructed jets, and

added to the list of reconstructed photons passing the isolation criterion. These are the jets

and photons that are studied in the remainder of the analysis.

With a thorough understanding of how the detector-level samples are produced, the

analysis of these simulated data sets can now be discussed.



Chapter 5

Analysis

The discovery of a new particle at a collider experiment requires direct observation of the

new particle. This entails a measurement of the mass of the new particle, by measuring the

invariant mass of its decay products. Specifically, this means that if a previously unobserved

particle χ decays to n daughter particles with four-momenta pµi , the invariant mass

minv ≡

√√√√( n∑
i=1

pµi

)(
n∑
j=1

pj,µ

)
(5.1)

is computed for each event, and the distribution of this quantity should have a statistically

significant peak at minv = mχ.

With this in mind, the analysis of the generated samples comprises three main steps,

with the goal of accentuating a peak in the invariant mass distribution of two jets plus one

photon, mjjγ :

1. apply cuts to the signal and background samples to select events that can be recon-

structed by a detector and to discriminate against background,

2. apply a kinematic fit to properly group the final state objects into two two-jet-one-

photon groups, to further discriminate against background, and to improve the resolu-

33
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tion of the mjjγ distribution. The resulting mjjγ resolutions are used to calculate the

signal and background efficiencies in a specified mass window,

3. assuming no evidence for a charged Higgs boson is found, limits on σ(pp→ H+H−)×

BR(H± → W±γ)2 are calculated as a function of the charged Higgs mass.

5.1 Preselection Cuts

The purpose of the preselection cuts is twofold: first they remove all objects that can not

be reconstructed in a real experiment for a variety of reasons, and second they are chosen to

remove as many background events as possible from the region of interest. Every cut applied

is motivated by at least one of these two objectives. Cuts motivated by the first objective

are called detector acceptance cuts, and those satisfying the second are called background

discrimination cuts.

5.1.1 Detector Acceptance Cuts

An event must possess kinematics that allow for it to be triggered on — so that the detector

knows to record this specific event — and once triggered on the objects in the final state must

be compatible with the process of interest. The triggering criterion is satisfied by requiring

the presence of two photons with transverse momentum of at least 20 GeV, falling within

the fiducial volume of the detector, defined by the pseudorapidity range |η|< 2.5. All events

with less than two photons with these kinematic properties are rejected.

After triggering on an event, the event must be compatible with the process of interest,

in the sense that it must have the correct final state. This requires further that there are

at least four jets in the final state that can be reconstructed. To be reconstructible, a jet

must have sufficiently high energy, and must fall within the fiducial volume of the detector.

These conditions are satisfied by requiring that jets have at least 20 GeV of transverse
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momentum, and that they fall within |η|< 4.9. All events with less than four jets satisfying

these conditions are rejected.

If an event contains more than four jets with pT > 20 GeV and |η|< 4.9, the four highest

pT jets are assumed to originate from the charged Higgs bosons. Similarly, if more than

two photons possesses |η|< 2.5 and pT > 20 GeV the two photons with the highest pT are

assumed to originate from the charged Higgs bosons. Only these four jets and two photons

are considered for the rest of the analysis.

5.1.2 Background Discrimination Cuts

After selecting events compatible with the signal, cuts are applied to discriminate against

the SM background processes. Because of the extremely large cross-section of the QCD

background compared to all other backgrounds, cuts are chosen specifically with the goal

of eliminating as many QCD background events as possible. Two cuts are found to be

particularly successful in eliminating a significant fraction of the QCD background.

Objects in the QCD background have on average lower transverse momenta than those

in the signal. This is most pronounced in the transverse momenta of the leading photons,

and in the scalar sum of the transverse momenta of all objects in the event, HT ≡
∑
|pT |,

so all events with values of these quantities lower than a specified cut are excluded from the

remainder of the analysis. The cut values at each charged Higgs test mass are optimized to

the produce the most stringent limits on the production cross-section times branching ratio

at the end of the analysis.

As the test mass increases the distributions of the signal leading photon pT and HT shift

toward higher values. This allows the cuts on these quantities to also be increased, further

reducing the background contamination of the higher mass samples without compromising

much on the signal efficiency. Figure 5.1 shows the distributions of both of these variables

for the QCD background, and for four charged Higgs test masses. The trend of the signal

distributions to higher values of both variables with increasing charged Higgs mass is clear
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(a) (b)

(c) (d)

Figure 5.1: The distributions of the leading photon transverse momentum for the QCD
background and signal events with masses (a) mH± = 130 GeV and 170 GeV, and (b)
mH± = 210 GeV and 250 GeV. The distributions of the scalar sum of transverse momenta
for the QCD background and signal events with masses of (c) mH± = 130 GeV and 170 GeV
and (d) mH± = 210 GeV and 250 GeV. The dashed line on each plot marks the location of
the cut used to suppress background.

from this figure. The cuts used for the different charged Higgs test masses are tabulated in

Table 5.1.

Once cuts are applied to suppress the background processes, a method was then required

to determine how the four jets and two photons being analyzed should be grouped into

two-jet-one-photon groups to reconstruct the charged Higgs bosons. Towards this end, a

kinematic fit was applied to events passing the preselection cuts.
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mH± range (GeV)
[130, 200] [210, 250] [300, 350] [400, 450] 500

Leading photon pT (GeV) 70 100 150 250 300
HT (GeV) 450 500 700 850 1100

Table 5.1: Values for the background discrimination cuts on the leading photon pT , and HT ,
for all test masses.

5.2 Kinematic Fitting

As mentioned previously, a measurement of energy or momentum before and after any scat-

tering process will often result in only approximate conservation of these quantities because

of uncertainties in the measurements due to finite detector resolutions. Measured quanti-

ties can be altered within these uncertainties, with the aim of imposing conservation laws,

by applying a kinematic fit on the data. It is expected that, by forcing the satisfaction of

conservation laws taking into account experimental resolutions, measured quantities become

more accurate.

In practice, a kinematic fit involves defining a χ2 function that is minimized subject to

the imposed physical constraints, through the method of Lagrange multipliers [38]. For the

purpose of this work, the χ2 function minimized is

χ2 =
∑
i

[
(pT,i − pmeas

T,i )2

σ2
pT ,i

+
(ηi − ηmeas

i )2

σ2
η,i

+
(φi − φmeas

i )2

σ2
φ,i

]
, (5.2)

subject to the constraints

0 =
√

(j1 + j2)µ(j1 + j2)µ −mW ,

0 =
√

(j3 + j4)µ(j3 + j4)µ −mW , (5.3)

0 =
√

(j1 + j2 + γ1)µ(j1 + j2 + γ1)µ −
√

(j3 + j4 + γ2)µ(j3 + j4 + γ2)µ,

where the sum in Equation 5.2 is over the 4 jets and 2 photons considered in the analysis,

xmeas
i are the measured kinematic quantities, xi are the variables that are modified to min-
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imize the χ2, and σx,i are their detector resolutions. The detector resolutions are measured

by comparing the truth-level and reconstructed object four-momenta, and are found to de-

pend on both energy and pseudorapidity. Details of how they are obtained are provided in

Appendix A. The first two constraints in Equation 5.3 reflect the expectation that the jets

come from the decay of two W bosons, while the third requires that both charged scalars

that are pair-produced have the same invariant mass.

If it is possible to find four-vectors that minimize Equation 5.2 while satisfying Equation

5.3, then the minimization converges. Intuitively, a smaller χ2 suggests a better fit since the

measured quantities did not have to be altered much to satisfy the constraints. Formally,

the quality of the convergent solution can be quantified using the p-value of the χ2, defined

as [39]

p(χ2;ndof) =

∫ 1

χ2

fχ2(x;ndof) dx, (5.4)

where fχ2(x;ndof) is the χ2 probability distribution function given ndof degrees of freedom.

The function minimized has 3 degrees of freedom: one per Lagrange multiplier. The p-value

represents the probability that the minimized χ2 value would be above the measured value

purely by statistical fluctuations. A large p-value therefore suggests a better fit.

A priori it is unknown which photons/jets came from which charged Higgs. In other

words, the assignment of jets ji and photons γk, for i = 1, 2, 3, 4 and k = 1, 2, is unknown.

Therefore the fit is performed with all viable assignments of four jets and two photons into

two 2-jet-1-photon groups; there are at most six viable assignments per event. The viability

of a grouping is assessed based on the proximity of the objects that are to be grouped

together: if two jets come from the same W boson then they should be close to one another

in ∆R. Similarly, if two jets and one photon come from the same charged Higgs they should

be close according to the same metric.

The maximum allowed ∆R between jets and photons in a viable grouping depends on
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mH± range (GeV)
[130, 200] [210, 350] [400, 450] 500

∆R(jj) 2.8 1.5 1.4 1.2
∆R(jγ) 1.95 2.5 2.7 3

Table 5.2: Maximum values of ∆R allows between jets and photon in a viable grouping, for
all test masses.

the test mass. As the charged Higgs get heavier they are produced with less kinetic energy.

Consequently the photons and W bosons are less boosted, and therefore the jets get further

from the photons in η − φ space with increasing mH± . Furthermore, a larger mH± means

there is more kinetic energy provided to the photon and the W boson. The increased kinetic

energy of the W boson produces more collimated jets, and hence the ∆R between the jets

decreases. Figure 5.2 shows the evolution of the ∆R distributions with mH± . The maximum

object ∆R separations allowed for a viable grouping for the different charged Higgs masses

are tabulated in Table 5.2. These values are optimized to produce the most stringent limits

on the production cross-section times branching ratio at the end of the analysis.

(a) (b)

Figure 5.2: The ∆R separation between jets and photons in the same grouping, after choosing
the grouping using the kinematic fit with the highest p-value. As explained in the text, (a)
shows that jets from the same W boson are produced with decreasing ∆R as mH± increases,
whereas (b) shows that jets and photons from the same charged Higgs are produced with
increasing ∆R as mH± increases.

It is possible that no groupings in an event produce a convergent fit, in which case it is
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Signal
Cut QCD Background mH± = 130 GeV mH± = 170 GeV

Detector Acceptance 6.17(3)% 12.8(1)% 27.0(1)%
Background Discrimination 0.77(1)% 3.47(5)% 17.8(1)%
Kinematic Fit 0.199(6)% 2.56(4)% 12.5(1)%

Signal
Cut QCD Background mH± = 300 GeV mH± = 350 GeV

Detector Acceptance 6.17(3)% 54.34(7)% 58.04(7)%
Background Discrimination 0.193(4)% 38.72(7)% 43.15(7)%
Kinematic Fit 0.039(2)% 27.53(6)% 29.93(7)%

Table 5.3: The effects of the cuts used for mH± ≤ 200 GeV (top) and for 300 GeV ≤
mH± < 400 GeV (bottom) on the absolute background and signal efficiencies. The errors
are statistical and are calculated using equation 5.14.

assumed that the charged scalars did not pass the preselection cuts and the event is rejected.

If more than one grouping produces a convergent fit, it is assumed that the grouping with

the largest p-value is the correct one. By truth-matching (see Appendix A.1) the jets and

photons used in the kinematic fit, it is found that the correct grouping was selected by this

method 50% of the time. A two-jet-one-photon invariant mass distribution is constructed

from the groupings that maximize the p-value.

The effects of all the cuts and the kinematic fit on the efficiencies of the QCD background

and some signal samples are tabulated in Table 5.3. The background efficiencies for the QCD

background in Table 5.3 can be used to find that the effective cross-section of the QCD

background remains up to almost 40 times larger than the total cross-section of the sub-

dominant background (Table 3.1). Therefore all SM backgrounds are negligible in comparison

to the QCD background, and are ignored.

5.2.1 mjjγ Distribution

The mjjγ distribution serves two purposes in this analysis. The first is to validate that the

cuts and the kinematic fit does not affect the signal in a manner that obscures the peak at
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the test mass; if the analysis is successful and compatible with the process of interest, there

should be a clearly defined peak at the test mass.

By examining this distribution, it is determined that the analysis developed is effective in

reconstructing a peak in the mjjγ distribution at the charged Higgs mass for test masses at

or above 130 GeV. Figure 5.3 shows an example of the result of the cuts and the kinematic

fit on the mH± = 200 GeV sample.

Figure 5.3: The effect of the kinematic fit on the mjjγ distribution for the mH± = 200 GeV
sample. The distribution is scaled to the upper limit on the production cross-section times
branching ratio set for this test mass (see figure 6.1).

Below mH± = 130 GeV, however, it is found that this technique could not produce

an accurate peak at the test mass value. The reason for this is a bias produced by the

combination of the fit and the detector acceptance cuts, observed as few charged Higgs

candidates having an invariant mass below 100 GeV. This observed cutoff in the mjjγ

distributions is understood as follows: the detector acceptance cuts require photons with at

least 20 GeV of transverse momentum, while the kinematic fit forces the selected pairings

of jets to have an invariant mass of 80 GeV. Both of these requirements set lower limits on

the energy of the final state, so to output this amount of energy a decaying charged Higgs

must have at least 100 GeV of energy. The only way to guarantee this amount of energy is
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available for the decay is for the charged Higgs to possess this energy in its invariant mass.

This sharp drop of the mjjγ distribution around 100 GeV resulted in incorrect locations

of the peaks of the distributions for mH± < 130. This effect is portrayed in Figure 5.4. To

avoid this reconstruction bias, the analysis is restricted to test masses mH± ≥ 130 GeV.

Figure 5.4: The invariant mass distributions for signal samples with test mass mH± ≤
130 GeV. The dashed lines show the locations of the test masses, and are to be compared
to the locations of the reconstructed peaks of the distributions in the same color.

The second purpose served by the mjjγ distribution is to define one final cut that aided in

setting more stringent limits on σ×BR. As will be shown in Section 5.3, the limit depends

on both the signal and background efficiencies.

To obtain the most stringent value for the limit, it is key to minimize the background

efficiency while maintaining as high of a signal efficiency as possible. As shown in Figure 5.3,

it is clear that the reconstructed signal events are concentrated around the test mass. Figure

5.5 shows that the background remains widely distributed, even after the kinematic fit. One

should not be inclined to count background events towards the final efficiency if they lie past

a certain distance from the peak, since they do not make the reconstructed signal peak more

difficult to discern. The mjjγ distribution allowed the quantification of this distance.

This distance varied with the test mass, and is given by the resolution of the mjjγ peak.
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Figure 5.5: The effect of the kinematic fit on the mjjγ distribution for the QCD background,
applying the set of cuts for test masses below 200 GeV.

With the goal of determining this resolution the reconstructed mjjγ distribution is fit with the

sum of a crystal ball and Gaussian (CBG). The functional form of the crystal ball function

is [40]

C(x; β, n, µ, σ) = N


exp

[
− (x−µ)2

2σ2

]
, for x−µ

σ
> −β(

n
|β|

)n
exp[− |β|

2

2
]
(
n
|β| − |β|−

x−µ
σ

)−n
, for x−µ

σ
≤ −β,

(5.5)

where N is a normalization constant, µ is the mean of the Gaussian core, σ is the standard

deviation of the Gaussian core, β denotes the location relative to the mean where the Gaus-

sian ends and the power-law tail begins (in units of σ), and n is the order of the power-law

tail. The sign of β indicates the side of the Gaussian core on which the exponential power-

law tail is stitched: positive β means the tail is on the left of the Gaussian, and negative β

means it is on the right. An example of this fit for the mH± = 200 GeV sample is shown in

Figure 5.6.

Both the CB and the standalone Gaussian in the fit provided an independent estimate

for the width of the mass peak. The resolution is taken to be the weighted average of the
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Figure 5.6: The mH± = 200 GeV test mass mjjγ distribution fit with the CBG function.
The distribution is scaled to the upper limit on the production cross-section times branching
ratio set for this test mass (see Figure 6.1).

widths, with the weight for each width being the fraction of the area under the Gaussian

peak covered by the corresponding fit. Explicitly,

σmjjγ =
ACBσCB + AGσG

ACB + AG

, (5.6)

where σCB is the standard deviations of the Gaussian core of the CB function, σG is the

standard deviation of the standalone Gaussian, ACB is the area of the Gaussian core of the

CB function, and AG is the area of the standalone Gaussian that is within the Gaussian core

of the CB function. The signal and background efficiencies used in the limit calculations for

a specific test mass correspond to the fraction of generated events within the mass window

mH± − σmjjγ < mjjγ < mH± + σmjjγ . The reconstructed invariant mass resolutions of signal

samples are plotted as function of test mass in Figure 5.7, and the final signal and background

efficiencies in the mass windows associated to each charged Higgs test mass are tabulated

in Table 5.4. The trend of increasing invariant mass resolutions with the charged Higgs test

mass in Figure 5.7 is to be expected, since the absolute resolutions on the jet and photon



5.2 Kinematic Fitting 45

energies increase with increasing energy (see Section A.2).

Figure 5.7: Reconstructed mjjγ resolutions as a function of the charged Higgs test mass. The
errors on the widths are all less than 0.2 GeV, and are not visible on this plot. Discontinuities
in the trend observed can be attributed to the changing values of background discrimination
and kinematic fitting ∆R cuts.

mH± (GeV)
130 140 150 160 170 180 190 200 210

εs (%) 1.17(1) 2.42(1) 4.00(2) 5.72(2) 7.54(2) 9.27(3) 10.89(3) 12.55(3) 11.44(3)
100εb (%) 1.19(9) 2.0(1) 2.9(2) 3.8(2) 4.5(2) 4.9(2) 5.1(2) 5.2(2) 4.3(2)

mH± (GeV)
220 230 240 250 300 350 400 450 500

13.27(3) 15.18(3) 16.68(3) 17.98(4) 17.33(3) 22.23(4) 18.30(4) 21.72(4) 17.43(3)
4.1(2) 3.8(2) 3.6(2) 3.2(2) 1.6(1) 0.85(8) 0.46(6) 0.32(5) 0.17(3)

Table 5.4: Signal and background efficiencies within the mass windows of each test mass.
These efficiencies are used to compute the limits on σ(pp → H+H−) × BR(H± → W±γ)2.
The errors shown are statistical and are calculated using equation 5.14.

Figure 5.8 shows the sum of the mjjγ distributions for the QCD background and the

mH± = 200 GeV test mass, as well as the sum of the mjjγ distributions for the QCD

background and the mH± = 300 GeV test mass, in 300 fb−1 of integrated luminosity. This

is what would be observed in a collider experiment in the presence of a 200 GeV or 300 GeV
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charged Higgs boson.

(a) (b)

Figure 5.8: The mjjγ distribution for the sum of the QCD background and the (a) mH± =
200 GeV and (b) mH± = 300 GeV test mass in 300 fb−1 of integrated luminosity. The signal
distributions are scaled to the upper limits on the production cross-section times branching
ratio set for these test masses (see Figure 6.1). The green lines delimit the mass window for
each test mass. Note that the difference in the QCD background shapes is due to the fact
that different cut values are used for each mass depicted.

5.3 Limit Setting

While this method is effective in reconstructing charged Higgs bosons with masses mH± ≥

130 GeV, it is not guaranteed that applying this analysis to data would produce an obser-

vation of a charged Higgs boson, even if one exists that is consistent with the one studied

herein. It is possible that such a particle is produced so rarely that an excess in the mjjγ dis-

tribution above the QCD background at the test mass is not observable. The question then

arises of exactly how rare this process must be to go undetected. This rarity is expressed in

terms of an upper limit on σ(pp → H+H−) × BR(H± → W±γ)2, representing the largest

value possible for this quantity that would result in non-detection.

Setting limits on σ(pp → H+H−) × BR(H → Wγ)2 is done using a Bayesian method.

Following the derivation in [41], the probability of observing n events consistent with the

signal process given an integrated luminosity L, a signal efficiency εs, a signal cross-section
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σsig, and a number b of background events obeys a Poisson distribution:

P (n|σsig, εs, b) =
µne−µ

n!
, µ = Lσsigεs + b. (5.7)

From Bayes’ rule [39], then, the probability that the true cross-section is σsig given n, ε,

and b is

P (σsig|n, εs, b) =
P (n|σsig, εs, b)P (σsig)∫∞

0
P (n|σ′sig, εs, b)P (σ′sig)dσ′sig

, (5.8)

where P (σsig) is the prior probability for the cross-section to take value σsig and is taken to

be uniform up to some finite cross-section that is certainly above the bound to be set, and

0 above this cross-section. The prior used is

P (σsig) =


10−3 fb−1, σsig < 103 fb

0, σsig > 103 fb.

In the context of calculating an expected limit, it must be assumed that all events ob-

served that are consistent with signal are in fact background. This implies that n = b. The

α confidence level upper bound is then the value of the cross section σα that satisfies

∫ σα

0

P (σsig|εs, b)dσsig = α. (5.9)

Note that since the process under study has the additional constraint that the W bosons

decay hadronically, σsig is given by

σsig = σ(pp→ H+H−)× BR(H → Wγ)2 × BR(W → hadrons)2. (5.10)

Therefore the α confidence level upper limit on σ(pp→ H+H−)× BR(H → Wγ)2 is given

by σα/BR(W → hadrons)2.



5 Analysis 48

Systematic and statistical uncertainties on the parameters are included in this limit cal-

culation by convoluting equation 5.7 with the probability density function of the parameters.

For example, suppose the parameter εs is distributed according to some probability density

function f(ε′s; εs, ~θ), where εs is the measured value and ~θ represents all other parameters of

the probability density function. Then P (n|σsig, εs, b) in equation 5.8 is replaced by

P (n|σsig, εs, b)→
∫ 1

0

P (n|σsig, ε
′
s, b)f(ε′s; εs, ~θ)dε

′
s. (5.11)

In practice, b is measured through the general relation b = L
∑

i σbg,iεbg,i where the sum

is over all SM backgrounds considered. As all SM backgrounds are negligible compared to

the QCD background, in this work i = 1. Then, b = Lσbgεbg where σbg and εbg are the

cross-section and efficiency of the QCD background respectively. The three parameters that

are input to the limit calculation are therefore σbg, εs, and εbg.

5.4 Uncertainties

Uncertainties on the three parameters that enter the limit calculation due to several sources

are estimated: PDF and scale uncertainties on efficiencies and cross-sections, integration

uncertainty in the calculation of the background cross-section, and statistical uncertainty on

the efficiencies.

5.4.1 PDF and Scale Uncertainties

PDF and scale uncertainties arise due to an inability to fully describe the interactions under

study at particle colliders. To address this shortcoming scales are introduced that are meant

to parameterize the energy regime where perturbation theory provides a sufficient descrip-

tion, and where empirical results are needed to fill in the gaps that are inaccessible to the

theory.
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The fact that PDF sets themselves have errors on their parameters results in an uncer-

tainty, called the PDF uncertainty, on the observables affected by the PDF. In NNPDF the

uncertainties in the parameters of the PDF are encoded in 100 different member sets, each of

which has slightly different values for these parameters. The nominal PDF set is the average

of all member sets. It is this nominal PDF set that is used to simulate samples and estimate

cross-sections.

By contrast to PDF uncertainties which arise from experimental uncertainties, scale un-

certainties are meant to estimate the shortcomings of calculations performed in perturbation

theory. Often when one calculates scattering amplitudes from Feynman diagrams within the

SM at loop level, high energy (ultraviolet, UV) divergences appear. A common method used

to make these divergences finite is to introduce a cutoff, Λ on the highest allowed energy in

the theory. This cutoff represents the energy scale where the SM no longer provides an accu-

rate description of the scattering, perhaps because new degrees of freedom become manifest.

Instead of working directly with this cutoff, it is customary to introduce the renormalization

scale, µR, and absorb the dependence of scattering amplitudes on this scale into the coupling

constant of the theory [8].

A second scale, the factorization scale µF , similarly delimits an energy scale where per-

turbation theory is inadequate, only it is introduced to make finite IR divergences. Examples

of such divergences occur in the afformentioned emission of low energy gluons. Instead of

absorbing dependence on this scale into the coupling constant, it is absorbed into the PDF.

Both of these scales are entirely unphysical: if it was possible to compute scattering

amplitudes at all orders in perturbation theory, or to simply compute the entire amplitude,

all dependence on these scales would vanish. Since this is not possible, however, values must

be chosen for these scales. Due to the fact that the selection of these scales is arbitrary,

one must understand how sensitive simulated results are to these scales. Conventionally,

this sensitivity is assessed by performing all calculations with nominal scales (this work used

µR = µF = mZ) and repeating the calculations while varying each scale independently up
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and down by factors of two. This produces eight variations from the nominal scale choice:

{2µR, µF}, {µR/2, µF}, {2µR, 2µF}, {µR/2, 2µF}, {2µR, µF/2}, {µR/2, µF/2}, {µR, 2µF},

{µR, µF/2}. The variation of simulated or calculated quantities with the choice of scale is

what is called the scale uncertainty.

Both of these uncertainties affected the background cross-section estimate, and the signal

and background efficiencies.

To estimate the effects of PDF and scale uncertainties on the QCD background cross-

section estimate, the cross-section is calculated using Sherpa once with each PDF member

set with the nominal scales, and with the eight scale variations using the nominal PDF set.

Then the standard deviation of the cross-section is calculated using

σσb,PDF =

√∑NPDF
i=1 (σb,i − σb,0)2

NPDF

, σσb,scale =

√∑Nscale
i=1 (σb,i − σb,0)2

Nscale

, (5.12)

where NPDF = 100, Nscale = 8, and σb,0 is the nominal cross-section. It is found that

σσb,PDF = 4 pb and σσb,scale = 50 pb, representing relative errors on the QCD background

cross-section of 2.5% and 31% respectively.

This large difference between the scale and PDF uncertainties on the QCD background

cross-section is expected, because of the fact that this background is produced via the strong

force. As mentioned above, when one chooses values for the renormalization and factoriza-

tion scales, one is indirectly choosing energy cutoffs as well, which curtails the Feynman

diagram expansion. However, the coupling constant of the strong force is of order unity [8],

and consequently QCD scattering amplitudes receive significant corrections from Feynman

diagrams at high orders in perturbation theory. Cutting the Feynman diagram expansion

short eliminates these non-negligible higher order corrections, resulting in large uncertain-

ties on the QCD cross-section. The PDF, by contrast, does not suffer from the same lack of

information as a reduced Feynman diagram expansion. The uncertainties on its parameters

are experimentally determined, and the differences between variations of a PDF set are thus
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small relative to the scale uncertainty.

To determine the effects of the PDF and scale variations on the signal and background

efficiencies, the analysis is carried through to the end and the distributions of mjjγ are made

for each of the NPDF + Nscale variations. Efficiencies are then calculated as the ratio of the

sum of the weights of all events within the mass window to the sum of the weights of all

events corresponding to a specific variation. Uncertainties are estimated using the standard

deviations of the efficiency:

σε,PDF =

√∑NPDF
i (εi − ε0)2

NPDF

, σε,scale =

√∑Nscale
i (εi − ε0)2

Nscale

, (5.13)

where ε0 is the nominal efficiency. Tables 5.5 and 5.6 tabulate the relative scale and PDF

uncertainties on the signal and background efficiencies respectively.

mH± (GeV)
130 140 150 160 170 180 190 200

σε/ε
scale 0.004 0.003 0.002 0.002 0.001 0.0009 0.0008 0.001
PDF 0.006 0.005 0.005 0.005 0.005 0.005 0.004 0.005

mH± (GeV)
210 220 230 240 250 300 350 400 450 500

0.001 0.0005 0.0003 0.0002 0.0003 0.002 0.0007 0.002 0.0009 0.002
0.005 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.006

Table 5.5: The relative scale and PDF uncertainties on the signal efficiencies.

5.4.2 Integration Errors on Cross-section Estimates

The integration error on the QCD background estimate is calculated directly by Sherpa. It

depends largely on the number of events generated, so a large enough sample is created to

reduce the relative error to 1%.
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mH± (GeV)
130 140 150 160 170 180 190 200

σε/ε
scale 0.1 0.1 0.07 0.04 0.03 0.03 0.03 0.04
PDF 0.09 0.1 0.05 0.02 0.02 0.02 0.02 0.03

mH± (GeV)
210 220 230 240 250 300 350 400 450 500

0.04 0.04 0.04 0.05 0.03 0.05 0.05 0.07 0.2 0.06
0.02 0.03 0.03 0.05 0.02 0.04 0.03 0.05 0.2 0.04

Table 5.6: The relative scale and PDF uncertainties on the QCD background efficiencies
obtained for analysis cuts corresponding to the different test masses.

mH± (GeV)
130 140 150 160 170 180 190 200

σε/ε 0.009 0.006 0.004 0.004 0.003 0.003 0.003 0.002

mH± (GeV)
210 220 230 240 250 300 350 400 450 500

0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Table 5.7: The relative statistical errors on the signal efficiencies.

5.4.3 Statistical Errors on Efficiencies

When applying a set of cuts to an event, one of two things can happen: the event will either

pass the set of cuts, or it won’t. The probability with which the event passes the set of cuts

is the efficiency ε. Given a set of N events, then, the probability that k of them pass a set

of cuts is binomially distributed with probability ε. Assuming that k is sufficiently far from

both 0 and N (so that the 68% confidence interval does not include unphysical values of k),

the error on k can be used to determine the error on ε [42]:

σε =

√
ε(1− ε)
N

. (5.14)

The relative statistical uncertainties on the efficiencies according to this formula are

tabulated in Table 5.7 for the signal samples, and Table 5.8 for the QCD background.
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mH± (GeV)
130 140 150 160 170 180 190 200

σε/ε 0.09 0.06 0.05 0.05 0.04 0.04 0.05 0.05

mH± (GeV)
210 220 230 240 250 300 350 400 450 500

0.04 0.04 0.05 0.05 0.05 0.07 0.1 0.1 0.2 0.2

Table 5.8: The relative statistical errors on the QCD background efficiencies obtained for
analysis cuts corresponding to the different test masses.

The scale uncertainty on the background cross-section, and the scale, PDF, and statistical

uncertainties on the background efficiencies are considered in the calculation of the limits.

The parameters are assumed to vary in a Gaussian manner with respect to all sources of

uncertainty. Thus, incorporating these uncertainties, the 95% confidence limits are calculated

by substituting

P (n|σsig, εs, b)→
∫ 1

0

∫ ∞
0

dσbdεbP (n|σsig, εs,Lσbεb)

×G(σb;σb,0, σscale)G(εb; εb,0, σPDF)G(εb; εb,0, σscale)G(εb; εb,0, σstat)

(5.15)

in Equation 5.8 (where G(x; x0, σx) represents a Gaussian probability density function with

mean x0 and variance σx) and solving equation 5.9 for σα with α = 0.95.



Chapter 6

Results

The effects of the analysis detailed herein on signal and background efficiencies can be inter-

preted both in model-independent (Section 6.1) and dependent (Section 6.2) ways to quantify

the sensitivity of a search for the signal process.

6.1 Limits on Production Cross-Section

Using the method described above, expected 95% confidence limits are calculated for σsig for

18 scalar masses in the range 130 − 500 GeV. Using BR(W → qq′) = 0.6741 ± 0.0027 [19]

this is converted to an upper limit on σ(pp → H+H−) × BR(H → Wγ)2. The results are

shown in Figure 6.1.

To demonstrate the effects of the different sources of uncertainty on the limits, Figure

6.2 shows the difference between the limits with only the ith uncertainty included in the

calculation (µi) and those with no uncertainties included in the calculation (µ0). The scale

uncertainty on the background cross-section is found to have the most significant effect on

the calculation of the limits. Indeed, the inclusion of all other sources had a negligible

effect on the limits once the cross-section scale uncertainty is accounted for. The trends in

each of the three lines near the bottom of the plot roughly follow the values of the relative
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Figure 6.1: The expected 95% confidence upper limits on production cross-section times
branching-ratio squared as a function of the mass of the charged scalar. The region above
the markers is excluded with 95% confidence.

Figure 6.2: The combined and individual effects of each source of uncertainty on the calcu-
lation of the upper limit.

uncertainties they represent.

These limits are an order of magnitude lower than the model independent limits set in

[16] in a similar channel, and are two orders of magnitude lower than the limits set in [17].

This competitiveness with previously set limits suggests that this method may be able to
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set some of the most stringent limits on a charged Higgs boson production and decay mode

to date.

6.2 Discovery Potential in the GM Model

To quantify the potential of this analysis to discover a charged Higgs boson, one must specify

a complete model. This is due to the need for a cross-section estimate for the signal process,

in order to make a prediction about the number of signal events to expect in real data. To

this end, predictions about the value of σ(pp→ H+H−)×BR(H± → W±γ)2 are extracted

from the GM model, for the singly charged Higgs in the scalar quintuplet, H±5 .

First, GMCALC [43] is used to find experimentally and theoretically allowed values of the

GM model parameters that are consistent with the test masses studied; a consistent set of

parameters is one that produces a mass of the H±5 within 0.5 GeV of one of the test masses.

This set of parameters is then used to make a UFO file so that σ(pp → H+
5 H

−
5 ) could be

computed using MadGraph. Table 6.1 shows the model parameter values that are manually

chosen to produce each mass point, using the parameter symbols defined in [43]. The values

of all other parameters can be found using the relations in [43].

mH± (GeV)
130 140 150 160 170 180 190 200

λ2 1.27 -0.114 0.774 1.243 0.08608 0.175 1.26 0.82
λ3 -0.498 -1.431 -0.524 -0.15 -0.796 -1.434 -0.519 -0.25
λ4 0.638 1.464 0.639 0.403 1.01 1.449 0.652 0.6
λ5 -4.796 2.207 -1.962 -4.999 -0.796 -0.685 -4.412 -2.27

M1 (GeV) 1416.12 733.398 899.545 1899.771 383.29 274.233 1578.641 590.6
M2 (GeV) 26.11 -228.83 -2.586 40.141 -167.61 -74.405 71.025 43.3

tan θ 0.651 0.895 0.845 1.062 0.386 0.362 0.94 0.485
mH±

5
(GeV) 130.29 140.50 149.99 159.93 170.22 180.04 189.99 200.24

Table 6.1: GM model parameters used to produce masses for the H±5 consistent with charged
Higgs test masses studied. The last row shows the actual value of the mass of the H±5 that
is produced by the parameters in the column above it.

Values for the branching ratio BR(H±5 → W±γ) are available in the GM model for



6.2 Discovery Potential in the GM Model 57

charged Higgs masses up to 200 GeV [44]. As the vertex H±5 W
∓γ does not exist at tree level

in the GM model, the calculation of this branching ratio is non-trivial, even at leading order,

so the pair production cross section is only calculated for scalar masses below 200 GeV.

The results are tabulated in Table 6.2. The values calculated for mH±
5

= 130 and 200 GeV

are lower than the expected upper limits set in the previous section, so the products of

the production cross-sections and the branching ratios are also below the expected limits.

All other masses below 200 GeV have pair production cross-sections that are slightly above

the expected limits, but the branching ratios in [44] are on the order of 0.1 and below.

Therefore the product σ(pp → H+
5 H

−
5 ) × BR(H±5 → W±γ)2 is again below the expected

limits. Consequently this particular charged Higgs boson with these masses can not be

observed with this method in 300 fb−1 of integrated luminosity of
√
s = 14 TeV proton-

proton collisions.

mH±
5

(GeV) σ(pp→ H+
5 H

−
5 ) (fb)

130 86.6(2)
140 73.1(2)
150 52.0(1)
160 41.1(1)
170 33.75(8)
180 26.91(7)
190 21.79(4)
200 17.53(3)

Table 6.2: The H±5 pair production cross sections in the GM model for parameters consistent
with different test masses. The quoted errors in the cross-sections are the integration errors
estimated by MadGraph.



Chapter 7

Summary and Outlook

An analysis method has been developed for a search for a charged scalar particle with mass

mH± ≥ 130 GeV. The technique detailed herein has been tailored to a charged scalar particle

that is pair produced in proton-proton collisions at
√
s = 14 GeV, with both pair produced

particles then decaying hadronically through a W±γ intermediate state. Some of the main

backgrounds that can be expected at the LHC Run 3 — high levels of pileup and the QCD

jet background — were examined, and techniques were applied to mitigate their effects on

the signal. A kinematic fit was used with the goals of further suppressing the background,

while also accentuating the signal peak in the mjjγ distribution.

In the event that this method does not provide evidence for the existence of such a

particle, it predicts upper limits on σ(pp → H+H−) × BR(H± → W±γ)2 of 95.1 − 1.88 fb

for test masses in the range 130− 500 GeV. These values are competitive with limits set by

experiments in similar channels. It was found that the scale uncertainty on the background

cross-section estimate was the dominant source of uncertainty in the calculation of these

limits.

This analysis and these limits would apply to a large class of singly charged scalar particles

consistent with the one studied herein: the most stringent assumptions made were on the

total width and mass of the charged scalar, though this method can be extended to other test
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mass values, within or above the studied range. The limits set for low mH± would require

slight adjustment to apply to specific models due to the small dependence on the identity

of the vector boson mediating the pair production, but it is not expected that they would

change much with such a correction.

Results of this analysis were interpreted in the context of the GM model. It was found

that this process would be unobservable for a charged Higgs consistent with the H±5 of the

GM model, with mass mH±
5
≤ 200 GeV. This is, however, only one of the many charged

Higgs bosons that have been predicted as part of an extended Higgs sector.

Given a specific model that predicts values of σ(pp → H+H−) × BR(H± → W±γ)2

larger than the expected limits, and the signal and background efficiencies for the test masses

studied, model-specific signal significances can be computed. These would provide estimates

for the statistical significance of a signal above the background achievable with this analysis,

thus quantifying the ability of this analysis to lead to a discovery if a charged Higgs boson

exists. Alternatively, the expected limits set herein can be used to constrain model-specific

parameter spaces.

Performing a search for a particle as rare as a charged Higgs boson at the LHC will

require a very sophisticated analysis. It is the hope of the author that this work can provide

inspiration for a future search, and insights into how such a search can proceed.
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Appendix A

Measurement of DELPHES Detector

Resolutions

As shown in Equation 4.3, in order to quantify the DELPHES detector resolutions it is necessary

to compare the truth-level four-momentum of an object to its reconstructed counterpart. The

process by which truth-level and reconstructed objects were matched is described in Section

A.1. Sections A.2 and A.3 present the techniques used to measure the energy, and η and

φ resolutions, respectively. Smearing was measured using a signal sample with no pileup

overlayed, and no jet-to-photon fake rate.

A.1 Matching Truth and Reconstructed Objects

Smearing is performed on an object-by-object basis. As such, the distribution describing the

smearing of a specific parameter must be built from a large sample of one type of object.

From equation 4.3 it’s clear that one needs to know the smeared and truth values of the

parameter of interest, suggesting that reconstructed objects need to be paired with the

truth-level objects that produced them, a process referred to as truth-matching.

Since smearing results in different four-vectors than are input to the detector simulation,
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truth-matching is not as simple as searching for identical four-momenta. However, it is not

expected that a truth-level object is drastically altered by smearing, and so a reconstructed

object should remain close to its truth level counterpart in η − φ space. This closeness is

quantified by the variable ∆R.

The truth-level counterpart to a reconstructed object was found by measuring its ∆R

with all truth objects of the same identity (i.e. for a reconstructed jet, only truth jets were

considered). Truth objects were considered viable candidates for the reconstructed object’s

partner if they satisfied ∆R < 0.2 with the reconstructed object. Then, of all truth objects

passing this cut, the one minimizing ∆R was hypothesized to be the truth-level counterpart.

Once a truth-level object matched with a reconstructed object, it was removed from the list

of candidates for all other reconstructed objects.

It was also possible that no truth-level object was close enough to the reconstructed

object to be able to truth-match the reconstructed object. Such a scenario would arise in

the case of extreme smearing where the reconstructed object ends up very distant from its

truth-level counterpart, or if the truth-level counterpart was incorrectly paired with another

reconstructed object. In this case, the smearing of the reconstructed object could not be

measured.

A.2 Energy Resolution

The DELPHES simulation smears the energy of reconstructed objects differently depending on

their η values. Hadronic calorimeter energy smearing had a different functional form in each

of three η bins: |η|< 1.7, 1.7 < |η|< 3.2, and 3.2 < |η|< 4.9. The electromagnetic calorimeter

had two η bins, but due to the coverage of electromagnetic calorimeters at experiments at

the LHC, only one bin was relevant: |η|< 2.5.

After binning with respect to η, the reconstructed objects were further binned into 20

GeV energy bins from 10− 190 GeV. In each bin the quantity (Esmeared −Etruth)/Etruth was
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plotted and a Gaussian was fitted to each energy bin. An example of this histogram and fit is

shown in figure A.1 for photons in the energy range 170− 190 GeV, and the pseudorapidity

range |η|< 2.5. The fitted standard deviation in each energy bin was taken to be the

resolution. The resolutions at all energies were plotted (at the center of the corresponding

energy bin) and the result was fitted with the functional form of the resolution implemented

in DELPHES. Figure A.2 shows good agreement between the energy resolution measured using

truth-matching and the resolution implemented in DELPHES for photons.

After validating this technique by comparing the measured energy resolutions with those

hard-coded into DELPHES, the functional forms used for the energy resolutions in different

|η| regions were taken from DELPHES. For jets these were

|η|< 1.7 : σE =
√

0.03022E2 + 0.52052E + 1.592,

1.7 <|η|< 3.2 : σE =
√

0.052E2 + 0.7062E, (A.1)

3.2 <|η|< 4.9 : σE =
√

0.09422E2 + E,

and for photons it was

|η|< 2.5 : σE =
√

0.00172E2 + 0.1012E. (A.2)

A.3 η and φ Resolutions

The x = η, φ resolutions were treated very similarly to the energy resolutions, with the

primary difference being the way the binning was performed. The DELPHES detector was

segmented differently in the regions |η|< 2.5 and 2.5 < |η|< 5 — the latter region only

relevant for jets — so the resolution measurements were performed separately in these two

regions.
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Figure A.1: The relative difference between the smeared and truth photon energy in the
energy range 170− 190 GeV and pseudorapidity range |η|< 2.5.

Figure A.2: Comparison between the measured energy resolution and the resolution imple-
mented in DELPHES for the electromagnetic calorimeter for |η|< 2.5. Errors on the points
from fitting for the standard deviation of the Gaussian in each energy bin are included, but
are too small to be visible.

Within these two regions the quantity xreco − xtruth was binned first in |ηreco|= 0.1 bins,

then separately in Ereco = 20 GeV bins. Gaussians were fit to each bin and the resolution in

a bin was taken to be the fitted standard deviation. Binning with respect to |ηreco| or Ereco
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was found to have no effect on the resolutions in either |η| region of the detector. Figure A.3

shows the resolution of |η| and φ in the |η|< 2.5 region of the detector, binned with respect

to |η|, measured using reconstructed photons.

(a) (b)

Figure A.3: (a) η and (b) φ resolution as a function of |η| for photons with |η|< 2.5. Low
statistics are responsible for the large errors and worsening agreement at high |η|.

The values of the jet |η| and φ resolutions used in different |η| regions were

|η|< 2.5 : ση = 0.033, σφ = 0.056,

2.5 <|η|< 4.9 : ση = 0.060, σφ = 0.090, (A.3)

and for photons:

|η|< 2.5 : ση = 0.042, σφ = 0.075. (A.4)
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