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Abstract

In the past five decades, the size of electronic devices in a computer chip has shrunk
exponentially according to the Moore’s law. As electronic devices become smaller
and smaller, the continual down-scaling of the technology is increasingly challenged
by many emerging problems. One of the most important issues is the device-to-
device variation caused by random discrete dopants (RDD) (also known as random
impurities). The RDD effect can render various variations to device properties such as
the material electronic band structures and transport. In this thesis, we investigate
several random impurity induced problems in semiconductor devices by using and
extending first principles parameter-free method.

For bulk system with RDD, the Kohn-Sham density functional theory (KS-DFT)
method can be applied to investigate its electronic properties. We investigated the
band gap and band alignment of GaSbxN1−x (0 < x ≤ 1%) alloys, which can be
seen as a GaN lattice doped with random Sb impurities. Systems with over 1000
atoms were calculated at the HSE06 hybrid functional level. By calculating the band
gap and natural band alignment at different x, we found that with proper amount
of Sb doping GaSbxN1−x should be ideal for photochemical water splitting in solar
fuel applications. For open system (e.g., two-probe system) with RDD, we combine
the non-equilibrium Green’s function density functional theory (NEGF-DFT) method
and the non-equilibrium coherent potential approximation (NECPA) theory to calcu-
late disorder scattering and configuration averaging of physical results. The NECPA
is a powerful method for solving random disordered systems by analytically averaging
the physical properties before a numerical simulation is done. Choosing the linear
Muffin-tin orbitals (LMTO) with atomic sphere approximation (ASA) to implement
KS-DFT, we simulate carrier transport in a boron-nitrogen (B-N) co-doped graphene
Tunnel field effect transistor (TFET). We found that the B-N co-doping opened a
substantial gap that linearly scaled with the co-doping concentration which is appro-
priate for making TFET. We also observed that impurity scattering in the graphene
TFET reduces the band-to-band tunneling current by a substantial factor. When the
impurity concentration in the open system is low (<1%), we show that the NECPA
calculation is simplified and an approximate method for implementing the NECPA

xiv



xv

with LCAO basis is presented. Low concentration approximation (LCA) was made
that the off-diagonal disorder can be neglected when evaluating the transmission.
The validity of this assumption was verified by a tight binding model and the DFT
implementation was verified by a boron doped graphene system. Both showed that
NECPA-LCA gives acceptable results on transport when the impurity concentration
is low. The method was employed to predict the dopant (Cl/Re) limited mobility of
monolayer MoS2.



Résumé

Au cours des cinq dernières décennies, la taille des dispositifs électroniques dans une
puce a diminué de manière exponentielle conformément à la loi de Moore. Alors que
les appareils électroniques deviennent de plus en plus petits, la réduction progressive
de la technologie est de plus en plus mise à mal par de nombreux problèmes émer-
gents. L’un des problèmes les plus importants est la variation d’un dispositif à l’autre
provoquée par des dopants discrets aléatoires (RDD) (également appelés impuretés
aléatoires). L’effet RDD peut entraîner diverses variations des propriétés du disposi-
tif, telles que les structures de bandes électroniques matérielles et le transport. Dans
cette thèse, nous étudions plusieurs problémes aléatoires induits par les impuretés
dans les dispositifs à semi-conducteurs en utilisant et en étendant la méthode sans
paramètre de premiers principes.

Pour les systèmes en vrac avec RDD, la méthode de la théorie de la densité
fonctionnelle Kohn-Sham (KS-DFT) peut être appliquée pour étudier ses propriétés
électroniques. Nous avons étudié la bande interdite et l’alignement des alliages
GaSbxN1−x (0 < x ≤ 1%), qui peuvent être vus comme un réseau GaN dopé avec
des impuretés Sb aléatoires. Les systèmes de plus de 1000 atomes ont été calculés au
niveau fonctionnel hybride HSE06. En calculant l’intervalle de bande et l’alignement
naturel de bande à différents x, nous avons constaté qu’avec une quantité appropriée
de dopage Sb, GaSbxN1−x devrait être idéal pour le fractionnement photochimique de
l’eau dans les applications de carburant solaire. Pour un système ouvert (par exemple,
un système à deux sondes) avec RDD, nous combinons la méthode de la théorie de la
densité fonctionnelle de la fonction de Green (NEGF-DFT) non-équilibrée à la théorie
de l’approximation du potentiel cohérent non-à l’équilibre (NECPA) pour calculer la
dispersion des désordres et la moyenne de configuration des résultats physiques. La
NECPA est une méthode puissante pour résoudre des systèmes désordonnés aléa-
toires en faisant la moyenne analytique des propriétés physiques avant la simulation
numérique. En choisissant les orbitales linéaires Muffin-étain (LMTO) avec approxi-
mation de sphère atomique (ASA) pour mettre enœuvre la KS-DFT, nous simulons
le transporteur dans un transistor à effet de champ (TFET) graphène tunnel dopé
graphène bore-azote (B-N). Nous avons constaté que le co-dopage B-N ouvrait un es-
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pace important qui diminuait de manière linéaire avec la concentration de co-dopage
appropriée pour la fabrication de TFET. Nous avons également observé que la diffu-
sion des impuretés dans le TFET de graphène réduisait considérablement le courant
de tunnel entre bandes. Lorsque la concentration en impuretés dans le système ou-
vert est faible (<1 %), nous montrons que le calcul NECPA est simplifié et qu’une
méthode approximative de mise enœuvre de la NECPA avec LCAO est présentée.
Une approximation basse concentration (LCA) a été faite pour que le désordre hors
diagonal puisse être négligé lors de l’évaluation de la transmission. La validité de
cette hypothèse a été vérifiée par un modèle de liaison étroit et la mise enœuvre de
la DFT par un système de graphène dopé au bore. Les deux ont montré que la
NECPA-LCA donne des résultats acceptables sur le transport lorsque la concentra-
tion en impuretés est faible. La méthode a été utilisée pour prédire la mobilité limitée
du dopant (Cl/Re) de la monocouche MoS2.
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1
Introduction

In the past five decades, the size of electronic devices in a computer chip has shrunk ex-

ponentially according to the Moore’s law—which states that the number of transistors

on integrated circuit chips doubles approximately every 18 months [1]. As electronic

devices become smaller and smaller, the continual down-scaling of the technology

is increasingly challenged by many emerging problems. These include the channel

length modulation effect, drain induced barrier lowering (DIBL), punch through ef-

fect, field dependent mobility, velocity saturation, oxide breakdown, device reliability,

etc. These effects have detrimental influence on device performance [2, 3, 4, 5, 6, 7].

One of the most important issues is the device-to-device variation caused by random

discrete dopants (RDD) (also known as random impurities). The RDD effect can

render a series of fluctuations to device properties including threshold voltage, which

is the voltage needed to turn on a transistor, and sub-threshold slope which is the

gate voltage increment when threshold current increases by one order of magnitude

[8, 9, 10]. In general, RDD fluctuation is induced by some randomness in the dopant

concentration and/or variation of the dopant locations in the device material. It has

been reported that RDD has become a key challenge in modern integrated circuits in-

dustry [11, 12]. Investigating RDD effects is highly important not only to understand

its influence on device characteristics, but also to controll it. Random impurities have

also been used in band engineering, for instance the GaSbxN1−x alloy is a promising

material for electrochemical water splitting application [13], where randomly doped

Sb replaces some N atoms. It outperforms the ZnO based alloys [14] since nitride is

1
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chemically stable in water [15]; it is superior to InxGa1−xN alloy because far fewer Sb

impurities are needed than In to produce the correct band gap.

There are substantial literature of theoretical work on random impurity effects in

electronic devices. These works can be classified into two kinds: those based on pa-

rameterized model calculations and those based on first principles calculations. Take

RDD effects in electronic devices as an example, for model calculations, a classi-

cal drift-diffusion approach is applied to determine the transport current, in which

dopant atoms are simulated by some scattering potentials which are considered a

perturbation to the potential of the intrinsic channel material [16, 17, 18]. In first

principles methods, devices are treated as a large group of atoms and everything is

calculated from quantum mechanics [19, 20, 21]. In parameterized model analysis,

the computation complexity is low hence a large number of samples can be simulated

to obtain an ensemble average of results. But due to lack of quantum effects, there

are discrepancies between the simulation results and experimental data particularly

for devices with ∼10 nm size or smaller [17]. In first principles methods, the simu-

lated results are more reliable but due to the high computational cost, the maximum

number of simulated atoms is very limited. Thus, for instance, to simulate a dopant

concentration of 0.1%, one must calculate 1000 atoms in order to accommodate just

one dopant atom. Since this single dopant can locate at 1000 possible or even more

locations, the calculation becomes prohibitive for first principles. This is why first

principles calculations typically use very large dopant concentrations—much larger

than that in real devices. Even with such unrealistic doping concentrations, one can

only calculate at most a few disorder configurations to obtain the average. As a re-

sult, RDD induced variation has not been investigated to satisfaction from quantum

mechanical first principles.

In this thesis, we apply and extend a newly developed first principles method that

overcomes the above technical difficulties to investigate the influence of random im-

purities. Our technique is based on carrying out the Kohn Sham density functional
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theory (KS-DFT) within the Keldysh non-equilibrium Green’s function formalism

(NEGF), where the disorder scattering of impurity atoms is simplified by the coher-

ent potential approximation (CPA) theory at the single Green’s function level, and

by the non-equilibrium CPA (NECPA) theory at the two-Green’s function correlator

level. Our method allows us to predict the performance of devices with random disor-

der impurities from atomic first principles without any phenomenological parameter

accurately and efficiently. NEGF-DFT is currently the most powerful method to cal-

culate non-equilibrium quantum transport properties of nanostructures. A simpler

version of this approach is to replace KS-DFT by a tight-binding (TB) Hamiltonian

[22] that removes the difficult self-consistent calculation of the equilibrium part of the

Hamiltonian and focuses only on solving the potential induced by non-equilibrium

effects (e.g. external bias). The NEGF-TB technique was applied to describe many

quantum transport problems and achieved success [23, 24, 25, 26]. Nevertheless, the

TB parameters often cannot accurately account for materials properties, especially

when dealing with interfaces between different materials. KS-DFT is a technique that

is widely used in materials physics to predict mechanical and electronic properties and

is, in principle, parameter-free. Traditionally, KS-DFT was applied to systems with

periodic boundary conditions such as crystals or to finite systems such as isolated

molecules, but not to open systems such as the transport junctions. Due to current

flow in devices, transport problems are intrinsically non-equilibrium which cannot

be solely described by KS-DFT. In 2001, Taylor, Wang and Guo [27] established a

first principles technique that combined NEGF and KS-DFT to study non-equilibrium

quantum transport problems of nano-scale devices. In the NEGF-DFT formalism, the

density matrix that enters the KS-DFT is constructed at non-equilibrium by NEGF,

as such the meaning of KS-DFT in the NEGF-DFT formalism is no-longer the usual

ground state KS-DFT. Fig. 1.1 shows a simple sketch of a typical “two-probe” de-

vice structure analyzed by NEGF-DFT. It consists of a central region (in rectangular

box) and two semi-infinite leads (the blue parts outside the box). Parts of the leads,

called buffer layers, are included in the simulation box to ensure a smooth match of
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simulation box

bufferbufferleft lead right leaddevice

Figure 1.1: Diagram of a simulated device in NEGF-DFT method. This is also called a “two-probe”
model. It consists of two semi-infinite leads (left lead and right lead outside the simulation box)
and a central region (in rectangular box). Parts of the leads, called buffer layers are included in
the simulation box to ensure a smooth match of the potential at the edges of the simulation box.
The grey part in the center is the device part (also called “scattering region”). The simulation is
periodically repeated in the cross-section of the device.

the potential at the edges of the simulation box. The grey part in the center is the

device part (also called “scattering region”). This technique has been used to study a

wide range of transport problems in molecular transport junctions [28, 29, 30], carbon

nanotubes [31], tunneling junctions [32, 33], spin transport [34], heterojunctions [35],

metal wires [36], etc. In this thesis, NEGF-DFT will be applied to investigate trans-

port of boron-nitrogen (B-N) doped graphene Tunnel-FET (TFET) and mobility of

chlorine (Cl) or rhenium (Re) doped MoS2.

To handle disorder scattering due to RDD, we shall apply the coherent poten-

tial approximation (CPA) and non-equilibrium vertex correction (NVC) formalism

developed by Ke, Xia and Guo [37] in 2008 or its mathematically equivalent - the

non-equilibrium coherent potential approximation (NECPA) formalism developed by

Zhu, Liu and Guo [38] in 2013. This technique allows one to deal with non-equilibirum

transport problems of disordered systems. CPA is a successful and widely used tech-

nique for studying random substitutional disorders in solids [39, 40]. It is usually

implemented with Korringa-Kohn-Rostoker (KKR) [41], a method for calculating

electronic structures, and linear Muffin Tin orbital (LMTO) [42, 43, 44] method with

atomic sphere approximation (ASA) of KS-DFT. In CPA, an effective medium is

constructed self-consistently to determine the configuration averaged physical prop-

erties of random systems. CPA drastically reduces the computational complexity

for studying disordered system. To simulate a disordered system having N possible
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disorder configurations, in principle one has to carry out N calculations to perform

the disorder configuration averaging. In CPA, one derives an averaged formula for

physical quantities, averaged density matrix, averaged Hamiltonian, averaged conduc-

tance, etc., and evaluates them only once. Traditionally, CPA is only applicable to

equilibrium problems [45, 46]. The extension of CPA to solve non-equilibrium prob-

lems such as quantum transport, is achieved by a further formulation of the NVC

[37] or NECPA theory [38] which allows one to calculate the configuration average of

the non-equilibrium density matrix (e.g. NEGF), transmission coefficients and other

quantities (details in later parts of the thesis). To date, the CPA-NVC and NECPA

formalism have produced many exciting results [36, 47, 48, 49, 50, 51]. Finally, a

drawback of these CPA/NECPA implementations is that they have requirements on

the lattice structures. For example, the LMTO-ASA is solely suitable for close-packed

lattices. For non close-packed structures, vacuum spheres in space are used to make

the structure close-packed (see Fig. 7.1 in Chapter 7 for ASA of graphene and mono-

layer black phosphorus). Such complicated vacuum space filling must be worked out

for each problem. It is highly demanded the CPA/NECPA be implemented with the

linear combination of atomic orbitals (LCAO) basis which requires no vacuum space

filling. The difficulty comes from the fact that the Hamiltonian has off-site disorders

in LCAO unlike in KKR and LMTO-ASA, where disorders only appear on-site. There

have been several attempts to overcome this difficulty. One of the most important at-

tempts is the Blackman-Esterling-Berk (BEB) method [52]. In BEB, the off-diagonal

disorders are projected onto a higher dimensional Hamiltonian space so that they

occupy only the diagonal part of the new Hamiltonian. However, it appears very

difficult to reduce the BEB theory to calculate transport. In this work, we propose

the NECPA-LCA (low concentration approximation) that has been implemented with

LCAO basis. It is verified that the off-site disorder under LCAO can be neglected

when the impurity concentration is low, which is the case for most semiconductor

problems. CPA/NECPA applies well to cases where lattice local distortion caused by

impurities can be neglected. This is satisfied by most cases where impurity and host
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atoms have similar radii, such as boron in graphene. When impurity atom is much

larger/smaller than host atom (e.g., Sb in GaN), lattice distortion around impurities

plays an important role in the modification of the band structure. In these case, KS-

DFT should be applied with the special quasirandom structures (SQS) method [53]

which we shall use. This method gives the best periodic supercell that approximates

the true disordered state for a given number of atoms per supercell.

In this thesis, we start by investigating impurity effect of a semiconductor problem,

the dilute doping by Sb atoms to GaN, using highly accurate KS-DFT at the hybrid

exchange-correlation potential level where over 1000 atoms are calculated to directly

predict band bowing due to Sb doping. The KS-DFT theory will be introduced in

Chapter 2 and its application to GaSbxN1−x will be detailed in Chapter 3. Then,

for transport at non-equilibrium, such direct calculation cannot be carried out and

approximate schemes are introduced, including the CPA theory, the NVC theory,

and the NECPA theory. These theories were most easily implementable - as done

in the past, in site-oriented DFT methods such as the LMTO approach [54], which

we shall apply for a number of investigations. Related theories and implementations

will be presented in Chapter 4 and 5 followed by Chapter 6 where we apply them to

investigate the doped graphene TFET. For semiconductor devices where the impurity

concentration is typically low, we shall show in Chapter 7 that these equilibrium and

non-equilibrium CPA methods can be extended to DFT methods based on LCAO,

and we achieved such a technical advance (the NECPA-LCA method) which proved

to be useful in practical semiconductor simulations. Finally, in Chapter 8 a brief

summary of this thesis will be presented and future works suggested.



2
Density Functional Theory

The topic of this thesis concerns the parameter-free transport simulation of materials

that has random disorders inside. The formalism that allows us to perform such cal-

culations is built on the foundation of two mature theories, namely density functional

theory (DFT) and non-equilibrium Green’s functions (NEGF) theory. Within this

transport formalism, DFT is responsible for constructing the material Hamiltonian

and density of states, whereas NEGF describes how the electronic states are populated

via non-equilibrium quantum statistics. Based on the two, the non-equilibrium co-

herent potential approximation deals with the random disorder scattering by finding

the Green’s function of an effective medium of the disordered material. The subject

of this chapter is to present DFT.

DFT is a successful quantum theory for predicting mechanical and electronic prop-

erties of materials widely used in condensed matter physics, material science, compu-

tational physics and quantum chemistry [55, 56, 57, 58]. We employ DFT to construct

the Hamiltonian of the material at equilibrium. This chapter is devoted to present

a brief but comprehensive introduction of DFT and some of its implementation such

as the Linear Combination of Atomic Orbitals (LCAO) and Linear Muffin Tin Or-

bital (LMTO) implementations. The contents of this chapter are outlined as follows.

Section 2.1 is devoted to presenting the basic theories of DFT. Section 2.2 presents

the LCAO basis and its implementation. Section 2.3 will be devoted to an introduc-

tion of LMTO basis and implementation. Finally, section 2.4 is a brief summary of

this chapter. From now on, atomic units are applied to all derivations and equations

7
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throughout the thesis unless otherwise specified.

2.1 Basic Theorems and Assumptions of DFT

In general, quantum chemistry of materials requires solving a many body Schrödinger

equation which consists of many nucleis and even more electrons. This is a compli-

cated problem and its numerical solution is prohibitive for any realistic materials

according to today’s computation power. By employing the Born-Oppenheimer ap-

proximation, the problem is reduced to a “much simpler” electron Schrödinger equa-

tion due to the fact that the motion of nuclei is way slower than that of electrons

[59]. In this section we present some basic but important theories related to solving

the electron Schrödinger equation. Section 2.1.1 will discuss the Born-Oppenheimer

approximation which separate the dynamics of the ions and electrons. Section 2.1.2

will be devoted to the Hohenberg-Kohn (HK) theorem [60]—the most basic theorem

of DFT. It simplifies the N -interacting electrons many body problem into a variation

problem expressed by the ground state single particle density ρ(r), where r denotes

the real space position. Section 2.1.3 is dedicated to the Kohn-Sham (KS) equa-

tions [61] which provide a feasible method to solve N -interacting electrons problem

numerically by a “mean field”-like approach. Section 2.1.4 is an introduction to the

exchange-correlation (XC) functionals used in the projects presented in this thesis.

Finally, Section 2.1.5 presents a brief description and framework on how DFT works

in numerical implementations.

2.1.1 Born-Oppenheimer Approximation

Born-Oppenheimer approximation is the most basic approximation to solve multi-

particle problems. It was first introduced to solve time-dependent Schrödinger equa-

tion but it also gives hint on how to solve time-independent one. We start from the
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Schrödinger equation of the many particle system:[∑
i

−1

2
∇2
i +

∑
I

− 1

2MI

∇2
I +

∑
i>j

1

|ri − rj|
−
∑
i,I

ZI
|ri −RI |

+
∑
I>J

ZIZJ
|RI −RJ |

− E

]
Ψall({ri} , {RI}) = 0,

(2.1)

where five summation terms on the left side are the electronic kinetic energy, the

nuclear kinetic energy, the electronic coulomb interaction energy, the electron-nucleus

coulomb interaction energy and the nuclear coulomb interaction energy, respectively.

We have used the lowercase letters for electron indices and position vectors, and

uppercase letters for nucleus. MI denotes the mass of the nucleus and ZI/J denotes

the nuclear charge. ri/j and RI/J are the electron and nucleus positions in space. Ψall

refers to the system wave function (including both electrons and nuclei) and E the

system eigen energy. The lowest eigen energy E is called the ground state energy. As

will be shown in the following subsection, the system ground state plays a significant

role in DFT.

In any solid state material, both the ions and electrons will move rapidly from a

classical point of view: ions vibrate around their equilibrium positions and electrons

move around their corresponding ions. Since ions have much larger masses than

electrons (more than 1000 times), they tend to move much slower than electrons,

i.e., in a dynamical sense, the electrons can be regarded as particles that follow the

nuclear motion adiabatically, meaning that they are “dragged” along with the nuclei

without requiring a finite relaxation time. This picture arises the Born-Oppenheimer

ansatz, it is assumed that ion motion is much slower than electron motion that they

can be considered as fixed in space when one solves the electron motion. This way

the electrons can be treated as to move in an external potential generated by the

“frozen” ions and the system ground state wave function Ψall is able to be factorized
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into an electronic part and a nuclear part:

Ψall({ri} , {RI}) = Ψe({ri} , {RI})Ψc({RI}), (2.2)

where we have used the subscript e(c) to denote the electronic (nuclear) part. The

electronic part Ψe depends on both the electronic spatial coordinates and the nuclear

positions and the nuclear part Ψc depends only on the nuclear positions. For the sake

of simplicity, we rewrite the original Schrödinger equation (2.1) into a more compact

form by defining some symbols for the five terms in Eq. (2.1):

[Te + Tn + Uee({ri}) + Uen({ri} , {RI}) + Unn({RI})− E]

Ψe({ri} , {RI})Ψc({RI}) = 0.
(2.3)

This equation is still too complicated to solve since the coordinates of electrons and

nuclei couple throughout the equation. One useful trick to simplify the problem is

to separate {rI} and {RI} as much as possible. Eq. (2.3) can be grouped into the

following form

[Te + Uee({ri}) + Uen({ri} , {RI})] Ψe({ri} , {RI})
Ψe({ri} , {RI})

= E − [Tn + Unn({RI})] Ψc({RI})
Ψc({RI})

,

(2.4)

where the approximation that the nuclear wave function Ψc is more localized than

the electronic wave function Ψe

|∇IΨc| � |∇IΨe| (2.5)

is applied. This relation originates from the mass difference between electrons and

nuclei. As mentioned in previous paragraph, nuclei are several thousand times heav-

ier than electrons, therefore the nuclear components of the wave function are more

localized in space than the electronic component of the wave function. Considering

this in the classical limit, the nuclei are fully localized about single points representing
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classical point particles. Thus, it follows that the nuclear wave function rises more

steeply than the electronic wave function, which is exactly what is implied in Eq.

(2.5). The left hand side of Eq. (2.4), the electronic ground state eigenvalue, must

be of {RI} since the right hand side is a function of {RI} only. Let it be Ee {RI},

the system Schrödinger equation can be separated into two equations:

[Te + Uee({ri}) + Uen({ri} , {RI})] Ψe({ri} , {RI}) = Ee {RI}Ψe({ri} , {RI}), (2.6)

[Tn + Unn({RI}) + Ee {RI}] Ψc({RI}) = EΨc({RI}), (2.7)

Eq. (2.6) gives a set of electronic states {Ψn
e ({ri} , {RI})} and corresponding eigen-

values {En
e {RI}}. n indices the solution of Eq. (2.6). {En

e {RI} + Uee {RI}} de-

pend parametrically on the nuclear positions {RI} and are called Born-Oppenheimer

energy surfaces. The Born-Oppenheimer approximation is invalid when the Born-

Oppenheimer energy surfaces are coupled, e.g., the system reaches a nuclear configu-

ration where the energy difference between two energy surfaces |Ei
e {RI}−Ej

e {RI} | is

close to or smaller than the thermal energy kBT , where kB is the Boltzmann constant

and T is the system temperature.

To sum up, Born-Oppenheimer approximation is reasonable for most situations

where electrons follow the nuclei motion adiabatically. This is ensured in most sit-

uations by the fact that nucleus has much larger mass than the electron. For the

sake completeness, we point out that in certain chemical processes involving light

elements, Born-Oppenheimer approximation can break down and the dynamics of

both ions and electrons must be treated on equal footing [59]. We do not consider

such situations throughout this thesis. In the following subsections, we focus on the

electronic Schrödinger equation (Eq. 2.6). The subscripts e for Ψe and Ee are omitted

for the sake of simplicity. Indices ri and RI are neglected when not necessary.
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2.1.2 Hohenberg-Kohn Theorem

In previous subsection, we introduced the Born-Oppenheimer approximation which

reduces the nuclear degrees of freedom as parameters in the electronic Schrödinger

equation. While it brings a significant reduction in complexity, the many-electron

problem still remains unapproachable, especially for large system calculation, e.g., real

materials computation. In 1964, Hohenberg and Kohn proposed the Hohenberg-Kohn

(HK) theorem which further reduces the complexity of the problem [60]. HK theorem

reduces the fully interacting many-electron problem to determining the ground state

single particle density ρ(r),

ρ(r) = N
∏

i=2...N

∫
driΨ

∗({ri})Ψ({ri}). (2.8)

where N is the number of electrons and Ψ(r) is the electronic wave function. HK

theorem states that the non-degenerate electronic ground state energy (E) of an N -

electron system is a unique functional of the system ground state electron density

ρ(r),

E = E [ρ (r)] . (2.9)

As proven by Hohenberg and Kohn, all properties of the system, including excited

state properties, are in principle exact functionals of the ground state electronic den-

sity. The reason for this is that there is a one-to-one mapping between the ground

state density and the external potential. A simple proof to this theorem is as follows.

For a system with N interacting electrons, the Hamiltonian is given as

H =
N∑
i=1

−∇2
i

2
+
∑
i>j

1

|ri − rj|
+

N∑
i

Vext (ri) , (2.10)

where ∇i is the gradient operator to the ith electron wave function and Vext (r) refers

to the external potential generated by the nuclear ions. It is obvious that the system is

uniquely determined by the number of electrons N and the external potential Vext (r).
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Moreover, electron number N can also be determined by the electron density ρ (r) via

N =
∫
drρ (r). Therefore the proof to this theorem is to prove that the ground state

electron density ρ (r) can uniquely and universally determine the external potential

Vext (r). If this claim is proven, physical properties including the total energy E and

wave function Ψ (r1, r2, ..., rN) can be determined uniquely and universally by the

electron density ρ (r).

Suppose we can have two different external potentials denoted as Vext (r) and

V ′ext (r) corresponding to the same electron density ρ (r). These two different poten-

tials have their corresponding energies E and E ′, Hamiltonians H and H ′ as well as

wave functions Ψ and Ψ′, respectively. Note E is for non-degenerate ground state,

we have

E = 〈Ψ|H |Ψ〉

< 〈Ψ′|H |Ψ′〉

= 〈Ψ′|H ′ |Ψ′〉+ 〈Ψ′|H −H ′ |Ψ′〉

= E ′ +
1

N

N∑
i

∫
driρ (ri) (Vext (ri)− V ′ext (ri))

= E ′ +

∫
drρ (r) (Vext (r)− V ′ext (r)), (2.11)

where the last equal sign has used the fact that all the ρ(ri)’s corresponds to the same

electronic density so that the N terms in the summation equal each other. We also

have a similar inequality for E ′,

E ′ = 〈Ψ′|H ′ |Ψ′〉

< 〈Ψ|H ′ |Ψ〉

= 〈Ψ|H |Ψ〉+ 〈Ψ|H ′ −H |Ψ〉

= E +

∫
drρ (r) (V ′ext (r)− Vext (r)). (2.12)

From these two inequalities we arrive at E+E ′ < E ′+E, a contradiction. Therefore,
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for non-degenerate ground state, there can be only one external potential Vext (r)

corresponding to the ground state electron density ρ (r). Thus the HK theorem is

proven for a non-degenerate ground state case. In fact the HK theorem is also correct

for the case of degenerate ground state as shown in Ref. [62].

From the above discussion, we see that the ground state electronic density uniquely

and universally determines all properties of an N -electron system. This is also true

for the electronic total energy E [ρ (r)]. Therefore we can obtain all the properties of

a system by minimizing a unique, universal energy functional E [ρ (r)] which is the

central spirit of DFT. Usually the total energy functional has the form of

E [ρ (r)] = T [ρ (r)] +
1

2

∫
drdr′

ρ (r) ρ (r′)

|r− r′|
+

∫
drρ (r)Vext (r) + ẼXC [ρ (r)] . (2.13)

The first term refers to the kinetic energy, the second term is the classical electron-

electron Coulomb interaction energy (or the Hartree energy) and the third term is the

electric energy due to the electron-nucleus interaction. The last term is a non-classical

term including the exchange energy (X) and the correlation energy (C). The exchange

energy refers to the quantum effect between identical particles and is known as the

Pauli repulsion effect for electrons. The correlation effect is a result of the collective

behavior of electrons to screen and decrease the Coulombic interaction. More details

about the ẼXC [ρ(r)] term are described in Section 2.1.4. Up to this point, it seems

that our problem can be solved by simply minimizing the total energy using Eq.

(2.13). Unfortunately, the exact expression for the kinetic energy functional T [ρ(r)]

and ẼXC [ρ (r)] are generally unknown for the many body Coulomb problem and the

numerical minimization process of Eq. (2.13) is hard to achieve. Therefore some

further approximations are needed.
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2.1.3 Kohn-Sham Equation

Eq. (2.13) indicates that the original many-electron problem is equivalent to min-

imizing the energy functional E[ρ(r)]. Kohn and Sham proposed a simple way to

achieve this in 1965 [61] by mapping the problem of interacting electrons onto a ficti-

tious system of non-interacting “electrons”. By introducing a series of auxiliary wave

functions {ϕi}, the electron density can be formulated as

ρ (r) =
N∑
i

|ϕi (r)|2, (2.14)

where N denotes the number of electrons. We should mention that these auxiliary

wave functions satisfy 〈ϕi| ϕj〉 = δij if they are orthonormal. Now it is clear that

the total energy in Eq. (2.13) is a functional of auxiliary wave function {ϕi}. To

minimize the total energy functional E[ρ(r)] under the constraint 〈ϕi| ϕj〉 = δij, we

apply the variational principle. This is done by the Lagrange multiplier method. By

introducing the Lagrange multiplier εi, we arrive at the condition for minimizing Eq.

(2.13)
δE [ρ (r)]

δϕi
− εiϕi = 0. (2.15)

After inserting Eqs. (2.13) and (2.14), we obtain:

(
−∇2

2
+

∫
dr′

ρ (r′)

|r− r′|
+ Vext (r) + VXC (r)

)
ϕi (r) = εiϕi (r) , (2.16)

which is the well-known Kohn-Sham equation. Here we have absorbed the difference

between the exact kinetic energy T [ρ(r)] and the sum of single-particle kinetic energy

into the ẼXC and denote it as EXC . VXC (r) is defined as

VXC (r) =
δEXC [ρ (r)]

δρ (r)
. (2.17)
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Introducing

Veff (r) =

∫
dr′

ρ (r′)

|r− r′|
+ Vext (r) + VXC (r) , (2.18)

Eq. (2.16) can be written in a simpler form

(
−∇2

2
+ Veff (r)

)
ϕi (r) = εiϕi (r) . (2.19)

This is a mean field equation. All many-body effects are replaced by a simple mean

field. Thus we see that the original many-body problem has been reduced to a single

particle non-interacting Schrödinger-like equation. If the exact expression of Veff (r)

is worked out, by solving the Eq. (2.19) the energy levels {εi} and wave functions {ϕi}

can be obtained. The KS eigen functions {ϕi} are introduced as auxiliary functions

that help us to solve the original many-electron Schrödinger problem. Their physical

meaning is not clear but in general literature of DFT and what follows it is standard

practice to assume they represent real quasiparticles eigen functions [63]. We shall

proceed to interpret the eigenvalues and eigen functions as those of real quasiparticles

in the rest of the thesis.

2.1.4 Exchange Correlation Potential

As discussed in the previous section, the only remaining issue for solving the KS Eq.

(2.19) is the determination of the exchange-correlation potential of Eq. (2.17). Here

we present a brief introduction to the exchange-correlation functionals used in this

thesis.

The local density approximation (LDA) [64, 65] and the generalized gradient ap-

proximation (GGA) [66] are the most widely used XC functionals to date. In LDA

the XC energy is a sole function of the local electron density ρ (r)

ELDA
XC = ELDA

XC [ρ (r)] . (2.20)
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The GGA goes one step further than LDA by considering that the XC energy is a

functional of both the local electron density ρ (r) and its gradient in real space ∇ρ (r)

EGGA
XC = EGGA

XC [ρ (r) ,∇ρ (r)] . (2.21)

Because more information for electron density is provided in GGA, it may give more

accurate results than LDA but is slightly more difficult to calculate.

In LDA, the XC energy is expressed as

ELDA
XC [ρ (r)] =

∫
drρ (r) εLDAXC [ρ (r)], (2.22)

where εLDAXC [ρ (r)] is the density of XC energy in real space. In commonly applied

form [67, 68], εLDAXC is frequently split into an exchange part and a correlation part

εLDAXC = εLDAX + εLDAC . The expression of εLDAX is derived from homogeneous electron

gas and takes the form

εLDAX [ρ (r)] = −3

4

(
3

2π

) 2
3 1

rs
, rs =

(
3

4πρ(r)

) 1
3

(2.23)

as proposed by Dirac [69]. The correlation part εLDAC is more complicated. There is

no exact formula for correlation up to date. Its expression is worked out by fitting

parameterized formula to higher level computation results such as quantum Monte

Carlo simulation results (the Ceperley-Alder data) [70]. Such parametrizations are

widely used in quantum-chemical codes. For example, in 1981, Perdew and Zunger

suggested the following formula for εLDAC [67]

εLDAC (rs) =


γ

1 + β1r
1/2
s + β2rs

, if rs ≥ 1,

A ln rs +B + Crs ln rs +Drs, if rs < 1,

(2.24)

where γ, β1, β2, A, B, C and D are parameters that has to be fitted. This formula is

usually named as “PZ81” in many DFT or NEGF-DFT codes. The PZ81 parametriza-
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tion has several shortcomings, such as an artificial discontinuity of second and higher

derivatives at rs = 1. Other forms of LDA are proposed to overcome this shortcom-

ing, e.g., the “VWN” by Vosko, Wilk and Nusair [71], and “PW92” by Perdew and

Wang [68]. We have used the PZ81 for the LDA XC function throughout the thsis

since it works well with our problems and it is computationally cheap.

In GGA, the spirit is to include local gradient∇ρ(r) information in the XC formula

so that it describes better the inhomogeneity of the system. Early attempts suggest

that a naive expansion in orders of |∇ρ(r)| was less accurate than LDA [66]. This

can be understood in terms of exact sum rules and constraints on EXC derived from

the exchange-hole [66]. It turns out that naive gradient expansion violated some of

these constraints while the LDA does not. The reason is that LDA corresponds to

a physical system (homogeneous gas) while the gradient expansions correspond to

unphysical system. The GGA was introduced by explicitly constructing a functional

that met many of the known constraints imposed on EXC [66]. PBE is the most

successful version of GGA and is proposed by Perdew, Burke and Ernzerhof in 1996

[72]. We briefly introduce the PBE functional as below.

The XC energy is partitioned into two parts like in LDA

EPBE
XC = EPBE

X + EPBE
C . (2.25)

PBE exchange energy has the form

EPBE
X (ρ,∇ρ) =

∫
drρεLDAX F PBE

X (s), (2.26)

where

F PBE
X = 1 +

µs2

1 + µs2

κ

, (2.27)
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is a dimensionless function. s is the dimensionless density gradient and takes the form

s =
|∇ρ|

2(3π2)1/3ρ4/3
. (2.28)

κ and µ are parameters to be determined from known constraints [66]. The second

term of F PBE
X is the density gradient contribution to the exchange energy.

The formula for the correlation part is more complicated and we list them as

follows:

EPBE
C (ρ,∇ρ) =

∫
dr
[
εLDAC +HPBE

C (rs, η, t)
]
,

HPBE
C (rs, η, t) = γ′φ3 ln

[
1 +

β

γ′
t2
(

1 + At2

1 + At2 + A2t4

)]
,

A(rs, η) =
β

γ′
1

e−ε
LDA
C /γ′φ3 − 1

,

φ(η) =
1

2

[
(1 + η)2/3 + (1− η)2/3

]
,

(2.29)

HPBE
C denotes the density gradient contribution to the correlation energy. γ′ and

β are parameters determined from physical constraints [66]. η = (ρ↑ − ρ↓)/ρ is

the relative spin polarization. t = ∇ρ/2φρks is the reduced dimensionless density

gradient. ks =
√

4kF/π is the Thomas-Fermi screening wave number. kF = (3π2ρ)1/3

is the Fermi wave vector. Compared to other GGA forms, PBE provides an accurate

description of the linear response of the uniform electron gas, correct behavior under

uniform scaling, and a smoother potential. We note that in the PBE correlation

formula the LDA correlation energy is required. It can be taken from PZ81, PW92

or VWN. PBE is used for GGA throughout the thesis unless otherwise specified.

Though LDA and GGA earned a great success in the past decades for predicting

atomic structures of condensed phase materials (bond lengths, total energies, etc.),

they fail to quantitatively predict band gaps for semiconductors and insulators as

well as physical quantities associated with the gaps (e.g. exciton binding energy).

Several attempts have been devoted to overcome this issue by making some empirical
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Figure 2.1: Comparison of the band gaps calculated by RESCU with HSE06 functional and experi-
mental data. Group V, III-V and II-VI semiconductors are plotted in the figure. Dotted line refers
to straight line y = x. From left to right, the materials are InAs, InSb, Ge, GaSb, Si, GaAs, CdSe,
InP, CdTe, AlSb, ZnTe, CdS, ZnSe, AlP, AlAs, GaP, ZnS, C and BN.

assumption (e.g., the modified Becke-Johnson semi-local exchange potential [73]) or

taking into account part of the XC energy at some higher level (e.g., the hybrid

functional [74, 75]). The later is considered to be more reasonably at physics level

and one of its most popular member, HSE06 developed by Heyd-Scuseria-Ernzerhof,

has been implemented into the DFT code RESCU developed at McGill University

[76].

HSE06 is a type of hybrid functional which expresses the complicated XC func-

tional in terms of the pieces from PBE and exact exchange

EXC = aEex
X + (1− a)EPBE

X + EPBE
C , (2.30)

where Eex
X is the exact exchange functional. It differs from the exchange functionals

in Eqs. (2.23) and (2.26). It is calculated exactly. EPBE
X and EPBE

C are exchange

and correlation functionals from PBE. a is the mixing parameter which tells the
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percentage of each functional and is determined by perturbation theory [77]. Eex
X is

calculated from 〈Ψ|V̂cou|Ψ〉, where Vcou =
∑

i>j
1

|ri−rj|
is the coulomb operator. In

section 2.1.3 we have introduced a series of auxiliary functions {ϕi} and the system

ground state wave function Ψ should be expanded in terms of these single particle

functions. Finally the calculation of Eex
X involves calculating many electron repulsion

integrals

〈ij|mn〉 =

∫ ∫
ϕi(r)ϕj(r)ϕm(r′)ϕn(r′)

|r− r′|
d3rd3r′. (2.31)

However, the coulomb operator is a non-local operator and it decays very slowly in

distance, which makes the computation of the exact exchange very expensive. In

HSE06, the coulomb operator is split into short-range (SR) and long-range (LR)

components
1

r
=

erfc(ωr)

r
+

erf(ωr)

r
, (2.32)

where erf() and erfc() are the error function and complementary error function.

erfc(ωr)/r decays very fast with r and ω is the parameter which controls the de-

cay rate of the SR term. For ω = 0, the LR term becomes zero and the SR term is

equivalent to the full Coulomb operator. The opposite is true for ω →∞. In HSE06,

the LR contribution is neglected since it is found that the LR term only contributes

less than a few percent to the total exchange energy. Neglecting LR terms in exact

exchange gives

EHSE06
XC = aEex,SR

X (ω)− aEPBE,SR
X (ω) + EPBE

XC , (2.33)

where EPBE,SR
X is the SR component of the PBE exchange energy. It is the modifi-

cation of the original PBE XC functional and details can be found in Ref. [74]. In

HSE06, ω is usually set to be 0.15 and a is chosen to be 0.25. HSE06 is particularly

successful especially in predicting the band gap of semiconductors. In Fig. 2.1 we

have plotted the band gaps of some popular group V, III-V and II-VI semiconduc-

tors calculated by RESCU [78] with HSE06 functional [74] and compared them with

experimental data. The experimental data are extracted from Ref. [79]. We note
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Figure 2.2: Flowchart of self-consistent solution procedure in DFT calculation.

that some calculated band gaps are slightly smaller than experimental ones for wide

band gap materials due to the fact that we are using the same mixing parameter a

for all materials. Good agreement has been observed between the two and meanwhile

RESCU is superior in computational speed than other DFT codes such as VASP due

to the incorporation of the computationally efficient technique described in Ref. [76].

In our later application chapter, RESCU with HSE06 functional will be used to study

the band gap engineering of electrochemical materials.

2.1.5 Self-consistent Procedure of DFT

We summarize the DFT self-consistent procedure in Fig. 2.2. The KS Eq. (2.16) tells

us that the KS Hamiltonian is solely determined by the electron density. Therefore,

given a proper initial guess to the electron density, a series of wave functions are

determined by solving the KS equation. In this thesis, the initial guess is chosen to

be the neutral electron density ρNA (r) which is a sum over electron density of isolated

atoms that form the material. Then a new electron density is obtained from these

KS wave functions via Eq. (2.14). This process is repeated until self-consistency is

achieved, namely until results of the present iteration step differ from the previous step

by less than a pre-specified numerical tolerance, typically at the 10−5 Hartree level

for the monitored physical quantities (e.g. elements of density matrix, Hamiltonian

matrix, total energy, etc.).

For the numerical solution of the KS equation, we need to choose some basis under
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which the Hamiltonian (wave function) is expressed in a matrix (vector) form. In this

thesis, we employ the atomic centered basis such as the LCAO and LMTO. The reason

that we choose atomic centered basis is that the Green’s functions are needed in the

later chapters (Chapter 4 and 5) when dealing with transport. With atomic centered

basis, the Hamiltonian is a sparse matrix so that the Green’s function - inverse of

Hamiltonian matrix - can be calculated efficiently. The numerical program used in

this thesis is implemented by the technical computing platform Matlab.

2.2 Linear Combination of Atomic Orbital Implementation

This section is dedicated to introduce some details of the atomic orbital basis and its

implementation with DFT. The choice of the basis determines the matrix size and

the sparsity of the Hamiltonian so that a compact and short-ranged basis set can

greatly reduce the computational cost. The atomic orbital basis set is one of such

basis that are popularly employed in DFT and has been implemented in RESCU [78].

The single particle KS wave function is expanded on the isolated atomic orbital with

different angular momentum numbers, magnetic momentum numbers and spins. In

the rest of the thesis, we omit the spin index to make the formula look less crowded.

2.2.1 Atomic Orbitals

The linear combination of atomic orbitals (LCAO) method employs a basis that is

similar to the wave functions of the single isolated atom, which are the product of a

radial part uRl(r) and an angular part (i.e., spherical harmonics) YL(r̂):

φRL(r) = uRl(r)YL(r̂), (2.34)

where R designates a particular atom at position R and L = (l,m) corresponds to

the combination of angular and magnetic quantum numbers. The {φRL} orbitals are

built with a cutoff radius rcRl, outside of which the orbital vanishes to zero. The
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procedure to construct the atomic orbitals will not be discussed here, but the detail

can be found in Ref. [80].

The type and number of orbitals one uses depends on the desired accuracy and the

chemical nature of the atom. Generally, a basis set includes one or more s, p, d and f

orbitals. Since the LCAO orbitals are decent approximations to the real local charge

distribution, a small number of orbitals are generally sufficient to achieve reasonable

accuracy, making the LCAO basis rather compact. Another advantage is that the

orbitals are localized near the atomic centers, which results in sparse block-diagonal

matrices. Such matrices can be inverted by efficient numerical procedures.

In DFT codes for calculating crystals, the periodic boundary condition is employed

to the lattice unit cell. Therefore it is convenient to consider the Bloch boundary

conditions via the periodic basis

φk
Rl(r) =

1√
N

∑
T

exp(ik ·T)φRl(r−T), (2.35)

where k is the Bloch wave vector and T is the lattice vector in reciprocal space.

N =
∑

T 1 is a normalization factor. In a periodic system, the KS states (in Eq.

(2.16)) are denoted by the wave vector k and can be expanded on basis {φk
Rl(r)}’s as

ϕk
i (r) =

∑
Rl

ckiRlφ
k
Rl(r). (2.36)

The sum is taken over all orbitals in the unit cell considered. Eqs. (2.36) and (2.16)

together give the matrix form of the KS equation

HkCk = SkCkEk (2.37)
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where the matrices elements are defined by

Hk
Rl,R′l′ =

∫
drφk∗

Rl(r)

[
−∇

2

2
+

∫
dr′

ρ(r′)

|r− r′|
+ Vext(r) + VXC(r)

]
φk
R′l′(r) (2.38)

SRl,R′l′ =

∫
drφk∗

Rl(r)φ
k
R′l′(r) (2.39)

Ck
Rl,i = ckiRl (2.40)

Ek
ij = δijε

k
i . (2.41)

Details of calculating the above elements can be found in Ref. [81]. Eq. (2.37) is

also called the secular equation. All DFT solvers are based on solving this equation

and the difference is the basis on which those matrices are expanded. Once the KS

equation (2.37) is obtained, the system is solved by solving the eigen pair problems

of matrices Hk and Sk.

2.2.2 Pseudopotential approximation

In most practical situations, core electrons of the individual atoms rarely participate

in chemical bonding and can very often be treated as “frozen”. In this case, one can

replace the core electrons by an artificial potential that mimics their effect on the

valence electrons. This is known as the pseudopotential (pp) approximation. The pp

will include, not only the potential associated to the core electrons, but also that of the

nucleus. This technique has several advantages: i) avoiding the potential singularities

associated with the point-like nuclear charges, ii) excluding the core electrons from

the Hamiltonian and overlap matrices thus reducing the complexity of the problem,

and iii) replacing the “true” orbitals, which are rapidly oscillating functions near the

core, by smooth effective pseudo-orbitals (i.e., the LCAO basis) which reduces the

difficulty in numerical solution.

In pp approximation, a cutoff radius rcore is applied so that the artificial pp matches

the potential obtained from the all-electron calculation at r > rcore. This guarantees
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that the pseudo-orbitals (the eigenstates of the pp) are identical to the all-electron

eigenstates for r > rcore. Note that the pseudo-orbitals are nodeless inside rcore, which

is easier to represent on a real-space grid. In this thesis we employ the Optimized

Norm-Conserving Vanderbilt (ONCV) pp [82, 83] when needed. The ONCV is a com-

petitive choice for both accuracy and computational efficiency compared to ultrasoft

[84] and projector-augmented-wave (PAW) potentials [85].

2.3 Linear Muffin Tin Orbital Implementation

This section is dedicated to introduce the implementation of KS-DFT in LMTO-

ASA framework. In section 2.3.1, we will introduce the atomic sphere approximation

(ASA) based on which the Muffin Tin orbitals are constructed. Like LCAO, LMTO is

another type of atomic basis but it can make DFT much more efficient due to further

approximation. With LMTO the Hamiltonian matrix is sparser than LCAO, so that

the computation is faster. In section 2.3.2 we will present the details of constructions

of MTO’s. Section 2.3.3 is devoted to the linearization of energy. It allows us to reduce

the energy dependent orbitals to energy independent ones to reduce the computational

complexity. In section 2.3.4, we will present how to construct overlap and Hamiltonian

matrices under the framework of LMTO. Then in section 2.3.5 we will introduce the

potential parameters through which the Hamiltonian can have a much simpler form.

2.3.1 Atomic Sphere Approximation (ASA)

To introduce the ASA, we shall start from the Muffin Tin potential. The Muffin

Tin potential is expressed by a group of spherically symmetric potentials centered at

each atomic site. All these spherically symmetric potentials are limited within some

fixed radii (sR) without overlapping (see solid spheres in grey in Fig. 2.3). And the

remaining interstitial region is chosen to have a constant potential V0 [86].

In this thesis, the atomic sphere approximation (ASA) [87, 88, 89, 54] for the
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Figure 2.3: Diagram for Muffin Tin potentials. The whole space is divided into two regions: the
slightly overlapped atomic spheres (showed in dashed spheres) and the in-between interstitial region.
In atomic spheres the potentials are chosen to be spherical symmetric while in interstitial region
potential is chosen to be a constant V0.

potential, is employed. It is developed from the traditional Muffin Tin potential.

The basic concept of ASA is to neglect the computationally troublesome interstitial

region. This is achieved by increasing the size of the atomic spheres used by Muffin

Tin potential or adding new “vacuum” spheres to the interstitial region so that the

total volume of all the spheres equals that of the solid cell. The introduction of the

vacuum spheres increases the difficulty of the use of the method since the positions

as well as their radius must be tuned carefully so that the method gives correct eigen

energies. Details will be discussed in Chapter 6. The solid cell is divided into a group

of Wigner-Seitz cells so that when calculating physical quantities such as the total

energy, we only need to sum up the energies in each Wigner-Seitz cell. Thus the ASA

consists of two spirits: i) the use of spherically symmetric potentials inside slightly

overlapping atomic spheres (see dashed spheres in Fig. 2.3) centered at individual

nuclei, and ii) a complete neglect of the kinetic energy of the interstitial region. It is

worth noting that the overlap of the spheres is generally chosen to be around 15%-20%

[90].
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In ASA, the potential is of the form of [89]

V (r) =
∑
R

VR (r), (2.42)

where VR (r) is spherically symmetric potential inside the R-th atomic sphere with a

radius of sR. Then the single electron Schrödinger equation can be written as

[
−∇

2

2
+
∑
R

VR (r)− E

]
ψ (r) = 0, (2.43)

where ψ (r) is the single electron wave function. In MTO method, this wave function

is expanded as [89]

ψ (r) =
∑
i

ciχi (r), (2.44)

where {χi (r)} are the MT orbitals.

The Muffin Tin orbitals are a group of orbitals determined within each atomic

sphere. In these atomic spheres, interactions from other atomic spheres are neglected

therefore these Muffin Tin orbitals can be solved accurately from a mathematical

point of view.

2.3.2 Constructing Muffin Tin orbitals

As written in Eq. (2.44), the single electron wave function is constructed with a group

of Muffin Tin orbitals. This section presents in detail how to construct these orbitals.

The Muffin Tin orbitals are determined from the single-site (or single-sphere) prob-

lem, where only one atomic sphere is considered in the whole space. To solve the

corresponding Schrödinger equation, boundary conditions are needed. These orbitals

{χR (r)} must satisfy four boundary conditions: i) they must be finite as r → 0, ii)

they must be zero as r →∞, iii) they must be continuous at the spherical boundary

r = sR, and iv) the slope of them must be continuous at the spherical boundary
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r = sR.

We start with the region outside the atomic sphere, i.e. the interstitial region. In

ASA, the kinetic energy in the interstitial region is neglected, E − V0 = 0 where V0

is the constant potential of the interstitial region. The single electron Schrödinger

equation in the interstitial region of Fig. 2.3 becomes

−∇2ψ (r) = 0, (2.45)

which is a Laplace equation. Due to its invariance with respect to rotation, ψ (r)

should have a form of

ψ (r) =
∑
L

al (r)YL (r̂) (2.46)

where r̂ = r/r and the label L = (l,m) labels the angular momentum and its z-

component quantum numbers like in LCAO. al (r) is the radial part of the ψ (r).

YL (r̂) is the spherical harmonics. After inserting Eq. (2.46) into the Laplace Eq.

(2.45), we arrive at the equation for radial wave function,

[
− ∂2

∂r2
− 2

r

∂

∂r
+
l (l + 1)

r2

]
al (r) = 0. (2.47)

This equation leads to two solutions of the original Laplace equation: the regular

solution

JL (r) = Jl (r)YL (r̂) , Jl (r) =
1

2 (2l + 1)

(
r

sR

)l
(2.48)

and the irregular solution

KL (r) = Kl (r)YL (r̂) , Kl (r) =
(sR
r

)l+1

. (2.49)

Due to the second boundary condition mentioned at the beginning of this section that

ψ (r) should be zero as r →∞, we only keep the irregular solution KL (r). Also the

irregular solution KL (r) centered at R can be expanded in terms of regular solutions
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centered at R′ (R′ 6= R) according to

KL (rR) = −
∑
L′

SRL,R′L′JL′ (rR′). (2.50)

Here the subscript rR indicates that the position vector is centered at the atomic

sphere located at R and so as to rR′ . SRL,R′L′ in Eq. (2.50) are called the canonical

structure constants. For more details about the structure constants, see Appendix A.

With the help of Eq. (2.50), the irregular solutions centered at R can be expressed

by regular solutions centered at R′. Note that this expansion is only valid when

rR′ < |R−R′|.

Then we consider the solution inside the atomic sphere (see Fig. 2.3 dashed

spheres) where the Schrödinger equation is

[
−∇

2

2
+ VR (r)− E

]
ψRL (r) = 0. (2.51)

Again, the solutions should be spherically symmetric inside the atomic sphere. There-

fore it is convenient to break ψRL (r) into the radial component and angular compo-

nent:

ψRL (r, E) = uRl (r, E)YL (r̂) (2.52)

Here the energy E is written out explicitly. By inserting this into the Schrödinger

Eq. (2.51), we obtain the Schrödinger equation for the radial component

[
− ∂2

∂r2
− 2

r

∂

∂r
+
l (l + 1)

r2
+ VR (r)− E

]
uRl (r, E) = 0 (2.53)

For this equation uRl (r, E) cannot be solved analytically. But we can obtain the

solution by analyzing the asymptotic behavior for r → 0. When r → 0, [VR (r)− E]

can be dropped in favour of the other terms in Eq. (2.53) and we obtain two solutions,

the regular one uRl (r, E) ∝ rl and the irregular one uRl (r, E) ∝ r−l−1. Becasue inside

the atomic sphere the MTO should remain finite when r → 0, only the regular solution
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is kept.

Having determined the wave functions in and outside the atomic sphere, let’s con-

sider the boundary conditions at r = sR. As discussed before, four conditions must be

satisfied for MTO’s. We have chosen the regular solution for MTO inside the atomic

spheres and the irregular solution for outside, therefore the first two conditions are

satisfied now. However, our solutions do not yet satisfy the remaining two conditions.

In order to do so, one more function is included in the MTO inside the atomic spheres.

We will see that the additional function is taken to be the energy derivative of the

regular solution inside the atomic sphere u̇Rl (r, E). Throughout this thesis, we shall

use the notation that a dot over an energy-dependent function refers to its energy

derivative.

To fulfill the other two boundary conditions at r = sR, we use the Wronskian to

match a function to a linear combination of two other functions [54]. For details about

Wronskian, please refer to Appendix B. With the help of this matching condition in

Eq. (B.4), the regular and irregular solutions can be expanded in terms of uRl (r, E)

and u̇Rl (r, E) [54]:

Jl (r)→ −{J, u̇}RluRl (r, E) + {J, u}Rlu̇Rl (r, E) (2.54)

Kl (r)→ −{K, u̇}RluRl (r, E) + {K, u}Rlu̇Rl (r, E) (2.55)

where the relation

{uRl, u̇Rl} = −1 (2.56)

is used. {· · · } is the Wronskian (see Appendix B for its definition). The notation

{K, u}Rl refers to the Wronskian value at the boundary r = sR,

{K, u}Rl = {Kl (r) , uRl (r, E)}Rl|r=sR , (2.57)

and so as to {K, u̇}Rl, {J, u}Rl and {J, u̇}Rl. The Wronskians appearing in Eqs.
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(2.54) and (2.55) are coefficients used to guarantee a smooth matching of the wave

functions at the boundary r = sR.

Now the MTOs can be constructed. The starting point is the decaying solution

KL (r) of the Laplace equation centered atR and it can be solved exactly. By applying

Eq. (2.50), KL (rR) can be rewritten as the form of

KL (rR) =


KL (rR) , rR ≤ sR

−
∑
L′

SRL,R′L′JL′ (rR′), rR′ ≤ sR′ (R′ 6= R)

KL (rR) , r ∈ I,

(2.58)

where the space is divided into three regions: i) the region inside the atomic sphere R

in which the wave function should be matched with the solution of Eq. (2.53); ii) the

region inside other spheres, where KL (rR) can be expanded by JL′ (rR′) centered at

R′ and iii) the interstitial region where KL (rR) is the exact solution. The only issue

we need to consider now is region i). Region i) refers to the region inside the atomic

sphere where no analytical solution can be obtained. But since we have mentioned

before that the solutions can be expressed by ψRL and ψ̇RL, the inner sphere solutions

can be constructed by matching conditions. This can be easily achieved by applying

the relation shown in Eq. (2.55). Therefore, the Muffin Tin orbitals in all space have

the form of [54]

χRL (r, E) =



− {K, u̇}RlψRL (rR, E)

+ {K, u}Rlψ̇RL (rR, E) , rR ≤ sR∑
L′

SRL,R′L′ [{J, u̇}R′l′ψR′L′ (rR′ , E)

−{J, u}R′l′ψ̇R′L′ (rR′ , E)
]
, rR′ ≤ sR′ (R′ 6= R)

KL (rR) , r ∈ I.

(2.59)

One last thing to mention is that the interstitial region is neglected in ASA. Here in
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Eq. (2.59) we keep it just for the sake of completeness.

2.3.3 Energy-independent Muffin Tin orbitals

The MTO described in Eq. (2.59) are energy dependent. This is an undesirable

drawback for numerical eigen-energy calculation. We wish to find a way to drop the

energy dependence. This is done by the energy linearization.

Energy linearization is performed by taking a Taylor expansion of radial solution

inside an atomic sphere centered at R [54]

uRl (r, E) = φRl (r) + φ̇Rl (r)
(
E − E0

Rl

)
+ . . . , (2.60)

where the notations of

φRl (r) = uRl
(
r, E0

Rl

)
, φ̇Rl (r) = u̇Rl

(
r, E0

Rl

)
(2.61)

are introduced. E0
Rl is the energy around which the radial wave function uRl (r, E)

is expanded. Usually E0
Rl is taken to be the center point of the occupied part of the

Rl-th projected valence density of states [89, 54]. It is interesting that φRl (r) and

φ̇Rl (r) clearly satisfy all the relations valid for uRl (r, E) and u̇Rl (r, E). Therefore, the

linearized (energy-independent) MTO’s, called LMTO’s, can be obtained by simply

replacing uRl (r, E) and u̇Rl (r, E) with functions φRl (r) and φ̇Rl (r) [54]

χRL (r, E) =



− {K, φ̇}RlφRL (rR)

+ {K,φ}Rlφ̇RL (rR) , rR ≤ sR∑
L′

SRL,R′L′

[
{J, φ̇}R′l′φR′L′ (rR′)

−{J, φ}R′l′φ̇R′L′ (rR′)
]
, rR′ ≤ sR′ (R′ 6= R) ,

(2.62)

where the interstitial part is neglected in the expression above.
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2.3.4 Overlap and Hamiltonian Matrices

In section 2.3.3, we presented the expression for linear Muffin Tin orbitals. In this

section, we will present how the overlap and Hamiltonian matrices are constructed

under these orbitals. The overlap and Hamiltonian matrices are defined by

Oij =

∫
χi (r)χj (r) d3r (2.63)

and

Hij =

∫
χi (r)

[
−∇

2

2
+ V (r)

]
χj (r) d3r. (2.64)

{χi (r)} are LMTO orbitals. Notice that ASA is employed in this thesis hence the

integrals appearing in Eqs. (2.63) and (2.64) are restricted to integrals within atomic

spheres. We start with the overlap matrix. By inserting Eq. (2.62) into the definition

of overlap matrix (2.63), we find that three type of integrals need to be done [54],

∫ sR

0

φRL (r)φRL′ (r) d3r = δLL′ , (2.65)

∫ sR

0

φRL (r) φ̇RL′ (r) d3r = 0 (2.66)

and ∫ sR

0

φ̇RL (r) φ̇RL′ (r) d3r = pRlδLL′ . (2.67)

pRl is defined as

pRl =

∫ sR

0

φ̇2
RL (r) r2d3r. (2.68)

Therefore, the elements of overlap matrix in the LMTO framework has the form of [54]

OR′L′,R′′L′′ ={K, φ̇}2
R′l′δR′L′,R′′L′′ − {K, φ̇}R′l′{J, φ̇}R′l′SR′L′,R′′L′′

− SR′L′,R′′L′′{J, φ̇}R′′l′′{K, φ̇}R′′l′′

+
∑
RL

SR′L′,RL{J, φ̇}2
RlSRL,R′′L′′ +O

(p)
R′L′,R′′L′′ .

(2.69)
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The last term includes all contributions from the quantity pRl. This relation can be

rewritten into a matrix form

O =
(
{K, φ̇} − S{J, φ̇}

)(
{K, φ̇} − {J, φ̇}S

)
+O(p). (2.70)

The construction of the Hamiltonian matrix is done similarly. We insert Eq. (2.62)

into Eq. (2.64) and after some algebra we obtain the Hamiltonian matrix:

H =
(
{K, φ̇} − S{J, φ̇}

)
E0
(
{K, φ̇} − {J, φ̇}S

)
−
(
{K, φ̇} − S{J, φ̇}

)
({K,φ} − {J, φ}S) +H(p) (2.71)

where H(p) contains all contributions from the quantities pRl.

If we introduce an auxiliary matrix

M = {K, φ̇} − {J, φ̇}S, (2.72)

the overlap and Hamiltonian matrices can be rewritten as

O = MTM (2.73)

H = MTE0M −MT ({K,φ} − {J, φ}S) . (2.74)

where the contribution from pRl is neglected since it is small.

Finally, we list the matrices in orthogonal basis,

Oorth =
(
MT

)−1
OM−1 = I (2.75)

Horth =
(
MT

)−1
HM−1 = E0 − ({K,φ} − {J, φ}S)

(
{K, φ̇} − {J, φ̇}S

)−1

. (2.76)
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An equivalent expression for Horth follows Eq. (2.76) is

Horth = E0 − {K,φ}
{K, φ̇}

+
ω

2

1

{K, φ̇}
S

(
1− {J, φ̇}
{K, φ̇}

)−1
1

{K, φ̇}
, (2.77)

which clearly shows that the orthogonal Hamiltonian matrix is real and symmetric

[54].

2.3.5 Potential Parameters

Potential parameter is widely used in MTO or LMTO theory [54, 89]. After introduc-

ing potential parameters, the Horth of Eq. (2.77) can have a much simpler expression.

We start by introducing the definition of potential parameters and its derivatives [54]:

PRl (E) =
{K,ψ (E)}Rl
{J, ψ (E)}Rl

, (2.78)

ṖRl (E) =
ω

2

1

{J, ψ (E)}2
Rl

(2.79)

and

P̈Rl (E) = −ω{J, ψ̇ (E)}Rl
{J, ψ (E)}3

Rl

. (2.80)

The expressions for functions ṖRl (E) and P̈Rl (E) are obtained by directly taking

derivatives on Eq. (2.78) and using the relation {Jl (r) , Kl (r)} = −ω/2. As discussed

in the previous section, ψ (E) is expanded around some energy point, so by inserting

Eq. (2.60) into Eqs. (2.78) (2.79) and (2.80), we have

PRl (E) =
E − CRl

∆Rl + γRl (E − CRl)
, (2.81)

ṖRl (E) =
∆Rl

[∆Rl + γRl (E − CRl)]
2 (2.82)

and

P̈Rl (E) = − 2∆RlγRl

[∆Rl + γRl (E − CRl)]
3 , (2.83)
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where parameters CRl, ∆Rl and γRl have the forms of [54]

CRl = E0
Rl −

{K,φ}Rl
{K, φ̇}Rl

, (2.84)

∆Rl =
ω

2

1

{K, φ̇}2
Rl

(2.85)

and

γRl =
{J, φ̇}Rl
{K, φ̇}Rl

. (2.86)

We can also obtain the expressions for the Wronskians appearing in above equations

by inversely written them in the form of

{J, φ}Rl =

√
ω

2∆Rl

[
∆Rl + γRl

(
E0

Rl − CRl

)]
, (2.87)

{
J, φ̇
}

Rl
=

√
ω

2∆Rl

γRl, (2.88)

{K,φ}Rl =

√
ω

2∆Rl

(
E0

Rl − CRl

)
(2.89)

and

{K, φ̇}Rl =

√
ω

2∆Rl

. (2.90)

Inserting Eqs. (2.87) to (2.90) into the expression of Horth in Eq. (2.76), we arrive at

a much simpler expression [54]

Horth = C +
√

∆S(1− γS)−1
√

∆. (2.91)

In this expression, C, ∆ and γ are diagonal matrices constructed by the potential

parameters CRl, ∆Rl and γRl.
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2.3.6 Representation Transformation

The LMTO-ASA structure matrix S can be made more sparse if we introduce the rep-

resentation transformation. The representation transformation allows us to transform

the LMTO basis into a short-ranged localized basis without loss of any information

[42, 91] and, as a result, we obtain very sparse structure constant matrix (SRL,R′L′)

which greatly enhances the efficiency of numerical computation. As presented in Eqs.

(2.49) and (2.58), the LMTO basis decays according to a power law r−l−1 for large r.

But after employing the representation transformation, the transformed basis, which

is called the tight-binding (TB) LMTO basis, decays exponentially with respect to r.

Therefore, using TB-LMTO, interactions beyond the second nearest neighbor can be

safely neglected which greatly boosts the calculation speed.

For potential functions and structure constants, the transformation is defined as

[54]

P β =P δ + P δ (β − δ)P β,

Sβ =Sδ + Sδ (β − δ)Sβ,
(2.92)

where physical quantities are transformed from representation δ to β. β (δ) is a

diagonal matrix with elements of βRl (δRl). By some algebra, Eq. (2.92) can be

rewritten as

P β =
[
1− P δ (β − δ)

]−1
P δ,

Sβ =
[
1− Sδ (β − δ)

]−1
Sδ.

(2.93)

By using a special set of R-independent but l-dependent screening constants {αl},

the LMTO basis is transformed into the TB-LMTO basis [42]. For general cases only

s, p and d orbitals are taken into consideration, so only three screening constants are

included

α0 = 0.3485, α1 = 0.05303, α2 = 0.01071. (2.94)
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These values can be found in reference [42]. Finally let’s end this section by giving

out the Hamiltonian matrix after the transformation:

Horth,β = C +
√

∆Sβ
√

∆,

Sβ = Sδ
(
1− (β − δ)Sδ

)−1
.

(2.95)

In the self-consistent procedure, we start from some initial guess for φ’s (e.g.,

solutions from isolated spheres). Then the Hamiltonian is calculated from Eqs. (2.84),

(2.85), (2.86), (2.91), (2.93), (2.94) and (2.95). After solving the corresponding secular

equation, a new charge density can be calculated by Eq. (2.14). The potential at each

sphere is then updated by Eq. (2.42). φ’s are updated according to the potential.

The new φ’s are then used to calculate a new Hamiltonian. Such process is repeated

until required accuracy is achieved.

2.4 Summary

In Summary, this chapter introduced the density functional theory and its implemen-

tations with LCAO and LMTO. The Born-Oppenheimer approximation separated

the dynamics of electrons and ions. By neglecting the latter, only electron degrees

of freedom need to be focused. HK theorem helped to reduce the N -interacting elec-

trons problem into a variation problem with respect to the single electron density

and reduced to solving the Kohn-Sham equation (2.16). The electron density ρ (r)

is calculated by Eq. (2.14). Hence, the complicated many body problem is solved

LCAO LMTO
Formalism Simple Complicated

Pseudo potential needed? Yes No
Computational efficiency Fairly fast Very fast

VS needed ? no yes
Easy to implement CPA? No Yes

Table 2.1: Comparison between LCAO and LMTO used by this thesis. VS refers to vacuum sphere.
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by Eqs. (2.19) and (2.14) self-consistently after choosing appropriate XC function-

als such as LDA, GGA or hybrid functionals. Then we derived formula for both

LCAO and LMTO implementation of DFT. In the LCAO method, valence electron

orbitals are constructed from corresponding isolated atomic orbitals. The core elec-

trons are treated by pseudo potential method, which reduces the computational cost.

In LMTO method, orbitals are constructed from a group of slightly overlapped muffin

tin spheres. By neglecting the kinetic energy in the interstitial region (ASA), the wave

functions outside the sphere were solved analytically. Meanwhile, the wave functions

inside the sphere were obtained by solving the spherical symmetric Schrödinger equa-

tion in each atomic sphere numerically. By applying continuous boundary conditions

at the sphere surface, these wave functions determined the Muffin tin orbitals in the

whole space. Then, energy linearization was applied to the Muffin tin orbitals, render-

ing a group of energy independent Muffin tin orbitals, the LMTO’s. With the orbitals

being set, the KS Hamiltonian and overlap matrices for both LCAO and LMTO are

derived. The KS Hamiltonian must be solved self-consistently using the procedure

described in section 2.1.5. Both LCAO and LMTO are atomic centered basis with

which Hamiltonian is in a sparse matrix form so that the KS-DFT procedure can be

carried out more efficiently compared to other nonlocal basis such as plane wave [92].

Table 2.1 lists a comparison between the LCAO and LMTO (with ASA) used in this

thesis. LCAO is superior to LMTO in the following aspects. LCAO is atomic orbital

based so that its implementation with KS-DFT is very straightforward and simple.

Vacuum spheres are not necessary in most cases with LCAO because the potential far

away from nuclei are calculated exactly. LMTO requires the use of vacuum spheres

in space so that it is difficult to apply to materials with low lattice symmetry such as

crystals with non close-packed structure, interfaces and surfaces. LMTO outclasses

LCAO in the following aspects. With LMTO, the Hamiltonian is sparser and the

computation is faster than with LCAO, which allows to calculate larger systems.

LCAO can handle transport problems with several hundreds atoms while LMTO can

solve systems with more than several thousands atoms. In LMTO, all electrons are
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included in the computation so that no pseudo potential is needed. With LMTO, the

CPA theory is very natural to implement (see Chapter 5) while with LCAO, further

approximation is needed and the formalism is rather complicated [52].



3
Application: Band Engineering of the GaSbN Alloy

III-nitride material is one of the most important semiconductors after silicon [93, 94,

95]. Due to its exceptional optical properties and extraordinary ability of resisting

photo-oxidation and corrosion in harsh photocatalytic conditions [96], recent works

have demonstrated the exciting results that III-nitride nanostructures possess ideal

attributes for solar fuel generation through natural water splitting [97, 98, 99, 100]

and CO2 reduction [101]. Fig. 3.1 plots the electrochemical process of water splitting.

The reaction is first initiated by photon absorption (hν in the Fig. 3.1), which gener-

ates numerous electron-hole pairs in the semiconductor’s conduction band minimum

(CBM) and valence band maximum (VBM) (red lines in Fig. 3.1). If the water redox

potentials (blue dashed lines in Fig. 3.1) stays in between the CBM and VBM, the

photo-generated electrons reduce water to form hydrogen, and the holes oxidize water

molecules to give oxygen. InGaN is one of the most advanced candidates for electro-

chemical water splitting. By tuning the concentration x of In, the band gap Eg of

InxGa1−xN can be continuously lowered from about 3.4 eV at x = 0 to about 0.7 eV at

x = 1, covering broadband of the solar spectra thereby producing high solar-to-energy

conversion rates [15]. To achieve the best catalytic effects for water splitting, the band

gap of the catalyst needs to properly straddle the redox potential of water molecules

which is about 1.23 eV [102]. With appropriate electrochemical overpotentials at both

the valence and conduction band edges, the optimal band gap is around 2.2 eV [103].

This can be achieved for InGaN by alloying high In concentration at about 40% into

GaN. With such concentrations, the resulting InGaN typically contains significant

42
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Figure 3.1: Schematic of the electrochemical water splitting process. A semiconductor is placed in
neutral water. The red lines are the CBM and VBM of the semiconductor measured with respect
to the vacuum energy level. The blue dashed lines are the redox potential of neutral water. When
light (hν) is shined onto the semiconductor, electron hole pairs are generated and captured by H+

and OH− in water respectively.

density of defects due to the large lattice mismatch of around 11% between InN and

GaN [104, 105, 106], as well as large strain-induced polarization field [107, 108] due

to the piezoelectric property of the materials. These detrimental effects are some of

the serious challenges for realizing large scale practical applications of InGaN as an

advanced photo catalyst for solar fuel. It is therefore important to search for other

elements that can serve the same purpose as indium.

A few recent experimental investigations found that doping a small amount of

antimony (Sb), at x =1∼ 8%, the band gap of GaN was substantially reduced from

3.4 eV to about 1.9 eV at x = 1% and to about 1.5 eV at x = 8% [13, 109, 110], namely

equivalent to the effect of incorporating more than 40% of indium into GaN. Obvi-

ously, the relevant regime for solar fuel is in 0 < x < 1%. Such a dilute antimonide

nitride provides extraordinary opportunities for band engineering, strain engineering

and polarization engineering, which may well overcome the materials challenges as-

sociated with InGaN in solar fuel applications. To date, the bowing shape of band
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reduction of GaSbxN1−x at x < 1% - relevant for solar fuel application, has not been

investigated either by experimental or theoretical investigations; the underlying cause

for the sharp band gap reduction in the dilute Sb limit remained to be verified [111];

and the band bending properties of GaSbN surface for the purpose of solar fuel ap-

plication have not been investigated. It is the purpose of this chapter to understand

these important issues from atomic first principles presented in Chapter 2.

3.1 Computational Method

On the theoretical side, the key issue of the problem is to calculate the band gap

and band edge positions of the GaSbxN1−x materials. Calculations of band gap by

KS-DFT at relatively large Sb concentration [110], x > 2%, found that Eg is almost

saturated there. The part we want to study is the bowing regime 0 < x < 1%, in which

the gap of GaN is reduced to the proper value to straddle the redox potential of water.

Such low Sb concentration is very difficult for direct KS-DFT analysis. Simulating

small x requires relatively large super-cells: for x = 0.1%, at least 2,000 GaN atoms

must be included in the super-cell to accommodate just a single Sb atom. To obtain

correct Eg for semiconductors, higher level theories such as the hybrid exchange-

correlation (XC) functional [74], are required which is computationally extremely

expensive for over 2000 atoms.

To overcome these difficulties, we employ a powerful KS-DFT method [78] devel-

oped by our group with the HSE06 hybrid XC functional [74] that accurately and

efficiently predicts electronic structure of semiconductors [76] which allows us to inves-

tigate GaSbxN1−x in the dilute Sb concentration limit. Double-zeta polarized LCAO

basis up to d orbitals with the ONCV pseudo potentials is employed and they produce

very accurate description of the band structures and electrostatic potentials, which

are necessary for our calculations. Another difficulty is the randomness of Sb atoms

in GaSbxN1−x. The electronic band structure of the alloy depends on the arrange-

ment of Sb atoms in the lattice. Therefore the alloy band gap has to be calculated by
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(a) (b)

Figure 3.2: Atomic supercells of the simulated GaNSb lattice under different Sb concentration.
The lattices is in parallelepiped shape with the three vector angles of π/2, π/2 and π/3. (a) Sb
concentration of 2.7%. (b) Sb concentration of 0.35%.

vacuum energy

Figure 3.3: Surface calculation of a GaN surface. The bottom figure is the lattice structure of a
GaN slab. The top figure plots the electrostatic potential along the slab. In the center of the slab,
a unit cell of GaN is picked up to calculate the average potential (red dashed line). ∆V measures
the difference between the calculated average potential and the vacuum energy.
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taking the average of all possible configurations, which is prohibitive for hybrid func-

tional calculations. To overcome the difficulty, we employ the special quasirandom

structures (SQS) method [53] implemented in the Alloy Theoretic Automated Toolkit

(ATAT) [112]. The method gives the best periodic supercell that approximates the

true disordered state for a given number of atoms per supercell. The chosen supercells

(see Fig. 3.2 for x = 2.7% and x = 0.35%) here give a band gap accuracy within

0.05 eV as tested by SQS method.

To find the band edge positions, it is useful to determine the natural band alignment

(NBA) of GaSbxN1−x. In particular, the NBA reflects lineup between unstrained

systems which can be determined from surface calculations [15], and for solar fuel

production the NBA between the semiconductor and vacuum provides useful infor-

mation. For the surface calculation, we construct a repeated mirror symmetric slab

super-cell in the m-plane orientation (1010) of the wurtzite GaSbxN1−x structure (see

Fig. 3.3). In this work we consider m-plane as NBA appears to be not sensitive to

the crystal orientation[113]. The number of layers contained in the slab is increased

until the electrostatic potential difference, ∆V , between the crystal and vacuum con-

verges. The surface calculation allows us to align the average electrostatic potential

in the crystal to the vacuum potential which acts as a common reference. Here, ∆V

is calculated at the PBE level of the XC functional and for technical details we refer

interested readers to Ref. [113]. Once ∆V is obtained, the absolute positions of the

band edges (Ec/v,abs) with respect to the vacuum level is obtained by

Ec,abs = Ec −∆V − E0, (3.1)

Ev,abs = Ev −∆V − E0, (3.2)

where Ec/v are the CB minimum and VB maximum of the bulk material. E0 is the

average electrostatic potential of the bulk. Ec/v and E0 are obtained by HSE06 bulk

calculations. In the NBA calculation, structural relaxation of the slab is difficult

for KS-DFT at low Sb concentration: e.g. for x = 0.35% the slab contains about
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1500 atoms. We therefore employ classical molecular dynamics to obtain the relaxed

structure, by the LAMMPS method [114] with the Tersoff potential [115] found in

Ref. [116]. We calibrated the potential parameters so that they produced the correct

surface structures of the alloy (see Appendix E for the parameters).

3.2 Computational Setup

In KS-DFT bulk calculation, 7×7×5 k-point mesh is used for sampling the Bril-

louin zone (BZ) in the self-consistent calculation of intrinsic GaN/GaSb which has

a wurtzite primitive cell. The calculated super-cell is scaled up according to the Sb

concentration: at x = 5.6, 2.7, 1.35, 0.7, 0.35, 0.175%, it contains 72, 72, 144, 288,

576 and 1152 atoms respectively, 5.6% with two Sb atoms and all the others with one

Sb atom. For low Sb concentration (x < 0.7%) thus large super-cell (e.g., see Fig.

3.2)(b), Γ point is adequate for BZ sampling. The band gap Eg(x) is correctly deter-

mined by employing the Heyd-Scuseria-Ernzerhof (HSE06) hybrid-XC functional [74],

which predicts Eg = 3.46 eV for GaN and 0.55 eV for GaSb with spin-orbit coupling

(SOC), in very good agreement with previous theoretical and experimental values

[117, 118]. There is no reported experimental band gap for wurtzite GaSb to the best

of our knowledge so we only compare with previous reported theoretical values.

For solar fuel application, the relevant compound GaSbxN1−x is at the dilute limit,

0 < x ≤ 1%, which has only small lattice mismatch to GaN so that high quality mate-

rials can be readily grown experimentally [119]. As mentioned above, experimentally

Sb is surprisingly efficient in reducing the GaN band gap [110, 120]. At x > 8%,

GaSbxN1−x becomes indirect band gap material. At small x, electronic property of

GaSbxN1−x such as Eg(x) is not sensitive to the atomic arrangements so long as the Sb

atoms are distributed uniformly in the material. The super-cell is therefore prepared

as follows. Take x=5.6% as an example, we prepare a super-cell with 72 atoms and

two of the N atoms are replaced by Sb. The smallest x we investigated is 0.175% for

which there are 1152 atoms inside the supercell with one Sb atom. In the dilute limit,
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Figure 3.4: Band gap Eg(x) of dilute GaSbxN1−x alloy vs. Sb concentration x by KS-DFT with the
HSE06 hybrid functional. Inset: Eg vs. lattice mismatch for GaSbxN1−x (green) and InxGa1−xN
(red). The mismatch is measured w.r.t. wurtzite GaN crystal.

the distance between Sb atoms is ∼10Å so that little direct interaction exists between

them. The atoms in the super-cell are relaxed with the PBESol XC functional [121]

using RESCU [78]. In the following, SOC is not considered to reduce computational

cost as it only make a difference on the band gap and electrostatic potential for less

than 20meV.

3.3 Results and Discussion

Fig. 3.4 plots the calculated Eg(x) of GaSbxN1−x versus x. As x increases, Eg(x) drops

sharply in the range of 0 < x < 1% and approaches a saturated value of about 1.8 eV

for x > 1%, consistent with experiment observations [110, 120]. To the best of our

knowledge, such a strong band bowing is unseen in other III-V materials - for instance,

for InxGa1−xN the Eg drops slowly with x (see the inset of Fig. 3.4). This distinct

band bowing in Fig. 3.4 cannot be fit by conventional bowing formula involving a

single bowing parameter b, Eg(GaSbxN1−x) = (1−x)EGaN
g +xEGaSb

g − bx(1−x). The
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Figure 3.5: DOS of GaSbxN1−x at the valence band side of the Fermi level. (a) Total DOS
normalized to the same number of Sb atoms at different x. The band edge of GaN, Ev,GaN, is used
as reference to align the DOS at different Sb concentration. (b) Total DOS per atom. For clarity,
(a, b) do not include the calculated data at x = 0.7%, 2.7% and 5.6% as they are similar to the
presented curves of x = 0.35% and 1.4%.

strong bowing in GaSbxN1−x suggests strong interactions between the atoms and/or

orbitals (see below). The predicted bowing in Fig. 3.4 is quantitatively comparable

to the measured data [110]. The inset of Fig. 3.4 plots the calculated Eg of GaSbN

and InGaN versus the relative lattice mismatch to GaN: GaSbN has a much smaller

lattice mismatch than InGaN to GaN which is important from material fabrication

point of view.

What is the microscopic origin of the strong band bowing in GaSbxN1−x? To

interpret their experimental data, Refs. [110, 120] suggested the bowing to come

from the band anti-crossing (BAC). Here we investigate this picture from an ab initio

point of view by calculating the density of states (DOS) of the materials. We find

that at small x, Sb atoms only contribute to the valence band (VB) of GaSbxN1−x

and introduce impurity states inside the GaN band gap, it has very little influence

on the conduction band (CB). Therefore in Fig. 3.5 we plot the calculated DOS at

VB side of the Fermi level, for x=1.35%, 0.35% and 0.175%, with the curves aligned

with respect to Ev,GaN which is the VB edge of GaN. We also found that VB DOS of

GaSbxN1−x below the zero point of the horizontal axis in Fig. 3.5, is very similar to

that of the VB DOS of pure GaN, which means the main effect of Sb is to introduce
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Figure 3.6: Projected DOS of GaSbxN1−x for x = 2.7%. DOS is projected onto s, p orbitals of N
atoms and s, p, d orbitals of Ga atoms. The Fermi level is shifted to 0 eV.

impurity states inside the original GaN gap, namely, the sharp reduction of Eg(x) and

strong bowing of GaSbxN1−x is due to these impurity states. As the Sb concentration

x decreases, width of the impurity states becomes narrower and the main peak moves

closer to Ev,GaN (see Fig. 3.5(a)). This agrees reasonably well with the BAC theory

[111]

E±(k) =
1

2

{
Ev(k) + ESb ±

√
[ESb − Ev(k)]2 + 4V 2x

}
where Ev is the original GaN VB edge, ESb is the Sb impurity energy, and V the

coupling parameter between impurity states and the GaN valence states. At the

HSE06 level of the XC functional, ESb ≈ 0.5eV above the GaN VB. Then we obtain

V = 6.7 eV (see Appendix E for details) which is significantly larger than that of

other III-V materials [111], e.g., 2.7 eV for GaAsxN1−x and 3.5 eV for InPxN1−x etc..

It is also interesting to reveal how atoms interact in GaSbxN1−x by projecting

DOS (PDOS) on to each atom. Fig. 3.6 shows the calculated pdos for x = 2.7%. At

the VB edge, the p-orbital of N and p, d-orbital of Ga are found to dominate. For

impurity states, we found the p-orbital of Sb and N, as well as the p, d-orbital of Ga,
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dominate. This indicates a strong interaction between the impurity states introduced

by Sb and the GaN VB, consistent with the fitted large V parameter in the BAC

model discussed in the previous paragraph. As expected, it is the Ga atoms nearest

neighboring to Sb that contribute to the impurity states. It is however very surprising

that the p-orbital of N has the largest contribution to the impurity states even though

in wurzite GaSbN, the closest N atoms to Sb is only the next nearest neighbor. Indeed,

by calculating the real space projected charge density of the impurity states, we find

that Sb orbitals are mixed with those of its nearest neighbor Ga atoms and next-

nearest neighbor N atoms. This can be understood by the fact that Sb has a large

radius so that its orbitals can overlap and interact strongly with the next-nearest N

atoms.

Having understood that the sharp reduction of Eg(x) in the dilute Sb limit is due

to efficient establishment of the impurity states in the GaN gap, it remains to be

understood why the Eg reduction becomes very slow when x > 1%, i.e. the “turning”

behavior in the bowing curve Fig. 3.4. At large x, different Sb atoms interact with the

same N atom, our investigation suggests this to weaken the interaction between Sb

and N, therefore slows down the Eg decrease. Inspecting the effective p-orbital radius

of Sb and N, we find the “critical” distance between two Sb atoms to be approximately

15Å - below which both Sb interact with the same N atom. This is very close to the

average distance between Sb atoms in the case of x = 0.7%, where the “turning” point

is located (see Fig. 3.4). Another important point is the effective DOS of the impurity

states: it should be comparable to that of the GaN VB to act as a “second VB”. Fig.

3.5(b) shows the total DOS per atom. We find that even at 0.175%, the DOS is on

the same order as that of the GaN VB, which indeed indicates the possibility for the

impurities states acting as a valence band.

Fig. 3.7 plots the calculated VB and CB alignments relative to the vacuum level.

We found that surface structural relaxation tends to lower the band position by

approximately 0.25 eV. This is caused by the surface dipole of the (0110) plane of
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Figure 3.7: Band alignments relative to the vacuum level as a function of antimony concentration
x. Band positions are aligned to vacuum energy by surface calculations. The blue (red) dots/dashed
lines are for relaxed (unrelaxed) surface cases. Black lines refer to the neutral water redox potentials
of H+/H2 and O2/H2O.

GaSbN. On GaN (0110) surface, Ga atoms tend to go inside the lattice so that

the polar Ga-N bonds have a perpendicular component to the surface which lowers

down electron affinity of GaN. In GaSbN, Sb atoms close to the surface has a similar

effect according to our calculation, so that a similar reduction in band alignments

is obtained. We observe that at low Sb concentration, the VB edge varies strongly

at x < 1% but approaches a saturated value beyond 1%. The CB edge varies much

less. This is consistent with the finding presented above, namely impurity Sb states

interact with GaN VB but not CB. Although there appears to be no simple band

bowing model to describe the VB alignment as that in Ref. [15], we can find such

a model to describe the CB very well. As we are only interested in the low x range

0 < x ≤ 5.6%, we use the normalized concentration xn ≡ x/0.056, so that,

Ec,GaSbN = (1− xn)Ec,GaN + xnEc,5.6% − bxn(1− xn)

where Ec,5.6% is the absolute CB edge at x = 5.6% and b the bowing parameter.
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Fitting the calculated data gives the bowing parameter b=0.62 eV.

To achieve unassisted solar water splitting, it is essential that band edges of the

semiconductor photocatalyst straddle the water redox potential which, for neutral

water, is shown as the horizontal solid black lines in Fig. 3.7 (obtained from Ref.

[15]). As we can see, in order to realize neutral water splitting, Sb content must be

controlled to 0.3% or slightly lower if overpotentials are taken into considered. At

this doping level, the lattice mismatch is less than 0.1% which is ideal for achieving

good crystal quality experimentally. Higher Sb content (> 1%) may be suitable for

acid water splitting.

3.4 Summary

In summary, we have investigated the band gap and band alignment of GaSbxN1−x

alloys with KS-DFT. The band gaps are predicted for the dilute Sb limit at the

HSE06 hybrid functional level. We find that the band gap decreases sharply in the

Sb concentration range of 0 < x ≤ 1%. The fundamental mechanism of such a sharp

band bowing is found to be due to impurity states inside the band gap of GaN and a

strong quantum interaction between the orbitals of Sb impurity and their surrounding

neighbors and, in particular, the interaction between Sb and its next nearest neighbor

N atom plays a significant role. Natural band alignments are calculated by combining

the HSE06 bulk calculation and PBE surface calculation. Using the calculated natural

band alignments, we predict that x ≈ 0.3% and slightly lower of Sb doping should be

ideal for photochemical water splitting in solar fuel applications.
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Green’s Function Theory for Quantum Transport

This chapter is a review of the non-equilibrium Green’s function (NEGF) theory

used in this thesis. In order to perform parameter-free first principles simulation for

non-equilibrium quantum transport, we shall combine the density functional theory

(DFT) with the non-equilibrium Green’s function theory: DFT is used to construct

the Hamiltonian of the device; NEGF is employed to obtain the non-equilibrium

quantum statistics of the device. In Chapter 2, we have discussed DFT and its

implementation. This chapter is dedicated to the presentation of NEGF theory, based

on which disorder scattering will be performed in the chapter followed.

This chapter is organized as follows. In Section 4.1, the Laudauer formalism will

be reviewed. In section 4.2, we will present how to obtain important physical quanti-

ties, including the non-equilibrium electron density matrix, current and transmission

coefficients in the framework of NEGF theory. Then the computational implementa-

tion of NEGF-DFT will be outlined in section 4.3. Section 4.4 is devoted to present

the NEGF formalism in the LMTO framework. Section 4.5 is a brief summary for

this chapter.

4.1 Landauer Picture for Quantum Transport

In this thesis, We shall consider a transport system schematically shown in Fig. 4.1

which is an open system. The grey ellipse in the center represents the center region of

54
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reservoir
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Figure 4.1: Diagram for Landauer picture. A two-probe structure is presented in the figure. The
grey ellipse in the center denotes the central region of the device where scattering occurs. The device
is connected to the outside two reservoirs through two leads (the two horizontal light blue bars).
The two reservoirs stays in equilibrium respectively with independent chemical potentials µL/R and
distribution functions fL/R. We use a battery symbol to show that the electrochemical potential of
the two reservoirs can be different.

our device. The device is connected to the outside world (two reservoirs) through two

leads (two light blue horizontal bars in the Fig. 4.1). The reservoirs stay on their own

equilibrium states with their own chemical potential µL/R and a bias voltage VL/R is

applied across. In the Landauer picture, electrons coming out of a reservoir follow

the equilibrium distribution of that reservoir. After scattering in the device region,

electrons arriving at the reservoirs will empty out without any reflection (reflection is

allowed before electrons entering the reservoirs). It is assumed that the distribution

in the left reservoir fL is independent with that of the right reservoir fR because of

the fact that they are far apart. As whole the entire system is in non-equilibrium

since these Fermi functions are not equal when the bias voltage V is applied to drive

a current flow. Finally the current flowing through the device is calculated by

I =
e

h

∫
T (ε) [fL (ε)− fR (ε)] dε, (4.1)
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where T (ε) is the transmission function and related to the probability that electron

injected from the left lead will transmit to the right lead. It is worth nothing that

the bias information (VL/R) is included in the two Fermi distribution functions in Eq.

(4.1) and the transmission function T (ε) depends on the bias also. It is calculated

from the Green’s functions:

T (ε) = Tr {ΓL (ε)Gr (ε) ΓR (ε)Ga (ε)} . (4.2)

Gr/a and ΓL/R are the Green’s functions and linewidth functions respectively. More

details about them will be talked about in Section 4.2. Derivations of Eqs. 4.1 and

4.2 are performed by the NEGF theory and can be found in Refs. [122, 123].

Finally, we would like to point out that Eq. (4.2) applies as long as the Hamiltonian

has a quadratic form [123]. No higher order terms like electron-electron scattering or

phonon scattering should exist in the Hamiltonian if we use Eq. (4.2) to calculate the

transmission.

4.2 NEGF

When modeling a nano device as a two-probe structure, a goal is to compute electronic

current using Eq. (4.1). Let’s recall the details for a two-probe model: the center

region is connected to the outside world via two semi-infinite long leads extending to

the reservoirs (e.g. Fig. 4.1). These leads respect equilibrium Fermi-Dirac statistics,

because they are in contact with thermal reservoirs. Moreover, they have their own

chemical potential µL/R, which satisfy µL − µR = qV . q is the charge of the carrier

and V is the applied voltage (see Fig. 4.1).

In NEGF theory, the most important physical quantity is the non-equilibrium

electron density matrix. In the following we will present in detail how this physical

quantity is calculated. We emphasize that the formalism in this section are derived
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in the framework of LCAO basis. The subscripts for basis are omitted for the sake of

cleanness of the expressions.

We start with the calculation of electron density ρ. In equilibrium, the density is

calculated via Eq. (2.14). In non-equilibrium, it is calculated by the Keldysh NEGF

[123] via the Keldysh equation

G< (ε) = Gr (ε) Σ< (ε)Ga (ε) , (4.3)

such that

ρ = − i

2π

∫ ∞
−∞

G< (ε) dε. (4.4)

Here Gr and Ga are the retarded and advanced Green’s functions. Σ< is the lesser

self-energy which will be explained in detail later. Eqs. (4.3) and (4.4) are applicable

to both equilibrium and non-equilibrium systems. The Keldysh equation connects the

distribution Green’s function G< with the retarded and advanced Green’s functions

and the latter can be calculated by the following formula [123]

Gr,a (ε) = [εO −H0 − Σr,a (ε)]−1. (4.5)

We can also express them by using the Dyson equation [123]

Gr,a (ε) = Gr,a
0 (ε) +Gr,a

0 (ε) Σr,a (ε)Gr,a (ε) . (4.6)

By combining (4.5) and (4.6), the retarded/advanced Green’s function can be rewrit-

ten as

Gr,a (ε) =
[
(Gr,a

0 (ε))−1 − Σr,a (ε)
]−1

(4.7)

Gr,a
0 (ε) =

[(
ε± i0+

)
O −H0

]−1
.

Here matrix O is the overlap matrix, H0 is the Hamiltonian of the isolated central

region of the device. Quantity 0+ is a positive infinitesimal.



58 4 Green’s Function Theory for Quantum Transport

The lesser self-energy Σ< describes the impact from the two leads of the device

(see Fig. 4.1). Since the two leads are independent with each other, Σ< is contributed

by two components

Σ< (ε) = Σ<
L (ε) + Σ<

R (ε) , (4.8)

where Σ<
L,R are the self-energy from the left/right lead. As stated before, the two

leads stay on their respective equilibrium states, Σ< can be further written in the

form [122, 123]:

Σ< (ε) = ifL (ε) ΓL (ε) + ifR (ε) ΓR (ε)

fL,R (ε) =
1

e(ε−µL,R)/kBT + 1

ΓL,R (ε) = i
(
Σr
L,R (ε)− Σa

L,R (ε)
) (4.9)

where ΓL,R is the linewidth function. The linewidth function describes the cou-

pling between the leads and the center region of the device (see Fig. 4.1). The

retarded/advanced self-energy appearing in Eq. (4.5) is obtained from the contribu-

tion of the two leads:

Σr,a (ε) = Σr,a
L (ε) + Σr,a

R (ε) . (4.10)

To calculate Σr,a
L and Σr,a

R , we write the Hamiltonian and overlap matrices of the total

system in the form:

H =


HLL HLC 0

HCL HCC HCR

0 HRC HRR



O =


OLL OLC OLR

OCL OCC OCR

ORL ORC ORR

 ,

(4.11)

where the central region Hamiltonian HCC is a N ×N matrix, the lead Hamiltonian

HLL/RR is a∞×∞ matrix and the lead-center coupling Hamiltonian HL/R,C (HC,L/R)
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is a ∞×N or N ×∞ matrix. The same dimensional properties apply to the overlap

matrices. Combining Eq. (4.11) with Eqs. (4.7)-(4.9) and set the isolated central

Hamiltonian H0 to HCC , the self-energies can be calculated by the relation

Σr,a
τ=L,R = (εOτC −HτC)†

[(
ε± i0+

)
Oττ −Hττ

]−1
(εOτC −HτC) (4.12)

where the matrix [(ε± i0+)Oττ −Hττ ]
−1 is the Green’s function from the semi-

infinite lead, namely the surface Green’s function. Note that Hττ and HτC have

infinite dimensions so the inverse and multiplication operation in Eq. (4.12) are ill

defined and further treatment are needed to compute the self-energies.

To overcome such difficulties in computing self-energies, we note that in numerical

simulations, the electrodes of the device are modeled as periodic crystal structures,

usually metals or degenerately doped semiconductors. Hence the Hamiltonian HLL

(we take the left lead as an example) for the electrodes can be written in the form:

HLL =


. . . . . . 0
. . . H00 H01

0 H10 H00

 . (4.13)

This translational symmetry enables one to calculate the surface Green’s function

iteratively without directly inverting the matrix with infinite dimensions [124]. The

essential idea is to compute the Green’s function of one unit cell of the electrode: this

is possible since a unit cell has only finite number of atoms so that the Hamiltonian

is a finite matrix that can be inverted. Afterward, one adds a second unit cell using

Dyson’s equation and solves it to get the Green’s function of two unit cells. This is

also possible since one is still dealing with finite number of atoms. This process is

repeated until one has added very large number of unit cells and the resulting Green’s

function converges to that of the infinite chain of the unit cells.
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4.3 NEGF-DFT Implementation

In the previous section, we introduced how to calculate non-equilibrium quantities

in the NEGF framework. Here, some issues related to its implementation will be

discussed. Again, the formalism in this section are derived under LCAO basis. The

subscripts for basis are omitted for the sake of simplicity.

4.3.1 Self-Consistent Procedure

Fig. 4.2 is a flowchart showing the process of self-consistent iteration in the NEGF-

DFT technique. All physical quantities including Green’s functions and self-energies

are matrices when a basis set is employed. This basis can be LCAO (see Section 2.2),

LMTO (see Section 2.3) or others. In the algorithm shown in Fig. 4.2, we start by an

initial guess for electron density usually using the neutral atom density (section 2.1.5).

Then the Hamiltonian of the device is constructed according to Eqs. (2.18) and (2.19).

Using this Hamiltonian, the corresponding Green’s function is determined after the

self-energies from the leads are obtained separately. By integrating theG< over energy

according to Eq. (4.4), a new electron density is determined. If this electron density

is within some pre-specified tolerance from the density of the previous self-consistent

step, the self-consistency is deemed achieved and the iteration loop ends. If not, the

new electron density is used for the next iteration step. This process is repeated until

self-consistency is achieved.

4.3.2 Energy Integration

Eq. (4.4) states that the electron density is obtained by integrating the lesser Green’s

function over the whole energy range from−∞ to +∞. Unfortunately, this integration

is hard to do in numerical simulations. This is because the Green’s function integrand

has many singularities near the integration axis (the real energy axis).
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  construct  
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NO 

Figure 4.2: Diagram for self-consistent procedure of NEGF-DFT technique. All physical quantities
including self-energies and Green’s functions are matrices under some type of basis, e.g. LCAO basis
or LMTO basis.

To solve this issue, integration range is reduced due to the Fermi-Dirac distribution

function in the integrand of Eq. (4.4) via Eq. (4.9). Note that Fermi distribution

decreases exponentially to zero as the energy goes above the Fermi energy, hence

the upper limit of the integration range is practically bounded, and set to εh =

max (µL, µR) + nkBT where T is the temperature, kB the Boltzmann constant and n

is usually taken to be 15∼30 [90]. When choosing the lower limit, we have to make

sure it is low enough to account for the electronic density of states all the way from

the band bottom. In numerical simulations, this lower limit (εl) is often chosen to be

many atomic units below the min (µL, µR).

Having reduced the integration range of Eq. (4.4), to deal with the singularities

of the Green’s function, we break the integration into two separate parts

ρ (r) =− i

2π

∫ ∞
−∞

G< (r, r, ε) dε = − i

2π

∫ εh

εl

G< (r, r, ε) dε

=− i

2π

∫ εm

εl

G< (r, r, ε) dε− i

2π

∫ εh

εm

G< (r, r, ε) dε. (4.14)

where the lower limit εl is a very negative number. One interesting property of the

integrand is that when below the energy εm = min (µL, µR) − nkBT , the two Fermi

distribution functions satisfy fL = fR = 1. Therefore by Eqs. (4.3), (4.5) and (4.9)

G< satisfies

G< = −2iIm (Gr) (4.15)
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Figure 4.3: Diagram of integration path when calculating electron density. The red curve refers to
the path we use to integrate lesser Green’s function.

and Eq. (4.14) becomes

ρ (r) = − 1

π

∫ εm

εl

Im (Gr (r, r, ε)) dε− i

2π

∫ εh

εm

G< (r, r, ε) dε. (4.16)

Now the first part of the integration can be easily integrated because the singularities

of the function Im (Gr (r, r, ε)) only appear in the negative half of the complex energy

plane. Therefore by constructing a new integration contour (see the red contour C in

Fig. 4.3) in the positive half of the complex energy plane (Fig. 4.3), the first term of

Eq. (4.16) can be calculated without difficulty by the theorem of residual. Then Eq.

(4.15) becomes

ρ (r) = − 1

π

∫
C

Im [Gr (r, r, z)] dz − i

2π

∫ εh

εm

G< (r, r, ε) dε, (4.17)

where z is the complex energy. Now the troublesome part is the second integral in

Eq. (4.17). Because G< has singularities on both upper and lower half of the complex

energy planes, this integral can only be done along the real energy axis with large

number of energy points. To smooth out the sharp features around the singularities,

typically a very small imaginary number is added to the energy.
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4.4 NEGF-DFT in TB-LMTO Method

In Section 4.3, we discussed NEGF-DFT within the LCAO implementation. The

NEGF-DFT method can also be implemented in LMTO-ASA, which is presented in

this section under the TB-LMTO framework. Since the Hamiltonian (Horth in Eq.

(2.95)) is expressed under a set of orthogonal basis, the overlap matrix (O) in this

section is set to be ‘I’ by default.

We start with the retarded and advanced Green’s functions Gr and Ga. Green’s

function are calculated from the Hamiltonian,

Gr (ε) =
[
ε−Horth + i0+

]−1
,

Ga (ε) =
[
ε−Horth − i0+

]−1
,

Horth = C +
√

∆Sα(1− (γ − α)Sα)−1
√

∆,

(4.18)

where we have assumed that the Hamiltonian is transformed to the α representation.

The superscript α on the Hamiltonian is omitted for simplicity of notation. The

Green’s functions are from Eq. (4.5). The self-energy terms disappear above since

the Hamiltonian is for the whole system. An infinitesimal 0+ is added to distinguish

the retarded and advanced Green’s function. Combining these two equations together

we have

Gr,a (ε) =
[
ε− C −

√
∆Sα(1− (γ − α)Sα)−1

√
∆
]−1

. (4.19)

After some algebra (see Appendix C.1) the Green’s functions can be written as

Gr,a =
γ − α

∆ + (γ − α) (ε± − C)
+

√
∆

∆ + (γ − α) (ε± − C)

[
ε± − C

∆ + (γ − α) (ε± − C)
− Sα

]−1

×
√

∆

∆ + (γ − α) (ε± − C)

=λα
(
ε±
)

+ µα
(
ε±
) [
Pα
(
ε±
)
− Sα

]−1
µα
(
ε±
)
, (4.20)
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where ε± = ε± i0+. Pα, λα and µα are diagonal matrices with elements of

Pα
Rl (ε) =

ε− CRl

∆Rl + (γRl − αl) (ε− CRl)
,

λαRl (ε) =
γRl − αl

∆Rl + (γRl − αl) (ε− CRl)
,

µαRl (ε) =

√
∆Rl

∆Rl + (γRl − αl) (ε− CRl)
.

(4.21)

To proceed further, we introduce an auxiliary Green’s function:

gα (ε) = [Pα (ε)− Sα]−1. (4.22)

Then the Green’s function becomes

Gr,a = λα
(
ε±
)

+ µα
(
ε±
)
gα
(
ε±
)
µα
(
ε±
)
. (4.23)

In addition, gα is transformed according to the relation

gβ = (β − δ) P
δ

P β
+
P δ

P β
gδ
P δ

P β
(4.24)

in the representation transformation.

Like in LCAO framework, when calculate the transport of a two-probe system, we

have to focus on the Green’s function in the central region. The influence from the

leads has to be considered. Reference [37, 91, 125] shows that equation Eq. (4.23)

remains valid but the effect of L/R electrodes modifies the expression for the auxiliary

Green’s function. The auxiliary Green’s function becomes

g̃
α,r/a
CC (ε) =

[
Pα
C (ε)− SαCC − Π

α,r/a
L (ε)− Π

α,r/a
R (ε)

]−1

. (4.25)
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where the modified self-energies are

Π
α,r/a
L (ε) = SαCL[Pα

L (ε)− SαLL]−1SαLC ,

Π
α,r/a
R (ε) = SαCR[Pα

R (ε)− SαRR]−1SαRC .
(4.26)

For details of these relations, please refer to Appendix C.2. We emphasize that a “∼”

symbol was added on top of the two-probe g to distinguish with the bulk Green’s

function g.

The next important quantity is the lesser Green’s function. This can be easily

obtained by inserting quantities in LMTO form into Eq. (4.9),

G<
CC (ε) = µα,rC (ε) g̃α,<CC (ε)µα,aC (ε) ,

g̃α,<CC (ε) = g̃α,rCC (ε)
[
Πα,<
L (ε) + Πα,<

R (ε)
]
g̃α,aCC (ε) ,

Πα,<
τ=L,R (ε) = ifτ (ε) · Λα

τ (ε) ,

Λα
τ (ε) = i [Πα,r

τ (ε)− Πα,a
τ (ε)] .

(4.27)

Finally, the transmission function can be written in the form [126]:

T (ε) = Tr (Λα
Lg̃

α,r
CCΛα

Rg̃
α,a
CC) . (4.28)

4.5 Summary

In this chapter we introduced NEGF-DFT theory for solving quantum transport

problems. The Landauer picture, discussed in Section 4.1 can be used to describe

the quantum transport of two-probe devices out of equilibrium. We presented the

basic formalism for NEGF-DFT from which quantities such as electron density ρ and

transmission coefficient T are calculated. Later, the NEGF-DFT formula in LMTO

framework was derived. The NEGF-DFT method correctly accounts for the non-

equilibrium quantum statistics that are important for transport calculations. The
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NEGF-DFT technique is computationally efficient and does not rely on empirical

parameters. Furthermore, the NEGF-DFT framework is formulated in the language

of many body theory and hence is well suited to include new physical effects in

its theory such as impurity scattering which will be discussed in detail in the next

chapter.



5
Disorder Scattering

As discussed in Chapter 1, it is inevitable that any device or material fabricated in

lab or industry contains some amount of disorder or imperfections such as impurities,

defects, dopants and so on. These unintentional disorders sit at unpredictable random

locations in the host lattice and significantly affect quantum transport through the

device. Such disorders also causes variations in device properties from device to device

[127]. Therefore, theories and techniques that can investigate random disordered

system from first principles are highly desired. Previously, such disorder problem

is solved by the “brute force” method. Consider the most common substitutional

disorder problem (see Fig. 5.1), impurities randomly substitute the host atoms in

the center region of the two-probe system. In principle, to calculate the average

transport property, one has to perform calculation (usually by NEGF method) for

each individual disorder configuration. Suppose there are N sites in the center and

1 type of impurity atom, there would be 2N configurations to calculate. When N

is large, which is usually true in real case, the computation is forbidden. Another

problem is, if the impurity concentration is low (say < 0.1%), a large super lattice

(more than 1,000 atoms) has to be considered to accommodate a single impurity. Such

calculation is extremely hard for NEGF-DFT. Therefore, a method that allows us to

obtain the average property by only calculating the system once is highly in demand.

It is timely that such theories have been developed in 2008 at McGill University [37]

and later in 2013 its more general form the NECPA been developed by the same

group [38]. The main purpose of this chapter is to present the details of the NECPA

67
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:host atom :lead atom :impurity atomz

x

Figure 5.1: Schematic plot of a two-probe system with some impurity sites in the central scattering
region. The left/right leads extend to z = ±∞. The device extends to x = ±∞ in the transverse
direction. The black dots are sites of electrodes, white circles are pure sites in the scattering region,
white sites with a cross in the center are impurity sites.

theory in the NEGF-DFT formalism, which we will need in Chapter 7.

The NECPA is formulated by contour-ordered nonequilibrium Green’s function

where the disorder average is carried out within the coherent potential approximation

on the complex-time contour. NECPA has been implemented with LMTO-ASA.

One is now able to calculate the average quantum transport property of a random

disordered two-probe system from first principles. It was successfully applied to solve

the diffusive transport problem in co-doped graphene Tunnel FET (TFET) [51], which

will be presented in detail in Chapter 6. One more thing irrelevant to this thesis but

worth mentioning is that under the same framework the same group reported a first

principles formulation to calculate the fluctuation of quantum transport [128] around

the mean and it was successfully applied to solve the variability problem in silicon

nanoFET [50].

This chapter will be organized as follows. We first introduce the CPA theory in

section 5.1. To make it simple and clean, the formula are derived and presented in

the tight binding framework. In section 5.2 we show the non-equilibirum version of

the CPA theory by using the analytic continuation method. Section 5.3 will touch
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the details of NECPA formalism when the system has periodic boundary conditions.

In section 5.4 we present the NECPA formalism with LMTO-ASA implementation.

Finally section 5.5 is a short summary of the chapter.

5.1 Coherent Potential Approximation

We start from a two-probe system schematically shown in Fig. 5.1. There are disor-

der sites randomly located in the scattering region indicated by the crossed circles.

Consider a simple but not trivial case that each atom has only one orbital and or-

bitals are orthonormal with each other, theoretically, one may mimic disorder effects

by assigning the on-site energy to a random discrete variable. It is assumed that on

a disorder site i, the on-site energy εi takes the value value εiq with probability xiq,

where q = 1, 2, ... labels multiple impurity species and, clearly,
∑

q xiq = 1 is satisfied

for any site i.

The Hamiltonian of the two-probe system in the second quantization representa-

tion can be written as

H = HC +
∑
β=L,R

Hβ +
∑
β=L,R

HCβ, (5.1)

HC =
∑
i

εic
†
ici +

∑
i<j

tijc
†
icj + t∗ijc

†
jci, (5.2)

Hβ =
∑
k

εβka
†
βkaβk, (5.3)

HCβ =
∑
ik

tikc
†
iaβk + t∗ika

†
βkci, (5.4)

where HC is the Hamiltonian of the central scattering region (see Fig. 5.1, the region

with white circles or circles with a cross in the center), Hβ (β = L,R) is the Hamilto-

nian of the left or right lead, and HCβ is the coupling between the central scattering

region and the β lead. Note that the above Hamiltonian is in a quadratic form, thus

analytical solution of quantum transport can be obtained if the on-site energy εi is
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z
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Figure 5.2: Schematic plot of a isolated systems. (a) isolated system with some random impurities.
The white circles are pure sites in the material and the white sites with a cross in the center are
impurity sites. (b) isolated system with CPA. The circles in light blue are the atoms with coherent
potentials.

a definite variable. The complexity of our problem comes from the fact that εi is a

random variable and hence any physical quantities must be averaged over disorder

configurations.

To address the CPA theory, we first consider the system to be an isolated one

(with no leads connecting to the outside reservoirs, see Fig. 5.2(a)). The system

Hamiltonian is reduced to Eq. (5.2). The retarded Green’s function of the isolated

system is calculated by

Gr =
(
EI −HC + i0+

)−1
, (5.5)

which is similar to Eq. (4.5). I is the identity matrix and comes from the orbital or-

thonormality. To solve the disorder problem, we need to calculate the configurational

average of Gr,

Gr = (EI −HC + i0+)−1, (5.6)

where we have use the symbol (· · · ) to denote the configurational average. As a basic

idea of the CPA theory, the difficult configuration average on (EI −HC + i0+)−1 can
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be taken off when a coherent potential function ε̃r is introduced [129]

Gr = (EI −HC − ε̃r)−1 , (5.7)

where we have absorbed the +i0+ term into the coherent potential function. The co-

herent potential function ε̃r describes an effective medium after configuration average

and it retains the translational invariance (thus Fourier transform can be done, even

though the disordered crystal has lost its translational invariance). Changing from

Eq. (5.6) to (5.7) represents a huge simplification of theory if ε̃r can be calculated.

In general the function ε̃r is a site non-diagonal quantity, but its determination can

be simplified by employing the following useful approximation [43, 44, 129]

ε̃rii′ = ε̃ri δi,i′ , (5.8)

which assumes that the coherent potential ε̃r is a site-diagonal quantity. We further

absorb the diagonal part of HC into the coherent potential and we obtain

Gr =
(
EI −H0

C − ε̃r
)−1

, (5.9)

where H0
C is the off-diagonal part of HC . Changing from Eq. (5.7) to Eq. (5.9) does

nothing but some mathematical rearrangement. Now the configurational averaged

Green’s function is expressed by an on-site potential, which means an “average” on-site

potential is introduced to describe the disordered system (see Fig. 5.2(b)). Instead

of εiq, “average” potential ε̃r describes the on-site potential of the averaged system.

The main task of CPA is to determine the unknown quantity ε̃r.

We proceed from the Dyson equation [122] that connects Eq. (5.5) and (5.9),

Gr = Gr +Gr (εr − ε̃r)Gr, (5.10)

where we have done similar modification to Eq. (5.5) with to Eq. (5.9), i.e., extracting
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the diagonal part of HC out and denote it as εr.

To proceed, we introduce the T -matrix of the disordered system. By definition the

matrix T satisfies the relation [54]

(εr − ε̃r)Gr = TGr, (5.11)

from which Eq. (5.10) can be further written as

Gr = Gr +GrTGr, (5.12)

which indicates that T matrix contains all disorder scattering effects of the random

system. By combining Eqs. (5.11) and (5.12), we find that T also satisfies:

T = (εr − ε̃r) + (εr − ε̃r)GrT

= (εr − ε̃r)
(
I +GrT

)
. (5.13)

To make it clear what physics T contains, we denote ∆ε = εr − ε̃r. Recursively

replacing T matrix in Eq. (5.13) by itself, we arrive at

T = ∆ε+ ∆εGr∆ε+ ∆εGr∆εGr∆ε+ · · · , (5.14)

which clearly indicates that the T matrix contains all possible scattering process

likely to happen in the transport of disordered system. Performing the configuration

average on Eq. (5.12), we arrive at

T = 0, (5.15)

which provides a clear self-consistent condition for determining the potential function

ε̃r. However, this process of determining ε̃r is still difficult since T is a matrix that

all scattering processes couple with each other. Therefore further approximations are
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demanded. Here we will introduce a widely accepted and used method called the

single-site approximation (SSA) [54]. In SSA, we consider only the scattering events

that involve one impurity at a time. Then similar to Eq. (5.13) the scattering matrix

associated with that impurity (at site i) can be written as,

tri =
(
εriq − ε̃ri

)
+
(
εriq − ε̃ri

)
Gr
i t
r
i

=
(
εriq − ε̃ri

) (
I +Gr

i t
r
i

)
, (5.16)

from which we have

tri =
[
I −

(
εriq − ε̃ri

)
Gr
i

]−1 (
εriq − ε̃ri

)
=
[
I −∆εiqGr

i

]−1
∆εiq

=
(
εriq − ε̃ri

) [
I −Gr

i

(
εriq − ε̃ri

)]−1

= ∆εiq
[
I −Gr

i∆εiq
]−1

=
[
(εriq − ε̃ri )−1 −Gr

i

]−1
.

(5.17)

Here we have defined a quantity ∆εiq = εriq − ε̃ri . Gr
i refers to the propagator at site

i for the system where all sites are described by the effective medium ε̃r. ε̃i is the

coherent potential at site i. tri is the single site scattering matrix at site i. We put

a superscript r on ti since it is calculated all by retarded quantities. The next thing

we are interested in is the relation between the single site scattering matrix tri and

the full scattering matrix T . We try to express the T matrix in terms of single-site

scattering matrix tri defined above. It is straight forward to rewrite Eq. (5.13) in form

of

T = (εr − ε̃r) + (εr − ε̃r)GrT

=
∑
i

(εri − ε̃ri )
(
I +GrT

)
=
∑
i

∆εi
(
I +GrT

)
=
∑
i

Qi, (5.18)
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where Qi is defined as

Qi ≡ ∆εi
(
I +GrT

)
= ∆εi

(
I +GrQi +Gr

∑
i′ 6=i

Qi′

)
. (5.19)

Attention that we have omitted the subscript q for both εriq and ∆εiq since they are

not important here. The second equality of Eq. (5.19) comes from replacing T with

sum of Qi. Eqs. (5.17), (5.18) and (5.19) also give

Qi = tri

(
I +Gr

∑
i′ 6=i

Qi′

)
=

(
I +

∑
i′ 6=i

Qi′Gr

)
tri . (5.20)

Qi describes the contribution of random atom at site i to the scattering. T matrix is

different with the single-site scattering matrix tri . This difference is due to multiple

impurities scattering which can be shown clearly after inserting expression for Qi′

into Eq. (5.20),

Qi = tri

(
I +Gr

∑
i′ 6=i

Qi′

)
= tri

(
I +Gr

∑
i′ 6=i′

tri′

(
I +Gr

∑
i′′ 6=i′

Qi′′

))

= tri + tiGr
∑
i′ 6=i

tri′ + triG
r
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

Qi′′ . (5.21)

If we continue to insert expression for Qi′′ and so forth, we can have

Qi = tri + triG
r
∑
i′ 6=i

tri′ + tiGr
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

(
tri′′ + tri′′G

r
∑
i′′′ 6=i′′

Qi′′′

)

= tri + tiGr
∑
i′ 6=i

tri′ + triG
r
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

tri′′ + . . . . (5.22)
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Then the multiple scattering equation gives:

T =
∑
i

(
tri + triG

r
∑
i′ 6=i

tri′ + triG
r
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

tri′′ + · · ·

)

=
∑
i

tri +
∑
i

triG
r
∑
i′ 6=i

tri′ +
∑
i

triG
r
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

tri′′ + . . . , (5.23)

where the T is expressed in terms of single-site scattering contributions. Having

known the contribution of each site to T , we consider the configurational average of

the scattering (average of Eq. (5.20)). To go forward, a single-site approximation [46]

is employed,

Qi = tri

(
I +Gr

∑
i′ 6=i

Qi′

)

= tri

(
I +Gr

∑
i′ 6=i

Qi′

)
+ triG

r
∑
i′ 6=i

(
Qi′ −Qi′

)
. (5.24)

In SSA the second term above is neglected hence we arrive at

Qi ≈ tri

(
I +Gr

∑
i′ 6=i

Qi′

)
. (5.25)

The physical meaning of SSA is that when electrons flow through a disordered sys-

tem, they can only scatter off one impurity at a time. In other words, the scattering

events happening at different sites are independent of each other. SSA is a good

approximation since the probability of scattering off multiple impurities simultane-

ously is small. The probability of multiple impurities scattering can be measured by

comparing the impurity scattering mean free path (Lim) and the average distance

between impurities (Lav). SSA beaks when impurity concentration is large so that

Lim and Lav are comparable. Notice that when SSA is employed, a similar expansion
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to Eq. (5.23) can be derived:

T ≈
∑
i

tri +
∑
i

triG
r
∑
i′ 6=i

tri′ +
∑
i

triG
r
∑
i′ 6=i

tri′G
r
∑
i′′ 6=i′

tri′′ + . . . . (5.26)

Recalling the condition Eq. (5.15), Eq. (5.26) vanishing to 0 gives the new self-

consistent condition

tri =
∑
q

xiqt
r
iq = 0, (5.27)

where the single site scattering matrix triq =
(
εriq − ε̃ri

) [
I −Gr

i

(
εriq − ε̃ri

)]−1 is from

Eq. (5.17). Note that we have specified a subscript q to tri and it does nothing but

make the information more complete. Eqs. (5.9), (5.17) and (5.27) form a close set

of self-consistent equations from which ε̃r can be solved. We rewrite them below

tri =
∑
q

xiqt
r
iq = 0,

triq =
[(
εriq − ε̃ri

)−1 −Gr
i

]−1

,

Gr
i =

[
Gr
]
ii
,

Gr =
(
EI −H0

C − ε̃r
)−1

.

(5.28)

[· · · ]ii means taking the ith diagonal element of the matrix. Eqs. (5.28) are used

by most of the CPA work. At the very beginning of the calculation, ε̃ri is set to be

some initial guess (usually the average of εriq). Then Gr
i can be obtained from the

last two equations of Eqs. (5.28). With Gr
i at hand, the first two equations of Eqs.

(5.28) together produce a new ε̃ri , which will be used for the next iteration step. This

process will be repeated until self-consistency is achieved. Finally the configuration

average of Green’s function Gr is obtained from which all physical quantities can

be calculated. However, Eqs. (5.28) are sometimes not convenient to use especially

when there are more than two types of atoms possible to occupy the lattice sites where

solving ε̃ri from the first two equations becomes extremely complicated. A simple way

to overcome the problem is to rewrite them by using the conditional Greens function
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defined as

Gr
iq =

[(
EI −H0

C − ε̃riq
)−1
]
ii
, (5.29)

where ε̃riq means to replace the ith diagonal element by εriq. The physical meaning of

the conditional Greens function Gr
iq is that the propagator from site i to i under the

condition that the site is occupied by species q while all other sites remain disordered.

By using the conditional Green’s function, the CPA equation set [38] can be rewritten

as below,

Gr
i =

∑
q

xiqGr
iq,

Gr =
[
EI −H0

C − ε̃r
]−1

,

Gr
i =

[
Gr
]
ii
,

Gr
i = [EI − ε̃ri − Ωr

i ]
−1 ,

Gr
iq =

[
EI − εriq − Ωr

i

]−1
.

(5.30)

Ωr
i is a site diagonal quantity introduced here to make the equation sets simpler. It

describes the effective coupling of a given site i to all other sites in a system. Eqs.

(5.30) are equivalent to Eqs. (5.28). A simple proof can be found in Appendix D.

Eqs. (5.30) is a closed equation set that can be solved self-consistently. This will be

discussed in the following section along with its non-equilibrium form. One last thing

to mention is that Eqs. (5.30) are obtained for isolated system. For open system

(e.g., two-probe system), we can simply add a self energy term Σ to the second line

of the above equation set to make them applicable to the open system.

We end this section by summarizing the properties of the CPA, its advantages and

limitations: i) CPA creates an effective lattice that describes the average electronic

properties of the random system. The lattice site is occupied by an “effective” atom,

which is some combination of the host atom and impurity atom. The “effective”

atom is described by the site-diagonal coherent potential, which is a complex number

or matrix; ii) for system of form AxB1−x, CPA gives the average of 2N possible
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configurations if there are N atomic sites in the lattice. This average mathematically

coincides with the one that average over all possible configurations having xN A atoms

in the lattice; iii) the CPA becomes exact in three important limiting cases namely

in the low concentration limit, in the weak scattering limit, and in the split-band

limit (the separation of constituents bands is large as compared to their bandwidths)

[45]. CPA also provides a good interpolation procedure between these limits, and it

is more accurate than any other single-site theory.

5.2 Nonequilibrium Coherent Potential Approximation and

Physical Quantities

Section 5.1 derives the CPA equation set for the isolated systems. In current section

we go one step further to apply it to non-equilibrium state of a two-probe system

(open system). All the details follow Refs. [38, 123]. Firstly we will present in detail

the NECPA theory from which the configurational average of Green’s functions can

be calculated. These quantities are needed for calculating physical quantities such as

the nonequilibrium charge density and the transmission coefficient.

5.2.1 Nonequilibrium Coherent Potential Approximation

In this subsection, we start from the Langreth theorem and then apply it to the

equilibrium CPA equation set (Eqs. 5.30) to get its nonequilibrium counterpart.

In the equilibrium Green’s function theory of solving many body problem, we let

the time indices of the Green’s function evolve to asymptotic past (t = −∞) and

future (t = +∞) under the adiabatic process so that the initial and final states of the

Green’s function are known states. Since the system is in equilibrium and the process

is adiabatic, both states are eigen states of the solvable non-interacting Hamiltonian

and they differ by a phase factor at most. Therefore the Feynman diagram technique
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can be applied to solve the many body problem [123].

However, when the system is driven out of equilibrium, the asymptotic past and

future states are not necessarily related in most of the cases. Consider, for example,

an important problem in surface physics, where atoms or molecules impinging on a

surface to exchange charge with the surface, and hence the initial state at t = −∞ is

very different from the final state at t = +∞. Such difference from equilibrium case

poses difficulties on the application of Feynman diagram technique. Recall that in

nonequilibrium problems we are not really interested in the asymptotic future so that

the key problem is to get rid of referring to the asymptotic future state. A simple but

solid way to do this is the Keldysh contour-ordered Green’s function theory (see Fig.

5.29). People find that it is always simpler to consider our problem on the complex

time contour instead of the real time axis since contour-ordered Green’s function

themselves has very similar mathematical structure to the equilibrium ones. In this

way, the convenient and powerful Feynman diagram technique can be applied with

no difficulties. After solving the complex time contour-ordered Green’s function, the

final step is to find their corresponding real time ones since all physical quantities and

observable are related to the real time Green’s functions. This process is done by the

Langreth theorem which simply maps the complex contour-ordered Green’s functions

to the real time Green’s functions and is usually called “analytic continuation” [123].

Consider the “matrix products” of two contour-ordered quantities (such as Green’s

functions or self-energies) C = AB, its real time correspondings can be calculated by

[123]

(AB)<,> = ArB<,> + A<,>Ba, (5.31)

(AB)r,a = ArBa, (5.32)

where the “matrix multiplication” consists of summations over internal degrees of

freedom (space and spin) and convolution integrals on the real axis from −∞ to +∞.
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Figure 5.3: Schematic plot of the complex-time contour that goes above the real-time axis from
τ = −∞ to +∞, and returns below the real-time axis to τ = −∞. The contour-ordered Green’s
function is defined on the complex-time contour.

Now we derive the non-equilibrium version of the CPA equations (5.30) using the

Langreth theorem (5.31) and (5.32). One difficulty of applying the Langreth theorem

to the CPA equations (5.30) is that Eqs. (5.30) involves the inverse of some quantities,

which does not fit into the form of the Langreth theorem. To overcome this difficulty,

we apply the generalized Langreth theorem, which can be found in Ref. [38]. Two

sets of equations can be obtained for Gr and G<,

Gr
i =

∑
q

xiqGr
iq,

Gr =
[
EI −H0

C − ε̃r − Σr
]−1

,

Gr
i =

[
Gr
]
ii
,

Gr
i = [EI − ε̃ri − Ωr

i ]
−1 ,

Gr
iq =

[
EI − εriq − Ωr

i

]−1
.

(5.33)

and

G<
i =

∑
q

xiqG
<
iq,

G< = Gr [ε̃< + Σ<]Ga,

G<
i =

[
G<
]
ii
,

G<
i = Gr

i (ε̃<i + Ω<
i )Ga

i ,

G<
iq = Gr

iqΩ
<
i G

a
iq.

(5.34)

The above equation sets (5.33) and (5.34) are the NECPA equations [38].
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5.2.2 Self-consistent solution of NECPA equations

In previous subsection we have derived the non-equilibrium version of CPA equations.

In this subsection we show the steps of solving these equations. The equation set is

solved iteratively and the process mainly consists of two parts: 1) solving Gr,a from

Eqs. (5.33); 2) solving G< from Eqs. (5.34). Detailed steps are listed as follows [38].

We first solve Gr,a:

(1) Make an initial guess of Ωr.

(2) Determine ε̃ from the first, fourth and fifth lines of Eq. (5.33) and the result

is:

ε̃ri = E − Ωi −

[∑
q

xiq (E − εiq − Ωr
i )
−1

]−1

.

(3) Determine Gr from the second line of Eq. (5.33):

Gr =
[
E −H0

C − ε̃r − Σr
]−1

.

(4) Update Ωr by solving it from the fourth line of Eq. (5.33) and the result is:

Ωr
i = E − ε̃ri −

(
Gr
)−1

ii
.

(5) Go back to step (2) to repeat the process until Ωr is fully converged. Usually

a criteria is set to measure the accuracy of the convergence.

Once Ωr is solved, G< can be solved by the following steps:

(1) Make an initial guess of Ω<.

(2) Determine ε̃< from the first, fourth and fifth lines of Eqs. (5.34) and the result
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is:

ε̃<i =
(
Gr
i

)−1

[∑
q

xiqGr
iqΩ

<
i G

a
iq

] (
Ga
i

)−1 − Ω<
i .

(3) Determine G< from the second line of Eq. (5.34):

G< = Gr [ε̃< + Σ<]Ga.

(4) Update Ω< by solving it from the fourth line of Eq. (5.34) and the result is:

Ω<
i =

(
Gr
i

)−1 [
G<
]
ii

(
Ga
i

)−1 − ε̃<i .

(5) Go back to step (2) to repeat the process until Ω< is converged. Like before,

a criteria is set to measure the accuracy of the convergence.

Having shown the procedure of solving the NECPA equation set, there are two

more important issues remaining to address. 1) Computational complexity of the

above process, i.e., does the computational time scales “reasonably” with the number

of sites/atoms or central region length? Step (3) of above process is proportional to

N3, where N is the number of disorder sites. In Chapter 7, we will show that by using

some special matrix algorithm, the computational time can be drastically reduced,

making it viable for real material application. 2) How to accelerate the converging

process. In Chapter 7, we show that the Anderson method [54] largely accelerate the

converging speed.

5.2.3 Charge Density and Transmission Coefficient

Recall that in Chapter 4, the key step of the NEGF-DFT is to calculate the system

charge density ρ, which is calculated from G<. Similarly, for the disorder system, the
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average charge density is calculated by

ρ = − i

2π

∫ ∞
−∞

G< (ε) dε, (5.35)

where the G< is obtained from solving the NECPA equation set (5.33) and (5.34).

As discussed in Section 4.1 the transmission coefficient is calculated from Eq. (4.2).

Our goal is to obtain its disorder configuration average

T (E) = Tr (ΓLGrΓRGa). (5.36)

This quantity can be calculated through a somewhat tricky approach. We go from

Eq. (5.36)

T (E) =Tr (ΓLGrΓRGa) = Tr
(
ΓLGrΓRGa

)
=Tr

(
ΓLGrΓRGa

)
. (5.37)

Since the linewidth function ΓL has been solved from the electrodes (see Eq. (4.9)),

we need to calculate the quantity GrΓRGa in which two random quantities Gr and Ga

are connected by a non-random quantity ΓR. This is much alike what we have done

for solving G< in section 5.2.1. From a mathematical point of view, G< and GrΓRGa

have identical structure. To solve the quantity GrΓRGa, we only need to replace the

quantity Σ< by ΓR in the NECPA equations of G< [38]. Once the corresponding

NECPA equation is solved, we just need to insert GrΓRGa back to Eq. (5.37) to get

the final transmission coefficient.

5.3 NECPA with Transverse Periodicity

In some applications, one may need to study two-probe systems whose dimension is

infinite in the transverse direction (see Fig. 5.1). The way to deal with such infinity
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is to apply periodic boundary conditions originating from the lattice periodicity. For

two-probe systems without disorder, the transverse periodicity allows one to apply

the Bloch theorem. This way, the calculation of transverse periodic two-probe system

is reduced to the calculation of a small unit cell with appropriate k sampling. For

two-probe systems with random disorder, the translational symmetry is broken in the

transverse dimensions and Bloch theorem does not hold. Nevertheless, NECPA is an

effective medium theory whose application restores the translational symmetry of Gr

and G<. One can still work with the small unit cell with k sampling to calculate

these quantities.

For two-probe systems with transverse periodicity, NECPA equations (5.33) and

(5.34) need to be modified slightly to include k sampling:

Gr
i =

∑
q

xiqGr
iq,

Gr(k) =
[
EI −H0

C(k)− ε̃r − Σr(k)
]−1

,

Gr =

∫ +∞

−∞

dk

2π
Gr(k),

Gr
i =

[
Gr
]
ii
,

Gr
i = [E − ε̃ri − Ωr

i ]
−1 ,

Gr
iq = [E − εiq − Ωr

i ]
−1 .

(5.38)

and

G<
i =

∑
q

xiqG
<
iq,

G<(k) = Gr(k) [ε̃< + Σ<(k)]Ga(k),

G< =

∫ +∞

−∞

dk

2π
G<(k),

G<
i =

[
G<
]
ii
,

G<
i = Gr

i (ε̃<i + Ω<
i )Ga

i ,

G<
iq = Gr

iqΩ
<
i G

a
iq.

(5.39)
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In the above equations, k is the dimensionless wave vector. For systems with period-

icity in one transverse dimension (i.e. 2D system), k is defined as k · a in which k

is the wave vector and a is the unit cell vector of the periodic transverse dimension.

For systems with periodicity in two transverse dimensions (3D system), k is defined

as (k1,k2) = (k · a1,k · a2) in which a1 and a2 are the two unit-cell vectors of the

periodic transverse directions and
∫ +∞
−∞

dk
2π

should be understood as
∫ +∞
−∞

dk1
2π

∫ +∞
−∞

dk2
2π

.

Finally, we end the tight binding CPA and NECPA section by mentioning that the

above equations can be easily extended to the multiple orbital case. On-site quantities

like ε̃ri , εriq and so on become No×No matrix blocks, where No is the number of orbitals

of each site.

5.4 NECPA with LMTO-ASA

In section 5.1 and 5.2, we have presented the details of the CPA and NECPA formalism

in the tight binding framework. In practical implementation, the formalism is usually

implemented with LMTO-ASA [54] or KKR method [130], under which the system

Hamiltonian has no off-site disorders. In this section, we present NECPA formalism in

the framework of LMTO-ASA (see section 2.3 for its detail). Since the basic formulas

follow the ones presented in section 5.1 and 5.2, we only address some key difference

compared to the tight binding ones.

The biggest difference of LMTO-ASA implementation is the Green’s function. As

presented in section 4.4, in LMTO-ASA both Green’s functions (Gr and G<) are

expressed by the auxiliary Green’s functions (see Eq. (4.23) and Eq. (4.27)). The

CPA is applied to the auxiliary Green’s function [54] (see Eq. (4.22)) by

gα = (Pα − Sα)−1, (5.40)

where PαR,R′ = PαRδR,R′ [54, 129], is the introduced on-site coherent potential in
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LMTO-ASA, like what is done in Eq. (5.7). Other quantities in Gr and G< are

generally on-site, whose configurational average can be performed easily. Once the

configurational average Green’s functions are solved, everything else can be solved

following similar formulas as in the tight binding. Interested readers can refer to my

master’s thesis [131] for more details on the formulas. The NECPA equation set in

LMTO-ASA is not listed in Ref. [131], so we put them in Appendix F of this thesis.

5.5 Summary

In summary, this chapter has introduced theories for solving quantum transport in

systems having random disorder impurities. We first presented the tight binding CPA

formalism that can be used to predict configuration averaged quantities at the single

particle Green’s function and Hamiltonian level based on the Green’s function theory

derived in Chapter 4. Then by using the analytic continuation theory, we extend the

CPA equations to its nonequilibrium form, the NECPA formalism for calculating the

configuration average of the distribution Green’s function G< and the transmission

coefficient which involved the average over two Green’s function correlators. Lastly,

we briefly discussed their implementation in LMTO-ASA. Experience has shown that

LMTO-ASA form of NECPA is difficult to use when the lattice is not close packed.

In Chapter 7, we will discuss its implementation in LCAO by applying a futher

approximation.



6
Application: Diffusive Transport in Graphene Tunnel-FET

As the device size scales down to sub-100 nm regime, modeling of emerging and nano-

scale electronic devices requires quantum models beyond the capability of traditional

technology computer aided design (TCAD) methods [132]. An important consider-

ation in device modeling is how to deal with the atomic scale disorder. Examples

include the random grain boundary scattering in copper and graphene [133] leading

to significantly higher resistance of the material; the discrete atomic dopants scat-

tering in transition metal dichalgogenides that changes the contact resistance with

metal electrodes [134, 135]; the device-to-device variability due to fluctuations of ran-

dom dopants [9]. Experimental results have demonstrated that atomic disorder can

seriously affect and may even dominate device performance [133, 134, 135, 136] if

not controlled. Traditionally there are several methods in device physics to simulate

atomic disorder effects including the density gradient correction in the drift-diffusion

model [137], the random-alloy model in the tight-binding approach for computing

band structures of alloys [138], and so on. Microscopically, disordered impurities

interacts with the host material to alter its electronic property so it is desirable to

simulate disorder effects from first principles that determine the atomic potential self-

consistently and parameter-free. For disorder-free device structures, first principles

transport methodology has been realized by carrying out the NEGF-DFT method

[27]. With disorder, however, repetitive computation of many disorder configurations

by NEGF-DFT in order to perform disorder averaging, is a bottleneck which has so

far prevented realistic devices (e.g. with inevitable disorders) to be simulated by first

87
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principles. The NECPA-LMTO-ASA method presented in Chapter 5 overcomes this

bottleneck.

Graphene (Fig. 6.1(a)) has been studied intensively due to its impressive elec-

tronic property such as extremely high carrier mobility (over 10,000 cm2 · V −1 · s−1

for suspended samples) [139]. However graphene has no band gap. For electronic de-

vices application such as the FET, it is essential to open up a band gap in graphene

to realize the on/off switch function. One way to open a band gap is by the quan-

tum confinement effect, e.g., tailoring graphene into one-dimensional nanoribbons

[140, 141, 142, 143]. In experiments, to achieve even a small band gap of ∼0.2 eV

(on/off ratio >102) requires the nanoribbons to be as narrow as ∼10 nm, which is

challenging to achieve [141, 142, 143] and difficult for large-scale production. More-

over, the carrier mobility of graphene nanoribbons (about hundreds of cm2 ·V −1 ·s−1)

[142, 143] is several orders of magnitudes lower than that of a graphene sheet due to

the (intrinsic) band folding and phonon scattering [144] as well as (extrinsic) difficulty

in controlling the edge roughness [142, 143]. Here we consider another way to open up

a band gap in graphene by breaking the inversion symmetry of the A, B sublattices

of graphene (see Fig. 6.1(b)), e.g., by applying different potentials onto the two sub-

lattices. This can be done by either placing the graphene sheet onto materials lacking

inversion symmetry such as aluminum oxide(Al2O3) and boron nitride [145, 146, 147]

or co-doping the graphene with both boron and nitrogen [148, 149, 150]. However,

the band gap introduced by the former method is an extrinsic one and highly re-

lies on the experimental process, which poses inevitable barriers on its application

in FETs. The latter method, although introduces a intrinsic band gap in graphene,

encounters the variability problem induced by the random dopants. The random

positions of dopants in the graphene lattice cause unpredictable randomness on the

band gap as well as transport. The feasibility of employing this method to build

transistor remains unknown. Another difficulty was that up to the publication of our

paper (Ref. [51]), there was no work studying transistor properties using a parameter-

free, ab initio method with disorder scattering to the best of our knowledge. In this
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Figure 6.1: Lattice structure of graphene. (a) plots the top view of the graphene primitive cell. (b)
plots the structure of graphene 4× 4 super cell. The green (grey) sites refer to the graphene A (B)
sublattice.

chapter, we investigate the influence of impurities scattering on the performance of

tunnel-FET (TFET) [151] made from boron-nitrogen (B-N) co-dopded graphene [51]

by using the advanced parameter-free NECPA-LMTO-ASA method implemented in

the NanoDsim package [152].

6.1 Device Structure

Fig. 6.2 shows a schematic of B-N co-doped graphene TFET. It consists of a channel

material (the graphene part as shown by the grey spheres), two metal contacts (cop-

per in the figure) and a gate dielectric material (Al2O3 in the figure). The channel in

between two contacts is called “the active region” in device modeling. In real devices,

dopants are introduced to the channel so that the device can be switched between “on”

and “off” states [153]. Such random dopants strongly affect the electronic characteris-

tics in both the active region and also the contacts (as shown in the two sub-figures in

Fig. 6.2). For quantitative modeling, multiple disorder scatterings of carriers must be

considered in calculating the electronic structure and quantum transport. For device

applications, the two most significant problems are the contact resistivity between

the metal and semiconductor, and the electronic transport property in the channel

when both bias and gate voltages are applied. The two problems can be investigated
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Co-doped Graphene

Cu/Graphene Interface Boron Nitrogen Disorder

Figure 6.2: Schematic of the co-doped graphene TFET. The top figure shows the side view of the
TFET atomic structure. The channel is made of co-doped graphene and is attached to metal gate
through a layer of Al2O3 dielectric material. The source/drain are connected to the outside via
copper contacts. The red box highlights the part to simulate. The bottom left figure shows the top
view of the graphene/copper interface. The bottom right figure shows the atomic structure of the
co-doped graphene. Grey spheres refer to carbon atoms and green (silver) spheres refer to boron
(nitrogen) dopants.

separately - the former by KS-DFT and the latter by NEGF-DFT. Here we focus

on the latter problem, i.e., the electronic transport in the channel. The structure

to simulate is highlighted by the red box in Fig. 6.2 and it has an n-i-p junction

structure, where the source (the graphene under the left metal in Fig. 6.2) is n-type

doped, the channel is intrinsic and the drain (the graphene under the right metal in

Fig. 6.2) is p-type doped.

6.2 Disordered Electronic Materials

We first investigate the electronic properties of the disordered graphene. To introduce

a gap suitable for TFET application, the inversion symmetry of graphene lattice has

to be broken. Electronic and atomic structures of the device material are calculated

by KS-DFT total energy relaxation. Again, when there are impurity atoms or other

types of disorder, the CPA method is applied and one obtains the averaged properties

(e.g. density of states, retarded Green’s functions, density matrix elements, etc.) of

the disordered material. To see the essence of CPA we consider the B-N co-doped
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(a) (b)

Figure 6.3: Schematic figures for co-doped graphene. The grey spheres refer to carbon host
atoms and the green (silver) spheres correspond to doped boron (nitrogen) atoms. (a) A particular
configuration of B-N substitution co-doping in graphene where the co-doping concentration is x%.
(b) A top view of the effective medium of co-doped graphene. The effective medium by CPA where
a site has x% probability to be impurity and (1− x)% probability to be the host atom. The dopant
atoms are plotted with a much smaller radius to make the host atoms (carbon) visible from top
view.

graphene where boron (B) and nitrogen (N) are impurity atoms. Co-doping means

the concentration of B and N is the same. Fig. 6.3(a) plots one of possible atomic

configurations for a given B-N concentration x. The electronic structure varies from

one configuration to another, but their average is well represented by the effective

medium model of CPA in Fig. 6.3(b) where boron/nitrogen occupies the A/B site of

graphene with a probability of x%.

Fig. 6.4(a) shows the the calculated band structure of pristine graphene by Nan-

oDsim transport package [152]. The band structure is plotted along K-G-M-K path

in the reciprocal space. A maximum angular momentum of 2 is used for all carbon,

boron and nitrogen atoms. The calculated band structure agrees very well with the

results from plane wave methods (e.g., VASP program), which indicates a proper

setting of all LMTO-ASA parameters. Fig. 6.4(b) plots the disorder averaged CPA

band structure [152] of a 10% B-N co-doped graphene. With B-N co-doping which

breaks the inversion symmetry of graphene lattice, a band gap of 0.33 eV is opened

at graphene Dirac cone and the band edge electron mass is 0.1m0 (m0 is the electron

bare mass). Note that the CPA bands have a finite width (Fig. 6.4(b)) which is the

disorder broadening. These material properties can also be obtained by brute force

KS-DFT calculations of many disorder configurations, as we verified by the VASP
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(a) (b)

Figure 6.4: Electronic band structure of graphene. (a) Band structure of pristine graphene. (b)
CPA band of disordered graphene with B-N co-doping at 10%. The CPA bands has a finite width
reflecting the disorder broadening. A band gap opened around Dirac cone is observed. Fermi levels
are fixed at “0” eV for both figures.

program. In VASP verification, we have randomly generated 20 samples of co-doped

graphene, each of which contains 60 atoms. The average band gap is 0.31 eV, which

comparable with the CPA result 0.33 eV.

We then calculate the density of states (DOS) of the disordered system. DOS of

co-doped graphene is shown in Fig. 6.5(a). The band gap of the co-doped graphene

increases with the doping concentration. An interesting result is that the band gap

linearly increases with co-doping concentration (as shown in the inset of Fig. 6.5(a)),

which provides a feasible way to control the graphene band gap. To make the co-doped

graphene p-type or n-type (as required by device engineering), additional boron or

nitrogen atoms are introduced to the lattice on both the A/B sites, the corresponding

DOS at 1% additional doping is shown in Fig. 6.5(b) where the Fermi level shifts up

or down in energy according to the doping type, as expected.
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(a) (b)

Figure 6.5: Density of states (DOS) of the co-doped graphene. (a) DOS versus energy for several
co-doping concentrations. A near linear dependence of the average band gaps on the concentration
in the interested range is showed in the inset. (b) The averaged DOS versus energy of the B-N
co-doped graphene with extra individual boron (p-type) or nitrogen (n-type) impurity atoms. Fermi
levels move accordingly to the doping type, as expected. The change in band gap is very small with
the extra individual dopants as investigated.

6.3 Transport with Disorder Scattering

Having understood the electronic properties of the disorderd material, we investigate

the transport property of TFET built on the co-doped material. The inputs of our

quantum transport modeling are solely atomic positions of the device structure and

the applied voltages (both source/drain bias and gate bias). We consider double-gate

TFET [151] structures whose top view is shown in Fig. 6.6. On the left, the disorder

Figure 6.6: Top views of the simulated structure of the double-gate TFET (the active region).
The leads provide self-energy to the central region in the NEGF-DFT self-consistent analysis. (a)
The structure where doping is done by VCA. (b) The structure where CPA accounts for multiple
disorder scattering.
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(a) (b)

Figure 6.7: Band diagrams of the TFET along the channel. (a) Energy profiles and Fermi level in the
(B-N) co-doped graphene TFET obtained from the first principle simulation method with NECPA.
Scattering region I includes (B-N) co-doping and extra p-type doping, and region II includes the
co-doping. (b) LDOS of the co-doped graphene TFET in Fig. 6.6(b). The interband tunneling is
clearly seen from LDOS in the band gap. A direct tunneling current is also observed.

is treated by the widely used virtual crystal approximation (VCA) which essentially

shifts the electronic potential due to charge contributions of impurity atoms [154].

On the right, the disorder is treated by NECPA presented previously that accounts

for multiple impurity scattering in addition to the potential change. The two struc-

tures shown in Fig. 6.6 serve as a comparison between the VCA and NECPA. A B-N

co-doped graphene TFET shown in Fig. 6.6(b) includes the whole channel and part

of source/drain treated by NECPA, and we consider practical dimensions where the

channel length Lg=10nm, gate dielectric thickness EOT=1.7 nm [153, 155]. In the

simulation, the width of the FET is considered infinite (since graphene is a film) which

we treat by using periodic boundary conditions in the NECPA-LMTO-ASA analysis.

Devices containing 2160 atoms are calculated with the VCA method or 4080 atoms

with the NECPA method. The gate modulation on transport is included by solving

the real space three-dimensional Poisson equation with the Dirichlet boundary condi-

tion at the gate electrodes and floating boundary condition (i.e. Neumann boundary

condition) at other surfaces [156].

Before calculating transport, we determine the electrostatic profile of the TFET,

which helps us to establish a better understand the TFET physics. The calculated
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(a) (b)

Figure 6.8: Transport properties of the simulated co-doped graphene TFET. (a) Transmissions of
the modeled graphene TFET with VCA doping and CPA doping. The significant decrease in the
NECPA results is caused by the diffusive inter-band tunneling due to the strong disorder scattering.
(b) Drain current of the 10 nm long graphene TFET with (blue circles) and without (black squares)
disorder scattering. Disorder scattering dramatically reduces the inter-band tunneling current.

average band profile under Vds=0 (Vds: the bias between the source and the drain) is

plotted in Fig. 6.7(a). The band profile is calculated by plotting local density of states

(LDOS) projected onto the real space grids. The potential changes within the VCA

and NECPA themes are matched excellently as confirmed by the smooth energy pro-

file. Region I indicates the source depletion while region II is the non-inverted channel

of the co-doped graphene TFET which are both treated with NECPA. The interband

tunneling process across the source/channel junction in the simulated TFET is diffu-

sive and the atomic disorder scattering comes from the co-doping as well as the extra

source doping. The transmission spectrum given by NECPA is shown in Fig. 6.8(a)

which clearly confirms the inter-band tunneling physics, for example the transmission

peak is achieved at the energy level corresponding almost to the smallest tunneling

distance.

The device structure constructed as Fig. 6.6 (a) with VCA doping is also simulated.

Results show that disorder scattering plays a very significant role as indicated by the

NECPA curve (black) which represents a much smaller transmission as compared to

that of VCA curve where disorder scattering is absent. Microscopically, the decrease

in transmissions comes from the diffusive scattering in the tunneling process by the
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atomic disorders. It is the first evidence that the inter-band tunneling is affected by

the atomic disorders which should be taken into consideration in TFET modeling.

The transmission peak only moves slightly in the tunneling energy window which is

not affected by the disorder scattering. The local density of states (LDOS) is plotted

in Fig. 7.17(b) in which the inter-band tunneling is clearly seen in the band gap. In

the 10 nm TFET we also observe a direct tunneling current flowing across the whole

channel which is also affected by the disorder scattering.

Finally, non-equilibrium quantum transport of TFETs in Fig. 6.6(a) or (b) has

also been obtained from first principles. Transfer characteristics of the TFETs are

calculated and disorder scattering reduces inter-band tunneling current as seen in Fig.

6.8(b). Even with scattering the driving current of the co-doped graphene TFET is in

the range of mA/µm due to the small band gap and effective mass. We also observe

that such disorder scattering has larger influence on the off-state current than on-state

current as shown in Fig. 6.6. It indicates an increase of 20% in the subthreshold

slope [153] due to disorder scattering.

6.4 Summary

We have applied the NECPA-LMTO-ASA method to simulate a graphene TFET

by co-doping B-N impurity atoms. The co-doping is found to open a substantial

gap that linearly scales with the co-doping concentration which is appropriate for

making TFET and/or other transistor applications. We also observe that the diffusive

disorder scattering in the graphene TFET reduce the band-to-band tunneling current

by a substantial factor. We note that even if the potential change due to doping is

accounted for (e.g. by VCA), it is not adequate to obtain correct transport result if

impurity scattering is not explicitly included. Finally, because NECPA-LMTO-ASA

is a parameter-free first principles modeling method, with only a linear scalability of

its computational cost (along the transport direction), the methodology provides a

promising TCAD solution to determine disorder induced physical effects.
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In Chapter 6, we have shown a practical application of the NECPA-LMTO-ASA

method [51]. Other applications can be found in Refs. [37, 36, 50, 157, 158, 159].

The NECPA-LMTO-ASA is a very successful implementation version of the CPA

theory to solve material and quantum transport problems with atomistic disorders.

However, the NECPA-LMTO-ASA has several drawbacks. First, it has requirements

on the lattice structures. In principle, LMTO-ASA is solely suitable for close-packed

lattices, which indicates that if the lattice structure is NOT tightly packed in space,

LMTO-ASA can NOT produce the correct eigen-states of the systems. Examples

are, for example, 2D materials, surfaces and interfaces. In practical applications, this

problem is achieved by using vacuum spheres in space to make the structure close-

packed. Fig. 7.1 illustrates two examples of ASA for non-close-packed lattices. Fig.

7.1(a) shows the ASA for a graphene lattice. The lattice consists 4 carbon atoms

(in black) and 20 vacuum spheres (in green and blue). The 24 spheres together form

a hexagonal close-packed (HCP) structure. Similarly, Fig. 7.1(b) (taken from Ref.

[157]) shows the ASA for monolayer black phosphorus. Such complicated vacuum

space filling has to be worked out for each problem. Second, all these vacuum spheres

have flexible radii and tunable spacial positions, which have to be determined by

fitting the correct band structures of the investigated system. Last, the incredibly

large number of vacuum spheres drastically reduce the efficiency of computation. For

example, in graphene lattice, 83% of the atomic spheres are vacuums.

In the literature, there have been several attempts to implement CPA besides

97
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Vac1

C

Vac2

(a) (b)

Figure 7.1: Illustrating ASA in some LMTO-ASA calculations. Vacuum spheres are labeled by
“Vac”. Different vacuum spheres are labeled with subscript numbers. (a) ASA for graphene lattice.
It has been used in Chapter 6; (b) ASA for monolayer black phosphorus lattice. The spheres are
slightly overlapped in space. The radii of all spheres has been reduced in the figure to make the
figure less crowded.

LMTO-ASA. The Korringa-Kohn-Rostoker (KKR) is one of the earliest methods to

implement CPA [130]. In KKR, the muffin-tin approximation (see section 2.3.2) is

used for the orbitals. Without ASA, the spheres filling is easier than LMTO-ASA

but the formalism is very complicated so that NEGF is difficult to implement. The

Blackman-Esterling-Berk (BEB) theory is another attempt to implement CPA [52].

It uses LCAO as the basis. The off-diagonal disorders are projected onto a higher

dimensional Hamiltonian space so that they occupy only the diagonal part of the new

Hamiltonian. However, it appears very difficult to reduce the BEB theory to imple-

ment NECPA. In this chapter, we develop a straight forward LCAO-based CPA that

avoids the complexity of both the KKR and the BEB theory. The difficulty of apply-

ing CPA directly in LCAO is that the quantity (ES −H) has off-diagonal disorders,

where S is the basis overlap matrix of the LCAO and H is the system Hamiltonian.

The off-diagonal disorders come from two aspects: 1) S, when the atomic orbitals

are nonorthogonal. 2) H, which in most cases has disorder dependent off-diagonal

parts. These off-diagonal disorders place obstacles in the path of applying CPA in
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LCAO first principles calculation since the CPA method is only compatible with on-

site disorders (see Chapter 5). The basic ideal of our method is that we neglect the

off-diagonal disorder and consider the diagonal disorder only. This becomes possible

from the fact that in most semiconductor problems, the concentration of impurities

are typically very low. Take silicon as an example, the highest doping concentration

is typically below 1020 cm−3 (i.e. <1% in percentage). We show that at such low

number of impurities in the lattice, off-diagonal disorder is not important and can be

neglected.

This chapter will be organized as follows. In section 7.1, we verify the validity of

the above assumption that the off-diagonal disorder can be neglected when evaluating

the transmission at low concentration by a tight binding model. Section 7.2 is devoted

to the DFT implementation of our method. We show in detail of several important

issues of our implementation, such as the determination of impurity Hamiltonian, the

computational procedure, matrix algorithm and convergence acceleration. We use

boron doped graphene as an example to verify the validity of our method. Section

7.3 is an application of our method to study the dopant limited mobility of monolayer

MoS2. Finally section 7.4 is a short summary of the chapter.

7.1 Tight Binding Verification

We have assumed that the off-diagonal disorder can be neglected when the number

of impurities in the lattice is low. We name it as “low concentration approximation”

(LCA) in this thesis. In this section we use simple tight binding models to test the

LCA and demonstrate its numerical accuracy by comparing the transmission coeffi-

cient calculated by NECPA with LCA (NECPA-LCA) and by “brute force” method.

Brute force method means we calculated the result for each individual disorder con-

figuration and then take their statistical average. We do this for a 1D tight binding

chain.
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:disorder sites :lead sitesz

x
1D

Figure 7.2: Schematic plot of 1D two-probe system with some impurity sites in the central scattering
region investigated by tight binding. The left/right leads extend to z = ±∞. The black dots are
sites of leads and grey circles are disorder sites in the scattering region.

Fig. 7.2 illustrates the 1D chain. In the model, the leads extends to z ±∞ and

contains two scatterers in the central region. The black dots represent clean sites

having on-site energy ε0; the gray dots represent the disorder sites having on-site

energy εi which is a discrete random variable taking values εiq (q = 0, 1, 2, · · · ) with

probability xiq. For simplicity but without loss of generality, only nearest neighbors

have interactions with a coupling strength tq1q2 , which is a specie dependent quantity.

For NECPA-LCA calculation, disorder averaged Green’s functions are calculated by

solving Eqs. (5.33) and (5.34) with the off-diagonal elements t setting as the cou-

pling between host atoms. For brute force enumeration, disorder-averaged Green’s

functions are calculated directly from its definition, namely,

Gr =
∑
q1

∑
q2

x1q1x2q2G
r
q1q2

,

Gr
q1q2

=

E −
ε1q1 tq1q2

tq1q2 ε2q2

−
Σr

0 0

0 Σr
0

−1

,

G< =
∑
q1

∑
q2

x1q1x2q2G
<
q1q2

,

G<
q1q2

= Gr
q1q2

ifLΓ0 0

0 ifRΓ0

Ga
q1q2

,

in which fL,R are Fermi functions of the left and right electrodes, Γ0 = −2ImΣr
0 is

the linewidth function of the leads. Σr
0 is the retarded self-energy of the lead which
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can be evaluated analytically for the semi-infinite 1D chain [38]

Σr
0 = ξ

(
E + i0+ − ε0

t

)
t,

where

ξ(x) =
z − i

√
4− z2

2
,

in which the branch of the square root is chosen as Re
√
z > 0.

For numerical calculation, we consider 2 disorder types on each disorder site. We

use ‘0” to denote the host atoms (the one has larger concentration) and “1” to denote

the “impurity”. The host on-site energy is set to 0 (ε0 = ε10 = ε20 = 0) and the

impurity on-site energy is set to 1 (ε1 = ε11 = ε21 = 1). The coupling (off-diagonal

element) between host sites is set to 1 (t00 = 1). To make the problem simple, we

assume the coupling between the host site and impurity site equals the coupling be-

tween impurity sites (t01 = t11). In the simulation, we choose t11 = 0.5, 0.9, 1, 1.1, 1.5

and the impurity concentration x = 0.1, 0.05, 0.01, 0.001.

The simulated results are showed in Fig. 7.3. The left column of figures are the

full plots of the transmission as a function of energy. The right column ones are

their corresponding zooming-in’s. We first focus on Fig. 7.3(a) and (b). The red,

blue, purple and green points and curves plot the brute force calculation results when

the off-diagonal disorder t11 = 0.5, 0.9, 1.1, 1.5 respectively. The black points and

curve are the result calculated by NECPA-LCA, where the off-diagonal disorder is

neglected (i.e., t11 = t00 = 1) as required by the LCA. We see that the NECPA-LCA

result deviates from the brute force results by some amount. The smaller |t11 − t00|

is, the more accurate NECPA-LCA result is. We mention that the brute force result

for t11 = 1 coincides with the NECPA-LCA curve since NECPA-LCA reduces to the

normal NECPA in this case. As the impurity concentration decreases (Fig. 7.3 from

top to bottom), the deviation becomes smaller for all t11 values.

Fig. 7.4 shows the transmission difference (∆T ) as a function of both the impurity
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Figure 7.3: Transmission coefficient vs. energy. The energy is in arbitrary unit. The left column
figures are full plots and the right column are the zoomed in ones in proper energy range. The
black dots and curve refer to the result of NECPA-LCA. The other shapes and colours are brute
force calculation for different disorder strengths t11 ranging from 0.5 to 1.5. From up to down, the
concentration varies from 0.1 to 0.001, as shown in (a), (c), (e) and (g).
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(a) (b)

Figure 7.4: Transmission difference (∆T ) vs. impurity coupling (t11) and impurity concentration
(x). (a) Dependence of ∆T on t11. The blue, red, yellow and purple curves correspond to x =
0.1, 0.05, 0.01, 0.001 respectively. (b) Dependence of ∆T on x. The blue, red, yellow, purple curves
correspond to t11 = 0.5, 0.9, 0.11, 1.5 respectively.

coupling t11 and impurity concentration x. The transmission difference is defined as

the average difference between the NECPA-LCA result and the brute force result on

some specified energy range:

∆T =
1

|E1 − E2|

∫ E2

E1

|TNECPA−LCA(E)− TBF(E)|dE, (7.1)

where TNECPA−LCA and TBF are transmission coefficients calculated by NECPA-LCA

method and brute force method accordingly. [E1, E2] is the energy range where the

transmission is non-zero. ∆T defines how far away the NECPA-LCA result is to

the brute force (exact) result. Fig. 7.4 clearly summarizes the results shown in Fig.

7.3. An interesting phenomenon observed in Fig. 7.4(b) is a linear dependence of

∆T on x. We conclude that 1) for any given impurity concentration, the closer the

impurity coupling is to the host coupling, the more accurate the NECPA-LCA is; 2)

for any given impurity coupling, the lower the impurity concentration is, the more

accurate the NECPA-LCA is. Therefore, in practical applications, one has to check

if the following is satisfied before applying NECPA-LCA: 1) the concentration is low;

2) impurity coupling is close to the host coupling. For 1), according to the tight

binding test, the concentration should be lower than 1%, which is typically satisfied
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for semiconductors. For 2), in practical material calculations, t00 and t11 are matrices

instead of single numbers. A simple but useful way to measure if they are close to

each other is to compare the average value of all matrix elements.

7.2 DFT Implementation

Having understood the accuracy of the NECPA-LCA with tight binding models, we

now implement it within DFT using the LCAO basis.

There are several issues in the LCAO implementation. First, all the matrix ele-

ments (quantities with subscript i or iq in Eqs. (5.33) and (5.34)) become matrix

blocks instead of single numbers. The block size equals the number of orbitals con-

sidered in LCAO basis for each element. Take the carbon atom as an example, in

our implementation, s, p and d orbitals are considered with double-ζ polarization

[80]. There are in total 13 orbitals for carbon atom. The matrix block for carbon

is then 13×13. Second, the LCAO bases are generally nonorthogonal. We need to

replace the identity matrix I with the overlap matrix S in the NECPA equation set

(Eqs. 5.33) and (5.34)). However, S is disorder dependent on both diagonal and

off-diagonal blocks. For off-diagonal blocks, we neglect its disorder in the spirit of

LCA. In principle, the diagonal block disorders can be dealt with in a similar way to

Hamiltonian. Here we make one more approximation that the diagonal disorders in S

can be neglected as long as the LCAO bases are normalized. The diagonal elements

of a S block equals 1 since the orbitals are normalized. The off-diagnoal elements,

which describe the orbital overlaps within an atom, should not differ much between

atoms if they are not too far away in the periodic table. Fig. 7.5 plots the S ma-

trices of carbon and boron atoms. Fig. 7.5(a) and (b) show their nonzero elements

distributions. The side colour bar shows their values. Fig. 7.5(c) and (d) show the

side view of matrices along the diagonal direction, which clearly show their element

values. We find that their values differs by less than 0.005, which is negligible. We

see that the S matrices of carbon and boron atoms are very close in both nonzero
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Figure 7.5: Plots for S blocks (diagonal). (a) S for carbon atom. (b) S for boron atom. The side
colour bar indicates the element values. (c) is a side view of carbon S matrix, seen along the diagonal
direction. (d) is similar to (c), but for boron. The horizontal axis of the figures is the index of the
atomic orbitals, namely s, s, y, z, x, y, z, x, xy, yz, (3z2 − 1)/2/

√
3, zx and (x2 − y2)/2 orbitals,

where repeated orbitals represent the double-ζ polarizations.

elements distributions and values of elements. Therefore, the NECPA equation set

with S matrix can be written by replacing the identity matrix I in Eqs. (5.33) with

the overlap matrix S,

Gr
i =

∑
q

xiqGr
iq,

Gr(k) =
[
ES −H0

C(k)− ε̃r − Σr(k)
]−1

,

Gr =

∫ +∞

−∞

dk

2π
Gr(k),

Gr
i =

[
Gr
]
ii
,

Gr
i = [ESi − ε̃ri − Ωr

i ]
−1 ,

Gr
iq = [Eiq − εiq − Ωr

i ]
−1 .

(7.2)
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and

G<
i =

∑
q

xiqG
<
iq,

G<(k) = Gr(k) [ε̃< + Σ<(k)]Ga(k),

G< =

∫ +∞

−∞

dk

2π
G<(k),

G<
i =

[
G<
]
ii
,

G<
i = Gr

i (ε̃<i + Ω<
i )Ga

i ,

G<
iq = Gr

iqΩ
<
i G

a
iq.

(7.3)

Eqs. (7.2) and (7.3) are the key equations we are working with in the following part

of this chapter.

7.2.1 Determination of impurity Hamiltonian

The quantities used in the NECPA equations are obtained from LCAO-based DFT

and NEGF-DFT calculations performed by the NanoDcal package [152]. The quanti-

ties that needs to be calculated by NEGF-DFT are the S, H0
C and Σr matrices for the

two-probe system. Quantities related to the impurities, Siq and εriq are not within the

two-probe calculation and are obtained from DFT calculation. We can not directly

use the εriq from DFT calculation of an isolated impurity atom to solve NECPA equa-

tions due to two reasons: 1) the impurity atom is influenced by its surrounding host

atoms. When placing in a host lattice, the impurity Hamiltonian is different from

that when it is isolated; 2) impurity Hamiltonian from DFT calculation does not

match the Hamiltonian from a NEGF-DFT calculation in energy. When performing

DFT and NEGF-DFT calculation, the boundary conditions are different. DFT uses

periodic boundary condition while the NEGF-DFT uses open boundary condition,

resulting in a mismatch in their energies.

We determine the impurity Hamiltonian in the following way as schematically
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Figure 7.6: Determination of energy shift ∆. The brown atoms are the host atoms and the green
one is the impurity. (a) atomic structure of the two-probe system. (b) atomic structure of the bulk
structure. The structure is chosen to be very large so that atoms far away from the impurity is not
affected. (c) a schematic plot of how to determine the energy shift. h1 is the host atom Hamiltonian
from the bulk calculation and h2 is the host atom Hamiltonian from the two-probe calculation. s is
the overlap matrix of the host atom.

showed in Fig. 7.6. First, we perform a NEGF-DFT calculation to get the Hamilto-

nian of the two-probe clean system (no impurities) (as shown in Fig. 7.6(a)). The

host atom Hamiltonian h2 is obtained from the two-probe Hamiltonian. Second, find

the raw Hamiltonian of the impurity. This is done by performing a DFT bulk cal-

culation for a large clean system accommodating one impurity at the center (Fig.

7.6(b)). The size of the system has to be large enough so that the Hamiltonian of

the host atom far away from the impurity coincides with that in the clean system.

The impurity sits inside the material so that the influence on its Hamiltonian from

the host atoms is included. The raw impurity Hamiltonian hq and host Hamiltonian

h1 can be extracted from the calculated results. h1 has to be chosen far away from

the impurity atom. Third, the energy shift between the bulk and two-probe system

is calculated by

∆ = (h2 − h1)/s, (7.4)

where s is the overlap matrix of the host atom. “/” denotes the matrix division. In

principle, ∆ is a matrix from Eq. (7.4). ∆ will have the form c · I if the bulk system

is large enough in the second step, where c is a constant and I the identity matrix.
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Figure 7.7: A flowchart of solving NECPA within LCAO. The three coloured blocks refers to the
three main steps: preparing data (in red), solving the CPA equations self-consistently (in blue)
and solving corresponding less quantities (quantities with superscript <) self-consistently (in green).
Quantities in light grey are initial guess that enters the self-consistent loops.

In practical application, the “diagonality” of ∆ can be used as an rule to check if

the bulk system is large enough in the second step. Last, we determine the impurity

Hamiltonian from the results obtained (Fig. 7.6(c)). The new impurity Hamiltonian

hqnew is calculated by

hqnew = hq + ∆sq, (7.5)

where sq is the impurity overlap matrix.

7.2.2 Code implementation

Having found all the quantities necessary for solving the NECPA equations (Eqs. (7.2)

and (7.3)), we present the complete steps of solving NECPA with LCAO. In principle,

we need to solve the charge density of the system when impurities are introduced, i.e.,

solve the NEGF equations with the NECPA equations self-consistently. However, the
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charge density of impurity system differs very little when the impurity concentration

is low. The NECPA equations can be solved independently. Fig. 7.7 shows the

flowchart of solving the NECPA equations with LCAO under LCA. It takes 4 steps

to solve the problem at a given energy E:

(1) For the two-probe system without impurity, calculate its Hamiltonian H0
C , the

overlap matrix S, the host/impurity atom Hamiltonian εiq and the lead self-energies

Σ< from a DFT supercell calculation and a NEGF-DFT two-probe calculation (red

block in Fig. 7.7). Details can be found in subsection 7.2.1.

(2) With the quantities solved from (1), solve Eqs. (7.2) by following the self-

consistent steps discussed in subsection 5.2.2. (blue block in Fig. 7.7)

(3) With the solved ε̃r and Gr, solve Eqs. (7.3) by following the self-consistent

steps discussed in subsection 5.2.2 to get ε̃< and G<. (green block in Fig. 7.7)

(4) Calculate the disorder averaged transmission T (E) by Eq. (5.37).

These calculations have to be performed for all energy points to produce a full

T (E) profile.

In the following, we discuss some problems in the implementation. When solving

the NECPA equations, the most time-consuming parts are 2 steps (see subsection

5.2.2):

(1) [Gr]ii = [(E −H0
C − ε̃r − Σr)−1]ii;

(2) [G<]ii = [Gr(ε̃< + Σ<)Ga]ii,

where (1) involves the inverse of a large matrix, to obtain the diagonal blocks of the

inverse; (2) involves the multiplication of three large matrices, two of which comes

from the inverse of large matrices. Again, only the diagonal blocks of the results

are necessary. The computational cost of full matrix inversion and multiplication is
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of O(N3) which becomes the bottleneck when the number of atomic sites is large.

The computational cost can be reduced drastically by applying the principle-layer

algorithm [160].

In a two-probe system, the device is partitioned into principal layers (PL) along

the transport direction such that each PL only interacts with its two nearest-neighbor

PLs. This is always viable due to the fact that the LCAO basis has a finite spacial

range. Once a two-probe system is partitioned into PLs, the Hamiltonian H0
C , the

overlap matrix S and the coherent potentials ε̃r/< are all in block tri-diagonal shape.

By taking the advantage of the sparsity of the matrices, the cost of calculating the

diagonal blocks is of O(n) [160], where n is the number of principle layers. The

computational cost is drastically reduced if the number of atomic sites per principle

layer N/n is small.

Following Ref. [160], the calculation of diagonal blocks of Gr ([Gr]ii = Ai, i =

1, 2, · · · , N) can be efficiently completed by the following recursive processes:

(1) calculate the inverse of the 1st block by C1 = H−1
11 ;

(2) calculate Ci+1 = (Hi+1,i+1 −Hi+1,iCiHi,i+1)−1 for i = 1, 2, · · · , n− 1;

(3) let An = Cn;

(4) calculate Ai = Ci + CiHi,i+1Ai+1Hi+1,iCi for i = n− 1, n− 2, · · · , 1,

where we have denoted H ≡ ES−H0
C− ε̃r−Σr. The high efficiency of this algorithm

is because the large matrix is broken into small matrices whose inverse and multipli-

cation are cheap. Similarly, the calculation of diagonal blocks of G< ([G<]ii = −iBi)

can be computed by the following steps:

(1) let Y1 = D1;

(2) calculate Yi = Di +Hi,i−1Ci−1Yi−1C
†
i−1H

†
i,i−1 for i = 2, 3, · · · , n;
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(a) (b)

Figure 7.8: Execution time vs. number of PL’s. All matrix operations are performed for 50 times.
The vertical axis refers to the time for 50 times of operations. Each block is 40×40. (a) matrix
inverse. The PL method is compared with the LU decomposition method implemented in MATLAB.
(b) inv(H) ·D · inv(H†). The PL method is compared with the direct method.

(3) calculate Bn = CnYnC
†
n;

(4) calculate Bi = CiHi,i+1Bi+1H
†
i,i+1C

†
i − CiYiC

†
i + AiYiC

†
i + (AiYiC

†
i )
† for i =

n− 1, n− 2, · · · , 2, 1,

where we have denoted D ≡ i(Σ< + ε̃<).

To test the efficiency of the above algorithm, we compare them with the default

functions implemented in MATLAB. We set the matrix block size to be 40×40, a size

common in practical applications. Since the PL method is highly efficient, for each

test, we do 50 times of operations to get the computational time. Fig. 7.8(a) shows

the comparison of matrix inverse calculation when the number of blocks n varies from

50 to 200. The PL method is compared with the default inverse function (inv) in

MATLAB, which uses the LU decomposition method. We see that the PL method

is more than 103 times faster than the default MATLAB function. Moreover, we

find that the PL method is nearly of O(n), which is ideal for practical calculations.

Fig. 7.8(b) shows the comparison of computing inv(H) · D · inv(H†). Similar to

(a), the direct method uses the LU decomposition for matrix inverse. We see that

the PL method is nearly linear with n while the default function is approximately

of O(n2.8). Like in (a), the linear scaling with n is ideal for practical calculations.
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We conclude that by applying the PL method, the computational cost of solving the

NECPA equations are drastically reduced.

The last issue to consider in code implementation is how to accelerate the con-

verging procedure of solving the NECPA equations. A common approach is to apply

mixing methods. In our code, we have implemented the Anderson mixing method

[161]. We briefly introduce the Anderson mixing here. In general all multidimensional

iterative procedures may be defined by a nonlinear operator which, when applied to an

input vector x(l) of length N , produces an output vector y(l) of the same length. Here

the superscript l denotes the iteration number, l ≥ 1. Self-consistency is achieved

when both vectors coincide or, equivalently, when the residual vector defined by

∣∣F (l)
〉
≡
∣∣y(l)

〉
−
∣∣x(l)

〉
(7.6)

vanishes. Without any mixing method, the input vector of the (l+1)th step is exactly

the output vector of the lth step

∣∣x(l+1)
〉

=
∣∣x(l)

〉
+
∣∣F (l)

〉
=
∣∣y(l)

〉
. (7.7)

No mixing in most cases leads to oscillations and even to a divergent iteration process.

In Anderson mixing method, the mixing step takes the vectors of several previous

iterations into account and combines them in a “optimal” way. Anderson method

considers the linear combination of previous M steps

∣∣x(l+1)
〉

=
∣∣x(l)

〉
+

M∑
j=1

θ
(l)
j

(∣∣x(l−j)〉− ∣∣x(l)
〉)
, (7.8)

where the new input is given in the space spanned by the input vectors. Note that

0 ≤ M ≤ l − 1 and the coefficients θ(l)
j are to be specified. We prefer working with



7.2 DFT Implementation 113

(a) (b)

Figure 7.9: Rate of convergence using the Anderson mixing (blue curves) and no mixing (red curves).
(a) testing with a simple numerical example fi = −diixi − cx3i for i = 1, · · · , 5. M is set to be 3
for the Anderson mixing. (b) testing with a 5 nm graphene lattice. The lattice is doped with 1% of
boron. M is set to be 5 for the Anderson mixing.

the residual vectors instead of the output vectors

∣∣F (l+1)
〉

=
∣∣F (l)

〉
+

M∑
j=1

θ
(l)
j

(∣∣F (l−j)〉− ∣∣F (l)
〉)
. (7.9)

The coefficients θ(l)
j are determined by the requirement that they yield that particular

linear combination which minimizes the norm of the residual vector F (l+1). With the

condition ∂
〈
F (l+1)

∣∣ F (l+1)
〉
/∂θ

(l)
j = 0, we are led to the linear equation set

M∑
j=1

〈
F (l) − F (l−i)∣∣ F (l) − F (l−j)〉 θ(l)

j =
〈
F (l) − F (l−i)∣∣ F (l)

〉
, (7.10)

where i = 1, 2, · · · ,M . The linear equations are solved at every step in order to yield

the coefficients θ(l)
j and hence the linear combination with the shortest residual vector.

Having found this optimal linear combination the input is updated by Eq. (7.8).

We use 2 examples to test the Anderson mixing. We first test the mixing with a

simple numerical example fi = −diixi−cx3
i where i = 1, · · · , 5, dii = (3.0, 2.0, 1.5, 1.0, 0.5)

and c = 0.01. We start from the initial guess xi = 1. The error of the lth step is

measured by |f(x(l)) − x(l)|. M = 3 is used for the Anderson mixing method. Fig.
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7.9(a) plots the rate of convergence (in log scale) as a function of iteration number.

We find that the error diverges with no mixing (the red curve) while converges very

fast with the Anderson mixing (the blue curve). We also test the mixing method with

a practical example, i.e., a 5 nm long graphene two-probe device. The device has 80

lattice sites and the central region is doped with boron atoms with a concentration of

1%. The mixing is applied to the interactor Ωr. The error of the lth step is measured

by the maximum element of matrix |Ωr(l) −Ωr(l−1)|. M = 5 is used for the Anderson

mixing method. Fig. 7.9(b) plots the rate of convergence as a function of iteration

number with both method. We find that with no mixing, the NECPA equation only

reaches 10−2 and oscillates around it for more than 100 steps of iteration (the red

curve). In contrast, with the Anderson mixing, it reaches the required accuracy after

only 25 steps of iteration (the blue curve). It is also interesting that in the Anderson

method the error converges slowly for the first ∼10 steps where the error is large. Af-

ter these steps, it converges faster. This is due to the fact that the Anderson method

is more effective when the variables are close to their exact solutions. In practical

application, it is always preferred to combine the Anderson method together with

some less effective but more stable method (e.g., the linear mixing method [162]).

For example, we first run tens of steps with the linear mixing. When the error falls

below some point (in our graphene example, say 0.1), we switch to the Anderson

mixing method to accelerate the convergence rate.

We conclude that the Anderson mixing allows to converge the NECPA equations

efficiently according to our test. We mention that the Broyden method [162] is also

implemented in our code. However, we do not find it more effective than the Anderson

method. In Ref. [162] the author argues that the Broyden method is equivalent to

the Anderson method. In the rest of this chapter, we use the Anderson method for

all the calculations.
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Central regionLeft lead Right lead

L 

disorder site, C+B clean site, C

Figure 7.10: Lattice structure of the simulated graphene two-probe system. The two leads extend to
z = ±∞ in the transport direction. The system extends to x = ±∞ in the transverse direction. A
vacuum of 10Å is added to y direction. The two-probe channel is along zigzag direction of graphene
and has a length of L. Boron dopants distribute uniformly inside the central region (showed by
orange atoms). Both the boron concentration and channel length L are to vary according to our
requirement.

(a) (b)

Figure 7.11: Plots for ∆ matrices of the two impurities. (a) ∆ for boron atom that occupies type A
graphene site. (b) ∆ for boron atom that occupies type B graphene site. The 2 figures at the bottom
show their corresponding structures. Both matrices shows very good diagonality. The off-diagonal
elements of ∆ is smaller than 0.002. The numbers

7.2.3 Verification by doped graphene system

Having presented our code implementation, we use a boron doped graphene system as

an example for verification. Fig. 7.10 shows the atomic structure of the graphene two-

probe system. The transport is along the zigzag direction of graphene. The central
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region length L = 5nm with 80 atoms in the unit cell. The system is infinitely wide

in the transverse direction (x direction). The central region is doped with boron

impurities uniformly (see orange sites in Fig. 7.10). The calculation is performed

by using the NanoDcal package [152] with the ONCV pseudo potential [82, 83] and

double-ζ polarization atomic basis. First we determine the impurity Hamiltonian by

DFT calculation. A unit cell of 40 atoms (39 carbon atoms and 1 boron atom) is

used for the bulk calculation. Note that it is necessary to consider two situations (see

the bottom two figures in Fig. 7.11) since graphene has two type of lattice sites with

different chemical environments. Such a difference will result in different impurity

Hamiltonians for even the same atomic specie. Both types are considered in our

calculation and the ∆ matrices for both are showed in Fig. 7.11. It shows that both

of them present very good diagonality. The off-diagonal elements are smaller than

0.002, which is negligible compared to the diagonal elements (around 0.1). This proves

that the 40-atom unit cell is large enough for determining the impurity Hamiltonian

as discussed in subsection 7.2.1. After the impurity Hamiltonian is obtained, we

perform NEGF-DFT calculation for the two-probe clean graphene system (see Fig.

7.10) where a uniform k-sampling of 31×1 is used. Afterwards, our code is used to

perform the NECPA-LCA calculation to compute the average transmission coefficient

of the disordered systems. The result is to be compared with the result calculated by

the LMTO-ASA-NECPA code NanoDsim package [152].

Before showing the result, we check the Wald identity [123] of our code. In the

Green’s function theory, the four Green’s functions satisfy the relation Gr − Ga =

G>−G< rigorously. In Ref. [38], it is shown that this relation also holds for disordered

system, i.e.

Gr −Ga = G> −G<. (7.11)

In numerical calculation, a positive infintesimal number η is always added to the

imaginary part of the energy in the Green’s function Gr to avoid the singularity of
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Figure 7.12: Plots to verify the Wald identity relation. The vertical axis is the error of the Wald
identity relation. It is defined as the max element of the matrix |Gr−Ga−G>+G<|. The horizontal
axis refers to the positive infinitesimal number added to the energy.

matrices. This way, the Wald identity becomes

G> −G< −
(
Gr −Ga

)
= Gr · 2iη ·Ga, (7.12)

where G> is calculated by the Keldysh equation G> = GrΣ>Ga [123]. All the defi-

nitions for above Green’s functions and self-energies can be found in Chapter 4. Eq.

7.12 indicates that when η decreases, the accuracy of the Wald identity increases. We

thus vary the value of η from 10−4 to 10−10 and calculate the four Green’s functions

correspondingly at some given energy point. Then we calculate the error by

err = max
∣∣G> −G< −

(
Gr −Ga

)∣∣ , (7.13)

where the function max(· · · ) means finding the maximum matrix element of (· · · )

and results shown in Fig. 7.12 versus η. We find that when η decreases to zero, err

decreases to zero accordingly. The result provides a very strict verification of the

Green’s functions calculations in our code implementation. In the following calcula-
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Figure 7.13: Transmission vs. energy. The boron concentration is 5%. The black curve is the
transmission function of the clean system (directly calculated by NanoDcal). The red curve with
circular dots is the transmission function calculated by our NECPA-LCA code. The blue dots are
results calculated by the NanoDsim package. The three are shifted so that their Dirac cones are at
E = 0.

tion, η is set to 10−8.

We first investigate the effect of impurity scattering on the system transmission

coefficient. Impurity scattering tends to have a negative impact on the transport.

To make the effect prominent, a high impurity concentration is considered here. Fig.

7.13 shows the calculated transmission as a function of electron energy when the

boron impurity concentration is 5%. We calculated three transmission functions for

comparison. The black curve is for clean graphene, the blue curve is for 5% doping

calculated by the LMTO implementation of NECPA (NanoDsim [152]) and the red

curve is calculated by our code. The NanoDsim results serve as the benchmark. All

transmission functions are calculated with a 171×1 k-sampling. We observe a decrease

in the transmission function in the whole energy range as expected. Compared to the

NanoDsim results, the NECPA-LCA accounts for part of the the impurity scattering.

This is expected since the impurity concentration 5% is too high for NECPA-LCA (see

section 7.1). We then investigate the results for low impurity concentration. Fig. 7.14
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Figure 7.14: Transmission at Ef vs. Boron concentration. The boron concentration varies from
0.05 to 0.001. The blue curve with circular dots is for the clean graphene. The yellow curve with
crosses is for the results calculated by the NanoDsim package. The red curve with square dots is for
our code. Only the transmission at Fermi energy Ef is plotted, where Ef is determined by DFT
calculations.

shows the transmission at Fermi energy (T (Ef )) versus the impurity concentration.

We observe that when the concentration is large (>1%), the difference between results

from NECPA-LCA (this work) and NanoDsim are quite large. When the impurity

concentration is below 1%, the difference becomes acceptable. Therefore, the NECPA-

LCA should be applied to systems whose impurity concentration is smaller than 1%.

In the following, we apply NECPA-LCA to calculate the graphene mobility at low

impurity concentration. According to the Drude model [163], mobility in a material

is given by

µ =
1

ρene/h
, (7.14)

where ρ is the resistivity, e is the charge of a single carrier, and ne/h is the density of

electron (e) or hole (h) carriers. At low doping concentration and room temperature,

almost all dopants are ionized so that ne/h equals the doping concentration. The

resistivity ρ of an electronic structure is connected to the resistance R through the
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Ohm’s law,

ρ = R
A

L
, (7.15)

where L and A representing the length and cross-section area of the structure, re-

spectively. In 2-dimension case, A becomes length along transverse direction. The

resistance is defined as the inverse of the conductance G

R =
1

G
, (7.16)

where G in a non-polarized spin system is given by

G =
2e2

h
T (Ef ). (7.17)

The formula is derived from Eq. (4.1) at small bias. Note that unlike the other

equations in this thesis, this formula has been translated into SI units. The number

calculated by Eq. (7.17) is in unit Ω−1. Hence, we can use the NECPA-LCA method

to calculate T (Ef ), using Eq. (7.14)-(7.17) the mobility is eventually determined by

the slope of a linear fit of low bias resistance versus structure length

R =
1

µene/hA
L. (7.18)

We vary the length of the central region L from 3nm to 7 nm by 1 nm step. For

each case, the NECPA-LCA calculation is carried out for the transmission coefficient

at the Fermi energy, which is Ef =-0.1867 eV when the boron concentration is at 0.1%.

By applying Eq. (7.16) and (7.17), we obtain the resistance as a function of structure

length L as shown in Fig. 7.15. We observe a linear dependence of the resistance

R on the length L, which is the Ohm’s law in Eq. (7.18). nh (boron doping gives

a p-type graphene) can be calculated from the density of carbon atoms in graphene,

which is 3.82 × 1019m−2. nh = 3.82 × 1016m−2 when boron concentration is 0.1%.

The transverse length A = 4.26× 10−10m and the hole charge e = 1.6× 10−19C. We
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Figure 7.15: Resistance vs. structure length. We calculate the resistance of graphene devices at
various lengths (L = 3 nm, 4 nm, 5 nm, 6 nm and 7 nm). The central region is doped with boron at
a concentration of 0.1%. The extracted mobility is shown in the figure too.

use linear regression method to obtain the slope of the fitting line. From the slope,

we extract the mobility µ = 4.4 × 104 cm2 · V −1 · s−1 by Eq. (7.18). The number is

comparable to the one µ = 2 × 104 cm2 · V −1 · s−1 calculated by the LMTO-ASA-

CPA method reported in Ref. [164]. Suggesting that the NECPA-LCA method is

able to provide reasonable estimation for the semiconductor mobility at low impurity

concentration.

It is worth mentioning that the computational cost of our NECPA-LCA code. For

the two-probe system with 80 carbon atoms, the self-consistent iterations for solving

Gr takes ∼ 20 seconds per iteration step. Usually 20 to 40 iterations are needed for

converging Gr. For the G< iterations, it takes ∼ 40 seconds per step. 20 to 40 steps

are needed to converge G<. Therefore the NECPA-LCA code is a relatively efficient

method for estimating disorder effects in quantum transport simulation.
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Figure 7.16: Lattice structures of the simulated MoS2. (a) and (b) are the top view and side view of
the MoS2 lattice. The black box is the primitive cell of monolayer MoS2. (c) and (d) are top views
of the simulated two-probe MoS2 structures. In (c)/(d), the S/Mo atoms in the central region are
doped with Cl/Re atoms.

7.3 Application: Dopant Limited Mobility of MoS2

Dopants play important roles in determining the physical and chemical properties

of solids. For semiconductors, doping is necessary for adjusting the carrier densities

and tailor the electronic property. The effects of doping are also significant in 2D

materials. Recently, much attention has been attracted to the family of layered in-

organic transition-metal dichalcogenides (TMDCs). Among them, single-layer MoS2

possesses a direct band gap [165, 166] and exhibits carrier mobility comparable to

graphene nano-ribbons with high current on-off ratios [167]. The electrical property

of MoS2 may be further modulated by substitutional doping, such as Re (n-type) and

Nb (p-type) on Mo atoms, or Cl (n-type) on S atoms [168, 169, 170]. Researches

also report that n-type doping can effectively reduce the contact resistance between
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Figure 7.17: Band diagrams of the MoS2 MOSFET at low bias. The source/drain (leads) are high
n-doped (1%) and the channel (central region) is lightly n-doped. (a) low VG. The barrier at the
central region blocks the electron transport path so that the current can not flow through, referring
to an “off” state. (b) high VG. By tuning VG, the barrier gets lower so that the electrons can pass
through, referring to an “on” state.

layered TMDCs and metals [170, 171], which is very useful for electronic device ap-

plications. So far there have been very few experimental and theoretical works that

determine the impurity limited mobility in n-type doped MoS2. One widely used

method to calculate the impurity limited mobility numerically is the LMTO-ASA-

NECPA method, as presented in Refs. [164, 157]. However, since the monolayer

MoS2 has a hexagonal lattice with layered structure stacked by S-Mo-S (see Fig. 7.16

(a) and (b)), considerable effort is necessary to determine the correct ASA. Here,

we use the NECPA-LCA code to calculate the impurity limited mobility of n-doped

MoS2. Two kinds of n-type doping are considered, i.e., S sites doped by Cl dopants

and Mo sites doped by Re dopants.

The computation is similar to the one for boron doped graphene presented in sub-

section 7.2.3. We take Cl doping as an example since the computation process for

Mo doping is the same. We first perform a DFT calculation for a large Cl doped

MoS2 super cell and then an NEGF-DFT calculation for a two-probe clean MoS2

structure. The transport is along the zigzag direction of MoS2. From the two, the

impurity Hamiltonian, the clean system Hamiltonian and overlap matrices are ex-

tracted. Afterwards, an NECPA-LCA calculation is then carried out to obtain the

configurational averaged transmission function. The only difference to graphene case

of subsection 7.2.3 is the energy where the transmission is calculated. For the sim-

ulated graphene device, the transmission is calculated at the system Fermi energy
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Ef , which can be done for any impurity concentration since graphene has zero band

gap. For MoS2, the transmission at Ef vanishes when impurity concentration is low

because the Ef lies inside the band gap of MoS2. Here we consider the device to be a

field effect transistor (FET), where the source and drain (leads) are extremely highly

n-doped (e.g. 1%). The channel (central region) is lightly n-doped (e.g., 0.1%). Fig.

7.17 is a schematic of the band diagram when gate voltage VG is tuned. VG shifts the

band edges (EC and EV in the figure) of the central region down when the device is

turned “on”. The energy where electrons flow through enters into MoS2 conduction

band under appropriate VG. Transmission needs to be calculated at some energy

above the EC . We choose the energy to be 0.1 eV above EC , which is a reasonable for

a tuned on FET. The mobility is then extracted from a linear fitting of resistance R

versus length L of the scattering region.

Fig. 7.18 plots the relation between R and L. Linear regression gives the mobility

of both cases. The mobility is 310 cm2 · V −1 · s−1 for 0.1% Cl doping and 390 cm2 ·

V −1 ·s−1 for 0.2% Re doping. The calculated mobility value for of Cl doping is higher

than the experimentally reported 60∼80 cm2 ·V −1 · s−1 in Ref. [170], where a 4 times

higher doping level than ours was applied. Our predicted mobility should decrease

but still larger than the experimental value when calculated at the same doping level.

Other reported values [171, 167] range from 40 to more than 200 cm2 · V −1 · s−1

with uncontrollable impurities in the material. Our results should be taken as an

upper bound of impurity limited mobility. For Re doped MoS2, to the best of our

knowledge there has been no published values. According to our results, Re appears

to be a better n-type dopant than Cl in terms of electron mobility. This can be

understood by looking at the density of states (DOS) close to EC . Re doping tends

to provide a higher DOS than Cl doping at energies close to EC [168] and therefore

provide more transport channels. It is interesting to observe that the two fitted lines

intersect very close to L = 0 (not shown in the figure). This is because L = 0 refers

to the ballistic transport limit, where the two cases coincide.
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Figure 7.18: Resistance vs. structure length. We calculate the resistance of MoS2 devices at various
lengths (L = 2.8 nm, 3.7 nm, 4.7 nm, 5.6 nm and 6.6 nm). The central region is doped with 1) Cl
at S sites with a concentration of 0.1% (red dots) and 2) Re at Mo sites with a concentration of
0.2% (purple dots). The two cases gives the same number of impurities in the lattice. The extracted
mobilities are shown in the text boxes beside the curves.

7.4 Summary

In this chapter we proposed the NECPA-LCA method to solve transport problems in

disordered materials with low impurity concentration. In this theory, assumption is

made that at low impurity concentration, the off-diagonal disorder can be neglected

when evaluating the transmission. The the validity of this assumption was verified

by a tight binding model. The DFT implementation is verified by a boron doped

graphene system and compared with the results obtained using the LMTO-ASA-CPA

method. Both showed that NECPA-LCA gives acceptable results on the transport

when the impurity concentration is low (<1%). Finally, the method is employed to

predict the dopant limited mobility of monolayer MoS2, where we found that Re is a

better n-type dopants than Cl for monolayer MoS2.
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Conclusions

In this thesis we focused on investigating the random impurity effects in semiconduc-

tors. We started by investigating the band gap and band alignment of GaSbxN1−x

alloys with KS-DFT. The band gaps were predicted for the dilute Sb limit (<1%) at

the HSE06 hybrid functional level where over 1000 atoms were calculated to directly

determine the band bowing. Then, for transport with disorders at non-equilibrium,

approximated schemes such as the CPA theory and the NECPA theory were intro-

duced along with their most easily implementable site-oriented DFT methods - the

LMTO-ASA. We applied these methods to simulate a graphene TFET where co-

doping B-N impurity atoms were introduced. For semiconductor devices where the

impurity concentration is typically low (<1%), we showed that these equilibrium and

non-equilibrium CPA methods can be extended to DFT methods based on LCAO,

NECPA-LCA which has been shown to be useful in practical semiconductor simula-

tions. We calculated the mobilities of monolayer Cl and Re doped MoS2. All of our

work was from atomistic first principles and parameter-free.

The KS-DFT calculation on GaSbxN1−x alloy was based on the HSE06 hybrid

functional implemented with LCAO basis. With LCAO, the long range Coulomb

operator matrix can be represented by a sparse form, which made possible the ex-

pensive hybrid functional calculations for very large crystal systems. We found that

in GaSbxN1−x alloy the band gap decreased sharply in the Sb concentration range of

0 < x ≤ 1%. The fundamental mechanism of such a sharp band bowing was found

to be due to impurity states inside the band gap of GaN and a strong quantum in-
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teraction between the orbitals of Sb impurity and their surrounding neighbors and,

in particular, the interaction between Sb and its next nearest neighbor N atom plays

a significant role. Using the calculated natural band alignments, we predicted that

x ≈ 0.3% and slightly lower of Sb doping should be ideal for photochemical water

splitting in solar fuel applications.

The transport calculations were based on a first principles quantum transport

method that combines NEGF-DFT and NECPA theory for analyzing disorder scat-

tering and configuration averaging of the physical results. It is important to point

out that combining NEGF with DFT provides us a parameter free method to deter-

mine the Hamiltonian matrix of the device under non-equilibrium quantum transport

conditions for open device structures. The NECPA, on the other hand, was a very

powerful method for solving random disordered systems by analytically averaging the

physical properties before a numerical simulation was done. This way one avoids

the lengthy and usually prohibitive numerical computation in quantum transport

simulations. Choosing TB-LMTO to implement KS-DFT, the NECPA theory was

naturally combined with the NEGF-DFT formalism. In graphene TFET, the B-N

co-doping was found to open a substantial gap that linearly scaled with the co-doping

concentration which was appropriate for making TFET. We also observed that the

impurity scattering in the graphene TFET reduces the band-to-band tunneling cur-

rent by a substantial factor. We noted that even if the potential change due to doping

was accounted for (e.g. by VCA), it was not adequate to obtain correct transport

result if impurity scattering was not explicitly included. The NECPA-LMTO-ASA

method provided a promising parameter-free first principles TCAD solution to deter-

mine disorder induced physical effects. Finally, at low impurity concentration (<1%),

assumption was made that the off-diagonal disorder can be neglected when evaluat-

ing the transmission. The validity of this assumption was verified by a tight binding

model. The DFT implementation was verified by a boron doped graphene system

and compared with the results obtained using the LMTO-ASA-CPA method. Both

showed that NECPA-LCA gives acceptable results on the transport when the impu-
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rity concentration is low. The method was employed to predict the dopant limited

mobility of monolayer MoS2, where we found that Re was a better n-type dopants

than Cl for monolayer MoS2.

Our work indicates that even at low impurity concentration, off-site disorders must

be included if one wants to most accurately predict the transport of a disordered sys-

tem. One possible way is to implement them with bases without ASA, such as the

exact muffin-tin orbitals (EMTO) [172] which has been proven feasible with the CPA

theory [173]. EMTO has major improvements over the LMTO-ASA that the large

overlapping spheres produce more accurate description of the material potential and

that the interstitial region is taken into account in contrary to LMTO-ASA. Such

advantages makes EMTO suitable to investigate systems with low symmetries. Re-

cently, EMTO has been implemented with CPA-NVC to calculate quantum transport

in disordered systems [174]. The viability of implementing NECPA, which allows to

calculate not only average but also fluctuation of transport in disordered systems

[128], would be an interesting research direction. Another promising direction is to

employ the BEB approximation [52] and implement with LCAO basis. Like EMTO,

the BEB has been proven viable with the CPA theory [52] but not with quantum

transport formula yet. How to reduce the BEB theory to implement NECPA would

be a second promising extension of the thesis. EMTO is expected to treat disorder

more accurately than BEB with LCAO due to the fact that MTO is more naturally

compatible to implement CPA. BEB with LCAO will be more complicated in formal-

ism but less complicated to use when investigating systems with little symmetries.

On a more theoretical level, it is important to go beyond the CPA and NECPA

which are at single site approximation (SSA) level. In mesoscopic transport problems

such as the weak localization in disorder electronic system, nonlocal interference-

induced effects play a significant role in quantum transport which is missing in

CPA/NECPA with SSA. A promising way to account for the nonlocal effects is to

employ the dual-fermion method with the non-equilibrium Keldysh formalism [175].
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However, to the best of our knowledge, it is only investigated with tight-binding

model but with no ab initio method. Considering that the computation is expensive

even with tight-binding, how to efficiently implement the dual-fermion method with

ab initio method is another possible extension of the work.



A
Structure Constants

This appendix is to provide further details on the structure constant appearing in Eq.

(2.50) in Chapter 2. As mentioned in Eq. (2.50), the irregular solution of Laplace Eq.

(2.45) centered at R can be expanded by the regular solution centered at R′ through

the help of the structure constants. The structure constants are defined as [89]:

SRL,R′L′ =
∑
L

(−1)l
′′+1 8π (2l − 1)!!CLL′L′′

(2l′ − 1)!!
KL (R′′ −R′), (A.1)

where the sum is restricted by the condition of l = l′ + l′′ and the double factorial

is defined recursively: (2l + 1)!! = (2l + 1)(2l − 1)!! and (−1)!! = 1. The quantities

CLL′L′′ are called Gaunt coefficients and are defined by [54, 89]

CLL′L′′ =

∫
YL (r̂)YL′ (r̂)YL′′ (r̂) d2r̂. (A.2)

The structure constants are symmetric with respect to the indices RL and R′L′, i.e.,

SRL,R′L′ = SR′L′,RL, (A.3)

and depend on the distance according to the inverse power law [89]

SRL,R′L′ ∝
(

rR
|R−R′|

)l+l′+1

. (A.4)
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B
Wronskian

The Wronskian is used to match a function to a linear combination of two other

functions at r = sR. As described in reference [89], the Wronskian is defined as

{f1 (r) , f2 (r)} ≡ r2 [f1 (r) f ′2 (r)− f ′1 (r) f2 (r)] . (B.1)

This definition implies the following relations (argument r omitted):

{f1, f2} = −{f2, f1} (B.2)

and

{f1, f2} {f3, f4} = {f1, f3} {f2, f4} − {f1, f4} {f2, f3} . (B.3)

If function g (r) is to be matched smoothly (both the function value and its first

derivative) at r = sR to a linear combination of two functions f1 (r) and f2 (r), the

matching condition has the form of [89]

g (r)→ {g (r) , f2 (r)} f1 (r)− {g (r) , f1 (r)} f2 (r)

{f1 (r) , f2 (r)}
(B.4)

where the Wronskians are evaluated at the matching radius r = sR. We mention a

useful property of Wronskian [176]: if two functions f1 (r) and f2 (r) satisfy the same

radial differential equation, then their Wronskian {f1 (r) , f2 (r)} is independent of r.
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C
LMTO Green’s Functions

C.1 Retarded/Advanced Green’s function

This appendix is to provide further details on the derivation for Eq. (4.20) in Section

4.4. Let’s start with the expression for retarded/advanced Green’s function from Eq.

(4.18)

Gr,a (ε) =
[
ε± − C −

√
∆Sα(1− (γ − α)Sα)−1

√
∆
]−1

, (C.1)

where the subscript “±” has been added to the variable ε to distinguish retarded and

advance Green’s function. “+” applies to retarded Green’s function and “−” to the

advanced Green’s function. Notice that the matrix ∆ can be written in the form of

∆ =
√

∆
{

[I − (γ − α)Sα] [I − (γ − α)Sα]−1}√∆

=
√

∆
{

[I − (γ − α)Sα]−1 − (γ − α)Sα[I − (γ − α)Sα]−1}√∆. (C.2)

Then, the Green’s function can be derived in the following way

Gr,a (ε) =
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1

=
[
∆ + (γ − α)

(
ε± − C

)]−1 [
∆ + (γ − α)

(
ε± − C

)]
×
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1

=
[
∆ + (γ − α)

(
ε± − C

)]−1
{√

∆[I − (γ − α)Sα]−1
√

∆

−
√

∆ (γ − α)Sα[I − (γ − α)Sα]−1
√

∆ + (γ − α)
(
ε± − C

)}
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×
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1

=
[
∆ + (γ − α)

(
ε± − C

)]−1
{√

∆[I − (γ − α)Sα]−1
√

∆

+ (γ − α)
[
ε± − C −

√
∆Sα[I − (γ − α)Sα]−1

√
∆
]}

×
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1

, (C.3)

where “1” is replaced by “I”. After some further algebra, Eq. (C.3) reduces to

Gr,a (ε) =
[
∆ + (γ − α)

(
ε± − C

)]−1
{√

∆[I − (γ − α)Sα]−1
√

∆

+ (γ − α)
[
ε± − C −

√
∆Sα[I − (γ − α)Sα]−1

√
∆
]}

×
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1

[
∆ + (γ − α)

(
ε± − C

)]−1 {(γ − α)

+
√

∆[I − (γ − α)Sα]−1
√

∆
[
ε± − C −

√
∆Sα(I − (γ − α)Sα)−1

√
∆
]−1
}

=
[
∆ + (γ − α)

(
ε± − C

)]−1 {(γ − α)

+
√

∆
[(
ε± − C

)
[I − (γ − α)Sα]−∆Sα

]−1√
∆
}

=
[
∆ + (γ − α)

(
ε± − C

)]−1 {(γ − α)

+
√

∆
[(
ε± − C

)
−
[
∆ +

(
ε± − C

)
(γ − α)

]
Sα
]−1√

∆
}

=
γ − α

∆ + (γ − α) (ε± − C)
+

√
∆

∆ + (γ − α) (ε± − C)

[
ε± − C

∆ + (γ − α) (ε± − C)
− Sα

]−1

×
√

∆

∆ + (γ − α) (ε± − C)
. (C.4)

Here for the third equal sign, we have used the matrix relationAB−1AC−1 = A(CA−1B)
−1.

If we recall the notation from Eq. (4.21), we obtain:

Gr,a (ε) =
γ − α

∆ + (γ − α) (ε± − C)
+

√
∆

∆ + (γ − α) (ε± − C)

[
ε± − C

∆ + (γ − α) (ε± − C)
− Sα

]−1

×
√

∆

∆ + (γ − α) (ε± − C)

=λα + µα[Pα − Sα]−1µα, (C.5)
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which is exactly the Eq. (4.20) in Section 4.4.

C.2 Two-probe retarded/advanced Green’s function

This part is to give further details for Eq. (4.25) in Section 4.4. Let’s show how two-

probe Green’s function is modified under representation transform. The two-probe

Green’s function is given by Eqs. (4.5) and (4.12) [123]

GCC =
[
ε−HCC −HCL(ε−HLL)−1HLC −HCR(ε−HRR)−1HRC

]−1
. (C.6)

To rewrite it in the LMTO formalism, let’s check each term in Eq. (C.6). The first

two terms have the form of

ε−HCC = ε− CC −
√

∆CS
γ
CC

√
∆C (C.7)

in LMTO by Eq. (2.91) [54]. For the third and fourth term, use the notation τ = L,R

we have

HCτ (ε−Hττ )
−1HτC

=
√

∆CS
γ
Cτ

√
∆τ

(
ε− Cτ −

√
∆τS

γ
ττ

√
∆τ

)−1√
∆τS

γ
τC

√
∆C

=
√

∆CS
γ
Cτ

(
ε− Cτ

∆τ

− Sγττ
)−1

SγτC
√

∆C

=
√

∆CS
γ
Cτ (P

γ
τ − Sγττ )

−1SγτC
√

∆C , (C.8)
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where we have applied the fact that CτC = CCτ = 0 and Sγ = [(Sα)−1 − (γ − α)]
−1

[54]. Therefore the Green’s function can be rewritten as

GCC =
[
ε− CC −

√
∆CS

γ
CC

√
∆C −

√
∆CS

γ
CL(P γ

L − S
γ
LL)−1SγLC

√
∆C

−
√

∆CS
γ
CR(P γ

R − S
γ
RR)−1SγRC

√
∆C

]−1

=
{
ε− CC −

√
∆C

[
SγCC + SγCL(P γ

L − S
γ
LL)−1SγLC + SγCR(P γ

R − S
γ
RR)−1SγRC

]√
∆C

}−1

.

(C.9)

Comparing this equation with Eq. (C.1), we find that if we define

S̃γCC = SγCC + SγCL(P γ
L − S

γ
LL)−1SγLC + SγCR(P γ

R − S
γ
RR)−1SγRC , (C.10)

everything stays unchanged except for a “∼” hat on the S matrix. Therefore, similar

to Eq. (C.5), we obtain:

Gr,a
CC (ε) = λαC

(
ε±
)

+ µαC
(
ε±
)
g̃αCC

(
ε±
)
µαC
(
ε±
)
, (C.11)

where we have defined the modified auxiliary Green’s function

g̃αCC (ε) =
[
Pα
CC (ε)− S̃αCC

]−1

=
[
Pα
CC (ε)− SαCC − SαCL(Pα

L − SαLL)−1SαLC − SαCR(Pα
R − SαRR)−1SαRC

]−1
.

(C.12)

By further defining a modified self-energy

Πα
τ = SαCτ (P

α
τ − Sαττ )

−1SατC , (C.13)

Eq. (C.12) becomes:

g̃αCC (ε) = [Pα
CC (ε)− SαCC − Πα

L − Πα
R]−1. (C.14)
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This result is the Eq. (4.25) in Section 4.4.



D
An Equivalent Form of the CPA Equation Set

This appendix is to present further details for Eqs. (5.30). We first rewrite Eqs.

(5.28) with conditional Green’s function and then introduce the interactor to make the

equation sets computationally simpler. This appendix follows the details presented

in Ref. [38].

D.1 Rewriting the CPA Equations with the Conditional Greens

function

In this section we rewrite Eqs. (5.28) with the conditional Greens function.

We first prove a lemma for the block matrix inverse. Suppose that A and A′ are

the inverse of the two 2× 2 block matrices:

A =

 a11 a12

a21 a22

−1

,

A′ =

 a′11 a12

a21 a22

−1

,

from which we can obtain the expression of the upper left corner of matrices A and
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A′

A11 =
(
a11 − a12a

−1
22 a21

)−1
,

A′11 =
(
a′11 − a12a

−1
22 a21

)−1
.

It follows that

(A11)−1 − (A′11)
−1

= a11 − a′11, (D.1)

which is the conclusion of the lemma.

Second, we apply the lemma to Gr
i and Gr

iq and obtain a useful relation between

them. Gr
i is defined as Eq. (5.29) and Gr

iq is defined by the last two lines of Eqs.

(5.28). Let A = Gr
i and A′ = Gr

iq, and reorder Gr
i and Gr

iq such that the block of site

i is in the location of a11 and a′11 respectively. We get

a11 − a′11 = (ε̃riq)ii − (ε̃r)ii = εriq − ε̃ri .

By using the lemma, it is derived

(
Gr
i

)−1 −
(
Gr
iq

)−1
= εriq − ε̃ri . (D.2)

Third, we derive the first line of Eqs. (5.30). We substitute Eq. (D.2) into the

second line of Eq. (5.28) and obtain

triq =

{[(
Gr
i

)−1 −
(
Gr
iq

)−1
]−1

−Gr
i

}−1

. (D.3)

Substitute Eq. (D.3) into the first line of Eq. (5.28) and we obtain

∑
q

xiq

{[(
Gr
i

)−1 −
(
Gr
iq

)−1
]−1

−Gr
i

}−1

= 0. (D.4)
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By using
∑

q xiq = 1, Eq. (D.4) can be simplified as

Gr
i =

∑
q

xiqGr
iq, (D.5)

which is the first line of Eq. (5.30). Up to here, the Eq. (5.28) has been written in

terms of the conditional Green’s function.

D.2 The Introduction of Interactor Ωi

In this section we introduce the interactor Ωr
i to make Eq. (5.28) computationally

easier to implement [54]. Eq. (D.2) and Eq. (5.28) shows that not all elements of

the Greens function (and conditional Greens function) are necessary during the self-

consistent process. Therefore, we can always find a proper site diagonal quantity Ωr
i

such that

Gr
i = [EI − ε̃ri − Ωr

i ]
−1 ,

Gr
iq =

[
EI − εriq − Ωr

i

]−1
,

(D.6)

which are nothing but just the last two equations of Eq. (5.30).



E
BAC Model and Molecular Dynamics

This appendix is to present further details for Chapter 3. We first introduce the band

anti-crossing model and then presents how to extract band bowing parameter from

the band bowing figure. Finally we listed the parameters for molecular dynamics used

in the project.

E.1 Extraction of the coupling constant

The variation of the band edge of GaNSb can be modeled by the band anti-crossing

model as [110]

E±(k) =
1

2

{
Ev(k) + ESb ±

√
[ESb − Ev(k)]2 + 4V 2x

}
where ESb is the energy of impurity state, Ev(k) is the original valence band, V the

coupling constant between the valence states and impurity states, x the impurity

concentration and finally E± is the corresponding impurity states energy and the

valence band energy after the quantum interaction. Pay attention that this formula

only applies to low x case so that it can be used to describe the band gap of the GaNSb

alloy at the low x limit. Take the differential over x we get the slope V 2/(ESb −Ev)

when x → 0. As stated in the text, compared to the valence band edge the change

of the conduction band edge Ec is negligible so that it is reasonable to use the same

formula to model the variation of the band gap. We use the two points x → 0 and
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x = 0.175% to estimate the slope at the low x limit and the results from HSE06 that

ESb is about 0.5 eV above Ev and finally we get V = 6.7 eV. It is worth mentioning

that the band gap of x→ 0 is 2.96 eV (3.46 eV, the band gap of GaN, minus 0.6 eV).

E.2 Molecular Dynamics

We use the Tersoff empirical potential [115] for the molecular dynamics calculations.

The parameters we used are listed in Tab. E.1 and E.2. We found that these param-

eters can well produce the lattice constant as well as the surface structure of GaNSb

alloys. We have compared ∆V ’s from molecular dynamics with those from pure DFT

results (i.e., both the relaxation and ∆V are computed by DFT) for x = 0, 2.7%, 5.6%

and they differ by <40meV.

Table E.1: Tersoff potentials for GaNSb alloys (Part

1). The table is organized according to the favor of

LAMMPS.

m γ λ3 c d cos θ0 n β λ2

Ga Ga Ga 1.0 0.04787 1.846 1.918 0.75 -0.2813 1.0 1.0 1.4497

N N N 1.0 0.7661 0.000 0.1785 0.2017 -0.04524 1.0 1.0 2.3843

Sb Sb Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Ga N N 1.0 0.001632 0.000 65.207 2.821 -0.518 1.0 1.0 2.6391

N Ga Ga 1.0 0.001632 0.000 65.207 2.821 -0.518 1.0 1.0 2.6392

Ga Sb Sb 3.0 0.3630 0.9687 1.2088 0.8398 -0.4277 4.6022 1.0 1.7452

Sb Ga Ga 3.0 0.3630 0.9687 1.2088 0.8398 -0.4277 4.6022 1.0 1.7452

Sb N N 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

N Sb Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Ga Ga N 1.0 0.001632 0.000 65.207 2.821 -0.518 1.0 0.0 0.00
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N Ga N 1.0 0.7661 0.000 0.1785 0.2017 -0.04524 1.0 0.0 0.00

N N Ga 1.0 0.001632 0.000 65.207 2.8210 -0.518 1.0 0.0 0.00

Ga N Ga 1.0 0.007874 1.846 1.9180 0.7500 -0.3013 1.0 0.0 0.00

Sb Sb N 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

N Sb N 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

N N Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Sb N Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Ga Ga Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Sb Ga Sb 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Ga Sb Ga 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Sb Sb Ga 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Ga N Sb 1.0 0.001632 0.000 65.207 2.821 -0.518 1.0 1.0 2.6391

Ga Sb N 3.0 0.3630 0.9687 1.2088 0.8398 -0.4277 4.6022 1.0 1.7452

N Ga Sb 1.0 0.0016 0.000 65.2070 2.8210 -0.518 1.0 1.0 2.6391

N Sb Ga 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Sb N Ga 1.0 0.00 0.00 0.00 1.00 0.00 1.0 1.0 0.0

Sb Ga N 3.0 0.3630 0.9687 1.2088 0.8397 -0.4277 4.6022 1.0 1.7452

Table E.2: Tersoff potentials for GaNSb alloys (Part 2).

B R D λ1 A

Ga Ga Ga 410.132 2.87 0.15 1.6092 535.199

N N N 423.769 2.20 0.20 3.5578 1044.77

Sb Sb Sb 0.00 2.87 0.15 0.00 0.00

Ga N N 3864.27 2.90 0.20 2.9352 6136.44

N Ga Ga 3864.27 2.90 0.20 2.9352 6136.44

Ga Sb Sb 544.9039 3.5 0.1 2.5024 2521.7569
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Sb Ga Ga 544.9039 3.5 0.1 2.5024 2521.7569

Sb N N 0.00 2.87 0.15 0.00 0.00

N Sb Sb 0.00 2.87 0.15 0.00 0.00

Ga Ga N 0.00 2.90 0.20 0.00000 0.00000

N Ga N 0.00 2.20 0.20 0.00000 0.00000

N N Ga 0.00 2.90 0.20 0.00000 0.00000

Ga N Ga 0.00 2.87 0.15 0.00000 0.00000

Sb Sb N 0.00 2.87 0.15 0.00 0.00

N Sb N 0.00 2.87 0.15 0.00 0.00

N N Sb 0.00 2.87 0.15 0.00 0.00

Sb N Sb 0.00 2.87 0.15 0.00 0.00

Ga Ga Sb 0.00 2.87 0.15 0.00 0.00

Sb Ga Sb 0.00 2.87 0.15 0.00 0.00

Ga Sb Ga 0.00 2.87 0.15 0.00 0.00

Sb Sb Ga 0.00 2.87 0.15 0.00 0.00

Ga N Sb 3864.27 2.90 0.20 2.9352 6136.44

Ga Sb N 544.9039 3.5 0.1 2.5024 2521.7569

N Ga Sb 3864.27 2.90 0.20 2.9352 6136.44

N Sb Ga 0.00 2.87 0.15 0.00 0.00

Sb N Ga 0.00 2.87 0.15 0.00 0.00

Sb Ga N 544.9039 3.5 0.1 2.5024 2521.7569



F
NECPA Equation Set in LMTO-ASA

The NECPA equation set in LMTO-ASA is listed as follows:

gα,rR,R =
∑
Q

cQRg
α,Q,r
R,R ,

gα,r = [Pα,r − Sα − Σr]−1 ,

gα,rR,R = [gα,r]R,R ,

gα,rR,R = [Pα,rR − Ωr
R]−1 ,

gα,Q,rR,R =
[
Pα,Q
R − Ωr

R

]−1

.

(F.1)

and

gα,<R,R =
∑
Q

cQRg
α,Q,<
R,R ,

gα,< = gα,r [−Pα,< + Σ<] gα,a,

gα,<R,R =
[
gα,<

]
R,R

,

gα,<R,R = gα,rR,R

(
−Pα,<R + Ω<

R

)
gα,aR,R,

gα,Q,<R,R = gα,Q,rR,R Ω<
Rg

α,Q,a
R,R .

(F.2)

g
α,r/<
R,R is retarded/less auxiliary Green’s function. The ones with superscript Q are

their corresponding conditional average Green’s functions. cQR is the concentration of

specie Q at site R.
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