
EXCEPTIONAL USE CASES

AARON FU-SHEN SHUI

SCHOOl OF COMPUTER SCIENCE

MCGlll UNVERSITY

MONTREAl,QUEBEC, CANADA

SEPTEMBER 28, 2005

A THESIS SUBMITTED TO MCGlll UNIVERSITY IN PARTIAL

FUllFllMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © Aaron Fu-Shen Shui 2005

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page cou nt,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-22765-7
Our file Notre référence
ISBN: 978-0-494-22765-7

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ACKNOWLEDGMENTS

There are many people 1 owe a debt of gratitude to in relation to

this thesis. First and for most, 1 would like to thank Professor Jôrg Kienzle

who's outstanding supervision and brilliant direction inspired me to work

toward achieving highest standards of academic excellence. Professor

Christophe Dony at the Université de Montpellier contributed his

invaluable knowledge and experience on exceptions to my work. 1 thank

my peers, Sadaf Mustafiz and Alexandre Denault. Sadaf has provided a

great deal of advice as an expert on fault tolerance, and Alex translated

the thesis' abstract into French. Among my family and personal friends, 1

thank my mother, Ping-Chii Shih and my uncle Yaohuaui Shen. Their

guidance and support through my life have allowed me to pursue my

ambitions and made ail my achievements possible. Finally, 1 must thank

Victoria Yang for her unconditional encouragement and support; 1 could

not have written this thesis without her.

ii

TABLE OF CONTENTS

TABLE OF CONTENTS .. iii

LIST OF FIGURES ... iv

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: BACKGROUND .. 4

2.1. Exceptions ... 4

2.2. UML and Use Cases ... 6

CHAPTER 3: USE CASE EXCEPTIONS ... 11

3.1 Exception Signalling ... 11

3.2 Exception Handling ... 13

CHAPTER 4: EXCEPTIONAL USE CASES ... 15

4.1 Handler Use Cases .. 15

4.2 Interrupt Relationships .. 17

4.3 Exceptions .. 20

4.4 Exception Table .. 22

4.5 Extending the UML Use Case Metamodel ... 24

4.6 Failures and Exceptions Revisited ... 25

CHAPTER 5: EXCEPTION-AWARE PROCESS .. 27

5.1 Describing Normal Behaviour ... 27

5.2 Describing Exceptional Behaviour .. 27

5.3 Discovering Exceptional Situations .. 29

5.4 Process Summary .. 32

CHAPTER 6: CASE STUDY: ELEVA TOR CONTROL SYSTEM 34

6.1 Problem Statement ... 34

6.2 Normal Behaviour in the ECS Case Study ... 35

6.3 Exceptional Behaviour in the ECS Case Study .. 38

6.3.1 System Level Exceptions .. 38

6.3.2 Use Case Level Exceptions41

6.3.3 Interaction step level exceptions ... 45

CHAPTER 7: RELATED WORK ... 51

CHAPTER 8: FUTURE WORK ... 55

CHAPTER 9: CONCLUSION .. 59

APPENDIX A - USE CASE DESCRIPTIONS FOR ELEVATOR CONTROL SYSTEM ... 61

APPENDIX B - EXCEPTION TABLE FOR ELEVA TOR CONTROL SYSTEM 65

BIBLIOGRAPHY ... 67

iii

LIST OF FIGURES

Fig. 2.2.1: ATM Machine Use Case Diagram ... 8

Fig. 2.2.2: Withdraw Money Use Case Description .. 10

Fig. 4.1.1: A handler use case named H 1 ... 16

Fig. 4.1.2: Partial use case description for handler H1 ... 17

Fig. 4.2.1: Interrupt relationship example ... 18

Fig. 4.2.2: Interrupt & continue and interrupt & fail in a use case diagram 19

Fig. 4.2.3: Resumption and termination modes added to H1 use case description 20

Fig. 4.3.1: Exceptions in an associated note : 21

Fig. 4.4.1: Sam pie exception table .. 23

Fig. 4.5.1: Extended Use Case Diagram Metamodel (UML 2.0) 24

Fig. 6.2.1: Use case description for TakeE/evator 35

Fig. 6.2.2: Use case descriptions for CallE/evatorand RideE/evator 36

Fig. 6.2.3: Use Case Description for E/evatorArrival .. 37

Fig. 6.2.4: ECS - normal interaction use case diagram .. 38

Fig. 6.3.1.1: Use case description for Return ToMainFloor handler 40

Fig. 6.3.1.2: Use case diagram at the end of system level analysis41

Fig. 6.3.2.1: Use' case descriptions for Ove/Weight4lerlhandler42

Fig. 6.3.2.2: Use case description of EmergencyStop handler.43

Fig. 6.3.2.3: Use case diagram at the end of use case level44

Fig. 6.3.3.1: Use case description for EmergencyBrake handler46

Fig. 6.3.3.2: Updated use case description for E/evatorArrival .. .47

Fig. 6.3.3.3: Use case description for DoorAlerlhandler48

Fig. 6.3.3.4: Use case diagram for DoorAlerlhandler48

Fig. 6.3.3.5: Use case description for NotifyE/evatorOperatorhandler49

Fig. 6.3.3.6: Extended use case diagram for ECS .. 50

iv

ABSTRACT

Many exceptional situations arise during the execution of an

application. When developing dependable software, the first step is to

foresee these exceptional situations and document how the system should

deal with them. This thesis outlines an approach that extends use case

based requirements elicitation with ideas fram the exception handling

world. After defining the actors and the goals they pursue when

interacting with the system, our approach leads a developer to

systematically investigate ail exceptional situations arising in the

enviranment or in the system that change or fail user goals. Means are

defined for detecting the occurrence of ail exceptional situations, and the

exceptional interaction between the actors and the system necessary to

recover fram such situations is described in handler use cases. To

conclude the requirements phase, an extended UML use case diagram

summarizes the standard use cases, exceptions, handlers and their

relationships.

v

ABRÉGÉ

Plusieurs situations exceptionnelles peuvent se produire pendant

l'exécution d'une application. Pour développer un logiciel sûr et

robuste, il faut premièrement prévoir ces situations exceptionnelles et

documenter comment le système devrait leurs réagir. Ce document décrit

une technique qui améliore les analyses de besoins avec des cas d'usage

en y ajoutant des idées de gestion d'exception. Après avoir défini les

acteurs et les buts d'interaction avec le système, le programmeur doit

enquêter toutes les situations exceptionnelles qui pourraient se produire

dans le système (les situations exceptionnelles se produisant dans

l'environnement qui peuvent changer les buts de l'utilisateur et les

situations exceptionnelles reliées au système qui menacent les buts de

l'utilisateur). Des procédés sont proposés pour reconnaître la présence

de situations exceptionnelles et les interactions acteurs/système qui

rétablissent le système après une des situations soit illustrées dans les

cas d'usage "gestionnaires". Pour conclure la phase d'analyse de

besoins, un diagramme étendu UML des cas d'usage résume les cas

d'usage standard, les exceptions, les gestionnaires et leurs relations.

vi

CHAPTER 1: INTRODUCTION

Most main stream software development methods define a series

of software development phases: requirements elicitation, analysis, design

and finally implementation, which lead the development team to discover,

specify, design and implement the main functionality of a system. While

the system's main functionality dictates the system's behaviour most of

the time, special situations may arise during the execution that cali for

processing beyond the main functionality. Failure to recognize and

specify how the system responds in such situations jeopardizes how weil

the system can perform its main functionality. Unfortunately, when using a

standard software development process, there is no guarantee these

situations are considered during development. How weil the system

handles these situations depends highly on the imagination and

experience of its developers. As a result, the implementation might not

function correctly under many probable situations.

When developing dependable systems, e.g. safety-critical systems,

where a malfunction can cause significant or unacceptable damage,

nothing should be left to chance. Following the idea of integrating

1

exception handling into the software development life cycle [Goodenough

1975, De Lemos 2001], this thesis describes an exception-aware

approach to use case based requirements elicitation that leads developers

to consider the adverse or exceptional situations a system under

development might be subjected to. It is very important to think about

exceptional behaviour at the requirements phase, because it is up to the

users and stakeholders of the system to decide how they expect the

system to react to exceptional situations. Only with exhaustive and

detailed user and stakeholder feedback is it possible to discover and then

specify the complete system behaviour in a subsequent analysis phase,

and decide the need for employing fault masking and fault tolerance

techniques for achieving runtime reliability during design.

Chapter 2 provides background information of use cases and

exception as they traditionally appear. In Chapter 3, the ideas from the

exception handling world are re-interpreted in the context of use cases.

These redefined use case exceptions are accommodated through various

extensions to use case diagrams and descriptions, which are described in

Chapter 4. These extended use case diagrams and descriptions are used

to document the exceptional behaviour captured through the exception-

2

aware process, which is discussed in Chapter 5. Chapter 6 presents a

case study of an Elevator Control System to iIIustrate how the exception

aware process is applied to yield exceptional use cases. Related works

and future work are discussed in Chapter 7 and 8, respectively, and the

last chapter draws sorne conclusions.

3

CHAPTER2:BACKGROUND

This section gives a brief overview of conventional exceptions and

standard UML use cases. In addition, the key elements of an exception

handling system are discussed, and version of a textual use case template

is introduced.

2.1. Exceptions

Traditionally, exceptions have been a feature of programming

languages and as such, usually considered only during the later phases of

software development, i.e. low-Ievel design and implementation.

Exceptions are supported and realized in various ways across different

programming languages and/or systems. Nevertheless, the fundamental

idea and goal remains the same; the concerns of error detection and

correction are separated from the primary functionality of a program, and

initiated when necessary by exceptions.

Generally defined, an exception is an indicator that is raised when a

signa/fer detects an error. An exception occurrence, subsequently,

4

requires a computation outside the current scope or context of the

program for the program to continue [Knudsen 1987]. The normal flow of

a program is interrupted, and control is passed to an exception hand/er,

which executes exceptiona/ behaviour. Alternatively, a handler can ignore

the exception, or just propagate (i.e. pass the exception on to the

enclosing context) the exception as is, or even signal a new exception.

After the handler has executed, the system returns control to the original

context (resumption mode), or terminates the original context (termination

mode) [Goodenough 1975].

A programming language or system with support for exception

handling is called an exception hand/ing system (EHS) [Dony 1990]. An

/

EHS provides a way to define and coordinate signallers, exteptions, and

handlers. Coordination includes managing the role of signallers, the

scope of exceptions, and the activation of handlers. The context in which

an exception is raised helps determine how it is handled. Depending on

the EHS, a context can be: a program, a process, a statement, an

expression, etc. EHS's can provide more (or less) sophisticated exception

handling support than what is described above according to what is

required by their application domain.

5

2.2. UML and Use Cases

The Unified Modeling Language (UML) [Rumbaugh 1999] defines a

notation for specifying and documenting the artefacts of a software

intensive system. UML is intentionally process independent. However, it

ofters various diagrams that unify the scores of graphical modeling

notations that existed in the software industry during the 80's and 90's.

Among the UML models, this thesis focuses on the use cases as defined

in the UML 2.0 specification [OMG 2004].

Since their introduction in the late 80's [Jacobson 1987], use cases

have become a widely used formalism for discovering and documenting

the behavioural requirements of software systems [Larman 2002]. A use

case diagram serves to describe a system's responsibilities and

interactions with respect to its environ ment without revealing details of the

system's internai workings. Each use case represents a series of

interactions, which satisfies a goal of a particular stakeholder or actor

when successfully completed. Actors are external entities that interact

with the system. There are two types of actors, primary a ctors, which

6

have goals with the system and secondary actors, which do not. To

promote reuse and modularity, use cases can Include interactions of

another use case, or optionally extend another use case. This is

represented by a directed relationship between two use cases [OMG

2004]. Use case diagrams provide a concise high-Ievel view of sorne or

ail use cases in a system. It allows developers to graphically depict what

the system must do to fulfill the needs of its actors.

A use case diagram for an ATM machine is shown in Fig. 2.2.1.

The primary actor is the Bank Gustomer who uses the ATM machine to

Withdraw Money or !l7ew Account Status. The secondary actor, Bank

Repository, stores the information that is read and updated by the ATM.

Both Withdraw Money and View Account Status use cases require the

Bank Customer to first authenticate by entering their Bank Card and a

PIN, which is represent by the use case Authenticate.

7

BankCustomer 1
1 etet indude ~~

.IlJJthenticate

1

etet indude ~~ 1
1

\/1 ew ,ll.ccount status

Fig. 2.2.1: ATM Machine Use Case Diagram

Ban kR epository

Use cases can be described at different levels of granularity

[Cockburn 2000]. They can scale up and down in terms of sophistication

and formality depending on the needs of developers. At the highest level,

summary level use cases give an overview of how the system is used.

User-goal level use cases describe how the system is used to achieve a

user's goal. Finally, sub-function level use cases describe how sub-goals

of higher level goals are achieved. Use cases are very effective means of

communication between technical as weil as non-technical stakeholders of

the software under development. Their versatility, coupled with their

8

ability to document requirements in terms of actor goals, make use cases

ideal for requirements elicitation.

The interaction details contained in each use case are not included

in the diagram. Sorne development methods, such as Fondue [Sendall

1999], define a textual template called a use case description that

developers fill out for each use case. A use case description for the use

case Withdraw Money is shown in Fig. 2.2.2. Using the Fondue template

forces developers to document ail the important features of a use case

including: primary actor, main success scenario, and extensions. The

main success scenario describes the standard way of achieving the

primary actor's goal, while the extensions describe alternate or optional

interactions, including ones that lead to failure of the use case by not

achieving the goal. The textual use case descriptions work with the use

case diagram to provide complete expia nation of how the system is

expected to work from the actors' point of view.

9

Title: Withdraw Money
Primary Actor: Bank Customer
Intention: Bank Customer wants to withdraw cash fram his/her account.
Level: User Goal
Main Success Scenario:

1. Bank Customer inserts his/her bank cardo
2. System Aufhenficafes Bank Customer.
3. Bank customer selects the account he/she wishes to withdraw fram

and enters the amount he/she wishes to withdraw.
4. System sends request to Bank Repository.
5. Bank Repository processes and approves the request and updates

the account balance.
6. System dispenses the requested cash and returns the bank cardo

Extensions:
2a. Card is invalid. System returns the cardo Use case ends in failure.
5a. Bank Repository rejects the request. System notifies Bank Customer
and returns the bank cardo Use case ends in failure.

Fig. 2.2.2: Withdraw Money Use Case Description

10

CHAPTER 3: USE CASE EXCEPTIONS

This chapter offers an interpretation of the exception handling

paradigm as it is applied to use cases. Exception handling terminology as

defined in this chapter will be referred throughout the rest of this thesis.

3.1 Exception Signalling

Exceptions at the use case level are not messages that indicate

error, but represent situations that prevent current behaviour of the system

from continuing. In terms of use cases, it is a situation that may cause the

main success scenario of a use case to fail. When these exceptiona/

situations are encountered, the normal behaviour must be interrupted by

exceptiona/ behaviour, which returns the system to a coherent state.

Exceptional situations arise due to changes in the system's

environment or due to errors in the system itself. However, it is rare to

discover exceptional situation resulting from system errors at the use case

level. Usually, very little is known about the system's internais so it is

11

difficult to anticipate problems with it. Therefore, most exceptional

situations found at the use case level arise from external entities.

Exceptions are used to represent exceptional situations from the

system's point of view, whereas exceptional situations take on the

perspective of external entities and developers. For example, "max

operating temperature exceeded" is the exception signa lied for the

exceptional situation "cooling system breaks down". It could also be said,

the exceptional situation describes the cause, while the exception

describes the effect. Often, it is more natural to think about exceptional

situations rather than exceptions at the use case level, since use cases

are concerned with how actors view and interact with the system.

Thinking about exceptional situations leads to the discovery of exceptions.

An exception is signa lied when the system encounters an

exceptional situation. The signaller can be an actor (actor-signal/ed

exception) or a set of conditions the system must somehow check

(system-detected exception). Actor-signalled exceptions rely on actors to

detect exceptional situations, 50 the system only needs to provide a

proper interface or p roto co 1 to interpret the signalling actor's intention.

12

Without knowledge of the system's internais, it is difficult to specify how

system-detected exceptions are detected, so a signa 11er is not necessarily

defined. However, it is assumed the system successfully detects and

signais the exception. Developers may eventually decide on using

specialized (secondary) actors to perform detection.

3.2 Exception Handling

Exceptions arise at anytime, and can affect ail the currently active

use cases in a system. When an exception is signalled, its con!ex! is the

current set of active use cases. An exception activates the necessary

handlers for every active use case that is jeopardized by the exceptional

situation, which the exception represents. Depending on the exception,

sorne or ail of the active use cases are interrupted by exceptional

behaviour. The exceptional behaviour is described by one or more

handler use cases (handlers). So, the exceptional behaviour must include

interaction between actors and the system, or else no handler can be

defined. If no handler use case is defined, the use case is not interrupted

and thus, will most likely fail.

13

ln the event a handler fails, the interrupted use case will fail by

default. Ideally, only one handler should be associated with a specific

exception per use case. If more than one is defined, exception handling

becomes non-deterministic.

The following summarizes what happens when an exceptional

situation is encountered.

1. The exceptional situation is identified and one or more

exceptions are signalled.

2. Each exception activates a set of handler use cases which

interrupt ail use cases sensitive to the exception.

3. After the handler finishes:

a. the interrupted use cases resume

OR

b. the interrupted use cases terminate and fails.

14

CHAPTER 4: EXCEPTIONAL USE CASES

This chapter proposes extensions to UML use case diagrams and

Fondue use case descriptions to accommodate use case exceptions as

described in Chapter 3.

4.1 Handler Use Cases

Handler use cases, or handlers, are specialized use cases

designed to perform exception handling. To distinguish handlers from

regular use cases, they are stereotyped handler, as shown in Fig. 4.1.1.

To further enforce the distinction, handlers may only include other

handlers and do not exfend non-handler use case. Similarly, non-handler

use cases should not include nor extend handler use cases.

Consequently, the normal and exceptional behaviour of a system is

cleanly partitioned in a use case diagram; developers can extract and view

only the main functionality by hiding ail handler stereotyped use cases and

their relationships.

15

Fig. 4.1.1: A handler use case named H1

Handlers activated by actor-signalled exceptions are user-goal

driven. An actor signais an exception to ensure their goals with the

system do not fail, which includes keeping themselves safe and the

system operational. Other handlers play supportive roles to user-goals,

i.e. their goal is to prevent a primary user-goal from failing. For example,

alerting users and stopping the operation of an over capacity elevator

helps avoid hardware failure that prevents users taking the elevator from

achieving their goals.

Every handler's use case description includes a new field called

Context & Exceptions, which describes when the handler is used. Context

& Exceptions lists every use cases the handler interrupts, along with the

exception that activates the handler. Fig. 4.1.2 demonstrates how Context

& Exceptions is used to show that handler H 1 interrupts use cases U 1 if

exception E1 or E2 is raised, and interrupts U2 if exception E1 or E3 is

raised.

16

Use Case: H 1 «handler»

Context & Exceptions: U1 {E1}, {E2}; U2 {E1}, {E3}

Primary Actor: A 1

Intention: A1 wants ta

Fig. 4.1.2: Partial use case description for handler H 1

4.2 Interrupt Relationships

Interrupt relationships are exclusively used to show which handlers

interrupt which use cases in a use case diagram. Interrupt relationships

are the only way handlers and non-handlers can be associated, because

include and extend relationships are forbidden between a handler and a

non-handler use case. Interrupt relationships are stereotyped directed

relationships similar to include and extend. An interrupt relationship is

represented by a dotted arrow with an open arrowhead that extends from

a handler case to a use case the handler interrupts. Fig. 4.2.1

demonstrates how an interrupt relationship is used to show handler H1

interrupts the use case U1 when an exception occurs.

17

~------
~ ~~ interrupt »

Fig. 4.2.1: Interrupt relationship example

There are two subtypes of the interrupt relationships, namely

interrupt & continue and interrupt & fail, to express in the use case

diagram what happens to the interrupted use case after the handler

finishes. Interrupt & continue indicates the interrupted use case will

resume after the handler is finished, while interrupt & fail indicates the

interrupted use case will terminate and fai!.

Interrupt & continue and interrupt & fail are also expressed as

stereotypes of a directed relationship. Fig. 4.2.2 gives an example of how

they appear in a use case diagram.

18

<=:<=: interrupt & fail »

<=:<=: interrupt & OJntinue »

<=:<=: handl er »

Fig. 4.2.2: Interrupt & continue and interrupt & fail in a use case diagram

The use case diagram in Fig. 4.2.1 only shows one interrupt

relationship between a pair of use cases, so when more than one

exception is handled and both the resumption and termination modes are

used, the relationship carries the more general stereotype, interrupt

To keep the use case descriptions consistent with the use case

diagram, there must be a corresponding entry in Context & Exceptions for

every interrupt relationship in the use case diagram and vice versa. It

should also be stated for every entry whether the use case is interrupted &

continued or interrupted & terminated for each exception as shown in

FigA.2.3.

19

Use Case: H1 «handler»

Context & Exceptions: U1 {E1 «interrupt & continue»}, {E2 «interrupt

& fail»}; U2 {E1 «interrupt & fail»}, {E3 «interrupt & continue»}

Primary Actor: A 1

Intention: A 1 wants to

Fig. 4.2.3: Resumption and termination modes added to H1 use case

description

4.3 Exceptions

ln the use case diagrams, the exception(s) that trigger an interrupt

relationship are listed on a note associated to the relationship. The

exceptions are listed in the note under the heading "Exceptions:". If the

relationship is only stereotyped as interrupt, then each exception is listed

with whether the use case continues or fails. For example, in Fig. 4.3.1

shows that exception E 1 will cause handler H 1 to interrupt and continue

use case U 1 while E2 will cause H 1 to interrupt and fail U 1.

20

Exceptions:
{E1 } -=:-=:interrupt & rontinue:=-:=-,
{E2} «interrupt & fail:=-:=-

!
« interrupt :=-:=-

« handler :=-:=

H1

Fig. 4.3.1: Exceptions in an associated note

Sorne extensions of a use case can cause an exceptional situation

and result in an exception. In this case, the resulting exception is listed in

the extensions section of a use case description using the syntax

Exception (ExceptionName). When a use case's extension causes an

exception, it does not mean that use case will be interrupted, because the

exception may trigger unrelated handlers. Conversely, not every

exception that interrupts the use case is linked to an extension; they may

be triggered in an unrelated context. Finally, exceptions should never be

triggered by interactions in the main success scenario because then there

would be something fundamentally wrong with the use case.

It is easy to confuse exceptions and extension because they are

both used to describe alternative behaviour to the main success scenario.

21

While there are common situations in which exceptions and extensions

are used, they are very different concepts. Exceptions serve the purpose

of announcing that something is wrong, whereas extensions describe

alternative interactions (possibly because something is wrong). Thus, the

function of an extension is more comparable to a handler which also

specifies alternative interactions. However, extensions describe ail

alternative interaction steps, but not ail alternative interactions leads to

use case failure. Handlers are used only when interactions will lead to

failure. Furthermore, exceptions do not only announce when alternative

interactions jeopardize the success of a use case, they can be signalled

for reasons outside the scope of any particular use case.

4.4 Exception Table

The exception table is used to list information about ail exceptions

in the system. So far, information about exceptions have been scaUered

throughout the use case diagram, and in the extensions and context &

exceptions sections of interrupted and handler use case descriptions,

respectively. The purpose of the exception table is to consolidate ail this

information for each exception. The exception table also provides a place

22

to describe an exception's corresponding exceptional situation, and state

whether the exception is actor-signalled or system-detected. If an

exception is system-detected, the exception table is a good place to jot

down suggestions for detection. Other columns in the table include the

use cases interrupted by the exception and the handlers activated by the

exception. In addition, exceptional situations discovered that have no

defined handlers due to the absence of actor-system interactions can be

documented in the table. Finally, besides organizing information about

exceptions, for requirement elicitation, the exception table can be

extended in a later phase to observe and ensure the exception elements

are mapped correctly. Fig. 4.4.1 shows a sam pie exception table.

Name Exceptional Situation Context Handler Detection Comments

E1 Actor does action A. U1, U2 H1 System-Detected Happens often,

Suggestions: check x consider making

of component y normal feature

E2 Events C and 0 U2 H2 Actor -Signalled Unlikely but
occurred. critical.

NIA Component B System-Detected Not practical to
Overheats Suggestions: handle, cooling

thermostat? too expensive

Fig. 4.4.1: Sample exception table

23

4.5 Extending the UML Use Case Metamodel

This section presents an extended UML 2.0 Use Case Diagram

Metamodel (Fig. 4.5.1) in the Class Diagram formalism that supports the

new exception constructs described in this chapter.

Fig. 4.5.1: Extended Use Case Diagram Metamodel (UML 2.0)

As shown in Fig. 4.5.1, Handler Use Cases are a subclass of Use

Cases, while Interrupt relationships behave similarly to Extend and Include

relationships except the source must be a Handler Use Case. Finally,

Exceptions inherit fram Redefinable Element following the same manner

as Extension Points.

24

4.6 Failures and Exceptions Revisited

This section reviews and clarifies what happens when an exception

is raised and how subsequent failures may manifest themselves and

propagate through the system.

As previously defined, exceptions are raised when anticipated

problems are detected in the system, and it is always assumed the

designated handler use case will successfully correct or recover from the

problem. During the execution of a handler, additional exceptional

situation may arise and be detected resulting in additional exceptions.

However, a use case that is currently interrupted by one handler use case

can not be interrupted by another one. Two handler use cases can not

concurrently interrupt the same instance of a use case. Additional

handlers must either interrupt, extend or be included by the currently

active handler use case.

Following the execution of a handler, the interrupted use case may

resume (Interrupt & Continue) or fail (Interrupt & Fail). In the case of

Interrupt & Fail, the interrupted use case fails, typically, other use cases

25

including or extended by it will fail as weil. Similarly, higher level use

cases (e.g. summary-Ievel use cases) that contain the interrupted and

failed use case will fail as weil. Unless a higher level goal is unusually

structured so it does not depend on the success of its sub-goals or there

are exceptions and handlers to catch and prevent the propagation of

failure. If there are no safeguards, the failure will propagate to the highest

level as it would with regular non-exception al use cases, eventually

causing the user goal or even the system goal to fail.

26

CHAPTER 5: EXCEPTION-AWARE PROCESS

This section presents an exception-aware approach to use case

based requirements elicitation that employs the extended use case

diagrams and descriptions and exception table presented in Chapter 4.

5.1 Describing Normal Behaviour

The process begins by defining and documenting the primary

functionality of the system with use case diagrams and descriptions. The

actors and the goals they pursue wh en using the system, under normal

circumstances, are defined and the interactions involved in achieving

these goals are captured in use cases. Alternative interaction steps to

achieve the use case goals are specified in the extensions section of the

textual descriptions. No exceptions are specified at this point.

5.2 Describing Exceptional Behaviour

When the functional specifications of the system are stable, the

discovery of exceptional functionality can begin. Exceptional functionality

27

refers to features of the system that complement and support the primary

functionality when exceptional situations are encountered. This process

proceeds by analyzing the system at three levels, system level, use case

level and interaction step level. These are concerned with the exceptional

situations that cause the system, user goals and interaction steps to fail,

respectively.

At each level, the possible exceptional situations are first sought.

The discovered exceptional situations are evaluated by their effects to

each use case. Then, based on the expectations and needs of the actors,

the exceptional situations are designated as actor-signalled or system

detected exceptions or both. Entries are made in the exception table to

record ail this information. For actor-signalled exceptions, user-goal level

handlers are specified in a use case description and associated with the

triggering actors and the use cases they interrupt. For system-detected

exceptions, sub-function level handlers are specified in a use case

description and associated to the use cases they interrupt. The handlers

and new actors are added to the use case diagram accordingly.

28

Usually, mappings between exceptional situations, exceptions, and

handlers start as one-to-one. However, after specifying the exceptional

behaviour for a level, the exceptions and handlers can be refined. More

specifically, common effects to the system shared by different exceptional

situations can be represented by a single exception. Similarly, one

handler can be generalized and used for multiple exceptions.

When the exceptional behaviour is stable and adequately refined,

the process of specifying exceptional behaviour is recursively applied to ail

new handler use cases. Each new handler is evaluated for how every

discovered exceptional situation will affect il. As a result, additional

handlers are specified and existing on es are reused to interrupt and

perform exceptional behaviour on exceptional behaviour.

5.3 Discovering Exceptional Situations

When looking for exceptional situations at the system level, we are

looking for anything that will break the system as a whole or cause an

actor ta deviate from their goal. Interesting things to consider include: the

operational needs of the system, e.g. power source, accessibility,

29

connectivity; and anything that will draw away the attention of an actor,

e.g. emergencies, safety concerns, malicious behaviour.

At the use case level, we look at how the use case fails as a whole,

without considering the failure of individual interactions contained within.

For example, BuySomething is a use case that specifies how an actor

makes purchases at an on li ne store. At the use case level, BuySomething

fails because the item was out of stock, or because the actor didn't have

enough money. The use case would not fail at the use case level

because the "add to cart" button is not properly linked (it fails at the

interaction step level). The pre-conditions, post-conditions, and invariants

of a use case are a good place to start looking for exceptions at the use

caselevel.

Finally at the interaction step level, each interaction step for every

use case is examined and classified into input and output interactions.

Inputs and outputs may fail, so the consequences and ways to deal with

such a failure must be identified. If the consequences endanger the

success of the use case, then the failure must be detected and addressed

by the system.

30

Omission of input can lead to use case failure, so for input

interaction any omission needs to be addressed. For instance, prompting

for the input again after a set time has elapsed, or using default inputs are

possible options. Safety considerations might make it even necessary to

shutdown the system in case of missing input. Invalid input is another

example of an input problem that can cause use case failure. Since most

actors are aware of the importance of their input, a reliable system should

acknowledge reception of input and provide status indicators.

Whenever an output triggers a critical action of an actor, then the

system must make sure that it can detect eventual communication

problems or failure of an actor to execute the requested action. For

example, an elevator's control software might tell the motor to stop, but a

communication failure or misbehaviour might keep the motor going. For

such critical errors, additional hardware, e.g. a motion sensor, may be

necessary to ensure reliability.

As we move down from the system level to the interaction step

level, there will be less and less actor-signalled exceptions found for a

31

couple of reasons. First, sorne exceptional situations found at a lower

level are often already addressed by exceptions found at a higher level,

thus, defining a corresponding exception and handler would be redundant.

Second, failure of an interaction step is not as relevant to an actor, but

failure of a user-goal level use case or of the entire system is relevant

from an actor's goal driven point of view. Therefore it's less likely an actor

will deviate from their goal to initiate exceptional behaviour interaction step

failure. Thus, interaction step failures that le ad to use case failure should

be and are usually system-detected. Hence, there are more system

detected exceptions at the interaction step javel.

5.4 Process Summary

The exception-aware process first describes ail the normal

behaviour of the system and then describes the exceptional behaviour of

the system at the three levels, system, use case, and interaction step. At

each level the possible exceptional situations are found and the respective

exceptions and handlers are defined and possibly refined. The process is

then applied recursively until no new exceptional behaviour is required.

32

ln the end, the approach produces extended, exception-aware use

case diagrams of the system accompanied with descriptions of every use

case and an exception table. The use case diagram provides a summary

of the system as partitioned into normal and exceptional behaviour. The

use case descriptions consolidates ail normal and exceptional information

for each use case, while the exception table consolidates ail information

for each exception. Together these documents specify how the system is

expected to behave according to the actors of the system under normal

and exceptional circumstances.

33

CHAPTER 6: CASE STUDY: ELEVATOR CONTROL SYSTEM

This section presents a case study of a safe and reliable Elevator

Control System (ECS) to iIIustrate how the exception-aware requirements

elicitation process described in Chapter 5 is used to produce use cases

that detail the normal and exceptional requirements of the ECS.

6.1 Problem Statement

The job of the development team is to implement an ECS that

coordinates the hardware components of a single-cabin elevator to carry

users between floors. Initially, the hardware components including the

motor, the elevator doors, and the cabin location sensors, are ail

considered external entities (secondary actors) to the system. The

developers must also decide on the additional hardware (if any) needed to

meet the functional and non-functional requirements of the ECS.

34

6.2 Normal Behaviour in the ECS Case Study

There is initially only one primary actor in the ECS, the User. A

user has only one goal with the system, and that is to take the elevator to

go from one floor (source floor) to another (destination floor), which is

described in the use case TakeE/eva/orshown in Fig. 6.2.1

Use Case: TakeElevator
Scope: Elevator Control System
Primary Actor: User
Intention: The intention of the User is to take the elevator to go to a
destination floor.
Level: User Goal
Main Success Scenario:

1. User Call[slElevator
2. User Ride[slElevator

Extensions:
1 a. The cabin is already at the floor of the User and the door is
open. User enters elevator; use case continues at step 2.
1 b. The User is already inside the elevator. Use case continues at
step 2

Fig. 6.2.1: Use case description for TakeE/eva/or

As described in the main success scenario, the User first calls the

elevator to his/her current f1oor, and then rides it to his/her destination

floor.

The CallE/eva/or and RideE/eva/or use cases are shown in

Fig.6.2.2. To cali the elevator, the User pushes the up or down button to

35

indicate the direction he/she wishes to go and waits for the elevator to

arrive. To ride the elevator the User enters the cabin, selects a

destination floor, and waits until the elevator arrives at the destination

floor, where he/she then exits the elevator.

Use Case: CaliElevator
Primary Actor: User
Intention: Userwants to cali the elevator to the floor that he/she is
currentlyon.
Level: Subfunction
Main Success Scenario:

1. User pushes button, indicating in which direction he/she wants
to go.

2. System acknowledge request.
3. System schedules ElevatorArrival for the floor the User is

currentlyon.
Extensions:

2a. The same request already exists. System ignores the request.
Use case ends in success.

Use Case: RideElevator
Primary Actor: User
Intention: User wants to ride the elevator to a destination floor.
Level: Subfunction
Main Success Scenario:

1. User enters elevator.
2. User selects a destination floor.
3. System acknowledges request and closes the door.
4. System schedules ElevatorArrival for the destination floor.
5. User exits the elevator at destination floor.

Extensions:
1 a. User does not enter elevator. System times out and closes

door. Use case ends in failure.
2a. User does not select a destination floor. System times out and
closes door. System processes pending requests or awaits new
request. Use case ends in failure.
5a. User selects another destination floor. System acknowledges
new request and schedules ElevatorArrival for the new floor. Use
case continues at step 5.

Fig. 6.2.2: Use case descriptions for Cal/E/eva/orand RideE/eva/or

36

CallE/eva/or and RideE/eva/or both include the E/eva/orArriva/ use

case shown in Fig. 6.2.3. It describes how the ECS directs the elevator to

a specifie floor. Once the system detects that the elevator is approaching

the destination floor, it requests the motor to stop and then opens the

door.

Use Case: ElevatorArrival
Primary Actor: NIA
Intention: System wants to move the elevator to a specifie floor.
Level: Subfunction
Main Success Scenario:

1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System detects elevator is stopped at destination floor.
4. System opens door.

Fig. 6.2.3: Use Case Description for E/eva/orArriva/

The use cases that describe the normal interaction between the

user and the ECS can be summarized in a standard UML use case

diagram as shown in Fig. 6.2.4.

37

« indude"" ,

\
\

« indude» ~
\

User

\

\ « indude»

1 ,
, «indude""

1

Fig. 6.2.4: ECS - normal interaction use case diagram

6.3 Exceptional Behaviour in the ECS Case Study

This section will specify the exceptional behaviour of the ECS by

analyzing the system at three levels: system, use case, and interaction

step.

6.3.1 System Level Exceptions

At the system level, we uncover the exceptional situations, power

tailure in building and maintenance/repairs on elevator, by examining the

38

operational requirements of the elevator's hardware. Another exceptional

situation, tire in the building is found by considering ail events in the

environment that causes a user to change their goal with about using the

elevator.

When a power failure occurs, the whole system stops due to lack of

electricity. This exceptional situation is ignored (at least at this point)

because loss of pending requests is acceptable, and employing a backup

power supply is costly and impractical. Even though this exceptional

situation is ignored by the system, like ail exceptional situations, it is still

entered in the exception table for future reference.

Maintenance and repairs are needed on a regular basis to keep the

elevator's mechanical components functioning reliably, and can not be

ignored. Fire and similar emergencies, which threaten human safety, can

not be ignored either. One solution to both situations is to provide a

feature that overrides the current operation of an elevator, and brings it to

and keeps it at the main floor of the building until further notice. This is

described by the handler, ReturnToMainFloor. Return ToMainFloor

interrupts ail four normal use cases, which simplifies to interrupting

39

TakeElevator, because TakeElevator includes the other three use cases.

This handler requires a new actor, called Elevator Operator, who has

special permission to activate the use case, e.g. the building manager or a

service person. ReturnToMainFloor is described in Fig.6.3.1.1 and

Fig.6.3.1.2 shows the use case diagram at the end of looking at the

system level.

Use Case: ReturnToMainFloor «handler»
Context & Exceptions: TakeElevator {ElevatorOverride«interrupt &
fail»}
Primary Actor: Elevator Operator
Intention: Elevator Operatorwants to cali the elevator to the Main floor.
Level: User Goal
Main Success Scenario:

1. System clears ail requests and requests motor to go down.
2. System detects that elevator is approaching the Main floor and

requests motor to stop.
3. System opens elevator door.

Fig. 6.3.1.1: Use case description for ReturnToMainFloorhandler

40

<:te; handler :=->

ReturnToMainFloor

,
1

«indude» "

1
1

J
1

,
1

,
J

« indude»

1
1 «indude» , ,

...... « indude»

User

Fig. 6.3.1.2: Use case diagram at the end of system level analysis

6.3.2 Use Case Level Exceptions

At the use case level, we consider the following two exceptional

situations, elevafor is over capacity, and user feels uncomforfable inside

elevafor. The elevator capacity issue is found by examining the invariants

of ElevaforArrival and RideElevafor, which should indicate limitations to

what the elevator can carry. The other exceptional situation is found by

considering the safety and comfort needs of a user while inside the

41

elevator, should the user feel something is wrong with the elevator and

wish to do something about it.

It is not reasonable to have users detect when the elevator is

overweight, so the exception E/evatorOverweight must be system-

detected. The solution is to prevent the elevator from moving when it is

over capacity, and sound an alert to notify the users as captured by the

handler, OverweightA/ert, shown in Fig. 6.3.2.1. OverweightA/ert

interrupts RideE/evator, and requires hardware that produces an audible

alert and perhaps a weight sensor.

Use Case: OverweightAlert «handler»
Context & Exceptions: RideElevator {Overweight«interrupt &
continue»}
Primary Actor: NIA
Intention: System wants to alert the passengers that there is too much
weight in the elevator.
level: Subfunction
Main Success Scenario:

1. System turns on the buzzer.
2. System detects that the weight is back to normal.
3. System turns off the buzzer.

Fig. 6.3.2.1: Use case descriptions for OverweightA/ert handler

If the user feels there is something wrong with the elevator, a

reasonable solution is to stop the elevator and sound an alarm that will

42

attract attention, which is described by the handler, EmergencyStop in

Fig. 6.3.2.2. To ensure the elevator will stop, an emergency brake is

added to the system. EmergencyStop can interrupt ail four normal use

cases, which simplifies to interrupting TakeElevator when the actor-

signalled, UserEmergency is raised. Fig. 6.3.2.3 shows the use case

diagram at the end of the use case level analysis.

Use Case: EmergencyStop «handler»
Context & Exceptions: TakeElevator {UserEmergency «interrupt &
continue»}
Primary Actor: User
Intention: User wants to stop the movement of the cabin.
Level: User Goal
Main Success Scenario:

1. System stops and activates EmergencyBrake.
2. Usertoggles off emergency stop button.
3. System deactivates brakes and alarm, and continues

processing request.

Fig. 6.3.2.2: Use case description of EmergencyStop handler

43

« handler >::0

ReturnT oM;E'jinFloor

ElevatorQperator User

, /

{
« interrupt & continue » ,..,. ~ _ ,.,. ,.,.

« indude» 1

1
1

1

1 ,
,

1 «indude»
1
1
1

,
1

, ,
1 ,

« indude»

, , ,
1
1
1

~ ~ ~ « intelTupt & continue» ~
,01"« indude» r-------".

Fig. 6.3.2.3: Use case diagram at the end of use case level

Another exceptional situation, found at the use case level, occurs

when the elevator goes ta the wrong noor or misses the right noor.

Arriving at the right floor is a post-condition of ElevatorArrival. However,

this exceptional situation is ignored because it is not a critical problem. A

user riding the elevator can easily rectify this by getting off at the next floor

and taking the elevator or stairs back. If it is a persistent problem, then

the user can activate EmergencyStop. Users outside the elevator can cali

the elevator again or give up and take the stairs.

44

6.3.3 Interaction step level exceptions

At the interaction step level, we find and address two system

detected exceptions: MolorFai/ure and DoorSluckOpen. We start by

examining every step in ElevatorArrival. The first step involves the floor

sensor informing the system that the elevator is approaching a floor. A

floor sensor defect might cause the elevator to miss a destination floor.

This situation is ignored because it was already addressed at a higher

levaI. In Step 2 of E/evalorArriva/ the system requests the motor to stop.

A critical exceptional situation occurs if the motor malfunctions and does

not stop. So the respective handler, EmergencyBrake, requests the motor

to stop again and activates the emergency brakes, as shown in

Fig.6.3.3.1. Emergency brake is activated by the system-detected

exception MolorFai/ure and is included by EmergencySlop, to promote the

reuse of common behaviour.

45

Use Case: EmergencyBrake «handler»
Context & Exceptions: TakeElevator {MotorFailure«interrupt & fail»}
Primary Actor: NIA
Intention: System wants to stop operation of elevator and secure the
cabin.
Level: Subfunction
Main Success Scenario:

1. System stops motor.
2. System activates the emergency brakes.

Fig. 6.3.3.1: Use case description for EmergencyBrake handler

ln step 3 of E/evatorArrival, the system requests the door to open,

and the door might fail to open. However, the user can always retry

pressing the floor's buUon if inside, or cali the elevator again if outside.

This exceptional situation is of course more critical to a user inside the

elevator, but he/she can also try another floor or worst case, activate

EmergencyStop. So without threatening reliability, the system can ignore

the exceptional situation, and hence leave it up to the user in the elevator

to decide to retry the floor, go to a different floor or push the emergency

button. Fig. 6.3.3.2 shows the updated version of E/evatorArriva/ that

considers this scenario.

46

Use Case: ElevatorArrival
Primary Actor: NIA
Intention: System wants to move the elevator to a specific floor.
Level: Subfunction
Main Success Scenario:

1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System detects elevator is stopped at destination floor.
4. System opens door.

Extensions:
4a. Door fails to open.
System continues processing the next request (it is up to the user
to select a new destination floor or press the emergency stop
button). Use case ends in failure.

Fig. 6.3.3.2: Updated use case description for E/eva/orArriva/

Wh en examining the Cal/E/eva/or and RideE/eva/or use cases, we

see a common problem that can prevent the use cases from succeeding:

the eleva/or door gels s/uck opened, represented by the exception

DoorS/uckOpen. An obstacle or person may be preventing the door from

closing. If this is the case, the response, as described in the handler,

DoorA/erf is to activate an audible alert, so whoever is blocking the door

might cease to do so; Fig. 6.3.3.3 shows the use case description of

DoorA/erf and Fig. 6.3.3.4 shows the use case diagram at the end of the

interaction step level analysis.

47

Use Case: DoorAlert «handler»
Context & Exceptions: TakeElevator {DoorStuckOpen«interrupt &
continue»}
Primary Actor: NIA
Intention: System wants to alert the passengers that there is an obstacle
preventing the door from closing.
Level: Subfunction
Main Success Scenario:

1. System turns on the buzzer.
2. System requests the door to close.
3. System detects that the door is now closed.
4. System turns off the buzzer.

Fig. 6.3.3.3: Use case description for DoorA/etihandler

E levototOperolor

, ,
{

<cC indude » 1

(

(

, , ,

<<OC indude»

1
(

, , , ,

« indude»

, , ,

c::< intelfupt & continue», ,.,.

r <..: interrupt .& tail »
- 1 ,...--------.-

{' ..:t< interrupt a continue »

; ; ; « interrupl .& continue» ~
,1'« indude» ,...-----"

Fig. 6.3.3.4: Use case diagram for DoorA/eti handler

48

1
1
1 c:c:: indude »
1

The exceptional analysis of the use cases is now recursively

applied to ail the handlers, because handlers may be themselves,

interrupted by exceptions. ln our system, the EmergencyBrake,

OverweightAlert and DoorAlert handler use cases ail wait until the

situation is resolved. In case the problem persists for a certain amount of

time, the ECS should notify an ElevatorOperator. The ElevatorOperator

can then evaluate the situation and, if necessary, cali for the appropriate

assistance, e.g. repairman, fire department, and/or signal an

ElevatorOverride. This functionality is described in the handler use case

NotifyElevatorOperatorshown in Fig.6.3.3.5.

Use Case: NotifyElevatorOperator «handler»
Context & Exceptions:
EmergencyBrake {ElevatorStoppedTooLong «interrupt & fail»},
DoorAlert {DoorStuckOpenTooLong«interrupt & fail»},
OverweightAlert {OverweightTooLong«interrupt & fail»}
Primary Actor: NIA
Intention: System wants to notify the elevator operator the elevator has
been stopped for too long.
level: Subfunction
Main Success Scenario:

1. System alerts the elevator operator.

Fig. 6.3.3.5: Use case description for NotifyElevatorOperatorhandler

49

Another round of exceptional analysis does not uncover anymore

exceptional situations sa the full exception-aware use case diagram for

ECS is shawn in Fig.6.3.3.6. In addition, the updated and complete use

case descriptions and exception table can be found in Appendix A and B,

respectively.

El evatotOperalor

, /

{

1
1

1 ,

, , , ,
- ,

,-------,.,

\

, «interrupt & tail »

1
1
1 « indude»

« Indude » J (<:« intetrupt & mntinue »

1
1

,
1

1

«indude »

« indude» 1

,
/

/

« interrupt & tail » 1

Exceptions:
(ElevatorstoppedT ooLong)

« interrupt & fail » "?

,--------,,' -
Exceptions:
(DoorstuckOpenT ooLong)

c:;c::; handler »

NotifyElevalotOperalor

",1; « interrupt & o:mtinue» : , : :< interrupt & tail »
,I«indude» ,----------.-

Exceptions:
(Over'P8ightT ooLong)

Fig. 6.3.3.6: Extended use case diagram for ECS

50

CHAPTER 7: RELATED WORK

Mainstream software development methods currently deal with

exceptions only at late design and implementation phases. However,

several approaches have been proposed that extend exception handling

ideas to other parts of the software development cycle.

De Lemos et al. [De Lemos 2001] emphasizes the separation of the

treatment of requirements related, design-related, and implementation

related exceptions during the software life-cycle by specifying the

exceptions and their handlers in the context where faults are identified.

The description of exceptional behaviour is supported by a cooperative

object-oriented approach that allows the representation of collaborative

behaviour between objects at different phases of the software

development.

Rubira et al. [Rubira 2004] present an approach that incorporates

exceptional behaviour in the development of component-based software

by extending the Catalysis software development method. The

51

requirements phase of Catalysis is also based on use cases, and the

extension augments them with exception handling ideas.

Our approach is different from the above for several reasons.

Firstly, we help the requirements engineers to discover exceptions and

handlers by providing a detailed process that they can follow. Without a

process, the only way a developer can discover exceptions is based on

his/her imagination and experience. Secondly, our process increases

reliability even more by helping the developers to detect the need for

adding "feedback" and "acknowledgement" interaction steps with actors to

make sure that there were no communication problems. Additionally, the

process recommends adding of hardware to monitor request execution of

secondary actors when necessary. Finally, our handler use cases are

stand-alone, and can therefore be associated with multiple exceptions and

multiple contexts.

Ryoo et al. [Ryoo 1999] proposed a process to construct system

oriented use cases from Jacobson's use cases to facilitate easier mapping

to analysis phase models. Their procedure partitions normal use cases in

terms of behaviour, thereby eventually transforming the original actor-

52

oriented view of use cases to a system-oriented view. The result reduces

redundancy and expresses the requirements in a manner that is closer to

analysis models. Ryoo et al. [Ryoo 1999] do not address exceptions or

error handling, their dissection of use cases and actor roles to produce

hierarchies for behaviour, intention, and environ ment coincide with this

thesis' investigation of use cases. Their work is also a good starting point

for exploring how use case exceptions may be mapped to analysis and

design models.

Casati et al. [Casati 1999] formulated a way to model exceptional

behaviour in a workflow management system through the use of activity

graphs. Their work addresses how to represent exceptional situations that

adversely affect a high level task in a diagram. The work takes a similar

approach to this thesis and starts by defining exception terminology, e.g.

detection and handling, at the concerned level of abstraction. They also

propose a categorization of exceptions and triggering events, which they

provide specifie procedures on how each or which are represented. This

thesis does not go into as detailed a categorization because use cases

traditionally adopt a more black box approach to the system than activity

graphs. For example, at the use case level we are usually unconcerned

53

with resource and process entities. Finally, their work stops at providing a

formalism to represent various forms of exceptions, while this thesis also

provides a process to discover exceptions.

Cysneiros et al. [Cysneiros 2001] proposed an approach to capture

non-functional requirements starting at the elicitation phase of software

development by integrating non-functional requirements to conceptual

models, including but not limited to use cases. Instead of augmenting or

extending existing models, the approach uses the LEL (Language

Extended Lexicon) to build a separate perspective for the non-functional

requirements which are refined and represented as graphs. The non

functional requirements are then integrated into functional requirements

specified in a conceptual model in a systematic and traceable manner by

linking parts of the graph to appropriate parts of the model. Because error

handling also falls into non-functional requirements, their work provides an

alternate means of representing error handling at the use case level.

54

CHAPTER 8: FUTURE WORK

Clearly, it is necessary to explore how exceptional use cases can

be mapped consistently to analysis and design models, and of course,

eventually implementation exceptions. This is a daunting task because

with each model, exceptions are expected to take on new meanings and

behaviour as they have in this proposaI. Ideally, there will be an

exception-enabled model for every phase of development, which can then

be checked and proved for consistency and observed for traceability.

Something that was not addressed in this thesis is the priority of

interrupts. Currently, the priorities are dealt with in a naïve first-come first

serve fashion. For example, in the ECS, see Fig.6.3.3.6, if an elevator

operator activates ReturnToMainF/oor after a user activates

EmergencyStop, ReturnToMainF/oor is ignored and the elevator will not

move. To overcome this, ReturnToMainF/oorcan be made to interrupt &

fail EmergencyStop, thus giving priority to EmergencyStop. However, this

system quickly breaks down and does not represent complex priorities

very weil.

55

Another issue that remains to be addressed is concurrency and

multiple representations in exception al use cases. At the system level,

only one instance of each handler is used to handle an exception, but at

lower levels, this is not concretely defined. In this proposai it is assumed

that one instance of a handler is used for each instance of a use case, but

this is not always the case. Sometimes one instance of a handler can

handle ail instances of a use case, and in other cases, only one instance

of a use case needs to be handled not ail instances. This proposai does

not address how these multiplicities of relationships can be represented.

As a result, it is hard to see if a handler will supersede or conflict with

another handler.

It is possible to support the catch-ail feature commonly found in

exception enabled programming languages. At the use case level

providing a catch-ail feature allows developers to specify interactions

required to recover from unknown exceptional situations. For example,

restarting a system desktop computer sometimes serves as a fix-all/worst

case remedy. Using the granularity feature of use cases, a summary use

case can be defined to encapsulate a number of use cases. A general

"Unknown Error" exception can th en be specified ta interrupt this summary

56

use case initiating a catch-ail handler use case. However, it is not often

developers will know how to handle an error without knowing the error,

and this practice contradicts the definition and methodology presented in

this thesis of anticipating and detecting exceptional situations. Defining

such handlers can serve as a foundation to finding more exceptional

situations in the later stages of software development, but further

investigation is needed in later stages to see if such a feature will be

useful.

Finally, in this proposai, a lot of freedom was given in how to relate

exceptional situations, exceptions, handlers and interrupted use cases by

allowing a many-to-many mapping between each of these elements. The

problem is that this also causes a great deal of confusion because the

concepts may be broken down and reused 50 their original meaning is

lost. No method was specified in this thesis that helps developers refine

these relationships and go from a basic one-to-one mapping to a more

optimized many-to-many mapping. Most importantly it needs to be more

extensively investigated whether ail of these components need to have a

many-to-many mapping. For instance, how much practical flexibility is lost

if a one-to-one mapping between exceptions and handlers was enforced.

57

Additionally, at the use case level, an important concern is readability

which favours one-to-one mappings. So a better balance between

flexibility and readability needs to be found.

58

CHAPTER 9: CONCLUSION

When developing reliable systems, exceptional situations that the

system might be exposed to have to be discovered and addressed at the

requirements elicitation phase. Exceptional situations are less common

and hence the behaviour of the system in such situations is less obvious.

Also, users are more likely to make mistakes when exposed to exceptional

situations.

This thesis proposes an approach that extends use case based

requirements elicitation with ideas from the exception handling world. A

process is defined that leads a developer to systematically investigate ail

possible exceptional situations that the system may be exposed to, and to

determine how the users of the system expect the system to react in such

situations. The discovery of ail exceptional situations and detailed user

feedback at an early stage is essential, saves development cost, and

ultimately results in a more dependable system.

It was showed how to extend UML use case diagrams to separate

normal and exceptional behaviour. This allows developers to model the

59

handling of each exceptional situation in a separate use case, and to

graphically show the dependencies among standard and handler use

cases.

Based on the exception-aware use cases described, a specification

that considers ail exceptional situations and user expectations can be

elaborated during a subsequent analysis phase. This specification can

then be used to decide on the need for employing fault masking and fault

tolerance techniques when designing the software architecture and during

detailed design.

60

APPENDIX A - USE CASE DESCRIPTIONS FOR ELEVATOR

CONTROL SYSTEM

Use Case: CaliElevator
Primary Actor: User
Intention: Userwants to cali the elevator to the f100r that he/she is currently on.
Level: Subfunction
Main Success Scenario:

1. User pushes button, indicating in which direction he/she wants to go.
2. System acknowledge request.
3. System schedules ElevatorArrival for the floor the User is currently

on.
Extensions:

2a. The same request already exists. System ignores the request. Use
case ends in success.

Use Case: DoorAlert «handler»
Context & Exceptions: TakeElevator {DoorStuckOpen«interrupt & continue»}
Primary Actor: NIA
Intention: System wants to alert the passengers that there is an obstacle
preventing the door from closing.
Level: Subfunction
Main Success Scenario:

1. System turns on the buzzer.
2. System requests the door to close.
3. System detects that the door is now closed.
4. System turns off the buzzer.

Extensions:
2a. System times out and Notify[sJElevatorOperator. Use case ends in
failure.

61

Use Case: ElevatorArrival
Primary Actor: NIA
Intention: System wants to move the elevator to a specifie floor.
Level: Subfunction
Main Success Scenario:

7. System detects elevator is approaching destination floor.
a. System requests motor to stop.
9. System detects elevator is stopped at destination floor.
10. System opens door.

Extensions:
4a. Door fails to open
System continues processing the next request (it is up to the user to
select a new destination floor or press the emergency stop button). Use
case ends in failure.

Use Case: EmergencyBrake «handler»
Context & Exceptions: TakeElevator {MotorFailure«interrupt & fail»}
Primary Actor: NIA
Intention: System wants to stop operation of elevator and secure the cabin.
Level: Subfunction
Main Success Scenario:

1. System stops motor.
2. System activates the emergency brakes.

Use Case: EmergencyStop «handler»
Context & Exceptions: TakeElevator {UserEmergency «interrupt &
continue»}
Primary Actor: User
Intention: Userwants to stop the movement of the cabin.
Level: User Goal
Main Success Scenario:

1. System stops and activates EmergencvBrake.
2. Usertoggles off emergency stop button.
3. System deactivates brakes and alarm, and continues processing

request.
Extensions:

2a. User does not toggle off emergency stop button. System times out
and Notify[slElevatorOperator. Use case ends in failure.

62

Use Case: NotifyElevatorOperator «handler»
Context & Exceptions:
EmergencyBrake {ElevatorStoppedTooLong «interrupt & fail»},
DoorAlert {DoorStuckOpenTooLong«interrupt & fail»},
OverweightAlert {OverweightTooLong«interrupt & fail»}
Primary Actor: NIA
Intention: System wants to notify the elevator operator the elevator has been
stopped for too long.
Level: Subfunction
Main Success Scenario:

2. System alerts the elevator operator.

Use Case: OverweightAlert «handler»
Context & Exceptions: RideElevator {Overweight«interrupt & continue»}
Primary Actor: NIA
Intention: System wants to alert the passengers that there is too much weight in
the elevator.
Level: Subfunction
Main Success Scenario:

1. System turns on the buzzer.
2. System detects that the weight is back to normal.
3. System turns off the buzzer.

Extensions:
2a. System detects that it is still overweight. System times out and
Notify[slElevatorOperator. Use case ends in failure.

Use Case: ReturnToMainFloor «handler»
Context & Exceptions: TakeElevator {ElevatorOverride«interrupt & fail»}
Primary Actor: Elevator Operator
Intention: Elevator Operatorwants to cali the elevator to the Main floor.
Level: User Goal
Main Success Scenario:

1. System clears ail requests and requests motor to go down.
2. System detects that elevator is approaching the Main floor and

requests motor to stop.
3. System opens elevator door.

63

Use Case: RideElevator
Primary Actor: User
Intention: Userwants to ride the elevator to a destination floor.
Level: Subfunction
Main Success Scenario:

1. User enters elevator.
2. User selects a destination floor.
3. System acknowledges request and closes the door.
4. System schedules ElevatorArrival for the destination floor.
5. User exits the elevator at destination floor.

Extensions:
1 a. User does not enter elevator. System times out and closes door. Use
case ends in failure.
2a. User does not select a destination floor. System times out and closes
door. System processes pending requests or awaits new request. Use
case ends in failure.
2b. Exception {Overweight «interrupt & continue»}
System continues processing the requests. Use case ends in success.
4a. Exception {UserEmergency «interrupt & continue»}
System continues processing the next request. Use case ends in failure.
5a. User selects another destination floor. System acknowledges new
request and schedules ElevatorArrival for the new floor. Use case
continues at step 5.

Use Case: TakeElevator
Scope: Elevator Control System
Primary Actor: User
Intention: The intention of the User is to take the elevator to go to a destination
floor.
Level: User Goal
Main Success Scenario:

1. User Call[slElevator
2. User Ride[slElevator

Extensions:
1 a. The cabin is already at the floor of the User and the door is open.
User enters elevator; use case continues at step 2.
1 b. The User is already inside the el evator. Use case continues at step 2.

64

APPENDIX B - EXCEPTION TABLE FOR ELEVATOR

CONTROL SYSTEM

Exception Exceptional
Handler Affected Use Detection Comments Situation Case

TakeElevator System
Ooor Stuck Ooor obstructed or door
Open broke Ooor Alert CaliElevator sensor

RideElevator timeout

Ooor Stuck Notify OverweightAlert

Open Too Ooor still Elevator RideElevator System
obstructed timeout Long Operator TakeElevator

TakeElevator

Elevator Maintenance and Return To CaliElevator Actor,

Override repairs Main Floor RideElevator Elevator
Operator

ElevatorArrival

Elevator Elevator wasn't Notify EmergencyBrake System Stopped Elevator
Too Long resumed Operator TakeElevator timeout

TakeElevator System

Motor Motor does not Emergency CaliElevator floor
Failure Respond to Brake RideElevator sensor requests

ElevatorArrival timeout

Backup
NIA Power failure powertoo

costly

User can
NIA Ooor won't open retry, not

critical

System

Overweight Elevator over Overweight RideElevator weight
capacity Alert sensor

hardware

65

Exception Exceptional
Handler Affected Use Detection Comments Situation Case

Still overweight, Notify OverweightAlert
Overweight users aren't getting Elevator RideElevator System
Too Long timeout out Operator TakeElevator

See Fire, building Elevator
Override emergency

Elevator unstable T akeElevator

User or unpredictable, Emergency CaliElevator Actor,
Emergency User in elevator Stop RideElevator User

uncomfortable ElevatorArrival

66

BIBLIOGRAPHY

Casati, F., Pozzi, G.: Modeling Exceptional 8ehaviors in Commercial Workflow

Management Systems. In: Fourth IECIS International Conference on

Cooperative Information Systems. coopis, vol. 00, Fourth (1999) p. 127

Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2000)

Cysneiros, L.M., Leite, J.C.S.P, et al.: A Framework for Integrating Non

Functional Requirements into Conceptual Models. Requirements

Engineering Journal, Vol. 6, Issue 2, Apr. (2001) pp. 97-115

De Lemos, R., Romanoysky, A.: Exception handling in the software lifecycle.

International Journal of Computer Systems Science and Engineering 16

(2001) 167-181

Dony, C.: Exception handling and object-oriented programming: Towards a

synthesis. In Meyrowitz, N., ed.: 4th European Conference on Object

Oriented Programming Volume 25 of ACM SIGPLAN Notices, ACM Press

(1990) 322 - 330

Goodenough, J.B.: Exception handling: Issues and a proposed notation.

Communications of the ACM 18 (1975) 683 - 696

67

Jacobson, 1.: Object-oriented development in an industrial environment. In:

Conference proceedings on Object-oriented programming systems,

languages and applications, ACM Press (1987) 183 - 191

Kienzle, J., Sendall, S.: Addressing concurrency in object-oriented software

development. Technical Report SOCS-TR-2004.8, McGili University,

Montreal, Canada (2004)

Knudsen, J.L.: Better exception-handling in block-structured systems. IEEE

Software 4 (1987) 40 - 49

Larman, C.: App/ying UML and Patterns: An Introduction to Object-Oriented

Ana/ysis and Design and the Unified Process. 2nd edn. Prentice Hall (2002)

OMG, Object Management Group Inc.: Unified Modeling Language:

Superstructure, Version 2.0, http://www.omg.org, (2004)

Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Fliho, F.C.: Exception handling

in the development of dependable component-based systems. Software -

Practice & Experience 35 (2004) 195 - 236

Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language

Reference Manual. Object Technology Series. Addison Wesley Longman,

Reading, MA, USA (1999)

68

Ryoo, J., Stach, J.F., Park, K.: Extension and Partitioning of Use Cases in

Support of FormaI Object Modeling. In: 1999 IEEE Symposium on

Application - Specifie Systems and Software Engineering and Technology.

asset, vol. 00, (1999) p. 238

Sendall, S., Strohmeier, A.: Uml-based fusion ana/ysis. In: UML'99, Fort Collins,

CO, USA, October 28-30, 1999. Number 1723 in Lecture Notes in

Computer Science, Springer Verlag (1999) 278-291

69

