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ABSTRACT

Abstract

Many computer vision applications. such as object recognition. active vision. and
content based image retrieval (CBIR) could be made both more efficient and effective
if the objects of interest could be segmented from the background. This thesis dis-
cusses the development and implementation of a complete unsupervised object-based
attention system for locating salient objects in an image.

The major components of this system are the segmentation and the attention
process. Considerable research has been done in these two areas. but unfortunately.
there is still not a single method that can be applied reliably under all situations.
We have analvsed the attention model proposed by Osberger and have found that
their method fails to identify some important regions that are salient to humans.
Modifications to this model are proposed to correct some of these problems. For the
segmentation process. one important aspect is the measurement of the quality of a
particular segmentation. since the attention process depends solely on the segmenta-
tion output. [n particular. three different cluster validity measures are considered: a
simple threshold-based index. a non-parameter index. and the modified Hubert in-
dex. From the experimental results. the simple threshold-based index is shown to
outperform the other indices on most test images. We believe that the success of the
threshold-based index is largely related to the incorporation of human preference in

the selection of the threshold parameter.



RESUME

Résumé

De nombreuses applications en vision artificielle telles que la vision active et 'indexage
{d'images basé sur le contenu pourraient étre rendues plus efficaces si les objets
d’intérét pouvaient segmentés du fond de I'image. Cette these discute du développement
et de l'implémentation d'un systéme d’attention non-supervisé basé sur des objets
pour localiser des objets saillants dans une image.

Les composantes majeures de ce systéme sont la segmentation et le mécanimsme
d’attention. Bien que que ces deux sujets aient été ['objet de nombreuses recherches.
il n'existe toujours a ce jour pas de meéthode fiable qui puisse étre appliquée dans
toutes les sitnations. Nous avons analysé le modele d'attention propoé par Osberger
et nous avons trouvé qu'elle ne réussi pas a identifier quelques unes des régions sail-
lantes évidentes pour des humains. Des modifications a ce modele sont proposées
pour corriger certains de ces problemes. Un des aspects importants pour la seg-
mentation est la mesure de la qualité d’'une m’ethode en particulier puisque le pro-
cessus d’attention repose uniquement sur le résultat de la segmentation. Plus partic-
ulierement. trois différentes méthodes de mesure de validité sont considérées: un index
déterminé par un seuillage simple. un index non-parameétrique et une version mod-
ifiée de l'index d'Hubert. D apres les résultats expérimentaux. |” index déterminé par
un seuillage simple surpasse les autres méthodes pour la plupart des images testées.
Nous crovons que le succes de l'index déterminé par un seuillage simple est largement

lié a I'incorporation de préffences humaines dans la sélection du seuil utilisé.
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1.1 THE NEED FOR OBJECT-BASED ATTENTION

CHAPTER 1

Introduction

This thesis discusses the development and implementation of a complete object-based
attention svstem for locating salient objects in an image. In this chapter. the need
and motivation for this approach is presented. An overview of the thesis follows.

including a brief outline of each of the remaining chapters.

1.1. The Need for Object-based Attention

Many computer vision applications. such as object recognition {60, 39|. active
vision [17]. and content based image retrieval (CBIR) [2, 37] can be made both more
efficient and effective if the objects ofinterest can be segmented from the background.
[n the case of object recognition. especially in a complex scene. the recognition process
can be more efficient and robust if even a rough estimation of the location and size of
the salient objects can be obtained [39]. A ranking of perceptual saliency or closeness
to the target model is then required to determine which region shouid be processed
first. As a result. expensive computational resources can be focused mainly on those
regions that are worthy of more detailed examination.

This kind of attention system can also be applied to CBIR. to improve the retrieval
accuracy. The first generation of image retrieval systems relied solelv on kevwords
entered by a human when the image was entered into the database. The strength
of this approach comes from the high accuracy of the identification of major objects
present in each image and its image type (such as a scenic picture or art work). For
example. if one wants to retrieve images that contain a polar bear. he just needs to

tvpe in the kevword ~polar bear” to retrieve all images that have at least one polar



1.3 AN OVERVIEW OF THE APPROACH

bear with 100% accuracv. However. there are several major drawbacks that constrain
its applicability and usefulness. These disadvantages include the requirement for
manual annotation and the inherent limitation of words in expressing abstract ideas.
For instance. it is very difficult to describe precisely the content of some images. such
as modern paintings. with a limited number of kevwords. As a resuit. image retrieval
based on image content has been proposed as a new approach to organise the huge
and ever-expanding image databases (e.g.. online museums and databases of medical
images). Besides. the classical image retrieval system can be further improved by
enabling the svstem to mimic the identification of salient objects in an image as in

the kevword-based svstem.

1.2. Motivation

Object-based CBIR has been investigated by several researchers [2] [13]{115]. [n
these approaches. although features of local regions instead of global properties are
used. each region is still treated with equal importance. As a result. an irrelevant
image can be retrieved just because it contains a background that is visually similar
to the querv image. Hence. it is desirable to have a complete and fullv automatic
attention system for segmenting and locating szlient objects in an image. Methods for
determining the saliency of regions have been investigated by Osberger and Maeder
{86]. However. only initial results have been presented and no in-depth analysis of
their method has been carried out. As stated in {86]. the performance of an object-
based attention system depends largely on the quality of the segmentation results.
Hence. it is desirable to analvse their method and to select an image segmentation

technique best suited to the attention algorithm.

1.3. An Overview of the Approach

Each process involved in the detection of salient objects in an image will be
discussed in this thesis. The overall system is summarised in a block diagram in
Figure 1.1. The system input is a single colour image. A set of biologically motivated
feature maps are extracted from the image and then used in the image segmentation
process. Before the region information of the “objects™ can be generated. the defini-
tion of “object” must be defined precisely. To be of general use. no context-dependent

information is assumed and an object is defined simply as a coherent and homogenous



1.3 AN OVERVIEW OF THE APPROACH

[mage
" Segmentation

|

Importance Map
Calculation

FIGURE L.1. Syvstem Block Diagram. The method consists of three
computational processes shown in the left-hand column. The data
transferred between each process is indicated in the shaded strips. Ex-
amples of the input. intermediate data. and final output are shown in
the right-hand column

region. If higher-level. top-down information is known a priori. this information can
be used to group the regions into a logical entity that resembles the original physical
object. The final stage involves the computation of the Importance Map based on
a number of factors. such as contrast and eccentricity, that have been able to draw

attention. This importance map represents the perceived saliency of the regions.



1.5 CONTRIBUTIONS

1.4. Organisation of the Thesis

In Chapter 2. a review of the literature of the biological basis of perceptual group-
ing and attention will be presented. The current state of machine vision simulating
these two tasks will also be described. Evidence from psychophysical experiments
shows that objects can exist preattentively and can affect covert attention. However.
not much research has been focused on developing an object-based model of attention.
Hence. it is desirable to investigate this topic in detail.

Chapter 3 begins with a discussion of the only object-based attention model that
has been developed for computer vision applications {86]. In this model. five factors
are identified and formulated mathematically. Situations where these factors fail and
solutions to these problems will be discussed in this chapter.

In Chapter 4. the details of selecting a particular representation scheme for each
feature are discussed. Transformations on the feature spaces to improve the percep-
tual uniformity will also be presented.

[n Chapter 3. the first section reviews the major image segmentation techniques.
Reasons for selecting a particular image segmentation method and some implemen-
tation issues will be described in the remainder of this Chapter.

Finally. Chapter 6 presents a variety of results of the system applied to real world
images. This includes an examination of the selection of various model parameters

and the feasibility of using this svstem as a pre-processor to a face-finding system.

1.5. Contributions

The major contributions of this thesis are.

e Lots of work has been done on image segmentation. However. there is still no
“off-the-shelf” solution that can be applied to all types of images. One of the
major problems is the lack of a good measure of the qualitv of a particular
segmentation. [n this thesis. three different measures are considered and we
find that a simple threshold-based measure with a manually selected thresh-
old give consistently better results than other more complex. statistics-based
measures.

e Parameters are a significant aspect of any mathematical formulation of an al-

gorithm. Some parameters can be obtained through theoretical arguments.

4



1.5 CONTRIBUTIONS

However. the optimum values for some other parameters depend on subjec-
tive judgements. such as the importance or saliencyv of different objects in a
scene. To reduce the bias on any particular image type or subjective opinion.
svstematic and extensive experimentation has been performed to find suitable
parameter values.

e The complete svstem for locating salient objects is implemented in Microsoft
Visual C++ with Microsoft Fundation Class (MFC) for a stand-alone appli-
cation. Appendix A provides a brief description of the svstem with images of

the graphical user interface.



CHAPTER 2. LITERATURE REVIEW

CHAPTER 2

Literature Review

David Marr has written [73}:
“What does it mean. to see? The plain man’s answer (and Aristotle’s.
too) would be. to know what is where by looking. In other words. vision
is the process of discovering from images what is present in the world.
and where it is.”

Visual perception is a natural and native ability of humans and animals. Using an
abundant amount of information about colour and form. we can sense the environment
in its original 3-dimensions. or {-dimensions if time is included. Not only can we see
the 3-dimensional world. but we can also recognise the objects and understand their
positional. structural. and contextual relationships. [n nature. the ability to detect
and recognise objects effectively and efficiently is vital to survival. Animals must
be able to distinguish their food from other less edible alternatives. Thev must also
be able to detect camouflaged or occluded predators. The seemingly straightforward
and effortless task of object detection and recoguition for both humans and animals
is extremelv difficult to simulate in the computer. One reason for this difficulty is
the incomplete and unclear definition of object in the field of computer vision. [f
we want a computer to recognise an object. the definition of object must be precise
and without ambiguity. However. even for humans. there does not exist a fixed and
universally held definition of object. Both Ullman [134] and Marr {72] raise the
question about the goal of segmentation, particularly in a bottom-up manner. Marr
asks: “What. for example. is an object. and what makes it so special that it should
be recoverable as a region in an image? Is a nose an object? Is a head one?...” They
both conclude that it is extremelyv difficult. if not impossible. either to formulate



2.1 PERCEPTUAL GROUPING

what should be recovered as a region from an image or to separate complete objects.
such as a car or a house. from a complex scene. Although the problem of unclear
definition of object or goal of segmentation seems to be unsolvable. the task of object
detection and recognition is performed smoothlv and accurately within the human
visual system. without any sign of ambiguity. [n this chapter. both psychophysical
and physiological aspects of the mechanisms used bv humans in perceptual grouping
and attention will be reviewed. An overview of the current state of machine vision

will then be presented.

2.1. Perceptual Grouping

In the literature. perceptual grouping is sometimes described in other terms. such
as segmentation. clustering. association. and figure-ground separation. depending on
the point-of-view from which this problem is viewed. In [66]. Lowe states that ~Per-
ceptual organisation refers to a basic capability of the human visual system to derive
relevant groupings and structures from an image without prior knowledge of its con-
tents”. Similarly. Sarkar [106] defines the term perceptual grouping or perceptual
organisation as the ability to impose structural organisation on sensorv data. so as
to group sensory primitives arising from a common underlying cause. If a person is
asked to segment an image into different regions. the answer may not be unique and
varies from person to person. For the image in Figure 2.1. one may segment the image
into two distinct groups: the bahy and the background. Another possible segmen-
tation could be the baby. the beach. the water. and the sky. However. one can also
further segment the baby’s head from the body. This variation in complexity may
arise because of different general grouping systems. However. it is more likely due to
a difference in the level of abstraction rather than the overall system. Such a hier-
archical framework for representing objects has been used in many computer vision
systems for deriving higher level concepts of objects from lower level primitives [73]
195] [78] [42] {107]. In the first chapter of Marr’s book “Vision” [73]. he described
four levels of abstraction for deriving shape information from images. The lowest
level is the image itself and the primitive at this level is the intensity value (either in
grey scale or colour) at each pixel in the image. The second level is the primal sketch.
At this level. a set of low level features is extracted from the intensity or colour map

of the first level. The primitives at this stage are zero-crossings. blobs, terminations

7



2.1 PERCEPTUAL GROUPING

FIGURE 2.1. A sample picture of a baby girl

and discontinuities. edge segments. virtual lines. groups. curvilinear organisation and
boundaries. The third level of abstraction is the 2-1/2 D sketch. The purpose of this
stage is to organise and represent the primal sketch in a viewer-centred coordinate
frame with a rough description in terms of surfaces. The primitives now become local
surface orientation. distance from the viewer. discontinuities in depth and surface
orientation. The highest level of abstraction is the actual 3-D model representation.
The purpose of this stage is to derive and represent the objects in an object-centred
coordinate frame so that recognition can be achieved with viewpoint invariance. The
primitives are 3-D shape models with the corresponding surface properties and their
spatial organisation. This representational framework is mainly object-centred. On
the other hand. viewer-based representation has also been proposed for explaining
how information is stored in the human visual system [3]. In a viewer-based frame-
work. different views of the object rather than its 3-D model are extracted and stored.
The advantage of this approach is that it is not necessarv to build an explicit model
of everv object intended to be recognised.

Although any object can be described by different levels of abstraction as sug-
gested by Marr. it is still not clear how the grouping process works or how it can
terminate. The first theory for explaining perceptual grouping is the Gestalt Theorv
proposed by Wertheimer in 1912 [140]. This theory proposes that the geometrical

8



2.1 PERCEPTUAL GROUPING

relationships that humans use in perceptual grouping can be categorised as follows
141]:

e Similarity: Similar elements are grouped together.

e Proximity: Elements that are close together tend to be grouped together.

e Continuation: Elements that lie along a common line or smooth curve are

grouped together.

e Svmmetry: Symmetric curves are grouped together.

e Closure: Curves are connected to enclose regions.

o Familiarity: Elements are grouped into familiar structures.

This theorv implies that there is a tendency for humans to seek the most unam-
biguous and simple interpretation of the world. This principle of simplicity of form
is similar to the law of least action or the minimum principle discovered by ancient
Greek geometers. This theory has fostered many other theories and continues to
exert significant influence on the psvchology of perception. Although introduced at
the beginning of the 20 century. these six principles are still valid and are the basis
of most grouping methods. [t should be noted that these rules are not exclusive.
and groupings may be formed using combinations of subsets of these relationships.
Unfortunately. the algorithmic implementation of these rules is very difficult because
thev have been obtained through observation and they often conflict. even for simple
stimuli. as shown by Lowe [67]. Moreover. the theory is usually demonstrated using
simple visual patterns. which may not always occur in the real world. the world of
unreliable. uncertain stimuli. Therefore. only a relatively few aspects of the Gestalt
theory have been incorporated into computer vision systems. such as similarity. prox-
imity. and continuity [106]. When these principles are used together. higher level
meta-rules are employved either explicitly or implicitly, to guide their application.

Since perceptual grouping can be defined at many different levels of abstraction.
a variety of specific goals has been selected and pursued by researchers. Numerous
interesting computational approaches have been proposed over a wide range of ab-
straction levels. A classificatory structure in perceptual organisation is proposed by
Sarkar and Boyer [106] to organise these algorithms and as a standard nomenclature
with which to discuss existing and future research. In their classification scheme.
algorithms are classified based on two characteristics. The first is the tyvpe of feature
being organised or the level of abstraction : signal level. primitive level. structural

level. and assembly level. The second is the dimensions over which the organisations
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are sought : 2-D. 3-D. 2-D plus time and 3-D plus time. A grey scale image is in 2-D
while a range image is in 3-D. With this classification scheme. since the total number
of categories is just 16. some categories may contain more than one algorithm. To
further differentiate these algorithms. additional classification schemes have been sug-
gested by Sarkar and Bover. such as the computational technique. This classification
structure is useful for comparing and visualising the similarities and differences be-
tween algorithms and thus will be used here. However. another possible classification
scheme can be based on whether top-level knowledge of objects is utilised or not.
Since the emphasis of this thesis is on 2-D images. the review will be focused on
those algorithms designed for grev-scale or colour images. Readers are referred to

Sarkar’s paper {106] for methods involving higher dimensions.

2.1.1. Signal Level

This level involves the lowest and most basic form of organisation. and the input
to the algorithms are local point properties.

Zahn {148] has proposed the use of graphs to extract and detect Gestalt clusters
in dot-clustering problems. He uses a family of graph-theoretical techniques based
on the minimal spanning tree to segment several kinds of dot clusters. A minimal
spanning tree retains both the information of the local neighbourhood and the overall
structures of the clusters and thus is suitable for data clustering problems. Zucker
[151] approached the problem of dot clustering with a probabilistic model for clus-
ters. Each pixel is classified according to one of three labels: edge. interior. and noise
with the corresponding probability. A relaxation process is used to relabel the pixels
iteratively until no more pixels are relabelled. A similar method is used by Spann
(116] for tigure-ground separation. He approached the problem using global optimi-
sation of a function representing the local error fit of an assumed model describing the
variation of the luminance over the local regions in the image. To minimise the effect
of variance in scale and noise. a multi-scalar pyramid was used with interconnections
between the lavers. The optimisation is carried out using simulated annealing. The
use of a model and global optimisation removes the necessity of selecting parameters
and thresholds. However. choosing a suitable model may even be more difficult than
setting thresholds or parameters depending on the problem domain.

Image segmentation also belongs to this category. In a review paper [87] pub-

lished in 1993. 173 papers are quoted in the references. Since then, more than ten
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new algorithms have been published [26, 111, 5, 61, 64, 110, 20, 90|. The major
contributions of these methods are twofold. The first is a better definition of co-
herent regions or boundaries. especially for complex scenes . For example. Deng et
al. [26] propose a new measure J for region uniformity that evaluates the spatial
distribution of colour in an image. To reduce the overall complexity and to improve
the stability of the distribution estimation. the image is pre-quantised to reduce the
number of distinct colours. An interesting aspect of this measure is that both texture
and colour information are preserved and encoded in the distribution. Shi and Malik
{111] propose a new feature distance derived to reduce the instability of a similar-
ity matrix. Feature distance was previously defined either arbitrarily. such as equal
weighting on all features. or from the statistics in the test image set. Since this new
distance is based solely on the image data. there is no need to pre-define the signifi-
cance of each feature. For measuring texture. a set of filters is usually applied to the
image. Belongie and Malik [5] find that the filter responses inside textured regions
are generally spatially inhomogeneous. Thus. they have developed a new method for
reducing these inhomogeneities by a method called area completion. The main idea
behind this method is to increase the similarities between pixels if thev are close to
each other in the spatial domain and have neighbours that are close in the feature
domain. As a result. a non-uniform region having a repetitive pattern of features can
still be classified as one region. Lambert and Carron [61] define a new colour space
symbolicallv. where hue is explicitly defined and processed according to its relevance
to chroma. A fuzzy classifier is used to classifv the relevance of hue based on the
following rules: 1. Hue is not relevant and cannot be utilised in segmentation for
small chroma values. 2. Hue is approximately as relevant as chroma and intensity
for medium chroma values. 3. Hue is very relevant for large chroma values. Leung
and Malik [64] define a new definition of texture as repeated scene elements. To be
invariant to scale and perspective. affine transformation is used when measuring the
similarity between different regions.

The second contribution of recently proposed segmentation algorithms is a more
effective or efficient way of region merging and clustering in feature space. Shi and
Malik [110j propose a novel approach to solve the perceptual grouping problem by
treating image segmentation as a graph partitioning problem. A global criterion.
normalised cut. is proposed by them for segmenting the graph. Comaniciu and Meer

[20] propose a general technique for image segmentation based on feature density.
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A technique called mean shift algorithm is used for estimating density gradients to
locate the position of local maxima. The number of local maxima or modes is deter-
mined automatically by the algorithm: however. the number of modes depends on the
width of the density estimation kernel. Park et al. [90] suggest using mathematical
morphology to cluster and classify pixels in the feature domain. First. a colour his-
togram is generated and smoothed with a 3-D Gaussian kernel. Next. mathematical
morphology. dilation and erosion. is applied to the histogram to remove the outliners
and to separate distinct clusters. Carson et al. {13| propose using an Expectation-
Maximisation (EM) algorithm to perform segmentation based on image features. The
distribution function of each cluster is presumed to be Gaussian and the EM algo-
rithm is used to determine the maximum likelihood parameters of a mixture of A’
Gaussians. This method is repeated for different values of A and the number of

clusters is determined by finding the best fit of the estimated parameters to the data.

2.1.2. Primitive Level

This level involves the intermediate level of organisation with edges or curves as
input.

Hérault and Horaud [47] attack the figure-ground discrimination problem from
a combinatorial optimisation perspective. They define the problem as separating a
salient curve from noise and make explicit the definition of shape (or figure) based on
cocircularity. smoothness. proximity. and contrast in terms of mathematical formulas.

Simulated annealing is used for solving the combinatorial optimisation problem.

2.1.3. Structural Level

At this level. lines and regions are organised into a variety of 2-D shapes.

Mohan and Nevatia [78| use perceptual organisation for scene segmentation and
description. This segmentation system generates hierarchies of features that corre-
spond to structural elements such as boundaries and surfaces of objects. Based on
Gestalt principles. edges are grouped to form curves. Contiguous curves are grouped
to form contours while symmetric curves are grouped to form symmetries. Next. sym-
metries will become ribbons if closure is detected. An exhaustive search is used to
find relationships between different features. Before each search. invalid or conflicting
hypotheses of any joins or groups are removed using geometric constraints: cocurvilin-

earity. continuity. proximity. and co-termination. Promising results are demonstrated
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on real images with a small number of objects. However. because of the inefficient
search method. the complexity can grow exponentially for more complex scenes.

To overcome the computational complexity of many hierarchical approaches.
Sarkar and Bover [107] propose a voting method and graph-theoretic structure to
represent the data organisation. Thev recognise that the bottleneck of the system
is the compatibility test among all pairs of tokens. Bv building a histogram of the
token’s feature similar to the Hough transform. the compatibility test then becomes
a bounded search through the parameter space.

Both methods proposed bv Sarkar and Mohan utilise only edges as input to the
system. On the other hand. Schliiter and Posch [108] proposed combining both
contour and region information for perceptual grouping. In this method, edges are
first grouped recursively to form 2-D closures (closed regions). At the same time.
region segmentation is performed and then the resulting region map is matched to
the closest edge group. Additional boundaries are generated if some regions cannot

be matched to any edge group.

2.1.4. Conclusions

Perceptual grouping is a basic and effortless capability of the human visual sys-
tem. However. as reviewed in this section. this grouping task is deviously not simple
but a very complicated process that encompasses several levels of abstraction. Al-
though a lot of research have been done on this topic, there is still no general theory
that can explain most of the known visual grouping phenomena. such as figure-ground

discrimination and object detection.

2.2. Visual Attention System in Humans

In order to replicate human visual performance. we have to analyse and under-
stand how the system works within our brains. Even though most of the human
brain’s functional mechanisms and its underlying neural circuitry are still unknown.
a basic idea about the visual system can be acquired from psychophysical and neuro-
physiological experiments conducted in the past. Based on these findings, a biologi-
cally motivated model of attention can be devised.
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2.2.1. Structure of the Human Visual System

Visual information enters the nervous system in the retina. travels through the
lateral geniculate nucleus (LGN). and then enters the cerebral cortex at the back
of the head in an area named V1 (also known as the -striate cortex™). From this
starting point. information branches off and travels forward into the many specialised
visual areas that are located in the posterior half of the brain (called “extrastriate”
visual areas). As the information travels forward from the striate cortex into the
extrastriate cortex. the features coded by single neurons change from simple bars and

edges to more complex attributes of object identity.

2.2.1.1. The Retina

Two tvpes of photosensitive cells. rods and cones. exist in the retina. Thev have
different sensitivities and adaptation mechanisms to different wavelengths. Cones are
associated with colour vision whereas rods are associated with vision at low light
levels. Three different types of cones (red “actually yellow™. green. and blue cones)
are found in the human retina while a fourth tvpe of cone. the double cone. is found
in non-primate visual systems. These cones appear to be distributed more or less
randomly in the retina. but there are many fewer cones for blue than for green or red.
The relative numbers of red. green. and blue cones are found to be in the ratio of 40
to 20 to 1 [18].

An interesting characteristic of the retina is the non-uniform distribution of the
photoreceptors. The density of these receptors is much higher at the centre of the
retina. called the fovea. than in the surrounding region. The density of the receptors
decreases with the distance from the centre. This foveated-sampling scheme provides
significant data reduction at the expense of having to physically move the fovea to

the point of interest.

2.2.1.2. The LGN

The LGN represents an intermediate relay stage between the retina and the visual
cortex. The LGN. organised in six layers. is an important switching device used to
segregate the parvocellar (P) and magnocellar (M) channels and to align the input
from the two eves. The M lavers are concerned primarily with non-colour vision
processing (e.g.. motion of objects and spatial reasoning) while the P layers are very

important for colour vision processing (e.g.. object recognition). Three of the lavers
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receive input from the ipsilateral eve and the other three from the contralateral eve.
The distinctions between P and M cells are still maintained in the cortex.

2.2.1.3. V1

V1 is layered like the LGN. There are three types of cells or neurons in the V1:
simple. complex. and hypercomplex. Simple cells are characterised by receptive fields
with excitatorv and inhibitory fields. and whose profile can be modelled by Gabor
functions [55]. Complex cells show orientation selectivity in much the same way as
simple cells but they do not have distinct excitatory and inhibitory zones (not phase
sensitive). Finally. hvpercomplex cells, also called end-stopped cells. are very sensitive
to line endings. curvature. and angles. With these cells, several perceptual properties
can be detected such as selectivity in orientation. size. position. colour. direction. and
depth. The responses of all V'1 neurons can be thought of as retinotopic feature maps
characterising the visual stimulus captured by the retina.

After V1. both the pathway and functions become more complex. The presence
of crossover and feedback make it very difficult to analyse and interpret the actual

layout of the neural circuitry.
2.2.1.4. Discussion

One of the reasons for the existence of attention is the need to shift the high-
resolution fovea onto the most important parts of a scene. providing a detailed de-
scription of the object of interest. The low-level features extracted and encorled in the
human visual system include colour (red. green. and blue). texture. position. motion
and depth.

2.2.2. Psychophysical Aspects of the Human Visual Attention
System

Many of the mechanisms of human visual attention have been discovered through
psvchophysical experiments. In these experiments. human performance is evaluated
during some specific. visuomotor task. Most psychophysical investigations involved
with attention are actually concerned with covert attention. and its facilitation effects
on visual tasks.

Two basic models of human visual attention are the zoom-lens model and the
spotlight model. The first model was initially proposed by Jonides [56] and then
further developed by Eriksen and his associates [31] [32]. Thev propose that attention
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is analogous to a zoom-lens svstem. At a low-power setting, attentional resources
are evenly distributed across the visual field. If the discrimination task is difficult.
or when a pre-cue had been previously flashed. the attentional system zooms in to
that area and allocates a disproportionate share of the processing resources to it.
However. not all attentional resources would be emploved in the pre-cued area. The
remaining resources are shared among other locations. The second model was first
introduced by Neisser [81] and then modified by Julesz [58] and Treisman [123] [124]
'125] {126] [127] [129]. This paradigm proposes that attention involves two distinct
stages. preattentive and attentive stages. In the first stage. processing is performed
in parallel over the whole field. whereas in the second stage. a sequential analysis of
some parts of the image occurs. The spotlight metaphor is proposed for the attentive
stage since it would only affect a limited area of the visual field. Even though the
debate about this second model is still open [139)]. it is by far the most accepted

paradigm of visual attention.

2.2.2.1. Top-down and Bottom-up Control

The two basic mechanisms that control visual attention can be described as goal-
driven (top-down). and stimulus-driven {(bottom up) processes. This distinction is not
new. For example. William James (1890) [54] characterises this distinction in terms
of active” and “passive” modes of attention. Attention is said to be goal-driven when
the attention is controlled by the observer's deliberate strategies and intentions. I[n
contrast. attention is said to be stimulus-driven when it is controlled by some salient
attributes of the image that are not necessarily relevant to the observer’s perceptual

goals.

2.2.2.2. What features catch the eye?

The most important question about the visual attention svstem is what features
can catch the eve’s attention or which feature attracts the most fixations. For the
passive bottom-up mode of attention. it is necessary to identifv a set of basic features
used in preattentive processing and determine whether attention depends on the
feature itself. the feature contrast. or both. It is also important to find out whether
these features have equivalent effects in drawing attention. Many experiments have
been conducted to analyse different stimulus properties. In general. targets having

distinct features are perceptually salient and stand out from a background pattern.
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For the first question. Wolfe [146] has an extensive review on defining a basic

feature set for visual search. The presumption is made that if a stimulus supports

both efficient search and effortless segmentation. then it is safe to include it in the

basic set. He states that there is a reasonable consensus about a small number of basic

features and more debate over several other candidates. Some of the basic features

consistent with the experimental results are:

o colour. [136] Much research has led to the conclusion that colour is one of
the best wayvs to make a stimulus “pop-out” from its surroundings. For simple
patterns. colour difference alone is sufficient for efficient visual search and
effortless texture segmentation.

orientation. [35| Orientation is also well-accepted as a basic feature in visual
search. However. a difference of 15 degree or more is needed to support efficient
visual search.

curvature.  [128] It has been found that curved lines can be found among
straight distracters using parallel processing. This implies that the time re-
quired for detecting the curved lines does not differ significantly with the num-
ber of targets. However, the search is less efficient if the target is straight and
the distracters are curved.

size. Treisman and Gormican [128] conclude that it is easier to find big ob-
jects among small ones than small among big. However. for a given size of
distracters. finding a bigger target is no easier than a smaller one. In addi-
tion. the slope of the reaction time against the number of targets is very steep.
implving that size is not a good basic feature for visual search: except for a
simple case in which a big circle is surrounded by much smaller ones.

motion. {74] It is apparent that it will be very easy to find a moving stimulus
among stationary distracters.

o shape. Wolfe states that shape is probably the most problematical basic feature
because there is no widelv agreed lavout of “shape space”™. Some candidates
for the ares of this space are line termination [57]. closure [27]. and face [33].

For the second question about the significance of a certain feature and its contrast

in drawing attention. Northdurft {82} has performed a series of experiments designed

to investigate the role of features versus feature contrast in preattentive vision. His

study shows that features. in general. are not found to plav an important role in these

tasks and performance was instead related to feature contrast. Only in the case of
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colour does performance also depend on the hue feature. Theeuwes’ [121] experiment
also shows the attention-grabbing abilities of colour. Recent results presented by
Mannan et al. [70] also suggest that initial fixation placements are not controlled by
perceptual features alone. In this study. eve movements were measured while viewers
examined grev-scale photographs of real-world scenes. They also attempted to specify
the visual features that determined initial fixation placement [71]. They analysed
tocal regions of their scenes for seven spatial features: luminance maxima. luminance
minima. image contrast. maxima of local positive physiological contrast. minima of
local negative physiological contrast. edge density. and high spatial frequency. From
their analvsis. only edge density predicted fixation position ro any reliable degree
and even this feature produced only a relatively weak effect. Thus. the nature of the
visual features that control fixation placement in scenes is still unclear.

For the last question. whether or not features have equivalent effects in drawing
attention. the intuitive answer would be no. Based on experiments in which subjects
search for singletons (a singleton is a single target among homogeneous distracters
and differs from those distracters by a single basic feature). Muller and Found [79]
argie that the contribution of any specific feature to the overall salience of any object
is controlled by a weight that can change from task to task and. indeed. from trial to
trial. They find that the reaction time for trial .V is contingent upon the relationship
between target identity on trial V and N-1. That is. people are faster to find a colour
singleton on trial .V if a colour singleton is found on trial V-1. While experimental
results support the uneven weightings of different features in drawing attention. how
these weightings are distributed or how they are altered quantitatively. has vet to be
explained.

Most of the earlv psyvchological experiments were conducted with simple images
having a dark background and simple objects such as bars. circles. squares. and let-
ters. For these images. it is verv easy to distinguish the background from the objects.
These experiments are useful in isolating the effects of different features. but not for
showing their inter-relationships. The attention-grabbing ability of different features
on complex real images may differ from these simple ones. To understand how eve
movement is controlled in more realistic visual-cognitive tasks. reading and scene
viewing have been studied. A common assumption in these studies is that the fixa-
tion point of the eve is the focus of attention at a given time. Buswell [11] finds that

the fixation positions are highly regular and related to information in the pictures.
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For example. viewers tend to concentrate their fixations on the people rather than
on background regions when examining Sunday Afternoon on La Grande Jatte by
Georges Seurat. Henderson et. al. {46} also have found that first pass gaze duration
and second pass gaze duration are longer for semantically informative than unin-
formative objects. providing evidence for relatively early. peripherallv-based scene
analvsis. To determine whether attention is related to semantic informativeness (the
meaning of the region) bevond visual informativeness (the presence of discontinuity in
texture. colour. luminance. and depth). Henderson et al. [44, 45]. conducted a series
of experiments with the semantic informativeness defined as the degree to which an
object was predictable within the scene. An unpredictable object will have high se-
mantic informativeness and vice versa. They do not find any tendency by the viewer
to immediately fixate their attention on semantically informative objects. De Garaf
et al. [24] also found no evidence that semantically inconsistent objects were fixated
earlier than consistent objects. However. thev observe that viewers tend to look back
more often to semantically informative than to uninformative scene regions. These
results suggest that the attention is first driven by a bottom-up process before a more

organised top-down process is engaged to analvse the scene in more detail.

2.2.2.3. Are objects available preattentively?

A recent debate in the literature concerns whether covert attention is directed
to unsegmented regions of space. or to segmented perceptual groups that are likely
to constitute coherent objects. As our actions must ultimately be directed toward
individual objects. some theorists have proposed that it would be efficient for covert
attention to operate on segmented objects rather than on unstructured regions of
space [4] [29] {81]. The space-based and object-based models of attention are often
presented as mutually exclusive alternatives [4]. However. many hybrid views are pos-
sible. For instance. covert attention may operate within a spatial medium (as argued
by Tsal and Lavie [130]). but grouping processes may act to modulate the spatial
extent of the attended region (Lavie and Driver [62]). Lavie et al. [62] examined the
relation between segmentation and spatial attention by examining patients having
disorders (extinction. neglect. and Balint’s svndrome) after brain damage. He found
that the effects of these brain-damage-related syndromes can be reduced if the two
concurrent events formed a good perceptual group such as dumbbell shape instead

of two circles. Based on this evidence. he argues that spatial attention is directed
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within a segmented representation of the visual scene. with at least some of this seg-
mentation taking place preattentively. Rensink et al. [102] also show that objects
have some preattentive existence by demonstrating that preattentive processes are
sensitive to occlusion. Wolfe [145] has conducted a series of experiments that make

a similar point. These results support the idea that objects can exist preattentively.

2.2.3. Conclusions

In this section. recent and past discoveries and knowledge about the human visual
system are presented. From this review. it can be seen that there is no general
agreement on major issues of the visual attention system. such as a model of attention.
selection of a basic feature set. and the spatial medium of the attention process.
Nevertheless. there is both physical and psychological evidence showing the existence
and importance of a small set of basic features. which include colour. texture. position.
and motion. within the human visual attention system. In additions. object-based
attention systems have also been proposed both as an alternative or as an complement

to the space-based model of attention.

2.3. Visual Attention Systems in Machines

Recent advances in computer technology are astonishing and have made a real-
time machine vision svstem feasible. However. despite enormous progress in recent
vears. machine vision systems still have a long way to go before approaching the level
of human performance. The main reason for this is the lack of effective and efficient
algorithms for many general computer vision processes. such as image segmentation
and object recognition. One remedy to this problem is information selection or data
reduction so as to reduce computational time and to suppress irrelevant data and
noise. Starting from the mid-80’s. specific efforts have been made towards more effec-
tive models of attention. Since that time. more than ten models has been proposed
|75, 50, 109, 101, 36, 21, 104, 131, 19]. Most of these models. however. have been
tested only on simulated data. In realitv. we seldom see any objects with perfectly
uniform colour and texture. Even for artificial objects, the surface property may be
affected by shadows. highlights. and non-uniform lighting. For the model to be prac-
tical. it should be able to tolerate a certain amount of noise and be applicable to a
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wide range of environments. [ts performance should also degrade gracefully in case
of failure.

The attention models proposed by Koch [50] and Milanese [76] are verv similar
and are based on an architecture previously proposed by Koch and Ullman {59]. This
architecture is related to Treisman’s feature integration theory [128]. Visual input is
first decomposed into a set of feature maps. Colours. intensity. and orientations are
used in both models while edge magnitude and curvature are also used in Milanese's
model. These maps are then transformed into conspicuitv maps representing the
“conspicuity” of locations. Integrating all the conspicuity maps forms a final saliency
map. The final stage of these two models is not the same because their intended
applications are different. Koch's model is used for simulating the scan path so
that a winner-take-all selection scheme and inhibition of return are used as the final
stage. On the other hand. since the purpose of Milanese’s model is for locating
and recognising objects. the saliency map is further processed to provide both the
position and region information which are fed into another higher-level process for
object recognition.

Sela and Levine [109] model interest points as the loci of centres of co-circular
edges. Experimental results on real images show that centres of svmmetry correlate
well with human fixation points. Reisfeld et al. [101] and Gesu et al {36] also use
svmmetry in predicting fixation centres.

In time-varving imagerv. Conception and Wechsler [21] proposed an attention
scheme based on edge maps. motion cues. and past history. In their algorithm. the
saliency map is used to guide the coarse to fine classification of objects so that the
amount of information to be processed later is reduced tremendously. Their main
contribution is the integration of active and selective attention with learning and
memory in a hierarchical framework. Rybak et al. [104] described an attention model
for explaining invariant object recognition in humans. In their model. attention is
used to guide visual perception and recognition. However. the attention mechanism
is a top-down process instead of bottom-up.

Apart from general visual attention systems. Tsotsos et al. [131] proved that
in visual search. if explicit targets are given in advance. the time complexity will be
a linear proportion of the image size. On the other hand. if no explicit target is
provided. the task is NP-complete. Thus. thev propose that the human brain may

not be solving this general problem and it is necessarv to have attentional selection to
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guide the search process. A model of primate visual attention is also presented that
is both biologically plausible and computationally feasible. A top-down hierarchy of
winner-take-all processes is embedded within the visual processing pyramid. However.
they also state that a balance between data-driven and knowledge-driven processes
must be achieved.

Osberger and Maeder [86] present a method for determining the perceptual im-
portance of different regions instead of point locations in an image. Theyv selected
five factors that have been found to influence visual attention in assessing the overall
importance of each region. These factors are: contrast. size. shape. location. and
foreground-background. The final saliency measure is obtained by the summation of

the square of each factor.

2.3.1. Conclusions

Most of the attention models proposed for machine vision are spaced-based where
perceptual saliency is determined by local feature contrast. such as Koch’s model
and Milanese's model. On the other hand. object-based attention models also are
receiving increasing amounts of attention. For these models. object properties. such
as syvmmetry. region size. shape. and intensity contrast are considered. [t is not
clearly understood which approach is more efficient or effective in modelling human
attention. However. since most computer vision tasks are finally focused on individual
objects. and not much research have been done on this topic. it is worthwhile and

fruitful to investigate object-based attention in greater detail.
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3.1 PERCEPTUAL SALIENCY FACTORS

CHAPTER 3

Perceptual Saliency Measure

This Chapter explores how object-based visual attention can be modelled in a machine
vision system. Those factors which have been identified by Osberger and Maeder
[86] will be presented along with several new measures influenced by psychophysical

evidence. Methods for combining these factors will also be discussed in this Chapter.

3.1. Perceptual Saliency Factors

[n most cases. a perceptually salient region will correspond to a perceptually
meaningful or interesting object. However. in some situations. a perceptually salient
region may not be related to any logical objects. [n scene viewing, Henderson and
Hollingworth {45] find that initial fixation placement does not seem to depend on the
semantic informativeness of regions. In these experiments. semantic informativeness
is defined as how unlikely the scene region is expected from the context. However.
people tend to look back more often to semantically informative objects. Hence. if
visual attention is defined as the point of fixation. there exist at least two definitions
for visual attention. The first definition is what kinds of regions can attract fixations
instantaneously within the first two seconds of viewing. The second one is which
regions viewers will look back to more often. These revisited regions are what the
viewers are interested in and seek to know more about. This overt attention often
involves a high-level top-down process with the goal set by the viewer. Objects that
people usually look for include human faces, animals. automobiles, and aeroplanes.
Usually. people are less interested in objects that often form the background. such as

the sky. floor. and wall. As a result. whenever human judgement is used in assessing
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FiGURE 3.1. Block diagram for Osberger and Maeder’s Importance
Map calculation

an attention model’s performance. these two distinctions have to be stated clearly.
In this thesis. our attention will be focused primarily on the low-level. bottom-up

process.

3.1.1. Osberger and Maeder’s model

The purpose of this model is to automatically determine the perceptual impor-
tance of different regions in an image. The block diagram for Osberger and Maeder’s
importance map calculation is shown in Figure 3.1. In [86]. eight low level features
and four higher level factors are identified which have been found to influence hu-
man visual attention. These low level features are intensity contrast. size. shape.
colour. motion. brightness. orientation. and line endings. Higher level factors are
location. foreground/background. people. and context. These features are similar to
those identified by Wolfe [146] as described in Chapter 2. Of these features. only
five factors are selected by them for modelling visual attention. The mathematical
definition for these five factors are stated below. In order to be able to compare these

factors directly. they are scaled to fit in the range [0.1].

e Contrast of reqion. Regions having high contrast with their surroundings are
found to be visually salient. Hence. the contrast importance I oneras is defined
as the difference in the mean grey level of the region R; and its surrounding

['egiOHS Rt—n.ezghbours-
[cantrnat(Ri) = a(Rt) - a(Ri—neighbours) (3—1)

where gl(R;) is the mean grev level of region R;. and ﬁ(&_mghm,.) is the

mean grey level of all neighbouring regions of R;.
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e Size of region. All else being equal. larger regions are more likely to attract
visual attention than smaller ones. In other words. larger regions are easier
to detect than smaller ones. However, this effect levels off after a certain

threshold. The size importance is defined as:
Laueel Ry = min( 32

- mazr

.1.0) (3.2)

where A(R,) is the area of region R,. and A, is a constant used to prevent
excessive weighting being given to verv large regions. Theyv set this constant
to 1% of the total image area.

e Shape of region. Elongated objects have been found to attract more attention
than rounder biobs of the same area and contrast. Importance due to region

shape is defined as:

P
Ivhupe(Rl) = bp-l((}le‘))

where hp(R,) is the number of pixels in the region R, which border with other

(3.3)

regions. and sp is a constant. Thev found a value of 1.75 for sp suitable for
discriminating long. thin regions from rounder ones.

o Locuation of region. Experiments have shown that viewers are directed at the
centre 25% of a scene while viewing television {30]. Thus. importance due to
location of a region is defined as:

centre(R,)
A(R;)

where center(R,) is the number of pixels in region R; which are also in the

[l'ocatxon(Rx) = (54)

center 25% of the image.

o Foreground / Background. Osberger et al. assume that a region connected to
the border of the image will have a higher probability of being at the back-
ground. This assumption is valid if the main objects are not located along the
border of the scene or there are one or two major backgrounds that contain
most of the image borders. This measure is defined as:

borderpiz(R;)

lye(R,) = 1.0 — ma: o
bg( 1) maz( 0.5 * totalborderpiz

(3.5)

where borderpiz{R,) is the number of pixels in region R, which also belong
to the border of the image. and totalborderpiz is the total number of image

25
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border pixels. Based on this definition. regions with a high number of image
border pixels will be classified as belonging to the background and will have a

low foreground/background importance.

3.1.2. Discussion

The five factors chosen by Osberger and Maeder are useful for modelling human
visual attention in simple situations with strong “pop-out™ effects. As described in
Chapter 2. the most widely agreed assumption that has been used in many psy-
chological experiments is that an object or target is salient and pops-out from the
background if its visual features differ from other objects. This idea is proposed by
Triesman in her Feature Integration Theory [127]. Contrast or difference in visual
features can facilitate visual search and thus is visually salient. Contrast can be de-
fined not only by intensity. but also by other low-level features such as orientation and
colour. However. contrast alone is not enough for explaining the “pop-out™ effect of
objects having distinct features among other distracters. Contrast can only be used
to explain the relative perceptual saliency of isolated objects: not for objects adjacent
to each other. This is not hard to understand. as shown in Figure 3.2.

Contrast is usually defined as the distance in the feature space. In case 1. intensity
contrast for region A and region B is 70 and 30. respectively. and thus region A is
perceptually more salient. This prediction is consistent with human judgement. [n
case 2. however. the contrast for region A and region B is the same. with a value
of 70. The problem with this image is the lack of a common reference frame for
interpretation. One interpretation of this image can be a very large bright square
having a rectangular hole in the middle. Another interpretation can be a dark bar in
a uniform white background. Although these two cases are very simple and probably
would not occur in reality. they show the necessity for a good measure of figure-
ground discrimination. In case 3. if someone is asked to decide whether region A
or region C can attract more attention. the answer would be A. From the contrast
calculation. the value of saliency of region A is 30 while that of region C is 35.
{95 — 30) + (100 — 95)] = 0.5. Hence. the prediction based on contrast alone could be
wrong for regions adjacent to high contrast regions.

[n assessing the relative depth information of different regions. Osberger et al.
use the percentage of image border as an indication of background. This means

salient objects are presumed to occupy none or a very small portion of the border.
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Case | Case 2

93

Case 3

FIGURE 3.2. Situations where a contrast measure succeeds and where
it fails. The number within the brackets indicates the region’s intensity.
For all three cases. the background’s intensity is equal to 100.

Such an assumption is valid for most photographs since the most important objects
are placed roughly in the centre of the image when the picture is taken. [t is not
valid. however. if this placement rule is not followed when the image is taken. such
as pictures taken from a camera mounted on a mobile robot. or if a background
region is separated into two isolated regions by an occluder. Some of these isolated
regions may not even be close to the image boundary and thus will be assigned a
very high value for foreground/background measure. In Figure 3.3a. region B is
obviously in the foreground while regions A.C. and D belong to the background.
Since region C does not touch the image border. it will be given a verv high value.
1.0. for foreground/background importance. This problem can be solved by grouping
regions A and C by similarity and continuation. However. this grouping must be done

carefully to avoid grouping two seemingly distinct objects. such as region B and E.
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a b

FIGURE 3.3. Situations where foreground/background measure fails

Another problem associated with this foreground/background method is illus-
trated in Figure 3.3b. In this figure. region A should be the main object with the rest
of the regions belonging to the background. However. after counting the number of
pixels in each region which also belong to the image border. region A will be assigned
a lower foreground/background value {0.6) than those assigned to regions B. C. D.
and E (0.9).

The problem of determining depth information from a single image is also ex-
plored by Rosenberg {103]. He uses occlusion cues to calculate the relative depth of
each object. Six cases of occlusion are identified and used in a relaxation algorithm
to infer the relative depth graph of the objects. The problem with this method is the
requirement of a highly accurate image segmentation and the occurrence of occlusion.
Moreover. the number of conflicts which have to be solved may grow exponentially
for more complex scenes. Other monocular depth cues include relative size. linear
perspective. texture gradient. relative height. and atmospheric perspective [143]. Al-
though these depth cues are widely accepted and well-studied. depth perception still
poses a big problem in practice since these cues usually involve a high-level under-
standing of the scene and therefore tend to work only in very restricted environments.
For pictures taken by humans with some purpose in mind. the method proposed by
Osberger et al. is applicable and is easy to compute without any prior knowledge of
the scene.

The shape importance cue. as described in Chapter 2. is very controversial. For
simple cases consisting of only circles and long thin rectangles. there is a very high

probability that human fixations are more likely to fall on the rectangles than on the
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=%

FIGURE 3.4. Situations where shape measure fails

circles. For more complex shapes. such as the example shown in Figure 3.4. how-
ever. the evidence is less clear. Which shape attracts most of our fixations? Is the
“Z” shaped region G more salient than the irregular shaped region D? How about
the hexagon E? The shape importance measure proposed by Osberger et al. favours
elongated regions over rounder ones. The shape importance values of these regions
are shown in Table 3.1. For this image. the most salient region predicted by the shape
importance measure is the background B. This region is certainly not circular and has
many long and narrow parts. Hence. it has the highest perceptual saliency value for
shape! The major problem for any shape definition is the presence of “hole”. such as
the background. Do we consider its shape as the outline of its outermost boundary?
Or do we also consider the inner boundaries such as the shape of a donut” In other
words. do we treat the enclosed regions as textures or not? Apparently. there is no
simple answer to these questions. If the application is restricted to certain environ-
ments and the most important objects are well-identified and known beforehand. one
can make some useful conclusions about the shape saliency of regions. Otherwise.
the usage of shape in modelling the human attention svstem should be approached
cautiously if not eliminated altogether because this feature is not well-defined and its

effect on attracting human visual attention is not well-understood in general.

3.1.3. New and Modified Importance Factors

Based on the discussion on Osberger and Maeder's method. some of their com-
putational methods are modified and new factors are proposed.

o Contrast in colour and terture. The contrast importance [ merqse Will be rede-

fined as the Euclidean distance in the mean colour and texture of the region
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‘ i Region Shape importance value

5 A 0.24
. B (background) 1.00
; C 0.40
D 0.55

E 0.31

F 0.35
i G 0.45

TABLE 3.1. Shape importance values for Figure 3.4

R, and its surrounding regions R,_p..ghbours as follows:

1
Leontrast(Ri) = m*
3 (| feat(R,) - feat(R,) |) - border(R,. R,) (3.6)

R,cnerghboursof R,

where edgepir(R,) is the perimeter of region R, in pixels. and feat(R;) is the
mean colour and texture of region R,'. border(R;. R,) is the length (number
of pixels) of the common border of region R, and R,.

. e Hue. Since colour alone can grab human attention. especially red [121]. it can
be used in modelling visual attention. No matter how bright or how dark the
object is. as long as its perceived surface hue is red (not black or white). it will
be perceptually salient. However. no strong evidence has emerged concerning
the attention-grabbing ability of hues other than red. In the case of face
recognition. the hue of skin colour can be used to indicate its importance.
Hence. the hue importance is defined as the distance from the reference hue as

below:

L—cos(huelR, )-huc(Referencey)

[hue( R,) = e—( + ); x tanh(sf x sat(R,)) (3.7)

where hue{R,) is the hue of the mean colour of region R, in radians. and
Reference is the preferred hue that is known to attract attention. sd is a
constant used to control the threshold on the difference in hue between R,
and reference. and sat(R;) is the saturation of the mean colour of region
R,. A value of 0.1 for sd is found to be suitable for discriminating red from

other hues. The second term is included to represent the uncertainty of hue at

' 'A discussion of how these are computed can be found in Chapter 4.
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different saturation levels. At low saturation value, the colour appearance is
grey and thus the value of hue is meaningless. Hence. a monotonic increasing
function (tanh(r)) which levels off after a certain threshold is used for the hue
uncertainty function. sf is another constant used to control the saturation
level of the uncertainty function. For the CIE L a"b" color space. a value of
0.0017 for s f is suitable.

Saturation. In general. people are more interested in colourful regions with
vivid colour. Colour saturation is considered by Braun [8] as a perceptual
saliency factor. Simply. the importance of saturation is just the saturation

level of the mean colour of the region .

[saturnhtm = "at(RA) (38)

Location. The equation proposed by Osberger et al. has a sharp cut-off be-
tween the centre 25% of the image and the surrounding region. A more general

form of this function is defined below:

Z rrel(r floc(.ry)
[lomnon(Rx) = przel( i)(eg)

where fi,-(£. ¥} can be any function relevant to the importance of location. [n

(3.9)

particular. the following function is used:
fiel 2.y} = (= = 05) x t(2 - 0.5)
w h

where

l if abs(v) < 0.25
tHy) =
2 —dv otherwise

w and h is the width and height of the image.

New foreyround/background measure. [n order to solve the problem associated
with Osberger and Maeder’s method discussed in the previous section. their
method is modified. First. global region properties are used to group regions
together if there is a high probability that these regions come from a single ob-
ject. In reality. shadows. highlights. uneven lighting, and many other sources
of noise are verv common and unavoidable. Thus. it is better to perform the
similarity testing adaptively so that the merge restrictions are tighter when
the noise level is low and looser when the noise level is high. One possible

31



3.1 PERCEPTUAL SALIENCY FACTORS

approach is to impose a restriction that only regions which form a single con-
nected cluster in the feature space will be considered to be ~similar”. With
this approach. the usage of an absolute threshold can be avoided. Since two
separate objects can also have similar features that form a single cluster in
feature space. as shown in Figure 3.3. another measure of “occlusion™ must
be used to estimate how likely the two regions belong to a single object and
are separated by an occluder. In real scenes. we often observe that if a large
background is separated bv objects in the foreground. a large portion of the
background would still be connected to the border with several much smaller
isolated regions. Hence. a more conservative condition on the ratio of regions
can be applied to further reduces the error probability of merging two different
regions. A high probability for “occlusion” will be assigned only if the ratio of
a region is much smaller than the total area of all the regions that are “sim-
ilar” to this region. To solve the second problem associated with Osberger’s
method where the main objects vccupy a large portion of the image border.
the foreground/background measure can be defined as the ratio between the
number of border pixels and edge lengths. The final foreground/background

meastire is defined as follows:

A . borderpirel(R,
Lyy(R) = mun( pirell %)

houndarypirel(R,)
Zcmditmﬂ( R,.R)=1 borderpirel( RJ )

L-&-(1- A
X thmdihon( R,.R.)=1 boundarypizel(R,)

)) (3.10)

where
A(R:)
annditian( R,.R.)=1 A(R))
1 if R, and R, form a single cluster
condition(R,. R)) = and borderpirel(R;) > 0

0 otherwise

£ =1-2+mmn(0.5.

)

borderpirel(R,) is the number of pixels in region R, which also belong to the
border of the image. and the boundarypizel(R;) is the number of pixels in the
boundary of region R,. The function £ is the probability of these regions being
occluded by other objects.
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3.2. Methods for Combining the Importance Fac-
tors

After obtaining the importance values for each factor, they have to be combined
to give an overall ranking for each region. A simple summation method proposed by
Osberger and Maeder [86] and four more complex combination strategies proposed
by Itti and Koch [49] will be discussed in this section.

3.2.1. Osberger and Maeder’s Method

Osberger and Maeder [86] choose to treat each factor as being of equal importance
since it is difficult to determine exactly how much more important one factor is than
another. They observe that verv few regions would respond strongly for all factors
and those regions identified by humans as salient usually have a verv high ranking
in only some factors. Hence. each factor is squared and then summed together to

produce the final importance value as follows:

n

IM(R) =) _(I(R))} (3.11)

k=1

3.2.2. Itti and Koch’s Method

[tti and Koch {49} have conducted an experiment to compare four feature corm-
bination strategies for saliencv-based visual attention systems. The four strategies
they considered are: (1) simple normalised summation. (2) linear combination with
learned weights. (3) global non-linear normalisation followed by summation. and (4)
local non-linear competition between salient locations. In their visual attention sys-
tem. visual saliency is defined as the magnitude of spatial discontinuities in colour.
intensity. and orientations at different scales. A large number of feature maps (a total
of 32) is generated and combined by one of the four methods. They also observe that
salient objects appear strongly in only a few maps and may be masked by noise or
less salient objects. Experimental results show that the simple normalisation method
consistently vields poor performance while the “trained” method vields the best per-
formance. However. different learned weights are used for different image classes. The

other two methods vield intermediate performance. Since the last two methods (3
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and 4) do not require any learning procedures or any specific models. they are more

generic and are applicable to a broader range of situations.

3.2.3. Discussion

As discussed in section 1.2. the foreground/background measure is more impor-
tant than the contrast and shape measures in region-based attention. Hence. equal
weights should not be used. In Itti and Koch's experiments. the “trained” method
consistently vielded the best performance with a two-fold improvement when com-
pared to the other methods. Since the parameters are allowed to vary for different
test images. this method cannot be used in a general vision system. However. it
would be useful to analyse the performance of a “trained” method with only one set
of parameters for all test images. The other two methods proposed by I[tti and Koch
are more generic. however. the spatial normalisation functions used in these methods
cannot be extended directly to a region-based feature map. Thus. these two methods
will not be considered. As a result. the integration method that was used in this
research is the weighted summation of all importance factors. with the weights ob-
tained by experimentation from a large collection of test images. [f no specific weights
fon any factor can be found to improve the overall performance with confidence. one
can either use equal weights for all importance factors or classifv the test images into

different categories and then find the optimum weights for each group.

34



CHAPTER {. FEATURE SELECTION

CHAPTER 4

Feature Selection

The perceptual saliency functions described in Chapter 3 require the image to be pre-
segmented into coherent. non-overlapping regions. that resemble the original physical
objects in the scene. However. before an image can be segmented. it must be trans-
formed into a set of feature maps that allow similarity and surface continuity to be
defined. The most commonly used features for image segmentation are colour {20].
texture [85]. and position {13]. These features are intuitive to humans in discrim-
inating and separating different objects. We usually use colour and texture when
describing the visual properties of an object such as brown and curly hair. a smooth
and shiny surface. etc. Position is also an important cue in discriminating objects
since if two regions are far apart in the spatial domain. they have a lower probability
of belonging to the same object. Biologically. special neurons in the human visual
system are capable of detecting all of these features at an early stage. Spatial infor-
mation about the objects can be easily included in the feature vector by including
the x.y-coordinates of each pixel. However. utilising this extra information can have
negative side-effects such as breaking up a large uniform region [13].

For colour and texture. many feature spaces and computational methods have
been proposed in the literature. Hence. selection criteria must be adopted te choose
a particular representation scheme for these features. Since the objective of the
segmentation stage is to have the image segmented as if it were performed by a
human. the feature space should also be perceptually uniform. That means the
perceived difference of any two samples separated by a fixed distance in the feature

space should be counstant.
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After the extraction of these features. they must be combined to form a single
feature vector. During this integration process. decisions have to be made on how the
features are to be combined and what to do if these features contradict each other.
For example. how similar is the perceptual difference of a unit distance in colour space
compared to a unit distance in texture space? In addition. since texture refers to the
spatial distribution of colour. the colour of the pixels within a texture region will not
be the same or even similar. unless it is a uniform “non-texture” region.

In the following sections. a brief review of colour and texture is presented. as well

as methods for resolving conflicts that arise from the feature integration process.

4.1. Colour

The human visual systern uses three different kinds of cones. each with different
spectral sensitivity. to sense the colourful world (see Figure 4.1). These cones have
peak responses at wavelengths of 380. 340. and 440 nm. respectively. With these
three receptors. we can distinguish coloured lights with different wavelengths and
intensities. Since the power spectrum of light in the visible frequency range is encoded
bv three channels only. this encoding is a many-to-one mapping and the original power
spectrum cannot be recovered completely by the human visual system. However. this
provides a useful additive property of the appearance of light. A mixture of two lights
at different wavelengths can produce a colour that appears different from the two
original light sources. As a result. the whole visible colour spectrum can be produced
by mixing three or more primarv colours at different proportions. As three channels
are used in the human visual svstem. trichromacy has been adopted in computer vision
for representing colour quantitativelv. However. the wavelengths of the three primary
colours defined in the CIE {Commission [nternationale de l'EcIairage) standard are
700. 546.1. and 435.8 nm instead of the peak responses of human cones in order to
match the light emitted by artificial light sources.

Based on this standard. all image capture and display devices are designed with
these three primary colours. subject to small variations depending on the actual
materials used. The “raw” format of any colour image is the RGB format specifyving
the relative intensity of the three primaries. Any colour is represented by a point
C(r.g.b) in a colour cube. as shown in Figure 4.2. The origin of the RGB colour space
is the ~colour™ black and the full brightness of all three primaries together appears as
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FIGURE 4.1. Spectral sensitivity of cones from Vos. Estévez. and Wal-
raven [137!

white. Three corners of the colour cube located on the major axes correspond to the
three primary colours: red. green. and blue. The remaining three corners correspond
to the secondary colours: vellow. cvan. and magenta.

In the computer. cach of these axes is encoded with 8-bits. ranging form 0 to 253.
[nitially. the RGB colour space is linearly related to the intensity. However. because
of the nonlinear relationship between the input signal and the resulting brightness
of most display svstems. such as the cathode ray tube{CRT). the input signal to a
display device must be modified to eliminate this nonlinear property. This compen-
sation method is called gamma-correction. For a typical monitor. the electro-optical

radiation transfer function is often expressed by a mathematical power function:
[ = 4 x|9amma (4.1)

where [ is the brightness of the pixel. A is the maximum luminance of the CRT and
1" is the applied voltage in the range of 0 and 1. For a conventional CRT. gamma is
around 2.2. For convenience. images or photographs. especially those posted on the
internet. which are intended to be viewed primarily from a PC. are already gamma
corrected during the encoding process so that no extra correction is needed when
displaying them. The resulting colour space is called nonlinear RGB space or sRGB
space [118].



11 COLOTUR

N
i B
! i
I |
| I Blue Magenta
L}
I Cyan X Whir
I 1
H ]
H t
‘
]
! : /qu.g.b)
1 t
i /
]
Y -~ R
i P Black Red
: Green Yellow
| G
{

FiGCRE +.2. Colour cube

4.1.1. Colour Spaces

Due to the logarithmic relationship between the perceived brightness by humans
and the actual intensity. the linear RGB space is perceptually nonlinear. Moreover.
this colour system is not intuitive since people are more accustomed to the three ba-
sic attributes of colour: hue. saturation. and brightness. To correct these problems.
new colour spaces and transformations of the RGB colour spaces have been proposed
(48, 147, 96]. Some colour spaces are simply linear transformations of the RGB
space: CIE 1931 XYZ and Yiry. CIE 1960 YUV. and CIE 1976 YU V" Colour spaces
generated by nonlinear transformation include: Y CgCgr(JPEG and MPEG digital
standard). PhotoYCC(Kodak PhotoCD system). HSI(Hue. saturation. and inten-
sity). CIE 1976 (L*2™h*). and CIE 1976 (L*u"v"). Some colour spaces are obtained
by collections of colour samples in the form of patches of paint. swatches of cloth.
pads of papers. or printings of inks. Such systems are referred to as colour order
systems and include the Munsell system. DIV system, Coloroid svstem (designed for
use by architects). and OSA (Optical Society of America) system. No mathematical
transformations have been proposed vet for these colour order systems except the
Munsell system {77].
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4.1.1.1. CIE 1931 XYZ and Yzy
The CIE 1931 XYZ svstem is defined such that all visible colours can be defined
using only positive values [14]. Transformation from RGB to XYZ is defined as:
X=0490=R+0310«G +0.200« B
Y =0177=R+0812«G +0.011« B (+.2)
Z =0.000=R+0.010«G+0.990« B
where both the RGB and XYZ values range from 0 to 1.

CIE also defines a normalisation process to compute the chromaticity coordinates

to facilitate the representation of colour in the absence of brightness:

R ¢
TSN+ v =2z
v
- 4.0
Y =X+ v=2 (43)
(4.4)

4.1.1.2. CIE 1960 Yuv and CIE 1976 Yu'v’

Both Yuv and Yu v are designed to produce a uniform chromaticity scale diagram
in which a colour difference of unit magnitude is equally noticeable for all colours.
However. the logarithmic response of the human eve on brightness is not modelled.
The Yur and Yu'v’ are obtained by the following equations. and Y is unchanged from
the CIE XYZ system.

and
U = u = 4 4‘?
Ty =2r+3

I -
vt = lav = smpe—*t
12Y —2r +.

4.1.1.3. Y CgCr Colour Space
The Y CgCpr colour space is used in the JPEG and MPEG digital image format.

The three channels are luminosity(Y’). blue chrominance(Cg) and red chrominance(Cg).

The separation of lumirance from chrominance allows image-compression techniques
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to take advantage of the eve’s lesser need for resolution of colour than of brightness.
RGB values are converted to Y CgCpr values in two steps. First. a nonlinear transfor-
mation is applied to the signal. The resulting values are converted to Y'CgCpr through

a linear transformation.

R = R¥
GI = GOAS (4-6)
Bl — BO.-IS
Yo = 0.2990x R +0.3870+«G" +0.1140=« B’
Cg = -0.1687« R -0.3313=G" +0.3000 = B +.9
Cg = 0.5000=«R -04187+G" -0.0813+« 5B’

4.1.1.4. PhotoYCC Colour Space

The Kodak PhotoYCC colour space is designed for encoding images with the
PhotoCD system and is similar to the YCgCgr colour space. The only difference
is that a different transformation matrix is used in the second step. The goal of
the PhotoY'CC colour-encoding scheme is to provide a definition that enables the
consistent representation of digital colour images from negatives. slides. or other high-
quality input and allows rapid. efficient conversion for video display. The nonlinearity
of this colour space is based on the nonlinear property of video displays instead of
the logarithmic sensitivity of the human eve.

For R.G.B > 0.018

R = 1.099 « R*% —0.099
G = 1.099«G*" -0.099 (1.8)
B’ = 1.099 « B“® - 0.099

For R.G.B <0.018

R =15+«R
G =45+«G (4.9)
B'=13«B
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' = 0299 =R +0387 *G +0.114 =B’
Cl = -0.299 =R -0.387 =G’ +0.886 =B’ (4.10)
C2 = 0701 =R -0387 *G' -0.114 =B

4.1.1.5. HSV (hue, saturation, and value) Colour Space

Different versions of HSV colour space have been proposed in the literature [122]
43]

The most commonly used HSV colour space is the cylindrical space where
maximum saturation does not depend on the intensity value [114]. The problem
with this space is the high sensitivity to noise for very dark colours. Alternative
colour spaces are generated with different relationships between the intensity and
maximum saturation. such as linear {37] and quadratic [144|. Despite modifications
to the shape of this colour space. all HSV colour spaces make no reference to the
perception of light bv the human vision svstem. The transformation from RGB to

HSV proposed by Travis [122] is given below:

UV = mar(R.G.B) (4.11)
s - I—mm‘(’R.G.B) (£.12)
I'—R V-G
RI = . I= . .
let U — mun(R.G. B) G " —minkC.B M
-
B = B

" —min(R.G. B)
3+ B if R=mar(R.G.B) and G = min(R.G. B)
1-G" if R=max(R.G.B) and G # min(R.G. B)

(
(

H o= | l1+R ifG=max(R.G.B)and B = mm;R.G. B) (4.13)
(

,

3-B" if G=max(R.G.B) and B # min(R.G. B)
3+G" if B=maz(R.G.B) and R = min(R.G. B)

\ 5 - R’ otherwise

4.1.1.6. CIE 1976 L a"b" and CIE 1976 L u"v"

Both CIE L a®bh* and CIE L u*v" color spaces are intended to be uniform colour
spaces. The colour differences in chromaticity and luminance are both taken into
account in the minimisation process of the variation of perceptual differences of unit
vectors. The nonlinear transformation for L* is designed to mimic the logarithmic
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response of the human eve. The CIE L u"v" colour space is based on the CIE 1976
Yu'v" while CIE L*a*b" is based directly on CIE XYZ. The equation for the parameter

L* is the same for both spaces:

N\ 13 i
116 (%) " - 16 if & > 0.008856

L= "/ (4.14)
903.3 :—n) otherwise
o= 13« L - u)
v* = 13« L7(x' —up) (4.13)
X Y
a’ = 500*(fn(ﬁ) —fn(ﬁ))
h = 200*(_fn(—$-:)—fn(—22—’:)) (4.16)
where
, tli3 if t > 0.008836 _
falty =9 __ _ 6 , (4.17)
(8Tt + o otherwise

Y. X and Z,, define the appropriately chosen reference white and u;, and ¢], are the

values obtained from the equation for Y u'v’ using this reference white point.

4.1.1.7. The Munsell System

The Munsell system is one of the most widely used colour order systems. origi-
nated by the artist A.H. Munsell in 1905. An important feature of the Munsell system
is that the colours are arranged so that. the perceptual difference between any two
neighbouring samples is as close to constant as possible. Mivahara and Yoshida
{77} proposed a transformation. called the Mathematical Transformation to Munsell
(MTM). based on the CIE 1976 L*a"b". However. this is just an approximation to
the Munsell system. There does not exist a simple and exact mapping from RGB or
XYZ to the Munsell coordinate.
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4.1.2. Conclusions

All linear transformations of the RGB space do not agree with the logarithmic
brightness sensitivity of human eves. Among the nonlinear transformations. it is not
clear which colour space has the highest perceptual uniformity and how much more
uniform one colour space is when compared to another colour space. Nevertheless.
since the CIE L u"e¢" and CIE L a™b" colour spaces both have been tested extensively
using psvchophysical experiments {117] and are widely accepted as perceptually uni-
form spaces. either one of these two colour systems can be used in representing the

surface colour of objects. In particular. the CIE L*a*b* is selected for this project.

4.2. Texture

Texture is an important attribute in describing the surface properties of objects.
Images of real objects often exhibit certain particular patterns of colour. These
patterns can be the result of physical surface properties. such as irregular surface
orientation. or they could be the result of reflectance differences. such as differences
in material and colour. This perception of texture. while very obvious and effortless
for humans. is very difficult to define formally and precisely. A large number of
features have been identified by researchers and have proven to play an important role
in texture identification. These features include coarseness. contrast. directionality.
line-likeness. regularity. roughness. uniformity. density. linearity. direction. frequency.
phase. and complexity {120][1]{63]. These features are not independent and are
correlated with each other. such as directionally and line-likeness. Because of the high
dimensionality of the texture space, there is no single method of texture representation
which car model adequately all aspects of texture {133]. Most texture research has
been conducted on the Brodatz texture collection. samples of which are illustrated in
Figure 1.3.

Although there is no generally agreed definition of texture. several basic assump-
tions are commonly used in texture analysis. First. textures are homogeneous patterns
or spatial arrangements of pixels. Many papers on texture have considered onlyv grey-
scale images. although colour texture has become a focus of recent research [89][51].
Secondly. unlike colour. texture is a region property instead of a point property. As
a result. its definition must involve pixels in a spatial neighbourhood. The decision

on selecting a suitable size for this neighbourhood depends on the texture type and
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FIGURE 14.3. Texture samples from the Brodatz collection

the trade-off between noise-suppression and edge-localisation. With a larger spatial
support. a more robust estimation of the texture can be obtained. At the same
time. utilising a bigger neighbourhood reduces the spatial resolution of the texture
bv smoothing out the edges. The last assumption on texture is its multi-scale prop-
erties. For example. a coarse view of a tree shows the leaves and branches while a
closer look at the tree reveals the fine details of the bark and the veins of the leaves.
Unfortunately. it is unclear where this transition (when the leaves are perceived as

objects by themselves) occurs in texture segmentation.

4.2.1. Related Work on Texture

A substantial amount of work has been done on the problem of texture analysis.

classification. segmentation. and synthesis. A large number of surveys have already
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been published [142] [40] [138] [135] [28] [100] [84] [133] [98] on texture analysis
alone.

In {133]. Tucervan and Jain categorise existing texture models into four major
classes: statistical. geometrical, model-based. and signal processing method. Statisti-
cal methods extract texture features from the spatial distribution of grev values. such
as co-occurrence matrices [41]. Under the category of geometrical methods. texture
is defined as a composition of “texture elements” or primitives. Voronoi tessellation
features proposed by Turcervan and Jain [132] is one example of this category. [n
model-based methods. textures are presumed to possess certain structures and these
structures can be described locally. Based on these assumptions. Markov random
fields (MRFs) [88] and fractal geometry are commonly used for modelling images.
These methods can be used not only for describing texture. but also to synthesize it.
[n signal processing methods. the texture features are obtained from a set of filtered
images. Studies in psychophysiology have suggested that the visual system decom-
pouses the image formed on the retina into filtered images of various frequencies and
orientations [12]. The study conducted by De Valois et al. [25] on the brain of the
macaque monkev concluded that simple cells in the visual cortex of the monkey are
tuned to narrow ranges of frequency and orientation. Moreover. the receptive fields
of simple cells can be modelled closely bv Gabor functions. These studies have led to
the use of multi-channel analysis for texture representation. As a result. Gabor and
wavelet models. in particular. are widely used for texture analysis.

Very few quantitative comparisons between different texture feature representa-
tion schemes have been presented. Most studies have used mosaic images for bench-
marking. These test images are generated by randomly selecting two or more texture
samples from the Brodatz's collection and then combining them side-by-side to form
a texture mosaic. Despite the small number of comparative studies. experimental re-
sults do not agree with each other [98][16]. Co-occurrence features give the best per-
formance in the studies of Strand and Taxt {119] and Ohanian and Dubes [83]. while
Laws [63] and Pietikainen et.al. [94] had the opposite conclusions. Recently. Randen
and Husoy [98] compared a large number of filtering approaches including the Gabor
filter. different versions of the wavelet. and two classical non-filtering approaches. co-
occurrence and auto-regressive features. This study shows that the performance of
various filtering approaches vary for different textures. No single approach performs
consistently well for all test images. and thus. no single approach may be selected as
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the clear winner. However. if only the overall performance is examined. the 16-tap
FIR quadrature mirror filter bank achieves the best overall results. To obtain the
performance on real scene images instead of synthetic images. Chang, Bowyver. and
Sivaguranath [16] compare grey-level co-occurrence. Laws texture energy and Gabor
filters on 35 real images. Their results show that the performance of these three
texture algorithms is much higher when tested on mosaic images than on real scenes.
For example. 85% classification rate for Gabor filters on mosaic image and 71% on
real images. In this study. Gabor filters offer the best performance.

The assumptions and objective for segmenting real scene images differ from that
of segmenting mosaic images. For a real scene, it is preferable to have the image
segregated into several non-overlapping regions depending on their perceptual sim-
ilartty. since the size of the objects may vary from 3-pixels wide to half the size of
the whole image. On the other hand. the objective of segmenting mosaic images is
to segregate different texture patches regardless of their visual similarity. Thus. it is
desirable to test not only a texture algorithm’s discrimination power. but also how
close the distance measure is to the perceived difference.

In an attempt to reduce the dimensionality of the texture space, Rao and Lohse
[99] have conducted a psvchophysical experiment to identify the high level features
that are most relevant to the attentive perception of textures. To achieve this. thev
had 20 subjects perform an unsupervised classification of 30 pictures from Brodatz’s
album. Both hierarchical clustering analvsis and multidimensional scaling analysis are
used to identifv and verify the dimensionality of the experimental data. This analysis
shows that 95.5% of the variability in the classification data is preserved in a three-
dimensional space. Rao and Lohse interpret these axes as repetition. orientation.
and complexity. Although the sample size of 30 may not be large enough to give
a complete picture of the texture space. the resuit of this study still indicates that
many texture features are highly correlated and as few as three dimensions may be

enough to represent a wide variety of textures.

4.2.2. Related Work on Unsupervised Segmentation of Natu-
ral Images

Many new image segmentation algorithms proposed in the last few vears utilise
both colour and texture to segment images. Most of these algorithms have been tested

on a large set of real images to show their robustness and performance. Carson et.
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al. [13] use joint colour. texture. and position as feature vectors. Instead of using
classical methods for representing texture. they introduce a novel method to estimate
the scale parameter of the underlying texture. At each pixel location. the average
magnitude and direction of edge vectors within a local neighbourhood at several
scales are computed. The process of estimating the “actual” texture scale is based
on the changes in the magnitude and direction of the local edge vectors across scales.
This method is similar to a soft version of local spatial frequency estimation. Three
texture features. polarity. anisotropy. and scale. are extracted. Williams and Alder
{144] use a mask for feature extraction. The mask consists of k*k blocks and each
block is n pixels wide. Within each block. the average intensity. standard deviation
of intensity. and average colour are computed. Within this framework. texture is
implicitly extracted by the standard deviation of intensity within each block and the
spatial distribution of colour within the mask. Liu and Picard [65] have investigated
the Wold random field model for modelling texture. The Wold model decomposes
the image into three mutually orthogonal components which can be described as
periodicity. directionality. and randomness. These three properties correspond to the

three most important perceptual dimensions identified by Rao and Lohse. [99].

4.2.3. Texture Representation

As discussed in the review papers. not a single representation scheme can he
identified as the clear winner that can perform consistently well on all test images.
Hence. it is not clear how to select a particular scheme for general image segmen-
tation. However. since the segmentation results are usually judged by a human. it
would be desirable to have the texture representation scheme that most closely re-
sembles the human visual svstem. In particular, Gabor filters have proved to model
sufficiently the psychophysical data obtained in texture discrimination experiments
122] {55|. Moreover. Gabor filters have some desirable optimality properties. Thev
attain maximum joint resolution in the space ard frequency domains [23]. This prop-
erty is highly valuable in balancing the conflicting objectives of accurate estimation
of texture features in the frequency domain and good spatial localisation. Hence. Ga-
bor filters are selected to represent texture. Transformation on this texture space to
simulate the orientation invariance and perceptual uniformity will also be discussed
in the following sections.
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4.2.4. Gabor Filter Bank

A 2-D Gabor function can be defined as a complex sinusoid modulated by a 2-D
Gaussian function in the spatial domain. Thus. Gabor functions are complex-valued
functions in R*. However. some techniques use real-valued. even-symmetric Gabor
filters only [53]. A family of 2-D Gabor function g(r. y) and its Fourier transform
G(u.v) are characterised by the following formulas [69]:

g(r.y.0.0.f) = __ﬂ'olrgyexp(% :?f’i] )ﬂm) (4.18)
Glu.c.8.f) = erp(% ‘u”_ﬁl“+£%1) +e1:p(h‘“"?, ‘;%I) (1.19)
rg = rcos(8) + ysin(6)
yog = —rsin(8) + ycos(8)
g = ucos(#) + vsin(6)
vg = —usin(d) + veos(d)

where 7, = 1/270, and 0, = 1/270,. 8 is the orientation of the Gabor kernel. o, and
a, control the width of the Gaussian envelope and f is the frequency of the sinusoidal
waveform. The frequency and orientation selective properties of a Gabor filter are
more explicit in the frequency domain as shown in equation(4.19). Figure 4.4 shows
the real and imaginarv parts of a Gabor filter with 8 = 0. a wavelength of 3.3 pixels.
and unity aspect ratio (¢; = o). The frequency response of the filter is also shown

on the same figure.

4.2.4.1. Parameter selection

Due to the fact that Gabor wavelets are not orthogonal. some information in the
filtered images is redundant and some of the original data may be lost. Hence. the de-
sign objective is to utilise the smallest number of Gabor filters to cover approximately
the whole feature space. This objective can be achieved by having the half-peak mag-
nitude of the filter responses in the frequency domain touch each other. As in {53]
[69]. the half-peak radial frequency bandwidth, B., and orientation bandwidth, By
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FIGURE 1.4. (a) Real and (b) imaginary components of a Gabor fil-
ter with a wavelength (1/f) of 5.3 pixels and unity aspect ratio. (c)
Frequency response of this filter.

are given by

_ f+ouv2Un2 R

o = fom (f——\/T_ 20
vV 2An2

By = 2tan’! (ff—?.[—n:) (4.21)

where B, is in octaves and By is in degrees. If the frequency of two consecutive scales
are f; and f,. the required bandwidth. B, is then given by logs(fi/f»). Once the
highest radial frequency (f;) and the scaling factor of the kernels (fy/f1) are fixed.
the width of the Gaussian function (¢, and o) can be obtained from equations(4.20
and 1.21).
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0.5 0 0.5

FIGURE 4.5. The frequency response of a dvadic bank of Gabor filters
with 3 scales and 1 orientations.

When implementing a Gabor filter bank. it is necessary to choose the number ot
scales (wavelengths) and orientations. This determines the total number of channels
in the filter bank. Randen and Husoy [98] found that the performance of texture
classification increases with the number of features. The overall best texture feature
representation in their study also has the highest feature dimensionality of 40. On the
contrary. Smith [113] discovered that the algorithm with 3 scales and 4 orientations
gave the best overall accuracy on 10 texture classification problems. He found that
utilising a higher number of scales and orientations could have negative effects on
performance. He called this observation the peaking phenomenon. The frequency
response of the bank of 12 Gabor filters at 3 scales and 1 orientations is shown in
Figure 4.5. This filter bank covers most of the frequency plane except for the low
frequency range at the centre. For natural images. low frequency filters will pick up
the structure of objects rather than the objects’ texture. Hence. it is preferable to
exclude the extremely low frequency filters.

One of the major issues in filter design relates to the efficiency of filter implemen-
tation. In the general form of the Gabor function, it is not a separable filter. This
means a single convolution of a Gabor function and an image, with a size of K x K

and .V x .V respectively. requires N2K? multiplications and additions. One way to

a0
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reduce this computational workload is by reducing the redundancy of the Gabor de-
composition using a pyramidal approach [38|. Because of the frequency selective
property of the Gabor filter. the band-passed image can be sub-sampled without any
loss of information. Hence. efficient methods. such as Burt’s HDC method [10]. can
be used to down-sample the image before the convolution. However. this approach
also limits the choice of subband decomposition to dyadic (octave band) decomposi-
tion. It should also be noted that the filtered images are smaller than the original
image due to the sub-sampling. In order to generate a feature map at the highest
resolution. up-sampling and interpolation is required.

An alternative solution to this problem is proposed in {51]|. The Gabor function is
decomposed into 2 separable functions. The requirement for this decomposition is to
use a circular shaped rather than an elliptical shaped Gaussian function. Replacing
both o, and o, by a single variable o. the Gabor function in equation 4.18 can be

expressed as a separable function as follows:

1 e[p(&-»‘.’ﬁj!rmn(ﬂ) N 1 eIp(i%—'.’.:nfysm(G))

gir.y.f.0 f) =
2o 2ra

(-£.22)

This filter is more efficient to implement than the direct implementation since
convolving an A x A filter with an .V x .V image takes only 2A'N? computations.
Besides. unlike the pyramidal approach. there is no constraint on the scaling factor of
the Gabor filter banks and no up-sampling is required as the filtered outputs already

have the same dimensions as the original image.

4.2.5. Generation of Texture Feature Set

An overview of the generation of a texture feature set is shown in Figure 4.6.
First. a set of Gabor filters is applied to the input image. generating n texture chan-
nels. These filter responses are then subjected to a series of linear and nonlinear

transformations and smoothing to form the final texture feature maps.

4.2.5.1. Linear Transformation on Texture Space

For natural scene images. it is desirable that the texture features are invariaat
to rotation and scaling. For example. the stripes of the zebra in Figure 4.7a are at
different orientations and scales. In order to have the zebra segmented out as a single

region. the texture features must be insensitive to changes in orientation and scale.
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FIGURE 1.6. Block diagram of the generation of texture features. The
filter bank (F B) generates .V texture channels. The first linear transfor-
mation (LT1) approximates the orientation-invariance transformation.
resulting in A’ channels where A" < V. The next nonlinear transforma-
tion (NT1) and low-pass filter (LPF) produce a local energy estimation
of the filter output. The second nonlinear transformation (NT2) is
included to compensate for the effect of NT1 and the final linear trans-
formation (LT2) improves the perceptual uniformitv of the texture
space.

One way to remove the orientation selectivity of the Gabor filters is by summing
the filter responses of different orientations at each scale [114]. The resulting filter
acts like a band-passed filter which can be modelled by Difference-of-Gaussian (DOG)
filters. The magnitude of the Gabor outputs of the zebra image are shown in Fig-
ure 4.7. This test image explicitlv shows the discriminative power of the Gabor filters
on scale and orientation. The horizontal stripes are completely separated from the
vertical and diagonal ones. However. the texture features of the zebra’s bodv form
several well-separated clusters. From the combined channels. (f) and (k). the shape of
the zebra becomes more prominent and complete. It should be stated that combining
channels of different orientations will lower the discrimination power since classifica-
tion between two texture regions can no longer be based on the distribution of energy
across different orientations. That means two textures are not distinguishable if their
total amount of energy within each frequency channels is the same. regardless of
their directionality (eg. mono-direction or bi-directions). Fortunately. this situation

seldom happens in natural scenes.

4.2.5.2. Local Energy Measure

[t is a common practice to use the local energies as the texture features. rather
than directly using the output of the filters. This approach is understandable since
the filter output of a sinusoidal signal will still be a sinusoid. see Figure 1.7. (b)-(f)
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FIGURE 4.7. (a)A zebra image. Magnitude of different texture chan-
nels at 2 scales and { orientations :(b)-(e) capture the high frequency
components of the image and (f) is the summation of (b)-(e). (g)-(j)
capture the low frequency components and (k) is the summation of

(g)-(3)-



42 TEXTURE

in particular. Hence. a local energy function. such as a Gaussian, rectangular. or
circular function. is used to estimate the energy in a small local region. Among these
functions. the Gaussian kernel clearly outperforms the other two functions because of
its smooth transition from the centre to the boundary without any discontinuities. To
achieve high edge localisation. a small neighbourhood is preferred. On the other hand.
to achieve accurate energy estimation. a large local neighbonrhood is required. As a
compromise. the size of the filter will be set to a function of the radial frequency of
the Gabor filter. A Gaussian smoothing function. g, = 1/(2v/2f) is used by Randen
and Husoy [98] and o, = 0.5/ f is suggested by Jain and Farrokhnai [53].

In order to increase the feature distance between different textures while reducing
the variance within each texture region. a nonlinear function is commonly applied
before the smoothing. Commonly used nonlinearities are magnitude {r|. squaring
(r)*. and rectified sigmoid |tanh(a - r)|. To provide a feature value that is in the
same units as the input signal. a second nonlinear function is applied. This function
is an inverse of the first nonlinear function to counterbalance its effect. Different
characteristics of these nonlinearities can be obtained by testing them on a test signal.
Because of the band-limited property of Gabor filters. the filter output will contain
a set of sinusoidal signals within the frequency bandwidth of the filter. The strength
of these signals are usually not the same depending on their central frequencies and
amplitudes. Hence. a test signal is created to simulate three different textured regions.
for simplicity. These regions are two sine waves which differ in magnitude and a
no-response region. Salt and pepper noise is added to the signal to simulate the
randomness and uncertainty in real images. This test signal and the resulting local
energies are shown in Figure 4.8. The saturation parameter. a. of the sigmoid function
is set to 0.25 as suggested by Jain and Farrokhnia {53]. A larger value for this
parameter will cause the signal to saturate more rapidly. causing the sine wave to
become more similar to a square wave. From Figure 4.8b. comparing the fluctuations
in the second region and the differences between the mean energy of the three regions.
we can see that the sigmoid function produces the smallest intra-texture variation
while squaring achieves the highest inter-texture separation. From experimentation.
we have found that it is more important to have a larger inter-class distance than
a lower intra-class variance. As a result. squaring will be used in the subsequent
experiments.
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FIGURE 1.8. (a) Test signal. two sine waves with different magnitude
and a no response region. with salt and pepper noise. (b)Local energy
estimated by three different nonlinear functions: magnitude. squaring.
and rectified sigmoid. a = 0.25.

4.2.5.3. Perceptual Uniformity of Texture Space

Unlike the colour space. there is no generally agreed perceptually uniform texture
space. However. it is still desirable to have a texture space that at least does not
violate any obvious perceptual properties of texture. For example. a texture with a
dominant direction at a high spatial frequency will be perceptually closer to a texture
with a similar surface pattern at a lower spatial frequency than to a smooth non-
texture region. [f the orientation-invariance transform is performed. the number of
texture channels will be reduced from 12 to 3. one channel per scale. The resulting
texture space can be easily visualised in 3-D as shown in Figure 4.9a. where g,. ¢o.
and g3 correspond to the responses of the low. medium and high spatial frequency
components. [f one calculates the Euclidean distance between the three vertices. v;.
rr.and vy, of the triangle in Figure 4.9a. and the distance between these three points
to the origin. it is clear that the distance is /2 between v,. v2. and v4. and 1 between
any of these points to the origin. This means that these three points are closer to the
origin than to each other. The visual meaning of these four points is: v; has a unit
amount of energy at low frequency. while v, and v; have the same amount of energy at
medium and high spatial frequencies respectively. Obviously. the origin corresponds
to a non-textured region. Although it is not clear how similar these four texture
features are quantitatively. it would never be the case that a texture region like v or
r's Is closer to a smooth region than a region like v; which contains a similar amount
of energy. Hence. the objective of this transformation is to rectifv this problem so
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FiGUeRE 4.9. A transformation of the texture space is proposed to im-
prove the perceptual uniformity. This transformation normalises the
distance between the origin and the three vertices v1. v2. and v3 and
the distance between these three vertices.

that the distance between any of these four points is the same. One linear transform

that achieves this objective is as follows:

5 = Mmtg+ 0

' V3

sy = JIx (g1 —0.5x (g2 +g3))

5 = J x v073(gg - gg) (423)

where J is a weighting factor that controls the relative importance of scale differences
in the new horizontal plane. s,. sy. versus the differences in total amount of energy.
s3. This transformation is a combination of rotation and scaling (see Figure 1.9b).
After the transformation. the three vectors become:
1
ri(s1.52.53) = (—=.
V3
1 - —_
ra(s1. 82.83) = (—=.-0.534.V0.753J)

3.0)

V3
Ea(s1. 52.53) = (%. ~0.53. ~V0.733) (4.24)

To determine the value of the parameter 3. one can set the distance between v,
and the origin and the distance between v; and v, in the new feature space to be the
same. After simple manipulation, the value of 3 is found to be /1/3. To compress

further the distance between v;. 12, and v4. a smaller value for J can be used.
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4.3. Feature Integration

After extracting features for colour. texture. and position. thev must be combined
to form a single feature vector. There are several issues that need to be addressed
before this can be achieved. The first issue is the dependency of the three sets of
features. I[n fact. the colour and texture of any region are highly correlated. A non-
zero vector in texture space implies that the surface colour in the local neighbourhood
is not uniform but varving. either randomly or in a regular pattern. Hence. a uniform
textured region will not be uniform in colour space. In order to have a textured region
remain intact after segmentation. the colour and texture features of the pixels within
this region must form a well-separated single cluster. This can be done by replacing
the colour with the average computed from a local region. The size of this local
region should be proportional to the scale of the texture. The straightforward way to
estimate the texture scale is to locate the scale which contains the largest amount of
energy. However. this method limits the resolution of scale to the number of frequency
bands used for texture extraction. To increase this resolution without increasing the
number of filters. interpolation can be used. Let e;. e1. and e3 be the amount of
energy at three scales and \;. \,. and \; be the wavelengths of the corresponding

texture channel. Then. the scale. s. can be estimated using the following formula:

€1 + €2y + €3A3 . € + €1 +ey
5= x min(l0. ——————
e + ey +e;3 st

) (4.25)

where the first term is the estimate of 5. and the second term is the confidence of
this estimate. When the magnitudes of e,. e;.and e3 are small. such as in a uniform
region. the scale of the texture is meaningless. Hence. the sum of e;. e,. and e; can bhe
used as a measure of the confidence of the estimation. The constant. st. controls the
saturation of this measure. The estimated scale of the image in Figure 4.7 is shown
in Figure 4.10.

The second issue in feature integration concerns the dynamic range of each feature
and their relative importance in perceptual grouping. Depending on the feature
extraction method. the dvnamic range can vary dramatically. For example. if RGB
colour space is used for representing colour. the dvnamic range of each colour channel
is 0 to 255. However. if the Lab colour space is used instead. the dynamic range is
0 to 100 for L. -300 to 300 for a. and -200 to 200 for b. As a result. the features
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4.3 FEATURE INTEGRATION

FIGURE 4.10. Estimated texture scale of the image in figure 4.7.
Brighter regions indicate larger scales.

must be normalised so that different features (colour. texture. and position) all have
the same variance and can be compared directly. It would also be desirable to scale
the dvnamic range of each feature so that the perceived difference of two regions
which differ by one unit in any dimension of feature space would be the same. Hence.
each feature is scaled by a weighting factor. which represents both normalisation
and scaling. before the integration. Since no perceptual theory exists regarding how
to select these parameters. these weights will be determined empirically. The final

feature vector is formed as follows:
flr.y) = [wccl. WeCa. WeC3. Weby Wk, ... Welk. Wppy. zuppg] (4.26)

where w,. w. and w, are the weights for colour. texture. and position. respectively.
and (cj.ca.¢3). (t.4y....tx). and (p;.p2) are the coordinates of colour. texture and

position respectively.
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CHAPTER 5

Image Segmentation

Segmentation is a process of partitioning a digital image into disjoint connected sets
of pixels. each of which corresponds to an object or region in the spatial domain. The
division of an image into regions is based on criteria such as similarity and proximity.
such that each region is homogeneous and no union of any two regions is homogeneous
with respect to the same criteria. Image segmentation is a very critical component of
an image processing system because errors at this stage influence feature extraction.
classification. and interpretation. Therefore. image segmentation has long been an
active research topic in image processing since the early 70’s [9]. Despite a vast
amount of research. the performance of even the most state-of-the-art techniques are
still less than satisfactory and cannot be regarded as general purpose. In this chapter.
a brief review of existing techniques on image segmentation is given. [ssues concerning

the implementation of the selected segmentation method will also be discussed.

5.1. Review of Image Segmentation Techniques

[n general. image segmentation techniques can be classified into four major classes:
clustering-based. edge-based. region-based. and hybrid methods. Clustering-based
methods refer to groupings that are done in measurement or feature space. while
edge-based and region-based methods refer to groupings that are done in the spatial
domain of the image. The main difference between an edge-based and a region-
based method lies in the different segmentation criteria. In a edge-based method.
the segmentation process is based on spatial discontinuity. On the other hand. in a
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region-based method. it is based on spatial similarity among pixels. Hence. region-
based methods are the logical dual to the edge-based methods. The last category.
hybrid methods. are combinations of one or more of the first three methods which

take advantage of their strengths and minimise their weaknesses.

5.1.1. Clustering-based Methods

Clustering is a type of classification imposed on a finite set of objects or datum
points. Each object is classified to one of the cluster labels depending on its relation-
ship to other objects. This relationship can be represented by a proximity matrix
or distances between objects in a d-dimensional space. A brief review of approaches
that have been applied to image segmentation is given below. For more detailed
descriptions. readers are referred to [52].

5.1.1.1. K-means

This “classical” method is probably the best-known and most widely-used for
clustering data. If the clusters are well separated. a minimum-distance classifier can
be used to separate them. In this method. the means of k£ clusters are estimated by
a recursive labelling and updating procedure. First. an initial guess of the number
of clusters and their means must be provided as input to the classifier. One popular
method for obtaining the means of the k clusters is by randomly selecting k samples
from the data set as an initial guess. Next. a minimum distance classifier is used
to classifv the objects into one of the & clusters. After the labelling, the means of
the clusters are replaced by the centroids of the new resulting clusters. This process
is repeated until no changes are made to any object in a given cycle. The method
is verv simple and works well for large and well-separated data sets. Unfortunately.
this method also has a number of disadvantages. First. the number of clusters must
be known in advance. which itself is a verv difficult problem. This algorithm may
also not converge to the real cluster centre if the clusters are unbalanced or elongated
clusters are involved and the result produced depends on the initial values of the
means. Recently. modifications to this method have been proposed to improve its

robustness and efficiency. such as fuzzy k-means and sequential k-means [93].
5.1.1.2. Density Estimation
Another popular approach to clustering is to estimate the underlying density of

the datum points and to allocate each point to one of the identified populations. If the
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form and number of underlying population densities can be determined in advance.
parametric density estimation methods can be used. Otherwise. non-parametric den-
sity estimation methods should be used instead.

One commonly used density model for parametric density estimation methods is
the Gaussian density function and the underlving densities are assumed to be a mix-
ture of g Gaussian densities {13]. If this assumption holds. and a rough estimation of
the number of clusters or classes is available. then the parameters of the population
densities can be estimated from the data by maximising the likelihood of the pa-
rameters. A number of techniques. such as the Expectation-Maximisation algorithm.
can be used to obtain the optimum solution. The major drawback of this method is
the assumption about population densities which limits its application. For natural
scenes. this Gaussian assumption does not seem to hold for most situations.

Without any assumptions about the distribution of datum points. non-parametric
methods are based solely on the notion that clusters are regions of feature space having
high density and separated by regions of low data density. The probability density
estimate at a point r is determined by a weighted summation of datum points falling
within a small region around r. Clusters are then identified by locating local density-
maxima. Since there is no need to specifv in advance the shape and number of the
clusters (determined from the number of local maxima). this approach is more general

and can be used to identify any unknown or irregular shaped clusters.

5.1.1.3. Pairwise Data Clustering

Sometimes the characteristics of a data set cannot be represented in a metric
space. Instead. they are characterised indirectly by pairwise comparisons as in a
proximity matrix or graph. Advantages of pairwise comparisons over distance in
metric space include the support of higher level similarity that violates the triangular
inequality [105] [5]. However. techniques for finding the optimum partition or merging
among the datum points based on the more general similarity matrix are. in general.
less efficient and require more memory storage [110] [97]. For example. the proximity
matrix of a small image of size 128x128 has n? = 268. 000. 000 entries.

5.1.2. Edge-based Methods

Segmentation can be obtained by detecting the boundaries of various regions.

This task is usually accomplished by locating points of abrupt change in local features.
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such as intensity. colour. or surface texture. A large variety of edge-detection methods
are available in the literature. such as the Sobel. Prewitt, Roberts. and Canny edge
operators. However. since the edges are often broken. edge linking is required to
ensure that the boundaries form closed contours. Because of the small spatial support
of the edge detector. the edges are verv close to the actual boundaries. However.
due to the same fact. this operator is very susceptible to noise and false edges can
appear in highly textured regions. Ma and Manjunath [68] have proposed a novel
boundary detection scheme. which they called ~edge flow”. to facilitate the integration

of different image attributes for edge detection.

5.1.3. Region-based Methods

Region-based methods are the logical dual to the edge-based methods. Instead of
locating changes in surface properties. region-based methods detect the homogeneous
regions directly. usually by iterative split and merge phases. Unlike the edge-based
methods. a measure of region homogeneity must be defined in advance. In general.
available approaches for the task can be divided into two groups. region growing and
split-and-merge. In a region growing approach. a number of uniform regions (seeds)
are given a priori and the surrounding pixels are merged to one of these seeds (region
growing) if the uniformity criteria are satisfied. For split and merge methods. non-
uniform regions are broken down into smaller areas until all the resulting regions are
classified as “uniform” based on the uniformity criteria. Next. neighbouring regions
are compared and merged if thev are close enough in feature space. In all cases. the
quality of the segmentation output is directly related to the uniformity criteria. and
hence the selection of a good uniformity measure is vital for success. Recently. Deng
et al. [26] introduced a new measure for homogeneity. called the .J measure. which
measures the uniformity of colour distribution in a local region. By doing this. colour-
texture patterns are incorporated into the homogeneity measure and thus no explicit
texture feature extraction is needed. In general. region-based methods are more
robust than edge-based methods because segmentations are based on much larger
local neighbourhoods. However, according to uncertainty theory, this approach also

has poor boundary localisation.
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5.1.4. Hybrid Methods

Each approach mentioned in the previous sections has both advantages and draw-
backs. Hence. it is desirable to combine some of the existing methods. making use
of each approach’s advantages. Because of the duality property of edge-based and
region-based methods. these methods are commonly combined [15] {92] [6]. Zhu and
Yuille [150] have proposed a methad called “region competition” to unify existing
techniques such as snake/balloon models. region growing. and Bayesian/MDL (min-
imum description length) within a statistical framework. Nazif and Levine [80] have
proposed a rule-based approach which systematically organises and applies a large

number of different heuristics for low level image segmentation.

5.1.5. Conclusions

Each method has its own advantages and disadvantages. Edge-based methods
achieve good localisation but are sensitive to noise. On the other hand. region-based
methods are more robust but at the expense of poorer edge localisation. Although hy-
brid methods produce the best segmentation results. these approaches are. in general.
more complex and computationally expensive. Also. since the objective of this thesis
is focused on real scenes. it is preferable to select a method which imposes a mini-
mum number of assumptions on the image formation and the form of the underlying
populations. Among the methods mentioned above. non-parametric density estima-
tion satisfies the minimum assumptions requirement. [t also provides feature density
information that is needed for the ensuing attention process. Thus. this method is

used for segmenting real scenes in this work.

5.2. Non-parametric Density Estimation for Image
Clustering

The method described here follows the works in {91} and [20]. Non-parametric
clustering starts with the estimation of the density. Let {X;},—, . be a set of n
datum points in the d-dimensional space. Then the multivariate density estimation

at a point x is defined as:

n _ .Y,‘ )
o) = DK (55) 6.1
=1
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where h is the radius of the density estimation kernel and A (r) is the density esti-
mation kernel.

The optimum kernel vielding minimum mean integrated square error (MISE) is
the Epanech-Nikov kernels[112]:

R 3 )
- (dfl)‘()t- ') lf .l,’T.L' <1
Ke(r) = e

—
(1]
[EV)

~—

otherwise.

where ¢y is the volume of the hypersphere. Other types of kernels. such as linear and

Gaussian are also frequently used.

5.2.1. Clustering Algorithm

The steps for the clustering are described below:

o Generate a random sub-sample of the datum points. To speed up the computa-
tion. a set of m points .\|...X|, is randomly selected from the data. Moreover.
in order to reduce outliers and “invalid™ datum points. pixels lying on the
regions of abrupt changes in spatial domain are excluded from the sample set.

o Estimate the local density of each point in the sample set and then apply the
gradient-ascent or hill-climbing method to locate the local maxima. For each
sample point \X,. equation(5.1) is used to estimate the density at X,. k nearest
neighbours of each data point are also determined. The gradient ascent method
is used to associate each data point to a nearby density maximum by moving
along the point of highest density among the k nearest neighbours.

o Merge nearby cluster centres. Any pair of cluster centres whose distance is less
than a threshold will be merged. If no significant valley exists between any
two cluster centres. these clusters will also be merged.

o Re-clussifying the samples. Each sample point is relabelled to the cluster de-
fined by a majority of its k nearest neighbours. Fewer nearest neighbours can
be used if small clusters are expected.

o Hierarchical clustering. After the cluster centres are found. they are merged
together hierarchically. The criterion for this merging process is the inter-
cluster distance. However. this criterion can produce undesirable results. such
as merging two well-separated but close clusters before other well-connected
clusters that have centres further apart in feature space. To avoid this problem.
Pauwels and Frederix [91] have taken a different approach. First. the choice
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of h (the width of the density estimation kernel) and & (the number of nearest
neighbours) are set to result in an over-segmentation of the feature space.
Then, the clusters are merged based on the ratio of densities at the saddle-
point and the neighbouring cluster centres, thereby producing an ordered tree
of clustering. They defined the saddle-point as the point of maximal density
among the boundary points which have neighbours in both clusters. Depending
on the size of &, the estimation of the saddle-point can deviate from the actual
boundary by the distance to the k** nearest neighbour. To reduce this error,
the boundary points can be further limited to points having at least 30% of
neighbours in both clusters. The reason provided by the authors for using
density instead of distance in the merging process is to avoid the unwelcome
chaining-effect of hierarchical clustering. However, if distance information is
ignored completely, the merging process will be vulnerable to error and noise
in the density estimation, especially for small clusters. Hence, it is better to
merge the clusters based on both density and distance. To make these two
measures directly comparable, the distance is normalised by the average inter-
cluster distance. Preference can be given to indicate the relative importance
of density and distance. From experimentation, the best clustering resuits are
achieved when the relative weights between density and distance are in the
ratio of 10:1.

Selecting the optimum number of clusters. At the last stage, the number of
clusters is determined from indices of cluster-validity or an absolute threshold.
This topic will be discussed in the next section.

5.2.2. Cluster Validity Indices and Stopping Criteria

Determining the number of clusters present in an image is a very difficult problem.

This arises from the unclear definition of what is a good segmentation. For artificial
images, it is easy to produce a definition since the ground truth of the image formation
is known a priori. However, for natural images, obtaining the ground truth is not at
all an easy task or may even be impossible. As discussed in Chapter 2, any image can
be interpreted at different levels of abstraction and it may not be clear which level
of abstraction is optimal for a given image. As a result, many image segmentation
techniques rely on specific heuristics based on the application area, and the definition
of a good segmentation is hard-coded into the program. Although heuristics are
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widely used in a variety of fields. it is desirable to have a mathematical definition
of a good segmentation so that it can be analysed systematically. In [52]. a large
number of indices of cluster validity are reviewed. such as the Davies-Bouldin index
(DB) and the modified Hubert [ index (MH). The problem with these indices is
that thev all are based on the assumption of Gaussian-shaped and well separated
clusters. To overcome this problem. Pauwels and Frederix {91] have proposed a
new non-parametric measure for cluster validity which does not exhibit anyv shape
preference. To compare the performance and validity of different indices in image
segmentation. three different methods are considered and analysed experimentally: a
simple threshold-based index. the MH index. and the Pauwels and Frederix’s non-
parametric measures. | he reason for selecting these methods is because they represent
three major classes of cluster validity indices. from simple threshold methods to more
complex indices both with and without anv specific assumptions on the distribution
of the data set. In the following, a brief review on these methods is provided and the

analvtical results will be presented in Chapter 6.

5.2.2.1. Threshold-based Index

Thresholds are very commonly used as stopping criteria because of their simplicity
{no additional computations is required). However. in general. thev require fine-
tuning to optimise performance. This can be an advantage if it is easy to tune this
parameter. or a disadvantage otherwise. Since hierarchical clustering is based on the
density and distance between the clusters. a threshold on this measure can be used as

a stopping criterion. Thus. clusters are merged if the following condition is satisfied:
density(i. J) + p - distance(i. j) > 7 (3.3)

where density(i. j) is the ratio of the density at the saddle-point between cluster :
and cluster j and the density at the cluster centres. and distance(i. j) is the distance
between these two clusters. p is a constant indicating the relative importance of
density to distance and 7 is the pre-defined threshold. From exp.rimentation. we
have found that the relative importance of density and distance is about 10:1 and
thus a value of 0.1 is used for p.

5.2.2.2. Modified Hubert ' Index

This index is proposed by Dubes {52] and is based on the assumption that es-

timates of the cluster centres are close to the “true” position of the clusters in the
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pattern space and deviations from the centres are due to errors and distortions. Hence.
there is an implicit assumption of ball-shaped clusters. For a given clustering, the
MH index is defined as follows:

Let L{i) be the label function.
L(:) = k. if patterniis in the k* cluster
and d, is the Euclidean distance between cluster centres j and k. Define
Y(i.J) =drgyeg

The modified M H index in then given by:

L = = o L )
MH = {T[-Z Zl[.\'(z.j) - mg] x [Y(i))— my]} /Sz8y (5.4)

=1 j=1~

where X'{:. ) is the Euclidean distance between pattern ¢ and j. n is the total number
of patterns. M = n(n — 1)/2. and

meo= w3 Y X))
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This index measures the degree of linear correspondence between the entries of X
and Y. The matrix X is the same for all clusterings but the matrix }" varies depending
on the corresponding cluster centres. For strong and well-separated clusters. the
cluster centre associated with each data point should not deviate significantly from
the true centre as long as the clustering is over-segmented. However. when the merging
process exceeds the optimum level and tries to merge two well-separated clusters, the
cluster centres will then start to deviate from the real centres and the similarity
between the proximity matrices X and } will begin to decrease. As a result. the

optimum number of clusters is defined as the “knee” point of the MH function where
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32 2

(a) (b)

FIGURE 5.1. (a) A simple image that contains roughly 5 different
colours and (b) the MH index for this image.

sudden change occurs. As can be seen from the definition of this index. the MH index
is computationally intensive (O(n?)). Figure 5.1 provides an example of this index

for a simple image.
5.2.2.3. Non-Parametric Cluster-Validity Indices

Pauwels and Frederix {91] introduced two non-parametric measures that quantify
the notion of “good clusters™ as a relatively well-connected region of high data-density.
The first index. called the NN-norm. measures the average isolation of each cluster.
This measure is based on the notion that similar patterns (close in feature space)

should be assigned to the same cluster. This index is defined as:

(1]
(1]

1 n
A m: Npg=-—- wlz, 3.
norm e = lz—; ve(x,) (

where vg(r,) is the fraction of the k nearest neighbours of feature r; that have the
same label as r,. This index favours well-connected regions to be assigned the same
cluster label. However. it cannot distinguish whether two well-separated clusters
should be merged or not.

The second index. the C-norm. is proposed to compensate for the deficiencies
of the first. This index is designed to give a high response when a given cluster is
well-connected and a low response when a cluster contains two or more well-isolated
regions. To achieve this. the average connectivity of anv two points in the same
cluster is measured based on the density at their midpoints: A high density midpoint
implies good connectivity and vice versa for low density midpoints. This method is

good for Gaussian-shaped clusters. For clusters whose shaped is curved. however. the
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FiGURE 5.2. NN-norm (left). C-norm (center), and Z-score (right) for
the image in Figure 5.1

mid-point of two randomly selected points can lie on the void between the arc. To
rectifv this problem. the midpoint is shifted towards the high density region until the
local maximum is reached. During this shifting process. the same distances between
the midpoint to the two test points must be maintained to avoid ending up at either

one of the test points. This index is defined as:

k
l -
C -norm: Ck = E lii f(ti) ()6)

where K is the number of randomly chosen pairs of test points and ¢, is the mid-point
after the shifting process. f(t,) is the data density at the point ¢,.

To select a single clustering, these two cluster-validity indices must be combined
to give a single measure. Pauwels and Frederix propose first computing the Z-scores of
the C-norm and .V.V-norm to make the indices directly comparable: the two resulting
Z-scores are summed to give the final score. Z. The clustering having the maximum
Z-score is selected as the optimum segmentation for the given image. The equations
for computing the Z-scores and the final Z score is defined as follows:

Z(zr) = 2 “_’w’f‘g"(‘l’)'(r) (5.7)
Ze = Z(Cx) + Z( Vi) (5.8)

where M AD stands for median absolute deviation. Typical curves for the NN-norm.
C-norm and the Z-scores are shown in Figure 5.2 for The disadvantage of using the
median and the M AD to normalise the cluster measures is that their values depend

on the range of valid clusters. or number of observations.
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5.2.3. Post-processing

After the segmentation. mathematical morphology. dilation and erosion. are utilised
to remove small and thin regions that usually correspond to noise. Next. three conser-
vative region merging processes are applied to the segmentation result. First. regions
that are smaller than 0.5% of the whole image are merged to their 4-connected or
8-connected neighbours [f more than one neighbour is found. the one closest in feature
space is selected. When position is also included in the feature vector. large regions
‘may be split into two or more regions. Hence. a second step of the region merging is
used to merge similar regions based on colour and/or texture only. [n some images.
the regions” surface features are not uniform but change smoothly (for instance. from
light to dark. such as the sky). Hence. another merging process is carried out to
merge regions whose contrast along their common borders are below a pre-defined

threshold.
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CHAPTER 6

Evaluation and Test Results

This chapter examines the performance of the object-based attention algorithm.
There are basically three areas to be analysed. First. several important parameters
that could not be determined using logical and theoretical arguments are evaluated
experimentally. The second part will compare and analvse different methods for se-
lecting the best number of clusters. The last part of this chapter will discuss the
performances of different saliency factors in predicting the perceptual saliency of re-
gions in a scene. The image database used in the experiments was chosen from the
Corel image collection!. (See Appendix B for all of the images in the experimental
database).

6.1. Determining Parameter Values

The parameters that need to be determined experimentally are the weights on the
colour. texture. and position features in the feature extraction. and the sample size.

kernel width. and number of nearest neighbours in the process of image segmentation.

6.1.1. Weights for Colour, Texture, and Position

As stated in Chapter 4. the purpose of imposing weighting factors on colour.
texture. and position features is to normalise the dyvnamic range of different features
and to improve the perceptual uniformity of the combined feature space. It would
be preferable to evaluate the perceptual differences among these features through

psyvchophysical experiments. However. this is bevond the scope of this thesis and no

'http://www.corel.com./products/clipartandphotos/ photo/photolib.htm
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appropriate literature is available on the topic. Alternatively. these weights can be
determined by finding a parameter set that produces the best overall segmentation
results.
Before applyving any modification to the weights. the features are obtained as
follows:
e Colour features are obtained by converting the RGB values of each pixel into
L a*b" space. with L ranging from 0 to 100. a* ranging from -300 to 500 and
b* ranging from -200 to 200.
o Texture features are formed by applving a set of band-pass filters on the in-
tensity. L. Next. the set of transformations described in Chapter 4 is applied.
e Position features are the r. y coordinates of the pixels normalised to the range
of 0 to I by a scaling factor. To preserve the aspect ratio. the same scaling
factor is used for both r and y coordinates. [f the original r.y coordinates
ranges from 0 to width and height. respectively. 1/max(width. height) can be

used as the scaling factor.

6.1.1.1. Optimisation process for finding the weighting factors

Although a number of measures have been proposed for estimating the quality
of a particular segmentation {149][7]. they are not very accurate or effective when
compared to human performance. In order to avoid extensive psychological experi-
mentation and still have a subjective justification for the segmentation results. the
following process was used for selecting the best parameter set to gives the best overall

results:

o From a preliminary examination of the image segmentations. we found that.
for a large portion of the database. the segmentation results did not varv
significantly with different weighting factors. Only on a small subset of the
database could we observe significant improvement by modifving the weights.
Hence. in order to reduce the complexity of the optimisation process. only a
small subset (about 50) of the database was employved. including all of the
images that preferred a different parameter set from the majority of images in
the complete database.

¢ Segmentation results using different weighting factors were obtained and judged
by human observers. In particular, the judgement were based on the following

criteria: 1. Grouping should be consistent with the visual appearance. No
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visually distinct regions should be merged and vice versa for visuallv similar
regions. 2. More emphasis should be placed on the major objects in the im-
age rather than the background. 3. The overall quality of the segmentation
results for a given parameter set were obtained bv counting the number of

images judged acceptable based on the first two criteria.
6.1.1.2. Results and Discussion

From extensive experimentation on a wide variety of test images. we have found
that the weighting factors for colour. texture. and position should be approximately
equal to L. 1. and 10. respectively. to achieve the best results. It was observed that
the inclusion of position in the feature vector has both advantages and disadvantages.
The major advantage is that the proximity of pixels is also considered in the grouping
process. On the other hand. this can be a disadvantage since the position information
may cause an occluded object to form two or more clusters in the feature space.
Fortunately, this problem can be solved easily by merging regions having similar
colour and texture. For normal scene images where different objects form distinct
clusters in feature space. the segmentation results do not differ significantly whether
position is included or not. However. if two or more objects in a scene have similar
surface properties. a much better result is produced if position is incorporated into
the feature vectors. Generally. including position into the feature vector improves the
separability of different regions and produces more compact and smooth regions. thus.
vielding a better segmentation result. Figure 6.1 & 6.2 show the final segmentations

of 30 randomly selected images.

6.1.2. Parameters Used in Image Clustering

There are three parameters in the clustering algorithm outlined in Chapter 5 that
need to be set. The first one is the sampling rate. s. From the whole image. m pixels
are randomly selected and used in the subsequent density estimation and clustering
process. where m = 5.V and .V is the total number of pixels. The last two parameters
to be determined are the width of the density estimation kernel. h. and the number

of nearest neighbours. £. that are used in the gradient-ascent process.
6.1.2.1. Sample Size

For an image of size 180x120. the total computation time of the clustering al-

gorithm and the time needed for density estimation at different sampling rates are
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FIGURE 6.1. Part A. Segmentation of 30 randomly selected images.
Boundaries are shown in gray. See figure 6.2 for the other 15 images.

shown in Figure 6.3. Clearly. the bottleneck of the clustering algorithm is the density-
estimation process. By examining the density-estimation equation on page 63. we can
see that this operation has a computation complexity of O(n?). This process takes
2.5 minutes on a 300 MHz Pentium II PC if 100% sampling is used. but only 35

seconds if half the data set are considered. Hence. it is desirable to analyse how much
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FIGURE 6.2. Part B. Segmentation of 30 randomly selected images.
Boundaries are shown in grev. See figure 6.1 for the other 15 images.

segmentation error is introduced when the data set are sub-sampled. From an exam-
ination of the segmentation results of a wide variety of test images, there seems to be
a general trend that the outputs are very similar for any sampling rate between 10%
and 100%. Below this range. small objects begins to disappear and the boundaries
start to deviate from their actual location. As a result, 40% of the whole image is

(]
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Computation ime (seconds)

a0 50 60 70 80 90 100
Sample size (percentage ot whole image)

FicUre 6.3. Computation time of the whole clustering algorithm (up-
per curve) and the time spent on the density estimation process {lower
curve) at different sampling rates on a 300 MHz Pentium [I PC

used to estimate the underlving feature distribution. The segmentation results for

test images with sampling rates ranging from 10% to 100% are shown in Figure 6.4.
6.1.2.2. Kernel Width and Number of Nearest Neighbours

In determining the values for these two parameters. Pauwels and Frederix [91]
have stated that the specific value of these two parameters is not critical as long
as small values. with respect to the range of the data. are used. However. we have
observed that the segmentation results are directly related to the specific values of
these two parameters. The parameters can be interpreted as smoothing factors on
the density of the data in feature space. A larger value for h and & will cause more
clusters to merge. thus vielding fewer regions in the image domain. To avoid merging
small regions. a smaller value for these parameters is preferred. However. if we wish
to reduce the effects of noise and outliners. a larger value for h is preferred. For the
tmages used in this experiment. we found that k£ equal to 0.4 percent of the total
number of data points produced the best results without over-smoothing the density.

Based on this kernel width. the number of nearest neighbours is selected as follows:

A'S
h= \J dist(i. k)? (6.1)

=1
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80 % 0% 100%

FiGURE 6.1. Segmentation results of a test image at different sampling rates

where dist(i.k) is the distance of the k** nearest neighbour of point : in the feature

space.

6.2. Cluster Measures

Although it is important to develop better techniques for feature extraction or
grouping criteria. and which have a closer resemblance to the performance of the
human visual system. it is equally important to explore new techniques for measuring
the validity of different clusterings that usually arise in the many image segmentation
techniques. The challenge of working with real scenes is that there may be more than
one possible way to segment an image. and they may all result in valid segmentations.
Hence. a natural question is what determines the validity of a particular segmentation
and whether or not this definition can be formally defined in terms of mathematical
formulas. In other words. how can we estimates the true or best number of clusters
or regions for a given image? In Chapter 5. three different methods that are designed
for measuring the cluster-validity are described: a threshold-based index. modified
Hubert [ index (MH)}. and Pauweis and Frederix’s non-parametric measures (VP).
[n this section. the performances of these three methods on real scene images will be

analysed and compared.
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6.2.1. Assumptions Used in Each Method

Before explaining the test methods and results. it is useful to restate the assump-
tions used in these three methods. In a threshold-based method. an invalid clustering
is defined as a violation of a pre-defined threshold (see equation(5.3)). Since. it is
desirable to minimise the amount of over-segmentation. the optimum number of clus-
rers is the one that is both valid and has the smallest number of clusters. The last
two methods. MH and NP. are global measures that compute the overall goodness
of a segmentation. Both methods are based on the notion that the clusters are well-
separated in feature space. Hence. the performance of these methods may not be verv
reliable for weakly separated clusters. However. Gaussian distributions are assumed
in MH but not in VP. Unlike the threshold-based method. the decision scheme of
estimating the best number of clusters depends onlyv on the changes of the indices (as
a function of the number of clusters) but not on their specific values. The drawback
of this kind of decision scheme is that a sudden transition or a “knee” in a function
is often not easy to detect or define precisely. [n addition. since it is not effective to
search for all possible cases (the maximum number of regions will be the total number
of pixels). for any given image. the search must be limited to a specific range. For
instance. 1 to 6 clusters is used in [91] and {13]. Given this restriction. it is important
to determine whether the ideal number of clusters lies on the boundaries of the search

range or even outside this range.

6.2.2. Test Images and Implementation Issues

To test the robustness and the validity of the assumptions of the three methods.
a set of 40 real scene images from the database in Appendix B was carefully selected
fo capture the variations in object size. contrast. and other properties present in real
world scenes. Samples of these test images are shown in Figure 6.6 (See Appendix
C for the whole test set and segmentation results). In this test set. we found that
the best number of clusters can actually be as large as 15. Hence. the search range
is set to [1.....13]. For the threshold-based method. based on the criteria stated in
section 1.1.1. a threshold of 0.5 gives the best overall result. Hence. the threshold
(7) is set to 0.5. For the MH index. the optimum number of clusters is defined as
the ~knee” point of the MH function. In actual implementation. the “knee™ point is

defined as the maximum in the second derivative of the MH function. Besides. since

8
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the proximity matrices .X and Y of a 180x120 image contains 467 million entries each.
only 10% of the pixels are used for computing these matrices. For the NP method.
since the definition and procedures for finding the cluster number are clearly defined.
no extra assumption is required.

[t may not be fair to compare a method that requires “training” to other methods
that do not. Thus. if both methods achieve the same level of performance. the one
that does not requires anv “training” is preferred since it is more general. On the
other hand. if a fixed parameter set can be used throughout the experiments. the

threshold-based method could perhaps also be classified as an unsupervised method.

6.2.3. Test Results and Discussion

The performance of the three methods on the 40 test images can be summarised
with reference to 8 images. The final segmentations selected by each method are
shown in Figure 6.6. As expected. all methods are capable of selecting the optimum
number of clusters when the clusters are well-separated in feature space. such as the
aeroplane and the eagle. Although the head and the tail of the eagle are merged with
the baékground in the segmentation selected by the NP method. the major objects
are still clearly visible and separated. At the other extreme. such as images C and D.
the important objects (the cheetah and the tree branches in C and the horses in D)
are not well-separated from the background. Part or all of these objects are lost in
the segmentation selected by the MH and NP methods. As a result. these methods
should not be applied if weakly-separated clusters are expected. The threshold-based
method. because the importance of these objects has already been considered in the
selection of the threshold parameter 7. these salient objects are well separated in the
segmentations selected by this methods.

Apart from the compactness assumption of the clusters. both the MH and VP
methods also implicitly assume the existence of one and onlyv one answer to the
number of clusters. In addition, they also assume that the values obtained for the
number of clusters is located in the middle of the search range. In reality. where
nothing is perfect and noise is unavoidable. these assumptions cannot be guaranted
to hold under all situations. From experimentation. we have observed that the VH
and VP indices can have not only one but two or more knee points (see Figure 5.2).
When this happens. it is not clear which knee point is the best description of the
data distribution. On the other hand. if the “real” number of clusters lies outsides

9
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FIGURE 6.5. A situation where the C-norm in VP indices gives a wrong result.

the search range. no significant knee point will be found. If these two cases are not
handled appropriately. arbitrary results will be returned.

[n general. it is better to have an image over-segmented than under-segmented.
However. it is not clear how much over-segmentation is acceptable and how this
measure could be quantified mathematically.

The non-parametric indices proposed by Pauwels and Frederix[91] are supposed
to perform equally well as the MH index on Gaussian-distributed clusters and perform
better on irregularly shaped clusters. On the results of 40 test images. this claim does
not seem to hold. [n some cases. the segmentations picked by the MH index are better
than the one selected by the NP indices. One possible reason for this observation is
that the assumption of Gaussian distributions actually holds for most real images.
\We also found that the method used for measuring the connectivity in NP indices
does not always give the true connectivity of a given cluster. A situation where this
measure breaks down is illustrated in Figure 6.5. Suppose in a given clustering. all
three clusters are merged and assigned the same cluster label and the two anchor-
pownts for the C-norm are points A and B. Then the test point T halfway between
the two anchor-points will fall on the high-density region. As a result, a high value
for connectivity will be reported.

The time needed with 180x120 images to compute the .VP indices and M H index
(with a 10% sampling rate) are 22 seconds and 85 seconds on a 300 MHz Pentium II
PC. For the threshold-based method. the only computation is equation (5.3). Since
the inputs to this equation. density(i.j) and distance(i,j}. have alreadv been computed
during the hierarchical clustering stage. the computation time for this equation is

negligible. Among these methods. the clear winner is the threshold-based method.
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Threshold-based Method

FIGURE 6.6. Samples of the test images and the segmentations selected
by different methods: non-parametric indices (2" column). modified
Hubert index (3"¢ column). and the threshold-based method (4** col-
umn).
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[t performs well on all test images and requires only simple comparisons. A minor

drawback is that a suitable threshold must be known a priori.

6.3. Saliency Factors

Before being able to determine the contents of a scene. it is necessary to first focus
attention on the most salient parts of an image. This entails an effective model of the
human attention svstem and it is vital to the development of a powerful computer-
based vision svstem. [n this section. the region-based attention model described in

Chapter 3 is analysed and evaluated.

6.3.1. Determining the Weights of Different Saliency Factors

Seven saliency factors are described in Chapter 3. These factors are: contrast.
colour. location. size. foreground/background or depth. saturation. and shape. After
considerable experimentation. we found that only the first five factors are useful for
predicating the importance of a region. Saturation and shape factors are useful in
some situations. However, their rates of failure are much higher than their success
rates. As a result. they will not be considered in the subsequent experiments.

The final importance value is defined as a weighted sum of each factor as follow:
[M(R) =) wi- [(R,) (6:2)
k=1

where w; is the weight on the k* factor. [y. of region &.

Since the results will be judged finally by a human. a traditional trial and error
method was used to determine the importance of different saliency factors in human
visual attention. At present. no extensive psychological experiment has been con-
ducted and the weights of the saliency factors were selected and judged solely by the
author. If more time was available. these factors could be obtained more formally
and reliably by having a group of subjects rank the relative importance of different
regions in a set of test images. After obtaining these statistics. numerical methods or
neural networks could be used to find the optimum weights by minimising the overall
difference between the expected and estimated importance values.

From experimentation. it is found that the results closest to human performance
were obtained with weights of 1.0 for foreground/background. 0.5 for contrast, and

0.3 for colour. location. and size. For the size factor. a saturation value of region
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f

d e

g h
FIGURE 6.7. Importance maps for a sample image, (a). For (c)-(h).
brighter regions represent higher importance. (c)size factor. (d)colour
factor. (e)contrast factor. (f)foreground/background. (g)location fac-
tor. and (h)final importance map produced by weighted summation of
(¢)-(g). To facilitate the evaluation of the final importance map. the

ranking of the top-five most important regions are highlighted in (b).
Arrow directions indicate the next most salient regions.

size equal to 5% of the whole total image area is found to be better than 1%. The
performance of these five factors and the final important values are iilustrated in
Figure 6.7. To indicate visually the ranking of these regions. the top-five important
regions are highlighted in Figure 6.7b. For these images. the importance values pred-
icated by the model are verv consistent with the results obtained from a human. The
most important objects. the caleche, horses, and the bright dome roof. are within the
top-five regions. Moreover. the scan path generated from the importance map also
agrees well with expected human performance.
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6.3.2. Discussion

To test the robustness of this model. it was applied to 100 images with a fixed
parameter set. Results of 16 images are shown in Figure 6.8. [n general. the attention
model gives consistently good results for a variety of images. As we can see from
the weights comprising of the importance factor. the final importance values are
highly biased to the foreground /background factor. Since the test images used follow
conventional photographic techniques. the objects of interest are usually placed at
the centre of the image. Hence. the probability that these objects touch the image
border are much lower than the background. As a result. the foreground/background
measure can separate the objects from the background quite accurately. However. if
the object touches the border. such as the elephant at the bottom left of Figure 6.8.
a false negative error occurs. In this case. the importance factor fails to predict the
saliency of the elephant and it ranks the clouds as the most salient region in that
picture. For some images. regions among the top-five ranks selected by the attention
maps do not really respond to important objects. such as the sky. shadows. and the
ground. In order to further refine the results, higher level reasoning and knowledge
are required. Nevertheless. for a low-level system. the results are promising and the
method is general enough to be used in many computer vision applications including

content-based image retrieval.

6.4. Applications

This technique for locating salient “objects” in an image can be extended easily to
handle a number of task-specific applications. such as face finding, image compression.

machine vision. and CBIR.

6.4.1. Face finding

This problem is of significant interest in the field of computational vision. and
has posed numerous practical challenges to date. For face finding, the importance
of a face can be encoded into the weights factors of the importance factors. For
discriminating face from other objects. skin colour (hue) and shape (roughly circular
or elliptical) can be used. The roundness of a region can be obtained by measuring
the ratio of area to edge length. In figure 6.9, a test image and its importance map

is shown. In this experiment. only two importance factors are used. colour (red) and
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FIGURE 6.8. Importance maps for 16 test images and the most salient
regions highlighted in the original image. The most salient region is
indicated by a red circle.



6.4 APPLICATIONS

(a) ®)

FIGURE 6.9. Face detection. Original imaged (a) and the correspond-
ing importance maps (b). Ounly color (red) and shape (circular) factors
are used in computing the importance map.

shape (elliptical with an aspect ratio of 1:1.3). From the importance map. all the
faces are clearly visible in the importance map with very high importance value when
compared to other non-face regions. However. this method also detects the arm of
the person who is at the far right. Thus. after these candidate regions are identified.
more sophisticated algorithms could be applied to further screen out the non-face

regions.

6.4.2. Image compression, machine vision, and CBIR

With the availability of an importance map. the major computational resources
can be utilised more efficiently and effectively by concentrating on the most salient
regions. These resources could be measured by the image compression ratio or the
processing time. For CBIR. one of the major goals is to develop a similarity measure
that closely resembles the observed visual differences. It generally accepted that
global features are not adequate for judging visual differences. Using an importance
map. the similarity measure can be based on the salient regions only and hence will
not be affected by the background.
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CHAPTER 7

Conclusions

[n recent vears. considerable emphasis has been placed on the development of com-
puter vision systems emulating the performance of a human. Despite the vast difficul-
ties encountered in modelling the human visual system (HVS). the benefits in being
able to achieve this have led to continued widespread research in this area. One active
research topic is the simulation of the human visual attention svstem. To function in a
real-world environment. an autonomous agent must have an attentional process to lo-
cate objects in order to build a high-level interpretation of its environment. With this
knowledge. the agent can navigate around and perform more complex tasks. Apart
from active vision. such an attentional system could be beneficial to other computer
vision applications. such as content-based image retrieval (CBIR). This thesis has
discussed the implementation issues related to the development of such a system for
locating salient objects in a scene image.

First. the attention model proposed by Osberger and Maeder {86] is analysed.
Satisfactory results on real images can be obtained with their original method. How-
ever. under certain situations. their method fails to identify some importance regions
that are salient to a human. To correct these problems. a number of modifications
and several new saliency factors are proposed. From experimentation. we have found
that only some of these factors are actuallv useful for estimating a region’s saliency
in general. These factors are: contrast. foreground/background. colour. size. and lo-
cation. Other factors. such as shape and saturation. are applicable only in a number
of specific conditions. These factors do not seem to have an equal influence on visual
attention. For photographs. where important objects are usually located in the cen-

tre of the image, the foreground/background factor is much more important than the
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others. The second most important factor is contrast. The rest of the factors have
less but similar abilities to attract human attention.

Next. issues related to the implementation of image segmentation and feature
selection is discussed. Since the performance of the object-based attention model
just described depends largely on the quality of the “object” information. an effective
image segmentation technique is required. To mimic the perceptual grouping mecha-
nism in HVS. a number of biologicallv motivated features for representing the visual
property of a region are selected. These features are colour (L*a"5"). texture (Gabor).
and position. A simple method for estimating the scale of the texture feature is also
described.

A number of image segmentation techniques are reviewed with emphasis on their
relative strengths and weaknesses. In particular. non-parametric density estimation
techniques are best suited to the algorithm used in the attention process since no
context-related information is assumed and the regions’ information is represented in
both spatial and feature domains. In order to have the system fully automatic without
any human supervision. a number of clustering validity measure are considered for
estimating the hest number of clusters. These measures are: modified Hubert index
{52]. Pauwels and Frederix’s non-parametric measures [91]. and a threshold-based
measure. Surprisingly. the simple threshold-based measure clearly out-performs the
other more complex measures for all test images. We believe this contradiction is
caused by the incorporation of human preference in the threshold-based measure.
Although it is desirable to have an algorithm that is formally defined and does not
require any training. it is much more important to have an algorithm that performs
correctly as intended. Our experiments indicated that both the modified Hubert index
and the Pauwels and Frederix’s non-parametric measure did not provide consistent

segmentations over a wide range of images.

7.1. Direction of Future Work

The next logical step in the research is the incorporation of high-level. context-
dependent grouping and attentional cues. In reality, we seldom find an object that
is uniform in colour and texture. In general. most objects. including natural and
artificial ones. are composed of several heterogeneous parts. For example. a car has

four tires and a chassis. Utilising this higher-level knowledge can help reduce the
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over-segmentation inherent in the low-level definition of an object as a coherent and
homogeneous region. An example of this approach is the body plan of Forsyth and
Fleck [34].

Another area deserving further attention is the extension of the system to CBIR.
[n current approaches to CBIR. the similarity measure used treats the whole image
as a single region or each sub-regions with equal importance. With a saliency value
associated with each region. the comparison between two images can be focused on
the salient parts only regardless of the background. This approach is desirable since
most image classification methods consider only the few major objects in the scene.

such as images containing zebras. cars. or eagles.
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APPENDIX A

The Graphical User Interface (GUI)

To facilitate the experimentation with different approaches and methodologies. a
graphical user interface (GUI) was created (see Figure A.1). Before any operation
can be performed. the user must specify an input image either from the “File Open”
dialog or the “Thumbnails™ dialog (see Figure A.2). Both dialogs can be accessed from
the ~File” menu or the toolbar located at the top-left corner of the window. After an
image is selected. it will be displaved on the left side of *Main™ section of the main
window. Then. the image can be analysed by selecting ~colour segmentation” from
the “Action” menu. This operation takes about 20 seconds for a 180x120 image. After
this operation has completed. the best segmentation selected by the cluster validity
measure and the corresponding saliency map will be displayed in the first row of the
“Results™ section. Apart from this information. the segmentations for two to eleven
regions from the hierarchical clustering will also be displayed on the last two rows of
the same section. Each region in the segmented images is colour coded according to
its saliency ranking. The colour scheme used is shown on the right side of the “Main”
section.

All major parameters of the feature extraction and image segmentation processes
can be modified from the “Test Parameters” dialog (see Figure A.1) by selecting
the "Test Parameters™ from the “Setting™ menu. To change the parameters of the
importance map calculation. one can select the “Saliency Parameters” from the same

menu to open the “Saliencvy Parameters™ dialog (see Figure A.2).
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FIGURE A.2. The thumbnail dialog and the saliency parameter dialog.
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APPENDIX B

The Image Database

The image database was randomly selected from the Corel image collection'. It

contains 180 colour images which were used for testing different image segmenta-

tion methods and calculating the importance map. Each image has a resolution of

180x120. In order to show the strengths and weaknesses of different approaches. these

images were selected from a wide variety of categories including animal. building. in-

sect. people. aeroplane. and scenic pictures. For most of these images. either one or
. a few salient objects can be easily identified.

FIGURE B.1. The first part of the image database.

. Lhttp://www.corel.com./products/clipartandphotos/photo/photolib.htm
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FIGURE B.2. The second part of the image database.
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FiGURE B.3. The third part of the image database.
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FIGURE B.4. The last part of the image database.
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APPENDIX C

The Test Set and Results

FIGURE C.1. The first part of the test set along with the final seg-
mentation selected by the threshold-based method and the focus of at-
tention (FOA) path. The FOA path is ordered according to decreasing
saliency.
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FIGURE C.2. The second part of the test set along with the final seg-
mentation selected by the threshold-based method and the focus of
attention (FOA) path 97
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FIGURE C.3. The last part of the test set along with the final seg-
mentation selected by the threshold-based method and the focus of
attention (FOA) path
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