
INFORMAnON Ta USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, seme thesis and

dissertation copies are in typewriter face, while athers may be from any type of

computer printer.

The quailly of this reproduction is depend.nt upon the quailly of the

copy submltted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also t if unauthorized

copyright matarial had ta be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left~and corner and continuing

from 18ft ta right in equal sections with smalt overtaps.

Photographs induded in the original manuscript have been reproduced

xeragraphically in this copy. Higher quality 6- x 9- black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an adcfltional charge. Contad UMI directly ta order.

ProQuest Information and leaming
300 North Zeeb Road, Ann Arbor. MI 48106-1346 USA

800-521-0600





•

•

•

FINDING SALIENT OBJECTS IN AN

IMAGE

Anthony Hang Fai Lau

Department of Electrical Engineering

~lcGill L"niversity

~Iay 2000

.-\. Thesis submitted ta the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

- :\[aster of Engineering

© H.-\.'lG FAI LAU, 2000



1+1 NationalLJbrary
of Canada

Acquisitions and
Bibliographie services

39S Welingten Street
Ottawa ON K1A 0N4
Canada

Bibliothèque nationale
du canada
Acquisitions et
seJVices bibliographiques

395. rue Wetlingtcn
Ottawa ON KtA 0N4
Canada

The author bas granted a non­
exclusive licence allowing the
National Ltbrary ofCanada to
reproduce, Ioan, distribute or sell
copies oftbis thesis in microform,
paper or electronic formats.

The author retains ownersbip ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts tram it
may he printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distnbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sm papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64233-X

Canada:



•

•

•

ABSTRACT

Abstract

~[any computer vision applications. such as abject recognition. active vision. and

content based image retrieval (CBIR) could be made bath more efficient and effective

if the objects of interest could be segmented from the background. This thesis dis­

eusses the developnlent and implementation of a complete unsupervised object-based

attention system for locating salient abjects in an image.

The nlajar components of this system are the segmentation and the attention

process. Considerable research has been done in these two areas. but unfurtunately.

there is still not a single method that can be applied reliably under aIl situations.

\Ve ha.ve analysed the attention model proposed by Osberger and have found that

their nlethod fails to identify sorne important regions that are salient to humans.

~[odifications ta this model are proposed to correct sorne of these problems. For the

segnlentation process. one important aspect is the measurement of the qllality of a

particular segnlentation. since the attention process depends solely on the segmenta­

tion output. [n particular. three different cluster validity measures are considered: a

simple threshold-based index. a non-parameter index. and the modified Hubert in­

dex. From the experimental results. the simple threshold-based index is shawn to

outperform the other indices on most test images. \Ve believe that the success of the

t hreshold-based index is largely related ta the incorporation of human preference in

thE' selection of the threshold parameter.

ü



•

•

•

RÉSl::\Œ

Résum.é

De nornbreuses applications en \'ision anificielle telles que la vision active et l"indexage

(l[tuages basé sur le contenu pourraient être rendues plus efficaces si les objets

d'intérêt pouvaient segnlentés du fond de l'image. Cette thèse discute nu développenlent

flt de l"implémentation d'un système d!attention non-supervisé basé sur des objets

pour localiser des objets saillants dans une inlage,

Les cornposantes nlajeures de ce systèule sont la segmentation et le mécanimsme

d'attention, Bien qne que ces deux sujets aient été robjet de nombreuses rechercht,s,

il n't'xistp toujours à ce jour pas de méthode fiable qui puisse être appliquée dans

toutes les situations, ~ous avons analysé le modèle d'attention propoé par Osber~er

pt nons (1\'ons trouvé qu'elle ne réussi pas à identifier quelques unes des ré~ions sail­

lantes évidentes pour des humains. Des modifications à ce modèle sont proposées

pour corriger certains de ces problèmes. [n des aspects importants pour la seg­

rnentation est la nlesure de la qualité d!une m'ethode en particulier puisque le pro­

cessus d'attention repose uniquement sur le résultat de la segmentation. Plus partic­

ulièrement. trois différentes méthodes de mesure de valillité sont considérées: nn index

déternliné par un seuillage simple, un index non-paramétrique et une version mod­

ifiée de lïndex d'Hubert. D'après les résultats expérimentatLX, r index déterminé par

nn seuillage sinlple surpasse les autres méthodes pour la plupart des images testées.

~ous croyons que le succès de rindex déterminé par un seuillage simple est largement

lié a rincorporation de préftences humaines dans la sélection du seuil utilisé.
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l.1 THE ~~ FOR OBJECT-B:\SED .:\TT&~TIO:\

CHAPTER 1

Introduction

This thesis discusses the development and implementation of a complete object-based

attention system for Iocating salient abjects in an image. In this chapter. the need

and (notivation for this approach is presented. .-\.n overview of the thesis follows.

indllding a brief ondine of each of the remaining chapters.

1.1. The Need for Object-based Attention

:\Iany conlputer vision applications. such as abject recognition [60, 39}. active

\'ision [17). and content based image retrieval (CBIR) [2, 37] can be made bath more

Pificient and effective if the abjects ofinterest can be segmented from the background.

[u the case of object recognition. especially in a complex scene. the recognition process

can he nlore efficient and robust if even a rough estimation of the location and size of

the salient abjects can be obtained (39}. :\ ranking of perceptual saliency or closeness

to the target model is then required to determine which region should be processed

tÎrst..-\5 a result. expensive computational resources can be focused mainly on those

re~ions that are worthy of more detailed examination.

This kind of attention system can also be applied to CBIR. to improve the retrieval

accuracy. The first generation of image retrieval systems relied solely on keywords

enten~d by a human when the image was entered into the database. The strength

of this approach cornes from the high accuracy of the identification of major objects

present in each image and its image type (such as a scenic picture or art work). For

example. if one wants to retrieve images that contain a polar bear. he just needs to

type in the keyword -polar beu'" to retrieve all images that have at least one polar

1
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1.3 ~'l OVERVlE'V OF THE APPROACH

bear \\ith 100% accuracy. However. there are several major drawbacks that constrain

its applicability and usefulness. These disadvantages include the requirement for

manuai annotation and the inherent limitation of words in expressing abstract ideas.

For instance. it is very difficult to describe precisely the content of sorne images. such

a..ç, nlodern paintings. \Vith a limited number of ke~twords. As a resuit. image retrieval

based on image content has been proposed as a new approach to organise the huge

and ever-expanding image databases (e.g.. online museums and databases of medical

images). Besicles. the classical image retrieval system can be further improved by

pnabling the systern to nlirnic the identification of salient objects in an image as in

dle keyword-based systenl.

1.2. Motivation

Object-baspd CBIR has been in\'estigated by several researchers [2] [13}[11SI. In

thesp approaches. although features of local regions instead of global properties are

llsed. each region is still treated with equal importance. .\s a result. an irrelevant

irnage can be retrieved just because it contains a background that is visually similar

to thp qupry image. Hence. it is desirable to have a complete and fully automatic

attention systenl for segmenting and locating salient abjects in an image. ~Iethods for

rleternlÎning the saliency of regions have been investigated by Osberger and :\Iaeder

[86]. However. nnly initial results have been presented and no in-depth analysis of

their mpthod has been carried out. As stated in [861. the performance of an object­

based attention system depends largely on the quality of the segmentation results.

Henre. it is desirable ta analyse their method and to select an image segmentation

technique best suited to the attention algorithme

1.3. An Overview of the Approach

Each process in\'olved in the detection of salient abjects in an image will be

c1iscussed in this thesis. The overall system is summarised in a black diagram in

Figure 1.1. The system input is a single colour image. A set of bialogically motivated

feature maps are extracted from the image and then used in the image segmentation

process. Before the region information of the "objects~ can be generated. the defini­

tion of "object- must be defined precisely. Ta he of general use. no context-dependent

information is assumed and an abject is defined simply as a coherent and homogenous

2
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FIGURE 1.1. System Block Diagram. The method consists of three
COlllputational processes shawn in the left-hand column. The data
transferred between each process is indicated in tbe shaded strips. Ex­
anlples of the input. intermediate data. and final output are shawn in
the right-hand column

region. If higher-Ievel. top-down information is known a priori. this information can

b~ used to group the regions into a [agicaI entity that resembles the original physical

object. The final stage involves the computation of the Importance :\Iap based on

a number of factors. such as contrast and eccentricity~ that have been able ta draw

attention. This importance map represents the perceived saliency of the regions.

3
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l.5 CONTRIBl"TIONS

1.4. Organisation of the Thesis

In Chapter 2. a review of the literature of the biological hasis of perceptual group­

ing and attention will he presented. The current state of machine vision simulating

these t\Vo tasks will also be described. E,,;dence from psychophysical experiments

shows that objects can exist preattentively and can affect covert attention. However.

nut rnuch research has been focused on developing an object-based model of attention.

HeULe. it is desirable to investigate this topic in detail.

Chapter :3 bflgins \Vith a discussion of the only object-based attention model that

has been developed for computer vision applications [86}. In this model. live factors

are irlentified and formulated mathematically. Situations where these factors fail and

solutions to these problems \\;11 be discussed in this chapter.

[n Chapter -1. the details of selecting a particular representation schenle for each

[pature are dbcussed. Transformations on the feature spaces ta inlprove the percep­

tuaI lluiformity will also be presented.

In Chapter ·i the first section reviews the major image segmentation techniques.

Reasons for ~electing a particuJar image segmentation method and sorne implemen­

ta.tion issues will he described in the renlainder of this Chapter.

Finally. Chaptpr 6 presents a variety of results of the system applied to real \V'orld

inlages. This includes an examination of the selection of various model parameters

and the fpHsibility of using this system as a pre-processor to a face-finding systenl.

1.5. Contributions

The major contributions of this thesis are.

• Lots of work has been done on image segmentation. However. there is still no

··off-the-shelf· solution that can be applied ta all types of images. One of the

major problems is the lack of a good measure of the qllality of a particular

segmentation. In this thesis. three different measures are considered and we

find that a. simple threshold-based measure with a manllally selected thresh­

old give consistently better results than other more complex. statistics-based

measures.

• Parameters are a significant aspect of any mathematical formulation of an al­

gorithm. Sorne parameters can be obtained through theoretical arguments.

4
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1.5 CONTRIBrTIOXS

However. the optimum values for sorne other parameters depend on subjec­

tive judgements. such as the importance or saliency of different abjects in a

scene. To reduce the bias on any particular image type or subjective opinion.

systematic and extensive experimentation has been performed to find suitable

parameter values.

• The complete systeln for locating salient objects is implemented in :\[icrosoft

\ïsual C++ with :\'[icrosoft Fundation Class (~[FC) for a stand-alone appli­

cation. .-\ppendix .-\ provides a brier description of the system with imagf's nf

the graphicaillser interface.

5
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C:a~PTER 2. LITERATl'RE REVIE\V

CHAPTER 2

Literature Review

Da\'id ~Iarr has written [731:
"\Yhat cIoes it nlean. to see'! The plain man's answer (and Aristotle·s.

ton) \vould be. to know what is where by looking. In other l'lords. vision

i5 the proces.-; of disco\'ering from images wbat i5 present in the world.

and wherp it is.··

\ïsual perception is a natural and native ability of humans and aninlël.ls. L"sing an

abllndant a.monnt of information about colour and forme we can sense the en\ironment

in its original 3-dimensions. or -l-dimensions if time is included. ~ot only can we sep

thE:' :3-dimensional world. but we can al50 recognise the abjects and understand their

positional. structural. and contextual relationships. In nature. the ability to detect

and rpco~nise abjects effectively and efficiently i5 vital ta survival. Animais must

he ahle to distinguish their food from otber less edible alternatives. They must aisa

be able to detect carnauflaged or occ1uded predators. The seemingly straightforward

and effortless task of abject ùetection and recognition for bath humans and animais

is pxtremely difficult to simulate in the computer. One reason for this difficulty is

the inconlplete and unclear definition of object in the field of computer vision. [f

we \Vant a computer to recognise an objecte the definition of object must he precise

and withuut ambiguity. However. even for humans~ there does not exist a fixed and

llni\'ersally held definition of abject. Both lllman [134} and ~Iarr [72) raise the

question about the goal of segmentation~particularly in a bottom-up manner. ~[arr

asks: -\Vhat. for example. is an abject. and what makes it 50 special that it should

be recoverable as a region in an image"? Is a nose an abject? 15 a head one?...- They

bath conclude that it is e:\.~remely difficult~ if not impossible. either ta formulate

6



•

•

•

2-1 PERCEPTlJAL GROCPlNG

what should be recovered as a region fram an image or ta separate complete abjects.

snch as a car or a house. from a complex scene. .-\lthaugh the problem of unclear

definition of abject or goal of segmentation seems to be nnsolvable! the task of abject

detection and recognition is performed smoothly and accllrately within the human

visnal system. without any sigll of ambiguity. [n this chapter! both psychophysical

and physiological aspects of the mechanisrns llsed by humans in perceptual grollping

and attention will be reviewed. An overview of the eurrent state of machine vision

will then be presented.

2.1. Perceptual Grouping

In the literatnre. perceptnal grouping is sumetimes described in other terms. snch

as spgnlentation. dustering. association. and figure-ground separation. depending on

t.he point-of-\·jew fronl which this problem is viewed. In [66}. Lowe sta.tes that ··Pt'r­

ceptual urganisation refers to a basic capability of the hUlnan visual systeru to derivp

relc\-ant groupings and structures from an image without prior knowledge ùf its con­

tents··. Sirnilarly. Sarkar (106] defines the term perceptual grouping or perceptual

organisation as the ability to impose structural organisation on sensory data. sa a.s

to group sensary primitives arising from a cornmon underlying cause. If a persan is

asked to se~ment an ima~e into different regions. the answer may not be unique and

\-aries fronl persan tu persan. For the image in Figure 2.1. one may segment the inmge

into two distinct groups: the baby and the background. :\.nother possible segnlen­

tation l'ould be the baby. the beach. the water. and the sky. However. one l'an also

further segment the baby~s head from the body. This variation in complexity nIa)"

éuisp because of different general grouping systems. However. it i5 more likely due to

a differenee in the level of abstraction rather than the overall system. Snch a hier­

archical franIcwork for representing objects has been used in many computer vision

systenls for dpriving higher level concepts of objects from lower level primitives [73}
[951 [781 [421 [1071. In the first chapter of ~[arr's book '''Vision"r [73}. he described

four lp"pls of abstraction for ùeriving shape information from images. The lowest

level is the image itself and the primitive at this level is the intensity value (either in

grey scale or calaur) at each pi.~el in the image. The second level is the primal sketch_

At this level. a set of Iow level features is extracted from the intensity or calour map

of the first level. The primitives at this stage are zero-crossing5~ blobs~ terminations
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FIGURE 2.1. .-\. sampie picture of a baby girl

and dbcontinuities. edge segnlents. virtuallines. groups. curvilinear organisation and

bÙlLIldaries. The thinllevel of abstraction is the 2-1/2 D sketch. The purpose of this

stage is to organise and represent the primai sketch in a \iewer-centred coordinate

frame with a rough description in terms of surfaces. The primitives now become local

surface orientation. distance from the viewer. discontinuities in depth and surface

orientation. The highest level of abstraction is the actual 3-D model representation.

The purpose of this stage is to derive and represent the objects in an object-centred

('oordinate franIe sa that recognition can be achieved with viewpoint invariance. The

prirnitives are 3-D shape madels with the corresponding surface properties and their

spatial organisation. This representational framework is mainly object-centred. On

the other hand. dewer-based representation has also been proposed for explaining

how information is stored in the human visual system (3}. In a 'âewer-based frarnp­

work. different views of the abject rather than its 3-D model are extracted and stored.

The advantage of this approach is that it is not necessary to build an explicit moclel

of every abject intended to be recognised.

Although any abject cao be described by different levels of abstraction as sug­

gested by ~Iarr. it is still not dear how the grouping process works or how it can

terminate. The firgt theory for explaining perceptual grouping is the Gestalt Theory

proposed by \Vertheimer in 1912 [140}. This theory proposes that the geometrical

8
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relationships that humans use in perceptual grouping can be categorised as fo11ow5

[141}:

• Similarity: Similar elements are grouped together.

• Proximity: Elements that are close together tend to be grouped together.

• Continuation: Elenlents that lie along a cornmon line or smooth curve are

grouped together.

• Syrnrnetry: Symmetric curves are grouped together.

• Closure: Curves are connected to enclose regions.

• Familiarity: Elements are grouped into familiar structures.

This theory implies that there is a tendency for humans to seek the most unam­

biguous and simple interpretation of the world. This principle of simplicity of fornl

is similar to the law of least action or the minimum principle discovcred by ancient

Greek geometers. This theory has fostered many other theories and continues ta

flxert significant influence on the psychology of perception. .-\lthough introduced at

thp beginnin~ of the 20th century. these sL~ principles are still valid and are the basis

of most grouping methods. It should be noted that these rules are not exclusive.

and ~roupings may be fornled using combinations of subsets of these relationships.

r nfortunately. the algorithmic implementation of these mIes is very difficult because

they have been obtained through observation and they orten conflict. even for simple

stirullii. as shown by Lowe [67}. ~Ioreover. the theory is usually demonstrated using

sinlple visual patterns. which may not always occur in the real world. the world of

llnreliable. uncertain stimuli. Therefore. only a relatively few aspects of the Gestalt

theory have been incorporated into computer vision systems. such as similarity. prox­

inlÎty. and continuity [l06}. \Vhen these principles are used together. higher level

rueta-rules are employed either explicitly or impIicitlYr ta guide their application.

Since perceptual grouping can be defined at many different levels of abstraction.

a variety of specifie goals has been selected and pursued by researchers. ~umerous

interesting eonlputational approaches have been proposed Dver a wide range of air

straction levels. A classificatory structure in perceptual organisation is proposed by

Sarkar and Boyer [106} to organise these algorithms and as a standard nomenclature

with which to discuss existing and future research. In their classification scheme.

algorithms are classifie<! based on two characteristics. The first is the type of feature

being organised or the level of abstraction : signal leveL primitive leveL structural

leveL and assembly leveI. The second is the dimensions over which the organisations

9
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are sought : 2-D. 3-D. 2-D plus time and 3-D plus time. A grey scale image i5 in 2-D

while a range irnage i5 in 3-D. "Vith this classification scheme. since the total number

of categories is just 16~ sorne categories may contain more than one algorithm. Ta

further differentiate these algorithms~ additional classification schemes have heen sug­

gested by Sarkar and Boyer. such as the computational technique. This classification

structure i5 usefuI for comparing and visualising the similarities and differences be­

t\Veen algorithms and thus will be used here. However. arrother possible classification

schenle can be based on whether top-Ievel knowledge of abjects i5 utilised or not.

Since the ernphasis of this thesis is on 2-D images. the review will be focused on

those algorithms designed for grey-scale or colour images. Readers are referred to

Sarkar's paper [1061 for methods involving higher dimensions.

2.1.1. Signal Level

This level involves the lowest and most basic form of organisation. anù the input

to the algorithms are lo(:al point properties.

Zahn [1481 has proposed the use of graphs to extract and detect Gestalt dusters

in dot-<,lustering problems. He uses a family of graph-theoretical techniques based

on the [Ilinimal spanning tree ta segment severa! kinds of dot clusters. A mininlal

spa.nning tree retains both the information of the local neighbourhood and the overall

structures of the dusters and thus is suitable for data clustering problems. Zucker

[151! approached the problem of dot clustering with a probabilistic model for clus­

ters. Each pixel is classified according to one of thIee labels: edge. interior. and noise

with the corresponding probability. A rela'<ation process i5 used to relabel the pixels

iteratively antU no more ph:els are reLabelied. :\ similar method is used by Spann

[lI6! for tigure-ground separation. He approached the problem using global optimi­

sation of a function representing the local eITor fit of an assumed model describing the

variation of the lunlinance over the local regions in the image. Ta minimise the effect

of variance in scale and noise. a multi-scalar pyramid was USE'd \vith interconnections

between the layers. The optimisation is carried out using simulated annealing. The

use of a model and global optimisation removes the necessity of selecting parameters

and thresholds. However. choosing a suitable model may even he more difficult than

setting thresholds or parameters depending on the problem domain.

Image segmentation a[so belongs to this category. In a re\iew paper [87] pub­

lished in 1993. 173 papers are quoted iil the references. Since then. more than ten

10
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new algorithms have been pllblished [26, 111, 5, 61, 64, 110, 20, 90}. The major

contributions of these methods are twofold. The first is a better definition of co­

herent regions or boundaries. especially for complex scenes . For example. Deng et

al. [26} propose a. oew measure J for region uniformity that evaluates the spatial

distribution of colour in an image. To recluce the overall romplexity and ta improve

the stability of the distribution estimation. the image is pre-quantised to reduce the

number of distinct colours. An interesting aspect of this measure is that both texture

and colour infornlation are preserved and encoded in the distribution. Shi and ~[alik

[1111 propose il new feature distance derived ta recluce the instability of a similar­

ity matrix. Feature distance was pre\;ously defined either arbitrarily. such as equal

weighting on aH features. or from the statistics in the test inlage set. Since this new

distance is based solely on the image data. there is no need to pre-define the signifi­

canee of each feature. For measuring texture. a set of fHters is usually applied ta the

inw,gf'. Bplongie and ~[alik (5] find that the filter responses inside textured regions

are generally spatially inhonlogeneous. Thus. they have developed a new nlethod for

n·dut.:ing thpst' inhomogeneities by a method called area completion. The nlain idea

hehind this method is to inerease the similarities between pixels if they are dose to

pach other in tht' spatial domain and have neighbours that are close in the featnre

cionlain..-\5 a rr.sult. a non-llnifarm region having a repptitive pattern of features can

still bf' classified as one region. Lambert and Carron (61} define a new colour space

synlbolically. where hue is explicitly defined and processed according ta its relevance

to chroma. :\ fuzzy dassifier is used to classify the relevance of hue hased on the

following nlIes: 1. Hue i5 not relevant and cannat he utilised in segmentation for

sInaH chrorna vahlP~. 2. Hue is approximately as relevant as chroma and intensity

for medium chroma values. 3. Hue is very relevant for large chroma values. Leung

and :\Ialik (64} define a new definitian of texture as repeated scene elements. Ta be

invariant to scale and perspective. affine transformation is used when measuring the

sirnilarity between different regions.

The second contribution of recently proposed segmentation algoritbms is a more

pffpcti\·p or efficient way of re~on merging and cIustering in feature space. Shi and

:\'[alik [110] propose a novel approach to solve the perceptual grouping problem by

treating image segmentation as a graph partitioning problem. A global critenou.

normalised eut. is proposed by them for segmenting the graph. Comaniciu and ~Ieer

[20} propose a general technique for image segmentation based on feature density.

Il
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.-\ technique called mea-n shift aIgorithm is used for estimating density gradients to

locate the position of local maxima. The number of local ma.xima or modes is deter­

mined automatically by the algorithm: however. the number of modes depends on the

width of the density estimation kerneL Park et al. [90] suggest using mathematical

nlorphology to duster and classify pbcels in the feature domain. First. a eolour his­

tngram is generated and smoothed with a 3-D Gaussian kernel. ~ext. mathematical

morphology. dilation and erosion. is applied to the histogram ta remove the olltliners

and to separate distinct clusters. Carson et aL (13] propose using an E..xpectation­

~[aximisation (E~[) algorithm ta perform segmentation based on image features. The

distribution function of each cInster is presumed to be Gaussian and the E~[ algo­

rithm is llsed to determine the maximum likelihood paratneters of a mixture of h·

Gaussians. This method îs repeated for different values of K and the nllmber of

dusters is determined by finding the best fit of the estimated paranleters to the data.

2.1.2. Primitive Level

This Ipvel involvps the intermediate level of organisation with edges or curvps as

input.

Hérault and Horaud [47} attack the figure-ground discrinlÎnation problenl fronl

a conlbinatoria.l optimisation perspective. They define the problem as separatinJ?; a

salîent curve from noise and make explicit the definition of shape (or figure) b~ed on

cocirClllarity. snloothness. proximity. and contrast in terms of mathenlatical fornlUlas.

Sinlulated annealing is llsed for soIving the combinatorial optimisation problenl.

2.1.3. Structural Level

At this IeveI. lines and regions are organised into a variety of 2-D shapes.

~[ohan and ~evatia [78) use perceptual organisation for scene segmentation and

description. This segmentation ~·ystem generates hierarchies of features that corre­

spond to structural elements such as boundaries and surfaces of objects. Based on

Gestalt principles. edges are grouped to form curyes. Contiguous CllPles are grouped

ta form contours while symmetric curves are grouped to form symmetries. ~e~~. sym­

metries will become ribbons if closure is detected. An e.waustive search is used ta

find relationships between different features. Before each search. invalid or conHicting

hypotheses of any joins or groups are remoyed using geometric constraints: cocurvilin­

earity. continuity. proximity. and ccrtermination. Promising results are demonstrated

12
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on real images \Vith a small number of objects. However. because of the inefficient

search method. the complexity can grow exponentially for more complex scenes.

Ta overcome the computational complexity of many hierarchical approaches.

Sarkar and Boyer [1011 propose a voting method and graph-theoretic structure to

represent the data organisation. They recognise that the bottleneck of the systenl

is the compatibility test among an pairs of tokens. By building a histogram of the

token's feature similar to the Hough transform~ the compatibility test then becomes

Cl bounded search through the parameter space.

80th methods proposed by Sarkar and ~[ohan utilise only edges as input to the

systeul. On the other hand. Schlüter and Posch [lOS} proposed combining bath

contour and region information for perceptual grouping. In this method~ edges are

first ~rollped recursively to form 2-D closures (closed regions). At the same time.

n'ginn segmentation is performed and then the resulting region map is nlatched to

the dosest edge ~Ollp. AdditionaI boundaries are generated if SOUle regions cannat

he matched to any pdge group.

2.1.4. Conclusions

PerceptuaI grouping is a basic and effortless capability of the human \'isual sys­

tenl. However. as rpviewed in chis section. this grouping task is de\iously not simple

but a very complicated process that encompasses severa! levels of abstraction. :\1­

though a lot of research have been done on this tapie. there is still no generaI theury

that can explain most of the known \;sual grouping pheJlomena. such as figure-ground

Jiscrirnination and object detection.

2.2. Visual Attention System in Humans

In order to replicate human \;sual performance. we bave to analyse and under­

stand ho\\" the system works y....ithin our brains. Even though most of the hunlan

brain·s functional mechanisms and its underlying neural circuitry are still unknown.

a basic idea about the visual system can be acquired from psychophysical and neuro­

physiological experiments conducted in the past. Based on these findings~ a bioLogi­

cally motivated model of attention can be devised.
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2.2.1. Structure of the Ruman Visnal System

\ïsual information enters the nervous system in the retina. travels through the

laterai geniculate nucleus (LG~). and then enters the cerebral cortex at the back

of the head in an area named VI (also known as the ~striate cortex~). From this

starting point. information branches off and travels forward into the many specialised

visual areas that an~ located in the posterior half of the brain (called 'Ocextrastriate"

visnal areas). .-\S the information travels forward from the striate cortex into the

f:~xtras[riatecortex. the features coded by single nenrons change from simple bars and

edges to more complex attribntes of abject identity.

2.2.1.1. The Retina

Two types of photosensitive ceLls. rods and canes. exist in the retina. They have

diffprent sensitivities and adaptation mechanisms ta different wavelengths. Cones are

f\..~ocia.tPd with colour vision whereas rods are associated with vision at low light

lpvels. Three different types of cones (red 'Oc actual1y yel1o'W··. green. and bille coops)

arp found in the human retina while a fourth type of cone. the double cone. is found

in non-prinlate visnal systems. These cones appear to be distributed more or Iess

ranùonlly in the retina. but there are many fewer canes for blue than for green or ree!.

The relative nutnbers of reel. green. and blue canes are found ta be in the ratio of ~o

[0 20 to l [18] .

.-\n interesting characteristic of the retina is the non-uniform distribution of the

photoreceptors. The density of these receptors is much higher at the centre of the

retina. called the fovea. than in the surrounding region. The density of the receptors

dpcreas('s with the distance from the centre. This foveated-sampling scheme provides

significant data reduction at the expense of having to physically move the fovea to

the point of interest.

2.2.1.2. The LGN

The LG:\ reprrsents an intermediate relay stage between the retina and the visnal

cortex. The LG~. organised in six layers. is an important switching device used to

segregatp. the parvocellar (P) and rnagnocellar (:\-1) channels and to align the input

from the two eyes. The ~[ layers are concemed primarily with non-colour vision

processing (e.g.. motion of abjects and spatial reasoning) while the P Iayers are very

important for colour \ision processing (e.g.~ abject recognition). Three of the layers
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receive input from the ipsiIateral eye and the other three from the contralateral eye.

The distinctions between P and ~I ceIls are still rnaintained in the cortex.

2.2.1.3. VI

VI is layered like the LGN. There are three types of eelIs or neurons in the \"1:

simple. complex. and h.ypercomplex. Simple celIs are characterised by receptive fields

with excitatory and inhibitory fields. and whose profile can be modelled by Gabor

functions [55}. Complex cells show orientation selectÏ\;ty in much the sarne \Vay as

sinlple cells but they do Dot have distinct excitatory and inhibitory zones (not phase

sensitive). Finally. hypercamplex cells! also called end-stopped ceUs. are very sensitive

ta Hne endings. curvature. and angles. "Vith these cens! several perceptual properties

cao he detected such as selectivity in orientation. size. position. colour. direction. and

depth. The responses of aU \1 neurons can be thought of as retinotopic feature maps

eharaeterising the visual stinlulus captured by the retina.

.-\fter VI. bath the pathway and functions become more complex. The presence

of crassover and fredback make it very difficult to analyse and interpret the actual

layout ùf the neural cin:uitry.

2.2.1.4. Discussion

One of the reasons for the existence of attention is the need ta shift the high­

resolution fovea onto the most important parts of a scene. praviding a detailed de­

scription of the abject of interest. The low-Ievel features extracted and encoded in the

human visual system indllde colour (red. green. and blue). texture. position. [notion

and depth.

2.2.2. Psychophysical Aspects of the Human Visual Attention

System

:\Iany of the mechanisnls of human \;sual attention have been discovered through

psychophysical experiments. In these experiments. human performance is evaluated

fluring sorne specifie. \;S11omotor task. ~Iost psychophysical investigations involved

with attention are aetually concerned \\ith covert attention~ and its facilitation effects

on \isual tasks.

Two basic ffiodels of human visual attention are the zoom-Iens model and the

spotlight model. The first model \'ttas initially proposed by Jonides [56] and then

further developed by Eriksen and his associates [31} [32}. They propose that attention
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is analogous to a zoonl-lens system. .\t a low-power setting, attentional resources

are evenly distributed across the visual field. If the discrinlination task is difficult.

or when a pre-eue had been pre\iously flashed. the attentional system zooms in to

that area and allocates a disproportionate share of the processing resources to il.

However. not aIl attentional resources would be employed in the pre-cued area. The

remaining resources are shared among other locations. The second modf'l was first

introduced by ~eisser [81} and then nlodified by Julesz [581 and Treisman [123] [1241

[125] [126J [1271 (129]. This paradigm proposes that attention involves t\Va distinct

stages. preattentive a.nd attentive stages. [n the first stage. pracessing is perforrned

in paraUel o\'er the whole tield. whereas in the second stage. a sequential analysis of

sorne parts of the inlage occurs. The spotlight metaphor is proposed for the attentive

stage since it \Vould only affect a limited area of the visual field. Even thuugh the

clebate anout this second model is still open [139}. it is by far the mast accepted

paradi~nl of visual attention.

2.2.2.1. Top-down and Bottom-up Control

The t\\'o ba~ic nlechanisms that control visual attention can he des<.'ribed as goal­

driven (top-down). and stirnulus-driven (bottom up) processes. This distinction is not

new. For exanlple. \ViHianl .James (1890) [54} characterises this distinction in terms

of "active" and "passive" nlOdes of attention. Attention is said to be goal-driven when

the attention is controlled by the abserver's deliberate strategies and intentions. [n

(·ontrast. attention is said to be stimulus-driven when it is controlled by sorne salient

attriblltes of the inla~e that are not necessarily relevant to the observer!s perceptual

goals.

2.2.2.2. What features catch the eye?

The most important question about the \isual attention system tS what features

can catch the eye's attention or which feature attracts the most fi..xations. For the

passive bottom-up mode of attention. it is necessary to identify a set of basic features

used in preattentive processing and determine whether attention depends on the

[pature itself. the feature contrast. or bath. It is also important to find out whether

these [eatures have equivalent effects in drawing attention. ~Iany experiments have

been condllcted ta analyse different stimulus propenies. [n generaL targets having

distinct features are perceptually salient and stand out From a background pattern.
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For the fust question. \VoLfe [146) has an extensive review on defining a basic

feature set for 'lisual search. The presumption is made that if a stimulus supports

both efficient search and effortless segmentation. then it is safe to include it in the

basic set. He states that there is a reasonable consensus about a smal1 number of basic

[eatures and more debate over several other candidates. Sorne of the basic features

consistent \Vith the experimental results are:

• colour. [136] ~'Iuch research has led to the conclusion that colour is one of

the best ways ta make a stimulus "pop-ouC from its surroundings. For siulple

patterns. calour difference alone is sllfficient for efficient visual search and

effortless texture segmentation.

• orientatioTL. [351 Orientation is also well-accepted as a basic feature in visual

sparch. However. a difference of 1.5 degree or nlore is needed to support efficient

visual sean·h.

• Cllrlmture. [1281 It has heen found that curved lines can he round anlong

straight distracters using paral1el processing. This implies that the time rp­

quired for detecting the eurved Hnes does not differ significantly with the n1101­

ber of tar~ets. However. the search i5 less efficient if the target is straight and

the distracters are curved.

• .o;i::e. Treisman and GornlÎcan [128} conclude that it is easier to find big ob­

jects among small ones than small among big. However. for a givpn size of

distracters. finding a bigger target is no easier than a smaller one. In addi­

tion. the slope of the reaction time against the number of targets is very steep.

implying that size is not a good basic feature for visual search: except for a

sinlple case in which a big circle is surrounded by much smaller Olles.

• motion. [74} It is apparent that it \\;11 be very easy to find a mo,';ng stimulus

among stationary distracters.

• .-;hape. \rolfe states that shape is probably the most problematical basic feature

hecause there i5 no widely agreed layant of ··shape space·~. Sorne candidates

for the axe., of this space are tine terrnination [57I~ closure [271~ and face [33}.
For the second question about the significance of a certain feature and its contrast

in drawing attention. ~orthdurft [82) has performed a series of experiments designed

ta investigate the raie of features versus feature contrast in preattentive \;sion. His

study shows that features. in general. are not found ta play an important l'ole in these

tasks and performance was instead related to feature contrast. Only in the case of
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eolour does performance also depend on the hue feature. Tbeeuwes! [121} experinlent

ëÙSO shows the attention-grabbing abilities of colour. Recent results presented by

~[annan et al. [701 also suggest that initial fixation placements are not controlled by

perceptuaI features alone. In this study. eye movements \Vere measured while viewers

exanlÎned grey-scale photographs of real-world scenes. They also attempted to specify

the visual features that determined initial fixation placement [71}. They analysed

local rpgions of their scenes for seveD spatial features: luminance maxima. lun1ÏnanCt~

nlininltl. image eontrast. maxima of local positive physiologicaI contrast. mininla of

local negative physiological contrast. edge density. and high spatial frequency. Fronl

their analysis. only edge density predicted fixation position ro any reliable degree

and even this feature produced only a relatively weak effect. Thus. the nature of the

visual features that control fLxéltion placement in scenes is still undear.

For the last question. whether or oot features have equh-a.lent effects in drawin~

auention. the intuitive answer woulel he no. 8ased on experiments in whieh sllbjects

-;parch for sin~letons (a singleton is a single target among homogeneous distracters

and ditfers from those distraeters by a single basic feature). ~[uLler and Founu [79}
argue that the contribution of any specifie feature ta the overaLl salience of any abject

is cuntrolled by a weight that cao change from task ta task and. indeed. fronl trial to

trial. They fine! that the reaction tinle for trial ~v is contingent upon the rdationship

bf'tween targ;f't identity on trial N and ~V-l. That i5. people are faster to find Ho colour

sing;leton on trial .V if a colour singleton is round on trial N-l. \Vhile experimental

rpsults support the uneven weightin~s of different features in drawing attention. ho\\"

tht~Sfl weightings are distributed or how they are altered quantitatively. has yet to he

f'xplained.

~[ost of thfi parly psychological experiments were ronducted with simple images

h(l\·in~ a clark background and simple abjects such as bars. circles. squares. and let­

ters. For these images. it is very easy ta distinguish the background from the abjects.

These experiments are useful in isolating the effects of different features. but not for

showing their inter-relationships. The attention-grabbing ability of different features

on complex real images may differ from these simple ones. To understand how eye

movement is controLled in more realistic \isual-cognitive tasks. reading and scene

\ie\\ing have been studied. A common assumption in these studies is that the fixa­

tion point of the eye is the focus of attention at a given time. Buswell [Il} finds that

the fixation positions are highly regular and related to information in the pictures.
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For example. viewers tend ta eoncentrate their fi."(ations on the people rather than

on background regions when examining Sunday .-\fternoon on La Grande .Jatte by

Georges Seurat. Henderson et. al. [46} aIso have found that first pass gaze duration

and second pass gaze duration are longer for semantically informative than unin­

formative objects. pro\-iding evidence for relatively early. peripherally-based scene

anaLysis. Ta determine whether attention is related to semantic informativeness (the

nleaning of the region) beyond visual informativeness (the presence of discontinuity in

texture. colour. luminance. and depth). Henrlerson et al. [44, 45]. conducted a series

of t"lxperiments with the semantic informativeness defined as the degree to whieh an

object was predictable within the scene. .-\0 unpredictable abject will have high se­

nlantic informativeness and vice versa. They do not find any tendeney by the viewer

to imUlediateLy fixate their attention on semantically informative objects. De Garaf

Pt al. [24] also round no pvidence that semantieally inconsistent abjects were fixated

earlier than consistent abjects. However. they observe that viewers tend ta look back

mon' oftetl to seulantically informative than to uninformative scene regions. These

results sll~~est that the attention is first driven by a bottom-up process before a more

organispd top-down process is engaged to analyse the scene in UlOre detaiL.

2.2.2.3. Are abjects available preattentively?

.-\ recent debate in the literature concerns whether CQvert attention is rlirected

to unsegmented regions of space. or ta segmented perceptual groups that are Likely

to constitute coherent objects. As our actions must ultimateLy be directed toward

indi',;dual abjects. sorne theorists have proposed that it would be efficient for covert

attention ta operate on segmented objects rather than on unstructured regions of

space [4] (29] (811. The space-based and object-based models of attention are often

presented as mutually exclusive alternatives [4]. However. many hybrid \iews are pos­

sible. For instance. covert attention may operate within a spatial medium (as argued

by Tsal and La\"ie [130i). but grouping processes may aet to modulate the spatial

extent of the attended region (Lavie and Driver [62]). Lavie et aL [62} examined the

relation between segmentation and spatial attention by exanlining patients having

cüsorders (extinction. neglect. and Balint's syndrome) after brain damage. He round

that the effects of these brain-damage-related syndromes can be reduced if the tV/a

concurrent e\"ents formed a good perceptual group sucb as dumbbell shape instead

of twa circles. Based on this evidence~ he argues that spatial attention is directed
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within a segmented representation of the visual scene. with at least sorne of this seg­

mentation taking place preattentively. Rensink et al. [102] also show that objects

have sorne preattentive existence by demonstrating that preattentive processes are

~ensitive ta occlusion. \Volfe [145} has conducted a series of experiments that make

il similar point. These results support the idea that abjects can exist preattentively.

2.2.3. Conclusions

In this section. recent and past discoveries and knowledge about the human visual

~ystenl are presented. front this review. it can be seen that there is no general

agreenlent on major issues of the visual attention system. such as a model of attention.

selt:Jction of il basic feature set. and the spatial nledium of the attention process.

~evertheless. therp is both physical and psychologïcal evidence showing the existf1nl'e

and inlportance of a smail ~et of basic features. which include colour. texture. position.

and motion. within the hllnlan visual attention system. In additions. ùbject-based

attfJntion systenlS have also been proposed both as an alternative or as an complernent

ta the space-based model of attention.

2.3. Visual Attention Systems in Machines

Recent ach'ances in eonlputer te!:hnology are astonishing and have made a real­

tilne nlachine vision system feasible. However. despite enormous progress in recent

years. machine vision systems still have a long way to go before approaching the level

of hllnlan performance. The main reason for this is the lack of effective and efficient

algorithms for many generall'omputer vision processes. such as image segmentation

and object recognition. One remedy to this problem is infonnation selection or data

redllction so as to recluce computational time and to suppress irrelevant data and

noise. Starting from the mid-80~s. specifie efforts have been made towards more effec­

tive Illodeis of attention. Since that time. more than ten models has been proposed

[75, 50, 109, 101, 36, 21, 104, 131, 19). ~[ost of these models. however. have been

t('sted only on simulated data. In reality. we seldom see any abjects with perfectly

uniform colour and texture. Even for artificial abjects! the surface property may be

affected by shadows. highlights. and non-uniform lighting. For the model to be prac­

ticaI. it should be able to tolerate a certain amount of noise and be applicable to a
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wide range of environments. [ts performance should also degrade gracefully in case

of failure.

The attention lllodeis proposed by Koch [50} and )'lilanese [76} are very similar

and are based on an architecture pre\iously proposed by Koch and L'lIman [59}. This

architecture i5 related to Treisman's feature integration theory [128}. \ïsual input is

first decompûsed into a set of feature maps. eolours. intensity. and orientations are

used in bath models while edge magnitude and curvature are also used in )'lilanese·s

DIode!. These nlaps are then transformed iota conspicuity maps represeoting the

"conspicllity·· of locations. [ntegrating ail thEl conspicuity maps forms a final saliency

nla.p. Thfl final stage of thése two nlodels is not the same hecause their intended

applications are different. Koch·s model is used for simulating the scan path so

that a winner-take-all selection sehenlt~ and inhibition of return are used as the final

stage. On the other hand. since the purpose of ~[ilanese's model is for locating

auel recognising objects. the salieucy map is further processed ta provide bath the

position and region information which are fpd into another higher-Ievel process for

(Jbjeet recognition.

St\la and Levine [1091 model interest points as the loci of centres of co-drcular

t\d~ps. Experinwntal HISU[ts on real images show that centres of symmetry corn~late

wflll with hllman fixation points. Reisfeld et al. [1011 and Gesû et al [36] also use

symmt'try in predicting fixation centres.

In tinle-\-a~ing iInagery. Conception and \Vechsler [211 proposed an attention

schenle based on ('dge rnaps. motion eues. and past history. In their algorithm. the

saliency map is used ta guide the coarse to fine classification of abjects 50 that the

anlount of infornlation ta be processed later is reduced tremendously. Their nlain

contribution is the integration of active and selective attention with learning and

memory in a hiprarchical framework. Rybak et aL [1041 described an attention model

for pxplaining in\-ariant abject recognition in humans. In their model. attention is

usPd to guide visual perception and recognition. However. the attention mechanisnl

is a top-down process instead of bottom-up.

Apart from general visual attention systems. Tsotsos et al. [131] proved that

in visual search. if explicit targets are given in advance. the time complexity will he

a linear proportion of the image size. On the other hand. if no e:q>licit target is

provided. the task is ~P-complete. Thus. they propose that the human brain may

not be sohing this general problem and it is necessary to have attentional selection to
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guide the search process. .-\ model of primate visnal attention is also presented that

is both biologically plausible and computationally feasible..-\ top-down hierarchy of

winner-take-all processes is embedded within the visual processing pyramid. However.

they also state that a balance between data-driven and knowledge-driven processes

must he achieved.

Osberger and ~[aeder [86] present a method for determining the perceptual irn­

portance of ditferent regiolls instead of point locations in an image. They selecteti

fiV(l factors that have heen found to influence visual attention in assessing the o\'erall

inlportanl'e of each region. These factors are: contra.."t. size. shape. location. and

foreground-haekground. The final saliency measure is obtained by the SUffilnation of

the square of each factor.

2.3.1. Conclusions

~ [ost of the attention models proposed for machine vision are spaeed-based where

pt\rceptual saliency is deterrnined by local feature contrast. sneh as Koch's nll)del

and \[ilanesp's rnodpl. On the other hand. object-based attention models also are

rf1cpi\"ing incrpasing arrlOunts of attention. For these models. abject properties. snch

as synlmetry. region size. shape. and intensity contrast are considered. [t is not

dearly understoorl which approach is more efficient or effective in modelling hunlan

atH'ntion. Howpver. siner rnost computer vision tasks are finally facnsed on individual

ohj(l(·ts. and nat nmch research have been done on this topie. it is worth\\"hile and

fruitful to investi~ate object-based attention in greater detail.
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CHAPTER 3

Perceptual Saliency Measure

This Chapter explores how object-based visual attention can be modelled in a machine

vision systern. Those factors which have been identified by Osberger and ~[aeder

[S6} will be presented along with several new measures infiuenced by psyehophysîcal

tl\·idencp. ~Iethods for conlbining these factors will aiso be discussed in this Chapter.

3.1. Perceptual Saliency Factors

[n [nast cases. et perceptually salient region will correspond to a percpptually

nlPanin~ful or interesting object. However. in sorne situations. a. perceptually salient

re~iun may not he related to any logicai objects. [n scene viewing~ Henderson and

Hollingworth [45] find that initial fixation placement does not seem to depend 00 the

selnantic informativeness of regioos. In these experiments. semantic informativeness

is defined as how unlikely the scene region is e~"pected from the context. Howevet.

people tend to look back more often to semaotically informative objects. Hence. if

\isual attention is defined as the point of fi..xation. there exist at least two definitions

for visnal attentîon. The first definition is what kinds of regions can attract fi..xations

instantaneously withîn t.he first two seconds of \iewing. The second one is which

regions \iewers \\il1 look back to more often. These re\isited regions are what the

viewers are interested in and seek to know more about. This overt attention often

involves a high-Ievel top-down process witll the goal set by the ",iewer. übjects that

people usually look for ioclude human faces~ animaIs. automobiles~ and aeroplanes.

[sually. people are less interested in abjects that often form the background. such as

the sky. floor. and wall. As a result. whenever human judgement is used in assessing
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FIGURE 3.1. Block diagram for Osberger and ~[aeder~s Importance
~[ap calculation

an attention moders performance. these two distinctions have ta be stated clearly.

In this thesis. our attention will be focused primarily on the low-Ievel. bottonl-Up

process.

3.1.1. Osberger and l\IIaeder's model

The purpose of this model is to automatically determine the perceptual irupor­

ta.nce of different regions in an image. The black diagram for Osberger a.nd ~'[aeder's

importance nlap calculation is shown in Figure 3.1. In [86). eight low level features

and four higher level factors are identified which have been found to influence hu­

nlan \'isual attention. These low level features are intensity contrast. size. shape.

en(anr. motion. brightness. orientation. and Hne endings. Higher level factors are

location. foreground/backgrollnd .. people. and context. These featnres are similar to

those identified by \Volfe [146} as described in Chapter 2. Of these features. ooly

live factors are selected by them for modelling "isllal attention. The rnathematical

rlefinition for these five factors are stated below. In arder to be able to compare these

factors directly. they are scaled to fit in the range [0.11.

• Contrnst of region. Regions ha\ring high contrast with their surroundings are

found ta be visuaHy salient. Hence.. the contrast importance Icrmtrrut is defined

as the difference in the mean grey lever of the region ~ and its surrounding

regions Rl-ne1ghbaurs'

(3.1 )

where gi(~) is the mean grey level of region ~. and gl(Rt-nnghbour) is the

mean grey level of aIl neighbouring regions of ~.
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• Size of region. AIl eise being equal. larger regions are more Iikely to attraet

visual attention than smaller alles. In other words. larger regions are easier

to detect than smaller ones. However. this effect levels off after a certain

threshold. The size importance is defined as:

. .-l(~)
l<;l::e(~) =mzn(-,-.1.0)

.1.max
(3.2)

where .-\.( RI) is the area of region RI' and Amax is a constant used to prevent

excpssive weighting being given ta very large regions. They set this constant

to l'té of the total image area.

• Shape of region. Elongated abjects have been found ta attract more attention

than rounder blobs of the same area and contrast. Importance due ta region

sha.pe is defined as:

(:3.3)

(:3.-1)

(3.5)

•

•

where bp( R,,) is the nunlber of pi.xels in the region R. which border with othpr

rf~~ions. and ."ip is a constant. They found a value of l.75 for .-;p suitable for

discriminatin~ long. thin regions fronl rounder ones.

• Loclltwn of reg-ion. Experiments have shawn that viewers are directed at the

centre 25% of a scene while viewing television [30}. Thus. importance due to

location of a region is defined as:

centre(R.)
['ocatton (Rd = .4.( Ra)

wherp center( Rt ) is the number of pi.xels in region R.; which are also in the

center 25% of the image.

• Foregroll.nd / Background. Osberger et ai. assume that a region connected to

the border of the image will have a higher probability of being at the back­

ground. This assumption is valid if the main abjects are not located along the

border of the scene or there are one or two major backgrounds that contain

nlost of t he image borders. This measure is defined as:

barderpix(R;. )
Ibg(R I ) = 1.0 - max( - lb d .. 1.0)o.;) * tota or erplx

where borderpix( Ra) is the number of pixels in region ~ which also belong

to the border of the image. and totalbarderpix is the total number of image
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border pixels. Based on this definition. regions with a high nUlnber of image

border pixels will be classified as belonging to the background and will have a

low foregro'und/background importance.

3.1.2. Discussion

The five fa.ctors chosen by Osberger and ~Iaeder are useful for modelling human

\'isual attention in simple situations with strong "pop-out~ effects. .-\S descrihed in

Chapter 2. the most \Videly agreed assumption that has been used in many psy­

t:hological experiInents is that an object or target is salient and pops-out froln the

background if its visual features differ from other abjects. This idea is proposed by

Triesnlan in her Featllre Integration Theory [127}. Contrast or difference in visual

featurrs cau facilitate \'isual search and thus is visually salient. Coutrast can be de­

fined not only by intensity. but also by otber low-Ievel features such as orientation and

enlour. Howevpr. cantrast alone is not enough for explaining the ··pop-ouC etfect of

uhjpcts ha\'in~ distinct features among other distracters. Cuntrast cau only he Ilsed

to explain tht' reiativf perceptllal saliency uf Lsulaled abjects: not for uujects adjacent

ro t'élch other. This is not hard ta understand. as shawn in Figure :3.2.

Contrast is usually defined as the distance in the feature space. In case 1. intensity

euntrast for region A and region B i5 70 and 50. respectively. and thus region A is

perceptually nlore salient. This prediction is consistent with human judgement. In

case 2. however. the contrast for region :\. and region B i5 the same. with a ,;allle

uf 7'0. The problem with this image is the lack of a common reference franie for

interprptation. One Interpretation of this image can be a very large bright sqnare

havin~ Cl rectanJ?;ular hale in the middIe. Anather interpretation cau be a clark bar in

iL tluifornl white background..-\lthough these two cases are very simple and probably

wOllld not occur in reality. they show the necessity for a good measure of figure­

ground discrimination. In case 3. if someone is asked ta decide whether region .-\

or region C can attract more attention. the answer would be A. From the contrast

calclliation. the 'irÙue of saliency of regÏon .-\ is 30 while that of region C i5 35.

~(95 - :30) + (100 - 95)l * 0.5. Hence. the prediction based on contrast alone cauld be

\\Tong for regions adjacent to high contrast regions.

In assessing the relative depth information of different regions. Osberger et al.

use the percentage of image border as an indication of background. This means

salient abjects are presumed ta occupy none or a very small portion of the border.
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A

( 1(0)

•

Case 1

Case 3

C

(95)

Case:!

•

FIGURE :3.2. Situations where a contrast measure succeeds and where
it fails. The nnnlber within the brackets indicates the region's intensity.
For aH three cases. the backgroundts intensity is equal to 100.

Snch an assumption is valid for most photographs since the most important objects

are placed roughly in the centre of the image when the picture is taken. lt is not

valida however. if this placenlent rule is not followed when the image is taken. snch

as pictures taken from a camera mounted on a mobile robot. or if a background

region is separated into t\Vo isolated regions by an occluder. Sorne of these isolated

regions may not even be close to the image boundary and thus will be assigned a

very high value for foreground/background measure. [n Figure 3.3a. region B is

ob\iously in the foreground while regions A.C. and D belong to the background.

Since region C does Dot touch the image border. it will be given a very high value.

1.0. for foreground/background importance. This problem can he solved by grouping

regions A and C by similarity and continuation. However~ this grouping must be done

carefully to avoid grouping two seemingly distinct objects. sucb as region Band E.
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b
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FIGURE 3.3. Situations where foreground/background measure rails

.-\nother problem associated with this foreground/background method is illus­

trated in Figure :3.3b. In this figure. region A should be the main object with the rest

of the regions belonging ta the background. However. after counting the number of

pixpls in each region which also belong to the image border. region A will be assigned

a lowpr foregroundfbackground value (0.6) than those assigned tu regions B. C. O.

and E (0.9).

The problenl of determining depth information from a single image is also ex­

plored by Rosenberg [103). He uses occlusion eues ta caIeulate the relative depth of

each object. SL, cases of occlusion are identified and used in a relaxation algorithnl

to infer the relative depth graph of the objects. The problem with this method is the

rt'quirement of a highly accurate image segmentation and the occurrence of occlusion.

).[oreover. the number of c:onflicts which have ta he solved may grow exponentially

for more complex scenes. Gther monoeular depth eues iucludc relative size. linear

pprspective. texture gradient. relative height. and atmospheric perspective [143}..-\1­

though these depth eues are widely accepted and well-studied. depth perception still

poses a big problem in practice since these eues usually involve a high-Ievel under­

standing of the scene and therefore tend ta work only in very restricted environments.

For pictures taken by humans with sorne purpose in mind. the method proposed by

Osberger et al. is applicable and is easy to compute without any prior knowledge of

the scene.

The shape importance eue. as described in Chapter 2. is very controversial. For

simple cases consisting of only cucles and long thin rectangles. there is a very high

probability that human fb(ations are more likely ta raIl on the rectangles than on the
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•

FIGURE :3.-1. Situations where shape measure fails

•

drdes. For lllore complex shapes. such as the example shown in Figure 3.-1. how­

pver. the evidence is less clear. ,·vllich shape attracts most of our fi.~ations? Is the

"Z" shaped region G more salient than the irregular shaped region D'? Ho\\" about

the hexagon E'? The shape importance measure proposed by Osberger et al. favonrs

elongated regions ovcr rounder ones. The shape importance values of these regions

are shown in Table 3.1. For this image. the mast salient region predictecl by the shape

irnportance llleaSllre is the background B. This region is certainly not circular and has

many long and narro\\" parts. Hence. it has the highest perceptllal saliency value for

shape! The major problem for ê\ny shape definition is the presence of '~hole~ . snch as

the hackground. Do we consider its shape as the ondine of its outennost boundary"!

Or do we aIso consicler the inner boundaries snch as the shape of a donuf? In other

\vords. do wc trcat the enclosed regions as textures or nof? .-\.pparently. there is no

simple answer ta these questions. If the application is restricted to certain en\;ron­

nleots and the nlost important objects are well-identified and known beforehand. one

cao ma.ke some useful conclusions about the shape saliency of regions. Otherwise.

the usage of shape in modelling the hUInan attention system should he approached

cautiously if not eliminated altogether hecause this feature is not well-clefined and its

effect on attracting hurnan visnal attention is not well-understood in generaI.

3.1.3. New and Modified Importance Factors

•
Base<! on the discussion on Osberger and ~Iaeder"s method. sorne of their con1­

putational methods are modified and new factors are proposed.

• Contrast in colour and texture. The contrast importance lcontTt11lt will he rerle­

fined as the Euclidean distance in the mean coIour and texture of the region
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1
Region Shape importance value

! :\ 0.24
i B (background) 1.00 1

1
C DAO

i D 0.55
1 E 0.31i

1
F 1 0.35

i G 0.45
TABLE 3.1. Shape Importance values for Figure :3.-1

R, and its surrounding regions Rt-nt!t9hbour~ as follows:

1
lcontra:id R;) = edgepix( Rt) *

L (1 feat(R,.) - feat(RJ ) [) • barder(R,. R)} (3.6)
RJ Ennqhbcnlr.'1uf R.

when~ pdgepix( R,) is the perimeter of region Ra in pi."(els. and f eat(~) is the

rnean ("nlonr and tpxture of region ~ 1. barder(~. R]) i5 the length (number

of pixels) of the common border of region Re and R).

• Hllt~. Since colour alone can grab human attention. especially red (1211. it can

be used in nlodelling visual attention. :'io matter how bright or how clark the

object is. as long as its perceived surface hue is red (not black or white). it will

be perceptually salient. However. no strong e\o;dence has emerged concerning

the attention-grabbing ability of hues other than red. In the case of face

recognition. the hue of skin colour can he used ta indicate its importance.

Hence. the hue importance is defined as the distance From the reference hue as

below:

where hue( R,) i5 the hue of the mean colour of region Rl in radians.. and

Reference is the preferred hue that is known to attract attention. ."id is a

constant used ta control the threshold on the difference in hue between ~

and ref erence. and sat(~) is the saturation of the mean colour of region

R,. :\ value of 0.1 for sd is found to he suitahle for discriminating red from

ot ber hues. The second term is included to represent the uncertainty of hue at

l .-\ discussion of how these are computed can he round in Chapter 4.
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different saturation levels. .-\t low saturation value! the calour appearance is

grey and thus the value of hue is meaningless. Hence. a monotonie increasing

funecion (tanh(x)) which levels off after a certain threshold is used for the hue

uncertainty function. sJ is another constant used ta control the saturation

le\'el of the uncertainty function. For the CIE L"a-b" color spaee. a value of

0.001 ï for sf is suitable.

• Saturation. ln general. people are more interested in colourful regions with

vÎ\'id calour. Calour saturation is considered by Braun [8] as a perceptual

salieney factor. Simply. the importance of saturation is just the saturation

level of the rnean colour of the region .

lsaturahan = sat(~)

• Location. The equation proposed by Osberger et al. has a sharp eut-off be­

tween the t:entre 25% of the image and the surrounding region. .-\ Ulore general

fornl of this function is defined below:

1 (D) _ LptXel(x.y)ER, J'oc(I. y)
locatIOn ~... - .-l( Rd

where flor·(.r:. y) can be any function relevant to the importance of location. [n

particular. the following function is used:
x _ y _

floc(I. y) = t( - - O.l») * t( -h - 0.0)
w

where

t(v) = { l
2 - -Ill

if abs( li} < 0.25

otherwise

•

œ and h is the width and height of the image.

• .Ve1lJ foregro'U.nd/backgro'Und measure. [0 order to solve the problem associated

with Osberger and ~[aeder!s method discussed in the pre\ious section. their

method is nlodified. First. global region properties are used to group regions

together if there is a high probabllity that these regions come from a single ob­

ject. [0 reality. shadows. highlights. uneven lighting! and many other sources

of noise are very common and unavoidable. Thus. it is better to perfonn the

similarity testing adaptively 50 that the merge restrictions are tighter when

the noise level is low and looser when the noise level Ï6 high. One possible
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approach is ta impose a restriction that only regions which form a single con­

nected duster in the feature space wiU be considered to be ~similar~. vVith

this approach. the usage of an absolute threshold can he avoided. Since t\Vo

separate objects can also have similar features that form a single cluster in

feature space. as shown in Figure 3.3. another measure of "occlusion" must

bp llsed ta estimatp how likely the twa regions belong to a single object and

are separatcd by an occlllder. [n real scenes. we often observe that if a large

background is separated by abjects in the foreground. a large portion of thp

background would still be connected to the border with several much smaller

isolated regions. Hence. a more conservative condition on the ratio of regions

can be applied ta further reduces the error probability of merging t\Va different

regions. :\. high probability for "occlusion!' will be assigned only if the ratio of

a region i5 rnuch smallpr than the total area of aU the regions that are "sin1­

ilar" to this region. To solve the second problem associated with Osberger's

method where the main abjects occupy a large portion of the image border.

the foreground/background n1easurp can he defined as the ratio between the

number of border pLxels and edge lengths. The final foreground/background

measure i5 defined as follows:

, barderpixel(RI)
== rnln( .

baundar'ypi.rel(R. )
LcunditlOR(R R )-1 borderpixel(R))

l-~.(l- J' 1- , ))

Lcondihon( RJ.R..)= l baundarYPLxel(RJ )
(:3.10)

•

where

~ == 1 - 2 * min(O.5. A.(Rt) )
Lcondition(R) .R.)=l .-l( R))

{

l if R. and RJ fonu a single cluster

condition(~!R)) = and barderpixel(Rj ) > 0

o othen\;se

borderpixel(RJ ) is the number of pi.xeis in region RJ which also belong to the

border of the image. and the baunda7ï.J11Ïxel(RJ } is the number of pb:els in the

boundary of region RJ • The function ç is the probability of these regions being

occluded by other abjects.
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3.2. Methods for Combining the Importance Fac­

tors

.-\fter obtaining the imponance values for each factor. they have to be combined

to give an overall ranking for each region. A simple summation method proposed by

Osber~er and :\Iaeder [86] and four more complex combination strategies proposed

by [tti and Koch [49] will be discussed in this section.

3.2.1. Osberger and Maeder's lVlethod

Osberger and ~Iaeder [861 choose ta treat each factor as being of equal importance

sincp it is difficult to deternline exactly how much more important one factor is than

another. They observe that very few regions wOllld respond strongly for aIl factors

and those regions identified by hurnans as salient usually have a \-ery high ranking

in ouly SOIne factors. Hence. cach factor is squared and then summed together to

produce the final inlportance value as follows:

• n

I.\I(R.) = I)lk(lld)2
'\;=1

3.2.2. Itti and Koch's l\tlethod

(:3.11)

•

[ui and Koch [49] have conducted an experiment to compare four feature cor[1­

hination strategies for saliency-based visual attention systems. The four strategies

they considered are: (1) simple normalised summation. (2) linear combination with

leamed weights. (3) global non-lînear normalisation followed by summation. and (4)

loeé:ù non-linear competition between salient locations. In their \;sual attention sys­

tem. visual saliency is defined as the magnitude of spatial diseontinuities in colour.

intensity. and orientations at different seales. :\. large number of feature maps (a total

of 32) is generated and combined by one of the four methods. They also observe that

salient abjects appear strongly in only a few maps and may be masked by noise or

less salient abjects. Experimental results show that the simple normalisation method

consistently!,;elds ponr performance while the "1:rained'T method yields the best per­

formance. However. different leamed weights are used for different image classes. The

other t\Vo methods !';eld intermediate performance. Sïnce the last two methods (3
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and -1) do not require any learning procedures or any specifie models. they are nlore

generic and are applicable ta a broader range of situations.

3.2 ..3. Discussion

.-\s discussed in section 1.2. the foreground/background measure is more impor­

tant than the contrast and shape measures in region-based attention. Hence. equal

weights should not be used. In ltti and Koch·s experiments. the ·~rained'· method

consistently yielded the best performance \Vith a two-fold improvement when corIl­

pared to the other methods. Since the parameters are allowed ta vary for different

test irnages. this method cannat be used in a general vision systeul. However. it

would be useful to analyse the performance of a H.trainedr method with only one set

of parameters for aIl test images. The other two methods proposed by [tti and Koch

are more ~eneric. however. the spatial normalisation ruuctions used in these nwthods

canuot he extended directly ta a region-based featnre map. Thus. these two nlethous

will not he considered. As a result. the integration method that was used in this

research is the weighted sumnIation of aIl importance factors. \Vith the wei~hrs ob­

tained by experinlentation from a large collection of test images. If no specifie weights

fon any factor l'an be found to inIprove the overall performance \\'ith confidence. one

cao either use cqual weights for an inlportance factors or classify the test irnages into

diffcrpnt categories and then find the optimum weights for each group.
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CHAPTER 4

Feature Selection

The perceptual saliency funetions deseribed in Chapter 3 require the image ta be pre­

segmented into coherent. non-overlapping regions. that resemble the original physical

abjects in the scene. However. hefore an image can be segmented. it must he trans­

formed into il set of feature maps that allow similarity and surface continuity to he

clefined. The most commonly used features for image segmentation are colollr [20}.

texture [851. and position [13!. These features are intuitive to humans in discrim­

inating and separating different abjects. vVe usually use colour and texture when

cLescribing the visual properties of an abject such as brown and curly hair. a snlooth

and shiny surface. etc. Position is aisa an important eue in discriminating abjects

sinee if two regions are far apart in the spatial domain. they have a lower probability

of belonging to the same abject. Bialogically. special neurons in the human visnal

system are capable of detectiog aU of these features at an early stage. Spatial infor­

ota.tion about the abjects cao be easily included in the feature vector by including

the x.y-coordinates of each pi.xel. However. utilising this extra information can have

negative side-effects such as breaking up a large unifonn region (13j.
For colour and texture. many feature spaces and computational methods have

beeo proposed in the literature. Hence~ selection criteria must be adopted to choose

a particular representation scheme for these features. Since the objective of the

segmentation stage is to have the image segmented as if it were performed by a

human. the feature space should also be perceptually uniform. That means the

perceived difference of any two samples separated by a fixed distance in the feature

space should be constant.
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After the extraction of these features. they must be combined to form a single

feature vecror. During this integration process. decisions have to be made on how the

features are to he combined and what to do if these features contradict each other.

For example. how similar is the perceptual difference of a unit distance in colour space

compared to a unit distance in texture space? In addition. since texture refers ta the

spatial distribution of colour. the colour of the pi."{eIs within a texture region will not

be the same or even similar. unless it is a unifonn 'llon-texture'~ region.

In the following sections. a brief review of colour and texture is presented. as \Vell

as nlethods for resolving conflicts that arise from the feature integration process.

4.1. Colour

The hUluan visual systern uses three different kinds of cones. each \Vith different

sp~ctral sensitivity. to sense the colourful world (see Figure ..l.I). These cones ha\'e

peak responses at wavelengths of 580. 540. and 440 nm. respectively. \Vith these

rhree receptors. we can distinguish coloured lights \Vith different wavelengths and

intensities. Since the power spectrum of light in the visible frequency range is encoded

by three channels onlr. this encoding is a many-to-one mapping and the original power

spectrurn cannot he reco\'ered canlpletely by the human visual system. However. this

provides a usefuI additive property of the appearance of light. A mLxture of twa lights

at different wavelengths ean produce a colour that appears different from the twa

ori~inal light sources. As a result. the whole \risible colaur spectrum can be produced

by nüxing three or more primary calours at different proportions. :\.S three channels

an~ used in the hurnan visnal system. trichromacy has been adopted in computer vision

for representing calaur quantitatively. However. the wavelengths of the tbree primat}·

colours defined in the CIE (Commission Internationale de l'Éclairage) standard are

700. 5--16.1. and 435.8 nm instead of the peak responses of human cones in order ta

[uatch the light enütted by artificiallight sources.

Based on this standard. all image capture and display devices are designed with

these three primary colours. subject to small variations depending on the actual

materiais nsed. The -raw" format of any colour image is the RGB format specifying

the relative intensity of the tbree primaties. Any colour is represented by a point

C( r. g. b) in a colour cube. as shown in Figure 4.2. The origin of the RGB colour space

is the -eolour" black and the full brightness of all three primaries together appears as
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FIGCRE ..t. l. Spectral sensitivity of cones From Vos. Estévez. and \Val­
'13""raven l t l

white. Three corners of the colour cube located on the nlajor t\..xes correspond to the

three prinlary calours: l'ed. green. and bine. The remaining three corners correspond

to thl' sf'condary enlours: yellow. cyan. and magenta.

In the l'Onlputp.r. cach of these axes is encoded with 8-bits. ranging forni 0 to 255.

InitiaIly. the RGB calanr space is Iinearly related to the intensity. Howe\·er. because

of the nonlinear relationship between the input signal and the resulting brightness

of nlost display systenls. such as the cathode ray tube( CRT). the input signal ta a

display device must bt' modified ta eliminate this nonlinear property. This comppn­

sation method is called gamma-correction. For a typical monitor. the electro-optical

radiation transfer function is often expressed by a mathematical power function:

1 = .-1. * ~ -gamma (..t.i)

•

where 1 is the brightness of the pixeL .-l is the ma.Wnum luminance of the CRT and

\. is the applied voltage in the range of 0 and 1. For a con\'entional CRT. gamma is

aronnd 2.2. For con\'enience. images 01' photographs. especially those posted on the

internet. which are intended to he \iewed primarily from a PC ~ are already gamma

corrected during the encoding process so that no extra correction is needed when

displaying them. The resuiting colour space is called nonlinear RGB space or sRGB

space [118}.
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4.1.1. Colour Spaces

Due to the logarithmic relationship between the perceived brightness by humans

and the actual intensity. the linear RGB space is perceptually nonlinear. ~Ioreover.

this ("olonr systeul is Ilot intuitive since people are more accustomed ta thp three ba­

sic attributes of colour: hue. saturation. and brightness. To correct these problems.

[lew colour spaces and transfornlations of the RGB colouT spaces have been proposed

[48, 147, 96}. Some colour spaces are simply linear transformations of the RGB

spacp: CIE 1931 .\YZ and l"i;y. CIE 1960 yutl . and CIE 1976 YU~V~. Colour spaces

generated by nonlineL\r transformation incIude: l·CBCR(JPEG and ),-IPEG digital

standard). Photo YCC(Kodak PhotoCD system). HSI(Hue. saturation. and inten­

sity). CIE 1976 (L ·a·b·). and CIE 19ï6 (L ·u·v·). Sorne colouT spaces are obtained

by collections of colour samples in the fonn of patches of paint. swatches of clotho

pads of papers. or printings of inks. Such systems are referred to as colour arder

systems and include the )'Iunsell system. DllV system~ Coloroid system (designed for

use by architects). and OS•.:! (Opticai Society of America) system. No mathematical

transformations have been proposed yet for these calour arder systems except the

:\Iunsell system [77J.
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4.1.1.1. CIE 1931 XYZ and Yxy

The CIE 1931 _\YZ system is defined such that all visible colours can be defined

using only positive \alues [14}. Transformation from RGB to _\YZ is defined as:

_\ = OA90 • R -:- 0.310 '" G + 0.200 * B

}' = 0.1ïï • R ..j.. 0.812 *G + 0.011 * B

Z = 0.000 * R + 0.010 * G + 0.990 '" B

(-1.2)

(-1.;3 )

•

where bath the RGR and xrz values range from 0 to 1.

CIE also defines Cl. normalisation process to compute the chronlaticity coordinates

to facilitatt.' the representation of colonf in the absence of brightness:

_\
.r=----

.\ +}- + Z
}'

,'-----
.1 - X· +}' + Z

4.1.1.2. CIE 1960 Yuv and CIE 1976 Yu 'v'

80th ruv and r"u·u· are designed to produce a unifonn chramaticity scale diagram

in which a calonr eiifference of unit magnitude is equally noticeable for aIl l'olanrs.

Howe,·pr. the logarithmic response of the human eye on brightness is not madelled.

The ruv and ru·u· are obtained by the fallowing equations. and }" is unchanged from

the CIE XYZ system.

and

-lx
u=-----

12y - 2x + 3

6y
l.'=-----

12}' - 2x + 3
(-1.5 )

u' =

el =

u

1.5v

-lx
12'Y - 2x + 3

= 9y
12Y - 2.x +3

•
4.1.1.3. }~CBCR Calour Space

Thfl }"CBeR eolour space is used in the .IPEG and :VIPEG digital image format.

The thr~e channels are luminosity(Y). bIue chrominance(CB ) and red chrominance(CR).

The separation of Luminance from chrominance allows image-compression techniques
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to take advantage of the eye's lesser need for resolution of colour than of hrightness.

RGB values are converted to }"CBeR values in two steps. First. a nonlinear transfor­

nlation is applied to the signal. The resnlting values are converted to Y CBCR through

a linear transfornlation.

C' = COA5 (.t6)

(-t.7)

•

}~. = 0.2990 * Fr +0.5870 * C' +0.11-t0 * B'

CB = -0.1687 * R' -0.3313 *C' +0.5000 * B'

CR 0.5000 * R' -OA187 * C' -0.0813 * B'

4.1.1.4. Photo YCC Colour Space

The Kodak Photo YCC colour space is designed for encoding images with the

PhotoCD systpm and is sinlilar ta the }·CBCR colour space. The only difference

is that a ditferent transfornlation matrix is used in the second step. The goal of

tlll' Photo }"CC colour-encoding scheme is to provide a definition that enables the

("onsistent n:~prf'sf'nta.tion of digital colour images from negatives. slides. or other high­

l[llality input and allows rapid. efficient conversion for video display. The nonlinearity

of this colour spacf' is based on the nonlinear property of video displays instead of

the logarithmic sensiti\"ity of the human eye.

For R.C. B > 0.018

•

Fur R.C. B ~ 0.018

Er = 1.099 * [fA5 - 0.099

C' = 1.099 * COAS - 0.099

BI = 1.099 * B°.-l5 - 0.099

Er = ·t5 * R

Cl = -1.5 *G

B' = -1.5 * B

(-l.8)

(-1.9)

-to
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• l' = 0.299 *R' +0.587 *G +0.114 *B'
Cl = -0.299 *R' -0.587 *G' +0.886 *B' (-t.lO)

C2 = 0.ï01 *R' -0.587 *G' -0.11-1 *B'

4.1.1.5. HS V (hue, saturation, and value) Colom Space

Different versions of HSl/ colour space have been proposed in the literature [122]

[43]. The nlost commonly used HSl/ calour space is the cylindrical space where

nUl...XiIIlUnl saturation does not depend on the intensity value [114}. The problenl

with this space is the high sensitivity to noise for very dark eolours. .-\lternative

calonr spaces are generated \Vith different relationships between the intensity and

nlll.ximum saturation. snch as Linear [37J and quadratic [1441. Despite modifications

to the shape of this eolour space. all HSll colour spaces make no reference to the

pprCf~ption of light by the huulan ,,;sion system. The transformation from RGB to

HS\" proposed by Tra\'is [122j is given below:

• \ . = rrzax{ R. G. B) (-l.11 )

\" - rnin(R.G. B)
5 = (-1.12)\-

let R'
\"-R \"-G

= l' - rnùz(R.G. B)' C' = V - min(R.G. B)
and

B'
l' - B

= \' - rni n( R. G. B)

5~Bf if R = rnax(R. G. B) and G = m'in(R. G. B)

1 - Cf if R = rrlax(R. G. B) and G f. min(R. G. B)

H
1 + Rf if G = max(R.G. E) and B =min(R.G. B)

= (-l.13)
3- Bf ifG:= max(R.G.B) and B 1= min(R.G.B)

3+Gf if B = max(R. G~ B) and R = min(R.G. B)

.j - Rf otherwise

•
80th CIE L-a-haand CIE Lau•u• color spaces ar~ intended to be uniform coIour

spaces. The colour differences in chromaticity and luminance are bath taken into

account in the minimisation process of the variation of perceptual differences of unit

vectors. The nonlinear transformation for L· is designed ta mimic the logarithmic
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response of the human eYfl. The CIE Lau" e" calonr space is based on the CIE 1976

r"ll 'L" while CIE L·fL·b· is based directly on CIE .tYZ. The equation for the parameter

L" is the same for bath spaces:

La = { 116 ( ~~ ) 113 - 16 if r... > 0.008856

903.3 ( :.~ ) otherwise
(4.14)

il· = l3*La(u'-u~)

t'· = 13 * L-(/ - L'~) l-!·15)

(··LI7)

(--l.L6)

wherp

{

tl/:J if t > 0.008856
fn(t) = - -8- . 16 h .

'.1 • * t T TI6 ot er\\,Se

l~ . .\n. and Zn define the appropriately chosen reference white and u~ and e~ are the

vaInes obtained fronI the f~quation for }~ l/v' using this reference white point.

•

4.1.1.7.. The J\tlunsell System

•

The )'Iunsell system is one of the most widely used colour arder systems. origi­

nated by the artist .-\.H. ~lunsell in 1905..-\0 important feature of the :\Iunsell system

is t hat the colours are arranged 50 that. the perceptual difference between any two

neighbouring samples is as close ta constant as possible. 1Iiyahara and Yoshida

[771 proposed a transformation~ called the ~[athematicalTransfornlation ta )'lunsell

()'[T:\l). based on the CIE 1976 L-aab". However. this is just an approximation ta

the :\[unsell system. There does not exist a simple and exact mapping from RGB or

.\YZ to the :\lunsell coordinate.
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4.1.2. Conclusions

AU linear transformations of the RGB space do Dot agree with the logarithmic

brightness sensitivity of human eyes..-\.mong the nonlinear transformations. it i5 not

clear which colonr space has the highest perceptual uniformity and how much more

uniform one colonr space is when compared to another calour space. ~evertheless.

since the CIE L-u· v- and CIE Laa-ba colour spaces bath have been tested extensively

using psychophysical experiments [1171 and are widely accepted as perceptually uni­

fornl spaces. either one of these two colour systems cau be used in repre5enting the

surface colanr of objects. [n particular. the CIE L·a"b" i5 selected for this project.

4.2. Texture

Texture i5 an important attribute in describing the surface properties of abjects.

hnages of rcal abjects often exhibit certain particular patterns of colour. These

patterns can he the result of physical surface properties. such as irregular surface

orientation. or they could be the result of reflectance differences. snch as differences

in rUi:ltprial and colour. This perception of texture. while very obvious and pffortless

for hmuan:;. is vpry difficult to define fornlally and precisely. .-\ large nunlber of

feat ures have been identified by researchers and have proven to play an important role

in texture identification. These features indude coarseness. contrast. directionality.

line-likeness. regularity. roughness. uniformity. density. linearity. direction. frequency-.

ph~e. and conlplexity [120][1i(63]. These features are not independent and are

eorrplateù \Vîth pach other. such as directionally and line-likeness. Because of the high

dimensionality of the texture space. there is no single method of texture representation

which l'an nlode( adequately aU aspects of texture [133}. :\Iost texture research has

hflPn conducted on the Brodatz texture collection. samples of wltich are illustrated in

Figure ~.3 .

.-\lthough there is no generally agreed definition of texture. severa! basic assump­

tions are commonly used in texture analysis. First. textures are homogeneous patterns

or spatial arrangements of pixels. ~Iany papers on texture have considered only grey­

scale images. although colour te).,1;ure has become a focus of recent research [89J(51J.
Secondly. unlike colour. teÀ1:ure is a region property instead of a point property..-\5

a result. its definition must involve pixels in a spatial neighbourhood. The decision

on selecting a suitable size for this neighbourhood depends on the texture type and
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FIGURE -t.3. Texture samples from the Brodatz collection

the rrade-off bptween noise-suppression and edge-iocalisation. \Vith a larger spatial

support. a. more robust estimation of the texture can be obtained. .\t the same

time. utilising a bigger neighbourhood reduces the spatial resolution of the texture

by smoothing out the edges. The last assumption on texture is its muIti-scale prop­

~rties. For example. a coarse \iew of a tree shows the (eaves and branches while a

doser look at the tree reveaIs the fine details of the bark and the veins of the leaves.

[nfonunately. it is unclear where this transition (when the leaves are perceived as

abjects by themselves) occurs in texture segmentation.

4.2.1. Related Work on Texture

A substantial amount of work has been done on the problem of texture analysis.

classification. segmentation. and synthesis. A large number of surveys have already

44



•

•

•

·1.2 TE.."'<Tt"RE

been published [142] [40] [138] [135} [28} [100] [84] [133] [98) on texture analysis

alone.

In [133]. Tuceryan and Jaïn categorise existing texture models into four major

classes: statistical. geometrical~ model-based. and signal processing method. Statisti­

cal methods extract texture features from the spatial distribution of grey values. such

as co-occurrence matrices [41]. Cnder the category of geometrical methods. texture

is defined as a composition of '1;exture elements~ or primitives. Voronoi tessellation

features proposed by Turceryan and .Iain [132] is one example of this category. [n

rllodel-based nlethods. textures are presumed ta possess certain structures and these

structures can be described locally. Based on these assumptions. ),,[arkov random

fields (~IRFs) [88] and fractal geometry are commonly used for modelling images.

These methods can be used not only for describing texture. but alsa to synthesize it.

[n signal processing methods. the texture features are obtained from a set ùf filterf~d

inlages. Studies in psychophysiology have suggested that the 'lisual system rlccorn­

pùses the inlage formed on the retina into filtered images of various frequencies and

orientations [12}. The study caoducted by De Valois et al. [25] on the brain ùf the

nlacaql1e monkey concluded that simple cells in the visual cortex of the monkey are

tllned ta narraw ranges of frequency and orientation. ~[oreover. the receptive fields

of sinlple cells can he nlodelled closely by Gabor fnnetions. Thcse studies have led to

the use of rnulti-channel analysis for texture representation. As a result. Gabor and

wavelet nlodels. in particular. are widely llsed for texture analysis.

\'pry few quantitative comparisons between different texture feature representa­

tion sehemes have been presented. )'Iost stlldies have used mosaic images for bench­

ma.rking. These test images are generated by randomly selecting t\Vo or more texture

samples from the Brodatz!s collection and then combining them side-by-side to fonn

il texture rnosaic. Despite the small number of comparative studies. experimental re­

sults do not agree with each other [98l[16]. Co-occurrence features give the best per­

formance in the studies of Strand and Tan [119J and Ohanian and Dubes [83]. while

Laws [631 and Pietikainen et.al. [94} had the opposite conclusions. Recently! Randen

and Husoy [98J compared a large number of filtering approaches including the Gabor

tilter. different versions of the wavelet. and two classical non-filtering approaches. co­

occurrence and auto-regressive features. This study shows that the performance of

various filtering approaches vary for different textures. No single approach performs

consistently weIl for aU test images! and thus. no single approach may be selected as
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the clear winner. However. if only the overall performance is examined. the 16-tap

FIR quadrature mirror filter bank achieves the best overall results. Ta obtain the

performance on real scene images iustead of synthetic images. Chang, Bowyer. and

Sivaguranath [161 compare grey-Level co-occurrence, Laws texture energy and Gabor

filters on 35 real images. Their results show that the performance of these three

texture algorithms is much higher when tested on mosaic images than on real scenes.

For exanlple. 85% classification rate for Gabor filters on mosaic image and 71% on

reai images. In this study. Gabor filters offer the best perfonnance.

The assumptions and objective for segmenting real scene images differ frorn that

of segmenting nlosaîc images. For a real scene. it is preferable to have the image

segregated into several non-o'lerlapping regions depending on their perceptual sim­

ilarity. sinee the size of the objects may vary from 5-pixels wide to half the size of

the whole image. On the other hand. the objective of segmenting mosaic images is

to segregate different texture patches regardless of their visual similarity. Thus. it is

desirable to test not only a texture algorithm's discrinlination power. but aiso how

dose the distance measure is to the perceived difference.

In an attenlpt to recluce the dimensionality of the texture space. Rao and Lohse

[99] have conductecl a psychophysical experiment to identify the high level features

that are most relevant to the attentive perception of textures. To achieve this. they

had 20 subjects perforrn an unsuperviseci classification of 30 pictures from Brodatz's

albunl. Bath hierarchical dustering analysis and multidimensional scaIing analysis are

Ilsed to identify and verify the dimensionality of the experirnental data. This analysis

shows that 95.5% of the variability in the classification data is preserved in a three­

dimensional space. Rao and Lohse interpret these a.xes as repetition. orientation.

and complexity. .-\lthough the sample size of 30 may not be large enough to give

a complete picture of the te~"ture space. the result of this study still indicates that

rnany text ure features are highly correlated and as few as three dimensions may he

enough to rppresent a wide 'lariety of textures.

4.2.2. Related Work on Unsupervised Segmentation of Natu­

rai Images

~[any new inlage segmentation algorithms proposed in the last few years utilise

both colour and texture to segment images. ~Iost of these aIgorithms have been tested

on a large set of real images ta show their robustness and performance. Carson et.

46



•

•

•

4.2 TEXTI-aE

al. [13] use joint colour. texture. and position as feature vectors. Instead of using

dassical methods for representing texture. they introduce a novel method to estimate

the scale parameter of the underlying texture. At each pLxel location. the average

magnitude and direction of edge vectors within a local neighbourhood at several

scales are compured. The process of estimating the "actual" texture scale is based

on the changes in the magnitude and direction of the local edge vectors across seales.

This method is similar to a soft version of local spatial frequency estiIIlation. Three

texture features. polarity. anisotropy. and scale. are extracted. \Villiams and .-\lder

(144] llse a mask for feature extraction. The mask consists of k*k blacks and each

block is n pLxels wide. \Vithin each black. the average intensity. standard deviation

of intensity. and average eolour are computed. \Vithin this framework. texture is

implidtlyextracted by the standard deviation of intensity within each black and the

spatial distribution of colour within the mask. Liu and Picard [65] have investigated

thf' \\"old random field model for modeLling texture. The \-Vold model decomposes

the image inta thref' nUltually orthogonal components which can he described as

periodicity. directionality. and randomness. These three properties correspond to the

three filOSt important perceptual dimensions identified by Rao and Lohse. [99] .

4.2.3. Texture Representation

.-\s disclIssed in the reviev; papers. not a single representation scheme can he

identified as the dear \\"Înner that can perform consistently \veU on aIl test images.

Hence. it is not clea.r ho\\" to select a particular scherne for general image segmen­

tation. However. since the segmentation results are usuaLLy judged by a human. it

wOllld be desirable to have the texture representation scheme that most dosely re­

sembles the human \"Îsual systenl. In particular~ Gabor filters have proved to model

sufficiently the psychophysical data obtained in texture discrimination experiments

[22] [551. ~Ioreover. Gabor filters have sorne desirable optimality properties. They

a.ttain maximum joint resolution in the space and frequency domains [23}. This prop­

erty is highly valuable in balancing the conHicting objectives of accurate estimation

of texture features in the frequency domain and good spatial localisation. Hence. Ga­

bor filters are selected to represent texture. Transformation on this te:~:ture space ta

simulate the orientation invariance and perceptual uniformity will aIso be discussed

in the follo"'ing sections.
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4.2.4. Gabor Filter Bank

.-\ 2-D Gabor function cao be defined as a complex sinusoid modulated by a 2-D

Gaussian fUIlction in the spatial domain. Thus. Gabor functions are conlplex-valued

functions in ~R2. However. sorne techniques use real-valued. even-symmetric Gabor

filters only [53). A. family of 2-D Gabor function g(x. y) and its Fourier transforrn

C( 1L. L') are characterised by the following formwas [69}:

1 (~[4+~1 ...21rJfX8)
g(.L!J. 8. (j. f) = exp IY~ (Ty

2ïr(jzay

(H1l&!t-;fI': "'~j) (~[Il&!t~;"~ ... ~])
G( IL. L'. 8. f) = erp ~~ (Tir + exp ".~ "'l'

In = Icos(8) + ysin(B)

yo = -xsin(8) + ycos(fJ)

(10 = ltcos(fJ) + t"',-in(fJ)

t'o = -u:;in(fJ) + vcos(fJ)

when~ (fit = 1/27iaI and al! = 1/2rray. 9 is the orientation of the Gabor kernel. aI a.nd

fT'l control the width of the Gaussian envelope and f is the frequency of the sinusoidal

wavefornl. The frequency and orientation selective properties of a Gabor filter are

more explicit in the frequency domain as shown in equation(4.19). Figure..tA shows

the real and imaginaIj' parts of a Gabor filter with fJ = O. a wavelength of 5.3 pixels.

and llIlity aspect ratio (aI = O"y). The frequency response of the fil ter is also shown

on the sa.me figure.

4.2.4.1. Parameter selection

Due to the fact that Gabor wavelets are not orthogonal. sorne information in the

filtered images is redundant and sorne of the original data may be lost. Hence. the de­

sign objective is to utilise the smallest number of Gabor filters to cover approximately

the whole feature space. This objective can he achieved by having the half-peak mag­

nitude of the fUter responses in the frequency domain touch each other. As in [53]

[69)~ the half-peak radial frequency bandwidth~ Br, and orientation bandwidth, B(J
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FrGURE .1 ..t. (a) Real and (h) imaginarj· components of a Gabor 61­
tpr with a wavelength (1/1) of 5.3 pbcels and unity aspect ratio. (c)
Frequency response of this filter.

are given by

Br = log2(f+I7"~)
/ - au 2ln2

-1 (af1~)0) tan- /

(·t20)

(-1.21 )

•
where Br is in octaves and Bo is in degrees. If the frequency of two consecutive scales

are fI and Il. the required bandwidth. Br is then given by [Og2(/L/ /2). Once the

highest radial frequency (Jo) and the scaling factor of the kernels (fo/ fI) are fLxed.

the \\idth of the Gaussian function (az and av) can he obtained from equations(4.20

and -1.21).
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FlGURE ~.5. The frequeney response of a dyadie bank of Gabor filters
with =3 seales and -l orientations.

\Vhen inlplementing a Gabor filter bank. it is necessary to choose the number of

scales (wavelengths) and orientations. This determines the total nurober of channels

in the filter bank. Randen and HUSQY [981 found that the performance of texture

datisification increases \Vith the nurober of features. The overall best texture [eature

representation in their study aIso has the highest feature dimensionality of 40. On the

contrary. Smith [113} discovered that the algorithm with 3 seales and 4 orientations

~ave the best overall accuraey on 10 texture classification problems. He found that

utilising a higher number of scales and orientations could have negative effects on

performance. He called this observation the peaking phenomenon. The frequency

response of the bank of 12 Gabor filters at 3 scales and 4 orientations is shawn in

Figure 4.5. This fHter bank covers most of the frequency plane except for the low

frequency range at the centre. For natural images. low frequency filters will pick up

the structure of abjects rather than the objectsr texture. Hence. it is preferable to

exclude the extremely low frequency filters.

One of the major issues in filter design relates ta the efficiency of filter implemen­

tation. In the general form of the Gabor function~ it is not a separable filter. This

means a single convolution of a Gabor function and an image~ with a size of K x K

and .V x .V respectively. requires ly2Kl. multiplications and additions. One way to
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reduce this computational workload is by reducing the redundancy of the Gabor de­

composition using Cl. pyramidal approach [38}. Because of the frequency selective

property of the Gabor filter. the band-passed image can be sulrsampled without any

1055 of infonnation. Hence. efficient methods~ such as Surfs HDC method [101. can

be u5ed to down-sample the image before the convolution. However. this approach

al50 linlÎts the choiee of subband deconlposition to dyadic (octave band) decomposi­

tian. Ir should also be noted that the filtered images are smaller than the original

image due to the sub-sampling. In order to generate a feature map at the highest

resolution. IIp-sampling and interpolation tS required.

An alternative solution to this problem is proposed in [511. The Gabor function is

decomposed into 2 separable funetions. The requirement for this deeomposition is to

use a circular shaped rather than an elliptical shaped Gaussian function. Replacing

both a r and aIl by a single variable a. the Gabor function in equation -l.18 can be

pxprpssed as a separable function as foUows:

This filter is more efficient ta implement than the direct implementation since

('onvolving a.n l\ x l\ filter \Vith an .'1 x .V image takes only 2/\.V2 computations.

Bpsides. llnlike thp pyra.midal approach. there is no eonstraint on the scaling factor of

the Gabor filter banks and no up-sampling is required as the filtered outputs already

havp the same dimensions as the original image.

•
f} f}

- l (6 ... ·11rlfrro...(O)) 1 . (f-'!1r)fy.unUi))
g(.I:.!J . . a. - t:C e.rp * I:L exp

v2~a v2rra
(-l.221

•

4.2.5. Generation of Texture Feature Set

.-\n oveniew of the generation of a texture feature set is shawn in Figure ..t6.

Fïrst. a set of Gabor filters is applied to the input image. generating n texture chan­

nels. These filter responses are then subjected to a series of linear and nonlinear

transfonnations and smoothing to form the final texture feature maps.

4.2.5.1. Linear Transformation on Texture Space

For natural seene images. it is desirable that the texture features are invariant

to rotation and scaling. For example. the stripes of the zebra in Figure -t7a are at

different orientations and scales. In order to have the zebra segmented out as a single

region. the texture features must be insensitive to changes in orientation and scale.
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FIGURE ..L6. BLack diagram of the generation of texture features. The
filter bank (FB) generates .V texture channeLs. The first linear transfor­
ulation (LTl) approximates the orientation-invariance transformation.
resulting in K channels where K ~ .V. The next nonlinear transfornla­
tion (~Tl) and low-pass filter (LPF) produee a local energy estimation
of the fiIter output. The second nonlinear transformation (:'\T2) is
included ta compensate for the effect of ~Tl and the finallinear trans­
formation (LT2) improves the perceptual uniformity of the texture
spacp.

One way to rflnlove the orientation selectivity of the Gabor filters is by sumn1Ïng

the filter responses of different orientations at each sca1e [114}. The reslllting filter

acts like a. hand-pa:;sed filter which can he modelled by Differenee-of-Gaussian (DOC)

filtefS. The magnitude of the Gabor outputs of the zebra image are shown in Fig­

ure -1.7. This test image explicitly shows the discriminative power of the Gabor filters

nn scale and orientation. The horizontal stripes are completely separated from the

vprtical and diagonal ones. However~ the texture features of the zebra"s body fornl

several well-separated clusters. From the combined channels. (f) and (k). the shape of

the zpbra ht1('omes more prominent and complete. ft should he staten that combining

l'hannels of different orientations will lower the discrimination power sinee classifica­

tion hetween twa texture regions can no longer he based on the distribution of energy

across different orientations. That means two textures are Dot distinguishable if their

total amount of energy \\ithin each frequency ehannels is the same. regardless of

their directionality (eg. rnono-direction or bi-directions). Fortunately. this situation

seldom happens in naturai scenes.

4.2.5.2. Local Energy Measure

ft is a common practice ta use the local energies as the texture features. rather

than directly llSing the output of the filters. This approach is understandable since

the filter output of a sinusoïdal signal will still be a sinnsoid~ see Figure -t.7. (b)-(f)
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FlGURE -1. Î. (a):\ zebra image. ~Iagnitude of different texture chan­
nels at 2 scales and -1 orientations :(b)-(e) capt11Te the high frequency
conlponents of the image and (f) is the summation of (b)-(e). (g)-(j)
capture the low frequency components and (k) is the summation of
(g)-(j) .
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in particular. Heucp-. a. local energy function. such as a Gaussian. rectangular. or

circular function. is used to estimate the energy in a small local region. :\.mong these

funetions. the Gaussian kernel dearly outperfùrms the other two funetions beeause of

its smooth transition from the centre to the boundary without any discontinuities. Ta

achieve high edge localisation. a small neighbourhood is preferred. On the other hand.

to achieve accurate energy estimation. a large local neighbonrhood is required. .-\s a

compromise. the size of the filter will be set to a function of the radial frequency of

the Gabor fil ter..-\ Gaussian smoothing function. Us =1/{2.;2/) is used by Randen

and Husoy [98] and Us =0.5/f is suggested by Jaïn and Farrokhnai [53}.

In arder to increase the feature distance between different textures while reducing

the \·ariance within each texture region. a nonlinear function is cornrnonly applied

hefon~ the smoothing. Commonly used nonIinearities are magnitude ixt. squaring

(.r):!. and rectified sigmoid Itanh(o . .r)I. To provide a feature value that is in the

saIne units as the input signal. a second nonlinear function is applied. This function

is an inverse of the first nonlinear function to counterbalance its effect. Different

characteristics of these nonlinearities can be obtained by test~ng them on a test signal.

Because of the band-limited property of Gabor filters. the filter output will contain

a set of sinusoidal signaIs within the frequency bandwidth of the tilter. The strength

of these signaIs are usually not the same depending on their central frequencies and

anlplitudes. Hence. a test signal is created to simulate three differeut textured regions.

for sinlplicity. These regions are two sine waves which differ in magnitude and a

no-response region. Salt and pepper noise is added to the signal to siOlulate the

randomness and uncertainty in reaI images. This test signaI and the resulting local

energies are shawn in Figure -tS. The saturation parameter. Q. of the sigmoid function

is set ta 0.25 as suggested by .Iain and Farrokhnia [53}. :\. larger value for this

paranleter \\il1 cause the signal to saturate more rapidly. causing the sine wave to

bflcome more similar to a square wave. From Figure -l.8b. comparing the fluctuations

in the second region and the differences between the mean energy of the three regions.

Wp can see that the sigmoid function produces the smallest iotra-texture variation

while squaring achieves the highest inter-texture separation. From experimentation.

we have found that it is more important ta have a larger inter-class distance than

a lower intra-class variance. As a result~ squaring will he used in the subsequent

experiments.

54



l~

.~

-1.2 TEXTI~

r\' :. "
IV·~. ;,

.~ Squ6lring __ ..JI" 1 ;:,"" "

; . ;~ ..
: ~agrulUœ. _ j __ '
~ . j.Sigmold __ • __ ..

l
i
1
1

,.:~

•

(b)

FIGURE ~.8. (a) Test signal. [WO sine waves with different magnitude
and Cl. no response region. with salt and pepper noise. (b)Local energy
estimated by three different nonlinear functions: magnitude. squaring.
and rectified sigmoid. 0 =0.25.

4.2.5.3. Perceptual Uniformity of Texture Space

•

•

[nlike the ("olour space. there is no generally agreed perceptually unifonn texture

spacp. Howcver. it is still desirable to have a texture space that at least does not

violate any obviaus perceptual properties of texture. For example. a texture with a

donlÎnant direction at a. high spatial frequency will he perceptually doser to a texture

with a similar surface pattern at a lower spatial frequency than to a smooth oon­

texture region. If the orientation-invariance transform is performed. the nunlber of

tpxture channeis will he reduced from 12 to 3. one channel per scale. The resulting

texture space can be easily \risualised in 3-D as shown in Figure ~.9a. where 91- 92.

and 91 carrpspond ta the responses of the low. medium and high spatial frequency

canlponents. If one calculates the Euclidean distance hetween the three vertices. el'

I.''! _and 1::1- of the triangle in Figure 4.9a. and the distance between these three points

to the origin. it is cIear tbat the distance is J2 between tri. l12r and VJ. and l between

any of these points to the origin. This means that these three points are doser to the

ori~n than to each other. The visual meaning of these four points is: VI bas a unit

amollot of energy at law frequency. while U2 andv3 have the same amount of energy at

nledium and high spatial frequencies respectively. obv;ously. the origin corresponds

to a non-texture<! region. .-\lthough it is not clear how similar these four texture

features arE' quantitatively. it would never he the case that a texture region like (;3 or

l'2 is closer to a smooth region than a region like 'Ut wwch contains a similar amount

of energy. Henre. the objective of this transformation is to rectify this problem 50
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FIGURE ..1.9. :\ transformation of the texture space is proposed to im­
prove the perceptual uniformity. This transformation normalises the
distance between the origin and the three vertices vI. v2. and v3 and
the distance hetween these three vertices.

rhar the distanee between any of these four points is the same. One linear transfornl

that achieves this objective is as follows:

• 91 + 9'1 + 93
."Ï1 = v'3
:;'1 = J X lYl - 0.5 x (92 + 93))

·-;1 = J x JO.75(92 - Y3) (-1.23 )

where j is a weighting factor that controls the relative importance of scale differences

in the ne\\" horizontal plane. '')1. S2. versus the differences in total amaunt of energy.

''';1. This transformation is a combination of rotation and scaling (see Figure -I.9b).

Arter the transformation. the three vectors become:

1 J '= ( M' .O)
v3

= ( ~. -Q.5J. JO.753)
v3

(~. -0.53. -VO.753) (4.24)

•
To determine the value of the parameter 3. one can set the distance between Ul

and the origin and the distance between Vi and V2 in the new feature space ta be the

same..\fter simple manipulation~ the value of 3 is found ta be .jl/3. Ta compress

funher the distance between Vt. tT2~ and t'3. a smaIIer value for 3 can be used.
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4.3. Feature Integration

.-\fter extracting features for colour. texture. and position. they must be combined

ta form a single feature vector. There are several issues that need ta be addressed

before this can he achieved. The fust issue is the dependency of the three sets of

features. In facto the colour and texture of any region are highly correlated. A non­

zero vector in texture space implies that the surface colour in the local neighbourhood

is not uniform but varying. either randomly or in a regular pattern. Hence. a unifornl

textured region will not be uniform in calour space. In order to have a textured region

rernain intact after segrnentation. the calour and texture features of the pixels within

this region must fornl a well-separated single cluster. This can be done by replacing

the colour with the average computed from a local region. The size of this local

region should he proportional to the scale of the texture. The straightforward way to

t~stimate the texture scale is ta locate the scale which contains the largest amonnt of

enf'rgy. HoweVf~r. this method limits the resolution of scale ta the number of frequency

hands used for texture extraction. Ta increase this resolution without increasing the

nurllber of filters. interpolation cau be used. Let et. e2. and t';j be the arlluunt uf

energy at thrpe scales and '\1. '\2' and "'\3 he the wavelengths of the corresponding

tpxture channeL Then. the scale. s. can be estimated using the following fornulla:

et,,\t T e2À2 + f3 À3 . et + e2 + E:I}
.0; = x mln( 1.0. -----

el + E2 + e3 .-;t

where the first tenu is the estimate of .'i. and the second term is the confidence of

[his t'stimatp. \\"hen the magnitudes of et- e2~and e3 are small. snch as in a unifonn

region. the scale of the texture is meaningless. Hence. the sum of el' e2~ and eJ can he

liser! as a measure of the confidence of the estimation. The constant. st. controls the

saturation of this measure. The estimated scale of the image in Figure -1.7" is shawn

in Figure -l.10.

The second issue in feature integration concerns the dynamic range of each feature

and their relative importance in perceptual grouping. Depending on the feature

extraction method. the dynamic range can vary dramatically. For example. if RGB

colour space is used for representing colour. the dynamic range of each colour channel

is a to 255. However. if the Lab colour space is used instead. the dynamic range is

o ta 100 for L. -500 to 500 for a. and -200 ta 200 for b. As a result. the features
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FlGURE -l.10. Estimated texture scale of the image in figure -1.7.
Brighter regions indicate larger scales.

rnllst he normalised so that different features (colour. texture. and position) aIl have

t hl' same variance and can be comparee! directly. It would also be desirable to scale

the dynamic range of each feature so that the perceived difference of two regions

which differ by one unit in any dimension of feature space would be the same. Hence.

pach feature is scaleel by a weighting factor. which represents bath normalisation

and scaling. before the integration. Since no perceptual theory exists regarding ho\\"

to select these parameters. these weights \\-il! be determined empirically. The final

fpature \'ector is formed as foUows:

(4.26)

•

where lC,.• lL"t. and lL"p are the weights for colour. texture. and position. respectively.

and (cl.c:!.c:d. (tl.t'l ....tk). and (Pt-P2) are the coordinates ofcolour. texture and

position respectively.
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CHAPTER 5

ID1age Seglllentation

S~gnlentation is a process of partitioning a digital image into disjoint connected sets

of pixels. eê:\ch of which corresponds to an abject or region in the spatial domain. The

di \·ision of an image into regions is based on criteria such as similarity and proximity.

such that each region is homogeneous and no union of any two regions is hOTnogeneou..-;

with n'spect to the sanle criteria. Image segmentation is a very critical conlponent of

an image processing system because errors at this stage influence feature extraction.

dassification. and intcrpretation. Therefore. image segmentation has long been an

acti\"f' researeh topie in image processing since the early ïO~s [9}. Despite a vast

anlOllnt of research. the performance of even the most state-of-the-an techniques are

stilliess thau satisfactory and cannot be regarded as general purpose. In this chapter.

Cl brief review of existing techniques on image segmentation is given. Issues concerning

the implementation of the selected segmentation method will also be discussed.

5.1. Review of Image Segmentation Techniques

[n generaL inlage segmentation techniques can be classified into four major classes:

dustpring-based. edge-based. region-based. and hybrid methods. Clusterin~-ba.sed

methods refer to groupings that are done in mea.surement or feature space. while

edge-based and region-based methods refer to groupings that are done in the spatial

donlain of the image. The main difference between an edge-based and a region­

based method lies in the different segmentation criteria. In a edge-based method..

the segmentation process is based on spatial discontinuity. On the other hand. in a
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region-based method. it is based on spatial similarity among pLxels. Hence. region­

based methods are the logicai dual to the edge-based methods. The last category.

hybrid methods. are combinations of one or more of the first three methods which

take advantage of their strengths and minimise their weaknesses.

5.1.1. Clustering-based :Nlethods

Clustering is a. type of classification imposed on a finite set of objects or datum

points. Each object is da...'iSified to one of the cluster labels depending on its relation­

ship ta other objects. This relationship can be represented by a proximity matrix

or distances between abjects in a d-dimensional space. :\ brief review of approaches

that have been applied ta image segmentation is given below. For more detailed

descriptions. l'eaders are referred to [52}.

5.1.1.1. K-means

This "classical'" method is probably the best-known and most widely-used for

dustering data. If the clusters are weIl separated. il mininutm-distance classifier can

be llsed ta separate them. In this method. the means of k dusters are estimated by

a. re{'ursive labelling and updating procedure. First. an initial guess of the nunlber

of dusters and their means must be pro\;ded as input to the classifier. One poplilar

ruethod for obtaining the means of the k dusters is by randomly selecting k sanlples

fronl the data set as an initial guess. ~ext. a minimum distance classifier is used

to d~sify the objpcts inta one of the k clusters. After the labeUing! the means uf

the dusters arp replaced by the centroids of the new resulting clusters. This process

is repeated until no changes are made ta any object in a given cycle. The methud

is very simple and works weil for large and well-separated data sets. L nfortunately.

this nlethod aIso has a number of disadvantages. First. the number of dusters must

be known in advance. which itself is a very difficuIt problem. This algorithm may

also not converge to the real cIuster centre if the clusters are unbalanced or eIongated

dusters are involved and the resuIt produced depends on the initial values of the

means. Recently. modifications to this method have been proposed to improve its

robllstness and efficiency. such as fuzzy k-means and sequential k-means [93}.

5.1.1.2. Density Estimation

Another popular approach ta dustering is to estimate the underlying density of

the datum points and to allocate each point to one of the identified populations. If the
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form and number of underlying population densities can he determined in advance.

parametric density estinlation methods can be used. Otherwise. non-parametric den­

sity estimation methods should he used instead.

One conlmonly used density model for parametric density estimation methods is

the Gaussian density function and the underlying densities are assumed ta be a mb:­

ture of 9 Gaussian densities [13}. If this assumption holds. and a rough estimation of

the number of cIusters or classes 15 availabie. then the parameters of the population

densities cau be estimated from the data by maximising the likelihood of the pa­

ranleters. :\. number of techniques. such as the Expectation-~Iaximisationalgorithm.

can be used to obtain the optimum solution. The major drawback of this method is

the assumption about population densities which limits its application. For natural

scpnes. this Gaussian assumption cloes not seem ta hold for most situations.

\\ïthollt any a-isumptions about the distribution of datum points. non-parametric

methods a.re based solely on the notion that clusters are regions of feature space having

hi~h density and separated by regions of low data density. The probability density

pstiluate at il point .r is determined by a weighted surnmation of datum points falling

within a snlall region aronnd x. Clusters are then identified by locating local density­

OléL\:irna. Since there is no need to specify in adV"ance the shape and nnmber of the

dusters (determined from the number of local maxima). this approach is nlore general

and ca.n be llsed ta identify any unknown or irregular shaped clusters.

5.1.1.3. Pairwise Data Clustering

Sometimes the characteristics of a data set cannat be represented in a metrie

space. Instead. they are characterised indirectly by pairn;se comparisons as in a

proximity matrbc or graph. Advantages of pairwise comparisons aver distance in

mt)tric space inclllde the support of higher level similarity that violates the triangular

inequality [105} [51. However. techniques for finding the optimum partition or merging

arnong the datum points based on the more general similarity matri..x are. in general.

less efficient and require more memory storage [110} [971. For example. the proximity

mat ri:\: of a small image of size 128x128 has n2 =268.000.000 entries.

5.1.2. Edge-based Methods

Segmentation can be obtained by detecting the boundaries of varions regions.

This task is usually accomplished by locating points of abrupt change in local features.
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such as intensity. colour. or surface texture. A large variety of edge-detection methoùs

are available in the literature. such as the Sahel. Prewitt, Roberts. and Canny edge

operators. However. since the edges are often broken. edge linking is required to

ensurp that the bnundaries form closed contours. Because of the small spatial support

of the edge deteetor. the edges are very close ta the actual boundaries. However.

due ta the same facto this operator is very susceptible to noise and false edges can

appear in highly textured regions. ~Ia and lIanjunath [681 have proposed a novel

boundary detection scheme. which they called "edge fiow". to facilitate the integration

of different image attributes for edge detectiou.

5.1.3. Region-based Methods

Region-basecl methods are the logical dual to the edge-based methods. [nstead of

locating changes in surface properties. region-based methods detect the honlogeneous

n'giotls directly. llsllally by iterative split and merge phases. Cnlike the edge-based

methods. a measure of region homogeneity must be clefined in advance. [n general.

él.\·ailable approaches for the task can be divided into two groups. region growing and

split-and-merge. In a. region growing approach. a number of uniform regions (seeds)

are given a priori and the surrounding pL"<els are merged to one of these seeds (region

~rowing) if the Ilniformity criteria are satisfied. For split and merge methods. non­

Ilniforrn rpgions are broken down into smaller areas until aIl the resulting regions are

dassified as 'llniform~~ based on the uniformity criteria. :'iext. neighbouring regions

are l"onlpared and merged if they are close enough in feature space. In ail cases. the

quality of the segmentation output is directly related ta the uniformity criteria. and

hence the selection of a good uniformity measure is vi.tal for success. Recently. Deng

et al. [261 introduced a new measure for llomogeneity. called the .J measurE. which

measures the uniformity of colour distribution in a local region. By doing this. colour­

texture patterns are incorporated inta the homogeneity measure and thus no explicit

texture feature extraction is needed. In general~ region-based methods are more

robust than edge-based methods because segmentations are based on much larger

local neighbourhoods. Howevert according to uncertainty theory~ this approach also

has poor boundary localisation.
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5.1.4. Hybrid ~Iethods

Each approach mentioned in the previous sections has both advantages and draw­

backs. Hence. it is desirable to combine sorne of the existing methods. making use

of each approach's advantages. Because of the duality property of edge-based and

region-based methods. these methods are commonly combined [151 [921 [6}. Zhu and

Yllille [1501 have proposed a method called -region competition" to unify existing

techniques snch as snake/balloon models. region growing. and Bayesian/~[DL (Inin­

inlum description length) within a statistical framework. ~azif and Levine [SOl have

proposed a rule-based approach which systematically organises and applies a large

nunlher of different henristics for low level image segmentation.

5.1.5. Conclusions

Each method has its own advantages and disadvantages. Edge-based methods

achieve good IDealisation but are sensitive ta noise. On the other hand. region-based

ulethods are UlOre robust but at the expense of poorer edge localisation..-\lthollgh hy­

brid nlethods produce the best segmentation results. these approaches are. in general.

nlOrl\ cornplex and computationally expensive. Aiso. since the objective of this thesis

is focused on rpal scenes. it is preferable to select a method which imposes a Illini­

nlum number of assumptions on the image formation and the fonu of the underlying

populations. .-\nlong the rnethods mentioned above. non-paramctric density estinla­

tian satisfies the Inininlum assumptians requirement. lt a1so pravides feature density

infonnation that is needed for the ensuing attention process. Thus. this method is

llsed for segmenting real seenes in this work.

5.2. Non-parametric Density Estimation for Image

Clustering

The method described here follows the works in [91} and [20}. ~on-parametrie

clustering starts with the estimation of the density. Let {-\i }.=l...n he a set of n

datum points in the d-dimensional space. Then the multivariate density estimation

at a point x is defined as:

(5.1)
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where h is the radius of the density estimation kemel and K(x) is the density esti­

mation kemeL

The optimum kernel yielding minimum mean integrated square error (~'IISE) is

the Epanech-~ikovkemels[112}:

if XT.I < l

otherwise.
(- .})
;).-

•

•

where Cd is the volume of the hypersphere. Other types of kernels, such as linear and

Gaussian are also frequently used.

5.2.1. Clustering Aigorithm

The steps for the clustering are described belaw:

• Generale (1, random sub-sample of the daturn points. Ta speed up the computa­

tion. il. Sflt of rTl points .\[ ....\m is randomly selected from the data.. ~[oreo\"er.

in order to reduce outliers a.nd "invalid~' datum points. pixels lying on thp

n~~i()ns of abrupt changes in spatial domain are excIuded from the sample set .

• Estirnate the local density of each point in the sample .'iet and then apply the

gradient-u..'icenl or hill-climbing method to locate the local maxima. For each

sanlple point .\.' equation(5.1) is used to estimate the density at .\r' k nearest

neighbours of each data point are also determined. The gradient ascent nlethod

is used to associate each data point to a nearby density maximum by mo\"ing

along the point of highest density among the k nearest neighbours.

• }[erge nea.rby duster centres. Any pair of cluster centres whose distance is less

than a threshold will be merged. If no significant valley exists between any

t\Va cluster centres. these clusters will also he merged.

• Re-clas.sifying the samples. Each sample point is relabelled to the cluster de­

fined by a majority of its k nearest neighbours. Fewer nearest ncighbours can

be used if small clusters are expected.

• Hiemrchical clustering. After the eIuster centres are found~ they are merged

together hierarchieally. The enteriou for this merging process is the mter­

cluster distance. However. this eritenon can produee undesirable results. such

as merging twa well-separated but close clusters befare other well-connected

clusters that ha"'e centres further apart in feature space. Ta avoid this problem.

Pauwels and Frederi..x [911 have taken a different approach. First. the chaice
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of h (the width of the density estimation kemel) and k (the number of nearest

neighbours) are set ta result in an over-segmentation of the feature space.

Then, the clusters are merged base<! on the ratio of densities at the saddIe­

point and the Deighbouring cluster centres, thereby producing an ordered tree

of clustering. They defined the saddle-point as the point oC maximal density

among the boundary points which have neighbours in both clusters. Depending

on the size of le, the estimation of the saddle-point can deviate from the actual

boundary by the distance to the /eth nearest neighbour. To reduce this error,

the boundary points can be further limited ta points having at least 30% of

neighbours in bath clusters. The reason provided by the authors for using

density instead of distance in the merging process is to avoid the unwelcome

chaining-effect of hierarchical clustering. However, if distance information is

ignored completely, the merging process will be vulnerable ta error and noise

in the density estimation, especially for small clusters. Hence, it is better to

merge the clusters based on bath density and distance. Ta make these two

measures directIy comparable, the distance is normalised by the average ïnter­

cluster distance. Preference can be given to indicate the relative importance

of density and distance. From experimentation, the best clustering resu1ts are

achieved when the relative weights between density and distance are in the

ratio of 10:l.

• Selecting the optimum number of clusters. A.t the last stage, the number of

clusters is determined from indices of cluster-validity or an absolute threshold.

This tapic will be discussed in the next section.

5.2.2. Cluster Validity Indices and Stopping Criteria

Determining the number of c1usters present in an image is a very difficu1t problem.

This arises from the unc1ear definition of what is a good segmentation. For artificial

images, it is easy ta produce a definition since the ground truth of the image formation

is known a priori. However, for natural images, obtaining the ground truth is not at

all an easy task or may even he impossible. As discussed in Cbapter 2, any image can

he interpreted at different levels of abstraction and it may Dot he clear which level

of abstraction is optimal for a given image. As a resu1t, many image segmentation

techniques rely on specifie heuristics based on the application area, and the definition

of a good segmentation is hard-coded into the program. Although heuristics are
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widely used in a variety of fields. it is desirable to have a mathematical definition

of a good segmentation 50 that it can be analysed systematically. In [52l~ a large

number of indices of duster validity are reviewed. such as the Davies-Bouldin index

(DB) and the modified Hubert r index (l1;lH). The problem with these indices IS

that they aU are based on the assumption of Gaussian-shaped and weil separated

clusters. Ta overcome this problem. Pauwels and Frederix [911 have proposed a

new non-parametric measure for cluster validity which does not exhibit any shape

preference. To compare the performance and vaIidity of different indices in image

segmentation. three different nlethods are considered and analysed experimentally: a

simple threshold-based index. the l1;IH index. and the Pauwels and FrederL'{~s noo­

paranletric nleasures. The reason for selecting these methods is because they represent

three nlajor classes of duster validity indices. from simple threshold methods ta more

conlplex indices bath \\'ith and without any specifie assumptions on the distribution

of the data set. [n the following. a brief review on these methods is provided and the

analytical rflsults will be presented in Chapter 6.

5.2.2 .. 1.. Threshold-based Index

Thresholds are \"f~ry cornmonly used as stapping criteria becallse of their simplkity

(nu additional computations is required). However. in general. they require fine­

tuning ta optirnise performance. This cao he an advantage if it is easy to tune this

pararueter. or a. disadvantage otherwise. Since hierarchical clustering is based on the

ciensity and distance between the clusters. a threshold on this measure can he used as

a stopping criterion. Thus. clllsters are merged if the following condition is satisfied:

density(Lj) + p' distance(i.j) > T (5.3)

•

where density( i. j) is the ratio of the density at the saddle-point between cluster i

and cluster j and the density at the cluster centres. and distance(i. j) is the distance

hetween these twa clusters. p is a constant indicating the relative importance of

density ta distance and T i5 the pre-defined threshold. From e:q>-:rimentation. WP

have found that the relative importance of density and distance is about 10:1 and

thus a value of 0.1 is used for p.

5.2.2.2. Modified Hubert r Index

This index is proposed by Dubes (521 and is based on the assumption that es­

timates of the cluster centres are close to the ~ruel~ position of the dusters in the
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pattern spaee and de,,;ations from the centres are due ta errors and distortions. Henee.

there is an implicit assumption of ball-shaped clusters. For a given clustering~ the

J[H index is defined as follows:

Let l( i) he the label function.

L(i) = k. if pattern i is in the kth cluster

and d}.k is the Eudidean distance between cluster centres j and k. Define

The modified J[ H index in then given by:

{

n-l n }

JIH = .~l L L. [.\(i.j) - rnrI x [Y(i.j) - myI f.'irSy
I=L}=&-L

(5..l)

•

•

where .\(l.j) is the Eudidean distance between pattern i and j. n is the total number

of patterns. .\f = n( n - 1)/2. and

n-L n

mL = .~l L L X(i.j)
I=L }=t+L

1 n-L n

ml} = J[ L L Y(i.j)
&=L )=&-H

n-L n

.~; = .~l L L X
2
(i.j) - m;

&=[ }=t-L

n-l n

'l l , '"" v·'(·") '1,.;;; = JI ~ ~ l - t.J - m;;
&=1 }=z-H

This index rneasures the degree of linear correspondence between the entries of .\

and }-. The matri.\:.\ is the same for aIl clusterings but the matri.\: }' varies depending

on the eorresponding cluster centres. For strong and well-separated clusters. the

duster centre associated with each data point should not deviate significantly from

the tnie centre as long as the clustering is over-segmented. However. when the merging

process pxceeds the optimum level and tries to merge two well-separated clusters~ the

cluster centres will then start to deviate from the rea! centres and the similarity

between the proximity matrices .\ and Y' \viU begin to decrease. :\s a result. the

optimum number of clusters is defined as the "knee~ point of the i\fH function where
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FlGt:RE 5.1. (a) .-\ sirnple image that cantains roughly 5 different
colours and (b) the 1IH index for this image.

sudden change occurs..-\s can be seen from the definition of this index. the l~[H index

is computationally intensive (O(n 2)). Figure 5.1 provides an example of this index

for a simple iUlage.

(5.5).V.V - nar'm :

5.2.2.3. Non-Parametric Cluster-Validity Indices

Pauwels and Fn~derix [911 intraduced t\Vo non-patiunetric measures that quantify

the notion of "g;ood dusters- as a relatively well-connected region of high data-density.

The first index. called the ~~-norm. measures the average isolation of each duster.

This nleasl1re is based on the not.ion that similar patterns (dose in feature space)

should he assigned to the same cluster. This index is defined as:

l n

.Vlc = - L ",tk (X1 )

n
l=1

•

•

where t't(.r, ) is the fraction of the k nearest neighbours of feature .Ll that have the

samp label a~i .LI' This index favonrs well-connected regions to be assigned the same

clnster label. However. it cannot distinguish whether t\Vo well-separated clusters

ShOllld be merged or not.

The second index. the C-norm~ is proposed to compensate for the defidencies

of the first. This index is designed to give a high response when a given cluster is

well-connected and a low response when a cIuster contains two or more well-isolated

regions. To achieve this. the average connectivity of any two points in the same

duster is measured based on the density at their midpoints: A high density midpoint

impIies good connecthity and \ice versa for low density midpoints. This method is

good for Gaussîan-shaped clusters. For clusters whose shaped is curved. however. the
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nlid-point of twa randomly selected points can lie on the void between the arc. To

rectify this problem. the midpoint is shifted towards the high density region until the

local rnéLximnm is reélched. During this shifting process. the same distances between

tl1f~ nlidpoint to the twa test points must he maintained ta avoid ending up at either

one of t he test points. This index is defined ilS:

•

FIGURE 5.2. :'\:'\-nornl (Ieft). C-norm (center). and Z-score (right) for
the image in Figure 5. 1

C-narm: (5.6)

(5.7)

wherp K is the number of randamly chosen pairs of test points and il is the mid-point

after the shifting process. f(tt) is the data dcnsity at the point it.

Ta select a single clustering. these twa cluster-validity indices must be combined

to give a single mea:iure. Pauwels and Frederi..x propose first computing the Z-scores of

the C-norni a.nd .V.V-narm to make the indices directly comparable: the t\Vo resnlting

Z-scores are summed to give the final score. Z. The clustering having the maxinlunl

Z-score is selected as the optimum segmentation for the given image. The equations

for computing the Z-scores and the final Z score is defined as follows:

Z(xd = Ii - median(x)
Jl.W(x)

(5.8)

•
where J[AD stands for median absolute deviation. T~-pical curves for the X:'i-norm.

C-norm and the Z-scores are shown in Figure 5.2 for The disadvantage of using the

median and the JIAD to normalise the cluster measures is that their values depend

on the range of valid dusters. or number of observations.
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5.2.3. Post-processing

.-\fter the segmentation. rnathematical morphology. dilation and erosion. are utilised

to reUlove small and thin regions that usually correspond to noise. ~ext. three c"onser­

nltive region merging processes are applied to the segmentation result. First. regions

that are smaller tha.n 0.5/* of the whole image are merged to their -l-connected or

S-connected neighbours [f more than one neighbour is found. the one closest in [eature

space is selected. \Vhen position tS also included in the feature vector. large regions

"ruay be split into two or more regions. Hence~ a second step of the region merging is

used ta merge similar regions based on colour and/or texture only. In sorne images.

the regions' surface features are not uniform but change smoothly (for instance. from

light to Jark. such as the sky). Hence. another merging process is carried out to

Ulerge regious whose contrast along their (~OmnlOn borders are helow a pre-defined

threshold.
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CHAPTER 6

Evaluation and Test Results

This chapter exarnines the performance of the object-based attention algorithm.

Tlwn~ are ba..~kally three a.reas to be analysed. First. several important parameters

tha.t l"ould not bp deterrnined using logicai and theoretical arguments are evaluated

experimentally. The second part will compare and analyse different methods for se­

lectin~ the best number of clllsters. The last part of this chapter \\;ll discuss the

performances of different saliency factors in predicting the percept liaI saliency of rt"­

gions in a sCPlle. The ima~e database used in the experiments was chosen from the

Corel image collection 1. (See :\ppendL'{ B for aIl of the images in the experinlental

database J.

6.1. Determining Parameter Values

The parameters that need to be determined eXperimentally are the weights on the

colour. texture. and position features in the feature extraction. and the sample size.

kemel width. and nunlber of nearest neighbours in the process of image segmentation.

6.1.1. Weights for Colour, Texture, and Position

As stated in Chapter -1. the purpose of imposing weighting factors on calour.

texture. and position featllres is to normalise the dynamic range of different features

and to improve the perceptual uniformity of the combined feature space. It would

he preferable to evaluate the perceptual differences amang these features through

psychophysical experiments. However. tbis is beyond the scope of this thesîs and no

l http://'i\"W\\'.corel.com./products/clipartandphotos/photo/photolib.htm
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appropriate literature is available on the tapie. Altematively. these weights can be

determined by finding a parameter set that produees the best overall segmentation

results.

Before applying any modification to the weights. the features are obtained as

follows:

• Calour feutures are obtained by canverting the RGB values of each pi.xel inta

L-a-b- space. with L ranging from 0 ta 100. a- ranging from -500 ta 500 and

b- ranging from -200 ta 200.

• Texture features are farmed by applying a set of band-pass filters on the in­

tensity. L. ~ext. the set of transformations described in Chapter -l is applied.

• Position features are the 'c. y coordinates of the pi.xels nornlalised ta the range

of 0 to 1 by a scaling factor. To preserve the aspect ratio. the same scalin~

factor is used for bath .L and y coordinates. [f the original .r. y coordinates

ranges fronl 0 to width and hpight. respectively. llmax(w·idth. height) can hfl

used as the sealing factor.

6.1.1.1. Optimisation process for finding the weighting factors

:\.lthough a nuulber of measures have been proposed for estimating the quality

of a particular segmentation [149J[7L they are not very accurate or effective when

eampared to human performance. In arder to avoid extensive psychological experi­

nlentation and still have Cl subjective justification for the segmentation results. the

following pracpss was used far selecting the best parameter set ta gives the best overall

result.s:

• FrOUl a prelinünary examinatian of the image segmentations. \Vp found tha.t.

for a large portion of the database. the segmentation results did not vary

significantly with different weighting factors. Only on a small subset of the

database could we observe significant improvement br modif}ing the weights.

Hence. in arder to reduce the complexity of the optimisation process. only a

snlall subset (about 50) of the database was employed. including aIl of the

images that preferred a different parameter set from the majority of images in

the complete database.

• Segmentation results using different weighting factors were obtained and judged

by human observers. In particuIar! the judgement were based on the following

criteria: L Grouping should he consistent with the visual appearance. ~o
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visually distinc.:t regions should be merged and vice versa for visually similar

regions. 2. .\lore emphasis should be placed on the major abjects in the inl­

age rather than the background. 3. The overall quality of the segnlentation

results for a given parameter set were obtained by counting the nurnber of

images judged acceptable based on the first two criteria.

6.1.1.2. Results and Discussion

From extensive experimentation on a wide variety of test images. we have found

that the weighting factors for colour. texture. and position should be approximately

f'qual to 1. 1. and 10. respectively. to achieve the best results. It \Vas obsen-ed that

the inclusion of position in the feature veetor has both advantages and disadvantages.

The major advantage is that the proximity of pi."<els is also considered in the grouping

process. On the other hand. this eau be a disadvantage since the position information

may cause an ocduded abject ta form two or more clusters in the feature space.

Fortunately. this problem can be solved easily by merging regions having similar

colonr and texture. For normal scene inlages where different objects forrn distinct

dusters in feature spaCt~. the segnlentation results do not difrer significantly whether

position is included or not. However. if two or more abjects in a scene have similar

surface properties. a much better result is produced if position is incorporated into

the feature Vf'ctors. Generally. including position into the feature vector improves the

separability of different regions and produces more compact and smooth regions. thus.

yielding il better segmentation result. Figure 6.1 & 6.2 show the final segmentations

of 30 randomly selected images.

6.1.2. Parameters Used in Image Clustering

There are three parameters in the clustering algorithm outlined in Chapter 5 that

nfled to be sel. The first one is the sampling rate~ oS. From the whole image.. m pLxels

are randomly selected and used in the subsequent density estimation and clustering

process. where m = s.V and .V is the total number of pL"'<els. The [ast two parameters

to he determined are the \\;dth of the density estimation kemel. h. and the number

of nearest neighbours. k. that are used in the gradient-ascent process.

6.1.2 ..1. Sample Sîze

For an image of size 180x120. the total computation time of the clustering al­

gorithm and the time needed for density estimation at different sampling rates are
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FIGliRE 6.1. Part .-\.. Segmentation of 30 randomly selected images.
Boundaries are shawn in gray. See figure 6.2 for the other 15 images.

shown in Figure 6.3. Clearly. the bottleneck of the clustering algorithm is the density­

estimation process. By examining the density-estimation equation on page 63. we can

see that tms operation has a computation complexity of O(n2
). This process takes

2.5 minutes on a 300 .\IHz Pentium II PC if 100% sampling is used. but only 35

seconds if half the data set are considered. Hence. it is desirable ta analyse how much
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FIGURE 6.2. Part B. Segmentation of 30 randomly selected images.
Boundaries are shawn in grey. See figure 6.1 for the other 15 images.

seJ?;mentation error is introduced when the data set are sub-sampled. From an exam­

ination of the segmentation results of a wide variety of test images~ there seems ta be

a general trend that the outputs are very similar for any sampling rate between -10%

and 100%. Below this range. small abjects begins to disappear and the boundaries

start ta deviate from their actual location. :\s a result~ 40% of the whole image is
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FIGt.:RE 6.3. Computation time of the whole clustering algorithm (up­
per curve) and the tinle spent on the density estimation process (lower
curve) at different sanlpling rates on a 300 ~IHz Pentium II PC

uspd to estimate the underlying feature distribution. The segmentation results for

tt'st inlages with sampling rates ranging from 10% to 100~ are shown in Figure 6.-1.

6.1.2.2. Kernel Width and Number of Nearest Neighbours

In determining the values for these two parameters. Pauwels and Frederi.x [91}

haye stated that the specifie value of these two parameters is not critical as lon~

as snlall \"alues. \Vith respect ta the range of the data. are 11500. However. we have

übserved that the segmentation results are direetly relate<! to the specifie values of

these two parameters. The parameters cao be interpreted as smoothing factors on

the density of the data in feature space. A larger value for h and k will cause more

dusters to merge. thus ~ielding fewer regions in the image domain. To avoid merging

sInall regions. a smaller value for these parameters is preferred. However. if we wish

to reduce the effeets of noise and outliners. a larger value for h is preferrOO. For the

images used in this experiment. we round that k equal to DA percent of the total

number of data points produced the best results without over-smoothing the density.

Ba'ied on this kemel width. the number of nearest neighbours is selected as follows:

1 .V

h = ~~ dist(i, k}2
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FIGGRE 6..1. Segmentation results of a test image at different sampling rates

whtln~ di..,t(i.k) is the distance of the kth nearest neighbour of point i in the feature

space.

6.2. Cluster Measures

.-\lthough it is important to develop better techniques for feature extraction or

grollpin~ criteria. and which have a closer resemhlance to the performance of the

hllIuan visual system. it is equally important to explore new techniques for measuring

the validity of different c1usterings that usually arise in the many image segmentation

techniques. The challenge of working with real scenes is that there may be more than

one possible way to segment an image. and they may aIl result in valid segmentations.

Hence. a natural question is what determines the validity of a particular segmentation

and whether or not this definition can he formally defined in terms of mathematical

formulas. In other words. how can we estimates the true or best number of clusters

or regions for a given image"? In Chapter 5. three different methods that are designed

for measuring the cluster-validity are described: a threshold-based index. modified

Hubert r index (AfH). and Pauwels and Frederi.~:s non-parametric measures (lVP).

In this section. the performances of these three methods on real scene images \\;ll he

analysed and compared.
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6.2.1. Assumptions Used in Each Method

Before explaining the test methods and results. it is useful to restate the assump­

tions used in these three methods. In a threshold-based method. an invalid dustering

is defined as a \;olation of a pre-defined threshold (see equation(5.3)). Since. it is

<lt'Sirable to mininlise the amount of over-segmentation. the optimunl number of clus­

ters is thp one that is both valid and helS the smallest number of clustcrs. The la:;t

(WO ffiethods. ~\t[H and !VP. are global measures that compute the overall goodness

of a segmentation. 80th methods are based on the notion that the clusters are well­

separated in fearure space. Hence. the performance of these methods may not he very

rdiablp for weakly separated dusters. However. Gaussian distributions are assumed

in JIH but not in ~VP. rnlike the threshold-based method. the decision schemE' l)f

(-lstimating the best number of clusters depends only on the changes of the indices (<1..';;

a fllnction of the number of dusters) but not on their specifie values. Thfl drawback

of this kind of decision scheme is that a sudden transition or a -knee- in a function

is often not easy to detect or define precisely. [n addition. since it is not effective ta

searrh for aU possible cases 1the maximum number of regions will be the total ullmber

nf pixels). for any given image. the search must be limited to a specifie range. For

instance. l to 6 dusters is used in [91} and (13). Given this restriction. it is important

to deternlÎne whether the ideal number of clusters lies on the boundaries of the search

range or even outside this range.

6.2.2. Test Images and Implementation Issues

To test the robustness and the validity of the assumptions of the three methods.

Cl set of -10 real scene images from the database in Appendix B was carefully selected

tu capture the \àriations in abject size. contrast. and other properties present in real

world scenes. Samples of these test images are shawn in Figure 6.6 (See :\.ppendLx

C for the whole test set and segmentation results). In this test set. we found that

the best number of clusters can actually be as large as 15. Renee. the search range

is set to [1. .... 15!. For the threshold-based method. based on the criteria stated in

section 1.1.1. a threshold of 0.5 gives the best overall result. Hence. the threshold

(1) is set to 0.5. For the ~\lH index. the optimum number of clusters is defined as

the -knee" point of the AIH function. In actual implementation. the "'knee~ point is

defined as the ma.'\.;mum in the second derivative of the i.VH function. Besides. since
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the proxirnity matrices .\ and }. of a 180:<120 image cantains -t6ï million entries each.

only 10% of the pi.xels are used for computing these matrices. For the ~P method.

since the definition and procedures for finding the cluster number are clearly defined.

no extra assumption is required.

It may not be fair to compare a method that requires ·~raining~~ to other ulethods

that do not. Thus. if both methods achieve the same level of performance. the one

that does not requires any ··training" is preferred since it is more general. On the

other hand. if a fixed parameter set can be used throughout the experiments. the

t hreshold-based method could perhaps also be classified as an 'llnsuperoised method.

6.2.3. Test Results and Discussion

The perfonnance of the three methods on the -lD test images caD be summarised

with reference to 8 images. The final segrnentations selected by each method are

shawn in Figurr 6.6. .-\S expected. aH methods are capable of selecting the optinlllm

nUlnber of dusters when the dnsters are weU-separated in [eature space. such as the

aeroplane and the eag;le. Although the head and the tail of the eagle are rnerged \,,.ith

thl' background in the segnlentation selected by the LVP method. the major objects

are still clearly visible and separated. At the other extreme. such as images C and D.

the inlportant objects (the cheetah and the tree branches in C and the horses in D)

a.re not well-separated from the background. Part or aH of these abjects are lost in

the segmentation selected by the lvIB and lVP methods..-\s a result. these methods

should not be applied if weakly-separated clusters are expected. The threshold-based

method. because the importance of these objects has already been considered in the

selection of the threshold parameter r. these salient abjects are well separated in the

segmentations selected by this methods.

.-\part from the compactness assumption of the clusters. both the ~v[H and ~VP

nlethods also implicit1y assume the existence of one and only one answer ta the

nunlber of clusters. In addition. they also assume that the values obtained for the

number of clusters is located in the middle of the search range. In reality. where

nothing is perfect and noise is unavoidable. these assumptions cannat he guaranted

[0 hold under ail situations. From e:X1Jerimentation. we have observed that the l~[H

and :VP indices can have not only one but two or more Imee points (see Figure 5.2).

\\fien this happens. it is not clear which knee point is the best description of the

data distribution. On the other hand.. if the ~eal" number of clusters lies outsides
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FIGURE 6.5..-\ situation where the C-norm in lVP indices gives a wron~ re~mlt.

the search range. no significant knee point will be found. If these two cases are not

handled appropriately. arbitrary results will be retumed.

[n general. it is better to have an image over-segmented than under-segmented.

However. it is not clear how much over-se~mentation is acceptable and how this

Uleasure could he qllantified mathematically.

The non-parametrk indices proposed by Pauwels and Frederix[91! are supposed

to perforul equally \Ven as the 1\J1H index on Gaussian-distributed clusters and perforrn

better on irregularly shaped clusters. On the results of 40 test images. this daim does

[lot seenl [0 hold. In sorne cases. the segmentations picked by the l"fH index are better

[han the one selected by the NP indices. One possible reason for this observation is

that the assunlption of Gaussian distributions actually holds for most real images.

\Ve also found that the rnethod used for measuring tlle connectivity in lVP indices

rioes not always give the true connectivity of a given cluster. A situation where this

measure breaks clown is illustrated in Figure 6.5. Suppose in a given clustering. aIl

rhree dusters are merged and assigned the same cluster label and the two anchor­

pO'int.\f for the C-norm are points A. and B. Then the test point T halfway between

the twa anchor-points will fall on the high-density region. As a result. a high value

for connectÏ\ity \\ilI be reported.

The time needed with 18Ox120 images to compute the .VP indices and .\IIH index

(\\ith a 10% sampling rate) arc 22 seconds and 85 seconds on a 300 ~IHz Pentium II

PC. For the threshold-based method! the only computation is equation (5.3). Since

the inputs ta this equation. density(i.j) and distance(i~j)~have already been compnted

during the hierarchicëù clustering stage~ the computation time for this equation is

negligible. .-\mong these methods! the clear winner is the threshold-based method.
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FleURE 6.6. Samples orthe test images and the segmentations selected
by different methods: non-parametric indices (2nd column). modified
Hubert index (3Td column). and the threshold-based method (4th col­
umn).•
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It performs well on all test images and requires only simple comparisons. A minor

drawback is that a suitable threshold must he known a priori.

6.3. Saliency Factors

Before being able to determine the contents of a scene. it is necessary ta first focus

attention on the nlost salient parts of an image. This entails an effective model of the

hunlan attention systenl and it is \itai to the development of a powerful computer­

based vision systenl. In chis section. the region-based attention model described in

Chapter 3 is analysed and evaluated.

6.3.1. Determining the Weights of Different Saliency Factors

Seven saliency factors are described in Chapter 3. These factors are: contrast.

calour. location. size. foreground/background or depth. saturation. and shape. After

considerable experimentation. we round that only the first five factors are useful for

prpdicating thp importance of a region. Saturation and shape factors are useful in

sonle situations. However. thcir rates of failure are much higher than their surcess

rates..-\s a result. they will not be considered in the subsequent experiments.

The final importance value is defined as a weighted SUffi of each factor as follow:

n

IJI(~) =L Wk· [A;(R;)
k;:l

(6.2)

•

whcrp tek i5 the weight on the kth factor. lA;. of region i.

Since the results will he judged finally by a human. a traditional trial and error

method was used to determine the importance of different saliency factors in human

visual attention. At present. no extensive psychological experiment bas beell con­

ducted and the weights of the saliency factors were selected and judged solely by the

author. If more time was available.. these factors could be obtained more formally

and reliably by having a group of subjects rank the relative importance of different

regions in a set of test images. After obtaining these statistics. numericai methods or

neural networks could be used to find the optimum weights by minimising the overall

difference between the expected and estimated importance values.

From experimentation. it is found that the results dosest to human performance

were obtained with weights of LO for foreground/background~ 0.5 for contrast~ and

0.3 for colour. location. and sîze. For the size factor~ a saturation value of region
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b

FIGURE 6.7. Importance maps for a sample image, (a). For (c)-(h).
brighter regions represent higher importance. (c)size factor. (d)colour
factor. (e )contra~t factor. (f)foreground/background. (g)location fac­
tor. and (h)final importance map produced by weighted summation of
le)-Ig). To facilitate the evaluation of the final importance map. the
ranking of the top-five most important regions are highlighted in (b).
Arrow directions indicate the next most salient regions.

•

c

f

d

g

e

h

•

size equal to 5% of the whole total image area is round to be better than 1%. The

performance of these five factors and the final important values are illustrated in

Figure 6. Î. To indicate ~;sually the ranking of these regions. the top-fh-e important

regions are highlighted in Figure 6.Th. For these images. the importance values pred­

icated by th~ model are very consistent with the results obtained from a human. The

most important objects, the caleche, horses, and the bright dame roof. are within the

top-fh'e regions. :\Ioreover. the scan path generated from the importance map also

agrees weil with expected human performance.
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6.3.2. Discussion

Ta test the robustness of this mode!. it was applied ta 100 images with a fixed

paranleter set. Results of 16 images are shawn in Figure 6.8. In general. the attention

rnodel gives consistently good results for a variety of images. :\5 we can see from

the weights comprising of the importance factor. the final importance values are

highly biased to the foreground/background factor. Since the test images used follow

conventional photographie techniques. the abjects of interest are usually placed at

the centre of the image. Hence. the probability that these abjects touch the image

border are much lower than the background. As a result. the foreground/backgrounù

meaSl1re can separate the abjects from the background quite accurately. However. if

the object touches the border. such as the elepbant at the bottom left of Figure 6.8.

a fabe negative error occurs. In this case. the importance factor fails ta predict the

saliency of the elephant and it ranks the douds as the most salient region in that

picture. For sorne images. regions among the top-five ranks selected by the attention

nlaps do not really respond to important abjects. sucb as the sky. shadows. and the

ground. In order ta further refine the results. higher level reasoning a.nd knowledge

are required. ~everthelpss. for a low-Ievel system. the results are promising and the

method is general enou~h to be used in many computer vision applications including

content-based image retrievaI.

6.4. Applications

This technique for locating salient '''objects~ in an image can be extended easily to

hancHe il number of task-specific applications. such as face finding! inlage conlpressian.

machine vision. and CBIR.

6.4.1. Face finding

This problem is of significant interest in the field of computational \;sion. and

ha.s posed numerous practical challenges to date. For face finding, the importance

of a face can be encoded ~_!lto the weights factors of the importance factors. For

discrirninating face from other abjects. skin colour (hue) and shape (roughly circular

or elliptical) can be used. The roundness of a region can he obtained by measuring

the ratio of area ta edge length. In figure 6.9~ a test image and its importance map

is shawn. In this experiment. only two importance factors are used! colour (red) and
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FIGURE 6.8. Importance maps for 16 test images and the most salient
regions highlighted in the original image. The most salient region is
indicated by a red cireler
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(a)
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(b)

•
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FIGURE 6.9. Face detection. Original imaged (a) and the correspond­
ing inlportance maps (b). Only color (red) and shape (circular) factors
are used in computing the importance map.

shape (elliptical with an aspect ratio of 1:1.5). From the importance map. aU the

faces are clearly visible in the importance map with very high importance vaIne when

eomparecl to other non-face regions. Hawever. this methad also detects the ê:lrUl of

the person who is at the far right. Thus. after these candidate regions are identified.

nlore sophisticated algorithms cauld be applied ta further screen out the non-face

regions.

6.4.2. Image compression, machine vision, and CBm

\\ïth the availability of an importance map. the major computational resources

can he utilised more efficiently and effectiveLy by concentrating on the most salient

regions. These reSOllrces could he measured by the image compression ratio or the

processing time. For CBIR. one of the major goals is ta develop a similarity measure

that dosely resembles the observed \isual differences. It generally accepted that

global features are not adequate for judging \isual differences. Using an importance

map. the similarity measure can be based on the salient regions only and hence will

not he affected by the background.
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CHAPTER 7

Conclusions

[n recent years. considerable emphasis has been placed on the development of com­

puter vision systems emulating the perfomlance of a human. Despite the vast difficul­

tips f1nCollntered in ulodelling the human \;sual system (HVS). the henefits in being;

a.ble to aehieve [his have led ta continued \\"idespread research in this area. One active

researeh topie is the simulation of the human visual attention system. To function in a

real-world environrnent. an autonomous agent must have an attentional process ta 10­

cate objects in arder to build a high-Ievel interpretation of its environment. \Vith this

knowledge. the agent can na\;gate around and perform more complex tasks. .-\.part

from active \;sion. snch an attentional system could be beneficial ta other computer

\·ision applications. such as content-based image retrieval (CBIR). This thesis has

discussed the implementation issues related ta the development of such a systenl for

locating salient object.-; in êl. scene image.

First. the attention moclel proposed by Osberger and :\Iaeder [861 is analysed.

Satisfactory results on real images cao be obtained with their original method. How­

ever. nnder certain situations. their method fails to identify sorne importance regions

that are salient to a human. Ta correct these problems. a number of modifications

and severaI new saliency factors are proposed. From experimentation. we have found

that only sorne of these factors are actually useful for estimating a region·s salieney

in general. These factors are: contrast. foreground/background. colour. size. and 10­

Latîon. Other factors. snch as shape and saturation. are applicable only in a number

of specifie conditions. These factors do not seem ta have an equal influence on visual

attention. For photographs. where important objects are usually located in the cen­

tre of the image~ the foreground/background factor is much more important than the
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others. The second most imponant factor is contrast. The rest of the factors have

less but similar abilities to attract human attention.

~ext. issues rl'lated to the implementation of image segmentation and feature

selection is discnssed. Since the performance of the object-based attention model

just described depends largelyon the quality of the "objecC information. an effective

image segmentation technique is required. Ta mimic the perceptual grouping mecha­

nism in HVS. a number of biologically rnotivated [eatures for representing the visual

property of a region are selected. Tbese features are colour (L -a-b- ). texture (Gabor).

and position. .-\. simple method for estimating the scale of the texture feature is also

describpd.

.-\ nurnber of image segmentation techniques are reviewed with emphasis on their

relative strengths and weaknesses. In particular. non-parametric density estimation

tpchniqups are best suitl'd to the aIgorithm used in the attention process since no

context-felated infornlation is assumed and the regions' information is represented in

borh spatial and feature domains. In order to have the system fully autonlêl.tic without

any human supervision. a number of clustering validity measure are considered fOf

estinlating the hesl number of dusters. These measures are: modified Hubert index

[52}. Pauwels and Frederb:'s non-pararnetric measures [91}. and a threshold-based

nleasure. Surprisingly. the simple threshold-based measure dearly out-perforrns the

other nlore cornplex measures for alI test images. \Ve believe this contradiction is

caused by the incorporation of human preference in the threshold-based measure.

Although it is desirable to have an algorithm that is formally defined and does not

ff'quire any training. it is much more important to have an algorithm that performs

correctlyas intended. Our experiments indicated that both the modified Hubert index

and the Pauwels and Frederix~s non-parametric measure did not pravide consistent

segIIlentations over a wide range of images.

7.1. Direction of Future Work

The next logical step in the research is the incorporation of high-Ievel. context­

dependent grouping and attentional cues. In reality, we seldom find an object that

is uniform in colour and texture. In generaL most abjects. induding natural and

anificialones. are composed of severa! heterogeneous parts. For example. a car has

four tires and a chassis. Ltilising this higher-Ievel knowledge can help reduce the
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ùver-segmentation inherent in the low-Ievel definition of an object as a coherent and

honlogeneous region. .\n example of this approach is the body plan of Forsyth and

Fleck [34}.

:\nother area deserving further attention is the extension of the system to CBIR.

[n CUITent approaches to CBIR. the similarity measure used treats the whole image

ël•.'" a single region or each sub-regions with equal importance. \Vith a saliency value

associated with each region. the comparison between t\Vo images can be focused on

thf' salient parts only regardless of the background. This approach is desirable since

nlost image classification methods consider only the few major objects in the scene.

snch as inulges containing zebras. cars. or eagles.
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APPENDIX A

The Graphical User Interface (GUI)

To facilitate the experimentation \Vith different approaches and methodologies. a

~raphi('al user interface (Gl·I) \Vas created (see Figure A.1). Before any operation

La.n he performed. the user must specify an input image either from the "File Open"

clialog or t he '~Thumbnails~ dialog (see Figure :\..2). Bath dialogs can be accessed from

the "File" menu or the toolbar located at the top-left corner of the window. After an

image is selected. it will he displayed on the left side of "~lain'! section of the main

window. Then. the image can be analysed by selecting "colour segmentation" frorn

rhf' "Action" menu. This operation takes about 20 seconds for a lSOx120 image. After

this operation has completed. the best segmentation selected by the duster validity

measure and the corresponding saliency map will he displayed in the first row of the

"Results" section. Apart from this information. the segmentations for twa ta eleven

regions from the hierarchical clustering will also be displayed on the last two rows of

thp sanIe section. Each region in the segmented images is colour coded according to

its saliency ranking. The colour scheme used is shown on the right side of the ":\lain"

section,

:\ll major parameters of the feature extraction and image segmentation processes

can be nlodified from the "'Test Parameters~ dialog (see Figure A.I) by selecting

the "Test Parameters~ from the "Setting'! menu. To change the parameters of the

inlportance map calculation. one cao select the "Saliency Parameters~ from the same

menu to open the "'Saliency Parameters~ dialog (see Figure ..\..2) .
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FIGURE .-\.1. The main window and the test parameter dialog.

FIGURE A..2. The thumbnail dialog and the saliency parameter dialog.
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APPENDIX B

The Image Database

The image database was randomly selected from the Corel image collection L• It

contains 180 colour images which were used for testing different image segmenta­

tion methods and calculating the importance map. Each image has a resolution of

180x120. ln order to show the strengths and weaknesses of different approaches. these

imagps \verp selected from a wide variety of categories induding animal. building. in­

sect. people. aeroplane. and scenic pictures. For most of these images. either one or

a. few salient abjects can he easily identified.

FIGURE B.l~ The first part of the image datahase.

l http://W\\"W.corel.com./prodnets/clipartandphotosfphotofphotolib.htm
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FIGURE 8.2. The second part of the image database.
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FiGURE 8.3. The third part of the image database.
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FIGURE 8.4. The [ast part of the image database.
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APPENDIX C

The Test Set and Results
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FlGURE C.1. The first part of the test set aIong with the final seg­
mentation selected by the threshold-based method and the foeus of at­
tention (FOA) path. The FO.-\. path is ordered aeeording to decreasing
saliency.
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• FreURE C.2. The second part of the test set along with the final seg­
mentation selected by the threshold-based method and the focus of
attention (FO:\.) patll 97
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FIGURE C .3. The last part of the test set along with the final seg­
mentation selected by the threshold-based method and the focus of
attention (fO:\.) path
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