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Abstract

The complexity of software systems has been steadily increasing over the past few decades.
As a result, numerous means of shielding developers from unnecessarily low-level details,
or accidental complexity, have been adopted. Today, Model-Driven Engineering (MDE) is
considered to be the state-of-the-art of such means. Models describe complex systems from
various viewpoints and at various levels of abstraction. To reduce accidental complexity,
Multi-Paradigm Modelling (MPM) promotes modelling every part of a system, at the most
appropriate level(s) of abstraction, using the most appropriate formalism(s).

At the intersection of MDE and MPM principles is Domain-Specific Modelling (DSM),
which promotes modelling using constructs familiar to domain-experts. Documented indus-
trial applications of DSM have demonstrated increases in productivity of up to an order
of magnitude, as well as an elevation in the level of abstraction of first class development
artifacts. Due to a number of obstacles, DSM has yet to be widely embraced and recognized
as a worthwhile and competitive discipline. On the one hand, means to perform essential
tasks such as Domain-Specific model (DSm) differencing (e.g., for version control) and de-
bugging are still lacking or incomplete. On the other hand, an enormous strain is placed on
DSM experts to develop tools, formalisms and compilers that elegantly hide and encapsulate
the complexities of whole families of systems. As such, these experts are often faced with
problems and challenges that are several “meta-levels” more complex than the increasingly
complex systems whose creation they facilitate.

This thesis contributes to the removal of both the aforementioned obstacles with a strong
focus on the last. First, the long-standing Separation of Concerns principles, that have guided
much of the improvements in computer-assisted development, are explored in the light of
MPM to produce a new and more structured approach to artifact (e.g., executable code,
configuration files) synthesis from DSms. Whereas traditional artifact synthesis techniques
favour brute force and transform entire models to artifacts via a single and often complex
generator, we propose the modular isolation, compilation and later re-combination of each
concern within DSms. Second, a side-effect of this layered approach is a much increased
ease of examining and manipulating intermediate data and concept representations between
DSms and artifacts. This leads to the introduction of a set of guidelines, caveats and exam-
ples, that together form a blueprint for future DSM debuggers. Third, the proposed approach
to artifact synthesis from DSms is re-examined in the context of Domain-Specific Modelling
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Language (DSML) engineering, while remaining mindful of DSM and MPM principles. The
result is the extraction of a collection of concepts that form the domain of DSML design
and specification, and the introduction of a technique for composing these concepts to create
new DSMLs while dramatically reducing the complexity of this notoriously difficult task.

Finally, AToMPM, a new tool for MPM, is presented. In addition to several noteworthy
technical innovations and improvements, its main scientific interest lies in its theoretically
sound approach towards the specification of modelling language syntax and semantics and
of model transformation rule pattern languages, and in its implementation and integration
of recent research work by ourselves and others.
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Abrégé

Au cours des dernières décennies, la complexité des systèmes logiciels n’a cessé de crôıtre.
En conséquence, de nombreuses techniques visant à isoler les développeurs de détail de bas
niveau, aussi appellé complexité accidentelle, ont été adoptées. La palme de celles-ci est
l’Ingénierie à Base de Modèles (IBM), qui préconise la description de systèmes complexes
au moyen de modèles de cible et de niveau d’abstraction variés. Afin de réduire la com-
plexité accidentelle, la Modélisation à Paradigmes Multiples (MPM) prône la modélisation
de chaque partie d’un système au niveau d’abstraction le plus approprié, usant des langages
les plus appropriés.

La Modélisation Spécifique au Domaine (MSD) se situe au croisement des principes de
l’IBM et de la MPM. Elle promeut l’usage de notions familières aux experts des domaines
concernés. Des études en milieu industriel ont révélé que la DSM pouvait mener à une aug-
mentation de la productivité allant jusqu’à un ordre de magnitude, tout en élevant le niveau
d’abstraction des artefacts de développement. En raison d’un certain nombre d’obstacles,
la MSD ne jouit toujours que d’une adoption et d’une renommée limitées. D’une part, les
moyens et outils requis pour effectuer des tâches essentielles telles que la comparaison de
modèles Spécifiques au Domaine (mSD) (e.g., pour le contrôle de version) et leur débogage
demeurent absents ou incomplets. D’autre part, un fardeau énorme est placé sur les épaules
d’experts en MSD, à qui incombent les tâches de créer des outils, des langages et des compi-
lateurs qui masquent élégamment la complexité de familles de systèmes entières. Ces experts
font souvent face à des épreuves et des problèmes qui se situent à plusieurs “meta-niveaux”
de complexité et difficulté au-dessus de ceux des systèmes, eux-mêmes de plus en plus com-
plexes, dont ils facilitent la création.

Cette thèse aborde les deux obstacles mentionnés ci-haut tout en insistant sur le second.
Tout d’abord, les principes aguerris de la Séparation des Préoccupations, qui ont guidé bon
nombre des améliorations passées dans le développement informatique, sont explorés dans
le contexte de la MPM pour produire une nouvelle approche, plus structurée, à la synthèse
d’artefacts (e.g., code exécutable, fichiers de configurations) à partir de mSD. Cette approche
se distingue des méthodes traditionelles, qui privilégient la synthèse d’artefacts via un unique
et souvent très complexe compilateur, en optant plutôt pour une synthèse par phase, qui
isole, compile et recombine chacune des préoccupations présentes dans un mSD. Un des ef-
fets secondaires de cette approche par phase est qu’il devient largement plus aisé d’examiner,
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de manipuler et de représenter les données et notions se situant conceptuellement entre les
mSD et les artefacts. Exploitant cet avantage, nous proposons une série de recommendations,
d’avertissements et d’exemples qui forment une marche à suivre pour le développement de
débogeurs pour la MSD. Ensuite, nous réexaminons notre approche de synthèse d’artefacts
dans le contexte de la conception de Langages de Modélisation Spécifiques au Domaine
(LMSD), en demeurant toujours fidèles aux principes fondateurs de la MSD et de la MPM.
Les résultats sont l’identification d’un ensemble de concepts qui forment le domaine de la
spécification et du design de LMSD, et l’introduction d’une technique qui permet la création
de nouveaux LMSD au moyen de l’agencement de ces concepts. Notre technique réduit dras-
tiquement la difficulté associée à la création de LMSD, une tâche dont la grande complexité
est notoire.

En dernier lieu, AToMPM, un nouvel outil de MPM, est présenté. En plus d’un nombre
important d’innovations et d’améliorations techniques, ses attraits principaux, d’un point de
vue purement scientifique, sont son approche élégante à la spécification de la syntaxe et de
la sémantique de langages de modélisation et de langages de motifs, et son intégration de
techniques récentes d’auteurs variés, dont nous-mêmes.
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Introduction

Context

The past few decades have seen an explosive increase in the complexity of developed software.
This has been addressed by means of increasingly higher-level programming languages and
supporting tools (i.e., Integrated Development Environments). These were motivated by the
principles of problem abstraction [Dah02], problem decomposition [CLR00] and Separation
of Concerns [Dij82]. Not due to any fault of their driving principles, programming language
improvements eventually proved to be insufficient. Their main shortcoming is the inability to
significantly lessen the conceptual gap between problems to solve and their implementation.
As a result, model-driven approaches emerged as a means to shift systems development away
from code and towards higher-level and more abstract (possibly graphical) models, closer to
the problem domain.

At the forefront of model-assisted development, more formally known as Model-Driven
Engineering (MDE) [Sch06], are widely accepted standards, most notably the Unified Mod-
eling Language (UML) [Obj09]. Unfortunately, in recent years, it has become apparent
that existing standards merely offer more appealing views of the systems to-be-built while
remaining far too conceptually close to the final implementations, and thus to the solution
domain. Hence, their success in truly raising the level of abstraction and overall productivity
of software development endeavours has been limited.

An emerging branch of MDE is Domain-Specific Modelling (DSM) [GTK+07]. Its pri-
mary aim is to address the aforementioned shortcomings of more traditional modelling efforts
and raise the level of abstraction of development tasks sufficiently high for domain experts –
with possibly little to no understanding of traditional programming or even modelling – to
play first-class roles in solution design and implementation. DSM achieves this by promoting
otherwise abstract domain concepts to full-fledged modelling constructs with explicit map-
pings to artifacts in the solution domain (e.g., Java code, HTML documentation, Petri Net
models). Although DSM has been applied successfully in several industrial efforts, it has yet
to be widely embraced and recognized as a worthwhile and competitive discipline. While the
shortcomings of past and current, more code-centric MDE approaches undoubtedly deserve
a share of the blame for this situation, greater obstacles still stand in the way of DSM’s
widespread adoption. On the one hand, means to perform essential tasks such as model
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differencing (e.g, for version control) and debugging are still lacking or incomplete. On the
other hand, an enormous strain is placed on DSM experts to develop tools, formalisms and
compilers that elegantly hide and encapsulate the complexities of whole families of systems.
As such, these experts are often faced with problems and challenges that are several “meta-
levels” more complex than the increasingly complex systems whose creation they facilitate.

The bulk of current research in the field focuses on enabling DSM projects with tooling
comparable to that of the still dominant code-centric development world. These include
facilities to differentiate models (e.g., for version control) and debug them. Other studied
facilities aim at hiding or automating processes that common programmers are oblivious to
but that domain-specific modellers are frequently exposed to, such as language evolution and
compiler debugging. Finally, some research has focused on alleviating the aforementioned
strain placed on DSM experts to ensure that their limited numbers and required expertise
do not become a bottleneck for DSM’s adoption.

Problem Statement and Thesis Overview

Domain-specific modelling makes a list of ambitious claims at the top of which is that it can
significantly shorten and often completely close the notoriously large conceptual gap between
problems and their realizations in the solution domain, a feat that no other computer-assisted
development technique has achieved. While these claims have been substantiated in several
documented industrial and academic efforts, more focus is often given to the benefits of DSM
than to the lower-level implementation details of how exactly the aforementioned conceptual
gap is tackled, or to the supporting tooling (or lack thereof). These unsung implementation
details often comprise the specification of complex code-generators that make little use of
reusable modules and that adhere to no standardized development guidelines. Unfortunately,
no such modules or guidelines even exist, an inconvenient fact that holds true in every facet
of Domain-Specific Modelling Language (DSML) engineering. As for tooling, while a number
of effective tools exist for creating modelling languages, models and model transformations,
facilities for version control, debugging and evolution (or maintenance) are still rare or non-
existent.

This thesis contributes on both fronts, with a strong bias towards the former. It is guided
by Multi-Paradigm Modelling (MPM) principles [MV04], which promote modelling every
part of a system, at the most appropriate level(s) of abstraction, using the most appropriate
formalism(s). The means by which Domain-Specifc models (DSms1) are transformed into
artifacts are explored and a novel and more structured approach is proposed that raises the
level of abstraction of artifact generators and boasts other beneficial side-effects. One of these
pertains to the ease of maintaining traceability links between models, artifacts, and the often
very relevant intermediate steps that result from artifact generation. The enabling effects

1Note that we refer to Domain-Specific Modelling as DSM and to a Domain-Specific model as a DSm.
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of such traceability links are described in the context of model and model transformation
debuggers, and a blueprint for future DSM debuggers is proposed. Next, a step back is
taken and the means by which DSMLs are specified are explored. The organizing approach
introduced to specify artifact generators, otherwise known as DSML semantics, is adapted
to the entire process of DSML design. A new technique for specifying DSML syntax and
semantics is introduced that enables the fully-automated synthesis of otherwise ad-hoc and
error-prone syntax and semantics specifications through the composition of reusable DSML
“building blocks”.

Contributions

This thesis incorporates four core contributions:

1. A structured approach to artifact synthesis from DSms that addresses the numerous
flaws of widely adopted (within the DSM community) artifact synthesis techniques
through the application of MPM principles. Layered model transformations are used
to modularly isolate, compile and re-combine various concerns within DSms, while
maintaining traceability links between corresponding constructs at different levels of
abstraction. A thorough study of the approach reveals a number of its wide-ranging
benefits, one of which is its simplifying effect on the notoriously difficult problem of ad-
dressing non-functional requirements (e.g., timing and resource utilization constraints).
The approach is demonstrated through the synthesis of fully functional Google Android
applications from DSms of mobile phone applications.

2. A mapping between common debugging concepts (e.g., breakpoints, assertions) from
the code-centric development realm to the DSM realm. The meaning of these concepts
is explored from both the modeller ’s and the DSM expert ’s points of view, where the
tasks and debugging requirements of the former are akin to those of programmers,
while those of the latter are akin to those of compiler builders. Guidelines, caveats
and examples are provided, many of which are implemented and demonstrated, as
blueprints for future DSM debuggers. They also serve to demystify the amount of
effort required to produce DSM debuggers.

3. A DSML engineering approach that automates much of the complex tasks tradition-
ally associated to the specification of DSML syntax and semantics. The basic “do-
main constructs” of the domain of DSML engineering are identified as being portions
of lower-level modelling formalisms that capture commonly occurring syntactic and
semantic concepts and structures in DSMLs. Then, a template-based approach for
composing these DSML building blocks into new DSMLs is proposed. The approach is
demonstrated on two very different DSMLs and studied to clearly identify its benefits
and limitations.
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4. AToMPM, A Tool for Multi-Paradigm Modelling. In addition to several technical
innovations and improvements, its main scientific interest lies in its theoretically sound
approach towards the specification of modelling language syntax and semantics and of
model transformation rules and pre- and post-condition pattern languages, and in its
implementation and integration of recent research work by ourselves and others. The
features, implementation and usage of the tool are explored in detail.

Outline

This thesis is divided into five chapters. Chapter 1 provides a comprehensive introduction
to DSM. Chapters 2 to 5 each introduce one of the aforementioned contributions. Finally,
we provide concluding remarks, a summary of the thesis and suggested directions for future
research.
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Chapter 1

Introduction to Domain-Specific
Modelling

The purpose of this chapter is to review important Model-Driven Engineering concepts, as
well as the motivations, benefits, limitations and challenges of Domain-Specific Modelling.
First, the emergence of Domain-Specific Modelling is explained through an exploration of
the history of computer-assisted software development. Then, essential terminology, and the
underlying concepts and techniques behind DSM are introduced. Finally, past and current
relevant research areas are presented.
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1.1 A Brief History on Raising Abstraction: From 0s

and 1s to UML, and beyond

The discipline of software engineering has existed for several decades now [NR69]. Initially, it
consisted of the ad-hoc mental translation of a system’s requirements to a series of punched
holes on a paper card. The conceptual gap between problem and solution domains was im-
mense. These early programs were expressed at the lowest possible level of abstraction: their
instructions could be interpreted by the underlying computer architecture with virtually no
preprocessing. As the demand for more complex systems increased, the need to easily read,
understand, debug, maintain and evolve programs grew too, and high(er) level programming
languages were adopted to address them. Rather than intended for machine reading, these
languages were meant for human reading and manipulation. At first, they were at such a
low level of abstraction that nearly each of their statements had a one-to-one mapping to a
machine instruction or concept. Later, they evolved and began to abstract away machine
concepts enabling software development using constructs closer to the mental model humans
have of problems and especially of their (algorithmic) solutions. Programs written in these
languages needed to be transformed or compiled to machine code to be executable. Initial
detractors claimed that not only would such languages be less expressive, their compilers
could never produce code as efficient as human-optimized machine code. Although both
these concerns may still hold some truth to this day, the tremendous increases in produc-
tivity (due to faster development and easier maintenance, for example) quickly proved to
compensate for these inconveniences and very few modern applications still rely on coding
in low-level machine languages.

Over the following decades, languages at increasingly higher levels of abstraction were
adopted in a slow but steady motion away from machine concepts and towards problem
concepts to address the increasing scale and complexity of software projects. The evolu-
tion of programming languages boomed with the advent of Object-Oriented Programming
(OOP) [DMN70, Cox87, Dah02] which promotes the representation of abstract concepts as
instantiable classes that encapsulate concept-relevant properties and behaviour. Current
improvements to OOP languages revolve around addressing their limitations with respect
to cross-cutting concerns (i.e., features that can not be elegantly modularized within the
traditional class-association structure) [KLM+97] and improving their syntax and efficiency
[Wikb, AK08]. However, efforts to further raise the level of abstraction of modern OOP
languages above algorithmic and code-centric notions appear non-existent. As the plethora
of modern General Purpose Languages (GPLs), a superset of OOP languages, have proven
themselves effective for the representation of a very wide spectrum of algorithmic solutions,
continued efforts to raise the level of abstraction of development efforts have turned to the
use of models, and increasingly regard GPLs as targets for automated artifact synthesis.

Visual modelling languages were first introduced as means of representing systems at
higher levels of abstraction where distracting implementation details, also known as acciden-
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tal complexity [Bro87], were hidden. Not only were these abstract models ideal blueprints
to guide developers in their implementation, they were also considerably more accessible
than code to less technically inclined stakeholders such as clients and managers, who re-
quired only moderate training to understand them. These blueprint models are now at the
heart of modern software development efforts, providing structure, and promoting modular-
ity and best practices to what were previously ad-hoc development efforts. Today, the most
widely known and adopted family of modelling languages is the Object Management Group’s
(OMG)1 Unified Modelling Language (UML), which proposes (visual) means of representing
object-oriented system structure and behaviour. For structure, UML Class Diagrams provide
notations for the aforementioned object-oriented classes as well as for several types of inter-
class Associations (e.g., specialization, dependency). Support for specifying names, types,
parameters and visibility of class properties and methods is also provided. For behaviour,
UML Statechart and Sequence diagrams enable the modelling of a system’s responses to
relevant events, and of how objects in a system interact. To enable code-generation, these
behaviour diagrams refer to relevant class properties and methods via complex code snippets,
commonly expressed in the OMG’s Object Constraint Language (OCL) [Obj10].

Although UML diagrams have proven to be an effective means of representing desired
system facets while hiding undesired facets and implementation details, several researchers
have noted the fact that the difference in the level of abstraction between the said diagrams
and modern GPLs such as Java and C++ is smaller than that between GPLs and their
compiled machine code forms [B0́5, KT08]. The wide conceptual gap between GPLs and
assembly code is believed to go hand in hand with the monumental increase in productivity
that accompanied the adoption of GPLs in favor of machine code decades ago, and while
UML has certainly helped raise abstraction and structure development efforts, the resulting
increases in performance are marginal in comparison. Indeed, a close re-examination of the
above description of UML reveals that it is profoundly rooted in the object-oriented and
programming mindsets. Modellers are still required to be intently aware of code-centric no-
tions like types, attribute visibility and methods. They are expected to be proficient with
one or more programming language. They must still mentally translate problem-domain re-
quirements into class-association architectures and state and flow diagrams. They are even
required to understand and very often manipulate code generated from UML specifications.
Thus, despite its benefits, UML fails to shield developers from numerous implementation
technicalities and, worst of all, fails to solve the most difficult aspect of software engineering:
the abstract, ad-hoc, complex and possibly counter-intuitive burden of translating problems
from their domains to the often far away solution domain – be it low-level C or higher-level
UML diagrams – remains.

Though many extensions, or profiles, to UML have been proposed to increase its expres-

1The Object Management Group is a consortium of multi-national companies responsible for standards
such as the Common Object Request Broker Architecture (CORBA) and the XML Metadata Interchange
(XMI).
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siveness and flexibility, it remains undeniably inseparable from its OOP roots. As a prime
candidate to solve this problem, DSM is believed to be the next step forward that will enable
the first great leap in productivity in decades. Already, several real-world experiments using
DSM for small to medium scale development efforts have reported decreases of up to an
order of magnitude in development time [Bro04, Saf07, KT08].

1.2 Essential Concepts and Terminology

Before proceeding with a review of DSM and how it addresses the limitations of UML-centric
development approaches, a number of fundamental concepts must first be defined.

1.2.1 Models

At the core of MDE activities are models. Regardless of its representation (i.e., visual or
textual), a model should display three high-level properties: it should represent a real system
(mapping feature), it should abstract away parts of that system (reduction feature), and it
should be possible to make use of it in place of the system it models for some application
(pragmatic feature) [K0̈6]. Consequently, the use of models is often motivated by the fact
that they are often cheaper, safer and quicker to build, reason about, test and modify than
the systems they represent.

Models can be divided into two large categories: token models and type models [Fav06,
K0̈6]. The former offer an abstract view of a single system (e.g., a 5”x5” map of Montreal’s
subway network as a to-the-point, portable abstraction of the actual network). The latter,
which are often referred to as classification or schema models, are meant to model many
systems (e.g., a UML Class Diagram that relates SubwayStop and SubwayLine constructs
as a conceptual model of all existing and possible subway networks).

1.2.2 Meta-models and Meta-modelling

While a model may represent a system, it is said to conform to a meta-model [B0́5]. Meta-
models define a possibly infinite set of syntactically legal models – similarly to how the
grammar of a textual programming language defines a possibly infinite set of syntactically
conforming programs. They achieve this by defining certain sets and conditions. First, a set
of valid, possibly attributed, modelling constructs. Second, a possibly empty set of valid re-
lationships between modelling constructs. Last, a set of validity constraints. As an example,
consider the abridged description of UML Class Diagrams from the previous section. The
meta-model of UML Class Diagrams would specify that Class constructs exist, that they
have properties and methods attributes, and that they may be connected to each other via
Specialization and Dependency relationships. A sensible validity constraint might verify
that no class transitively specializes itself (i.e., specialization should not be cyclic).
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A strong point of consensus within the wider MDE community is that meta-modelling
is the key to empowering scalable model-based techniques. In essence, it is not sufficient for
systems to be represented by models and for models to conform to meta-models. For oper-
ations such as model comparison, model transformation and model merging to be feasible,
all meta-models also need to themselves conform to a meta-model, referred to as a meta-
meta-model [Bro04, B0́5]. Popular meta-meta-models are the OMG’s Meta-Object Facility
(MOF) [Obj06], the Entity-Relationship Model [sC76] and the OMG’s UML Class Diagrams,
which are each expressive enough to specify any meta-model, including themselves. In prac-
tice, meta-meta-models are at the heart of virtually every modern modelling tool. As such,
higher-order operations that take meta-models as parameters become possible and the full
and automated synthesis of tools that provide domain-specific modelling, debugging and
simulation environments is enabled. Developing such environments for each new domain
with conventional software development approaches would be infeasible due to time, cost
and complexity constraints.

1.2.3 Modelling Languages

Modelling languages, domain-specific or otherwise, can be broken down into three core com-
ponents: abstract syntax, concrete syntax and semantics.

Abstract syntax describes language concepts, relationships between them, and validity
constraints. For a number of reasons, not the least of which is that scalable DSM tools
rely heavily on meta-models and meta-modelling, MDE dictates that modelling language
abstract syntax should be specified via meta-models. From this stems the slightly inaccu-
rate but common simplification that meta-models are models of modelling languages.

Concrete syntax provides graphical and/or textual representations of abstract syntax
elements. As an example, consider again the UML Class Diagram language. While its ab-
stract syntax defines the notions of Class and Specialization, it is its concrete syntax
that specifies that instances of the former should be depicted by rectangles that contains
concise representations of the properties and methods attributes, and that instances of the
latter should be depicted by dotted-lines ending with larger triangular arrow-heads. Note
that though modelling languages may only have one abstract syntax, they may have several
different concrete syntaxes.

Abstract and concrete syntax specifications are sufficient to synthesize modelling environ-
ments for a given modelling language. However, the created models would be of limited use:
they could serve as little more than sketches, blueprints and/or documentation. For models
to play a more prominent role in development efforts, the language they are expressed in
must have associated semantics, or meaning. Semantics are commonly defined operationally
or denotationally2.

2We use the term loosely and do not mean the use of Scott domains. To avoid confusion, denotational
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Operational semantics often encode system behaviour and can be described as a collec-
tion of “items”, each denoting the transformation from one valid system state to another.
For example, consider a very simple modelling language for parking lots. An operational
semantics item could implement the “parking” action by looking for a car next to an open
parking space (one valid system state) and then moving that car into the (consequently oc-
cupied) parking space (the next valid system state). By repeatedly executing the previous
item along with other similar items for actions such as “driving” and “leaving”, models from
the given parking lot language can be simulated [EB04].

Unlike operational semantics, denotational semantics define the meaning (or “denota-
tion”) of a modelling language by specifying how its instances should be mapped onto mod-
els in other (modelling or programming) languages for which operational or denotational
semantics are well defined (e.g., code, Petri Nets). Thus, example denotational semantics
specifications for the parking lots modelling language might describe how instance models
should be compiled to executable Java programs, or to HTML documentation.

MDE principles dictate that both types of semantics should be implemented as model
transformations [Bro04].

1.2.4 Model Transformations

Model transformations are at the core of MDE best practices for a wide range of model-
related activities. Various techniques for specifying model transformations have been pro-
posed. As the focus of this thesis is not to improve on the state-of-the-art of model trans-
formations, only those techniques that will be used or criticized in upcoming chapters are
discussed here.

The most primitive means of specifying model transformations is via programs, written
as imperative code, that traverse and modify models via modelling tool APIs (i.e., code
interfaces for viewing and manipulating internal representations of model entities). Not only
do such approaches contradict the MDE philosophy, they considerably complicate many ad-
vanced uses of model transformations due to their (accidental) complexity and the difficulty
to maintain them. Indeed, the intent of the transformation can easily be lost in implemen-
tation details. It is widely accepted that such approaches should be avoided [Por05].

Most currently adopted model transformation approaches are based on transformation
rules and consider them as elementary entities. Rules are traditionally parameterized by
a Left-Hand Side (LHS) and Right-Hand Side (RHS) pattern, one or more optional Nega-
tive Application Condition (NAC) pattern, condition code, and action code. The LHS and
NAC patterns respectively describe what sub-graphs should and should not be present in

semantics are often referred to as translational semantics.
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the source model for the rule to be applicable while the RHS pattern describes how the
LHS pattern should be transformed by the rule’s application. Further applicability condi-
tions may be specified within the condition code while actions to carry out after successful
application of the rule may be specified within the action code. The key advantages of rule-
based approaches is that they are modular and deal only with modelling concepts. This, as
opposed to the aforementioned coded transformations which manipulate internal representa-
tions tools have of models. Furthermore, implementation details (the “how”) pertaining to
the flow of control from one rule to the next, and to how sub-graph matching and rewriting
are performed are commonly hidden from the transformation developer, thereby avoiding
that the transformation’s intent (the “what”) be drowned in lower-level concerns.

A powerful rule-based approach for transforming visual models are graph transforma-
tions. Their main appeal is their theoretical foundations in category theory and that they
allow for the very intuitive and accessible visual specification of patterns. In the past, graph
transformation-based approaches were not taken as seriously as they could have for a num-
ber of reasons. One of them is that more code-like approaches to rule specification, such as
the ATLAS Transformation Language [JK06] or the OMG’s Query/View/Transformation
(QVT) [Obja], are often more appealing to developers with strong programming back-
grounds. Most importantly, however, is that early graph transformation tools lacked suf-
ficiently powerful mechanisms for specifying the flow of execution of their rules [Tra05].
Indeed, the conventional approach for executing graph transformations was first inspired by
the executable semantics of graph grammars (which is extended from that of textual gram-
mars): any applicable rule may execute until there are no more applicable rules. Despite
the elegance of this model of execution, missing native facilities for forcing termination and
determinism, and the lack of simple means of imposing arbitrary control flow structures
(e.g., loops and conditional executions) make it impractical. Today, a number of graph
transformations-enabled tools provide more advanced rule-sequencing options. AToM3 (A
Tool for Multi-formalism and Meta-Modelling) extends rule specifications with priorities
[dLV02]. MoTif [SV09], GReAT (Graph Rewriting And Transformation) [AKN+06] and
AToMPM (A Tool for Multi-Paradigm Modelling) each support more complex control flow
facilities such as conditions, loops, transactions and rule amalgamation.

The field of model transformation reaches far beyond the above overview. Czarnecki and
Helsen provide a detailed and comprehensive feature-based classification of model transfor-
mation approaches in [CH06]. Due to their numerous advantages, most notably, the ease
of elegantly representing them graphically, the contributions presented in this thesis restrict
themselves to the use of rule-based graph transformations.

1.2.5 Multi-Paradigm Modelling

MPM aims at maximally reducing accidental complexity in MDE efforts. It argues that all
parts of a system should me modelled at the most appropriate level(s) of abstraction, using
only the most appropriate formalism(s). Thus, MPM takes a divide-and-conquer approach
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to the modelling of increasingly complex systems by encouraging that models of complex,
multi-faceted systems be separated into a number of single-facet models. Each of these “sub-
models”, or views, can then be specified with a modelling language optimally tailored towards
the relevant facet, thereby shielding the modeller from temporarily extraneous details. MPM
also leads naturally to DSM as DSMLs are, by design, at the most appropriate level of
abstraction for the modelling of problems in arbitrary domains.

1.3 Domain-Specific Development

The idea of tailoring development environments to arbitrary domains is not new. Already,
FORTRAN and COBOL, two half-century old programming languages, were respectively
tailored towards the needs of the scientific and business communities. Over the decades, a
number of techniques have taken this idea further, the most prominent of which are described
below.

1.3.1 Generative Programming

Generative programming aims to elevate software engineering to the same level of automation
as other engineering disciplines. In [CE00], Czarnecki and Eisenecker relate the story of
how components of manufactured automobiles went from being hand-crafted to becoming
standardized, thus enabling modern automobiles to be automatically assembled on assembly
lines. Comparing the evolution of the manufacturing industry to current software engineering
practices, the authors observe that modern software engineering uses techniques analogous
to those used in manufacturing one century ago. Generative programming is introduced as a
means to bridge this one century gap by studying and applying lessons from other disciplines.
In essence, whenever many software artifacts are relatively similar, rather than coding them
each separately, techniques can be used to produce one configurable piece of code in place of
many configured pieces of code. A generator of sorts can then, given a desired configuration,
automatically produce the final application by appropriately “instantiating” the configurable
piece of code. Despite being a definite step in the direction of DSM, this approach, like all of
those presented thus far, remains far away from the problem domain. Proposed techniques
for writing configurable code are very code-centric, heavily relying on notions like templates,
aspects, polymorphism and static meta-programming. Moreover, although the general ideas
of generative programming are appealing in the context of generating full artifacts from
higher-level specifications, existing applications are mostly targeted at generating artifacts
that remain useful only to programmers (such as highly configurable data structures).

1.3.2 Model-Driven Architecture

Recognizing the aforementioned limitations of UML, the OMG attempted to standardize
MDE practices into the Model-Driven Architecture (MDA) [Objb]. MDA encapsulates stan-
dards for model definition, serialization and transformation. At a glance, it appears to be the
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standardized equivalent of DSM. However, upon closer examination, certain authors argue
that it should instead be considered as an approach somewhere between UML modelling
and DSM [Bro04, B0́5, KT08]. The main reason for this is that MDA, both in its philoso-
phy and in its proposed implementations, remains strongly coupled with artifacts that DSM
and MPM proponents argue should remain hidden from modellers. MDA proposes to view
software development as a series of model refinements where lower- and lower-level models,
referred to as Platform-Specific Models, are (semi-)automatically generated from higher-level
ones, referred to as Platform-Independent Models. The issue of concern is that modellers are
expected to modify and contribute to generated intermediate models. The implications of
this problem are better understood when viewed from the more familiar context of program-
ming: requiring modellers to interact with lower-level artifacts generated from their models
is equivalent to requiring programmers to interact with the compiled bytecode form of their
programs. Clearly, raises in abstraction and productivity comparable to those that GPLs
brought on can not be achieved as long as modellers are expected to interact with lower-level
artifacts.

1.3.3 Domain-Specific Modelling

DSM is a branch of MDE that takes the notion of abstraction to the furthest possible extreme:
DSms are meant to deal only with concepts belonging to problem domains. Thus, the te-
dious, complex and error-prone translation from problem to solution domains is hidden from
developers, now domain-specific modellers, and from any other interested stakeholders (e.g.,
the client). From DSms, a wide variety of solution-domain artifacts may be generated such
as executable code, configuration files for existing applications, and documentation. The
most common reservation against the adoption of DSM stems from previous attempts at
code generation from UML models that have discredited serious code generation approaches
to the software engineering community. Such efforts often led to awkward, inefficient, in-
flexible and/or incomplete generated artifacts. The main reason for this was that the target
domain for the said code generation was too large [KT08]: any application can be modelled
in UML and so the target domain of a UML-to-code compiler must be the domain of all
possible applications. This is where DSM differs drastically from past and current modelling
and artifact synthesis approaches. As indicated by their name, DSms are restricted to some
specific domain and hence DSm-to-code compilers need only be able to understand valid
models of problems in the given domain and produce valid applications in the context of
that same domain. The source and target domains for code (or any other type of artifact)
synthesis are thus enormously reduced.

The above not only defines DSM but it also hints as to when and why DSM should
be used. DSM has the highest potential for well understood domains, in domains where
many relatively similar problems exist, and especially in domains where domain experts
are otherwise incapable of developing the solution-domain artifacts they require (e.g., non-
programmers in the context of software development). By abstracting away the need to
translate problem concepts to solution concepts, DSM indeed enables “non-developers” to
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actively participate in the development of the solutions they require. Proponents of DSM
have repeatedly justified its use by citing increased productivity. The underlying reasons for
this increase are diverse. First, the repetitive and difficult craftsmanship that usually charac-
terizes problem-to-solution mental translations and programming tasks is entirely absorbed
into DSm-to-artifact compilers. This not only means developers don’t waste time on this
craftsmanship, the automation of the coding process entirely removes the possibility of many
common coding errors. Second, DSM environments can easily be made to guide modellers
into creating only valid models by enforcing domain rules encoded as meta-model validity
constraints. This makes learning new DSMLs an intuitive and organic process and helps
enforce certain invariants that considerably simplify the implementation of DSm compilers.
In contrast, UML or Java could hardly be expected to guide developers into creating only
sensible and runtime error-free applications. Finally, savings in development time are also
induced by the fact that DSms are immediately accessible to interested stakeholders, who
do not require any prior training (e.g., about OOP or UML).

DSM is not a silver-bullet, however, and has clear and well understood bounds. Im-
planting a DSM framework takes time: a DSM tool is required, DSMLs (their syntax and
semantics) need to be created and properly tested, developers need to be initiated to their
usage, etc. In short, the adoption of DSM is not without considerable overhead. Thus, in
contexts where a very small number of DSms are needed, the required investment in time
and effort may not be worthwhile. Also, for less well-understood domains that are subject
to frequent change or where it is difficult to extract core concepts and relationships, and
where key points of variability between domain problems are difficult to identify, it may be
premature to attempt to deploy a DSM solution. Finally, and perhaps most importantly, a
number of critical problems that limit the feasible scalability of DSM projects to industrial
needs still require more research. These are explored in the next section.

1.4 Relevant Research Areas

This section briefly introduces relevant research problems within the MDE and DSM commu-
nities. More in-depth and thorough surveys are provided within the contribution chapters.

1.4.1 Model and Model Transformation Debugging

The need to debug software systems is as old as software systems themselves. Empirical stud-
ies of what causes programs to fail and how programmers eradicate bugs have revealed that
error tracking and reproduction are key activities in the debugging process [Eis97, Zel09].
Facilities to pause execution in pre-determined states, to step over or into compound ex-
pressions, and to examine internal state variables emerge as indispensable tools for software
debugging. An admittedly small number of researchers from the modelling community have
explored how these facilities translate to the DSM world and how they might be implemented
[WGM08, MV11a], asking and proposing answers to questions like “What does it mean to
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pause the execution of a model?” Furthermore, a facet of debugging which is mostly ignored
by the vast majority of modern programmers is brought to the forefront of debugging in the
context of DSM: compiler debugging. Whereas compiler development is a rare activity in the
mainstream code-centric development world, every single DSM project involves the develop-
ment of possibly many facilities akin to compilers (i.e., DSML denotational semantics). In
this sense, the debugging challenge in DSM extends past the debugging of models, and onto
the debugging of artifact generators, possibly and ideally specified as model transformations.

1.4.2 Domain-Specific Modelling Language Engineering

A number of popular approaches currently exist for the specification of DSML abstract syn-
tax and semantics. However, several researchers have begun to notice that virtually no reuse
mechanisms or guidelines exist to organize the design and creation of new DSMLs. For
instance, a definition of the Coloured Petri Net language might benefit from the reuse (or
referencing) of parts or all of the definitions of the concrete syntax, abstract syntax and
semantics of the basic Place/Transition Petri Net formalism. Moreover, the definition of a
DSML for any domain where notions of state and transition are significant might benefit
from the reuse of parts or all of the definitions of the concrete syntax, abstract syntax and
semantics of the Statechart formalism. Current work on the topic of DSML engineering
focuses on how to enable such reuse, be it by enhancing the structure and modularity of se-
mantics specifications, or by providing alternate design interfaces where reusable components
are clearly identified and accessible [CSN05, ES06, MV10, MV11b].
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Chapter 2

Structuring the Synthesis of Artifacts
from Domain-Specific Models

This chapter introduces a novel and structured approach to artifact generation where layered
model transformations are used to modularly isolate, compile and re-combine various con-
cerns within DSms, while maintaining traceability links between corresponding constructs at
different levels of abstraction. The proposed technique is explained with the help of a running
example that demonstrates how fully functional Google Android applications can be synthe-
sized from DSms of mobile phone applications. Then, a study of how the approach simplifies
addressing non-functional requirements (e.g., timing and resource utilization constraints) of
modern embedded systems is provided. This simplification is demonstrated by synthesizing
performance models from DSms, and then synthesizing performance predictions, simulations
and measurement facilities from the performance models.
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2.1 Problem Statement and Outline

Due to the very central role played by automatic artifact synthesis in DSM, structuring how
DSms are transformed into artifacts is both beneficial and necessary. To this day, the preva-
lent approach to artifact synthesis from DSms is to programmatically manipulate internal
model representations and generate text – often code. Notwithstanding the fact that this
approach contradicts MDE principles, it is also riddled with flaws. Firstly, the resulting
generators are often conceptually very distant from the models they “compile”. This causes
their development and their maintenance (e.g., as a result of meta-model evolution) to be
tedious, complex and error-prone. Furthermore, implementing “advanced” features which
require one- or two-way communication between model and artifact (e.g., model animation
as a result of artifact execution) adds considerable accidental complexity to the generators,
which in turn worsens their maintainability. Another inconvenience of these hand-coded
generators is that, due to their low-level nature and structure, they are difficult to study and
analyse. Artifact generators should be anything but difficult to understand as they encode
no less than the semantics (or meaning) of the DSms themselves. As such, ensuring their
correctness and efficiently communicating their inner workings (e.g., among project team
members) are high priorities. In short, the traditional approach makes the very crucial se-
mantics of models difficult to specify, debug, maintain and understand.

To address the aforementioned issues of poor maintainability, poor extensibility and low
abstraction, we propose that artifact synthesis from DSms be carried out via several vi-
sual, rule-based graph transformations, that iteratively isolate and project tangled concerns
within DSms onto appropriate lower-level modelling formalisms as an intermediate step to
final artifact generation. The first of our two main contributions lies in this novel approach
to artifact synthesis. The second lies in the study and demonstration of how the approach
can be used to elegantly and modularly replicate numerous assessment activities such as
performance analysis, simulation and testing.

The rest of this chapter is structured as follows. In Section 2.2, we survey relevant
research work. In Section 2.3, we introduce our approach to artifact synthesis. In Section 2.4,
we study and demonstrate how our approach simplifies the addressing of the characteristic
non-functional requirements (e.g., timing and resource utilization constraints) of modern
embedded systems. In Section 2.5, we present a non-trivial instance model of a mobile
phone application and detail its transformation into a fully functional application running
on a Google Android [Goob, CD09] device. We also apply the ideas introduced in Section 2.4
to instrument the Google Android application with performance measurement and reporting
facilities that update its associated DSm with live performance information. In Section 2.6,
we compare our approach to the relevant works presented in Section 2.2. Finally, in Section
2.7, we discuss future work and provide some closing remarks.
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2.2 Survey of Relevant Research Work

The purpose of this section is to provide an in-depth survey of research work relevant to the
proposed scientific contributions of this chapter. Our contributions are neither compared
here nor are they situated with respect to the reviewed works. Such comparisons are instead
provided in Section 2.6.

2.2.1 Compiling Domain-Specific Models

Via Hand-coded Text Generators

MDE principles state that model transformations are the preferred means of synthesizing
artifacts (whatever these may be) from models [Bro04]. However, few researchers, other
than Levendovszky et al. in [LLMM08], have reported the use of model transformations for
artifact synthesis in industrially relevant contexts. Indeed, another approach is favoured in
most of the works that have explored the complete DSM development process starting from
the design of DSMLs to the synthesis of target platform artifacts from instance DSms. In
these endeavours, DSms are systematically transformed to target platform artifacts by means
of ad hoc hand-coded text generators [Saf07, KT08, Met]. This technique has numerous
shortcomings all of which revolve around the fact that the resulting DSm compilers are at
too low a level of abstraction. Compiler designers and maintainers must manually implement
complex traversal, filtering and matching algorithms and elegantly bundle them as model
transformation facilities. They must interact with internal model representations (via tools
APIs) rather than with domain-specific constructs in their concrete syntax. Automating the
co-evolution of such compilers, following source or target domain evolution, is infeasible, and
performing such co-evolution manually is not only lengthy, but often complex and error-
prone. Finally, augmenting such compilers with additional (cross-cutting) concerns, such as
the construction of DSm-to-artifact mappings to enable two-way communication between
DSm and artifact, is certain to further decrease their modularity and accessibility.

Via Model Transformations

Some authors have suggested that model transformation languages, even graphical rule-based
ones, may be too difficult to learn and that this may hamper their adoption, leaving coded
generators as the only alternative for DSm compilers. In an effort to make the learning and
specification of model transformation rules more accessible, Sun et al. introduced Model
Transformation By Demonstration (MTBD) in [SWG09]. In their approach, rather than
specify LHS and RHS patterns manually, the modeller “records” his actions as he modi-
fies the DSm within the MTBD-enabled framework. Then, an inference engine generates a
model transformation rule, specifically its LHS and RHS patterns, that, when run, re-enacts
the actions the modeller had recorded. MTBD can thus enable even model transformation
novices to very rapidly synthesize DSm-to-artifact compiler prototypes through very acces-
sible modelling activities.
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Finally, some researchers have examined the challenges related to fully specifying DSm
compilers via model transformations. In [YCDW10], Yie et al. suggest that for complex
DSMLs and DSms, building a single “almighty” model transformation may be too difficult.
Instead, they argue that an easier and more maintainable solution is to develop a number
of smaller model transformation that each focus only on compiling certain parts of DSms.
The challenge then becomes enabling the resulting partial artifacts to communicate with
each other. Yie et al. achieve this by enforcing naming conventions throughout all model
transformations, and via manual adjustments to the artifacts. This last point along with a
lack of specific rules and guidelines to determine how to decompose the “almighty” model
transformation are the main limitations of their work.

In [HKGV10], Hemel et al. identify a different challenge pertaining to the use of model
transformations to produce coded artifacts. They argue that DSm-to-artifact transforma-
tions may be plagued by complexities of the target language. For instance, the need to
ensure proper indentation of generated Python code1 can easily drown a rule’s specification
in accidental complexity. The authors propose the use of model transformations to translate
DSms into models of coded artifacts before producing the coded artifacts. These models
conform to meta-models which loosely reflect the syntax of the programming language (e.g.,
Java, Python) targeted for artifact generation. Then, another transformation that encap-
sulates all of the low-level details of the target language produces the artifacts from their
models. The main benefit of this technique is the improved modularity of DSm-to-artifact
transformations.

2.2.2 Modelling Performance Requirements

Non-functional requirements, often referred to as performance requirements, pertain not to
a system’s desired functionality (i.e., its functional requirements) but rather to its ability to
deliver correct results given certain performance constraints. These constraints may limit
such quantities as the amount of bandwidth, memory, power or time that the system may
consume to compute and output its result. In extreme cases, failure to meet performance
constraints is as bad or worse than producing an incorrect result.

In [TP08], Tawhid and Petriu review past and current research on the benefits of ele-
vating performance concerns to the early stages of development of Software Product Lines
(SPLs) [CE00] and propose means to realize the elevation. Their technique consists in an-
notating UML models with information that enables their subsequent transformation into
performance models. These performance models lend themselves to analysis and can be used
to produce performance predictions. The reasoning behind integrating arguably lower-level
non-functional requirement-related concepts so early on in the development process is that
it is best to realize as early as possible that these requirements cannot be met by means of
the current design. This reasoning is shared by numerous other authors in the performance

1Incorrect indentation of a Python program can cause it to crash or may alter its meaning.
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engineering community.

In [BKR09], Becker et al. present an approach that makes use of MDE techniques to en-
able performance predictions in the context of component-based software engineering. The
Palladio Component Model is a meta-model that allows for performance-relevant informa-
tion to be specified on models of component-based systems. For instance, a component’s
time and/or resource requirements can be parameterized by probability mass functions of
the input sizes (e.g., number of entries, number of kilobytes) of its arguments. From a net-
work of parameterized components, their framework can produce performance predictions
with associated probabilities. Their framework also makes use of model transformations to
synthesize basic simulations which issue synthetic demands on resources.

In [KR10, KGHR10], Kapova et al. further combine MDE and SPL techniques. In their
approach, target platforms are described by Feature Diagrams [KCH+90]. Then, selected
features in these diagrams are used to configure model transformation rules that refine ap-
plication models with target platform specifics. These refined application models are in turn
transformed into performance models, which are themselves used to obtain performance pre-
dictions.

In summary, considerable attention has been paid to the manual and (semi-)automated
enhancement of software models with performance-relevant information, and the subsequent
automatic synthesis of performance models and predictions. A crucial problem subsists: the
level of abstraction of the development process remains fixed at or near the solution domain.
Although certain performance- and platform-relevant details are hidden from developers,
their tasks are still performed at the level of code and/or models of solutions. This contradicts
both the DSM and MPM philosophies. From DSM and MPM standpoints, current attempts
at integrating performance concerns within the development process occur at too low a level
of abstraction and entangle too many concerns. Techniques for integrating them with DSms
and DSMLs are needed.

2.3 Structured Artifact Synthesis

It is not uncommon for various concerns (e.g., user interface layout, behaviour, performance)
to be tangled within a problem domain. Consequently, DSMLs, whose core purpose is to
enable the specification of models at the problem domain level, will often reflect this en-
tanglement. The Separation of Concerns (SoC) principle dictates that modularity (and its
numerous derived benefits) can be achieved by minimizing the entanglement of concerns. Al-
though the problem domain (and thus its model, the DSML) should arguably not be altered
and/or polluted by accidental complexities in the name of this principle, the specification of
DSm-to-artifact compilers can indeed be made more modular by its application.

The SoC principle is at the core of the approach presented in this section. We propose
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to isolate and project the various concerns that make up a domain (and by extension its
associated DSML and DSms) onto appropriate lower-level formalisms as an intermediate
step to target platform artifact generation. Thus, the complete transformation of DSms
into artifacts is composed of numerous modular sub-transformations, each focusing on a
single concern. At a high level, our approach for DSm-to-artifact compiler design may be
summarized as follows:

1. Identification of the set of concerns that form the DSML;

2. Implementation of one “projection” transformation that compiles DSms into lower-
level single-concern models for each identified concern;

3. Implementation of “merging” transformations that recombine the intermediate models
into the desired target platform artifact.

We detail and demonstrate our approach in an example-driven manner, describing how
DSms of mobile phone applications are iteratively and modularly transformed into interme-
diate representations, and eventually into fully functional Google Android applications.

2.3.1 PhoneApp: A Multi-Concern DSML

A typical mobile phone application combines three core concerns. The first is its visual
interface, which is essentially described by the placement of widgets on the various screens
the user must interact with. The second is its behaviour, which is described by the timed
(e.g., a welcome screen that disappears after two seconds) and user-prompted (e.g., the click
of a button) transitions between the aforementioned screens. The third (and perhaps most
domain-specific) encompasses features and functions specific to mobile phone applications
(e.g., sending text messages). A DSML for mobile phone applications should capture these
three concerns at an appropriate level of abstraction, as does the PhoneApp DSML2. Its
meta-model is shown in Figure 2.1. Essentially, timed and user-prompted transitions de-
scribe the flow of control between Screens – that can contain various VisualElements (i.e.,
widgets) – and Actions – mobile phone device specific features (e.g., sending text messages,
dialing numbers).

Without a means to transform DSms into target platform artifacts, DSms can only serve
as blueprints and documentation. The traditional approach to artifact synthesis – which
is also the one chosen by Kelly and Tolvanen to produce artifacts from DSms for their
version of the PhoneApp DSML – to achieve this transformation is via hand-coded text gen-
erators. In our approach, however, a series of rule-based graph transformations “compile”
PhoneApp models into increasingly lower-level (i.e., closer to the target platform) formalisms
until a fully functional Google Android application is synthesized. Figure 2.2 depicts the

2The PhoneApp meta-model is heavily inspired by the meta-model for modelling mobile phone applica-
tions presented by Kelly and Tolvanen in [Met, KT08]. Our contribution lies in the means used to produce
artifacts from PhoneApp models rather than in the definition of the language’s meta-model.
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Figure 2.1: The PhoneApp meta-model.

relationships between the involved formalisms, with arrows between them designating model
transformations. First, PhoneApp models are projected onto three intermediate models that
each capture one of three domain concerns. Then, these lower-level models are merged to-
gether to form the target platform artifact. The distinction between the FileSystem and
Disk formalisms will be explored later.

As depicted in Figure 2.2, projecting the three constituting concerns tangled within
PhoneApp models produces disjoint instances of different formalisms, and as such, the order
in which these projections take place is of no consequence. In practice, however, an order
may be fixed to facilitate implementation and debugging, or due to tool limitations. Fig-
ure 2.3 depicts T PhoneApp2Disk(Android), the top-level model transformation that com-
piles PhoneApp models into Google Android applications, specified in AToMPM. Note that
an order has indeed been imposed for the projection and merging transformations. The for-
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Figure 2.2: Formalism Transformation Graph [dLVA04] for PhoneApp.

malisms and transformations introduced in Figures 2.2 and 2.3 are described in the following
sub-sections.

Note that the PhoneApp DSML is one of many possible DSMLs for modelling mobile
phone applications. Some alternatives may include provisions for using touchscreen gesture,
gyroscope and camera data via new modelling constructs. Others may be tailored to very
specific application domains (e.g., health care, social computing) and include higher-level
abstractions3. Finally, others may require lower-level concepts such as communication pro-
tocols to be exposed. In either case, new model transformation rules and/or entire model
transformations may be required to isolate and compile added concepts and concerns.

2.3.2 Isolating Behaviour

The behaviour of a mobile phone application is inherently state-based: control flows be-
tween disjoint application screens. In the PhoneApp DSML, these states are modelled
as ExecutionSteps, and the flow between them is fully described by event- and timeout-
triggered transitions. Thus, a natural mapping exists between the behaviour described by
a PhoneApp model and a Statechart model4 [Har87]. The “first” step in the synthesis of
executable applications from PhoneApp models is the isolation of their behavioural compo-
nents and their subsequent projection onto a behaviourally equivalent Statechart model.

The isolation and projection tasks are accomplished by the PhoneApp-to-Statechart
model transformation, or T PhoneApp2SimpleStateChart as it is referred to in Figure 2.3,

3We demonstrated this in [DLL+09] where we built SecureApps, a DSML for modelling privacy preserving
applications. We later transformed SecureApps models into PhoneApp models (which were thus at a lower-
level of abstraction) as an intermediate step to artifact generation.

4Note that the current range of possible behaviours of PhoneApp models requires only the expressiveness
of timed automata. Future work might extend the formalism with notions of hierarchy and concurrency such
that more powerful Statechart features (e.g., orthogonality, nesting) become required.
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Figure 2.3: The T PhoneApp2Disk(Android) transformation.

depicted in Figure 2.4. Three rules are sequenced, with the first and second both being
repeatedly reapplied until they are no longer applicable before moving on to the next. This
“looping” is captured by the green and grey inter-rule links, which respectively depict the flow
of control after a successful rule application and after a failure to meet a rule’s pre-condition.
Figure 2.5 shows these rules in more detail. First, the R ExecutionStep2State rule creates a
Statechart State for every PhoneApp ExecutionStep5 (i.e., for every Screen and Action).

5The “for every” notation is abusive. In reality, the R ExecutionStep2State rule only creates one Stat-
echart State for one PhoneApp ExecutionStep. It is the recursive loop onto itself, defined by the rule
scheduling (or model transformation) model shown in Figure 2.4, that effects the actual re-application of the
rule, while the rule’s NAC ensures that the rule is never applied more than once on the same ExecutionStep,
incidentally also ensuring that the rule will eventually cease to be applicable.
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Figure 2.4: The PhoneApp-to-Statechart model transformation.

Note the intuitive and non-intrusive use of generic links to establish explicit correspondences
between constructs from different formalisms and at different levels of abstraction. Second,
the R ConnectStates rule connects the newly created States via Statechart Transitions
such that for every pair of connected ExecutionSteps, the corresponding pair of States are
also connected. Note how simple and natural the aforementioned use of generic links makes
the specification of cross-formalism correspondences in rule patterns. This, as opposed to the
manipulation of some sort of internal, possibly id-based, construct mapping in rule condition
and action code. The newly created Transitions are parameterized to reflect the properties
of the edges connecting their ExecutionSteps: events and timeouts specified at the DSm
level are appropriately altered to conform to event and timeout syntax from the Statechart
formalism. Third and last, the R SetStartState rule matches the starting ExecutionStep,
identified by an incoming connection from a PhoneApp Start construct, and its correspond-
ing State, and alters that State’s isStart attribute.

When the PhoneApp-to-Statechart transformation has run its course, every PhoneApp
ExecutionStep has a corresponding Statechart State. These are connected via customized
Statechart Transitions in a manner that reflects the edges that connect their corresponding
Screens and Actions. Traceability links connect each construct in the generated Statechart
model with its corresponding construct in the PhoneApp model. A focal point of interest
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(a) The R ExecutionStep2State rule.

(b) The R ConnectStates rule.

Figure 2.5: The rules that compose the PhoneApp-to-Statechart model transformation (con-
tinued).
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(c) The R SetStartState rule.

Figure 2.5: The rules that compose the PhoneApp-to-Statechart model transformation.
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here is that no information pertaining to the nature and placement of widgets within the
Screens or to Action parameters appears in the synthesized Statechart representation: the
PhoneApp-to-Statechart transformation indeed truly projects only the behavioural concerns
of the DSm.

On a more general note, although the proven and studied Statechart formalism is indeed
an appropriate target formalism for the projection of behaviour in this context (i.e., for the
modelling of reactive state-based behaviour), it may not be optimal for or even capable of
capturing other systems’ behaviour. For instance, for a traffic network DSML describing the
non-deterministic flow of vehicles across connected road segments, it may be more appro-
priate for behaviour to be projected onto a formalism such as Petri Nets [Pet81]. Thus, the
proposed approach suggests not to systematically isolate and project behavioural concerns
in DSms onto Statechart models, but rather to isolate and project them onto semantically
appropriate behaviour models, with little regard for their actual formalism.

2.3.3 Isolating Layout

The layout concern of a mobile phone application is captured by widget placement within
application screens. In the PhoneApp DSML, screens are modelled as Screens, and widgets
as VisualElements. The formalism we introduce as a target for the projection of the layout
concern is AndroidScreens. Its simple meta-model is shown in Figure 2.6a. A single con-
struct, the AndroidScreen, is parameterized by snippets of Google Android-specific code for
rendering a screen, configuring and initializing its widgets according to modeller specifica-
tions, and properly handling events resulting from end-user interaction with clickable and/or
editable widgets.

The layout semantics of PhoneApp models are fully encompassed within the contents and
parameters of Screens. The isolation and projection of these semantics are accomplished by
the PhoneApp-to-AndroidScreens model transformation, or T PhoneApp2AndroidScreens as
it is referred to in Figure 2.3, depicted in Figure 2.6b. Fives rules are sequenced. The first
is repeatedly reapplied until it is no longer applicable. The next four rules are bundled in a
scheduling construct that only terminates when all of the bundled rules are no longer appli-
cable6. Figure 2.7 shows two of the aforementioned rules. First, the R ExecutionStep2Screen
rule creates an AndroidScreens AndroidScreen for every PhoneApp Screen. The newly
created AndroidScreens are also initialized with screen rendering boilerplate code (via their
xml attribute). Note again the use of generic links to enable traceability and facilitate estab-
lishing correspondences. Second, the R CompileLabel rule translates a matched PhoneApp
Label into appropriate alterations to the relevant AndroidScreen’s xml, contentSetters
and contentBuilders attributes. These respectively encompass widget rendering, static
widget initialization (i.e., setting the label text to a modeller specified value) and dynamic

6A detailed description of the rule scheduling formalism provided by AToMPM and used in the various
depictions of model transformations throughout this work is included in its User’s Manual [Man].
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(a) (b)

Figure 2.6: (a) The AndroidScreens meta-model. (b) The PhoneApp-to-AndroidScreens
model transformation.

widget configuration (i.e., evaluating modeller-specified action code. if any, to set label text
at runtime). Note that the eventListeners AndroidScreen attribute is left unchanged.
This is because labels do not produce events. The R CompileLabel rule has two NACs. The
leftmost one is used to ensure the same PhoneApp Label is not matched more than once.
The other is used to ensure VisualElements are matched in an order that reflects their posi-
tioning on the Screen (e.g., given a vertical layout, VisualElements at the top of a Screen

are matched first). The R CompileButton, R CompileInput and R CompileList rules are not
shown due to their strong similarity with the R CompileLabel rule.

When the full PhoneApp-to-AndroidScreens transformation has run its course, Screens
each have corresponding and appropriately parameterized instances of AndroidScreens.
Traceability links connect each construct in the generated AndroidScreens model with its
corresponding construct in the PhoneApp model. Note that no information pertaining to
any of the two other concerns appears in the AndroidScreens representation. Everything
from the PhoneApp model that pertained to behaviour and mobile phone features has been
stripped away. Nevertheless, the generated Statechart model produced by the PhoneApp-
to-Statechart transformation is not entirely semantically disjoint from the generated An-
droidScreens model produced here. They are linked by the fact that PhoneApp Screens are
mapped to both a Statechart State and an AndroidScreens AndroidScreen. The reconcili-
ation of these correspondences will be discussed in Section 2.3.5 when the three intermediate
representations of PhoneApp models are woven back together into target platform artifacts.
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(a) The R ExecutionStep2Screen rule.

(b) The R CompileLabel rule.

Figure 2.7: Two rules that compose the PhoneApp-to-AndroidScreens model transformation.
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2.3.4 Isolating Mobile Phone Features

Features specific to mobile phone applications include making phone calls, sending text mes-
sages and launching native smartphone applications such as browsers. In the limit, one might
also argue that custom code snippets that make use of smartphone APIs also fit into this
category. Although there are many more such features, in its current state, the PhoneApp
DSML only supports these four. They are respectively modelled by the Call, SendMessage,
Browse and ExecuteCode constructs. The formalism we introduce as a target for the pro-
jection of this final concern is AndroidActions. Its trivially simple meta-model is shown in
Figure 2.8a. A single construct, the AndroidAction, is parameterized by snippets of Google
Android-specific code that carry out the desired feature, and by a list of required permissions
(e.g., access to the contacts list, access to geographic location).

(a) (b)

Figure 2.8: (a) The AndroidActions meta-model. (b) The PhoneApp-to-AndroidActions
model transformation.

The mobile phone feature semantics of PhoneApp models are fully encompassed within
Actions. The isolation and projection of these semantics are accomplished by the PhoneApp-
to-AndroidActions model transformation, or T PhoneApp2AndroidActions as it is referred
to in Figure 2.3, depicted in Figure 2.8b. Four rules are bundled in the same manner
as those from Figure 2.6b. Figure 2.9 shows one of them. The R CompileBrowse rule
creates an AndroidActions AndroidAction for every PhoneApp Browse and sets its code

attribute to a Google Android code snippet that launches a browser and loads the modeller-
specified URL. The permissions attribute is left empty because no special permissions
are required to perform the said operation. The R CompileSendMessage, R CompileCall
and R CompileExecuteCode rules are not shown due to their strong similarity with the
R CompileBrowse rule.

Once the PhoneApp-to-AndroidActions transformation has run its course, each Action

has an appropriately parameterized associated AndroidAction. As was the case for both
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Figure 2.9: The R CompileBrowse rule, from the PhoneApp-to-AndroidActions model trans-
formation.
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Figure 2.10: The FileSystem meta-model.

previously introduced projection transformations, only the desired concern is captured by
the synthesized intermediate representation and traceability links are left behind between
the DSm and newly generated constructs. Lastly, conceptual correspondences also exist
between AndroidAction AndroidActions and Statechart States that result from the same
PhoneApp Actions.

2.3.5 Merging intermediate representations

A side-effect of our approach of projecting DSms onto various intermediate representations
is that these projections eventually need to be recombined to produce the final target plat-
form artifacts. This is especially relevant when certain constructs in the DSm are mapped
to constructs in more than one intermediate representation, as is the case in the running
example.

Keeping with the mindsets of modularity and traceability, we introduce a final inter-
mediate formalism, FileSystem, as a target for the merging of the generated Statechart,
AndroidScreens and AndroidActions models. Its meta-model is shown in Figure 2.10. This
formalism serves as a simple abstraction of files and folders on disk. In short, rather than
output the results of the merging process directly to files, they are first represented as an
instance model of the FileSystem formalism. Beyond the eased maintenance of traceability
links between the Files and Folders that make up the generated FileSystem model and
their source constituents (i.e., model entities from the three intermediate representations),
an added benefit of this design choice is that the generated contents for each (future) file can
be reviewed from within the modelling environment as part of the debugging process. This,
as opposed to having to locate generated files on disk, opening them in a separate editor, and
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possibly having to return to the model editor to perform changes. Another crucial benefit
is that File contents may be produced out of order, thereby considerably simplifying the
intermediate representation merging process. For instance, easily matched “tags” can be
inserted into synthesized contents to be replaced by subsequent rule applications. Though
such flexibility would also be achievable even if the FileSystem formalism were to be by-
passed, it would come at a high cost as numerous disk I/O operations – often the slowest
operation on modern computers – would be required for each rule. Finally, note that if a finer
level of traceability is required, contents may be an instance of an explicitly meta-modelled
programming language, as proposed by Hemel et al. in [HKGV10].

A sensible and, most of all, generic approach to take for the realisation of the merg-
ing process is for the intermediate representation that captures behaviour to become the
main executable artifact. This artifact should not only implement the desired behaviour, it
should also be instrumented to make appropriate use of artifacts that capture other concerns.
In the PhoneApp example, both of these aspects are captured by three transformations:
Statechart-to-FileSystem, AndroidScreens-to-FileSystem, and AndroidActions-to-FileSystem,
or T SimpleStateChart2FileSystem(Android-weaved), T AndroidScreens2FileSystem(Android)
and T AndroidActions2FileSystem(Android) as they are respectively referred to in Fig-
ure 2.3. Each of these is shown in Figure 2.11 and described below. Before moving on
to a more detailed discussion, notice the first rules of each transformation. If nothing else,
that of the first implies the initialization of some sort of a “manifest” while that of the second
and third rather imply the verification of the existence of a “manifest”. As argued earlier,
fixing the order in which transformations occur may lead to possible optimizations, often at
the cost of flexibility. In this case, fixing the ordering releases us from having to prepend
boilerplate to verify if the “manifest” has been initialized and to do so if not at the start
of each transformation. The cost of course is that running the transformations out of order
will not produce the desired target platform artifacts.

The first merging transformation, Statechart-to-FileSystem, produces four Files: App.java,
AppLib.java, AndroidApp.java and AndroidManifest.xml. The first contains Google Android-
aware Java code that captures the behaviour described by the Statechart generated from the
PhoneApp model. The second is meant as a repository for code that other artifacts might
wish to make accessible to the compiled Statechart. The last two files contain generic boil-
erplate required for all Google Android applications. Another crucial task performed by
this transformation, more specifically by each application of the R CompileState rule, is the
aforementioned instrumentation that enables the compiled Statechart to interact with other
artifacts. The entry action of every compiled State is populated with method calls that
execute the rendering of a Screen (renderScreen< ScreenId >()) or the execution of an
Action (runAction< ActionId >()) depending on if that State corresponds to a PhoneApp
Screen or Action, with correspondences trivially determined by following generic links. Fur-
ther implementation details regarding the compilation of Statechart models to Java are left
to the reader which we refer to Harel’s and Kugler’s description of the semantics of (Rhap-
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(a) (b)

(c) (d)

Figure 2.11: The StateChart-to-FileSystem (a-b), AndroidActions-to-FileSystem (c) and
AndroidScreens-to-FileSystem (d) model transformations.

sody) Statecharts in [HK04].

Next, the AndroidScreens-to-FileSystem and AndroidActions-to-FileSystem transforma-
tions are executed to produce Statechart-oblivious target platform artifacts. The former
transformation is two-fold. First, each AndroidScreen triggers the creation of a new File

containing XML code that embodies widget placement. This XML code is taken literally from
the AndroidScreen’s xml attribute. Second, a Java method, renderScreen< ScreenId >(),
that carries out widget content and event handler setup is inserted into the AppLib.java File

for each AndroidScreen. Its body is constructed from the AndroidScreen’s eventHandlers,
contentSetters and contentBuilders attributes. Notice that the new method name fol-

35



Figure 2.12: The R CompileAction rule, from the AndroidActions-to-FileSystem model
transformation.

lows the same convention as those that were previously inserted into the compiled State-
chart’s entry actions. Enabling artifact communication in such a name-based manner is not
unlike Yie et al.’s work in [YCDW10]. As for the AndroidActions-to-FileSystem transforma-
tion, similarly, each AndroidAction results in a Java method, runAction< ActionId >(),
populated with the contents of that AndroidAction’s code attribute. These are also inserted
into the AppLib.java File. Additionally, any permissions the action might require, specified
in the AndroidAction’s permissions attribute, are inserted into the AndroidManifest.xml
File. Figure 2.12 shows R CompileAction, the rule that carries out these tasks.

Once the Statechart-to-FileSystem, AndroidScreens-to-FileSystem, and AndroidActions-
to-FileSystem transformations have run their course, a number of Files have been generated.
One of them, App.java, contains the compiled Statechart model. Another, AppLib.java, con-
tains method definitions for rendering screens and carrying out mobile phone actions. An-
droidApp.java and AndroidManifest.xml contain Google Android boilerplate and permission
requirements. The remainder (one for each AndroidScreen) contain XML layout code. The
final step of the artifact synthesis process is for physical files to be output from these Files.
This is straightforward as Files are parameterized by paths and contents, which is all one
needs to create equivalent files on disk. Upon completion, the physical files can be loaded
onto a Google Android-enabled device and executed.
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The entire process of artifact synthesis from DSms has been introduced. Tangled con-
cerns within DSms are isolated and projected onto lower-level (i.e., closer to the target
platform) formalisms in a modular fashion. Then, the generated instances of these inter-
mediate formalisms are woven back together to reflect the intended semantics of the source
DSms. Finally, the result is output to disk to form the desired target platform artifacts.
Moreover, the many model transformations involved leave behind a network of traceability
links between corresponding constructs at different levels of abstraction, from DSms to target
platform artifacts (and back). The following sub-section details the benefits of this approach
over the traditional text generator approach to artifact synthesis.

2.3.6 Benefits of Modular Artifact Synthesis

The motivations for our approach were the need to address the poor maintainability and
extensibility of coded text generators, as well as to raise their low level of abstraction. In
the following, we explain how our approach improves on text generators in these three areas.

The most important advantage of our approach is that it raises the level of abstraction
and modularity of DSm compilers. Whereas in the traditional approach, their development
includes interaction with internal model representations and the writing of complex code,
in our approach, the task of implementing an artifact generator is reduced to specifying
relatively simple (graphical) model transformation rules that interact with model entities as
they are presented to modellers. Furthermore, the layered nature of our approach (i.e., the
existence of intermediate representations between DSm and artifacts) enables low-level (e.g.,
target platform) details to be hidden within lower-level transformations (i.e., intermediate
representation to artifact transformations) rather than included in higher-level, DSm-to-
artifact transformations. On the one hand, from an MPM perspective, our approach to
artifact synthesis seems like both a natural and logical improvement. On the other, it is
especially effective at limiting the scope of required maintenance brought on by external
evolution. For instance, if a domain evolves, intermediate representation to artifact trans-
formations need not be co-evolved.

Another benefit is that the multiple intermediate layers between DSm and artifact provide
a means to observe models from various viewpoints. For instance, in the context of DSms of
mobile phone applications, to study only the behavioural aspects of a model, one may study
the generated Statechart model in isolation from the DSm and the other generated artifacts.
More generally, a developer who wishes to focus his attention on a single concern without
being distracted by irrelevant (from the point of that concern) details can easily do so. This
would be an arduous task in the traditional approach where no intermediate representations
are available.

The remaining benefits of our approach result from the network of traceability links
it creates between corresponding constructs at different levels of abstraction. In the past,
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the generation of such traceability information was included within existing text generators,
thereby inevitably reducing their modularity and polluting them with added accidental com-
plexity. In contrast, our approach performs the complex task of maintaining correspondence
links between DSms and synthesized artifacts by explicitly connecting higher-level entities to
their corresponding lower-level entities in transformation rules via generic links. These edges
have minimal impact on the readability of the rules – one could even argue that they improve
their readability by clarifying correspondences – and their specification can be automated.

The first of many “advanced” tasks that are made possible by traceability links is DSm
animation as a result of artifact execution. Basic commands can be exchanged between syn-
thesized artifacts (as they run) and the model editing tool. These are propagated through-
out the network of traceability links to animate the model. Keeping with the running
example, entering an application screen (which corresponds to the entry into a compiled
Statechart State) can be made to emit an appropriately parameterized highlighting com-
mand (highlight:StateId). A single transformation rule suffices to instrument compiled
state entry actions with code snippets that send such commands to the model editor. This
rule can easily be enabled or disabled and does not affect any of the other rules. Thus,
its impact in terms of accidental complexity is minimal. Once the model editor receives
the highlighting command, the relevant AndroidScreens AndroidScreen, PhoneApp Screen

and Statechart State entities are highlighted, with each correspondence (i.e., from State to
Screen to AndroidScreen) resolved by navigating the network of traceability links. We have
prototyped this in our implementation of the running example in AToMPM7 and demon-
strate artifact to DSm feedback in Section 2.5.

Another “advanced” task that is greatly simplified by the presence of traceability links
is the debugging of DSms, artifacts and model transformations. The numerous reasons for
this are explored in detail in Chapter 3. One of them is that the debugging of denotational
semantics is facilitated as clear links depict “what is generated from what”. Without these,
determining which statement of a coded generator produced which faulty bit of output, or
which (erroneous) model entity triggered a transformation rule is often far from straightfor-
ward.

Last but not least, although in a finished product the inner workings that synthesize
artifacts from DSms should be hidden from the modeller, it may often be useful for didactic
purposes to see how higher- and lower-level constructs are related. Both our simple and
modular transformation rules and the cross-level links they produce make these relationships
accessible and explicit.

7AToMPM’s API for inbound commands from artifacts is fully described in its User’s Manual.
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2.4 DSms and Performance Concerns

This section is broken into two parts. The first explores how structured artifact synthesis
from DSms can improve upon the state-of-the-art in performance modelling in the context of
elevating non-functional requirements and performance concerns to the early stages of devel-
opment. The second builds on the first to examine how widespread performance assessment
methods are realized within the proposed approach.

2.4.1 Revisiting Performance Modelling

The approach to artifact synthesis presented in the previous section can also be instrumen-
tal in the context of modelling (and synthesizing) embedded software. More specifically, it
helps address non-functional requirements. Keeping with the running example, although the
Google Android platform abstracts away numerous traditional embedded systems concerns
such as task scheduling, PhoneApp models remain models of embedded system applications.
Thus, timing and resource utilization information may be relevant and even required by mod-
ellers. More generally, there are numerous scenarios where domain-specific modellers may
require information regarding the performance8 of artifacts synthesized from their models. A
common, more code-centric approach for addressing this need is for model transformations
to refine annotated software models into performance models from which simulations and
performance predictions are produced. The application of DSM and MPM principles, and
specifically of the proposed approach to artifact synthesis, can improve that technique in
a number of ways. Before discussing these, enhancements to the formalism transformation
graph and top-level model transformation presented in Figures 2.2 and 2.3 must be made in
the context of adding a performance modelling dimension to the PhoneApp running exam-
ple. These enhancements are presented in Figures 2.13 and 2.14. The added formalisms and
transformations are introduced throughout this section.

PerformanceModel is introduced as a new intermediate formalism between PhoneApp
models and Google Android applications9. Its meta-model is depicted in Figure 2.15.
ResourceConsumers are interconnected via ResourceConsumerConnectors. These are pa-
rameterized with a probability attribute that defines the probability that the flow of con-
trol moves between the ResourceConsumers they connect. These probabilities can be set
to realistic values (as opposed to their uniformly distributed default values) by the mod-
eller such that performance predictions have realistic associated probabilities10. In practice,
these probabilities reflect the fact that certain scenarios are more probable than others.
Finally, non-functional requirements are modelled via ConsumptionConstraints. These
may be ConsumerConsumptionConstraints, which are either explicitly associated with ar-

8We use the term performance loosely to represent time and other resources “consumed” by an application.
9The dotted transformation arrow from PerformanceModel to FileSystem indicates that the generated

application does not need to be instrumented with performance measurement facilities for it to function.
The dashed arrows into PerformanceMetrics indicate three mutually exclusive means of producing them.

10Augmenting performance predictions with probabilities is discussed by Becker et al. in [BKR09].
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Figure 2.13: An updated Formalism Transformation Graph for PhoneApp, with the added
dimension of performance modelling.

bitrary ResourceConsumers (via PerformanceModel appliedTo links) or implicitly associ-
ated with each and every one of them (when they are not connected to any of them), or
ApplicationConsumptionConstraints which are applied to the system as a whole. This
enables the modelling of both local (e.g., maximum resource usage for one component of
the system) and global (e.g., maximum resource usage for the full application) requirements.
Note that in this example, performance requirements are defined at the level of abstraction
of performance models (i.e., as PerformanceModel entities). A more principled approach
might be to extend the PhoneApp DSML itself with one or more construct to enable the
specification of requirements at the DSm level. This is especially sensible for contexts where
performance is a “domain concern”: in such cases, it would arguably be non-domain-specific
to force modellers to interact with a generated intermediate representation rather than with
DSms for performance-related matters. An example enhancement to the PhoneApp DSML
could be for ExecutionSteps to be augmented with attributes pertaining to their maxi-
mum allowed resource consumption. The mapping of this added information onto equivalent
ConsumptionConstraints would then be carried out by an appropriately altered version of
the PhoneApp-to-PerformanceModel transformation presented below.

The first benefit of our approach in the context of performance modelling is that appli-
cation models (i.e., DSms) can be shielded from performance concerns, if and when it makes
sense to do so. DSms need not be polluted with performance-related annotations to enable
performance modelling. Such annotations traditionally define expected resource consump-
tion ranges. Instead, this information can now be fully encapsulated in model transforma-
tions that automatically produce complete platform-specific performance models from DSms.
In the running example, this is demonstrated through the PhoneApp-to-PerformanceModel
transformation, or T PhoneApp2PerformanceModel(Android) as it is referred to in Fig-
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Figure 2.14: The PhoneApp2Disk(Android) transformation, with the added dimension of
performance modelling.

ure 2.14, depicted in Figure 2.16. First, the R IsPerformanceMonitoringEnabled rule ver-
ifies that performance monitoring is enabled. If it is not, the transformation immediately
stops (i.e., no intermediate PerformanceModel model is produced). Otherwise, the flow of
control moves on to the R ExecutionStep2ResourceConsumer rule, shown in Figure 2.17a,
which implements the projection of all PhoneApp ExecutionSteps onto PerformanceModel
ResourceConsumers. Unseen on the provided depiction is the rule’s action code, which pop-
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Figure 2.15: The PerformanceModel meta-model.

ulates the various consumption range attributes of the generated ResourceConsumer. This
is accomplished by making use of target platform information pertaining to time and re-
source consumption of various activities, such as that shown in Table 2.111. For instance,
the loadingTimeRange attribute of a ResourceConsumer corresponding to a Screen will
reflect the time required for a Google Android device to load and initialize however many
widgets there are on that Screen. Encapsulating target platform performance specifica-
tions in model transformations in this manner is thus an effective means of enabling per-
formance modelling activities without polluting application models. The third and last
rule, R ConnectResourceConsumers, shown in Figure 2.17b, connects ResourceConsumers if
their corresponding ExecutionSteps are connected, with rule action code ensuring that the
probability attribute of generated ResourceConsumerConnectors indicates that all paths
out of a given ResourceConsumer have equal probability (and that these sum to 100%).

When the PhoneApp-to-PerformanceModel transformation has run its course (and perfor-
mance modelling is enabled), each PhoneApp ExecutionStep has an associated ResourceConsumer.
These are connected via ResourceConsumerConnectors in a manner that reflects the tran-
sitions between corresponding ExecutionSteps. Moreover, as in previously introduced pro-
jection transformations, only concern-relevant information is projected onto generated per-
formance models. This, as opposed to traditional performance models, which entangle per-
formance concerns and business logic.

11Note that Table 2.1 makes the unrealistic simplification that all Google Android devices are identical.
Means to overcome this simplification and produce valid device- and platform-specific performance specifi-
cations are discussed at the end of this section.
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Figure 2.16: The PhoneApp-to-PerformanceModel transformation.

Function Execution Time Range (s) Battery Usage Range (%)

Tap Touch Screen [0.001, 0.003] [0.0001, 0.0003]
Load Screen [0.05, 0.07] ∗ nb widgets [0.001, 0.003] ∗ nb widgets
Send SMS [0.1, 0.3] + [0.1, 0.2] ∗

dsms.length÷ 120e
[0.01, 0.03] ∗ dsms.length÷ 120e

Send Email [0.05, 0.1] ∗ dmsg.length÷ 1024e [0.05, 0.07] ∗ dmsg.length÷ 1024e
Load Web Data data.size÷ 200Kb

s
data.size÷ 50Mb

%

Load Local Data data.size÷ 5Mb
s

data.size÷ 500Mb
%

Table 2.1: Synthetic performance specifications for Google Android devices.
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(a) The R ExecutionStep2ResourceConsumer rule.

(b) The R ConnectResourceConsumers rule.

Figure 2.17: The rules that compose the PhoneApp-to-PerformanceModel model transfor-
mation.
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Figure 2.18: The PerformanceModel-to-FileSystem transformation.

The second benefit of our approach in the context of performance modelling is a con-
sequence of its ties to DSM. A key difference between DSM and more traditional UML-
centric modelling efforts is that the former enables full code generation (as opposed to
code skeletons). Hence, performance models generated from DSms can not only be used
to produce simulations and performance predictions, they can also be further integrated
into the artifact generation process to instrument target platform artifacts with performance
measurement and reporting facilities. This integration and instrumentation is analogous
to the merging of intermediate formalisms discussed in Section 2.3.5. Revisiting the run-
ning example, entry and exit actions of compiled Statechart States can be augmented with
performance measurement facilities to compute the time and resources consumed by the
system in each State. Exit actions can be further instrumented with facilities to com-
municate their measurements back to the model editor (and the modeller). Indeed, the
process of performing DSm animation by propagating commands up along the network of
traceability links described in Section 2.3.6 can be reused to propagate performance mea-
surements back to any of the intermediate representations and to the DSm12 during arti-
fact execution. All of the above is prototyped within the PerformanceModel-to-FileSystem
transformation, or T PerformanceModel2FileSystem(Android) as it is referred to in Fig-
ure 2.14, depicted in Figure 2.18. Compiled entry actions measure the current levels of
monitored resources (e.g., time, battery), while compiled exit actions repeat these mea-

12Conceptually, it may be ambiguous or confusing for performance-related information to be displayed in
any representation other than the generated performance model.
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surements to establish consumption and transmit their measurements to the modelling tool
via tagging commands (tag:< text >,< color >,ResourceConsumerId). A key point of
interest is that ResourceConsumptionConstraints also participate in exit action instru-
mentation: if a constraint described by a modelled requirement is not satisfied, the infring-
ing ResourceConsumer entity will be tagged with a red performance metric rather than a
green one. Thus, a third benefit of our DSM-based approach is that it enables models of
non-functional requirements to be meaningfully included in the artifact synthesis process
such that their satisfaction can be intuitively reported to modellers in real-time. Note that
global-only performance measurements may be compared to global-and-local measurements
to ascertain the performance footprint of the generated measurement and reporting facilities.

Lastly, the aforementioned instrumentation of artifacts may also assist in the arduous
task of model calibration, a prerequisite to the synthesis of platform- and/or device-specific
performance models. This task consists in determining a platform or target device’s perfor-
mance parameters (i.e., the time and resource consumption associated with various activities)
such that a realistic platform model may be produced. A synthetic platform model is given
in Table 2.1. Target-platform artifacts augmented with performance measurement and re-
porting facilities can be used to measure the performance of arbitrary benchmarking tasks
(e.g., the loading of a screen with x widgets). Hence, under our approach, model calibra-
tion is reduced to the creation of “benchmark” DSms where tasks of interest are modelled,
and to the collection of the performance metrics reported by automatically synthesized and
instrumented target-platform artifacts.

2.4.2 Revisiting Performance Assessment

From PerformanceModel models, any one of the three general performance assessment meth-
ods may be carried out, namely, analysis, simulation and testing13.

Performance analysis statically computes metrics from performance models. In Fig-
ure 2.13, this is captured by the PerformanceModel-to-PerformanceMetrics transformation.
Such a transformation must first extract every possible path between the ResourceConsumers
corresponding to the initial and finishing application states (here PhoneApp ExecutionSteps).
Then, for each path, resource consumption metrics and probabilities are computed by sum-
ming the resource requirement ranges of each ResourceConsumer, and multiplying the prob-
abilities of all involved ResourceConsumerConnectors. This cumulative approach to esti-
mating a path’s resource consumption is not unlike that presented in [CCG+09, MSMG10],
where general equations are introduced to compute performance metrics of various com-
ponent compositions. In the end, a set of probability-weighted execution paths have been
computed. These are at the level of abstraction of the desired target domain, i.e., perfor-
mance metrics. Although performance analysis in general is powerful due to its exhaustive
nature, it can become impractical (and even infeasible) as the number of possible usage sce-

13A thorough comparison of the pros and cons of these different methods is provided in [BKR09].
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narios (or paths) of a system grows. Our approach does not (and can not) escape this reality,
and as such, as the numbers of ResourceConsumers and ResourceConsumerConnector in-
crease, the number of execution paths may become intractable.

Simulations enable arbitrary execution paths to be observed and others to be ignored.
In modern UML-centric modelling efforts, simulations are commonly generated from soft-
ware models refined with performance annotations, with missing business logic captured by
synthetic workloads. To capture a system’s behaviour at an appropriate level of abstraction,
with a focus on time and resource-usage, the DEVS (Discrete EVent system Specification)
[ZKP00] formalism is often appropriate. For the purpose of this discussion, DEVS is similar
to Statecharts, with a different kind of modularity, tailored for simulation. The key benefits
of producing DEVS models rather than coded approximations of a system are essentially
the same as those discussed in Section 2.3.6. In Figure 2.13, the synthesis of DEVS mod-
els for simulation is captured by the PerformanceModel-to-DEVS transformation, while the
execution of the simulated DEVS model, which produces performance metrics, is captured
by the DEVS-to-PerformanceMetrics transformation. Further descriptions are omitted and
left to the reader due to their similarity with the PhoneApp-to-Statechart and Statechart-to-
FileSystem transformations, respectively.

The third and last performance assessment method is the testing of (nearly) completed
products. Their performance is often measured through code instrumentation with measure-
ment facilities. In the running example, this weaving14 of measurement facilities is captured
by the PerformanceModel-to-FileSystem transformation, which was reviewed in the previous
sub-section.

Three common performance assessment methods, each of which is instrumental in the
development of modern embedded systems applications, have been revisited from the per-
spective of the introduced approach to artifact synthesis. For the latter two in particular,
our DSM-based approach improves upon its state-of-the-art siblings in the UML-centric de-
velopment world by shielding modellers and DSms from a number performance-related tasks,
and by producing performance models that are not polluted by business logic. The approach
is now further evaluated by reviewing how performance analyses, simulations and measure-
ment facilities would be produced using the traditional coded text generator approach to
artifact synthesis from DSms. The task of generating performance metrics from DSms (i.e.,
carrying out performance analysis) is analogous to that of generating any other artifact.
Thus, the traditional coded generator approach would programmatically iterate over model
entities to produce desired output, conceivably with a coded version of the traversal algo-
rithm described above. Augmenting existing coded generators to produce such performance
metrics would increase their accidental complexity and further reduce their modularity. Ad-
ditional instrumentation to add performance measurement and reporting facilities into target

14The term “weaving” is borrowed from the Aspect-Oriented Programming [KLM+97] world due to certain
similarities between aspect weaving and our instrumentation of compiled Statechart models.
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platform artifacts, or to produce coded simulations or DEVS models would either result in
considerable code duplication, or in further loss of modularity. Thus, although coded gen-
erators can replicate the three performance assessment methods – after all, anything can
be programmed –, doing so would considerably hamper their modularity, accessibility and
maintainability.

2.5 Case study: Conference Registration in PhoneApp

This section provides a concrete overview of the synthesis of a fully functional Google Android
application from a PhoneApp model of a conference registration system15. All intermediate
representations are depicted, as well as highlighting and tagging (of performance measure-
ments) at the DSm level.

Figure 2.19 shows a conference registration system represented as a domain-specific
PhoneApp model. The system has three main use cases: registering, viewing the program
schedule and cancelling a registration. The former is explored below:

1. The user sees the Welcome screen for 2 seconds and is taken to the ActionChoice
screen.

2. The user clicks on “Register” and is taken to the NameEntry screen.

3. The user enters his name, clicks “Next” and is taken to the PaymentMethodChoice
screen.

4. The user clicks on a payment method. A text message containing the user’s name and
chosen payment method is sent to a modeller-specified phone number after which the
user is taken to the RegistrationCompleted screen.

5. The user sees the RegistrationCompleted screen for 2 seconds and the application exits.

6. The mobile device’s operating system restores the device to its state prior to the launch
of the conference registration application.

The introduced approach dictates that to produce the desired artifact, in this case a
Google Android application, the DSm must be decomposed into a number of single-concern
lower-level models, which must in turn be merged back together. Figures 2.20, 2.21, 2.22
and 2.23 each display intermediate representations between the DSm and artifact levels. Fig-
ure 2.20 shows the behavioural concerns of the conference registration application projected
onto a Statechart model. Figure 2.21 shows the layout and mobile phone feature concerns
projected onto an AndroidScreens model and an AndroidActions model, which are shown as
a single multi-formalism model. Figure 2.22 shows a Google Android-specific performance

15The conference registration example, like the PhoneApp meta-model, is heavily inspired by the work of
Kelly and Tolvanen in [Met, KT08].
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Figure 2.19: A conference registration application, as a PhoneApp model.
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model, as a PerformanceModel model. Finally, Figure 2.23 shows a FileSystem model of the
files that hold the merged form of all of the above models.

Much of the discussion surrounding the benefits of the proposed technique to artifact
synthesis pertain to the traceability links that it leaves behind. Though they have been
presented in isolation, models from every formalism at every level of abstraction are linked
by an intricate web of interconnections between corresponding entities at different levels of
abstraction. This web is partially shown in Figure 2.24. Note that it is by no means meant
for human use in its current form, and is displayed here merely to illustrate an otherwise
overly abstract concept. In the future, slicing this web of artifacts and links may provide
useful insights to modellers.

Last but not least, Figure 2.25 demonstrates the aforementioned advanced functionalities
enabled by traceability links, namely, the highlighting of model entities during artifact exe-
cution (on a physical Google Android device) and their tagging with performance measure-
ments. The conference registration DSm and its associated performance model are overlaid.
Note the ConsumerConsumptionConstraint in the top-left corner that regulates loading and
execution time. As the synthesized application is executed on a Google Android-enabled de-
vice, the current PhoneApp ExecutionStep is highlighted in blue, entities corresponding to
it from other formalisms (here, a PerformanceModel ResourceConsumer) are highlighted in
yellow, and performance measurements for the regulated resources (here, loading and ex-
ecution time) are tagged to the relevant ResourceConsumers in a color that reflects their
satisfaction of modelled requirements (i.e., green for success, red for failure). Present but
not shown is the fact that state information is also propagated from artifact to DSm such
that attributes at the DSm level take on values during artifact execution. For instance, the
Label from the NameEntry screen is updated to reflect user input at the artifact level (i.e.,
user input on the physical device running the synthesized application).

2.6 Comparison with Related Work

This section reviews and situates the introduced approach with respect to relevant work by
others surveyed in Section 2.2.

Benefits of the proposed approach with respect to traditional coded artifact generators
were discussed in Section 2.3.6. These position the approach as a solution to numerous of its
alternative’s pitfalls, namely, overly low levels of abstraction that make their development,
maintenance and enhancement very complex. As for more intimately related techniques, Yie
et al. also propose the decomposition of “almighty” model transformations into a number
of sub-transformations. However, their approach is limited with respect to ours in that no
guidelines are provided as to which criteria to use to perform the decomposition (e.g., decom-
pose along concern lines) and that manual intervention is required to enable inter-artifact
communication. Finally, our work also has a likeness to Hemel et al.’s work on representing

50



Figure 2.20: The behavioural concerns of the conference registration application projected
onto a Statechart model.
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Figure 2.21: The layout and mobile phone feature concerns of the conference registration
application projected onto an AndroidScreens model and onto an AndroidActions model,
respectively.
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Figure 2.22: A Google Android-specific performance model generated from the conference
registration application model, as a PerformanceModel model.
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Figure 2.23: A FileSystem model of the files containing the merging of all intermediate
models.
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Figure 2.24: The complete web of traceability links left behind by the artifact synthesis
process.
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Figure 2.25: Highlighting and tagging model entities during artifact execution.
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coded programs as models that conform to meta-models that capture the syntax of GPLs.
The use of FileSystem as an intermediate representation shares much of the motivations and
benefits of their approach, although it does not go as far.

Many of our approach’s advantages were attributed to the web of traceability links it pro-
duces. Wu et al. also recognized the usefulness of DSm-to-artifact mappings (in the context
of debugging). However, their work is limited with respect to our own in a number of ways,
not including the restrictions they impose on DSms (textual only) and tools (Eclipse only).
Indeed, graver limitations are the facts that the mapping construction inevitably introduces
considerable accidental complexity into already complex coded artifact generators, and that
the mapping is not readily presentable to the modeller. The latter, in particular, implies
that traceability links can not be used for didactic purposes or to assist in debugging model
transformation rules (e.g., by making explicit what is generated from what).

As for performance modelling, while the proposed approach borrows ideas from tradi-
tional UML-centric methods, such as the early integration of non-functional requirements
into the development process and the parameterization of control flow paths with proba-
bilities, it improves upon them in a variety of ways. Accidental complexity is maximally
reduced by shielding DSms from performance concerns (when applicable) and performance
models from business logic. However, the most noteworthy improvement is undoubtedly
the ability to integrate non-functional requirements seamlessly into the performance testing
process through their transformation into instrumented code that verifies their satisfaction
at runtime. This is a form of runtime monitoring [VK05] which is gaining popularity as a
complement to testing.

Thus, the approach can be summarized as a structured and MPM take on traditional
and even state-of-the-art artifact generation and performance modelling techniques.

2.7 Conclusion and Future Work

The work presented in this chapter was motivated by the numerous shortcomings of the
traditional approach to artifact synthesis from DSms. The programmatic manipulation of
internal model representations to produce target platform artifacts is at too low a level of
abstraction. This makes them difficult to reason about, maintain (e.g., as a result of meta-
model evolution) and extend.

The introduced approach addresses these limitations. Artifact synthesis from DSms is
carried out via visual rule-based graph transformations that isolate and project tangled con-
cerns within DSms onto appropriate lower-level modelling formalisms as an intermediate
step to final artifact generation. This approach has numerous benefits, including a consider-
able raise in the level of abstraction of artifact generators, which increases their accessibility
and eases their maintenance and extensibility. It also greatly facilitates the maintenance
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of traceability information between corresponding constructs at different levels of abstrac-
tion. This information is instrumental in enabling “advanced” tasks such as DSm and model
transformation debugging, and DSm animation (as a result of artifact execution). Addition-
ally, the approach contributes to the area of embedded system applications modelling (and
synthesizing) and, more specifically, in the addressing of their characteristic non-functional
requirements. The discussed benefits of structuring artifact synthesis are not restricted to
coded application synthesis. They also apply to the generation of performance models from
DSms, and of performance predictions, simulations and measurement facilities from perfor-
mance models.

The proposed technique was demonstrated by detailing the synthesis of fully functional
Google Android applications from DSms, optionally instrumented with performance mea-
surement and reporting facilities. Note however that although the case study is bound to the
Google Android platform, the approach is not. Despite the fact that some of the presented
model transformations would need to be refactored if the targeted platform were to change
(e.g., to Apple iOS [Appa]), their essence and purpose would be left intact, with each one
isolating (or merging) a single concern onto lower- and lower-level representations.

Finally, despite its advantages, our technique still has the unfortunate drawback that
it requires a considerable amount of (non-trivial) manual work: the semantic mapping of
DSms to artifacts still needs to be specified manually (by DSML designers). This implies
that DSML designers must manually identify which portions of their languages to project
onto which lower-level formalisms, how to carry out the said projections, and how to merge
their results back into coherent artifacts. The work presented in Chapter 4 addresses these
limitations and attempts to alleviate and simplify the burden placed on DSML designers.
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Chapter 3

Debugging in Domain-Specific
Modelling

This chapter introduces a mapping between debugging concepts (e.g., breakpoints, asser-
tions) in the software and DSM realms. The meaning of these concepts is explored from the
very different perspectives of DSML designers, who develop and must debug model compilers
(ideally specified as model transformations), and of domain-specific modellers, who develop
and must debug DSms while remaining unaware of artifacts and their generators. A set
of guidelines, caveats and examples are proposed with the aim of providing blueprints for
future DSM debuggers.
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3.1 Problem Statement and Outline

Ideally, the typical workflow of a DSM project consists of the specification by DSM experts
of one or more DSMLs and of the model transformations that define their semantics. Sub-
sequently, DSms may be created by arbitrary domain experts1. In practice, models, model
transformations and synthesized artifacts may all require debugging. A significant obstacle
to the wide-spread adoption of model-driven development approaches in industry is the lack
of proper debugging facilities. Software debugging support is provided by a combination of
language and IDE features which enable the monitoring and altering of a running program’s
state at the same level of abstraction as that at which the program is written. How these
language and tool features translate to the DSM realm is still misunderstood, and is a topic
that few researchers have explored in depth.

To address this, we first propose a complete mapping of all common debugging facili-
ties from the software realm to the DSM realm. This mapping accounts for the fact that
DSML designers and their end-users, or modellers, have very different workflows, and thus
very different debugging needs. Then, in the context of debugging DSML specifications, we
explore the debugging of semantics specified via model transformations. The debugging of
coded model manipulators (e.g., coded artifact generators) is also briefly discussed. Next,
the debugging of DSms and artifacts (always at the DSm level) is targeted. For these in
particular, the approach to artifact synthesis presented in the previous chapter emerges as a
truly enabling technique for debugging. This is due in part to the two-way communication
enabled by the traceability links it leaves behind which tremendously facilitates the exchange
of various debugging commands from DSm to artifact and back.

The rest of this chapter is structured as follows. In Section 3.2, we survey relevant re-
search work. In Section 3.3, we review common debugging concepts such as breakpoints and
assertions from the programming world. In Section 3.4, we proceed to mapping these con-
cepts onto the DSM realm in the context of debugging from the DSML designer perspective.
In Section 3.5, this mapping is repeated in the context of debugging DSms and synthesized
artifacts. For both scenarios, insights, suggestions and demonstrations are provided. In Sec-
tion 3.6, we compare these to relevant facilities provided by existing tools or suggested by
other researchers. Finally, in Section 3.7 we discuss future work and provide some closing
remarks.

3.2 Survey of Relevant Research Work

The purpose of this section is to provide an in-depth survey of research work relevant to the
proposed scientific contributions of this chapter. Our contributions are neither compared
here nor are they situated with respect to the reviewed works. Such comparisons are instead

1Note that for the purpose of this discussion, the fact that the provided description of the DSM process
is over-simplified, leaving out DSML evolution for instance, is of no consequence.
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provided in Section 3.6.

Very little attention has been paid to debugging by the DSM and MDE communities.
Many reports of modern industrial applications of DSM admit that the debugging of models,
of their associated ad hoc compilers, and of synthesized artifacts is accomplished without
any tool support [Saf07, KT08]. Far more alarmingly, debugging is invariably performed
at the code and synthesized artifact levels of abstraction rather than at that of DSms.
Debugging deals exclusively with synthesized artifacts and with coded compilers that make
use of modelling tool APIs. In the code-centric software development realm, this would
be equivalent to instrumenting compilers and compiled bytecode with print statements and
stepping through the bytecode to find and resolve issues in a program written in a GPL. This
approach is quite obviously in blatant contradiction with the founding goals and principles
of DSM: abstraction can not truly be raised and the resulting benefits can not be accurately
measured and fully reaped as long as domain-specific modellers are required to manipulate
non-domain-specific concepts.

3.2.1 Domain-Specific Model Debugging

Some researchers have recognized the aforementioned contradiction and attempted to provide
debugging means at the DSm level. The most advanced published DSm debugger to-date is
that presented by Wu et al. in [WGM08]. Their approach allows for the re-use of existing,
tried and familiar code debugging facilities at the DSm level of abstraction. First, during
artifact synthesis, entirely hidden from the modeller, a detailed and direct mapping between
statements in textual DSms and resulting statements within synthesized coded artifacts is
constructed. Second, the Eclipse [EFa] Integrated Development Environment’s built-in De-
bugging Perspective is enhanced such that breakpoints may be set on DSm statements and
that these may be stepped through. In practice, while executing DSms2 in debugging mode,
“break” and “step” events at the DSm level are internally translated to “break” and “step”
commands at the artifact level using the constructed mapping to properly parametrize the
said commands. Lastly, during DSm compilation, artifacts are also instrumented such that
variable values at the DSm level are appropriately updated to reflect state changes of execut-
ing artifacts. Wu et al.’s approach has many clear benefits. On the one hand, domain-specific
modellers are given means to set breakpoints within domain-specific code, to pause/resume
execution and to review the changing state of DSms as underlying artifacts are executed
without requiring any prior knowledge about the synthesized code or the code generator.
On the other hand, from a tool implementer’s point of view, rather than require the imple-
mentation of a whole new debugger for every DSML, their approach allows textual DSML
designers to fully reuse the powerful and proven built-in debugging facilities of a popular

2This is abusive notation. In reality, artifacts, not DSms are executed. Appropriate feedback mechanisms
may be used to create the illusion that DSms are being executed though. This is analogous to the impression,
created by IDE debuggers, that GPL programs are executed, when in fact only their compiled form is ever
executed.
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Integrated Development Environment3 (IDE). As for the approach’s limitations, it is cur-
rently limited to textual DSMLs, restricts the modeller to the Eclipse tool, and assumes that
generated artifacts are code. Each of these can render the approach unusable in a number
of contexts where DSM might be applied. Furthermore, little is said about the inevitable
increase in complexity to the already complex task of DSm compiler development incurred
by the added requirements of producing DSm-to-artifact mappings and instrumenting the
said artifacts with means to synchronize DSm variables with artifact variables during execu-
tion. The last and possibly most noteworthy shortcoming of the proposed technique is that
is does not consider the debugging of the compiler, be it implemented via code or model
transformations, that produces artifacts from models. Thus, it focuses solely on debugging
from the domain-specific modeller’s perspective, but not at all from the DSM expert (and
DSML designer) perspective.

Kos et al’s Ladybird DSm debugger is more advanced than Wu et al.’s in some respects
[KKMK11]. On the one hand, its obvious limitation is that it is tailored for a single DSML
and bound to the single tool that supports it, giving it a somewhat anecdotal character. On
the other hand, it is based on and implements many of the recommendations presented in
this chapter4 and provides a real world example of debugging constructs such as breakpoints
and runtime variable I/O at the DSm level.

Finally, in [Sun11], Sun also recognizes the importance of providing specification and
debugging means at the same level of abstraction. He does so in the context of MTBD,
where model transformation rules are implicitly specified through the recording of developer
actions. The resulting recordings can be seen as DSms of rules themselves. As such, Sun
stresses the importance of providing and demonstrates debugging capabilities that deal with
recorded developer actions, as opposed to synthesized “LHS-RHS” rules.

3.2.2 Model Transformation Debugging

There also exists a body of research that addresses the debugging of model transformations.
Incidentally, when DSm-to-artifact compilers are defined, as prescribed by MDE principles,
via model transformations, proposed techniques for their debugging can address the last of
the aforementioned limitations of Wu et al.’s work. Certain modern model transformation-
enabled DSM tools (e.g., AToM3, AToMPM) support basic model transformation debugging
by providing a number of enabling facilities. These include step-by-step, as opposed to con-
tinuous, rule execution. Instead of having transformations always run to completion, rules
can be executed one at a time, users may manually select which rule to execute in cases
where multiple rules are simultaneously applicable, or even which of many LHS pattern in-
stances matched in the source graph to actually transform. Furthermore, modification of

3Note that although IDEs for developing models exist, every mention of “IDEs” in this work refers
exclusively to coded program IDEs.

4More specifically, Kos et al. essentially followed the blueprint for DSM debuggers published in [MV11a].
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the source model between rule applications is permitted. This enables rule designers to ob-
serve the effects of each rule in isolation, to correct erroneous effects during execution, and
even to somewhat steer the transformation in desired directions. Still, despite the ability to
perform these non-trivial transformation debugging tasks, more advanced functionality such
as “pausing a transformation when rule Ri is encountered” or “when a pattern P appears
in the model” are not natively supported.

In [SKV10a, SKV10b], Syriani et al. propose the modelling of exceptions and their han-
dlers at the level of abstraction of Model Transformation Languages (MTLs). They first
suggest a categorization of model transformation exceptions where errors in rule action and
condition code are distinguished from invalid rule sequencing errors and from (unexpected)
internal errors. They then describe how a control flow environment for rule execution can be
extended with provisions for capturing and handling exceptions. Essentially, whereas tradi-
tionally such environments only allow rules to be sequenced, and for this sequencing to occur
on one of two events, “rule applied” and “rule not applicable”, the proposed transformation
scheduling environment introduces event handler constructs which can be sequenced with
rules on a third, new event: “rule failure”. Finally, the authors also discuss how the assertion
debugging primitive can be simulated within their framework. First, a rule R is created with
its LHS pattern set to some violating sub-graph and its RHS post-application action code
instrumented to produce a failed assertion exception. Second, the new rule is appropriately
inserted within the existing rule sequencing. Then, when the transformation is executed,
if there is at least one instance of the violating sub-graph in the source model when R is
executed, the transformation will fail and report the failed assertion. Syriani et al. pave the
way towards more modular, fault-tolerant and elegant rule and transformation scheduling
designs. However, numerous debugging primitives such as breakpoints, print statements and
stepping are left unexplored. Furthermore, a more detailed examination of their proposal for
the simulation of assertions reveals that rule designers are exposed to a number of redun-
dancies and awkward low-level details which suggests that higher-level constructs should be
introduced.

Finally, in [KSWR09], Kusel et al. clearly enunciate the abstraction mismatch between
model transformation design and debugging tasks as a factor in QVT’s limited adoption.
They fail to provide a convincing alternative however, proposing that QVT relations (i.e.,
QVT’s equivalent to transformation rules) be manually mapped onto graphical Petri Net-like
models that they argue can be (more) easily debugged with the naked eye. Whether or not
this is indeed the case, a considerable shortcoming of their approach, other than its require-
ment for an undoubtedly lengthy, repetitive and error-prone manual translation step, is that
bugs identified in the Petri Net-like representation must be corrected in the original, more
complex QVT specification. In sum, their approach to model transformation rule debugging
appears to be more of a commentary on QVT’s accessibility than a practical, scalable and
widely applicable solution to the problematic abstraction mismatch that motivated their
work.
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3.3 Debugging Code

Debugging forms a central part of any programming effort. Several authors have looked into
common sources of bugs, into what makes certain bugs more insidious than others, and into
popular debugging activities [Eis97, Zel09]. It turns out that observing information about
program state as well as hand-simulation (i.e., interrupting execution to run part or all of
a program one statement at a time) are often used for tracking down and resolving bugs.
Means to carry out these activities are thus commonly provided by modern programming
languages and their IDEs. Below, a brief overview is given of the most common debugging
facilities featured in modern GPLs and popular IDEs.

3.3.1 Language Primitives

The following concepts are commonly used to create a “poor man’s” debugger when a full-
fledged debugger is not available.

Print Statements

Print statements are the central part of every developer’s5 first “Hello World!” program.
Print statements (in debugging) are commonly used to output variable contents and to
verify that other statements or code blocks are executed, or more generally, to trace the flow
of execution.

Assertions

A slightly more advanced feature than print statements, assertions enable programmers to
verify that arbitrary conditions are satisfied at a given point in the program’s execution.
Assertions traditionally have two particularities. The first is that they cause the execution
to be aborted when their condition fails. The second is that the source language or its
compiler usually provide means to enable or disable assertions (e.g., Java’s compiler has
a flag to enable assertions, compiling C++ in “release” mode rather than “debug” mode
disables assertions). This implies that developers need not manually remove or comment
out assertions in order to avoid undesired output and/or computation in deliverables, as is
the case with print statements.

Exceptions

The third and most advanced enabler for debugging commonly found in programming lan-
guages, exceptions are thrown at runtime to indicate the system is in a problematic state.

5In the following, the terms programmer and developer are used interchangeably to describe both the
code’s implementer and the person debugging it.
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An exception encapsulates information about the system’s state as well as about the prob-
lem that occurred. Numerous exceptions are built into languages to report events such as
I/O and arithmetic problems and null-pointer dereferencing. By default, exceptions halt
the execution of a program. However, programmers can define exception handlers to catch
exceptions and take appropriate action. Typically, such handlers either recover from the
identified problem and continue (normal) execution, forward the caught exception higher up
the call stack, or gracefully terminate. Lastly, provisions for defining new types of exceptions
and their handlers are usually made available to developers to capture application-specific
exceptional situations.

3.3.2 Debugger Primitives

The above primitives enable programmers to carry out many crucial debugging tasks. How-
ever, modern IDEs have recognized that print statements are an inefficient, time-consuming
and, for lack of better word, messy means of observing state and monitoring execution
flow. Commonly provided IDE facilities for carrying out these tasks are presented below.
Figure 3.1 shows the debugging pane in the Eclipse IDE.

Figure 3.1: The Eclipse IDE debugging pane.

Execution Modes

Modern IDE debuggers support continuous (i.e., until either termination or user interruption)
and line-by-line program execution, as well as terminating and non-terminating interruption
via play, step, stop and pause commands respectively. Furthermore, programmers can often
run their code in release or debug modes. In the former mode, only playing and stopping
functionality is available.

Steps

There are usually three line-by-line, or step, commands. These are step over, step into and
step out (or step return). The first executes the current statement as an atomic block.
The second executes one sub-statement “contained” within the current statement (e.g., for
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a function call statement, contained sub-statements are those that form its definition), if
any, thus effecting a change in scope. Advanced debuggers support stepping into the lower-
level representations, if any, of seemingly atomic constructs. For instance, it is possible in
Eclipse to step through compiled Java bytecode while executing a Java program. Of course,
the available level of granularity (or abstraction level) is dependent on tool support and
programming language implementation. Finally, stepping out causes continuous execution
until the statement that was initially stepped into has returned.

Runtime Variable I/O

IDE debuggers usually provide means to read (and change) global and local variables when
the program’s execution is paused. This feature effectively removes the need to insert
debugging-related print statements into the code. To our knowledge, no popular debug-
ger imposes any constraints (beyond basic type constraints) on the values one can assign to
variables when the execution is paused. Hence, it is possible to accidentally or purposefully
place an executing program in an otherwise unreachable invalid state. In practice, observing
variable values is far more common that modifying them. However, dynamic modifications
can be instrumental to steer the execution, particularly when variable values are incorrect
(e.g., due to a missing or faulty implementation).

Breakpoints

Breakpoints allow developers to specify when the debugger should interrupt normal program
execution. This avoids having to step through the code line by line to reach the desired point.
Breakpoints are commonly set on statements indicating that the execution should be paused
before the debugger executes the given statement. Thus, they are essentially time-saving
wrappers around the stepping commands, and can effectively replace print statements for
the task of determining whether or not a given line is executed. Most debuggers also support
associating hit counts or boolean conditions with breakpoints. These respectively enable the
programmer to specify that a breakpoint should only halt the execution when its statement
has been executed some given number of times or when a given condition over global and
local variables is satisfied.

Stack Traces

Stack traces allow the programmer to see which function calls led the program into its current
state. Stack traces become visible when the execution is paused. Most debuggers support
navigating from the current context to that of any higher level in the stack trace (corre-
sponding to the calling context) for variable viewing and editing purposes.

The concepts above are by no means an exhaustive list of all debugging facilities available
to modern programmers. However, together they form an effective basis for writing debug-
able code and debugging it.
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3.4 Debugging in DSM: Debugging Model Transfor-

mations

The development process in DSM has two important facets: developing models and de-
veloping formalisms. The latter includes the specification of syntax and of operational or
denotational semantics. Only semantics, however, require traditional debugging activities,
as the verification of the correctness of a syntactic specification merely involves ensuring
valid (i.e., conforming to the language’s meta-model) models can be created while invalid
ones can not, with inconsistencies easily traced back to their source. Both development
facets introduce a crucial difference between the programming and DSM worlds. First, in
the latter realm, artifacts to debug are no longer restricted to code and include model trans-
formations, synthesized and hand-crafted models, and other arbitrary non-code artifacts.
Second, the code realm counterparts of the very common DSM activities of designing and
debugging model transformations, which are respectively designing and debugging GPL com-
pilers/interpreters, are both specialized and relatively infrequent activities. Indeed, one can
easily argue that the number of programs to debug (and their domains) is orders of mag-
nitude larger than the number of existing compilers and interpreters for the programming
languages these programs are implemented in. This is a side-effect of the nature of GPLs
which are designed to enable programmers to develop applications for an unbounded set of
domains. DSMLs, however, target restricted domains and as such the number of DSMLs,
and by extension the number of DSML semantics specifications, is much more closely related
to the number of DSms. A complete discussion about the debugging process in the context
of DSM must thus consider the debugging of model transformations as a first class concern.

Regardless of the type of semantics (i.e., operational or denotational) a rule-based model
transformation defines, it describes a scheduling of rules. Thus, the task of model transfor-
mation debugging involves the verification of the correctness of this scheduling and of the
rules it refers to. Below, we explore how the concepts from the previous section translate to
the debugging of formalism semantics specified via model transformations. In each case, it is
assumed that the abstract purpose of the concept remains the same (e.g., print statements
are still used to output variable state and verify if control flows through a certain part of
the system), with focus placed on how to elegantly achieve the said purpose within the new
context.

Print Statements

A contrived means of reproducing print statements for model transformations is to create
rules with their action code set to appropriately parametrized calls to console6 output func-
tions in a supported action language (e.g., Python). In tools where scheduling is grammar-
based (i.e., any applicable rule may run) and the user is free to choose between several

6The console may take many forms depending on tool support. For instance, in AToM3 and AToMPM,
a built-in console displays text printed from within action code.
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applicable rules, such as AToM3, such a contrived rule could either be permanently enabled,
allowing it to be run as needed by the developer, or it could specify a pre-condition pattern
causing it to be applicable only when the given pattern is matched. Alternatively, in tools
like AToMPM where rule scheduling is control flow-based, the rule could be arbitrarily se-
quenced with other rules. Once again, a pre-condition pattern could be specified to control
its applicability. Unfortunately, the proposed technique is not devoid of accidental complex-
ity. If a LHS pattern were to be specified, an identical RHS pattern would be required to
avoid modifications to the source model. Also, means to prevent the rule from being executed
repeatedly might need to be included in its condition and/or action code and/or as NAC pat-
terns. A similar but neater and more domain-specific solution would be to enhance MTLs
with printing functionality via a new type of rule: PrintRules. These would be included
within the rule scheduling model and could be otherwise indistinguishable from any other
rule. However, they should have different parameters: a LHS pattern, one or more optional
NAC patterns, condition code and printing code, but no action code or RHS pattern. The
natural semantics of such rules would be to print the result of executing the printing code
if the condition code is satisfied when the LHS pattern is found in the host model and the
NAC patterns are not. PrintRules could easily and automatically be translated to the con-
trived traditional rules described above using Higher-Order Transformation (HOT) rules7

such as to leave the underlying model transformation execution engine unchanged. Fig-
ure 3.2b shows a sample rule scheduling where a PrintRule is sequenced between traditional
rules. Figure 3.2a shows a tentative rendering of an empty PrintRule. The printingCode

attribute is not visible, but the fact that no RHS pattern should be specified is made explicit.

Although it may seem counter-intuitive to enhance MTLs with support for a language
construct whose usefulness is mostly restricted to debugging, we should remember that
print statements, whose usefulness is mostly restricted to debugging, are supported in every
modern GPL.

Assertions

Assertions in transformation models can be replicated in a manner very similar to print
statements. The conditions they are meant to check can be encoded in the condition code
and/or pre-condition patterns of traditional rules, while exception throwing code can be
placed within the action code of the said rules. Thus, such a rule would only be applicable
when the assertion’s condition is met, and it would trigger an error reporting the failed
assertion upon execution. Syriani et al. propose specifying assertions in just this manner in
[SKV10b]. In case of failure, the rule’s action code throws a user-specified exception that ei-
ther interrupts and terminates the execution of the transformation or is caught and handled
by exception handlers specified at the transformation language level. Unfortunately, forcing
the developer to reproduce assertions using the default rule mechanism carries the same lim-
itations as those mentioned for print statements; namely, the necessity of specifying identical

7Rules that take other rules as input and/or output.
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(a)

(b)

Figure 3.2: (a) An empty PrintRule. (b) An example transformation model where a Print-
Rule is inserted between two traditional rules.
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LHS and RHS patterns and loop prevention mechanisms. Furthermore, requiring the manual
entry of exception throwing code exposes the transformation developer to technical details
which should remain hidden. A similar solution applies though. MTLs could be enhanced
with assertion functionality via a new type of rule: AssertRules. Like PrintRules, these could
be sequenced seamlessly with other rules within the rule scheduling model. They would be
parametrized by a LHS pattern, one or more optional NAC patterns, condition code and an
assertion message, and could be rendered similarly to PrintRules. Their natural semantics
would be to throw the assertion message as an exception if the condition code is satisfied
when the LHS pattern is found in the host model and the NAC patterns are not. Analogous
reasoning as for PrintRules applies regarding the automated translation of AssertRules to
traditional rules and the validity of their inclusion in MTLs.

An added benefit of AssertRules over the alternative (i.e., replicating them manually via
traditional rules) is that they would facilitate the implementation of the most crucial property
of assertions: the ability to enable and disable them without having to comment, remove
or alter them. Indeed, such behaviour could be achieved through a trivial modification
to the transformation execution engine or to the HOT rules that convert AssertRules into
traditional rules. On the other hand, achieving this when dealing strictly with traditional
rules would undoubtedly require the rule developer to somehow explicitly tag his rule such
that the transformation execution engine could identify it as an assertion rule. This is
clearly a less elegant solution, polluted by the accidental complexity introduced by missing
MTL constructs. Furthermore, more advanced modelling tools could support showing and
hiding assertions to improve the transformation model’s readability. Such features would
be increasingly difficult to implement if assertions where indistinguishable (or less easily
distinguishable) from common rules.

Exceptions

Exceptions and their handlers in the context of model transformation debugging were ex-
tensively studied in [SKV10b]. Syriani et al. provide a classification of several relevant
exceptions that capture issues ranging from synchronization problems brought on by incor-
rectly parallelizing transformations to action language and rule specification errors. While
most exceptions originate from within the transformation execution engine that throws them
as it encounters problematic states, Syriani et al. also recognize that new user-defined ex-
ception types may be required. These can be thrown from within rule action code when
application-specific exceptional situations arise. To handle the various exceptions that may
result from a rule’s execution, they propose enhancing MTLs with handler blocks and al-
lowing an exceptional rule outcome. This outcome complements the existing “success” and
“not applicable” outcomes. Rules can be sequenced to handler blocks from their exceptional
outcome port. Handler blocks take the produced exception as input and then direct the
flow of control to a traditional rule whose purpose is to attempt recovery or propagate the
exception. This is a very elegant solution as no accidental complexity is introduced: new
constructs specific to the problem at hand are introduced rather than clumsily attempting
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to mould existing constructs to a task they are not well suited to perform. Figure 3.3a, bor-
rowed from [SKV10a], depicts a transformation model where traditional rules and handler
blocks are interleaved. In a more interesting example, control might flow out of the suc-
cess ports of the exception handler rules to rejoin the normal flow rule. Exception support
in AToMPM is present but slightly limited: various exception types as well as the excep-
tional rule outcome are supported by the native MTL language but handler blocks have yet
to be introduced. Thus, the handling of exceptions is less flexible than what is shown in
Figure 3.3a, as evidenced in Figure 3.3b.

Execution Modes

Certain tools, such as AToM3 and AToMPM, natively support continuous and step-by-step
execution modes. In the former mode, a model transformation is executed until it terminates,
i.e., until no more rules are applicable or the implied or explicit scheduling has completed.
In the latter mode, the user is prompted to run the remainder of the transformation in
continuous mode or to step over a single applicable rule after every rule application. Thus,
equivalents to the play, step over and stop facilities from modern code IDEs already exist in
the realm of modelling tools. As for the pause functionality, to our knowledge, only AToMPM
and VMTS (Visual Modeling and Transformation System) [LLMC06] offer means to pause
the execution of an ongoing transformation. The semantics of such a facility is ambiguous
though. While pausing a transformation exactly between the application of two rules should
intuitively delay executing the next rule until the user chooses to continue in either continuous
or step-by-step mode, what should be the appropriate response if the pause request were
to be triggered during the application of a rule? In a system where rule application is
implemented following a transactional approach, sensible behaviours might be to let the
current rule complete or to roll-back to before its application before pausing. The former is
the default behaviour in AToMPM. In a system based on T-Core [SV10], where rules are no
longer atomic blocks but are instead arbitrarily composed sets of primitive components (e.g.,
matchers, which locate a rule’s pre-condition pattern in the host graph, rewriters, which effect
the transformation of a given match into the rule’s post-condition pattern), ideal behaviour
might be to pause the execution before invoking the next primitive operation. A third option
is immediate interruption. Either choice has its merits and is heavily dependent on MTL and
tool features. In determining which approach to choose, it seems sensible that pausing only
occur when the system state is consistent and observable. For instance, it seems unreasonable
to offer immediate interruption in a context where rule application is atomic and no facilities
for observing any sort of meaningful intermediate system state are available. Finally, model
transformations, like programs, should be executable in both debug and release modes, with
pausing and stepping functionality disabled in the latter.

Steps

The notion of “stepping over” in the context of rule-based model transformations is trivial.
It corresponds to the execution of one, possibly composed, rule. Stepping into, however, is
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(b)

Figure 3.3: (a) Exception handling via handler blocks and traditional rules. (b) Exception
handling in AToMPM, via traditional rules only.
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very dependent on MTL and tool features, much like the aforementioned pause operation.
For instance, in languages such as MoTif, GReAT and QVT, and in tools like AToMPM,
VIATRA [VB07] and VMTS which support rule composition (i.e., the composition of several
rules together into “super rules”), stepping into a composite rule would conceivably allow
the developer to “enter” the rule and execute its sub-rules one at a time. This process could
of course be repeated recursively in the case of several layers of composition. For more
advanced languages like MoTif-Core [SV10] – or any other T-Core-based language – where
rules may not only be composed but also decomposed, it is sensible for the developer to even
be able to step into a non-composite rule. Doing so would enable executing each primitive
rule component in turn and possibly performing such actions as modifying a match before it
is given to the rewriting component. Finally, “stepping out” obviously only makes sense for
MTLs and tools where “stepping into” is meaningful. In such languages, stepping out would
perform a very analogous task to that which it performs in code debugging. Stepping out of
an inner rule would cause the continuous execution of any remaining rules within the parent
composite rule. Stepping out of a T-Core primitive would cause the continuous execution
of any remaining primitives within the parent rule. Note that the only stepping operation
supported by AToMPM at this time is “step into”.

Runtime Variable I/O

The notion of what is a variable in the context of model transformations is unclear. The
parameters of a rule or the sequencing of the rules themselves may all be considered variables.
Thus, when the execution is paused, the developer could choose to edit rule LHS, RHS and
NAC patterns, condition code, action code and even the scheduling of the transformation
rules. All of the previous propositions share a crucial requirement though: if the rules
and/or the transformation model need to be compiled before they can be executed by the
transformation engine, modifying either of them on-the-fly might be infeasible8. This is
of course analogous to modifications to running C++ or Java code being ignored by IDE
debuggers until the next compilation. Data flow- (e.g., GReAT, MoTif) and T-Core-based
(e.g., MoTif-Core) languages lend themselves more intuitively to traditional runtime variable
I/O operations because of their notions of inputs and outputs. It is conceivable that the
developer may want to observe or change the inputs or outputs of a rule or T-Core primitive.
This implies that a model transformation debugging tool should clearly expose these variables
and offer means to view and modify them. Moreover, this should be done at the appropriate
level of abstraction. For instance, if a developer wants to observe the input sub-graph of a
T-Core rewriter block, it should be represented using domain-specific constructs rather than
in some internal format. Similarly, if a developer wants to modify a sub-graph, he should
be provided with a domain-specific model editor pre-loaded with appropriate meta-models.
Finally, as is the case for code debuggers, ensuring that runtime modifications don’t leave
the system in an unstable or otherwise unreachable state is a desired but complex task. In

8To our knowledge, no existing modelling or model transformation tools currently support on-the-fly rule
scheduling modifications. However, AToMPM interprets rule schedules (as opposed to compiling them) and
could thus be relatively easily made to support on-the-fly scheduling changes.
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this context, one such verification could be to ensure that the modified input of a T-Core
rewriter block still contains exactly one instance of the specified pre-condition pattern.

Breakpoints

Breakpoints very intuitively translate to the model transformation debugging world. Given
proper tooling, breakpoints could be associated to composite rules, non-composite rules and
even primitive T-Core blocks causing the execution to pause when they are encountered. Hit
counts and boolean conditions (written in a supported action language) could conceivably
be specified in the same manner as in IDEs. Figure 3.4 depicts a transformation model with
a breakpoint set on one of its rules, as well as its property dialog, which indicates that it
is enabled and that it should always be triggered. Note that breakpoints are not yet fully
supported by AToMPM.

Stack Traces

Like many of the discussed concepts, the availability of stack traces and their meaning depend
heavily on MTL and tool features, specifically, on the levels of composition and granularity
they support and expose. Hence, for languages where rules can neither be composed nor
decomposed, stack traces would do little more than report the current rule and would thus
be of very little use. However, for more complex languages, they should display a cascading
view from top-level transformations down to the currently executing rule or T-Core primi-
tive. They should also enable navigation between the contexts of sub-rules and their parent
composite rules, and between the contexts of T-Core primitives and their enclosing rules.

AToMPM provides a facility similar to stack traces. While in debug mode, relevant con-
texts are loaded into new modelling windows as they are encountered and currently executing
steps within them (where steps may be rules, composite rules or entire transformations) are
clearly identified. This is depicted in Figure 3.5, which shows a snapshot of the debug mode
execution of a sample transformation with two levels of nesting.

Every concept from the previous section has been revisited in the context of debugging
DSML semantics specified via model transformations. The usefulness of such a mapping may
be called into question by the unfortunate reality that it is very common in modern DSM
efforts for semantics not to be specified via model transformations, instead privileging coded
artifact generators. On the one hand, debugging concepts from the code world already apply
to these generators as they are themselves specified as code and as such, no concept mapping
is required. On the other, the fact that coded generators violate MDE best practices and
MPM principles, coupled with their numerous disadvantages and with the equally numerous
benefits of structured rule-based model transformation approaches, both listed in Chapter 2,
leads to the assumption that they will eventually fall out of favour. The availability of (com-
plete) debugging facilities or of blueprints to build them for model transformations will then
be of paramount importance. Furthermore, their immediate availability may help hasten the
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Figure 3.4: A breakpoint in a transformation model, and its property dialog.
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(a) (b)

(c)

Figure 3.5: A model transformation debugging trace. (a) The top-level transformation with
its current step highlighted. (b) The inner transformation from (a) with its current step
highlighted. (c) The inner transformation from (b) with its current step highlighted.
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DSM community towards more principled approaches to semantics specification. Finally, the
next section’s discussion regarding DSm and artifact debugging reveals that numerous and
complex artifact instrumentations are required for debugging at the DSm level to be possible.
However, Chapter 2 made clear that coded generators grow in complexity and decrease in
modularity at a much faster pace than the complexity of the artifacts they produce, further
motivating a shift towards semantics specification through model transformations.

3.5 Debugging in DSM: Debugging Models and Arti-

facts

Despite the importance and need for model transformation debugging facilities, they may
not be sufficient for debugging models whose semantics are specified denotationally. Indeed,
running such models implies the execution of synthesized artifacts9 rather than of model
transformations. Although not always the case in academic DSM efforts, it is sensible to as-
sume that in industry, DSMLs (and their semantics) will often be defined by actors different
than the end-users of the DSMLs. Similarly, the vast majority of C++ and Java program-
mers played no part in the development of those languages or their compilers, nor do they
possess the required skills. Thus, in the following section, a distinction is made between
two types of DSM users. On the one hand, designers are fully aware of and understand
the model transformations that describe DSML semantics and generate lower-level artifacts.
On the other, modellers have an implicit understanding of the semantics of their DSms via
their mastery of the problem domain, and while they should be aware of the end-products
generated from their models, there is no reason for them to have any knowledge about how
these are produced. For instance, consider the running example from Chapter 2. A designer
should fully understand DSms, all intermediate representations (including physical code files)
and the traceability links between them, executable applications running on target devices,
and all of the involved semantics model transformations. However, a modeller should only
be concerned with DSms and generated executable applications.

As a consequence of their different expertise, the debugging scenarios for designers and
modellers differ. Designer artifact debugging is akin to compiler/interpreter (and bytecode)
debugging in the programming world. The goal being to ensure the correctness of the output
of the DSm-to-artifact model transformations, or, more generally, to ensure the correctness
of the compiler/interpreter’s result. Modellers, on the other hand, may assume that available
DSm-to-artifact model transformations are flawless and must instead establish the correct-
ness of their models. Thus, their task is more akin to traditional code debugging but with
model rather than code being compared to an executing artifact. Whether DSms and ar-
tifacts are debugged by modellers or designers, the basic workflow will entail observing the
changes undergone by the DSm as the synthesized artifacts are executed. Designers may

9Although numerous non-executable artifacts can be generated from DSms, we restrict our attention here
to programs and models.
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wish to pay special attention to intermediate representations, if any. Note that debugging
DSms and artifacts at the DSm level hinges on the availability of facilities to propagate state
information from artifacts back to DSms. Similarly, the key advantage of IDE debuggers are
the means they provide for variables at the GPL level to take on observable (via runtime
variable I/O debugger facilities) values as a result of program execution. Without such fa-
cilities, it would be impossible to shield modellers from the internal details of synthesized
artifacts other than by enhancing DSMLs with print statement functionality, which may
often be undesired. Luckily, the approach to artifact synthesis presented in Chapter 2 fully
enables the sort of artifact-to-DSm communication required in this context. Given that such
communication is possible, we re-visit the debugging concepts described in Section 3.3 and
explore how they translate to the debugging of DSms and synthesized artifacts.

Print Statements

The necessity of print statements is closely related to the aforementioned artifact-to-DSm
state propagation functionality. When it is available, print statements are considerably
less useful as the execution’s path through the DSm can be explicitly observed (e.g., recall
the DSm animation demonstrated in Figure 2.25) and changing construct properties can
easily be read10. Nevertheless, it is conceivable for a modeller or domain expert to require
explicit output for debugging purposes. A similar solution to the one proposed for the
model transformation context may apply. DSM tools could provide means to specify print
rules that output arbitrary information about models upon detecting conditions specified by
the modeller in the form of patterns (e.g., State s is enabled, Place p contains at least i
tokens). Recall though that modellers may have no knowledge about model transformations
and might need to be introduced to the foreign concepts of rule patterns, conditions and
actions. An added challenge from a tool implementer’s point of view is that means to verify
rule applicability and execute them concurrently with artitfact execution would be required.
Print rules as described here are very powerful: they can essentially print anything, anytime.
However, they are somewhat orthogonal to the rest of the DSm creation process. A better
solution might be to (semi-)automatically integrate appropriate output constructs in DSMLs
themselves at DSML design time. This might be achieved by adding a print attribute to
language constructs. Then, appropriate extensions to the language’s semantics would cause
artifacts to be instrumented with instructions that output relevant information about DSm
entities during execution. Alternatively, entire new Printer constructs could be introduced
to languages with provisions to connect them with other domain-specific constructs. Again,
language semantics would need to be co-evolved. Extending DSMLs in this manner is more
closely related to what was proposed for MTLs and what is done in GPLs. Moreover, this
would certainly be much more accessible to modellers than model transformation rules.

10Modern model editors provide effective runtime variable I/O facilities.
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Assertions

Assertions can be thought of in a very similar manner as print statements: they can be imple-
mented via orthogonal assertion model transformation rules or as explicit DSML constructs.
In the latter case, the discussion about print statements naturally applies. In the former
case, however, other considerations must be taken into account. First, provisions to enable
and disable assertions must be provided by the modelling tool. Second, assertions should
halt artifact execution upon failure. At the very least, this second point implies that syn-
thesized artifacts should be (automatically) instrumented with callable “kill switches”, i.e.,
interfaces enabling remote termination. Note that assertions in this context are restricted
to conditions that are verified during model execution, like invariants, not during model
editing. Indeed, static meta-model constraints should not be confused with assertions.

Exceptions

The notion of exception in the context of debugging models is somewhat deferred. The rea-
son for this is that exceptions occur at runtime and that although models may be made to
appear to be executing, what is truly being executed are synthesized artifacts. Consequently,
exceptions originate from these artifacts and are described at their level of abstraction. Such
exceptions may be caused by I/O errors, by bugs in third party code libraries, by errors in
modeller-provided attribute values at the DSm level, etc. – but not by errors in denota-
tional semantics transformations as these are assumed correct. A key concern in the DSM
debugging context is that exceptions that are propagated back to modellers be presented at
the level of abstraction of DSms. This follows from the recurring notion that DSM can only
successfully claim to raise abstraction if modellers are entirely shielded from artifact-level in-
formation. Some exceptions may be straight-forward to translate back into domain-specific
terms. Others may describe transient issues that are entirely irrelevant to the modeller.
Others may describe issues that are only of interest to the designer. Determining which
category exceptions fall into is a task best suited for the DSML designer.

Given a categorization of exceptions and their target recipients, proper handling and
propagation mechanisms must be put in place. Handlers should be inserted into artifacts
during their synthesis (e.g., via designer-specified model transformation rules) to capture any
conceivable exception. For modeller- and designer-irrelevant exceptions, which by definition
are easy to recover from, handlers should return artifacts to normal execution flows. For
relevant exceptions, handlers should effect exception translation to domain-specific terms and
propagate their results to the modelling tool for presentation to the designer and/or modeller.
Very similar tasks have already been demonstrated in Chapter 2. Indeed, the propagation
of nicely formatted performance measurements from artifact to DSm involves a translation
(e.g., producing a labelled and coloured textual message from a numeric measurement in
milliseconds) and a propagation (e.g., transmitting the produced summary to the modelling
tool for relevant entity tagging) step. Similarly, exception handlers in synthesized artifacts
should translate caught exceptions into accessible (and attention-catching) messages and
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transmit these to the modelling tool such that the culprit(s) at the DSm level may be tagged
with them. In principle, these messages should be sufficiently expressive for a modeller
and/or designer to identify and correct the problem at the DSm level. This is thus yet
another scenario where communication-enabling traceability information between artifacts
and DSms is instrumental. Last but not least, means to present designer-relevant exception
messages only to designers hint at the need to further refine the traditional debug mode into
separate debugging modes for modellers and designers.

Execution Modes

The play, pause, stop and step commands each require communication to be possible be-
tween modelling tools and artifacts. Playing and stopping requires means to remotely start
and terminate synthesized artifacts, respectively. This may mean the launching of an opera-
tional semantics model transformation (e.g., for model artifacts) or the closing of a program
(e.g., for code artifacts). In practice, supporting even such seemingly trivial operations may
be arduous as modelling tools must know how to launch a wide variety of artifacts (e.g.,
remote Google Android applications, Petri Net models), and generated artifacts must be
responsive to termination commands. The former of these challenges can be met through
tool plug-ins. Given tool support, arbitrary plug-ins can be added to enable the launching
of artifacts from an unbounded number of target platforms. As for generating responsive
artifacts, model transformation rules could trivially instrument artifacts with command in-
terfaces, with commands being transmitted from modelling tool to artifact over one of many
suitable protocols (e.g., SOAP, CORBA, HTTP). Incidentally, such an interface is instru-
mental in implementing the step and pause commands discussed below.

The meaning of taking one step in an arbitrary DSm is unclear. This ambiguity is com-
pounded by the fact that the notion of behaviour, if any, may vary considerably from one
DSML to the next. To this end, we propose a very general and widely applicable definition:
a step constitutes any modification to any attribute of any entity in a DSm, as well as entity
creation and deletion. Given this definition, an intuitive solution for step-by-step (as opposed
to continuous) artifact execution emerges: in step-by-step mode, execution should halt after
every state change propagated from artifact to DSm, as each of these constitutes a step at
the DSm level. Yet again, instrumenting this behaviour into artifacts can be automated
via added rules in denotational semantics model transformations. For code artifacts, such
instrumentation might include thread sleeping and waiting commands.

Finally, pausing presents similar challenges as in the model transformation debugging
context. The ideal behaviour of a pause thus depends on the structure and semantics of
the DSm and artifacts. For modellers, a widely applicable and sensible approach is to
interrupt the execution before beginning what would have been the next step at the DSm
level. However, for designers, immediate pausing (i.e., pausing before executing the next
step at the artifact level) may be desired and/or necessary. The undeniable need for these
distinct pausing modes further motivates the previous proposal of separate debugging modes
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for designers and modellers.

Steps

The notions of stepping over, into and out can be considered from two orthogonal per-
spectives: the modeller’s and the designer’s. On the one hand, all three notions intuitively
translate to DSMLs which support composition hierarchies. Stepping into and out should en-
able downward and upward navigation within the hierarchy, respectively, while stepping over
should enable the atomic execution of composite or non-composite constructs. For DSMLs
with no notion of composition, only the stepping over functionality should be enabled, with
each step executing one step at the DSm level. On the other hand, the fact that artifacts are
generated from DSms creates an implicit hierarchy between them. Navigating this hierarchy
might be significantly more interesting for designers. In this scenario, stepping into should
take a step at the level of the next lower-level formalism, if any. This is depicted in Fig-
ure 3.6 where two successive “step into” operations lead a designer from a domain-specific
traffic light model entity to a corresponding Statechart State and finally to a statement in
generated code. Notice how both the availability of intermediate representations between
DSms and artifacts, and of traceability links11 between them make the debugging process
more intuitive and incremental. Indeed, stepping into code directly from the DSm might
be disconcerting even for designers. Moreover, following traceability links makes answer-
ing complex questions like “which lower-level entity does the current entity correspond to?”
trivial. As for “stepping out” and “over”, the former should trigger continuous execution
until the designer is brought back to higher-level entities, while the latter should perform a
step at the current level of abstraction (e.g., one code statement, one operational semantics
rule). Once again, the need for distinct debug modes for designers and modellers is made
explicit.

Runtime Variable I/O

At first glance, runtime variable I/O seems the most straight-forward of the debugger opera-
tions. For DSms and lower-level generated models, if any, the model editing tool itself can be
used to view and modify variable values when the execution is paused. For synthesized code
artifacts, if any, executing them within IDEs enables the reuse of IDE debugger runtime vari-
able I/O facilities. Thus, means to manipulate state at all levels of abstraction are available
to modellers and designers. The hidden challenge, however, is to propagate changes between
artifacts, intermediate representations and DSms to ensure consistency across all views of
the system. The technique to artifact synthesis presented in Chapter 2 provides effective
means to address this challenge. These have been successfully prototyped in AToMPM in the
context of the PhoneApp DSML. However, replicating such functionality while using coded
artifact generators and/or without traceability links is clearly a complex and error-prone
task.

11To avoid clutter, only those traceability links relevant to the example are shown.
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Figure 3.6: Stepping into from the designer ’s perspective. Stepping into a TrafficLight
model entity leads into a corresponding Statechart State. Further stepping into leads into
generated code.

Breakpoints

Breakpoints translate rather intuitively to the model and artifact debugging world. Ideally,
it should be possible for the designer to specify breakpoints at any level of abstraction from
DSm to artifact. Of course, the modeller is only expected to specify them at the DSm
level. The challenge here is how to specify the breakpoints. For modelling languages with
an explicit representation of state (e.g., Statechart, PhoneApp), the trivial answer is to
mark certain states with breakpoints. The challenge then shifts to tool support for the
availability of means to mark model entities as breaking, and for the automated emission
of pause commands as marked entities gain focus. However, for languages with an implicit
representation of state (e.g., a Petri Net model’s state is a mapping between all of its Places
and the number of tokens they contain, called a marking), a breakpoint can not be set on
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a state by marking any given entity. For such formalisms, we propose that breakpoints
instead be specified as patterns (e.g., a partial or complete Petri Net marking) causing the
execution to pause when the patterns are encountered. Such an approach obviously hinges
on tool support for specifying and evaluating breakpoint patterns. Furthermore, to avoid
overly affecting performance, optimizations should be put in place to prevent unnecessarily
re-evaluating all breakpoint patterns at every modification. Significant research is warranted
to fully comprehend and solve this problem, which is beyond the scope of this thesis. Last but
not least, breakpoints, specified as entity markings or patterns, should still be parametrized
by hit counts and boolean conditions.

Stack Traces

Like in the code and model transformation debugging contexts, stack traces in the context
of model and artifact debugging are tightly coupled with stepping into and out functionality.
In the designer debug mode, stack traces should make explicit which DSm and intermediate
representation entities correspond to the executing artifact’s active “statement” (which may
be a line of code or one or more model entity). In modeller debug mode, stack traces should
show all of the parent constructs, if any, of the currently focused construct.

Every concept from Section 3.3 has been revisited in the context of debugging DSms
and artifacts. Beyond the numerous proposals, discussions and suggestions, two recurring
points emerge. First, synthesizing artifacts via model transformations, specifically ones that
maintain traceability links between corresponding constructs at different levels of abstraction,
is the key enabler for nearly all of the surveyed debugging facilities. Second, artifacts need
to be instrumented to receive and emit commands and data if debugging is to be carried
out from the modelling tool and without forced interaction with synthesized lower-level
representations and artifacts.

3.6 Comparison with Related Work

This section reviews and situates the contributions from this chapter with respect to relevant
work by others surveyed in Section 3.2.

Little research has focused on debugging in DSM. Debugging of DSML semantics and of
DSms is still mostly a trial and error hands-on process systematically carried out at the arti-
fact level of abstraction due to lacking tools and/or excessively low-level artifact generators.
Although various tools and languages provide facilities that can be re-used for debugging,
limited attention has been paid to replicating code debugging facilities in the DSM world.

Wu et al. proposed means to debug textual DSms and code artifacts at the DSm level
within a specific tool, and from the modeller’s perspective only. In contrast, the conceptual
mapping and suggestions we provide are valid for textual and visual DSms and for code and
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model artifacts, they are not bound to any specific tools, instead clearly identifying necessary
and/or desired tool features, and they address all facets of debugging in DSM.

As for Syriani et al., their work clearly established how exceptions and assertions could be
incorporated into model transformation languages. Our work is enabled by and is a super-set
of theirs as it extends to numerous other debugging concepts (and is not restricted to model
transformations).

Kos et al. developed a fully featured DSm debugger that supports breakpoints, runtime
variable I/O, print statements and more at the DSm level. Their work closely follows our
past publication on the work from this chapter. Though their work presents an appealing
real world realization of a DSm debugger, it is limited with respect to our proposals in two
ways. First, the Ladybird debugger is intricately tailored and bound to a single tool and
DSML. Second, Kos et al. give no mention as to the inner workings of their debugger (i.e.,
as to how they went about implementing breakpoints, etc. at the DSm level). Among other
inconveniences, this makes their work difficult to reproduce.

3.7 Conclusion and Future Work

The work presented in this chapter was motivated by the archaic means that state-of-the-art
DSM projects rely on for debugging. Indeed, manual instrumentation of coded generators
and synthesized artifacts is common practice. This is akin to programmers being required
to insert print statements into compilers and compiled forms of their programs to debug
their code. The argument is easily made that GPLs would not have had such a tremendous
impact on productivity if code debugging were carried out in such a convoluted manner.

To guide the development of much needed debugging facilities in the context of DSM, we
propose a conceptual mapping from debugging concepts in the software development realm
to the DSM realm, while discussing and evaluating possible implementations for each con-
cept. This mapping distinguishes between the two different facets of DSM debugging: the
debugging of operational and denotational semantics (specified as model transformations)
and the debugging of DSms and artifacts. We made a further distinction between debugging
scenarios for two types of DSM users. Designers are DSM experts who are fully aware of and
understand the model transformations that describe DSML semantics and generate lower-
level artifacts. Modellers are arbitrary domain experts who must be shielded from anything
at a level of abstraction below that of their DSms.

Our work demystifies the amount of effort required to build DSM debuggers: numerous
model transformation debugger features can be integrated into MTLs and their execution
engines, while structured and traceability-focused artifact synthesis can considerably facili-
tate the implementation of numerous DSm and artifact debugger features. AToMPM, in its
current state, demonstrates a number of the suggestions we propose.
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Finally, completing the implementation of a full-fledged debugging environment in AToMPM
and the further study of the meaning of breakpoints in the context of implicit state formalisms
is deferred to future work.
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Chapter 4

Domain-Specific Engineering of
Domain-Specific Languages

This chapter introduces a novel approach to the engineering of DSMLs that raises the levels
of abstraction at which their syntax and semantics are specified. The proposed approach is
rooted in DSM principles and treats traditional DSML syntactic and semantic specifications
as target domain artifacts to be synthesized from higher-level DSms whose problem domain
is that of modelling language design. The insight that DSMLs commonly re-use fragments of
certain modelling formalisms to allow for state-based, data-flow based, etc. modelling leads
to the identification of a collection of base formalisms that are leveraged as problem-domain
constructs. A template-based approach for combining these is introduced, which effectively
enables DSML specification in terms of base formalisms in a manner that unifies syntactic
and semantic concerns. Means to automatically translate these DSms of DSMLs into tradi-
tional syntactic and semantic specifications (for use in traditional tools) are described. The
approach is demonstrated by means of two example DSMLs, one of which is PhoneApp.

86



4.1 Problem Statement and Outline

Despite the stated merits of DSM, the guiding principles that enable full artifact generation
from DSms have yet to be incorporated into the workflow of DSML engineering. Although
much effort has been spent on enabling domain experts with powerful and high level facili-
ties, the implementation of these facilities remains fixed at a rather low level of abstraction.
On the one hand, DSML abstract syntax specification is often an ad hoc process devoid of
guidelines and reusable building blocks. On the other hand, artifact synthesis from DSms is
still commonly performed via complex hand-coded and ad hoc text generators which manip-
ulate internal model representations via tool APIs. Thus, the definition of both the syntax
and semantics of modern DSMLs bears more resemblance to programming than to DSM.

Although recent research (including that presented in Chapter 2) has proposed improve-
ments to the modularity and efficiency of the traditional approaches to DSML syntax and
semantics specification, its impact on the overall elevation of the level of abstraction of DSML
engineering has been limited due to the failure to bridge the vast divide between syntax and
semantics that characterizes modern DSML design. An obvious manifestation of this divide
is the separate specification of syntax and semantics: models of DSML abstract syntax hold
no information about the language’s semantics. Consequently, an effective means to bridge
the gap between DSML syntax and semantics is to make explicit the conceptual links be-
tween the former and the latter in a unified representation.

Abstract syntax of a DSML is commonly specified as a UML Class Diagram meta-model.
An undesired consequence of this is that – much like common UML models of programs do
not hold sufficient information to generate complete program code – these meta-models do
not hold sufficient information for the full semantics of the modelled languages to be au-
tomatically inferred and complete applications to be synthesized. The manual definition of
DSML semantics is both non-trivial and repetitive: it is conceivable that numerous modelling
languages share some semantics. Consider, for instance, the subset of all DSMLs where the
notions of state and transition exist. It is reasonable to assume that model transformations
or coded generators for these languages will have some amount of similarity and even over-
lap. Non-trivial yet repetitive problems are often prime targets for automation via DSM. In
this context, we wish to create explicit models of DSMLs and produce from these models
DSML abstract syntaxes (i.e., appropriate UML Class Diagrams and constraints) and seman-
tics (i.e., DSm-to-artifact transformations). We believe that a number of well-understood
formalisms that encompass commonly recurring concepts in DSMLs (e.g., Statechart for
reactive behaviour, states, and transitions [Har87, HK04]) and for which precise semantics
exist can form a basis for such modelling of DSMLs. Challenges then include the selection
of these base formalisms, the identification of means by which they may be leveraged and
combined to create models of new DSMLs, and how these DSML models may be transformed
into explicit abstract syntax and semantics specifications.

The vast number of conceivable DSMLs and the syntactic and semantic similarities be-
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tween them naturally invite the application of DSM principles to ease, elevate the level of
abstraction of, and partially automate the DSML specification process. Our main contri-
bution is the introduction of a novel approach to defining DSMLs that elevates the level of
abstraction of their specification, builds on existing low-level formalisms, makes conceptual
links between syntax and semantics explicit, enables automatic synthesis of abstract syntax
models and DSm-to-artifact model transformations, and effectively alleviates much of the
burden traditionally placed on DSM experts.

The rest of this chapter is structured as follows. In Section 4.2, we survey relevant research
work. Section 4.3 explains the rationale behind our novel approach to DSML engineering
and proposes a set of low-level modelling formalisms that form a basis for (re-)constructing
– ideally – any conceivable DSML. Section 4.4 shows how new DSMLs can be specified
in terms of the base formalisms from Section 4.3, and how these DSML specifications are
transformed into meta-models and model transformations that respectively capture DSML
abstract syntax and semantics. Section 4.5 describes in detail how two non-trivial DSMLs
can be defined using our novel approach, and explicitly shows their generated abstract syn-
tax and semantics specifications. Section 4.6 discusses the extensibility, applicability and
limitations of our approach, and provides a critical comparison with traditional DSML de-
sign and engineering practices. In, Section 4.7, we compare our approach to the relevant
works presented in Section 4.2. Finally, Section 4.8 discusses future work and provides some
closing remarks.

4.2 Survey of Relevant Research Work

The purpose of this section is to provide an in-depth survey of research work relevant to the
proposed scientific contributions of this chapter. Our contributions are neither compared
here nor are they situated with respect to the reviewed works. Such comparisons are instead
provided in Section 4.7.

4.2.1 Specifying and Representing Abstract Syntax

Numerous modern DSM tools support meta-modelling based on the OMG’s MOF or some
variant of it, such as Ecore [EFb]. These include GME (Generic Modeling Environment)
[LMB+01], AToM3, AToMPM and EMF (Eclipse Modelling Framework) [EFb]. In such
tools, DSML abstract syntax is commonly described using UML Class Diagrams. Strictly
textual DSM tools often favour the use of HUman readable Textual Notations (HUTNs)
as the means to specify DSML abstract (and concrete) syntax. Example HUTNs include
TXL [Cor06], Stratego/XT [BKVV08] and MetaDepth [dLG10]. Meta-modelling-based and
grammar-based visual and textual abstract syntax representations each have their strengths,
weaknesses and target audiences. For instance, it turns out that UML Class Diagrams very
concisely, intuitively and most of all accessibly capture DSML abstract syntax and are thus
currently the representation of choice. However, for DSM experts and modellers with stronger
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biases towards programming, HUTNs are often a more natural choice. A property of these
representations is that neither of them is meant to carry any significant information about
the modelled language’s semantics. Whether this is a limitation or a strong point is the
subject of debate, one that is taken up in this chapter.

4.2.2 Combining Modelling Languages

The problem of DSML combination has been the subject of recent research. On the one
hand, DSML combination is desired for merging distinct views of a single system (e.g., a
UML Class Diagram describing a system’s structure with one or more Statecharts describing
its behaviour). In [Val10], Vallecillo argues that it is unrealistic to model large and complex
systems with a single instance model of a single DSML, and that instead it is preferable to
model different facets of such systems with distinct instance models of distinct DSMLs. In
essence, his argument is that as systems grow, the MPM principles move from best practices
to bare necessities. Vallecillo provides a broad survey of existing model and meta-model
combination approaches, and introduces the viewpoint unification technique. The reviewed
and proposed approaches are mostly aimed at the merging of interrelated models and meta-
models.

On the other hand, other authors have tackled the problem of DSML combination from
an engineering perspective, studying how recurring patterns and structures in DSMLs can
be turned into generic building blocks. In [ES06], Emerson and Sztipanovits target the
reuse of parts or all of existing meta-models to address the repeated redefinition of popular
meta-modelling patterns. Their technique, template instantiation, consists in presenting the
meta-modeller with a library of templates that each capture some common abstract syn-
tax pattern (e.g., composition hierarchies of composite and atomic objects, Statechart-style
modelling). The meta-modeller can then instantiate these templates with his own domain-
specific concepts yielding appropriately customized meta-model patterns in a timely, less
error-prone and more standardized manner. A limitation of this approach is that it only
strives to generate syntactic patterns within meta-models, with no focus on semantics.

White et al. also considered DSML combination from the perspective of reuse. In
[WHT+09], they describe how Feature Diagrams can be used to describe the interactions and
dependencies between a collection of collaborating DSMLs. They argue that given appropri-
ate code and model generation infrastructure, the selection of an arbitrary configuration of
features (from one such feature model) could be used to automatically synthesize an appro-
priate meta-model. Their work borrows numerous ideas from SPLs and as such, is targeted
at scenarios where there is a need to produce a finite number of similar meta-models.

4.2.3 Specifying and Representing Semantics

Although modern DSML syntax engineering does still lack in formal and standardized guide-
lines, the most ad hoc step of any DSM project remains the definition of a DSML’s semantics.
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The common approach – at least, for DSms of executable systems – is to encode the seman-
tics of a language in a hand-crafted code generator1 [Met, Saf07, KT08, WGM08]. Although
certain tools, perhaps the most advanced of which is JetBrains’ Meta Programming System
(MPS) [Jet], propose means to organize and modularize the code generation process, it re-
mains at a very low level of abstraction. Approaches that make use of model transformations,
despite being at a more appropriate higher level of abstraction, often lack in formality and
are equally ad hoc.

Certain authors have begun to suggest that both hand-coded and modelled DSm compil-
ers rely too heavily on the ad hoc manual specification of semantic mappings. In [CSN05], the
notion of semantic anchoring is explored in the context of formalizing and semi-automating
DSML semantics specification. First, library-like reusable semantic units are defined to cap-
ture commonly occurring semantic patterns. Then, syntactic templates – much like those
from [ES06] – are mapped onto appropriate semantic units by tool developers. The result
is a language engineering environment where partial semantics can be generated, thereby
alleviating the DSML designer burden and providing a standard solution to recurring prob-
lems. Related ideas are proposed by Pedro in [Ped09]. He introduces an approach in which
DSML designers can instantiate parametrizable meta-models and transformations with their
own manually defined meta-model and transformation fragments. This enables the reuse
of the non-parametrizable portions of parametrizable meta-models and transformations. A
key point of interest of these approaches, which may or may not be seen as a limitation
depending on context, is that they only strive to generate partial semantics (and syntax).

4.3 DSML Building Blocks

A plethora of modelling formalisms exists. Some formalisms only differ in their concrete
syntax, or have slightly different abstract syntax. However, formalisms are only truly dif-
ferent if their semantics differ. Seemingly small syntactic differences may have large as-
sociated semantic differences. For example, the simple introduction of inhibitor arcs in
Place/Transition Petri Nets drastically changes their expressiveness from Turing-incomplete
to Turing-complete. One way of classifying formalisms is based on systems theory. The
nature of the state-space (continuous/discrete, finite/infinite) as well as the notion of time
(continuous/discrete/partial order) allow for a structured distinction between different for-
malisms. The different notions of concurrency and determinacy allow for further classifi-
cation. Despite the immense variety of (possible) modelling formalisms, a relatively small
number of formalism classes can be distinguished. These are listed below. For each class,
we give a representative, which we will henceforth refer to as base formalisms.

• Timed, reactive, deterministic descriptions where state is explicit (e.g., Statechart)

1Thus, the semantics of high-level models is defined in terms of the well-understood semantics of low-level
programming languages.
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• Descriptions of non-determinism, concurrency and synchronization where the notion
of state is implicit (e.g., Petri Net)

• Descriptions focused on processes and/or interactions (e.g., Communicating Sequential
Processes [Hoa85])

• Discrete- or continuous-time dataflow descriptions of algebraic computation (e.g., Causal
Block Diagram, such as The Mathworks’ Simulink [The])

• Layout (constraint) descriptions (e.g., GUI, see meta-model in Figure 4.1)

• Descriptions of computations such as found in procedural programming languages (e.g.,
ActionCode, see meta-model in Figure 4.2)

It has been our experience that the majority of DSMLs constructed by ourselves and
others is (conceptually) based on a combination of (fragments of) one or more of the listed
class representatives. The notion that most – or all – DSMLs are the result of the combina-
tion of a limited set of such building blocks is the rationale behind the approach proposed in
this chapter. This notion very nicely ties into the approach to DSML semantics specification
presented in Chapter 2. Indeed, if DSMLs are compositions of base formalisms, it stands to
reason that decomposition means might allow DSms to be projected onto instance models
in relevant base formalisms that could then be merged back together into coherent artifacts.
Such disassembly and merging tasks are indeed reminiscent of the concern isolation and
projection and intermediate representation merging model transformations that produced
Google Android applications from PhoneApp models.

We make no claim towards the exhaustiveness of the proposed list of formalism classes.
However, the meaning of the “exhaustiveness” property in this context is unclear. If it indi-
cates that the set of proposed classes suffices to reconstruct any conceivable DSML, then any
set of classes that includes a Turing-complete formalism is immediately exhaustive. This is
a trivial and empty claim: the fact that any problem can in theory be mapped onto code
or enhanced Petri Net models does little to elevate the abstraction of DSML design and
engineering. Indeed, the exhaustiveness of a Turing-complete set of base formalisms in the
context of providing abstractions for common types of system architectures (e.g., discrete-
time deterministic) is of limited relevance. A more interesting property is the set’s ability to
provide sufficiently high-level abstractions, which we term its usefulness. This is of course
an informal and subjective property which is a function of DSML designer tastes and of
existing/required system architectures. We can of course not claim that the listed formalism
classes are universally (as) useful for all DSML designers, or that its usefulness will not decay
over time. These concerns are more thoroughly addressed in Section 4.6. Fortunately, they
are of little consequence with respect to the upcoming description of how an arbitrary set of
base formalisms may be leveraged and combined to form DSMLs.

Finally, note that the provided formalism classes mostly focus on capturing system ar-
chitectures and behavioural paradigms. Indeed, our usefulness criteria are biased towards

91



Figure 4.1: The GUI meta-model.
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Figure 4.2: The ActionCode meta-model.

DSms of executable systems for which precise semantics are required. Nevertheless, our
approach is not restricted to any spectrum of DSMLs or target platforms. A different (and
more useful) set of base formalisms – possibly a superset of the proposed set – could include
abstractions on top of which DSMLs for describing structure and variability, for instance,
could be built.

4.4 A Unified Representation of DSML Syntax and Se-

mantics

Despite its advantages, the artifact synthesis technique presented in Chapter 2 still has two
unfortunate limitations in the context of DSML engineering. First, it requires a considerable
amount of non-trivial craftsmanship since the semantic mapping of DSms to artifacts still
needs to be specified manually. DSML designers must manually identify which portions
of their languages to project onto which lower-level formalisms, how to carry out the said
projections, and how to weave their results back into coherent artifacts. Second, it does
not address the specification of DSML syntax, which it assumes has already been defined
separately (e.g., as a UML Class Diagram). Section 4.3 introduced a collection of low-level
formalisms that we argued could be combined to form more complex new DSMLs. In this
section, we propose an approach to perform the said combination such that resulting models
of DSMLs carry both syntactic and semantic information. From these, automated synthesis
of traditional syntax and semantics specifications can be performed, thereby eliminating the
aforementioned limitations of our previous work while retaining all of its benefits. Keeping in
mind the said benefits, a desirable technique for the construction of new DSMLs in terms of
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base formalisms should enable the elegant automation of the deconstruction and projection
of DSms onto base formalism instance models, while maximally shielding the DSML designer
from any resulting accidental complexities.

4.4.1 Specifying DSML Syntax and Semantics

We propose that the specification of DSML syntax and semantics be reduced to the instan-
tiation of a set of syntactically and semantically rich templates, which we term Semantic
Templates (STs), with arbitrary domain-specific concepts. These templates are much more
than placeholders for isolated syntactic and/or semantic structures as was the case for the
template-based approaches presented in Section 4.2. Instead, they are interfaces to the base
formalisms that are combined to form new DSMLs. Each base formalism exposes a set of STs
that encode the unambiguous mapping of arbitrary domain-specific entities onto (syntactic
and semantic) entities from the given base formalism. Each ST encompasses the knowledge
of which domain-specific concepts should be mapped onto which base formalism, as well
as how to carry out the mapping. In practice, the specification of a base formalism’s STs
forms a meta-model, to which models formed by instantiated templates conform. This is
illustrated in Figure 4.3. Figures 4.3a and 4.3c show ST meta-models for the Statechart and
Petri Net base formalisms, respectively. Figures 4.3b and 4.3d show sample models where
each available ST from the relevant ST meta-model is instantiated. The meaning of the
depicted templates and of the EventList construct present in both ST meta-models will be
detailed shortly.

ST meta-models define one class for each valid ST. The attributes of such classes rep-
resent the parametrizable fields of their associated ST. For instance, the IsAStateTemplate
ST takes two parameters, which its associated class, IsAStateTemplate, captures via the
1 and 2 attributes. Note that little care is put into giving ST parameters meaningful

names. Their intended meaning is instead conveyed in the concrete syntax of instantiated
STs, as shown in Figure 4.3.

ST meta-models (like any other) may include arbitrary constraints. Indeed, much of the
power and productivity increases attributed to DSM are the results of restricting modellers
to the creation of valid models. The same rationale naturally extends to DSML design
and engineering when DSMLs themselves are viewed as DSms. In this context, meta-model
constraints are meant to ensure that given STs are not instantiated too often or too lit-
tle, that they are not instantiated more than once with identical parameters, that they are
not given invalid parameters (e.g., a negative number where a positive one is expected),
but most importantly, to prevent logical inconsistencies that would otherwise result from
conflicting template instantiations. For example, given a template of the Petri Net base
formalism that encodes the mapping of one domain-specific concept onto a Place and of
another domain-specific concept onto a Transition, a conflict would occur if the template
were to be instantiated twice with reversed parameters. The first instance would imply
that domain-specific concepts X and Y are to be respectively mapped onto a Place and a
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Transition, while the second instance would imply the opposite. Thus, meta-model con-
straints are essential to ensure the composability of a base formalism’s STs.

Our approach follows the underlying principle of DSM, namely, the leveraging of expertise
using maximally constrained notations. In DSM, domain experts are called upon to create
models of problems in their domains, DSM experts are called upon to create models of DSML
syntax and semantics, and programming experts may be called upon to implement APIs (or
other target platform artifacts) amenable to code generation. Each actor is meant to perform
only the tasks that fall within the range of his expertise, using only familiar concepts and
constructs. Although DSM experts should be aware of the best practices that govern DSML
design, the aforementioned task allocation also forces them to have a non-negligible mastery
of an arbitrarily large number of domains and target platforms for artifact generation (e.g.,
the Petri Net formalism, the Python programming language, the Google Android API).
This is unrealistic and contrary to the very principles of DSM. Moreover, the relatively
small number of DSM experts (who are repeatedly forced to learn new problem and solution
domains) quickly emerges as a bottleneck for the adoption of DSM. Our approach aims at
alleviating the burden placed on DSM experts by appropriately redistributing their tasks.
First, there exist experts on the specification of how arbitrary concepts should be mapped
onto a formalism F (which may be a modelling formalism or a programming language).
Indeed, these are none other than experts of formalism F , and, in our approach, they –
rather than (possibly otherwise F -oblivious) DSM experts – specify F ’s STs, and provide
the knowledge of how domain concepts that instantiate a ST of base formalism F should
be mapped onto syntactic and semantic concepts of F . In addition, this knowledge is only
provided once, when the base formalism and its STs are first introduced. This contrasts
with current, code-generator- or model transformation-centric approaches, where numerous
DSM experts with varying levels of expertise with formalism F each re-implement (probably
strikingly similar) mappings onto F for (possibly) many of their projects. Second, given
sufficiently useful sets of base formalisms, the specification of DSMLs in terms of their STs
becomes more accessible and could often conceivably be accomplished by problem domain
experts. Indeed, once such activities as the definition of UML Class Diagram meta-models
and of coded or modelled DSm-to-artifact compilers have been abstracted away (i.e., within
a ST-enabled tool), common DSML design and engineering tasks no longer require DSM
experts. Thus, just as the DSM community would often have programming experts move
behind the scenes, away from problem domain experts, by elevating solution design and
implementation above notions of code, we would often have DSM experts take a similar
step back, by elevating DSML design and implementation above lower-level DSM and meta-
modelling notions.

4.4.2 The Semantics of Semantic Templates

STs were introduced as interfaces exposed by base formalisms that carry sufficient informa-
tion to automate the projection of DSms onto base formalism instances. In practice, the
meaning of a ST of base formalism F is specified (by an expert of F ) in two separate steps.
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(a) The ST meta-model of the Statechart formalism.

(b) A model that instantiates both templates from the Statechart ST meta-
model.

Figure 4.3: ST meta-models and example instance models (continued).
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(c) The ST meta-model of the Petri Net formalism.

Figure 4.3: ST meta-models and example instance models (continued).
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(d) A model that instantiates both templates from the Petri Net
ST meta-model.

Figure 4.3: ST meta-models and example instance models.

First, the syntactic implications of the ST (i.e., the impact(s) of its instantiation on the to-be
formalism’s abstract syntax) are defined. Then, its semantic implications (i.e., the impact(s)
of its instantiation on the to-be formalism’s semantics). In our approach, meta-models are
still represented via UML Class Diagrams augmented with constraints, and semantics are
still represented via model transformations. We do not propose to eliminate these proven
and effective representations, but rather to automatically synthesize them from models of
DSMLs that hide the infamous divide between syntax and semantics within a higher-level
and unified representation.

A ST’s syntactic implications consist of a collection of constraints and a partial UML
Class Diagram. The set of constraints and the full UML Class Diagram that result from
the instantiation of a collection of STs (from possibly many base formalisms) will form the
meta-model of the new DSML. Thus, each ST contributes to a fraction of the final DSML’s
abstract syntax. To avoid unnecessary duplication and complexity (in particular during the
subsequent specification of the semantic implications), we strongly favour the use of inher-
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itance relationships to relate classes corresponding to domain-specific concepts with classes
within the UML Class Diagrams of base formalisms. In turn, this enables attributes, associ-
ations and constraints to be “passed down” from the base formalisms, or, in other words, for
portions of their syntax to be inherited. In practice, the syntactic implications of a base for-
malism’s STs are encoded in its genAS (for generate abstract syntax) model transformation.
Its rules match STs in their LHSs and produce the aforementioned partial meta-models in
their RHSs. Figures 4.4a and 4.4c show the genAS transformations of the Statechart and
Petri Net base formalisms, respectively. Both transformations operate very similarly. First,
they import the entire meta-model of the relevant base formalism (via R ImportMM rules).
Then, a new class is created for each domain-specific concept that instantiates a ST (via
R MakeNewClass rules). Next, appropriate inheritance relationships are created between
domain-specific concept classes and base formalism classes (via R InheritFrom* rules). Fi-
nally, additional attributes, constraints and multiplicities are injected as needed. Figure 4.4b
depicts the R InheritFromOrthComp rule, which matches a Statechart ST, a base formalism
class and a domain-specific concept class, and creates an inheritance relationship between
the latter two. A NAC is used to elegantly avoid re-applying the rule on previously processed
input. See Figures 4.17 and 4.24 in Section 4.5 for examples of full meta-models generated
from STs.

The semantic implications of a base formalism’s STs are fully encapsulated within its
mapTo model transformation, which projects DSms onto it. Its rules match patterns in DSms
and produces semantically equivalent patterns in base formalism instances. Thanks to sub-
type matching and to the inheritance approach described above, these rules are generic and
need not specify domain-specific constructs to match them. Figures 4.5a and 4.5b show the
mapTo transformations of the Statechart and Petri Net base formalisms, respectively. These
transformations are also conceptually quite similar. They create appropriately parametrized
base formalism entity instances (e.g., Statechart States and Petri Net Places) for each sub-
typing domain-specific entity (via R *Subtype2* rules). Then, they connect the new entities
in a manner that reflects connections, if any, in the DSm. In the case of the Petri Net mapTo
transformation, the last three rules are used to realize the notion of capacity (i.e., a Place’s
maximum number of tokens) which is not a native part of the Petri Net meta-model. This
is further explored later in this section. Figure 4.5c depicts the R PlaceSubtype2Place rule.
Not shown are the subtype matching flag and condition code which cause the Place labelled
“0” to only match domain-specific entities that subtype the Place type. Thus, for each such
subtype, this rule yields an appropriately parametrized Place. Note that generic links are
produced to connect DSm and base formalism entities such that the numerous aforemen-
tioned benefits of traceability might be reaped later on. Once a mapTo transformation has
run its course, any transformation defined on the targeted base formalism (e.g., a Statechart
to Java transformation) may be used to manipulate the resulting base formalism instance
model. The means by which individual STs are transformed into traditional DSML syntax
and semantics have been explored. Concrete examples are depicted and explained in the
following paragraphs.
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Figure 4.6 details a ST of the Petri Net base formalism. Its general and instantiated forms
are shown in Figures 4.6a and 4.6b respectively, while Figures 4.6c and 4.6d shows the lat-
ter’s syntactic impacts. The first of them is that a class is created for the X domain-specific
concept and made to subclass the Place class from the imported Petri Net meta-model.
Side-effects of this are that instances of X in the DSm may now be connected to Transition

instances (and vice versa) and possess an nbTokens attribute. The second of the ST’s pa-
rameters dictates the maximal number of tokens X may carry. When set to infinity, it has no
syntactic impact. However, when set to a fixed value k, a capacity attribute and two con-
straints are added to X. The first, metaEnforeCapacity ensures that the capacity attribute
of instances of X in the DSm never exceeds k. The second, enforceCapacity, ensures that the
nbTokens attribute of instances of X in the DSm never exceeds their capacity attribute.
These are thus constraints that guide modellers towards creating only valid models. As
for the semantic impacts, as mentioned earlier, these are captured by the Petri Net mapTo
transformation. As X subclasses Place, its instances will be matched by the transformation’s
rules (such as the aforementioned R PlaceSubtype2Place rule) that will extract all relevant
information from them to create appropriate Places. However, this extraction process is not
as trivial as simply copying the nbTokens attribute from each X into its corresponding new
Place. The capacity attribute must also be accounted for if the resulting Petri Net instance
model is to be truly semantically equivalent (as far as those concerns captured by Petri Net
models go) to the DSm. Thus, the final three rules of the Petri Net mapTo transformation
translate the concept of capacity into Petri Net terms. Essentially, via the addition of an
appropriately connected capacity Place, any transition that wishes to add a token to the
Place representing an X will be disabled if that Place already contains a number of tokens
equal to its capacity. This is illustrated in Figure 4.27 from Section 4.5. Note that if the
capacity were to be left infinite, the final three rules of the Petri Net mapTo transformation
would be non-applicable. Thus, despite the fact that mapTo transformations are already
defined and that the purely semantic impacts of STs (and of their parametrizations) may
seem negligible, they do indeed exist and should not be underestimated.

Figure 4.7 details another ST of the Petri Net base formalism. Again, general and in-
stantiated forms are shown. As for syntactic impacts, classes are created for the X and
Z domain-specific concepts and respectively made to subclass the Place and Transition

classes from the imported Petri Net meta-model. Note that the R MakeNewClass rules from
Figure 4.4 ensure that exactly one class is created for each domain-specific concept. All other
abstract syntax generation rules merely match and augment them (e.g., with attributes or
inheritance relationships). Side-effects of the aforementioned syntactic impacts are that X

instances in the DSm may now be connected to instances of Transition and of Z (and vice
versa). This specific template further implies that Z instances should not have any inputs.
This constraint is reflected in the cardinalities attribute of the Z concept’s class which
sets the maximum number of incoming connections from Place subtypes to zero, as shown
in Figure 4.7d. As above, semantic impacts are captured by the Petri Net mapTo transfor-
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(a) The genAS model transformation of the Statechart formalism.

(b) The R InheritFromOrthComp rule from (a).

Figure 4.4: Abstract syntax generating model transformations and rule (continued).
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(c) The genAS model transformation of the Petri Net formalism.

Figure 4.4: Abstract syntax generating model transformations and rule.
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(a) The mapTo model transformation of the Statechart formalism.

Figure 4.5: Base formalism instance generating model transformations and rule(continued).

mation.

Figure 4.8 details a ST of the Statechart base formalism. The first of its syntactic impacts
is that a class is created for the A domain-specific concept and made to subclass the State

class from the imported Statechart meta-model. A side-effect of this is that A instances in
the DSm may now be connected to each other via Transition links. The second of the ST’s
parameters allows DSML designers to hide part of the Statechart formalism’s features from
the domain-specific modeller. In this case, inter-state transition triggers are restricted to
events only. This may be desirable to avoid accidental complexity in a DSML where delayed
transitions are not needed. This restriction is compiled into the generated abstract syntax
by the R InheritFromState+AddTriggerConstraint rule from Figure 4.4a. It is realized as the
restrictEventTypes constraint which ensures DSms are only valid if none of their transition
triggers are delays. Analogously to previous cases, semantic impacts are captured by the
Statechart mapTo transformation, which maps networks of connected A instances onto se-
mantically equivalent (as far as those concerns captured by Statechart models go) Statechart
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(b) The mapTo model transformation of the Petri Net formalism.

Figure 4.5: Base formalism instance generating model transformations and rule(continued).
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(c) The R PlaceSubtype2Place rule from (b).

Figure 4.5: Base formalism instance generating model transformations and rule.

instance models.

Figure 4.9 details a ST of the ActionCode base formalism. The first of its syntactic
impacts is that a class is created for the C domain-specific concept and is made to subclass
the Code class from the imported ActionCode meta-model. This ST is extremely simple.
Given the need and proper tool support, a second parameter could be added to restrict the
language of code specified in the body and imports attributes of instances of C. In turn, this
could lead to meta-model constraints (e.g., arbitrarily complex verifications of code valid-
ity) or serve to provide appropriate syntax highlighting in the DSM tool’s attribute editor.
Semantic impacts are captured by the ActionCode mapTo transformation, which trivially
creates a Code entity with identical attributes for each C.

Figure 4.10 details a generic ST. This ST has no associated base formalism. Its sole pur-
pose is to organize and abbreviate DSML specifications, much like inheritance relationships
in the code world often effectively reduce complexity and duplication. Its trivial syntactic
impact is shown in Figure 4.10c, and is defined by ST tool developers (as opposed to base
formalism experts). In practice, the second of its parameters is often used in a ST from some
other base formalism. For instance, if the ST from Figure 4.8 were present, an instance of
this generic ST might be “P s and Qs are types of As”. This would imply the creation of
inheritance relationships between the classes of concepts P and Q and that of A, and that the
Statechart mapTo transformation would now also match and transform instances of P and
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Figure 4.6: (a) A ST of the Petri Net base formalism, (b) an example instance, and (c-d) its
abstract syntax implications.
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s produce items onto s
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Figure 4.7: (a) Another ST of the Petri Net base formalism, (b) an example instance, and
(c-d) its abstract syntax implications.
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s transition between eachother on events|timeouts|events and timeouts
(a)

(b)
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Figure 4.8: (a) A ST of the Statechart base formalism, (b) an example instance, and (c) its
abstract syntax implications.

Q into States. Similar cases are encountered in the examples of Section 4.5.

Five STs have been reviewed. Some are easily transformed into partial abstract syntax
patterns. Others require more elaborate non one-to-one syntactic and/or semantic mappings
as they reduce base formalism expressiveness within DSMLs (e.g., restrictions on Transition

trigger types) and/or abstract and bundle non-trivial base formalism structures into higher-
level representations (e.g., Place capacity structures as attributes). Regardless, all STs are
given meaning in the same manner: via base formalism (and generic) genAS and mapTo
transformations. Together, these enable a collection of instantiated STs to define complex
DSML abstract syntax and the means by which domain-specific constructs should be mapped
onto semantically equivalent (as far as those concerns captured by the target base formal-
ism go) base formalism instance models in a single, concise and high-level representation.
Note that in the presence of STs from several base formalisms, a DSML’s semantics must
include several mapTo transformations. Thus, in practice, when the top-level model transfor-
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Figure 4.9: (a) A ST of the ActionCode base formalism, (b) an example instance, and (c)
its abstract syntax implications.

mation that captures a new DSML’s semantics is synthesized from a collection of STs, each
ST contributes its base formalism’s mapTo transformation (if it hasn’t already been) to the
top-level transformation. This is by far the most crucial and explicit semantic impact of STs.

Finally, note that in the depictions of syntactic impacts, classes from imported base
formalism meta-models are not abstract. Thus, revisiting the ST from Figure 4.6, DSms
may contain entities of X, of Place, and of Transition. On the one hand, it may be
confusing for concepts not used to instantiate any STs (e.g., Transition) to be accessible
parts of the synthesized DSML. On the other hand, this enables much more concise DSML
specifications. In practice, DSML designers can very easily include and exclude constructs
from DSMLs without having to manipulate the generated abstract syntax (e.g., to make
undesired concepts’s classes abstract) by defining concrete syntax only for those concepts
that are wanted in DSms2. For instance, if concrete syntax representation were only defined
for Xs and Transitions, Places could not be instantiated within DSms.

2Note that our approach entirely ignores concrete syntax. It is left to the DSML designer or domain
experts to specify proper icons for domain-specific concepts.
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Figure 4.10: (a) A generic ST, (b) an example instance, and (c) its abstract syntax impli-
cations.

4.4.3 Merging Base Formalism Instance Models

We’ve argued that STs indeed encode sufficient information to fully specify the projection
of DSms onto instance models mi of base formalisms Fi. However, recalling the artifact syn-
thesis process introduced in Chapter 2, these mi must be merged back together to produce
cohesive target platform artifacts that properly reflect DSm semantics. The need for such
merging originates from the facts that certain domain-specific entities may have synthesized
counterparts in more than one mi, and that it may be necessary for events and/or data from
one mi to be translated and propagated to another. This scenario was discussed in Chap-
ter 2 where mobile phone Screen constructs at the DSm level were mapped onto instances
of both the Statechart and AndroidScreens formalisms. In that example, it was necessary
for entry into a Statechart State corresponding to a certain Screen to trigger the display
of the AndroidScreens AndroidScreen corresponding to that same Screen. The required
event propagation was implemented by the DSML designer, who first had to decide how to
instrument the behaviour artifact such that it made appropriate use of other artifacts (e.g.,
layout), and then had to manually enhance artifact generating model transformation rules to
facilitate and implement this weaving. This was arguably one of the most complex steps in
the proposed semantics specification approach. Luckily, its difficult and menial tasks can be
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fully automated by making a small adjustment to the artifact synthesis process, and by mak-
ing use of STs to describe event translation. First, rather than literally merging mi models
together, target platform artifacts ai are now generated from each of them. Additionally, a
main artifact (i.e., the artifact to execute) is responsible for initializing and launching each
ai. Throughout their execution, these ai each emit and consume a number of events for
which DSML designers must specify translations (e.g., event e from ai should cause event f
to be sent to aj) via generic STs.

Before we can truly examine how events are mapped across artifacts, we must first es-
tablish the spectrum of existing events. To this end, we further develop the idea of “STs as
interfaces to base formalisms” into a new direction. Along with a set of STs, base formalisms
are also characterized by a collection of input and output events3. These are chosen and
defined by the base formalism expert such that meaningful interactions are made possible.
Table 4.1 shows a tentative list of events produced and consumed by each base formalism4.
The introduced events are defined at the base formalism level. However, for the DSML
designer to make (proper) use of them, they need to be made available at the DSML level.
In our ST approach, events are treated in a manner analogous to class properties and meth-
ods: DSMLs inherit the events of base formalisms they are built on. More specifically,
domain-specific constructs inherit the events of base formalism constructs they subtype (in
the generated DSML meta-model). Thus, referring to Table 4.1 and recalling the running
example from Chapter 2, a mobile phone screen construct that appropriately instantiates
STs from both the Statechart and GUI base formalisms would inherit all the input and out-
put events of both formalisms. It may then make sense to translate enteredState events
produced by the Statechart artifact to draw events and redirect them to the GUI artifact.

The mapping of events between different base formalisms only makes sense in cases where
a domain-specific concept inherits events from more than one base formalism. Identifying
such concepts in a ST DSML definition trivially reduces to identifying domain-specific con-
cepts that are used to instantiate STs of more than one base formalism, and is thus amenable
to validation by meta-model constraints. A single additional generic ST suffices to capture
how synthesized artifacts should emit and respond to events. Figure 4.11 shows both this new
ST and its implications. It has three parameters: the “multi-base formalism” domain-specific
concept, the event to translate and its translation. In Figure 4.11b, these are respectively
X, E and F. Note that more complex translations are supported and are demonstrated in
Section 4.5. This new ST’s semantic impacts are snippets of event management code that
describe the appropriate matching, translation and propagation of events, as shown in Fig-
ure 4.11c. First, the event is matched. One must determine if the base formalism entity
instance that produced the E event has a corresponding associated domain-specific X entity
(Figure 4.11c, line 1). Then, the base formalism artifact sensitive to the F event is retrieved

3The impacts of this event-based scheme on our approach’s applicability are discussed in Section 4.6
4The Place.block and Place.unblock events are syntactic sugar around the Place.setTokenCount:c

event. The former sets a Place’s number of tokens to zero while the latter restores a Place’s number of
tokens to whatever it was before it was “blocked”, if ever.
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(Figure 4.11c, lines 2-3) and a new F event message targeted at its entity corresponding to X

is sent to it (Figure 4.11c, lines 4-5). Note that two cross-formalism correspondences must be
resolved. These are resolved by navigating a compiled form of the web of traceability links
left behind by artifact synthesis. The collection of event management snippets generated
from instances of the event translation ST are bundled together with transmission protocol
code to form the event manager.

The event manager sits at the center of all target platform artifacts (i.e., of all the ais). It
translates the events they produce into meaningful events in the formalism of their intended
recipient (as specified by instances of the event translation ST) and propagates them to that
recipient. In practice, artifacts synthesized from base formalisms might conform to differ-
ent meta-models (i.e., they might be targeted at different platforms). To ensure the proper
transmission of events between them, our approach requires each artifact to implement a
specific platform-independent transmission protocol. This protocol includes initialization,
termination, and event transmission and reception facilities. Transmission facilities consist
of means to communicate output events to the event manager in a standardized and mean-
ingful manner. Reception facilities consist of means to receive events and translate them
into appropriate commands (e.g., a function call to alter a Petri Net’s marking as a result of
the reception of the Place.setTokenCount:c event). The described transmission protocol
enables and ensures the proper emission, delivery and handling of events between artifacts.
Hence, specifying the mapping of events from one base formalism to another, an operation
previously achieved through the complex and manually specified merging of various models,
now merely involves the straightforward and intuitive instantiations of a single generic ST.

Formalism Produces Consumes

Statechart State.enteredState:name,
State.exitedState:name

MODEL.handleEvent:ev

PetriNet Transition.transitionFired,
Place.tokenCountChanged:c

Place.block,
Place.unblock,
Place.setTokenCount:c

Causal Block Dia-
grams

Block.outputChanged:value Block.setInput:value,
Block.setOutput:value

GUI Canvas.buttonClicked:id,
Canvas.listClicked:id,choice,
Canvas.textChanged:id,text

Canvas.draw

ActionCode Code.codeProduced:ret Code.runCode

Table 4.1: A tentative list of events produced and consumed by each base formalism.

The need for inter-artifact communication was motivated by the necessity for event and
data exchange. More generally, data produced by any artifact may be required by itself or
another later during execution. This was the case in the conference registration example
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On event , produce event
(a)

(b)

(c)

Figure 4.11: (a) The generic event mapping ST, (b) an example instance, and (c) its semantic
implications.

from Chapter 2, where content entered in a text field was required to populate the body
of a subsequent text message. To meet this need in a consistent manner, one last generic
ST is introduced. Figure 4.12 shows both this new ST and its implications. It has three
parameters: the fully specified event, a neutral expression that evaluates to the value to
remember, and a neutral expression that evaluates to the key to store that value under. In
Figure 4.12b, these are respectively X.E:u,v, u and v+"text", which means that on event
X.E:u,v, u will be stored in a data cache under v+"text". This is realized by the data
management code snippet shown in Figure 4.12c, which is bundled with event management
code snippets, if any, during the event manager’s construction.

On event , remember as
(a)

(b)

(c)

Figure 4.12: (a) The generic data storage ST, (b) an example instance, and (c) its semantic
implications.
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We have presented the key elements of our technique for DSML design and engineering.
The entire process, which is mostly reduced to no more than the instantiation of a number
of base formalism and optionally event translation and helper STs, is summarized below.

1. ST meta-models are loaded.

2. ST instances are created and instantiated with domain-specific concept names.

3. The generate DSML functionality (provided by ST-enabled tools such as AToMPM) is
launched, prompting the DSML designer for

• the new DSML’s name, and

• the desired target platform(s) for artifact synthesis

and then automatically creating

• a new meta-model M for the DSML,

• the “main” artifact (responsible for initializing and launching future artifacts),

• the event manager, and

• a semantics model transformation T that sequences appropriate mapTo transfor-
mations, then base formalism-to-target platform transformations, and finally a
web of traceability links-to-target platform transformation.

4. M is loaded and DSms are created.

5. Target platform artifacts are produced from DSms via T .

In the next section, we provide concrete examples that illustrate the creation of two
DSMLs via STs, and show their synthesized abstract syntax and semantics.

4.5 Case Studies

The case studies in this section illustrate how different DSML design tasks can be performed
using our ST approach. In both cases, we first describe the problem domain and requirements
of the associated DSML. We then show the STs that form its specification, along with the
generated abstract syntax and semantics, and example instance models of the new DSMLs.

4.5.1 A DSML for Mobile Device Applications

In Chapter 2, we introduced PhoneApp, a DSML for modelling mobile device applications.
Its manually defined meta-model is shown again in Figure 4.13. With a series of manually
defined multi-rule model transformations, PhoneApp instance models were translated to in-
creasingly lower-level formalisms until a Google Android application was synthesized. We
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Figure 4.13: The manually defined PhoneApp meta-model.

now describe how the PhoneApp DSML can be redefined in terms of STs such that syntax
and semantics analogous to those we had previously defined manually can be fully auto-
matically generated. Before proceeding, recall the three typical concerns of a mobile device
application. The first is its visual interface, which is essentially described by the placement
of widgets on the various screens the user must interact with. The second is its behaviour,
which is described by the timed and user-prompted transitions between the aforementioned
screens. The third encompasses features and functions specific to mobile applications.

The PhoneApp2.0 DSML should be built on top of base formalisms that (ideally) dis-
jointly capture domain concerns. A possible choice is to combine the GUI, Statechart and
ActionCode base formalisms. Unfortunately, this choice forces the domain-specific modeller
to manually input the Google Android code that enacts desired mobile device features. This,
of course, contradicts the DSM and MPM principles that we have repeatedly defended. A
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better approach – which more closely reflects the version of the DSML presented in Chap-
ter 2 – is to model mobile device features at a high level of abstraction, and generate their
associated Google Android code, thus sparing the modeller the need to learn and use the
Google Android API. To this end, we introduce a new non-native, impure base formalism:
AndroidAPI. Its meta-model is shown in Figure 4.14. Abstractions are provided for a small
number of mobile device- and Android-specific functionalities5. Superficially, i.e., to the
DSML designer, native and non-native base formalisms are indistinguishable. They both
expose a set of STs and input/output events, and can be combined arbitrarily to form new
DSMLs. Non-native base formalisms are our approach’s built-in extensibility means. They
enable any DSML designer to promote his DSMLs to base formalism status pending the
specification of its STs (and their implications) and events, which he is after all the most apt
to specify. The number, variety, and level of abstraction of STs available in a ST-enabled
DSM framework is thus unbounded. As for non-native, impure base formalisms, they are
non-native base formalisms for which partial or complete syntax and semantics are defined
manually, outside the scope of the ST-enabled DSM framework. Non-native, impure base
formalisms are our approach’s means to provide escape semantics. They allow DSML design-
ers to promote DSMLs for which syntax and/or semantics already exist to base formalism
status without having to rebuild the DSMLs using existing STs. Section 4.6 discusses in de-
tail the criteria that enable the differentiation of native and non-native base formalisms, and
the scenarios where it is preferable for DSML designers to choose an impure approach to base
formalism specification. Note that in this particular case, the AndroidAPI formalism could
just as well have been a non-native, pure formalism built on top of ActionCode. Our choice
here was merely motivated by the intention to introduce non-native, impure base formalisms.

Figure 4.15 introduces the STs of the AndroidAPI base formalism. It shows example in-
stances and their collective syntactic implications. These are analogous to those of previously
introduced STs, and are realized via the AndroidAPI base formalism’s genAS transforma-
tion, while semantic implications are captured by its mapTo transformation6. Lastly, the
AndroidAPI base formalism is sensitive to the APIFeature.launch event, and produces the
APIFeature.finished event.

Now that its constituting base formalisms have been clearly defined, a specification of
the PhoneApp2.0 DSML can be created. One such specification is shown in Figure 4.16,
and again in condensed, textual form in Table 4.2. This representation clearly requires a
small fraction of the time, space and know-how necessary for the manual specification of the
PhoneApp DSML’s abstract syntax and semantics (using a UML Class diagram augmented
with constraints and model transformations) as was detailed in Chapter 2. Nevertheless,
it carries sufficient information to generate them both. Figure 4.17 shows the synthesized

5This meta-model is of course incomplete with respect to the full Google Android API but it is sufficient
for the purposes of this demonstration.

6The AndroidAPI’s genAS and mapTo model transformations are very similar to those we’ve already
explored and, as such, they are not detailed here. Instead, the full process of promoting a DSML to base
formalism status is explored in a more complex setting in the second case study.
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Figure 4.14: The AndroidAPI meta-model.
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(a)

(b)

Figure 4.15: (a) Example instances of each of the AndroidAPI base formalism’s STs, and
(b) their collective abstract syntax implications.
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meta-model resulting from the syntactic implications of the STs that form the PhoneApp2.0

specification. It combines classes from four imported base formalism meta-models with those
created for the domain-specific concepts. These are identified with “*”s appended to their
names for clarity. The resemblance of the generated meta-model to the manually defined
PhoneApp meta-model from Figure 4.13 is undeniable, and it is indeed virtually equivalent.
As for the semantic implications of the STs that form the PhoneApp2.0 specification, they
are mostly captured by the synthesized model transformation shown in Figure 4.18. Four
mapTo transformations (one for each of the four base formalisms) produce base formalism
instance models from DSms. These are then each compiled into FileSystem models by four
more transformations, and the resulting full FileSystem model is output to disk by another.
Lastly, the web of traceability links left behind by all previous transformations is compiled
and output to disk. The remaining pieces of the generated semantics are the “main” artifact
and the event manager. The former initializes the four target platform artifacts, while the
latter captures the eight event translation and data storage STs.

Formalism Template

< generic > UserCodes, PhoneActions and Screens are types of Steps.

< generic > Dials, SMSs, Browses and Closes are types of PhoneActions.
Statechart Steps transition between eachother on events and timeouts.

GUI Screens are GUI canvasses.
ActionCode UserCodes are coded.
AndroidAPI SMSs send text messages.
AndroidAPI Dials make phone calls.
AndroidAPI Browses display Web pages.
AndroidAPI Closes terminate applications.
< generic > On event Screen.enteredState:name, produce event Screen.draw.
< generic > On event UserCode.enteredState:name, produce event

UserCode.runCode.
< generic > On event *.enteredState:name, produce event *.launch.
< generic > On event *.finished, produce event *.handleEvent:"onfinish".
< generic > On event Screen.buttonClicked:id, produce event

Screen.handleEvent:"onclick:"+id.
< generic > On event Screen.listClicked:id,choice, produce event

Screen.handleEvent:"onclick:"+id+"."+choice.
< generic > On event Screen.listClicked:id,choice, remember choice as

id+".*".
< generic > On event Screen.textChanged:id,text, remember text as id+".text".

Table 4.2: The PhoneApp2.0 DSML, as a set of STs (in condensed, textual form).

Given the abstract syntax and semantics generated from the ST representation of the
PhoneApp2.0 DSML, a domain-specific modeller has all the necessary tools at hand to create
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Figure 4.16: The PhoneApp2.0 DSML, as a set of STs.
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Figure 4.17: The generated PhoneApp2.0 meta-model. Domain-specific concept classes are
identified with a “*”.
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Figure 4.18: The generated PhoneApp2.0 top-level semantics model transformation.
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Figure 4.19: The conference registration application from Chapter 2, as a PhoneApp2.0

model.
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DSms and transform them into target platform artifacts. Figure 4.19 demonstrates this
with a re-creation of the conference registration example from Chapter 2. There are some
noticeable differences with the original conference registration model from Figure 2.19. First,
the triggers on edges between Steps have changed to conform to the syntax specified by the
event translation and data storage STs. Also, there is no more Start construct. Instead,
each Step has an isStart attribute, exactly one of which is set to true. This is a direct
consequence of the simplified version of the Statechart formalism (e.g., explicit “initial state”
markers are replaced by the isStart State attribute) provided in AToMPM, which causes
formalisms built on top of it to suffer from its limitations. This is discussed further in
Section 4.6. Finally, note that the icon toolbar at the top of Figure 4.19 contains only relevant
icons. For instance, there are no icons for PhoneAction, Code or OrthogonalComponent. As
explained earlier, even though these are part of the synthesized meta-model, DSML designers
can choose which concepts should be part of DSms, and which should not.

4.5.2 A DSML for Traffic Networks

The DSML presented in this subsection is arguably much simpler than PhoneApp2.0. How-
ever, it will allow us to make explicit certain still unexplored capabilities and properties of
our approach.

We wish to create a DSML for the modelling of traffic networks that satisfy the following
description:

• Cars move randomly across a network of road segments connected via intersections;

• Traffic lights control access to intersections;

• Traffic lights are described by the timed transition between several states (e.g., red,
green);

• Cars enter and exit the network randomly via highways;

• Accidents may block intersections;

• Accidents occur and are cleaned given arbitrary probabilities.

The concerns of this “domain” are the non-deterministic movement of cars between road
segments via blockable intersections, the delay- and state-based behaviour of traffic lights,
and the probability-based occurrence and cleansing of accidents. One possible approach to
the specification of the SimpleTraffic DSML is to construct it on top of the Petri Net, Stat-
echart and ActionCode base formalisms. However, a more modular and principled approach
would be to model the inner workings of traffic lights at a higher level of abstraction and
generate their associated Statechart model, thereby sparing the domain-specific modeller
from the need to learn and use abstractions too tightly coupled to the Statechart formalism.
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To this end, we introduce a new non-native, pure base formalism, TrafficLights, whose syn-
tax and semantics are entirely defined using STs. Figure 4.20a shows the STs that define
the TrafficLights DSML. Their implications, realized by generic and Statechart genAS and
mapTo transformations, are that valid TrafficLights instance models may contain several
TrafficLight entities, each containing an arbitrary number of LightMode entities con-
nected to each other via delayed transitions, all of which can be mapped onto analogous
OrthogonalComponent and BasicState Statechart structures. Additionally, a higher-level
version of the Statechart enteredState:name event is exposed in its place. The realized
forms of these implications are depicted in Figures 4.20b and 4.20c, which respectively show
the generated abstract syntax, and generated top-level semantics model transformation of
the TrafficLights DSML.

The TrafficLights DSML’s syntax and semantics have been introduced. TrafficLights in-
stance models can now be created. However, promoting this new DSML to base formalism
status still requires three tasks to be performed. First, STs and input/output events must
chosen. These will form an ST meta-model. Then, their meaning must be encoded in genAS
and mapTo transformations. Figure 4.21 presents the sole ST of the TrafficLights base for-
malism. The first of its syntactic impacts is that a class is created for the L domain-specific
concept and is made to subclass the TrafficLightModel class. Note that there is no such
class in the generated TrafficLights meta-model from Figure 4.20b, which is not even im-
ported, as was the case for all previously introduced STs. Indeed, importing base formalism
meta-models is but one of several ways of realizing syntactic and semantic implications. In
this particular case, it is an overly simple and insufficient means, as each L concept actually
represents an entire structure within a TrafficLights model (i.e., a TrafficLight with con-
tained and appropriately connected LightModes). Subclassing TrafficLightModel, beyond
the obvious passing down of attributes necessary for the specification of a traffic light’s modes
and time spent in each of them before moving to the next, enables TrafficLights’ mapTo
transformation to match domain-specific entities while remaining generic. Indeed, with sub-
type matching enabled, specifying how TrafficLightModel entities should be mapped onto
equivalent TrafficLights structures also defines how this mapping should be carried out for
L entities. TrafficLights’ genAS and mapTo transformations, which capture the above im-
plications, are shown in Figure 4.22. Note that the R ImportMM rule from the former
produces the TrafficLightModel class rather than import the TrafficLights meta-model.
As for the latter, its first rule produces one TrafficLight for each TrafficLightModel

subtype. Next, LightMode entities are created inside TrafficLights as per their associated
TrafficLightModel subtype’s modes attribute. Lastly, the generated LightModes are ap-
propriately connected via Statechart Transitions parametrized by timeouts that reflect the
relevant delays attributes. The TrafficLight base formalism is not sensitive to any events,
but produces the LightMode.lightTurned:name event.

Now that its constituting base formalisms have been clearly defined, a specification of
the SimpleTraffic DSML can be created. One such specification is shown in Figure 4.23, and
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(a) The TrafficLights DSML, as a set of STs.

(b) The generated TrafficLights meta-model.

Figure 4.20: The TrafficLights DSML (continued).
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(c) The generated TrafficLights top-level semantics model trans-
formation.

Figure 4.20: The TrafficLights DSML.
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s rotate between to modes given arbitrary delays
(a)

(b)

(c)

Figure 4.21: (a) The sole ST of the TrafficLights base formalism, (b) an example instance,
and (c) its abstract syntax implications.

again in condensed, textual form in Table 4.3. Figure 4.24 shows the synthesized meta-model
resulting from the syntactic implications of the STs that form the SimpleTraffic specification.
As for the semantic implications of the STs that form the SimpleTraffic specification, they
are mostly captured by the synthesized model transformation shown in Figure 4.25, which
produces a Java application that simulates the DSm and intermediate representations (via
backward link commands).

Given the abstract syntax and semantics generated from the ST representation of the
SimpleTraffic DSML, a domain-specific modeller has all the necessary tools at hand to create
DSms and transform them into target platform artifacts. Figure 4.26 shows a domain-specific
SimpleTraffic model. Figure 4.27 shows the model from Figure 4.26 as well as all interme-
diate representations and traceability links produced during artifact synthesis. Noteworthy
elements are that the number of current items displayed on each RoadSegment corresponds
to the number of tokens in their associated Place, that the presence of a token in the Place

corresponding to a Light dictates its current color, and that the presence of a token in the
Place corresponding to an Accident dictates its current status.
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(a) (b)

Figure 4.22: (a) The TrafficLights genAS and (b) mapTo model transformations.

Figure 4.23: The SimpleTraffic DSML, as a set of STs.
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Formalism Template

Petri Net RoadSegments have 2 slots.

Petri Net 2 RoadSegments can be connected by an Intersections.

Petri Net HighwayExits produce items onto RoadSegments.

Petri Net HighwayRamps consume items from RoadSegments.

Petri Nets Lights control access to Intersections

Petri Nets Accidents control access to Intersections
Petri Nets Lights unblock Intersections on event Light.lightTurned:green

TrafficLights Lights rotate between 2 to 2 modes given arbitrary delays.

ActionCode Accidents are coded.
< generic > On event Light.lightTurned:name=="red", produce event

Light.block.

< generic > On event Light.lightTurned:name=="green", produce event
Light.unblock.

< generic > On event Accident.codeProduced:ret=="crash", produce event
Accident.block.

< generic > On event Accident.codeProduced:ret=="clean", produce event
Accident.unblock.

< generic > On event Accident.tokenCountChanged:c=="1", produce event
Accident.runCode.

Table 4.3: The SimpleTraffic DSML, as a set of STs (in condensed, textual form).

The SimpleTraffic case study presents two key points of interest. The first is that, unlike
previous domain-specific concepts which merely specialized base formalism concepts, each
Light entity effectively encompasses a non-trivial base formalism structure. This demon-
strates our approach’s ability to cope with more complex syntactic and semantic mappings
from DSm to base formalism. The second is the insight that the combination of base for-
malisms may not be a strictly additive process. The combination of the Petri Net, Statechart
and ActionCode formalisms, and especially the programmatic editing of Petri Net markings
to otherwise unreachable markings (e.g., via the block and unblock events), causes for-
mal analysis on the resulting Petri Net intermediate representation to be impossible and/or
meaningless, as this effectively modifies Petri Net semantics. Means to enable formal analysis
with no sacrifices made to the DSML’s expressiveness might introduce undesired acciden-
tal complexity into the DSML specification, and would probably require the use of base
formalisms for which mappings onto Petri Net instance models exist (and are available).
Nevertheless, if analysis is not required, the provided ST representation of the SimpleTraffic
DSML fully captures the described domain.

Lastly, one might argue that the notion of Petri Net “tokens” is at too low a level of
abstraction and that it might be more appropriate for SimpleTraffic RoadSegments to have
a nbCars attribute rather than a nbTokens attribute. One option is to introduce more
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Figure 4.24: The generated SimpleTraffic meta-model.

elaborate STs and take a non-specialization approach to abstract syntax generation (as
was the case with TrafficLights). For instance, the ST from Figure 4.6 could become “Xs
have ∞|k slots for cars”. Then, rather than subclass Place (and inherit the nbTokens

attribute), X could be given a nbCars attribute, and be made to subclass some other class,
call it Place++. A small extension to the Petri Net mapTo transformation would suffice
to map Place++ subtype entities onto equivalent Place instances. Another, perhaps less
convoluted, approach might be to replace the Petri Net base formalism by one of its more
convenient yet semantically equivalent extensions, such as the Coloured Petri Net formalism
[Jen86], where tokens are explicitly modelled. Indeed, if a Token class were present, it could
be subclassed (e.g., by a Car class) thereby achieving the desired outcome (of hiding the
Petri Net-specific notion of tokens) much more easily. This discussion is reminiscent of the
earlier one regarding the missing Start concept in PhoneApp2.0, and is taken up again in
the next section.

4.6 Discussion

This section provides a detailed discussion of our approach’s extensibility, applicability and
limitations, as well as a critical comparison with traditional DSML design and engineering
practices.
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Figure 4.25: The generated SimpleTraffic top-level semantics model transformation..
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Figure 4.26: A domain-specific SimpleTraffic model.

4.6.1 Extensibility

Past template-based development approaches, particularly in the context of programming,
have been met with much reserve. The main reasons are their restrictiveness and limited
flexibility. Both of these pitfalls are especially relevant in the context of our approach. In-
deed, the number (or rather the variety) of sensible combinations of six base formalisms
may appear somewhat limited. Furthermore, the provided base formalisms may be at too
low a level of abstraction for many DSML design efforts. To address these concerns, we
introduced non-native base formalisms in Section 4.5.1 as our approach’s built-in extensibil-
ity means. Indeed, empowering DSML designers with the means – which mainly consist of
facilities for the specification of new STs and their syntactic and semantic implications, all
of which are natively provided by modern modelling and meta-modelling tools – to promote
their own DSMLs to base formalism status enables the increase in expressiveness, variety
and flexibility of the available collection of STs. Of course, increases in expressiveness only
result from the addition of base formalisms that aren’t constructed from existing base for-
malisms. These instead serve to elevate the abstraction and increase the overall usefulness
of the set of available base formalisms, as was demonstrated with the TrafficLights formalism.

Allowing the unbounded growth of the number of base formalisms and STs may lead to a
framework that is too complex and/or cluttered to use. Consequently, a mature ST-enabled
tool should group semantically equivalent base formalisms together beneath a single banner.
Beyond the obvious, we define two base formalisms Fi and Fj as semantically equivalent if
Fi can be represented using a limited (finite) number of Fj’s STs, and vice versa. Having
several semantically equivalent base formalisms available may be useful to reduce accidental
complexity in DSML specifications. For instance, although Statechart and DEVS models can
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Figure 4.27: An executing domain-specific SimpleTraffic model with visible intermediate
representations and traceability links.
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readily be mapped onto one another, it may be unnatural for certain DSMLs to be specified
using STs of one formalism rather than the other. In practice, upon choosing which classes
of formalisms he wishes to build his DSML on, a designer could peer further into each class
and choose the formalisms and/or STs he wishes to make use of.

In the interest of establishing theoretical foundations for the combination of low-level
formalisms to form higher-level ones, we do prefer to clearly distinguish (at least internally)
between native and non-native base formalisms. The core difference between them is that
native base formalisms can not be re-constructed by combining other base formalisms, while
non-native base formalisms can. As an exception, since any formalism can theoretically be
mapped onto code (and thus re-constructed using code), the only mappings onto code that
grant non-native status are trivial ones. Thus, the base formalisms introduced in Section 4.3
are all native base formalisms, while those introduced in Section 4.5, namely, AndroidAPI
and TrafficLight, are both non-native.

4.6.2 Limitations and Applicability

Escape semantics enable the use of lower-level abstractions within higher-level models.
For instance, in PhoneApp, arbitrary Java or Android-specific code can be specified in
ExecuteCode entities. Such code might carry out the rendering of an unsupported wid-
get or enact a device-specific activity not included in the PhoneApp DSML (e.g., taking
a camera snapshot). Although escape semantics are somewhat contrary to the DSM and
MPM paradigms of development, which recommend shielding developers from concepts out-
side of the problem domain, they are often a necessary evil. On the one hand, they offer
means for a DSML to capture an entire domain without being overly coupled to it, by al-
lowing the manual specification of certain details using non-domain-specific constructs (such
as code). Similarly, as reported by Safa in [Saf07], the overhead associated with deploying a
DSM development environment can be considerably reduced if a more minimalistic DSML
is adopted. Designing and developing a DSML that captures most common scenarios in a
domain using domain-specific constructs while providing lower-level means to support pos-
sibly many fringe cases can be a sound compromise when considering the time and effort
required to define abstract syntax and semantics for each domain-specific concept. This
is especially true in contexts where developers have some level of familiarity with target
platform artifacts and where DSM is introduced to speed up development rather than to
enable non-developers (e.g., code-oblivious arbitrary domain experts) to participate in it.
On the other hand, escape semantics offer a form of isolation from domain evolution, by
ensuring that a DSML remains useful (or at least usable) until it can properly capture newly
added domain concepts using domain-specific entities. Thus, although they often draw at-
tention to what appear to be the limitations of DSM, escape semantics are merely means to
preserve the flexibility that is lost when raising the level of abstraction of development efforts.

In the context of DSML design, being overly coupled to the domain can be correlated
with providing too many STs. Indeed, in the limit, each possible instance of a base formalism

135



could be captured by a different ST. As for domain evolution, it could be understood as the
emergence (or existence) of domains that can not be elegantly modelled by any combination
of the available base formalisms. Thus, for our approach to be truly widely applicable despite
its raising of the level of abstraction of the specification of DSML syntax and semantics, an
escape semantics solution is necessary. To this end, we introduced non-native, impure base
formalisms in Section 4.5.1. Empowering DSML designers with the means to promote their
own DSMLs to base formalism status without having to (re-)build them using STs ensures
that lacking base formalisms will never entirely hamper the applicability of our approach.
In theory, every member of the current set of native base formalisms can be seen as impure,
since neither one of them is built using STs, and each of them was introduced to capture
at least one concern that could not be elegantly7 projected onto any of the others. By ex-
tension, the inability to elegantly map a given concern onto an available base formalism is
an effective means of identifying a missing base formalism (or formalism class). Recall the
accidental complexities we underlined in Section 4.5, namely, the lack of a dedicated con-
struct to identify initial Statechart states and of simple means of abstracting the notion of
Petri Net tokens. These were both strong indicators of deficiencies in the current set of base
formalisms. In both cases, solutions can be devised without replacing either base formalism,
i.e., mere adjustments to their mapTo transformations are sufficient. If that were not the
case however, the sum of missing concepts could help shape the outline of a missing base
formalism (or formalism class).

Another, perhaps less extreme, context where generating syntax and semantics may be
undesirable is that of performance-critical systems. For instance, artifacts produced from
PhoneApp DSms should, in theory, be more efficient that those produced from PhoneApp2.0

DSms. Indeed, the manual merging of intermediate representations produces a single instru-
mented artifact whereas the proposed means of automating this merging produces a number
of disjoint artifacts which must create, transmit, wait for, decode and react to (or ignore)
a wide variety of events. While having several artifacts communicate is arguably easier to
implement (and automate) than literally merging bodies of code, event management adds
an undeniable performance overhead that may be unacceptable in certain scenarios. Thus,
performance-critical systems may favour the approach from Chapter 2 over a higher-level ST
approach to DSML specification. This limitation is not strictly bound to our approach, how-
ever. The use of low-level assembly code is still common practice to implement performance-
critical tasks within systems implemented in higher-level programming languages.

Our approach shares another limitation with past and current attempts at raising ab-
straction. The expressiveness of a collection of STs in terms of the spectrum of “reachable”
target platforms is limited by the availability of “base formalism to target platform” trans-
formations. This limitation is analogous to that of a programming language being all but
useless if programs written in that language can not be compiled to deployment platforms.
Consider a DSML designer who wishes to model a state-based domain and requires Ruby

7As mentioned earlier, we overlook the fact that any concern can be mapped onto code.
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code to be generated from DSms. He may be forced away from our approach by the absence
of a Statechart-to-Ruby transformation. To circumvent this obstacle, he may choose the
traditional approach to artifact generation from DSms and manually program a DSm-to-
Ruby code generator. Alternatively, he might choose to enhance an ST-enabled tool with a
Statechart-to-Ruby transformation. Both options will fulfil his needs. However, the latter
option has the potential to benefit a much wider audience. Thus, we argue that the reuse
of past work and leveraged expertise that our approach enables make it a more than viable
alternative to traditional DSML specification techniques.

Perhaps the most fragile aspect of our approach is its dependency on thorough documen-
tation. Indeed, the implications of a ST must be very well documented and understood for
it to be usable. Given that the numerous layers of abstraction between DSML specification
and target platform artifact introduced by our approaches to artifact synthesis and DSML
design each hide and automate translation steps, it may be difficult to ascertain the validity
and/or meaning of a DSm or DSML other than by trial and error. This problem is expo-
nentially worsened when STs are ambiguous and even their translation to the next closest
layer of abstraction (i.e., DSML abstract syntax and semantics) is unclear. Thus, a mature
ST-enabled tool should provide clear descriptions of the implications of each ST in (ideally)
layman’s terms, and of the relationship(s) between various STs, if any. Once again, this
limitation is not strictly related to our approach, but rather another side-effect of automat-
ing partial design tasks. Similarly, an undocumented Java API with cryptic method and
property names can be unusable despite the enormous success of code-centric engineering
and APIs.

An issue that is especially relevant to our approach is that of composing artifacts from
heterogeneous models of computation. In the provided examples, no overly complex inter-
actions were encountered. For PhoneApp2.0, all artifacts were rooted in the discrete model
of computation. For SimpleTraffic, although there is no notion of time in Petri Net models,
the blocking of Petri Net Transitions by the Statechart and ActionCode artifacts imposed
some notion of time by periodically halting and then re-enabling the flow of tokens. Thus,
for the provided examples, our central event manager solution to the problem of artifact
composition sufficed. However, consider the example of a “hybrid” model where one of
the artifacts is based on the Causal Block Diagram formalism, where time is continuous,
while another is based on the discrete-time Statechart formalism, such as the modelling of
a bouncing ball. It is arguably unrealistic for the first artifact to emit thousands or millions
of events each second to report changes in the input and output values of its entities (e.g.,
changes in velocity and position). The problem of composing such seemingly irreconcilably
different systems is often solved, in co-simulation tools, via thresholding or boundary con-
ditions. Concretely, the continuous artifact from the bouncing ball example might be made
to report velocity only when it changes orientation (e.g., from going up to going down and
vice versa), thereby vastly reducing and effectively discretizing its output. Such thresholding
behaviour is trivially achieved within our approach but would admittedly require revisiting
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Steps Traditional Proposed

Domain analysis, resulting in lists of concerns and requirements
√ √

Choice of base formalisms
√

or n/a
√

DSML definition (as collection of instantiated STs) n/a
√

Meta-model definition (e.g., as UML Class Diagram augmented
with constraints)

√
automated

Semantic mapping definition (e.g., as coded text generator or as
model transformations)

√
automated

Debugging/testing of semantic mapping
√

obsolete
DSm creation, artifact synthesis, etc.

√ √

Table 4.4: The traditional and proposed workflows of DSML design and engineering shown
side-by-side.

the events exposed by the Causal Block Diagram formalism.

Finally, the issue of artifact composition, or rather the solutions we proposed to enable
artifact composition, hint at a broad limit of our approaches applicability. The assumptions
that base formalisms either inherently input and output events or can easily (and sensibly)
be made to do so limits our approach to scenarios where those assumptions hold. In the
arguably vast context of software development, where time, data and control flow are all
discrete, these assumptions do indeed hold. However, our approach may prove inadequate
for the modelling of certain physical systems, for instance, where discretization for event-
based artifact composition purposes may be neither easy nor sensible given the modelled
system’s intended semantics.

4.6.3 Evaluation

Throughout this work, we have argued that the approach we propose improves upon tra-
ditional DSML design and engineering practices on numerous fronts. A brief summary of
these claimed improvements is that our approach brings the benefits often attributed to
DSM to DSM itself. Indeed, the provided case studies – specifically the first – demonstrate
the vast difference between the amount of user-input required by the manual specification
of a DSML’s abstract syntax and semantics, and the specification of the same DSML as
a collection of STs. Table 4.4 furthers this demonstration by illustrating the traditional
and proposed workflows of DSML creation side-by-side, with automated and obsolete tasks
clearly marked. Beyond the already claimed raises in abstraction and productivity, the au-
tomation of the repetitive and non-trivial tasks that characterize traditional DSML design
and engineering also eliminates the need for numerous debugging activities as many bug
sources are effectively absorbed within the ST framework.

At first glance, the sheer difference in the length of required user-input seems to indi-
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cate that our approach should significantly increase productivity. Certainly, it has been our
experience that developing DSMLs using STs is incomparably easier and expedient. Such
empirical evidence, based mostly on author testimonials, has been reported by Kelly and
Tolvanen in [KT08], as confirmation of the promised benefits of DSM (versus code-centric de-
velopment) in industrial settings. Safa is slightly more formal in [Saf07], where development
times of experienced programmers are compared to those of a new employee trained only to
use a DSM environment. However, a better and stronger demonstration of the benefits of our
approach would be to conduct a large scale study, akin to that performed by the Middleware
Company in their evaluation of MDA-based development [Mid03]. DSM experts and novices
could be asked to work in parallel – and in a controlled environment – on the same problem
(e.g., the full specification of a non-trivial DSML). Highly insightful quantitative and quali-
tative metrics would include time to task completion, number of bugs, number of clicks and
keystrokes, user perception of task difficulty and overall user appreciation. Intuitively, DSM
novices should prefer and be more productive with a ST approach to DSML design. Ideally,
this would also be the case for DSM experts. Without overlooking its enormous importance
to the validation of our claims, we defer such a study to future work.

4.7 Comparison with Related Work

This section reviews and situates the introduced approach with respect to relevant work by
others surveyed in Section 4.2.

First and foremost, ST DSML specifications are at a higher level of abstraction than tra-
ditional DSML abstract syntax and semantics specifications. While these are still very much
present, they are demoted from first class artifacts to synthesized internal representations.
Thus, it is indeed more relevant to compare our approach to other efforts that targeted for-
malism combination and the automation of syntax and semantics specification.

It turns out Vallecillo’s work on the merging of interrelated models and meta-models that
capture different views of a given system bares little resemblance to our own. Indeed, despite
arguably similar vernacular, our motivations and problem context are very different. The
focus of Vallecillo’s is on resolving correspondences between models and meta-models. These
are trivially known in the context of our work. Instead, we attempt to combine (ideally)
unrelated formalisms.

As for authors that tackled the problem of DSML combination from an engineering per-
spective, studying how recurring structures can be turned into generic building blocks, their
work is intimately related to our own. Template instantiation by Emerson and Sztipanovits
bears a strong resemblance to what is achieved by our base formalism genAS transforma-
tions. However, by providing only isolated templates and targeting only the generation of
abstract syntax patterns, their approach offers little more than syntactic sugar. The level
of abstraction of abstract syntax specification is left unchanged (as is that of the ignored
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specification of semantics), most of which is (ostensibly) still performed manually. Similar
reasoning applies to Pedro’s work, who additionally provides templates for specifying ar-
bitrary model transformations. In contrast to theirs, our approach entirely automates the
definition of abstract syntax models and of semantics model transformations, requiring input
only at a higher level of abstraction.

At first glance, White et al.’s work on specifying DSML combination via Feature Dia-
grams seems very similar to our own. However, a key difference is that their motivations
(i.e., creating many similar meta-models) leads them to take a “reductive” approach whereas
we take a more “constructive” approach. Indeed, in White et al.’s work, all possible meta-
models are known and one must prune and choose features to reach one of them. In contrast,
we propose that base formalisms be combined to produce one of an infinite set of DSMLs.
We also don’t restrict our attention to meta-models.

Despite a significant body of research and experience, our own included, on organizing
and structuring the specification of DSML semantics, most modern approaches still rely on
the ad hoc manual input of semantic mappings. With semantic anchoring, Chen et al. were
the first to propose the use of pre-defined semantic and syntactic building blocks to assist
in DSML specification in a somewhat unified manner. Unfortunately, their work fails to
truly elevate the level of abstraction of syntax or semantics specifications as only partial
specifications are generated and manual input is required to complete their generated forms.
Furthermore, their approach places a heavy burden on tool developers (often DSM experts)
as they must specify the aforementioned building blocks and their implications. Inciden-
tally, the authors do not report on how this is achieved. Finally, due to the fact that the
building blocks are chosen arbitrarily, more theoretical claims (e.g., pertaining to the current
expressiveness of the framework) become difficult to assert. In comparison, our approach
truly does raise the level of abstraction of DSML specification by completely shielding DSML
designers from generated abstract syntax and semantics definitions. Moreover, it does so in
a theoretically sound manner that is amenable to some form of analysis.

In summary, the approach presented in this chapter is a combination and extension of
past and current work on template instantiation and semantic anchoring with the specific
aim of fully generating complete DSML abstract syntax and semantics specifications from
higher-level models of DSMLs.

4.8 Conclusion and Future Work

The work presented in this chapter was motivated by the fact that the driving principles
behind DSM have yet to be incorporated into the workflow of DSML design and engineering.
Indeed, the guidelines of leveraged expertise and of automating the generation of complex
yet repetitive artifacts (through the use of higher-level abstractions) are often disregarded in
modern DSML design and engineering efforts. Consequently, DSM experts find themselves
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forced to repeatedly and manually specify possibly similar and even overlapping meta-models
and semantic mappings from DSms to target platforms. The latter, especially, are often non-
trivial and require a non-negligible level of familiarity with targeted platforms.

The approach we propose in this work provides DSM experts with the full power of DSM.
We introduce a template-based technique that enables the construction of new DSMLs by
combining lower-level base formalisms that capture commonly recurring concepts in DSMLs.
In our approach, the DSML designer creates unified representations of abstract syntax and
semantics at a much higher-level of abstraction than either of their traditional specifications.
From these unified representations, complete abstract syntax and semantics are generated.
This synthesis is enabled by the information carried within the templates in our framework,
namely, the means for DSms to be projected onto semantically equivalent base formalism
instances. Our approach is both extensible and widely applicable as it supports the addition
of arbitrary new base formalisms and templates. Moreover, although it remains bound by
limitations of previous attempts at raising the level of abstraction of development efforts, we
argue that its focus on reuse and leveraged expertise make it a more than viable alternative
to traditional DSML specification techniques.

We demonstrated our approach in two non-trivial case studies in which we showed how
syntax and semantics could be generated from very concise and high-level unified representa-
tions of DSMLs for modelling mobile device applications and traffic networks. However, we
recognize that a more objective validation is required. As such, we suggest that a user study
be conducted to formally compare several metrics, including productivity and amount of
user-input, between traditional DSML design and engineering techniques and our proposed
approach.
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Chapter 5

AToMPM: A Tool for Multi-Paradigm
Modelling

This chapter introduces AToMPM, A Tool for Multi-Paradigm Modelling developed as a
platform for the implementation of the contributions of this thesis. It replaces AToM3,
A Tool for Multi-formalism and Meta-Modelling. This chapter details the objectives and
requirements that guided AToMPM’s development, as well as its architecture, features, and
technical and scientific innovations.
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5.1 Context, Objectives and Requirements

There exists a number of DSM tools. Some are stand-alone applications, such as the com-
mercial MetaEdit+ and the academic AToM3, GME, Fujaba [NZ99] and VMTS. Others are
plug-ins grafted on the Eclipse IDE, such as GEMS [WSNW07], Actifsource [act] and Fu-
jaba4Eclipse [HT08]. Finally, the Eclipse Foundation have themselves enhanced their IDE
with the Eclipse Modelling Framework (EMF) and Graphical Modelling Framework (GMF)
[EFc].

The foundations of DSM are meta-modelling and model transformation. Most of the
tools listed above have integrated or add-on support for them. Features, flexibility, inter-
faces and implementations vary from one tool to the other. Though we do not intend to
provide an exhaustive, feature-based comparison and review of all existing DSM tools, our
knowledge of them allows us to extract a number of shared characteristics which we deem
limiting to their usability, accessibility and/or scientific appeal. First and foremost, they
each require the installation of one or more applications on the user’s computer. In the
case of Eclipse-based tools, this includes the installation of the resource-intensive Eclipse
IDE and a non-negligible learning curve. For GME, this restricts the user to the Microsoft
Windows operating system. Other limitations are more tool-specific. For instance, as men-
tioned in Chapter 3, VMTS is the only tool we know of that supports pausing ongoing model
transformations. Other tools, such as AToM3, do not support specifying multiple concrete
syntaxes for a given abstract syntax element, which can often be crucial to avoid duplica-
tion. Finally, model transformation models and models of their rules are often treated as
“special” artifacts. That is, tools provide special means of specifying them outside of the
traditional “meta-model and conforming model” workflow. One grave consequence of this
is that most tools do not and can not (without significant alterations) support HOTs. In
developing AToMPM, a key objective was to produce a modelling and meta-modelling tool
that avoided the limitations encountered in existing tools while combining their individual
strengths. Feedback from researchers at Honeywell, a diversified technology and manufac-
turing leader, was also taken into consideration to produce a tool that would be appealing
to both academic and industrial DSM experts and practitioners.

The first of the requirements that guided AToMPM’s development – not including its
implied support for basic modelling, meta-modelling and model transformation tasks – is
that it run in popular Web browsers and store user data in the cloud (i.e., on the remote
server hosting AToMPM, not on the user’s machine). This implies that no installation is
required on the user’s machine. Merely navigating to a URL that serves the AToMPM client
(e.g., http://orac.cs.mcgill.ca:8124/mpm/ ) should suffice to perform the full array of sup-
ported DSM activities from anywhere in the world, on any machine. This indeed lowers the
threshold and makes AToMPM extremely accessible for anyone from expert developer to
curious novice. It also enables otherwise impossible on-the-fly and impromptu demonstra-
tions. Finally, this design choice is both compatible and consistent with the current tendency
towards cloud computing that is guiding modern software development in the direction of
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online services and away from standalone applications.

The next set of requirements pertains to the specification and execution of model trans-
formations. For the former, we focused on supporting model transformations (and HOTs) in
a natural and principled manner and making no distinction between rules and their schedules
and any other model. For the latter, we targeted continuous and step-by-step rule execution,
a debugging mode, and the ability to pause and resume an ongoing model transformation.
Due to the central role that model transformations (should) play in DSM, powerful and
theoretically sound facilities are bare necessities in a modern DSM tool.

The next requirement pertains to usability. Undoing and redoing changes, as well as
copying and pasting model entities are often not or poorly supported in DSM tools we have
encountered. The prevalence of such facilities in the vast majority of modern applications
makes this omission particularly noticeable and inconvenient during model development.
Thus, to enhance usability and reduce overall (repeated) labour, the aforementioned fea-
tures should all be supported.

Another requirement is that it be possible to associate several concrete syntaxes to a
given abstract syntax. Scenarios where this is useful include the specification of construction
schematics where European and American units and/or symbols differ. Indeed, creating and
maintaining several models that are conceptually and semantically identical and differ only
in graphical representation minutia is clearly impractical, non-scalable and error-prone. In
practice, it should be possible to render a given abstract model with any one of its associated
icon sets (i.e., concrete syntaxes). More generally, this requirement also extends to textual
concrete syntaxes.

The following two requirements were formulated by researchers at Honeywell. First, it
should be possible to perform version control on models. More specifically, it should be
possible to compute (and store) the difference between two models, and to merge parallel
branches of a given model. Second, several developers should be able to simultaneously edit
the same model and be made aware of the others’ changes in real-time. This, as opposed to
editing their own local copies of a model and merging them back together at a later time.
Thus, real-time, distributed, collaborative modelling should be supported. The appeal of
such facilities in an industrial, multi-developer context is clear. However, collaboration in
particular can also be extremely useful for didactic purposes. Consider, for instance, a sce-
nario where team mates or even an entire class and professor work together to build a model
or a meta-model, each from their own collaborating instance of AToMPM.

Finally, the last high-level requirement that guided AToMPM’s development is that it
be aesthetically pleasing. Although this may seem somewhat superficial, the appeal of a
modern look-and-feel, particularly to novices, is undeniable. Furthermore, demonstrating
the future of software development to an unfriendly and/or sceptic audience is that much
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more challenging when one’s tooling looks and feels like it was developed over a decade ago.

To our knowledge, no existing DSM tool supports all of the listed requirements. The rest
of this chapter is structured as follows. In Section 5.2, we give an overview of AToMPM and
explore how it (at least partially) satisfies every single one of the above requirements. In
Section 5.3, we peer beneath the surface and examine the architecture and implementation
of AToMPM from a developer standpoint. Finally, in Section 5.4, we identify our scientific
and technical contributions and discuss remaining implementation work.

5.2 Features and Usage

This section describes AToMPM from a user’s perspective and explores how it satisfies each
of its requirements. Note that more details are provided in AToMPM’s User’s Manual [Man].

5.2.1 Client

The AToMPM client (i.e., the component with which the user interacts) is shown in Fig-
ure 5.1 running in the Google Chrome Web browser [Gooc]. Two button toolbars1 are loaded:
the main menu and the transformation controller menu. The former enables basic editing
commands such as loading and unloading (button and meta-model) toolbars and models,
saving models and undoing and redoing changes. The latter is used to load transformations,
control their execution and toggle the transformation debugging mode. More details per-
taining to the implementation of button toolbars and of their associated functionality are
given in the next section. At the bottom-right of the interface are a username input field and
collaboration links. The former enables one to access and manipulate personal data stored
within the cloud (i.e., on the machine that serves the AToMPM client). The latter are used
to initiate one of two types of collaboration sessions, which we explore in Section 5.2.6. Of
primary interest in this section are the facts that the AToMPM client is running in the
Google Chrome Web browser2, is accessed through an appropriate URL, stores user data
in the cloud, and the aesthetics of the graphical user interface. Aesthetics are of course
a very subjective matter. Therefore, we took inspiration for style and color palette from
popular and/or relevant websites, applications and services such as Google [Gooa], Google
Docs [Good], Google Chrome and Facebook [Fac].

1Two types of toolbars exist within AToMPM. Button toolbars are akin to traditional toolbars. They
provide a collection of buttons that perform arbitrarily complex functions. Meta-model toolbars, on the other
hand, display a meta-model’s instantiable types and enable the creation of model entities.

2At this time, AToMPM has only been tested on Webkit- (e.g., Apple Safari [Appb], Google Chrome)
and Gecko-powered (e.g., Mozilla Firefox [Mozb]) browsers [Moza, web].
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Figure 5.1: The AToMPM client, with the main menu and transformation controller menu
loaded, running in the Google Chrome Web browser.

5.2.2 Modelling and Meta-Modelling

AToMPM is first and foremost a modelling and meta-modelling tool. As such, it defines
a meta-meta-model to which all meta-models defined within AToMPM conform, and that
conforms to itself. This meta-meta-model is the meta-model of the Entity Relationship
Model, shown in Figure 5.2. For convenience, more elaborate, alternative meta-meta-models
are also provided within AToMPM, such as a simplified version of UML Class Diagrams.
The template-based approach presented in Chapter 4 can also be seen as somewhat of a
meta-meta-model. While we have shown that traditional meta-models can be automatically
synthesized from ST models, the relationship between ST models and synthesized meta-
models is arguably not one of instantiation. Furthermore, the bootstrapped architecture
of AToMPM restricts meta-meta-model status to self-conforming meta-models, which ST
meta-models are not.

Meta-models defined in AToMPM (e.g., as Entity Relationship or Class Diagram mod-
els) are automatically compiled and can be loaded as meta-model toolbars. Before doing
so, however, one must associate concrete syntax to abstract syntax concepts (i.e., to con-
cepts defined by the meta-model) such that these may be rendered. In AToM3, Class and
Entity constructs that make up meta-models have an editable Graphical Appearance at-
tribute. Editing this attribute launches a built-in drawing tool that one can use to describe
the relevant abstract syntax concept’s concrete representation. This approach is flawed in a
number of ways. First, concrete syntax has no place as an abstract syntax attribute. Sec-
ond, supporting several representations per concept would further pollute abstract syntax
representations. Third and worst, defining concrete syntax is treated as a “special” activ-
ity that sits outside of the “meta-model and conforming model” workflow. Amongst other
things, this implies that the meta-modelling infrastructure that supports that workflow can
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not be reused to support the specification of concrete syntax. A clear consequence of this is
the existence of the aforementioned drawing tool. In AToMPM, ensuring that all activities
adhere to the “meta-model and conforming model” workflow is a top priority. To this end,
in AToMPM, concrete syntax specifications are full-fledged models, disjoint from abstract
syntax specifications. The meta-model to which they conform is shown in Figure 5.3. Es-
sentially, Icons contain an arbitrary number of graphical constructs (e.g., Circle, Text)
optionally inter-related to each other via layout constraints. For example, the rectangle
describing a class’ icon should always be large enough to fully contain its name and list
of attributes. Furthermore, all graphical constructs have style, mapper and parser at-
tributes. The style attribute provides control over color, font, opacity, etc. The two others
respectively provide means to reflect abstract syntax values within the concrete syntax and
vice versa. Thus, concrete syntax models are essentially a collection of enhanced attributed
drawings contained within appropriately labelled Icons. These labels enable the resolution
of correspondences between an icon and its associated abstract syntax concept. Figure 5.4
shows an example meta-model and two associated concrete syntax specifications. Any non-
zero3 number of concrete syntax specifications are supported, and modellers can easily cycle
between them to alter the appearance of loaded models. Last but not least, meta-model
actions and constraints are supported (e.g., to validate a model, to react to user input) and
make use of an API that exposes modelling constructs and their attributes. Further details
are provided in the AToMPM User’s Manual.

5.2.3 Usability Enhancements

AToMPM robustly supports undoing and redoing changes and copying and pasting model
entities. For the former, a critical point is that within a meta-modelling context, a single
change may trigger several changes (which may in turn trigger other changes and so on
and so forth). For instance, the post-editing action of one entity can cause attributes of
connected entities to be altered. This is taken into account in AToMPM which provides
robust facilities to atomically undo and redo changes and their side-effects. As for the
copying and pasting of entities, they present two key concerns. First, on a more technical
note, entities can be copied from one instance of AToMPM and pasted into that same
instance or into any other (running on the same machine). Second, on a more theoretical
note, it should arguably not be possible to create impossible models (i.e., models that do not
conform to their meta-model(s)’s constraints) via the pasting of entities. For instance, if a
meta-model constraint limits the number of instances of a specific concept to n, it should not
be possible to exceed that number by copying m instances and pasting them repeatedly. In
other words, the pasting of entities should be subject to the same conformance restrictions
and consequences as the manual specification of the said entities. This is the implemented
behaviour in AToMPM.

3Note that we are currently exploring “headless” (or “scripted”) modelling scenarios in which concrete
syntax representations could be omitted.
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Figure 5.2: The meta-meta-model at the core of AToMPM’s meta-modelling kernel.

5.2.4 Model Transformation

AToMPM’s implementation of model transformation specification also adheres to the “meta-
model and conforming model” workflow. This again contrasts with other tools and with its
predecessor, AToM3, where “special” editors are provided for the editing of rule schedules
and of rules themselves. As demonstrated throughout this thesis, rules and their schedules
in AToMPM are ordinary models that conform to ordinary meta-models. These are shown
in Figures 5.5 and 5.6 and are described in detail in the AToMPM User’s Manual. For the
purpose of the discussion at hand, however, their usage and the consequences of their exis-
tence are of greater interest. In their usage lies what is possibly AToMPM’s most significant
scientific contribution, namely, the first full implementation of Khüne et al.’s RAM (Relax-
ation, Augmentation, Modification) process [KMS+10, Syr11] within a DSM tool. The RAM
process consists of altering a meta-model to allow the specification of partial models in rule
patterns. For instance, while the Statechart meta-model may require that at least one start-
ing state exist, a LHS pattern describing two connected states should clearly not be invalid
if neither of them is a starting state. The RAM process is divided into three steps. First,
validity and multiplicity constraints are relaxed. In other words, any constraints on mini-
mum numbers of instances or connections are removed. As for validity constraints, an often
acceptable approach is to ignore them all, while supporting manual intervention to select
those that should be kept, if any. The final relaxation step is to “concretize” abstract classes,
i.e., provide default concrete syntax for them and allow their instantiation. Second, abstract
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Figure 5.3: The meta-model of concrete syntax representations in AToMPM.

and concrete syntax elements are augmented with transformation pertinent attributes, such
as pattern labels and subtype matching flags. These added attributes are of paramount
importance to the expressiveness and proper functioning of the underlying transformation
execution engine. Third and last, attribute types are modified to account for the fact that
transformation engines expect their values to be condition or action code. Indeed, during
the matching process, the transformation engine evaluates conditions that determine if the
attribute values of candidate matches in the source model are acceptable (e.g., does name

start with “red”, is nbTokens greater than five). In practice, these conditions are specified
in the attribute values of entities that form LHS and NAC patterns. Analogous reasoning
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(a)

(b) (c)

Figure 5.4: (a) A very simple meta-model for a forest DSML, and (b-c) two associated
concrete syntax specifications.

applies to action code and RHS pattern entity attributes. Once the RAM process has com-
pleted, the resulting RAMified meta-model is output and stored. In AToMPM, these are
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called pattern meta-models, and only constructs conforming to pattern meta-models can be
contained within rule patterns. As for the consequences of meta-modelling transformations
and their rules, beyond providing a consistent and principled editing environment devoid of
“special” scenarios that complicate usage and implementation, it enables HOTs. Specifying
HOT rules in AToMPM is not only possible, it is in fact no different than specifying regular
rules. To match one or more rule in another rule R’s pre-condition pattern(s) or to produce
one or more rule in R’s post-condition pattern, one needs only populate R’s patterns with
entities from the RAMified Transformation Rule meta-model (shown in its non-RAMified
form in Figure 5.5). Similarly, entire transformations can be matched and produced by pop-
ulating R’s patterns with entities from the RAMified Transformation meta-model (shown in
its non-RAMified form in Figure 5.6, and in its RAMified form in Figure 5.7).

Figure 5.5: The Transformation Rule meta-model.
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Figure 5.6: The Transformation meta-model.
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Figure 5.7: The RAMified Transformation meta-model.
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As of now, we do not know of any tool that has more elaborate transformation execution
facilities than AToMPM. Step-by-step and continuous execution modes, “triple-outcome”
(i.e., success, not applicable, failure) rule and transformation control flow, pausing of ongoing
transformations and a debugging mode are all supported. Furthermore, breakpointing and
full stepping functionality (recall that only “step into” functionality is currently available)
will soon be included.

5.2.5 Model Versioning

Model versioning has not yet been fully implemented within AToMPM. However, AToMPM
is built on a journalling system (i.e., all operations are logged) and as such, numerous com-
plex issues related to model versioning disappear. More specifically, the difference between
two subsequent versions of an AToMPM model is entirely captured by the series of logged
operations (also known as the edit script [AP03]) that begins after the first version was
committed and ends after the second version was finalized. Thus, model versioning in a
single-development branch environment can be very simply (and naively) achieved by stor-
ing a model’s first version and all subsequent operation logs. Restoring a particular version
then reduces to applying relevant logs to the first version. Optimizations can also be applied
to reduce the size of operation logs. A trivial example is shown below:

Original operation log:

1. Set attribute a of instance #44 to 7;

2. Set attribute b of instance #5 to 8;

3. Set attribute a of instance #4 to 5;

4. Delete instance #5.

Optimized operation log:

1. Set attribute a of instance #4 to 5;

2. Delete instance #5.

A more complex issue is the question of differencing models that aren’t subsequent ver-
sions of the same model, such as parallel branches of a model. This problem is closely related
to the question of optimizing operation logs. A combination of semi-automatic inference rules
and optimizing reductions are required to determine which operations can produce one model
from the other. Merging model branches is an active research field in its own right and is
beyond the scope of this thesis. Nevertheless, existing results from the model differencing
and versioning community will be applied to enhance AToMPM’s versioning (and specifically
development branch merging) capabilities.

4In AToMPM, instance identifiers are preserved during serialization.
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5.2.6 Collaborative Editing

AToMPM supports two modes of real-time distributed collaboration, namely, screenshare
and modelshare. In the former, all collaborating developers share the same concrete and ab-
stract syntax. This implies that if one developer moves an entity or cycles to another concrete
syntax representation, the change will be replicated for all collaborators. The screenshare
mode is thus especially useful for didactic purposes. In contrast, in the modelshare mode,
only abstract syntax is shared. This means that all collaborators can have distinct concrete
syntax representations and distinct layouts (provided layout and abstract syntax are not
intricately related), and are only affected by others’ abstract syntax changes (e.g., modifying
attribute values). This is certainly a more flexible mode where individual modeller tastes
(e.g., for model layout) are not penalized by collaboration. Note that the availability of
the modelshare mode is a direct consequence of the principled separation of abstract and
concrete syntax discussed earlier.

5.3 Architecture

This section examines the inner workings of AToMPM with a particular focus on the imple-
mentation of the critical features discussed in previous sections. AToMPM is built according
to the client-server model. Its high-level components and their associations are shown in
Figure 5.8. Each component and its associations are described below.

Figure 5.8: The high-level architecture of AToMPM.

5.3.1 Client

The part of AToMPM we refer to as its client is a JavaScript application that runs in Webkit-
and Gecko-powered Web browsers. A side-effect of the strict application of the “meta-model
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and conforming model” workflow to the requirements of AToMPM is that its client is rela-
tively simple, supporting barely more than what is necessary to enable the said workflow.
The client’s capabilities are essentially: sending requests to its associated CSWorker, han-
dling its responses, and implementing GUI behaviour.

During client initialization, a WebSocket [W3C] request triggers the spawning of a new
CSWorker (or the connection to an existing one in screenshare mode) which in turn triggers
the spawning of a new ASWorker (or the connection to an existing one in either collabora-
tion mode). The main advantage of establishing WebSocket connections between AToMPM’s
components is that WebSockets enable elegant and simple means for downstream compo-
nents to send unsolicited data upstream. For instance, in the traditional HTTP request
and response model, a (downstream) server can respond to requests from an (upstream)
client, but it can not send it any additional data until the next request. Other means than
WebSockets exist to enable this, such as Long Polling [Wika], but they are mostly creative
adaptations of unsuited facilities, which the recently introduced WebSockets are rendering
obsolete. Upon completion of client initialization, the new client is said to be “subscribed”
to its CSWorker which in turn is said to be subscribed to its ASWorker. All future requests
from client to CSWorker, all of which pertain to modelling and meta-modelling activities
(e.g., loading a new meta-model, creating a new entity, moving an entity), are HTTP re-
quests. The vast majority of these are answered by virtually nothing more than a success
or error HTTP status code that reflects the CSWorker’s proper reception of the request.
Only when the CSWorker has processed the request, which often involves forwarding it to
its associated ASWorker and asynchronously waiting for its feedback, is a changelog encod-
ing relevant concrete syntax changes (as a list of primitive operations) produced and sent
(via the WebSocket connection) to subscribed clients. This shows two aspects of AToMPM’s
architecture. First, most actions the user can carry out (e.g., loading a new meta-model,
creating a new entity, moving an entity) have no immediate impact within the client. In-
deed, when a user drags an entity on the canvas, all that happens is that an HTTP request
describing the desired change is sent to the CSWorker. If the requested operation is legal
(i.e., does not violate any meta-model constraints), the resulting CSWorker changelog will
cause the client to actually move the entity. Second and most importantly, all collaborators
are equals. Given that client behaviour is “changelog-driven”, the instigating user (and his
client) is treated no differently that any other. Although these design choices lead to a
perceptible lag on very high-latency networks, they considerably reduce client model editing
implementation complexity. All (possibly complex and/or illegal) changes to a model are
computed beyond the client, with the client only required to properly understand and reflect
incoming changelogs. This task involves little more than updating rendered concrete syntax
elements.

The main purpose of the AToMPM client is to display and enable interaction with models.
The former task is captured by its ability to translate concrete syntax representations (i.e.,
compositions of Figure 5.3’s VisualObjects) into Scalable Vector Graphics (SVG) drawings.
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This translation is actually quite straightforward due to the near one-to-one equivalence be-
tween supported VisualObjects and existing SVG primitives. Major advantages of SVG
over basic browser raster graphics facilities are that the quality of SVG drawings does not
decrease during scaling, that complex geometric transformations (e.g., rotations) can be ap-
plied to them very easily, and that they can be edited outside of the AToMPM client with
dedicated SVG manipulation tools. As for actual interaction with models, the client’s GUI
behaviour is entirely modelled using Statechart models, i.e., high-level models rather than
tangled and complex code describe the effects of clicks, motions, keystrokes and more. The
advantages of using Statechart models to capture complex, reactive behaviour have been
studied extensively in past work [BV09, DBV09]. They include dramatically reduced devel-
opment times and eased maintenance. Figure 5.9 shows the Statechart model that describes
the behaviour of the client canvas. It shows that the canvas can be in a number of different
states where it reacts to various events differently. Not shown are Transition guards (i.e.,
conditions that enable or disable them), Transition actions and State entry actions. A
textual summary of the Statechart from Figure 5.9 (including its guards and actions), tar-
geted at end-users, is presented in Table 5.1.

Last but not least, a note on button toolbars. Despite the fact that they arguably sit
outside of concrete modelling activities, their specification also adheres to the “meta-model
and conforming model” workflow. In AToMPM, button toolbars are instance models of the
Buttons formalism. The model that defines the main menu toolbar is shown in Figure 5.10a.
The x, y position of each Button instance defines the corresponding button’s position on the
loaded toolbar. The buttons’ tooltips, their names (used to bind them to an icon) and the
code that implements their behaviour are specified as Button abstract syntax properties, as
shown in Figure 5.10b. The behaviour code makes use of AToMPM’s client API, which is
thoroughly detailed its User’s Manual.

5.3.2 MMMKernel

The modelling and meta-modelling kernel, or MMMKernel, is at the core of AToMPM. Each
model lives within an MMMKernel that performs all modifications on it, with other compo-
nents merely (re-)routing requests to it and reacting to its output. Virtually every operation
a user may carry out (from the client) will eventually reach an instance of the MMMKernel,
where appropriate steps will be performed and changelogs produced. For instance, consider
the sequence of events that begins when a user requests that a new instance of a concept
C be created, illustrated in Figure 5.11. First, an appropriate HTTP request is sent to
the client’s associated CSWorker which immediately responds with an HTTP success status
code indicating the request has been accepted and is being processed. Then, the CSWorker
adjusts the HTTP request and sends it to its associated ASWorker. At this point, the AS-
Worker makes an appropriately parametrized function call to its associated MMMKernel
instance requesting a new C. The MMMKernel will then verify all pre-creation constraints,
execute all pre-creation actions, create a new instance given the provided parameters, exe-
cute all post-creation actions and verify all post-creation constraints. If any of these steps
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Figure 5.9: The Statechart model that describes the behaviour of the AToMPM client canvas.
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Action Shortcut(s)

Choose an entity type to
create

Left-click on desired type from a loaded formalism tool-
bar.

Create an entity Right-click anywhere on the Canvas.
Select an entity Left-click any entity.
Select one or more entity Left-press anywhere on Canvas, drag selection box

around desired entity or entities and release.
Connect entities Right-press an entity, drag to-be edge to target entity

and release.
Edit icon text CTRL-SHIFT-Middle-click any text from any icon on

the Canvas (this will display a very simple text editor).

(a) When in the IDLE (or default) state.

Action Shortcut(s)

Unselect selection Right-/Left-/Middle-click anywhere on the Canvas, or
click ESC.

Move selection Left-press selection, drag preview overlay to desired po-
sition and release.

Delete selection Click DELETE.
Edit first entity in selection Middle-click selection, or click INSERT (this will display

the abstract attribute editor).
Enter geometry editing
mode

Click CTRL (this will display geometry controls).

Enter edge editing mode Click SHIFT (this will display editable edge control
points).

(b) When in the SOMETHING SELECTED state (i.e., when one or more entity is selected).

Action Shortcut(s)

Make current line horizon-
tal/vertical

Click SHIFT.

Create control point Left-click anywhere, or click CTRL.
Delete last control point Middle-click anywhere, or click ALT.
Cancel current edge Left-release anywhere on the Canvas.

(c) When in the DRAWING EDGE state (i.e., when dragging to-be edge from source to target entities).

Table 5.1: Actions available in each of the client canvas’ states and their corresponding
shortcut(s) (continued).
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Action Shortcut(s)

Move control point Left-press any control point, drag it to desired position
and release.

Vertically/Horizontally
align control point to
previous control point

Left-click any control point and click SHIFT.

Clone control point Right-click any control point.
Delete control point Middle-click any control point (extremities and the cen-

tral control point are not removable).

(d) When in the EDGE EDITING state.

Action Shortcut(s)

Scale Mouse-wheel up/down on scale icon until preview over-
lay reaches desired shape.

Scale vertically only Mouse-wheel up/down on vertical scale icon until pre-
view overlay reaches desired shape.

Scale horizontally only Mouse-wheel up/down on horizontal scale icon until pre-
view overlay reaches desired shape.

Rotate Mouse-wheel up/down on rotation icon until preview
overlay reaches desired shape.

Cancel changes Right-/Left-/Middle-click anywhere on the Canvas, or
click ESC.

Confirm changes Left-click confirmation icon.

(e) When in the GEOMETRY EDITING state.

Table 5.1: Actions available in each of the client canvas’ states and their corresponding
shortcut(s).
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(a) A model of the main menu toolbar.

(b) The property dialog of the main menu loadModel Button.

Figure 5.10: Button toolbars in AToMPM.

fail, the MMMKernel will return an error and rollback any changes. Otherwise, it will return
a changelog detailing the modifications the model underwent. In both cases, the ASWorker
will notify the requesting CSWorker of failure or success (via a standard HTTP response),
wrap the returned error or changelog in communication protocol boilerplate5 and broadcast
it to all subscribed CSWorkers (via their WebSocket connections). These will in turn react
by making an appropriate function call to their own MMMKernel instance requesting the
creation of a new CIcon instance. The resulting changelog will then itself be wrapped and
broadcast to subscribed clients, including the one that instigated the request. Regardless of

5Such boilerplate includes sequence numbers that provide robustness against various network issues that
can lead to changelogs being received out of order by subscribers.
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Logged Data Operation Description

MKNODE:id, node Created a node with given identifier and data.
RMNODE:id, node Deleted a node with given identifier and data.
MKEDGE:id, id Created an edge between given nodes.
RMEDGE:id, id Deleted an edge between given nodes.
CHATTR:id, attr, new val, old val Updated given attribute of given node from old val

to new val.
LOADMM:name,mm Loaded given meta-model.
DUMPMM:name,mm Unloaded given meta-model.
RESETM:new name, new model,
old name, old model, insert

Loaded given model preserving or overwriting current
model.

Table 5.2: The set of primitive operations supported by the MMMKernel.

the requested operation, the above sequence of steps or a close variation (e.g., requests that
do not involve abstract syntax modifications are not forwarded to the ASWorker) of it hold
true. At the lowest level, pre- and post- meta-modelling constraints and actions are verified
and performed before and after each model modification. No other component of AToMPM
is aware of these constraints and actions or of how to manipulate models. Conversely, the
MMMKernel is completely oblivious of the rest of AToMPM and even of anything outside of
its internal state (e.g., it never performs any disk I/O, it is never exposed to communication
protocol details). It knows no more and no less than how to perform model CRUD (Create,
Read, Update, Delete) operations within a meta-modelling context. The MMMKernel is
thus a critical yet relatively simple component.

Finally, the changelogs returned by MMMKernel operations reflect the journalling system
that AToMPM is built on. All model modifications can be reduced to a small number of
primitive invertible operations, described in Table 5.2. In practice, the primitive operations
that constitute each model modification are logged in a journal that sits at the heart of the
MMMKernel. Subsets of this journal form the returned changelogs while the entire journal
will eventually serve to add model versioning capabilities to AToMPM. The fact that all
primitive operations are invertible is also of critical importance for another requirement: it
is the key enabler for the undoing and redoing of changes. Undoing a change simply involves
inverting each of its constituting operations.

5.3.3 CSWorker and ASWorker

Each Worker encapsulates exactly one MMMKernel, and by extension, exactly one model.
That it to say that CRUD operations on a model must go through its Worker. Concrete
syntax workers, or CSWorkers, encapsulate concrete syntax models. Abstract syntax work-
ers, or ASWorkers, encapsulate abstract syntax models. In practice, each CSWorker and
ASWorker is a distinct process, neither of which needs to be running on the same machine
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Figure 5.11: A Sequence Diagram [Obj09] describing the creation of an instance of type C.
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(or on the same machine as the client). Important interactions between client, CSWorker,
ASWorker and MMMKernels have already been discussed. Here, we focus on the distinction
between CSWorkers and ASWorkers.

From the user’s perspective, a model is the transparent union of an abstract and a con-
crete component. The fact that each of these components is in reality a model in itself is
entirely hidden. In practice, the abstract syntax model conforms to a user-defined meta-
model and captures abstract instances, their attributes and connections between them. The
concrete syntax model conforms to a meta-model synthesized from a concrete syntax spec-
ification (such as those shown in Figure 5.4) and captures icons (that represent abstract
instances) and their attributes, namely, position, size, orientation and style. Each abstract
syntax model has one or more associated concrete syntax model (each belonging to a sub-
scribed CSWorker). The need for a distinction between concrete and abstract models and
workers arises from the fact that an abstract syntax model is entirely disjoint from its concrete
syntax representation(s). Indeed, if concrete syntax were to be stored as (hidden or special)
abstract arguments, as was the case in AToM3, there would be no need for CSWorkers. The
negative consequences of such a design choice with respect to AToMPM’s requirements were
discussed in the previous section.

The separation of abstract and concrete syntax concerns also has a significant impact
on request handling and propagation. When a user-requested operation is relevant to the
abstract syntax model, it is propagated to the appropriate ASWorker and concrete syntax
impacts, if any, are carried out only as a side-effect of reported abstract syntax changes.
This scenario was described in the earlier example on instance creation. For changes that
only concern the concrete syntax, however, such as the rotation of an icon, requests are not
propagated to the ASWorker and are instead entirely handled by the CSWorker (and its
MMMKernel). In practice, requests that are seemingly only relevant to the concrete syntax
model may impact abstract syntax. For instance, in a formalism that describes city maps,
constructs’ abstract attributes should arguably include and reflect their associated icon’s
position. Thus, moving icons should trigger appropriate abstract syntax attribute updates.
AToMPM provides means for specifying how concrete syntax variables map onto abstract
syntax variables (via the parser attribute of VisualObjects), as well as appropriate internal
infrastructure for supporting such deferred abstract syntax modifications.

From the above discussion, one of the properties of AToMPM’s architecture emerges,
namely, the dual application of the Model/View/Controller design pattern [Bur87] that
promotes modularity and decoupling by isolating system logic (Model) from user inter-
face details (View) via an intermediate translator (Controller). On the one hand, the
<client/Worker/MMMKernel> hierarchy naturally reflects the said pattern. However, look-
ing further into AToMPM model representation reveals that the <client canvas SVG/concrete
syntax model/abstract syntax model> hierarchy does as well. The dual application of this
three-tiered architectural paradigm is made especially explicit by the numerous translation
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and propagation steps that characterize AToMPM’s responses to user requests. From a devel-
oper’s perspective, while these additional steps do entail a slight performance penalty, their
advantages in terms of eased development, maintainability, extensibility and (most of all) ac-
cessibility significantly outweigh the costs, as is often the case when the Model/View/Controller
design pattern is applied.

5.3.4 MTWorker and PyTCore*

The final two components from Figure 5.8, namely, MTWorker and PyTCore*, capture
AToMPM’s model transformation engine. Each instance of the MTWorker process is asso-
ciated to exactly one ASWorker and is responsible for carrying out model transformations
on its encapsulated model. The MTWorker component is in fact little more than a wrap-
per around PyTCore*, an enhanced and journalling-based adaptation of Syriani’s Py-T-Core
[Syr11]. PyTCore* (and Py-T-Core for that matter) is a Python implementation of Syriani’s
T-Core6. For our purposes, it is sufficient to describe it as a means of applying rules to source
models. In other words, PyTCore* can be used to identify LHS patterns that satisfy certain
conditions within a model, to ensure that they do not satisfy any NACs, and to transform the
matched patterns into RHS patterns. What is needed then to use PyTCore* from AToMPM
are means to compile AToMPM rules and models into the PyTCore* internal format, means
to sequence PyTCore* function calls such as to reflect user-specified rule schedules, means to
appropriately route and react to user commands (e.g., enable debugging, pause), and means
to translate rule effects back into the AToMPM format. All these tasks and more and car-
ried out by MTWorkers. User commands are HTTP requests that are routed from the client
through its CSWorker and ASWorker to its MTWorker, which translates them appropriately
into the internal context of the executing transformation engine. As for rule schedules, spec-
ified as Transformation models in AToMPM, these are interpreted on the fly, meaning that
their traversal and the choice of the next rule to read, compile and execute are performed
one rule at a time, as a result of the application status (e.g., success, failure) of the previous
rule. This design choice privileges lowering initialization overhead, which could potentially
be very high, over lowering inter-rule processing time, which remains negligible. Finally, the
translation of rule effects back to the AToMPM format is captured by an HTTP query from
MTWorker to ASWorker that requests that the relevant changes, described by collections
of logged PyTCore* primitive operations (as was the case with MMMKernel), be made.
On the one hand, this implies that from the ASWorker’s perspective, changes requested
by the user through the client are indistinguishable from changes requested by the model
transformation engine. On the other, it implies that negative feedback from the ASWorker
(e.g., due to rule effects violating meta-model constraints) must trigger MTWorker rollbacks.

The choice of PyTCore* as AToMPM’s model transformation engine is mostly due to the
numerous strengths of T-Core. One such strength involves the ability to specify rules that
are more complex than traditional (NAC-)LHS-RHS rules. For instance, rules with nested

6For a complete description of T-Core, we refer the reader to Syriani et. al’s work in [SV10, Syr11].
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LHSs, or several matchers in T-Core terminology, can be used to easily match patterns that
would otherwise require very complex LHS and NAC condition code. Other advantages
involve its flexibility in terms of rule scheduling. Any scheduling expressible via the Python
language is valid and supported. In its current state, AToMPM only harnesses a small
fraction of PyTCore*’s full potential. Future enhancements to AToMPM’s Transformation
and TransformationRule formalisms and to the MTWorker AToMPM-to-PyTCore* compiler
will overcome this limitation. In particular, to fully leverage the power of PyTCore*, means of
arbitrarily combining and sequencing T-Core primitives (e.g., matchers, iterators, rewriters),
rather than atomic rules, should be provided within AToMPM.

5.4 Technical and Scientific Contribution Review and

Remaining Work

The work presented in this chapter was motivated by what we deemed to be usability, ac-
cessibility and/or scientific limitations common to popular DSM tools. These included the
unprincipled “special” handling of concrete syntax and model transformation specification,
the lack of portability inherent to standalone applications, limited model transformation
execution controls, and the absence of collaboration and versioning facilities. The means by
which AToMPM (partially) addresses each of these shortcomings were discussed from the
user’s and the developer’s perspective.

AToMPM’s contributions are both technical and scientific. On the one hand, it is the first
(and only) DSM tool that runs in a Web browser (and thus requires no local installation), that
supports real-time distributed collaborative modelling, that provides fully integrated copy-
paste and undo-redo facilities, that supports pausing ongoing transformations and stepping
into composite transformations, and whose GUI behaviour is modelled via and synthesized
from Statechart models. On the other hand, it is the first DSM tool to implement Khüne et
al.’s RAM process, to make use of Syriani’s T-Core as its model transformation kernel, and
to rigorously apply the “meta-model and conforming model” workflow to all facets of DSM.

At this time, ongoing implementation and research work focuses mostly on the completion
of the transformation debugging mode and the implementation of fully integrated model
versioning facilities.
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Conclusions

Summary

Domain-specific modelling makes a list of ambitious claims at the top of which is that it can
significantly shorten and often completely close the notoriously large conceptual gap between
problems and their realizations in the solution domain, a feat that no other computer-assisted
development technique has achieved. While these claims have been substantiated in several
documented industrial and academic efforts, more focus is often given to the benefits of DSM
than to the lower-level implementation details of how exactly the aforementioned conceptual
gap is tackled, or to the supporting tooling (or lack thereof). These unsung implementation
details often comprise the specification of complex code-generators that make little use of
reusable modules and that adhere to no standardized development guidelines.

Guided by the principles of Multi-Paradigm Modelling, this thesis targeted the founda-
tions of DSM, proposing more modular, structured, scalable and most of all principled means
of realizing the promises of DSM. The contributions of each of its chapters are reviewed be-
low.

Structuring the Synthesis of Artifacts from Models (Chapter 2)

In this chapter, we proposed a structured approach to artifact synthesis from DSms that
addresses the numerous flaws of widely adopted (within the DSM community) artifact syn-
thesis techniques through the application of MPM principles. Layered model transforma-
tions are used to modularly isolate, compile and re-combine various concerns within DSms,
while maintaining traceability links between corresponding constructs at different levels of
abstraction. A thorough study of the approach revealed a number of its wide-ranging ben-
efits, one of which is its simplifying effect on the notoriously difficult problem of addressing
non-functional requirements (e.g., timing and resource utilization constraints). We demon-
strated the approach through the synthesis of fully functional Google Android applications
from DSms of mobile phone applications.
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Debugging in Domain-Specific Modelling (Chapter 3)

In this chapter, we proposed a mapping between common debugging concepts such as break-
points and assertions from the code-centric development realm to the DSM realm. The
meaning of these concepts was explored from both the modeller’s and the DSM expert’s
points of view, where the tasks and debugging requirements of the former are akin to those
of programmers, while those of the latter are akin to those of compiler builders. Guidelines,
caveats and examples are provided, many of which are implemented and demonstrated, as
blueprints for future DSM debuggers. They also serve to demystify the amount of effort
required to produce DSM debuggers.

Domain-Specific Engineering of Domain-Specific Languages (Chap-
ter 4)

In this chapter, we proposed a DSML engineering approach that automates much of the
complex tasks traditionally associated with the specification of DSML syntax and semantics.
The basic “domain constructs” of the domain of DSML engineering are identified as being
portions of lower-level modelling formalisms that capture commonly occurring syntactic and
semantic concepts and structures in DSMLs. Then, a template-based approach for composing
these DSML building blocks into new DSMLs is proposed. The approach is demonstrated
on two very different DSMLs and studied to clearly identify its benefits and limitations, and
the scope of its applicability.

AToMPM: A Tool for Multi-Paradigm Modelling (Chapter 5)

In this chapter, we presented AToMPM, a new tool for MPM, that addresses usability, ac-
cessibility and/or scientific limitations common to popular DSM tools. In addition to several
technical innovations and improvements, which include a Web-based client and support for
real-time, distributed collaboration, its main scientific interest lies in its theoretically sound
approach towards the specification of modelling language syntax and semantics and of model
transformation rules and pre- and post-condition pattern languages, and in its implemen-
tation and integration of recent research work by ourselves and others. Its features and
architecture were reviewed in the context of its objectives and requirements.

Outlook

This thesis makes a number of contributions to the field of DSM. Nevertheless, many chal-
lenges still stand between DSM and its adoption in industry as a viable and scalable devel-
opment discipline. Those we deem most relevant are reviewed below.
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Model Versioning

Researchers in the area of model versioning wish to provide modellers with the same ver-
sion control utilities than those programmers have been using over the past decades. As
modelling efforts are growing in scale, the need to work with several sequential and parallel
versions of models is increasing. Storing all these versions is an impractical solution due to
space and bandwidth concerns. Under this premise, the manipulation of model differences
becomes key. Thus the problems of computing, visualizing and merging model differences
arise. A significant body of research tackles each of these challenges and means to achieve
them (semi-)automatically have been proposed [AP03, OWK03, XS05, CRP07, TELW12].

Brosch et al. go one step further and propose collaborative conflict resolution [BSWW09].
Their rationale is that merging different model versions may sometimes be very complex and
that the authors of each version should participate in the merging effort. Though their work
has been prototyped within the EMF, it may be interesting, especially in the context of
distributed collaboration, to implement it within AToMPM.

Other researchers have proposed even more advanced uses for model differencing. For
instance, in [LGJ07], Lin et al. suggest that model differences be used to compare the results
of model transformations with generated or specified desired results, thereby enabling model
transformation testing and verification through model differencing.

Model (Co-)Evolution

Unlike GPLs, which are specifically designed to be useful in the implementation of applica-
tions from an ever growing pool of domains, DSMLs are specifically designed to be tightly
coupled with a single domain. This is desirable because it enables domain experts to readily
create, understand and manipulate DSms. However, this coupling makes DSMLs very sen-
sitive to changes in their associated domains. Thus, means of evolving all aspects of DSMLs
(i.e., their abstract and concrete syntaxes as well as their semantics) and of conforming
DSms are especially crucial. Other evolution-prompting events include the need for more
convenient syntactic constructs and changes to target solution domains (i.e., the target do-
mains of DSm compilers). Hence, means to co-evolve meta-models, model transformations
and models as a result of external evolution must be available. Research in this field revolves
around automating co-evolution in various scenarios and identifying those scenarios where
human intervention is unavoidable [SK04, ZGL04, CREP08, MV11c].

Model and Model Transformation Debugging

We have already made the case of how critically important complete debugging facilities
are to DSM’s widespread adoption, and have proposed guidelines for future debuggers. A
next step is that a debate surrounding our proposals take place within the DSM community
to further specify the requirements of debuggers for all facets of the DSM development
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process. Further study of what is the meaning of certain debugging concepts, breakpoints in
particular, in the context of formalisms where the notion of state is implicit is also necessary.

Semantic Template-based DSML Design

Despite our demonstrations and argumentation in favour of using semantic templates, when
appropriate, to alleviate the burden placed on DSM experts and facilitate and automate
much of the DSML engineering process, we recognize that a more objective, empirical vali-
dation is required and suggest that a user study be conducted to formally compare several
metrics, including productivity and amount of user-input, between traditional DSML de-
sign and engineering techniques and our proposed approach. Given positive results, future
research surrounding ST-based DSML design might explore extending our proposed set of
base formalisms to increase its usefulness. For instance, performance models may be a useful
base formalism. Instance DSms of DSMLs built on top of a performance model base formal-
ism could be mapped onto performance models and more (e.g., performance measurement
artifacts) without any modeller or designer input. Moreover, relevant performance notions
would be elevated to the DSm level, making measurement reporting at that level possible
and sensible.

An implicit and pressing need is of course for results from all of the above research areas
to be integrated into widely accessible DSM tools, such as AToMPM.
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Appendix A

Acronyms

API Application Programming Interface

AToM3 A Tool for Multi-formalism and Meta-Modelling

AToMPM A Tool for Multi-Paradigm Modelling

CORBA Common Object Request Broker Architecture

CRUD Create Read Update Delete

DEVS Discrete EVent system Specification

DSm Domain-Specific model

DSM Domain-Specific Modelling

DSML Domain-Specific Modelling Language

EMF Eclipse Modelling Framework

GME Generic Modeling Environment

GMF Graphical Modelling Framework

GReAT Graph Rewriting And Transformation

GPL General Purpose Language

GUI Graphical User Interface
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HOT Higher-Order Transformation

HUTN Human Readable Textual Notations

IDE Integrated Development Environment

I/O Input/Output

LHS Left-Hand Side

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta-Object Facility

MTL Model Transformation Language

MPM Multi-Paradigm Modelling

MTBD Model Transformation By Demonstration

NAC Negative Application Condition

OCL Object Constraint Language

OMG Object Management Group

OOP Object-Oriented Programming

QVT Query/View/Transformation

RAM Relaxation Augmentation Modification

RHS Right-Hand Side

SOAP Simple Object Access Protocol

SoC Separation of Concerns

SPL Software Product Line

ST Semantic Template

SVG Scalable Vector Graphics
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UML Unified Modelling Language

VMTS Visual Modelling and Transformation System

XMI XML Metadata Interchange

XML eXtensible Markup Language
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[LLMM08] Tihamér Levendovszky, László Lengyel, Gergely Mezei, and Tamás Mészáros.
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