
 

 

 

 

 

 

DEVELOPMENT OF LIDAR-BASED METHODS FOR TRAFFIC 

MONITORING AND SURROGATE SAFETY ANALYSIS 

 

 

Ehsan Nateghinia 

 

Department of Civil Engineering 

McGill University, Montreal 

 

January 2024 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree 

of Doctor of Philosophy in Engineering. 

 

 

 

 

© Ehsan Nateghinia 2024  



  



I 

 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS ................................................................................................................. I 

LIST OF FIGURES ...................................................................................................................... VI 

LIST OF TABLES ..................................................................................................................... VIII 

ABSTRACT ................................................................................................................................... X 

RÉSUMÉ ..................................................................................................................................... XII 

ACKNOWLEDGMENTS ......................................................................................................... XIV 

CONTRIBUTION OF AUTHORS.............................................................................................. XV 

GLOSSARY OF TERMS .......................................................................................................... XVI 

CHAPTER 1: INTRODUCTION ................................................................................................... 2 

1.1 Background ........................................................................................................................... 2 

1.2 Research Motivation ............................................................................................................. 4 

1.2.1 Traffic monitoring .......................................................................................................... 4 

1.2.2 Surrogate traffic safety ................................................................................................... 5 

1.2.3 Research needs ............................................................................................................... 7 

1.3 Objectives ............................................................................................................................. 9 

1.4 Original Contributions ........................................................................................................ 10 

1.5 General Literature Review of Traffic Data Collection Technologies ................................. 11 

1.6 Organization of the Document ............................................................................................ 22 

References ................................................................................................................................. 23 

CHAPTER 2: A 3D LIDAR-BASED SUPERVISED METHODOLOGY FOR AUTOMATED 

TRAFFIC MONITORING AND DATA COLLECTION AT URBAN INTERSECTIONS WITH 

HIGH-MIXED TRAFFIC ............................................................................................................. 32 

2.1 Abstract ............................................................................................................................... 32 



II 

 

2.2 Introduction ......................................................................................................................... 33 

2.3 Literature Review................................................................................................................ 36 

2.4 3D Rotational LiDAR Sensor and Definition ..................................................................... 38 

2.5 Data Collections .................................................................................................................. 41 

2.6 Methodology ....................................................................................................................... 43 

2.6.1 LiDAR data preparation ............................................................................................... 45 

2.6.2 Spatial data calibration ................................................................................................. 46 

2.6.3 Background modeling .................................................................................................. 47 

2.6.4 Road user detection and clustering .............................................................................. 49 

2.6.5 Feature extraction......................................................................................................... 52 

2.6.6 Road user sampling and labeling ................................................................................. 54 

2.6.7 Road user classification ............................................................................................... 57 

2.6.8 Road user tracking ....................................................................................................... 57 

2.7 Performance Measure and Evaluation ................................................................................ 61 

2.7.1 LiDAR road user detection .......................................................................................... 61 

2.7.2 Road user classification – base scenario ...................................................................... 63 

2.7.3 Road user classification – alternative scenarios for performance evaluation .............. 64 

2.7.4 Road user tracking performance evaluation ................................................................ 66 

2.8 Conclusion and Future Work .............................................................................................. 71 

References ................................................................................................................................. 73 

Link Between Chapter 2 and Chapter 3 .................................................................................... 77 

CHAPTER 3: A 3D-LIDAR-BASED METHODOLOGY FOR SURROGATE SAFETY 

ANALYSIS AT INTERSECTIONS WITH HIGH NON-MOTORIZED TRAFFIC .................. 79 

3.1 Abstract ............................................................................................................................... 79 



III 

 

3.2 Introduction ......................................................................................................................... 80 

3.3 Literature Review................................................................................................................ 82 

3.4 LiDAR System Overview ................................................................................................... 83 

3.4.1 LiDAR data processing for road user extraction ......................................................... 85 

3.4.2 Trajectory preprocessing .............................................................................................. 85 

3.5 Surrogate Safety Measures based on LiDAR Trajectory Data ........................................... 88 

3.5.1 Time-to-Collision (TTC) ............................................................................................. 88 

3.5.2 Post-Encroachment Time (PET) .................................................................................. 95 

3.6 LiDAR Data ........................................................................................................................ 98 

3.7 Comparative Analysis: Centroid-based vs Shape-based Method ....................................... 99 

3.7.1 Structure of surrogate safety data .............................................................................. 100 

3.7.2 TTC ............................................................................................................................ 101 

3.7.3 PET ............................................................................................................................ 106 

3.8 Conclusion and Future Work ............................................................................................ 109 

References ............................................................................................................................... 111 

Link Between Chapters 2 and 3 and Chapter 4 ....................................................................... 114 

CHAPTER 4: DEVELOPMENT OF AN UNSUPERVISED 3D LIDAR-BASED 

METHODOLOGY FOR AUTOMATED SAFETY MONITORING OF RAILWAY FACILITIES

..................................................................................................................................................... 116 

4.1 Abstract ............................................................................................................................. 116 

4.2 Introduction ....................................................................................................................... 117 

4.3 Literature Review.............................................................................................................. 119 

4.2 Methodology of Unsupervised Algorithms ...................................................................... 125 

4.2.1 Point cloud data preparation ...................................................................................... 125 

4.2.2 3D background modeling ........................................................................................... 127 



IV 

 

4.2.3 Road user detection, tracking, and classification ....................................................... 129 

4.3 Performance Evaluation .................................................................................................... 135 

4.3.1 Application - case study ............................................................................................. 135 

4.3.2 Road user detection .................................................................................................... 137 

4.3.3 Count results .............................................................................................................. 138 

4.3.4 Road users’ trajectories .............................................................................................. 140 

4.3.5 Interaction between trains and vulnerable road users ................................................ 141 

4.4 Conclusion and Future Work ............................................................................................ 142 

References ............................................................................................................................... 144 

Link Between Chapters 2, 3, and 4 and Chapter 5 .................................................................. 147 

CHAPTER 5: A LIDAR-BASED METHODOLOGY FOR MONITORING AND COLLECTING 

MICROSCOPIC BICYCLE FLOW PARAMETERS ON BICYCLE FACILITIES ................ 149 

5.1 Abstract ............................................................................................................................. 149 

5.2 Introduction ....................................................................................................................... 150 

5.3 Literature Review.............................................................................................................. 151 

5.4 Methodology ..................................................................................................................... 154 

5.4.1 LiDAR system development and deployment ........................................................... 154 

5.4.2 Cyclist detection......................................................................................................... 155 

5.4.3 Computation of bicycle speed .................................................................................... 157 

5.4.4 Error correction and speed validation ........................................................................ 159 

5.4.5 Estimation of headway, spacing, and density ............................................................ 161 

5.4.6 Ground-truth speed data generation ........................................................................... 163 

5.5 Evaluation of System Performance ................................................................................... 164 

5.5.1 Data collection and validation ................................................................................... 164 



V 

 

5.5.2 Testing scenarios for speed modeling ........................................................................ 167 

5.5.3 MLP regression model ............................................................................................... 171 

5.6 Traffic Flow Parameters Outcomes .................................................................................. 173 

5.6.1 Traffic flow parameters.............................................................................................. 173 

5.6.2 Speed analysis ............................................................................................................ 175 

5.7 Conclusion ........................................................................................................................ 176 

5.8 Declaration ........................................................................................................................ 178 

References ............................................................................................................................... 178 

CHAPTER 6: CONCLUSION AND FUTURE WORK ............................................................ 182 

6.1 General Conclusion and Summary of Results .................................................................. 182 

6.1.1 LiDAR-based methodology for traffic monitoring at urban intersection .................. 182 

6.1.2 LiDAR-based methodology for surrogate safety analysis ......................................... 183 

6.1.3 Unsupervised methodology for a LiDAR-based level crossing monitoring .............. 184 

6.1.4 1D LiDAR-based methodology for cyclist traffic monitoring .................................. 185 

6.2 Limitation .......................................................................................................................... 186 

6.3 Future Work ...................................................................................................................... 188 

REFERENCES ........................................................................................................................... 190 

APPENDIX A: Map of Data Collection Intersections – Chapter 2 ............................................ 191 

APPENDIX B: LiDAR Channels Gap Analysis ........................................................................ 192 

APPENDIX C: Road User Classification ................................................................................... 194 

APPENDIX D: Kalman Filter Implementation .......................................................................... 195 

APPENDIX E: Intersection Segmentation and GIS Calibration ................................................ 196 

 

  



VI 

 

LIST OF FIGURES 

Figure 2-1 Setup and operation of the 3D LiDAR system............................................................ 40 

Figure 2-2 Integrated LiDAR and hardware components for data collection .............................. 41 

Figure 2-3 Rotation angle (𝝀) along the z-axis ............................................................................. 43 

Figure 2-4 Flowchart of the system’s algorithm ........................................................................... 44 

Figure 2-5 Geo-spatial calibration of all road elements in an intersection ................................... 47 

Figure 2-6 Sample LiDAR measurement and segmentation of channel i .................................... 48 

Figure 2-7 Distribution of road users’ features collected by 16- and 32-channel LiDARs .......... 54 

Figure 2-8 Snapshots of LiDAR systems’ outputs ....................................................................... 69 

Figure 3-1 LiDAR system overview for traffic and safety monitoring at intersections ............... 84 

Figure 3-2 TTC conflict comparison based on data availability for position and dimensions ..... 89 

Figure 3-3 Illustration of a TTC conflict between two road users’ trajectories............................ 90 

Figure 3-4 A sample of TTC conflict between a car and a cyclist ............................................... 94 

Figure 3-5 A sample of PET conflict between a car and a cyclist ................................................ 97 

Figure 3-6 GIS calibration of two samples of intersection ........................................................... 99 

Figure 3-7 A comparison of different approaches for extracting TTC conflicts and interactions

..................................................................................................................................................... 105 

Figure 3-8 A comparison of results for various vehicle-vehicle conflict types .......................... 106 

Figure 3-9 Comparative analysis of PET calculation approaches based on different criteria .... 107 

Figure 4-1 The 3D LiDAR data collection system prototype ..................................................... 123 

Figure 4-2 The 3D LiDAR sensor’s measurements in the Spherical coordinate system ............ 125 

Figure 4-3 The 3D segmentation and background modeling...................................................... 129 

Figure 4-4 Geospatial boundaries of road sections in the level crossing .................................... 134 

Figure 4-5 Aerial view and map of the level crossing (Google Maps and Google Earth) ......... 136 



VII 

 

Figure 4-6 Road user detection and clustering illustration ......................................................... 137 

Figure 4-7 LiDAR and ground truth counts in 10-minute intervals ........................................... 138 

Figure 4-8 The trajectories of motorized (red) versus non-motorized (blue) road users ............ 140 

Figure 4-9 The trajectories of vulnerable road users .................................................................. 140 

Figure 4-10 Trespassing detection of two pedestrians ................................................................ 141 

Figure 5-1 System setup in an actual installation ....................................................................... 155 

Figure 5-2 Sample of sensor distance measures (in meters) for a single cyclist ........................ 157 

Figure 5-3 Three consecutive cyclists traveling in the same direction ....................................... 163 

Figure 5-4 Sample snapshots of the sites and the manual speed estimation ............................... 164 

Figure 5-5 Histogram of error ..................................................................................................... 169 

Figure 5-6 Aggregate level cumulative relative frequency of actual and estimated speed values

..................................................................................................................................................... 169 

Figure 5-7 Estimated and actual speed for both training and test sets ........................................ 170 

Figure 5-8 The Architecture of the implemented neural network .............................................. 172 

Figure 5-9 Fundamental diagrams of cyclist traffic flow ........................................................... 174 

Figure 5-10 Histogram of bidirectional estimated speed (m/s) .................................................. 176 

Figure A-1 A Map of intersection for data collection with the LiDAR systems ........................ 191 

Figure B-1 Horizontal and vertical gap between laser channels ................................................. 193 

Figure E-1 The GIS calibration of intersections with 16-Channel LiDAR system (part 1) ....... 196 

Figure E-2 The GIS calibration of intersections with 16-Channel LiDAR system (part 2) ....... 197 

Figure E-3 The GIS calibration of intersections with 32-Channel LiDAR system (part 1) ....... 198 

Figure E-4 The GIS calibration of intersections with 32-Channel LiDAR system (part 2) ....... 199 

 

  



VIII 

 

LIST OF TABLES 

Table 2-1 Key parameters of the two LiDAR systems ................................................................. 40 

Table 2-2 Key Characteristics of LiDAR system installation at various intersections ................. 42 

Table 2-3 Road user detection, clustering, and feature extraction ................................................ 51 

Table 2-4 Road user sampling distribution and labeling .............................................................. 56 

Table 2-5 Road user tracking ........................................................................................................ 58 

Table 2-6 Detection accuracy of LiDAR systems installed at urban intersections ....................... 62 

Table 2-7 Detection accuracy of LiDAR systems installed at urban intersections ....................... 62 

Table 2-8 Base scenario – correct classification rates of models ................................................. 64 

Table 2-9 Base scenario – correct classification rates per each road user class ........................... 64 

Table 2-10 Scenario I – Feature importance and their impact on CCR of the test set .................. 65 

Table 2-11 Scenario II – Leave-One-Out analysis ....................................................................... 66 

Table 2-12 Aggregate count validations in the first 30-minute interval per intersection ............. 68 

Table 2-13 Performance metrics of road user tracking – 30-minute period ................................. 71 

Table 3-1 Summary of road user data collection by the LiDAR systems at different intersections

....................................................................................................................................................... 98 

Table 3-2 Summary of TTC conflicts using shape-based approach (first road user vehicle) ..... 101 

Table 3-3 Distribution of critical TTC conflicts at selected intersections with higher TTC rates

..................................................................................................................................................... 102 

Table 3-4 A comparison between the shape-based approach vs centroid-based approach ........ 103 

Table 3-5 Comparative summary of PET calculation methods per road user class ................... 108 

Table 4-1 Key parameter of the 16-channel LiDAR data collection system prototype .............. 124 

Table 4-2 Unsupervised LiDAR data processing algorithm for a given frame .......................... 131 

Table 4-3 Summary of the count results ..................................................................................... 139 

Table 5-1 Summary of descriptive statistics and validation results of the evaluation sites ........ 166 



IX 

 

Table 5-2 Error measures for the first evaluation scenario ......................................................... 168 

Table 5-3 System performance in 2nd scenario .......................................................................... 171 

Table 5-4 Coefficients of the implemented neural network ....................................................... 173 

Table C-1 Confusion matrix of XGBoost applied to the test set of 16-channel LiDAR ............ 194 

Table C-2 Confusion matrix of XGBoost applied to the test set of 32-channel LiDAR ............ 194 

Table C-3 Confusion matrix of XGBoost applied to the combined test set of both LiDARs .... 194 

 

  



X 

 

ABSTRACT 

Automated traffic and surrogate safety monitoring at urban intersections commonly use visual-

spectrum video-based systems, which offer flexibility and low cost. However, video-based 

systems face challenges in low-light conditions and accurate distance measurement, requiring 

manual calibration for precise trajectories mapping in x-y coordinates. Recently, 3D LiDAR-based 

methods have emerged as an alternative, overcoming these limitations. LiDAR operates effectively 

in low light and provides direct and calibration-free measurements in x-y-z coordinates. LiDAR 

sensors yield more accurate spatial data with higher resolution and range than video-based 

systems. Additionally, LiDAR’s point cloud data can accurately represent road users’ shapes in 

three dimensions, enhancing the precision of distance and size measurements crucial for traffic 

and road safety applications.  

The general objective of this thesis is to develop and evaluate various LiDAR-based methods for 

automated traffic monitoring and surrogate safety analysis. First, a supervised learning 

methodology is developed using point cloud data from low-resolution and high-resolution 

rotational LiDAR sensors. This methodology includes background modeling, foreground 

detection, clustering, road user classification, and trajectory construction. The proposed 

methodology is calibrated and tested at various urban intersections. The detection accuracy of low- 

and high-resolution LiDARs is 89.9% and 94.2%, respectively, with road user classification rates 

of 0.91 and 0.95. The average absolute percent difference of high- and low-resolution LiDAR 

counts compared to manual video counts is 6% and 13%, respectively. High-resolution LiDAR 

shows notable potential for urban intersection traffic monitoring. 

Second, a novel method is developed for determining surrogate safety indicators, such as Time-

to-Collision and Post-Encroachment Time, using shape and trajectory data from the developed 3D 

LiDAR systems in the first study. This approach utilizes the proximity of road users’ point clouds, 

offering an alternative to conventional trajectory-based analysis. For pedestrian-vehicle and 

cyclist-vehicle interactions with a safety threshold of under 10 seconds, the shape-based results 

align with the centroid-based method using buffer sizes of 2 meters and 2.5 meters, respectively. 

However, using the same setting, the centroid-based method significantly overreports critical 

conflicts occurring in under 1.5 seconds between vehicles and vulnerable road users. 
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Third, an unsupervised methodology is proposed for safety monitoring and trespassing detection 

at a road/railway level crossing, utilizing a low-resolution 3D LiDAR sensor. The methodology 

includes road user detection, clustering, and tracking. The classification uses the shape, speed, and 

geo-location of road users. The average absolute percentage deviation for counting motorized road 

users is 5% and 3%, and for non-motorized road users is 10% and 14% on two test days. Overall, 

the system demonstrated high performance in detecting trespassing. 

Finally, a novel methodology for computing bicycle-flow parameters is proposed, leveraging a 

LiDAR system composed of two single-beam sensors. A machine-learning model is implemented 

to enhance the accuracy of speed measurements. The LiDAR methodology calculates headway 

and spacing between consecutive cyclists using timestamped detections and speed measurements. 

A comparison is made with ground truth video data to assess the accuracy of the proposed 

methodology. The Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) of a Neural Network employed for speed estimation are measured at 0.61 m/s and 7.1% 

on the test set. 
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RÉSUMÉ 

La surveillance automatisée de la circulation et la sécurité routière aux intersections urbaines 

reposent généralement sur des systèmes vidéo utilisant le spectre visible, qui offrent flexibilité et 

faible coût. Cependant, ces systèmes rencontrent des défis dans des conditions de faible luminosité 

et pour la mesure précise des distances. De plus, ils nécessitent une calibration manuelle pour une 

cartographie précise des trajectoires en coordonnées x-y. Récemment, les méthodes basées sur le 

LiDAR 3D ont émergé comme une alternative prometteuse, surmontant ces limitations. Le LiDAR 

fonctionne efficacement dans des conditions de faible luminosité et fournit des mesures directes 

et précises en coordonnées x-y-z sans nécessiter de calibration. Les capteurs LiDAR produisent 

des données spatiales plus précises avec une résolution et une portée supérieures à celles des 

systèmes vidéo. De plus, les données de nuage de points générées par le LiDAR peuvent 

représenter avec précision les formes des usagers en trois dimensions, améliorant ainsi la précision 

des mesures de distance et de dimensions, cruciales pour les applications en sécurité routière et 

gestion du trafic. 

L'objectif général de cette thèse est de développer et d'évaluer des méthodes alternatives basées 

sur le LiDAR pour la surveillance automatisée du trafic et l'analyse de sécurité routière 

substitutive. Tout d'abord, une méthodologie d'apprentissage supervisé est développée en utilisant 

les données de nuage de points provenant de capteurs LiDAR rotatifs à basse résolution et à haute 

résolution. Cette méthodologie comprend la modélisation de l'arrière-plan, la détection du premier 

plan, le regroupement, la classification des usagers de la route et la construction de trajectoires. La 

méthodologie proposée est calibrée et testée à différentes intersections urbaines. La précision de 

détection des LiDAR à basse et haute résolution est respectivement de 89,9 % et 94,2 %, avec des 

taux de classification des usagers de la route de 0,91 et 0,95. La différence moyenne en 

pourcentage absolu entre les comptages LiDAR haute résolution et basse résolution par rapport 

aux comptages vidéo manuels est de 6% et 13%, respectivement. Le LiDAR à haute résolution 

présente un potentiel important pour la surveillance du trafic aux intersections urbaines. 

Deuxièmement, une nouvelle méthode est développée pour déterminer des indicateurs de sécurité 

substituts, tels que le temps de collision et le temps post-empiètement, en utilisant les données de 

forme et de trajectoire des systèmes LiDAR 3D développés lors de la première étude. Cette 

approche utilise la proximité des nuages de points des usagers de la route, offrant une alternative 
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à l'analyse conventionnelle basée sur la trajectoire. Pour les interactions piéton-véhicule et cycliste-

véhicule avec un seuil de sécurité de moins de 10 secondes, les résultats basés sur la forme 

correspondent à ceux obtenus par la méthode basée sur le centroïde en utilisant des tailles de 

tampon de 2 mètres et 2,5 mètres, respectivement. Cependant, en utilisant le même paramètre, la 

méthode basée sur le centroïde surestime significativement les conflits critiques, survenant en 

moins de 1,5 seconde, entre les véhicules et les usagers vulnérables de la route. 

Troisièmement, une méthodologie non supervisée est proposée pour la surveillance de la sécurité 

et la détection des intrusions à un passage à niveau routier/ferroviaire, en utilisant un capteur 

LiDAR 3D de basse résolution. Un algorithme non supervisé est développé pour détecter les 

intrusions à un passage à niveau routier/ferroviaire à Montréal, Canada. La méthodologie 

comprend la détection, le regroupement et le suivi des usagers de la route. La classification utilise 

la forme, la vitesse et la géolocalisation des usagers de la route. L'écart absolu moyen en 

pourcentage pour le comptage des usagers de la route motorisés est de 5 % et 3 %, et est de 10 % 

et 14 % pour les usagers de la route non motorisés pour les deux jours de test. Dans l'ensemble, le 

système a démontré une haute performance dans la détection des intrusions. 

Enfin, une nouvelle méthodologie pour calculer les paramètres du flux cycliste est proposée, 

utilisant un système LiDAR composé de deux capteurs à faisceau unique. Un modèle 

d'apprentissage automatique est mis en œuvre pour améliorer la précision des mesures de vitesse. 

La méthodologie LiDAR calcule l'intervalle et l'espacement entre les cyclistes consécutifs en 

utilisant des détections horodatées et des mesures de vitesse. Une comparaison est faite avec les 

données vidéo de validation pour évaluer la précision de la méthodologie proposée. L'erreur 

quadratique moyenne et l'erreur de pourcentage absolue moyenne d'un réseau neuronal utilisé pour 

l'estimation de la vitesse sont mesurées à 0,61 m/s et 7,1 % sur l'ensemble de test. 
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GLOSSARY OF TERMS 

Traffic Monitoring: The systematic observation of road users on transportation networks, 

including streets, highways, intersections, sidewalks, and bicycle facilities, utilizing sensing 

technology such as LiDAR, cameras, radar, infrared, Bluetooth, etc. A traffic monitoring programs 

aims to collect and study traffic flow and congestion and informs traffic management and 

transportation planning decisions. 

Safety Monitoring: A systematic surveillance of transportation facilities that aims at preventing 

accidents and injuries by analyzing road users’ behavior and identifying potentially dangerous 

interactions. 

Light Detection and Ranging (LiDAR): A remote sensing technology that periodically emits laser 

light and measures distance to an object based on the receipt time of the reflected light from the 

object’s surface, a process known as time of flight.  

Roadside LiDAR: A traffic monitoring data collection technique involving the installation of a 

LiDAR sensor on the roadside, as opposed to mounting it on a vehicle, commonly used for 

applications such as Autonomous Vehicles (AVs). 

1D LiDAR: A LiDAR sensing method that utilizes a single laser channel capable of measuring 

one distance value to an object present at or crossing in front of its line of sight. 

3D LiDAR: An extended LiDAR sensing method that utilizes multiple laser channels arranged 

vertically and horizontally, capable of measuring multiple distance values in the azimuth and 

elevation planes. This technique creates a three-dimensional point cloud of objects observed by 

the LiDAR. 

Point Cloud: A set of data points in three-dimensional space, often generated by 3D scanning 

technologies such as LiDAR, stereo cameras, and radars, representing the surfaces of objects or 

environments. 

Background Modelling: A computational technique used to identify and model the stationary 

elements within data captured from an environment, such as video frames or continuously 

collected LiDAR point clouds. 
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Foreground Detection: A computational technique used to identify and model the dynamic 

elements within data captured from an environment by comparing the current observation with   a 

previously built background model. This process aims to isolate moving objects (road users) from 

the stationary background in LiDAR point cloud or video frames. 

Point Cloud Clustering: A category of clustering methods that groups data samples, typically 3D 

points with x-y-z coordinates, into clusters of neighboring points with similar characteristics. This 

technique segments and identifies meaningful structures defined as objects (road users) within 

point cloud data.   

Road User Classification: A process that applies supervised or unsupervised methods to features 

extracted from LiDAR point clouds of individual road users. This process categorizes each road 

user into groups such as pedestrians, cyclists, passenger cars, and trucks. 

Un-Supervised Learning: A classification method that categorizes road users’ point clouds based 

on inherent patterns and structures within the data, without the need for predefined labels. 

Algorithms within unsupervised learning autonomously identify similarities and differences 

among road users. 

Supervised Learning: A classification method that utilizes a set of features extracted from road 

users’ point clouds, which are labeled with their actual road user class.  

Road User Trajectory: A sequence of x-y coordinates representing the position of a road user’s 

representative point at consecutive timestamps, along with timestamped velocity information in 

the x-y direction. This data provides a detailed record of the road user’s movement over time. 

Data Association: An algorithm that establishes connections between different detections of the 

same road user across consecutive frames. 

Kalman Filter: An algorithm used in road user tracking to predict and update the positions and 

velocities of road users based on LiDAR detections at a given timestamp. 

Traffic Conflict: An interaction in time and space between two or more road users that can create 

a risk of collision.  
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Surrogate Safety Measure: An alternative to directly measuring crash frequency, it’s typically 

defined by observing conflicts in interactions between road users or dangerous road user behaviors 

like speeding. 

Time-to-Collision (TTC): TTC measures the time duration before a potential collision between 

two road users, considering their current motion patterns, speed, and acceleration remain 

unchanged. 

Post-Encroachment Time (PET): PET is a critical surrogate safety indicator that heavily relies on 

spatial data and the distance between road users. Defined as the temporal gap between two road 

users traversing an intersection, PET quantifies the time between one road user leaving a 

designated area and another entering it. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Intelligent Transportation Systems (ITS) integrates cutting-edge computing, sensing, and 

communication technologies to build a connected transportation framework. ITS  supports real-

time automated traffic monitoring and data collection, adaptive response to dynamic conditions, 

and proactive safety approaches (1). The main components of ITS include sensing technologies 

referred to as sensors, communication systems, traffic control and management systems, connected 

and autonomous vehicles, and safety-related devices such as collision avoidance systems (2, 3). 

Through active and passive frameworks, ITS leverages various sensing technologies to collect 

traffic-related data, including traffic volume, average speed, and travel times (4). Active data 

collection relies on users to initiate the process. These resources include data collected through the 

user’s GPS navigation system while traversing the transportation network, mobile applications that 

allow users to participate in a data collection program, Bluetooth/Wi-Fi, and pedestrian traffic 

signal activation (5). On the other hand, passive data collection methods do not require user 

involvement. Passive frameworks’ data collection technologies range from large-scale solutions 

like GPS-enabled devices (6, 7) to micro-monitoring systems like pedestrian counters. 

The primary technologies employed in passive data collection include, but are not limited to, 

sensor-based methods such as traffic cameras, radars, inductive loop detectors, pneumatic tubes, 

passive infrared sensors, weight-in-motion sensors, environmental sensors, and GPS-enabled 

devices. The sensors vary in capabilities, each offering one or more of these critical components: 

road user detection and counting, classification, and tracking. 

Inductive loops are placed under arterial or highways to estimate the traffic volume for travel 

demand model calibration or estimating Average Annual Daily Traffic. Pneumatic tubes are 

suitable for collecting cyclist traffic flow (8). Passive infrared sensors are installed at crosswalks 

for pedestrian counting (9). Radar-based systems measure speed and spacing between vehicles and 

provide real-time data on average highway speed, congestion, and travel time (10).  The cameras-

based systems are primarily used at intersections for traffic and safety studies (11) and highways 

for traffic flow extraction (12). Other camera-based monitoring systems may incorporate thermal 

or stereo cameras. Generally, these two systems have garnered less attention in the context of 



3 

 

traffic monitoring compared to visual-spectrum cameras. This lower implementation rate is 

primarily attributed to their higher cost or the need for more significant processing power (13-15). 

In ITS, Light Detection and Range sensors, referred to as LiDAR, were first frequently associated 

with Autonomous Vehicles (AV) (16). Due to their success as part of AVs’ vision system, their 

application as traffic data collection technology emerged. LiDAR sensors are now tested at fixed 

locations for traffic data collection, commonly known as roadside LiDAR systems (17, 18). 

Roadside LiDAR systems have gained attention as a potential alternative or complement to 

camera-based systems. LiDAR, similar to cameras, can detect, classify, and track road users in 

complex transportation facilities. One distinctive advantage of LiDAR technology over cameras is 

its ability to precisely measure distances in a spherical coordinate system, which is convertible to 

Cartesian coordinates. This capability provides a comprehensive three-dimensional representation 

of the traffic data collection environment that can quantify road users’ movement (19).  

LiDAR sensors exhibit significant differences in resolution and field of view compared to camera-

based systems. These characteristics have potential advantages and disadvantages. The differences 

in LiDAR’s parameters allow for the selection of the lower resolution for active users’ data 

collection programs such as pedestrian counting (6) or cyclist monitoring (7). On the other hand, 

the extendibility of results from one research to another is often not as straightforward as a camera-

based system. More importantly, labeled samples in one study may not be fully compatible with 

another study unless the characteristics of the LiDAR sensors in the two studies are similar. 

This thesis adopts the direction of developing and evaluating a LiDAR-based methodology for 

automated monitoring of real-world traffic scenarios, targeting objectives such as monitoring 

traffic at intersections, monitoring cyclists in bike lanes, and evaluating LiDAR efficacy in 

surrogate safety analysis. The directional approach of this research encompasses several key steps: 

a comparative analysis of LiDAR sensors to identify the impact of LiDAR resolution for specific 

tasks, the development of an unsupervised and supervised automated methodology for LiDAR 

data processing, an extensive data collection program tailored to each application, a large scale 

semi-automated routine for road users labeling in LiDAR point cloud data, and testing and 

performance evaluation of the proposed LiDAR-based systems. 
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1.2 Research Motivation   

1.2.1 Traffic monitoring 

Most traffic data collection efforts and resources primarily target vehicular traffic volume data on 

highways and arterials, encompassing traffic volume, travel time, average speed, and congestion 

levels. However, in urban environments, where the scenario includes vehicular traffic and active 

road users, the data collection process often lacks the same level of attention and detail. Urban 

intersections, in particular, present a complex environment where different modes of transportation 

intersect. The challenges in these settings are multifaceted, involving factors such as the density 

of pedestrians, vehicle flow, and cyclist movements. Traditional traffic monitoring systems, 

mainly focused on vehicular data, fail to capture the full spectrum of the traffic complexity in 

urban transportation facilities such as intersections, bike lanes, sidewalks, and level crossings. 

Traffic monitoring at intersections heavily relied on the use of camera-based systems. There have 

been various applications of camera-based systems for achieving the same objective. However, 

there are certain limitations to the video-based approach to traffic monitoring at intersections, 

including degraded performance in low-light conditions, the necessity for manual geometric 

calibration at each intersection, and the inability to provide accurate distance measurements and 

3D dimensions of road users (20-22). Alternatively, the LiDAR system can be utilized to overcome 

the shortcomings of camera-based systems. Using LiDAR-based systems for traffic monitoring 

and data collection is a relatively new approach and is seen as an emerging technology. This 

suggests that research focusing on implementing and evaluating LiDAR-based systems for these 

applications will likely expand rapidly.  

Few key studies have implemented fixed-location roadside LiDAR for traffic monitoring. Tarko 

et al. developed a LiDAR-based system for intersection monitoring, employing a super high-

resolution LiDAR with 64 laser channels (23). The system is calibrated with an unsupervised 

algorithm, where road users are obtained through background subtraction and classified based on 

their speed and dimensions. The classification stage considers the part of the intersection where 

the road user has been detected, such as the sidewalk, crosswalk, or street. The accuracy of 

counting and classifying 504 road users was 98% (23). Zhao et al. developed a 16-laser channels 

LiDAR-based traffic monitoring system (18). The system utilizes a methodology involving 
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background filtering, clustering, and classification to detect and track pedestrians and vehicles at 

intersections. The classification is performed using a neural network with three features: the total 

number of points, the 2D distance of the user to the LiDAR sensor, and the direction. The reported 

accuracy of classification is approximately 93%. However, other road users are not discussed (18). 

In addition to traffic monitoring at intersections, monitoring and extracting traffic flow parameters 

of active transportation users at cyclist facilities is highly important. Understanding microscopic 

bicycle flow relationships is essential. Yet, limited research focuses on real-time automated 

extraction of basic bicycle flow parameters (24, 25). Existing point-based monitoring systems 

primarily count cyclists but lack measurement of vital microscopic flow parameters like speed, 

density, headway, and spacing. Various technologies, including Radar, Pneumatic tubes, and 

inductive loop sensors, are implemented for cyclist monitoring applications to measure cyclist 

speed (26-28). GPS data has also been used to estimate cyclist speed and delay at intersections 

(29). Gathering GPS trajectory data allows researchers to study traffic flow fundamental diagrams 

for cyclists (30). Using image processing and Artificial Intelligence, video-based systems track 

cyclists and estimate their speed from trajectory data. The feasibility of video analysis for bicycle 

data collection, including counts, density, and speed, has been demonstrated (31, 32). Studies have 

investigated cyclist maneuvers and interactions using video-derived trajectories (33). 

1.2.2 Surrogate traffic safety 

Traditionally, the diagnosis of safety issues and the recommendation of appropriate 

countermeasures use historical crash data. While studying collision frequencies provides direct 

insight into road safety, proactive approaches are essential.  

Camera-based systems are among the most common automatic traffic monitoring and safety 

analysis systems. The applications of video-based systems in road safety analysis using conflict 

analysis and surrogate safety indicators are studied in the literature. Fu et al. studied pedestrians’ 

safety in interactions with vehicles at non-signalized crosswalks by analyzing vehicle yielding and 

pedestrian crossing decisions obtained from a video-based monitoring system (34) and secondary 

interactions with cars exiting the intersection (35). Zangenehpour et al. showed that cycle-track 

intersections appear safer than those without cycle tracks. They employed trajectories obtained 

from an automatic video-based monitoring system to investigate the interactions between cyclists 
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and turning vehicles using PET measure (36). Seyed et al. used a computer vision algorithm to 

automatically detect vehicle-bicycle conflicts and rank them based on the severity of interactions 

using the Time-To-Collusion safety indicator (37). 

A systematic review of the literature on the application of LiDAR in surrogate safety-based 

conflict analysis reveals that the primary body of work employing LiDAR-based monitoring 

systems for this application has been conducted by one research group. This conclusion is drawn 

from several recent survey articles reviewing surrogate safety analysis methods (38-40). This 

group has developed a methodology using a low-resolution LiDAR system for roadside traffic 

monitoring (41-44). These works study the interactions between pedestrian and vehicular traffic 

using the trajectory data obtained from the LiDAR system. In another study, a high-resolution 

LiDAR-based system was installed and tested at three intersections, and the trajectories of road 

users were incorporated to identify near-miss events and compute time-to-collision indicators (23).  

However, it is essential to note that LiDAR systems are extensively used as a component of the 

vision systems in Autonomous Vehicles. In this context, studies have specifically focused on the 

performance of such LiDAR systems in collision scenarios and reconstructing accidents (45).  

In addition to the safety analysis of road users at intersections, there is a growing concern for 

vulnerable road users’ interaction with trains at railroad grade crossings. In Canada, pedestrian-

related collisions on railway facilities account for 59% of all railway-related deaths (46). Efficient 

rail facility monitoring depends on solutions incorporating alternative technologies such as 

cameras, thermal cameras, stereo cameras, ultrasonic sensors, active or passive infrared sensors, 

radars, and LiDAR sensors to detect trespassing incidents (47-50). The application of radar and 

cameras proves to be a challenge in monitoring a large coverage area for an extended period. 

Specifically, they are prone to high false alarms (50, 51). 

A limited number of studies have applied LiDAR to railway safety. A 2D LiDAR, installed 

horizontally for level crossing monitoring, achieved a 99.25% detection rate but had limitations, 

including missing pedestrians behind vehicles and lacking classification and tracking capabilities 

(52). In contrast, 3D LiDAR systems offer a more comprehensive monitoring range. One study 

implemented a 3D LiDAR system to monitor a level crossing. However, the results primarily 

consisted of visualized 3D point clouds, and the study lacked a comparative analysis (49). 
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1.2.3 Research needs 

The research motivations underlying this work are based on the recognized limitations within 

existing literature, including: 

1. LIDAR sensing technologies in urban traffic applications: There is a potential need to 

explore LIDAR sensing technologies for traffic monitoring and road safety applications in 

urban settings with high pedestrian and cyclist volumes, particularly in mixed traffic 

conditions. The current implementation of LiDAR systems is limited in terms of evaluating 

system performance under different traffic conditions. Conventional visual-spectrum video 

cameras and computer vision methods face challenges addressing occlusion issues in these 

high-density scenarios. Additionally, an accurate calibration of camera-based systems is 

essential for their application to accurately reconstruct road user trajectories and movement 

patterns at intersections.  

2. Impact of sensor resolution: The current state of LiDAR application in traffic and safety 

monitoring suggests an insufficient investigation into the influence of sensor resolution on 

detection and classification using substantial datasets. Alternative sensor characteristics, 

including the number of channels, may significantly affect outcomes, and this aspect 

deserves a more comprehensive exploration. 

3. Diversity of approaches: There is a noticeable gap in the literature regarding comparative 

studies of different approaches, such as unsupervised and supervised methods, in LiDAR-

based traffic monitoring methodologies. A systematic investigation into these methods is 

yet to be extensively undertaken, which could potentially yield novel insights and 

advancements in this field. In contrast to camera-based systems, LiDAR data, especially in 

applications like traffic monitoring at intersections, are not as readily available. Only a few 

LiDAR datasets have been compiled, often using costly high-resolution LiDAR systems, 

primarily for applications in Autonomous Vehicles. 

4. Machine learning methods: The diverse array of machine learning methods available for 

detection and classification tasks. A thorough examination of various machine learning, 

including unsupervised and supervised learning techniques, is essential for identifying the 

most effective and efficient solutions for traffic and safety monitoring challenges. 
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5. Exploration of 1D LiDAR sensors: LiDAR systems, specifically 1D and 2D LiDAR, 

offer advantages over video analysis, including lower data volume, simplified data 

processing, reduced computational power requirements, and cost-effectiveness for real-

time applications. The potential of 1D LiDAR sensors in applications related to monitoring 

active transportation users is noteworthy, particularly in scenarios where cost-effective 

solutions are essential. This avenue of research holds promise for expanding the range of 

feasible and economical sensor solutions in relevant contexts.  

6. Application of 3D LiDAR for safety monitoring at intersections: There has been very 

little research and practical implementation of LiDAR systems for surrogate safety analysis 

of traffic conflict. Specifically, the performance of LiDAR systems in identifying conflicts 

at various intersections, particularly under medium to high traffic conditions, remains 

understudied. It is necessary to investigate how using 3D shape data of road users, instead 

of using the trajectory of centroids, influences the outcome of such studies. Evaluating the 

impact of this 3D data could provide deeper insights into the effectiveness of LiDAR in 

complex traffic environments and significantly contribute to improving intersection safety 

monitoring. 

7. Application of 3D LiDAR for safety monitoring at level crossing: In level crossing 

monitoring applications, accurate detection, especially with a low false alarm rate, is 

paramount, as false alerts can disrupt train operations. While alternative systems offer 

advantages, certain limitations are noteworthy. Visual spectrum camera-based systems are 

significantly affected by low-light conditions. Unlike typical traffic data collection 

programs, monitoring the operation and safety of railway facilities is a 24-hour task, 

including prioritizing nighttime operations. Infrared, ultrasonic, and radar sensors struggle 

with accurate user classification and are vulnerable to adverse weather conditions and 

precipitation, requiring long-term implementation and high maintenance considerations. 

Moreover, the larger coverage area for railway monitoring compared to intersections poses 

challenges for traditional camera-based systems. 3D LiDAR sensors, with their extensive 

field of view, are well-suited for such applications. Only a few studies are exploring 

LiDAR technology’s application in railway safety, but existing literature highlights 

significant benefits over conventional methods like camera-based systems.  
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1.3 Objectives 

This research aims to develop LIDAR-based methodologies using supervised and unsupervised 

algorithms and evaluate their performance for traffic monitoring and road safety applications in 

urban environments characterized by mixed traffic conditions. The study intends to assess the 

capability of LiDAR systems in accurately detecting, classifying, and tracking various road user 

types, including vehicles, cyclists, and pedestrians. 

The specific objectives of this research are to:  

1. Develop and validate a supervised methodology for processing three-dimensional LiDAR 

data to detect, classify, and track road users in mixed and high-density traffic conditions, 

including non-signalized and signalized intersections. 

2. Extend the LiDAR-based traffic monitoring system methodology to surrogate safety 

applications leveraging point cloud proximity measures in combination with established 

methods based on road users’ trajectory analysis. 

3. Develop an unsupervised methodology for processing low-resolution three-dimensional 

LiDAR data and evaluate its performance for monitoring traffic and safety at road-railway 

level crossings.  

4. Propose and assess a method using a one-dimensional LiDAR-based system for monitoring 

bicycle facilities and measuring microscopic traffic flow parameters, including speed, 

density, and cyclist volume.   
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1.4 Original Contributions 

This thesis introduces a comprehensive set of methodologies utilizing LiDAR sensors for 

automated traffic and road safety monitoring. These methodologies are categorized into two 

primary components. The first involves developing road user detection techniques for 1D and 3D 

LiDAR and enhancing classification and tracking capabilities specifically for 3D-LiDAR sensors. 

The second component focuses on developing surrogate safety measures derived from LiDAR-

based trajectories and point cloud proximity analysis, such as traffic conflict techniques. 

This thesis contributes to the existing literature by addressing some of the shortcomings by: 

1. Developing a supervised learning methodology leveraging 3D LiDAR technology for 

traffic monitoring. The research method introduces scalable 3D processing techniques for 

detecting, classifying, and tracking road users. The system’s methodology is extensively 

tested at various intersections. The methodology is designed and implemented for two 

LiDAR sensors with low-resolution and medium resolution. A semi-automated routine for 

labeling point clouds is introduced as part of developing a supervised learning 

methodology for LiDAR data processing. This routine leverages the unique characteristics 

of traffic monitoring at intersections to sample and label pedestrian samples on the 

sidewalk, cyclist samples on bike lanes, and car samples on the street. 

2. Developing a methodology for surrogate safety analysis based on 3D LiDAR system 

output. The method involves introducing a reliable approach to compute time-to-collision 

and post-encroachment time using the proximity of the LiDAR point cloud instead of the 

centroid of the road users’ trajectory. 

3. Developing an unsupervised learning methodology for processing point cloud data of a 

low-resolution 3D LiDAR technology with an application in railway level crossing safety 

monitoring. The system is tested in a level crossing with a high volume of pedestrians. 

4. Developing a methodology for processing and analyzing the one-dimensional LiDAR Data 

for cyclist monitoring applications. This methodology estimates microscopic cyclist flow 

parameters, including volume, speed, density, and headway.  



11 

 

1.5 General Literature Review of Traffic Data Collection Technologies 

A traffic data collection program encompasses diverse sensing technologies tailored to various 

needs and applications in transportation engineering, planning, and travel demand modeling. Some 

important traffic data collection programs focus on gathering data for continuous traffic 

monitoring, pedestrian and cyclist counting (6, 7), safety monitoring and analysis, and automated 

parking management (53). Other programs are designed to collect trip-level data, such as methods 

for tracking travel times (29), conducting Origin-Destination (OD) surveys (54), and collecting 

data related to public transit. 

Automated techniques and solutions are fundamental in traffic monitoring and surrogate safety 

analysis within transportation engineering. Data extraction varies based on application, employing 

real-time algorithms or post-processing methods. A wide range of alternative technologies and 

methodologies has been explored in academic literature to fulfill these objectives. 

The body of literature encompassing traffic monitoring and data collection techniques is extensive. 

Numerous comprehensive review articles provide in-depth overviews of the available methods, as 

well as their impacts and limitations. These sources serve as valuable references for a thorough 

understanding of the field (3, 55-58). 

However, this section provides a general overview of the existing framework for data collection 

for traffic monitoring and safety analysis. Subsequently, it presents an overview of the applications 

of LiDAR sensing technology in civil and transportation engineering and an overview of some of 

LiDAR data processing techniques in a general context. The detailed literature review fundamental 

to each chapter of this thesis is reported in the corresponding chapter.  It is important to note that 

there may be minor overlaps in content, particularly in the individual literature reviews of each 

chapter. This is to ensure consistency and coherence across the thesis, and as such, occasional 

reiteration of specific methods or works may occur.  

Overview of data collection methods for traffic monitoring 

Several factors are used to categorize traffic data collection methods. In the early stages, traffic 

data collection heavily relied on individuals counting vehicles, pedestrians, or cyclists. This 

method was direct but limited by human capacity and prone to errors. Several in-field mechanisms, 
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such as tally counters or software, were developed to facilitate and increase the reliability of the 

manual counting process (59). 

With the advancement of technology, traffic data collection programs have shifted toward semi-

automated or fully automated methods and technologies. Fully automated techniques leverage 

computing resources and a variety of sensors, such as inductive loops, pneumatic tubes, infrared 

sensors, Radar, cameras, and LiDARs, to achieve a more sophisticated traffic data inventory. 

Data collection technologies are typically categorized according to the type of data they provide, 

the primary purpose of the data collection, the location where data is gathered, the duration of the 

data collection program, the granularity of the data, and, most crucially, the coverage area of the 

specific technologies.  

The primary locations for data collection are typically highways and urban areas, with a particular 

emphasis on intersections. The scope of coverage for these techniques is categorized into point-

based (fixed location) systems, point-to-point (between points) systems, and area-wide traffic 

monitoring systems. In point-to-point and area-wide coverage, the choice of technology dictates 

the extent and scalability of the area under study. 

▪ Point-based technology: 

The primary objective of point-based technology is to detect and count road users passing through 

its limited coverage area. These systems are designed to collect traffic flow information at specific, 

targeted locations. It is necessary to install multiple point-based systems across various locations 

to achieve network-wide data coverage. 

The choice of sensing technology for a point-based system largely depends on its intended 

application. In the context of monitoring motorized traffic, commonly used technologies include 

loop detectors, pneumatic tubes, and Radar, which are particularly effective on highways and 

arterial roads (26). 

Furthermore, point-based technology is essential for monitoring non-motorized traffic, particularly 

in urban settings. For cyclist traffic monitoring, adapted and customized technologies such as loop 

detectors and pneumatic tubes are used to capture and analyze bicycle movements effectively (27). 
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Similarly, pedestrian counting systems often employ passive infrared sensors and LiDAR (6, 7). 

These technologies are selected for their ability to detect and count pedestrians in a variety of 

environmental conditions, ensuring reliable data collection essential for understanding and 

managing urban traffic flow.  

Camera-based traffic monitoring systems can monitor both motorized and non-motorized traffic. 

They effectively capture vehicle movements in motorized traffic, supporting highway counting 

and speed analysis (15). The same systems adeptly monitor pedestrians, cyclists, and vehicles in 

urban settings, distinguishing between different road users (32, 60). Because of this adaptability, 

camera-based systems are invaluable in various traffic monitoring applications. 

▪ Between-point systems: 

The main focus of the technologies used in between-point systems is to collect mesoscopic traffic 

data such as point-to-point travel time, average speed, and an estimated travel demand for a limited 

pair of origin destinations.  

Bluetooth and Wi-Fi technologies capture and trace the MAC address of specific users within an 

extended traffic study network (61). A critical consideration when implementing a point-to-point 

system is to expand the coverage area by embedding probe devices throughout the transportation 

network (62). Based on license plate recognition, camera monitoring systems can also trace road 

users anonymously across an extensive network of highway cameras (63). The primary 

consideration for this type of camera system is to avoid associating plate information with specific 

trip characteristics, such as origin, destination and stops. 

▪ Area-wide systems: 

The third category of data collection methods involves technologies suitable for area-wide 

monitoring. Key technologies that enable extensive coverage in traffic monitoring encompass 

GPS-enabled systems (64) and data from mobile phone service providers (65). These technologies 

can track users’ real-time geo-location throughout the transportation network. Additionally, large-

scale wireless networks and service providers are categorized as area-wide systems in the context 

of traffic monitoring (65). 
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The data collection methods utilizing these technologies are further categorized into passive and 

active approaches, determined by the road user’s involvement in data collection. A technique is 

considered active if the road user is assigned a vehicle probe device or participates in a data 

collection program using a smartphone application. In contrast, passive methods do not require 

direct user involvement; instead, they anonymously log road users’ trips on the network through 

appropriate receivers linked to the system’s technology (66). 

▪ Vision-based systems:  

Technologies utilizing various vision sensory systems are frequently employed as fixed-location 

systems for traffic monitoring. This category includes camera-based systems, modern Radar, and 

LiDAR. Although these technologies operate on fundamentally different principles, their data 

processing often involves computer vision and machine learning algorithms. 

Video-based computer vision technologies and methods are particularly prevalent in traffic 

applications. These are implemented for traffic monitoring on highways and intersections, as well 

as for monitoring active transportation, such as cycling facilities and sidewalks (56, 67-69). 

Modern radars, especially those based on phased array technology, can perform 3D scanning in 

Cartesian coordinates and measuring speed. However, this advancement is relatively recent, and 

current implementations are primarily focused on integrating these radars as components in the 

vision systems of autonomous vehicles (AVs) (70, 71). 

LiDAR-based systems are increasingly recognized in traffic monitoring, driven by the 

development of smaller, more cost-effective units and their extensive use in autonomous vehicles 

(AVs). LiDAR sensors, known for their accuracy in distance measurement, eliminate manual 

calibration and do not require the geometric computations necessary for cameras, thus providing 

distortion-free data. However, the relatively higher cost of LiDAR sensors than cameras has led to 

a scarcity of labeled data for extensive research. LiDAR is an emerging technology in 

transportation, with applications in both traffic monitoring and Autonomous Vehicles.  So far, a 

few studies have attempted to develop LiDAR-based methodologies for traffic monitoring (72, 

73). 
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LiDAR, 3D radars, and camera-based systems share common characteristics in traffic monitoring 

applications. They can produce high-resolution measurements of their surroundings. Designed to 

operate in real-time, they adeptly detect various road users. LiDAR and 3D radars accurately 

record distance and speed, respectively. Most importantly, all three technologies are often 

integrated with computer vision and machine learning algorithms, offering extensive opportunities 

for development and research. Key components of a vision-based methodology applicable to these 

systems include road user detection, classification, and tracking. However, camera-based systems 

have an advantage due to the vast access to pre-labeled data (images) from real-world traffic 

scenarios. 

Review of data collection methods for safety studies 

The Federal Highway Association’s Traffic Conflict Technique (TCT) manual identifies six 

conflict categories, each potentially containing multiple conflict types: same direction, opposing 

left turn, cross-traffic, right-turn-on-red, pedestrian, and secondary (an evasive maneuver 

endangering the third user) (74). Finding these traffic events needs a traffic conflict survey at the 

site. A traffic conflict survey could have several objectives, such as safety diagnosis, identifying 

hazardous sections, and before/after study to investigate the performance of the safety program 

(75). Methods for collecting traffic conflict data encompass field observation, manual video 

observation, automated video analysis, and a vehicle-equipped approach (76). 

Traditional traffic conflict techniques relied on manual surveys conducted by observers. As part 

of those studies, numerous manuals have been developed to instruct observers on conflict types 

and characteristics (74, 75). Manual conflict surveys involve an observer in the field or the manual 

analysis of recorded video footage. In-field observations tend to be more accurate than video 

ground truth because observers can account for additional factors, such as weather and road 

conditions, which are often challenging to discern in video footage. Nevertheless, in-field 

observation demands a significant amount of attention, and if observers fail to track road users’ 

actions, there is no opportunity for a second chance to rectify that mistake (75). The primary 

challenge of manual conflict surveys lies in the high costs associated with employing and training 

observers. Additionally, the time required for the manual analysis of recorded videos and the 
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difficulties in recognizing and differentiating actual conflicts contribute to this approach’s 

complexity. 

Advances in computer-vision techniques have enabled automated video analysis systems to serve 

as an alternative to manual observation surveys. This video analysis tool generates timestamped 

trajectories of road users, allowing the extraction of surrogate safety indicators through the study 

of these trajectories over time. The capabilities of automated video processing tools offer 

opportunities for large-scale conflict analysis (76).  

Surrogate safety indicators have been extensively discussed in the literature. Sohel Mahum et al. 

reviewed and categorized them into four types: temporal proximity-based conflict indicators, 

distance-based proximal indicators, deceleration-based indicators, and other indicators (77). 

Temporal indicators include time-to-collision (TTC), post-encroachment time (PET), and crash 

index (CI) (77). 

Beyond surrogate safety indicators, trajectory data can offer additional insights into the severity of 

conflicts. Assessing the severity of a traffic interaction between two road users involves evaluating 

collision and injury risks (78). Various factors, including proximity in time, proximity in space, 

and the speed of the involved road users, can determine collision risk. Conversely, factors like 

speed differences, mass differences, the relative angle of conflicts, and the vulnerability of the 

involved road users can control the risk of injury (78, 79). 

The capacity of surrogate safety indicators to identify traffic conflicts and assess their severity has 

created a potential application for employing computer vision techniques in trajectory extraction 

and road user classification (80). Intersections, as a critical aspect of transportation facilities, have 

been subject to extensive safety study and examination. These studies are primarily motivated by 

the high frequency of diverse conflict types, particularly those involving vulnerable road users. 

Several computer vision-based techniques have been developed for detecting, tracking, and 

classifying road users at intersections. 

Saunier et al. proposed a vision-based system for estimating collision probabilities using a 

probabilistic time-to-collision method (81). More than 300 severe interactions and collisions were 

automatically analyzed and categorized into four groups: head-on, rear-end, side, and parallel. 
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Laureshyn and Aliaksei extensively discussed the application of an automated vision system for 

analyzing the behaviors of road users (82). The extracted trajectories are utilized to identify 

potential conflicts between any pair of road users, focusing on cyclists in intersections and 

roundabouts. Concerns arise regarding the system’s accuracy in cyclist detection, where the cyclist 

detection rate ranges from 18% to 72%, and the false-positive rate varies from 20% to 90%. 

Pedestrian-vehicle conflicts have been studied using conflict data obtained from video (83). The 

automated vision system detects, tracks, and classifies pedestrian and motorized users. Then, from 

the trajectories, it identifies hazardous interactions and estimates the severity of conflicts using 

several surrogate safety indicators (83). 

Vision-based systems have been employed for cyclist and pedestrian safety studies (35, 36, 84). 

One study focused on interactions between pedestrians and vehicles exiting intersections based on 

a distance-velocity model (35). Another study investigated cyclist maneuvers using trajectory data 

obtained from automatic video processing at locations with cycling network discontinuity (84). 

The third study utilizes cyclists’ trajectory data to evaluate the safety effect of cycle tracks at 

signalized intersections (36). 

Despite the popularity of automated video analysis techniques for surrogate safety, video-based 

systems have some limitations, including underperformance in adverse weather conditions and 

low visibility. Additionally, computer vision algorithms are often computationally intensive for 

real-time applications on affordable embedded systems. Obtaining distance measures requires a 

manual calibration process, and, more importantly, these measures may be less accurate if the 

camera is not set up under optimal conditions or if the calibration is not performed accurately. 

With that being said, video-camera systems remain appealing due to their flexibility for installation 

and low economic cost. 

A review of the application of LiDAR systems in civil and transportation engineering  

This section offers a concise overview of LiDAR sensing technology applications in civil 

engineering, specifically focusing on ITS. These systems, developed initially for various 

engineering concepts, have been adapted in multiple studies and applications, primarily for traffic 
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data collection. The LiDAR-based systems discussed here are distinct from the conventional 

roadside LiDAR implementations covered in the previous section. 

LiDAR systems have extensive applications in Airborne, Terrestrial, and Mobile Laser Scanning 

systems. In an Airborne Laser Scanning (ALS) system, a high-range LiDAR is installed beneath 

the aircraft, capturing reflectivity and distance to the Earth’s surface. ALS classifies Earth’s 

surface into various geographical regions and land covers (85, 86). While utilizing ALS for traffic 

monitoring proves costly, a feasibility simulation of this application has been discussed in (87). 

Additionally, two vehicle detection and extraction algorithms have been examined based on the 

segmentation of airborne laser points (88).  

In a 3D Terrestrial Laser Scanning (TLS) system, a two-dimensional LiDAR is fixed to a tripod 

equipped with an automated or manually operated rotating system. The TLS system is utilized for 

land surveying and three-dimensional modeling of urban structures and road infrastructures  (89, 

90). However, in one study, a TLS system is employed for accident reconstruction and 

investigation in a road safety analysis (91).  

In a Mobile Laser Scanning (MLS) system, 2D or 3D LiDAR sensors are installed on a dedicated 

vehicle equipped with navigation devices (92, 93).  The MLS system models the 3D structure of 

urban facilities and constructs a road inventory database by extracting road widths, curbs, slopes, 

and curve radii (93, 94).  The 3D segmented models of transportation facilities are utilized to assess 

the safety level of roads, including detecting or investigating hazardous sections (92).  

Examples of road inventory databases collected by MLS include traffic sign recognition (95), 

traffic light detection, and streetlight pole detection (96). In traffic sign recognition applications, 

geometric features from the point cloud and images from the camera are used for recognition after 

sign detection by LiDAR (95). Due to the high reflectivity of road marking elements, the intensity 

values of 3D LiDAR point clouds are used to identify and extract them (97). Other tasks of an 

MLS system may include pavement analysis, crack detection, and pothole detection (94, 98). 

Utilizing an MLS system for parking occupancy detection involves detecting street boundaries and 

parked cars along the street side (99).  
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Autonomous Vehicle (AV) technology, another applied field of research, utilizes 3D LiDAR 

sensors mounted on a vehicle. An AV may incorporate more than one, and in some cases, up to 

five 3D LiDARs—one positioned on the top of the vehicle and one in each corner LiDAR sensors, 

collaborating with cameras and radars, construct a robust visual perception system for the AV, 

offering an accurate understanding of the objects and environment surrounding it. Like an MLS 

system, an AV builds a 3D model of the street environment to accurately detect intersections, road 

alignment, and traffic signs. The most critical task of an AV’s vision system is detecting 

pedestrians, cyclists, and cars, contributing significantly to the safety of both non-motorized and 

motorized transportation users (16-18). 

A review of algorithms for LiDAR data processing 

The first step of the LiDAR processing systems involves background modeling, which is 

achievable through various approaches.  The first approach treats the 2D matrices of distance 

values as images. The background is constructed by averaging frames, allowing for the use of 

sophisticated algorithms like the Gaussian Mixture Model (100).  

The second approach involves converting each distance value to the 3D Cartesian coordinate 

system and storing an initial set of point clouds in the Cartesian coordinates as a reference to the 

background model. Subsequently, a 3D segmentation clusters the point cloud and determines 

whether each point corresponds to the background. Background decision-making involves 

assessing each cluster’s point density, where clusters with higher point density are labeled 

background (101).  

Alternative methodologies uniformly divide 3D space into smaller segments, counting observed 

points within each segment in an initial set of samples. Segments are classified as background if 

the frequency of points within that segment exceeds a specified threshold. When segmentation 

occurs in a spherical coordinate system, the resulting segments are spherical volumes (102-104). 

Conversely, when segmentation is conducted in the Cartesian coordinate system, the segments are 

called cubic volumes or voxels (105-107). The Cartesian coordinate system typically produces 

more segments within the same coverage area. Nevertheless, fewer segments are preferred due to 

the fixed and limited resolution of LiDAR sensors, and most of the segments are not observed by 
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the LiDAR. The results of background modeling are used to generate a point cloud of foreground 

points. 

The second stage of the conventional LiDAR system entails the application of a density-based 

clustering algorithm to group foreground points into small point clouds, each representing a 

potential object (108, 109). A classifier algorithm such as Support Vector Machines (SVM), 

Neural Networks (NN), or other learning algorithms can be used for object classification, but these 

supervised learning algorithms need labeled data in the training phase. Unlike image datasets, 

segmenting and labeling point clouds is still challenging. However, some available datasets 

provide such information, and the number of datasets is expected to increase. Among all the 

labeled LiDAR datasets, the KITTI vision benchmark seems to be used as a benchmark. This 

dataset has been obtained from multiple sensors installed on a vehicle and includes stereo 

sequences, 3D LiDAR point clouds, GPS/IMU data, and labels of objects (110). The point clouds 

are recorded using a 64-channel Velodyne LiDAR; therefore, using it for other sensors, especially 

lower resolution, decreases accuracy and requires extra validation and calibration. 

Feature extraction is one of the steps before using classification. Before that, the point clouds are 

segmented into grids with various sizes where the statistical features of point clouds located inside 

each occupied cell are extracted. These features include the number of points in each small cell, 

the average and variance of intensity, the spatial mean and variance of point clouds, and other 

geometric features (111). In (112), regional shape descriptors are introduced for vehicle detection 

in point cloud data. The 3D shape context is the first feature that is extracted by computing the 

statistical characteristics (e.g., histogram) of the point cloud of an object in multiple spherical bins. 

Then, the harmonic shape contexts are obtained by using these 3D shape contexts (112). The heavy 

computations of the regional and geometric features may affect the system’s real-time 

performance. Therefore, a histogram-based descriptor on the object and point levels could be used 

for feature extraction. An object classification method is implemented by applying SVM on 

histogram features extracted from point clouds (113).  

Since background modeling is not feasible in mobile laser scanning applications, sophisticated 

classification algorithms are used to segment and classify objects in point clouds directly. Several 

Convolutional Neural Networks (CNN) are trained with KITTI or a similar dataset, and then the 
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trained models are used to classify unseen point clouds. Feature extraction is an essential part of 

these approaches, where point clouds are segmented into small grids, and a set of features is 

computed from the points within each grid.  

Vote3Deep is a Convolutional Neural Network that uses a voting scheme applied to the statistical 

features of each grid (114). The VoxelNet architecture uses CNN applied to voxel grids, which 

has a unique feature extraction method (115). PointFlowNet uses two consecutive frames to extract 

the features based on the motion and flow in the point clouds and then applies a CNN to its unique 

feature sets. Therefore, it can detect objects and also estimate their movement in the point clouds 

(116). The human detection and tracking method implemented in (117) applies a segmentation 

method to the point clouds and then estimates the motion and speed of each cell by a real-time 

speed estimation algorithm. Finally, for each segment, it applies an SVM classifier to the extracted 

feature set. 

The other category of methods has fused 3D LiDAR sensors and cameras and has developed an 

algorithm to handle RGB-D data provided by these two sensors.  This fusion will help to improve 

the results of using each data individually. PointNet applies a CNN to RGB images, matches point 

clouds to the detected objects, and builds a segmented object point. Finally, it estimates a 3D box 

encompassing the object in the 3D point clouds and its equivalent in the 2D image (118). 

PointFusion is another study that applies PointNet to the point cloud data and ResNet to images to 

extract suitable features. Then, it uses a dense fusion model and a global fusion model to combine 

PointNet and ResNet outputs. Finally, a neural network is used to estimate the 3D box coordinates 

(119). A 3D vehicle detection system, implemented in (120), applies CNN to the image to detect 

cars, then matches the vehicles seen in the image with their corresponding point cloud and 

computes their geometric features from LiDAR data. Finally, another CNN is applied to 3D car 

point clouds and estimates the 3D box for each car. MV3D network implemented a distinct 

architecture for 3D object detection (121). It applied a CNN to image frames, but instead of using 

3D points, it applies two different CNN to LiDAR front-view and LiDAR bird-view (from top) 

images. The bird-view images consist of multiple height, density, and intensity maps extracted 

from 3D point clouds. 
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1.6 Organization of the Document 

This thesis is structured into six chapters, starting with the introduction. As a manuscript-based 

thesis, chapters two through five consist of individual articles, with the author of this thesis serving 

as the primary author for each. These papers are published in journals or presented at conferences 

and prepared to be submitted to a journal. 

Chapter 2 presents the article: A 3D LiDAR-Based Supervised Methodology for Automated 

Traffic Monitoring and Data Collection at Urban Intersections with High-Mixed Traffic. 

Chapter 3 features the article: A 3D-LiDAR-Based Methodology for Surrogate Safety Analysis at 

Intersections with High Non-Motorized Traffic. 

Chapter 4 discusses the article: Development of an Unsupervised 3D LiDAR-Based Methodology 

for Automated Safety Monitoring of Railway Facilities. 

Chapter 5 introduces the journal article: A LiDAR-Based Methodology for Monitoring and 

Collecting Microscopic Bicycle Flow Parameters on Bicycle Facilities. 

Chapter 6 summarizes the achieved objectives, provides concluding remarks, and outlines 

potential future work. 
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CHAPTER 2: A 3D LIDAR-BASED SUPERVISED METHODOLOGY FOR 

AUTOMATED TRAFFIC MONITORING AND DATA COLLECTION AT URBAN 

INTERSECTIONS WITH HIGH-MIXED TRAFFIC 

2.1 Abstract 

This study aims to develop and evaluate a novel 3D LiDAR-based supervised learning 

methodology for automated traffic monitoring and data collection at urban intersections with high 

mixed traffic conditions characterized by high volumes of pedestrians and cyclists. Two alternative 

sensor resolutions (16 and 32 channels) are evaluated, and LiDAR data are utilized for training 

and evaluation. The critical components of the proposed methodology include LiDAR data 

processing and background modeling based on the Gaussian mixture model, road user detection 

and clustering, feature extraction and classification, and tracking. These processes are primarily 

automated, leveraging point cloud data processing and machine learning algorithms for advanced 

data analysis and interpretation. The methodology is designed to accommodate high- and low-

resolution LiDAR sensors, ensuring suitability for different LiDAR systems. 

An extensive performance evaluation procedure was conducted to assess the various components 

of the proposed methodology and key sensor parameters. The background modeling framework 

demonstrates a 94.2% accuracy when applied to data from high-resolution LiDAR and 89.8% for 

lower-resolution systems. The XGBoost classifier achieves the best performance of the alternative 

classifiers, with an average classification rate of 0.95 for high-resolution LiDAR systems and 0.91 

for lower-resolution systems. The Average Displacement Error (ADE) for road user tracking with 

the LiDAR system is 0.37 meters for high-resolution systems and 0.40 meters for low-resolution 

systems. The weighted average absolute percentage difference of road user counts is 6% and 13% 

for high and lower resolution, respectively.  

Overall, the results demonstrate the accuracy of our methodology and the impact of sensor 

resolution. The performance of the sensors varies across different intersection settings; notably, in 

intersections with an extended area, the performance is influenced by the sensors’ limited vertical 

field of view. 

Keywords: Urban Intersection Monitoring, 3D LiDAR Monitoring, Supervised LiDAR Method, 

Alternative Technologies 
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2.2 Introduction 

Urban intersections represent a microcosm of urban mobility challenges and opportunities. The 

efficiency of the transportation network is tested at urban intersections where different modes of 

transportation utilize the infrastructure for making daily trips. An urban intersection is of utmost 

importance from a transportation safety perspective, where many interactions between road users, 

especially between motorized and vulnerable road users, happen daily. Thus, there is a growing 

need for advanced and efficient traffic and safety monitoring systems at urban intersections. 

The current approach to traffic monitoring at urban intersections combines traditional methods 

with new technologies. The choice of methodology depends on the data collection program’s 

requirements, overall cost, duration, and available technologies. Traditional approaches to traffic 

monitoring, such as inductive loops, are still widely used. Although primarily designed for 

monitoring traffic on highways or road sections, correctly implementing inductive loops can 

provide valuable insights into traffic conditions at a given intersection. Inductive loops collect data 

on various aspects, including the count of vehicles entering or exiting, speed, link travel time, and 

vehicle classification based on length (1). They also gather information on vehicle queues, which 

is essential for traffic control operations and signal timing (2). 

Radar-based technologies effectively monitor the speeds of vehicles approaching an intersection 

across various lanes. Understanding the speed profile of vehicular traffic on connected links is 

crucial for traffic signal control and safety analysis. The accuracy of radar in collecting speed data, 

and consequently acceleration and deceleration rates, is pivotal for analyzing driving behavior at 

stop sign-controlled intersections (3). One of the critical advantages of radar is its robust 

performance in adverse weather conditions. Additionally, modern Radar systems integrated with 

machine learning algorithms can classify different types of vehicles (4). 

Loop detectors and radars are primarily utilized for monitoring traffic on street sections rather than 

for in-depth analysis at intersections. They fall short in tracking the movement of vehicles through 

intersections, counting turning movements, or observing interactions between road users and the 

infrastructure. Crucially, these technologies do not encompass active transportation monitoring, a 

vital component in understanding urban traffic patterns. Consequently, there has been a move 
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towards introducing or integrating alternative technologies to capture more sophisticated traffic 

data to address these limitations. 

Bluetooth and Wi-Fi technologies are designed to overcome some of the issues previously 

mentioned. A Bluetooth system continuously captures the MAC address of any device with an 

active Bluetooth module and traces these addresses using an extensive network of Bluetooth 

readers for traffic monitoring (5). Placing Bluetooth sensors on each approach at urban 

intersections, especially over longer distances, helps understand road users’ origin-destination 

patterns (6). Bluetooth systems can collect cyclist and pedestrian data at urban transportation 

facilities (7). However, there are limitations, such as the inability to observe detailed intersection 

activities, road user interactions, and precise speed measurements. The effectiveness of these 

systems also varies based on the penetration rates of Bluetooth-enabled devices in different areas. 

Consequently, the data from these systems must be carefully balanced and typically require scaling 

up with reference counts collected using loop detectors. 

Camera-based systems, widely implemented for traffic monitoring at urban intersections, address 

some shortcomings of the technologies mentioned earlier. These systems and their installations 

can be customized for specific traffic data collection tasks. Camera-based systems are adept at 

detecting, classifying, and tracking road users (8). An essential application of these systems is 

monitoring intersections to extract turning movement counts and origin-destination traffic volumes 

(9, 10). With advancements in the resolution of visual-spectrum cameras, these systems are now 

more suitable for monitoring pedestrian and cyclist traffic (11). For traffic safety applications, a 

camera-based system can be installed to actively monitor for incident detection and management 

(12) and for data collection to conduct comparative analytics of road user trajectories for studying 

their interactions and potential conflicts (13). 

While camera-based systems have proven valuable in many traffic studies and applications, they 

have several key limitations. First, the performance of a camera-based system is downgraded by 

environmental changes, such as lighting conditions and weather. Additionally, the field of view 

and range of coverage for a system relying on a single camera is limited. The system’s performance 

is closely linked to the quality of the video sequences it captures. Higher-quality videos often lead 

to increased costs due to the need for higher-resolution cameras and greater processing power. 
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The camera-based system collects data in a 2D pixel/image coordinate system, where units are in 

pixels and images are captured from the camera’s perspective. Consequently, for traffic monitoring 

applications that require accurate distance measurements, image data must be converted into real-

world coordinates using geometric calibration. This process involves mapping the 2D image 

coordinates to real-world 3D coordinates, taking into account the camera’s position, angle, and 

lens properties (14). This is a complex operation that would require knowledge of specific camera 

optic systems. Any change in the system field of view, angles, or sudden vibration would reset the 

geometry calibration and require another manual calibration.  

As an alternative to video cameras, LiDAR-based methods present a potential solution to several 

limitations associated with camera-based systems. LiDAR sensors, depending on their resolution 

and range, can offer more precise data in the x-y-z coordinate system. Each LiDAR scan generates 

a point cloud of the scanned area, encompassing specific attributes. From this point cloud, the 

individual point clouds representing each road user can be extracted, allowing for the further 

extraction of additional physical characteristics such as length, width, and area. 

A LiDAR system is not affected by low light conditions, such as at night, making it suitable for 

long-term monitoring. While adverse weather conditions impact LiDAR, its level of susceptibility 

is generally lower compared to camera-based systems (15). 

The LiDAR sensor’s ability to provide precise distance data eliminates the need for manual 

calibration. Furthermore, the distance-based nature of LiDAR’s measurement excludes the 

geometric computation step required for cameras, making its data distortion-free. Despite recent 

interest in LiDAR, documented research studies in this field are scarce. The limited research on 

LiDAR applications can be attributed to the high cost of LiDAR sensors compared to cameras, 

resulting in a lack of labeled data. Additionally, producing labeled data in a point cloud setting is 

much more challenging than labeling objects in images.  

LiDAR is considered an emerging technology in transportation, with applications in both traffic 

monitoring and Autonomous Vehicles. Currently, only a handful of studies have utilized LiDAR 

as a fixed-position monitoring technology for traffic monitoring and data collection (16, 17).  
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This research proposes a supervised methodology for 3D LiDAR-based traffic monitoring at 

intersections with mixed traffic. The methodology includes the development of point cloud data 

processing and machine learning algorithms for object detection, clustering of road users, 

classification, and tracking. 

The structure of the paper is as follows: initially, a literature review tailored to traffic monitoring 

at intersections, focusing on camera-based systems and exploring LiDAR-based systems as an 

alternative technology, is presented. Next, the system’s methodology, including data collection, is 

discussed in detail. Finally, the performance of the proposed methods for LiDAR data processing 

is evaluated. 

2.3 Literature Review 

Monitoring traffic flow at intersections is crucial for analyzing network flow at microscopic levels. 

While traditional counting systems, such as inductive loops, excel on highways and streets, they 

prove inadequate for intersection monitoring as they cannot capture the direction of movements. 

Video-based systems have been developed to detect and track road users, especially vehicles at 

intersections (18). The camera monitoring system proposed by Kamijo et al. utilized traditional 

image processing techniques and achieved a success rate of 93%–96% in vehicle detection and 

tracking. However, the study only focused on vehicle detection and tracking. The system is also 

evaluated for detecting bumping accidents in a few cases (18). 

The real-time vision-based system developed by Messelodi et al. utilized a monocular camera (19). 

Moving objects are detected with segmentation and motion analysis. Detection of moving objects 

involves segmentation and motion analysis. A two-stage classification method, initially based on 

volume and subsequently on feature matching, determines the type of road users. It is noteworthy 

that pedestrians are not treated as a single class. The classification rates of bicycle, motorcycle, 

car, van, and bus are 72.5%, 89.6%, 95.9%, 58.7%, and 100% respectively (19). 

A stereo-camera system was proposed by Muffert et al. to identify dangerous conflicts as vehicles 

enter the roundabout (20). Objects are detected using the disparity map technique and are clustered 

into road users, specifically vehicles, using the DBSCAN algorithm. The time-to-contact indicator 

for multiple scenarios is then computed from the extracted trajectories. However, the number of 
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validated samples and the system’s accuracy in detection and tracking have not been discussed 

(20). The use of stereo vision mounted on a car for detecting and tracking other vehicles at urban 

intersections is discussed in (21). The system underwent testing as a vehicle equipped with a stereo 

camera passed several intersections, and the results of tracking other cars were visually assessed. 

Wang et al. proposed a vision-based system that utilizes the fisheye view of the camera to monitor 

and measure traffic volume at an intersection (22). The system achieves real-time vehicle 

detection, tracking, and counting through feature point tracking. The system was deployed at three 

intersections, showing variations in tracking accuracy and counting across different sites. The 

counting performance indicates a promising accuracy of 98%. However, the system has not been 

tested to estimate origin-destination or extract of safety indicator studies (22). 

The development of the origin-destination trip table estimation using a video-based monitoring 

system is discussed in (23). The system leverages the particle filter to obtain trajectories and counts 

the turning movements in two intersections. Nevertheless, the system lacked calibration for 

pedestrian detection and tracking. 

LiDAR, initially utilized for remote sensing applications, is an emerging technology showing 

promising performance in areas such as topographic mapping, forestry (24), agriculture (25), and 

3D scanning of buildings for urban planning (26). With advancements in autonomous vehicles 

(AVs), LiDAR sensors have become a crucial component of their vision systems. In these systems, 

LiDAR contributes to tasks like environmental mapping of real-world objects, such as traffic signs 

(27) and obstacle detection (28), while also complementing other parts of the system, such as 

cameras (29). 

Using LiDAR-based systems for traffic monitoring and data collection is relatively new and is 

seen as an emerging technology. This suggests that the body of research focusing on implementing 

and evaluating LiDAR-based systems for these applications is likely to expand rapidly. However, 

few key studies have utilized LiDAR implementation for traffic monitoring.  

Tarko et al. developed a LiDAR-based system for intersection monitoring, employing Velodyne’s 

high-resolution LiDAR with 64 laser channels (30). The system is calibrated with an unsupervised 

algorithm, where road users are obtained through background subtraction and classified based on 
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their speed and dimensions. The classification stage considers the part of the intersection where 

the road user has been detected, such as the sidewalk, crosswalk, or street. The system, installed 

at three intersections, identified one conflict with a time-to-collision of less than 1.5 s and falsely 

detected two non-conflicts while accurately counting and classifying 98% of 504 road users (30). 

Zhao et al. developed a 16-laser channels LiDAR-based traffic monitoring system (31). The system 

utilizes a methodology involving background filtering, clustering, and classification to detect and 

track pedestrians and vehicles at intersections.  The classification is performed using a neural 

network with three features: the total number of points, the distance of the user to the LiDAR 

sensor, and the direction. The reported accuracy of classification is approximately 93%. However, 

other road users have not been discussed (31). 

Despite the existing research, several gaps exist in implementing and developing LiDAR systems 

for ITS applications. This research’s proposed 3D LiDAR-based methodology offers advantages 

over those implemented in (30, 31). The first study (30) developed an unsupervised method, and 

the second study (31) introduced a semi-supervised method applicable to two broad classes: 

pedestrians and vehicles.  

This research presents an efficient semi-automated labeling approach to addressing the challenges 

of developing a labeled dataset for two LiDAR sensors with 16 and 32 laser channels, respectively. 

It also involves calibrating automated methods for detecting, tracking, and classifying all road 

users, including pedestrians, cyclists, cars, and trucks. Secondly, compared to (30), using lower-

resolution LiDAR sensors reduces the system’s cost, rendering it economically feasible for 

practical applications. Lastly, the system is tested and evaluated in various traffic conditions. 

2.4 3D Rotational LiDAR Sensor and Definition 

This section introduces LiDAR-based technology and its associated definitions, focusing on the 

sensor data characteristics vital for our proposed traffic data collection and monitoring 

methodology at intersections with mixed traffic types. The core activities involve detecting, 

classifying, and tracking various road users, including passenger cars, trucks, cyclists, and 

pedestrians. These primary objectives are essential for accurate and comprehensive traffic analysis 

in such environments.  
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The proposed methodology is built for rotational LiDAR systems with N number of channels. In 

this research, the proposed LiDAR system utilizes two rotational LiDAR sensors produced by 

Velodyne Lidar: VLP-16 and VLP-32c LiDARs (32, 33). The VLP-16 and the VLP-32c sensors 

have 16 and 32 laser channels (𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 16 𝑜𝑟 32), respectively.  The LiDAR channels are 

vertically separated and rotate with an adjustable speed (𝜔) ranging from 5 to 20 rotations per 

second. Both sensors have a 360° horizontal field-of-view (𝛼𝐹𝑂𝑊). The vertical field of views 

(γFOW) of VLP-16 and VLP-32c are 30° and 40°, respectively. The rotational LiDAR sensor scans 

the surroundings and generates a comprehensive three-dimensional (3D) point cloud representing 

the observed environment.  

The LiDAR sensor output includes pairs of distance-reflection measurements. These 

measurements are associated with three distinct indices: the channel ID (𝑐ℎ𝑖) which spans from 1 

to 32 (or 16 for VLP-16), the azimuth value (𝛼𝑐ℎ𝑖,𝑡𝑗) ranging from 0° to 360° and the timestamp 

(𝑡𝑗). The sensors measure distance (𝑑𝑐ℎ𝑖,𝑡𝑗) up to 200m (or 100m for VLP-16) with a precision 

within ±3cm.  

The VLP-16 has a vertical angular resolution of 2°. The angular resolution of VLP-32c is not 

evenly distributed across its vertical channels. Among the 31 vertical angular gaps between LiDAR 

channels in VLP-32c, there are 17 gaps of 0.33°, four gaps of less than 1°, four gaps of less than 

2°, and six gaps of more than 2°. The horizontal resolution of both sensors ranges from 0.1° to 0.4° 

depending on the rotational speed. Each laser channel in both LiDAR sensors records 18,000 

distance points per second. When the rotational speed is adjusted at 10Hz, these 18,000 distance 

points are evenly distributed across ten rotations, yielding 1,800 distance points measured per 

rotation and laser channel. As a result, the horizontal resolution is fixed at 360°/1800 = 0.2°, and 

the LiDAR sensors observe 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠×1800 points per rotation. 

Table 2-1 summarizes all the characteristics mentioned above for both sensors, the notations of 

the variables introduced in this manuscript, and the distinction between the two LiDAR sensors. 

Notably, VLP-32c presents two distinctive characteristics: the non-uniform vertical angular 

resolution (𝛿𝛾) and the non-uniform horizontal angular offset (𝜎𝛼), both varying from one channel 

to another.  
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Table 2-1 Key parameters of the two LiDAR systems 

Parameter Notation 
VLP-16 

Velodyne 

VLP-32c 

Velodyne 

Number of channels 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 16 32 

Distance measured by 𝒊𝒕𝒉 channels at time 𝒕𝒋 𝑑𝑐ℎ𝑖,𝑡𝑗 𝑢𝑝 𝑡𝑜 100𝑚 𝑢𝑝 𝑡𝑜 200𝑚 

Distance resolution 𝛿𝑑 3𝑐𝑚 3𝑐𝑚 

Horizontal field-of-view 𝛼𝐹𝑂𝑊 360° 360° 

Vertical field-of-view 𝛾𝐹𝑂𝑊 30° 40° 

Azimuth (horizontal) of the 𝒊𝒕𝒉 channels at 

time 𝒕𝒋 
𝛼𝑐ℎ𝑖,𝑡𝑗 [0° − 360°] [0° − 360°] 

Vertical angle of he 𝒊𝒕𝒉 channels 𝛾𝑐ℎ𝑖 [−15°, +15°] [−25°, +15°] 

Sampling rate (number of points per second) 𝑆𝑅 288,000 576,000 

Vertical angular resolution 𝛿𝛾 2° Variable 

Horizontal angular offset 𝜎𝛼 0° Variable 

Horizontal angular resolution 𝛿𝛼 0.1°– 0.4° (Adjusted as 0.2°) 

Rotational speed 𝜔 5 − 20𝐻𝑧 (Adjusted as 10𝐻𝑧) 

Frame rate 𝐹𝑅 5 − 20𝑓𝑝𝑠 (Adjusted as 10𝑓𝑝𝑠) 

Height of the LiDAR’s installation ℎ depends on the intersection 

Title angle of the LiDAR’s installation 𝛽 depends on the intersection 

Rotation angle of the LiDAR’s installation 

relative to the North 
𝜆 depends on the intersection 

 

  

a- Top-view of the system b- Side-view of the system 

Figure 2-1 Setup and operation of the 3D LiDAR system 
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Figure 2-1 (a) illustrates the top view of a LiDAR in a hypothetical scenario emphasizing the 

operation of channel 𝑖 at two different horizontal angles, corresponding to two different 

timestamps (𝑡1 and 𝑡2). In this example, 𝑑𝑐ℎ𝑖,𝑡𝑗 and 𝛼𝑐ℎ𝑖,𝑡𝑗 are the distance and azimuth of channel 

𝑖 at time 𝑡𝑗. Figure 2-1 (b) illustrates the side-view of the VLP-16 sensor in the same hypothetical 

scenario where 16 channels operate simultaneously. To maximize the coverage area, the sensor is 

tilted downward along the 𝑥-axis by an angle of 𝛽 and rotated around the 𝑧-axis by an angle of 𝜆. 

2.5 Data Collections 

This section details the data collection process for developing and testing the proposed 

methodology. This research utilizes an integrated system comprising a 3D-LiDAR sensor (16 and 

32 channels), a camera for ground truth data collection, a Raspberry Pi, a memory card, and 

batteries. These components were assembled and attached to a telescopic mast for easy and secure 

installation on existing structures like lamp posts. The integrated LiDAR systems, illustrated in 

Figure 2-2, are installed at thirteen urban intersections in Montreal, Canada. 

  

a-LiDAR and camera installation b- Processing unit and battery box installation 

Figure 2-2 Integrated LiDAR and hardware components for data collection  

The selection of the intersections is subject to a few factors, including the level of non-motorized 

and motorized traffic volumes, diverse intersection sizes, intersection traffic control type (stop sign 

vs. traffic light), and availability of a pole for attaching and installing the LiDAR system. 
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Table 2-2 provides the key characteristics of the selected intersections and the LiDAR installation 

configurations at each of these intersections. The data collection spanned from 2018 to 2021. At 

each intersection, data were collected for four hours, with LiDAR’s frame rate consistently set at 

ten frames per second.  

Table 2-2 Key Characteristics of LiDAR system installation at various intersections 

Site 
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101 Sainte Famille - Milton 16 09:20 4.2 -17.0º -9º 123 7.0 13.1 

102 Papineau – Sherbrooke E 16 08:40 5.2 -20.9º 71º 353 6.9 17.1 

103 Atwater – Sherbrooke W 16 09:35 4.7 -14.6º 97º 444 6.1 21.5 

104 De La Roche – Marie Anne E 16 14:50 4.6 -11.4º -3º 124 4.2 11.5 

105 Coloniale – Rachel E 16 09:30 5.1 -17.5º 117º 102 5.2 12.3 

106 Girouard - Monkland 16 09:30 4.5 -21.3º -117º 177 6.2 15.6 

107 University - Milton 16 11:20 4.5 -19.9º -164º 79 4.2 10.7 

108 Hutchison - LaurierE 32 10:54 4.5 -7.1º 163º 302 6.3 19.2 

109 Sainte Famille – Prince Arthur W 32 09:12 4.0 -9.9º 69º 134 7.2 14.0 

110 Parc - PineW 32 12:00 4.6 -3.3º -99º 684 27.1 40.1 

111 Saint Denis – Saint Joseph E 32 10:35 4.2 -12.9º -17º 409 5.4 18.5 

112 Parthenais – Rachel E 32 09:15 3.9 -12.0º 40º 117 5.9 13.4 

113 University - Milton 32 15:25 4.2 -19.6º -100º 74 4.0 8.7 

The sensor setup parameters, including height (ℎ), tilt angle (𝛽), and rotation angle around the z-

axis (𝜆), are selected to maximize coverage area and are determined by the intersection size and 

LiDAR’s distance to the intersection. In this study, the height of the LiDAR installation ranges 

from 3.9m to 5.2m. The tilt angle of the 16-channel LiDAR installation spans from -11.4° to -

21.3°, whereas the tilt angle of the 32-channel LiDAR installation ranges from -3.3° to -19.6°. The 

32-channel LiDAR offers the flexibility of an installation at a lower height and tilt angle (aligned 

more horizontally). 
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The rotation angle along the z-axis (𝜆) is to orient the LiDAR measurements toward the true North. 

Figure 2-3 illustrates a hypothetical setup in which the system is installed at the Southwest corner 

of an intersection with its northbound leg fully aligned with the North direction. The LiDAR is 

directly toward the Northeast corner of the intersection. Consequently, an approximate rotation 

angle (𝜆) of 45° is necessary to align the LiDAR measurement with the intersection. This rotation 

is crucial since the LiDAR point cloud needs to be overlayed and compared with the GIS shapefile 

of the intersection’s road elements, including the intersection area, crosswalks, sidewalks, streets, 

and bike lanes.  

 

Figure 2-3 Rotation angle (𝝀) along the z-axis  

2.6 Methodology 

The main components of the methodology developed for LiDAR-based intersection traffic 

monitoring and analysis are: 

1. LiDAR data preparation 

2. Spatial data calibration 

3. Background modeling 

4. Road user detection and clustering 

5. Feature extraction 

6. Road user sampling and labeling 

7. Road user classification 

8. Road user tracking 
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Figure 2-4 illustrates the flowchart outlining the system’s methodology. Except for the Spatial 

Data Calibration step, which is carried out manually, the entire process is automated using point 

cloud data processing and machine learning algorithms. Data acquisition and preparation convert 

binary reading transmitted from LiDAR sensors to a set of frames containing distance, azimuth, 

channel angle values, and point clouds with X-Y-Z coordinates. 

 

Figure 2-4 Flowchart of the system’s algorithm 

An initial set of frames from the data preparation is utilized to construct the background model. 

Subsequently, the remaining data is processed frame-by-frame, allowing the proposed 
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methodology to function in real-time. This process involves foreground detection and clustering 

foreground point clouds into smaller groups (road users). The clustered x-y-z coordinates of each 

road user are then transformed into a vector of features, such as the road user’s length and width. 

The set of feature vectors is used to train a supervised learning algorithm (classification model) 

that can predict the road user’s class as pedestrian, cyclist, car, or truck. Finally, a road user 

tracking algorithm is implemented to associate and construct the trajectories of each road user. The 

details of the methodology’s components are discussed in this section. 

2.6.1 LiDAR data preparation 

The LiDAR sensor streams data in a binary format, which is transformed into distance, reflection, 

azimuth, channel ID, and timestamp values. Distance measurements at each rotation (𝑑𝑐ℎ𝑖,𝑡𝑗) are 

stored as a 2D matrix where the rows represent the channel-ID (𝑐ℎ𝑖) and the columns represent the 

azimuth index. If the location of the sensor is assumed to be the center of the coordinate system, 

then the x-y-z coordinates of a single LiDAR measurement are computed as Equation (2-1): 

𝑣𝑖,𝑗 = [

𝑥𝑖,𝑗
𝑦𝑖,𝑗
𝑧𝑖,𝑗
] =

[
 
 
 
 𝑑𝑐ℎ𝑖,𝑡𝑗 × cos(𝛾𝑐ℎ𝑖) × sin (𝛼𝑐ℎ𝑖,𝑡𝑗)

𝑑𝑐ℎ𝑖,𝑡𝑗 × cos(𝛾𝑐ℎ𝑖) × cos (𝛼𝑐ℎ𝑖,𝑡𝑗)

𝑑𝑐ℎ𝑖,𝑡𝑗 × sin(𝛾𝑐ℎ𝑖) ]
 
 
 
 

           (2-1) 

Here, 𝑣𝑖,𝑗 is the x-y-z coordinate, 𝑖 is the channel ID, 𝑗 is the column ID, 𝛼𝑐ℎ𝑖,𝑡𝑗 is the azimuth, 

𝑑𝑐ℎ𝑖,𝑡𝑗 is the distance to the object, and 𝛾𝑐ℎ𝑖 is the laser channels’ vertical angle each (Table 2-1). 

If the sensor is installed at the height of ℎ and tilted down with 𝛽, then the actual x-y-z coordinates 

of each point are obtained by applying a rotation around 𝑥-axis, 𝑅𝑥, and translating in the direction 

of 𝑧-axis by adding the height, as Equation (2-2): 

𝑣𝑖,𝑗 = [

�̂�𝑖,𝑗
�̂�𝑖,𝑗
�̂�𝑖,𝑗

] = 𝑅𝑥 × 𝑣𝑖,𝑗 + [
0
0
ℎ
] = [

1 0 0
0 𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛽)

0 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)
] × [

𝑥𝑖,𝑗
𝑦𝑖,𝑗
𝑧𝑖,𝑗
] + [

0
0
ℎ
]       (2-2) 

The sensor is also rotated by an angle, 𝜆, along the 𝑧-axis (see Figure 2-3). In principle, the front 

of the sensor (the measurements corresponding to the horizontal angle of 0 or 𝛼𝑐ℎ𝑖 = 0), face the 
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center of the intersection. Then, to align and overlay the LiDAR point cloud with the intersection 

layout (polygon maps in GIS format), the same rotation is applied as Equation (2-3): 

𝑣𝑖,𝑗 = [

�̂̂�𝑖,𝑗

�̂̂�𝑖,𝑗

�̂̂�𝑖,𝑗

] = 𝑅𝑧 × 𝑣𝑖,𝑗 = [
𝑐𝑜𝑠(𝜆) 𝑠𝑖𝑛(𝜆) 0
− 𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) 0

0 0 1

] × [

�̂�𝑖,𝑗
�̂�𝑖,𝑗
�̂�𝑖,𝑗

]        (2-3) 

2.6.2 Spatial data calibration 

The spatial data calibration of LiDAR point clouds is the transformation of the x-y-z coordinates 

of the LiDAR point cloud (𝑣𝑖,𝑗 in Equation (2-3)) into the World Geodetic System 1984 (WGS-84 

– EPSG:4326), used in the Global Positioning System (GPS).  

First, the x-y coordinates (Longitude-Latitude) of the LiDAR setup point (in WGS 84 format) are 

converted to one of the North American Datum 1983 map projections for Montreal (NAD-

83/MTM Zone 8 – EPSG:32188). Second, the x-y coordinates of the LiDAR point cloud are added 

with the projected coordinates of the LiDAR setup point. Lastly, the LiDAR points are projected 

to the WGS-84 map base projection system. This procedure produces a projected point cloud that 

can be easily mapped and matched with the intersection’s elements. 

Figure 2-5 (a & b) illustrates the polygons defined in one of the intersections where the LiDAR 

system was installed.  Using Google My Map, the boundaries of all road elements are precisely 

reconstructed. The location of the LiDAR and camera setup is defined and visualized by a point 

layer. The road elements defined by a polygon geometry type are streets, bike lanes, sidewalks, 

crosswalks, curbs, and the inner area of the intersection. The union of all road elements at one 

intersection forms the coverage area. Any point measured outside the coverage area is eliminated 

by overlaying the projected point cloud of LiDAR measurements with the polygon layer of the 

coverage area. 

Additionally, the x-y trajectories of the road users are converted to WGS-84 and overlayed by 

polygons of road elements in the intersection. As a result, each point in the trajectory is tagged 

with a geospatial label that helps to follow road users’ movements in the intersection. The 

geospatial labels of a trajectory’s points help study the traffic movements of road users, especially 

active/vulnerable road users.  
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a) Map View b) Satellite View 

Figure 2-5 Geo-spatial calibration of all road elements in an intersection 

2.6.3 Background modeling 

As part of the methodology, a 3D background modeling is implemented based on Gaussian 

Mixture Models (GMMs) introduced by Staufer et el. (34). In the 3D background model, the 

distribution of the distance measured by each pixel (𝑖𝑡ℎ laser channel at 𝑗𝑡ℎ azimuth) can be 

associated with a multimodal Gaussian distribution (more than one background point). Building a 

3D Gaussian mixture background model in a point cloud environment is time-intensive. This 

section proposes an alternative and fast algorithm to the identical problem. 

Figure 2-6 (a) illustrates a scenario in which the LiDAR is observing two objects around an 

azimuth (𝛼𝑗) at two consecutive frames. In this example, the 𝑖𝑡ℎ laser channel of the LiDAR sensor 

reports 𝑑1 at azimuth 𝛼𝑗 − 𝜖 in the first frame and reports 𝑑2 at azimuth 𝛼𝑗 + 𝜖 in the second frame. 

The azimuth difference, 𝜖, is smaller than the horizontal resolution (𝛿𝛼) of the LiDAR which is 

0.2°. In most cases, when there is a slight deviation in the azimuth direction, the LiDAR beam still 

reaches the same object, and the observed distance data remains fixed (𝑑1 ≅ 𝑑2).  

However, Figure 2-6 (a) shows an example that more than one distance value can be expected 

from the same pixel (the 𝑗𝑡ℎ azimuth of the 𝑖𝑡ℎ channel). In this example, there is an edge (moving 

from one object’s surface to another), and the LiDAR beam reaches both sides of it, 𝑑𝑐ℎ𝑖,𝛼𝑡1  and 

𝑑𝑐ℎ𝑖,𝛼𝑡2 , at time 𝑡1 and 𝑡2. The edge of street poles, signs, walls, and trees’ leaves create similar 
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patterns in their point cloud. Most importantly, shaking and vibration of the LiDAR can result in 

the same pattern.  

  

a- The distance measurement at azimuth 𝛼𝑗 b- Sample LiDAR segmentation 

Figure 2-6 Sample LiDAR measurement and segmentation of channel i 

The coverage area of each laser channel per rotation is described as a circular plane within a polar 

coordinate system, where the radius and angle correspond to the LiDAR’s distance and azimuth 

(Figure 2-6 (b)). The azimuth range is 360° and the distance range (𝑑𝑚𝑎𝑥) depends on the 

intersection size. In this study, the distance range is capped at 50 meters, except for intersections 

103 and 110. 

For the 3D background modeling, each plane is partitioned into small circular segments, where the 

angular and radius dimensions of this partitioning are set as 0.2° and 0.1𝑚 (matching the sensor’s 

angular and distance resolution), respectively. As a result, each circular plane is divided into 

1800 × 500 segments ((360°/0.2°) × (50𝑚/0.1𝑚)), forming a 2D matrix called the background 

matrix. There are 16 or 32 background matrices, one per LiDAR channel.  

In the first step, an initial set of 3000 frames collected in the first five minutes is sampled from the 

data for the 3D background modeling. Azimuth and distance values are discretized for each frame 

and converted to azimuth and distance indices (𝛼𝑖𝑑 and 𝑑𝑖𝑑). These indices correspond to the 

segment in which the LiDAR measurement belongs. Figure 2-6 (b) illustrates the operation of the 

sensor when the 𝑖𝑡ℎ channel is reporting a distance of 14.55𝑚 at an azimuth of about 44.9°. In this 

case, the azimuth value belongs to the segment between 44.8°-45° angles and 14.5𝑚-14.6𝑚 
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radiuses. The azimuth and distance indices of the corresponding background segment are 224 and 

145 (𝛼𝑖𝑑 = 44.8°/0.2° = 224 and 𝑑𝑖𝑑 = 14.5𝑚/0.1𝑚 = 145). 

The frequency of observation for each circular segment over the initial set of frames is tallied and 

saved as a 3D matrix called 𝐵𝐺𝑓𝑟𝑒𝑞 , where its dimension is 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × [1800 × 500]. For 

example, if 𝑑2,224 (the 224th horizontal measurement of the 2nd channel) is equal to 14.55𝑚, then 

in the 2nd background frequency matrix (𝐵𝐺𝑓𝑟𝑒𝑞), the value of the segment [224,145] is increased 

by one.  

Eventually, the background frequency matrices show the frequency of observations belonging to 

each segment over the initial set of frames. For example, 𝐵𝐺𝑓𝑟𝑒𝑞[2, 224, ∶] is a vector containing 

the observation frequency of every segment the 2nd LiDAR channel reaches at an azimuth equal to 

44.8° and along the distance/radius axis. 

Segments lacking observations are excluded (empty space). The remaining segments are clustered 

into groups of segments based on Euclidean distance between them along the radius axis. The 

maximum number of clusters of pixels per channel-azimuth pair is restricted to five. All clusters 

characterized by high frequency build the 3D background model, and the remaining clusters are 

omitted from the background model (temporary objects in the initial set). 

Ultimately, the 3D matrix of observations (denoted as 𝐵𝐺𝑓𝑟𝑒𝑞 with 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × [1800 ×

500] pixels) is transformed into the 3D background matrix of distances (denoted as 𝐵𝐺𝑑𝑖𝑠𝑡 with 

[𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 1800] × 5 cells), where its contents are frequent distance values (clusters’ centroid). 

In cases where a channel-azimuth pair has, for instance, only three individual clusters, the last two 

cells are filled with zero and excluded from the foreground detection step. 

2.6.4 Road user detection and clustering 

Table 2-3 presents road user detection and clustering steps. The process of object detection is a 

matrix comparison between the new LiDAR distance measurement and the background models. 

A cell (pixel) is part of a foreground object if the difference between the measurement and the 

background model is bigger than a pre-defined threshold. Otherwise, it corresponds to part of the 

background (Table 2-3: 7-9). The threshold is defined based on the standard deviation of each 
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Gaussian mode in the Gaussian Mixture Model (GMM). The output of this step is a two-

dimensional binary matrix of zero/one values (𝐹𝐺𝑚𝑎𝑠𝑘), where one corresponds to foreground 

pixel and zeros are the background measurements. Then, a de-noising filter is applied to the 

foreground mask frame (Table 2-3: 10). If no other detections are nearby, the pixel is considered 

a false detection and should be removed from the foreground mask.  

Since the point cloud of the foreground object represents the road users (pedestrians, cyclists, or 

vehicles), they have spatial distribution in the x-y-z coordinate system. Therefore, a multi-level 

spatial clustering algorithm based on Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) is applied to the x-y-z coordinates of all the foreground points (35). The DBSCAN is 

a powerful clustering method for spatial data and can filter out outliers. DBSCAN requires three 

hyperparameters: a distance metric, a minimum distance threshold between clusters, and a 

minimum number of samples for a cluster. The fine-tuning of these three hyperparameters 

occurred during the clustering algorithm’s development and evaluation stages. 

The clustering algorithm, incorporated into the LiDAR system, combines three levels of DBSCAN 

with varying inputs to cluster road users effectively. The three-level clustering algorithm involves 

clustering pedestrians and cyclists characterized by smaller point clouds and clustering cars and 

trucks distinguished by larger point clouds.  

A DBSCAN is applied with a Squared Euclidean distance metric in level I, utilizing a 0.4m 

distance threshold and a minimum sample size of six. This stage is designed to cluster pedestrians 

and cyclists, which are smaller point clouds in closer proximity compared to vehicles. Levels II 

and III apply two DBSCANs with the Euclidean distance metric, with the objective of clustering 

cars and trucks. These levels incorporate minimum sample sizes of 4 and 8 and minimum distance 

thresholds of 1m and 1.75m, respectively. Finally, the three clustering labels are combined to 

assign a singular cluster label to the point cloud. Clusters in Level I are considered for a potential 

merging if they share common clusters in both Level II and Level III. 

After assigning a cluster label to each point, the point clouds of each cluster are separated and 

further analyzed to calculate geometric features. Initially, a convex hull polygon is constructed 

around 𝑗𝑡ℎ point cloud, with its centroid, 𝐶𝑐𝑣𝑥ℎ𝑗 = [𝑥𝑐𝑣𝑥ℎ𝑗 , 𝑦𝑐𝑣𝑐𝑥𝑗], representing the object’s 
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position at each frame. Additionally, the object’s height is determined as the 95th percentile of the 

z-coordinate of the points in the cluster. 

Table 2-3 Road user detection, clustering, and feature extraction 

Steps Operation/Process 

1 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 16 𝑜𝑟 32 

2 for lidar frame in the database: 

3 read azimuth vector as 𝑎𝑉 where its dimension is (1 × 1800) 

4 read distance matrix as 𝑑𝑀 where its dimension is (𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 1800) 

5 convert azimuth values [0.0°–360°) to indices: 𝑎𝑄 = ⌊𝑎𝑉/0.2°⌋ 

6 convert distance values [0m–50m) to indices: 𝑑𝑄 = ⌊𝑑𝑀/0.1m⌋ 

7 read the background model: 𝐵𝐺𝑑𝑖𝑠𝑡
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐵𝐺𝑑𝑖𝑠𝑡[: ,1: 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑎𝑞] 

8 compute the Euclidean distance matrix: Δ𝑑 = 𝑑𝑄 − 𝐵𝐺𝑑𝑖𝑠𝑡
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

9 detects foreground mask: 𝐹𝐺𝑚𝑎𝑠𝑘 = Δ𝑑 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

10 apply a 3 × 9 denoising filter to remove isolated detections and noises 

11 convert foreground mask to point cloud with x-y-z- coordinates 

12 apply a three-level clustering algorithm based on DBSCAN 

13 for 𝑗𝑡ℎ clusters of the current frame: 

14 extract the x-y coordinate of the cluster centroid: 𝐶𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗  

15 build the convex hull polygon and extract the centroid of the polygon  

16 run Singular Value Decomposition (SVD) 

17 compute the length, width, height, and orientation of the road users 

18 build the rectangle boundary surrounding the road user. 

Road users, especially vehicles, have a rectangular shape. However, to determine the length and 

width of these road users, it is initially assumed that they have an oval shape in the x-y plane. 

Therefore, the Singular Value Decomposition (SVD) is used to calculate the diameters and 

orientation of this oval, utilizing the concept of Eigenvectors (36). First, the covariance matrix of 

the x-y coordinates of the 𝑗𝑡ℎ clustered point cloud is calculated, as Equation (2-4):  

𝐶𝑜𝑣𝑗 = [𝑋𝑗 − �̅�𝑗 , 𝑌𝑗 − �̅�𝑗]
𝑇
∙ [𝑋𝑗 − �̅�𝑗 , 𝑌𝑗 − �̅�𝑗] = [

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌)

]      (2-4) 

For a clustered point cloud, the eigenvalues (𝜆1 and 𝜆2) and eigenvectors (𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗ ) of the 

covariance matrix of the x-y coordinates are computed using Singular Value Decomposition 

(SVD). These eigenvalues and eigenvectors are utilized to calculate the object’s length (𝑙𝑗), width 

(𝑤𝑗), orientation (𝜃𝑗) using Equations (2-5 & 2-6): 
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{
𝑙𝑗 = max(√𝜆1‖𝑢1⃗⃗⃗⃗ ‖2, √𝜆2‖𝑢2⃗⃗⃗⃗ ‖2)

𝑤𝑗 = min(√𝜆1‖𝑢1⃗⃗⃗⃗ ‖2, √𝜆2‖𝑢2⃗⃗⃗⃗ ‖2)
            (2-5) 

𝜃𝑗 = arctan(𝑢1
𝑦
/𝑢1

𝑥)              (2-6) 

The object’s area and volume are calculated from the length, width, and height. The scaled 

eigenvectors, transferred to the point cloud centroids, are utilized to construct the rectangle 

boundary surrounding the road user by forming its four corners, as described by Equation (2-7): 

𝑃 =

{
 
 

 
 𝑃𝑐1 = 𝐶𝑐𝑣𝑥ℎ𝑗 + (√𝜆1 × ‖𝑢1⃗⃗⃗⃗ ‖2 +√𝜆2 × 𝑢2⃗⃗⃗⃗ )

𝑃𝑐2 = 𝐶𝑐𝑣𝑥ℎ𝑗 + (√𝜆1 × ‖𝑢1⃗⃗⃗⃗ ‖2 −√𝜆2 × 𝑢2⃗⃗⃗⃗ )

𝑃𝑐3 = 𝐶𝑐𝑣𝑥ℎ𝑗 + (−√𝜆1 × ‖𝑢1⃗⃗⃗⃗ ‖2 +√𝜆2 × 𝑢2⃗⃗⃗⃗ )

𝑃𝑐4 = 𝐶𝑐𝑣𝑥ℎ𝑗 + (−√𝜆1 × ‖𝑢1⃗⃗⃗⃗ ‖2 −√𝜆2 × 𝑢2⃗⃗⃗⃗ )}
 
 

 
 

         (2-7)  

2.6.5 Feature extraction 

This section discusses the steps for feature extraction, a crucial step for training a machine learning 

model for road user classification presented in the following sections. The main objective of the 

feature extraction is to transform the raw x-y-z point cloud of road users into an informative and 

discriminative feature set for the classification model. The features extracted from sampled 

clustered point clouds (sampled road users) build the classification dataset. 

Section 2.6.4 presents the steps for clustering and computing physical properties of road users’ 

point clouds, including length (𝑙), width (𝑤), height (ℎ), area (ℎ) and volume (𝑣). Theoretically, 

these physical features are invariable for a road user crossing in any of the intersections, whether 

they are being monitored with a 16-channel LiDAR or a 32-channel LiDAR. The only difference 

is that variations in the LiDAR setup and installation or sensor resolution can impact the accurate 

estimation of the road user’s shape. The physical properties are fundamental features included in 

the feature set. 

Moreover, a set of features for road users in different LiDAR setups are extracted from the point 

cloud of road users. The features of this group are not indifferent to various LiDAR setups or types. 

These features include the number of points in the road user’s point cloud (𝑁𝑝), point density (𝜌𝑝), 
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the number of LiDAR channels that are engaged with the road user (𝑁𝑐ℎ), and the number of points 

per LiDAR channel (𝑁𝑝−𝑐ℎ). 

Additionally, a third group of features is added to the feature set that represents the spatial 

information of the road users, including the coordinates of the centroid of the point cloud (𝐶𝑝𝑐𝑙 =

[𝑥𝑝𝑐𝑙, 𝑦𝑝𝑐𝑙]), and the average distance of the points to the LiDAR sensor (�̅�).  

Lastly, a rectangle boundary is estimated for each road user. The centroid of the rectangle is the 

same as the centroid of the surrounding convex hull polygon (𝐶𝑐𝑣𝑥ℎ = [𝑥𝑐𝑣𝑥ℎ, 𝑦𝑐𝑣𝑥ℎ]). The 

deviation of the rectangle’s centroid (which also is the centroid of the convex hull) from the 

centroid of the point cloud (𝐶𝑝𝑐𝑙 = [𝑥𝑝𝑐𝑙, 𝑦𝑝𝑐𝑙]) is another feature added to the feature set and is 

defined as 𝜎𝐶 = √(𝑥𝑐𝑥𝑣ℎ − 𝑥𝑝𝑐𝑙)
2
+ (𝑦𝑐𝑥𝑣ℎ − 𝑦𝑝𝑐𝑙)

2
. For smaller road users, such as pedestrians 

and cyclists, 𝜎𝐶  leans toward zero, while for bigger road users, it increases by the size of road 

users. 

To differentiate between feature vectors produced by different LiDAR systems, a binary dummy 

variable (𝛼𝐿) is being added to the feature set, which is 0 when the system is embedded with a 16-

channel LiDAR sensor and 1 when it is embedded with a 32-channel LiDAR system.  

The feature vector is defined as 𝑓 in Equation (2-8), which also includes an offset, the average 

reflection of the point cloud (�̅�), and the orientation angels of road users (𝜃1 and 𝜃2): 

𝑓 = [1, 𝑙, 𝑤, ℎ, 𝐴, 𝑉, 𝑁𝑝, 𝜌𝑝, 𝑁𝑐ℎ, 𝑁𝑝−𝑐ℎ, 𝑥𝑐, 𝑦𝑐 , �̅�, �̅�, 𝜎𝐶 , 𝜃1, 𝜃2, 𝛼𝐿]               (2-8) 

Figure 2-7 illustrates a box-and-whisker plot representation of features extracted from clustered 

point clouds of road users. These plots summarize key statistics of each feature organized by road 

user class and the type of LiDAR sensor used for data collection. The LiDAR features extracted 

from a point cloud, such as the number of points, number of channels, number of points per 

channel, and point density, are significantly higher in the plots corresponding to 32-channel 

LiDAR. Additionally, the average length, width, height, area, and volume are also higher for 

critical road user classes such as cars, which indicates that the accuracy of shape estimation is 

better in the 32-channel LiDAR system.  
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Figure 2-7 Distribution of road users’ features collected by 16- and 32-channel LiDARs  

2.6.6 Road user sampling and labeling 

In addition to feature extraction from clustered point clouds, sampling and labeling are other 

essential steps for building a road user classification model. Such classification assigns a road user 

class to each clustered point cloud. The road user classes are pedestrians, cyclists, passenger cars 

(or equivalent), and trucks (any size).  

To ensure accurate classification, a substantial number of labeled samples is essential. However, 

labeling point cloud samples on a large scale poses significant challenges. Manually labeling 

extensive point clouds is labor-intensive, especially when identifying and labeling moving objects 

in snapshots containing 28,800 to 57,600 points per frame. The task is further complicated by point 

clouds’ three-dimensional complexity, object ambiguity, absence of color and texture information, 
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and inconsistent point density. As an alternative, specialized commercial software can be 

employed, but this often incurs high costs and is less effective for large-scale labeling than image 

labeling software in camera-based systems. 

The application of fixed roadside LiDAR setups for traffic monitoring at intersections presents an 

opportunity for a semi-automated labeling process. The authors’ previous work involved applying 

an unsupervised learning methodology to monitor traffic at level crossings and extract road users’ 

trajectories (37). As a preliminary step, this research applies the same unsupervised methodology 

to a sample of LiDAR data from every intersection. Then, the trajectory data are overlaid with the 

geo-boundaries of intersections, streets, crosswalks, sidewalks, and bike lanes, similar to those 

illustrated in Figure 2-5. Road user classes are assigned to each trajectory based on their movement 

patterns while observing the speed to exclude unrealistic movements.  

For each user’s trajectory, a confidence factor is assigned. If the pre-label is ‘pedestrian,’ the 

confidence level is high if the trajectory originates from a sidewalk, crosses a crosswalk, and then 

enters another sidewalk. For cars and trucks, the confidence is considered high if the trajectory 

starts from one street, crosses an intersection (including crosswalks), and continues onto another 

street. For cyclists, the confidence factor is high if the trajectory starts and ends on bike lanes and 

includes passing through a defined ‘bike crossing’ area, which connects one bike lane to another. 

Any non-deterministic observations are excluded from the sample pool. 

A certain number of frames are selected randomly from each intersection to build a pool of labeled 

samples. The 100 minutes of four hours of collected data at each intersection are used for sampling. 

On average, one frame is selected every 2.5 seconds, randomly sampling 2,400 frames from the 

100 minutes of data. 

For each selected frame, road users are either sampled or discarded based on the geo-spatial 

location of their point clouds and the associated confidence factor. For example, a pedestrian’s 

point cloud in a selected frame is retained if only it has a high confidence factor and is located on 

the sidewalk. Similarly, the point cloud is chosen for cyclists if it has a high confidence factor and 

is situated on a cycle-track or bike lane; otherwise, it is discarded. For cars and trucks, samples are 

chosen based on whether they are located on the street or near the center of the intersection.  
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Additionally, if the movement pattern of a pedestrian strictly includes transitioning from a 

sidewalk to a crosswalk and back to a sidewalk, then samples are also taken from the point cloud 

on crosswalks, albeit with a reduced confidence factor. Similarly, samples are drawn from the 

point cloud on bike crossings for cyclists whose movement pattern exclusively consists of 

transitioning from a bike lane to a bike crossing and back to a bike lane.  

The distinction between cars and trucks is made using the 85th percentile of road users’ length and 

width measurements in their trajectories. A user is classified as a truck and included in the sample 

if the length exceeds 6 meters and the width exceeds 2 meters. Conversely, a user is classified as 

a car and included if the length is less than 5 meters and the width is less than 2 meters; other 

samples that do not meet these criteria are discarded. 

Table 2-4 presents the results of sampling and labeling. Out of 33,600 sampled frames from 13 

data collection sites, 160,980 road users are detected, clustered, and consequently labeled. The 

sample set has 90,762 pedestrians, 11,614 cyclists, 53,090 cars, and 5,514 trucks. It is expected to 

observe a higher volume of pedestrians and vehicles in the sample set. The “Pedestrian” and “Car” 

classes are down-sampled to 18,000 and 25,000 road users to overcome the sampling imbalance 

and keep high-confidence samples. The balanced feature set contains 60,000 samples. It is worth 

mentioning that these 60,000 samples do not represent unique road users, as one user can be 

sampled in multiple frames. 

Table 2-4 Road user sampling distribution and labeling 

Labeling 

Type 

Road User 

Class Code 

Road User Class 

Name 

Number of Road 

Users (Original 

Pool) 

Number of Road 

Users (Balanced 

Pool) 

16-CH 

LiDAR 

32-CH 

LiDAR 

Aggregated 0 Pedestrian 90762 18000 9001 8999 

1 Cyclist 11614 11500 3221 8279 

2 Car 53090 25000 12941 12059 

3 Truck 5514 5500 2891 2609 

- All Classes 160980 60000 28054 31946 

This approach has its pros and cons. A notable disadvantage is that only select samples per frame 

are labeled, leaving some samples in each frame unlabeled if they have low confidence scores. 

This limitation restricts using the labeled dataset for feature classification rather than applying 
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deep neural networks to entire frames. However, this research adopts the former approach and thus 

is not adversely impacted by this limitation. On the other hand, this method allows for fast labeling 

by drawing conclusions based on solid evidence of the road user’s presence in designated areas. 

Moreover, the methodology is scalable and can be extended to new collection sites. 

2.6.7 Road user classification 

Various classification algorithms are trained on the sampled feature set. These classification 

algorithms are Neural Network Multi-Layer Perceptron (NN-MLP) (38), Support Vector Machine 

(SVM) (39), K-Nearest Neighbor (KNN) (40), Decision Tree (DT) (41), Random Forest (RF) (42), 

Logistic Regression Classifier (43), Stochastic Gradient Descent (SGD) (44), Gradient Boosting 

Machine (GBM) (45), AdaBoost (AB) (46), Light Gradient-Boosting Machine (LGBM) (47), and 

eXtreme Gradient Boosting (XGBoost) (48). 

The classification dataset is split into training, validation, and test sets to select the best-fitted 

classification model. The ratio of this split is 70%, 5%, and 25%, respectively. Each model is 

calibrated on the validation set to tune the best values for hyperparameters, trained with the training 

set to learn the optimal weights and coefficients of the model, and evaluated on the test set to report 

the performance of the classification model and choose the one with the best performance. 

Once calibrated and trained, the best-fitted classification model is integrated into the LiDAR 

system. Afterward, the feature extraction process generates a feature vector for each observed road 

user (discussed in Equation (2-8)). The classification model takes in the road user feature vector 

and predicts the road user class. 

2.6.8 Road user tracking 

The next step of the LiDAR system’s methodology is analyzing the movement patterns of road 

users in an intersection. Road user tracking involves associating point clouds corresponding to the 

same road user across different frames. The outcome of this process is a trajectory comprising the 

centroids of the point clouds. This trajectory offers insights into the movement pattern of road 

users within various sections of the intersection, their velocity and acceleration, their interaction 

with other road users, and their origin and destination while crossing the intersection.  
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Table 2-5 describes the proposed algorithm for the LiDAR system’s road user tracking. The 

algorithm remains inactive (idle) until the first detection of a road user. Upon initiation, new 

trackers are set up for road users entering or appearing for the first time within the coverage area 

(Table 2-5: 1-2). Each tracker is initialized with the current position of the road user, and its 

velocity and acceleration vectors are both set to 0⃗ . 

Table 2-5 Road user tracking  

Step Operation/Process 

1 for the 𝑖𝑡ℎ road user at the first lidar frame in the database:  

2 initiate a road user’s tracker with the observed position, zero velocity, zero 

acceleration, and a Kalman Filter. 

3 for frame 𝑘 in the list of consecutive lidar frames in the database: 

4 predict the positions of the 𝑁 road users using KF: 𝑃𝑘 

5 extract the positions of the 𝑀 observed road users: 𝑂𝑘 

6 calculate the cost matrix for any pair of observation-prediction: 𝐶(𝑂𝑖, 𝑃𝑗) 

7 solve Data Association for the cost matrix 𝐶𝑀×𝑁. 

8 for every pair of associated observation-prediction (𝑂𝑖, 𝑃𝑗 ,): 

update𝑗𝑡ℎ tracker and its KF’s state variables with 𝑖𝑡ℎ observation. 

9 for every unassigned observation: 

initiate a road user’s tracker. 

10 for every unassigned tracker:  

terminate trackers if not associated with an observation for 𝛿𝑓 frames. 

The tracking component of the proposed LiDAR system integrates a six-state Kalman Filter (KF) 

to predict road users’ x-y trajectory (49). The main variables of the Kalma Filter are the vector of 

state variables (𝑋 = [𝑥, 𝑉𝑥, 𝑎𝑥, 𝑦, 𝑉𝑦, 𝑎𝑦]
𝑇
) and vector of observed variables (𝑍). The main 

parameters of the Kalman Filter are the state transition matrix (𝐴) and measurement matrix (𝐶). 

The transition matrix (𝐴) incorporates kinematic equations for constant acceleration movement in 

the Cartesian coordinates system, as Equation (2-9): 

𝐴 =

[
 
 
 
 
 
1 Δt Δ𝑡/2 0 0 0
0 1 Δt 0 0 0
0 1 1 0 0 0
0 0 0 1 Δt Δ𝑡/2
0 0 0 0 1 Δt
0 0 0 0 0 1 ]

 
 
 
 
 

            (2-9) 
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Here Δ𝑡 represents the time interval between consecutive LiDAR measurements. The estimated 

state vector (𝑋+) for the road user in the next frame is derived by applying the transition matrix 

(𝐴) to the current state vector (𝑋), expressed as 𝑋+ = 𝐴𝑋. Since the LiDAR detection component 

solely captures the position of the road user, the observation vector is a two-dimensional array 

denoted as 𝑍 = [𝑥, 𝑦]𝑇.  

The prediction of the road user’s position in the next frame (𝑃+) is derived by applying the 

observation matrix (𝐶) to the estimated state vector, expressed as 𝑃+ = 𝐶𝑋+. The estimated 

velocity vector of the road user (𝑉𝑥,𝑦) is derived by applying the velocity observation matrix (𝐶𝑉) 

to the estimated state vector, expressed as  𝑉𝑥,𝑦 = 𝐶𝑉𝑋. The observation matrices of position and 

velocity vectors are defined as in Equations (2-10 & 2-11): 

𝐶 = [
1 0 0 0 0 0
0 0 0 1 0 0

]           (2-10) 

𝐶𝑉 = [
0 1 0 0 0 0
0 0 0 0 1 0

]           (2-11) 

Before processing a LiDAR frame (e.g., frame 𝑘), the road user trackers from the preceding frame 

(𝑘 − 1) predict the coordinates of the road users’ positions at the succeeding frame. The prediction 

set of 𝑁 active trackers is defined as 𝑃𝑘 = {𝑃𝑗,𝑘 = [𝑥𝑝𝑗 , 𝑦𝑝𝑗]}𝑗=1:𝑁,𝑓𝑟𝑎𝑚𝑒=𝑘−1
, where 𝑃𝑗,𝑘 represents 

the projected position by the tracker 𝑗 at the frame 𝑘.  

At the current frame (𝑘), the LiDAR system captures the point clouds of road users and builds the 

observation set of 𝑀 road users, which is denoted as 𝑂𝑘 = {𝑂𝑖,𝑘 = [𝑥𝑜𝑖 , 𝑦𝑜𝑖]}𝑖=1:𝑀,𝑓𝑟𝑎𝑚𝑒=𝑘
, where 

𝑂𝑖,𝑘 represents the observed position of road user 𝑖 at the frame 𝑘. 

Data association is the next crucial step in the road user tracking component. A data association 

algorithm establishes connections between different detections of the same road user across 

consecutive frames, mitigating known issues of multiple road user tracking, such as temporary 

disappearances of road users due to occlusion.  

A data association method employing the Munkres algorithm (50) is integrated into the tracking 

step (Table 2-5: 3-10). This technique associates the pairs of users from two successive frames by 
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minimizing a customized cost function that utilizes three different distance matrices between 

observations (rows of the matrices) and predictions (columns of the matrices). The base matrix, 

denoted as 𝑑𝑐(𝑂𝑖, 𝑃𝑗), is the distance between each pair of predicted and observed road users’ 

positions in the x-y plane (51). To leverage the LiDAR’s ability to observe the point cloud of the 

road users, the second matrix, denoted as 𝑑𝑃𝐶𝐿(𝑂𝑖, 𝑃𝑗), is defined as the distance between the 

current and previous frames’ point cloud. The point clouds of the prior frame are projected to the 

current frame using the two-dimensional velocity vector estimated by the Kalman Filter. The third 

metric is characterized by the distance between the feature vector of the road users, denoted as 

𝑑𝑓 (𝑂𝑖, 𝑃𝑗), as Equation (2-12): 

𝑑𝑓 (𝑂𝑖, 𝑃𝑗) = 𝛽 ×
1

𝑛𝑓
∑

1

𝛼
× [(1 − exp(−

|𝑓𝑂𝑖
𝑘 −𝑓𝑃𝑗

𝑘 |

min(𝑓𝑂𝑖
𝑘 ,𝑓𝑃𝑗

𝑘 )
)) + (1 − exp(−

|𝑓𝑂𝑖
𝑘 −𝑓𝑃𝑗

𝑘 |

max(𝑓𝑂𝑖
𝑘 ,𝑓𝑃𝑗

𝑘 )
))]

𝑛𝑓
𝑘=1  (2-12) 

where 𝑘 is the feature index, 𝑛𝑓 is the number of features, and 𝛼 denotes the maximum distance 

between two features or between a given feature and infinity, as specified in Equation (2-13). Both 

𝑛𝑓 and 𝛼 scale their right-side expression to 0 and 1. The feature distance matrix, 𝑑𝑓 (𝑂𝑖, 𝑃𝑗), is 

scaled up by 𝛽 = ∑∑𝑑𝑐(𝑂𝑖, 𝑃𝑗) to be aligned within the same range as 𝑑𝑐. 

𝛼 = (1 − exp (−
|∞−𝑥|

min(∞,𝑥)
)) + (1 − exp (−

|∞−𝑥|

max(∞,𝑥)
)) ≅ 1.632      (2-13) 

The overall cost matrix, denoted as 𝐶(𝑂𝑖, 𝑃𝑗), between the pair of observation and prediction is 

determined by summing the three distance matrices, as Equation (2-14): 

𝐶(𝑂𝑖, 𝑃𝑗) = 𝑑𝑐(𝑂𝑖, 𝑃𝑗) + 𝑑𝑃𝐶𝐿(𝑂𝑖, 𝑃𝑗) + (𝛽 × 𝑑𝑓 (𝑂𝑖, 𝑃𝑗))       (2-14) 

First, for the pair of observation-prediction (𝑂𝑖, 𝑃𝑗) identified by the data association, the Kalman 

Filter of 𝑗𝑡ℎ tracker undergoes an update with the observed position of 𝑖𝑡ℎ road user. Each observed 

road user not assigned to a tracker from the previous frame is treated as a new user, leading to a 

tracker initialization. Similarly, each tracker not associated with a new observation is flagged as 

‘not observed’ and terminated if the ‘not observed’ status persists for 𝛿𝑓 frames. 𝛿𝑓 serves as a 

threshold indicating the system’s tolerance for the absence of new observations for a given tracker. 
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It is dynamically adjusted based on estimated speed and distance from the coverage area. However, 

to prevent data association errors, 𝛿𝑓 is constrained to a range of 5 to 15 frames. 

Following the road users’ departure from the intersection, their trajectory is terminated, converted 

to the WGS-84 projection system, and overlayed with the polygons of the intersection elements. 

Therefore, the geospatial information assigned to a user, such as road users’ origin, destination, 

and crossing section, is instrumental in distinguishing pedestrians from other types of road users.  

Second, all the road user classes assigned to each point of the road user’s trajectories are merged 

to create a set of road user classes. The most repeated class in this set is chosen as the representative 

class of the road user. The results of the above two steps are combined to assign a final class to the 

road user. The decision is made by considering the outcomes of the second step while ensuring 

accurate identification of pedestrians, as discussed in the first step. 

2.7 Performance Measure and Evaluation 

The proposed LiDAR-based methodology incorporates several algorithms requiring tuning, 

calibration, training, and evaluation. This section is dedicated to assessing the performance of the 

individual components within the proposed methodology and evaluating the impact of low (16-

channel) and high-resolution (32-channel) LiDAR sensors. 

2.7.1 LiDAR road user detection 

The first component of the evaluation focuses on road user detection, which includes background 

modeling, foreground detection, and clustering algorithms. This evaluation also considers the 

performance of the LiDAR setup. Generally, if a road user crosses a crosswalk and enters the 

intersection, its detection is subject to assessment. Therefore, if the LiDAR is installed in such a 

way that it creates a blind spot in a particular area, any resulting missed detections are factored 

into the analysis. 

Table 2-6 presents the aggregated accuracy of road user detection and clustering by the two 

LiDAR systems at 13 intersections. 150 frames of each intersection were randomly sampled and 

manually compared with synced images from video data. The accuracy of road user detection 

increases by upgrading the LiDAR system with a higher-resolution LiDAR sensor.  
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The 16-channel LiDAR system accurately detected 3,818 road users out of 4,254 (89.8%) and 

clustered them into individual point clouds. On the other hand, the 32-channel LiDAR system 

correctly identified and clustered 3,608 road users out of 3,830 (94.2%). Specifically, the detection 

and clustering rates have increased from 88.7% to 93.0% for pedestrians, 88.5% to 93.6% for 

cyclists, and 90.3% to 95.3% for cars. These results are categorized based on road user classes 

manually observed in the video data. The accuracy of road user classification is discussed in the 

next section. 

Table 2-6 Detection accuracy of LiDAR systems installed at urban intersections 

LiDAR Type Performance Measure Pedestrian Cyclist Car Truck Total 

16-Channel LiDAR Ground Truth 1,848 532 1,705 169 4,254 

LiDAR Detection 1,639 471 1,539 169 3,818 

Detection Accuracy 88.7% 88.5% 90.3% 100.0% 89.8% 

32-Channel LiDAR Ground Truth 1,535 690 1,499 106 3,830 

LiDAR Detection 1,427 646 1,429 106 3,608 

Detection Accuracy 93.0% 93.6% 95.3% 100.0% 94.2% 

Table 2-7 Detection accuracy of LiDAR systems installed at urban intersections 

LiDAR 

Type 

Intersection 

ID 

Intersection Name Pedestrian Cyclist Car Truck Total 

16-Ch 101 Sainte Famille - Milton 88.6% 87.8% 93.5% 100.0% 92.0% 

102 Papineau – Sherbrooke E 83.3% 80.0% 88.4% 100.0% 89.1% 

103 Atwater – Sherbrooke W 81.2% 77.8% 87.5% 100.0% 90.4% 

104 De La Roche – Marie Anne E 90.8% 89.9% 93.9% 100.0% 92.8% 

105 Coloniale – Rachel E 90.2% 90.4% 92.6% 100.0% 92.6% 

106 Girouard - Monkland 87.2% 87.8% 94.1% 100.0% 91.0% 

107 University - Milton 91.5% 90.5% 93.2% 100.0% 91.8% 

32-Ch  108 Hutchison - LaurierE 94.1% 95.9% 95.0% 100.0% 96.6% 

109 Sainte Famille – Prince Arthur 95.2% 92.9% 98.4% 100.0% 97.3% 

110 Parc - PineW 89.6% 93.5% 96.0% 100.0% 93.5% 

111 Saint Denis – Saint Joseph E 92.0% 92.4% 92.9% 100.0% 94.4% 

112 Parthenais – Rachel E 94.4% 96.9% 98.5% 100.0% 96.7% 

113 University - Milton 93.6% 92.7% 96.9% 100.0% 96.4% 
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Table 2-7 presents the results of road user detection for each intersection. The LiDAR systems 

were installed at a similar location but on different dates and times. Both sensors were installed at 

the Rue University–Rue Milton intersection (site IDs #107 and #113), where the accuracy of the 

16- and 32-channel LiDAR systems was 91.8% and 96.4%, respectively. 

Intersections identified by IDs 102, 103, 110, and 111 demonstrate a below-average performance 

in detecting and reconstructing the point clouds of road users. The average intersection and 

crosswalk area of these four intersections is 756m2, significantly higher than the rest, whose 

average is 312m2 (Table 2-2). Therefore, the LiDAR systems had to be installed relatively farther 

from the center of the interactions (Table 2-2). With an increase in the LiDAR distance to the 

intersection, the gap between LiDAR channels increases. 

2.7.2 Road user classification – base scenario 

This section aims to assess the effectiveness of the road user classification component of the 

LiDAR system. The primary focus of this evaluation involves selecting and calibrating the optimal 

classification algorithm from the models introduced in Section 2.6.7. Each classification model is 

calibrated and trained using 16-channel LiDAR samples and 32-channel LiDAR samples 

separately. 

In the base scenario, the classification feature set is split into 70% training, 5% validation, and 

25% test samples. The hyperparameters of each classification model are fine-tuned using training 

and validation sets. Afterward, the classification models learn the optimal coefficients using the 

training set. Finally, each calibrated and trained model is applied to the unseen samples of the test 

set, and their Correct Classification Rates (CCR) are compared to choose the most fitting model. 

Table 2-8 presents the results of the road user classification in the base scenario. The CCR on the 

test set is the primary indicator for choosing the best classification model. The XGBoost classifier 

outperforms every other model. The CCR of XGBoost for datasets with samples from the 16-

channel and 32-channel was 0.91 and 0.95, respectively. In general, the performance of each 

classifier is higher on the dataset comprised of samples from 32-channel LiDAR. This observation 

aligns with the expectation that higher-resolution LiDAR can better reconstruct the point cloud of 

road users. 
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Table 2-8 Base scenario – correct classification rates of models 

Model Name↓ Train Test 

LiDAR Type → 16-CH 32-CH 16-CH 32-CH 

XGB 0.95 0.98 0.91 0.95 

NN-MLP 0.90 0.91 0.88 0.90 

SVM 0.73 0.74 0.74 0.75 

KNN 0.83 0.85 0.82 0.85 

DT 0.94 0.97 0.87 0.89 

RF 0.85 0.81 0.85 0.82 

LRC 0.80 0.79 0.80 0.81 

SGDC 0.70 0.70 0.70 0.72 

GBC 0.88 0.90 0.89 0.90 

LGBM 0.90 0.92 0.88 0.90 

Table 2-9 presents the detailed CCR of the XGBoost classifier for each road user class on the test 

datasets. The “Cyclist” and “Pedestrian” classes have a lower CCR than the rest. In the case of 

higher resolution LiDAR, 133 of 2,240 “Pedestrian” samples are classified as “Cyclist,” and 132 

of 843 “Cyclist” samples are classified as “Pedestrian.” 

Table 2-9 Base scenario – correct classification rates per each road user class 

  Training Set Test Set 

Class Name 
LiDAR→ 

Label ↓ 
16-CH 32-CH 16-CH 32-CH 

Pedestrian 0 0.95 0.97 0.89 0.92 

Cyclist 1 0.95 0.97 0.85 0.93 

Car 2 0.95 0.98 0.94 0.98 

Truck 3 0.95 0.98 0.94 1.00 

All Classes - 0.95 0.98 0.91 0.95 

2.7.3 Road user classification – alternative scenarios for performance evaluation 

Two scenarios are devised to evaluate the robustness of the selected classification model 

(XGBoost). The first scenario (I) evaluates the importance of feature selection and the impact of 

different groups of features on the model’s performance. For a better comparison, the features are 

grouped into four following categories: 
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• Physical Features: length, width, height, area, and volume (denoted as [𝑙, 𝑤, ℎ, 𝐴, 𝑉]). 

• LiDAR Features: number of points, density of points, number of channels, and number of 

points per channel (denoted as [𝑁𝑝, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑝, 𝑁𝑐ℎ, 𝑁𝑝−𝑐ℎ]).  

• Spatial Attributes: the x-y coordinate of road users’ centroid (denoted as [𝑥𝑐, 𝑦𝑐]).  

• Remaining Features: average distance, average reflection, orientation angles, centroids’ 

deviance (denoted as [�̅�, �̅�, 𝜃1, 𝜃2, 𝑑𝐶𝑐𝑥𝑣ℎ,𝐶𝑝𝑐𝑙]). 

Table 2-10 summarizes the CCR of XGBoost on the given dataset (75%/25% training-test split) 

in Scenario I, where the classification model is trained with the original feature set except for each 

group of features specified in the first column. The CCR on the 32-channel dataset is 0.95. By 

excluding physical features, the CCR decreases by -0.06 and drops to 0.89, indicating that the 

features of the physical group significantly impact the model’s training. By excluding the group 

of LiDAR features, spatial attributes, and the fourth group, the CCR decreases by -0.03, -0.03, and 

-0.02, respectively.  The reductions in CCR resulting from removing the last three groups of 

features are below 0.03. 

Nevertheless, the classifier trained on these features (excluding the physical group) demonstrated 

a CCR of 0.89, inferring that the union of the last three groups proves resourceful for the 

classification. The importance of physical features is greater for the classifier trained with samples 

from a lower-resolution LiDAR. The exclusion of the physical features decreases the CCR by -

0.09 for the feature sets with only 16-channel samples. 

Table 2-10 Scenario I – Feature importance and their impact on CCR of the test set 

Feature Set 16-CH 32-CH 

CCR with all Features 0.91 0.95 

CCR 

Reduction 

by excluding 

Physical Features -0.09 -0.06 

LiDAR Features -0.03 -0.03 

Spatial Features -0.03 -0.03 

Other Features -0.02 -0.02 

Scenario II discusses the results of a Leave-One-Out analysis in which, at each step, all the samples 

of one intersection are separated and defined as the test set, while the samples from the other 
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intersections collected by the same LiDAR sensor form the training set. Therefore, no sample from 

the test intersection is observed during the training phase, which makes it challenging for the 

classification model to predict road user classes accurately. 

Table 2-11 reports the results of the Leave-One-Out analysis. The sample sets include the original 

features set except for Spatial attributes (the coordinates of the road users’ centers: (𝑥𝑐, 𝑦𝑐)) since 

these attributes are specific to the intersections. The average CCR of each scenario is compared 

against the CCR of the model trained without Spatial features (from Table 2-10). Generally, the 

average performance of the 16-channel and 32-channel LiDAR systems is reduced by 0.08 and 

0.06, respectively. Specifically, the Correct Classification Rate drops significantly when an 

intersection differs (with a larger area) from the others (Site IDs 102, 103, 110, and 111). 

Table 2-11 Scenario II – Leave-One-Out analysis 

Test 

Site ID 
Intersection Name Area (m2) 

Distance to 

Intersection (m) 
16-CH 32-CH 

101 Sainte Famille - Milton 278 13.1 0.81 - 

102 Papineau – Sherbrooke E 690 17.1 0.77 - 

103 Atwater – Sherbrooke W 765 21.5 0.78 - 

104 De La Roche – Marie Anne E 268 11.5 0.83 - 

105 Coloniale – Rachel E 246 12.3 0.79 - 

106 Girouard - Monkland 412 15.6 0.83 - 

107 University - Milton 296 10.7 0.83 - 

108 Hutchison - LaurierE 471 19.2 - 0.87 

109 Sainte Famille – Prince Arthur W 355 14 - 0.87 

110 Parc - PineW 899 40.1 - 0.85 

111 Saint Denis – Saint Joseph E 669 18.5 - 0.80 

112 Parthenais – Rachel E 284 13.4 - 0.86 

113 University - Milton 231 8.7 - 0.88 

Average CCR Leave-One-Out 0.80 0.86 

Original CCR without Spatial Features 0.88 0.92 

Difference between Average CCR and Original CCR -0.08 -0.06 

2.7.4 Road user tracking performance evaluation 

This section discusses an evaluation of the performance of the road user tracking component of 

the methodology, focusing on both low- and high-resolution LiDAR sensors. In order to assess the 
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overall efficacy of the proposed methodology in traffic monitoring contexts, a ground truth dataset 

comprising road user counts within the first 30-minute segment of data collection at each 

intersection is being compiled manually from synchronized recorded video. The number of trucks 

is significantly lower than cars. Therefore, trucks and cars are combined and reported as vehicles. 

Table 2-12 presents the results of manual counts and LiDAR trajectory counts. A comparison is 

conducted by calculating the Percentage Difference (PD), which is defined as the difference 

between the LiDAR and the manual counts and divided by the manual counts. The PD manifests 

as a negative value in scenarios where the LiDAR system undercounts. In contrast, a positive PD 

signifies an overcounting by the system. Undercounting is often linked to errors in the detection 

or classification of road users. Overcounting can be associated with road user tracking failure in 

constructing the entire trajectory and further splitting it into two road users for a short period. 

A substantial volume of vehicular traffic was observed in intersections 102, 103, 110, and 111. 

This observation was particularly evident at intersections 102 and 103, where a considerable count 

of vehicles was recorded within thirty minutes. It is pertinent to mention that the data collection 

employing the higher resolution LiDAR system was conducted during the fall of 2021 when the 

pandemic notably influenced traffic volumes. Additionally, a few of the intersections were selected 

due to their higher volume of cyclists (IDs: 105, 106, 107, and 111).   

Generally, the lower-resolution LiDAR tends to overcount cyclists. This issue often arises due to 

the clustering of passenger cars. When a passenger car is partially in the LiDAR’s blind spot, its 

front and rear may be split into two distinct point clouds, resembling those of cyclists. 

Additionally, pairs of pedestrians are sometimes misclassified as cyclists. However, it is worth 

mentioning that the total number of cyclists observed at some intersections was low, resulting in a 

large absolute percentage difference when misclassifying another road user as a cyclist. 

The last two rows of the table report the Weighted Average Absolute Percentage Deviation for the 

two systems, where the absolute percentage error for each road user class at each intersection is 

weighted by the total volume of road users of the corresponding intersection divided by the total 

per each LiDAR system. 
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For pedestrians, the WAAPD of the lower and higher resolution LiDARs is 7% and 5%, 

respectively. For cyclists, the WAAPD is 23% for the lower resolution LiDAR and 7% for the 

higher resolution. For vehicles, the WAAPD is 10% for the lower resolution LiDAR and 6% for 

the higher resolution. The average of WAAPD over three categories is 13% for the lower resolution 

and 6% for the higher resolution. 

Table 2-12 Aggregate count validations in the first 30-minute interval per intersection 

Site ID - 
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Ground Truth – Manual 

Counts 
LiDAR Trajectory Counts Percentage Error 

101 – 16-ch 446 202 158 86 430 206 154 70 -4% 2% -3% -19% 

102 – 16-ch 1,847 1,556 220 71 2,062 1,754 230 78 12% 13% 5% 10% 

103 – 16-ch 1,309 1,154 134 21 1,184 1,043 112 29 -10% -10% -16% 38% 

104 – 16-ch 379 224 99 56 362 199 97 66 -4% -11% -2% 18% 

105 – 16-ch 597 295 186 116 583 288 162 133 -2% -2% -13% 15% 

106 – 16-ch 524 340 150 34 575 370 162 43 10% 9% 8% 26% 

107 – 16-ch 664 265 284 115 691 261 274 156 4% -2% -4% 36% 

108 – 32-ch 376 211 129 36 373 214 128 31 -1% 1% -1% -14% 

109 – 32-ch 290 131 135 24 291 134 129 28 0% 2% -4% 17% 

110 – 32-ch 1,094 871 153 70 1,162 924 166 72 6% 6% 8% 3% 

111 – 32-ch 1,167 930 106 131 1,223 993 100 130 5% 7% -6% -1% 

112 – 32-ch 309 155 44 110 291 147 44 100 -6% -5% 0% -9% 

113 – 32-ch 484 167 158 159 453 159 150 144 -6% -5% -5% -9% 

Total – 16-

ch 
5,766 4,036 1,231 499 5,887 4,121 1,191 575 - - - - 

Total – 32-

ch 
3,720 2,465 725 530 3,793 2,571 717 505 - - - - 

WAAPD 16-ch 13% 10% 7% 23% 

WAAPD 32-ch 6% 6% 5% 7% 

Figure 2-8 illustrates two snapshots of each LiDAR system’s performance, featuring several road 

users simultaneously. The trajectories are superimposed onto a base map of each intersection, 

calibrated, and segmented into its various elements using the NAD-83/MTM Zone 8 – EPSG:32188 

projection. Figure 2-8 (a) displays the paths of both cyclists and pedestrians during a bike signal 
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phase, highlighting a group of cyclists traversing the intersection in the designated bike crossing 

area. Figure 2-8 (c) shows the busiest intersection captured during the data collection period with 

the higher resolution LiDAR system. 

 

a) 32-channel LiDAR system 

 

b) 16-channel LiDAR system 

 

c) 32-channel LiDAR system 

 

d) 16-channel LiDAR system 

Figure 2-8 Snapshots of LiDAR systems’ outputs 

The trajectories of road users are constructed and continuously updated by the tracking algorithm, 

which necessitates an evaluation of the tracking component itself. In this tracking framework, each 
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road user is associated with two sets of x-y coordinates: the observed x-y coordinates, representing 

the centroids of the clustered point cloud for each user, and the predicted x-y coordinates, estimated 

using the Kalman Filter. The primary goal is accurately predicting the road user’s next position, 

ensuring it closely matches the subsequent observation. This level of accuracy is crucial for the 

data association algorithm to link each observation reliably with the correct prediction. 

The Average Displacement Error (ADE) is a key metric for evaluating performance in object 

tracking problems, as outlined in reference (52). This metric measures the deviation between the 

model’s predicted positions and the observed positions of road users. For a specific road user 𝑘, 

𝐴𝐷𝐸𝑘 is calculated as Equation (2-15): 

𝐴𝐷𝐸𝑘 =
1

𝑁𝑘
∑ √(𝑥𝑃𝑖 − 𝑥𝑂𝑖)

2
+ (𝑦𝑃𝑖 − 𝑦𝑂𝑖)

2𝑡𝑖+𝑁𝑘Δ𝑡
𝑡=𝑡𝑖

       (2-15) 

where 𝑡𝑖 is timestamp, 𝛿𝑡 is the sampling time of LiDAR (𝛿𝑡 = 0.1), 𝑁𝑘 is the number of frames 

that LiDAR is observing the road user, [𝑥𝑂𝑖, 𝑦𝑂𝑖] correspond to the observed and [𝑥𝑃𝑖, 𝑦𝑃𝑖] is the 

prediction position of the road user.  

The Prediction Accuracy (PA) is the percentage of predictions that fall within specific tolerances 

of their respective observed positions. For each point along their trajectories, the distances between 

the observed and predicted coordinates are evaluated against reference values unique to each road 

user. These reference values are set as the 50th percentiles of the road users’ displacements per 

frame while the LiDAR observed them. 

Table 2-13 reports the overall performance of the LiDAR systems based on ADE and PA metrics. 

This report compiles data from the first 30 minutes of processed LiDAR data at each intersection, 

subsequently aggregated for each type of LiDAR system. This report is auto-generated, and the 

observation and prediction of the LiDAR system are compared. No manual ground truth is used to 

generate this report.  

The LiDAR systems constructed trajectories for over 9,680 road users, encompassing more than 

660,000 data points. On average, road users are captured in 69 LiDAR frames, equivalent to 6.9 

seconds. The table also reports the percentage of unobserved data points within the trajectory files 

for each user. Generally, the higher resolution LiDAR system exhibits an 11% rate of missing 
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trajectory points, compared to 15% for the lower resolution system. These percentages are with 

respect to those counted trajectories. Some users may have trajectories that are not detected 

(missing detection) and can not be summarized in this table. 

The ADE for the 32-channel and 16-channel LiDAR systems are 0.37m and 0.40m, respectively. 

Notably, the ADE for pedestrians is significantly lower than for other road users, which can be 

attributed to their smaller size and slower speed in comparison to the other three user categories. 

Furthermore, the ADE for cyclists is higher, typically ranging from 0.33m to 0.35m. This increase 

is mainly attributable to cyclists’ higher speeds than pedestrians. The ADE for cars and trucks is 

0.46m and 0.43m at intersections where higher resolution LiDAR was installed and 0.50m and 

0.42m, respectively when lower resolution LiDAR was installed. 

The weighted averages of the PA (50th percentile) are 0.78 and 0.80 for the lower and higher 

resolution LiDAR systems, respectively. This indicates that for 80% of the trajectory points, the 

predicted positions of the road users were as close as 50% of their average displacement. 

Table 2-13 Performance metrics of road user tracking – 30-minute period 

Performance Metric User Class → 

LiDAR ↓ 

Car Truck Cyclist Pedestrian Total or 

Weighted 

Average 

LiDAR counts 
16 3,812 309 575 1,191 5,887 

32 2,351 220 505 717 3,793 

Number of observed 

trajectory points 

16 162,082 15,816 42,548 150,835 371,281 

32 121,127 11,561 52,629 109,670 294,987 

% unobserved 

trajectory points 

16 15% 15% 16% 11% 15% 

32 10% 9% 9% 13% 11% 

ADE (m) 
16 0.50 0.42 0.35 0.11 0.40 

32 0.46 0.43 0.33 0.11 0.37 

PA (50th percentile) 
16 0.74 0.72 0.78 0.82 0.76 

32 0.76 0.75 0.83 0.83 0.78 

2.8 Conclusion and Future Work 

This research introduces a supervised learning approach for monitoring traffic at intersections, 

employing LiDAR technology with VLP-16 and VLP-32c sensors. An extensive data collection 

initiative led to the development and installation of LiDAR proof-of-concept systems at various 

intersections in Montreal. The methodology implemented for the LiDAR system includes 
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background modeling, road user detection, classification, and tracking. The 3D background 

modeling involves the creation of a customized Gaussian Mixture Model in a three-dimensional 

spherical coordinate system. Road users are clustered using multi-level algorithms based on 

DBSCAN. A classification model, developed based on XGBoost, is calibrated with ground truth 

data and then applied to the clustered point clouds. Lastly, based on Kalman Filters, the tracking 

component identifies road users within the coverage area and constructs their trajectories. 

The empirical results from the outputs of the system are insightful. The 16-channel LiDAR system 

achieved an accuracy rate of 89.8% in detecting and clustering road users, while the 32-channel 

system surpassed this with a 94.2% accuracy rate. This improvement was especially notable in 

detecting pedestrians, cyclists, and cars.  

The XGBoost classifier proved to be the most effective model, showing high Correct Classification 

Rates (CCR) across various road user categories. The CCR of all classes is 0.95 and 0.91 for high 

and low-resolution LiDARs, respectively. However, the study also revealed challenges in 

classifying pedestrians and cyclists. In the case of pedestrians, the CCR of the classifier is 0.92 

and 0.89 for high and low-resolution LiDARs, respectively. In the case of cyclists, the CCR of the 

classifier is 0.93 and 0.85 for high and low-resolution LiDARs, respectively. 

This research identified undercounting and overcounting errors, underscoring the complexities of 

accurately tracking and classifying road users. The low-resolution LiDAR mainly exhibits an 

overcounting of cyclists. The weighted average absolute percentage difference is 6% and 13% for 

high and lower resolution, respectively. 

Additionally, the Average Displacement Error of the tracking component reports an average of 

0.37m for the 32-channel system and 0.40m for the 16-channel system. On average, trajectories 

captured by high-resolution LiDAR experience an 11% unobserved state, while those captured by 

low-resolution LiDAR experience a 15% unobserved state, during which no detection is made and 

only prediction is performed. 

In conclusion, the effectiveness of LiDAR systems, especially the higher performance of the 32-

channel system in detection accuracy and classification, establishes a foundation for future 

developments in traffic analysis. The proposed methodology can be adapted to process and analyze 
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data in real time with a powerful computing machine. This research underscores the potential of 

LiDAR technology in providing detailed and accurate traffic monitoring and its potential for 

improvements in urban traffic monitoring. 
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Link Between Chapter 2 and Chapter 3 

Chapter 2 presented a novel methodology based on 3D LiDAR sensors for traffic monitoring at 

urban intersections. The LiDAR system was installed at various signalized and non-signalized 

intersections in Montreal, Canada. The proposed methodology’s objective includes road user 

detection, clustering, classification, and tracking, each crucial for the comparative study of Chapter 

3. The results of Chapter 2 form a comprehensive data set entered around the road users crossing 

an urban intersection. This data set included road users’ trajectory in x-y coordinates, velocity in 

x-y coordinates, road users’ class as pedestrian, cyclist, car, or truck, and most importantly, the 3D 

LiDAR point cloud representing each road user.  

Chapter 3 examines surrogate safety analysis, an alternative to traditional crash-based methods. 

This chapter adopts a conflict-based approach for safety studies, defining a conflict as an 

interaction between two road users that occurs closely in time and space. Traditionally. The video-

based trajectory of road users has been widely used to study these interactions. However, 

trajectory-based methods are subject to sensitivity and noise. Chapter 3 offers a novel method for 

studying these interactions using the point cloud of road users generated by the methodology 

presented in Chapter 2 when it is applied to urban intersections. The point cloud represents the 

shape of the road users and provides valuable insight into road user interactions, such as an 

accurate measure of their proximity in space, leading to a more precise measurement of their 

proximity in time. These measures are used to calculate surrogate safety indicators reliably, such 

as Time-to-Collision and Post-Encroachment Time.  
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CHAPTER 3: A 3D-LIDAR-BASED METHODOLOGY FOR SURROGATE SAFETY 

ANALYSIS AT INTERSECTIONS WITH HIGH NON-MOTORIZED TRAFFIC 

3.1 Abstract 

Surrogate safety techniques utilize road users’ trajectories to identify conflicts at urban 

intersections. Recent advancements in computer vision have enabled the large-scale collection of 

trajectory data. However, camera-based systems require calibration to convert two-dimensional 

pixel trajectories into x-y coordinates. Additionally, using trajectories would require defining a 

buffer size with an R radius to compensate for the physical shape of the road users. As an 

alternative, LiDAR-based systems are introduced to capture road user trajectories and shapes 

without calibration. 

This paper leverages road users’ shape data collected by LiDAR and corresponding trajectories 

for surrogate safety assessments. A shape-based method is developed to calculate Time-to-

Collision (TTC) and Post-Encroachment Time (PET). The proposed method is then compared with 

traditional centroid-based methods, choosing six different buffer sizes from 1m to 4m. 

The total numbers of post-encroachment time and time-to-collision conflicts between the two 

methods are compared. The comparison of the results with respect to the shape-based method 

highlights that each conflict type requires a custom value of R in the trajectory-based method. For 

example, pedestrians’ and cyclists’ interactions with vehicles require a buffer size of 2m and 2.5m, 

respectively, to mirror the results of the shape-based method, while for vehicle-vehicle conflicts, 

this extends to a range of 3m to 3.5m. However, predefined buffer sizes extend the road users’ 

shape in both directions, capturing irrelevant interactions. Most importantly, the results show that 

centroid-based methods are susceptible to the size of buffer for critical conflicts with TTC or PET 

under 1.5 seconds, whereas for pedestrians and cyclists, choosing the proper buffer size becomes 

challenging for identifying critical conflict. On the other hand, the shape-based method only 

extends road users along their length and limits their width to their actual size, thereby eliminating 

potential false detections of conflicts. This method offers a precise arrival and departure time for 

each road user, which is essential to calculate surrogate safety metrics accurately. 

Keywords: LiDAR-based Surrogate Safety Analysis, Time-to-Collision, Post-Encroachment 

Time, Alternative Technology  
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3.2 Introduction 

The interactions of road users at intersections can result in severe collisions and dangerous 

interactions involving vulnerable road users such as pedestrians and cyclists. Every year, 

thousands of people are seriously injured or killed in preventable crashes in urban and rural traffic 

facilities in Canada. According to the National Collision Database published by Transport Canada, 

from 2012 to 2021, in fatal or injury collisions happening in Canada, 1,461,144 individuals were 

injured, and 18,722 lost their lives. Of the total fatalities, 66.2% were vehicle occupants, 16.7% 

were pedestrians, 2.6% were cyclists, and 11.0% were motorcyclists. Furthermore, 26.6% of total 

fatalities happened at intersections, and more importantly, 39.2% of pedestrian and 46.25% of 

cyclists’ fatalities are results of collisions at intersections (1).    

Various countermeasures, such as traffic controls, geometry changes, and marking, are available 

to address safety issues and prevent injuries at urban intersections. These countermeasures include 

changes in traffic control (e.g., pedestrian signal installation, an all-red clearance interval, a left-

turn phase), geometrics design modifications such as median and curb extensions, and installation 

of bicycle facilities (2). Traditionally, diagnosing safety issues and recommending appropriate 

countermeasures is based on historical crash data and crash-based methods. However, the use of 

collision data poses some challenges documented in the literature, including the underreporting 

issue of crash data, the need for long observations (a few years of crash data), crash data location 

accuracy, accuracy in reporting crash severity, and, more importantly, the reactive nature of crash-

based methods, meaning a crash needs to happen before treating (3).  

As an alternative approach, the application of surrogate safety methods has become more prevalent 

in recent years. This is partly thanks to the advancements in computer vision and machine learning, 

which enables the collection and processing of video data to investigate road user behaviors and 

conflict indicators for surrogate safety analysis. Computer vision techniques and tools for surrogate 

safety analysis using video data have allowed transportation safety engineers to implement 

proactive safety approaches that do not depend entirely on crash data. 

Despite the advantages, a few limitations are associated with video data and automatic video data 

processing. First, the performance of the visual spectrum camera-based system is degraded in low-

light conditions. Moreover, the camera-based system requires manual geometric calibration for 
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each site’s setup to ensure it correctly estimates the x-y coordinates of road users. More 

importantly, regular cameras do not directly provide the road users’ 3D dimensions (shapes), 

which is critical for accurately computing surrogate safety indicators. Camera-based surrogate 

safety methods rely on utilizing road users’ trajectories and defining a buffer around the centroid 

of road users to search for possible conflicts. However, determining the buffer size is a challenging 

task and can vary from one study to another, depending on the criteria defined for the surrogate 

safety indicator and the road users involved in the study. For example, if the buffer size is set to 2 

meters to avoid extending beyond the width of vehicles, the effective length of cars would be 

reduced to 2 meters, which is unrealistic for surrogate safety analysis. 

LiDAR technologies have shown advantages over traditional visual-spectrum camera-based 

systems as an alternative technological solution in the literature. One of the key benefits is their 

capability to monitor large areas effectively, which is crucial for comprehensive traffic analysis. 

LiDAR systems perform reliably under various lighting conditions, particularly in low-light 

environments such as nighttime. Another significant advantage of LiDAR is its inherent ability to 

measure distances accurately. This attribute enables LiDAR to precisely quantify space by 

reconstructing 3D environments as point clouds in x-y-z coordinates, providing a detailed and 

accurate representation of the traffic scenario. 

Recent advancements in the development of medium-range rotational LiDAR have created new 

applications in Intelligent Transportation Systems (ITS) and Autonomous Vehicles (AV) (4). 

Currently, the application of LiDAR-based systems in surrogate safety analysis remains limited. 

Wu et al. implemented a low-resolution LiDAR system to identify near-miss pedestrian-vehicle 

interactions at an intersection, observing 258 vehicles and 36 pedestrians (5). In contrast, Tarko et 

al. utilized a super high-resolution LiDAR sensor for their surrogate safety analysis (6). However, 

both studies primarily employed the LiDAR-based x-y trajectories of road users as a substitute for 

video-based trajectories in their analysis.  

To address some of these gaps, our study broadens the investigative scope by evaluating the impact 

of LiDAR-sensor resolution as well as the analysis of road environments with mixed traffic modes, 

facilitating the study of interactions among cars, pedestrians, and cyclists. Furthermore, this 

research proposes timestamped 3D point clouds to calculate two surrogate safety indicators: Time-
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To-Collision (TTC) and Post-Encroachment Time (PET). The corresponding 3D point cloud of 

road users at each timestamp is converted to a minimum rotated rectangle to cover the point cloud 

fully in 2D space. Then, the length and shape of road users are estimated by the series of length 

and width. A shape-based approach is introduced to calculate surrogate safety indicators. The 

results are extensively compared with the trajectory-based approach. 

3.3 Literature Review 

Camera-based systems are among the most common and effective automatic traffic monitoring 

and safety analysis systems. Alternative methods and applications of video-based systems for 

conflict analysis and surrogate safety have been proposed in the literature. St-Aubin built an 

automated video-based traffic data collection to extract surrogate safety indicators such as time-

to-collision and post-encroachment time (7). Zangabepur developed a fully automated video-based 

system for surrogate safety analysis, emphasizing the safety monitoring of cyclists (8). Fu et al. 

studied pedestrians’ safety in interactions with vehicles at non-signalized crosswalks by analyzing 

vehicle yielding and pedestrian crossing decisions obtained from a video-based monitoring system 

(9) and secondary interactions with cars exiting the intersection (10). Zangenehpour et al. showed 

that intersections with cycle tracks appear safer than those without. They employed trajectories 

obtained from an automatic video-based monitoring system to investigate the interactions between 

cyclists and turning vehicles using PET measure (11). Seyed et al. used a computer vision 

algorithm to automatically detect vehicle-bicycle conflicts and rank them based on the severity of 

interactions using the Time-To-Collusion safety indicator (12). 

There are several limitations associated with using video-based monitoring systems for traffic 

analysis. First, implementing computer vision algorithms in real-time demands powerful 

computing resources, which can increase the cost of such systems. Additionally, the effectiveness 

of image-based systems that rely on the visual spectrum often diminishes in low light conditions. 

A more critical issue is the heavy reliance of video data on geometric calibration, tailored to each 

camera’s specific characteristics and the location of the study area. This calibration is vital for 

accurately converting trajectory data from pixel to x-y coordinates. Inaccurate calibration can lead 

to errors in determining the precise location of road users within a Cartesian coordinate system 

and in estimating their speeds, both of which are essential for effective surrogate safety analysis.   
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LiDAR has become widely used for scanning the environment in civil engineering. The 

applications of LiDAR include the modeling of 3D structures in urban facilities and building road 

inventory databases, including traffic signs and traffic light detection and recognition (13), street 

light pole detection (14), extracting road markings (15), pavement analysis, and crack and pothole 

detection (16). The 3D segmented models of the transportation facilities can be used for evaluating 

the safety factors at roads and intersections, including obstacle detection, accident detection or 

investigation, and detecting hazardous sections of the streets. (4). 

There are a few research studies regarding the application of automatic LiDAR-based monitoring 

systems in traffic safety and surrogate safety analysis. Wu et al. implemented a low-resolution 

LiDAR system to identify near-miss pedestrian-vehicle interactions at an intersection, observing 

258 vehicles and 36 pedestrians (5). In contrast, Tarko et al. utilized a super high-resolution LiDAR 

sensor for their surrogate safety analysis (6). They implemented an automatic system using 64-

channel LiDAR for multi-object tracking at intersections and the extracted trajectories of road 

users. The extracted trajectories were given to computer software to compute surrogate safety 

indicators (6). These studies conceptualize using LiDAR to extract accurate trajectories for 

surrogate safety studies. Their analysis used LiDAR-based x-y trajectories of road users as a 

substitute for video-based trajectories. However, LiDAR technology has shown significant 

potential in estimating the shape of road users, which is of vital importance in the context of 

surrogate safety analysis of conflicts. This paper develops a method to utilize 3D point clouds from 

LiDAR data for calculating Time-to-Collision (TTC) and Post-Encroachment Time (PET) and 

compares the results with traditional trajectory-based methods. 

3.4 LiDAR System Overview 

This research proposes a 3D-LiDAR methodology for surrogate safety analysis built on the 

detection and classification methodology proposed by (17). Two LiDAR systems are tested, 

including a lower resolution LiDAR sensor with 16 laser channels (Velodyne Lidar: VLP-16 ) and 

a higher resolution LiDAR sensor with 32 laser channels (Velodyne Lidar: VLP-32c) (18, 19).  

The proposed methodology using 3D LiDAR systems consists of two primary steps (Figure 3-1). 

In the first step, computational algorithms, data processing, and machine learning models are 

applied to the raw LiDAR data collected at intersections. This step yields road users’ trajectories 
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and corresponding clustered point clouds at each frame (timestamped at 0.1-second intervals). 

Additionally, essential information such as road users’ speed and class are either estimated or 

predicted from this processed data. 

 

Figure 3-1 LiDAR system overview for traffic and safety monitoring at intersections 

The second component of the methodology, the focal point of this research work, involves 

processing the road users’ data, such as road user class, timestamped point clouds, and 

timestamped x-y trajectories, along with velocity values, for traffic and safety studies. This step 

incorporates safety analysis based on surrogate safety measures derived from the interactions of 

road users with each other in a point cloud space. A shape-based approach is proposed to compute 

surrogate safety indicators such as TTC and PET. 
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This section first provides an overview of the applied methodology for extracting road user 

trajectories and clustered point clouds (17). It subsequently discusses a preprocessing routine 

designed for cleaning and validating the trajectory data. Finally, the computation of essential 

surrogate safety indicators, including TTC and PET, is elaborated upon using LiDAR point cloud 

data in conjunction with trajectory data. 

3.4.1 LiDAR data processing for road user extraction  

The main component of the methodology for LiDAR data processing is illustrated in Figure 3-1. 

The left side box in the diagram features the method for processing raw data developed in the 

authors’ previous work (17). In that framework, LiDAR binary data are first converted to LiDAR 

frames of distance values.  Then, a 3D background model, based on a mixture of Gaussian, is built 

from a set of initial LiDAR frames. The background model is compared against every new LiDAR 

frame to identify foreground pixels. Next, the entire set of foreground pixels is converted to a 

three-dimensional point cloud, and a Density-based Spatial Clustering algorithm is applied to 

them. A feature set of physical, LiDAR, and spatial attributes is extracted from each clustered 

point cloud. XGBoost (eXtreme Gradient Boosting) is used to classify point clouds to pedestrians, 

cyclists, cars, or trucks. The LiDAR system utilizes data association and a Kalman Filter to track 

the point cloud’s centroid of every road user and to establish the trajectory of the road users while 

they pass through the covered area at an intersection (17).  

3.4.2 Trajectory preprocessing 

This paper introduces a methodology for surrogate safety analysis that leverages the point cloud 

features of the LiDAR system rather than relying exclusively on the x-y coordinates of the 

trajectories. The raw output from the LiDAR system comprises timestamps, x-y coordinates of 

road users’ centroid, velocity components in x-y coordinates, and a series of point clouds for each 

road user. Additionally, the LiDAR system classifies road users at each timestamp into categories 

such as pedestrians, cyclists, cars, or trucks. Point cloud data is crucial as it provides a more 

detailed and three-dimensional perspective of road user interactions, which is challenging to 

achieve with camera-based systems due to their limitations in accurately capturing depth and 

dynamic spatial relationships. For a robust and scalable implementation, each user’s point cloud 

is transformed into a polygon encompassing the road user. This representative polygon is then 
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utilized to assess interactions among road users. This conversion reduces processing time and 

opens up opportunities for the utilization of spatial data processing techniques. 

Road users, typically cars, trucks, and cyclists, have a predominantly rectangular body shape. This 

assumption of a rectangular body shape can also be reasonably extended to pedestrians. To this 

end, the Minimum Area Bounding Rectangle (MABR) technique is utilized to fit a rotated 

rectangle to the point cloud of each road user (20). The LiDAR point cloud size for a road user 

varies between frames, influenced by their movement across different laser channels. For instance, 

if ten channels capture a user at a given timestamp, the point cloud will be larger compared to 

when only five channels observe the same user. As a result, a series of lengths and widths 

corresponding to the point clouds at various timestamps are extracted for each road user. The 85th 

percentile of these dimensions is used to define the user’s length and width. This standardized 

measurement is applied consistently to the central point of each road user only in those frames 

where the original dimension significantly differs from the reconstructed one. This process ensures 

a more accurate and dynamic representation of road users’ spatial presence and movement. 

Subsequent data processing steps concentrate on refining road user trajectories and identifying 

outliers. Accurate and reliable trajectory data are crucial for surrogate safety analysis, as they 

provide the basis for calculating road users’ speed and direction at each timestamp. These elements 

are then integrated into the polygon representing road users to forecast their future positions for 

safety analysis. If the trajectory data are of poor quality, it significantly undermines the analysis. 

Like other technologies, including camera-based systems and GPS-based data collection, 

trajectory data from the 3D LiDAR system exhibit noise and variations. The variations in LiDAR 

data trajectory arise from changes in the road users’ point cloud shapes due to the resolution of 

laser channels and their blind spots. Centroids are located within the captured point cloud segment, 

but partial observations may introduce trajectory point deviations. The process involves steps that 

are selectively applied to correct anomalies in trajectories. For a given trajectory, the LiDAR 

system goes into prediction mode if it does not observe a road user from the previous. As a result, 

gaps may appear in the observed trajectory points. These gaps are filled by averaging the 

corresponding prediction coordinates with interpolations between adjacent observations in time.  
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Each trajectory is then aligned with a reference line created using a high confidence smoothing 

Kalman filter. This “high confidence” approach normalizes the observation covariance by its 2nd-

degree norm to prevent over-smoothing and significant directional changes in the trajectories. 

Once the reference line is established, each trajectory point is projected onto the closest point on 

the reference line. This step ensures that the average displacement of a road user between 

consecutive frames is consistent with the trends in the original trajectory. Points significantly 

distant from the reference line are identified as outliers and replaced by a combination of 

predictions and interpolations based on the nearest observations in time. 

After aligning trajectory points with their reference lines, some may exhibit backward movement, 

indicating a change in direction. A directional sliding window algorithm is implemented to identify 

these outliers (21, 22). The process begins by calculating the movement angle (𝜃𝑖) for each road 

user. Subsequently, within a sliding window of 𝑛 consecutive frames (e.g., 10), the average angle 

(�̅�) for each local window is determined using the following formula: 

�̅� = arctan2 (
1

𝑛
∑ sin 𝜃𝑖
𝑛
𝑖=1 ,

1

𝑛
∑ cos 𝜃𝑖
𝑛
𝑖=1 )           (3-1) 

An angular distance between samples of the same sliding window to the average is defined as 𝑑𝜃𝑖:  

𝑑𝜃𝑖 = |arctan2 (sin(�̅� − 𝜃𝑖) , cos(�̅� − 𝜃𝑖))|           (3-2) 

A road user’s direction is classified as an outlier if its angular distance exceeds the 50th percentile 

value of angular distances plus half the inter-percentile range, calculated as the difference between 

the 85th and 15th percentile. This outlier range is determined by the formula in Equation (3-3): 

𝑑𝜃𝑖 > 𝑑50% +
1

2
× (𝑑85% − 𝑑15)            (3-3) 

An additional metric is implemented to complement the result of the first method. This approach 

converts users’ angular directions to x-y coordinates on a unit circle. The Euclidean distances 

between each sample’s direction and the samples’ average direction vector are used to detect 

outliers similar to Equation (3-3). A sample is considered an outlier if concurrently identified as 

such by both methods. Finally, a smoother Kalman filter is applied to the corrected x-y coordinates 

of each trajectory, refining the velocity vector and direction of road users. This filter incorporates 



88 

 

a normalized observation covariance matrix, scaled by a factor of 2, to enhance accuracy while 

closely mirroring the original movement pattern. 

3.5 Surrogate Safety Measures based on LiDAR Trajectory Data 

This section outlines the systematic approach employed in conducting surrogate safety analysis at 

selected intersections using LiDAR’s trajectory and point cloud data of road users. An overview 

of the safety study framework utilizing processed LiDAR data is presented in the right-side box of 

the system diagram in Figure 3-1. The processing of LiDAR data for complex surrogate safety 

analysis requires an offline method that utilizes the completed trajectories of road users. 

Following LiDAR data processing through various algorithms and models, distinct data sets are 

generated and stored. Except for the set of LiDAR frames (distance, reflection, and foreground 

mask), the surrogate safety component utilizes the remaining three datasets, including clustered 

point clouds of road users, road users’ feature arrays (e.g., length, width), and arrays of road users’ 

trajectories, observed and smoothed by the Kalman Filter. The trajectory arrays contain crucial 

information, including x-y coordinates representing the approximate centers of road users at each 

timestamp, two-dimensional velocity, and acceleration vectors. 

Generally, LiDAR’s trajectory data can be applied to any surrogate safety measures traditionally 

derived from video-based trajectory data. However, the scope of this research is to utilize road 

users’ shape characteristics as an alternative method to compute two common surrogate safety 

indicators: Time-to-Collision and Post-Encroachment Time. 

3.5.1 Time-to-Collision (TTC) 

TTC serves as a critical surrogate safety indicator closely associated with actual accidents (23). 

TTC measures the time duration before a potential collision between two road users, considering 

their current motion patterns, speed, and acceleration remain unchanged. Extracting TTC data 

necessitates trajectory information, typically sourced from video-based systems. Developing 

methodologies based on alternative technologies, such as LiDAR, and enhancing methods based 

on camera systems, such as Unmanned Aerial Vehicle (UAV) video data, for surrogate safety 

assessment remains a primary focus in this field (24, 25). Figure 3-2 depicts two interactions 

involving road user pairs, potentially representing TTC conflicts. In these images, 𝑅𝑈𝑖 denotes 
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road user 𝑖, 𝑣𝑖 represents their speed at the event time and 𝑙𝑖 and 𝑤𝑖 indicate the length and width 

of the respective user. 

Figure 3-2 (a) shows two vehicles approaching a conflict zone at a non-direct angle (𝜃) to each 

other. In real-case scenarios, knowing the vehicle length and width allows for determining the 

boundary of the conflict area. Furthermore, considering their speeds, a few time measures can be 

calculated: the times of arrival, which is when the road user’s front edge enters the closest side of 

the conflict zone, and the time of departure, noted as the moment when the back of the road user 

exists the farthest edge of the conflict area. 

The existence of a TTC conflict can be determined by comparing the arrival and departure times 

of the two road users in the conflict zone. If the arrival time of one road user occurs between the 

arrival and departure times of the other, a TTC conflict exists. If the first road user arrives and 

remains in the zone until the second road user arrives, the TTC is calculated as 𝑡𝑡𝑐21 (Equation (3-

4)). Conversely, if the second road user arrives and stays until the first road user arrives, the TTC 

is determined as 𝑡𝑡𝑐12 (Equation (3-5)). 

𝑖𝑓
𝑑1,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣1
<

𝑑2,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣2
<

𝑑1,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑣1
;  then 𝑡𝑡𝑐21 =

𝑑2,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣2
                 (3-4) 

𝑖𝑓
𝑑2,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣2
<

𝑑1,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣1
<

𝑑2,𝑑𝑒𝑝𝑎𝑡𝑢𝑟𝑒

𝑣2
;  then 𝑡𝑡𝑐12 =

𝑑1,𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑣1
                (3-5) 

 

a) Interaction between two road users with 

known shapes and dimensions 

 

b) Interaction between two road users with 

known centroids in trajectory data 

Figure 3-2 TTC conflict comparison based on data availability for position and dimensions 



90 

 

In practical applications, high-resolution trajectory data, typically obtained through cameras, are 

utilized to determine a potential TTC conflict. However, this trajectory data often lacks accurate 

information about the physical shape and dimensions of the road users. Figure 3-2 (b) presents a 

hypothetical scenario involving two road users. The only data points available for this scenario are 

the road users’ centroids and velocities. Furthermore, the conflict zones are not delineated due to 

the absence of detailed spatial information, rendering the determination of precise arrival and 

departure times non-deterministic. 

TTC calculation with centroid (no shape)   

The derivation of the formula for the trajectory-based method is examined next. Figure 3-3  depicts 

a potential conflict scenario between two road users within trajectory data. 

 

Figure 3-3 Illustration of a TTC conflict between two road users’ trajectories 

For the TTC calculation, first, it is assumed that the future positions of the road users are predicted 

using a constant velocity model for each frame. Acceleration data are not utilized due to their 

sensitivity; even minor noise or variations can significantly alter the predicted path of a road user. 

Furthermore, evasive maneuvers are immediately observed in the next frame’s velocity vector 

since this process is applied to every frame. Hence, at time 𝑡, the position of the given road user 𝑖 

for any future timestamp Δ𝑡 is estimated as Equation (3-6): 

[
𝑥𝑡+Δt
(𝑖)

𝑦𝑡+Δt
(𝑖)

] = [
𝑥𝑡
(𝑖)

𝑦𝑡
(𝑖)
] + [

𝑉𝑥
(𝑖)

𝑉𝑦
(𝑖)] × Δt            (3-6) 
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For two trajectories of different road users to exhibit a conflict, they must come closer than a 

specified threshold, denoted as 𝑅. A conflict is identified if, at a future time point 𝑡 + Δ𝑡, the 

positions of both road users are within a conflict buffer having a diameter of 𝑅 (depicted as the 

smaller circle in grey). The center of this conflict area is equidistant between the two road users, 

calculated as the average of their positions at time 𝑡 + Δ𝑡. For a specified distance threshold 

(diameter), 𝑅, the positions of the road users at the boundary of the conflict area at the time 𝑡2 

(where 𝑡2 = 𝑡1 + Δ𝑡) is determined by Equation (3-7): 

(𝑋𝑡2
(1)
− 𝑋𝑡2

(2)
)
2

+ (𝑌𝑡2
(1)
− 𝑌𝑡2

(2)
)
2

= 𝑅2           (3-7) 

Incorporating the predicted positions from Equation (3-6) into Equation (3-7), the only unknown 

variable in this quadratic Equation is Δ𝑡 = 𝑡2 − 𝑡1: 

((𝑉𝑥
(1) − 𝑉𝑥

(2)
)Δ𝑡 + (𝑋𝑡1

(1) − 𝑋𝑡1
(2)))

2

+ ((𝑉𝑦
(1) − 𝑉𝑦

(2)
)Δ𝑡 + (𝑌𝑡1

(1) − 𝑌𝑡1
(2)))

2

− 𝑅2 = 0        (3-8) 

This Equation can be solved for 𝛥𝑡. If there is no solution, it indicates that the two road users do 

not have a TTC conflict within a distance of 𝑅. Conversely, a TTC conflict for the interaction is 

identified if the Equation yields one or two solutions. In such cases, the single solution or the lesser 

of the two solutions is reported as the actual TTC. 

Selecting an appropriate value for 𝑅 is a challenging aspect of this analysis. 𝑅 is intended to 

represent the dimensions of road users, which vary significantly across different transportation 

modes. A further complication in determining 𝑅 arises from the size of the road users as observed 

by the monitoring system, camera, or LiDAR. For instance, when the system captures a vehicle’s 

side view, the centroid of this observation (and thus the trajectory) can accurately represent the 

center of the road user. In such cases, a larger value of 𝑅 encompassing the length and width of a 

vehicle is more appropriate. However, when a vehicle is observed from any other angle, the center 

does not accurately represent the centroid of the road user. Utilizing a larger 𝑅 in these scenarios 

might erroneously include bypassing road users, leading to inaccurate conflict detection. 
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TTC using road users’ shapes in LiDAR point cloud 

This research introduces an innovative approach as an alternative to the traditional method of 

extracting TTC data relying solely on the x-y coordinates of the centroids of road users in trajectory 

data. This proposed method utilizes road users’ detected and reconstructed shapes to assess their 

proximity to others. Notably, this approach eliminates the need for distance thresholds such as 𝑅 

and related assumptions. This section then outlines the proposed steps to develop an efficient 

algorithm for extracting conflict data considering road user shapes. 

As previously discussed in the data preprocessing section, the first step involves converting the 

clustered point cloud of each road user into x-y coordinates on a Cartesian plane by discarding the 

z-component from each point. A minimum rotated rectangle encapsulates each point cloud on the 

2D Cartesian plane. Notably, the orientation of this rotated rectangle is adjusted from the 

algorithm’s initial output to align with the direction of the road user’s movement, as observed in 

the velocity data. 

The geometric representation of each road user is encapsulated within a rectangle centrally aligned 

along the user’s smoothed trajectory. The rectangle is defined by four sequentially ordered corners, 

starting with the front left (𝑝𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡), followed by the front right (𝑝𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡), then the back 

right (𝑝𝑏𝑎𝑐𝑘𝑅𝑖𝑔ℎ𝑡), and concluding with the back left (𝑝𝑏𝑎𝑐𝑘𝐿𝑒𝑓𝑡). This specific ordering of vertices 

is instrumental for projecting the road users into future frames at different timestamps and 

maintaining the algorithms’ consistency. Each rectangle represents the road user’s polygon. 𝑃𝑅𝑈, 

and is constructed based on the central point 𝑝𝑐𝑒𝑛𝑡𝑒𝑟, from the smoothed trajectory, and the 

dimensions of the road user defined as length 𝐿 and width 𝑊. The polygon is oriented using two 

directional vectors:  𝑑  (indicating the direction of length), and  𝑝 𝐶𝐶𝑊, a counterclockwise 

perpendicular vector to 𝑑 . The mathematic representation of the road user’s polygon is expressed 

in Equation (3-9): 

𝑃𝑅𝑈 = [

𝑝𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡
𝑝𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡
𝑝𝑏𝑎𝑐𝑘𝑅𝑖𝑔ℎ𝑡
𝑝𝑏𝑎𝑐𝑘𝐿𝑒𝑓𝑡

] =

[
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(𝑥3, 𝑦3)

(𝑥4, 𝑦4)]
 
 
 

= 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 +
1

2
×

[
 
 
 
 𝐿. 𝑑

 +𝑊. 𝑝 𝐶𝐶𝑊

𝐿. 𝑑 −𝑊. 𝑝 𝐶𝐶𝑊

−𝐿. 𝑑 −𝑊. 𝑝 𝐶𝐶𝑊

−𝐿. 𝑑 +𝑊. �⃗� 
𝐶𝐶𝑊]

 
 
 
 

       (3-9) 
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where 𝑑 , is defined as the normalized velocity vector, 𝑑 = (𝑑𝑥, 𝑑𝑦) =
1

‖�⃗� ‖
(𝑣𝑥, 𝑣𝑦), and 𝑝 𝐶𝐶𝑊 

clockwise perpendicular vector to the direction, as 𝑝 𝐶𝐶𝑊 = (𝑑𝑦, −𝑑𝑥). 

Identifying potential TTC conflicts involves projecting the polygons of all road users in a given 

frame into the future, employing a constant velocity model similar to that described in Equation 

(3-6). A TTC conflict is detected when polygons representing two road users intersect within any 

future space-time window. An extended path is defined for each road user in the frame to enhance 

the algorithm’s efficiency and avoid extensive distance calculations between each pair of road user 

polygons. This extended path maintains the position of the rear points of the road users while 

projecting the front points forward by a time increment, 𝛿𝑡. This strategy focuses on potential 

overlaps of road user paths in the future projection, thus efficiently identifying TTC conflicts. 

In determining road user interactions, it is crucial to establish the value of 𝛿𝑡 to create a tangible 

path. The safety analysis based on TTC primarily focuses on interactions within a 10-second 

timeframe, paying particular attention to those within 1.5 to 5 seconds due to their critical nature. 

Therefore, 𝛿𝑡 is set at 10 seconds. For each road user, a consistent polygonal path is established in 

every frame and updated continuously with each new frame based on observed changes in position 

and velocity data (𝑝𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑣 ). The construction of this polygon path is denoted as �̂�𝑅𝑈: 

�̂�𝑅𝑈 = [

𝑝𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡
𝑝𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡
𝑝𝑏𝑎𝑐𝑘𝑅𝑖𝑔ℎ𝑡
𝑝𝑏𝑎𝑐𝑘𝐿𝑒𝑓𝑡

] =

[
 
 
 
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)]
 
 
 

= 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 +
1

2
×

[
 
 
 
 𝐿. 𝑑

 +𝑊. 𝑝 𝐶𝐶𝑊

𝐿. 𝑑 −𝑊. 𝑝 𝐶𝐶𝑊

−𝐿. 𝑑 −𝑊. 𝑝 𝐶𝐶𝑊

−𝐿. 𝑑 +𝑊. 𝑝 𝐶𝐶𝑊]
 
 
 
 

+

[
 
 
 
𝛿𝑡. (𝑣𝑥 , 𝑣𝑦)

𝛿𝑡. (𝑣𝑥 , 𝑣𝑦)

0
0 ]

 
 
 

   (3-10) 

Figure 3-4 illustrates a real TTC conflict between a car traveling Southbound and making a right 

turn and a Westbound cyclist. Figure 3-4 (a) displays the trajectories of these road users during 

their interaction. Additional insights into this interaction are provided in Figure 3-4 (b), where the 

speed profiles of both users at the same frames are compared. Notably, the passenger car 

decelerates to yield the right of way to the cyclist, mitigating the risk of a potentially severe 

conflict. 

Figure 3-4 (c) illustrates the bounding polygons (𝑃𝑅𝑈)  and the predicted polygon paths (�̂�𝑅𝑈)  of 

both road users at the frame where the minimum TTC is recorded. The smaller polygons represent 
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the bounding rectangles of the road users at that specific frame, whereas the extended polygons 

depict their projected paths over the next 10 seconds. This visualization indicates that a collision 

will occur if both users maintain their current movement patterns and speeds.  

 

a- trajectory of two road users in a conflict 
 

b- smoothed speed profile of the road users 

 

c- polygon and path polygon of the road users 

at the frame with minimum TTC 

 

d- polygon and path polygon of the road users 

at 2 seconds after minimum TTC 

Figure 3-4 A sample of TTC conflict between a car and a cyclist 

Conversely, Figure 3-4 (d), captured two seconds after the minimum TTC event, shows the car 

decelerating to yield to the cyclist. This behavior is evidenced by the altered polygon path of the 

passenger car (highlighted in pink). The intersection (or lack thereof) of these polygon paths in 

Figure 3-4 (c & d) indicates potential TTC conflicts. Following this, the arrival and departure 
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times of both users to and from the conflict area are calculated to ascertain the existence of an 

actual TTC conflict, as outlined in Equations (3-4) and (3-5). The movement is assumed to be with 

constant velocity; therefore, the arrival and departure times are calculated based on the closest and 

farthest distance of the road user’s original polygon at the current from the conflict area. 

3.5.2 Post-Encroachment Time (PET) 

PET is a critical surrogate safety indicator that heavily relies on spatial data and the distance 

between road users. Defined as the temporal gap between two road users traversing an intersection, 

PET quantifies the time between one road user leaving a designated area and another entering it. 

As depicted in Figure 3-2 (a & b), the situation is identified as a TTC conflict if two road users 

reach the conflict area simultaneously. However, the likelihood of such a conflict is relatively low 

due to evasive maneuvers typically employed by road users. Conversely, if road users arrive at 

different times, PET can be effectively calculated.  

A primary challenge in computing PET lies in defining the conflict area, which is the zone visited 

by two road users at different times. Similar to TTC, trajectory data lack specifics regarding the 

shapes of the road users, necessitating an approach that establishes a distance threshold or buffer 

area, denoted as 𝑅, for PET. The first step in identifying a PET conflict involves calculating the 

minimum Euclidean distance between each pair of data points from two selected road users. The 

road users are chosen if they overlap in time. Similar to TTC, PET values of 10 seconds or less are 

the main focus of safety studies. Therefore, for a specific road user, any other users observed from 

10 seconds before to 10 seconds after the last observation of that user is selected. The minimum 

distance of data point between two users is defined as: 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = min
𝑃𝑖∈𝑅𝑈𝑖,𝑃𝑗∈𝑅𝑈2

Euclidean(𝑃𝑖, 𝑃𝑗)        (3-11) 

If this minimum distance is less than or equal to the threshold 𝑅 (𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝑅), a PET 

conflict is considered to exist. Subsequently, each pair of data points with a distance less than 𝑅 is 

selected, and the time difference between these points is computed. PET is defined as the minimum 

of these time differences among the chosen pairs of points, subject to the condition that their 

Euclidean distance is within 𝑅: 
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𝑃𝐸𝑇 = min
𝑃𝑖∈𝑅𝑈𝑖,𝑃𝑗∈𝑅𝑈2

|𝑡𝑃𝑖 − 𝑡𝑃𝑗|;      𝑤ℎ𝑒𝑟𝑒 Eucildean(𝑃𝑖, 𝑃𝑗) ≤ 𝑅      (3-12) 

PET using road users’ shapes in LiDAR point cloud  

The shape data of road users, estimated by the LiDAR system, can be effectively utilized to identify 

and compute PET. For this purpose, a unique convex polygon path is constructed for each road 

user, encompassing all rectangular polygons representing the user at various timestamps. This path 

extends from the initial polygon at the user’s first frame to the last observed polygon. 

Each polygon is a rectangle determined by the coordinates of its corners. The order of points is 

carefully selected from individual polygons of different timestamps to ensure the integrity and 

convexity of the road user’s polygon path. The construction typically starts with the back-left 

corner at the first timestamp (𝑝𝑡1−𝑏𝑎𝑐𝑘𝐿𝑒𝑓𝑡), followed by the front-left corners of consecutive 

frames (𝑝𝑡1−𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡 to 𝑝𝑡𝑛−𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡). After reaching the last left-side corner, the sequence 

continues with the front-right corners of consecutive timestamps (𝑝𝑡𝑛−𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡 to 

𝑝𝑡1−𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡), concluding at the back-right corner of the first timestamp (𝑝𝑡1−𝑏𝑎𝑐𝑘𝑅𝑖𝑔ℎ𝑡). 

Notably, only the back corners from the first timestamp are used, with the remaining points being 

the front-center points of each rectangle at different timestamps. 

This methodical construction of a convex polygon path accurately represents the road user’s shape 

and movement trajectory over time, which is essential for precisely determining PET in various 

traffic scenarios. The mathematical construction of a road user’s polygon path (𝑃𝑃𝑎𝑡ℎ−𝑅𝑈) is: 

𝑃𝑃𝑎𝑡ℎ−𝑅𝑈 =

[
 
 
 
 
 
 
 
𝑝𝑡1−𝑏𝑎𝑐𝑘𝐿𝑒𝑓𝑡 
𝑝𝑡1−𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡

⋮
𝑝𝑡𝑛−𝑓𝑟𝑜𝑛𝑡𝐿𝑒𝑓𝑡
𝑝𝑡𝑛−𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡

⋮
𝑝𝑡1−𝑓𝑟𝑜𝑛𝑡𝑅𝑖𝑔ℎ𝑡
𝑝𝑡1−𝑏𝑎𝑐𝑘𝑅𝑖𝑔ℎ𝑡 ]

 
 
 
 
 
 
 

           (3-13) 

Upon the completion of each road user’s full polygon path, a comparison is made between pairs 

of road users within a 10-second interval before and after their trajectories overlap. Initially, the 

polygon of the current road user is overlaid with those of the selected road users. If a shared area 



97 

 

exists, a PET conflict is identified and becomes a candidate for calculation. Figure 3-5 illustrates 

two road users (same users in Figure 3-4) involved in a PET conflict. Figure 3-5 (a) displays both 

users’ constructed convex polygon paths, with the cyclist’s path being notably narrower, as 

expected. Figure 3-5 (b) demonstrates the result of overlaying the road users’ polygons, indicating 

a small intersecting area fully traversed by both users. 

 

a- full polygon path of two road users 

 

b- PET conflict area 

Figure 3-5 A sample of PET conflict between a car and a cyclist 

Once this conflict polygon is identified, the closest and farthest distances from any point on the 

road users’ polygons (four corner points) to this area are calculated to determine each road user’s 

arrival and departure time. PET is defined as follows: 

𝑃𝐸𝑇 = 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙,𝑅𝑈2 − 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒,𝑅𝑈1            (3-14) 

In this context, 𝑅𝑈1 is strictly defined as the road user who arrives first at the conflict area. 

This section discusses an overview of calculating two surrogate safety indicators, TTC and PET, 

using trajectory data and integrating road users’ shape data. The primary distinction lies in the 

reliance on methods based on trajectory data on a minimum distance threshold. This threshold is 

crucial for identifying conflicts and calculating the corresponding time metrics associated with 

such road users’ conflicts. The subsequent section will provide an overview of the LiDAR data 

and the intersection employed in this study. The following section will set the stage for a 

comparative analysis of these two distinct approaches in identifying and calculating TTC and PET. 
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3.6 LiDAR Data  

A comprehensive dataset encompassing road users’ trajectories, point clouds, and classification 

data has been collected from 10 intersections. For each intersection, two hours of data are utilized 

to perform a comparative analysis of the proposed methodology, analyzing both TTC and PET 

based on road users’ shape data instead of solely using trajectory data. Table 3-1 provides an 

overview of the data collected using the LiDAR system at these ten intersections. These 

intersections were chosen for their diversity in terms of vehicular traffic volume and mixed-mode 

traffic. All selected locations are situated in Montreal, Canada.  

Table 3-1 Summary of road user data collection by the LiDAR systems at different 

intersections 

Si

te 

I

D 

Site Name 

LiDAR 

Channe

l 

Traffic 

Control 

Intersectio

n and 

Crosswalk 

Area (m2) 

Vehicular Traffic 

Cyclis

t 

Pede

stria

n 

Left 

Turn 

Right 

Turn 

Throu

gh 

1 
SainteFamille - 

Milton 
16 

All-way 

Stop 
277.6 47 195 463 212 416 

2 
Delaroche - 

MarieAnneE 
16 

Traffic 

Light 
267.9 14 36 967 388 471 

3 
Colonial - 

RachelE 
16 

Traffic 

Light 
245.7 87 146 769 436 461 

4 
Girouard - 

Monkland 
16 

Traffic 

Light 
411.8 332 185 1,041 142 626 

5 
University - 

Milton 
16 

Traffic 

Light 
295.9 77 91 793 594 1,374 

6 
Hutchison - 

LaurierE 
32 

All-way 

Stop 
470.9 206 202 652 169 651 

7 
SainteFamille - 

PrinceArthurW 
32 

All-way 

Stop 
354.5 48 132 363 96 525 

8 
Parthenais - 

Rachele 
32 

Traffic 

Light 
283.7 89 161 396 344 173 

9 
SainteFamille - 

Milton 
32 

All-way 

Stop 
278.3 48 106 339 166 338 

1

0 

University - 

Milton 
32 

Traffic 

Light 
231.3 18 77 685 593 625 

 Total 966 1,331 6,468 3,140 5,660 

The data was captured using two distinct types of LiDAR sensors: one with a lower resolution of 

16 laser channels and the other with a higher resolution featuring 32 channels. Intersections 1 and 

9 are at the same locations but were monitored using different LiDAR sensors. This is true for 

intersections 5 and 10 as well.  



99 

 

As an integral part of this work to enhance the surrogate safety study, the boundaries of various 

elements within each intersection were meticulously mapped in a Geographic Information System 

(GIS). These elements encompass intersections, streets, bike lanes, crosswalks, and sidewalks. 

Figure 3-6 showcases some samples of these intersections, illustrating the detailed construction 

of these geo-elements. Each road user’s trajectory is intersected with the mapped elements, and an 

origin-destination label is consequently assigned to each trajectory. This process is instrumental in 

monitoring specific movements and facilitates reporting based on the type of turning movement. 

As indicated in Table 3-1, vehicular traffic data are categorized and reported according to turning 

movements. 

 

a) ID 6 - Hutchison-Laurier E (32-Channel) 

 

b) ID 4 – Girouard-Monkland (16-Channel) 

Figure 3-6 GIS calibration of two samples of intersection 

3.7 Comparative Analysis: Centroid-based vs Shape-based Method  

This section delves into the comparative analysis of TTC and PET derived from centroid- and 

shape-based methods. In the shape-based method, road users are represented as polygons, while 

the centroid-based method represents them as points along their trajectory data. The analysis 

focuses primarily on the key differing variable between the two models: the distance threshold (𝑅) 

in the centroid-based approach. For this purpose, point-based metrics are computed using six 

different 𝑅 values: 1m, 2m, 2.5m, 3m, 3.5m, and 4m, selected based on a combination of the length 
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and width of various road users. Other tested values, such as 0.5m and 5m, were deemed unsuitable 

for the analysis and thus excluded to enhance the clarity of the comparison. 

3.7.1 Structure of surrogate safety data 

In the dataset prepared for safety analysis, conflicts that both users are vulnerable road users, 

pedestrians and cyclists, are excluded. Thus, the focus is on conflicts involving cars or trucks with 

other road users, forming seven distinct categories. The database categorizes conflicts as involving 

two parties: Road User 1 (always a car or truck) and Road User 2 (which may be a car, truck, 

pedestrian, or cyclist). 

In identifying TTC conflicts, interactions between two road users are analyzed over consecutive 

frames. A TTC value is assigned to each frame where a potential conflict is detected. The definitive 

TTC value for any given interaction is then determined by taking the 15th percentile of the TTC 

series for the involved pair of users. Typically, TTC conflicts are calculated using directional 

speed, making them sensitive to abrupt changes in direction. Therefore, conflicts observed in only 

one or two frames are excluded from consideration to ensure accuracy.  

The conflicts are categorized based on the conflict type derived from conflict angles. The 

interaction is considered a rear-end conflict for conflict angles less than 15°. Angles between 15° 

and 75° indicate angular, and those between 75° and 90° are classified as side-impacts. This 

categorization applies to every other angle except those between 165° and 180°, which are 

categorized as head-on conflicts. 

To ensure a harmonized structure when combining TTC and PET data from different intersections, 

only conflicts occurring within the intersection, on crosswalks, or on streets within 1 meter of the 

crosswalks are reported. This approach was chosen because some streets were not fully covered at 

some intersections in the data collection process. A preliminary analysis revealed that 55% of 

conflicts were rear-end types occurring near intersections due to acceleration-deceleration 

maneuvers. Thus, focusing on the aforementioned selected areas helps achieve a balanced 

comparison.  

Finally, road users’ interactions are categorized into three groups based on their TTC or PET 

values, a common practice in road safety. Interactions with a duration of less than 10 seconds are 



101 

 

reported as the baseline for safety analysis. Additionally, interactions with PET or TTC that are 

less than 5 seconds and 1.5 seconds are categorized as conflicts and serious conflicts, respectively. 

3.7.2 TTC 

Table 3-2  summarizes the safety state of the ten selected intersections in a 2-hour time window. 

For readability purposes, only the shape-based results are reported. However, the same measures 

are also calculated for the centroid method. The direct comparison of the methods follows this 

table.  Interactions are categorized by the types of road users involved. TTC events are extracted 

using a LiDAR system-based approach that focuses on the shape of road users, with cars and trucks 

collectively considered as ‘vehicles.’ In every instance, the first road user is identified as a vehicle. 

Table 3-2 Summary of TTC conflicts using shape-based approach (first road user vehicle) 

ID 

# TTC 

< 10 

sec 

Second Road User 

Pedestrian Cyclist Vehicle 

# TTC 

< 5s 

# TTC 

< 1.5s 

15th 

TTC 

# TTC 

< 5s 

# TTC 

< 1.5s 

15th 

TTC 

# TTC 

< 5s 

# TTC < 

1.5s 

15th 

TTC 

1 177 41 6 4.46 26 8 4.08 46 10 3.57 

2 75 44 16 3.17 9 6 2.64 9 4 2.45 

3 123 31 8 3.68 31 14 2.79 45 28 1.53 

4 269 75 14 3.99 13 4 3.74 122 61 2.60 

5 197 70 19 3.94 46 9 3.59 32 15 2.94 

6 555 151 18 4.56 39 5 3.64 173 32 4.09 

7 120 39 2 4.65 5 0 3.80 25 2 4.88 

8 30 6 0 4.75 9 2 4.43 6 4 2.04 

9 67 23 5 4.17 6 0 3.99 16 4 4.62 

10 109 24 7 3.89 55 16 2.84 6 2 3.92 

All 1,722 504 95 4.13 239 64 3.55 480 162 3.26 

A review of this data compared to traffic volumes from Table 3-1 indicates a correlation between 

traffic flow and conflict frequency. Notably, data for the latter five intersections was gathered in 

2021, a period marked by pandemic-related changes in travel patterns. The first five intersections 

(IDs 1-5) are collected using a 16-channel LiDAR susceptible to slight overcount and 

misclassification of cyclists. The last five intersections (IDs 6-10) are collected using a 32-channel 

LiDAR sensor. 
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The average 15th percentile TTC values for interactions between vehicles and pedestrians, cyclists, 

or other vehicles are calculated as 4.13 seconds, 3.55 seconds, and 3.26 seconds, respectively. 

On average, intersections 3, 4, 5, and 6 exhibit a higher frequency of critical events during the two-

hour analysis period for each intersection. Table 3-3 delves into the specifics of these critical 

conflicts, including the volume of the second user involved in each conflict. Notably, at 

intersections 3 and 4, most vehicular conflicts are head-on, attributable to the limited entry width 

of their respective legs when performing a left turn. The heightened instances of critical conflicts 

involving pedestrians and cyclists can be linked to the observed high volume of road users. 

Table 3-3 Distribution of critical TTC conflicts at selected intersections with higher TTC 

rates 

Intersection 

ID 

2nd Road 

User 

Traffic 

Volume 

Total 

TTC<1.5s 

Rear-

End 
Angular 

Head-

On 

Side-

Impact 

3 

Cyclist 436 14 6 5 1 2 

Pedestrian 461 8 2 2 1 3 

Vehicle 1,002 28 4 10 12 2 

4 

Cyclist 142 4 1 2 1 0 

Pedestrian 626 14 4 4 0 6 

Vehicle 1,558 61 5 27 21 8 

5 

Cyclist 594 9 4 1 1 3 

Pedestrian 1,374 19 1 12 1 5 

Vehicle 961 15 5 3 1 6 

6 

Cyclist 169 5 1 2 0 2 

Pedestrian 651 18 3 5 0 10 

Vehicle 1,060 32 8 18 3 3 

Table 3-4 thoroughly compares two methods used for calculating TTC and identifying TTC 

conflicts, focusing on the pairs of involved road users. This is due to the varying distances between 

the centroids of their trajectories in different pairings. The methods are compared in terms of the 

total number of TTC interactions, conflicts with TTC lower than five seconds, conflicts with TTC 

lower than 1.5 seconds, and the average of the 15th percentiles of TTC, which are influenced by 

the size of the buffers. An exact match does not necessarily represent the best performance user-
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wise; however, surrogate safety indicators are often used at an aggregated level in before-after 

studies. Therefore, the total number of conflicts and the average of TTC or PET are of importance. 

Table 3-4 A comparison between the shape-based approach vs centroid-based approach 

TTC Metric 
Road User 

1 

Road User 

2 

Shape-

Based 

Approac

h 

Centroid Approach – Buffer Size: 

1m 2m 2.5m 3m 3.5m 4m 

Number of 

Interactions 

with TTC<10 

sec 

Car 

Pedestrian 708 441 645 820 1,097 1,392 1,791 

Cyclist 290 148 215 273 387 496 604 

Car 561 235 309 392 525 766 964 

Truck 78 28 40 50 66 93 122 

Truck 

Pedestrian 58 27 39 47 72 94 112 

Cyclist 15 5 9 10 15 23 28 

Truck 12 4 5 6 6 7 9 

All 1,722 888 1,262 1,598 2,168 2,871 3,630 

Number of 

Conflicts with 

TTC< 5 sec 

Car 

Pedestrian 465 233 404 580 845 1,141 1,514 

Cyclist 228 93 160 223 338 455 569 

Car 418 120 175 253 393 625 833 

Truck 55 15 22 31 44 75 105 

Truck 

Pedestrian 39 10 21 29 43 61 86 

Cyclist 11 4 8 9 13 21 25 

Truck 7 3 4 4 5 6 8 

All 1,223 478 794 1,129 1,681 2,384 3,140 

Number of 

Conflicts with 

TTC< 1.5 sec 

Car 

Pedestrian 85 11 47 146 312 540 826 

Cyclist 62 10 38 81 171 268 352 

Car 139 7 27 74 184 396 584 

Truck 19 0 0 6 15 36 60 

Truck 

Pedestrian 10 2 2 4 12 17 32 

Cyclist 2 0 0 2 5 11 16 

Truck 4 0 0 0 0 0 3 

All 321 30 114 313 699 1,268 1,873 

Average of 

TTC (15th 

percentile) 

Car 

Pedestrian 4.22 5.07 4.36 3.86 3.31 2.87 2.56 

Cyclist 3.42 4.35 3.76 3.12 2.43 2.04 1.82 

Car 3.48 5.22 4.61 4.03 3.18 2.51 2.12 

Truck 3.51 5.49 4.93 4.34 3.84 2.82 2.34 

Truck 

Pedestrian 4.01 5.43 4.72 4.56 4.39 4.05 3.36 

Cyclist 3.72 3.98 3.56 2.92 2.75 2.28 1.95 

Truck 4.20 5.20 4.73 4.86 3.65 3.38 2.72 

All 3.79 4.96 4.38 3.96 3.37 2.85 2.41 
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For car-pedestrian conflicts, the total number of TTC events and conflicts in the shape-based 

approach closely aligns with the centroid-based methods using 2-meter and 2.5-meter buffers. 

Moreover, the average TTC from the shape-based method matches the average TTC when using a 

2m buffer. However, in the case of critical conflicts, TTC < 1.5 seconds, using a 2-meter buffer 

underreports, and a 2.5-meter buffer overreports the number of conflicts, highlighting the 

sensitivity of centroid-based approaches to identifying critical conflicts between cars and 

pedestrians.  

In the case of car-cyclist conflicts, the number of interactions and conflicts with a TTC under 5 

seconds, and the average 15th percentile TTC is more closely aligned with a buffer size of 2.5 

meters. However, the number of serious conflicts does not fully align with either a 2.5-meter or a 

2-meter buffer. Utilizing a 2.5-meter buffer reduces the average TTC for this pair of users, resulting 

in more critical conflicts. 

For car-car conflicts, centroid-based methods with a 3-meter buffer provide results that are more 

similar to shape-based methods. However, using this buffer size reduces the average TTC, 

indicating a shorter distance to reach a conflict point at a constant speed and, consequently, a 

higher number of critical TTC conflicts (<1.5 seconds). Generally, as the buffer size in the 

centroid-based approaches increases, TTC significantly decreases, leading to the detection of more 

critical conflicts. 

The 2-meter buffer significantly underestimates the critical conflicts in truck-pedestrian and truck-

cyclist interactions. Instead, the results of 2.5-meter and 3-meter buffers are more similar to the 

shaped-based method. 

Figure 3-7 illustrates the cumulative distribution of the 15th percentile TTC, comparing the 

approaches used to identify TTC interactions. The shape-based method, which is based on 

estimated length and width, is highlighted in black. In contrast, each other color represents one of 

the buffer sizes. Figure 3-7 (a) shows that the centroid method with a 2.5-meter buffer aligns 

closely with the shape-based method’s combined cumulative distribution for all road users. For 

pedestrians and cyclists, the images support the earlier discussion of choosing a 2 to 2.5-meter 

buffer. However, the gap around TTC=1.5 seconds between the shape-based, the 2-meter buffer, 

and the 2.5-meter buffer is noticeable, resulting in differences in the number of critical conflicts. 
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a) Every TTC interaction 

 

b) Pedestrian-Vehicle 

 

c) Cyclist-Vehicle 

 

d) Vehicle-Vehicle 

Figure 3-7 A comparison of different approaches for extracting TTC conflicts and 

interactions 

Vehicles observed at intersections predominantly involve angular and side-impact conflicts. A 

more accurate comparison can be achieved by revisiting the entire pool of TTC events, including 

those with conflict centers outside the intersection’s boundary. Figure 3-8 compares methods for 

vehicle-vehicle conflicts based on conflict angles. The shape-based model (as depicted in Figure 

3-8 (a)) corresponds closely with a 3.5-meter buffer for side-impact conflicts. Practically, the 

minimum distance between the centers of two vehicles in a side-impact conflict is half the length 

of one vehicle plus the width of another, typically between 3 to 3.5 meters. In angular conflicts, 

the center points of the vehicles can be closer than in side impacts, implying a conflict radius 

smaller than three meters, as supported by Figure 3-8 (b). As shown in Figure 3-8, a buffer 

exceeding four meters aligns with the average vehicle length for rear-end conflicts. 
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However, comparing head-on conflicts presents challenges, as larger buffers can inadvertently 

encompass passing vehicles, given their extension in the perpendicular direction. Considering the 

average vehicle width is under two meters, utilizing a 3-meter buffer results in a conflict zone 

extending approximately two meters beyond each side of the vehicle’s body. Therefore, the biggest 

buffer size based on the shape-based method is in the range of two meters. 

 

a) Side-impact 

 

b) Angular 

 

c) Rear-end  

 

d) Head-on 

Figure 3-8 A comparison of results for various vehicle-vehicle conflict types 

3.7.3 PET 

This section underscores the main distinctions between the centroid and polygon methods in 

identifying and calculating PET. The correlation between buffer size and the combination of road 

users’ body dimensions in different conflict angles is anticipated to mirror those observed in TTC 

interactions. However, the PET comparison offers specific advantages. First, PET involves a 

spatial intersection of road users at different times, which is more probable than TTC. Additionally, 
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the frequency of PET events tends to be higher than that of TTC events and is generally less prone 

to noise, enabling a more robust comparison.  

Figure 3-9 (a) illustrates the cumulative PET across different methods. The graph for the proposed 

shape-based method is noticeably higher than others, indicating a lower average PET than 

centroid-based options. The PET metric is predominantly skewed toward rear-end events. In the 

shape-based approach, considering vehicle lengths generally exceeding 4 meters, particularly with 

trucks and buses, the following vehicle’s distance to the leading vehicle’s location is often less 

than the conflict area defined in centroid-based methods. A shorter travel distance translates to a 

quicker arrival time and a lower PET, a pattern observable in Figure 3-9 (b), which exclusively 

plots vehicle-vehicle rear-end PET interactions. 

 

a) Cumulative PET – all events with PET less 

than 10 seconds 

 

b) Cumulative PET – rear-end conflict of 

vehicles 

 

c) Cumulative PET – all events except rear-end vehicle interactions 

Figure 3-9 Comparative analysis of PET calculation approaches based on different criteria 
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Figure 3-9 (c) presents the outcome of excluding vehicular rear-end interactions from the PET 

events pool and limiting the conflict area to the zones discussed for TTC (intersection, crosswalk, 

and street areas within 1 meter of the crosswalk). These adjustments result in findings that align 

more closely with the average TTC trends. 

Table 3-5 presents an in-depth comparison of PET calculations, considering the type of the second 

road user. The first user is either mostly a car or sometimes a truck. This comparison includes 

conflicts where PET is less than 1.5 seconds. Applying a 2-meter distance threshold aligns closely 

with the shape-based method regarding the number of conflicts and the average PET for vehicle-

pedestrian conflicts. The optimal distance threshold for vehicle-cyclist conflicts is between 2.5 and 

3 meters. Notably, cyclists are often involved in rear-end conflicts with vehicles, necessitating a 

larger buffer size. Of the 706 cyclist conflicts determined by the shape-based method, 408 are rear-

end conflicts with a car. 

Table 3-5 Comparative summary of PET calculation methods per road user class 

PET 

Metric 

Second 

Road 

User 

Shape-

Based 

Approach 

Centroid-based Approach – Buffer Size: 

1m 2m 2.5m 3m 3.5m 4m 

Number 

of 

Conflicts 

PET<5 

sec 

Pedestrian 798 638 835 963 1,179 1,409 1,632 

Cyclist 706 437 528 632 713 815 930 

Car 1,148 545 782 974 1,304 1,643 1,904 

Truck 276 80 124 152 207 287 344 

Number 

of 

Conflicts 

PET<1.5 

sec 

Pedestrian 133 59 164 266 476 725 982 

Cyclist 415 215 291 380 453 552 657 

Car 329 47 115 192 340 564 771 

Truck 86 5 16 18 39 76 108 

Mean 

PET (sec) 

Pedestrian 5.4 5.8 5.4 5 4.6 4.2 3.8 

Cyclist 3.9 4.6 4.3 4 3.8 3.6 3.3 

Car 5.1 5.8 5.6 5.4 5.1 4.8 4.7 

Truck 5.1 6.3 5.9 5.8 5.5 5.2 4.9 

Median 

PET (sec) 

Pedestrian 5.4 5.9 5.4 5 4.5 3.8 3 

Cyclist 2.9 4.6 4.2 3.6 3.2 2.4 1.7 

Car 5.1 6 5.7 5.4 5.1 4.7 4.4 

Truck 5 6.3 6 5.8 5.5 5.1 4.8 
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The relevant distance threshold spans from 2.5m to 3m in car-vehicle interactions. Several factors 

influence this range: firstly, rear-end conflicts are omitted, effectively reducing the distance 

between centroids. Secondly, the distance between centroids can be reduced to zero for PET 

analysis, as the users are not simultaneously present in the conflict area. However, considering 

critical PET and mean PET values, the findings align more closely with a 3-meter threshold. 

3.8 Conclusion and Future Work 

This research proposes a shape-based methodology to compute TTC and PET surrogate safety 

measures and implements a comparative analysis between the proposed approach and the 

traditional centroid-based method. The centroid-based approach, involving the determination of 

an appropriate distance threshold or buffer size (𝑅), poses challenges for robust surrogate safety 

assessments. The effectiveness of this method relies on accurately defining 𝑅. In this approach, 

the length and width of road users are treated uniformly, leading to situations where bigger values 

of 𝑅 might inadvertently capture interactions with bypassing road users rather than direct conflicts. 

In extreme cases, using large values for distance thresholds may result in the identification of 

conflicts between vehicles and pedestrians walking on the sidewalk. 

In contrast, the proposed rectangular shape-based approach leverages the dimensional attributes of 

road users –length and width – as measured by a 3D LiDAR system. This system provides the 

trajectory of the road users and generates a clustered point cloud for each one. The point cloud 

data is utilized to estimate the length and width of road users. The 85th percentile of the length and 

width measurements from a series of observed dimensions is used to estimate the shape. The shape-

based method circumvents the need for calibrating buffer size 𝑅, inherently providing a more 

precise description of road user interactions. However, the effectiveness of this approach is 

contingent upon the performance of the LiDAR system, particularly its accuracy in estimating the 

shapes of road users across consecutive frames. 

TTC and PET were analyzed to compare the performance of the two methods. For the trajectory 

approach, six different runs are completed with various values for 𝑅, including 1, 2, 2.5, 3, 3.5, 

and 4m. The comparison is limited to intersections, crosswalks, and portions of streets within a 

one-meter distance from crosswalks. This decision helps capture road users’ interactions and 
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movement as much as possible without introducing bias by excluding the high rear-end vehicular 

movements.  

Regarding TTC, four metrics are used for comparison: interactions with TTC under 10 seconds, 

conflicts with TTC under 5 seconds, critical conflicts with TTC under 1.5 seconds, and the average 

of the 15th percentile TTC. In pedestrian-car interactions, results using a 2-meter distance 

threshold align more with the shape-based method. For cyclist-car interactions, the threshold 

extends to 2.5 meters. In car-car interactions, a 3-meter threshold aligns better match with the 

shape-based method. However, the centroid-based approach exhibits higher sensitivity for 

identifying critical conflicts. For pedestrian-car interactions, using a 2-meter buffer results in 47 

conflicts, and using a 2.5-meter buffer results in 146 conflicts, while the shape-based method 

estimated 85 conflicts. For cyclist-car interactions, using a 2.5-meter buffer, 81 critical conflicts 

are identified, whereas the shape-based method detects 62 conflicts. Generally, an increase in 

buffer size decreases the TTC, affecting those conflicts with TTC slightly higher than 1.5 seconds. 

 Analyzing PET, all rear-end vehicular conflicts are excluded to ensure a balanced representation 

of road users’ interactions. The methods are evaluated based on conflicts with PET under 5 

seconds, critical conflicts with PET under 1.5 seconds, and the mean and median of PET. For 

pedestrian-vehicle conflicts, a centroid method with a 2-meter threshold suggested by TTC 

identifies 164, while the shape-based method identifies only 133 critical conflicts. In cyclist-

vehicle conflicts, the results of the shape-based methods fall within a 2.5 to 3-meter threshold. 

However, a 3-meter buffer identifies more than 19% of critical conflicts. 

A fundamental insight in trajectory-based methods is the impact of increasing radius on conflict 

detection. Firstly, a larger radius tends to identify unnecessary TTC or PET conflicts with users on 

divergent paths. Secondly, a larger radius implies users need to travel a shorter distance to reach 

conflict points, systematically reducing the value of TTC. For example, a 0.5-meter difference in 

buffer size for a pedestrian walking with an average speed of 1.5 m/s is translated to 0.34 seconds; 

therefore, using a buffer with a 0.5-metter larger radius reassigns conflicts from one category to 

another, increasing the sensitivity of the surrogate safety assessment.  

On the other hand, a shape-based method extends only one dimension (length) while limiting the 

other dimension (width). This characteristic naturally leads to more accuracy, as it mirrors the 
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actual road users’ interactions and avoids categorizing every proximity as a conflict. For example, 

under this method, a vehicle moving through an intersection while a pedestrian crosses a parallel 

crosswalk or a cyclist parallelly passing a vehicle would not be classified as conflicts, even though 

such scenarios are fairly common at intersections. 

Future research will involve a more comprehensive comparison, expanding the data collection in 

duration and location to various intersections and roadways. Applying these methodologies in 

varied traffic conditions and diverse urban settings could validate their effectiveness across 

different environments. 
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Link Between Chapters 2 and 3 and Chapter 4  

Chapter 2 discussed the development of a supervised 3D LiDAR methodology for traffic 

monitoring at urban intersections. In this Chapter, a set of labeled road users was sampled from 

various intersections to train a machine-learning algorithm for road user classification. Chapter 3 

utilized the road user dataset created in Chapter 2 for surrogate safety analysis at urban 

intersections using LiDAR-based shape data of road users.  

Chapter 4 develops an unsupervised 3D LiDAR methodology for safely monitoring at a railroad-

grade crossing. The methodology includes road user detection, clustering, and tracking. Road user 

classification is made based on their shape, speed, and geo-location. The speed and shape of the 

users are estimated from their trajectory and point cloud, respectively. 

The methodologies in chapters 2 and 4 differ in background modeling, road user detection 

techniques, and road user classification. The unsupervised method utilizes a low-resolution 

LiDAR. Chapter 2 extends the methodology to a low-resolution and a higher-resolution LiDAR 

system installed at various urban intersections. 

The unsupervised learning methodology implemented in Chapter 4 provided insight into 

developing a semi-automated road user labeling utilized in Chapter 2.  
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CHAPTER 4: DEVELOPMENT OF AN UNSUPERVISED 3D LIDAR-BASED 

METHODOLOGY FOR AUTOMATED SAFETY MONITORING OF RAILWAY 

FACILITIES  

4.1 Abstract 

Railway safety (e.g., at grade crossings, platforms, or rail tracks) is a primary concern for 

transportation authorities. Unfortunately, preventable railway collisions claim the lives of 

hundreds annually, often involving individuals crossing illegally at highway-railway grade 

crossings or trespassing at unauthorized railroad facilities. Transportation authorities often deploy 

a range of engineering countermeasures to mitigate the frequency or risk of such events. These 

countermeasures include technological solutions that automatically activate warning systems, 

barriers, or gates to alert and deter road users from unlawfully entering restricted railway facilities. 

For the safety monitoring of such facilities, alternative sensing technologies such as video-based 

computer-vision systems have been evaluated and, in some cases, utilized in practice. Despite their 

merits, implementing automated LiDAR-based detection and tracking methods has yet to be 

explored in railway safety applications. This research aims to introduce and assess an unsupervised 

3D-LiDAR-based methodology for monitoring rail-road level facilities. This study’s core is the 

implementation of an unsupervised learning algorithm designed to detect, track, and classify road 

users using point clouds gathered by a 3D-LiDAR sensor. The proposed methodology 

demonstrates encouraging results when monitoring rail-road level crossings. The aggregate 

average absolute percentage deviation (AAPD) for motorized road users and counting motorized 

road users stands at 5% and 3%, for non-motorized road users at 10% and 14% on two separate 

test days, each featuring distinct system installations. 

Keywords: 3D LiDAR Sensor, Level Crossing Monitoring, Trespassing Detection, Unsupervised 

LiDAR Algorithm, Alternative Technologies  
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4.2 Introduction 

Safety at railway facilities is paramount for transportation authorities and the railway industry. 

Interactions between road users and trains at railway facilities, such as road-rail level crossings, 

railway tracks, and terminals, can lead to severe collisions, especially in scenarios involving 

conflicts between pedestrians and trains. Each year, preventable train accidents contribute to 

hundreds of deaths and thousands of serious injuries. Train-pedestrian collisions are generally 

classified into two main categories based on pedestrian intent: level crossing and trespasser 

accidents. Pedestrians crossing railway tracks at designated shared areas, such as grade crossings, 

are categorized as level crossing users. 

Conversely, trespassers cross the railway right of way and access unauthorized and restricted 

railway areas. From 2013 to 2022, trespassing was the predominant cause of railway-related 

fatalities, constituting more than 59% and 64% in Canada and the US, respectively. According to 

the Transportation Safety Board (TSB) of Canada, from 2013 to 2022, 1,581 railway-road level 

crossing collisions resulted in 200 deaths and 256 serious injuries. Additionally, 654 trespasser 

incidents resulted in 409 deaths and 190 serious injuries (1). During the same period, the Federal 

Railroad Administration reported 21,385 crossing collisions in the US, resulting in 2,507 fatalities, 

8,480 injuries, and 9,635 trespasser incidents, with 5,062 deaths and 4,909 injuries (2).  

Several countermeasures are often implemented across railway facilities to address safety issues 

and prevent or mitigate railway-related injuries. These countermeasures often fall into three 

categories: educational, enforcement, and engineering interventions. Educational and enforcement 

interventions aim to increase the responsibility and awareness of people residing or working near 

railway facilities (3). Engineering countermeasures are divided into two forms: geometry-related 

interventions and technological solutions. Geometric engineering interventions involve 

redesigning or modifying railway facilities to improve pedestrian safety by deterring unauthorized 

access (4). Technological solutions are pivotal in monitoring rail facilities by detecting, warning, 

and restricting individuals’ access through signals, sounds, and gates. In a standard configuration, 

a detection system verifies unauthorized road users’ presence, activates warning devices, and sends 

feedback to authorities (5). Such system incorporates alternative technologies such as cameras, 
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thermal cameras, stereo cameras, ultrasonic sensors, active or passive infrared sensors, and radars 

(6-9).  

Despite the distinct advantages of alternative systems, certain limitations must be highlighted. For 

instance, the visual spectrum camera-based system is adversely affected by low-light conditions. 

Moreover, deploying a camera-based system requires manual geometric calibration at each site to 

accurately estimate road users’ x-y coordinates. While thermal and stereo cameras may address 

these issues, their implementation comes with elevated costs, and the real-time operation of these 

systems demands powerful processing units. Infrared, ultrasonic, and radar sensors, on the other 

hand, face challenges in accurately classifying road users and are significantly influenced by 

adverse weather conditions and precipitation (2).  

Recently, the literature has underscored the essential advantages of LiDAR technologies over 

traditional monitoring technologies, particularly camera-based systems. These benefits include the 

capability to monitor large areas and deliver accurate performance irrespective of lighting 

conditions (10). Recent advancements in the development of medium-range rotational LiDAR 

sensors have opened up new applications, especially in the domains of Intelligent Transportation 

Systems (ITS) and Autonomous Vehicles (AV) (11). However, there are still few traffic 

monitoring and safety applications and no documented applications in railway facilities. Large 

coverage areas of interest in rail facilities often challenge traditional camera-based monitoring 

systems. The extensive field of view of 3D LiDAR sensors, especially rotational LiDARs, makes 

them well-suited for these applications. 

However, the availability of open-source LiDAR datasets suitable for developing supervised 

algorithms remains limited. Existing datasets, such as the KITTI dataset (12), use high-resolution 

LiDAR sensors, which are costly applications related to road facility monitoring. Besides, 

implementing a supervised learning algorithm for a point cloud of high-resolution LiDAR requires 

complex features, and extracting those features in real-time applications is computationally 

intensive (13). In this context, non-supervised methodologies present an alternative approach for 

processing LiDAR point clouds. The unsupervised methods rely on some key physical features 

such as size to perform classification and, therefore, do not require sophisticated feature extraction 

methods that are often time-intensive. 
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This work develops and evaluates an unsupervised 3D LiDAR-based methodology for monitoring 

non-motorized and motorized road users at railroad-level facilities, specifically grade crossings. 

The proposed method utilizes a rotational 3D LiDAR sensor with a 360-degree horizontal field of 

view to collect data at a railroad-level crossing. An unsupervised learning algorithm is developed 

to detect, classify, and track road users within the 3D LiDAR point cloud. Notably, the 

unsupervised methodology eliminates the need for labeled data, thereby reducing the need for 

sample data generation and labeling. 

The ultimate objective of a safety monitoring system at a railway level crossing is to be integrated 

with the level crossing’s control mechanism and provide real-time feedback to the control room. 

However, developing and validating the methodology before this integration is essential to ensure 

its reliability and effectiveness in real-world applications. This work focuses on collecting LiDAR 

data and developing such a methodology. The methodology’s performance in safety monitoring 

and trespassing detection is evaluated through its effectiveness in road user detection, 

classification, and tracking. 

4.3 Literature Review 

A substantial body of railway safety literature is centered on investigating the risk factors and 

assessing the impact of safety countermeasures. The mechanism of non-technological 

interventions relies on access deterrence, enhancing general safety terms such as sight distance, 

and designing criteria for railway facilities. Comprehensive discussions on these criteria can be 

found in resources such as Transport Canada’s “Grade Crossings-Handbook” (14) and the 

Federal Railway Administration’s (FRA) “Railroad-Highway Grade Crossing Handbook” (15). 

While non-technological or physical countermeasures are commonly implemented, their 

effectiveness is not extensively studied. Silla and Luoma evaluated fencing, landscaping, and 

prohibitive signs as countermeasures to reduce illegal railroad crossings in Finland (16). These 

three countermeasures were installed near the authorized crossing locations (not more than 300 m 

away), each for 11, 10, and 17 days, respectively. Analysis of recorded videos revealed a 

significant reduction in trespassers: 94.6% with fencing, 91.3% with landscaping, and 30.7% with 

a prohibitive sign. 
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As explored in train-pedestrian collision literature, the technologies used for pedestrian or 

trespasser detection include conventional visible spectrum cameras, thermal or stereo cameras, 

ultrasonic sensors, Radar and ultra-wideband Radar, active and passive infrared, and LiDAR. 

Video monitoring is the most common approach for perimeter monitoring. The Federal Railroad 

Administration (FRA) conducted technical research by installing a video surveillance system on a 

railway bridge in the United States (5). The system comprises a camera, a motion detector, and an 

audio warning device. Over the three-year installation period, out of 3,726 alarm-causing events, 

the system correctly detected 335 events and falsely reported 633 events. The remaining detections 

were related to other incidents, such as animal crossings or railway vehicles. Zhang et al. 

implemented a camera-based system in the United States to detect trespassers at a grade crossing 

with gates and stop signs (17). During the study, their system identified two near-miss events 

involving train-pedestrian conflicts. 

Salmane et al. assessed a camera installation at a grade crossing in France to evaluate dangerous 

interactions caused by level crossing users (7). The activity monitoring system detects and tracks 

road users and classifies their trajectories into three scenarios: 1) a user is present at the level 

crossing area; 2) a user performs a zigzag maneuver when the gates are closed at the level crossing; 

3) a vehicle has stopped on the railways since the leading vehicle has stopped and is blocking the 

railway track. 

Ohta used two stereo cameras to expand the coverage area for monitoring non-motorized traffic 

users crossing the railway (18). Their proposed system detected 100% of the 2327 object crossings 

in various daylight conditions. In another study, Fakhfakh et al. installed an intelligent stereo-

vision system at several grade crossings (6). They implemented an unsupervised stereo-matching 

algorithm to detect and separate objects from the background and to estimate a 3D model of the 

object’s body. Their system demonstrated a recall of 96.14% and a precision of 97.34%. 

A few studies have tested monitoring systems that leverage multiple technologies. One study 

integrated stereo and thermal cameras for monitoring platforms (a dedicated pedestrian area where 

people wait to board a train) to identify abnormal activities and trespassing on tracks (19). García 

et al. installed an array of active infrared emitters on one side and various receivers on the other 

side of a railway site to monitor the rail tracks. They tested their system under different weather 
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conditions (20). Additionally, they added a camera and an ultrasonic sensor to the infrared system, 

enhancing the detection rate by combining their output (21). 

Hilleary and Omar conducted a test using a Radar sensor as a substitute for inductive loops to 

detect vehicles in highway-rail grade crossings (22). Upon observing a road user, their system 

keeps the exit gates open to allow cars to leave the level crossing area. The Radar system 

demonstrated an advantage over the inductive loop due to a lower false detection rate (22). 

However, the Radar system has a critical limitation; it performs poorly under high precipitation 

conditions. In a separate study, Horne et al. installed a dual Radar system at railroad crossings (9). 

Their system provided feedback to the four-quadrant gate control system and triggered seven false 

alarms out of 477 vehicle crossings. 

One application of LiDAR sensors in civil engineering is modeling the 3D structure of 

transportation facilities (such as intersections and roads) and building a road inventory database. 

Tan et al. implemented a LiDAR-based system designed explicitly for traffic signs and traffic light 

detection and recognition (23). Yu et al. processed LiDAR point cloud for street light pole 

detection (24) and road markings extraction (25). Haiyan et al. developed a LiDAR system for 

pavement distress type detection, effectively identifying and classifying pavement cracks or 

potholes (26). Moreover, the 3D model generated by LiDAR technology proves valuable in 

evaluating safety factors at intersections, roads, and railroads. These factors include obstacle 

detection, accident investigation, and identification of hazardous street sections (11). 

The literature on processing a point cloud collected by 3D LiDAR sensors is not restricted to 

transportation applications. This literature includes unsupervised and supervised learning methods. 

Supervised approaches may have an edge as they use pre-labeled data for object classification. 

However, the available datasets are limited and impractical when the type of LiDAR sensor 

changes from one system to another, as point clouds collected by one LiDAR sensor can differ 

significantly from another. More importantly, supervised methods could be computationally more 

expensive, posing a challenge in real-time applications. 

Nonetheless, there are some steps that both approaches have in common. For instance, the first 

step of some processing methods involves segmenting a LiDAR point cloud into smaller 3D cells 

and extracting statistical features from each cell. This feature set includes the number of points, 
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the average and variance of intensity, the spatial mean and variance of segmented cloud points, 

and geometric features (27).  

Frome et al. introduced regional shape descriptors for vehicle detection in point cloud data (28). 

One of these shape descriptors is the 3D shape context, which is extracted by computing the 

statistical characteristics (e.g., histogram) of the point cloud of an object in multiple spherical bins 

(28). Himmelsbach et al. developed an object classification method by applying the Support Vector 

Machine (SVM) classifier to the histogram features extracted from the point clouds (29). Yan et 

al. implemented a human detection and tracking algorithm. This algorithm initially segments the 

point cloud, estimates each cell’s motion and speed, and classifies the feature set using SVM (13). 

Only a few studies have implemented a LiDAR-based monitoring system for railway safety 

applications. Hsieh et al. installed a 2D LiDAR sensor horizontally, functioning as an array of 

infrared sensors for level crossing monitoring (30). Although the detection rate of their system was 

99.25%, the system could miss detecting pedestrians passing behind a vehicle because of its 

specific setup. Besides, classification and tracking are not feasible using a 2D LiDAR system.  

One advantage of 3D LiDAR sensors is their ability to monitor a wider area compared to 2D 

LiDAR sensors. Amaral et al. implemented a 3D LiDAR system for monitoring a level crossing 

(8). They validated the performance of their system with a few samples of point clouds collected 

from a level crossing while people were walking on the railroad. However, the results only 

included visualizing a few plotted examples of 3D point clouds of LiDAR detections. 

Hisamitsu et al. implemented a 3D LiDAR system on a grade crossing (31). The study area was 

relatively small and limited due to employing a LiDAR sensor with a 30º×60º field of view and a 

30-meter distance range. They extensively installed the proposed system at level crossing areas in 

Japan. Its mechanism is similar to that of Amaral et al. (8). However, the experimental results of 

the system are not available for comparison purposes. 

This study’s proposed 3D LiDAR-based methodology has several advantages over the previous 

works implemented in (8) and (31). First, the current study uses a rotational 3D LiDAR sensor that 

provides an extensive field of view. Due to its unique installation, the LiDAR sensor covers an 

area of up to 50 meters with an effective horizontal field of view of more than 180 degrees. Second, 
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the proposed 3D LiDAR methodology provides traffic volume information while monitoring the 

railway facilities. Third, it delivers road use detection and tracking, an advantage over previous 

studies that relied solely on road user detection. This study offers a more rigorous performance 

evaluation of the developed system. 

4.1 Hardware Components 

Figure 4-1 illustrates the hardware components of the 3D LIDAR data collection system prototype 

that was installed at a level crossing in Montreal, Canada. The integrated hardware components 

for data collection include a 3D-LiDAR sensor, a camera (for collecting the ground truth data), a 

Raspberry Pi, a memory card, and battery packs.  Although the suggested methodology and the 

3D LiDAR sensor are not integrated with existing communication and alarm devices for practical 

application, such integration could alert road users when a train is approaching and, conversely, 

notify train operators when road users are illegally entering railway tracks. 

 

Figure 4-1 The 3D LiDAR data collection system prototype 

Velodyne’s rotational LiDAR, VLP-16, is utilized to develop the methodology. This sensor is a 

lower-resolution LiDAR with relatively low cost compared to higher-resolution LiDAR sensors. 

Table 4-1 presents the parameters of the 3D LiDAR sensor. The algorithm designed in the 

methodology section of this paper works with any rotational or solid-state LiDAR sensor that 

produces a two-dimensional distance matrix, with its vertical and horizontal indices corresponding 

to the LiDAR’s field-of-view. Therefore, the proposed LiDAR methodology can adapt to changes 
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in any of these parameters, allowing the developed unsupervised algorithms to be employed when 

selecting any alternative 3D LiDAR sensor. 

The VLP-16 LiDAR sensor has 16 laser channels (𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 16), arranged vertically, and 

rotates with an adjustable speed (𝜔) set to 10 Hz (rotations per second), enabling 3D scanning of 

its surrounding environment. The sensor has a 30°×360° (γ𝐹𝑂𝑊× 𝛼𝐹𝑂𝑊) field-of-view. The LiDAR 

sensor output includes distance and reflection measurements, each linked to a channel angle (𝛾𝑐ℎ𝑖), 

corresponding to a channel ID (𝑐ℎ𝑖) ranging from 1 to 16, an azimuth value (𝛼𝑐ℎ𝑖) spanning 0° to 

360°, and a timestamp (𝑡𝑗). The sensor measures distance (𝑑𝑐ℎ𝑖) up to 100 m and within ±3 cm. Its 

vertical angular resolution (𝛿𝛾) is 2°, while its horizontal resolution (𝛿𝛼) is set to 0.2°. 

Table 4-1 Key parameter of the 16-channel LiDAR data collection system prototype 

Parameter Notation VLP-16 Velodyne 

Number of channels 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 16 

Vertical field-of-view 𝛾𝐹𝑂𝑊 30° 

Horizontal field-of-view 𝛼𝐹𝑂𝑊 360° 

Rotational speed 𝜔 10 𝐻𝑧 

Time interval 𝛿𝑡 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Distance by channel 𝑖 𝑑𝑐ℎ𝑖 [0𝑚, 100𝑚] 

Azimuth (horizontal angle) of channel 𝑖  𝛼𝑐ℎ𝑖 [0°, 360°] 

Elevation (vertical angle) of channel 𝑖 𝛾𝑐ℎ𝑖 [−15°, +15°] 

Vertical angular resolution 𝛿𝛾 2° 

Horizontal angular resolution 𝛿𝛼 0.2° 

Distance resolution 𝛿𝑑 3 𝑐𝑚 

Installation height ℎ 4.2𝑚 𝑜𝑟 4.7𝑚 

Installation title angle 𝛽 −18.3° 𝑜𝑟 − 12.5° 

Figure 4-2 (a & b) illustrates the horizontal and vertical operation of the 16-channel LiDAR sensor 

from different perspectives. The 16 laser channels simultaneously measure the distance to the 

surrounding objects. Tilting down the sensor by an angle (𝛽) extends and maximizes the coverage 

area of the sensor. With this angle, some channels cover the ground and the bodies of road users, 
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and the rest capture the top of the vehicles, trains, and far-away objects. The optimal angle (𝛽) 

depends on the application, location, distance from the sensor to the coverage area, and installation 

height. Figure 4-2 (b) illustrates the operation of one of the LiDAR channels while tilted down at 

20 different angles. In practice, each LiDAR channel captures data at 1,800 azimuths per rotation. 

  

a) 16 laser channels - titled vertical plane  b) A single laser channel - tilted horizontal plane 

Figure 4-2 The 3D LiDAR sensor’s measurements in the Spherical coordinate system 

4.2 Methodology of Unsupervised Algorithms  

The three main components of the unsupervised algorithm developed for level crossing monitoring 

include:  

• Point cloud data preparation 

• 3D background modeling 

• Road user detection, tracking, and classification 

4.2.1 Point cloud data preparation 

The VLP-16 LiDAR sensor, equipped with 16 laser channels, measures distance to the surrounding 

objects and encodes the results in binary format, represented by sequences of 0/1 bytes. The 

scanning data are captured in spherical coordinates, wherein each sensor’s reading contains 

numerical values for distance, azimuth (horizontal angle), and elevation (vertical angle). 

According to the LiDAR sensor’s product specification sheet, the binary readings are decoded and 
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converted to spherical vectors of radius, azimuth, and elevation (32).  In addition to the distance 

data, the reflectivity of the object’s surface is reported as a 2-byte intensity variable with a 

maximum of 255. Each measurement is labeled with a 4-byte timestamp.  

The spherical vectors are converted to the Cartesian vectors of x-y-z coordinates for further 

analysis. If the location of the sensor is assumed to be the center of the coordinate system, then the 

array of x-y-z coordinates of a single measurement captured by 𝑖𝑡ℎ channel of the LiDAR sensor 

is computed as Equation (4-1):  

𝑃𝑐ℎ𝑖 = [

𝑥𝑐ℎ𝑖
𝑦𝑐ℎ𝑖
𝑧𝑐ℎ𝑖

] = [

𝑑𝑐ℎ𝑖 × cos(𝛾𝑐ℎ𝑖) × sin(𝛼𝑐ℎ𝑖)

𝑑𝑐ℎ𝑖 × cos(𝛾𝑐ℎ𝑖) × cos(𝛼𝑐ℎ𝑖)

𝑑𝑐ℎ𝑖 × sin(𝛾𝑐ℎ𝑖)

]          (4-1) 

where 𝑃𝑐ℎ𝑖 is the vector of the x-y-z coordinates, and 𝑑𝑐ℎ𝑖, 𝛼𝑐ℎ𝑖 and 𝛾𝑐ℎ𝑖 are the distance, azimuth, 

and elevation of the laser channel 𝑖. The elevation, 𝛾𝑐ℎ𝑖, is the vertical angle associated with each 

laser channel and is derived as 𝛾𝑐ℎ𝑖 = 2 × (𝑖 − 8) − 1, where 𝑖 is the channel ID. 

Generally, the sensor is positioned at the height of ℎ and tilted down by an angle 𝛽. The actual x-

y-z coordinates of the observed point, 𝑃𝑐ℎ𝑖
′ , are determined by applying a rotation around the 𝑥-

axis, 𝑅𝑥, and a translation vector, ℎ𝐿⃗⃗⃗⃗ , in the direction of the 𝑧-axis (Equation (4-2)): 

𝑃𝑐ℎ𝑖
′ = [

𝑥′𝑐ℎ𝑖
𝑦′𝑐ℎ𝑖
𝑧′𝑐ℎ𝑖

] =  𝑅𝑥𝑃𝑐ℎ𝑖 + ℎ𝐿
⃗⃗⃗⃗ = [

1 0 0
0 𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛽)

0 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)
] [

𝑥𝑐ℎ𝑖
𝑦𝑐ℎ𝑖
𝑧𝑐ℎ𝑖

] + [
0
0
ℎ
]       (4-2) 

The relative position of the point with respect to the pole to which the LiDAR sensor is mounted 

is determined by [𝑥′𝑐ℎ𝑖 , 𝑦′𝑐ℎ𝑖], and the height of the point is determined by 𝑧𝑐ℎ𝑖
′ . 

A frame is defined as the duration the LiDAR sensor requires to complete a full rotation. The 

duration for a full rotation is 0.1 seconds, the inverse of the rotational speed (1/𝜔 = 1/10𝐻𝑧). 

The set of points observed by every LiDAR channel in each single rotation (frame) forms a 3D 

point cloud of the surrounding environment. The point cloud at the frame 𝑓𝑗, corresponding to the 

time interval [𝑡𝑗 , 𝑡𝑗 + 0.1], is defined as Equation (4-3): 
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𝑃𝐶𝐿𝑓𝑗 = {𝑃𝑐ℎ𝑖,𝛼𝑐ℎ𝑖
′ }  𝑤ℎ𝑒𝑟𝑒 𝑐ℎ𝑖 ∈ [1, 16] 𝑎𝑛𝑑 𝛼𝑐ℎ𝑖 ∈ [0°, 360°]        (4-3) 

4.2.2 3D background modeling 

The second step in this research methodology for raw LiDAR data processing involves 

implementing the background modeling algorithm. This step concentrates on generating a point 

cloud representing background objects at the level crossing site. The algorithm’s main objective is 

to identify and classify objects, excluding road users, as part of the background. The foreground 

objects exclusively consist of road users, including trains, vehicles, and vulnerable users. The 

detection of road users relies on comparing the observed point cloud with the constructed 

background model. Therefore, accurately estimating a robust and well-structured background 

model is crucial for ensuring the overall effectiveness of the model.  

In the background modeling process, the three-dimensional space centered at the LiDAR position 

is discretized into smaller segments. The discretization could involve dividing the space into cubic 

or spherical volumes based on the coordinate system format.  

A spherical volume (range-view) is characterized by its radius (distance to LiDAR), azimuth angle, 

and elevation angle (10). For example, segmentation in the spherical system could involve dividing 

the radius into small sections of 0.2m and azimuth angle into small segments of 0.2° width. The 

elevation angle is restricted to the number of LiDAR channels (16 channels). In this scenario, an 

area up to 40m away from the LiDAR sensor, with a vertical and horizontal coverage of 30° and 

180°, respectively, is segmented into 2,700,000 spherical volumes (200×15×900).  

A voxel is a small cubic volume in the Cartesian coordinate system, where each Cartesian axis is 

discretized uniformly (33). For example, if the dimensions of the observed area that the LiDAR 

sensor aims to monitor are 40m×40m×5m, with a discretization factor of 0.2m, the partitioned 3D 

space would contain 1,000,000 voxels (200×200×25). 

Each segmentation approach comprehensively reconstructs the observed area’s three-dimensional 

space. The background modeling in this research methodology is based on the latter approach, 

involving discretization into cubic volumes. The dimension of the coverage area in the selected 



128 

 

level crossing is 40m×40m×5m. The discretization factor, 𝑑𝑓, is set to 0.2m. Therefore, the 3D 

discretized space comprises one million voxel grids. 

For cubical voxelization, the LiDAR data is converted to x-y-z coordinates. Figure 4-3 (a) 

illustrates a hypothetical sub-space divided into small voxels. Each voxel (𝑣𝑘) is identified by an 

ID, 𝑘, and its discretized coordinates, [𝑥𝑑𝑘 , 𝑦𝑑𝑘 , 𝑧𝑑𝑘  ], calculated as Equation (4-4): 

[𝑥𝑑𝑘 , 𝑦𝑑𝑘 , 𝑧𝑑𝑘] = [𝑥′𝑘/𝑑𝑓 , 𝑦′𝑘/𝑑𝑓 , 𝑧′𝑘/𝑑𝑓]           (4-4) 

The background modeling algorithm utilizes an initial set of 3,000 individual point clouds captured 

within a five-minute interval. To adapt to dynamic changes, particularly setup vibrations, the 

background model undergoes updates every 15 minutes, ensuring its continuous accuracy and 

relevance. 

Figure 4-3 (b) provides an overview of the background modeling. The left-side table presents 

discretized voxel grids in terms of 𝑥𝑑𝑘 , 𝑦𝑑𝑘  and 𝑧𝑑𝑘 . For each voxel, 𝑣𝑘, the algorithm counts and 

stores the number of points observed in the initial set of 3,000 frames (point clouds) as 𝑁𝑣𝑘 . A 

voxel is labelled as background if 𝑁𝑣𝑘  exceeds an upper threshold, denoted as �̃�𝑈. This criterion 

ensures frequently observed voxels in the initial point cloud set are labeled as background.  

Conversely, a voxel is excluded from consideration for the background if 𝑁𝑣𝑘  is below a lower 

threshold, denoted as �̃�𝐿. An iterative algorithm utilizing K-Nearest Neighbor (KNN) is 

implemented to classify voxels with 𝑁𝑣𝑘  in the range of �̃�𝐿- �̃�𝑈. If the adjacent voxels to the voxel 

under review are labeled as background, the voxel is classified as background. 

The background modeling algorithm utilizes an initial set of 3,000 individual point clouds captured 

within a five-minute interval. To adapt to dynamic changes, particularly sensor vibrations, the 

background model undergoes updates every 15 minutes, ensuring its continuous accuracy and 

relevance. 

𝐵𝐺𝑣𝑘 = {

0,            𝑁𝑣𝑘 < �̃�𝐿

1,            𝑁𝑣𝑘 > �̃�𝑈

𝐾𝑁𝑁,     �̃�𝐿 ≤ 𝑁𝑣𝑘 ≤ �̃�𝑈

            (4-5) 
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The upper and lower threshold values are determined in a calibration process. Since the initial set 

contains 3,000 frames (point clouds), the upper threshold is calibrated as 70% of the number of 

frames (�̃�𝑈 = 2100), and the lower threshold is calibrated as 20% of 3,000 (�̃�𝐿 = 600). 

  

a) Voxel: cubic volume b) Background modeling 

Figure 4-3 The 3D segmentation and background modeling 

The right-side table in Figure 4-3 (b) illustrates the background model where voxels with 𝐵𝐺𝑣𝑘  

equal to 0 are discarded. This effectively reduces the size of the voxel grid in the background 

model since the majority of voxels represent open space and their corresponding 𝑁𝑣𝑘  is 0. In every 

frame, the LiDAR sensor captures approximately 28,800 points (16 channels × 1800 azimuth 

indices). Therefore, the size of the background model is reduced from one million voxels to a 

subset of approximately 28,800 voxels. Increasing the discretization factor, 𝑑𝑓, further reduces the 

size of the background model and diminishes the resolution, impacting the accuracy of road user 

detection. 

4.2.3 Road user detection, tracking, and classification  

This section discusses the procedures for frame-by-frame processing of raw LiDAR data. 

Following one full rotation, the LiDAR sensor’s measurements are stacked to form a data frame 
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including distance, reflection, azimuth, elevation, and timestamp corresponding to each frame. 

This section is structured in three subsections: 1) road user detection and clustering, 2) road user 

tracking, and 3) road user classification. 

Road user detection and clustering 

Table 4-2 outlines the steps of road user detection, tracking, and classification. Initially, the current 

point cloud is discretized, and a voxel ID, 𝑘∗, is assigned to each observed point. A voxel is indexed 

and accessible through three discretized coordinates: [𝑥𝑑𝑘∗ , 𝑦𝑑𝑘∗ , 𝑧𝑑𝑘∗]. When the corresponding 

voxel of the point belongs to the background, the point is excluded from the set of foreground 

points. Conversely, if the corresponding voxel does not exist in the background model, the point 

is included in the preliminary foreground point cloud. 

In the 3D space segmented into voxel grids, each voxel is adjacent to six neighboring voxels 

(sharing a face with the central voxel) and 20 diagonal neighbors (sharing only a vertex). With a 

discretization factor of 0.2m, the maximum distance between two points in neighboring voxels is 

0.4m. For every point in the preliminary foreground point cloud, if there is no other foreground 

point in the same voxel and the six neighboring voxels, the point is considered noise or false 

detection and is discarded from the initial foreground point cloud (Table 4-2: 1-2). 

Once the potential foreground points are detected and separated as a point cloud of x-y-z 

coordinates, a spatial-based clustering method is employed to cluster and construct the point cloud 

of each individual road user (Table 4-2: 3-4). The Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) is calibrated to cluster the 3D point cloud associated with the 

foreground objects at the level crossing (34).  

DBSCAN functions without necessitating the number of clusters as an input variable. Instead, it 

requires the specification of a minimum number of samples and a minimum distance to prevent 

the fragmentation of objects into smaller clusters. Based on the collected LiDAR data, the point 

cloud of a pedestrian at its maximum distance to the sensor comprises four or more samples. In 

contrast, cars, trucks, and trains have considerably larger point clouds compared to pedestrians. 

Consequently, the minimum number of samples in the DBSCAN algorithm is configured to be 
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four. Objects with fewer samples than this threshold are classified as noise and removed from the 

foreground objects. 

The position of the road user is determined by the average of the x and y coordinates of every point 

assigned to a cluster, which is equivalent to the cluster’s centroid. Additionally, the maximum z-

coordinate of all points assigned to a cluster determines the road user’s height. 

The Singular Value Decomposition (SVD) algorithm is applied to extract road users’ shape, length, 

and width from the clustered point clouds  (35). The SVD is applied to the covariance matrix of x-

y coordinates of a clustered point cloud (𝑗) as Equation (4-6): 

𝑐𝑜𝑣(𝑋𝑗, 𝑌𝑗) = [𝑋𝑗 − �̅�𝑗 , 𝑌𝑗 − �̅�𝑗]
𝑇
. [𝑋𝑗 − �̅�𝑗 , 𝑌𝑗 − �̅�𝑗]         (4-6) 

The cluster’s shape is determined using the eigenvalues (𝜆1 and 𝜆2) and eigenvectors (�⃗� 1and �⃗� 2) 

of the covariance matrix. The object’s length (𝑙𝑒𝑛𝑔𝑡ℎ𝑗) and width (𝑤𝑖𝑑𝑡ℎ𝑗) are derived by taking 

the square root of these eigenvalues multiplied by each eigenvector’s magnitude (Equation (4-7)). 

The cluster orientation in the x-y plane is defined as: 𝜃𝑗 = arctan (𝑢1𝑦/𝑢1𝑥).  

𝑙𝑒𝑛𝑔𝑡ℎ𝑗 = √𝜆1 × ‖�⃗� 1‖2 & 𝑤𝑖𝑑𝑡ℎ𝑗 = √𝜆2 × ‖�⃗� 2‖2 𝑤ℎ𝑒𝑟𝑒: 𝜆1 ≥ 𝜆2       (4-7) 

Table 4-2 Unsupervised LiDAR data processing algorithm for a given frame 

1 convert from spherical to cartesian point cloud and apply rotation and translation 

2 discretize the point cloud and detect the foreground point cloud 

3 cluster foreground point cloud: apply DBSCAN and exclude small clusters 

4 for every cluster created by DBSCAN: fit a convex hull, apply SVD, and extract features  

5 if there is no active tracker from the previous timestamp: 

initialize road user’s tracker with position, zero velocity and Kalman Filter  

6 solve Data Association algorithm for the distance cost function 

7 update associated tracker’s KF with observations and predict their next positions 

8 create new trackers for unassigned observations and terminate unassigned trackers  

9 for an assigned tracker: update speed, over 

compute velocity based on current and previous observations 

overlay road users’ point cloud with the level crossing’s geospatial polygon 

run the multiple classification criteria 
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Road user tracking 

Table 4-2 (5-9) outlines the road user tracking and classification process. A new road user, 

detected and clustered for the first time, is assigned a dynamic object, tracker. This tracker retains 

pertinent information, including the coordinates of the road user’s current and past positions and 

features extracted from the road user’s point cloud. The tracker utilizes a prediction algorithm to 

forecast the road user’s position in the next frame or timestamp. The projected position of road 

users from the previous frame is compared with the observed position of road users in the current 

frame to track their movement through consecutive frames. 

The data association (observation-prediction association) utilizes a linear assignment solver that 

minimizes the general cost of associating road users between two consecutive frames (36). The 

cost function is formulated as the sum of the distance between positions of the associated observed 

and predicted pairs (Equation (4-8)):  

𝐶𝑜𝑠𝑡𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 = ∑ √(𝑥𝑂𝑖 − 𝑥𝑃𝑗)
2

+ (𝑦𝑂𝑖 − 𝑦𝑃𝑗)
2𝑁𝑝𝑎𝑖𝑟𝑠

(𝑂𝑖,𝑃𝑗)
         (4-8) 

here, (𝑂𝑖, 𝑃𝑗) represents the set of associated observation-prediction pairs, 𝑁𝑝𝑎𝑖𝑟𝑠 is the total 

number of trackers that are assigned to the current set of observations, and √. is the Euclidean 

distance function. 

The prediction component of the tracker utilizes the Kalman Filter constructed with four state 

variables. The transition equation of the Kalman Filter is characterized as (Equation (4-9)): 

[

𝑥
𝑉𝑥
𝑦
𝑉𝑦

] = [

1 𝛿𝑡 0 0
0 1 0 0
0 0 1 𝛿𝑡
0 0 0 1

] [

𝑥−

𝑉𝑥
−

𝑦−

𝑉𝑦
−

]            (4-9) 

here, (. )− denotes the state variables from the previous timestamp, [𝑉𝑥, 𝑉𝑦] is the velocity vector, 

and 𝛿𝑡 = 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is the time interval. 

Once the association is completed, the instantons velocity of the road user, 𝑗, is updated as 

Equation (4-10): 
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[
𝑉𝑥𝑗
𝑉𝑦𝑗
] = 𝛿𝑡−1 [

𝑥𝑂𝑗 − 𝑥𝑂
−
𝑗

𝑦𝑂𝑗 − 𝑦𝑂
−
𝑗
]  𝑚/𝑠          (4-10) 

Consequently, the average velocity of the road user, �⃗̅� 𝑗, at its 𝑛𝑗
𝑡ℎ observation is updated using the 

moving average filter as Equation (4-11): 

�⃗̅� 𝑗 = [
�̅�𝑥𝑗

�̅�𝑦𝑗
] = 𝑛𝑗

−1 ((𝑛𝑗 − 1) [
�̅�𝑥𝑗
−

�̅�𝑦𝑗
−] + [

𝑉𝑥𝑗
𝑉𝑦𝑗
])𝑚/s        (4-11) 

The average speed of the road user is computed using Equation (4-12): 

𝑆�̅� = ‖�⃗̅� 𝑗‖
2
= √�̅�𝑥𝑗

2
+ �̅�𝑦𝑗

2
           (4-12) 

Any road user not paired with a tracker from the previous timestamp is treated as a newly observed 

user and assigned an initialized tracker. Similarly, any tracker not associated with an observation 

is flagged, and the tracker is terminated if it remains unassociated for five frames. 

Road user classification 

At each step, the convex polygon surrounding the road users’ point cloud in the x-y plane is 

overlayed with the geospatial boundaries of level crossing elements, including the level crossing 

area, railway tracks, streets, crosswalks, and sidewalks. Figure 4-4 illustrates the manual 

calibration of geospatial boundaries of the selected level crossing. The results of this geospatial 

analysis are used as part of the road user classification algorithm.  

An unsupervised multi-criteria method is developed for classifying road users as trains, non-

motorized (pedestrian and cyclist) road users, and motorized road users, including cars and trucks. 

The unsupervised classification method is not trained with labeled samples of road users. Instead, 

pertinent information such as length, width, speed, and geospatial data of road users at each 

timestamp is utilized for classification.  

The geospatial data includes every section intersected by the road user’s polygon and the 

proportionate area occupied by the road user in each corresponding geospatial section. For 
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example, the polygon of a pedestrian, road user 𝑘, who is beginning to enter the crosswalk from 

the sidewalk intersects with both road sections. Therefore, two proportionate areas for this road 

user are reported: 𝑎𝑆𝑖𝑑𝑒𝑤𝑎𝑙𝑘𝑘  and 𝑎𝐶𝑟𝑜𝑠𝑠𝑤𝑎𝑙𝑘𝑘. The geospatial set corresponding to the road user 𝑘 

is denoted as 𝐺𝑘, and the set of proportionate areas is denoted as 𝑎𝐺𝑘. 

 

Figure 4-4 Geospatial boundaries of road sections in the level crossing 

There are a few constraints on classifying road users. The steps for unsupervised road user 

classification can be summarized as follows: 

1. If the geospatial set of the road user contains any sidewalks, then the user is classified as a 

pedestrian. 

2. If the geospatial set of the road user contains any of the two crosswalks, East or West, the 

classification as a pedestrian or a train is determined by the length of the road user. 

3. If the geospatial set includes a railway track, the classification as a train or not is determined 

by the length of the road user. 

4. If the geospatial set does not include a railway, then the road user’s class is not a train, and 

a long road user is classified as a truck. 

5. If the road user’s speed exceeds 10 km/hour, then the user is not a pedestrian, and the length 

of the road user determines the classification as a cyclist or otherwise. 
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6. For any other cases, the speed, length, and proportionate areas are used for road user 

classification. The multi-criteria classification based on the length and width of the road 

user is formulated as follows: 

• if 𝑙𝑒𝑛𝑔ℎ𝑡𝑘 < 1𝑚: pedestrian/cyclist, 

• else if 1𝑚 < 𝑙𝑒𝑛𝑔ℎ𝑡𝑘 < 2𝑚: a group of pedestrians/cyclists or cars, check 𝐺𝑘, 

𝑎𝐺𝑘 , and 𝑆�̅�, 

• else if 2𝑚 < 𝑙𝑒𝑛𝑔ℎ𝑡𝑘 < 5𝑚: car, 

• else if 5𝑚 < 𝑙𝑒𝑛𝑔ℎ𝑡𝑘 < 7𝑚: car or truck, check the object’s width: 

o if 𝑤𝑖𝑑𝑡ℎ𝑘 < 2𝑚: car; else: truck, 

• else if 𝑙𝑒𝑛𝑔𝑡ℎ𝑘 > 7𝑚: check geospatial: 

o if 𝐺𝑘 includes railway tracks and 𝑎𝑟𝑎𝑖𝑙𝑤𝑎𝑦𝑘 ≥ 90%: train; else truck. 

4.3 Performance Evaluation 

Trespassing events on railway facilities are rare; therefore, a performance evaluation based solely 

on these events is unsatisfactory. Instead, the proposed methodology and its components are 

evaluated regarding the detection, classification, and tracking of every road user passing through 

the coverage area. The ground truth data is generated manually from video footage collected 

simultaneously. Additionally, the performance of the methodology in trespassing detection is also 

evaluated. 

4.3.1 Application - case study 

The selected study location is a level crossing with high traffic volumes in Montreal, positioned at 

the railway intersection with Avenue Elmhurst. The chosen level crossing has four gates: two long-

arm gates designed for cars and pedestrians and two short-arm gates exclusively for pedestrians. 

The long gates obstruct the vehicular lane entering one approach and its adjacent sidewalk, while 

the short gates block the sidewalk near the exiting vehicular lane. The level crossing is near a train 

station and experiences a high volume of pedestrian activities. The train station includes a platform 

between two railway tracks connected to a crosswalk on the west side of the level crossing. As a 

result, users need to cross one of the railway tracks to access the platform. 
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Figure 4-5 (a & b) displays the aerial view of the level crossing using Google’s satellite imagery. 

The LiDAR was installed on two different days at this level crossing. On the first day, it was placed 

in the north vehicular approach, 23m from the center of the level crossing, with an installation 

height of 3.8m and a downward tilt of -16.3°. On the second day, it was installed at the south 

vehicular approach and 31m from the center of the level crossing, with an installation height of 

4.4m and a downward tilt of -12.5°. As the distance from the LiDAR to the center of the level 

crossing increases, the installation height increases, and the tilting angles become more horizontal. 

 

a) Day 1: installed in North approach 

 

b) Day 2: installed in South approach 

 

c) Day 1: collected video footage 

 

d) Day 2: collected video footage 

Figure 4-5 Aerial view and map of the level crossing (Google Maps and Google Earth) 

In this study, the placement of the LiDAR was determined by the availability of nearby poles 

around the railway facilities. The LiDAR was installed at a distance from the level crossing to 

ensure the safe operation of trains. For a permanent setup, it is advisable to designate a dedicated 

pole for the sensor. Such a setup guarantees optimal performance by achieving a balanced 

resolution across the coverage area. The LiDAR sensor has a broad field of view spanning from 

0° to 359.9°, with the capability to measure distances up to 100 meters. The red polygons (Figure 



137 

 

4-5 (a & b)) delineate the chosen coverage area of the LiDAR, where it detects and tracks road 

users. Figure 4-5 (c & d) presents a sample frame from the collected video footage for each day 

of data collection. Red polygons on both images show the railway’s right-of-way, while green 

polygons outline the road’s right-of-way. Red polygons include the level crossing area and the 

East and West crosswalks in Figure 4-4. 

4.3.2 Road user detection 

Figure 4-6 (a & b) illustrates two samples while multiple road users are detected.  

 

a) Day 1: samples of road user  

 

b) Day 2: samples of road users 

 

c) Day 1: frame with a train sample 

 

d) Day 2: frame with a train sample 

Figure 4-6 Road user detection and clustering illustration 

The detection accuracy of the LiDAR methodology is evaluated by manually comparing the 

number of road users per frame with ground truth video frames for a randomly selected set of 200 

frames per data collection period. The detection rate of the proposed methodology varies based on 

road user class. Within its coverage range, the methodology applied to the low-resolution LiDAR’s 
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point cloud data detected 93.3% and 91.2% of pedestrians and cyclists on the first and second days, 

respectively. Furthermore, it achieved a car detection rate of 95.3% on the first day and 94.1% on 

the second day. Additionally, the detection rate for trucks and trains was 100% on both days. 

Errors can occur in foreground detection or clustering of the road users’ point cloud. In such cases, 

two road users may be clustered into a single point cloud, or one large road user may be split into 

two or more clusters. DBSCAN performs effectively not only for small clusters but also for larger 

ones. Figure 4-6 (c & d) illustrates two large point clouds representing samples of two trains; both 

were accurately detected and classified. 

4.3.3 Count results 

Automated counts of road users detected by the LiDAR are cross-referenced with ground truth 

counts. Ground truth data is obtained through manual verification of the video data recorded over 

a 2-hour duration for each day of data collection. This ground truth data is counted and aggregated 

in 10-minute intervals. LiDAR counts are similarly aggregated within the same time intervals. 

Overall, there are 12 ten-minute time intervals per day of data collection.  

Figure 4-7 (a & b) shows the motorized and non-motorized traffic flows over these 12 ten-minute 

intervals for both days. Although the flow diagrams of the proposed methodology are very close 

to ground truth, there are cases of overcounting or undercounting. The overcounting occurs when 

a trajectory of the road users is split into two trajectories because of occlusion, and the 

undercounting occurs when two or more road users form one cluster and have one trajectory. 

  

a) Data collection – Day 1 b) Data collection – Day 2 

Figure 4-7 LiDAR and ground truth counts in 10-minute intervals 
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Table 4-3 presents the performance of the proposed methodology in various aspects. In the ground 

truth data, 443 vulnerable and 1,151 motorized road users were observed on the first day, and 296 

vulnerable and 1,144 were observed on the second. For evaluating the performance of the 

methodology, the Average Absolute Percentage Deviations (AAPD) is calculated as Equation (4-

13): 

𝐴𝐴𝑃𝐷 = 100 × 𝑁𝑖
−1 × ∑ |𝑁𝐺𝑇𝑖 − 𝑁𝐿𝑖𝐷𝐴𝑅𝑖|/𝑁𝐺𝑇𝑖

𝑁𝑖
𝑖=1                     (4-13) 

where 𝑁𝐺𝑇𝑖 is the number of road users in 𝑖𝑡ℎ time interval in the ground truth set, 𝑁𝐿𝑖𝐷𝐴𝑅𝑖 is the 

number of road users counted by the LiDAR in the same period, and 𝑁𝑖 is the number of time 

intervals. 

Table 4-3 Summary of the count results 

Date of Installation First Day: 2018-09-27 Second Day: 2018-10-05 

Count Type 
Ground truth 

(video) 

LiDAR-based 

methodology 

Ground truth 

(Video) 

LiDAR-based 

methodology 

Duration of Analysis 2 hours 2 hours 

Number of observed and detected road users 

Pedestrian or Cyclist 443 473 296 260 

Car 1,075 1,047 1,144 1,105 

Truck 76 90 55 86 

Train 7 7 9 9 

Non-Motorized Users 443 473 296 260 

Motorized Users 1,151 1,137 1,199 1,191 

Average Absolute Percentage Deviation (AAPD) 

Motorized - 5%  3% 

Non-Motorized - 10%  14% 

The AAPD of counting motorized and non-motorized users on the first day are 3% and 10%, 

respectively, and on the second day are 5% and 14%. On the first day, the LiDAR overcounted 

non-motorized road users due to its proximity to the main crossing point for pedestrians. The 

LiDAR undercounted non-motorized road users on the second day due to its distance from the 

major intersection. 
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4.3.4 Road users’ trajectories  

The trajectories of the road users provide a better understanding of the road users’ activities and 

movement patterns in the coverage area. These trajectories can be utilized for surrogate safety 

analysis and identifying near-miss events. Figure 4-8 (a & b) illustrates the non-motorized users’ 

trajectories (blue lines) versus motorized users (red lines). Figure 4-9 (a & b) shows the 

trajectories of the non-motorized road users, including pedestrians and cyclists, in two different 

directions. It is worth noting that a platform connected to the center of the level crossing provides 

road users access to the train station. Therefore, pedestrian trajectories appear out of place as some 

pedestrians have crossed the level crossing center area instead of nearby crosswalks. 

 

a) First Day 

 

b) Second Day 

Figure 4-8 The trajectories of motorized (red) versus non-motorized (blue) road users 

 

a) First Day 

 

b) Second Day 

Figure 4-9 The trajectories of vulnerable road users 
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4.3.5 Interaction between trains and vulnerable road users 

In total, four hours of LiDAR data were collected each day. The initial two hours were utilized to 

calculate specific performance measures. For safety analysis of the level crossing, the four hours 

of data each day are processed using the LiDAR methodology. Within these four hours, the LiDAR 

accurately identified 14 trains on the first day and 17 trains on the second.  

The activities of road users during train crossing are monitored and cross-referenced with the 

LiDAR results. During the analysis, the LiDAR methodology correctly identified three conflicts, 

including an event involving two pedestrians and a train approaching the level crossing. 

 

 

a) two pedestrians entering the level crossing b) point cloud of the same conflict in (a) 

 

 

c) two pedestrians crossing the railway d) point cloud of the same conflict in (c) 

 Figure 4-10 Trespassing detection of two pedestrians 

In Figure 4-10 (a), two pedestrians can be observed passing through the gates and entering the 

railway right of way as a train crosses. Figure 4-10 (b) displays the output of the 3D LiDAR, 
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accurately detecting two pedestrians, the train, and other road users. Figure 4-10 (c & d) shows 

the same pedestrians crossing the railway while the train still passes through the level crossing. 

This sequence of events suggests that the pedestrians intended not to access the train station using 

the middle platform but to illegally cross the railway tracks while the train had the right of way.  

4.4 Conclusion and Future Work 

This research paper proposes and tests a methodology based on 3D LiDAR sensors for traffic and 

safety monitoring of railroad facilities. This paper describes the proposed methodology’s 

components, including hardware and algorithms. The hardware components for data collection 

integrate a low-resolution rotational LiDAR sensor. The algorithm comprises background 

modeling, object detection, clustering, and tracking.  

The background is modeled as the observation frequency in the discretized cubic volumes (voxels) 

in the three-dimensional Cartesian coordinate system. To improve the accuracy of background 

reconstruction, a K-Nearest Neighbor algorithm is applied to the voxels with a lower observation 

frequency. For road user detection, the Voxelized point cloud of each frame is compared with the 

voxel grid of the background model. Subsequently, a density-based spatial clustering algorithm is 

applied to group points into distinct road users. Various physical attributes, including x-y 

coordinates of the cluster center, length, width, height, area, and volume, are derived from each 

clustered point cloud. 

Each clustered point cloud is designated as a road user, and a tracker is assigned to each. The 

tracker observes the road user’s position at each frame, estimates its speed, and predicts its next 

position. Road user tracking aims to establish associations between observations of the same road 

user across consecutive frames. 

A non-supervised classification algorithm is introduced to classify road users into 

pedestrian/cyclist (combined), car, truck, and train. This algorithm relies on road users’ speed, 

dimensions, and geospatial attributes to predict their class. For example, a road user whose point 

cloud is on the sidewalk is consistently classified as a pedestrian. In another example, a road user 

exceeding 7 meters might fall into either the train or truck category. Therefore, its classification is 
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determined by examining its point cloud with regard to the railway polygon. If the point cloud is 

entirely within the railway polygon, it is clustered as a train; otherwise, it is classified as a truck. 

The proposed LiDAR system was installed at a level crossing in Montreal, Canada, on two days. 

The performance of the 3D LiDAR-based methodology, employing unsupervised methods, is 

promising. The detection rate for vulnerable road users (pedestrians and cyclists) ranges from 

91.2% to 93.3%, and for cars, it ranges from 94.1% to 95.4%. Trucks and trains, given their 

relatively large point cloud, present a detection rate of 100%. 

In addition to frame-by-frame comparison, the performance of the LiDAR system over two hours 

on both days is assessed. The LiDAR system’s counts are compared against manually collected 

ground truth data obtained from recorded videos. The Average Absolute Percentage Deviation 

(AAPD) for counting motorized road users is 5% and 3%, while for non-motorized road users, the 

AAPD ranges between 10% and 14% across two different system setups. 

The proposed methodology could empower railway systems to automate the monitoring of 

vulnerable road users’ activities at level crossings or railway facilities. An activity-recognition 

algorithm can find whether a person is crossing the area or stationery while a train is approaching 

the facilities. During the data collection period, the LiDAR system correctly identified three 

conflicts, including the trespassing of two pedestrians.  

As part of future work, semi- or fully-supervised methods will be developed and compared with 

the proposed unsupervised method. Although these alternative methods could perform better than 

the proposed method, generating labeled (annotated) data for training would be highly time-

consuming. Other future work may involve the long-term installation of the LiDAR system and 

the integration of a warning system. Evaluating the proposed methodology on a more extensive 

set of railway facilities could enhance its assessment. Exploring the integration of computer vision 

with LiDAR systems could open up promising avenues for future research. Such integration has 

the potential to improve both system redundancy and accuracy. Additionally, evaluating 

alternative surrogate safety measures will be explored for safety applications. The evaluation of 

alternative sensor resolutions, including those with more channels, will be conducted to assess 

their impact on classification and tracking performance.  
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Link Between Chapters 2, 3, and 4 and Chapter 5 

Chapter 2 presented a supervised 3D LiDAR-based methodology for traffic monitoring at urban 

intersections with high-mixed traffic. The system utilizes low-resolution and high-resolution 3D 

LiDAR sensors. 

Chapter 3 extended the work of Chapter 2 and introduced a new method based on the shape of 

road users for calculating surrogate safety indicators such as time-to-collision or post-

encroachment time. The road users’ point cloud data in Chapter 3 was produced by low and high-

resolution LiDAR sensors. 

Chapter 4 presented an unsupervised 3D LiDAR-based methodology for safety monitoring at a 

railroad-grade crossing utilizing a low-resolution LiDAR sensor.  

All previous three studies utilized 3D rotational LiDAR. Although these 3D LiDAR are powerful 

at 3D scanning the urban environment and quantifying road users in space, they are often costly, 

making them especially useful for complex scenarios such as intersection and level crossing 

monitoring. 

Chapter 5 takes a unique direction in developing a methodology for processing 1D LiDAR data. 

The main objective of this chapter is to apply a low-cost, low-resolution, fast, and scalable LiDAR 

system for collecting cyclist traffic flow information at bike lanes, cycle tracks, and other cyclist 

facilities. The proposed system in Chapter 5 and those presented in Chapters 2-4 provide an 

opportunity for multi-model data collection in urban areas. 
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CHAPTER 5: A LIDAR-BASED METHODOLOGY FOR MONITORING AND 

COLLECTING MICROSCOPIC BICYCLE FLOW PARAMETERS ON BICYCLE 

FACILITIES 

5.1 Abstract 

Research on microscopic bicycle flow parameters (speed, headway, spacing, and density) is 

limited given the lack of methods to collect data in large quantities automatically. This paper 

introduces a novel methodology to compute bicycle flow parameters based on a LiDAR system 

composed of two single-beam sensors. Instantaneous mid-block raw speed for each cyclist in the 

traffic stream is measured using LiDAR sensor signals at seven bidirectional and three 

unidirectional cycling facilities. A Multilayer Perception Neural Network is proposed to improve 

the accuracy of speed measures. The LiDAR system computes the headway and spacing between 

consecutive cyclists using time-stamped detections and speed values. Estimation of density is 

obtained using spacing. For model calibration and testing, 101 hours of video data collected at ten 

mid-block sites are used. The performance of the cyclist speed estimation is evaluated by 

comparing it to ground truth video. When the dataset is randomly split into training and test sets, 

the RMSE and MAPE of the speed estimation method on the test set are 0.61m/s and 7.1%, 

respectively. In another scenario, when the model is trained with nine of the ten sites and tested on 

data from the remaining site, the RMSE and MAPE are 0.69m/s and 8.2%, respectively. Lastly, 

the relationships governing hourly flow rate, average speed, and estimated density are studied. The 

data were collected during the peak cycling season at high-flow sites in Montreal, Canada; 

However, none of the facilities reached or neared capacity. 

Keywords: LiDAR Sensor, Microscopic Cyclist Flow Parameters, Cyclist Speed, Automated 

Extraction, Alternative Technologies 
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5.2 Introduction 

The increase of bicycle usage in cities has heightened the need for improved automated data 

collection, metrics, and methods that provide an understanding of traffic flow characteristics, as 

had been done for vehicular traffic. The planning, design, and operations of bicycle facilities are 

essential for making urban cycling a more efficient and attractive mode of transportation (1). 

Planning and designing cycling infrastructure requires automated data collection technologies and 

methods to determine the performance of the existing network (2, 3). As bicycle ridership grows, 

performance indicators that evaluate traffic conditions at bicycle facilities become increasingly 

crucial in the planning process (4). Average Annual Daily Bicycle (AADB) traffic is among the 

basic performance metrics for evaluating bicycle facilities. AADB is estimated based on volume 

or count data. Many methods are proposed to determine the AADB using short- and long-term 

counts at bicycle facilities in recent years. Despite the importance of traffic volume data and 

AADB estimation, microscopic traffic flow parameters are required to understand cycling 

facilities’ performance and improve traffic operations; this includes speed, spacing, headway, and 

density (5). The relationships governing cycling volume, speed, and density would be better 

understood by monitoring and automatically gathering cycling traffic flow parameters. This could 

help identify when facilities reach capacity, evaluate the impacts of new bicycle infrastructure, or 

evaluate improvements on existing facilities (6, 7). Microscopic bicycle traffic flow data could 

also help to calibrate microsimulation models (8) and provide information for signal timing (6, 9). 

Moreover, there is currently a need for real-time cyclist microscopic traffic parameters to improve 

bicycle flow operations in, for instance, green-wave signalization. As bicycle ridership continues 

to grow and e-bikes gain prevalence, facilities will experience more speed heterogeneity. Two-

wheeled facilities will transport significantly higher flows of users than conventional motorized 

vehicle lanes (10). Thus, the ability to monitor the performance of cycling facilities will become 

critical. 

Knowledge of microscopic bicycle flow relationships is pertinent in the fields of transportation 

planning and engineering. However, few studies have attempted to develop data collection tools 

and methods to automatically extract basic bicycle flow parameters in real-time (11, 12). Point-

based monitoring systems are standard for counting cyclists; however, none are reported to 
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measure additional microscopic flow parameters such as instantaneous speed, density, headway, 

and spacing. 

In response to these shortcomings in both research and practice, this research proposes a 

methodology to compute traffic flow parameters at bicycle facilities using distance measurements 

from a two single-beam LiDAR system. Based on distance measures, an algorithm to estimate 

instantaneous mid-block cyclist speed in real-time is proposed and evaluated using ground truth 

data manually calculated from video footage. The accuracy of bicycle traffic measurements is 

evaluated using 101 hours of video data collected at ten different cycling facilities in Montreal, 

Canada. Alternative regression methods are used for speed correction, including Ridge regression, 

Multilayer Perception Neural Network, and Decision Tree. Several features are extracted from the 

distance signals of a two single-beam LiDAR system and employed for tuning these three 

classifiers. 

5.3 Literature Review 

Cycling microscopic flow parameters may be more complex to model than motor-vehicle traffic 

parameters due to the heterogeneity of individual factors such as cyclist age and bicycle type (6, 

7). In addition, external factors such as road grade, weather, and bicycle flow (13) can influence 

speeds. 

Vehicular traffic flow analysis is widely discussed (14, 15). These studies often involve developing 

fundamental diagrams using flow, density, and speed variables. A traditional model, utilizing flow-

density and speed-density diagrams, was first introduced by Greenshields et al. and then expanded 

by Aerde and Rakha (16, 17). Collecting cyclist traffic factors, including cyclist speed, allows for 

developing the fundamental diagrams of cyclist facilities. 

Several technologies used for bicycle counting or vehicle speed measures could be adapted to 

measure point-based cycling speed. Few studies have used Radar to measure cyclist speed. Jeng 

proposed a vehicle and cyclist speed estimation system equipped with a 2D range-Doppler 

frequency-modulated continuous-wave radar (18). Pneumatic tubes (19) and inductive loop 

sensors (20) are the most common technologies used in cyclists detection and counting systems. 

The two tubes or loops must be placed precisely with a specific separation length to capture cyclist 
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speed. Then the system can obtain cyclists’ speed by dividing the tube separation length by the 

measured time between signal pulses from the two tubes. However, a low response time and a low 

sampling rate of pneumatic tubes limit the accuracy of speed measurements.  

Using GPS trajectory and speed data, two cyclist speed studies focused on internal factors, such 

as gender and ability, and grouped cyclists into different categories. Berjisian investigated cyclist 

cruising speed by applying three time-series clustering methods on bicycle travel data collected by 

GPS to identify cruising, idling, acceleration, and deceleration events (7). Strauss used bicycle trip 

GPS data, generated from a smartphone application, to estimate individual cyclists’ speed on 

segments and intersections and delay at intersections in Montreal (4). Collecting GPS trajectories 

data could enable researchers to study the fundamental diagrams of traffic flow for cyclists (11, 

12, 21-24). Although GPS trajectory data has the advantage of monitoring cyclists across the 

network, it has a couple of important disadvantages. Firstly, penetration rates are very low; thus, 

only a few cycling speeds are measured. Secondly, because of the low sampling rate, these 

technologies are not well-suited for real-time applications. 

Video-based systems use image processing or artificial intelligence algorithms to detect road users 

and track their trajectories. An estimate of road user speed is calculated from the time-stamped 

trajectory data. This process can be adapted to monitor cyclists and measure cyclists’ speed. 

Figliozzi developed and applied a methodology to manually estimate bicyclist acceleration and 

speed from video data for traffic signal timing applications (6). Zaki demonstrated that video 

analysis for bicycle data collection in high-density environments is feasible (25, 26). Bicycle 

counts, density, and speed are automatically obtained in a bicycle facility, and results are validated 

using manual methods from video footage. In a previous study, Zaki validated the speed of 70 

cyclists with an average speed of 3.9 m/s, and found RMSE of 0.38 m/s or approximately 10% 

(26).  

Hoogendoorn proposed a video-based composite headway modeling system for cyclists traversing 

a crosswalk (27). However, the classification of the crossing road users at a crosswalk into cyclists 

and pedestrians is not discussed. In recent work, Mohammed et al. studied cyclist maneuvers, such 

as following and overtaking, using trajectories extracted from video footage, and utilized cyclist 

interactions for microsimulation modeling (28). Their method obtains 95% accuracy in retrieving 
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cyclist trajectories and shows promising outcomes in maneuver analysis, counting, and speed 

estimation. 

Recent video-based systems have demonstrated encouraging outcomes in collecting cyclist flow 

parameters. However, as the complexity of video-based trajectories analysis increases, the 

efficiency and cost of the system and the scalability and reproducibility of the process limit the 

applicability of this approach. A camera-based system may require a complete calibration process 

when installed in a new facility; in some cases, the calibration must be completed on the video 

processing module. In general, the efficacy of a video-based system for cyclist monitoring 

applications is affected by several criteria such as budget, coverage area, hours of operation 

(daytime/nighttime), etc. A highly accurate camera-based system performing in real-time requires 

powerful CPU/GPU modules, data storage, and transmission units. These components add high 

cost in a large-scale implementation.  

Although recent advances are made in bicyclist data collection, some research gaps emerge from 

the literature. Firstly, few studies have explored technologies and methods to automate the 

measurement of cyclist speed in real-time on cycling facilities. Secondly, only one known project 

(25, 26, 28) has validated speed measures using video-based systems. Lastly, accurate video-based 

systems operating in real-time are expensive and require calibration at each site.  

Pedestrian and bicycle counting systems that use emerging laser technology, Light Detection and 

Ranging (LiDAR), have shown promising results. A pedestrian counting system, designed and 

proposed in our recent research work (29), can collect pedestrian data on different types of facilities 

such as sidewalks or crosswalks. Based on this past work, there is potential for LiDAR sensors to 

be used for bicycle traffic monitoring and data collection of microscopic parameters. LiDAR 

systems are developed to classify and count pedestrians or cyclists (29, 30); however, no known 

method is applied to measure cyclist speed.  

LiDAR systems, specifically 1D and 2D LiDAR, have some potential advantages over video 

analysis. Firstly, the amount of data at each sampling time is lower than with video, and the 

algorithms employed for processing these data are less complicated. Secondly, for on-site, real-

time applications, the embedded processor would require significantly less computational power 

than with video and thus would be considerably cheaper. Therefore, an integrated LiDAR system 
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for counting and speed monitoring can be more competitive than video-based systems. A 

monitoring system based on 1D LiDAR requires less energy, is less costly than video-based 

systems, and can be implemented for real-time applications. A real-time system would eliminate 

the cost of transmitting and storing data for offline processing. Thus, the system could be installed 

permanently with a relatively low operating cost. Additionally, real-time bike speed and density 

information could help optimize flow and ensure green wave operation using smart signal 

actuation and timing. 

Vehicle traffic flow relationships are well understood. An automated roadside system for 

measuring cyclist traffic flow parameters in real-time would allow for an increased understanding 

of cycling speed, flow, and capacity on cycling facilities. It would enable optimization of traffic 

signal timing on high-flow urban bicycle facilities. 

5.4 Methodology 

To achieve the objectives of this research, a methodology consisting of four steps is proposed: 

1. LiDAR system development and deployment,  

2. Cyclist detection, 

3. Computation of bicycle speeds, error correction, and speed validation, 

4. Estimation of headway, spacing, and density. 

Additional details on each of these steps are provided below. 

5.4.1 LiDAR system development and deployment  

As a first step, a LiDAR system is developed with two single-beam LiDAR sensors. The system 

hardware consists of a processor, a low-power ARM microcontroller with a 1GHz processor and 

a 1GB RAM, and two single-beam LiDAR sensors from LidarLite. The LiDAR sensor measures 

distance up to 40m with a resolution of 3cm and a sampling rate of 500Hz (2ms). All the 

components are placed in a waterproof enclosure and powered by a 12V-2A battery pack. The two 

1D LiDAR sensors are spaced by a given distance (e.g., 0.20m), which allows for speed 

measurement of passing cyclists. Figure 5-1 (a) shows a sample installation where the 1D LiDAR 

system is installed at a cycle track in Montreal. Figure 5-1 (b) shows the top view of the system 
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operation. The two single-beam lasers emit two signals (red arrows), 𝐿1 and 𝐿2, and the detector 

of each laser receives the reflected signals (green arrows) from cyclists, then the laser scanners 

calculate the distance to the cyclists, 𝑑𝐿1 and 𝑑𝐿2, from their signal’s time of flight. The distance 

between two single-beam LiDAR, which is also the distance between two emitted light beams or 

two reflected light beams, is called Δ𝑥𝐿1,𝐿2 (equivalent to 0.20m). Additionally, the installation 

height of the system (with respect to the pavement) is ℎ and ranges from 1.1m to 1.3m. 

 

 

a) Sample Installation b) Top view of the system operation 

Figure 5-1 System setup in an actual installation 

5.4.2 Cyclist detection  

The output from each of the LiDAR sensors is a pulsed distance signal. If the sensor is facing a 

solid object (e.g., a wall), then the base value of the distance signal (background value) is a fixed 

value equal to the distance from the sensor to the wall. Alternatively, if the sensor faces an open 

space or an object farther than its maximum distance range, the base value is 0. 

For each of the two sensors, a lower band (𝑑𝑚𝑖𝑛 – distance to the nearest side of the bike path) and 

an upper band (𝑑𝑚𝑎𝑥 – distance to the farthest side of the bike path) distance values are defined. 

The value of the distance signal (𝑑𝐿𝑖; 𝑖 ∈ {1,2}) is set to a pre-defined distance value when it is not 

within these bands. The pre-defined distance value, 𝑑𝑏𝑎𝑠𝑒, is lower than 𝑑𝑚𝑖𝑛: 

𝑑𝐿𝑖 ← 𝑑𝑏𝑎𝑠𝑒 , 𝑤ℎ𝑒𝑛: 𝑑𝐿𝑖 ≤ 𝑑𝑚𝑖𝑛 𝑜𝑟 𝑑𝐿𝑖 ≥ 𝑑𝑚𝑎𝑥          (5-1) 
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This logic ensures that the signal value of 𝑑𝐿1or 𝑑𝐿2 is either 𝑑𝑏𝑎𝑠𝑒 or equivalent to the distance to 

a road user moving in front of the system on the bike path. The pulsed distance signal has a 

dynamic duty cycle that depends on the headway between the cyclists. The width and amplitude 

of each pulse could indicate the speed and distance from the sensor to the corresponding cyclist. 

The amplitude series of each pulse that represents the distance to the cyclist is not a unique value 

and has a small and bounded range that indicate the un-even surface of the cyclist’s upper body. 

Using pulses of distance signals, a multi-step clustering algorithm is implemented for cyclist 

detection and counting. In the first step, a binary signal (𝑚𝐿1 & 𝐿2), indicating the presence of a 

cyclist in front of either of the LiDAR sensors, is generated by using:  

𝑚𝐿1 & 𝐿2 ← 1,𝑤ℎ𝑒𝑛: 𝑑𝐿1 > 𝑑𝑏𝑎𝑠𝑒 𝑜𝑟 𝑑𝐿2 > 𝑑𝑏𝑎𝑠𝑒; 𝑚𝐿1 & 𝐿2 ← 0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (5-2) 

𝑚𝐿1 & 𝐿2 is 1 when at least one of the sensors reads a distance value other than the base distance. 

Using this time-stamped binary signal, each pulse in 𝑚𝐿1 & 𝐿2 is separated as a candidate cluster 

for the second step, where each cluster is evaluated to be split into smaller clusters, unchanged or 

removed.  

The size of each cluster is equal to the width of the corresponding pulse obtained from 𝑚𝐿1 & 𝐿2. 

Noises of distance measurements, corresponding to the cases where LiDARs falsely report a 

distance value while there is no object in front of them, are eliminated by filtering out the cluster 

with a small size. Since the installation height of the system ranges from 1.1m to 1.3m, the laser 

beams measure the distance to the upper body of each cyclist. Assuming that the minimum width 

of a cyclist’s upper body is 15cm, each cyclist needs to travel the line of sight of two LiDARs 

(2×15cm) and the distance between two LiDARs (20cm) to pass both sensors. A cyclist traveling 

quickly (i.e., 10m/s) will spend approximately 50ms in the detection area and will therefore be 

detected and measured in about 25 samples. Thus, a lower threshold for cyclist cluster removal is 

set as 15 samples.  

Afterward, the distance signal, 𝑑𝑖,𝐿𝑗, corresponding to the 𝑖 − 𝑡ℎ cluster in 𝑚𝐿1 & 𝐿2, are extracted 

from 𝑗 − 𝑡ℎ LiDAR, and the binary signal, 𝑚𝑖,𝐿𝑗
 is computed as:  

𝑚𝑖,𝐿𝑗
← 1,𝑤ℎ𝑒𝑛: 𝑑𝑖,𝐿𝑗 > 𝑑𝑏𝑎𝑠𝑒;𝑚𝑖,𝐿𝑗

← 0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (5-3) 
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If there is only one pulse in 𝑚𝑖,𝐿𝑗
, it will be considered as one cyclist. If there is more than one 

pulse, a set of rules is applied to split the pulses into multiple clusters or merge them as one cluster. 

First, if the difference in the average amplitude of the pulses in a single cluster in 𝑚𝑖,𝐿𝑗
 is more 

than 0.5m, the cluster will be split into multiple pulses of similar amplitude within each pulse.  

Second, for all the pulses in one cluster, the duty cycle of pulses (time gap between pulses) is used 

for the merging-splitting process. A threshold of 25 samples between pulses is chosen as a 

reasonable criterion for the merging of clusters. If two cyclists with a headway of 1 meter are 

traveling with a speed of 20m/s, then the time difference in their pulses will be 1/20=0.05s 

(equivalent to 25 samples). This scenario represents an extreme situation where two unique cyclists 

are traveling with very little headway at an extremely high speed. Therefore, if two pulses are 

within 25 samples of each other, they will be merged as one cluster. 

Afterward, clusters of both sensors are matched based on their appearance, chronology, and pulse 

width. Finally, a cyclist sample with one cluster (distance pulse) per LiDAR is detected and 

counted (see Figure 5-2). 

 

Figure 5-2 Sample of sensor distance measures (in meters) for a single cyclist 

5.4.3 Computation of bicycle speed  

Figure 5-2 illustrates the distance signals from the two LiDAR sensors when a cyclist is traversing 

the coverage area and detected by both sensors. In the case when no cyclist is present, the output 

of the sensor is set to zero (𝑑𝑏𝑎𝑠𝑒). When a cyclist appears, the output corresponds to the distance 
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to that cyclist. The x-axis represents consecutive samples in time, and the y-axis represents the 

distance from the LiDAR system to the cyclist. 

In this sample plot, the cyclist is first detected by sensor 2. The order of detection of the two sensors 

determines the cyclist’s direction and the sign of its velocity vector. The theoretical cyclist speed 

can be measured by (5-4). 

�̂�𝑟𝑎𝑤 =
𝛥𝑥𝐿1,𝐿2

𝛥𝑇𝐿
=

0.2 

𝛥𝑇𝐿 
(
𝑚

𝑠
)             (5-4) 

where: 

• �̂�𝑟𝑎𝑤 is the raw speed that the LiDAR system can measure. 

• 𝛥𝑥𝐿1,𝐿2 is the distance between the two sensors, which is fixed and equal to 0.2m. Note that 

the spacing between the two sensors is kept low to build a relatively compact system that 

can easily be installed everywhere. A spacing significantly smaller than 0.2m would reduce 

the accuracy of extracting features from the distance signals. 

• 𝛥𝑇𝐿 is the difference in time between the two sensors detecting the cyclist. The time 

difference (𝛥𝑇𝐿) is computed by multiplying the number of samples between two sensor 

detections by the sampling time of the sensors. The nominal sampling rate of the LiDAR 

sensors is 500Hz, meaning that the standard sampling time (𝑇𝑠) is two milliseconds. 

• 𝑁𝑓𝑖𝑟𝑠𝑡 is defined as the difference in samples between the first detection of the cyclist by 

1st and 2nd sensors (see Figure 5-2). Similarly, 𝑁𝑙𝑎𝑠𝑡 is defined as the difference in samples 

between the last detection of the cyclist by 1st and 2nd sensors, respectively.  

Ideally, 𝑁𝑓𝑖𝑟𝑠𝑡 should be equal to 𝑁𝑙𝑎𝑠𝑡, and 𝛥𝑇𝐿 = 𝑁𝑓𝑖𝑟𝑠𝑡 × 𝑇𝑠, where 𝑇𝑠 is the sampling time; 

therefore, �̂�𝑟𝑎𝑤 is obtained by Equation (5-4). However, as the laser beams diverge, the distance 

between the two beams differ from 0.2m, and 𝛥𝑇𝐿 may not precisely correspond to a 0.2m 

displacement. The error associated with an inaccurate 𝛥𝑇𝐿 can lead to speed estimation error. 

Equation (5-1) provides a raw speed measurement. In the following step, alternative error 

correction techniques are applied to the raw speed measure. 
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5.4.4 Error correction and speed validation 

Alternative regression speed estimation methods with multiple regressors are proposed to improve 

raw measurements’ accuracy by correcting minor uncertainties in measurements. First, the factors 

used to correct the error are defined, including 𝑁𝑓𝑖𝑟𝑠𝑡 and 𝑁𝑙𝑎𝑠𝑡, defined before, as well as the other 

regressors extracted from the two distance signals (𝑑𝐿1 and 𝑑𝐿2): 

• For each cyclist, �̅�𝐿1 and �̅�𝐿2 represent the average magnitude of the signal or distance 

value from the LiDAR sensor 1 or 2 to that cyclist (as illustrated in Figure 5-2). The slight 

variations in distance measurement are related to the uncertainty caused by beam 

divergence, as cyclists closer to the sensor are less affected. Therefore, taking the average 

distance of the cyclist into account could reduce the speed estimation error. 

• For each cyclist, 𝑊𝐿1 and 𝑊𝐿2 are the width of the distance signals recorded by LiDAR 

sensors 1 and 2, respectively. These values represent the number of samples for which each 

sensor has observed that cyclist. The faster the cyclist passes the coverage area, the smaller 

the number of samples is recorded by the LiDAR sensor. The cyclist’s body shape also 

affects 𝑊𝐿𝑖 
, therefore the estimated speed by video validation (�̂�𝑉) and 𝑊𝐿𝑖 

 are not 

expected to be highly correlated. Nonetheless, the signal widths are considered in the 

regression model.  

Since the proposed system uses two identical 1D LiDAR sensors placed very close to each other, 

a cyclist should have similar patterns in both. However, slight variations in the signal pattern could 

occur. Nonetheless, �̅�𝐿1 is highly correlated with �̅�𝐿2 (99.7% correlation) and 𝑊𝐿1 with 𝑊𝐿2 (96.7% 

correlation). Including each of these pairs makes the regression model inconsistent. Therefore, the 

average of each pair will be used, which are �̅�𝐿 = (𝑊𝐿1 +𝑊𝐿2)/2 and �̅�𝐿 = (�̅�𝐿1 + �̅�𝐿2)/2. 

In this study, two different approaches are used to build the regression model. In the first approach, 

the direct model, the estimated speed from video validation is the dependent variable of the 

regression model. Since the cyclist speed has an inverse correlation with the time difference (𝑁𝑓𝑖𝑟𝑠𝑡 

or 𝑁𝑙𝑎𝑠𝑡), the inverse of these factors is included in the regression model. The regression function 

of the direct model is written as (5-5): 
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�̂�𝐿 = 𝑓(𝑁𝑓𝑖𝑟𝑠𝑡
−1 , 𝑁𝑙𝑎𝑠𝑡

−1 , �̅�𝐿 , �̅�𝐿|𝛩)            (5-5) 

where 𝛩 is the model coefficients which are estimated using the manually validated data. In the 

second approach, the validated video time difference is the dependent variable instead of the 

validated speed. Consequently, 𝑁𝑓𝑖𝑟𝑠𝑡 and 𝑁𝑙𝑎𝑠𝑡 are included in the regressor vector instead of their 

inverse. The regression function to estimate the time difference is written as (5-6): 

𝛥�̂�𝑉 = 𝑓(𝑁𝑓𝑖𝑟𝑠𝑡, 𝑁𝑙𝑎𝑠𝑡 , �̅�𝐿 , �̅�𝐿
−1|𝛩)            (5-6) 

The estimated speed of the cyclist (�̂�𝐿) has an inverse relationship with the dependent variable of 

the regression model (𝛥�̂�𝑉), therefore, the second model is called the inverse model. The estimated 

speed is obtained by (5-7). 

�̂�𝐿 =
𝑑𝑉

𝛥�̂�𝑉
=

7𝑚

𝛥�̂�𝑉
              (5-7) 

In this study, two identical LiDAR-based systems are prepared and installed in different locations 

on different days. The bike facilities used for testing include bidirectional cycle tracks, 

bidirectional and unidirectional painted bike lanes. A portion of each dataset is manually validated 

by analyzing the video footage. Then all the validated data are merged to create a comprehensive 

cyclist dataset. To consider the effect of the bike facilities that each sample is taken from, a fixed 

effect vector containing dummy variables is used as (5-8):  

𝛼𝑘 = [

𝛼𝑘,1
𝛼𝑘,2
⋮

𝛼𝑘,𝑚−1

]

(𝑚−1)×1

             (5-8) 

where 𝑘 is the sample number and m is the number of bike facilities contained within the dataset. 

If the 𝑘𝑡ℎ sample of the dataset belongs to the 𝑗𝑡ℎ bike facility, then 𝛼𝑗𝑘 is set as one; otherwise, it 

is zero. In fact, 𝛼𝑗𝑘 is a dummy variable that indicates which sample belongs to which site.  

In total, there are 𝑚 − 1 dummy variables: when all the dummy variables are zero, it implies that 

the sample belongs to 𝑚𝑡ℎ site. The regressors’ vector is written as (5-9). The dimension of this 

vector is 5 + (𝑚 − 1). 
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𝑥 =

[
 
 
 
 
 
 

1
𝑔1(𝑁𝑓𝑖𝑟𝑠𝑡)

𝑔2(𝑁𝑙𝑎𝑠𝑡)

𝑔3( �̅�𝐿)

𝑔4(�̅�𝐿) 
𝛼𝑘 ]

 
 
 
 
 
 

(5+𝑚−1)×𝑁

             (5-9) 

where 𝑔𝑖 depends on the type of model in use which could be direct or inverse. For example, if the 

direct model is used, then 𝑔1(∙) = 𝑔2(∙) = (∙)
−1, and 𝑔3 and 𝑔4 are identity functions, and if the 

inverse approach is used, 𝑔3(∙) = (∙)
−1 and 𝑔1, 𝑔2 and 𝑔3 are identity functions. Different 

regression models, including Ridge Regression, Multilayer Perception (a feedforward artificial 

neural network), and Decision Tree, are implemented in this study. The hyperparameters of each 

of these models are tuned by a k-fold cross-validation technique. 

5.4.5 Estimation of headway, spacing, and density 

Additional traffic parameters such as flow rate, headway, spacing, and density are computed using 

time-stamped information and the cyclists’ speed. The flow rate, 𝑞, is obtained by summarizing 

the count results in different time intervals (5-10).  

𝑞 =
𝑚

Δ𝑇 
              (5-10) 

where 𝑚 is the flow or number of cyclists that pass in front of the LiDAR detector at the fixed 

position (installed mid-block) during the time interval of Δ𝑇 in hours.  

The headway between any two consecutive cyclists is computed simply by calculating the 

difference between the two detection times. In addition to the flow rate and headway, the density, 

𝑘, can be calculated as (5-11): 

𝑘 =
𝑛

𝐿
              (5-11) 

where 𝑛 is the number of cyclists traveling along a bike facility segment of length 𝐿 at a specific 

time. Equation (5-11) estimates density as the number of cyclists per unit of length, typically 

represented as cyclists/km. However, accurately calculating density from (5-11) requires 

continuous spatial monitoring of a relatively long section of the bike path and counting the number 
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of cyclists in that section. Choosing small values of 𝐿 causes high temporal variations in 𝑛 as the 

number of cyclists traveling along a short segment will vary widely for different time intervals. 

Alternatively, choosing a large value for 𝐿 requires a monitoring system with a large field-of-view 

or coverage area, likely a system with multiple cameras. The cost of such a system may be 

prohibitively high. Instead of calculating the density by counting cyclists along a segment of length 

𝐿, the density can be estimated by measuring the space between two consecutive cyclists as (5-

12): 

𝑘 =
1

�̅�
              (5-12) 

where 𝑆̅ is the average spacing between every two consecutive cyclists in any time interval: 𝑆̅ =

∑ 𝑆𝑖
𝑚
𝑖=1 𝑚⁄ . Here, ∑ 𝑆𝑖

𝑚
𝑖=1  is the summation of the spacing between 𝑚 cyclists traveling along the 

bike path at a specific time interval (Δ𝑇). The proposed system is adapted to estimate spacing 

between two cyclists using headway and estimated speed information. 

Figure 5-3 shows a scenario in which three cyclists are passing through the sensor line-of-sight. 

The leading cyclist (L) has crossed the line-of-sight at time 𝑡𝐿 and with speed 𝑈𝐿, the current cyclist 

(C), the middle one, is passing the sightline at time 𝑡𝐶 and with speed 𝑈𝐶, and the following cyclist 

(F) will pass it at time 𝑡𝐹 and with speed 𝑈𝐹. The headway or gap time is obtainable by computing 

the time difference of every two successive cyclist’s observations in the same direction. In this 

case, the headway to the leading cyclist is Δ𝑡𝐿 = |𝑡𝐶 − 𝑡𝐿| and the headway to the following cyclist 

is Δ𝑡𝐹 = |𝑡𝐹 − 𝑡𝐶|. 

The spacing is another important factor that can represent level-of-service in a bike facility. The 

information of the headway and speed of the cyclists are used to extract the spacing of two 

consecutive cyclists. When the current cyclist arrived at the line-of-sight, the leading cyclist has 

traveled for Δ𝑡𝐿 seconds with the speed of 𝑈𝐿 m/s. Therefore, the spacing between the current 

cyclist and the leading cyclist at the time of current cyclist observation is 𝑆𝐶,𝐿
(1) = Δ𝑡𝐿 × 𝑈𝐿.This is 

with respect to the time that the current cyclist is observed. On the other hand, when the leading 

cyclist is detected, it is expected that the current cyclist arrived after Δ𝑡𝐿 seconds while traveling 

with the speed of 𝑈𝐶 m/s. Therefore, the spacing between the current cyclist and the leading cyclist 

is 𝑆𝐶,𝐿
(2) = Δ𝑡𝐿 × 𝑈𝐶. The actual value of the spacing is between 𝑆𝐶,𝐿

(1)
 and 𝑆𝐶,𝐿

(2)
. The best value that 
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can represent this spacing is the average of these two values, 𝑆𝐶,𝐿 = (𝑆𝐶,𝐿
(1) + 𝑆𝐶,𝐿

(2))/2 =

(Δ𝑡𝐿 × 𝑈𝐿 +  Δ𝑡𝐿 × 𝑈𝐶)/2 = Δ𝑡𝐿 × (𝑈𝐿 + 𝑈𝐶)/2. Similarly, the spacing between the current 

cyclist and the following cyclist is computed by 𝑆𝐶,𝐹 = Δ𝑡𝐹 × (𝑈𝐶 + 𝑈𝐹)/2. The spacing between 

the current and the leading cyclists (SC,L) are used to compute S̅ in (5-12). 

 

Figure 5-3 Three consecutive cyclists traveling in the same direction 

Since the proposed LiDAR system, composed of two single-beam sensors, can detect cyclists’ 

direction, the traffic characteristics, including flow rate, density, speed, headway, and spacing, are 

also obtained per direction. 

5.4.6 Ground-truth speed data generation 

Manual estimation of the cyclist speed is evaluated and compared against the automated 

measurements. The LiDAR system is equipped with a camera (placed between two single-beam 

LiDARs). Video footage, used for manual estimation of the ground-true speeds, is collected 

simultaneously as the LiDAR data. The manual speed is an average speed along a section defined 

by two screen lines marked on the surface with white chalk (see Figure 5-4 (a)). The chalk is 

drawn when the LiDAR and video systems are installed. The length between the two screen lines 

is 7.0m. The time it took for all the cyclists to travel across the 7.0m distance is timed by manually 

counting the number of video frames from the frame when the front wheel reaches the first line to 

the frame when the front wheel reaches the second line. The manual speed is obtained from (5-

13): 

�̂�𝑉 =
𝑑𝑉

𝛥𝑇𝑉
=

𝑑𝑉

𝛥𝑓𝑉/𝑓𝑝𝑠
            (5-13) 

where: 
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• 𝑑𝑉 is the distance traveled in the video footage (in this case, 7.0m),  

• 𝛥𝑇𝑉 is the time required for the cyclist to travel this distance,  

• 𝛥𝑓𝑉 is the number of frames that the camera captures during 𝛥𝑇𝑉,  

• fp𝑠 is the frame rate of the camera (in this case, 30 frames per second). 

In some cases, due to the proximity of the sensor installation to the bike lane, using the 7-meters 

lines is not possible; therefore, 6-meters and 5-meters lines are also drawn for manual speed 

estimation (see Figure 5-4 (b)). 

  

(a) Boulevard de Maisonneuve (b) University Street 

Figure 5-4 Sample snapshots of the sites and the manual speed estimation 

Manual validation has inherent accuracy limitations. Manual counting of the number of frames 

that the camera captures during the 𝛥𝑇𝑉 can introduce a small error in the ground truth speed 

measure. For example, when the cyclist’s speed is 5m/s, it takes 1.4s or 42 frames to cross both 

lines. By undercounting one video frame (𝛥𝑓𝑉 = 41), the estimated speed will be 5.12m/s, an 

absolute percentage difference of 2.4%. Over-counting one video frame (𝛥𝑓𝑉 = 43) would result 

in an absolute percentage difference of -2.3%. As most cyclists cross the drawn white lines 

between two video frames, each frame count, for validation purposes, is subject to at most one 

frame of error. A quality control procedure is defined and performed for manual video validation. 

5.5 Evaluation of System Performance  

5.5.1 Data collection and validation 

Cyclists are monitored at ten different sites over a ten-day in 2018, using two time-synchronized 

systems: LiDAR and camera. All study sites are located mid-block along a bike facility. Most sites 
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have high bicycle flow; during peak periods, total bicycle flow can exceed 1000 cyclists/hour on 

some bidirectional facilities. Table 5-1 provides descriptive statistics from these sites. The data 

collection started early in the morning, between 7 am to 8 am on each day. 

For manual speed validation using video footage, a computer software is designed to play video 

frame-by-frame at a slow frame rate. The user can identify the exact time a cyclist arrives at the 

coverage area, demarcated by white lines drawn on the pavement (see Figure 5-4). For each day, 

a set of samples are chosen for validation. Then for each sample, the video is analyzed by the user. 

Finally, and for quality assessment of the manual validation, some of the validated speeds are 

randomly selected, and another user verifies their results through the same procedure. In case of a 

mismatch, the samples of that bike facility are re-validated and modified.  

Table 5-1 summarizes the descriptive statistics of the collected and chosen data. In 101 hours of 

data collection, the LiDAR system detects 28,053 cyclists. In total, 2,385 samples are validated 

from ten bike facilities. The average cyclist speed for each site varies from 4.6m/s to 6.2m/s. Three 

types of bicycle-dedicated sites are analyzed. Of these ten sites, six are bidirectional cycle tracks 

(type 1 – protected bike lanes that are separated from vehicular traffic and pedestrians by raised 

median), one is a bidirectional bike lane (type 2 – separated from vehicular traffic and pedestrians 

by pavement marking), and three are unidirectional bike lanes (type 3 – separated from vehicular 

traffic and pedestrians by pavement marking). In all these bicycle facilities, pedestrians are not 

allowed. 

 For the period of validation analysis of each site, the number of LiDAR detections is obtained 

from the proposed system. Then manually validated samples are matched with automated LiDAR 

detections one by one. This process helps to find various error factors such as overcount, 

undercount, and correct detections that are used to compute Recall (5-14), Precision (5-15), and 

F1-Score (5-16) for each site.  

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑀𝑎𝑛𝑢𝑎𝑙𝑙𝑦 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
        (5-14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐿𝑖𝐷𝐴𝑅 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
          (5-15) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
          (5-16) 
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Recall (accuracy) rate of the LiDAR system varies from 94.3% to 99.6%, Precision varies from 

95.8% to 100%, and F1-Score varies from 95.3% to 99.8%. The weighted average values of Recall, 

Precision, and F1-Score are 97.3%, 98.4%, and 97.8%, respectively.  

Table 5-1 Summary of descriptive statistics and validation results of the evaluation sites 

Site ID 1 2 3 4 5 6 7 8 9 10 

Site Type 1 1 1 1 1 2 3 3 3 1 

Duration (hour) 4.5 1.9 12.0 12.5 9.0 12.0 12.5 10.6 12.2 13.5 

Total Cyclists (LiDAR) 928 740 6717 3939 2470 3477 1458 1676 2731 3917 

Average Hourly Flow 207 393 560 316 275 290 117 157 224 290 

Video Screen Line 

Space (m) 
7 7 5 5 6 6 5 6 7 7 

           

Manually Validated 

Samples 
278 220 286 269 169 291 87 235 264 286 

Average Speed (m/s) 5.93 5.87 5.5 5.8 4.6 6.2 5.9 5.6 4.6 5.3 

Average Speed (km/hr)  21.4 21.1 19.6 20.8 16.6 22.5 21.4 20.3 16.7 18.9 

Standard Dev. Speed 

(m/s) 
1.1 1.1 1.0 1.4 1.0 1.0 0.9 1.2 0.9 1.3 

             

LiDAR Detections 

(Validation) 
277 217 282 260 166 289 85 236 257 288 

Over Counts 0 2 5 6 2 2 3 10 2 5 

Under Counts 1 5 9 15 5 4 5 9 9 3 

Correct Detections 277 215 277 254 164 287 82 226 255 283 

             

Positive Direction 

Samples 
247 71 118 63 59 50 0 0 0 165 

Negative Direction 

Samples 
30 144 159 191 105 237 82 226 255 118 

Direction Error 0 0 2 0 0 0 0 0 0 0 

             

Recall (%) 99.6 97.7 96.9 94.4 97.0 98.6 94.3 96.2 96.6 99.0 

Precision (%) 100.0 99.1 98.2 97.7 98.8 99.3 96.5 95.8 99.2 98.3 

F1-Score (%) 99.8 98.4 97.5 96.0 97.9 99.0 95.3 96.0 97.9 98.6 

Types of the Cyclist Facility: 

1: Cycle Track, Bidirectional; 2: Bike Lane, Bidirectional; 3: Bike Lane, Unidirectional 
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False-positive errors could be road users, such as pedestrians, skateboard riders, scooter riders, or 

a person who uses a wheelchair traveling on a bike path. False-negative errors are short cyclists, a 

cyclist blocked in an overtaking maneuver, or system failure in clustering a group of cyclists. 

5.5.2 Testing scenarios for speed modeling 

Two different scenarios are performed to evaluate the system performance. In the first evaluation 

scenario, the dataset is randomly partitioned into training, validation, and test sets. Of 2,320 

validated samples, 25 percent are chosen as the test set before any modeling and are only revealed 

when the system performance is tested in terms of estimation accuracy over an unseen dataset. In 

the second scenario, the regression model is built and tested under ten different conditions in a 

leave-one-out procedure wherein each stage, the whole dataset of one of the sites is selected as the 

test set, and the data of the nine other sites are merged and used for tuning and fitting the regression 

models.  

In the first scenario, since all the bike facilities have samples in the training and test sets, the fixed 

effect factor regression model with dummy variables is implemented. The system is tested to 

determine how the regression model will perform on the test samples while it is tuned with 

different training samples from the same facilities. On the other hand, in the second scenario, the 

regular regression model without fixed factors is implemented because there is only data from one 

site in the test set, and the site’s characteristics of the test set are not seen in the training stage. In 

this case, the system is tested to determine how the system will perform when installed on a new 

bike facility when the regression model is built by data from several other sites. 

The fitting data, 75 percent of the total in the 1st scenario or nine out of the ten sites in the 2nd 

scenario, is split into training and validation. The training set is used to fit the optimal coefficients, 

and the validation set is used to tune the hyperparameters of each regression model. The Ridge 

regression hyperparameter is λ, the MLP regression hyperparameters are the learning rate and the 

number of neurons in the hidden layer, and the Decision Tree has many hyperparameters of which 

the most important is the tree depth. A five-fold cross-validation technique is used to split the 

fitting data into the training and validation sets to minimize random sample selection bias for the 

training and validation sets. 



168 

 

Table 5-2 shows the results of each regression model implemented with its tuned hyperparameters 

in the first scenario. The λ in the Ridge regression is tuned to 1 and 0.01 in inverse and direct 

approaches, respectively. The number of neurons in the hidden layer is set to 3 and 4 in inverse 

and direct approaches, and the learning rate is tuned to 0.0001 in both. The maximum depth of the 

decision trees in both methods is set to 5. 

Table 5-2 Error measures for the first evaluation scenario 

Regression 

Method 

Regression 

Models 

RMSE 

(m/s) 
MAE (m/s) MAPE (%) R-Square 

Train Test Train Test Train Test Train Test 

Inverse Approach 

Ridge Regression 0.58 0.58 0.4 0.39 7.1 7.0 0.71 0.72 

MLP Regression 0.57 0.57 0.39 0.38 7.0 6.9 0.72 0.73 

Decision Tree 0.59 0.58 0.41 0.42 7.2 7.6 0.67 0.67 

Direct Approach 

Ridge Regression 0.59 0.62 0.42 0.42 7.6 7.7 0.68 0.67 

MLP Regression 0.58 0.63 0.41 0.4 7.3 7.4 0.69 0.64 

Decision Tree 0.56 0.6 0.41 0.43 7.4 7.8 0.72 0.68 

Theoretical Cyclist Speed in Equation 

(5-4) 
1.43 0.77 10.9 - 

MLP regression in the inverse approach, where the travel time is the predicted variable, 

outperforms other regression models. The Root Mean Square Error (RMSE) of this model is 

0.57m/s, the Mean Absolute Error (MAE) is 0.38m/s, and the Mean Absolute Percentage Error 

(MAPE) is 6.9%. A cyclist traveling at 5m/s will have an MAE of 0.34m/s, and a cyclist traveling 

at 10m/s will have an MAE of 0.69m/s. 

The RMSE, MAE, and MAPE of the theoretical cyclist speed (Equation (5-4)) are computed and 

given in the last row. The MLP regression method in the inverse approach improve RMSE by 

0.86m/s (3.1km/hr), MAE by 0.39m/s (1.4km/hr), and MAPE by 4%. 

Figure 5-5 illustrates the histogram of speed estimation error (residual) on the training and test 

sets for the MLP regression model using the inverse approach. The center of the histogram is at 

zero, and most of the residuals are within -0.5m/s and +0.5m/s. The positive error value shows that 

the estimated speed is greater than the observed speed and vice versa. The average residuals of the 

training and test sets are 0.04m/s and -0.04m/s, respectively, and the standard deviation is 0.57m/s 
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which is equal to the RMSE value of the training and test set respectively in Table 5-2. The box 

plots in Figure 5-5. show that few samples have an absolute error greater than 1m/s. 

  

(a) Training set (b) Test set 

Figure 5-5 Histogram of error 

  

(a) Training set (b) Test set 

Figure 5-6 Aggregate level cumulative relative frequency of actual and estimated speed 

values 

Figure 5-6 illustrates the cumulative relative frequency of observed speed (ground truth obtained 

by manually validating the video footages) and estimated speed (obtained by MLP regression 

model) for the training and test sets. The two plots indicate that the observed and estimated speed 

distributions are similar: the observed and predicted cumulative frequency diagrams are almost 

superimposed. For speeds less than 5m/s, the observed speed is greater than the estimated (the 
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observed curve is to the left side of the predicted curve). The region bounded by the two plots 

corresponds to the negative part of the histogram error from Figure 5-5. For the speeds above 

6m/s, the predicted speed is greater than the observed speed on average. This region corresponds 

to the positive part of the histogram error.  

The disaggregated performance of the MLP regression model for both training and test sets is 

illustrated in Figure 5-7. The scatter plots are oriented around the identity line. Note that few 

samples are more than 1m/s from the identity line. The R-Square values for training and test sets 

are 0.72 and 0.73, respectively (see Table 5-2). 

  

(a) Training set (b) Test set 

Figure 5-7 Estimated and actual speed for both training and test sets 

In the second scenario, the modeling and testing are repeated ten times, each time one of the sites 

represents the test set and is entirely excluded from the training set. This scenario helps determine 

the LiDAR system’s feasibility of estimating cyclists’ speed at new sites without additional model 

calibration. Table 5-3 represents the results of this analysis in terms of RMSE and MAE over the 

test set. The regression models are tuned with the same hyperparameters as in Table 5-2. The MLP 

regression, implemented with the inverse regression approach, has the best performance (see 2nd 

and 8th rows of Table 5-3), where RMSE varies from 0.47m/s to 0.82m/s and MAPE varies from 

6.8% to 9.5%. The average RMSE and MAPE of the MLP regression (with inverse dependent 

variable) over these ten conditions are 0.62m/s and 7.65%, respectively. MLP regression is more 

robust than Ridge regression with respect to the MAPE metric over ten sites. The standard 



171 

 

deviation of MAPE of MLP regression is 0.78%, and the standard deviation of Ridge regression 

is 1.03%. This result shows the importance of having diverse cyclist data in the training set so that 

the system can be used for different facilities. 

Table 5-3 System performance in 2nd scenario 

Error 

Measure 
Approach Model 

Site Under Test in Leave-One-Out Procedure 

1 2 3 4 5 6 7 8 9 10 

RMSE 

Inverse 

Ridge 0.66 0.61 0.66 0.67 0.61 0.65 0.83 0.58 0.49 0.49 

MLP 0.62 0.62 0.65 0.67 0.58 0.63 0.82 0.58 0.47 0.56 

Decision 

Tree 
0.72 0.60 0.62 0.80 0.56 0.66 0.84 0.57 0.55 0.54 

Direct 

Ridge 0.65 0.61 0.65 0.73 0.56 0.71 0.78 0.61 0.53 0.52 

MLP 0.65 0.63 0.68 0.79 0.59 0.65 0.74 0.60 0.54 0.52 

Decision 

Tree 
0.69 0.58 0.62 0.84 0.53 0.66 0.78 0.57 0.57 0.53 

MAPE 

(%) 

Inverse 

Ridge 7.9 7.2 8.3 8.4 7.8 8.0 10.2 6.9 7.1 6.6 

MLP 7.0 7.3 8.0 8.1 7.5 7.8 9.5 6.8 7.0 7.5 

Decision 

Tree 
8.4 7.5 8.6 9.5 7.4 8.1 10.6 7.6 8.6 7.0 

Direct 

Ridge 7.5 7.3 9.1 9.6 7.7 8.4 9.6 7.5 9.0 7.6 

MLP 7.4 7.5 9.6 9.9 8.0 7.7 8.9 7.4 9.3 7.6 

Decision 

Tree 
8.1 7.2 8.6 10.3 7.6 8.0 10.2 7.6 9.4 7.6 

 

5.5.3 MLP regression model 

The MLP regression models with the inverse approach offer the best performance based on the 

results presented in Table 5-2 and Table 5-3. Figure 5-8 shows the architecture of the 

implemented neural network with fixed factors. The input layer includes all the features in addition 

to the intercept value, which is one. The hidden layer has three neurons that are activated by a 

Rectified Linear Unit (ReLU) function. These neurons learn and compute a weighted combination 

of the features and provide the input for the output layer. The weights of the hidden layer are 𝑢𝑗,𝑖 

and the weights of the output layer are 𝑣𝑖,1. The outputs of the hidden layer neurons are computed 

in (5-17). 



172 

 

The 𝑘 is the sample ID, the number of features including intercept is 14, and the number of hidden 

layer neurons is 3. The 𝑥𝑗
(𝑘)

 is the 𝑗𝑡ℎ feature of the 𝑘𝑡ℎ sample: 𝑥1 = 𝑁𝑓𝑖𝑟𝑠𝑡, 𝑥2 = 𝑁𝑙𝑎𝑠𝑡, …, 𝑥14 =

1. The 𝑢𝑗,𝑖 is the weight of the link that connects 𝑗𝑡ℎ feature to the 𝑖𝑡ℎ hidden layer neuron. The 

value of the 𝑢𝑗,𝑖 of the neural network tuned for cyclist speed estimation are presented in the first 

three rows of Table 5-4. The output of the 𝑖𝑡ℎ neuron is calculated by 𝑅𝑒𝐿𝑈(𝑦𝑖) where the 

activation functions, 𝑅𝑒𝐿𝑈(𝑥), is 𝑥 when 𝑥 ≥ 0 and is 0 when 𝑥 < 0. 

𝑦𝑖
(𝑘) = ∑ 𝑢𝑗,𝑖 × 𝑥𝑗

(𝑘)14
𝑗=1 ; 𝑖 = 1,2,3.          (5-17) 

 

Figure 5-8 The Architecture of the implemented neural network 

The output of the hidden layer is the input of the output layer, where a weighted combination of 

the input is computed as the predicted value. The dependent variable, �̂�(𝑘), is computed in (5-18).  

�̂�(𝑘) = ∑ 𝑣𝑖,1 × 𝑅𝑒𝐿𝑈(𝑦𝑖
(𝑘))3

𝑖=1 + 𝑣4,1 × 1         (5-18) 

𝑣𝑗,1 is the weight of the link that connects 𝑖𝑡ℎ hidden neuron to the output neuron, and 𝑣4,1 is the 

weight of the intercept. The values of 𝑣𝑗,1 of the fitted neural network for cyclist speed estimation 

are presented in the last row of Table 5-4.  

In this model, since the inverse approach is used, the number of video frame differences is used as 

the dependent variable, therefore, �̂� is the predicted value of frame difference. The corresponding 

value of time difference is calculated by 𝛥�̂�𝐿 = �̂�/𝑓𝑝𝑠 = �̂�/28.8, and the estimated speed by 

LiDAR sensor ( �̂�𝐿) is obtained from (5-19). 
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�̂�𝐿 = 𝑑𝑉/(�̂�/𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒) = 7/(�̂�/28.8) = (7 × 28.8) × (�̂�)
−1      (5-19) 

Table 5-4 Coefficients of the implemented neural network 

 𝑵𝒇𝒊𝒓𝒔𝒕 𝑵𝒍𝒂𝒔𝒕 �̅�𝒔 �̅̅̅�𝒔
−𝟏 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜶𝟔 𝜶𝟕 𝜶𝟖 𝜶𝟗 𝟏 

𝒖𝒋,𝟏 1.196 0.834 0.682 0.747 -0.195 -0.285 0.517 1.156 0.903 0.218 0.736 0.745 1.240 1.373 

𝒖𝒋,𝟐 0.213 -0.383 0.322 0.378 1.126 0.425 0.094 0.484 -0.705 1.184 -0.795 -0.188 -0.630 -0.565 

𝒖𝒋,𝟑 -0.388 -0.041 0.292 -0.272 0.362 0.540 0.574 0.034 -0.972 0.787 -0.642 0.052 -0.301 -0.312 

               

 𝑦1 𝑦2 𝑦3 1           

𝒗𝒊,𝟏 1.245 -0.972 -0.840 0.6680           

 

These weights and formulas can be stored in the low-power ARM microcontroller used in this 

study. Since the proposed neural network is a feedforward network and computes the output using 

equations (5-11, 5-12 and 5-13), the system can provide real-time count, headway, spacing, and 

cyclists’ speed information. 

5.6 Traffic Flow Parameters Outcomes  

The 1D LiDAR system monitors cyclist facilities and extracts several cyclist traffic factors: flow, 

density, speed, headway, and spacing. These traffic factors can help in bicycle planning and traffic 

management. 

5.6.1 Traffic flow parameters 

The traffic data of cyclist facilities, discussed in Table 5-1 and aggregated in 15-minute time 

intervals, facilitate the examination of the fundamental traffic flow relationships. For every 15-

minutes interval, the flow rate is the total number of cyclists passing mid-block through the cycling 

facility, the density is the inverse of the average spacing (headway) of the cyclists (see Equation 

(5-12)), and the speed factor is the average speed of all cyclists observed in that interval. 

A set of indicators (flow, density, spacing, and speed) is generated for each time interval. Then the 

seven bi-directional cyclist facilities (see Table 5-1) in the collected dataset are aggregated to 

generate four diagrams: flow-density (Figure 5-9 (a)), flow-spacing (Figure 5-9 (b)), speed-

density (Figure 5-9 (c)), and speed-flow (Figure 5-9 (d)). A dashed line is added to each figure to 
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show the general trend of the data points. Although an equation is developed for each of these 

trendlines, calibrating a function for each pair of traffic factors requires extensive data collection 

from several locations on the cyclist network. 

  

a) Flow-Density b) Flow-Spacing 

  

c) Speed-Density d) Speed-Flow 

Figure 5-9 Fundamental diagrams of cyclist traffic flow 

The fundamental diagrams of these seven cyclist facilities illustrated in Figure 5-9 (a-d) 

demonstrate the free flow (uncongested) regime with a high level of service. The flow-density 

relationship (Figure 5-9 (a)) supports that the data points represent the free-flow regime where the 

flow increases proportionally with density. Based on traditional flow diagrams of vehicles, it is 

expected to have a maximum flow at the capacity condition after which, the flow decreases with 

density. However, this chart shows that the capacity is not reached for the seven cyclist facilities 

that are studied. Similarly, the speed-flow chart (Figure 5-9 (d)) is expected to shift to a downtrend 
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after reaching the capacity value; however, it remains flat, demonstrating only the free-flow regime 

of cyclist traffic. 

Although the data are collected during the peak cycling season for all daytime hours (including 

the entire AM and PM peak periods) at high-demand cyclist facilities in Montreal, Canada, none 

of the facilities reached or neared capacity. Therefore, the congested regime is not observed. The 

highest flows recorded per direction were 160 cyclists per 15 minutes or 640 cyclists per hour. The 

capacity of a 3-meter-wide bidirectional cycling facility is at least 1280 cyclists per hour and likely 

much greater. 

There are a few irregularities in the bottom-right of Figure 5-9 (a) or bottom-left of Figure 5-9 

(b). These samples correspond to a platoon of cyclists traveling on the bike path with low average 

spacing at a time interval with relatively low cyclist traffic. As a result, the density, which is the 

inverse of average spacing, is higher than normal while the flow remains low. 

5.6.2 Speed analysis 

Of the sites listed in Table 5-1, two locations are chosen to explore the factors extracted from the 

LiDAR system based on their high cycling volume. At both locations, cyclist speed distributions, 

flow, and density are analyzed. The 3rd site has the highest hourly cyclist volume; in 12 hours of 

data collection, 6,717 cyclists passed the line-of-sight of the LiDAR system. This site is located 

mid-block, on a bidirectional cycle track in downtown Montreal (De Maisonneuve Boulevard near 

Metcalfe Street), and the data were collected on Thursday, September 13, 2018. The 4th site, 

located mid-block on the same cycle track as site three (de Maisonneuve Boulevard near Saint-

Denis Street, 1.8km to the east of site three), also has high flow; 3,939 cyclists were recorded in 

12 hours on Friday, September 14, 2018.  

Figure 5-10 (a & b) illustrates the cyclist speed distribution of the 3rd and 4th sites, respectively. 

As expected, the speed distributions at both sites appear as normal distributions. Since both sets 

include many samples, the Kolmogorov-Smirnov test is applied to the speed distributions; both 

distributions have been proven not to be statistically significant, with the hypothesis that their 

samples are not taken from a normal distribution. 
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Figure 5-10 (c & d) shows the normal Q-Q plot of the two distributions in Figure 5-10 (a & b). 

The normal Q-Q chart visually describes if a set of samples is taken from a normal distribution. 

For speeds between 9km/hr and 30km/hr, the data points follow very close to a normal distribution; 

the data are tangent on the expected line (zero mean). On the other hand, the samples with a speed 

value outside the range (9km/hr to 30km/hr) stray from the desired line (zero mean), though their 

frequency is very low with respect to the entire sample. 

  

a) Cyclists speed distribution of the 3rd site b) Cyclists speed distribution of the 4th site 

  

c) Normal Q-Q plot of speed of the 3rd site d) Normal Q-Q plot of speed of the 4th site 

Figure 5-10 Histogram of bidirectional estimated speed (m/s) 

5.7 Conclusion 

Despite the importance of cycling in urban mobility, there is a lack of automated real-time 

embedded systems and methods to monitor bicycle traffic flow parameters (volume, speed, 

density, etc.) continuously and automatically and investigate the performance of cycling facilities. 



177 

 

This study proposes a LiDAR system composed of two single-beam sensors and algorithms to 

collect and estimate bicycle microscopic traffic flow data. The performance of the proposed 

monitoring system for measuring cyclist speed and related parameters is evaluated by comparing 

automated traffic flow parameters with ground truth from manually validated video footage. The 

LiDAR system generates time-stamped records of each passing cyclist from which hourly flow 

rate, speed, headway, spacing, and cyclist density are extracted automatically. Among other 

applications, the system can collect data for evaluating the performance of cycling facilities and 

improving bicycle traffic operations. 

Three different regression models with four regressors are implemented in this study to correct 

sensor measures and automatically estimate cyclist speed. The same optimal functional form of 

the models is tested in two scenarios, each producing different model coefficients. In the first 

scenario, the data of the ten sites are merged and then split 75% and 25% for the training and test 

sets, respectively. In this scenario, implementing MLP regression gives high performance with 

MAPE of 7.1% and RMSE of 0.61m/s over the test set. The coefficient of determination (R2) of 

this estimation is 0.78 over the test set. In the second scenario, by following a leave-one-out 

strategy, the data of one site is used for testing and the nine remaining sites for training. The 

performance is similar to the first scenario, RMSE varies from 0.43m/s to 1.21m/s, and MAPE 

ranges from 5.9% to 11.3% over ten different selections available for the test set. The methodology 

proposed in this study is developed using off-site, post-processing of the LiDAR signals collected 

at ten study sites. Although the methodology is developed using off-site post-processing, a 

relatively low-cost and low-power ARM microcontroller would be capable of estimating bicycle 

traffic flow parameters on-site, continuously in real-time.  

Future work includes a deeper analysis of traffic-flow performance on more congested cycling 

facilities. This involves a similar exploration of flow, speed, and density measures for cyclists on 

different types of cycling infrastructure such as unidirectional bicycle lanes and bicycle paths, in 

real-time. The impact of cycling facility attributes, such as lane width, intersection spacing, and 

intersection attributes on cycling flow parameters will be tested. These results will allow for 

modeling the capacity of different types of cycling infrastructure. Other applications of the 

proposed system could also be explored, such as its integration in warning signs and traffic signals 

to protect or prioritize cyclists. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 General Conclusion and Summary of Results  

The primary motivation of this thesis was to propose and test novel methodologies for traffic 

monitoring and surrogate safety analysis based on alternative LiDAR-sensing technologies, 

including high-resolution 3D LiDAR, low-resolution 3D LiDAR, and dual-beam 1D sensors. This 

research focused on the methodological development and evaluation of the performance of the 

LiDAR-based methodologies integrating various computer data processing and machine learning 

algorithms. For this purpose, multiple applications are documented using ground (real) data 

collected in bicycle facilities and urban intersections with mixed traffic conditions. 

6.1.1 LiDAR-based methodology for traffic monitoring at urban intersection 

Chapter 2 presented a novel methodology for processing 3D LiDAR point cloud data for traffic 

monitoring at urban intersections with high-mixed traffic. The method is developed to be adaptive 

to two different resolution LiDAR sensors. It integrates algorithms for background modeling, 

foreground detection, and clustering foreground objects into road users’ point clouds. The 

background modeling and foreground detection are implemented in the spherical coordinate 

system. The foreground frames in the spherical coordinate system are converted to x-y-z in the 

Cartesian coordinate system, where spatial clustering is applied to construct the road users. A set 

of features based on various attributes of a point cloud, such as physical, LiDAR, and spatial 

attributes, are extracted and used for road user classification. A semi-automated method, 

leveraging the unique geo-boundary of urban intersections, is implemented to resolve the main 

challenge of data labeling. A classification algorithm based on the XGBoost tool is integrally 

implemented for road user classification given the feature vector and labeled point clouds. 

Additionally, the proposed methodology employs a Kalman Filter and a data association to collect 

the trajectories of the road users.  

Each LiDAR sensor was installed at seven urban intersections, some of which experience high-

mixed traffic. The correct classification rates for the high and low-resolution LiDAR are 95% and 

91%, respectively. Specifically, pedestrians and cyclists were correctly classified at a rate of 92%-

93% in the high-resolution setting. In the low-resolution setup, the correct classification rates for 

pedestrians and cyclists were between 85% and 89%. As for cars, they were correctly classified at 
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a rate of 98% in the high-resolution setting and 94% in the low-resolution setup. The trajectory 

counts obtained from the LiDAR are compared against manual counts for 30 minutes at each 

intersection in terms of Weighted Average Absolute Percent Difference (WAAPD). For the higher 

resolution LiDAR, WAAPD between LiDAR and ground-truth counts is 5%, 7%, and 6% for 

pedestrians, cyclists, and vehicles, respectively. In contrast, the corresponding WAAPD values for 

the lower resolution LiDAR are 7%, 23%, and 10%. Overall, the high- and low-resolution 

LiDAR’s WAAPD shows a 6% and 13% deviation from ground truth manual counts, respectively. 

One of the main challenges of the system is to differentiate between some of the cyclists and some 

of the vehicles partially observed, leading to overcounting cyclists and undercounting vehicles. 

The two groups exhibit highly similar narrow-point clouds.  

6.1.2 LiDAR-based methodology for surrogate safety analysis 

Chapter 3 expanded the methodology developed in Chapter 2 into road safety analysis by 

developing a method for surrogate safety analysis based on 3D LiDAR sensing technologies. This 

includes the development of a method for calculating surrogate safety indicators, such as Time-to-

Collision (TTC) and Post-Encroachment Time (PET), based on road users’ shape data. This 

approach is compared with traditional methods that rely on the trajectory’s centroid. The point 

clouds representing road users are used to fit a minimum rotated rectangle, reconstructing the road 

users’ shape, length, and width. The orientation of the road users is adjusted toward the direction 

of travel in 2D space. The corner points of the modified rectangle are utilized to project the future 

positions of road users a few seconds ahead (e.g., 10 seconds). A polygonal path is constructed for 

each user, extending from their current position to a projected future position. During each frame, 

if the polygon paths of two users intersect, the times of arrival and departure from the shared area 

are used to calculate the TTC. For calculating Post-Encroachment Time (PET), the combined 

polygon of a user’s rectangle is built and intersected with other users’ polygon path.  

The comparative analysis demonstrated that applying a uniform buffer size for all types of road 

user interactions does not replicate the results achieved with the polygon-based method. For non-

critical conflicts, a 2-meter buffer size for pedestrian-vehicle and a 2.5-meter to 3-meter buffer 

size for cyclist-vehicle interactions align with the shape-based method’s TTC and PET results. 

However, for critical conflicts, these buffer sizes tend to estimate a lower value for TTC and PET 
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and, therefore, overreport critical conflicts occurring in under 1.5 seconds. For vehicle-vehicle 

interactions, the buffer size that aligns with the results of the shape-based method varies depending 

on the conflict angle, ranging from 3 meters to 3.5 meters. However, these buffer sizes would 

result in a lower estimation of TTC and PET and, therefore, overreporting of critical conflicts. 

6.1.3 Unsupervised methodology for a LiDAR-based level crossing monitoring 

Chapter 4 presents an unsupervised method for the automated safety monitoring of railroad level 

crossings. A low-resolution LiDAR system was installed at a level crossing, with data collected 

on two different days. The methodology for processing LiDAR point cloud data includes 

background detection in an x-y-z coordinate system, achieved by voxelizing the 3D space. This is 

followed by clustering the point cloud in three-dimensional space and tracking their centroid in 

two-dimensional space using a Kalman Filter with four state variables. An unsupervised, rule-

based classification method, considering the shape and speed of road users, was designed to 

identify the road user class of each trajectory, classifying them into trains, trucks, cars, and a 

combined group for pedestrians and cyclists. This classification method was developed to 

circumvent the unavailability of labeled LiDAR point cloud data for this specific low-resolution 

LiDAR sensor. Additionally, the system’s processing time was lower since the classification was 

applied once per trajectory, and extra features were not extracted. 

Road users at level crossings were monitored for potential trespassing incidents when a train was 

either approaching or present at the crossing. The system successfully identified two critical 

conflicts and a near-miss event involving two pedestrians and an approaching train. The average 

absolute percentage deviation of the model in counting road users over 2 hours was reported at 5% 

and 3% for motorized vehicles and 10% and 13% for non-motorized road users on two separate 

days. Although the results suggest better performance than the aggregated results of the supervised 

methodology for the same low-resolution LiDAR in Chapter 2, there are a few notable points. 

First, the performance of the supervised method is reported as an average across several 

intersections, with some intersections showing better results and others showing lower 

performance where the LiDAR was installed at intersections with extremely high traffic volumes. 

Second, the unsupervised methodology does not distinguish between pedestrians and cyclists. 
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Additionally, the monitored level crossing had a significantly simpler design, with only two streets, 

no turning movements, and pedestrians traveling only on two crosswalks and two sidewalks. The 

sensors were installed at a relatively appropriate distance from the level crossing, allowing optimal 

coverage. The supervised method tends to overcount cyclists, and the unsupervised method 

overcounts non-motorized users using a low-resolution LiDAR. This discrepancy is primarily due 

to the partial observation of vehicles, especially passenger cars, that are occasionally mixed with 

cyclists. 

6.1.4 1D LiDAR-based methodology for cyclist traffic monitoring 

Chapter 5 introduces a novel approach for large-scale cyclist traffic data collection, utilizing a low-

cost LiDAR solution. A system comprising two 1D LiDAR sensors was installed at ten cyclist 

facilities. These sensors were positioned perpendicular to the cyclists’ direction of travel, enabling 

the detection of cyclists and the estimation of their average speed as they passed through the 

system’s line of sight. The LiDAR data processing methodology involves cyclist detection based 

on the system’s distance measurements. Additionally, a neural network was designed, which 

utilizes a feature vector as input, to estimate the speed of cyclists accurately. In addition to counting 

cyclists, Chapter 5 details the computation of other traffic parameters such as flow rate, headway, 

spacing, and density. These are calculated using time-stamped data along with the cyclists’ speed. 

The accuracy of cyclist counting varies significantly across different cyclist facilities, ranging from 

94.3% to 99.6%. Additionally, the Root Mean Square Error (RMSE) in speed estimation fluctuates 

between 0.43m/s and 1.21m/s. The Mean Absolute Percentage Error (MAPE) for speed estimation 

also shows variation across ten locations, ranging from 5.9% to 11.3%. 

In conclusion, this research presents alternative methodologies and applications leveraging LiDAR 

sensing technologies to monitor mixed-traffic transportation facilities. The suitability of each 

methodology can be determined based on various factors, such as the type of application (real-

time vs. post-processing), economic considerations (sensor resolution), and specific data 

requirements. Overall, LiDAR technologies demonstrate significant potential for traffic 

monitoring and data collection, particularly beneficial in environments with high volumes of non-

motorized traffic. 
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It is important to acknowledge certain limitations inherent in this research, which are discussed in 

subsequent sections. These discussions also pave the way for future work, offering directions for 

further advancements in this field. 

6.2 Limitation 

The proposed LiDAR-based methodologies have proven to be valuable for traffic monitoring and 

road safety applications. However, their implementation in practice is not without challenges.  

One primary challenge is the cost. LiDAR, as an emerging technology, is significantly more 

expensive than its counterparts, notably camera-based systems. The price of a single 3D LiDAR 

unit ranges from a few thousand to hundreds of thousands of dollars. This high cost restricts the 

prospects of large-scale deployment or deployment of multiple LiDAR at one intersection and 

limits the scope of research and development of methodologies for LiDAR data processing. 

Another limitation closely linked to cost concerns the resolution and field of view of LiDAR 

sensors. For effective traffic monitoring in urban intersections with high volumes of mixed traffic, 

high-resolution LiDARs are preferable, as they improve outcome accuracy, a fact demonstrated in 

this research. However, enhancement in either the field of view or resolution typically leads to 

proportional increases in costs, posing significant budgetary challenges for urban traffic control 

projects. On the other hand, while low-resolution LiDAR sensors are more cost-effective, they 

face unique challenges in busy urban intersections. These challenges include the difficulty of 

accurately capturing the fine details of complex intersection scenarios, which are crucial for 

effective traffic monitoring and safety analysis. 

A critical factor in the deployment of the most widely used type of LiDAR, 3D rotational LiDARs, 

is the vertical field of view and its impact on system performance. In applications like autonomous 

vehicles or mobile laser scanning systems, LiDARs are typically mounted horizontally at a lower 

height on a vehicle. This positioning allows the laser channels to monitor the area around them 

uniformly. In contrast, the applications discussed in this thesis require LiDAR systems to be 

installed at a higher elevation to monitor urban intersections effectively. Such installations 

necessitate a downward tilt in orientation, significantly altering the coverage area and the 

uniformity of the angular space between vertical channels. This adjustment introduces new blind 



187 

 

spots, making installation and effective deployment more challenging. Therefore, optimizing the 

installation of LiDAR systems is essential to ensure their successful implementation in urban 

traffic control projects. 

One of the limitations this thesis faced was the lack of LiDAR data availability in traffic 

monitoring. The open-source data for LiDAR are comparatively less abundant. The current LiDAR 

dataset is primarily built for Autonomous vehicles and utilizes super high-resolution LiDAR (1, 

2). This scarcity is partly due to the varied characteristics of LiDAR sensors, which can differ 

significantly from one system to another, thereby complicating the standardization of research and 

methodology development. Using these datasets for a lower-resolution LiDAR system might not 

yield the best performance due to the discrepancy in data quality. Furthermore, the point density 

varies significantly between different LiDAR systems, adding to the challenge of standardizing 

data across various models. 

The limitations discussed are general issues researchers can encounter when working with LiDAR 

sensors. This thesis also discovered those limitations primarily. In addition, specific limitations 

are associated with the methodologies proposed in this research.  

First, implementing the supervised learning algorithm necessitates a diverse sample set of road 

users, which must be manually extracted from the point cloud data. However, this process is highly 

time-intensive and requires significant budget allocation. As an alternative, a semi-automated 

labeling technique has been developed in a unique approach, which samples users based on their 

movement patterns and geo-location at intersections. For example, it samples pedestrians only if 

they are on a sidewalk or exhibit a sidewalk-crosswalk-sidewalk movement pattern. However, this 

approach still has gaps, particularly in distinguishing between cyclists and pedestrians. 

Additionally, the sampling and labeling of cyclists present challenges at intersections without 

dedicated bike lanes. 

The results indicate a degree of overcounting across some intersections. This is observed either as 

a misclassification between two particular road user classes or the degraded performance of the 

clustering algorithm. The first issue arises when the point clouds of two road users become visually 

indistinguishable. For example, a partial car and a cyclist can both have very narrow point clouds. 

The latter issue often arises from a road user (primarily a vehicle) being divided into two distinct 
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point clouds due to blind spots in the vertical laser channels when tilted. Additional validation 

could be conducted to improve each system component or the system installation procedure. 

There have been a few limitations in applying LiDAR-extracted data of road users’ shape and 

trajectory to calculate surrogate safety indicators, such as TTC and PET. The accuracy of 

classification and tracking in the LiDAR data affects the results of surrogate safety assessments. 

However, this issue impacts both centroid-based and shape-based methods. A pre-processing 

technique is implemented to overcome the tracking issue, and the same geo-locating technique 

outlined in Chapter 2 is used to flag road users with incorrect classifications. This process has the 

potential to be expanded and improved. 

6.3 Future Work 

Future work can be structured in a few directions. The first direction involves developing 3D 

methodologies incorporating emerging machine learning algorithms, including deep learning, to 

streamline LiDAR data processing from object detection to classification and clustering. This path 

presents a significant challenge, primarily due to the requirement of labeling the entire LiDAR 

point cloud. In the development of a 3D deep learning methodology using LiDAR sensors, it is 

crucial to reevaluate the sensor and its installation criteria. Specifically, understanding whether 

tilting the sensor downward would benefit such a system is essential. This is because most 

available datasets are prepared with the LiDAR installed horizontally. 

The second avenue for future research involves a data fusion approach to traffic monitoring in 

urban environments. Specifically, combining LiDAR with camera-based systems could harness 

the strengths of the accurate spatial representation from LiDAR and the road user detection and 

classification capabilities of computer vision systems. Such a fusion could potentially improve the 

performance of the system. This improvement is attributed to the fact that road user classification 

in camera-based systems is advancing at a faster rate than in LiDAR-based systems, while LiDAR 

remains the most reliable source for geo-locating road users at urban intersections. Therefore, the 

accuracy of classification and tracking would significantly increase. This combination also 

presents a unique opportunity to rectify LiDAR point cloud labeling using image labels on a large 

scale, which could also enhance the performance of standalone LiDAR systems. 
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The third potential development area involves extending the methodology to a traffic monitoring 

system that utilizes two or more LiDAR sensors, ideally of the exact resolution. While using a 

super high-resolution LiDAR is cost-restricted, integrating multiple low-resolution LiDARs can 

be a more cost-effective alternative. This approach could address the partial field of view 

observation inherent in single LiDAR systems at large intersections. For example, the partial 

observation of a passenger car entering the coverage area from a distance might be 

indistinguishable from that of a cyclist. Dual LiDAR sensors could provide a more comprehensive 

view, mitigating such ambiguities. Moreover, this would add processing complexity but not 

significantly, as the LiDAR data are converted to point coordinates (x-y-z) and processed 

simultaneously. 

Additional research is required to evaluate the performance of LiDAR systems under adverse 

weather conditions, particularly when compared with camera-based systems operating in the visual 

and thermal spectrum. One productive direction for future research could be to collect data under 

adverse weather conditions (e.g., rain, snow, fog) and assess the performance of the current 

methodology. The method could be expanded by implementing a systematic approach to manage 

and analyze extremely noisy data, thereby enhancing the robustness and reliability of LiDAR 

systems in varied environmental conditions. 

Several potential directions for future work concerning the proposed shape-based surrogate safety 

methodology can be highlighted. Firstly, a comparative study at the individual conflict level is 

necessary. This would support and expand upon the comparative analysis presented in this thesis, 

contrasting shape-based versus centroid-based methods for traffic conflict identification and safety 

assessment. Additionally, complex movement patterns could be implemented and applied to the 

polygon to project road user positions along a non-linear path using acceleration or motion 

patterns. The effectiveness and reliability of such a method are subject to evaluation. Furthermore, 

PET results reveal promising applications in estimating headway and gaps in car-following 

scenarios. Accordingly, the LiDAR system could be strategically installed at selected locations to 

study these aspects in greater detail. 

Finally, concerning the 1D-LiDAR methodology, there are also opportunities for further research. 

One key area is expanding the data collection program to high cyclist volume locations. This would 
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enable more extensive data collection, facilitating detailed analysis of cyclist traffic volume and 

arrival rates, especially near critical points in cyclist facilities. Additionally, this system can be 

implemented to further investigate microscopic traffic parameters and patterns in alternative 

bicycle facilities. 
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APPENDIX A: Map of Data Collection Intersections – Chapter 2 

Figure A-1 presents a map showing the location of LiDAR installations with the intersections 

featuring the 16-channel LiDAR marked in red and those with the 32-channel LiDAR highlighted 

in green.  

 

Figure A-1 A Map of intersection for data collection with the LiDAR systems  
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APPENDIX B: LiDAR Channels Gap Analysis 

A LiDAR system features laser channels with horizontal and vertical resolutions. Figure B-1 (a 

& b) illustrates potential gaps. The vertical gap arises from the vertical resolution, indicating the 

angle difference between neighboring laser channels. Meanwhile, the horizontal gap results from 

the horizontal resolution, representing the angle difference between readings of the same laser 

channel at two consecutive timestamps.  

The gap (𝑔) between LiDAR measurements depends on the angular resolution (𝛿𝛼) and the 

distance measured by the LiDAR. The angular resolution (𝛿𝛼) can be either horizontal or vertical. 

At a given distance (𝑑), the gap (g) can be determined using 𝑔 = 2 sin(𝛿𝛼/2) × 𝑑.  Moreover, the 

arc of this gap (𝛿𝑃) is calculated as a portion of the circle’s circumference using 𝛿𝑃 =

(2𝜋𝑑) × (𝛿𝛼/360°) = ((𝛿𝛼 × π)/180) × 𝑑.  

The horizontal resolution of both LiDAR sensors is 0.2° (𝛿𝛼 = 0.2°). Therefore, the gap and arc 

are approximately equal, and both are a function of distance: 𝑔 ≅ 𝛿𝑃 = 6.98 × 10−3𝑑. At a 

distance of 10 meters, the gap is 3.49 cm, and at a distance of 50 meters, the gap is 17.45 cm. 

The vertical angular resolution and gap vary between the two LiDAR sensors. The low-resolution 

LiDAR, VLP-16, maintains a consistently distributed vertical angular resolution of 2°. 

Consequently, at a distance of 10 meters, the vertical gap between two laser channels equals 

2 sin(1) × 𝑑 = 34.9 𝑐𝑚, and at 50 meters, the gap extends to 1.7 cm. However, to address this 

gap, the low-resolution LiDAR sensor is tilted downward at an angle (𝛽) and installed closer to 

the intersection. 

The vertical angular resolution of the higher resolution LiDAR, VLP-32c, is not evenly distributed 

across its vertical channels. Among the 31 vertical angular gaps between LiDAR channels in VLP-

32c, there are 17 gaps of 0.33°, four gaps of less than 1°, four gaps of less than 2°, and six gaps of 

more than 2°. For laser channels with a resolution of 0.33°, the gap at 10 meters is 5.76 cm, and 

for laser channels with a resolution of 1°, the gap at 10 meters is 17.45 cm. The installation of the 

higher resolution LiDAR is such that LiDAR channels with a resolution greater than 2° do not face 

the intersection and are only used to scan objects at higher heights. 
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a) Horizontal gap 

 

b) Vertical gap 

Figure B-1 Horizontal and vertical gap between laser channels 
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APPENDIX C: Road User Classification 

Table C-1, Table C-2, and Table C-3 presents the details results of the road user classification 

performance in Chapter 2. They report classification of road users on the test set per each LiDAR 

type and the combination of both. 

Table C-1 Confusion matrix of XGBoost applied to the test set of 16-channel LiDAR 

Labels LiDAR Observations 

  

  Class Labels 0 1 2 3 total 

G
ro

u
n

d
 t

ru
th

 

O
b

se
rv

a
ti

o
n

s 0 1958 133 149 0 2240 

1 132 703 8 0 843 

2 166 0 3062 105 3333 

3 0 0 56 684 740 

total 2256 836 3275 789 7156 

 

Table C-2 Confusion matrix of XGBoost applied to the test set of 32-channel LiDAR 

Labels LiDAR Observations 

  

  Class Labels 0 1 2 3 total 

G
ro

u
n

d
 t

ru
th

 

O
b

se
rv

a
ti

o
n

s 0 2055 171 84 2 2312 

1 218 1910 1 0 2129 

2 146 15 2977 10 3148 

3 0 0 28 661 689 

total 2419 2096 3090 673 8278 

 

Table C-3 Confusion matrix of XGBoost applied to the combined test set of both LiDARs 

Labels LiDAR Observations 

 

 Class Labels 0 1 2 3 total 

G
ro

u
n

d
 t

ru
th

 

O
b

se
rv

a
ti

o
n

s 0 3883 321 182 4 4390 

1 298 2535 12 0 2845 

2 287 24 6038 42 6391 

3 0 0 58 1327 1385 

total 4468 2880 6290 1373 15011 
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APPENDIX D: Kalman Filter Implementation 

The following equation presents the implemented Kalman Filter as part of tracking component or 

smoothing of trajectories in Chapter 2, Chapter 3 and Chapter 4. 

State Prediction: 

𝑋− =  𝐴𝑋 + 𝐵𝑈 

𝑃− = 𝐴𝑃𝐴𝑇 + 𝐵𝑄𝐵𝑇 

State Correction: 

𝑆 = 𝐶𝑃𝐶𝑇 + 𝑅 

𝐾 = 𝑃−𝐶𝑇𝑆−1 

𝑋 = 𝑋− + 𝐾(𝑍 − 𝐶𝑋−) 

𝑃 = (𝐼𝑛𝑠 − 𝐾𝐶)𝑃
− 

Output Prediction: 

𝑋+ = 𝐴𝑋 + 𝐵𝑈 

𝑍+ = 𝐶𝑋+ 
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APPENDIX E: Intersection Segmentation and GIS Calibration 

 

ID #101– Sainte Famille - Milton 

 

ID #102 – Papineau – Sherbrooke E 

 

ID #103 – Atwater – Sherbrooke W 

 

ID #104 – De La Roche – Marie Anne E 

Figure E-1 The GIS calibration of intersections with 16-Channel LiDAR system (part 1) 
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ID #105 – Coloniale – Rachel E 

 

ID #106 – Girouard - Monkland 

 

ID #107 – University - Milton 

Figure E-2 The GIS calibration of intersections with 16-Channel LiDAR system (part 2) 
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ID #108 – Hutchison – Laurier E 

 

ID #109 – Sainte Famille – Prince Arthur W 

 

ID #110 – Parc – Pine W 

 

ID #111 – Saint Denis – Saint Joseph E 

Figure E-3 The GIS calibration of intersections with 32-Channel LiDAR system (part 1) 
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ID #112 – Parthenais – Rachel E 

 

ID #113 – University - Milton 

Figure E-4 The GIS calibration of intersections with 32-Channel LiDAR system (part 2) 

 

 


