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Abstract

Emerging technologies in precision agriculture (PA) offer a wide array of advanced
methods to assess soil properties and to determine soil variability. Remote sensing (RS) and
proximal soil sensing (PSS) technologies, widely used in quantifying surface and subsurface soil
parameters, can be combined to infer spatial patterns of soil heterogeneity and to develop thematic
maps for site-specific management. However, the use of these soil sensors must be reviewed
constantly to maintain their efficiency and precision in delineating the soil-crop relationship and
to inform PA approaches. Data mining and model optimization are key to evaluating high-density
geospatial data in a dynamic production system. High-density PSS and RS-based soil
characterization was explored and optimization techniques for digital soil mapping in PA were

evaluated.

In a first study, sensor measurements were subjected to multivariate statistical analysis,
followed by an evaluation of a new Neighborhood Search Analyst (NSA) and the capacity of other
data clustering algorithms to delineate spatially contiguous zones in agricultural fields and to
optimize soil sampling locations to inform best management practices. PSS-based topography,
apparent electrical conductivity (EC.), and RS-based indices data from 3 sites in Ontario, Canada,
were employed to assess the novel technique’s performance in accurate zone delineation. In
creating homogeneous zones, a maximum of 70% field variance (R? = 0.70) was achieved. The R?
of the k-means cluster compared to that of the NSA was relatively higher (R? = 0.80) where, the
k-means cluster map consisted of groups or pixels with isolated boundaries in various parts of the
field. The NSA’s unique capacity, across various locations, to produce an optimum (or user-
defined) number of zones highlighted its superiority to k-means’ partitioning with isolated

boundaries.

A second study assessed the utility of PSS-based soil characterization in developing an
optimum prediction method for multiple soil properties at 12 sites across Ontario, Canada.
Targeted soil sampling locations were determined and optimized using NSA clustering tools.
Measured ECa, topographic parameters and six lab-quantified soil properties [pH, buffer pH, soil
organic matter (SOM), Phosphorus (P), Potassium (K) and Cation Exchange Capacity (CEC)]
were used in evaluating the method’s predictive capacity and to compare different fields’

propagated soil measurement errors by drawing on the results of the North American Proficiency
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Testing program. Pearson’s correlation coefficients exceeding 0.60 indicated strong relationships
between sensor variables and field-measured soil properties, topographic parameters and shallow
ECa sensor variables, allowing effective predictions of several soil chemical properties (i.e., SOM,
P, and CEC).

Lastly, supervised machine learning models drawing on high-density information from
multiple sensors (PSS and RS) operating at different geospatial scales, were used to generate
thematic soil maps for an agricultural field in Ontario, Canada. A random forest (RF) regression
model delineated the complex hierarchical relationships existing among the sensor variables and
evaluated prediction efficiencies for multiple soil nutrients. The reduction of variables based on
their relative importance and parameter optimization (i.e., by defining the number of trees) of the
regression forest improved the predictive accuracy for nine soil properties at the cross-validation

stage. The best prediction capacity has been achieved for soil pH, K, and Zn (R? > 0.80).

Sophisticated technologies are critical to generating finer resolution thematic maps for PA
and to address soil management at various geospatial scales. Multilayer data optimization
techniques used in multiple sensor-based mapping provide information of field-scale variability
and soil prediction at the local-scale. This research indicated that soil variability which was
determined using sensor-fused data and optimization techniques could assist in constructing
precise soil property prediction models and in developing reliable thematic maps for site-specific

crop management.
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Résumé

Les technologies émergentes en agriculture de précision (AP) offrent un large éventail de
méthodes avancées pour évaluer les propriétés du sol et déterminer leur variabilité. Les
technologies de télédétection (RS) et de détection de sol proximale (PSS), largement utilisées pour
quantifier les parameétres pédologiques de surface et souterrains, peuvent étre combinées de
maniere a déduire des modeéles spatiaux d'hétérogénéité des sols et pour développer des cartes
thématiques pour une gestion spécifique au site. Cependant, ces explorations avec capteurs de sol
doivent étre revues en permanence pour maintenir leur efficacité et leur précision dans
I’encadrement des relations sol-culture et des approches PA. L'exploration de données et
I'optimisation des modeles sont essentielles a évaluation des données géospatiales a haute densité
dans un systeme de production dynamique. La caractérisation des sols a base de PSS et RS a haute
densité fut exploree et les techniques d'optimisation pour la cartographie numeérique des sols en

PA furent évaluées.

Dans une premiere etude, des mesures des capteurs furent soumises a une analyse
statistique multivariée, suivie d'une évaluation de la capacité de Neighbourhood Analyst (NSA) et
d'autres algorithmes de regroupement de données a délimiter des zones spatialement contigués
dans les champs agricoles et d’optimiser les emplacements d'échantillonnage du sol pour éclairer
les meilleures pratiques de gestion. La topographie basée sur PSS, la conductivité électrique
apparente (ECa) et les donnees d'indices basés sur RS de 3 sites en Ontario, au Canada, ont permis
une évaluation des performances de la nouvelle technique dans la délimitation précise des zones.
Le R? du groupe de k-moyennes par rapport a celui de la NSA était relativement plus élevé (R? =
0,80) ou, la carte du groupe de k-moyennes consistait en groupes ou pixels avec des limites isolees
dans diverses parties du champ. La capacité unique des NSA, sur divers sites, a produire un nombre
optimal (ou défini par I'utilisateur) de zones, a mis en évidence sa supériorité sur le partitionnement

par k-means avec des limites isolées.

Une seconde étude évalua l'utilité de la caractéerisation des sols basée sur PSS dans le
développement d'une méthode de prédiction optimale pour plusieurs propriétés des sols, pour 12
sites a travers I'Ontario, Canada. Les emplacements d'échantillonnage des sols ciblés furent
détermines et optimisés a l'aide d'outils de regroupement NSA. L'ECa mesurée, les parameétres

topographiques et six propriétes du sol quantifiées en laboratoire (pH, pH tampon, SOM, P, K et
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CEC) servirent a évaluer la capacité prédictive de la méthode et a comparer I'erreur de mesure du
sol propagée de différents champs en s'appuyant sur les résultats du Programme North American
Proficiency Testing. Les coefficients de corrélation de Pearson supérieurs a 0,60 indiquaient de
fortes relations entre les variables du capteur et les propriétés du sol mesurées sur le terrain, les
parametres topographiques et les variables du capteur ECa peu profondes, permettant des

prédictions efficaces de plusieurs propriétés chimiques du sol (c.-a-d. SOM, P et CEC).

Enfin, des modeles d'apprentissage automatique supervisé s'appuyant sur des informations
a haute densité provenant de plusieurs capteurs (PSS et RS) fonctionnant a différentes échelles
géospatiales ont servi a générer des cartes thématiques des sols pour un champ agricole en Ontario,
au Canada. Un modeéle de régression aléatoire en forét (RF) a délimité les relations hiérarchiques
complexes existant entre les variables du capteur et évalué I'efficacité de la prédiction pour
plusieurs nutriments du sol. L'importance réduction en fonction de leur relative variable et
I'optimisation des paramétres (c'est-a-dire en définissant le nombre d'arbres) de régression ont
amélioreé la précision prédictive pour neuf propriétés du sol au stade de la validation croisée. Le
coefficient de détermination (R?) a montré que la plus grande précision (ajustement du modele) a
été atteinte pour la prédiction du pH, du K et du Zn (R? > 0.80).

Des technologies sophistiquées sont essentielles a la génération de cartes thématiques a
résolution plus fine pour I'AP et a la gestion des sols a différentes échelles géospatiales. Les
techniques d'optimisation des données multicouches utilisées dans la cartographie basée sur
plusieurs capteurs permettent de comprendre la variabilité a I'échelle du terrain et la prévision du
sol a I'échelle locale. Cette recherche a indiqué que la variabilité du sol déterminée a l'aide de
données fusionnees par capteur et de techniques d'optimisation pourrait aider a construire des
modeles précis de prévision des propriétés du sol et a développer des cartes thématiques fiables

pour la gestion des cultures spécifiques au site.
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Chapter 1: Introduction

1.1 General introduction

Recently, global agricultural production systems have faced various challenges due to
environmental degradation. The stresses of the production environment are determined by the
intensification of production and poor management. This issue highlights the fact that feeding the
world’s growing population necessitates improved production systems, particularly through the
use of precision agriculture technologies (Oliver et al., 2013). To better understand such a
production environment, one must begin by defining Precision Agriculture (PA) and its
components, including spatiotemporal variability (i.e., in the field, soil, crop), farm management,
profitability, and environmental sustainability (ISPA, 2019). In an ongoing effort to improve crop
production systems, agricultural scientists have focused on these sectors in assessing soil-crop-
environment relationships and managing system variability. Accordingly, robust technologies
applied in an efficient manner can increase production quality and maximize the farm’s

profitability.

To best circumscribe the above issues, a comprehensive definition of Precision Agriculture
(PA), adopted by International Society for Precision Agriculture (ISPA) in 2019, is given below:
“Precision Agriculture is a management strategy that gathers, processes and analyzes
temporal, spatial and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource use efficiency,

productivity, quality, profitability and sustainability of agricultural production.”

In the last decade, three interlinked production phenomena have been considered in efforts
to improve agricultural production systems and monitor their soil-environment relationship:
(i) static conditions of a production field, including the characteristics of soil and crop
yields;
(if) field management practices, mainly the production system’s inputs and outputs, e.g.,

tillage, soil amendments, crop types/rotations, harvesting, etc., and

(iii) dynamic conditions of the production environment, e.g., climatic conditions,

economic situation, and profitability.
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These three elements are key to a farm’s long-term productivity and economics which ultimately

benefit the farming community and result environmental sustainability.

The static condition of the production system entails the production field’s soil nutritional
elements and crop yield. Soil thematic maps can provide the precision agriculture farming
community substantial information on field variations, allowing for an improved farming
environment according to site-specific requirements. A key challenge in preparing soil thematic
maps lies in determining how to accurately represent the spatiotemporal heterogeneity of
agricultural fields at different scales. Various technologies assist agricultural researchers studying
precision farming systems to improve local- and regional-scale thematic maps (Zhang et.al., 2002),
thereby, providing a range of solutions to improve the production environment and increase its
profitability. These researchers also assess field variability through their understanding of field
dimensions, topographic characteristics and historical cropping records (Grunwald, 2015).
Seeking to improve thematic maps and develop sustainable production strategies, this sphere of

research explores the spatiotemporal dynamics of soil within the production environment.

A Digital soil map (DSM) refers to a quantitative soil prediction criterion on a
geographically unique space, which draws upon dense soil and environmental covariates to infer
spatiotemporal variations within the map (McBratney et al., 2003; Guo et al., 2015). By reducing
environmental impacts, it also alters the productivity and sustainability of the landscape (Oliver
et.al., 2013). While exploring soil-environment dynamics using soil maps is a step forward in
managing crop production systems, the process remains a black box. The implementation of DSM
implies the use of several modeling and mapping techniques to better understand the spatial and
temporal dynamics in different situations. However, a DSM can present several drawbacks when
applied to dynamic crop growing conditions. When site-specific optimization of an agricultural
field is based on inaccurate information and draws upon expensive laboratory soil analyses,
economic losses may occur, and environmental concerns develop. These issues account for the

relatively slow adoption of site-specific crop management in many regions.

In preparing DSMs and applying them to site-specific management, various proximal soil
sensing (PSS) and remote sensing (RS) platforms have been used to gather affordable high-density
multivariate datasets and explore various data indices. Most sensors measure soil parameters

indirectly rather than directly, and then infer agronomic indicators of the crop growing



environment. Due to various aspects and scales in the data-mining protocol, intensive data
processing and integration are required to produce maps which provide detailed characterization
of field heterogeneity. Models for spatial prediction incorporate different advanced algorithms and
approaches, such as geostatistics, advanced regression and machine learning. Due to the increased
applicability of density maps at the local or regional scale, DSM requires optimization through

modelling and validation of its performance (Minasny and McBratney, 2016).

The present research proposed several approaches to further improve digital soil modeling
and thematic mapping. To better understand an agricultural field’s spatiotemporal variability by
way of multiple sensor information, a data clustering model must initially be implemented at
various scales to assess the diverse environmental dynamics and field optimization conditions.
Moreover, a heightened level of confidence, developed through error optimization and validation,
improves the capacity for prediction in generating accurate soil variability maps and ultimately, in
assessing soil health. Finally, machine learning algorithms (model) are necessary to evaluate the
prediction results and determine whether the production system under study is economically
viable. Ultimately, all such efforts assist in improving the soil and production systems and
enhancing environmental sustainability initiatives. These efforts will also empower growers who
operate under different management conditions and produce either cash or specialty crops, fruits
and vegetables, or nursery crops — as well as their advisors (e.g., agronomists, extension agents)
— to adopt precision farming.

1.2 Problem statement and rationale

Recently, farmers have benefited from the development of soil sensors and their use in
understanding pedogenic processes and the level of soil constituents (Brown, 2006). Also, they
have extensively employed various geospatial technologies and tools, such as proximal soil and
remote sensors, along with Global Positioning System (GPS) and Geographic Information System
(GIS), to integrate agricultural farm management and decision support systems for precision
agriculture (Franzen and Mulla, 2015). However, there remain various issues with multivariate
and dense soil response, data modeling, and optimization. Those sensing technologies, along with
advanced methods, are used to obtain soil property information and determine soil variability for

precision agriculture.



Proximal soil sensors, topsoil images, geospatial analysis, and decision support tools are
essential to evaluating soil types and their variability. However, if erroneous data is combined with
outdated measurements and approaches, this results in support system inaccuracies, leading to
imprecise or inaccurate predictions which delay the decision-making process. Accordingly, one
needs to minimize errors and render precise field assessments when using precision technologies.
To better manage topsoil and improve crop production, agronomists and production farmers need
to periodically assess soil fertility in a cost-effective manner that improves upon conventional
procedures. This research explores the optimization of geospatial data modeling and thematic
mapping strategies by assessing multivariate PSS measurements obtained through satellite
imaging data and conventional laboratory measurements of soil parameters from different parts of

a single field or from different agricultural fields.

Soil horizon and its boundaries have important effects on the physiochemical properties of
topsoil, and are the major issues of contention in assessing soil health and sustainability (Oliver et
al., 2013). In the soil boundary delineation process, topography is considered the variable having
the greatest influence on soil constituents, influencing both soil physical and chemical properties
which are key to agricultural production. In the mapping process, crop vigor and historical
vegetation trends along with topographic characteristics are assessed as indicators of soil health
and farm management. However, the key challenges are to identify the relative importance of each
variable and to optimize the selected variables at different spatial scales. The optimized data can

then be recommended for use in rigorous modelling procedures.

Traditional data, conventional methods and thinking often make the management of soil
variability time consuming and costly in small and local-scale agricultural fields. Recent research
has explored technologies and quantitative methods that make it possible to infer the spatial pattern
of soil heterogeneity for digital soil mapping. The soil response to crop yields and its inherent
properties are precisely evaluated through numeric prediction modeling. Soil-landscape modeling
using supervised or unsupervised methods is needed to better understand geospatial variability and
achieve greater accuracy (Grunwald, 2006). At present, the key research question is how
multivariate data at different scales can be integrated in such a manner as to integrate multiscale
variability into spatiotemporal assessments under crop production. As part of this initiative, this

research examines high-density data mining techniques and various sensor data fusion algorithms



and optimization techniques to predict the heterogeneity of agricultural landscapes for making the

thematic soil map.

Many sensor-measured variables are linked and modeled with measured soil properties to
provide a better understanding of the soil profile and nutrient content. This research generates
knowledge of the spatial distribution of soil attributes, allows the production of thematic soil
variability maps and provides a guideline on managing the soil quality of a farm. After a
comprehensive soil assessment through modeling and the generation of thematic maps, crop
advisors and farmers can rely on location-based information and crop-specific nutrient
requirements to make agronomic decisions. This research will also promote the adoption of
sustainable agricultural production systems by farmers, thereby, optimizing zonal agricultural

inputs and ultimately leading to the adoption of best management practices.

1.3 Research objectives

The overarching goal of this research is sensor-based soil characterization that leads to
digital soil mapping. The purpose of this project was to integrate sensor data from multiple sources
and to evaluate the optimization techniques and assess their usefulness in predicting different soil
properties. This was done by assessing geospatial data modeling and assigning calibration zones
to soil properties for various management issues. This research will generate methods of
developing a prediction model and thematic soil maps for examining soil health in crop production
and agricultural farm management. These goals will be accomplished through the following

specific objectives:

1. implementing a Neighbourhood Search Analysis algorithm using an open-source
programming platform to enable hierarchical spatial clustering of high-density and
multilayer information evaluating agricultural fields.

2. assess proximal soil-sensing-based predictability of soil attributes for a series of
agricultural fields under different agro-climatic conditions.

3. explore the potential for integrating proximal soil sensing data with remote sensing
imagery and models to delineate field variability which is then suitable for differentiated

management decisions.



1.4 Thesis organization

This thesis consists of seven chapters and covers the three objectives in detail. In Chapter
1, the research is introduced, and an overview of agricultural research, scope of the work, problem
statement and objectives pertaining to the research question are provided. In Chapter 2, proximal
and remote sensing-based data characterization are reviewed and their implications for the
development of geostatistical and ensemble machine learning frameworks for geospatial
prediction, modeling and thematic soil mapping are discussed. In Chapter 3, high density
multivariate field characterization data is discussed, and the matter of data variability addressed.
This involves the use of an unsupervised clustering analysis algorithm using multiple layers of
geospatial, proximal- and remote-sensing, as well as data integration. Accordingly, hierarchical
and multivariate data clustering tools are compared to traditional clustering methods for soil
mapping. Chapter 4 deals with various aspects of proximal soil sensor (PSS) data through an
assessment of data quality and soil property prediction capability. This section also covers PSS
data analysis methods and uncertainty analysis for model building and spatiotemporal soil
mapping. In addressing the final objective, Chapter 5 presents a supervised learning algorithm
that integrates PSS and RS data along with field measurements for precise prediction and thematic
soil mapping. This multivariate geostatistical model is assessed based on a regression method of
different observed parameters at different stages, and its behavior in digital soil mapping. Chapter
6 includes a tangible summary and conclusions of this research. Finally, Chapter 7 presents

contributions to knowledge, followed by recommendations and suggestions for future studies.



Chapter 2: Review of Literature

2.1 Improvements in data clustering for identifying field heterogeneity and zones of soil

homogeneity

Management zone delineation using different sensor data has become important in
assessing soil health and crop production (Fridgen et al., 2004; Vrindts et al., 2005; Li et al., 2007).
To generate a map of the variability of management zones for application in precision agriculture,
sensor data clustering tools are used to analyze and assess information regarding soil properties
and to determine soil variability (Shatar and McBratney, 2001; Fridgen et al., 2004; Dhawale et
al., 2014; Albornoz et al., 2018). Cluster maps developed for monitoring site selection are valued
by agronomists and extension agents for their role in informing the agronomic and management
decisions they make (Adamchuk et al., 2011). Recent research illustrates how cluster maps and
homogeneous zones have been used for targeted sampling and optimized designs in zone specific
locations in an agricultural field (Dhawale et al., 2016; Albornoz et al. 2018). However, to attain
hierarchical clustering tools which provide greater benefits in agricultural applications, their
efficiency in describing the variability of different agricultural fields must be assessed in
comparison with traditional clustering methods.

In the zone delineation process, high-density and high-resolution data from proximal soil
sensing (PSS) and remote sensing (RS) technologies are used to infer the spatial pattern of soil
heterogeneity (Deng et al., 2003; Adamchuk et al., 2004; Cohen et al., 2013; De Benedetto et al.,
2013). Unsupervised methods have been widely used to assess spatial variability of high-density
data and to determine a solution by isolating homogeneous field areas and potential management
zones (Vrindts et al., 2005; Li et al., 2007; Cressie and Kang, 2010; Adamchuk et al., 2011,
Dhawale et al., 2016). The use of unsupervised methods guided by multivariate data clustering
techniques is imperative to achieving significant benefits from identifying and understanding soil

variability within a production field (Burrough et al., 1997; Ruf3 and Brenning, 2010).

Non-hierarchical cluster analysis through fuzzy logic (c-means or k-means), a form of an
unsupervised model (Vendrusculo and Kaleita, 2011), is used extensively for agricultural data
mining (De Gruijter et al., 1997; Bragato, 2004; Gui-Fen et al., 2007; Panda et al., 2012). Due to



the imprecision and limitations in the isolation process of fuzzy logic (Johnson, 1967; 10. Arabie,
and Hubert, 1996; Burrough et al., 1997; Albornoz et al., 2018), recent studies recommend using
multivariate clustering tools along with hierarchical methods to represent unique thematic maps
and zonal boundaries based on the homogeneity of the agricultural field (Figure 2.1) (Ruf? and
Kruse, 2011; Dhawale et al., 2016). Based on the potential benefits of the method, Castrignano et
al. (2017) and others (Schueller, 2010; Dhawale et al., 2014; Cdrdoba et al., 2016; Saifuzzaman
et al.,, 2018) have proposed sensor data fusion and geostatistical approaches for building
homogeneous zones. However, most of the clustering algorithms used in zone delineation
inadequately handle high-density data files with multiple variables and have limited accessibility
(Berkhin 2006; Viscarra Rossel et al., 2011; Cordoba et al., 2016). As a result, agricultural
scientists and farmers often experience difficulties with variable rate operations due to fragmented
management zones, which is what this clustering technique often generates (Albornoz et al., 2018).
Moreover, these tools often fail to fulfill current demands given their lack of validation datasets

from these zones. To counter this, new, open source, enhanced clustering techniques are needed.
I I @

> >

k-means clustering Hierarchical clustering

Figure 2.1 Traditional k-means clustering method showing zones with various isolated pixels, whereas
hierarchical clustering method showing well-defined zones for understanding field variability.

Traditional soil sampling, followed by laboratory analysis, is time-consuming, labor
intensive and costly (Ji et al., 2019). Adamchuk et al. (2011) proposed targeted sampling methods
and hierarchical data analysis tools to process and manage agricultural soil sensor data. As an
alternative to expensive licensed tools, open source data clustering algorithms promise new hope
for large farms where sampling sites can be targeted and optimized. Besides the different clustering
approaches which are available in open source libraries, (i.e., R and C packages) (Albornoz et al.,

2018), the Python system supports data analysis libraries that are easy to use, versatile, and well-
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supported. However, this open source system must be calibrated against other methods, and zone

delineation must be validated to ensure the stability and precision of management decisions.

2.2 Use of proximal soil sensor data to estimate soil nutrients and delineate soil

heterogeneity in precision agriculture

In the age of precision farming, the research scientist is a critical link in assessing crop
nutritional requirements and their distribution patterns (Adamchuk et al., 2004; Alchanatis and
Cohen, 2013). These requirements are assessed predominantly through dense subsoil information
(Lick et al., 2009). To fulfill the current demand, agricultural technologies are being developed
with the guidance of PSS and RS technologies (Alchanatis and Cohen, 2013; Viscarra Rossel and
Adamchuk, 2013). Due to the significant data processing time and concerns about local-scale
precision, large grain producers rely on spatial and temporal topsoil and subsurface information
(Zhang et al., 2002; Kerry et al., 2017). Proximal sensing systems are an effective method for
collecting density information for agricultural research (Viscarra Rossel et al., 2011), and have
served as a non-invasive procedure for producing fine-scale topsoil characteristics for
experimental or local farms. New PSS technologies (gamma-ray spectrometry, apparent electrical
conductivity) have been used to obtain high-density data, revealing the spatial distribution of

edaphic properties across agricultural fields (Figure 2.2).
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Figure 2.2 Proximal soil sensors: Active (apparent electrical conductivity) and passive (gamma-ray)
systems, a non-invasive procedure, for high-density soil mapping.



Over the past decades, passive and active PSS systems have been used to understand the soil-
topography relationship and assess spatial variability for precision farming (Brown, 2006). Data
from geoelectrical and electromagnetic sensors are widely used to identify soil dielectric properties
and geospatial variability (Adamchuk and Viscarra Rossel, 2010). Used primarily and widely to
dictate soil management in precision farming, electromagnetic energy-enabled PSS sensors (e.g.,
DUALEM-21S, EM-38 etc.) have been employed to provide apparent electrical conductivity
(ECa) measurements at variable depths to inform soil management practices under precision
farming. Corwin and Lesch (2005) and Friedman (2005) found ECa measurements to directly
correlate with top- and sub-soil physical properties, such as depth of clay layer, soil salinity, and
soil water content, etc. Due to the variable density of the sensor measurements across soil depths,
ECa data requires further calibration for site-specific depth exploration before linking it to soil
constituents (Sun et al., 2011; Zare et al., 2018).

High-density sensor measurements are important for making agronomic decisions in precision
agriculture (Appendix A). Widely implemented on a single platform, Real-time kinematic (RTK)
global navigation satellite systems (GNSS) are combined with other sensors to construct dense
georeferenced maps of surface topography that correspond with other measurements. A digital
terrain model is generated and the topographic derivatives then are used in predicting soil attributes
mapping (Bishop and Minasny, 2006). Many terrain model derivatives [e.g., topographic wetness
index (TWI1), slope, and aspect etc.] are able to assess topographic variability, water movement,
and water holding capacity for crop growth (Odeha et al., 1994). Along with topographic variables,
the ECa measurements are also used for predicting the presence and states of primary and
secondary soil nutrients (Taylor et al. 2003; Adamchuk and Viscarra Rossel, 2011; Dao, 2017).
The georeferenced locations, lab-measured soil analysis data, and other corresponding sensor
measurements can then be used to make management decisions in agricultural fields. Adamchuk
and Viscarra Rossel (2010) and Hengl et al., (2017) concluded that the analysis of variables from
geospatial and geostatistical data supported a predictive approach, and were valuable for the

calibration of management tools in precision farming.

Geospatial analyses of different sensor variables are key in developing measurements tools
employed in precision agriculture (Adamchuk and Viscarra Rossel, 2011; Hengl et al., 2017).

Using dense georeferenced measurements to achieve an authentic solution involves data
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processing tools, approaches and models. Improved geostatistical data analysis and prediction
methods are used to manage sensor measurements and soil prediction (Taylor et al., 2003). Sun et
al. (2011) and Viscarra Rossel et al. (2011) found that using a variable data structure for the
different PSS measurements improved the accuracy of prediction for soil properties, and thereby,
provided additional information in thematic mapping. The relationship among different available
sensor variables are important in data mining and decision-making processes. Multivariate
statistical methods (e.g., correlation and regression, principle component analysis, and semi-
variogram) are commonly utilized for data preprocessing and structural analysis (McBratney and
Pringle, 1999; Cordoba et al., 2013). Accordingly, multivariate regression analysis and prediction
modeling have become popular approaches for soil characterization and the prediction of macro-

or micro-nutrients.

Uncertainty analysis of the prediction model is an emerging challenge in precision soil
mapping (Bishop and Minasny, 2006). To quantify the model accuracy, various statistical tests are
performed and compared to the mean squared error (MSE) values of the validation points.
Accordingly, D-optimality criteria and Latin hypercube sampling (LHS) have been used as model
validation techniques (Adamchuk et al., 2011; Panayi et al., 2017). In previous studies, model
sensitivity and errors are reported by different methods and minimized through different
procedures [e.g., ratio of performance to deviation (RPD), standard error (SE) of estimation,
standard deviation (STD) of the sample, coefficient of determination (R?) etc.] (Oliver, 2010;
Minasny and McBratney, 2013; Sudduth, et al., 2013). Thus, in the present study, the ratio of the
SE of prediction to the STD of the sample serves to assess the model’s performance. Moreover, to
explain the proportion of variation in the regression line of the estimates, the modified version of
the coefficient of determination (adjusted R?) is assessed. Models with minimum propagated errors

are recommended for thematic mapping and soil management in precision agriculture.

With rigorous data processing and analysis, models may be used to assess spatiotemporal
variations due to annual crop nutrient uptake and amendment requirements. Hence, agricultural
scientists have proposed different prescription maps for production fields based on soil variability.
Recent developments in authenticated modeling requirements may integrate high-density PSS and
RS data to identify comprehensive soil elements and their horizontal distribution in field-scale
mapping and precision farming (Zhou et al., 2016; Castrignano et al, 2017).
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2.3 Use of remote sensing images to delineate geospatial variability in soil and crop

mapping

Various altitude and multispectral remote sensing technologies are an established non-
destructive method to gather information to direct agricultural crop management (Figure 2.3).
Various methods have been used to manage large farms and decision-making processes for
regional scale soil improvement (Hatfield et al., 2008; Salama, 2011; Rodriguez-Moreno et al.,
2017). In the past decades, potential challenges to data analysis in this application were coarser
spatial resolution, longer revisit periods, and costly data for site-specific management (Xue and
Su, 2017). Substantial improvements in spatial resolution (0.30 to 0.50 m), temporal resolution (1-
3 days), and spectral resolution (3 to 250 bands) have been made accessible in recent decades
(Figure 2.4), thereby, enhancing agricultural applications (Mulla, 2013; Borgogno-Mondino et al.,
2018). The current effort in mapping soils and developing site-specific crop management is
focused on synchronizing data from low-attitude remote sensing (i.e., UAV and an aerial camera
with a high spatial resolution) and freely available high-attitude satellite (with medium resolution)
(Mulla, 2013). The resulting datasets and derived indices have proven useful for mapping and
predicting soil characteristics, such as soil moisture, organic matter, soil texture, clay content, and
pH (Gregory et al., 2006; Xu et al., 2018).

Sat‘ellite

= -
'-'-li-.a'\.:w

o

Figure 2.3 Images taken from various altitudes and platforms for agricultural field management.
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e

Figure 2.4 Different spectral images, showing surface reflectance, are available for agricultural field
management.

Plant health and crop growth are assessed using different remote sensing data, image indices,
and data integration approaches from various platforms (e.g., Sentinel-2, Rapid-Eye, and other
higher resolution satellites) (Vifa et al., 2011). Besides, Mulla (2013) and Wulf et al. (2015) have
indicated the availability of temporal images, highlighted the importance of nearly real-time data
for crop growth assessment, and discussed the usefulness of image indices in crop and pest
management (Hatfield et al., 2008). A variety of spectral indices are calculated from near-infrared
(NIR) and Red reflectance bands to find the ground surface’s best-fit line and assess vegetation
biomass (Figure 2.5 and 2.6). The Normalized Difference Vegetation Index (NDVI) and Soil
Adjusted Vegetation Index (SAVI) have become the generic indices for the comprehensive
assessment of crop health in agricultural communities (Mulla, 2013; Xue and Su, 2017). Likewise,
the Normalized Difference Red Edge Index (NDRE) derived from near-infrared and red edge
spectrum are used to detect small changes in vegetation canopy. Gitelson et al. (2003) illustrated
that using the vegetation fraction (%) for qualitative measurement of chlorophyll content and

vegetation health provided greater accuracy than simple NDVI indices.
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Figure 2.5 Reflectance curve from multispectral image for identifying soil and green vegetation (modified
after Huete, 2004).
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Figure 2.6 Soil line indicated (in left and right side) from Red and Near infrared (NIR) band ratio (modified
from Salama, 2011 and Qi et al., 1994).

Most proximal crop sensors (e.g., Chlorophyll meter, GreenSeeker, and Crop circle, etc.)
produce local-scale data for experimental farms and have limited estimation capability for large
scale precise nutrient deficiencies based on soil and crop reflectance (Ali et al., 2015). These
sensors rely on additional reference data to achieve their best results (Mulla, 2013). Recent
research shows that low-altitude remote sensing methods are more successful at surface soil

parameter prediction and crop stress approximation for large farms (Zhou et al., 2016). Available

14



spectral bands from low-altitude sensing technologies have been used to simultaneously assess
water stress and nitrogen requirements at different crop growth stages, as well as to evaluate soil
characteristics, in a single field (Gregory et al., 2006; Asher et al., 2013). However, this needs to
be validated across a diversity of fields.

A recent study by Wulf et al. (2015) demonstrated that the available visible multispectral bands
and statistical approaches are unable to quantify soil minerals. To facilitate data analysis, several
geospatial analysis tools and geostatistical approaches have been developed to leverage crop yields
in large and local-scale precision farming (Cherlinka, 2017). Despite these initiatives,
classification of multispectral remote sensing data has been proposed as a means to predict soil
attributes and manage crop health. Unsupervised learning algorithms (fuzzy logic) applied to the
multispectral data along with ground validation datasets have been used for bare soil mapping and
management zone delineation (Cohen et al., 2013). After reporting several limitations to the
agricultural application of these methods, Belgui and Dragu (2016) and Liu and Abd-elrahman
(2018) used random forest supervised methods to report multisource data sensitivity, pattern
recognition, and to classify thematic image maps for the prediction of soil classes.

Besides advanced methods to handle remote sensing data, data integration with other high-
density PSS measurements has been proposed for precision farming (Hengl et al., 2017; Albornoz
et al., 2018). Other efforts have integrated multispectral image indices and measured soil
parameters which then could draw on historical yields for validation and estimation of crop
biomass and potential crop yields (Gitelson et al., 2003; Nguy-Robertson et al., 2012). The most
commonly encountered challenge in data fusion methods consists of the matching of spatial scale
and accuracies at each level. Moreover, data processing and the cost of trading accuracy for better

range in variability are also significant issues at the field-scale (Zhou et al., 2016).

2.4 Use of sensor fusion in quantifying soil nutrients and solving agricultural issues

The application of individual sensor mapping and their analysis techniques in the context
of agricultural soil mapping and crop management is limited because of the inability to measure a
wide variety of sensor responses ranging from a soil’s profile to its agronomic properties

(Adamchuk and Viscarra Rossel, 2011). Real, or near-real, time sensor data (Huang et al., 2018)
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and the fusion of measurements with environmental variables entail a demanding approach to
accurately map soil (Mahmood et al., 2012; Samuel-Rosa et al., 2015). Alchanatis and Cohen
(2013) and Mulla (2013) stated that advances in sensor fusion algorithms and models are a growing
concern and that only some have been applied successfully to predicting soil nutrients and fertility
status. The key issues in data fusion and data analysis processes are the synchronization of different
parameters at various scales and accounting for their multiscale uncertainties in a geographical
space (Grunwald et al., 2011; Aldabaa et al., 2015).

Sensor fusion models often incorporate multivariable high-density data to solve
agricultural problems. After a rigorous assessment of the data structure and preprocessing to
remove potential outliers, hierarchical and geospatial models are deployed to predict soil properties
and variable rate applications at various spatial and temporal scales (Kaye et al., 2008; Grunwald
2009; Castrignano et al., 2017, McFadden et al., 2017). Multivariate regression modeling (OLS
and GLYS) are widely used to evaluate relationships between variables (Hurvich and Tsai, 1989).
Regression kriging has been applied to assess the relationship between predictor variables and soil
properties from subsample datasets (Meirvenne and Cleemput, 2006). Hengel et al. (2004)
presented a spatial prediction map at a regional scale by using regression kriging methods, while
Xu et al., (2018) employed this method along with remote sensing spectral indices to estimate total
nitrogen in two different locations. Moreover, tree-based sensor-fusion algorithms are widely used
in bioinformatics for precise prediction and faster decision making (Grunwald, 2006).

2.4.1 Digital soil modeling and thematic mapping at local-scale

Supervised learning algorithms are another multivariate and high-density data analysis
approach to generate faster decision-making processes. The algorithm evaluates prediction
efficiency through noise and error modeling. Classification and regression tree (CART) modeling
is a far more powerful method for spatial prediction and soil attribute mapping than simple, or
multiple, linear regression (Bishop and Minasny, 2006). Besides various applications of CART
data classification and regression methods in medical and remote sensing analyses, random
decision forests and regression trees are drawing increasing attention in making thematic soil maps
(Figure 2.7). Previous studies have indicated that this type of model deals effectively with
unbalanced/missing datasets; it is more stable at a faster runtime and is robust for weighting
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classified samples iteratively in remote sensing data analysis (Belgiu and Dragu, 2016). Moreover,
it allows for control of the variable selection from the training samples and shows an efficient error
handling capability (Belgiu and Dragu, 2016; Pelletier et al., 2016). Hengl et al. (2004) applied
such a model, along with sensor data fusion, to predict a wide range of soil-vegetation properties,
as well as generating thematic maps on a regional scale. They analyzed various environmental
covariates and then used input training samples for the machine learning techniques. In other
studies, a spatial prediction framework was used to optimize the model parameters and reduce
prediction uncertainties for predicting soil nutrients (Xiong et al., 2015; Dharumarajan et al., 2017;
Merrill et al., 2017; Vaysse and Lagacherie, 2017). While such methods have been adopted for
regional scale prediction (Minasny and McBratney, 2016), there remains a need to implement a

regression model for farm-scale applications.
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Figure 2.7 Regression tree, an example of supervised decision tree model that optimizes the split from a
small subset of training sets (Adopted from Géron, 2017).
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The data fusion model offers the possibility of integrating geostatistical models to handle
several environmental variables along with hierarchical relationships (Hengl et al., 2004;
Grunwald, 2009; Piikki et al., 2013; Grunwald et al., 2015). The random forest, a tree-model, has
established the complex relationships among the variables and provided promising results in many
ecological and environmental studies (Zhou et al., 2019). The model’s classification and regression
approach can be applied in data mining and sensor data integration to solve agricultural problems,
such as local-scale soil prediction and field-level accurate thematic maps. For this reason, model-
based application rates are recommended to make faster decisions on accurate soil maps. In the
decision-making steps, the models envision spatial variability and perform a complementary
decision in maintaining soil management and its amendment requirements from historical farming
practice. Moreover, faster decision-making enhances seasonal nitrogen management, amendments
with organic matter, and management of topsoil for crop production (Grunwald et al., 2011).
Accurate model-estimated soil properties could help reduce agricultural inputs, making farms

more profitable and sustainable by decreasing water and fertilizer consumption.

Modeling spatial and spatio-temporal data requires one to synchronize different parameters
at various stages and handle their multiscale uncertainties in geographical space (Grunwald, 2009;
Huang et al., 2014). Geostatistical models, along with kriging/co-kriging, are useful in developing
geospatial digital soil mapping (Hengl et al., 2018); however, they require variogram parameters,
anisotropic modelling parameters, fitting variograms using trends of covariates and link functions,
etc. In contrast, the tree-based classification and regression models (e.g., random forest) require

limited user inputs to generate a thematic prediction map (Figure 2.8).
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Figure 2.8 Model-based geostatistics requires large amount of user inputs, such as specifies initial
variogram parameters, anisotropy modeling, possibly transformation etc. (a), while classification and
regression tree model requires only less user input (b) (Modified after Hengl et al., 2018).
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The above research depicted various challenges in implementing high-density sensor
information and their efforts in thematic maps for precision agricultural practices. Most of the non-
hierarchical clustering algorithms used in zone delineation only inadequately handle high-density
data files with multiple variables and have limited accessibility. Farmers using precision farming
practices often experience difficulties with variable rate operations due to fragmented management
zones, in which those clustering techniques are often generated. In order to overcome the research
gaps mentioned in section 2.1, the first study used high-density data to understand better field
variability. Due to several limitations of the fuzzy clustering methods in the isolation process, the
first objective of this study proposed a new multivariate clustering tool along with hierarchical
methods to represent unique thematic maps and zonal boundaries based on the homogeneity of an

agricultural field.

The PSS data, along with standard methods of laboratory soil analysis, are continuously
assessing soil variability and plant available nutrient prediction in agricultural field management.
The drawbacks discussed in Section 2.2, uncertainty analysis of predicting the soil properties is an
emerging challenge in precision agricultural practice. To facilitate high-density sensor data
application in farm management, uncertainty analysis of the prediction model and data quality are
reported by different methods (RPD, SE, STD, R?, etc.). In order to better assist in data quality
assessment to delineate soil heterogeneity and their prediction capability, the second study of the
thesis deals with the various aspects of proximal soil sensor (PSS) data through an assessment of
the laboratory’s data quality and comparing it with a wide range of lab-based measurements. This
section also covers uncertainty analysis in model building and spatiotemporal soil mapping. As a
result, lab testing results with a minimum of propagated errors are recommended for standard
thematic soil mapping practices and for the laboratory proficiency certification program.

In precision agriculture, high-density proximal soil sensing (PSS) and remote sensing (RS)
data are often used to predict thematic soil properties. Along with geospatial and multi-temporal
sensor datasets, a subset of soil sampling data can also be drawn upon to predict soil nutrients in
an agricultural field. Several limitations of multivariate data analysis techniques to the agricultural
application were discussed in sections 2.3 and 2.4; the most commonly encountered challenges
with data fusion methods consists of the matching of spatial scale and accuracies at each level.
Regression tree-based sensor-fusion algorithms (i.e., random forest) require limited user inputs to
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generate a thematic prediction map and are widely used in many environmental studies. The final
study proposed the regression-based geospatial data integration model to establish the complex
relationships among the different auxiliary variables along with the measured soil properties, and
to delineate field variability and to assess prediction performance of different soil nutrients.

Precise thematic maps can solve agricultural problems at a local scale.
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Connecting Text to Chapter 3

The necessity for optimizing high-density data and field variability characterization of agricultural
soils to support site-specific resource management was described in the previous chapter. Chapter
3 is related to the first objective as listed in Chapter 1 and the rationale illustrated in Chapter 2. In
this chapter, an hierarchical data clustering technique was evaluated to determine the homogeneous
parts of agricultural fields and to characterize field variability. The improvement of the effort was
achieved by (1) implementing the uniform number of zones for optimizing soil sample locations
and by (2) comparing with the results of traditional fuzzy clustering methods. To address the
effectiveness of such an optimization, the proposed strategies were simulated using PSS-based
dense apparent soil electrical conductivity (ECa) data, topographic derivatives and RS-based

vegetation indices. The proposed strategies were investigated in three agricultural fields.

Initial outcomes were reported and published at the conference proceedings and journal:

1. Saifuzzaman, M., & Adamchuk, V. (2017). Proximal Soil Sensing and Remote Sensing
Data Processing for Precision Agriculture in Ontario, Canada. In Abstracts from Annual
Meeting of the Association of American Geographers, 5 - 9 April 2017 (pp. 1204-1205).
Boston, Massachusetts, USA: (CD publication).

2. Saifuzzaman, M., & Adamchuk, V. (2017). Geospatial Analysis of Proximal Soil Sensing
and Remote Sensing Data in Precision Agriculture. In Abstracts from the Earth
Observation Summit 2017, UQAM (Science Centre), 20 - 22 June 2017. Canadian Remote
Sensing Society. Montreal, Quebec, Canada: (Published on-line at https://crss-
sct.ca/conferences/csrs2017).

3. Saifuzzaman, M., Adamchuk, V., Huang, H., Ji, W., Rabe, N., & Biswas, A. (2018). Data
Clustering Tools for Understanding Spatial Heterogeneity in Crop Production by
Integrating Proximal Soil Sensing and Remote Sensing Data. In Proceedings of the 14th
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Chapter 3: Clustering Tools for Integration of Satellite Remote Sensing

Imagery and Proximal Soil Sensing Data

Md Saifuzzaman, Viacheslav Adamchuk, Roberto Buelvas, Asim Biswas, Shiv Prasher, Nicole

Rabe, Doug Aspinall and Wenjun Ji

Abstract

Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an array of
advanced methods for obtaining information on soil properties and for determining soil variability
for precision agriculture. The large amount of data collected by these sensors may provide essential
information for precision, or site-specific, management in a production field. Data clustering
techniques are crucial for data mining, and high-density data analysis is important for field
management. A new clustering technique was introduced and compared with existing clustering
tools to determine the relatively homogeneous parts of agricultural fields. A DUALEM-21S
sensor, along with high-accuracy topography data, was used to characterize soil variability in three
agricultural fields situated in Ontario, Canada. Sentinel-2 data assisted in quantifying bare soil and
vegetation indices (VIs). The custom Neighborhood Search Analyst (NSA) data clustering tool
was implemented using Python scripts. In this algorithm, part of the variance of each data layer is
accounted for by subdividing the field into smaller, relatively homogeneous, areas. The
algorithm’s attributes were illustrated using field elevation, shallow and deep apparent electrical
conductivity (ECa), and several V1s. The R? of the k-means cluster relative to that of the NSA was
higher in most of the fields; it was approximately 0.80. The k-means cluster map consisted of
pixels with isolated boundaries in various parts of a field, whereas the NSA algorithm reduced
zone fragmentation and produced spatially congruous zones. The unique feature of this proposed
protocol was the successful development of user-friendly and open source options for defining the
spatial continuity of each group and for use in the zone delineation process.

Keywords: remote sensing; proximal soil sensing; clustering techniques; spatial homogeneity;
management zones.
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3.1 Introduction

A delineated areal extent (DAE) is a finite part of a field representing a unique and
homogeneous portion of data [1-2]. The determination of DAES, or zones, using remote sensing
(RS) and proximal soil sensing (PSS) data is becoming critical in the assessment of soil properties
and the characterization of variability in precision agriculture [1-8]. In the delineation process,
high-resolution data from these sensing technologies, together with quantitative methods, are used
to infer the spatial pattern of soil heterogeneity [9-13]. To obtain information on the spatial pattern
of soil parameters and produce thematic soil maps to understand a field’s agronomic and yield-
limiting factors, high-density and multivariate data analyses were drawn upon to isolate
homogeneous field areas and to identify potential management zones [14-20].

Multivariate data and hierarchical clustering techniques are crucial for identifying and
understanding soil variability within a production field [13, 21-25]. Among the multivariate data
analysis techniques, the unsupervised clustering techniques of fuzzy c-means and k-means are
most commonly used for data mining [26—32]. Because of the fuzziness of c-means and k-means
and other limitations in the isolation process, each cluster object can belong in more than one group
and boundary pixels are created [8,33,34]. This study attempted to provide a multivariate and
hierarchical clustering tool to represent unique thematic maps, and zonal boundaries based on the

homogeneity of the agricultural field.

Most clustering algorithms applied in zone delineation do not handle high-density data files
with multiple variables [35-39] nor do they produce an optimal number of zones. As clustering
techniques commonly generate fragmented management zones, agricultural scientists and farmers
face challenges when implementing variable-rate operations [8, 16, 40-44]. In practice for field
operations, the optimal number of zones should be such that the capacity of GPS-guided field
equipment is neither overtaxed (too many isolated zones) nor underexploited (too few isolated
zones). A survey conducted using a Real-Time Kinematic (RTK), DUALEM proximal soil sensor,
and a remote sensing satellite sensor yielded high-density elevation, apparent electrical
conductivity (ECa,), and surface vegetation reflectance data, respectively. In this research, the
proposed data clustering algorithm was optimized to generate spatially contiguous zones to aid in
the achievement of best management practice goals. This study presents the process used to

develop a new and enhanced clustering technique to better understand soil variability (e.g.,
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topography, crop performance, and high-density soil data, such as ECa), in an agricultural field.

The performance of this technique was then compared to that of other commonly used techniques.

3.2 Materials and Methods

3.2.1 Experimental Sites and Data Description

Situated at the Woodrill Farms near Guelph, Ontario, Canada, three agricultural fields
(namely, WH, LD, and RB), differing in acreage and soil class, were surveyed using both RS and
PSS sensors (Table 3.1 and Figure 3.1). The PSS equipment was pulled behind an all-terrain vehicle;
it measured elevation and EC, data points (collected between August 2015 and April 2016) for the
experimental sites at intra- and inter-row spacing of 5 m and 10 m, respectively. Elevation data points
were collected by an RTK Global Navigation Satellite Systems (GNSS) receiver (Trimble Inc.,
California, USA) (Table 3.2). On the basis of the high-density elevation points, a digital elevation
model (DEM) was created with a spatial precision of about 2 cm horizontally and 3 cm vertically.
Slope, aspect ratio [sin(aspect/2)], and a topographic wetness index (TWI) were derived from a
DEM of the study sites. Developed by Beven and Kirkby [45] and serving to investigate
hydrological processes controlled by topography, the TWI was determined using the SAGA GIS

v.2.4 (University of Hamburg, Germany). TWI =[In ﬁ] where; a is the upland contributing area,
[(flow accumulation + 1) x cell size], and S is the slope in radians.

The DUALEM-21S system (DUALEM Inc, Milton, ON, Canada) had one transmitter coil
and four receivers—two of horizontal coplanar (HCP) geometry and two of perpendicular coplanar
(PRP) geometry—at a separation distance of 1 to 2 m. It was used to collect EC, at four different
depths: PRP1 at 0-0.5 m, PRP2 at 0-1.0 m, HCP1 at 0-1.6 m, and HCP2 at 0-3.0 m (Table 3.3).
The pre-processing procedures for the collection of RTK elevations and EC. values were similar
and included raw data display, the identification of missing values, median filtering, and the
removal of outliers. Culled data included: (i) start pass and end pass delays, (ii) points with over
speed limits, (iii) values outside the user-defined minimum and maximum values and (iv) changes
in pitch or roll outside the acceptable limit. Data outliers were removed on the basis of the above
criteria, such that about 15% of data points were removed. Various methods of geospatial data
processing were undertaken on multiple data layers, including rectification, interpolation, and

point data extraction. These methods enhanced the data quality for further analysis.
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Table 3.1 Characteristics of three agricultural fields in Guelph, Ontario, Canada.

Field ID Area (ha) Soil classes Target crops
WH 39.60 Loam Soybean/Wheat
LD 21.00 Sandy Loam Soybean
RB 75.00 Fine Sandy Loam Soybean/Wheat

Table 3.2 Summary statistics of elevation data from the Real-Time Kinematic (RTK) sensor for three
agricultural fields in Guelph, Ontario, Canada. Number of sensor measurements varied based on the
experimental sites and sensor settings (data points recorded every 0.1s and in parallel lines of about 12m
separation).

Field # of Elevation (m)
ID  measurements Min Median Max Range STD Mean
WH 28493 372.06 378.07 38454 1248 233 37821
LD 7110 332.70 34486 354.17 2147 576 343.95
RB 20813 358.41  367.67 37216 13.75 3.63 366.64
Legend
Fergus o M Study locations
5 ™ akes and rivers
A-B N Il;ol:lulatioi centers
H ( | IMunicipal boundaries
: L-I; E &
% \ A Actorn
WH ,7\/\
/N
) \\) . > Dty < ONTARIO
E Q‘I’NX / /’ - / D ‘ Le?liir:atljd boundary
glo s 4 skm. h (a) ‘ - Dualem reading

" T L. .
807240 0" 200" B0 1E0W 80120 B0°ED"WY 80°4'0"W

o

Figure 3.1 (a) Location and aerial views of three fields at the Woodrill Farms in Guelph Ontario, Canada:
WH field boundary with soil apparent electrical conductivity (EC.) data points (b), LD field boundary with
soil EC, data points (c), and RB field boundary with soil EC, data points (d).
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Table 3.3 Summary of statistics from DUALEM-21S sensor readings from the three agricultural fields.
HCP: horizontal coplanar, PRP: perpendicular coplanar. Number of sensor measurements varied based on
area of experimental sites and sensor settings at the data collection time (data points recorded every 0.1s
and in parallel lines of about 12m separation).

Apparent Soil Electrical Conductivity (EC.), mS m-
1

. # of Sensor
Field ID Measurements Configuration

Min Median Max Range STD Mean
WH 20129 4.00 12.28 2528 21.28 1.69 1251
LD 6931 HCP1 2.58 6.90 16.08 1350 155 6.96
RB 18524 1.70 9.00 1798 16.28 281 9.13
WH 20129 4.68 792 2224 1756 160 8.15
LD 6931 PRP1 0.72 444 1412 1340 138 455
RB 18524 0.00 353 1680 16.80 286 4.40
WH 20129 7.42 10.46 2442 17.00 1.79 10.83
LD 6931 HCP2 0.50 444 1444 1394 185 461
RB 18524 2.50 845 1499 1249 265 822
WH 20129 5.42 9.10 2392 1850 1.75 9.37
LD 6931 PRP2 1.08 468 14.60 1352 150 475
RB 18524 0.14 510 15.00 1486 296 5.64

A Sentinel-2 image was used to analyze bare soil and vegetation characteristics (Table 3.4).
Remote sensing image processing steps were followed, including radiometric correction, stitching,
co-registration, and stack bands. One OrthoPhoto and two Sentinel-2 images were used for co-
registration and visual interpretation with zonal thematic maps. In addition to the traditional visible
(RGB) and near-infrared (NIR) spectral bands, Sentinel-2 imagery presented three red edge parts
of the spectrum as well, where only the red-edge B5 (704 nm) band was used for further analysis.
Spectral indices were produced from Sentinel-2 data to identify the strong absorption spectrum of
chlorophyll. These included the Difference Vegetation Index (DVI), the Normalized Difference
Red Edge Index (NDRE), the Normalized Difference Vegetation Index (NDVI), and the Modified
Soil Adjusted Vegetation Index (MSAVI12). Among the vegetation indices (VIs), NDVI maps were
found to be more suitable at the early crop growth stage and were used for the clustering process
[46, 47].
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Table 3.4 Remote sensing data characteristics and their sources.

. Pixel Central Imaging
Satellite Sensor  Spectral Bands (m) Wavelength(nm) Date Source
23 May n
OrthoPhoto B, G, R, NIR 0.2 - 2015 OMAFRA/OMNRF
. 2(B), 3(G), 4(R), 494, 560, 665, 21 July
Sentinel-2 8(NIR) 10.0 834 2017 Planet Labs
Sentinel-2 56,7 (red edge 20.0 704,740, 781 21 July Planet Labs

1,2 &3) 2017

!Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and Ontario Ministry of Natural
Resources and Forestry (OMNRF).

3.2.2 Interpolated Maps of Selected Sensor Variables

Ordinary Kriging interpolation maps were generated from the PSS measurements in ESRI
ArcGIS software (v10.5.1). Kriged maps (with a spatial resolution of 5 m) showing RTK elevation
(DEM), derived topographic variables (including slope, aspect, and TWI), and DUALEM sensor
variables (HCP1, HCP2, PRP1, and PRP2) were produced. Slope and aspect showed similar field
patterns as TWI and thus, were deemed redundant. In the final clustering process only TWI was
used. Due to fewer saturation problems at early crop growth stage in the fields and similar results
in NDRE, widely used NDVI maps (with a spatial resolution of 10 m) were extracted for the
clustering tool. Those maps represented significant variations across the expanse of each field
(Figures 3.2, 3.3, and 3.4). The interpolated maps were extracted into a data file of multiple layers.
Finally, a text data file was generated to store the sensor-derived variables for input into the newly

developed clustering tool and commonly used fuzzy clustering techniques.

To delineate zones, the multilayer data files were analyzed by the proposed data clustering
tool. The new data clustering algorithm and its processing steps are elaborated in detail in the
following section, as well as the new algorithm’s clustering outputs in comparison to outputs from

fuzzy clustering techniques.
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Figure 3.2 Interpolated maps (Kriged) of digital elevation model (DEM), topographic wetness index
(TWI), two apparent electrical conductivity measurements (HCP2 and PRP1), and Normalized Difference
Vegetation Index (NDVI) maps for the WH field.
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Figure 3.3 Interpolated maps (Kriged) of digital elevation model (DEM), topographic wetness index
(TWI), two apparent electrical conductivity measurements (HCP2 and PRP1), and Normalized Difference
Vegetation Index (NDVI) maps for the LD field.
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Figure 3.4 Interpolated maps (Kriged) of digital elevation model (DEM), topographic wetness index
(TWI), two apparent electrical conductivity measurements (HCP2 and PRP1), and Normalized Difference
Vegetation Index (NDVI) maps for the RB field.
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3.2.3 Data Clustering Algorithms

Fuzzy c-means calculated by the management zone analyst (MZA) [48] were used to
generate the normalized classification entropy (NCE) and fuzziness performance index (FPI) of
the five zones. Due to the limitations of handling several multiple layers for creating a large
number of zones, MZA produced only five zones in this study. The k-means algorithm in the
Python data library was used to generate (k = 5, k =15, and k = 25) clusters and cluster centers
were determined using the sum of square distances of all data points and the number of cases in
each cluster. Initially, five user-defined clusters were defined in the above clustering methods;
however, the optimum number of zones was determined in the final step and compared between

the two methods.

The proposed data clustering method, called the Neighborhood Search Analyst (NSA),
resulted in the algorithms shown in Figure 3.5. The processing steps and formula were adopted
from the NSA and were written in MATLAB scripts [6]. Preliminary tests of the algorithm in
numerous production fields highlighted the algorithm’s robustness when partitioning field areas
using several field measurements. To construct an objective function to be optimized through the
data grouping process, the mean squared error (MSE) was calculated for each individual data layer
k according to:

: (Xij_xj)2 (1)

N-m

where Xijj is a sensor value for the iw grid cells within the ju group; x is the mean of ju group; N

is the total number of grid cells; m is the number of groups; and nj is the number of grid cells within

the ju group.

It should be noted that the difference between the total number of grid cells and the number

of groups can be determined by:

m

N-m=>(n; -1) @

j=1
Since the algorithm initially assumes that all grid cells belong to the same group, labeled

“1” and designated as "the rest of the field", then MSEx(m=1) represents the variance of the ki
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data layer across the entire field. Given that the area of the field is substantially greater than the
area of a grid cell, MSEx(m=1) can be termed Farthest Distance Variance (FDVy). In such a
situation, the portion of data variance accounted for by distributing N grid cells among m groups
can be calculated as:

MSE
RZ =1 >k
“~ " FDy, )

where MSEx(m=1) can be called Farthest Distance Variance (FDVy).

The maximum value of R% can be obtained when MSEx is as small as possible. It
approaches 1 when the number of groups increases. Since the result can be considered less
favorable if at least one data layer k is not adequately accounted for, it is reasonable to employ the
integration operator OR instead of the more common AND. This avoids the need to assign a weight
factor to each individual data layer when adding corresponding MSE estimates. In mathematical
terms, this would mean that the product of all R should be maximized. Therefore, the objective

function (OF) was defined as:

OF =] [R? ()
where K is the number of PSS data layers.

In this study, the smallest number of data elements that could be grouped within the grid
cell square window was nine (3%3). Therefore, the maximum accountable variance is the variance
of PSS measurements between immediate neighbors. The Shortest Distance Variances (SDVk) can
be found using:

w 9 (X, — X
SDV, = 122% ()
j=L i=l

where w is the total number of 3x3 square windows of grid cells.
Since SDV( represents the smallest MSE value, the maximum value of R?¢ is calculated as:

2 _ 3DV,

k max - F DVk (6)

This R%kmax parameter can range between 0 and 1. It is equal to 0 when data layer K is either

uniform or highly variable, so that SDVk = FDV«. In such a case, the data layer should not be able
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to affect changes in the OF. Alternatively, when R?cmax is close to 1, the data layer has a strong
spatial structure (SDVk << FDV(), and OF must be sensitive to the change of MSEk corresponding
to that particular data layer. In mathematical terms, this goal can be achieved by multiplying all
R?x values raised to the R max power of:

SDV, ]

) lﬁ(l— j[

The resultant OF indicates the overall quality of grid cell groupings. It varies from 0 to 1

2
Rk max

MSE,
FDV,

(7)

OF =] [R?

k=1

and approaches high values when every spatially structured layer of the PSS measurements is
separated among spatially continuous groups of grid cells with minimum internal group variance.
Such groups represent different combinations of average PSS measurements obtained with
different sensors that diverge from average field conditions. To facilitate the formation of grid cell
groups that would maximize the OF, the NSA algorithm was implemented in this study using

Python v3.6 (created by Guido van Rossum and managed by Python Software Foundation,

Delaware, USA).

Compute OF form =1

Calculate OFnew group = max(OF) form=m +1

!

Calculate OFextended group = maX(OF) for nj=nj+ 1

OPFextended group - OF > 9'(OFnew group = OF)?

Start a new group
OF = OFnew group
m=m+1

End

Extend jth group
OF = OFextended group
nj=nj+1
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Figure 3.5 The flowchart of the Neighborhood Search Analyst (NSA) algorithm process.



3.3 Results and Discussion
3.3.1 c-Means Clustering

On the basis of the seven input variables (i.e., elevation, TWI, NDVI, HCP1, HCP2, PRP1,
and PRP2) of the WH field, Euclidean distance-based NCE and FPI indices in FCM clustering
were assessed for their performance in creating an optimum number of zones. NCE and FPI
reached the maximum values in either 4 or 5 zones (Figure 3.6). This clustering method is flawed
when it comes to obtaining an optimum number of zones [8, 49, 50]. The FCM clusters produced
pixels with isolated boundaries in various parts of the field [51, 52]. Many studies have reported
this representation problem regarding the clustering of data due to the fuzzy boundary [16, 32, 53,
54]. In the present method, user-defined numbers of clusters were produced without considering

the geospatial locations of the dataset (spatial continuity) or their distances.
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Figure 3.6 Normalized classification entropy (NCE) (a) and fuzziness performance index (FPI) (b) of the
WH field based on seven input variables.

3.3.2 k-Means Clustering

In the k-means clustering (k=5), the data values were taken directly from the input table of
the WH field for generating cluster centers (Figure 3.7a). Data were standardized and normalized
for the specific variable values. Among the five user-defined clusters, clusters 1, 2, 3, and 5 used
the most data points. The variation among the zones was understood where maximum data
points/variable values used to yield. Since there was a random component, after several runs of

each clustering process, the coefficient of determination (R?) varied according to how the k-means
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algorithm was initialized. The cluster map consisted of groups of pixels with isolated boundaries
in various parts of the WH field (Figure 3.7b). Figure 3.7b shows that the k-means cluster map of

the WH field generated 36 scattered zones of user-define clusters (k=25).
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ClHcP2

HrrRP1 800 1 20

15
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Figure 3.7 (a) k-means cluster (k = 5) centers with variable values of the WH field and (b) k-means cluster
(k = 25) map of the WH field showing zones with various isolated pixels.

3.3.3 NSA Clustering

In the NSA zone delineation process, unlike other clustering algorithms, providing the
number of field partitioning clusters is not obligatory. Without defining the number of clusters,
NSA produced an optimum number of groups for the grid cell (grid size of 20 m), separately, for
seven different input variables. According to the efficiency of the clustering algorithms, the best
possible, or maximum number of variations (optimum zones) were detected in the fields. More
importantly, this clustering tool efficiently delimited maps by providing the optimum number of
zones for field management (Figures 3.8a, 3.9a, and 3.10a). On this basis, the WH, LD, and RB
fields have 28, 20, and 27 georeferenced zones, respectively. For NSA clustering, user-defined

(k =5, k=15, and k = 25) zones were delineated and are illustrated later in this paper.
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Figure 3.8 () Zonal map including 28 well-defined clusters; (b) Coefficient of determination (R?) for each
data layer; and (c) Overall objective function (OF) vs number of grid cells (WH).
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Figure 3.9 () Zonal map including 20 well-defined clusters; (b) Coefficient of determination (R?) for each
data layer; and (c) Overall OF vs number of grid cells (LD).
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Figure 3.10 (a) Zonal map including 27 well-defined clusters; (b) Coefficient of determination (R?) for
each data layer; and (c) Overall OF vs number of grid cells (RB).

In NSA, zone delineation was performed by the individual R? values of each variable
(Figures 3.8b, 3.9b, and 3.10b) and overall OF (Figures 3.8c, 3.9¢, and 3.10c). These graphs show
the part of the variance of each data layer which was accounted for by subdividing the field into
smaller areas. The software also decided which variables (among the seven input variables)
contributed more variations and used them for making a homogeneous number of zones. In this
study, NDVI and elevation parameters had a low contribution in creating the zones. In each graph,
the greater R? value indicated that variability within individual zones was smaller than the
difference between zones. Figures 3.8b, 3.9b, and 3.10b show that the R? values increased when
new groups were formed or added to the existing groups. The NSA that produced R?max value was
about 0.9, and the graph had a steeper initial slope. This indicated that the data layer had a strong
spatial structure and was dominant when the field was split. Moreover, the x value (No. of cells),
where most graphs leveled off, showed that the smallest level of field partitioning revealed most
of the soil heterogeneity. Results in LD and RB fields indicated that R? for each data layer reached
a maximum height (0.60) with around 500 classified grid cells, whereas R? reached 0.70 near the
1000-grid cell level for the WH field (Figure 3.11). Roughly 60% (in LD and RB) and 70% (WH)
of the field variance in both cases was accounted for by making the clusters.
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Figure 3.11 Comparison of Coefficient of determination (R?) value for Neighborhood Search Analyst
(NSA) clustering for WH, LD, and RB fields.

3.3.4 Comparison of k-Means and NSA Clustering

At this stage, three user-defined clusters (k =5, k = 15, and k = 25) were generated to allow
for a comparison of the two clustering algorithms, i.e., k-means and NSA. User-defined centers
for all clusters were needed for k-means; however, these were not a requirement for the NSA
algorithm. The R? values of the NSA algorithm were compared among the three different fields
(Figure 3.11). The overall OF showed that all of the clusters reached maximum R? values close to
0.6 and up to 0.7. In the three defined k-means clusters (k = 5, k = 15, and k = 25), the R? of the
RB field was higher: 0.78, 0.80, and 0.84 respectively (Figure 3.12). Also, R? (k = 5) was relatively
high in k-means clustering process because of the fragmentation of clusters throughout the field,
while NSA clusters were always contiguous (i.e., not broken into parts). The R? of the k-means
cluster compared to that of the NSA was higher in most of the fields and was approximately 0.80.
The R? values were comparable when the isolated/boundary pixels in each k-means cluster were
disjointed from the main cluster and created spatially contiguous zones. The k-means cluster map
consisted of groups or pixels with isolated boundaries in various parts of the WH field (Figure

3.7b), whereas the NSA algorithm counted these as different groups and reduced the zone
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fragmentation (Figure 3.8a). In the case of the user-defined cluster (k = 25), the k-means cluster
maps of WH, LD, and RB fields generated 36, 34, and 38 scattered zones respectively (Appendix
B), whereas the NSA maps created approximately 25 spatially contiguous clusters for each of the
three fields (Figure 3.12).
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Figure 3.12 Comparison of R? value between k-means and Neighborhood Search Analyst (NSA) clustering.
The abscissa (SCZ) shows the number of spatially contiguous zones created when k = 5, k = 15, and k =
25.

3.4 Conclusions

The high-density and multivariate data clustering approach provided an optimal number of
zones for three agricultural fields in Ontario, Canada. The preprocessing and variable selection
steps common to all clustering techniques are imperative for providing a well-defined zonal
boundary for developing management zones. Compared to other data clustering algorithms, NSA
has a unique capability for zone separation, which allows one to produce an optimum number of
zones and spatially contiguous clusters during multivariate classification. Moreover, an improved
version of this software was tested and proved to be capable of handling a significant number of

variables and data layers for delineating the optimum number of zones in a more robust way.
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The software was found to be reliable when integrating high-density field topography, RS,
and PSS data files. It had a fast processing time and could run on any platform with open source
python modules. The robust zone delineation process and georeferenced thematic maps are useful
for variable rate crop management technologies and for other management purposes. However, in
order to optimize the field management strategies and verify management input across each zone,
significant differences in the crop response would be an important parameter. Multi-sensor data
fusion, advanced data filtering procedures, and the web application of the NSA could be
implemented to facilitate the appropriate site-specific agronomic and environmental decisions in

many regions.

The zonal maps will be useful for further agronomic model calibration using targeted soil
sampling. Field data, for example, crop yield and lab-measured soil properties, could be used to

validate the georeferenced clusters and management zones created.
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Connecting Text to Chapter 4

Chapter 4 is related to the second objective as listed in Chapter 1 as well as providing a rationale
for using proximal soil sensing to estimate soil nutrients as discussed in Chapter 2. In the previous
chapter, the optimization of various sensor data characterization was assessed for site-specific field
management. It was shown that successful optimization of zonal variations could be determined
by integrating PSS and RS density measurements. The findings demonstrated the improvement of
the NSA hierarchical method in producing the optimum number of homogeneous zones compared
to traditional clustering methods for field characterization. In Chapter 4, densely measured PSS
data will be evaluated for field characterization, and it will be shown to optimize the efficiency of
soil prediction. The spatial data clustering algorithm is evaluated as a calibration sampling design
tool to investigate the effectiveness of the prediction model for estimating multiple soil properties.
As most PSS systems do not directly measure soil nutrients, they require a further calibration
procedure to relate sensing measurements to estimate multiple soil properties. Therefore, an
evaluation of lab-based soil sample analysis is performed for assessing data quality and prediction
efficiency. Then, the prediction results are validated through the reported error of estimation with

North American lab-based results for improving the quality of the prediction.

Initial outcomes were reported and published at a professional society meeting, conference
proceedings and a journal:
1. Ji, W., Adamchuk, V., Lauzon, S., Su, Y., Saifuzzaman, M., & Huang, H. (2017). Pre-
processing of on-the-go mapping data. In The Book of Abstracts for Pedometrics 2017
Conference, 26 June - 1 July 2017 (p. 113). Wageningen, the Netherlands.

2. Saifuzzaman, M., Adamchuk, V., Biswas, A. & Dutilleul, P. R. L. (2019). Soil Prediction
using High-Density Data for Understanding Field Variability and Crop Management. In
Abstracts from Annual Meeting of the Association of American Geographers, April 3 - 7
2019. Washington DC, USA: (CD publication).

3. Saifuzzaman, M., Adamchuk, V., Biswas, A., and Rabe, N. (2020). High-density Proximal
Soil Sensing Data and Topographic Derivatives to Characterize Field Variability.

Biosystems Engineering - Elsevier (In preparation).
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Chapter 4: High-density Proximal Soil Sensing Data and Topographic
Derivatives to Characterize Field Variability

Md Saifuzzaman, Viacheslav Adamchuk, Asim Biswas, and Nicole Rabe

Abstract

Proximal soil sensing platforms can provide high-density yet affordable sensor data to
describe agricultural field variability. The availability of such data, along with recent advances in
analysis methods, allows for the optimization of model errors and a determination of their spatial
variability. Most current sensors measure field parameters indirectly, rather than directly linking
them to agronomic properties relevant to crop growth. Uncertainty analysis for predicting soil
properties is an emerging challenge in precision agricultural practice. High-density soil sensor data
and their capacity to contribute to the prediction of soil properties was investigated. An assessment
of model accuracy was made by comparing model outputs to validation data points. High-accuracy
topography and apparent soil electrical conductivity (ECa) mapped with either DUALEM-21S or
RTK GNSS sensors were used to characterize field-scale soil variability at 13 field sites in Ontario.
Lab analyses of six soil properties [pH; buffer pH (BpH); Soil Organic Matter (SOM); Phosphorus
(P); Potassium (K); and Cation Exchange Capacity (CEC)] were undertaken to characterize soil
variability across the fields. DUALEM-21S sensor variables were co-linear to one another. The
topographic variables of slope and topographic wetness index, along with the remainder of the
sensor variables, were key inputs to the prediction model. High Pearson’s correlation coefficients
(r > 0.60) indicated strong correlations between sensor variables and field-measured soil
properties, topographic parameters and shallow EC, (PRP1: 0 — 0.5 m) sensor variables, allowing
effective predictions of several chemical properties (i.e., SOM, P, and CEC) at different locations.
Among the 13 agricultural fields, two fields presented the best-structured data, resulting in the
lowest prediction errors. Drawing on topographic variables provided promising predictions of field
SOM and CEC. This highlights the powerful potential of proximal soil sensing technologies to
define the site-specific crop production environment in terms of terrain and physical
characterization of the soil. The integration of conceptually different sensors allows for better
prediction of certain soil properties than a single measurement approach.

Keywords: Proximal soil sensing, Topographic derivatives, Soil properties, Error estimation,
validation.
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4.1 Introduction

In this age of precision farming, crop scientists draw upon densely measured surface and
subsurface information to assess soil distribution patterns and crop nutritional requirements
(Adamchuk et al., 2004; Lick et al., 2009; Alchanatis and Cohen, 2013; Pierpaoli et al., 2013).
To achieve site-specific management across a landscape, they also consider the local soil-crop
relationship and its variability. However, when determining the most economical local fertilization
needs, the high cost of laboratory soil analysis limits the conventional means of characterizing
variability (Huang et al., 2014). To fulfill current demand, recent agricultural technologies have
proven effective at collecting high-density soil information (Friedman, 2005; Viscarra Rossel et
al., 2011; Walker et al., 2017) by drawing upon remote and proximal soil sensing (PSS)
technologies (Alchanatis and Cohen, 2013; Viscarra Rossel and Adamchuk, 2013; Aldabaa et al.,
2015). With high-density data, new PSS technologies have facilitated the delineation of the spatial
distribution of soil edaphic properties across agricultural fields in North America (Adamchuk and
Tremblay, 2017). Long processing times for collected soil samples and concerns regarding local-
scale precision have led to large grain producers relying on spatial and temporal surface and sub-

surface soil sensor information (Zhang et al., 2002; Kerry et al., 2017).

Mounted on a range of sensing platforms, various proximal soil sensing technologies are
being developed to provide high-density, yet affordable, data, providing a detailed representation
of field heterogeneity. In the past few decades, passive and active PSS systems have contributed
to our understanding of the soil-topography relationship and assessed spatial variability for
precision farming (Brown, 2006; Rodrigues et al., 2015; Neely et al., 2016; Hutengs et al., 2019).
Data from geoelectrical and electromagnetic sensors are widely used for identifying soil dielectric
properties and geospatial variability (Adamchuk and Viscarra Rossel, 2010; Singh et al., 2016;
Watson et al., 2017). In many regions in Canada, electromagnetic-energy-enabled on-the-go PSS
sensors (e.g., DUALEM-21S, EM-38, etc.) have served to inform soil management practices under
precision farming. However, most sensors document changes in parameters that indirectly, rather
than directly, affect agronomic indicators of the crop growing environment (Adamchuk et al.,
2005; Vitharana et al., 2008). Corwin and Lesch (2005) and Friedman (2005) showed that the
precise locations and the depths of apparent electrical conductivity (ECa) measurements are highly
correlated to top- and sub-soil physical properties (e.g., depth of clay layer, soil salinity, and water
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content). However, the EC, data collected from variable depths is required to further process site-
specific depth exploration before linking the measurements to soil constituents (Saey et al., 2009;
Sun et al., 2011; Stockmann et al., 2017; Zare et al., 2018; Nocco et al., 2019).

High-density data is a necessary element of digital soil mapping and for making agro-
economic decisions (McBratney et al., 2003). Widely implemented on a single platform, Real-
time kinematic (RTK) global navigation satellite systems (GNSS) are combined with other sensors
to construct dense georeferenced maps of surface topography. The digital terrain model from the
georeferenced points serve as a predictor of topographic variables in predicting soil attributes
(Bishop and Minasny, 2006). Many derivatives [e.g., Topographic wetness index (TWI); slope,
aspect, etc.] from the terrain model are used in assessing topographic diversity, water movement,
and water holding capacity as they relate to crop growth (Odeha et al., 1994; Dematté et al., 2006;
Miller et al., 2015). Along with the topographic variables, dense ECa measurements can also
predict the presence and states of primary and secondary soil nutrients (Taylor et al., 2003;
Adamchuk and Viscarra Rossel, 2011; Dao, 2017). The georeferenced locations, lab-measured soil
properties, and other corresponding sensor measurements can then be used to make management

decisions for agricultural fields.

Geospatial and geostatistical analyses of different sensor variables and predictive
approaches are key to developing management tools employed in precision farming (Adamchuk
and Viscarra Rossel, 2010; Hengl et al., 2017). Using dense georeferenced measurements to
achieve a precise agricultural management solution involves data processing tools, approaches and
models. Sun et al. (2011) and Viscarra Rossel et al. (2011) found that using a variable data
structure for different PSS measurements improved the accuracy of prediction for soil properties,
thereby, providing additional information for thematic mapping. The relationship among different
available sensor variables are important in the data mining and decision-making processes.
Multivariate statistical methods (e.g., correlation and regression, principal component analysis,
and semi-variograms) are commonly used for data preprocessing and structure analysis
(McBratney et al., 2000; Cérdoba et al., 2013). Accordingly, multivariate regression analysis has
become a popular approach for soil characterization and the prediction of macro- or micro-

nutrients.
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Uncertainty analysis of the prediction model is an emerging challenge in precision soil
mapping (Bishop and Minasny, 2006; Viscarra Rossel et al., 2016; Duda et al., 2017). To quantify
model accuracy, various statistical tests are performed, including comparisons of mean squared
error (MSE) values relative to the validation points. In previous studies, model sensitivity and
errors were reported by different methods and minimized through different procedures (Oliver,
2010; Sudduth et al., 2013). In the present study, the ratio of the standard error (SE) of prediction
to the standard deviation (STD) of the sample serves to assess the model’s performance. Moreover,
to explain the proportion of variations in the regression line of the estimates, the adjusted
coefficient of determination (adjusted R?) is also reported. When the propagated SE of the estimate
is optimum compared to the sample SD, the models are recommended for thematic mapping and
soil management in precision agriculture (Adamchuk and Viscarra Rossel, 2011; Manasny and
McBratney, 2013; Panayi et al., 2017). The results must be validated with lab-based
measurements. Recent developments in error modeling requirements may integrate high-density
data points from various sensors to identify comprehensive soil nutrients and their distribution
patterns on various geospatial scales (Zhou et al., 2016; Castrignano et al., 2017; Minasny and
McBratney, 2016). In terms of data optimization, the present study provides error-handling

methods for PSS measurements.

In an overall effort to efficiently interpret the results from high-density data, the main goal
of this research was to assess soil sensor data and its predictive capacity by evaluating various soil
mapping techniques for various soil properties. This study was designed to assess proximal soil
sensing-based predictability of physical and chemical soil attributes for a series of Ontario fields.
The prediction results were validated by comparing them to the average values of North American
lab-based soil measurements. This research takes a further step toward achieving a better
understanding of both the advantages and limitations of contemporary proximal soil sensing

solutions.

4.2 Materials and methods
4.2.1 Experimental fields

Thirteen production fields across southeastern Ontario, Canada, differing in size and agro-

climatic conditions, were selected for this study. They had their topography and soil mapped by
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one of two popular commercial proximal soil sensing services (RTK GNSS or DUALEM-21S);
they were then sampled manually at locations based on a neighbourhood search analyst clustering
of the proximal-sensing outputs and tested in the laboratory (Table 4.1 & Figure 4.1). According
to US soil taxonomy classes, the soil orders of the region are Alfisols and Spodosols (Luvisolic
and Brunisolic, respectively, in Canadian soil order). Soil textural classes varied from sandy to
clay loam. Based on soil survey data and a soil map of Ontario, KM and RL fields were in a typical
Grenville soil association, a strongly calcareous and sandy loam texture with low moisture
retention (OMAFRA, 2016). Among the seven Canada Land Inventory (CLI) land classes, all
study sites were highly capable (Class 1 to 3) of supporting agriculture and land use activities.
Mostly located in the northern and southwestern parts of the Lake Ontario watershed and
influenced by the surrounding Great Lakes, the fields were under a humid continental climate.
Overall, the fields were well managed in terms of runoff and drainage conditions (according to
soil texture) for cropping. Elevation varied from a few meters to a hundred meters between the
fields. In addition to the differences in elevation and drainage conditions, the study sites had good
crop production histories, with corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] as the
main crops (Table 4.1).

Table 4.1 Characteristics of thirteen agricultural fields in Ontario, Canada, including their area, number of
soil samples, soil type, natural drainage conditions and primary crops.

Field ID  Area (ha) Number of samples  Soil 'I;exture Drainage condition Target crops™
Class

F25 26 26 Clay loam Good Wheat

WH 40 99 Loam Very good Soybean/Corn

KM 30 119 Silty loam Poor Soybean/Corn

LP 34 72 Clay loam Good Soybean

LD 21 62 Sandy loam Very good Corn/Wheat

TE 39 97 Sandy loam Very good Soybean

SM 28 74 Clay loam Good Soybean

NX 48 74 Clay Poor Corn/Soybean

R50 51 51 Clay loam Good Wheat

RB 75 72 Fine Sandy loam  Very good Soybean/Corn

RL 47 49 Sandy loam Very good Corn

ST 39 76 Clay Poor Corn/Soybean

VN 20 51 Silty loam Poor Wheat/Soybean

*Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) 2016 and 2017.
"OMAFRA 2017 and Grain Farmers Ontario (GFO)
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Figure 4.1 Location of the thirteen agricultural fields under study in Ontario, Canada.

4.2.2 Soil sensing by proximal soil sensors

A vehicle equipped with two types of proximal soil sensors (RTK GNSS and DUALEM-215)
was used for topographic and soil mapping between 2014 and 2017. The data from both sensors
were logged using custom DUALEM_DAQ data acquisition software. Despite diverse data
sources and a lack of standardization, generic rules were developed in terms of data format and
preprocessing steps to assess the PSS data sensitivity to bare soil properties (Ji el al., 2017).
Timestamps, locations, speed of the sensor vehicle, the distance between data points, and other
variable measurements were evaluated in the preprocessing steps. Various procedures were
considered: (i) median filtering of neighboring measurements, and (ii) removing outliers (start-
and end-pass delays, over speed limits, measurements outside the acceptable limit). Potential
outliers and null values of the PSS measurements were identified in this step, and about 12% of
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the PSS data was removed. Figure 4.2 shows the methodological development of this research.
Once the sensor data were collected from the fields, soil samples were collected for laboratory
analysis based on a field variability map derived from the sensor response. Various statistical
analyses were performed on the sensor data and laboratory results. Finally, the variability analysis
of different laboratory results and their predictive capability using field sensor data were assessed
in comparison with the North American Proficiency Testing (NAPT) lab results.
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Figure 4.2 Flow chart shows the research methods towards the error evaluation and validation.
4.2.2.1 Soil sensing — ECa measurements

Apparent soil electrical conductivity (EC.) was obtained using an electromagnetic
induction (DUALEM-21S instrument Inc., Milton, ON, Canada) method. The instrument (with
two-pairs of electromagnetic receivers: horizontal co-planar geometry-HCP and perpendicular
geometry-PRP) was used to collect soil apparent electrical conductivity (ECa) at four different
depths: HCP1 - 0-1.6 m (EC2'%6), PRP1 — 0-0.5 m (EC2%%), HCP2 - 0-3.2 m (EC232), and PRP2
—0-1.0m (EC210) (Table 4.2 and 4.3). Descriptive statistics [Minimum (Min); median; Maximum
(Max); Standard deviation (STD); and mean] were calculated for data assessment. Due to its high
STD and Max values (Table 4.2 and 4.3), the ST field was not considered for further analysis.
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Generally, high collinearity was found among EC. variables, although these were measured for
different depths (Ji et al., 2019).

Table 4.2 DUALEM-21S sensor (HCP1 & PRP1) data collected from 13 agriculture fields located in
Ontario, Canada.

Field # of HCP1(ECY1©) PRP1 (ECY0%)

ID measurements  Min Median Max STD Mean Min Median Max STD Mean
F25 2614 7.72 20.43 61.60 3.62 20.70 4.04 13.47 4780 3.13 13.59
WH 20129 4.00 12.28 25.28 1.69 1251 4.68 7.92 22.24 1.60 8.15
KM 11427 16.82 27.90 38.96 227 28.09 984 15.84 3458 2.70 16.10

LP 7373 12.04 16.78 29.94 234 1729 7.28 11.62 24.82 240 1217

LD 6931 2.58 6.90 16.08 1.55 6.96 0.72 4.44 14.12 1.38 455

TE 11111 4.64 9.22 51.14 394 1005 294 6.12 18.48 2.14 6.61
SM 7473 8.90 20.22 30.66 285 20.45 7.88 15.60 27.36 315 15.82
NX 4472 1.77 24.48 47.71 520 2353 157 16.36 28.30 4.32 15.67
R50 4659 11.70 19.63 37.21 3.05 19.87 5.10 11.74 25.00 278 1191

RB 18524 1.70 9.00 17.98 2.81 9.13 0.00 3.53 16.80 2.86 4.40

RL 5898 3.20 7.66 43.02 2.96 8.35 0.02 2.06 3052 243 2.90

ST 9337 1.00 26.62 110.28 13.06 26.27 1.28 16.68 107.84 956 17.62
VN 5073 8.56 34.60 65.82 9.26 3297 5.02 23.64 43.36 6.30 22.84

Table 4.3 DUALEM-21S sensor (HCP2 & PRP2) data was collected from 13 agriculture fields located in
Ontario, Canada.

Field # of HCP2 (ECY32) PRP2 (ECY10)

ID measurements  Min Median Max STD Mean Min Median Max STD Mean
F25 2614 13.42 19.37 54.60 3.14 19.75 7.92 17.96 59.00 3.66 18.20
WH 20129 7.42 10.46 24.42 1.79 10.83 5.42 9.10 23.92 1.75 9.37
KM 11427 24.58 29.66 39.22 151 29.67 17.30 23.98 38.96 279 24.21

LP 7373 6.92 13.00 25.84 1.87 13.30 8.88 14.22 29.52 252 14.80

LD 6931 0.50 4.44 14.44 1.85 4.61 1.08 4.68 14.60 1.50 4,75

TE 11111 2.02 5.56 87.54 6.78 6.86 2.33 6.56 19.54 2.27 7.09
SM 7473 6.12 14.80 23.04 2.20 15.05 8.28 17.68 28.86 3.05 17.87
NX 4472 1.75 22.80 57.80 573 21.91 1.65 20.96 41.75 5.11 20.25
R50 4659 11.00 18.80 55.98 3.33 19.27 8.40 16.32 31.14 3.07 16.50

RB 18524 2.50 8.45 14.99 2.65 8.22 0.14 5.10 15.00 2.96 5.64

RL 5898 3.68 8.20 27.18 2.81 8.41 1.40 4.00 42.46 3.09 4.85

ST 9337 1.48 26.66 102.22 1434 25.29 2.02 23.18 122.42 1249 23.61
VN 5073 4.80 31.36 7258 10.20 29.68 5.88 31.74 62.04 8.88 30.19
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4.2.2.2 Soil survey — RTK topographic mapping

Topographic data for the agricultural fields were collected using a Trimble Real-Time
Kinematic (Trimble Inc., Sunnyvale, California, USA) operating on a Global Navigation Satellite

System (Table 4.4). Maximum individual field elevations ranged from 40 m to 380 m. Slope and

. . t . . .. . .
aspect ratio [sm%] ranges were derived from maximum/minimum elevations, while the

topographic wetness index (TWI) was derived from a digital elevation model (DEM) of the study
sites. Besides ArcGIS v10.5 (ESRI, Redlands, California, USA) software used in the geospatial
analysis of topographic variables, the SAGA GIS system v. 6.3.0 (Departments of Physical
Geography, Hamburg and Gottingen, Germany) software tool was used for calculating TWI.
Among the twelve agricultural fields, F25, KM, NX, R50, ST, and VN had negligible elevation
and gradient differences.

Table 4.4 Summary statistics of elevation from RTK in 13 agricultural fields located in Ontario, Canada.

Field # of measurements Elevation (m)

ID Min Median Max STD Mean
F25 12778 336.01  337.29 338.64 0.61 337.35
WH 28493 372.06 378.07 38454 233 37821
KM 11662 36.71 38.57 39.11 0.16 38.56
LP 7559 263.88 269.72 27385 1.92 26941
LD 7110 332,70 34486 354.17 5.76 343.95
TE 17628 298.49  307.50 31187 3.05 307.02
SM 7603 263.69  266.58 273.67 1.60 266.76
NX 4375 63.28 64.01 68.29  0.60 64.20
R50 18326  330.24  331.58 33324 0.65 33148
RB 20813 358.41  367.67 37216 3.63 366.64
RL 8230 185.56 19470 222.69 3.31 194.47
ST 9429 57.06 59.71 66.74  2.09 60.18
VN 5181 31.80 38.40 46.70 2.21 38.50

4.2.3 Soil sampling and laboratory analysis

Based on the RTK and DUALEM-21S sensor measurements in the agricultural fields, soil
samples were collected for laboratory analysis. The Neighborhood search analyst (NSA) data
clustering tool developed in previous study (See Chapter 3) which implemented an optimization

of calibration sample placement was applied to locate soil sampling points for developing site-
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specific soil property maps (Saifuzzaman et al., 2019). Based on the maximum field variability
analyzed from the previously collected PSS measurements, the NSA algorithm determined cluster
centers and the optimum number of sample sizes given the field’s acreage. 1-acre grid-based
sampling strategy was also applied in some fields. Based on the two different methods, sampling
density varied across the study sites (Table 4.1). Sampling points were positioned in the fields
using a Garmin handheld wide area augmentation system-corrected GPS and georeferenced. Soil
samples were collected from the sites at the beginning of the cropping seasons. The lab-measured
soil samples were processed, and specific parameters selected for the prediction model. In this
study, the six major lab-measured soil properties targeted were pH, buffer pH (BpH), Soil Organic
Matter (SOM), plant available Phosphorus (P) and Potassium (K), and Cation Exchange Capacity
(CEC). BpH data was important for the soil analysis and only available for fields RL, KM, LD,
NX, and VN. Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) accredited soil
test methods were used for analyzing all field samples: pH — 1:2 saturated paste; BpH — SMP
Buffer solution; OM% - Walkley-Black (0-8%), Loss on Ignition (>8%); P — Olsen sodium bicarb;
K — ammonium acetate extract; and CEC - calculated by converting soil test K/Mg/Ca to
milliequivalents. Those major soil properties determine fertilizer and lime requirements for site-

specific soil and crops.

All predictor variables were independently assessed based on the characteristic of the
variable (Table 4.5), then prepared for spatial interpolation and soil prediction. Topographic
variables were assessed based on the terrain attributes collected from RTK GNSS. Four ECa

variables were assessed with general statistical methods.
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Table 4.5 The description of the sensor variables and the measured soil properties.

Sources (Sensor/Lab) Target Covariables Characteristics of the Variable

Elevation (m)
Topographic wetness index -TWI

RTK GNSS Terrain attributes Slope (%)
Aspect ratio
HCP1 (0-1.6 m)
. . HCP2 (0-3.2 m)
_ 1
DUALEM-21S Soil ECa (mS m™) PRP1 (0-0.5 m)
PRP (0-1.0 m)
pH Oto14
Soil sample BpH Oto 14
properties: (Lab SOM Soil organic matter (% w/w)
analysis) P Soil Phosphorus (ppm)
K Soil Potassium (ppm)
CEC Cation exchange capacity (meq hg™)

4.2.4 Spatial interpolation and point data extraction

Interpolation using spatial autocorrelation was performed to delineate the variability of
point-based PSS data and spatial characteristics (Garcia-Tomillo et al., 2016). Ordinary Kriging
interpolation maps were generated from topographic (Figure 4.3) and EC. measurements in ESRI
ArcGIS software (v10.5). Various geospatial (e.g., rectification, point data extraction, etc.) tools
were used for data processing and further analysis. Multiple kriged maps delivered spatial
covariates associated with sampling points in a data file (Table 4.5). Finally, the text data file
containing multiple layers of sensor variables and soil measurements of each study site was used

for statistical analysis and error mapping in an open source data analysis platform (Python Pandas).
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Figure 4.3 The interpolated elevation (in meters) maps, showing field variability in the twelve study sites.
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4.2.5 Correlation and regression analysis

Multicollinearity was used to assess the spatial data correlation among the predictor
variables (sensor variables and sensor-derived variables). High collinearity was found mostly
among EC, variables. Slope and TWI1 were not correlated with the remaining variables. Given the
relationship between sensor data and soil measurements, the Pearson’s correlation (r) was assessed

as.
- TSI — DG y)
(EEIG - 02 - (21 - 2

where, n is the total number of measurements, x; and y; are the i individual values of variables

1)

x and y, and x andy are the means of variables x and y, where the x values represent soil
measurements, and y values are derived from sensor data. To further evaluate the linear
relationship and prediction error between sensor measurements and measured soil variability, the
ordinary least square (OLS) was employed. Excel’s Regression tool (Data Analysis in Microsoft

Excel 2016) was used for the regression analysis.

4.2.6 Error estimation in model prediction

To determine the prediction error, statistical parameters for the samples’ sensor variables
and their associated soil parameter estimates were derived. The error was evaluated by the s of the
sample measurements and an estimation of the standard error of the mean (s;). The ratio of the s;
in predicting the s of the samples was assessed and served in scaling the level of error for the soil
prediction model. Moreover, the coefficient of determination (adjusted R?) was used to explain the
proportion of variation in the estimates and to evaluate the model’s predictive performance. When
the difference of s; of the estimate and the sample standard deviation (s) is smaller, and the
adjusted R? values are considerably greater among the study sites, the data can make accurate

predictions, and therefore, can be recommended.

For validation, the reported errors were compared to the soil analysis results published
online by the North American Proficiency Testing (NAPT) program. The median absolute
deviation (MAD) of the NAPT results contributes to the continuous improvement and heightened
precision of the analytical results for agricultural soils throughout North America (NAPT, 2019).
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In the present study, a reference line (value) was calculated from the MAD of the NAPT results
by averaging the values of the last ten years (2009 to 2019). When the error estimation (s and s;)
is below the average line of the NAPT values among the study sites, the data can make relatively

precise predictions.

4.3 Results
4.3.1 Descriptive statistics

High-density EC. measurements (at four different depths: HCP1, HCP2, PRP1, and PRP2)
were assessed through descriptive statistics (Table 4.2 and 4.3). Across the twelve sites, the range
of ECa, 0.02 < ECY°° < 47.80, 1.70 < ECY1® < 65.82, 0.14 < ECY'° < 62.04, and 0.50 <
EC232 < 87.54, were determined and showed large variability. In terms of the EC. sensor
measurements, spatially close (Figure 4.1) and topographically (Table 4.4) similar fields WH, LD,
and RB showed less variability than other fields. In contrast, fields F25, TE, and VN situated in
different topographic and agro-ecological regions, ECa showed high variability. Topographic
parameters (i.e., TWI, Slope and Aspect ratio) were extracted from the normalized elevation

parameter and varied greatly in LD, RL and VN fields.

Soil variability was assessed from the results of lab analyses of field samples for pH, BpH,
SOM, P, K, and CEC (Figure 4.4). The box plot showed how widely spread the data range is in
the measurements (using Min, Max, Median, lower and upper quantiles) and compared the data
distributions among the fields. Median values were spread widely for pH, K, and CEC
measurements in the twelve fields. Among the 12 agriculture fields, the average pH level was 7.08.
BpH measurements in the five fields varied between 6.0 and 7.0. SOM varied between 1% and
13.10% and the most variation was found in F25 and VN fields. The range between maximum and
minimum values of P, K, and CEC measurements were also large for the RL field. Standard
deviation (STD) for K sample measurements varied greatly from 15.67 ppm to 55.87 ppm. The
measured P values in the twelve agricultural fields varied from 6.0 ppm to 134.0 ppm (STD from

3.54 ppm to 24.63 ppm, values were not appeared in Figure 4.4[d]).
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Figure 4.4 Box plot shows summary statistics for measured soil properties — pH, Buffer pH (BpH), Soil
Organic Matter (SOM), Phosphorus (P), Potassium (K), Cation Exchange Capacity (CEC) — in the
agricultural fields [a] to [f].
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4.3.2 Correlation analysis and predictive properties

The level of correlation between sensor variables and soil properties was analyzed to
understand any linear relationships existing among the variables (Figure 4.5). The values of BpH
were considerably less correlated with the sensor measurements for the five agricultural fields. For
the LD field, pH correlated positively with topographic variables (i.e., elevation slope), but no
other field had a systematic correlation between EC. variables and pH. The SOM was negatively
correlated with elevation in four fields (i.e., F25, LP, R50, RB), but positively with EC4 in two
fields (i.e., RB, RL). Accordingly, SOM can be predicted using the elevation parameters. In two
fields (LP and LD) soil phosphorus (P) correlated with shallow (0-1.0 m) EC. (PRP1 and PRP2)
values. P is poorly correlated with EC4 but moderately correlated with topographic parameters. In
that case, topographic parameters can also be potentially useful in predicting soil phosphorus. In
four agricultural fields (KM, LP, SM, and VN), soil K correlated positively with all EC, variables,
but most strongly (r > 0.70) with shallow (0-0.5 m) ECa (PRP 1). Therefore, shallow EC,
parameters provided a good predictor for soil K. In four fields (i.e., KM, NX, RL, VN), CEC
correlated positively with EC, variables and showed a particularly strong positive correlation (r =
>0.70) with shallow ECa (PRP1 and PRP2). For fields R50, F25, and NX, the CEC correlated
negatively (r = -0.49, -0.52, and -0.74), respectively) with elevation; thus, both topographic and
ECa variables could be useful for CEC prediction.

The predictive capability of the sensor measurements was assessed using regression
parameters. The coefficient of determination (Adjusted R?) and standard error of estimate (SE)
were reported to the predictive efficiency of the EC, and topographic auxiliary variables to the
various soil properties. Prediction efficiency varied greatly across the twelve study sites. For K
prediction, adjusted R? (RZ;;) ranged from 0.01 to 0.64 for all fields. R;,; was above 0.60 for
SOM, K, and CEC (in one field across the Ontario fields). Highest prediction efficiency was found
for pH (R?=0.54, SE = 0.25 for R50 field), whereas the maximum P prediction value was achieved

for RL field (R? = 0.42). SE of estimates compared to the R? are discussed in later sections.
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Figure 4.5 Correlation coefficient | of predictor variables of different soil properties in 12 study sites. The
intensity of the green/red color rises with a rise in the negative/positive magnitude of the correlation.

4.3.3 Assessment of prediction error for soil properties in Ontario

The removal of systematic sensor errors produced by the sensors were minimized in the
data preprocessing steps (See section 4.2.2). The following statistical parameters (i.e., STD, SE,
and R?) of the samples were reported for the prediction model and error optimization (Figure 4.6).
A reference line is added to Figure 4.6 from the median absolute deviation (MAD) of the average
reported NAPT results. The reference values of pH and BpH are 0.19. P, K, SOM and CEC values
are 18.15 ppm, 29.48 ppm, 1.5% and 5.05 meq hg™, respectively. All the calculated reference
values, except pH and K, are higher than the average sensor prediction error in all fields. In this
study, the least prediction error (SE) than the STD along with the higher coefficient of
determination provides the best prediction model. The less variation (between STD and SE) of the
sample estimation that falls under the reference line (MAD of NAPT) could represent very good

quality data for building a precise prediction model.
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Figure 4.6 Comparison between the standard error (SE) of estimate and standard deviation (STD) plotted
against to the adjusted R-sq.(R?) for predicting different soil properties in the 12 agricultural fields [a] to

[f]
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The s and s; of the samples were calculated based on the soil measurements. The
prediction error varied according to topographic derivates and DUALEM sensor measurements.
In this study, the best prediction model was defined as that generating the least variation between
the s and s;. Model error (difference between s and s;) along with the R? adjusted are reported
for regional predictions of the targeted six soil properties (Figure 4.6). The data generating less
errors (with less variation in estimation) and higher R? values among the twelve fields are
recommended for predicting specific soil properties in Ontario. Lesser errors along with a greater
R? (adjusted) were obtained for the prediction of pH in three fields (i.e., LD, VN, and F25); BpH
in the LD field (among five available sites); SOM in four fields (R50, RB, TE, RL); P in five fields
(TE, LD, R50, SM, and LP), K in two fields (VN and KM), and CEC in four fields (R50, KM,
VN, F25). Among the 12 agricultural fields in Ontario, the VN and R50 fields showed the least

errors in soil prediction.

NAPT lab results were published from different laboratory sample analysis across North
America and considered as a reference value for all laboratories in Ontario. In Figure 4.6, the
average value of the NAPT lab results was considered as a validation line of the soil measurements
value for the study sites. When the error estimation (s and s;) is below the average line of the
NAPT values among the study sites, the data can be relied on to make relatively precise
predictions, and can be recommended for further soil exploration. With the minimum error

consideration, SOM, P, and CEC were predicted often among the Ontario fields.

6.5 Discussion

The indirect measurements with soil sensors such as RTK GNSS and DUALEM-21S are
readily available and provide cost-effective data collection platforms for many provinces in
Canada. The data collection environment and our experimental fields were very different in terms
of topographic and soil characteristics, and productivity. Preprocessing steps of the high-density
sensor data, as described in section 4.2.2, required the development of an optimal prediction model
for soil assessment. The descriptive statistics and their analytical results show high-density
measurements to be a key element for understanding field variability in terms of soil prediction
and mapping. Ji et al. (2019) found that the simultaneous measurement of the sensor variables and

their large range improved a model’s soil prediction capacity. High-density data provided useful
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information for making a local, or regional, scale prediction model for Ontario agricultural fields.
Topographic and EC, variables proved useful in predicting several soil properties, including SOM,
P, Kand CEC. Topographic derivatives along with elevation parameters in some cases provided
the data needed for making a quantitative prediction model. Among the topographic variables,
only the elevation parameter was suitable for SOM and CEC prediction models. Higher SOM
levels were generally found at lower elevations. Soil EC, measurements, especially for shallow
layers (0-1.0 m), were representative of in-field variability and provided useful information for
predicting P, K, and CEC. No systematic correlation was found for any sensor variable with
respect to pH or BpH. The better prediction capacity associated with sensor measurements could
be achieved through the above-mentioned procedures; however, they were maximized while the

data collection environments were similar (same temporal or topographic characteristics).

Previous research has shown that lab analysis of large numbers of sample sizes is
expensive; nevertheless, it provides a precise assessment of field variability. The present study
showed that high-density measurements also provide field variability information along with the
optimized samples for making a better prediction model. Among the six soil properties, the overall
prediction performance was about 60%. This would reduce the need for the high-density sampling.
In the present effort, data optimization using error plotting of several statistical parameters
performed better than a single statistical method. Simple correlation and regression techniques
were calibrated for high-density sensor measurements, providing better prediction accuracy (R? >
0.4 for 50% of the fields). The model error varied with topographic and DUALEM sensor
measurements as well as among study sites. However, the topographic derivatives combined with
the ECa measurements could assist in constructing a universal prediction model. The model
accuracy was compared and validated with the reference value of NAPT results. This comparison
protects the model from overfitting and is useful in planning further soil analyses in other study
sites. When the sensor prediction and lab measurement errors of the above-mentioned soil
properties provided values lower than the NAPT median absolute deviation results, these
recommendations could be used for a laboratory certification program in Ontario and in other
provinces. 80% of the soil measurement errors (i.e., SOM, P, and CEC) of the fields were below
the NAPT results. Among the agricultural fields in Ontario, data from two sites (VN and R50)

showed the least errors in predicting all six soil properties.
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In this study, factory calibrated DUALEM-21S sensors were used for ECa measurements
in Ontario fields. Huang et al. (2018) assessed different PSS instruments for predicting physical
and chemical properties. They found that each option could accurately delineate differences in soil
physical properties but provided less accurate predictions with regards to phosphorus and
potassium content at their site. For the prediction model, we also used a wide range of laboratory
soil analysis results from across Ontario, where they followed OMAFRA accredited soil test
methods. Our results show SOM, P, and CEC are highly predictable using sensor measurements
in the twelve Ontario fields. Among the six properties, SOM and CEC are predicted predominantly
using selected sensor measurements (mainly elevation and shallow EC.). Topographic parameters
provide promising results for predicting SOM and CEC for some fields. Other topographic
parameters can be used for validation purposes in other fields where elevation ranges are similar
in the same agro-ecological regions. Overall, the high-density shallow EC. measurements were
key to understanding field variability and represented a substantial input to the prediction model.
More BpH data available for the remaining fields and their accurate measurements would enhance
the error analysis and model development process in the future. The present research outcomes
also suggest strategies to integrate densely measured proximal soil sensing data with the results of
laboratory analysis of optimized soil samples, and other data resources. This research highlights
the need to develop new sensing technologies and deployment strategies to further increase the
accuracy of high-resolution thematic soil maps. Also, NSA field variability maps can be
incorporated for minimal soil sampling strategies. Then, the predictive results would be validated
in independent study sites and the methods could be assessed to accurately determine how to

compensate for accuracy.

4.5 Conclusions

This study optimized the modeling process by assessing proximal sensor (high-density
apparent electrical conductivity and topographic sensors) data and their prediction capability for
the determination of soil nutrients. Even though the study sites have vast elevation differences,
topographic derivatives provide promising results for predicting soil organic matter and CEC in
Ontario agricultural field soils. This is a general trend for Ontario fields. Shallow EC, also plays
an important role in understanding within-field variability. However, evidence of the applicability
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of tested proximal sensing technologies to address spatial variability of certain soil nutrients, such

as K, proved to be rather limited.

High-density PSS data plays an important role in soil assessment. Our findings indicate the
powerful potential of proximal soil sensing technologies to define the site-specific crop production
environments in terms of terrain and soil physical characteristics. The results of the present study
suggest that sensor data fusion for multiple soil measurements would be useful in optimizing soil
characterization and for improving soil thematic maps. The integration of conceptually different
sensors would allow for improved prediction of certain soil properties when compared to a single
type of measurement. This continuing research effort will explore additional measurement
capabilities that have not been released commercially that could potentially expand the

applicability of future proximal soil sensing tools.

Further research will validate and implement results through a set of case studies after
which the findings will be disseminated among the agricultural farming communities. The
integration of remote sensing and proximal soil sensing techniques could be beneficial to further
develop prediction models and thematic maps. This study determined that the protocol of model
optimization may be used by commercial sensor users and agronomic service providers to improve
their data handling processes and to maximize the information value of the data they generate for
their customers. These soil variability and zonal maps can be used to implement variable rate
nitrogen fertilization, seeding density, organic fertilizer applications, or liming, thereby,
optimizing the use of agricultural inputs by crop producers, their consultants, and agribusiness
representatives. A scaled-up adoption of proximal soil sensing technologies would provide

advances in agriculture crop production and sustainable natural resource management.
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Connecting Text to Chapter 5

Chapter 5 is related to the third objective of this study as listed in Chapter 1. Furthermore, there was
the indication in Chapter 2 that there is a need for research on the use of sensor-fusion to quantify
field-scale soil nutrients. Previous chapters have shown that PSS sensor-based precise soil property
prediction requires validation with standard lab-measured values (by standard accredited methods).
For that, an integrated PSS platform was used as an example to demonstrate those prediction
strategies. In chapter 5, the sensor data combined from different platforms was further optimized in
a modeling technique for improvement of prediction quality. A decision-tree model was built with
optimized parameters to improve the prediction efficiency of various soil properties at the field scale.
The model performance was evaluated by regression prediction results and by observed parameters

at different stages.

Initial outcomes were reported and published in the non-refereed conference proceedings listed
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Chapter 5: Sensor-Fusion through Machine Learning for Field-Scale Thematic

Soil Mapping

Abstract

Sensor-based soil characterization is vital for field management and precision farming
practices. To predict and make decisions based on thematic soil properties, agricultural scientists
often use high-density proximal soil sensing (PSS) and remote sensing (RS) data. Along with
sensor datasets, a subset of soil sampling data can be used to predict soil nutrients in an agricultural
field. Accordingly, the present research was designed to develop a prediction framework for
sensor-fused data analysis. The potential of integrating proximal soil sensing data with remote
sensing imagery to describe field heterogeneity and produce thematic maps with the potential to
impose differentiated management decisions was explored. A decision tree-based model was
applied to determine soil variability for site-specific crop management. An agricultural field in
southern Ontario was selected and mapped using both remote sensing and PSS sensors. The Real-
Time Kinematic (RTK) elevation, topographic indices, apparent soil electrical conductivity (ECa),
and gamma radionuclide variables were processed, and the data structure evaluated based on
summary statistics. RapidEye (Planet Labs, San Francisco, CA, USA) satellite data, visible
(VIS)/near-infrared (NIR)/Red-edge (RE) spectrum at a spatial resolution of 5 m, were analyzed
to generate vegetation indices used in predictive models. Due to the need to minimize the missing
values and adjust discrete data points, a kriging method was used to develop topographic, ECa,,
and gamma-ray spectrometry-derived maps. To understand soil variability across the field,
georeferenced soil samples were collected and used to validate the model. Spectral vegetation
indices and other environmental variables derived from PSS and RS data served as model inputs.
Descriptive statistical analysis and correlation between sensor variables along with soil sample

data enhanced our understanding of spatial heterogeneity.

A random forest regression model with less user influence was designed, and the
algorithms were developed in an open-source platform. Model parameters were developed to
determine the number of important variables (mostly gamma and topographic variables) and
regression trees (optimum number of trees were between 50 and 150) in the training phase that led

to optimal model performance and scenario maps. A cross-validation score allowed the evaluation
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of the training dataset and improved the predictive accuracy. The coefficient of determination (R?)
was about 0.80 and explained maximum variability for predicting pH, K, and Zn. Higher relative
prediction errors were reported for SOM, Mn and Ca (R? = 0.55). Soil nutrient variability
determined using sensor-fused data and regression techniques could assist in constructing precise
prediction models for soil properties. This research may lead to the development of more accurate

thematic soil maps which could improve future site-specific precision farm management.

Keywords: Data integration; Geostatistical methods; Random Forest regression; Digital soil

modeling, Soil variability map.
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5.1 Introduction

Proximal soil sensors (gamma-ray spectrometry, apparent electrical conductivity, soil
spectroscopy, and yield monitors) and remote sensing sensors (high and low attitude) provide
information which facilitates digital soil mapping (DSM) and the characterization of soil
ecosystems at various scales (Adamchuk and Tremblay, 2017; Baldoncini et al., 2019; Grunwald
etal., 2015; Rouze el al., 2017). Given their individual capability to measure a wide variety of soil
profile responses and determine agronomic properties at different scales, remote sensing (RS) and
proximal soil sensor (PSS) systems are combined to contribute to site-specific crop and soil
management (Adamchuk and Viscarra Rossel, 2011; Grunwald et al., 2015; Sdderstréom et al.,
2016). Individual sensors are known to have their limitations and yet, their combined contributions
of environmental variables have been increasingly exploited to garner a precise understanding of
spatial and temporal heterogeneity (Rizzo et al., 2016). The density of information they provide
allows one to document fine-scale soil heterogeneity, which varies at different spatial scales due
to several agro-climatic and anthropogenic factors. An understanding of soil variability developed
from high-density sensor measurements along with spatio-temporal components, allows a precise
determination of physical, chemical and biological soil properties (Hengl et al., 2018). Thus, the
precise high-density soil maps of the crop growing environments developed from these data

represent a key component in local-scale management decisions.

High-density data integration, or sensor fusion, often incorporates multiple variables to
handle the soil environment’s spatial and seasonal variations, and to solve agricultural problems.
Multiple sources of PSS measurements and their combinations can provide information which
allows for the quantification of soil properties and affords a better understanding of an agricultural
field. In such efforts, there are several sensor-fusion taxonomies adopted in the DSM and decision-
making process (McBratney et al., 2003). Previous studies found that multiplatform data
integration outperforms single and integrated multiple variables (Castrignano et al., 2017; Meier
et al., 2018). Also, proximal soil sensing (PSS) and remote sensing (RS) sensor fusion provide
regional or large field-scale variability while PSS provides only field-scale variability in a DSM
(Poppiel et al., 2019). In this integration effort, Grunwald et al. (2015) found field sensor data
fused with remote sensing indices to correlate with lab-measured values for soil toxicity.

Moreover, they found that vegetation indices integrated with EC, variables could be used to
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delineate management zones, whereas other studies built a taxonomic classification using remote
VIS-NIR combined with single platform proximal sensor data (Grunwald et al., 2015). To obtain
precise results, lab-measured soil information combined with multispectral remote sensing
responses is garnering increasing attention in making field-scale soil nutrient predictions (Mulder
etal., 2011).

Due to constant changes in the quantity and nature of soil nutrients in an agricultural field,
precise soil and vegetation mapping using real, or near-real, time sensor data with multiple
environmental variables presents quite a challenge (Brown, 2006; Mahmood et al., 2012; Samuel-
Rosa et al., 2015). In the past decade, multivariate statistical modeling was widely applied to
evaluate single sensor variables and their relationships with the target properties (Malone et al.,
2016; Wadoux, 2019). Later, data fusion processes were employed to synchronize different
parameters at various scales and to handle their multiscale uncertainties in geographical space
(Grunwald, 2009; Heung et al., 2016; Ji et al., 2019). As a result, data mining algorithms coupled
with models were adopted for high-density data processing and for making relatively accurate
maps in agricultural research (Padarian et al., 2019; Rasaei and Bogaert, 2019). In the last decade,
different prediction frameworks have been proposed for sensor fused data analysis. The data fusion
model opens the possibility of integrating geostatistical models to handle many environmental
variables along with geospatial data analysis tools (Hengl et al., 2004; Grunwald, 2009; Piikki et
al., 2013, Grunwald et al., 2015). Mulla (2013) and Veum et al. (2017) proposed advanced sensor
fusion algorithms and model optimization for predicting soil nutrients and mapping fertility status
at the local level. Previous studies showed that an accurate map enhanced robust decision-making
and optimized temporal nitrogen management, organic matter amendments, and the management
of other topsoil properties for crop production (Grunwald et al., 2015). Accordingly, a model-
based analysis is proposed for accurate soil mapping which, in turn, leads to faster decision-making

processes.

A wide variety of fusion approaches have been applied to the assessment of field
variability, feature classes, and prediction (Grunwald 2009; Castrignano et al., 2017). Hierarchical
data models are employed to delineate different geospatial variables and map soil classes at the
field scale (Sommer et al.,, 2003). Likewise, supervised learning algorithms, along with
classification and regression tree (CART) approaches, represent powerful supervised learning
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methods that are widely used, in bioinformatics and many other fields for multivariate data analysis
and faster decision-making (Breiman, 2001; Qi, 2012). In addition to their application in medical
and remote sensing analysis, random decision forests and regression tree models (Minasny and
McBratney, 2016; Witten et al., 2017) are increasingly drawing attention for assessing many
variables and their multidimensional relationships in agricultural research. Tree-based models
were applied for sensor fusion and classification purposes in several DSM applications (Heung et
al., 2014; Grunwald et al., 2015; Brogi et al., 2019), wherein the algorithm evaluated errors
produced in different training stages and predicted model efficiency through residuals modeling
(Wadoux, 2019; Pouladi et al., 2019). Such models can handle unbalanced/missing datasets, are
more stable, have faster runtimes, and provide robust data in weighing classified samples
iteratively in remote sensing data classification (Mulder et al., 2011; Pelletier et al., 2016). In this
study, a tree-based regression model handled sensor-fused data and assessed their complex

relationship in support of a DSM effort.

In machine learning models, preparing training data from various sensors and the
optimization of model parameters (hyperparameters) are key tasks in achieving accurate decision
making and predictions (Grimm et al., 2008; Guo et al., 2015; Keskin et al., 2019). A geostatistical
analysis is applied to standardize various sensor variables and determine the training dataset
(Szatmari and Pasztor, 2019). The regression tree model controls the selection of variables from
the training samples and is efficient in handling errors (Blanco et al., 2018; Pelletier et al., 2016).
Hengl et al. (2004) and Heung et al. (2016) applied a classification model with many training
datasets to predict a wide range of soil properties on a regional scale. Likewise, others analyzed
many environmental covariates and then they were used as input training samples to attain the best
prediction results (Vermeulen and Niekerk, 2017; Zeraatpisheh et al., 2019). In the training phase
of the prediction framework, different optimization techniques have been used to estimate model
parameters and reduce prediction uncertainties (Xiong et al., 2015; Dharumarajan et al., 2017,
Merrill et al., 2017; Vaysse and Lagacherie, 2017). While such methods have been adopted for
regional prediction from a large-scale dataset (Rad et al., 2014; Minasny and McBratney, 2016),
there remains a need to implement a regression tree model for local or farm-scale applications.
The present research assesses training datasets and model parameters to generate scenario maps

and predict soil properties at a local scale. Accurate model-estimated soil properties could help
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optimize the use of agricultural inputs and make farms more profitable and sustainable by

decreasing water and fertilizer consumption.

The goal for this research was to evaluate a supervised learning algorithm that integrates
PSS and RS sensor data along with field measurements and assesses their hierarchical relationship
for digital soil mapping. In this effort, a random forest model was applied to combining field
surface and subsurface measurements to determine soil variability at the field scale. The model
was also assessed with respect to the regression parameters of the observed variables at different
stages and to determine its behavior in digital soil mapping. The specific objective of this research
was to develop a prediction framework for sensor fused data analysis and modeling. Modeling
explores the potential of integrating proximal soil sensing data with remote sensing imagery to
delineate field heterogeneity and produce thematic maps suitable for potentially differentiated
management decisions. A better understanding of field heterogeneity in a landscape and the
production of accurate soil maps helps farmers and other land managers to optimize their decision-

making process and to develop profitable and sustainable environmentally friendly operations.

5.2 Materials and methods
5.2.1 Experimental site

A 39.5 ha agricultural field, situated at the Woodrill Farms near Guelph, Ontario, Canada
was selected and mapped using both remote sensing and PSS sensors (Figure 5.1). The soil texture
was mainly loam, which maintains very good drainage conditions. According to the Ontario
Ministry of Agriculture Food and Rural Affairs (OMAFRA) database, soybean [Glycine max (L.)
Merr.] and corn (Zea mays L.) are the targeted annual crops in the region. Figure 5.2 shows the

methodological development of this research.
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Figure 5.1 (a) Location of study site in Ontario, Canada, (b) terrain model along with soil sample locations
at the study site, and field boundary with sensor measurements (aerial image on the background): (c)
gamma-ray sensor reading, and (d) soil apparent electrical conductivity (EC.,).
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Figure 5.2 Flowchart showing methodological development (i.e., data collection, processing, training data
sets and soil prediction model and accuracy assessment) in this research. The model development parts
(dotted line) were described in detail in later section.

5.2.2 Soil sensing by proximal soil sensors

The study site was mapped using DUALEM-21S together with a Real-Time kinematic
(RTK) global navigation satellite systems (GNSS) receiver, and a gamma-ray spectrometer,
thereby, generating high-density field variability maps. A vehicle equipped with two types of
proximal soil sensors (RTK GNSS and DUALEM-21S) was used for topographic and apparent
soil electrical conductivity (ECa) mapping in August 2015. The measurements were recorded
every 0.1 s with a vehicle travel speed around 10 km h™1. The measured data points of elevation
and EC, were at intra- and inter-row spacing of approximately 5 m and 10 m, respectively. Despite
diverse data sources and various data standardization among the industries, generic rules were
developed in terms of data format and preprocessing steps to assess the PSS data sensitivity to bare
soil properties. Timestamps, locations, speed of the sensor vehicle, the distance between data
points, and other variable measurements were evaluated in the preprocessing steps. Detailed

procedures were discussed in Ji et al. (2017). Potential outliers and null values of the PSS
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measurements were identified in this step, and about 8% of the PSS data was removed. In this
study, different environmental variables were considered for building the input and training
datasets used by the model. General statistical analysis and correlation matrices of the selected
variables are used to determine targeted variables in the following sections.

5.2.2.1 Soil sensing — ECa measurements

The EC, data (n = 6,931 points) were obtained using an electromagnetic induction
instrument (DUALEM-21S, Dualem, Inc., Milton, ON, Canada). The instrument (with two-pairs
of electromagnetic receivers: horizontal co-planar geometry-HCP and perpendicular geometry-
PRP) served to collect the soil apparent electrical conductivity (ECa) of four different depths:
HCP1 - 0-1.6 m (ECY'6), PRP1 — 0-0.5 m (EC2°5), HCP2 — 0-3.2 m (ECY32), and PRP2 - 0-
1.0 m (EC219). Descriptive statistics [Minimum (Min), median, Maximum (Max), Standard
deviation (STD), and mean] were generated from the measurements for sensor data assessment
(Table 5.1). Values of EC, for different soil depths — 0.72 < EC2%> < 14.12,1.08 < EC*° <
14.60, 2.58 < EC21° < 16.08, and 0.50 < ECJ3? < 14.44 mS m? — were determined by

statistical analysis and reflected field variability at the small site.

Table 5.1 Descriptive statistics of four DUALEM-21S sensor readings: EC26, ECY%5, EC932, and
ECO™O mSm.

Sensor measurements Min Median Max Mean STD
ECO6 2.58 6.90 16.08 6.96 1.55
ECO05 0.72 4.44 14.12 4.55 1.38
ECO32 0.50 4.44 14.44 4.61 1.85
ECO0 1.08 4.68 14.60 4,75 1.50

5.2.2.2 Soil survey — Topographic mapping and derivatives

Topographic data (n=7,110 points) were collected from the agricultural field using a
Trimble AgGPS 542 GNSS receiver and base station (Trimble, Inc., Sunnyvale, California, USA).
Topographic variations were determined by statistical analysis. The field elevations ranged from
333 to 354 m with a standard deviation of 5.76 m. Slope and aspect ratio (AR) ranges were derived

from the maximum elevation, while the topographic wetness index (TWI) was derived from a
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digital elevation model (DEM) of the study site. Besides ArcGIS v10.7 (ESRI, Redlands,
California, USA), a commercial software package used in geospatial analysis of topographic
variables, SAGA GIS v6.3.0 (Department for Physical Geography, Hamburg and Gottingen,
Germany), an open-source software tool, was used for calculating TWI. TWI and AR were

calculated as follows:

a
TWI =1
1 tan (1)
where, a is the upland contributing area, [(flow accumulation + 1) X cell size], and S is the slope
in radians.
aspect
AR = sin P (2)

where aspect is derived from maximum/minimum elevations.

5.2.2.3 Soil survey — gamma-ray sensing

The study site was also mapped with a gamma-ray (y—ray) sensor (SoilOptix®, Tavistock,
ON, Canada). At 60 cm above the soil surface, the sensor was mounted on a vehicle and collected
points continuously, following parallel lines 12 m apart. The data was logged every second and
the measurements were continuously recorded with a travel speed of 10 km h™%; 26,080 data points
were collected (n = 20,129 were used after preprocessing of the data) in July 2015. This non-
invasive sensor measured four y—ray spectra (radionuclides) [Uranium-238 (*38U), Thorium-232
(?32Th), and Potassium-40 (*°K), and Total count (TC)] in becquerel per kilogram (Bq kg™)
(Dierke and Werban, 2013; Mahmood, et al., 2013). The range between maximum and minimum
values of the four radionuclides was very large and used to assess the variability of the field (Table
5.2). Average values of TC, *°K, 238U, and 23?Th were 371.31, 354.10, 20.03, and 19.97 Bq kg
respectively (with a standard deviation of 24.93, 49.63, 4.86, and 3.75 Bq kg™).
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Table 5.2 Descriptive statistics of four measured y—ray radionuclides (Bq kg?) from the agricultural field
in Ontario.

Sensor measurements Min Median Max Mean STD
TC 264.73 376.00 42564 371.31 24.93
40K 142.06 356.11 515.26 354.10 49.63
238y 5.09 20.00 40.71 20.03 4.86
232Th 5.66 19.99 35.11 19.97 3.75

5.2.3 Satellite data and derived indices

A RapidEye satellite image along with two (Orthophoto and Dove) high-resolution datasets
were collected to analyze bare soil and vegetation characteristics (Table 5.3). Remote sensing
image processing steps were followed (e.g., radiometric correction, stitching, co-registration, stack
bands, etc.). In this study, orthophoto and Dove images, with three visible multispectral bands,
were used only for co-registration of multiple RapidEye images and for assessing derived
vegetation indices. Also, the bare soil orthophoto was used for identifying field sampling locations.
In addition to the traditional visible (RGB) and near-infrared (NIR) spectral bands, RapidEye
imagery presented a red edge part of the spectrum as well. The two popular and standardized
spectral indices, Normalized Difference Red Edge Index (NDRE), and Normalized Difference
Vegetation Index (NDVI), were derived from RapidEye satellite data to identify the strong
absorption spectrum of chlorophyll and defined as:

NDVI = pNIR — pRed 3
~ pNIR + pRed ®)
NIR — pRedEd
NDRE = £~ P e g° (@)

pNIR + pRedEdge
where, Near-infrared band (pNIR), Red band (pRed), and RedEdge band (pRedEdge) were used

for the index.
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Table 5.3 Remote sensing data characteristics and their sources.

Satellite Pixel Spectral Bands &
Sensor (m)  Wavelength (nm)
OrthoPhoto 0.2 - 23 May 2015 OMAFRA/OMNRF!
Blue: 420 — 530
Green: 500 - 590 )
Dove 3.0 Red: 610 — 700 30 July 2017 Planet Labs

NIR: 770 - 900

Blue: 440 - 510
Green: 520 - 590
RapidEye 5.0 Red: 630 — 685 09 August 2017 Planet Labs?
Red Edge: 690 — 730
NIR: 760 — 85

Imaging Date Source

!Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and Ontario Ministry of Natural Resources and
Forestry (OMNRF).
ZPlanet Labs, Inc. in San Francisco, USA (https://www.planet.com)

5.2.4 Spatial interpolation and point data extraction

Interpolation using spatial autocorrelation was performed to understand the variability of
point-based PSS data and the spatial characteristics of the missing values. Ordinary Kriging
interpolation maps were generated from the spherical variogram model and data structure of all
sensor measurements in ESRI ArcGIS software (v10.7). Elevation data points were interpolated
for making the digital elevation model. Four gamma nuclides and four EC, data pointed were also
interpolated to facilitate the data extraction process. Multiple kriged maps were delivered spatial
covariates associated with the sampling points into a data file (text file) as a software requirement
to run the RF model. Finally, the text data file containing multiple layers of sensor variables,
sensor-derived variables, and soil measurements was used to assess the model parameters and train

the prediction model.

5.2.5 Soil sampling and laboratory analysis

Based on the variability of RTK GNSS and DUALEM-21S sensor measurements in the
agricultural field, an optimum number of soil samples were collected for the laboratory analysis.

In this research, a Zonesmart system-based 1-acre grid sampling strategies was applied. Based on

85


https://www.planet.com/

the maximum field variability derived from the previously collected PSS measurements, the
sample location was placed in each grid. A total of 62 targeted sampling points were selected from
the grid centers, with an average sampling density of 5 samples per hectare. The center points were
then positioned using the orthophoto and a Garmin handheld GPS (wide area augmentation system
— WAAS corrected). At each location, the soil samples were collected from a close radius of 6-10
cores with an approximate depth of 15 cm. Soil samples were collected from the site at the

beginning of the cropping season (August 2015).

The lab measured soil analysis data were processed and selected for the prediction model
(Table 5.4). In this study, the lab-measured, soil micro- and macro-nutrients, were pH, soil organic
matter (SOM), extractable phosphorus (P) and potassium (K), cation exchange capacity (CEC),
Magnesium (Mg), Manganese (Mn), Zinc (Zn), and Calcium (Ca). Various soil test methods were
used for analyzing all field samples: pH — 1:2 saturated paste; OM% - Walkley-Black (0-8%), Loss
on Ignition (>8%); P — Olsen sodium bicarb; K/Mg/Ca — ammonium acetate extract; Mn —
Phosphoric acid extract; Zn — DTPA extract; and CEC — calculated by converting soil test
K/Mg/Ca to milliequivalents.

Table 5.4 Descriptive statistics of laboratory measured nine soil properties.

Descriptive statistics

Soil properties from sample analysis

Min  Median Max Mean STD
pH 6.50 7.50 7.90 7.44 0.26
Soil organic matter (SOM) % 1.90 3.40 4.60 3.38 0.51
Soil Phosphorus (P) ppm 15.00 35.50 70.00 36.90 12.24
Soil Potassium (K) ppm 79.00 169.50 352.00 183.79 55.87
Magnesium (Mg) ppm 123.00 271.50 393.00 267.66 63.77
Calcium (Ca) ppm 1236.00 1700.50 2995.00 1741.89 276.01
Zinc (Zn) ppm 1.50 4.50 17.00 5.98 3.69
Manganese (Mn) ppm 12.60 16.70 25.00 17.19 2.73
Cation exchange capacity (CEC) meq hg™ 9.00 12.50 18.00 12.58 1.52

Descriptive statistics for lab analysis-derived parameters yielded density estimation plots
(Figure 5.3), which showed the variability existing among the soil properties measured at the study
site. The range (minimum and maximum values), standard deviation (c), and mean (u) of the data
for each soil parameter showed large variability in the data structure. The measured pH value

varied between 6.50 and 7.90 with a o of 0.26 and mean () of 7.44. For the SOM measurements,
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the high-density and lowest density occurred near the value of 3.5% and 2.5%, respectively, where
1 = 3.38. CEC measurements varied between 9 and 18 meq hg*. The range of Mg measurements
varied between 123 to 393 ppm. Moderate variability was found in P measurements (u = 36.90
ppm), while K and Ca showed high variability (ranges of 273 ppm and 1759 ppm, respectively) in
the field. The wider range of the sensor response (predictor variables as described in section 5.2.2)
was applied to develop the soil prediction models for the agricultural field. Based on the moderate
to high variability in the soil nutrients, the predictor variables were used to build the prediction

model.

pH SOM P
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a=276.01
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Figure 5.3 Density plots showing the distribution of soil sample measurements for the field under study.
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5.2.6 Environmental covariates for prediction

A total of fourteen environmental covariates — topographic indices, soil electrical
conductivity, gamma radionuclides concentration, and multispectral vegetation indices — were
independently assessed based on the sensor’s characteristics (Table 5.5) and prepared as predictor
variables for this study. All environmental variables were prepared for a point-based, targeted
sampling grid, prediction of each soil property. All high-density sensor data were interpolated and

extracted using the sampling points as discussed in the section 5.2.4.

Table 5.5 The environmental covariate derived from different sensors and prepared as predictor variables.

Predictor variables Sensor sources Data captured

Remote sensing attributes RapidEye satellite August 2017
NDVI
NDRE

Topographic indices RTK GNSS August 2015
Elevation (m)

Slope %

AR — Aspect ratio

TWI — Topographic wetness index

Gamma-ray (Bq kg™) Gamma-ray July 2015
TC - Total count

40K

238U

232Th

Soil ECa (mS m?) DUALEM-21S August 2015
HCP1 (0-1.6 m)
HCP2 (0-3.2 m)
PRP1 (0-0.5 m)
PRP2 (0-1.0 m)

5.2.7 Statistical analysis and relationship among the variables

Multicollinearity assessed the spatial data correlation among the predictor variables (sensor
variables and sensor derived variables). High collinearity was found mostly among EC. variables
(Figure 5.4), although these were measured for different depths - HCP1 (0-1.6 m), HCP2 (0-3.2
m), PRP1 (0-0.5 m), and PRP2 (0-1.0 m). The change of EC. magnitude in variable depths might

88



be useful for the characterizing of a soil profile. The slope was highly correlated with TWI only,

but less so with the remaining topographic variables.

Slope —0.06 08
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Twi —-0.32808:%: 0.12
HcP1 -0.50 0.07 -0.18-0.22 o
PRP1-0.35 —0.04—0.16-0.02
HCP2 —0.43 0.15 -0.39-0.34 0.46
PRP2 —0.39 0.00-0.20-0.1 1 oo
NDVI -0.21-0.21-0.27 0.04 0.30 0.19 0.29 0.33
NDRE —0.31-0.21-0.26 0.05 0.40 0.30 0.37 o.43

TC —-0.34-0.250.15 0.28-0.04-0.11-0.05-0.050.10 0.12 .

K40 —0.17-0.210.12 0.22 0.04-0.03-0.06 0.03 0.16 0.19

U238 —0.06 0.06-0.08-0.16 0.12-0.070.35 0.02 0.05 0.01 0.19-0.02

Th232 — -0.240.27 0.36-0.26-0.23-0.33-0.24 0.03 0.00 -0.03
| | | 1 | | | | | | 1 | | 08
c o 14 = — — o o~ = Ll Q = o]
8§ & £ =¥ o o @& a 2 g £ I ©
s 3 e E 2 £ 2 g = 3
w

Figure 5.4 Correlation matrix showing the collinearity among predictor variables. Color intensity increases
with higher negative (-) and positive (+) Pearson’s correlation values.

Due to the multi-directional linear relationship between several sensor variables and the
soil measurements, it is challenging to evaluate the prediction capacities of the sensor
measurements for a specific soil property; therefore, a model is needed which is capable of
handling hierarchical relationships. Hence, a machine learning regression model, which handles
the data fusion process and the complex relationships, was proposed to assess the predictive

capacities.
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5.2.8 Modeling techniques and prediction framework

A supervised machine learning model served as a framework for soil parameter prediction.
The supervised method was capable of assessing various complexities at the local scale and it was
used for predicting small datasets (Huang et al., 2014). Environment-soil covariates were used in
the machine learning prediction framework to predict unknown location values. Each soil nutrient

prediction was produced with model validation and accuracy assessment procedures.

5.2.8.1 Random forest (regression tree) prediction

Random forest (RF), a supervised and tree-based ensemble method, was used for soil
parameter prediction (Breiman, 2001; Huang et al., 2014). This non-parametric model is easy to
understand and requires few user inputs. An RF model is the enhanced version of the regression
tree model and its deterministic behavior is assessed here with respect to model fitting and
prediction of soil maps (Figure 5.5). The advanced algorithm in the random forest method is better
at addressing the large data classification issues and regression, allowing for good estimation of
soil parameters with the view of solving agricultural problems (Hengl et al., 2017). This model
can handle missing values and large data sets of high dimensionality, while showing high accuracy
in mapping and prediction. This model establishes a hierarchical relationship between the multi-
sensor variables and the soil nutrients and takes an average of all individual decision tree
estimations. Python v3.6 was used, i.e., RandomForestRegressor from the scikit-learn package
(Géron 2017).

INPUT DATA PROCESSING REGRESSION EVALUATION
MultlspectralSensor | Data Layers (Interpolated) i | Model Calibration P

i ®RapidE . - i | (Parameter Optimization) P ;
H SEREEEE : & H H R n-astimators:
i PSS Sensor — ) > B
i ® Dualem =) ' Spatial N E -
| ®RTKGNSS ARG Variability 12 [ b N i Dy R ‘ i v
{ ®Gamma-Ray Y i \4 U W | Model validation
; Samples maLTalures A Ay
i , . . Random forest (Regression)
; . : Data split ! i H
L = . :
2 ~HE§
R L & Kl +
@) Regression.| Digital Soil Map
Pre-processing : | Field Variability e - i

Figure 5.5 This diagram described random forest model development (partially illustrated in Figure 2) and
components: data input and processing, regression and model validation.
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In the model training procedure, the bootstrap aggregated approach drew randomly
selected samples from the grid samples (with replacement) to build a decision tree. In the training
phase, in-bag samples (70% of the training data) served to train the model and out-of-bag (OOB)
samples (approximately 30% of the training data) served to do cross-validation (CV). Bootstrap
aggregation methods in the forest model resampled training dataset and created node splits for
decisions (Hengl et al., 2018). Computational time may vary based on input variables and the
number of splitting nodes. The training datasets for this supervised learner originated from variable

importance and were used for model building.

For the regression procedure, the random forest-built k trees, where the predicted values
were the average of all individual tree predictions. However, it does not predict the value which is
beyond the training samples. Random forest regression creates a set of K trees [Txi,....., TXx)],
where x = [Xi,....., Xp], is a B-dimension of the input vector which forms a forest. The predicted
values are obtained by the aggregation of the results of all individual trees. The following equation

provides the random forest regression predictor:

k=K
T,
Fa = 2, T (5)
k=1
K
Random forest builds a set of regression trees (K) and averages the predictions of individual

trees to make a final prediction. Where Kk is the individual bootstrap sample and T is the individual

learner or decision tree.

For a random forest individual tree Tk(x) construction (Zhou et al., 2019; Hengl et al.,

2018) the following equation applies:
Tie(x) =t tyy, -+, k) (6)

For each number of trees constructed, bootstrap samples (k) are drawn for a new training
set with a replacement from the original training data set. As a result, a regression tree then builds
from the randomized drawn training sample of the original data. The t, (k =1, 2, ...K) is the k™"
training sample with a pair of values, which produces the target variable (y) and covariates (x),
where txi = (Xk , Yx). The OOB sample is used for CV (testing). Independent validation using the

OOB sample contributes to making a robust forest model.

91



Based on the environmental variables described in Tables 5.4 and 5.5, a RF trend model
was developed. Training data parameters drawn from random sample selection with replacement

and their optimization are discussed in the following section.

5.2.8.2 Development of training data and optimization of hyperparameters

Bootstrap sampling and its hyperparameter must be optimized to prevent model overfitting.
A random sample selection with replacement within the training set provides two important model-
building parameters: (i) the number of trees (n-estimators) or decision trees grown for the
regression predictors, and (ii) the number of predictor variables (max_features), which are
randomly sampled in each binary split and yield the best split from the random subset. As the most
important tuning parameter, max_features is optimized during the training phase by the user
(Heung et al., 2014). The forest tree is grown until the node variance is minimized and then tuned
in the training phase (Figure 5.6). Without tuning the parameters, building a lot of trees and
splitting notes in the training phase slowed down the computing process. Upon selection of the
optimum parameter values for each level the n-estimators and max_features, model calibration is
performed to report the error and model efficiency. Heung et al. (2014) show that OOB error in
the RF model is a better estimator of error than the CV in optimizing model parameters. Based on
preliminary results, n-estimators was selected to estimate the stable OOB error rate and determine
if it was small enough (e.g., n-estimators = 50) to increase computation efficiency. By default,

max_features are chosen for all variables when the model makes the best split in the training phase.
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Figure 5.6 Training (dataset split) and minimization of the node variance in the random forest model, an
example for soil pH prediction.

In this study, the forest model used 70% of the entire datasets to train the model and 15%
was used to undertake cross-validation (CV) or test, and the remaining 15% served for the final
validation of the assigned predicted class. In the training phase, of the 70% of the entire sample
datasets, the model used 65% (the unique dataset) to build the trees, while the remaining 35% were
used for internal testing. The CV features of the RF algorithms improve the performance of the
model while using independent test data (Blanco et al., 2018). In the present study, five-fold cross-
validation (k = 5) techniques for determining the final parameters of the model were tested after
the training step. The tree model was tuned through CV procedures using a fine search grid. In
considering the fit of a model with k = 5 in the test stage, the model used 80% of the independent

dataset (from 15% of the test data) in each fold, and the remaining 20% of the data served in

93



estimating the predictive accuracy using the regression function. This step generated multiple
train-test splits to tune the model. Finally, the accuracy was estimated based on the average

performance on each fold (Zhou et al., 2019).

In the training phase, the model was assessed with a different combination of samples
(random_state) to create the regression tree. At the initial stage of the random forest model, the
user needed to define random-state values where it selects the same combinations in each run and
produces the same training/test data points to be run multiple times. Otherwise, the model produces

different results (if it is fully random) in every run.

5.2.8.3 Variable importance and optimization

A key step in building the prediction model, variable importance and ranking of the dataset
were rigorously assessed. The RF model orders influential variables based on either mean decrease
in prediction accuracy, or homogeneity (assess the quality of each variable split) of a variable split
in the successive nodes (Heung et al., 2014). The subset of the variable is determined by how the
tree-based regression fits the soil prediction (Hengl et al., 2018). In this study, the variable
importance plot was derived from the RF default settings (max_features = none, where all features
or variables are considered in each split instead of a random subset). At the training phase, a
predicted value is assigned by determining the mean error rate and by averaging the predictions
from the individual regression trees. After the removal of less important predictor variables, a
revised soil prediction was performed to compare with the predicted results using all the variables
and the reduced number of variables. In this study, a regression function was used for assessing

the performance at the cross-validation stage.

5.2.8.4 Model evaluation

The algorithms provide some solutions to enhance random forest optimization. A
validation subset of grid samples was assessed based on the prediction results for measured soil
values. The prediction accuracy depends on many accurate datasets (measured values) and many
training samples. One of the most important advantages of many variables is that it reduces
unintended model overfit. The root mean squared error (RMSE) was calculated for assessing

model uncertainty, and coefficient of determination (R?) assessed the degree of relationship
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between predicted and measured values. The RMSE was used for the performance of the soil

prediction results and it is described in the following formula:

i=n
1 2
RMSE = EZ(ypi — Ym,) (7)
i=1

where, n is the number of observations, y,, is the i measured value, and Yp, is the i"" predicted

value. The RMSE measures expected deviation of predicted values from their measured values.

5.3 Results
5.3.1 Descriptive analysis of the soil measurements

Ranges between maximum and minimum values for the soil properties were variable
throughout the whole field data and validation dataset (Table 5.6). In this study, the range
(minimum and maximum values) of each soil property in the validation dataset was not always
identical to the range of the whole dataset. The range, standard deviation (o), and mean (u) for
each soil parameter showed large variability in the whole field (as described in Section 5.2.4) and
validation dataset. In the validation dataset, the measured pH values varied between 6.8 and 7.7 (o
=0.28 and p = 7.4). For the SOM measurements, the range varied between 1.9% and 4.6% in the
whole dataset (o = 0.51%), whereas it varied between 2.9% and 4.2% in the validation dataset (o
= 0.46%). In the validation set, CEC measurements varied between 11 and 14 meq hg™ (between
9 and 18 meq hg™ in the whole set). The standard deviation value of Ca measurements varied
largely between the two datasets (c = 276.01 in the whole set; c = 191.60 in the validation set).
Moderate variability was found in P measurements (u = 36.90 ppm in the whole set; u = 34 ppm
in the validation set), while K showed high variability (u=183.79 ppm in the whole field,;
u = 205.30 ppm in the validation set.
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Table 5.6 The descriptive statistics of soil property values obtained through whole and validation sample

dataset.

Whole dataset

Validation dataset

Soil properties

Min Max Mean STD Min Max Mean STD
pH 6.50 7.90 7.44 0.26 6.80 7.70 7.40 0.28
SOM (%) 1.90 4.60 3.38 0.51 2.90 4.20 3.33 0.46
P (ppm) 15.00 70.00 36.90 12.24 22.00 52.00 34.00 8.91
K (ppm) 79.00 352.00 183.79 55.87 139.00 262.00 205.30 48.25
Mg (ppm) 123.00 393.00 267.66 63.77 160.00 370.00 267.20 72.40
Ca (ppm) 1236.00 2995.00 1741.89 276.01 1412.00 2086.00 1735.20 191.60
Zn (ppm) 1.50 17.00 5.98 3.69 1.80 10.70 4.95 2.84
Mn (ppm) 12.60 25.00 17.19 2.73 12.60 20.10 16.92 2.59
CEC (meq hg?) 9.00 18.00 12.58 1.52 11.00 14.00 12.60 0.97

5.3.2 Analysis of correlation between high-density data and soil properties measured in the lab

According to the relationship between the predictor variables (sensor variables and sensor-

derived variables) found in Figure 5.4, most of the variables were considered for the prediction

model. Pairwise relationships between the sensor variables and the soil properties and their

strengths are shown the correlation matrix in Figure 5.7.
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Figure 5.7 Correlogram showing the relationship between predictor variables and different soil properties.
The intensity of the green to red color increases with higher positive and negative correlation values.

For the experimental field, the pH correlated positively (r = 0.42 and r = 0.45) with the
topographic variables of elevation and slope, respectively. Soil phosphorus (P) also showed a
positive correlation with ECY'*> and was negatively correlated with 232Th (r = -0.50). K was
moderately well correlated with EC, variables (0.33 <r < 0.43) and with gamma sensor
variables (r = -0.50) and, whereas Mg was moderately correlated with TWI (r = -0.40) and K40
gamma nuclide (-0.39). However, there was a negative correlation with the gamma-ray sensor, TC
(r=-0.61) and 23?Th (r=-0.58) for predicting pH. Cation exchange capacity (CEC) and
Manganese (Mn) both correlated negatively with all gamma-ray sensor variables (except 238U).
All gamma-ray variables showed a strong negative correlation for Zn prediction. No systematic
correlations for SOM, K, Mg and Ca were found with any sensor measurements. Given the

multifaceted linear relationship between a large number of predictor variables and the targeted
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variables, it was challenging to evaluate the prediction capabilities of the sensor measurements for

a specific soil property.

5.3.3 Parameter optimization and variable reduction in RF

In the RF regression model, from the original data (62 groups of data) of soil properties,
70% of the dataset was randomly divided into training data and 15% into both to serve as a test set
and a final validation set. About 70% of the training data were randomly selected (see Section
5.2.8) for developing the forest model estimators and evaluating the parameters in the training
model. About 15% of the data were selected for cross-validation and performance evaluation of
the regression model estimator at this initial stage. In this study, approximately one-sixth of the
data points (10 out of 62 sample datasets) served for the final validation and accuracy assessment

of the regression models.

The targeted soil properties were pH, SOM, P, K, CEC, Mg, Mn, Zn, and Ca (see Section
5.2.4). Input parameters in the regression tree model are the predictor variables (n = 14) that have
a different effect in each soil prediction result. Details of the construction procedures of the
predictive model and its application to the test data (unknown dataset) are shown in Figure 5.5.
After the training and test data separation, optimization of different hyperparameters (mainly the
number of trees and number of input variables) was required for the construction of each soil
property model. At the training stage, the training dataset evaluated different combinations of
sensor variables to fit a regression model and determine the parameters of the random forest model.
The OOB error rates calculated from the RF model internal validation (outlined in Section 5.2.8).
In the cross-validation stage (five-fold CV procedure), the R? determined optimum number of trees
(n_estimators) for the model (Figure 5.8). The n-estimators values were selected from a range of
50-1000 in the trained model. pH curve was flat after 250, whereas the SOM, CEC, and Ca curve
increased dramatically when the n-estimators was 50 (reached the maximum height at 150) and
then leveled off where the n-estimators value was 300. For P and K prediction, the R? value was
initially improved at 50 but decreased with the increase of n-estimators values. Mn and Zn
prediction curves were increased until 250 and then leveled off. The optimum value for n-

estimators with a five-fold CV procedure was within a range from 50 to 250 for the different soil
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properties. Based on the initial results, the optimum value of n-estimators was 100 where R? was

at the maximum for all soil predictions.
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Figure 5.8 Number of trees (n_estimators) optimizing for nine soil properties prediction. The coefficient
of determination (R?) has increasing trends at the cross-validation stage when n_estimators value between
50 and 100.

The sensitivity analysis of individual variables was evaluated by the degree of contribution
when the RF model split a node in making the decision. In this study, a single approach variable
reduction (default settings) was tested. Figure 5.9 shows the relative variable importance, when all
four sensors (ECa, topographic and gamma-ray, and satellite image) variables were considered for
predicting all soil properties. The RF model evaluated the relative importance of 14 variables. Less
influential variables were removed manually for testing the model’s performance. After several
runs, R? reached the maximum level in the independent cross-validation phase when the number
of dominant variables were selected by the user based on their relative importance. In Table 5.7,
the number of influential variables varied (ranging from high to moderate, from 3 to 11) for the
prediction model of each soil property until the maximum R? value was achieved. This result was
comparable with the results of obtaining a higher correlation coefficient (as discussed in Section
5.3.2). In this research, there does not appear to be a magic number of variables for all prediction
models. The performance of the different combinations of variables affected the overall
performance of the model. The overall performance of the selection is reported in a later section
(through final validation).
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Figure 5.9 Relative importance of the variables (derived from combining the four sensor’s variables) for
predicting nine soil properties in the random forest model.

Among the four EC, variables, shallow EC, (PRP1: 0-0.5 m) along with deep EC. (HCP2:
0-3.2 m) were most influential in predicting all soil properties. Shallow EC. were primarily
affected many soil properties which are available for agricultural crop (Sudduth et al., 2013).
Among the topographic variables, elevation along with aspect ratio (AR) had a significant impact
on constructing the RF prediction model. Two variables among y-ray nuclides (TC and 232Th)
were found to be important for building the soil prediction model. Between the two surface
vegetation indices (derived from satellite image), NDVI was relatively more important than the
NDRE for all of the prediction models. In most cases (Table 5.7), the four most dominant variables
from the four different sensors were elevation, shallow EC,, *°K, and NDVI for predicting soil

properties at the local scale.
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Table 5.7 Optimum number of variables used in the final model based on the variable importance.

Sensor

) pH SOM P K CEC Mg Mn Zn Ca

variables

Elevation M H H M M L M L M
Slope M H M M L M H M M
AR L M H H L H M M L
TWI H M M L M H M H M
ECO6 L M M M L L M M L
ECY05 H M H M M M M M M
ECY32 L H M H M M L M M
ECO0 L L M H L L M L L
TC H L M L H M H H H
40K M H L L H H H H H
232ThH H L H L H M H H H
238y M M M L H L L M H
NDVI L L L L M M M L L
NDRE L L L L L L L M L

Note: H — high importance, M — moderate importance, and L — low importance

5.3.4 Assessment of the prediction capability of the selected models

The performance of the different combinations of variables was assessed using the error of
the prediction in the final validation step. Accuracy was assessed through the R? and RMSE (Figure
5.10). The actual vs. scatter plot showed that most of the soil prediction results were in close to
perfect agreement (near 1:1 line), except SOM and CEC. A higher coefficient of the determination
(R? > 0.80) was achieved in pH, K, and Zn predictions with the selected sensor variables (number
of variables used: 8, 5 and 7, respectively). In this case, the estimated RMSE values were 0.09 for
pH, 19.39 ppm for K, and 1.24 ppm for Zn. Sensor fusion required for CEC prediction included
combining RTK with DUALEM and gamma-ray sensors, while Mg prediction combined gamma-
ray and RTK sensors (R? = 0.71). Also, P prediction results were improved by combining only
four variables (R? = 0.67). The SOM, Mn, Ca predictions were weaker (0.50 < R? < 0.60) when
combined with multiple sensors — gamma-ray, RTK GNSS, and remote sensing sensors — which

produced maximum prediction results from all other combinations.
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Figure 5.10 Assessment of accuracy for prediction of various soil parameters — pH, Soil organic matter
(SOM), Phosphorus (P), Potassium (K), Cation exchange Capacity (CEC), Magnesium (Mg), Manganese
(Mn), Zinc (Zn), Calcium (Ca). Model accuracy evaluated using root mean squared error (RMSE) of each
soil measurement, and coefficient of determination (R?).

Most of the soil prediction results were within the accepted range of the measured soil
samples (Figure 5.10). In all cases, the standard deviation of the predicted values was smaller than
the measured values. The predicted mean values were lower than the mean value of measured soil
properties (i.e., pH, SOM, P, CEC, Mg, Mn, Zn).

5.4 Discussion

This study evaluated the complex relationship between sensor variables and soil
physiochemical properties. Analysis of the data shows the negative and positive correlation for
each soil property with auxiliary variables. Soil sensor data was collected from various platforms
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at different times and from different soil depths. From the training datasets and the regression
capabilities, the random forest model effectively predicted the above-mentioned nine soil
properties. Tuning hyperparameters was the key to maximizing accuracy. By tuning a single
hyperparameter (i.e., number of regression trees), the model assessed a large number of auxiliary

variables and their combinations for predicting all soil properties.

In this regression model, more data points are required to improve the model’s
performance. With only a few training datasets, they cannot represent all soil measurements from
a large field and underfitting often occurs as a result of unknown data. On the other hand, too large
a training dataset reduces the performance of the generalization in the tree model. Heung et al.
(2016) determined that the optimum number of training and test (cross-validation) data sets was
key to improving model precision on a regional scale. In the present study, larger numbers of trees
perform better in training the model. However, building a lot of trees, splitting results in the
training phase and then averaging the results of the regression trees can slow down the training
process considerably. Therefore, the parameter search should find a sweet spot (optimal number)
to increase the efficiency of the prediction model.

The topographic sensor (RTK GNSS) along with the ECa (DUALEM-21S) sensor and
most outputs of the gamma-ray (SoilOptix®) sensor can be combined to predict soil nutrients at
the field scale. It was found that the variable of low importance did not contribute much to the
model. Sometimes, the coefficient of determination was improved significantly at the cross-
validation stage when the low importance variables were removed from the model. For instance,
the R? of Mn prediction was improved to 0.57 when only six variables were considered; however,
it was decreased to 0.45 when all sensor variables were considered. Higher performance was
observed in pH, K, Zn prediction using the least number of variables and with small datasets at the
local scale. On the other hand, SOM, P, CEC, and Ca were estimated using most of the sensor
variables to improve accuracy. Combining RTK with the gamma-ray sensor provided the best
prediction results for pH, Mg, Mn, Zn, while combining gamma-ray and topographic sensors with
the ECa sensor (DUALEM-21S) improved the model for SOM and CEC estimation. Remote
sensing vegetation indices combined only with DUALEM were effective in predicting K, while
indices combined with RTK sensor output were effective for Ca. Predicting P properly was more
challenging and required a combination with all other sensors (including the gamma-ray sensor)
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to predict P properly. Gamma-ray and topographic sensors combined estimated with a lower
estimation error and achieved higher prediction results for all micro- and macro-nutrients in the
agricultural field. This was explained by the fact that most of the subsurface soil chemical
properties change with changes in the topographic parameters. The gamma radionuclides were
efficient in detecting parent materials and soil texture, which generally determine soil physical
properties (e.g., SOM, CEC, etc.). This indicates that soil variability determined using sensor-
fused data and regression techniques could assist in constructing precise prediction models for soil
properties and in developing site-specific crop management. One of the most important advantages

of having a large number of variables is that it reduces the unintended model overfit.

This research relied on relatively small datasets (only 62 data points with a different
combination of variables). The optimum precision of the model and generalization of estimators
depends on the quality of the sensor measurements and on having many data points. In this study,
a default feature selection or all variables considered each soil property prediction; however, it
needs to address alternative approaches to determine the optimum number of variables for future
research. Cross-validation techniques inside the forest model provided accuracy assessment of the
trained model and in some cases, showed the model could not accurately fit the unknown data
(Zhou et al., 2019). Compared to the cross-validation steps for model performance, variable
reduction is still less effective in improving the model accuracy. Due to the comprehensive
sensitivity issues of the variables, the data, even though it was collected from the same area, may
provide different results in other machine learning models. Texture data and the other physical
properties would make the prediction method more robust. Also, the complex nature of the

relationship between predictor variables and soil properties is often difficult to explain.

In many regions, micro- and macro-nutrient prediction is essential to understand soil
variability in a large agricultural field (Mahmood et al., 2012). High-density PSS data collected
temporally along with lab-based measurements makes the model efficient in analyzing other
environmental variables and in their prediction. The laboratory analysis data and precise thematic
maps provide a better indication of field management and fertilizer recommendations. In some
parts of the field which have lower pH, lime requirements for certain crops can be subjective. This

is especially true if the field contains a lower amount of soil organic matter, which can be increased
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by cover crops and mulching. This research may lead to the development of better thematic soil

maps which can improve site-specific farm management techniques in the future.

5.5 Conclusions

This research investigated the prediction capability of different sensor variables using a
random forest regression method for predicting nine soil properties in an agricultural field. Better
results in predicting farm-scale soil properties were obtained through the integration of proximal
and remote sensing sensor variables. The gamma-ray and RTK GNSS sensors were found to be
the most valuable for soil parameter prediction and mapping at the local level. Freely available
multispectral remote sensing data combined with gamma sensor variables can predict important
soil properties. The regression tree model could assist in establishing a hierarchical relation
between sensor variables, as well as efficiently selecting important variables with less user
influence. The model demonstrated efficiency in terms of combining different sensor variables and
identifying optimal values of input parameters. Error reporting at the earlier stage of the training
phase and fewer user inputs make the supervised model robust in digital soil mapping. The model
accuracy depends on the number of training samples and the optimum number of important
variables selected. One of the most important advantages is that the use of many variables reduces
the unintended model overfit. Internal model validation and cross-validation could increase
accuracy and efficiency for the digital soil mapping process in other areas. Although this research
used well-distributed 62 samples along with an independent validation dataset, experiments in
different agricultural fields with more measurements would increase the acceptability of the model
in other agricultural studies. Although direct and intensive soil measurements are a reliable
method, they are an expensive and time-consuming procedure for crop production. This effort
seeks to reduce the number of sample measurements while considering the important number of

the sensor variables and increasing the understanding of field variability at the local scale.

The developed algorithm and model will improve soil prediction methods and provide tools
for a decision support system in any dynamic production system. This research offers strategic
opportunities and advantages for crop advisors to make faster decisions based on accurate soil
mapping. Accurate mapping can also optimize the production system’s profitability by reducing

agricultural inputs and maximizing environmental benefits with the goal of sustainability.
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Chapter 6: Summary and General Conclusions

6.1 Summary

Having a large quantity of geospatial data having been collected using multiple proximal
soil sensing (PSS) and remote sensing (RS) sensors facilitate soil characterization procedures for
monitoring soil and crop management. By identifying the variability of different parts of a field,
the current research first optimized field-based zonal homogeneity for model-based soil
characterization. Then, high-density soil measurements were deployed to investigate the model’s
predictive ability for multiple soil properties. Finally, a machine learning method was developed
to optimize the parameters of the geospatial data integration and estimate the prediction accuracy

of the thematic mapping process, in an effort to create a precise digital soil map.

The first part of the present study examined the use of a hierarchical data clustering
technique drawing on PSS and RS sensor-based soil responses to determine relatively
homogeneous parts of agricultural fields. Multivariate data — (i) shallow and deep apparent soil
electrical conductivity (ECa), (ii) high-accuracy topographic indices, and (iii) bare soil and
vegetation indices (VIs) — were collected from three agricultural fields in Ontario, Canada. The
Neighborhood Search Analyst (NSA) data clustering tool’s ability to define spatial continuity in
zone delineation was assessed and used to characterize soil variability. The performance of this
technique was found to be better than that of fuzzy clustering methods in producing the optimum
(or user-defined) number of zones. These homogeneity maps provided field variability and
essential information for monitoring and managing soil health in production fields. The field
variability identified in this model arose from the successful optimization of PSS sensor-based
zonal heterogeneity to achieve further agronomic model calibration. The information developed
in this study will be essential to guide crop advisors who seek to optimize soil sampling locations

and employ soil variability for the prediction and mapping of different variable rate applications.

After a rigorous assessment of the multiple variables and their zonal variability derived
from the sensor response, a second study evaluated DUALEM-21S and RTK GNSS sensor-derived
measurements against samples collected from targeted sample locations in a large number of

agricultural farms operating under different agro-climatic conditions across Ontario, Canada. A
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large quantity of high-density data (ECa, and topographic indices) were obtained and multiscale
field variability was analyzed within a statistical framework to optimize the soil prediction
capability. This research explored sampling strategies by: (i) evaluating soil sensing measurements
collected by two sensors and the quality of their data, and (ii) optimizing model prediction capacity
for six selected soil properties. The measurement errors and prediction efficiency were assessed
and compared to the median absolute deviation (MAD) values measured through the North
American Proficiency Testing (NAPT) program. After assessing the sensor-based predicting
efficiencies of the lab results, NAPT thresholds were used as a benchmark for evaluating accuracy.
This could be potentially useful for standard laboratory citification programs. This study showed
the powerful potential of proximal soil sensing technologies to predict soil nutrients and to allow
mapping for site-specific crops and soil management in precision farming. This protocol of sensor
data optimization can be used by commercial sensor users and agronomic service providers to
improve their data handling processes and maximize the information value of the data they

generate for their customers.

As part of the process of predicting targeted soil nutrients, the final portion of the project
used a decision tree-based method to assess the model’s prediction capacities and determine soil
variability. A wide range of environmental covariates — (i) vegetation indices from multispectral
remote sensing spectra, (ii) topographic indices from RTK GNSS, (iii) apparent soil electrical
conductivity (EC.) from DUALEM, and (iv) radionuclide variables from gamma sensors — were
mapped in an agricultural field located in Ontario, Canada. A subset of sensor measurements and
georeferenced soil sample data were used to predict multiple soil nutrients in the production field.
Random forest algorithms were constructed to optimize model parameters at the training stage. A
sensitivity analysis was performed to obtain the best results and scenario maps. The model has a
unique capacity to optimize parameters while handling overfitting. Model performance was
assessed by evaluating the prediction results of multiple soil nutrients with independent validation
datasets. Soil variability determined using sensor-fused data and related techniques could assist in
constructing precise prediction models for soil properties and in developing reliable thematic maps
for field-scale crop management. Based on the arguments presented in the above discussion of
sensor data optimization and modeling results, this research may lead to the development of better

thematic soil maps and site-specific farm management techniques in the future.
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6.2 General conclusions

The assessment of high-density multivariate data and soil characterization is one of several
requirements to generate an accurate soil map for use in precision farming. Our multivariate
geospatial data mining models play a key role in soil prediction and digital mapping processes. A
hierarchical data analysis model provided a unique field variability map and stabilizing
information for optimizing soil sample measurements. The preprocessing and variable selection
steps common to all clustering techniques are imperative for providing a delineated areal extent
(DAE) for developing thematic maps. Compared to other data clustering algorithms, the NSA
clustering tool showed a unique capacity to provide spatially-contiguous clusters, allowing the
delineation of an optimum number of zones. Moreover, this software was tested and demonstrated
that it was capable of handling a significant number of variables and high-density data layers for
delineating the optimum (or defined) number of zones in a more precise way. The robust zone
delineation process and georeferenced thematic maps increase efficiency for variable-rate crop

management technologies and are useful for other management purposes.

This research optimized models by assessing proximal soil sensor data (high-density
apparent electrical conductivity and topographic indices) and their predictive properties for the
determination of soil nutrients. Topographic variables showed promising results for the prediction
of soil organic matter and CEC in agricultural fields in Ontario, Canada. Shallow EC, plays an
important role in understanding within-field variability; however, evidence of the applicability of
tested proximal sensing technologies to address spatial variability of certain soil nutrients, such as
potassium (K) proved to be rather limited. In another part of this study, the topographic indices,
ECa parameters along with gamma radionuclides and vegetation responses were modeled to
achieve the best prediction results for multiple soil properties in a production field. In the present
study, a decision tree-based model was applied to determine the importance of each variable. In
the prediction model, an optimum number of variables, mainly topographic, gamma nuclides and
typically normalized difference vegetation index, were employed to achieve the best prediction
results for several properties (i.e., pH, K, Zn), while only the remote sensing vegetation index
combined with EC, data were effective in predicting K at the field-scale. The random forest (RF)
regression (training and testing) analysis indicated that soil variability determined using sensor-
fused data and methods provided better assistance in the construction of precise prediction models
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for macro- and micro-nutrients (i.e., pH, K, CEC and Zn). Performed for the predicted soil
properties using small datasets to evaluate the model’s predictive accuracy, the modeling processes

were more effective in developing reliable digital soil maps than traditional statistical models.

Our findings indicate the powerful potential of proximal soil sensing technologies to define
the site-specific crop production environment in terms of terrain and soil physical characteristics.
The present results suggest that the integration of conceptually different sensors for multiple soil
measurements is useful in optimizing soil characterization and allows a better prediction of certain
soil properties than a single type of measurement. Furthermore, it also improves the soil thematic
maps. Without using these precision technologies and methods, it is quite challenging to deal with
multiscale optimization in an heterogenous landscape or production system, and almost impossible
to produce a precise digital map. Optimized sampling and erroneous data removal models,
supervised machine learning prediction frameworks for high-density geospatial data, could be
implemented as web applications to facilitate appropriate site-specific agronomic and
environmental decisions. Continuing research efforts will explore additional measurement

capabilities that could potentially expand the applicability of proximal soil sensing tools.

Moreover, this research may lead to the development of better thematic soil maps that can
improve digital soil mapping techniques and future site-specific farm management approaches,
thereby, increasing the probability of making the landscape profitable and environmentally
sustainable. These soil maps can be used to implement variable-rate fertilizer recommendations,
liming, or seeding density, thereby, optimizing the use of agricultural inputs by crop producers,
their consultants, and agribusiness representatives. A scaled-up adoption of proximal soil sensing
technologies would provide advances in agricultural crop production, sustainable resource

management and provide great environmental benefits in Canada and the rest of the world.
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Chapter 7: Contribution to Knowledge and Suggestions for Future Research

7.1 Contribution to knowledge

The current research generates knowledge on the processing of high-density and sensor-
fused data at different geospatial scales as well as providing more information on soil thematic
mapping. The newly developed hierarchical data analysis software handled multi-dimensional
variables for understanding zonal heterogeneity and various management practices. This tool can
significantly contribute to big data mining processes in precision farm management. Furthermore,
multiscale soil characterization combining surface and subsurface information provides a unique
guideline for crop producers. This study offers essential knowledge on retrieving and analyzing
high-density sensor data to achieve cost-effective soil sampling and sensor-based soil nutrient

estimation.

The tangible contribution is the ability to evaluate similar data for many agricultural fields
across Ontario. Also, this research is unique in combining RS and PSS data for many fields.
Evaluating EC, and gamma-ray data in parallel is new in terms of exploring soil variability at the
farm scale. This research explored the elements of advanced data modeling, such as the regression
forest. The results did not indicate strong predictability for some chemical properties, which
contribute to understanding agronomic properties, and consequently, innovative analysis is needed
for an improved understanding of soil heterogeneity to enhance the efficiency of site-specific crop
management. This can be done by looking at the differentiation of seeding rates,

irrigation/drainage and/or N management; however, this was outside the scope of this study.

The data integration algorithm and optimization of model hyperparameters improve the
performance of soil prediction methods and provide tools for both local and regional scale decision
support systems. The tree-based regression method and its thematic maps are very effective for
farm scale soil variability assessment and faster decision making. In general, this research provides
strategic opportunities to obtain precise thematic maps and to provide advantages for crop
producers to enhance their decision making to ensure that the production system is profitable and
the landscape remains sustainable over the long term. Ultimately, this will provide information for

better variable-rate fertilizer recommendations and optimal pesticide and herbicide applications.
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7.2 Suggestions for future research

Many critical questions in agricultural research are far from being solved. The present
research with only three sets of objectives was able to address some of these issues; however,
future work is recommended. Continuing research will need to explore additional measurements
of soil physical properties with advanced soil sensing technologies. These tools provide an
assessment of soil health and determine how it can be improved with amendments (manure,
compost, cover crops, fertilizer, etc.). Moreover, future research will validate and implement
results through a set of case studies and disseminate findings among the agricultural farming

communities.

Moreover, sensor fusion with multi-temporal airborne (low and medium altitude platforms)
image spectra, which is valued in many earth science applications, may offer an optimum solution
for field-scale precision agriculture problems. Proximal soil sensing data combined with high-
spatial and multi-temporal microwave data from the Canadian RADARSAT Constellation Mission
(RCM) has not yet been explored for solving agricultural problems. As a big data source, the
Google Earth Engine API will be a potential resource in integrating multi-temporal images with
soil and environmental datasets for agricultural applications. Also, the integration of field-
measured (or lab-measured) spectra with hyperspectral satellite spectra would be beneficial for

digital soil mapping activities at the local level.
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Appendices

A. Data portal all study sites

Table Al PSS and soil sample data web portal: All field data collected from Ontario and preserved in
web repository for this research.

Experimental fields Field Available data Chapter
code numbers

Field boundary

Field elevation (RTK) - 2014 & 2016
DUALEM-21S (EC.) sensing - 2016
Laboratory analysis (soil sample points: 99) - 2014
Field boundary

Field elevation (RTK) - 2015
ON_Linders_GFO LD DUALEM-21S (ECa) sensing - 2015 3,4,&5
Gamma-Ray (SoilOptix) sensing - 2015

Laboratory analysis (soil sample points: 62) - 2015
Field boundary

Field elevation (RTK) - 2015

DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 72) - 2014
Field boundary

Field elevation (RTK) - 2014

DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 26) -2014
Field boundary

Field elevation (RTK) - 2016

DUALEM-21S (EC.) sensing - 2016

Laboratory analysis (soil sample points: 119) - 2014
Field boundary

Field elevation (RTK) — 2012 & 2015
DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 72) - 2014
Field boundary

Field elevation (RTK) - 2014

DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 97) - 2014
Field boundary

Field elevation (RTK) - 2015

DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 74) - 2014
Field boundary

Field elevation (RTK) - 2017

DUALEM-21S (EC.) sensing - 2017

Laboratory analysis (soil sample points: 74)- 2015 & 2017

ON_Hunter GFOND | WH 3&4

ON_Rainbarrel GFO | RB 3&4

ON_Field25_ GFO | F25

ON_Kenmore_GFO | KM

ON_Lamport_GFO LP

ON_Line GFOND | TE

ON_McCarter GFO | SM

ON_Nixon_ND NX
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Field boundary

Field elevation (RTK) - 2014

DUALEM-21S (EC.) sensing - 2015

Laboratory analysis (soil sample points: 51) - 2014
Field boundary

Field elevation (RTK) - 2015

DUALEM-21S (EC,) sensing - 2015

Laboratory analysis (soil sample points: 49) - 2014
Field boundary

Field elevation (RTK) - 2016

DUALEM-21S (EC,) sensing - 2016

Laboratory analysis (soil sample points: 76) - 2016
Field boundary

Field elevation (RTK) - 2016

DUALEM-21S (EC.) sensing - 2016

Laboratory analysis (soil sample points: 51) - 2014

ON_R50_GFO R50

ON_Rhineland_GFO | RL

ON_Schouten_ND ST

ON_Vernon_GFO VN

Ontario PSS Data

Experimental fields

ecspatial location of the experimantal fisld

et
:‘i 1a_G
' »
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nnnnn

Gocgla MyMoos

Note: Get detsited proximal soil sensor dsts, soil szmpling dats, 2nd field boundary tkmz) map by selecting each experimentaf fisid from 2bove List of fields

Figure A1l Web interface for the data repository:
https://sites.google.com/site/omaframcgill2016/project-sites
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B. Scripts for clustering software in Chapter 3

B1 - Python scripts for NSA clustering

[Tt - L= R, B R VR S )

=

-

# md. saifuzzaman@mail.mcgill.ca

# Data import

import math

import pickle

import numpy as np

import scipy.signal

import pandas as pd

from tkinter import *

from tkinter import filedialog
import matplotlib.pyplot as pyplot

#np.set_printoptions(threshold=np.inf)

def latconv(lat,minc,F_lat):
return (lat-minc)*F_lat

def longconv(long,mind,F_long):
return (long-mind)*F long

#Step 1:Import data from text and save

A A A A A s A s s

root = Tk()

#root.withdraw()

filename = filedialog.askopenfilename(filetypes = (("Template files", "* _ txt"), ("ALll files", "*"}))
root.destroy()

if len(filename) > 0:
print("You chose %s" % filename)

#filename="dualem"
nsaData = pd.read table(filename, sep="\t', header="infer', names=None, index col=False, usecols=None)
labels=nsaData.columns.values

#Step 2:Plane coordinates conversion
HHEHERHREERERERERERERHAHAHRRRRREERERERRE

if 'Elevation’ in nsaData.columns:

h=nsaData[ 'Elevation’].mean()#height over elipsoid
else:

h=200 # Where the data has no elevation information
a=6378137 #semimajor axis
b=6356752.3142 #semiminor axis
c=nsaData[ 'Latitude’].mean()#Avarage latitude
d=math.sqrt((a*math.cos(c))**2+(b*math.sin(c))**2)
F_long=(np.pi*math.cos(c)/18@)*((a**2/d)+h) # Longitude factor
F_lat=(np.pi/180)*(((a*b)**2/d**3)+h) # Latitude factor

LongMin = nsaData[ 'Longitude’].min()
LongMax = nsaData['Longitude'].max()
LatMin = nsaData[ 'Latitude'].min()

LatMax = nsaData['Latitude’].max()
convParams = [F_long,LongMin,F_lat,LatMin]

#planer matrix Lat
nsaData[ 'Lat_v'] = nsaData[ 'Latitude'].apply(lambda row : latconv(row,LatMin,F_lat))

#Planer matrix Long
nsaData[ 'Long_x"] = nsaData['Longitude'].apply(lambda row : longconv(row,LongMin,F_long))
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64 #Step 3:Create square grid and cell size

67 gdsz = 40 # cell size

68 gdc = gdsz / 2 # center of the grid cell

69 X = np.array(nsaData[ 'Long_x'])

70 Y = np.array(nsaData['Lat v'])

71 Z = np.array(nsaData.iloc[:,3:-2])

72 xmin=X.min()

73 xmax=X.max()

74 ymin=Y.min()

75 ymax=Y.max ()

76 Xr = np.linspace(xmin, xmax, int((xmax - xmin)/gdsz))
77 Xc=Xr[0:-1]+gdsz/2

78 ¥r = np.linspace(ymin, ymax, int((ymax - ymin)/gdsz))

79 Yc=Yr[0:-1]+gdsz/2

8@ ngx=len(Xc)

81 ngy=len(¥c)

82 [nd,nv]=Z.shape

83  ar=np.zeros((nv, ngy, ngx))

84 zar=np.zeros{(ngy,ngx),dtype=int)
85 = for 1 in range(ngx):

86 - for m in range(ngy):

87 - for n in range(nd):

88 - if max(abs(X[n]-Xc[1]),abs(¥[n]-Yc[m]))<=gdsz/2:
89 zar[m,1]+=1

98 = for 1 in range(ngx):

91 - for m in range(ngy):

92 i=@

93 aux = np.zeros((zar[m, 1],nv))

94 - for n in range(nd):

95 = if max(abs(X[n]-Xc[1]),abs(Y¥[n]-Yc[m]))<=gdsz/2:
96 aws[i, :1 = ZIn, :1

97 i+=1

98 w if(zar[m, 1]==0): # Masking by field area by outside @
ag ar[:, m, 1]=np.zeros((1,nv})
0 ~ else:
101 ar[:, m, l]=np.mean(aux, axis=0)

182 = for 1 in range(ngx):
103 - for m in range(ngy):

184 = if(zar[m,1]>8):

105 zar[m, 1]=1

186

1e7 ?"””""““""”"”""“"""”“""”“”"""”""”"""”“

168 #Step 4: Median filtering, plot and save

169 SRR S e T e s e e

110

111 « for i in range(nv):

112 ar[i,:,:]=scipy.signal.medfilt2d(ar[i,:,:], 5) # 5 x 5 median filtering
113 arMasked=np.ma.masked_where(ar[i,:,:]==0, ar[i,:,:])

114 pyplot.figure()

115 pyplot.imshow(arMasked, interpolation="none’, origin="lower',extent=[0,ngx*gdsz,d,ngy*gdsz])
116 pyplot.title(labels[i+3])

117 pyplot.ylabel( 'Northing')

118 pyplot.xlabel('Easting")

119 pyplot.colorbar()

120 ax=pyplot.gca()

121 ax.set_xticks(np.arange(gdsz, gdsz*(ngx+1), gdsz), minor=True)
122 ax.set_yticks(np.arange(gdsz, gdsz*(ngy+1), gdsz), minor=True)
123 ax.grid(which="minor", color="k', linestyle='-", linewidth=1})
124 pyplot.savefig(labels[i+3]+' .png"', dpi=200)

125 pyplot.close()

126

127

128 z = ar.shape

129 #print (zar.shape)

130 #print (ar.shape)

131 ~ with open('NSATemp.pickle', ‘wb') as outfile:

132 pickle.dump([zar,ar,z,edsz,labels,convParams],outfile)
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153
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

# NSA functions

import pickle

import numpy as np

import xlsxwriter as x1

import matplotlib.pyplot as pyplot

np.set_printoptions(threshold=np.nan)

¥ def mse(valuesmatrix, groupmatrix, mm, NMN):
acum=0
emptygroups=>0
= for j in range(mm):
aux=valuesmatrix[groupmatrix==j+1]
nj=aux.size
= if(nj»a):
acum+=aux.var()*nj
hd else:
emptygroups+=1
return acum/(NN+emptygroups-mm) # MSE calculation

¥ def validlLocations(groupmatrix,nx,ny):
validmatrix=np.zeros((ny,nx),dtype=bool)

Ww=0
= for j in range(nx-2):
= for i in range(ny-2):
valid=np.prod(groupmatrix[i:i+3,j:j+31)
hd if valids»e:
validmatrix[i,j]=True
W+=1

return validmatrix,ww

¥ def sdvFunc(valuesmatrix, validmatrix, ww, nx, ny):

acum=0
= for j in range(nx-2):
= for i in range(ny-2):
= if validmatrix[i,j]:
acum+=valuesmatrix[i:i+3,j:+3].var()
v | if ww==0:
return 0
v else:

return acum/ww
# R2 value will be maximum(1l) when MSE is minimum

v def calculateOF(valuesmatrix, groupmatrix, mm, NN, ffdv, rr2, rr2max):
of=1
v for i in range(nv):
rr2[i]=1.0-mse(valuesmatrix[i,:,:],groupmatrix,mm,NN)/ffdv[i]
of*=rr2[1]**rr2max[1]
return of
#return np.prod(np.power(rr2,rr2max))

¥ def addGroup(valuesmatrix, groupmatrix, validmatrix, mm, NN, ffdv, rr2, rr2max, nx, ny):
mot=0
iflag=False

v for j in range(nx-2):

for i in range(ny-2):

v if(validmatrix[i+1,j+1] and np.prod(groupmatrix[i:i+3,j:j+3]==1)==1):
aux=groupmatrix[i:i+3,j:j+3].copy()
groupmatrix[i:i+3,j:j+3]=(mm+1)*np.ones((3,3))
cof=calculateOF (valuesmatrix, groupmatrix, mm+1, NM, ffdv, rr2, rr2max)
groupmatrix[i:i+3,j:j+3]=aux

hd if cof»>=mof:

iflag=True
mot=cof
mi=i+1
mj:j+1

4
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203
204
205
206
207

2es
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

if(iflag):

return [mof, mi, mj]
else:

return [mof]

v hef extendGroup(valuesmatrix, groupmatrix, coordinates, mm, NN, ffdv, rr2, rr2max, nx, ny):

4

mof=0
iflag=False
for k in range(mm):
for ind in range(len(coordinates[@])): #if(groupmatrix[i+1,j+1]==1):
if(groupmatrix[coordinates[@][ind]+2,coordinates[1][ind]+1]==k+1
or groupmatrix[coordinates[@][ind],coordinates[1][ind]+1]==k+1
or groupmatrix[coordinates[@][ind]+1,coordinates[1][ind]+2]==k+1
or groupmatrix[coordinates[@][ind]+1,coordinates[1][ind]]==k+1):
aux=groupmatrix[coordinates[@][ind]+1,coordinates[1][ind]+1]
groupmatrix[coordinates[8][ind]+1,coordinates[1][ind]+1]=k+1
cof=calculateOF(valuesmatrix, groupmatrix, mm, NN, ffdv, rr2, rr2max)
groupmatrix[coordinates[0][ind]+1,coordinates[1][ind]+1]=aux
if cof>=mof:
iflag=True
mof=cof
mi=coordinates[@][ind]+1
mj=coordinates[1][ind]+1
mhk=k+1

if iflag:

return [mof, mi, mj, mk]
elsze:

return [mof]

#Step 5: Data clustering

w with open('NSATemp.pickle','rb') as infile:

zar,ar,z,gdsz,labels, convParams=pickle.load(infile)
nv=z[2]
ngy=z[1]
ngx=z[2]
N=zar[zar!=0].size
m=1
oldof=[]
[var,w]=validlLocations(zar, ngx, ngy)
fdv=-1*np.ones(nv)
sdv=-1*np.ones(nv)
r2max=-1*np.ones(nv}
for i in range(nv):
fdv[i]=mse(ar[i,:,:],zar,m,N)
sdv[i]=sdvFunc(ar[i,:,:],var,w,ngx,ngy)
r2max[i]=1.0-(sdv[i]/fdv[i])
r2=np.zeros(nv)
oldof.append(calculateOF(ar, zar, m, N, fdv, r2, r2max))
u=addGroup(ar, zar, var, m, N, fdv, r2, r2max, ngx, ngy)

* if(u[@]»oldof[-1]):

m+=1
zar[u[1]:u[1]+3,u[2]:u[2]+3]=m*np.ones((3,3))
oldof.append(ul[@])

flag=True

~ while(flag):

car=np.where(zar[1:-1,1:-1]==1)
u=addGroup(ar, zar, var, m, N, fdv, r2, r2max, ngx, ngy)
v=extendGroup(ar, zar, car, m, N, fdv, r2, r2mex, ngx, ngy)
if((u[@]-oldof[-1])>9*(v[@]-0ldof[-1]})):
if(u[@]>o0ldof[-1]):
m+=1
zar[u[1]:u[1]+3,u[2]:u[2]+3]=m*np.ones{(3,3})
oldof.append(ul[@])
else:
flag=False
elif(v[@]>=oldof[-1]):
zar[v[1],v[2]]=v[2]
oldof.append(v[@])
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273 - klse:

274 flag=False

275 #print(oldof[-1])

276

277 R R LS

278 #Step 6: Output formatting

279 R R LS

280

281 zarMasked=np.ma.masked_where(zar==0, zar)

282 pyplot.imshow(zarMasked, interpolation="none', origin="lower', extent=[0,ngx*gdsz,0, ngy*gdsz])

283 pyplot.title( Zones")

284 pyplot.ylabel( 'Northing")

285 pyplot.xlabel('Easting')

286 pyplot.colorbar()

287 ax=pyplot.gca()

288 ax.set_xticks(np.arange(gdsz, gdsz*(ngx+1), gdsz), minor=True)
289 ax.set_yticks(np.arange(gdsz, gdsz*(ngy+1), gdsz), minor=True)
290 ax.grid(which="minor", color="k', linestyle="-", linewidth=1)
291 pyplot.savefig( ' zones.png', dpi=200)

292 pyplot.close()

204 pyplot.figure()

295 pyplot.plot(np.power(oldof,1.0/nv))
296 pyplot.title( 'Objective function')
297 pyplot.ylabel('R*2")

298 pyplot.xlabel('Iteration")

299 pyplot.savefig('OF.png', dpi=200)
360 pyplot.close()

3e1

382 v with open('zones.txt", 'w') as outfile:

3683 zar.tofile(outfile,sep=" ", format="%.5f")
3ed

385 v with open('result.pickle’, 'wb') as outfile:
306 pickle.dump([zar,oldof],outfile)

3e7

308 lt Worksheet from the result
309 workbook = x1.Workbook('result.xlsx")
3180 w for i in range(nv):

311 worksheet=workbook.add_worksheet(labels[i+3])

312 - for j in range(ngy):

313 worksheet.write_row('A"+str(ngy-j),ar[i,j,: 1)
314 worksheet=workbook.add_worksheet( zones")

315 w for j in range(ngy):

316 worksheet.write row('A'+str(ngy-j),zar[j,:])

317 worksheet=workbook.add worksheet( stats")

318 headers=[ "Minimum", '"Median’, 'Average’, '"Max', 'Range’]

319 worksheet _write_row('B1l’,headers)
320 ar[ar==0]=np.nan
321 w for i in range(nv):

322 worksheet.write_string('A’+str(i+2),labels[i+3])

323 worksheet.write_number( B '+str(i+2),np.nanmin(ar[i,:,:]))

324 worksheet.write_number('C'+str(i+2),np.nanmedian(ar[i,:,: 1))

325 worksheet.write_number('D'+str(i+2),np.nanmean(ar[i,:,:]))

326 worksheet.write number('E'+str(i+2),np.nanmax(ar[i,:,:]1))

327 worksheet.write_formula('F'+str(i+2}), "=E'+str(i+2)+"-B '+str(i+2))
328 worksheet=workbook.add_worksheet( ' coordinates ")

329 headers2=[ 'Longitude’, 'Latitude’, "Zone"]
330 worksheet _write_row('Al",headers2)

331 w for j in range(ngx):

332 ¥ for i in range(ngy):

333 worksheet.write_number('A'+str(j*ngy+i+2),egdsz*j/convParams[@]+convParams[1])
334 worksheet.write_number('B"+str(j*ngy+i+2),egdsz*i/convParams[2]+convParams[3])
335 worksheet.write number('C'+str(j*ngy+i+2),zar[i,i])

336 workbook.close()
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B2 - Python scripts for k-means clustering

1 # md.saifuzzaman@mail.mcgill.ca

2

3 # k-means

4

5

6 from sklearn.cluster import KMeans
7 from scipy import stats

8 from scipy import signal

9 import numpy as np
10 import math
11 import pandas as pd
12 import matplotlib.pyplot as pyplot
13
14 #np.set_printoptions(threshold=np.inf)
15
16 ¥ def latconv(lat,minc,F lat):
17 return (lat-minc)*F_lat
18
19 ¥ def longconv(long,mind,F_long):
20 return (long-mind)*F long
21
22 v def sdvFunc(valuesmatrix, validmatrix, ww, nx, ny):
23 acum=0.0

24 v for j in range(nx-2):

25 v for i in range(ny-2):

26 - if validmatrix[i+1,]j+1]:

27 acum+=valuesmatrix[i:i+3,j:j+3].var()
28 - if ww==0:

29 return @

E else:

31 return acum/float (ww)

32

33 ¥ def validLocations(groupmatrix,nx,ny):

34 validmatrix=np.zeros((ny,nx),dtype=bool)

35 ww=0

36 ¥ for j in range(nx-2):

37 v for i in range(ny-2):

38 valid=np.prod(groupmatrix[i:i+3,7:3+31)
39 - if valid»o:

48 validmatrix[i+1,j+1]=True

41 wiw+=1

42 return validmatrix,ww
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43
44w def calculateOF(valuesmatrix, groupmatrix, mm, NN, nnv, ffdv, rr2, rr2max):

45 of=1

46 aux=mse (valuesmatrix,groupmatrix,mm,lN, nnv)
47 - for 1 in range(nnv):

48 rr2[i]=1.0-aux[i]/ffdv[i]

49 v if rr2[i]<0:

5@ rr2[i]=0

51 of*=rr2[1]**rr2max[1i]

52 return of[0]

53

54 w def mse(valuesmatrix, groupmatrix, mm, MNN, nnv):
55 acum=np.zeros(nnv)

56 ¥ for j in range(mm):

57 ind=np.nonzero(groupmatrix==j+1)

58 ¥ for k in range(nnv):

59 emptygroups=0

60 aux=valuesmatrix[k,ind[@],ind[1]]
61 nk=aux.size

62 ¥ if(nk>0):

63 acum[k]+=aux.var()*nk

64 w else:

65 emptygroups+=1

66 return acum/{MNN+emptygroups-mm}

67

68 R SR

69 # Read file
70 HEHEEEREEREREHEERHAHARRRRREHEHRHRE
71 filename = 'Hunter.txt'

72 nsaData = pd.read_table(filename, sep="\t', header="infer', names=None, index_col=False, usecols=None)
73 labels=nsaData.columns.values

74 useTime=False

75 ¥ if(useTime):

76 startingColumn=2

77 v else:

78 startingColumn=3

79

e

81 # Project to planar coordinates

82

83 w if 'Elevation’ in nsaData.columns:

84 h=nsaData[ 'Elevation’].mean()#height over elipsoid
85 ¥ else:

86 h=208 # Where the data has no elevation information

87 a=6378137 #semimajor axis

88 b=6356752.3142 #semiminor axis

89 c=nsaData[ 'Latitude'].mean()#Avarage latitude

9@ d=math.sqrt((a*math.cos(c))**2+(b*math.sin(c))**2)

91 F long=(np.pi*math.cos(c)/180)*((a**2/d)+h) # Longitude factor

92 F_lat=(np.pi/180)*({(a*b)**2/d**3)+h) # Latitude factor

93 LongMin = nsaData['lLongitude’].min()

94 LongMax = nsaData['Longitude’].max()

95 LatMin = nsaData[ 'Latitude’].min()

96 LatMax = nsaData[ 'Latitude’].max()

97 convParams = [F_long,LongMin,F lat,LatMin]

98 nsaData[ 'Lat_y'] = nsaData['Latitude'].apply(lambda row : latconv(row,LatMin,F_lat))
99 nsaData[ "Long_x"] = nsaData[ 'Longitude'].apply(lambda row : longconv(row,LongMin,F_long))

101 B R

182 # Apply kMeans

183 SHHHE

104 numZones=228

185 Z = np.array(nsaData.iloc[:,startingColumn:-27)
106 kmeans = KMeans(n_clusters=numZones).fit(Z)

187
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108 AR e R A R R
189 # Convert to raster

11e B R e

111 gdsz = 20 # cell size

112 gdc = gdsz / 2 # center of the grid cell
113 X = np.array(nsaData[ 'Long_x"])

114 Y = np.array(nsaData['Lat_v'])

115 kMeansZ = np.array(kmeans.labels )+1

116 xmin=X.min()

117 xmax=X.max ()

118 ymin=Y.min()

119 ymax=Y.max ()

120 kr = np.linspace(xmin, xmax, int((xmax - xmin)/gdsz))
121 Xc=Xr[0:-1]+gdsz/2

122 ¥Yr = np.linspace(ymin, ymax, int((ymax - ymin)/gdsz))
123 Yc=Yr[0:-1]+gdsz/2

124 ngx=len(Xc)

125 ngy=len(Yc)

126 [nd,nv]=Z.shape

127 ar=np.zeros((nv, ngy, ngx))

128 zar=np.zeros({ngy,ngx),dtype=int)

129 kMeansZar=np.zeros((ngy,ngx),dtype=np.uint8)

138« for 1 in range(ngx):

131 ~ for m in range(ngy):

132~ for n in range(nd):

133 ¥ if max(abs(X[n]-Xc[1]),abs(Y[n]-Yc[m]))<=gdsz/2:
134 zar[m,1]+=1

135 w for 1 in range(ngx):

136 ~ for m in range(ngy):

137 i=20

138 aux = np.zeros((zar[m, 1],nv))

139 kMeansAux = np.zeros(zar[m,1])

148 for n in range(nd):

141 ~ if max(abs(X[n]-Xc[1]),abs(Y[n]-Yc[m]))<=gdsz/2:
142 aux[i, :] = Z[n, :]

143 kMeansAux[i] = kMeansZ[n]

144 i+=1

145 ~ if(zar[m, 1]==0):

146 ar[:, m, 1]=np.zeros((1,nv))

147 kMeansZar[m, 1]=0

148 - else:

149 ar[:, m, 1l]=np.mean(aux, axis=0)

150 kMeansZar[m, 1]=stats.mode(kMeansAux)[0][@]
151 ~ for 1 in range(ngx):

152 ~ for m in range(ngy):

153 ~ if(zar[m,1]>@):

154 zar[m, 1]=1

155
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156}
157 # Apply median filter

158 SRR R s e

159 kMeansZar=signal.medfilt2d(kMeansZar, 5)
160 w for i in range(nv):

161 ar[i,:,:]=signal.medfilt2d(ar[i,:,:], 5)
162

163 S e e e

164 # Compute R2

165 S e e e

166 N=zar[zar!=0].size

167 [var,w]=validlLocations(zar, ngx, ngy)

168 fdv=mse(ar,zar,1,N,nv)

169 sdv=-1*np.ones(nv)

17@ r2max=-1*np.ones(nv)

171 ~ for i in range(nv):

172 sdv[i]=sdvFunc(ar[i,:,:],var,w,ngx,ngy)
173 r2max[i]=1.0-(sdv[i]/fdv[i])

174 r2=np.zeros((nv,1))

175 of=calculateOF(ar, kMeansZar, kMeansZar.max(), N, nv, fdv, r2, r2max)
176 print(np.power(of,1.0/nv))

177

178 S e e e

179 # Create plots

180 e

181 kMeansZarMasked=np.ma.masked_where(kMeansZar==0, kMeansZar)

182 pyplot.figure()

183 pyplot.imshow(kMeansZarMasked, interpolation='none’', origin="lower',extent=[0,ngx*gdsz,0,ngy*gdsz])
184 pyplot.title( 'kMeans zones')

185 pyplot.ylabel('Northing")

186 pyplot.xlabel('Easting')

187 pyplot.colorbar()

188 ax=pyplot.gca()

189 ax.set xticks(np.arange(gdsz, gdsz*(ngx+1), gdsz), minor=True)
190 ax.set_yticks(np.arange(gdsz, gdsz*(ngy+1), gdsz), minor=True)
191 ax.grid(which="minor", color="k", linestyle="-', linewidth=0.1)
192 pyplot.savefig( ' kmeans.png', dpi=200)

193 pyplot.close()
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B3 - k-means clustering maps: Many k-means (5, 15, and 25) clustering maps were

produced for preparing Figure 3.12. Those maps were not provided in Chapter 3.
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Figure B1 k-means data clustering for LD field (k=5)
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Figure B2 k-means data clustering for LD field (k=15)
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C. Random forest modeling for Chapter 5
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Figure C1 Training (dataset split) and minimization of the node variance in the random forest model for
soil SOM prediction.
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Figure C2 Training (dataset split) and minimization of the node variance in the random forest model for
soil CEC prediction.
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Figure C3 Training (dataset split) and minimization of the node variance in the random forest model for
soil P prediction.
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Figure C4 Training (dataset split) and minimization of the node variance in the random forest model for
soil K prediction.
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Figure C5 Training (dataset split) and minimization of the node variance in the random forest model for
soil Mg prediction.
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Figure C6 Training (dataset split) and minimization of the node variance in the random forest model for
soil Mn prediction.
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Figure C7 Training (dataset split) and minimization of the node variance in the random forest model for
soil Zn prediction.
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Figure C8 Training (dataset split) and minimization of the node variance in the random forest model for
soil Ca prediction.
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