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Classification of hybrid modes in cylindrical dielectric optical waveguides 
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The classification of hybrid modes in cylindrical dielectric waveguides consisting of two or three 
layers is studied. A new mode designation based upon the separation of the characteristic equation 
is introduced. That is, separate ch•iracteristic equations for HEn, , and EHn, , modes are derived. 
This new scheme covers dielectric rods, dielectric tubes, cladded optical fibers and any three-layer 
structure in general. It is analytically shown that no crossover exists between HE and EH modes 
with the same order of azimuthal variation (n). 

1. INTRODUCTION 

Cylindrical dielectric waveguides have, in the past 
decade, attracted considerable attention because of 
their important applications in millimeter and optical 
communications. Their propagation properties have 
been subjects of extensive investigations in recent 
years. Cladded optical fibers, dielectric rod and 
dielectric tube waveguides are the most widely 
known structures of such kind which have been 

analyzed by various researchers. 
In cylindrical dielectric wayeguides, all modes 

except TE and TM are hybrid, i.e., they have axial 
components of both electric and magnetic fields. 
Unlike circularly symmetric modes, the classifica- 
tion of hybrid modes is somewhat complicated. One 
of the earliest schemes for designating hybrid modes 
in a dielectric rod was proposed by Beam et al. 
[1949]. It is based upon the relative contributions 
of E• and H• to a transverse component at some 
reference point. For example, if E• makes the larger 
contribution, the corresponding mode is designated 
EH, and so forth. Finding this method of designation 
arbitrary, Snitzer [ 1961 ] suggested a scheme based 
on the value of some amplitude coefficient ratio 
at frequencies far from cutoff. The modes for which 
this ratio is + 1 are designated EH, and those for 
which it is -1 as HE. 

Snitzer's criterion, although strictly valid far from 
cutoff, practically settles the question of mode 
designation for a dielectric rod. It can be verified 
numerically that the amplitude coefficient ratio has 
values different from _1 at frequencies not far 
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from cutoff, but remains positive for EH and 
negative for HE modes. Kuhn [ 1974] has attempted 
to use the sign of this ratio to classify hybrid modes 
in a cladded optical fiber. Our investigation, 
however, reveals that the sign of the amplitude 
coefficient ratio in a cladded fiber changes along 
a dispersion curve especially in the cladding mode 
region and, hence, cannot be utilized to properly 
classify the hybrid modes. 

Clarricoats [1961] also proposed a mode desig- 
nation, based on the sequence of solutions of the 
characteristic equation, which works well for a 
dielectric rod, but has limited success in the case 
of a cladded fiber. Kharadly and Lewis [1969] 
proposed another method and used it to classify 
the hybrid modes in a dielectric tube. It is based 
upon the radial variation of the field components 
as well as the sequence of solutions. But generally 
speaking, field configurations do not play a decisive 
role in the classification of hybrid modes. 

From this review, we find that there has not 
yet been a precise, well defined, and global scheme 
for the classification of hybrid modes in cylindrical 
dielectric waveguides. In this paper, we present 
a new scheme based on the separation of the 
characteristic equation. In other words, two sepa- 
rate equations are derived, one representing EH 
and the other HE modes. This new scheme covers 

a wide range of structures and, in particular, cladded 
fibers, dielectric tubes and dielectric rods. 

After obtaining separate characteristic equations 
for EH and HE modes, it will be analytically proved 
that no "crossover," as has been observed by 
Clarricoats and Chan [1973], Kuhn [1974] and 
Yip and Huang [1975], exists between EH and 
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HE modes, with the same 
variation, of a cladded fiber. 

order of azimuthal 

2. FORMULATION OF THE PROBLEM 

Consider a cylindrical dielectric waveguide con- 
sisting of three regions, namely, core, cladding, 
and the outer region. The three media are assumed 
to be lossless and homogeneous with the outer 
region extending to infinity. The ith medium is 
characterized by a permittivity E i = Eoe• and a 
permeability ix i = ix o IX•. Figure 1 illustrates the 
geometry of the problem. Choosing a cylindrical 
coordinate system r, 0, z and assuming that z and 
t dependences are given by exp [j(tot - [3 z)], the 
axial components of the fields can be written as 

Ezl-- anIZnl(kl r) ' Pn t 0 --< r- < r I azl ---- bnl Ztll (kl r) Q, 

E•: = [a.•Z.:(k:r) + an3Zn3(k•) ] ß P.} H•: = [b.:Z.:(k:r) + bn3Zn3(k•)] Qn 

(1) 

(2) 

Ez3 = an4Zn4(k3 r) ß Pn } r_> r e (3) H:3 = b n4 Zll4 (k3 r) 

where P, = cos(nO + •,)exp [j(tot - 13z)], Q, 
= sin(nO + •,)exp [j(tot- 13z)] and 

with ½ = [5/k o as the normalized propagation 
constant. q•, is a phase constant and Z,• (i = 1, 

Fig. I. Geometry of a three-layer cylindrical dielectric wave- 
guide. 

.... 4) are the Bessel and the modified Hankel 
functions given in Table 1 in appendix A. 

The transverse components of the fields in each 
region are readily obtained from their respective 
axial components. At the boundaries r = r I and 
r = r:, the tangential components of the fields must 
be continuous, resulting in a set of eight equations 
with eight unknowns. The characteristic equation 
is obtained by setting the determinant of the 8 x 
8 coefficient matrix to zero. The result is 

GiT} • + G2T} I + G3 =0 

where 

(4) 

G • = ad - bc, 

G 2 -- (ad' - cb') + (da' 

G3=a'd'-b' c' 

with 

- bc'), 

a = Ix r2 ß rl (ß r2 A2 - ßr3 A5) 

a' = ß r2 AB (t• - 1) - Ix re ßre (ßre A3 + ßr3 AI T•6) 

b -- IX rl ßr2 (1• -- 1)B 

b' = IX r2 A (ßr2 A2 -- ßr3 A5) q" •r2 er2 •l B 

C = • r2 • rl (• -- I)B 

C' = •r2A(•r2• 2 - •r3•5) + •r2 •r2•l B 

d = •rl e r2 (•r2 •2 -- •r3 •5 ) 

d' = •reAB(• - 1) -- •r2 •r2 ( •r2 •3 + •r3 •1 •6 ) 
and 

A I -- x}2 - l•x}3 , 

A 2 -- I•T• 4 -- T•5 

A 3 = l•'r13 T• 4 -- T•2 T• 5 

A4 = l•(n2 - n3)(n4 - 

where Xl•(i = 1, 2, ..., 6), t•, A and B are defined 
in appendix A. Moreover, the notations x = k I rl, 
u I = k2r •, u 2 = k2r 2 and w = k3r 2 have been 
used in the derivation of (4). 

If IX r• • r• > IX r2 • r2 > IX r3 • r3' (4) represents the 
characteristic equation of a cladded optical fiber. 
The case Ix rl E rl • [• 2 • I, L r2 • r2 > I 'L r3 • r3 corresponds 
to core modes, while for •Lr!•rl > •Lr2•r2 • •2 
>-- IXr3Er3, (4) represents the cladding modes. The 
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> E applies to condition [l, r2Er2 • [l, rl•rl __ [l, r3 r3 
dielectric tubes. The characteristic equation of a 
dielectric rod is contained in (4), for if r: --> t' ! 
and Ix • e •, > 13 • the three-layer waveguide shrinks 
to a rod. Letting r2 --> t'l, then u: --> u I , •1• '-> 
xl:, •1• --> x13, t• --> 1, and as a result (4) reduces 
to 

(Erl'l]l- Er3•6)(•J'rl •l- •J'r3'l]6 ) -- i•12 •2(1/X2 q- 1/w2)2 

(5) 

which is the well known characteristic equation for 
a rod, and 

= = -K' (w)/wK (w) 'l'[i Jtn (x)/xJn(x), •6 n n 

3. CLASSIFICATION OF MODES 

When n - 0, the characteristic equation (4) splits 
into two equations corresponding to the circularly 
symmetric TE and TM modes. The results are 

_ 2 A -- A •6--0 ' •rl•l (•r2A2 er3A5 ) -- •r2 3 •r2 •r3 1 

for TM modes (6) 

•rl•l(•r2A2 -- •r3A5 ) -- •2A3 -- •r2•r3 Ai •6 =0, 

for TE modes (7) 

In order to get some insight into the classification 
of hybrid modes, we first look at the dielectric 
rod situation. Equation (5)can be regarded as 
quadratic in •; thus, solving it for • yields 

• = (1/2••){(• %3 + •3 %•) • • [(•3 %• 

_ •2 n2(1/x 2 + • e•3) 2 • + 4•e• 

(8) 

On the other hand, the amplitude coefficient ratio 
defined by Snitzer [1961] as P = -(•o•/•) 
ß (b,!/a,!) is rewritten 

•rl•l- •r3•6 n(1/x2 + l/w2) 
P = = (9) 

n• 2(1/x2 + l/w2) •r•- •r3•6 

Substituting for • from (8) results in 

P= [1/2n•,•2(1/• + l/w2)]{(•3e•l- g•e•3)•6 
__ )2 2 n2 •2(1/X2 • [(•3e• •%3 •6 +4• 

+ I/W2)2] I/2 } (10) 

It is evident that in (10), P is always positive for 
a + sign and negative for a - sign. Besides, at 

frequencies far from cutoff, i.e., when w--> o•, 
132 _> Ix •, e •, with x remaining finite, P--> _+ 1 / Ix •!- 
Assuming that the relative permeabilities are all 
unit, P is then equal to _ 1, a result which was 
first derived by Snitzer [1961]. It is now quite 
clear that (8) with a + sign represents EH and 
with a - sign HE modes. 

In a similar manner, (4), the characteristic equa- 
tion of a three-layer structure, may be split into 
two equations, each representing one class of 
modes. Solving (4) for •1, we get 

xl, - (1/2G,)[-G 2 ñ (•),/2] (ll) 

where 15 = G• - 4G• G 3. It is proved in appendix 
A that 

• = [(ad'- cb')- (da'- bc')] 2 

+ (4e r• / Ix • )(db' - bd ,)2 (12) 

Since 15 is always greater than zero, (11) with either 
sign represents a set of curves in the (to - 13) plane 
which are continuous and have continuous slopes 
too. Moreover, the fact that 15 does not become 
zero implies that there are no crossovers between 
EH and HE modes. 

It is now evident that (11) with a + or a - sign 
inevitably represents one class of modes. The mode 
with zero cutoff frequency has been traditionally 
referred to as the HE,, mode. For a particular 
structure, this mode is always contained in one 
of the equations in (11). Thus, the following scheme 
for the classification of hybrid modes is proposed. 

Split the dispersion equation as in (11). Let the 
equation which includes the dominant HE!! mode 
represent HE,,• and the other equation EH,m 
modes. Accordingly, it can be verified that for a 
cladded optical fiber (11) with a + sign represents 
EH and with a - sign HE modes. In the case 
of a dielectric tube, whenever 13 2 _< Ix rl {5 rl' -}- should 
be used for EH and - for HE modes, while if 
I•- -> Ix•e•, + will be for HE and - for EH 
modes. 

The amplitude coefficient ratio is given by 

IXoO• b 1 iD__ rll _._ 
13 a n • 213 (db' - bd ') 

ß [(da' - bc') - (ad' - cb') ñ (g)•/2] (13) 

We observe that the numerator of the right-hand, 
side expression in (13) is always positive for a + 
sign and negative for a - sign. The sign of its 
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denominator, however, depends on the sign of (db' 
- bd'). For the rod problem, (db' - bd') reduces 
to n•(1/x 2 + 1/w 2) > 0, and hence the sign of 
Pcan be used for mode designations. For a cladded 
fiber and tube, (db' - bd') takes both positive and 
negative values. Consequently, the sign of P cannot 
be utilized for the classification of hybrid modes 
in three-layer structures. This point will be discussed 
further in the following section. 

4. NUMERICAL RESULTS 

To obtain the normalized propagation coefficient 
13 as a function of frequency, the dispersion equa- 
tions derived in section 3 were so. lved numerically 
using a root search technique. Several typical values 
for permittivities were chosen and all permeabilities 
were assumed to be unity. Dispersion characteristics 
for several lower-order hybrid modes have been 
plotted. These plots illustrate [3 versus v, the 
normalized frequency defined as 

(2xr rl/)•)(t rl -- 1)•/2, for a dielectric rod 

)• (2'rr r I /)k)(•rl -- •r2 /2, for a cladded fiber 

_ )•/2 for adielectric tube (2xr r• / 3,)(e r2 e rl ' 

Figure 2 shows the characteristics of a dielectric 
rod with ½ r• = 2.25. The amplitude coefficient ratios 
for the HE• and EH• modes are plotted versus 
• in Figure 3. It is observed that P is positive for 
the EH•, while it is negative for the HE• mode. 
This property, that P is positive for EH,," and 
negative for HE,,,. modes of a dielectric rod, has 
been analytically verified in section 3. 

15 

14 

HEi• 

1 
12 

11 

10 • 

0 3 6 9 12 15 
V 

Fig. 2. Characteristics of a dielectric rod with E• = 2.25. 
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-5. 

•EH• 

'to '•.,• 't,2 • 't,3 t,4 '15 

HEll 

Fig. 3. Amplitude coefficient ratios for the HE• and EH• 
modes of a rod with E• = 2.25. 

The characteristics of a cladded fiber with 
= 2.341, ½r2 = 2.25, E r3 -- 1 and r2/r • = 5 are 
shown in Figure 4. Figure 4 (bottom) shows the 
characteristics in the cladding mode region only. 
In the inset to Figure 4 (top) the behavior of 
in the neighborhood of 1.499 < [3 < 1.501 is 
examined. It is observed that the characteristics 

of the HE i2 and EHi• modes get very close to 
each other [see also Yip and Huang, 1975] near 
V = 3.82, but do not cross each other. A similar 

phenomenon takes place between the HE22 and 
EH2• modes near V = 5.1. Clarricoats and Chan 
[1973] and Kuhn [1974] have considered such 
points as being crossovers, but our analytical inves- 
tigation showed that no crossover can exist between 
HE,,. and EH,,. modes. What then is the reason 
for such strange behaviour? A quick examination 
of (4) reveals that in the neighborhood of V = 
3.82 (or 5.1), J, (x) --- 0; n = 1 (or 2), or equivalently 
xlt becomes very large. Therefore, G• should be 
very small and at the same time • happens to be 
small too (G 2 small). Consequently the two roots 
of (4) become approximately equal, both satisfying 
J, (x) - 0. 

The amplitude coefficient ratios for the HE• 
and EHll modes are illustrated in Figure 5. We 
observe that P is always negative for the HE• 
mode, while for the EH• mode it varies from 
to +• in the cladding mode region. In the core 
mode region (1.5 < [3 < 1.53), however, Pis pos,itive 
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Fig. 4. Characteristics of a cladded fiber with E r, = 2.341, 
=2.25, Er3= I, andr 2/r, =5. 

for the EHI• mode approaching + 1 at high frequen- 
cies and it is negative for the HEll mode approach- 
ing - 1 as frequency increases. It can be analytically 
verified that these properties hold for all modes 
in the core mode region. 

The dispersion characteristics for a tube with 
= ½r3 = 1, ½r2 = 2.25 and q/r, = 2 are shown 
in Figure 6. The amplitude coefficient ratios for 
the EH,, and HE,, modes are plotted in Figure 
7. The ratio P remains positive for the EH,, mode, 
but it varies from -oo to +oo for the HE,, mode. 
The analysis of the coefficient P reaffirms the 
previously stated point that the sign of P cannot 
be utilized for the designation of hybrid modes. 
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1. 1.1 1.2 1.3 li4 1.5 , i, I •' i 

-•'-• HEll 

- 

Fig. 5. Amplitude coefficient ratios for the HE,, and EH•I 
modes of a cladded fiber with eH = 2.341, e rz = 2.25, 

= l, and r: / r I -- 5. 

5. DISCUSSION 

The manner in which the characteristic equation 
can be split is not unique. For example, (5) which 
was considered to be quadratic in Xll may likewise 
be regarded to be quadratic in •16. Solving (5) for 
x16 yields 

'- + [(l'l'rl •'r] n6 (l/2[•r3erZ){(•rl er3 + •rZ erl) n, -- 

)2• +4• t n 2•2(1/xz+ 11wZ)2] '/2} 
(14) 

14 

13 

12 

11 

lO , E22 ! I I 
o. 3. 0. v 9 12 

Fig. 6. Characteristics of a dielectric tube with Erl '-- {[r3 -- 
l, Er•=2.25, andq/r I =2. 
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4. 
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HEll 

EH11 
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Fig. 7. Amplitude coefficient ratios for the HE• and EH• 
modes of a tube with e r• = •r3 -- 1-, •r2 -- 2.25, and r 2/r• 

-- 2. 

Does (14) give a mode classification different from 
that of (8)? To answer this question we derive the 
corresponding expression for the amplitude coeffi- 
cient ratio. From (9) and (14), 

P= [-l/2nl3:'lX,.3(1/x:' + 1/W2)]{(IXrtCr3 -- •.Lr3•rl)'l• 1 

_ )2•1•+41x ß n 2•2(1 - [(Ixr•e,3 Ix,3e,• ,3 r3 

+ •/w•f] '/•} 

It is evident that in (15), P > 0 for a - sign and 
P < 0 for a + sign. On the other hand, P < 0 
corresponds to HE and P > 0 corresponds to EH 
modes. Thus, (14) with a + sign represents HE 
and with a - sign EH modes. In other words, (14) 
with a + sign is equivalent to (8) with a - sign 
and vice versa. 

In a three-layer problem one faces a more compli- 
cated situation. Here we confine ourselves to clad- 

ded fibers which are of particular interest to us. 
Using large argument approximations, given by (A8) 
-(A9), in (13), it is readily found that the coefficient 
P approaches +1 for EH and-1 for HE modes 
at frequencies far from cutoff. Thus, if the disper- 
sion equation of a cladded fiber is separated in 
a manner different from (11) and the two new 
equations are such that each represents a set of 
continuous curves in the (•o-13) plane, and 
moreover, if the corresponding expression for P 

approaches + 1 for EH and -1 for HE modes at 
frequencies far from cutoff, these new equations 
will necessarily yield the same mode classification 
as (11). It is thus concluded that, although the 
equation representing one class of modes may not 
have a unique form, the classification of modes 
is unique. A similar analysis can also be carried 
out for a dielectric tube. 

6. CONCLUSIONS 

A new scheme for the classification of hybrid 
modes in cylindrical dielectric waveguides has been 
proposed. Two separate equations, one representing 
EH and the other HE modes, have been derived. 
This new scheme is precise, well defined, universal, 
and yields a unique classification. It has been shown 
that no crossovers exist between HE and EH modes 

of the same order of azimuthal variation. It has 

also been shown that the amplitude coefficient ratio 
cannot be used for hybrid mode designations in 
three-layer structures. Dispersion curves of several 
lower-order modes for a rod, a cladded fiber and 
a tube with some specified parameters have been 
presented. 

APPENDIX A 

Introducing 

1, i,•>• 2 1• i -- , -1, IZ•e••2 i= 1,2,3 
the Zn functions are summarized in Table 1. In 
Table 1, •n and Yn are the Bessel and In and K• 
are the modified Hankel functions. The quantities 
• (i = 1,2,...,6), •, A, and • are defined as 

• = v• Z'.• (x)/xZ,• (x) 

• = v: Z'.:(u•)/u• Z.: (u•) 

•3 = v: Z'.3(ui)/u • Z.3 (u i) 

•4 = v: Z' (u•)/u:Z,•(u ) n2 2 

• = v: Z'.3(u•)/u•Z.3 (u•) 

TABLE 1. Definitions of functions Z,. 

v• = I v• =-I v 2= 1 v 2= -1 v 2= 1 v 2= -1 v 3 =-1 
Jn In Jn In Vn Kn Kn 



= Z' 'g]6 V3 n4(W)/WZn4(W) 

Z•(u•) Z•3(u ,) 

Z•(u,) Z•3(u •) 

A = n• 0', I x • - ,'• I u •) I 

2 W2 B= n•(u•/u•-u 3/ ) 

To prove that g > 0, we may write 

G• G 3 = (ad- bc)(a'd' - b'c') = (ad' - cb') 

ß (da' - bc') -(db' - bd ')(ac' - ca') 

Furthermore, 

(A1) 

db'- bd' = IXrl •r2 e r• T 

act • cat -- •[ rl •r2 •['r2 T 

with 

(A2) 

T= A [(•r2A 2 -- •r3 As)(•lt, r2 A2 -- lit, r3 •5) -- B2(• - 1): ] 

+ [l, r2er2BA 4 

Using (A1) and (A2) in • = G• - 4G l G 3 we obtain 

• = [(ad' - cb') - (da' - bc')] • + 4ix rl er• (IXr• e r• T)• 

(A3) 

Although the square r9ot of 15 exists, this is not 
sufficient for (11) with either sign to have continuous 
slope in the (to - [3) plane, unless 15 does not become 
zero. If 15 is to be zero at some point (tOo,[3o), 
then from (11) and (A3), 

'rl• + G 2/2G, = 0 

db' - bd' = 0 

(ad'- cb')- (da'- bc')= 0 

Using (A5) and (A6) in (A4) yields 

X 2 W 2 q•l q- 'l•6 = 0 

(A4) 

(A5) 

(A6) 

(A7) 
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Here, there are three independent equations, (A5) 
to (A7), with two unknowns to o, [3 o. Further, (A7) 
is independent of IXr2 and e r2, while (A5) and (A6) 
depend on them both explicitly and implicitly in 
the arguments of x12 to xls. Hence, any solution 
of (A5) and (A6) which depends on IXr2 and Er2 does 
not necessarily satisfy (A7). It is then concluded 
that 15 does not generally become zel;o. In some 
special cases 15 = 0 gives rise to obvious contra- 
dictions. For example, in the case of a dielectric 
tube with [Lrl E rl • • r3 •r3' (A7) becomes 

xl,,_•(x)/I.(x) + wK._,(w)/K.(w) = 0 

which is not true. 

The large argument approximations are' 

1,,(t)--> e•/(2xrt) •/•, t--> o• (A8) 

K•(t) --• e-t/(2'rrt) •/2, t--> • (A9) 
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