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Abstract

The gauge/gravity duality is extensively studied in recent years, as well as its

applications to large N QCD and condensed matter physics. In this thesis, we study

the gravity duals of three different gauge theories. The first gauge theory has N = 1

supersymmetry and is conformal, we study the spectrum on its gravity dual solution,

i.e., the supergravity modes in anti de Sitter (AdS) space on a 5D Sasaki-Einstein

manifold Y p,q. The second gauge theory has running couplings and is not conformal.

We study the geometric transition as it happens at the far infrared region, which

is at the bottom of the cascading RG flow, between resolved conifold with wrapped

D5 branes and deformed conifold with only fluxes but no branes. Lastly, we try to

find the gravity dual of a certain finite temperature gauge theory which is neither

conformal nor supersymmetric.
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Résumé

Depuis ces dernières années, la dualité entre les théories de jauge et les théories

gravitationnelles ainsi que ses applications dans la mécanique quantique chromody-

namique et le domaine de la matière condensée ont été explorées en profondeur. Dans

ce mémoire, nous étudions l’homologue gravitationnel de trois différentes théories de

jauge. La première théorie possède une supersymétrie de type N = 1 ainsi qu’une

symétrie conforme. Nous étudions son spectre à l’aide de son homologue gravitation-

nelle, i.e., en analysant les modes supersymétriques d’un espace anti de Sitter (AdS)

sur une 5-variété de Sasaki-Einstein Y p,q. La seconde théorie n’est pas conforme à

cause de la variation des constantes de couplage. Nous étudions alors la transition

géométrique qui parvient dans la région infrarouge qui se situe au bas du flot de renor-

malisation cascadant. La géométrie évolue d’une variété conique résolue enveloppée

de D5-branes à une variété conique déformée en présence de flux, mais sans aucune

membrane enveloppée. Finalement, nous tentons de trouver l’homologue gravitation-

nel d’une certaine théorie de jauge à température finie qui n’est pas conforme ni

supersymétrique.
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Chapter 1

Introduction

Much of what is known about the phases of Quantum chromodynamics (QCD)

comes from a variety of techniques, each of which has its own limitations. Perturbative

computations can probe a large part of the parameter space of the theory, allowing

one to deal with varying numbers of colors N , and flavors Nf . However, these results

are valid only at temperatures well above the deconfinement temperature Tc, and at

large values of the baryon number chemical potential µ, when the QCD coupling is

small. Lattice gauge theory, which provides a rigorous non-perturbative starting point

for QCD, has its limitations too. It is difficult to incorporate realistic quark masses,

and results are limited to certain regions of T , and µ very small.

In recent years, there has been a considerable studies of using gauge/gravity dual-

ity to understand the behavior of U(N) gauge theories at finite temperature. In this

chapter we will briefly introduce this duality for three different gauge theories.

1.1 N = 4 conformal field theory and AdS corre-

spondence

In 1997, Juan Maldacena first brought up the idea of large N duality between N =

4 super conformal field theory and supergravity on AdS×S5 [1]. It was then developed

further in [2] and [3] where the states mapping was done. The mass spectrum of type
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IIB supergravity on AdS5 × S5 was found in [4]. In the following we will briefly

describe this duality.

Let us consider a stack of N coincident D-branes. D-branes are sub-spaces where

open strings can end. When there are N D-branes, the two end points of each open

string can lie on different branes or the same brane, which means there are N2 extra

degrees of freedom. This information is encoded in the Chan-Paton factors. In an

oriented string theory, such as type IIA and IIB, the excitations of the open strings

on the branes form an SU(N) gauge group, while in an unoriented string theory, such

as type I, they form an SO(N) gauge group. D-branes are also BPS states in string

theory, meaning they break half of the original supersymmetry.

Now let us look at type IIB theory on 10D flat space-time which has 32 super

charges. A stack of N coincident D3 branes will break half of the supersymmetry and

leave N = 4 SUSY on the brane world volume. It also turns out that the SU(N)

gauge group living on these branes is conformal. When gsN ≪ 1, these D3 branes can

be considered as perturbations on the flat background. From the world sheet point of

view, this is because the effective loop expansion parameter for the open strings is gsN

due to the Chan-Paton factors, not gs. Thus, under the assumption that gsN ≪ 1,

the system can be described by the following action,

S = Sbrane + Sbulk + Sinteraction. (1.1)

Where Sbrane is the action of the SU(N) gauge theory living on the brane plus some

higher order corrections, Sbulk is the 10D supergravity action plus some higher order

corrections and Sinteraction is the action of the interaction between the bulk modes and

brane modes. Now if we take low energy limit, i.e. below energy 1/ls, where ls is the

string length, only massless modes are generated and the interactions between these

two modes can be neglected. Thus there are only two simplified terms in the effective

action: Ssupergravity describes the closed string modes forming a gravity multiplet

living in the flat 10D space-time and Sgauge describes the open string modes forming

an N = 4 SU(N) vector multiplet living on the 3 + 1-dimension brane volume.
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Now we consider the back reaction of the D3 branes on the 10D space-time. In

the supergravity limit it is described by the well known black brane solution

ds2 = H−1/2(r)dxµdxµ +H1/2(r)dxmdxm (1.2)

with the self-dual five form flux F5 = (1+ ∗10)dH(r)−1dx1∧dx2∧dx3∧dx4 and other

fields vanishing. H is called the warp factor and H = 1 + L4

r4
, where L4 ∼ gsN . The

curvature singularity and horizon of the above solution turn out to be at the same

place where r = 0. These solutions are called extremal solutions while others having

different locations of singularity and horizons as non-extremal solutions. When L≫ 1,

i.e. gsN ≫ 1, perturbative classical gravity solution is a good approximation, but it

breaks down when L≪ 1, or gsN ≪ 1. When we take the low energy limit, the closed

string excitations decouple from the near horizon geometry, leaving supergravity in

the large r flat region and the near horizon geometry in the small r region. The near

horizon metric can be obtained by taking the r 7→ 0 limit, which is

ds2 =
r2

L2
dx4 +

L2

r2
dr2 + L2d2S5. (1.3)

The first two terms are the AdS5 metric, and the last term is the S5 metric. The

curvature radius is L for both of them. In fact AdS5 × S5 is also a solution of the

type IIB supergravity theory with F5 = −4(1 + ∗10)L
4

r5
dr ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 and

other fields zero. When we integrate this F5 over S5 we get∫
S5

F5 = N (1.4)

which is exactly the same as the number of D3 branes. However, this does not mean

there is delta-function singularity in F5, in other words there is no branes in this

solution, since this S5 has constant radius and does not vanish anywhere. So we

again get two non-interacting parts from this point of view: the supergravity in 10D

flat space-time and the type IIB AdS × S5 solution.

We see that the same system has two different descriptions at different limits of

the coupling strength gsN . Varying gs switches from one region to the other. We
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can further argue that N must be much greater than 1 to get both limits. This is

because to keep gsN ≫ 1 either gs or N must be greater than 1, if it is the former,

we can do an S-duality to make gs < 1, thus it must be that N ≫ 1. Now, we can

make an assumption that the two descriptions are dual to each other in the limit

N ≫ 1. Neglecting the 10D supergravity which appears in both descriptions, we have

a weakly/strongly coupled gauge theory on the branes, and a strongly/weakly coupled

type IIB supergravity on AdS5 ×S5 geometry with fluxes but no branes. The duality

means the excitations of the strings on the branes can be mapped to the excitations

of the metric and flux.

This is the simplest case of gauge/gravity duality since the gauge theory here is

conformal and has N = 4 SUSY. In the real world we have not observed SUSY in

any experiment, so we would prefer to study a gauge theory with less or no SUSY.

1.2 N = 1 conformal gauge theories and their grav-

ity dual

Instead of flat space-time, we can put D3 branes in aM4×K6 manifold, whereM4

is the 4D Minkovski space and K6 is a 6D Ricci flat internal manifold. By the same

argument as in the previous section we can get dualities between type IIB string theory

on different geometries AdS × k5, where k5 is the base of K6, and different conformal

gauge theories. For example, k5 can be a Sasaki-Einstein manifold of which S5, S5/Z2

and T 1,1 are the simplest and most widely studied cases. For S5/Z2 the gauge group

is SU(N) and has N = 2 SUSY, for T 1,1 the gauge group is SU(N) × SU(N) and

has N = 1 SUSY.

Now let us look at the T 1,1 case more closely. The cone over T 1,1 is called conifold,

it is a complex manifold. The conifold can be embedded in C4, via

z21 + z22 + z23 + z24 = 0, (1.5)
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where z1, z2, z3 and z4 are the complex coordinates of C4. It is easy to see that there

is a singularity at zi = 0. The embedding equation (1.5) can also be written as

detZij ≡ det
( z1 + iz2 −z3 + iz4

z3 + iz4 z1 − iz2

)
= 0 (1.6)

such that Zij = 1
2

∑
n σ

n
ijzn, and σn are Pauli matrices for n = 1, .., 3 and σ4 = i1.

With a different parametrization we see that the determinant equation is automati-

cally satisfied, i.e.:

detZij = det
( z1 + iz2 −z3 + iz4

z3 + iz4 z1 − iz2

)
= det

( A1B1 A1B2

A2B1 A2B2

)
= 0 (1.7)

where Ai and Bj, i, j = 1, 2 are complex numbers. We only need six real degrees of

freedom to describe the conifold, but there are eight degrees of freedom in Ai and Bj.

To eliminate the extra two degrees of freedom we notice that the combination AiBj

is invariant under the following transformation:

Ai 7→ λAi, Bj 7→
1

λ
Bj (1.8)

where λ is a complex number. To fix this gauge we first fix the magnitude by de-

manding

|A1|2 + |A2|2 − |B1|2 − |B2|2 = 0 (1.9)

and then fix the phase by the identification:

Ai ∼ eαAi, Bj ∼ e−αBj (1.10)

With these two conditions Ai and Bj parametrize the conifold correctly. On the other

hand, (1.5) can be rewritten in terms of real coordinates zi = xi + iyi, i = 1, .., 4 as,∑
i

xiyi = 0,
∑
i

(x2i − y2i ) = 0. (1.11)
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The coordinates xi describe an S
3 for any value of yi, and yi are orthogonally fibered

to them.

The base of the conifold T 1,1 can be found by intersecting the conifold with an S7

of radius r,

4∑
i

|zi|2 = r2 (1.12)

From (1.11) and (1.12) we find that the base has an S3 parametrized by xi and an

S2 fibered over it parametrized by yi. Since the fibration is trivial, the base T 1,1 has

a topology of S3 × S2.

Now we put N coincident D3 branes at the tip of the conifold. The gauge theory

on the branes is a N = 1 supersymmetric gauge theory with a gauge group SU(N)×
SU(N). An easy way to see this is to do a T-duality to type IIA theory. With a

properly chosen T-dual direction, the conifold becomes two orthogonal NS5 branes,

and the D3 branes becomes two stacks of D4 branes suspended between them on each

sides. On each stack of D4 branes these is an SU(N) gauge group, so in total we get

SU(N)× SU(N) gauge group. The field contents are Ai and Bj which are promoted

from coordinates to chiral super fields. The superpotential for this theory is

W = λtr(A1B1A2B2 − A1B2A2B1) (1.13)

and the D-term condition for supersymmetry is

D = −1

2

∑
[qAi

A∗
iAi + qBj

B∗
jBj] + ξ (1.14)

where qAi
= 1 and qBj

= −1 are the charges of Ai and Bj under the U(1) symmetry.

When ξ = 0, the D-term condition is exactly the same as the defining equation of the

conifold.
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The back reaction of the branes on the geometry is encoded in the supergravity

solution:

ds2 = H−1/2(r)dxµdxµ +H1/2(r)
[
dr2 + r2

(1
9
(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2

+
1

6
(dθ21 + sin θ1dϕ

2
1) +

1

6
(dθ22 + sin θ2dϕ

2
2)
)]

(1.15)

with

F5 = (1 + ∗10)dH(r)−1dx1 ∧ dx2 ∧ dx3 ∧ dx4 (1.16)

and other fields vanishing. H(r) is the same as in (1.2). The metric in the square

brackets is that of a conifold and can be written as

ds26 = dr2 + r2

(
1

9
(g5)2 +

1

6

4∑
i=1

(gi)2

)
(1.17)

where gi, i = 1, .., 5 are the one forms given by

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5

e1 ≡ −sinθ1 dϕ1, e2 ≡ dθ1

e3 ≡ cosψ sinθ2 dϕ2 − sinψ dθ2,

e4 ≡ sinψ sinθ2 dϕ2 + cosψ dθ2,

e5 ≡ dψ + cosθ1 dϕ1 + cosθ2 dϕ2. (1.18)

Taking the ’near horizon’ limit the metric becomes AdS5 × T 1,1, which the same as

AdS5 × S5 is also a supergravity solution with only F5 fluxes but no branes. The

integration of F5 over T 1,1 again matches the number of D3 branes N ,∫
T 1,1

F5 = N (1.19)

Thus we find that the N = 1 conformal SU(N)×SU(N) gauge theory is dual to the

string theory on AdS5 × T 1,1 in the large N limit.
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1.3 N = 1 non-conformal gauge theories and their

gravity dual

Although till now we only considered D3 branes in the type IIB theory, we can

also put other kinds of branes. In fact if we put additionalM coincident D5 branes in

the conifold case, making them wrap the vanishing S2 cycle of the conifold, the gauge

theory becomes SU(N +M)× SU(N) and it is no longer conformal. In this section

we will discuss this case in detail because it is most closely related to large N QCD.

D5 branes wrapping the vanishing two cycle contribute to the D3 charges so they

are also called fractional D3 branes. The gauge group SU(N +M)× SU(N) can be

seen by the same T-duality in the previous section. After T-dualizing to type IIA

theory, the D5 branes become only one segment of D4 branes suspending between

the two NS5 branes, thus only one of the gauge group is enhanced. The SU(M +N)

sector has 2N effective flavor while the SU(N) sector has 2(M +N) effective flavors.

Thus it is dual to the SU(N) × SU(N − M) gauge theory under Seiberg duality.

Under a series of such dualities which is called cascading, at the far IR region the

gauge theory can be described by SU(M)×SU(K) group, where N = lM+K, and l,

k (0 6 K < M) are positive integers. Now the number of ’actual’ D3 branes N does

not make much sense any more, it just describes the effective number of D3 branes at

some energy scale. So when one says there are N D3 branes and M D5 branes, one

really refers to a certain energy scale where the effective D3 branes is N . If we take

K = 0, at the bottom of the cascade, we are left with N = 1 SU(M) strongly coupled

gauge theory which looks very much like strongly coupled supersymmetric QCD.

Due to the strong coupling at the IR, the superpotential of the gauge theory

receives non-perturbative corrections [5] and becomes

W = λNijNklϵ
ikϵjl + (M − 1)

[ 2Λ3M+1

NijNklϵikϵjl

] 1
M

(1.20)

where Nij = AiBj. The solution for a supersymmetric vacuum is

1

2
NijNklϵ

ikϵjl = detNij =
[ Λ3M+1

(2λ)M−1

] 1
M
. (1.21)
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Comparing to the defining equation of the conifold (1.7) we find that it is no longer

a regular conifold, but it is deformed in such a way that its S3 is finite at r = 0. This

is called a deformed conifold.

One of the supergravity solution with D3 branes and D5 branes is the following

ds2 = H−1/2(r)dxµdxµ +H1/2
[
dr2 + r2

(1
9
(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2

+
1

6
(dθ21 + sin θ1dϕ

2
1) +

1

6
(dθ22 + sin θ2dϕ

2
2)
)]

(1.22)

with the self-dual five form flux in the same form as before and

B2 =
3Mα′

2
log(r)ω2, F3 =

Mα′

2
ω3 (1.23)

where

H(r) = 1 +
1

r4
(gsN +

3

2π
(gsM)2 log

r

r0
+

3

8π
(gsM)2) (1.24)

with r0 a constant of integration and

ω2 =
1

2

(
sin θ1dθ1dϕ1 − sin θ2dθ2dϕ2

)
, ω3 = (dψ − cos θ1dϕ1 − cos θ2dϕ2) ∧ ω2.(1.25)

As indicated in the gauge theory side, the internal manifold of the dual gravity solution

must not be the regular conifold. So we can not simply take the ’near horizon’ limit

to get the gravity dual. It was proposed in [6] that the gravity dual of this brane

configuration is given by the deformed conifold.

The base of the deformed conifold has the same topology S2 × S3 as that of

the regular conifold. The unique Kähler metric on the deformed conifold that has

vanishing Ricci curvature is

ds26 =
1

2
a4/3K(ρ)

[ 1

3K3(ρ)

(
dρ2 + (g5)2

)
+ cosh2

(ρ
2

) [
(g3)2 + (g4)2

]
+sinh2

(ρ
2

) [
(g1)2 + (g2)2

] ]
(1.26)
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where a is a constant, gi, i = 1, .., 5 are given in (1.18) and

K(ρ) =
(sinh(2ρ)− 2ρ)1/3

21/3sinhρ
. (1.27)

When a = 0, (1.26) recovers the metric of the regular conifold (1.17), so a characterizes

the deformation of the cone. In fact in terms of complex coordinates, the deformed

conifold equation can be written in a way similar to (1.5) as

z21 + z22 + z31 + z32 = a (1.28)

The difference between the deformed cone and the regular cone is that the regular

cone has a U(1) symmetry under which all z1 in (1.5) are rotated by the same phase,

while the deformed cone only has a Z2 symmetry under which zi in (1.28) flip signs.

This Z2 symmetry corresponds exactly to the Z2 symmetry on the gauge theory side,

thus it strongly indicates that the correct gravity dual should be the deformed conifold.

Furthermore, observe that with a change of coordinates

r3 = a2eρ, (1.29)

for large ρ, the deformed cone metric becomes that of a regular cone (1.17). This

implies that at large ρ, the gravity dual is approximately the near horizon geometry

of (1.22). This approximation is very useful when we come to the finite temperature

fields theory calculations.

Aside from Kähler metrics one can put lots of other metrics on the deformed

conifold, in the following chapters we will mainly deal with non-Kähler metric on it.

1.4 Organization of the thesis

In chapter 2, we study the spectra of supergravity modes in AdS5 on a 5D space

with Sasaki-Einstein metrics on S2 × S3, given by the Y p,q class. We analyze the full

scalar spectrum on these spaces and get both lower and upper bounds on the eigen-

values. We also briefly discuss various other new avenues such as non-commutative

and dipole deformations as well as possible non-conformal extensions of these models.

10



In chapter 3, we first obtain a globally defined supergravity solution of the wrapped

D5-branes on the two-cycle of the resolved conifold. And then we use it as a start-

ing point for the geometric transition cycle. We show that the geometric transition is

effectively a simple series of mirror transformations followed in between by a flop tran-

sition between two intermediate M-theory configurations with different G2-structures.

In chapter 4, we try to find a non-extremal solution with warped resolved-deformed

conifold background which is important to study the infrared limit of large N thermal

QCD. We explicitly solve the supergravity equations of motion in the presence of

the backreaction from the black-hole, branes and fluxes. The backreactions from the

branes and the fluxes are comparatively suppressed to the order that we study. We

also study the effect of switching on a chemical potential in the background and, in

a particularly simplified scenario, compute the actual value of the chemical potential

for our case.

Chapter 5 is summary and discussions.
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Chapter 2

Scalar spectrum of the Y p,q

manifolds

2.1 Introduction

The gravity dual of N = 1 CFT has been studied earlier from many different per-

spectives starting with [7] where the associated CFT, endowed with a simple product

gauge group and a simple quartic superpotential, appeared from N D3-branes placed

at the tip of a conifold geometry. One way to change the gauge group and the super-

potential structure is to change the underlying conifold geometry itself by either an

orbifolding or an orientifolding action. A subsequent T-duality, mapping these actions

to either the interval [8, 9] or the brane-box models [10, 11], then gives us simple ways

to analyse the underlying N = 1 CFTs.

An alternative way to change the gauge group and the superpotential structure is

to change the Calabi-Yau condition of the conifold itself, namely, change the Kähler

class and the complex structures so as to put different Ricci flat metrics on the conifold.

Since there are infinite ways of doing it, there would exist infinite variations of the

conifold that are all Calabi-Yau manifolds. All of these would lead to gravity duals of

the form AdS5 × Y p,q where Y p,q are the so-called Sasaki-Einstein manifolds. These

ideas, including the underlying gauge/gravity duality, were developed few years ago

in [12, 13, 14, 15].

12



In this chapter we study spectrum of Sasaki-Einstein manifold Y p,q, using spectral-

theoretic methods, continuing the work of [16]. More precisely, we study the Laplacian

operator of a Y p,q manifold, associated to its scalar spectrum, using the framework

laid out in [16]. The authors of [16] analyzed the Cauchy problem, and presented a

Fourier-type decomposition for the eigenfunction. In order to use spectral-theoretic

methods, they used the Friedrichs extension of the Laplacian operator to rule out

logarithmic singularities. This way a self-adjoint extension of unbounded symmetric

operator could be determined. Our starting point, in this chapter, is to use this

operator to study its eigenmodes.

The lowest eigenmodes of the Laplacian were first studied in [17] for Y p,q, wherein

they also tried to construct an AdS/CFT dictionary. This work was followed by

[18] where they studied the lowest eigenmodes for more generic manifolds like the

La,b,c examples. An important progress in [17] was the realization that the Laplacian

operator could be expressed in terms of a Heun type operator, whose lowest modes

are easily computable. However, for higher modes not much progress has been made

in the literature. Even numerical studies do not look simple. In [19], the spectrum is

studied numerically for S5 case, which is the simplest Sasaki-Einstein manifold in 5d,

but an equivalent work for the Y p,q case is still lacking.

2.2 Y p,q geometry

The Y p,q metrics are Sasaki-Einstein and therefore a cone over them is Calabi-Yau.

We start with the local metric

ds2 =
1− cy

6
(dθ2 + sin2 θdϕ2) +

1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
(dψ − cos θdϕ)2

+
2(a− y2)

1− cy

[
dα +

ac− 2y + y2c

6(a− y2)
(dψ − cos θdϕ)

]2
(2.1)

where f(y) = 2cy3 − 3y2 + a. As in [13] one can show that Ric = 4g for all values

of a and c therefore satisfying Einstein condition. For c = 0 and a = 3 the metric

is exactly the local form of the standard metric on T 1,1. For c ̸= 0 one can always

13



rescale y (y → y/c, and also a→ a/c2, f → f/c2, etc) to set c = 1 which we will take

in the following.

It is obvious that the first two terms give the metric of an S2 for a fixed y, if the

periodicity of θ and ϕ are π and 2π respectively. To study the (y, ψ) space one first

requires

1− y > 0, a− y2 > 0

f = a− 3y2 + 2y3 > 0. (2.2)

In order for y to have solutions a must satisfy 0 < a < 1. The negative solution of

f = 0 and the smallest positive solution are denoted by y− and y+ respectively. Then

y needs to take values between y− < y < y+ , (so that all the terms in the metric

come with positive sign). When a = 1 the metric (2.1) is the local round metric of

S5. If ψ has the period of 2π then (y, ψ) is topologically a 2-sphere1 .

In order to have a compact manifold one takes the period of α to be 2πl. Then

l−1A, where A is the last term in the second line of (2.1), becomes a connection

on a U(1) bundle over S2 × S2 which puts constraints on A. In general such U(1)

bundles are completely specified topologically by the gluing on the equator of the two

S2 cycles, C1 and C2. These are measured by the corresponding Chern numbers in

H2(S2,Z) = Z which will be labeled as p and q. The Chern numbers are given by

1 The range of y is taken to be [y−, y+]. This ensures that w (defined in (2.18))
is strictly positive in this interval and r > 0, vanishing only at the endpoints y±. If
we identify ψ periodically, the part of gB (gB is only defined in [16] but not in this
chapter) given by

1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
dψ2

describes a circle fibered over the interval (y−, y+), the size of the circle shrinking to
zero at the endpoints. Remarkably, the (y, ψ) fibers are free of conical singularities if
the period of ψ is 2π, in which case the circles collapse smoothly and the (y, ψ) fibers
are diffeomorphic to a 2-sphere.
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the integrals of l−1A/2π over C1 and C2, namely:

p =
1

2πl

∫
C1

A =
y− − y+
6y−y+

, q =
1

2πl

∫
C2

A =
(y− − y+)

2

9y−y+
(2.3)

From their ratio p
q
= 3

2(y+−y−)
, it follows

a =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2, l =

q

3q2 − 2p2 + p
√
4p2 − 3q2

(2.4)

Metric (2.1) can be written in a canonical way if one makes the coordinate change

α = −β/6− cψ′/6, ψ = ψ′ (2.5)

to (2.1). This converts (2.1) to the following metric:

ds2 =
1− cy

6
(dθ2 + sin2 θdϕ2) +

1− cy

2f(y)
dy2 +

f(y)

18(1− cy)
(dβ + c cos θdϕ)2

+
1

9
(dψ′ − cos θdϕ+ y(dβ + c cos θdϕ))2. (2.6)

The Killing vector

∂

∂ψ′ =
∂

∂ψ
− 1

6

∂

∂α
(2.7)

is globally well defined. For a generic value of a its orbit is not closed, in which case

the Sasaki-Einstein metric is irregular. It is quasi-regular, if and only if 4p2 − 3q2 =

m2,m ∈ Z.

2.3 The spectrum of the Y p,q manifolds

After the brief discussion of the geometry of the Y p,q manifolds, let us come to the

main analysis of this chapter: the study of scalar spectrum of these manifolds. We

will start by analysing the solution of the Laplacian operator arising from the Fourier

decomposition of functions as discussed earlier in [16]. However, as it will turn out,

finding the exact solution of the eigenvalue problem in closed form does not seem

feasible since the computation of the eigenvalues of the Laplacian boils down to the

analysis of a one-dimensional differential operator (which we call S) of Heun type,
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which has four regular singular points. What we will do, therefore, is to find bounds

for the eigenvalues of S, which will allow us to approximate the conformal dimensions

of the theory. In subsection (2.4), we will study some examples of these modes and

discuss cases that may take us beyond the scalar spectra.

2.3.1 Harmonic expansion on Y p,q

We will follow the argument in [20] which gives the spectrum of Type IIB on

AdS5 × T 1,1. The background solution in Type IIB is

ds2 =
r2

R2
(−dx20 + dx2i ) +

R2

r2
dr2 +R2ds2Y p,q (2.8)

with the self-dual 5-form flux F5 = (1 + ∗)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d
(
r4

R4

)
.

When Kaluza−Klein reducing this solution to AdS5, we first have to compute the

fluctuations of the 10-dimensional fields. The fluctuation of the gravitational fields

are parametrized as

g̃µν = gµν + hµν −
1

3
gµνh

a
a, g̃µa = hµa, g̃ab = gab + hab (2.9)

where µ, ν denote the AdS5 space time while a, b denote the internal space, and g

denotes the background metric while h is the fluctuation.

Now we expand the fields hµν , hµa, hab and haa into a complete set of harmonic

functions on Y p,q. With the de Donder and Lorentz-type gauge conditions Dah(ab) = 0
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and Dahaµ = 0 we have the following expansions2 :

hµν(x, y) =
∑
{λ}

H{λ}
µν (x)Y {λ}(y), haa(x, y) =

∑
{λ}

π{λ}(x)Y {λ}(y)

haµ(x, y) =
∑
{λ}

B{λ}
µ (x)Y {λ}

a (y), h(ab)(x, y) =
∑
{λ}

ϕ{λ}(x)Y
{λ}
(ab) (y)

(2.10)

where [λ] ≡ [λ1, · · · , λ[5/2]] denotes the SO(5) representation. Similarly with the gauge

condition DaAaµ = 0 and DaAab = 0 we can expand the type IIB complex zero and

the two-forms, B and Amn respectively, as

Aµν(x, y) =
∑
{λ}

a{λ}µν (x)Y
{λ}(y), Aaµ(x, y) =

∑
{λ}

a{λ}µ (x)Y {λ}
a (y)

Aab(x, y) =
∑
{λ}

a{λ}(x)Y
{λ}
[ab] (y), B(x, y) =

∑
{λ}

B{λ}(x)Y {λ}(y) (2.11)

For the four-form flux we can do the same thing by imposing the conditions Daaabcd =

0, Daaabcµ = 0, Daaabµν = 0 and Daaaµνγ = 0,

aabcd =
∑
{λ}

b{λ}(x)Y
{λ}
abcd(y), aabcµ =

∑
{λ}

b{λ}µ (x)Y
{λ}
abc (y)

aabµν =
∑
{λ}

b{λ}µν (x)Y
{λ}
ab (y), aaµνγ =

∑
{λ}

b{λ}µνγ(x)Y
{λ}
a (y)

aµνγρ =
∑
{λ}

b{λ}µνγρ(x)Y
{λ}(y) (2.12)

2 (x, y) denote coordinates of the AdS5 and Y p,q spaces respectively and therefore
should not be confused with the y coordinates that we will be using to write the
metric etc of the Y p,q spaces .
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Notice that Y p,q is topologically S2 × S3, the same as T 1,1, so we can argue similarly

as in [20] to simplify the expansion,

aabcd =
∑
{λ}

b{λ}(x)ϵeabcdDeY
{λ}(y) (2.13)

The full linearlized equation of motion can be found in [4]. In this chapter we are only

interested in scalar harmonics which means that we are only looking at the following

modes in AdS5, coming from first line of (2.10), (2.11), and the last line of (2.12):

hµν(x, y) =
∑
{λ}

H{λ}
µν (x)Y {λ}(y), haa(x, y) =

∑
{λ}

π{λ}(x)Y {λ}(y)

A(i)
µν(x, y) =

∑
{λ,i}

a{λ}µν (x)Y
{λ}(y), B(j)(x, y) =

∑
{λ}

B{λ,j}(x)Y {λ}(y)

aµνγρ =
∑
{λ}

b{λ}µνγρ(x)Y
{λ}(y) (2.14)

where A
(i)
µν(x, y) would be the NS and RR two-forms respectively and B(j)(x, y), where

i, j = 1, 2, would be the axion and the dilaton respectively. The other two quantities

π and b that appear respectively from the expansion of haa in (2.10) and from the

expansion of aabcd in (2.13), are related to the metric and the four-form respectively.

Therefore taking all these into account, we are left with the following equations:

(�x +�y)H
{λ}
µν = 0

(�x +�y)B
{λ,j} = 0

(Max +�y)a
{λ,i}
µν +

2i

R
ϵ στγ
µν ∂σa

{λ,i}
τγ = 0

�x

( π{λ}

b{λ}

)
+
( �y − 32R−2 80R−1�y

−4
5
R−1 �y

)( π{λ}

b{λ}

)
= 0

(2.15)

where Max denotes the Maxwell operator and �x, �y are the kinetic operators in

the AdS5 space time and Y p,q spaces respectively. In our case the latter is exactly

given by the action of the covariant Laplacian operator on the corresponding SO(5)
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representation3 , which can be formally written as

�y ≡
�yY

{λ}

Y {λ} (2.16)

Our next step then is to analyze the eigenvalues of the Laplacian operator in order to

find the mass spectrum for these fields.

2.3.2 Scalar modes in Y p,q

As we discussed in detail in the above subsection, our goal is to compute the

eigenvalues λn of the Laplacian in the manifold Y p,q. These eigenvalues enter the

scalar wave equation on AdS5 × Y p,q as masses, so that the conformal dimensions of

the associated fields at infinity (i.e for the CFT dual) are given by Witten’s formula

[3]:

∆k = 2 +
√

4 + λk .

It is well known that the Laplacian on Y p,q, which we denote by �y, defines a non-

negative, self-adjoint operator whose domain is the Sobolev space H2(Y p,q) of square-

integrable functions with square-integrable second derivatives. The Laplacian is given

in local coordinates as [16]4 :

�y ≡ gij∇i∇j =
1

ρ(y)

∂

∂y
ρ(y)w(y) r(y)

∂

∂y
+

1

w(y)

∂2

∂α2
+

9

r(y)

(
∂

∂ψ
− h(y)

∂

∂α

)2

+
6

1− y

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

(
∂

∂ϕ
+ cos θ

∂

∂ψ

)2
]

(2.17)

3 For more details on the Maxwell and the Laplacian operator see [4, 20].

4 Note that y denotes different things on LHS and RHS of (2.17). See footnote 2.
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where the various coefficients appearing above can be identified from (2.1) after rescal-

ing to set c = 1, i.e.,

w(y) ≡ 2(a− y2)

1− y
, r(y) ≡ 2y3 − 3y2 + a

a− y2
, h(y) ≡ y2 − 2y + a

6(a− y2)
, ρ(y) ≡ 1− y

18
(2.18)

The scalar mode Φ(y, θ, ϕ, ψ, α) in the internal space now takes the following wave-

functional form that was derived in [16]:

Φ = u(y)v(θ)ei(nϕ+2mψ+lσα/τ) (2.19)

which means that the Laplacian satisfies:

�yΦ = [Snmlju(y)] v(θ)e
i(nϕ+2mψ+lσα/τ) (2.20)

where we saw in [16] that the analysis of the eigenvalues of the Laplacian on Y p,q is

reduced to that of (the Friedrichs extension of) the one-dimensional operators

Snmlj ≡ − 1

ρ(y)

∂

∂y
ρ(y)w(y) r(y)

∂

∂y
+

1

w(y)

(
σl

τ

)2

+
9

r(y)

(
2m− h(y)

σl

τ

)2

+
6Λnmj
1− y

,

= − 2

1− y

∂

∂y
(a− 3y2 + 2y3)

∂

∂y
+
γ2(1− y)

4(a− y2)
+

6Λnmj
1− y

(2.21)

+
9(a− y2)

a− 3y2 + 2y3

(
2m− γ(a− 2y + y2)

6(a− y2)

)2

,

densely defined on L2((y−, y+), ρ dy). We refer to the aforementioned paper for more

detailed discussions on the derivation of the above formula5 . We have set γ ≡ σl/τ ,

5 The approach taken in [16] exploits the separability of the AdS5 × Y p,q metrics
to compute the eigenfunctions of the Laplace operator in Y p,q in quasi closed form,
by expressing them in terms of the eigenfunctions of the Friedrichs extension of a
single second-order ordinary differential operator with four regular singular points.
The subtle geometry of the spaces Y p,q introduces additional complications in the
analysis, since the ‘angular’ variables in which the metric of Y p,q separates are not
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and the function v(θ) defined in (2.19) satisfies the eigenvalue equation that comes

from the angular direction θ as:[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
−
(
n+ 2m cos θ

sin θ

)2
]
vnmj = −Λnmjvnmj . (2.22)

The eigenvalues Λnmj are given by the explicit formula:

Λnmj ≡ 2
[
2j(j+1)+

(
|n+2m|+|n−2m|

)
(2j+1)+|n+2m||n−2m|+2m2+n2

]
. (2.23)

In what follows we will drop the indices when there is no risk of confusion.

Before going on, it is worth recalling that the integers n,m, l that label the op-

erators S arise from the (quite subtle) Fourier decomposition of functions that were

discussed in [16] and given above in (2.19), while the label j (also an integer) was

obtained by explicitly solving an auxiliary eigenvalue problem associated with the

geometry of the sphere bundles (which had three regular singular points). However,

as we have already mentioned, there is little hope of solving the eigenvalue problem

for S in closed form, since the spectral problem for the operator S is governed by a

Heun differential equation. What we will do, therefore, is to obtain some estimates

for the eigenvalues of S that will allow us to approximate the conformal dimensions

of the corresponding CFT.

defined globally. In order to circumvent this problem the steps taken in [16] is to
start by constructing a Fourier-type decomposition of the space of square-integrable
functions on Y p,q adapted to the global structure of the manifold and to the action of
the Laplacian. Once the eigenfunctions of the Laplacian in Y p,q have been computed,
the analysis of the Klein–Gordon equation in AdS5 × Y p,q can be reduced to that
of a family of linear hyperbolic equations in anti-de Sitter space. In [16] a detailed
discussion of the existence and uniqueness of causal propagators for these equations
using Ishibashi and Wald’s spectral-theoretic approach to wave equations on static
space-times based on [21, 22, 23] were presented. Note that for our purpose, this
presents several advantages over the classical method of Riesz transforms, since the
latter method only yields local solutions to the Cauchy problem in the case in which
the underlying space-time is not globally hyperbolic [24].
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2.3.3 Behaviour of large eigenvalues (highly excited modes)

In this subsection, we give an asymptotically exact result for large energies (highly

excited modes) of the operator S ≡ Snmlj. The basic idea is that, if we label the

eigenfunctions of this operator by an integer k = 1, 2, . . . , the kth eigenvalue is very

close to a constant multiple of k2 for large k. To put it in a different way, the

eigenvalues tend to those of an infinite well, the width of the well determined by the

functions P,Q,W that define the Sturm–Liouville operator S. Very informally, the

justification would be that at high energies the leading terms are the derivatives; this

kind of asymptotic results are usually proved using pseudo-differential operators.

The first observation is that, without any further assumptions, we have an asymp-

totic formula (for large k, for highly excited modes) for the eigenvalues of S namely:

the eigenvalues λk ≡ λk(n,m, l, j) of S are asymptotically given by following expan-

sion6

λk = C0k
2 + o(k2) , (2.24)

where the constant

C0 ≡ 2π2

[ ∫ y+

y−

(
1− y

a− 3y2 + 2y3

)1/2

dy

]−2

(2.25)

6 A word of caution about the notation: The error term is o(k2), and not O(k2).
The respective notations mean different things, and o(k2) ≪ O(k2) for large k. The

notation f(k) = o(g(k)) means that limk→∞
f(k)
g(k)

= 0. On the other hand the notation

f(k) = O(g(k)) means that that there exists a positive constant C such that for k
sufficiently large |f(k)| 6 C|g(k)|. Simply, O(kn) means that a term scaling like kn

in the proper limit of k, as familiar to physicists. Here k → ∞ is appropriate, and
later in (2.48) a → 0 is so. The two notions are different and in particular the o(k2)
notation above indicates that the error term grows slower than quadratically in k. If
it had a power-law behaviour, it would be o(k2) = O(k2−ϵ) with ϵ > 0. In some sense
O is used when we know the power scaling of a term, and o is when we know only
the upper bound of the scaling.
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depends on the geometry of the manifold (that is, on p and q) through y± but not on

the Fourier modes n,m, l, j. (So that only the error term knows about these indices.)

The above statement is a consequence of general results in the theory of singular

Sturm–Liouville operators. Indeed, it suffices to note that S is a lower-bounded one-

dimensional self-adjoint operator, so it follows from [25, Sec. 10.8] that (2.24) holds

true with

C0 ≡
(
1

π

∫ y+

y−

(
w(y) r(y)

)−1/2
dy

)
. (2.26)

An easy computation shows that this integral takes the above form, which can in turn

be expressed in terms of elliptic functions.

Before ending this subsection, let us make the following remark. Weyl’s law7

ensures that, when the eigenvalues of all the one-dimensional operators corresponding

to the various Fourier modes are taken into account, the eigenvalues of the Laplace

operator on Y p,q (let’s call them λ̃k) obey the asymptotic law

λ̃k = (2π)2
(

5k

|S4|Vol(Y p,q)

)2/5

+ o(k2/5) (2.27)

where |S4| denotes the volume of the unit 4-sphere and the volume of the manifold

being given by [13]

Vol(Y p,q) =
π2q2[2p+ (4p2 − 3q2)1/2]

3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
. (2.28)

7 The Weyl law states that the first term in the asymptotic expansion for the k-th
eigenvalue λk of the Laplacian on an n-dimensional compact Riemannian manifold is:

λk = Cnk
2/n/(Vol M)2/n + o(k2/n)

as k → ∞. This was proved by Weyl in [26]. The second term was conjectured by
Weyl in 1913 [27] and proved only in 1980 by Ivrii [28].
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Eq. (2.24) provides a somewhat more tangible way of presenting this asymptotic

result in the sense that the asymptotics is separated into families labeled by addi-

tional “quantum numbers”. A straightforward but tedious computation shows that,

of course, when degeneracies are taken into account, the asymptotics (2.24) can be

summed with respect to the additional “quantum numbers” to obtain (2.27).

Let us elaborate this a little bit more. We have seen that the analysis of the eigen-

values of the Laplacian in Y p,q can be reduced to that of the eigenvalues of a family of

one-dimensional operators S = Snmlj. These operators are labeled by three integers

n,m, l and a nonnegative integer j. Notice that if any of the quantum numbers n,m

or l is nonzero (“higher Fourier modes”), all the eigenvalues of the Laplacian corre-

sponding to these quantum numbers are necessarily degenerate, as mapping (n,m, l)

to (−n,−m,−l) leaves the eigenvalue equation invariant. A convenient way of un-

derstanding the behavior of the eigenvalues if the Laplacian in geometric terms is the

Weyl’s law. For this, let’s denote by λ̃k the k-th lowest eigenvalue of the Laplacian

in Y p,q, where each eigenvalue is repeated according to its multiplicity. Obviously, for

each k there are “quantum numbers” (n,m, l, j) such that λ̃k = λk′(n,m, l, j) for some

k′.8 Weyl’s law then ensures that the asymptotic distribution of the eigenvalues λ̃k

of the Laplacian is related to the volume of the manifold through the relation (2.27).

2.3.4 Bounds for the eigenvalues for small a

In the previous subsection we obtained an asymptotic formula for the eigenvalues,

which is asymptotically exact for large energies. It does not provide any information

on low-lying eigenvalues, however. So our goal in this subsection is to provide some

estimates for the whole spectrum in an appropriate regime. This regime will be the

8 It is worth emphasizing that one cannot explicitly compute the degeneracy of
the eigenvalues, as there could be non-geometric degeneracies in the sense that
λk0(n0,m0,l0,j0) = λk1(n1,m1,l1,j1) for some pair of indices not related by a symmetry
of the equation.
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case when the parameter a is small; as we will see, then we can obtain two-sided

bounds for the eigenvalues that provide an adequate control of the energies.

The technique we apply here is that, using the fact that a is small 0 < a < 1, we

can Taylor expand the Laplacian operator in terms of small a and drop higher orders

of a (as in (2.32)). Obviously this works the best if a is very small, or equivalently

when q ≪ p, but even moderately small a, it is a valid Taylor expansion. Instead

of trying to obtain the spectrum of the original Laplacian operator, we use another

operator (2.37) whose spectrum is exactly known as in (2.38). With an appropriate

constant C which does not depend on the parameters of the equation, we can compute

the upper and lower bounds of the eigenvalues of Laplacian. (But we need to know

how small C can be, if C has to be large, the bound is very loose. By comparing with

the known low-lying scalar spectrum, can we learn something useful about C?)

Before passing to the actual derivation of the bounds, let us discuss the meaning of

the smallness of a. It should be noticed that this is in fact a geometric hypothesis on

the manifold. In order to see this, let us recall the connection between the parameter

a and the integers p, q that controlled the geometry of the bundle. In [13, Sec. 3] it is

explained that the relationship between p, q and the endpoints y± is that

y+ − y− =
3q

2p
(2.29)

The idea now is that it can be easily seen that for any value of the latter quotient we

can find an a for which (2.29) is satisfied; indeed, a can be chosen as

a =
3

4

[
1− 3q

2p
−
(
1− 1

3

(
3q

2p

)2)1/2]2
− 1

4

[
1− 3q

2p
−
(
1− 1

3

(
3q

2p

)2)1/2]3
(2.30)

Hence it is not hard to see that a ≪ 1 is equivalent to q ≪ p, so this condition

translates immediately as a condition on the geometry of the bundles. It this case,

a =
27q2

16p2
+O(q3/p3) (2.31)
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A closer look at the subsection on rational roots in [13] reveals that there is also an

infinite number of solutions with rational roots and arbitrarily small values of a (recall

that in this case the Sasaki–Einstein structure is quasi-regular.)

The idea now is that, for very small a, the operator −S should be very similar to

the one we obtain by dropping higher powers of a (e.g. in the Taylor expansion of the

coefficients), namely

−2
∂

∂y
(a− 3y2)

∂

∂y
+

γ2

2(a− y2)
+ 6Λ +

18(a− y2)

a− 3y2

(
m+

γy

6(a− y2)

)2

(2.32)

This expression defines a self-adjoint operator on L2(−(a/3)1/2, (a/3)1/2) via its Friedrich-

s extension (notice we still have too many singular points to solve the eigenvalue e-

quation for S). It is convenient to make things independent of a by rescaling. For

future convenience, we introduce the variable t ≡ a−1/2y and, noticing that

γ = σlq(3a)1/2 (1 +O(a)) (2.33)

we set γ̄ ≡ a−1/2γ (observe that γ̄ still depends on a, although it tends to a well-

defined nonzero limit as a → 0). Here and in what follows, by O(a) we will denote

quantities bounded by a constant (independent of any labels and of the geometry)

times a, and whose derivatives satisfy analogous bounds (i.e., behave like symbols

with respect to these bounds). We are thus led to consider (the Friedrichs extension

of) the operator

T ≡ − ∂

∂t
P (t)

∂

∂t
+Q(t) (2.34)

in L2(I), with I ≡ (−3−1/2, 3−1/2) and

P (t) ≡ 2(1− 3t2) ,

Q(t) ≡ γ̄2

2(1− t2)
+ 6Λ +

18(1− t2)

1− 3t2

(
m+

γ̄t

6(1− t2)

)2

.

In order to relate the spectral properties of S (as an unbounded self-adjoint operator

on L2((y−, y+), ρ dy) to those of T (on the space L2(I) with the standard Lebesgue
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measure dt), it is convenient to start by relating these two L2 spaces. An obvious way

to do so is through the following a-dependent change of variables:

t ≡ − 1√
3
+

2√
3

∫ y
y−
ρ(y′) dy′∫ y+

y−
ρ(y′) dy′

≡ Ta(y) . (2.35)

This induces a unitary transformation L2((y−, y+), ρ dy) → L2(I, dt), which trans-

forms S into the Sturm–Liouville operator of the form:

S̃ ≡ − ∂

∂t
P̃ (t)

∂

∂t
+ Q̃(t) . (2.36)

To derive the bounds, we start with the following observation: the spectrum of

the auxiliary operator

Tµ ≡ − ∂

∂t
P (t)

∂

∂t
+

µ

1− 3t2
(2.37)

on L2(I), as a function of the parameter µ, is given by

ℓk(µ) ≡ 3

2

(
1 +

√
8µ

3
+ 2k

)2

− 3

2
(2.38)

The proof of the above statement can be argued using a straightforward computation.

To start, observe that it suffices to see that the exponents of the equation Tµf = −ℓf
are

±
√

µ

24
,

1

2

(
1±

√
1 +

2λ

3

)
(2.39)

at (0 and at 1) and at ∞ respectively. The eigenvalues then arise as the necessary

condition for

(1− 3t2)−(µ/24)1/2f(t) (2.40)

to be a polynomial in t, thus proving the required statement.
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After developing the necessary mathematical preliminaries, we are now ready to

compute bounds for the eigenvalues of S (which coincide with those of S̃, by defini-

tion). Notice that we cannot obtain bounds using a relative compactness argument,

as any perturbation of the function P will lead to corrections that are not relatively

compact with respect to the original operator (because they have the same number of

derivatives as the initial operator). What we can do is to exploit monotonicity using

the following two observations. The first observation is that there is a constant C,

which does not depend on the parameters of the equation, such that the following

bounds for P̃ (t) hold for all t ∈ I:

(1− Ca)P (t) 6 P̃ (t) 6 (1 + Ca)P (t) . (2.41)

This inequality is obvious in view of the formula (2.35) for the map y 7→ t, and simply

asserts (roughly speaking) that the map does not alter the singularities too much.

Our second observation is somewhat similar to the first one in the sense that we

again claim that there is a constant C, which does not depend on the parameters of

the equation, such that the following bounds for Q̃(t) hold for all t ∈ I:

Q̃(t) > (1− Ca)

(
µ−

1− 3t2
+

1 + γ̄2

2
+ 6Λ− Ca

)
,

Q̃(t) 6 (1 + Ca)

(
µ+

1− 3t2
+

3(1 + γ̄2)

4
+ 6Λ + Ca

)
, (2.42)

where µ+ and µ− are defined in the following way:

µ− ≡ 12max

{
0,m− γ̄

4
√
3

}2

, µ+ : ≡ 18

(
m+

γ̄

4
√
3

)2

. (2.43)

The proof of the above two inequalities are a straightforward consequence of the fact

that

(1− Ca)(Q(t)− Ca) 6 Q̃(t) 6 (1 + Ca)(Q(t) + Ca) . (2.44)
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(One might wonder why we included an additive error Ca here and not in the estimate

for P̃ . The reason is that P̃ does not vanish in the interval I, and this is enough for

us to control the error via a multiplicative constant.)

It is standard that if we take nicely behaved functions Pj(t) and Qj(t) on I,

with j = 1, 2 and Pj(t) > 0, and suppose that P1(t) > P2(t) and Q1(t) > Q2(t)

(resp. P1(t) 6 P2(t) and Q1(t) 6 Q2(t)), then the k-th eigenvalue of (the Friedrichs

extension of) the operator − d
dt
P1(t)

d
dt
+Q1(t) is larger or equal (resp. smaller or equal)

than those of − d
dt
P2(t)

d
dt
+Q2(t). Hence it is elementary to derive the bounds

Λ
[−]
k 6 λk 6 Λ

[+]
k (2.45)

where

Λ
[−]
k = (1− Ca)

(
ℓk(µ−) +

1 + γ̄2

2
+ 6Λ− Ca

)
,

Λ
[+]
k = (1 + Ca)

(
ℓk(µ+) +

3(1 + γ̄2)

4
+ 6Λ + Ca

)
, (2.46)

from the inequalities (2.41) and (2.42), the formula for the eigenvalues ℓk(µ) of the

auxiliary operator Tµ derived in (2.38) and elementary inequalities in I such as

1 6 (1− t2)−1 6 3/2 . (2.47)

The bounds (2.45), in which C stands for an a-independent constant and ℓk(µ) is

given by (2.38), constitute the main result of this subsection9 .

9 One might worry about the strength of our bound. For example a question would
be whether the bound could be loose if constant such as C is large. To answer this we
first note that the constants do not arise exactly from a power series expansion, but
rather as the Taylor formula with estimates for the remainder (which is essentially the
mean value theorem). Therefore, the constant C can be explicitly computed as the
(sum of the) supremum (for t and a between certain values) of the derivative of some
functions appearing in P or Q with respect to the parameter a. For this reason, the
behavior of this constant is controlled, and can be computed explicitly. For example,
a preliminary computation reveals that the constant C can be chosen to be of order
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As a remark, notice that the above bounds also ensure that the eigenvalues have

the asymptotic behavior

λk = 6(1 +O(a))k2 +O(k) . (2.48)

This is precisely the growth rate computed in (2.24), since it is easy to see that the

constant

C0 ≡ 2π2

[ ∫ y+

y−

(
1− y

a− 3y2 + 2y3

)1/2

dy

]−2

(2.49)

entering Weyl’s law (2.25) tends to 6 as the constant a tends to 0.

2.4 Examples of scalar and other modes

Now that we have discussed the spectrum of scalar modes in the internal Y p,q space,

it is time to study some examples of these modes. However before moving ahead we

should point out that in this section (and also the next) we will not address the spectra

of theory. To analyse the spectra (for example along the lines of [29, 30, 20]) we not

only need to go beyond the scalar fields, but would also require exact eigenvalues

of the KK modes for all spin-states of the theory. The advances that we made in

the previous section do not help us in getting these details, and therefore we will

suffice ourselves by studying some basics aspects of scalar and other modes from

supergravity perspective in this section. In the next section we will discuss possible

non-conformal extensions of our model. Again the emphasis therein would be to study

the supergravity background and not the matching of spectra.

The simplest examples of scalar and other modes that appear for our case are

from the decomposition of the 2-forms in (2.11). These decompositions lead to two

possible theories on the boundary where we define the CFTs.

10 when a is smaller than 0.1, so the relative error is at most of order 10−n when
p/q < 10−n−1. (These estimates can be refined easily.)
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• Non-commutative geometry: Let us consider the NS B field with both components

along the boundary, i.e we can switch on Bij(x) where i, j = 1, 2, 3 and xµ specify

coordinates in AdS5 space, leading to non-commutative geometry in the dual gauge

theory. For example, a B-field component of the form Bij(r), with r being the radial

direction in the AdS5 space, would be able to generate non-commutative theory on

the boundary. Clearly this mode is a scalar mode in the internal Y p,q space.

• Dipole theory: This time we consider the NS B-field which has one component

along the boundary and the other component either along the radial r direction or

along the internal Y p,q directions. Consider first a component of the NS B field of the

form Bir. However if this component is only a function of xµ, then we can make a

gauge transformation to rotate the NS B field components along the boundary which

in turn will convert the boundary theory to a non-commutative theory. The other

alternative is to make it gauge equivalent to zero for the B field component of the

form Bir(r). Thus the only non-trivial cases appear to be of the form Bir(y), Bia(x, y)

and they both lead to the dipole theories. However none of these are scalar modes in

the internal Y p,q. The special case where the NS B field is of the form Bia(x, y) fits

in with our decomposition (2.11), and leads to a simple vector decomposition of the

boundary theory.

Thus the simplest scalar mode leading to noncommutativity can be specified by

a 2-form θij such that the commutator of the coordinates on the boundary theory is

[xi, xj] = iθij. The parameter θij has dimensions −2. At low-energies, noncommuta-

tive super Yang-Mills theory (NCSYM) can be described by augmenting the action

with: ∫
θijOij(x)d

4x, (2.50)

where Oij is an operator of dimension 6 in the superconformal SYM on a commutative

space. In the conventions such that the SYM Lagrangian is:

LSYM = tr

[
1

2g2

6∑
I=1

∂iϕ
I∂iϕI +

1

4g2
FijF

ij +
1

2g2

∑
I<J

[
ϕI , ϕJ

]2]
+ fermions, (2.51)
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the bosonic part of the operator Oij can be written as:

tr

[
1

2g2
FjkF

klFli −
1

2g2
FijF

klFkl +
1

g2
Fik

6∑
I=1

∂jϕ
I∂kϕI − 1

4g2
Fij

6∑
I=1

∂kϕ
I∂kϕ

I

]
.

(2.52)

Here, g is the SYM coupling constant, Fij is the U(N) field-strength, and ϕI (I =

1 . . . 6) are the scalars.

For the second case we expect the boundary theory to be deformed by an operator

of the form Oi. The deformation by LiOi (where L
i is a constant vector) is the low-

energy expansion of a nonlocal field-theory, the so-called dipole-theory, described in

[31, 32, 33].

Furthermore, as discussed in [31] (see also [32, 33, 34]), the bosonic part of the

SYM operator Oi can be calculated by changing to local variables (see [31] for more

details). We can write it in N = 1 superfield notation as [31]:

Oi =
i

g2YM

∫
d2θϵabtr

[
σαα̇i WαΦaDα̇Φb + ΦΦaDiΦb

]
+ c.c. (2.53)

Here, we denote the N = 1 chiral field as Φ and the N = 1 vector-multiplet with

the field-strength Wα. The original N = 2 hypermultiplet is now written in terms of

the two N = 1 chiral multiplets Φa (a = 1, 2). Finally, σαα̇i are Pauli matrices. As

expected, the operator Oi has conformal dimension 5.

2.4.1 Possible type IIA brane realisation

In the following we will discuss these backgrounds in somewhat more details by

switching on appropriate B fields. This is slightly different from allowing the B field

as a fluctuation. A non-trivial background B field will change the geometry in some

particular way which would reflect the corresponding backreactions. To analyse the

corresponding backreactions we have to study the scenario directly from N D3-branes

probing the geometry given by a cone over the Y p,q spaces. This starting point in

fact has many intriguing possibilities in addition to the ones related to generating

non-local field theories. One of the possibilities is to see whether a brane realisation
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of the form [9] in type IIA can also be made for our case. We will therefore start by

analysing this interesting possibility first and then go for the non-local theories.

To study D3-branes at the tip of a cone over the Y p,q manifolds, we will assume

the usual ansatz for the D3-brane metric given in terms of a harmonic function H

which is typically a function of r and the Y p,q coordinates. Let us therefore take the

following metric ansatz:

ds2IIB = H−1/2ds20123 +H1/2(dr2 + r2dM2
5 ), (2.54)

where dM2
5 is the same in eq. (2.1) and F5 = (1 + ∗)dβ0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 with

H = 1 +
r40
r4

≡ β0. We also assume the dilaton is zero. As in [9], the internal metric

has three isometries along the α, ψ and ϕ directions. We first do a T-duality along α

direction. The metric becomes

ds2IIA = H− 1
2ds20123 +H

1
2

{
dr2 + r2

[1− cy

6
(dθ2 + sin2 θdϕ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdϕ)2 +

(1− cy)

2Hr4(a− y2)
dα2
]}

= H− 1
2

[
dx20123 +

1− cy

2r2(a− y2)
dα2

]
+H

1
2

{
dr2 + r2

[1− cy

6
(dθ2 + sin2 θdϕ)2

+
1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
(dψ − cos θdϕ)2

]}
, (2.55)

with the following two components of the B-fields:

Bαψ =
ac− 2y + y2c

6(a− y2)
, Bαϕ = −ac− 2y + y2c

6(a− y2)
cos θ, (2.56)

and the original D3 branes become D4 branes. The existence of the two B-fields

might indicate the possibility of two NS5 branes, provided HNS = dB is a source term

and the integral of HNS over a three-cycle is an integer. The first one is harder to

determine because the knowledge of the global behavior of the two B-field components

is lacking, although the metric that we are dealing with is global. This is because

we delocalized along the α direction to make the harmonic function H independent
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of that direction so that T-duality rules of [35] could be implemented. This is of

course a slight oversimplification as this works well for some purposes, but not others.

The harmonic function should be taken to be a function of α as well, and then one

may T-dualise the background using the technique illustrated in [36]. Under such a

T-duality both the B-field components will pick up dependences on H as well. We

will discuss more on this a little later.

For the second case, one may do better by converting the three-forms to two-forms

and integrating over two-cycles. This can be easily achieved by making a U-duality

transformation of the form TαST3 where S denotes a S-duality transformation and Tm

denotes a T-duality along xm direction. Thus making a T-duality along x3 direction

we get the following metric in type IIB theory:

ds2 = H− 1
2dx2012 +H

1
2

{
dx23 + dr2 + r2

[1− cy

6
(dθ2 + sin2 θdϕ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdϕ)2 +

(1− cy)

2Hr4(a− y2)
dα2
]}

. (2.57)

Under this T-duality the D4 branes become D3 branes but extending along x0, x1,

x2 and α directions. However the B-fields remain unchanged. If these B-fields are

coming from some source NS5-branes, then the NS5-branes would not change under

the T-duality.

Let us now do the S-duality under which the NS B-fields become RR B-fields and

the metric gets an overall factor from the dilaton field
√

2r2(a−y2)
1−cy while the D3 branes

remain the same. When we T-dualize this background along α direction, the metric

becomes

ds2 = H− 1
2dx2012 +HH− 1

2

{
dx23 + dr2 + r2

[1− cy

6
(dθ2 + sin2 θdϕ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdϕ)2 + dα2

]}
, (2.58)
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and the RR three-form fields become the type IIA gauge fields. We have also defined

H = H
2r2

1−cy
a−y2 as our modified harmonic function. If these gauge fields are sourced by

D6 branes then they are the ones that come from the type IIB D5 branes. The D3

branes on the other hand become D2 branes. Lifting this configuration to M-theory

the eleventh direction has the required local ALE fibration with M2 branes at a point

on the four-fold.

The above set of manipulation is suggestive of NS5 branes in the original type IIA

configuration provided the gauge field EOM has a source term. Thus if we write the

local type IIA gauge field over a patch as:

A = Aψdψ + Aϕdϕ ≡ ac− 2y + y2c

6a− 6y2

[
F1(H)dψ −F2(H)cos θ dϕ

]
, (2.59)

where we have inserted the correction from the harmonic function as F1,2(H), then

there exists a global field strength F = dA. Now if it satisfies the two conditions

mentioned earlier, namely

d ∗ F = sources,

∫
S2

F = integer, (2.60)

then this would not only help us to identify the NS5 branes in the original type IIA

set-up, but also help us to count the number of the NS5 branes. Such a source term in

(2.60) may not be too difficult to see from our analysis if we take (2.59) seriously. The

LHS of (2.60) will involve terms like d∗dF1(H) and d∗dF2(H). Since �H = ∗d∗dH
lead to source terms in the supergravity solution, it should be no surprise if the above

two terms in (2.60) coming from F1,2(H) lead to D6 brane source terms in our model.

The above analysis is definitely suggestive of this scenario, although the precise

orientations of the NS5 branes are not clear to us at this stage. Furthermore there is

the subtlety pointed out in [37] which we might have to consider too. Note also that

from (2.55) the D4 branes are wrapped along a non-trivial S1
α cycle. More details on

this will be relegated to future works.

Before we end this subsection, we would like to point out another scenario related

to the type IIB metric (2.6). As has been described earlier, (2.6) is related to (2.1) by
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a series of coordinate transformations. Interestingly the metric (2.6) is closely related

to the conifold metric if one makes the following substitutions in (2.6):

c = 0, a = 3, y = −cos θ2, β = ϕ2, θ = θ1, ϕ = ϕ1 (2.61)

where β was defined in (2.5). So a natural question to ask would be what happens

if one makes a T-duality along the ψ direction. It is of course well known that, in

the limit (2.61), a T-duality along ψ direction leads to an orthogonal (not necessarily

intersecting) NS5 branes configuration [9]. If we now make a T-duality along ψ

direction, the metric that we get in type IIA side is the following:

ds2 = H−1/2

[
dx20123 +

18(1− cy)

r2W
dψ2

]
+H1/2

[
dr2 + r2

(1− cy

6
(dθ2 + sin2 θdϕ2)

+
1− cy

2f
dy2 +

4f

W
dα2
)]
, (2.62)

where W = 3c2y2 − 6cy + 2 + ac2. Interestingly, we find the metric has the simpler

form without cross-terms at all. This is again reminiscent of [9]. We also find two NS

B fields whose components are given as:

Bψα =
6(ac− 2y + cy2)

W
, Bψϕ = − cos θ. (2.63)

The absence of a cross-term is not a big surprise because we can rewrite (2.6) in a

suggestive way using the coordinates (2.61) and taking (c, a) away from the conifold

value (0, 3). The metric (2.6) becomes:

ds2 = a1(dθ
2
1 + sin2 θ1dϕ

2
1) +

[
a2 sin2 θ2dθ

2
2 + a3 (dϕ2 + c cos θ1dϕ1)

2
]

+
1

9

[
dψ + (1 + c cos θ2)cos θ1dϕ1 − cos θ2dϕ2

]2
, (2.64)

where a1, a2 and a3 are given by the following expressions:

a1 =
1 + c cos θ2

6
, a2 =

1

2
· 1 + c cos θ2
a− 3cos2θ2 − 2c cos3θ2

, a3 =
1

18
· a− 3cos2θ2 − 2ccos3θ2

1 + c cos θ2
.

(2.65)
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A T-duality along ψ direction will give us the configuration that we discussed above

(using non-canonical coordinates)10 . To see what (2.62) and (2.63) imply, let us again

go to the limit where c = 0 and a = 3. In this limit11 we recover the exact brane

picture of type IIA discussed in [9]. This may mean that we have some NS5 branes

along the (θ, ϕ) directions and some NS5 branes along (α, y) directions (or in a more

canonical language, we have a set of NS5 branes along (θ1, ϕ1) directions and another

set of NS5 branes along (θ2, ϕ2) directions). These two set of NS5 branes are locally

orthogonal to each other, so as to preserve N = 1 supersymmetry. The dψ fibration

structure in (2.64) also tells us that there are two local B-fields in type IIA side that

would T-dualise to give us the required background (2.64). The N type IIB D3-branes

become N of D4 branes along ψ direction suspended between these NS5 branes.

Unfortunately the c ̸= 0 scenario is not quite the same as the simpler (c, a) =

(0, 3) scenario. In particular12 at y = y1 and y = y2 the metric (2.62) develops

conical singularities, in other words now y and α no longer form a sphere. This can

be easily seen by taking the limit y → yi where i = 1, 2. In this limit we can write

the metric along the y and α directions as:

1− yi
f ′
i(y − yi)

dy2 +
4f ′

i(y − yi)

Wi

dα2. (2.66)

10 Note however that (2.62) and the T-dual of (2.64) may look different because in
(2.62) one cannot substitute the coordinate transformation directly as the coordinates
of (2.62) are the T-dual coordinates of (2.1). Thus a simple substitution of α =
−1

6
(ϕ2 + cψ) in (2.62) cannot be done.

11 For all other purposes we set c = 1.

12 We will henceforth use only the non-canonical coordinates by choice. An equiva-
lent construction could be easily done with the canonical coordinates (2.61).
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This is not quite the metric of a 2-sphere. To see this more clearly, let us define a

quantity R in the following way:

R ≡ 2

√
(1− yi)(x− yi)

f ′
i

. (2.67)

Using this defination we can rewrite the metric (2.66) in a bit more suggestive way:

dR2 +
f

′2
i R

2

(1− yi)Wi

dα2. (2.68)

Clearly the above metric becomes the metric of a 2-sphere only when α is periodic

with a period of L ≡ 2π
√

(1− xi)Wi/f
′
i . However recall that instead α has a period

of l ̸= L. This means we will always have two conical singularities at y = yi.

Let us now prove that there are no other singularities in this metric. Notice that

other singularities can happen only at W = 0, which has two roots:

y± = 1±
√

1− a

3
. (2.69)

Since y+ > 1, it is clear that y+ is already out of the range of y, while it is not so

obvious for 0 < y− < 1. To see the range of y−, we substitute y− into f to get:

f(y−) = − 2

3
√
3
(1− a)

√
1− a < 0, (2.70)

which means y− > y2 and therefore it is also out of the range. Therefore there are no

other singularities in this metric.

The above picture gives us an indication how the brane dual could be constructed

although the actual details are much harder to present than our previous construction.

It is also true that the delocalization effects are again present in the harmonic function

but this time, thanks to the canonical representation of the metric (2.64), a direct

mapping to the intersecting brane configuration for c = 0, a = 3 gives us a hope that

similar brane dual description does exist for generic cases (although at this stage one

may need to consider the subtleties pointed out in [37]). The interesting thing however

is that a T-duality along α also seems to lead to a similar configuration provided of
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course (2.60) holds. This shouldn’t be a surprise because α and ψ are related by a

linear coordinate transformation for c ̸= 0.

2.4.2 Non-commutative and dipole deformations

The above T-duality arguments give us a way to study the underlying N = 1

gauge theory from two different point of views: one directly from N D3 branes at the

tip of the cone in type IIB theory, and other from N D4 branes in a configuration of

two orthogonal set of NS5 branes in type IIA theory; although for the latter case the

precise orientations of the two NS5 branes still need to be determined.

The non-commutative and the dipole deformations could also be studied from

these two viewpoints. However in this chapter we will not consider the type IIA

brane interpretations of these deformations. Here we will suffice with only the type

IIB description and a fuller picture will be elaborated in a forthcoming work.

Our starting point is the well known observation that once we have a solution

we can use TsT to deform it into various different solutions, where T is a T-duality

transformation and s is a shift.

Given the background metric (2.54) with D3 branes we have three kinds of defor-

mations which is studied in Chapter 3.

In this chapter we are only interested in the first kind of deformation which is

shown in detail in Chapter 3, whose advantage is that the internal metric remains

unchanged so our scalar modes analysis in Y p,q is still valid. Of course this still

doesn’t help us to get the exact matching of spectra as we pointed out earlier. For

the rest two kinds of deformations our analysis generally cannot be applied as the

internal metric will change quite a bit.

In the following section we will discuss the non-conformal extensions of the above

models. We will specifically concentrate on the possibility of geometric transitions in

these models.
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Figure 2.1: The duality map to generate the full geometric transitions in the super-
symmetric global set-up of type IIA and type IIB theories.

2.5 Non-conformal duals and geometric transition-

s

The non-conformal duals to the Y p,q spaces, along the lines of the cascading model

of [6], have already been addressed in the literature (see for example [38, 39] etc). The

UV gauge groups for Y p,1 and Y p,p−1 are respectively given in equations (75) and (87)

of [38]. For both the cases the IR gauge group is:

SU(M)× SU(2M)× ...× SU(2pM) (2.71)

whereM denotes the number of D5 branes wrapping the two-cycles of Y p,1 and Y p,p−1

spaces. Such a gauge group is more complicated than the simple picture that we had

for [6] and therefore the far IR picture could be more involved: there could be non-

trivial baryonic branches. This story has not yet been fully clarified, and therefore it
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gives hope that the brane picture that we developed here may help us to study the

far IR picture in more details13 . We will however not pursue the cascading story

anymore here. Instead we go to a slightly different direction that may provide us with

an alternative way to study the far IR physics of these models [41, 42].

Our starting point would be to ask whether the far IR physics of the non-conformal

set-up could be likened to the geometric transtion story [43] that we developed in the

series of papers starting with [44] and culminating with [42] (Chapter 2). For the

geometric transition picture to hold, we need few essential ingredients:

• Resolution and deformation for the cone over Y p,q. These resolved and deformed

spaces are not required to be Calabi-Yau spaces, but they should have at least SU(3)

structures (in the presence of branes and fluxes) so that supersymmetric models could

be constructed.

• Supersymmetric configurations with D5 branes wrapped on two-cyles of the resolved

Y p,q and D6 branes wrapped on three-cycles of the deformed Y p,q including super-

symmetric configurations without branes but with fluxes. Again the overall pictures

for both cases should preserve SU(3) structures.

• Two kinds of G2 structure manifolds should exist in M-theory. One, the lift of the

deformed Y p,q space with wrapped D6 branes in type IIA, and two, the lift of the

resolved Y p,q space with fluxes but no branes also in type IIA. Additionally these

two G2 structure manifolds should be related by a flop transition, similar to the one

constructed for the T 1,1 case in [45].

If all the three ingredients discussed above are present then one would be able to

describe geometric transition using the resolved and the deformed Y p,q manifolds

13 For example the brane picture developed for the T 1,1 case in [40] clearly showed
how the far IR physics for cascading theory could be understood. We expect similar
story to unfold here too.
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via the duality map given in figure 2.5. In the following we will describe possible

realisation of these scenarios. Our starting point would be the resolution and the

deformation of the cones over Y p,q manifolds, that lie in the heart of these scenarios.

2.5.1 Resolution and deformation of the cones over Y p,q

A natural question is whether there can be resolutions for the cone over Y p,q as

the resolved conifold. The answer is in the affirmative and the metric on the resolved

cone over Y p,q was obtained explicitly in [46], [47] and [48]. The metric is,

ds2RS =
(1− y)(1− x)

3
(dθ2 + sin2 θdϕ2) +

(y − x)(1− y)

h(y)
dy2 +

(x− y)(1− x)

f(x)
dx2

+
f(x)

9(1− x)(x− y)

[
dψ − cos θdϕ+ y(dβ + cos θdϕ)

]2
+

h(y)

9(1− x)(y − x)

[
dψ − cos θdϕ+ x(dβ + cos θdϕ)

]2
(2.72)

where f(x) = 2x3−3x2+a and h(y) = 2y3−3y2+b. We will also take the sechsbein ea

to be the ones given in eq (2.8) of [41] with appropriate redefinations of the variables

therein.

As explained in the earlier subsection, x1 < x < x2. One can take y to be non-

compact and denote two consecutive roots of h(y) by y1 and y2. We focus on the case

where the resolution is obtained by blowing up a CP 1, referred to as small partial

resolutions in [48]. For this type of resolution we have x1 = y1 which requires a = b.

Thus,

−∞ < y < x1, x1 < x < x2, a = b (2.73)

If one take y = −r2/2 and expand the metric (2.72) in the large r it becomes ds2RS →
dr2 + r2ds2 where ds2 is exactly (2.6), so it is a cone over Y p,q.

Having got the resolution of the cone over Y p,q, we now want to study the de-

formation of the cone over Y p,q, which should be a mirror of the resolved cone over

Y p,q. Strominger, Yau and Zaslow conjectured in [80] that the mirror manifold can

be obtained by three T-dualities. There are three isometric directions ψ, β and ϕ,
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so we will first do T-dualities along these directions. The metric we get after three

T-dualities is:

ds2SYZ =
(1− y)(1− x)

3
(dθ2 + sin2 θdϕ2) +

(y − x)(1− y)

h(y)
dy2 +

(x− y)(1− x)

f(x)
dx2

+
f(x)h(y)(x− y) cos θ

9(f(x)y(1− y)2)− h(y)x(1− x)2

(
dψ +

f(x)y2(1− y)− h(y)x2(1− x)

f(x)y(1− y)− h(y)x(1− x)dβ

+
1

cos θ
dϕ
)
+

9h(y)(1− x)

f(x)h(y)(x− y) cos2 θ

[
(1− x) cos θdβ + xdϕ

]2
+

9f(x)(1− y)

f(x)h(y)(y − x) cos2 θ

[
(1− y) cos θdβ + ydϕ

]2
(2.74)

The above metric however cannot be the full answer as T-dualities a la [80] require

us to take the base to be very large. In [42] (or Chapter 2) (see also [44]) we saw that

making the base large actually mixes the isometry directions, leading eventually to

the generation of additional cross-terms missing from the metric obtained by making

naive T-dualities. Thus the actual mirror metric will have cross-terms in addition to

what we already have in (2.74).

The complete picture is rather involved as the recipe for making the base bigger

using coordinate transformations a la [42] is not readily available now. However

despite this obstacle, one thing is clear from the analysis of [42]: the resultant metric

will not be a Kähler manifold, in fact, it may not even be a complex manifold. This

is consistent with the result of [50, 51] (see also [52] where certain obstructions to

the existence of Sasaki-Einstein metrics on this manifold is shown). It will also be

interesting to compare our result with the one got in [53].

2.5.2 D5 branes on the resolved Y p,q manifold

The technical obstacle that we encountered in the previous subsection doesn’t

prohibit us to write the metric of N D5 branes wrapped on the two-cycle of the

resolved cone over Y p,q manifold. Recently the NS5 brane picture has been studied

in [41]. The analysis of [41] is similar in spirit to the one discussed in [42], both the

analyses being motivated by the work of [54]. The complete background for N D5
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branes wrapped on the resolution two-cycle is given by:

F3 = h cosh β e−2ϕ ∗ d
(
e2ϕJ

)
, H3 = −hF 2

0 sinh β e
−2ϕd

(
e2ϕJ

)
F5 = −1

4
(1 + ∗)dA0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.75)

ds2 = F0ds
2
0123 +

6∑
a=1

fae
2a, ϕ = log F0 +

1

2
log h,

where ea are the sechsbein defined in [41] and J is the fundamental form associated

with the internal metric. The above background is supersymmetric by construction

and since the RR three-form F3 is not closed, it represents precisely the IR configu-

ration of wrapped D5-branes on warped non-Kähler resolved Y p,q manifold. The two

warp factors (h, F0) as well as the coefficients fa in the internal metric are all functions

of (r, y, x) which, in turn, preserve the three isometries of the internal space. Notice

also that the background has a non-trivial dilaton, with the internal space being a

non-Kähler resolved cone over Y p,q. The form of the background (3.15) is similar

to the one that we had in [42] except now the internal space is different. This is of

course expected if one had to preserve N = 1 supersymmetry. The five-form, which

is switched on to preserve the susy, has the form F5 in (3.15) with:

A0 =
cosh β sinh β(1− e−2ϕh−2F−4

0 )

e2ϕh−2F−4
0 cosh2β − sinh2β

= (F 2
0 − 1)tanh β

[
1 +

(
1− F 2

0

F 2
0

)
sech2β +

(
1− F 2

0

F 2
0

)2

sech4β

]
.(2.76)

Let us now make a few observations. The parameter β that we have in the background

is in general constant and could take any value. This means that there is a class of

allowed backgrounds satisfying the supersymmetry condition. Imagine also that we

define a six-dimensional internal space in the following way:

ds26 =

(
NF0cosh

2β

1 + F 2
0 sinh

2β

) 6∑
a=1

fae
2a, (2.77)
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then one could easily argue that there are a series of dualities14 that would convert

the following background

ds2 = ds20123 +Nds26, HNS = e−2Φ ∗ d
(
e2ΦJ

)
, Φ = −ϕ (2.78)

to the one given earlier in (3.15). The above background (2.78) is of course the one

studied in [41]. Although this is no big surprise, but it is satisfying to see that our

picture can be made consistent with both [41] as well as [42].

2.5.3 Toward geometric transitions for Y p,q manifolds

Once we have the background (3.15) and (3.16) we should be able to use directly

the duality cycle shown in figure 2.5. This however will turn out to be more subtle

than the story that we developed in [42]. But before we go about elucidating the

14 Starting with the background (2.78), we perform a S-duality that transforms the
NS three-form to RR three-form F3 and converts the dilaton Φ to ϕ without changing
the metric in the Einstein frame. We now make three T-dualities along the spacetime
directions x1,2,3 that takes us to type IIA theory. Observe that this is not the mirror
construction. We then lift the type IIA configuration to M-theory and perform a boost
(with a parameter β) along the eleventh direction. This boost is crucial in generating
D0-brane gauge charges in M-theory. A dimensional reduction back to IIA theory does
exactly what we wanted: it generates the necessary number of D0-brane charges from
the boost, without breaking the underlying supersymmetry of the system. Finally,
once we have the IIA configuration, we go back to type IIB by performing the three
T-dualities along x1,2,3 directions. From the D0-brane charges, we get back our three-
brane charges namely the five-form. The duality cycle also gives us NS three-form H3

as well as the expected RR three-form F3. Therefore the final configuration is exactly
what we required for IR geometric transition: wrapped D5s with necessary sources
on a non-Kähler globally defined resolved Y p,q background (3.15). Also as expected,
the background preserves supersymmetry and therefore should be our starting point.
One may also note that the thee-forms that we get in (3.15) satisfy

cosh β H3 + F 2
0 sinh β ∗ F3 = 0

which is the modified ISD (imaginary self-duality) condition. For more details, see
[54, 42].
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issues, let us clarify certain things about generalized SYZ. The original work of SYZ

[80] is based on two facts: (a) all Calabi-Yau manifolds can be written in terms of

a T 3 fibration over a base B, and (b) in the limit where B is much larger than the

T 3 fiber, mirror of the given CY manifold is given by three simultaneous T-dualities

along the T 3 fiber directions.

For our case, the starting manifold (3.15) is not a CY manifold but instead is a

six-dimensional manifold with an SU(3) structure and torsion H3. For this case there

does exist a generalisation of the SYZ technique: it is again given by three T-dualities

along the T 3 fiber [55, 56, 57]. The difference now is that we cannot claim that all

SU(3) structure manifolds can be expressed in terms of T 3 fibrations over some base

manifolds (although [58, 56, 57] has discussed more generic cases by applying local

T-dualities). This generalization of the SYZ technique is called the generalized mirror

rule15 .

Our method now would be to use the generalized SYZ technique to go to the

type IIA mirror manifold with wrapped D6-branes. Unfortunately now there are

two subtleties that make the analysis much more non-trivial than the one that we

had in [42]. The first one is already been discussed earlier: we don’t know exactly

what kind of coordinate transformations we should do to make the base bigger than

the T 3 fiber. Recall that in [42], out of infinite possible coordinate transformations

available, we could find a class of transformations that can not only make the base

bigger but also lead us to the right mirror manifold. The main reason why we could

find that particular class of transformations earlier was solely based on the fact that

we knew the existence of a deformed conifold solution. This privileged information,

unfortunately, is not available to us now.

15 For more details as to why the generalized mirror rule would lead to another
SU(3) structure manifold that is the mirror of the original manifold is discussed in
[56, 57].
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The second issue is even more non-trivial. Looking at the background (3.15) and

from H3 = dBNS, we see that the BNS fields will have components that are parallel

to the directions of the T 3 fiber. T-dualities with BNS fields along the directions

of duality lead to non-geometric manifolds! Therefore the type IIA dual manifold

will most likely be a non-geometric space which in turn means that the duality cycle

depicted in figure 2.5 cannot be very straightforward16 .

Existence of non-geometric space, however, does not mean that there is no underly-

ing gauge/gravity duality. In fact in the geometric transition set-up there were already

indications, even for the simplest resolved conifold case, that the full gauge/gravity d-

uality will involve non-geometric manifolds [60], although we argued in [42] that there

is small configuration space of fluxes where we expect the duality to be captured by

purely geometric manifolds. The question now is whether such a scenario, with only

geometric spaces, could be realised for the present case also. We will leave this for

future work.

16 There is a third subtlety that has to do with the size of the T 3 fiber in the mirror
manifold. If the size of the fiber is small i.e ofO(α′), then supergravity description may
not be possible, and one might have to go to a Gepner type sigma model description.
For the model studied in [44, 42] this was not an issue because we could study a
class of manifolds parametrised by choice of warp factors that not only satisfy EOMs
but also lie in subspaces, where sugra descriptions are valid, on both sides of figure
3 in [59]. These subspaces are related by geometric transitions. For generic choices
of the warp factors in [42, 59], it would be interesting to see if the subspaces could
incorporate the Y p,q manifolds.
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Chapter 3

Geometric transitions at the
bottom of cascading RG flow

3.1 Introduction

The original gauge/gravity duality [1], [3] deals exclusively with theories that

have no running of the coupling constants, or with theories that have some running

of the coupling constants but eventually fall into fixed point surfaces, for example [7].

The first kind of dualities that consider the actual running of the coupling constants

leading to, say, confining theories were discussed some time back in [6], [43], [61] and

its extension to include fundamental flavors in [62]. The type IIA brane constructions

for theories like [7] were first discussed in [8], and for theories with running couplings

were discussed in [69]. In fact in the fourth reference of [69] the precise distinctions

between [6] and [43] were pointed out in details.

In recent times we have seen many new advantages of studying theories like [6]

and [43] that deal with running couplings. The confining behavior of these theories in

the far IR is of course very powerful in extending them to more realistic scenarios like

high temperature QCD [70, 71]. The cascading nature of these theories allow them

to remain strongly coupled throughout the RG flow from UV to IR, and therefore

supergravity duals can describe the full dynamics of the corresponding gauge theories.

For the Klebanov-Strassler (KS) theory [6] even the full UV completion, that allow
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no Landau poles or UV divergences of the Wilson loops, can be achieved by attaching

an UV cap to the KS geometry[70]. An example of the full UV completion of the KS

geometry both at zero and non-zero temperatures has been recently accomplished in

[71]. The UV cap therein is given by an asympototic AdS space that, in the dual

gauge theory, will allow for an asymptotic conformal behavior in the UV and linear

confinement in the far IR.

For the model studied by Vafa [43] the full UV completion would be more non-

trivial. We expect the UV to be a six-dimensional theory instead of a four-dimensional

one. A six-dimensional UV completion that allows no Landau poles in the presence

of fundamental flavors has not been constructed so far. In fact a proper study of

fundamental flavors a-la [62] is yet to be done for this case. The F-theory [106, 74, 75]

embedding of this model would be crucial in analysing the full UV completion. How-

ever some aspects of an intemediate UV behavior, for example cascading dynamics,

have been discussed in the past [72] where the cascade is likened to an infinite sequence

of flop transitions. The IR dynamics of the theory where we expect geometric tran-

sition to happen is actually the last stage in this sequence of transformations where

the flop is immediately followed by a conifold transition. At this point we should

expect the wrapped D5-branes to be completely replaced by fluxes (at least in the

absence of fundamental flavors) [72]. What happens in the presence of fundamental

flavors is rather subtle, and we will not discuss this here anymore. In fact we will

only concentrate on the last stage of the transition, namely, the geometric transition

in this chapter. The intermediate cascading dynamics or the UV completion will be

discussed elsewhere [76].

Since the geometric transition leads to a confining theory, the corresponding gauge

dynamics is strongly coupled. Therefore the physics of this transition can be captured

exclusively by supergravity backgrounds. In some of our earlier works [44, 112] we

managed to study this purely using the supergravity backgrounds in the local limit,

meaning that the sugra background was studied around a specific chosen point in

the internal six-dimensional space. The reason for this was the absence of a known
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globally defined supergravity solution of the wrapped D5-branes on the two-cycle of

the resolved conifold. The only known global solution i.e [77] was unfortunately not

supersymmetric (see [78, 79] for details) although it satisfied the type IIB EOMs. In

this chapter, among other things, we will be able to solve this problem and provide a

fully supersymmetric globally defined solution for the wrapped D5-branes on a certain

resolved conifold. What we will argue soon is that the resolved conifold should have a

non-Kähler metric to allow for supersymmetric solutions. This non-Kählerity appears

exactly from the back-reactions of the wrapped D5-branes.

Despite the absence of supersymetric solutions, in [44, 112] we managed to show,

at least locally, the full geometric transitons in type II theories. The gravity duals for

the IR confining gauge theories on the wrapped D6-branes in type IIA and wrapped

D5-branes in type IIB were completely captured by non-Kähler deformations of the

resolved and the deformed conifolds respectively. In this chapter we will show that

globally under some simplifying assumptions this conclusion remains unchanged, but

generically these manifolds would become non-geometric (see [60] for a recent discus-

sion on this). In the following sub-section we will briefly review the state of geometric

transition using local supergravity analysis before we proceed to compute the full

global picture.

3.1.1 Geometric transition and supersymmetric solution

Let us begin with a bit of historical notes. The original study of open-closed

string duality in type II theory starts with D6 branes wrapping a three cycle of a non-

compact deformed conifold. Naively one might expect the deformed conifold to be a

complex Kähler manifold with a non-zero three cycle. However as discussed earlier

in [44, 112] this is not quite correct, and the manifold that actually would solve the

string equations of motion is a non-Kähler deformation of the deformed conifold. It

also turns out that the manifold has no integrable complex structure, but only has an

almost complex structure. This is consistent with the prediction of [106].

However, as one may recall, in all our earlier papers we managed to study only

the local behavior of the manifolds. This is because the full global picture was hard
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to construct, and any naive procedure always tend to lead to non-supersymmetric

solutions. In deriving the local metric, we took a simpler model where all the spheres

were replaced by tori with periodic coordinates (x, θ1) and (y, θ2). The coordinate

z formed a non-trivial U(1) fibration over the T 2 base. The replacement of spheres

by two tori was directly motivated from the corresponding brane constructions of [8],

where non-compact NS5 branes required the existence of tori instead of spheres in the

T-dual picture.

Locally the non-Kählerity of the underlying metric can be easily seen from its

explicit form:

ds2IIA = g1

[
(dz − bzµ dx

µ) + ∆1 cot θ̂1 (dx− bxθi dθi)

+∆2 cot θ̂2 (dy − byθj dθj) + ..
]2

+g2 [dθ21 + (dx− bxθi dθi)
2] + g3 [dθ22 + (dy − byθj dθj)

2]

+g4 sin ψ [(dx− bxθi dθi) dθ2 + (dy − byθj dθj) dθ1]

+ g4 cos ψ [dθ1 dθ2 − (dx− bxθi dθi)(dy − byθj dθj)] (3.1)

where the coefficients gi and the coordinates θi, θ̂i etc. are defined in [44, 112]. The

background has non-trivial gauge fields (that form the sources of the wrapped D6

branes) and a non-zero string coupling (which could in principle be small).

Existence of such an exact supergravity background helps us to obtain the cor-

responding mirror type IIB background. One would expect that this can be easily

achieved using the mirror rules of [80]. It turns out however that the mirror rules

of [80], as discussed in [44, 112], do not quite suffice. A detailed analysis of this is

presented in [44, 112]. As discussed therein, we have to be careful about various subtle

issues while doing the mirror transformations:

(a) The mirror rules of [80] tells us that any Calabi-Yau manifold with a mirror

admits, at least locally, a T 3 fibration over a three dimensional base. This seems to

fail for the deformed conifold as it does not possess enough isometries to represent

it as a T 3 fibration. On the other hand, a resolved conifold does have a well defined
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T 3 torus over a three-dimensional base, which can be exploited to get the mirror (see

also [81]). It also turns out that the T 3 torus is a lagrangian submanifold, so a mirror

transformations will not break any supersymmetry.

(b) Viewing the mirror transformation naively as three T-dualities along the T 3 torus

does not give the right mirror metric. There are various issues here. The rules of [80]

tell us that the mirror transformation would only work when the three dimensional

base is very large. The configuration that we have is exactly opposite of the case [80].

Recall that our configuration lies at the end of a much larger cascading theory. By

UV/IR correspondences, this means that the base manifold is very small. Furthermore

we are at the tip of the geometric transition and therefore we have to be in a situation

with very small base (in fact very small fiber too). In [44, 112] we showed that we

could still apply the rules of [80] if we impose a non-trivial large complex structure on

the underlying T 3 torus. The complex structure can be integrable or non-integrable.

Using an integrable complex structure, we showed in [44, 112] that we can come

remarkably close to getting the right mirror metric. Our conjecture there was that if

we use a non-integrable complex structure we can get the right mirror manifold.

It seems therefore natural to start with the manifold that exhibits three isometry

directions — the resolved conifold. We can, however, not use the metric for D5

branes wrapping the S2 of a resolved conifold as derived in [77], because it breaks all

supersymmetry [78]. The metric that we proposed in [44, 112] (where we kept the

harmonic functions undetermined) is very close to the metric of [77] but differs in

some subtle way:

(a) The type IIB resolved conifold metric that we proposed in [44, 112] is a D5

wrapping a two cycle that preserves supersymmetry. We will discuss this issue in

more detail below.

(b) As explained in [44, 112], our IIB manifold also has seven branes (and possibly

orientifold planes) along with the type IIB three-form fluxes. The metric constructed

in [77] doesn’t have seven branes but allows three-form fluxes.
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The local behavior of the type IIB metric is expressed in terms of non-trivial complex

structures τ1 and τ2 as dz1 = dx− τ1dθ1 and dz2 = dy − τ2dθ2. The local metric then

reads

ds2 = (dz +∆1 cot θ1 dx+∆2 cot θ2 dy)
2 + |dz1|2 + |dz2|2 (3.2)

where all the warp factors can locally be absorbed in to the coordinate differentials.

In this formalism the metric may naively look similar to the one studied in [77] but

the global picture is completely different from the one proposed by [77]. Our aim in

this chapter is therefore two-fold: to determine the full global picture (at least without

the inclusion of UV caps), and to follow the duality cycle that will lead us to analyse

geometric transitions in type II theories.

3.2 Analysis of the global picture and the cycle of

geometric transitions

With all the mathematical construction at hand, it is time now to discuss the

geometrical aspect of the problem i.e the supergravity metric and the fluxes in type

II theories. Our starting point would be the issue of supersymmetry in the usual

resolved conifold background with fluxes and branes in type IIB background. Once

we obtain this, it will prepare us for all the subsequent stages of the duality cycle for

the geometric transition [44, 112].

3.2.1 Analysis of the global picture in type IIB

From our earlier works we know that there are two ways of extending our local

configuration of [44, 112] to study supersymmetric cases in the full global picture:

(a) The full global geometry is a six-dimensional Kähler manifold with F-theory seven-

branes distributed in some particular way. These seven-branes contribute to massive

fundamental flavors in the gauge theory. Orientation of these seven-branes are the

generalised version of the Ouyang [62] (or the Kuperstein [84]) embeddings.

(b) The full global geometry is non-Kähler with or without F-theory seven-branes.

The seven-branes could be embedded in this picture via Ouyang or the Kuperstein
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embedding, which in turn would provide fundamental matters in the gauge theory.

In fact the possibility of such a global completion was already hinted in the second

paper of [44, 112].

Let us see how from our local picture studied in [44, 112] these two possibilities

can be realised. In the first paper of [44, 112], the local metric was argued to be of

the following form:

ds2 = dr2 +

(
dz +

√
γ′

γ
r0 cot ⟨θ1⟩ dx+

√
γ′

(γ + 4a2)
r0 cot ⟨θ2⟩ dy

)2

+

+

[
γ
√
h

4
dθ21 + dx2

]
+

[
(γ + a2)

√
h

4
dθ22 + dy2

]
+ .... (3.3)

where all the coefficients are measured at a fixed chosen point (r0, ⟨ψ⟩, ⟨ϕi⟩, ⟨θi⟩). For
more details see [44, 112]. The local BNS field was taken to be:

BNS = bxθidx ∧ dθi + byθidy ∧ dθi (3.4)

where i = 1, 2. The above background is invariant under the orbifold operation:

Ixy : x → − x, y → − y (3.5)

and therefore can support D7/O7 states at the following orientifold points:

T2

Ixy Ω (−1)FL
(3.6)

It is interesting to note that, at the orientifold point, a component like bxy is projected

out. However the orientifold projection may allow components like bxz, byz which could

in principle make our mirror manifold non-geometric. In the local picture advocated

in [44, 112] we only see components like (3.4) so the local mirror is non-Kähler and

geometric.

More interestingly, the orientifolding operation (3.6) allows, along with the wrapped

D5-branes, the D7-branes and O7-planes along the internal directions (r, z, θ1, θ2) lo-

cated at the four fixed points of the torus T2 along (x, y) directions. Therefore, in
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the local picture, a possible susy preserving Ouyang-type configuration would be D5-

branes wrapped on the two-torus (θ2, ϕ2) and the seven branes wrapping (θ1, θ2, ψ) and

stretched along the radial direction r. On the other hand, globally in a resolved coni-

fold background the seven-branes are in a configuration that is the union of branch 1

and branch 2 (see [62, 89, 70, 71] for details). Recall that in branch 1 the seven-branes

wrap the P1 parametrised by (θ2, ϕ2) and are embedded along (r, ψ) directions at a

point on the other P1 parametrised by (θ1, ϕ1); whereas in branch 2 the seven-branes

are at a point on the P1 parametrised by (θ2, ϕ2). Thus globally a susy configuration

of seven-branes is a two-dimensional surface in P1 × P1 and stretched along (r, ψ)

directions determined by the appropriate embedding equation. Therefore in the local

limit the two-dimensional susy preserving surface in T2 ×T2 should be the two-cycle

parametrised by (θ1, θ2) as prescribed in [44, 112].

Away from the orientifold point, the local metric takes the following fibration

form:

ds2 = h−1/2ds20123 + γ′
√
h dr2 + (dz +∆1 cot θ1 dx+∆2 cot θ2 dy)

2 +

+

(
γ
√
h

4
dθ21 + dx2

)
+

(
(γ + 4a2)

√
h

4
dθ22 + dy2

)
H3 = dJ1 ∧ dθ1 ∧ dx+ dJ2 ∧ dθ2 ∧ dy

F5 = K(r) (1 + ∗) dx ∧ dy ∧ dz ∧ dθ1 ∧ dθ2 (3.7)

F3 = c1 (dz ∧ dθ2 ∧ dy − dz ∧ dθ1 ∧ dx)

with additional axio-dilaton that appear from the seven-brane sources. The above

form of orientifold projection only allows a non-trivial fibration structure away from

the orientifold point. However there exist another orientifold operation that may be

more well suited at the orientifold point. This can be applied locally via:

Ixθ1 : x → − x, θ1 → π − θ1 (3.8)
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The above action gives rise to the following orientifold action:

T2

Ixθ1Ω(−1)FL
(3.9)

that will keep the wrapped D5 branes and the BNS field with the following components

at the orientifold point:

BNS = bxθ2 dx ∧ dθ2 + byθ1 dy ∧ dθ1 + bxy dx ∧ dy + bxz dx ∧ dz +

brx dr ∧ dx+ brθ1 dr ∧ dθ1 + bθ1θ2 dθ1 ∧ dθ2 + bzθ1 dz ∧ dθ1 (3.10)

which means that at the orientifold point not only is the IIB metric non-trivial,

the mirror can also be non-Kähler and non-geometric. The seven-branes and the

orientifold-planes are parallel to the wrapped D5 branes. In the following we will argue

how susy is preserved in the global set-up when the seven-branes are moved away from

the wrapped D5 branes. This is the case where the fundamental hypermultiplets are

infinitely massive.

The naive global extension of the above configuration along the lines of [77] will

lead to a non-susy configuration. This is because we have assumed that the global

extension of a configuration like (3.7) is Kähler in the presence of a BNS field like (3.4)

away from the orientifold point. The simplest global extension that we will study here

as the starting point for the IIB geometric transition is a non-Kähler manifold with

D5-branes wrapping two cycles of this manifold. Of course it may be possible to add

other branes and fluxes to make the ambient space conformally Kähler, but we will

not do so here. We will use the following set of duality transformations, recently

proposed by [54], to get our type IIB intial configuration.

• Our starting point would be a non-Kähler type IIB metric with a background dilaton

ϕ and NS three-form H3 that satisfies the standard relation H3 = e2ϕ ∗ d(e−2ϕJ) with

J being the fundamental (1,1) form.

• On this background we perform a S-duality that transforms the NS three-form to

RR three-form F3, and in the process converts the dilaton to −ϕ without changing

the metric in the Einstein frame.
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• We now make three T-dualities along the spacetime directions x1,2,3 that takes us

to type IIA theory. Observe that this is not the mirror construction.

• We lift the type IIA configuration to M-theory and perform a boost along the

eleventh direction. This boost is crucial in generating D0-brane gauge charges in

M-theory.

• A dimensional reduction back to IIA theory does exactly what we wanted: it gener-

ates the necessary number of D0-brane charges from the boost, without breaking the

underlying supersymmetry of the system.

• Once we have the IIA configuration, we go back to type IIB by performing the three

T-dualities along x1,2,3 directions. From the D0-branes, we get back our three-brane

charges namely the five-form. The duality cycle also gives us NS three-form H3 as

well as the expected RR three-form F3. Therefore the final configuration is exactly

what we required for IR geometric transition: wrapped D5s with necessary sources on

a non-Kähler globally defined “resolved” conifold background. Also as expected, the

background preserves supersymmetry and therefore should be our starting point. This

background should also be compared with the one given in [77] that solves EOM but

do not preserve supersymmetry. To start off, we switch on a non-trivial background

dilaton ϕ(r) and a NS three-form HNS on a background outlined by the following

metric:

ds2 = h1/2eϕds̃20123 + h−1/2eϕds26 (3.11)

where we have defined the variables in the following way:

h =
e−2ϕF−4

0

e−2ϕh−2F−4
0 cosh2β − sinh2β

, ds̃20123 = F0ds
2
0123 (3.12)

ds26 = F1 dr
2 + F2(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2 +
2∑
i=1

F2+i(dθ
2
i + sin2θidϕ

2
i )

with β being an arbitrary constant and Fi ≡ Fi(r) are functions of the radial coor-

dinate for simplicity. Observe that in the first equation of (3.12), h appears on both

sides, and so we need to solve a cubic equation whose real root will give us the actual
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warp factor h. In general we expect Fi to be functions of all the internal coordinates.

We will give an example of this soon when we derive a more precise initial metric.

For the time being we will consider (3.11) to be our starting point. Also to preserve

supersymmetry1 , we expect:

HNS = e2ϕ ∗ d
(
e−2ϕJ

)
(3.13)

where J is the fundamental form associated with the metric, and we can choose to

impose one of the following two conditions on the NS three-form:

dHNS ≡ d ∗ dJ − d ∗ (dϕ ∧ J) = sources

dHNS ≡ d ∗ dJ − d ∗ (dϕ ∧ J) = α′(tr R ∧R− Tr F ∧ F ) (3.14)

The first condition is what we require here. This will give rise to the IR wrapped

D5 branes theory on non-Kähler resolved conifold set-up (after the chain of dualities

mentioned above). The latter case will be for the heterotic theory. We can use the

non-closure of HNS to study not only the vector bundles F on the heterotic side, but

also the possibility of geometric transition in the heterotic theory! We have alluded

to this possibility in our earlier papers [44, 112]. We will try to complete that side of

the story in our follow-up paper [76].

Now following the chain of dualities mentioned above, we can get the following

type IIB background:

F3 = h cosh β e2ϕ ∗ d
(
e−2ϕJ

)
, H3 = −hF 2

0 sinh β e
2ϕd
(
e−2ϕJ

)
F5 = −1

4
(1 + ∗)dA0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, ϕnow = −ϕ (3.15)

ds2 = F0ds
2
0123 + F1 dr

2 + F2(dψ + cos θ1dϕ1 + cos θ2dϕ2)
2

+
2∑
i=1

F2+i(dθ
2
i + sin2θidϕ

2
i )

1 Or, equivalently, preserving SU(3) structure.
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which is, by construction, supersymmetric and since F3 is not closed it represents

precisely the IR configuration of wrapped D5-branes on warped non-Kähler resolved

conifold. The five-form is switched on to satify the equation of motion with

A0 =
cosh β sinh β(1− e2ϕh−2F−4

0 )

e−2ϕh−2F−4
0 cosh2β − sinh2β

(3.16)

Therefore this is starting metric, whose local forms we studied in details in [44, 112],

should be taken instead of the metric derived in [77]. The ISD condition for our case

gets modified to the following condition on the fluxes:

cosh β H3 + F 2
0 sinh β ∗ F3 = 0 (3.17)

which may be compared to [54]. Our derivation could also solve the long stand-

ing problem of finding the supersymmetric configuration of wrapped D5-branes on a

resolved conifold set-up.

3.2.2 More explicit type IIB background before geometric
transition

In the above section we saw how one could derive the precise intial metric that

not only serves as starting point for geometric transition, but is also supersymmetric.

One may make this more specific by solving the SU(3) structure condition specified

in section 2.4. This is worked out in Appendix A of [42]. The metric derived this

way has many non-trivial components compared to our initial ansatze (3.15). This is

not a problem in itself, because we can always do some coordinate transformations

to bring the metric that doesn’t have components like grµ where µ = θi, ϕi, ψ. But

the metric will have other non-trivial cross-terms. It may be possible to make further

coordinate transformations to bring the above metric in a form that closely resembles

(3.15), but we will not pursue this here as this doesn’t change the underlying physics.

Instead we will continue using the background (3.15) and assume that the values

of the coefficients Fi are to be fixed using our above metric configuration. Other

possible cross-terms, not considered in (3.15), will only make the IIA background

more non-trivial without revealing new physics. Henceforth our starting point would
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be (3.15) with the assumption that the coefficients are to be derived from the metric

discussed in the above subsection. Once we know the metric, we can follow up the

steps described earlier to compute the three-forms. The NS three-form H3 has the

form:

H3

hF 2
0 sinh β

= + (2ϕθ1
√
F1F2 cos θ1 +

√
F1F2 sin θ1 + 2ϕrF3 sin θ1

− F3r sin θ1)dr ∧ dθ1 ∧ dϕ1

+ (2ϕθ2
√
F1F2 cos θ2 +

√
F1F2 sin θ2 + 2ϕrF4 sin θ2

− F4r sin θ2)dr ∧ dθ2 ∧ dϕ2

− 2ϕθ1
√
F1F2dr ∧ dψ ∧ dθ1 − 2ϕθ2

√
F1F2dr ∧ dψ ∧ dθ2

+ 2ϕθ1
√
F1F2 cos θ2dr ∧ dθ1 ∧ dϕ2 + 2ϕθ2

√
F1F2 cos θ1dr ∧ dθ2 ∧ dϕ1

− 2ϕθ2F3 sin θ1dθ1 ∧ dθ2 ∧ dϕ1 + 2ϕθ1F4 sin θ2dθ1 ∧ dθ2 ∧ dϕ2 (3.18)

where we have defined ϕα ≡ ∂αϕ with α = θi, r as ϕ ≡ ϕ(r, θ1, θ2) for simplicity. A

constant ϕ is not good for us, and also leads to certain issues detailed in [90]. Once

we have H3, we can get dH3 as:

dH3

sinh β
=

[
(hF 2

0 )θ2(2ϕθ1
√
F1F2 cos θ1 +

√
F1F2 sin θ1 + 2ϕrF3 sin θ1 − F3r sin θ1)

−2(hF 2
0 )θ1ϕθ2

√
F1F2 cos θ1 − 2(hF 2

0 )rϕθ2F3 sin θ1

]
dr ∧ dθ1 ∧ dθ2 ∧ dϕ1

+
[
− (hF 2

0 )θ1(2ϕθ2
√
F1F2 cos θ2 +

√
F1F2 sin θ2 + 2ϕrF4 sin θ2 − F4r sin θ2)

+2(hF 2
0 )θ2ϕθ1

√
F1F2 cos θ2 + 2(hF 2

0 )rϕθ1F4 sin θ2

]
dr ∧ dθ1 ∧ dθ2 ∧ dϕ2

+2
[
(hF 2

0 )θ2ϕθ1
√
F1F2 − (hF 2

0 )θ1ϕθ2
√
F1F2

]
dr ∧ dθ1 ∧ dθ2 ∧ dψ

+2hF 2
0 ϕθ2 sin θ1(

√
F1F2 − F3r)dr ∧ dθ1 ∧ dθ2 ∧ dϕ1

+2hF 2
0 ϕθ1 sin θ2(F4r −

√
F1F2)dr ∧ dθ1 ∧ dθ2 ∧ dϕ2 (3.19)

with Fir ≡ ∂rFi and (hF 2
0 )i = ∂i(hF

2
0 ). From (3.19) it means that if we make

(
√
F1F2−F3r), (F4r−

√
F1F2),

(
(hF 2

0 )θ1ϕθ2−(hF 2
0 )θ2ϕθ1

)
and

(
(hF 2

0 )θ1ϕr−(hF 2
0 )rϕθ1

)
identically zero then H3 will be closed. One however may worry that making H3

closed implies too much constraints on the Fi’s. For the present case this may still
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be okay because the initial choice of the background (3.12) forms a class of solutions

parametrised by our choice of Fi and the dilaton ϕ. A specific choice of the background

with a specified complex structure and Kähler class is exemplified in Appendix A of

[42]. For this case we can define a closed three-form with appropriate choice of the

dilaton, so that our choice remains generic enough. Thus the BNS field can be gauge

transformed to have only the following components:

brψ =

∫
−2hF 2

0 sinh β ϕθ1
√
F1F2 dθ1, bθ1ϕ1 =

∫
2hF 2

0 sinh β ϕθ2F3 sin θ1 dθ2,

brϕ1 =

∫
−2hF 2

0 sinh β ϕθ2
√
F1F2 cos θ1 dθ2, bθ2ϕ2 =

∫
2hF 2

0 sinh β ϕθ1F4 sin θ2 dθ1,

brϕ2 =

∫
−2hF 2

0 sinh β ϕθ1
√
F1F2 cos θ2 dθ2 (3.20)

where we see that there are three new components of the form brα compared to the

local case [44, 112]. This is expected because we are no longer fixed to r = r0, but have

global access. However before moving ahead we will pause to comment on switching

on other possible components of the BNS field of the form:

bϕ1ϕ2 dϕ1 ∧ dϕ2 +
2∑
i=1

bϕiψ dϕi ∧ dψ (3.21)

Such choices of BNS fields would make the type IIA background non-geometric. So

far locally we saw that the type IIA backgrounds remains geometric but does become

non-Kähler. Is there a possibility that the IIA background globally is non-geometric

also? We will reflect on this point later, but for the time being we will assume that

the BNS field is only of the form (3.20) and doesn’t have additional components like

(3.21).
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Next comes the RR three-form F3. From our previous set of duality arguments,

this is given by:

F3

hF 2
0 cosh β

= 2KF1F2F3F4 sin θ2 sin θ1(ϕθ1 sin θ1 cos θ2 − ϕθ2 sin θ2 cos θ1)dr ∧ dϕ1 ∧ dϕ2

+KF 2
3 sin

2 θ1 sin θ2(2ϕθ2
√
F1F2F4 sin θ2 − F2

√
F1F2 cos θ2

−2ϕrF2F4 cos θ2 + F2F4r cos θ2)dθ1 ∧ dϕ1 ∧ dϕ2

+KF 2
4 sin

2 θ2 sin θ1(−2ϕθ1
√
F1F2 sin θ1 + F2

√
F1F2 cos θ1

+2ϕrF2F3 cos θ1 − F2F3r cos θ1)dθ2 ∧ dϕ1 ∧ dϕ2

−KF2F
2
3 sin

2 θ1(2ϕrF4 sin θ2 +
√
F1F2 sin θ2 − F4r sin θ2)dψ ∧ dθ1 ∧ dϕ1

−KF2F
2
4 sin

2 θ2(2ϕrF3 sin θ1 +
√
F1F2 sin θ1 − F3r sin θ1)dψ ∧ dθ2 ∧ dϕ2

−2ϕθ2KF1F2F3F4 sin θ1 sin
2 θ2dr ∧ dψ ∧ dϕ2

−2ϕθ1KF1F2F3F4 sin θ2 sin
2 θ1dr ∧ dψ ∧ dϕ1 (3.22)

where as before ϕα should be understood as derivatives on ϕ i.e ∂αϕ, and we have

defined K as:

K =
cosec θ1cosec θ2√

F1F2F3F4

(3.23)

Note that dF3 is no longer closed, and will be related to delta function sources coming

from the wrapped D5-branes.

Once we have the explicit forms for the three-forms, to satisy the type IIB EOMs

we will now require RR five-form. This is easy to work out, and is given by:

F5 =
1

4

[
− A0rdr ∧ dt ∧ dx ∧ dy ∧ dz − A0θ1dθ1 ∧ dt ∧ dx ∧ dy ∧ dz

−A0θ2dθ2 ∧ dt ∧ dx ∧ dy ∧ dz − PF2F3F4 sin
2 θ1 sin

2 θ2

×(A0rF3F4dψ ∧ dθ1 ∧ dθ2 ∧ dϕ1 ∧ dϕ2 + A0θ1F1F4dr ∧ dψ ∧ dθ2 ∧ dϕ1 ∧ dϕ2

+A0θ2F1F3dr ∧ dψ ∧ dθ1 ∧ dϕ1 ∧ dϕ2)
]

(3.24)
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where A0α ≡ ∂αA0 and A0 is given in (3.16). We have also defined P as:

P =
cosec θ1cosec θ2√
F1F2F 2

0F3F4

(3.25)

Thus with (3.18), (3.22), (4.44) and (3.15) we have the complete susy background in

type IIB before geometric transition. In the following subsection, we will use this to

compute the type IIA mirror configuration.

3.2.3 The type IIA mirror configuration

As it stands, the metric in (3.15) has three obvious isometries associated with

translation along the three angular directions ϕ1, ϕ2 and ψ. So there is a natural T3

embedded in our configuration, and one might naively think that the mirror would be

three T-dualities along T3. Such a simple transformation doesn’t work for our case

because our configuration represents the IR limit of a cascading gauge theory where

the base of the three torus is small. Mirror transformation a la SYZ [80] works exactly

in the opposite limit! So naive T-dualities will not give us the mirror metric, and we

need to first make the base, paramerised by θ1, θ2 and r, very large2 . The simplest

way to do this would be to make the following transformation on the background

(3.15):

dψ → dψ + f1 cos θ1 dθ1 + f2 cos θ2 dθ2

dϕ1 → dϕ1 − f1 dθ1, dϕ2 → dϕ2 − f2 dθ2 (3.26)

with the assumption that fi = fi(θi) so that the transformations (3.26) would be

integrable. Note that these transformations are similar in form as in the first reference

of [44, 112] and would change the complex structure of the base accordingly.

2 This effectively means that the distances along the θi directions have to be made
very large, as r is non-compact. See also our earlier works [44, 112] where this has
been explained in more details.
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Under these transformations the BNS field generates extra components brθ1 , brθ2 .

It is however interesting to note that they vanish as follows:

brθ1 = f1(brψ cos θ1 − brϕ1) = 0, brθ2 = f2(brψ cos θ2 − brϕ2) = 0 (3.27)

implying that the BNS field do not change under the transformation (3.26). This is

similar to the local case also [44, 112].

On the other hand the RR three-form does change under the coordinate transfor-

mation (3.26). The extra components of the three-form are the following:

Frθ1θ2 = f1f2(Frϕ1ϕ2 − cos θ1Frψϕ2 + cos θ2Frψϕ1), Frψθ1 = −f1Frψϕ1
Frθ1ϕ2 = −f1(Frϕ1ϕ2 − cos θ1Frψϕ2), Fθ1θ2ϕ1 = f2(Fθ1ϕ1ϕ2 − cos θ2Fψθ1ϕ1),

Frθ2ϕ1 = f2(Frϕ1ϕ2 + cos θ2Frψϕ1), Fθ1θ2ϕ2 = f1(Fθ2ϕ1ϕ2 + cos θ1Fψθ2ϕ2),

Frθ2ϕ2 = f2 cos θ2Frψϕ2 , Frψθ2 = −f2Frψϕ2 , Frθ1ϕ1 = f1 cos θ1Frψϕ1 (3.28)

A physical reason for this change can be easily understood: under the coordinate

transformation (3.26) the base parametrised by (θ1, θ2) become large. This means

that the associated RR three-form field strengths increase simultaneously, which is of

course what we see in (3.28). Note that the component Frθ1θ2 dominates over all other

extra components in (3.28) because this lies exclusively on the base parametrised by

the coordinates (r, θ1, θ2) which is made much bigger than the T3 fibre parametrised

by the coordinates (ψ, ϕ1, ϕ2).

Once the three-form F3 changes, the RR five-form also has to change. Its is easy

to show that the extra components of the five-form are:

Frθ1θ2ϕ1ϕ2 = f1 cos θ1Frψθ2ϕ1ϕ2 − f2 cos θ2Frψθ1ϕ1ϕ2 ,

Frψθ1θ2ϕ2 = f1Frψθ2ϕ1ϕ2 , Frψθ1θ2ϕ1 = f2Frψθ1ϕ1ϕ2 (3.29)

satisfying the background EOMs. All these extra components will give rise to RR

four-form in Type IIA after mirror transformation, as we will show soon. But before

that let us infer how the metric changes. Under the transformation (3.26) the metric
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(3.15) takes the following form:

ds2 = F0ds
2
0123 + F1 dr

2 + F2(dψ + cos θ1dϕ1 + cos θ2dϕ2)
2 +

2∑
i=1

F2+i sin
2θidϕ

2
i

+
2∑
i=1

[
F2+i

(
1 + f 2

i sin2θi
)
dθ2i − 2fiF2+i sin

2θi dϕidθi

]
(3.30)

which in fact does exactly what we wanted: it enlarges the θi-cycles, but doesn’t

change the BNS field. For SYZ to work properly, we require the base size to be very

large, and therefore we will require fi also to be large. This conclusion fits well with

the local picture that we had in [44, 112]. Note that we have also generated cross

terms. These cross terms will be useful soon. The eleven metric components are:

jrr = F1, jϕ1θ1 = −f1F3sin
2θ1, jϕ2θ2 = −f2F4sin

2θ2

jψψ = F2(1− ϵ), jϕ1ψ = F2cos θ1, jϕ2ψ = F2cos θ2

jϕ1ϕ1 = F2cos
2θ1 + F3sin

2θ1, jϕ2ϕ2 = F2cos
2θ2 + F4sin

2θ2 (3.31)

jϕ1ϕ2 = F2cos θ1θ2, jθ1θ1 = F3(1 + f 2
1 sin

2θ1), jθ2θ2 = F4(1 + f 2
2 sin

2θ2)

where ϵ is a very small number. Let us also define another quantity α in the following

way:

α−1 ≡ F3F4sin
2θ1sin

2θ2 + F2F4cos
2θ1sin

2θ2 + F2F3sin
2θ1cos

2θ2 (3.32)

away from the point (θ1, θ2) = 0. Now assuming that f1, f2 are very large, we can

perform the mirror transformation along (ψ, ϕ1, ϕ2) directions. The mirror metric in

type IIA takes the following form:

ds2mirror = F0ds
2
0123 + ds26 (3.33)
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where the six-dimensional internal space is a non-Kähler deformation of the deformed

conifold in the following way:

ds26 = F1dr
2 +

αF2

∆1∆2

[
dψ − bψrdr +∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+ αjϕ2ϕ2

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)2
+ αjϕ1ϕ1

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)2
− 2αjϕ1ϕ2

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)
(3.34)

− 2αjϕ1ϕ2

(
f1f2ϵ

α

)
dθ1dθ2 +

(
F3 − ϵ F2f

2
1 cos

2θ1

)
dθ21 +

(
F4 − ϵ F2f

2
2 cos

2θ2

)
dθ22

and we have defined ∆i in the following way:

∆1 = αF2F4sin
2θ2, ∆2 = αF2F3sin

2θ1 (3.35)

At this stage we can extract the consequence of the fact that both f1 and f2 are very

large. This fits perfectly well with the mirror metric because f 2
i as well as f1f2 come

with the coefficient ϵ. This means that if we impose the following constraint:

f1f2ϵ ≡ − α (3.36)

i.e both fi proportional to ϵ
−1/2, it will bring the cross-terms in the metric to the

following suggestive form:

2αjϕ1ϕ2

[
dθ1dθ2 −

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]
(3.37)

In the limit bϕ1α = bϕ2α = 0 with α = r, θi, (3.37) is in fact a term of the deformed

conifold! The above conclusion seems rather encouraging, provided of course (3.36)

is satisfied. In the local limit, similar condition also arose (see the first reference of

[44, 112]) and we argued therein that as long as we can define

fi ∝ (−1)i⟨α⟩i√
ϵ

(3.38)
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where ⟨α⟩i depend only on θi the constraint (3.36) is satisfied. Therefore a condition

like (3.36) works perfectly well in the local case. Question is, can we satisfy (3.36)

also for the global case?

The answer is now tricky. We demanded that fi = fi(θi), otherwise global coor-

dinate transformation like (3.26) cannot be defined. This means that Fi appearing in

the definition of α in (3.36) will have to be highly constrained. Generically this is not

possible3 , but in special case this may happen.

The special case arises if we allow F2 to depend on the angular coordiate θi also

in such a way that

F2(r, θ1, θ2) = − (β1β2)
−1 + F3F4sin

2θ1sin
2θ2

F4cos2θ1sin
2θ2 + F3sin

2θ1cos2θ2
(3.39)

where fi ≡ βi√
ϵ
. This tells us that the radial dependence of F2 is fixed by F3(r)

and F4(r), but the angular dependences are pretty much unfixed because βi(θi) are

arbitrary functions of θi respectively. However the above relation (3.39) already looks

tight, but let us move on and see how far we can go with these kind of arguments.

Our next question would therefore be: is there a way to fix the angular dependences

also?

To see how to fix the angular dependences, we can go back to the equivalent local

limit of (3.37) where the particular way of writing the metric allows us to make a

coordinate rotation to bring the term (3.37) into the more familar deformed conifold

form [91]. This, as we know from [91, 44, 112], is only possible iff other terms in

the metric remain invariant under the coordinate transformation. If this condition is

3 For the local case α was defined at r = r0 so this subtlety did not arise and, as we
discussed above, we used ⟨α⟩i to define fi so things were perfectly consistent there.
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imposed globally, then it would imply the following two relations:

β1 = ±
√
F3 − αjϕ2ϕ2
F2cos2θ1

β2 = ∓
√
F4 − αjϕ1ϕ1
F2cos2θ1

(3.40)

In the local case, studied in the first reference of [44, 112], relations like (3.40) are

consistent in the sense that (3.36) is satisfied. Unfortunately, this is no longer true

for the global case generically because the above relation along with (3.36) would lead

to inconsistent set of equations. Therefore in general the mirror metric will take the

following form:

ds26 = F1dr
2 +

αF2

∆1∆2

[
dψ − bψrdr +∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+ αjϕ2ϕ2

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)2
+ αjϕ1ϕ1

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)2
− 2αjϕ1ϕ2

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)
− 2jϕ1ϕ2β1β2 dθ1dθ2 +

(
F3 − F2β

2
1cos

2θ1

)
dθ21 +

(
F4 − F2β

2
2cos

2θ2

)
dθ22

(3.41)

Only in very special cases, where (3.40) and (3.36) are both simultaneously satisfied,

we expect the mirror to take the following symmetric form:

ds26 = F1dr
2 +

αF2

∆1∆2

[
dψ − bψrdr +∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+αjϕ2ϕ2

[
dθ21 +

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)2]
+αjϕ1ϕ1

[
dθ22 +

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)2]
+2αjϕ1ϕ2

[
dθ1dθ2 −

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]
(3.42)
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which is strongly reminiscent of the deformed conifold! Observe that both the forms

of the metrics are finite and well defined. This tells us that our procedure of making

the base large before performing SYZ [80] is logical and correct.

On the other hand, the cross term that we developed in the metric appears as

the BNS field in type IIA theory. Expectedly, this B-field is large and is given by the

following form:

B̃ = αf1F3 sin
2 θ1
(
F2 cos

2 θ2 + F4 sin
2 θ2
)
dθ1 ∧ dϕ1

+ αf2F4 sin
2 θ2
(
F2 cos

2 θ1 + F3 sin
2 θ1
)
dθ2 ∧ dϕ2

+

(
1− ϵ

αF2F4 sin
2 θ1 sin

2 θ2

)
(f1 cos θ1dθ1 + f2 cos θ2dθ2) ∧ dψ (3.43)

In the limit ϵ→ 0, the last two terms are pure gauge. In the local limit (see the first

paper of [112]) all the Fi were constants, and so B̃ became a pure gauge when written

in terms of ⟨α⟩i. This doesn’t seem to be the case globally, unless of course Fi’s are

of some specific forms.

The wrapped D6 brane two-form charges now come partly from the type IIB

three-forms and partly from the five-forms. The three-forms contributions to the IIA

two-forms are given by the following components:

F̃ψθ1 = Fϕ1ϕ2θ1 , F̃ψθ2 = Fϕ1ϕ2θ2 , F̃ψr = Fϕ1ϕ2r,

F̃ϕ1r = Frϕ2ψ +
2jϕ1ϕ2
jϕ1ϕ1

Fϕ1rψ +
2jψϕ1
jϕ1ϕ1

Frϕ1ϕ2 ,

F̃ϕ2r = Fϕ1rψ + 2α(jϕ2ψjϕ1ϕ1 − jϕ1ϕ2jϕ1ψ)Frϕ1ϕ2 ,

F̃ϕ1θ2 = Fψθ2ϕ2 + 2
jϕ1ψ
jϕ1ϕ1

Fϕ1ϕ2θ2 ,

F̃ϕ1θ1 = 2
jϕ1ϕ2
jϕ1ϕ1

Fϕ1θ1ψ + 2
jψϕ1
jϕ1ϕ1

Fϕ1ϕ2θ1 ,

F̃ϕ2θ1 = Fψϕ1θ1 + 2α(jϕ2ψjϕ1ϕ1 − jϕ1ϕ2jϕ1ψ)Fϕ1ϕ2θ1 ,

F̃ϕ2θ2 = 2α(jϕ2ψjϕ1ϕ1 − jϕ1ϕ2jϕ1ψ)Fϕ1ϕ2θ2 (3.44)
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Similarly, the five-forms contributions to the type IIA two-forms are given in terms

of the following components:

F̃θ1θ2 = Fψθ1θ2ϕ1ϕ2 + bθ2ϕ2Fψθ1ϕ1 + bθ1ϕ1Fψθ2ϕ2

F̃rθ1 = Frθ1ϕ1ϕ2ψ + btheta1ϕ1Frψϕ2 +

(
bϕ2r +

jϕ1ϕ2
jϕ1ϕ1

brϕ1

)
Fψθ1ϕ1 +

jψϕ1
jϕ1ϕ1

bθ1ϕ1Frϕ1ϕ2

+

(
brψ − jψϕ1

jϕ1ϕ1
brϕ1

)
Fθ1ϕ1ϕ2 +

jϕ1ϕ2
jϕ1ϕ1

bθ1ϕ1Frψϕ1

F̃rθ2 = Frθ2ϕ1ϕ2ψ + brϕ1Fψθ2ϕ2 + brψFθ2ϕ1ϕ2 − bθ2ϕ2Frψϕ1 (3.45)

All the above components are finite and give rise to the required D6-branes charges.

However since the B-field is large, to compensate this in the EOMs we need large

G-fluxes in type IIA. These fluxes come exactly from the extra three- and five-form

components (3.28) and (3.29) respectively. These three- and five-form components

give rise to twelve components of the four-form fluxes in IIA namely:

F̃rψθ1θ2 , F̃rψθ1ϕ1 , F̃rψθ1ϕ2 , F̃rψθ2ϕ1

F̃rψθ2ϕ2 , F̃rθ1θ2ϕ1 , F̃rθ1θ2ϕ2 , F̃rθ1ϕ1ϕ2

F̃rθ2ϕ1ϕ2 , F̃ψθ1θ2ϕ1 , F̃ψθ1θ2ϕ2 , F̃θ1θ2ϕ1ϕ2 (3.46)

These components are listed in Appendix B of [42] which the readers may refer to

for details. Combined with (3.43), these fluxes lift to M-theory as G-fluxes with com-

ponents along the spacetime and the eleventh directions respectively. Interestingly,

both the metric (3.41) or (3.42) along with the two-form flux components (3.44) and

(3.45) lift to a geometrical configuration in M-theory, which we expect to have a G2

structure. This is of course expected because both the non-Kähler deformed conifold

as well as the wrapped D6-branes tend to become geometrical configurations when

the type IIA coupling is made very large. In the following sub-section we will dwell

on this in more details.
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3.2.4 M theory lift, flop transition and type IIA reduction

The lift of our type IIA mirror configuration to M-theory is rather straighforward.

The eleven-directional fibration is given by gauge fluxes derived from the two-form

components (3.44) and (3.45). It is easy to show that we need only Aϕi , Aθi and Ar

components. Using these, the M-theory lift of our IIA symmetric mirror metric (3.42)

is:

ds211 = e−
2ϕ
3

{
F0ds

2
0123 + F1dr

2 +
αF2

∆1∆2

[
dψ − bψrdr

+∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+αjϕ2ϕ2

[
dθ21 +

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)2]
+αjϕ1ϕ1

[
dθ22 +

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)2]
+2αjϕ1ϕ2

[
dθ1dθ2 −

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]}
+e

4ϕ
3

[
dx11 + Aϕ1dϕ1 + Aϕ2dϕ2 + Aθ1 + Aθ2dθ2 + Ardr

]2
(3.47)

It is easy to see that the non-symmetric mirror metric (3.41) will also lift to M-theory

in an identical way. The local limit of the (3.47) is precisely the one discussed in the

first paper of [44, 112] and, as discussed therein, we expect the manifold (3.47) to

have a G2 structure to preserve supersymmetry. To see this for our case, we have to

express the metric (3.47) in terms of certain one-forms similar to the ones given in

[112] (see also [92]). Following the first paper of [112] we first express the B-fields

appearing in the fibration of (3.47) in terms of periodic angular coordinates λi in the

following way:

tanλ1 ≡ bϕ1θ1 , tanλ2 ≡ bϕ2θ2 , tanλ3 ≡ bψr

tanλ4 ≡ bϕ1r, tanλ5 ≡ bϕ2r (3.48)
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Using these we can define two set of one-forms. The first set, called σi with i = 1, .., 3,

can be expressed in terms of λi as:

σ1 = sinψ1(dϕ1 − tanλ4dr) + secλ1 cos(ψ1 + λ1)dθ1,

σ2 = cosψ1(dϕ1 − tanλ4dr)− secλ1 sin(ψ1 + λ1)dθ1,

σ3 = dψ1 −
1

2
tanλ3dr +∆1 cos θ1(dϕ1 − tanλ1dθ1 − tanλ4dr) (3.49)

and the second set can be expressed in terms of λi as:

Σ1 = − sinψ2(dϕ2 − tanλ5dr) + secλ2 cos(ψ2 + λ2)dθ2,

Σ2 = − cosψ2(dϕ2 − tanλ5dr)− secλ2 sin(ψ2 + λ2)dθ2,

Σ3 = dψ2 +
1

2
tanλ3dr −∆2 cos θ2(dϕ2 − tanλ2dθ2 − tanλ5dr) (3.50)

At this stage one may compare these two set of one-forms to the ones given by eq.

(6.2) and eq. (6.3) in the first paper of [112]. The definition of ψ1 and ψ2 follow

exactly as in [112], i.e

dψ = dψ1 − dψ2, dx11 = dψ1 + dψ2 (3.51)

Furthermore we can perform the following rotation of the coordinates:Dϕ2

dθ2

 →

cos ψ0 − sin ψ0

sin ψ0 cos ψ0

Dϕ2

dθ2

 (3.52)

with Dϕ2 ≡ dϕ2− bϕ2θ2dθ2− bϕ2rdr and ψ0 a constant. If we make this transformation

to the symmetric mirror metric of type IIA (3.42), this will lift to M-theory not as
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(3.47), but to a more suggestive configuration:

ds211 = e−
2ϕ
3

{
F0ds

2
0123 + F1dr

2 +
αF2

∆1∆2

[
dψ − bψrdr − bψθ2dθ2

+∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆2cos θ2cos ψ0

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+αjϕ2ϕ2

[
dθ21 +

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)2]
+αjϕ1ϕ1

[
dθ22 +

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)2]
+2αjϕ1ϕ2cos ψ0

[
dθ1dθ2 −

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]
+2αjϕ1ϕ2sin ψ0

[(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
dθ2 +

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)
dθ1

]}
+e

4ϕ
3

[
dx11 + Ãϕ1dϕ1 + Ãϕ2dϕ2 + Ãθ1 + Ãθ2dθ2 + Ãrdr

]2
(3.53)

where we have introduced a B-field fibration using bψθ2 ≡ ∆2 sin ψ0cos θ2 to modify

the dψ fibration structure. The eleven-dimensional fibration structure will also change

accordingly because we can always express the Aϕ2dϕ2 term in dx11 of (3.47) using

Dϕ2. Thus the overall eleven-dimensional fibration will retain its form but with shifted

Aµ fields denoted above by the Ãµ fields. In terms of the fibration components of

(3.47) one can show that Ãϕ1 = Aϕ1 , Ãθ1 = Aθ1 and the rest of the components can

be presented in the following matrix form:

Ãϕ2

Ãθ2

Ãr


=



cosψ0 + bϕ2θ2 sinψ0 sinψ0 0

−(1 + b2ϕ2θ2) sinψ0 cosψ0 − bϕ2θ2 sinψ0 0

bϕ2r(1− cosψ0 − bϕ2θ2 sinψ0) −bϕ2r sinψ0 1





Aϕ2

Aθ2

Ar


(3.54)

Additionally with the above modification, the above metric is surprisingly close to the

uplift of a non-Kähler deformed conifold metric with wrapped D6-branes to M-theory
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provided we can make an additional substitution in (3.53):

ψ0 → ψ (3.55)

Making such a substitution may lead one to think that the ψ isometry that we have in

(3.47) is removed. This is not the case with the non-Kähler deformed conifold because

the extra B-field component bψθ2 in the dψ fibration structure of (3.53) as well as the

vector fields Ãµ in the dx11 fibration structure transform non-trivially under shift in

ψ to restore the isometry! One may also do a somewhat similar rotation like (3.52) to

the non-symmetric type IIA metric (3.41) and bring it in a more suggestive format.

Under the rotation (3.52), the one-forms (3.49) and (3.50) should also change. In

fact only the second set of one-forms (3.50) changes under (3.52). These changes can

be easily worked out and, to avoid cluttering of formulae, we will rename the changed

one-forms (3.50) as Σi also. Thus the one-forms for our purposes will be (σi,Σi) with

Σi to be viewed as the rotated one-forms. Using these one-forms we can rewrite the

M-theory metric in two possible ways. The first one is the lift of the non-symmetric

type IIA metric (3.41):

ds27 = grdr
2 + g1(σ3 + Σ3)

2 + g2(σ3 − Σ3)
2

+ g3(sinψ1σ1 + cosψ1σ2)
2 + g̃3(cosψ1σ1 − sinψ1σ2)

2

+ g4(sinψ2Σ1 + cosψ2Σ2)
2 + g̃4(cosψ2Σ1 − sinψ2Σ2)

2

+ g5(sinψ1σ1 + cosψ1σ2)(sinψ2Σ1 + cosψ2Σ2)

− g̃5(cosψσ1 − sinψ1σ2)(cosψ2Σ1 − sinψ2Σ2) (3.56)

where we have defined the coefficients gi, g̃i as:

gr = e−2ϕ/3F1, g1 = e4ϕ/3, g2 = e−2ϕ/3 αF2

∆1∆2

, g3 = αjϕ2ϕ2 ,

g̃3 = F3 − F2β
2
1 cos

2 θ1, g4 = αjϕ1ϕ1 , g̃4 = F4 − F2β
2
2 cos

2 θ2

g5 = 2αjϕ1ϕ2 , g̃5 = 2β1β2jϕ1ϕ2 (3.57)
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The second way to rewrite the metric is a little more suggestive of the way to perform

the flop operation on the M-theory manifold and has a nice form for the symmetric

case (3.42). The local form of this has already appeared in the first reference of [112],

and the readers may want to look at that for more details. Here we will simply quote

the result:

ds27 = α2
1

2∑
a=1

(σa + ζΣa)
2 + α2

2

2∑
a=1

(σa − ζΣa)
2 + α2

3(σ3 + Σ3)
2 + α2

4(σ3 − Σ3)
2 + α2

5dr
2

(3.58)

The above is a familiar form by which any G2 structure metric could be expressed.

Once we switch off λi the manifolds has a G2 holonomy. The coefficients αi and ζ are

not arbitrary. They are fixed by the EOM and, for our case, they take the following

values:

α1 =
1

2
e−

ϕ
3

√
2α

(
jϕ2ϕ2 +

jϕ1ϕ2
ζ

)
, α2 =

1

2
e−

ϕ
3

√
2α

(
jϕ2ϕ2 −

jϕ1ϕ2
ζ

)

α3 = e
2ϕ
3 , α4 = e−

ϕ
3

√
αF2

∆1∆2

, α5 = e−
ϕ
3

√
F1, ζ =

√
jϕ1ϕ1
jϕ2ϕ2

(3.59)

The operation of flop on the above metric (3.58) has already been discussed in details

in sec. 7 of the first reference of [112]. Using similar techniques, after the flop we

expect the metric to look like:

ds27 = a1(σ
2
1 + σ2

2) + a2(Σ
2
1 + Σ2

2) + a3(σ3 + Σ3)
2 + a4(σ3 − Σ3)

2 + a5dr
2 (3.60)

with ai, i = 1, ..., 5 are some coefficients to be determined. Due to the global nature

of our metric, the operation of flop can be performed by a class of transformations
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parametrized by the values of a, b etc. in the following way:

σ1 7→ aσ1 + bΣ1, Σ1 7→ eσ1 + fΣ1,

σ2 7→ cσ2 + dΣ2, Σ2 7→ gσ2 + hΣ2,

σ3 + Σ3 7→ σ3 − Σ3, σ3 − Σ3 7→ σ3 + Σ3 (3.61)

Now comparing (3.58) and (3.56) one can pretty much fix the coefficients c, d etc. in

terms of a, b in the following way:

c = a

√
k2G2 + kG3 +G1

ω2G5 + ωG6 +G4

, d = b

√
µ2G2 + µG3 +G1

τ 2G5 + τG6 +G4

e = ak, g = cω, f = bµ, h = dτ (3.62)

The other coefficients appearing above, namely, k, ω, µ, τ satisfy the following equa-

tions:

2G1 + 2kµG2 + (k + µ)G3 = 0, G7 + kτG8 + τG9 + kG10 = 0,

2G4 + 2τωG5 + (τ + ω)G6 = 0, G7 + ωµG8 + ωG9 + µG10 = 0. (3.63)

whose solutions are fixed by the following values of Gi determined from the G2 struc-

ture metric (3.56) or (3.58) using (gi, g̃i) defined earlier in (3.57):

G1 = g3 sin
2 ψ1 + g̃3 cos

2 ψ1, G2 = g4 sin
2 ψ2 + g̃4 cos

2 ψ2,

G3 = g5 sinψ1 sinψ2 − g̃5 cosψ1 cosψ2,

G4 = g3 cos
2 ψ1 + g̃3 sin

2 ψ1, G5 = g4 cos
2 ψ2 + g̃4 sin

2 ψ2,

G6 = g5 cosψ1 cosψ2 − g̃5 sinψ1 sinψ2,

G7 = (g3 − g̃3) sinψ1 cosψ1, G9 = g5 sinψ1 cosψ2 + g̃5 cosψ1 sinψ2,

G8 = (g4 − g̃4) sinψ2 cosψ2, G10 = g5 cosψ1 sinψ2 + g̃5 sinψ1 cosψ2.

(3.64)

Using all the above relations, the ai coefficients in the M-theory metric after flop

transition (3.61) can be determined in terms of (a, b). The final form of the metric
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therefore is given by:

ds211 = e−
2ϕ
3 F0ds

2
0,1,2,3 + grdr

2 + g1(σ3 − Σ3)
2 + g2(σ3 + Σ3)

2

+a2(k2G2 + kG3 +G1)(σ
2
1 + σ2

2) + b2(µ2G2 + µG3 +G1)(Σ
2
1 + Σ2

2)

(3.65)

We are now one step away from getting the type IIA metric from the above metric.

Reducing along x11 the metric takes the following form in type IIA theory:

ds210 = F0ds
2
0,1,2,3 + F1dr

2 + e2ϕ
[
dψ − bψµdx

µ +∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
+∆̃2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)]2
+ e

2ϕ
3 a2(k2G2 + kG3 +G1)

[
dθ21 + (dϕ2

1 − bϕ1θ1dθ1 − bϕ1rdr)
2
]

+ e
2ϕ
3 b2(µ2G2 + µG3 +G1)

[
dθ22 + (dϕ2

2 − bϕ2θ2dθ2 − bϕ2rdr)
2
]

(3.66)

which has an amazing similarity with warped resolved conifold! The above metric is

completely global and supersymmetric, and should be viewed as the gravity dual in

the IR for the gauge theory on wrapped D6-branes before geometric transition. In

this background there are no six-branes. The wrapped D6-branes have dissolved in

the geometry, and is replaced by the following one-form flux components:

A = ∆1cos θ1

(
dϕ1 − bϕ1θ1dθ1 − bϕ1rdr

)
− ∆̃2cos θ2

(
dϕ2 − bϕ2θ2dθ2 − bϕ2rdr

)
(3.67)

with ∆̃2 is a slight deformation of ∆2 appearing from the rotation (3.52) before the

flop operation. The type IIA background also supports an effective dilaton, that

measures the IIA coupling, and is given by:

ϕeff =
3

4
ln(g2) (3.68)

Before we end this section, there are a few loose ends that need to be tied up. The

first one is related to the M-theory G-fluxes. These G-fluxes stem from (3.46) and
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(3.43) in type IIA, and they are in general large4 . In the local picture both (3.43) as

well as (3.46) components were all pure gauges, and therefore they did not contribute

to the background. Here we expect they would, and therefore we need to see how

these fluxes behave under:

• The rotation of coordinates (3.52), and

• The flop transformation (3.61).

Both these effects can be easily worked out if we can express our fluxes (3.46) and

(3.43) completely in terms of the one-forms (3.49) and (3.50). As we noted before,

under the rotation (3.52), the one-forms (3.50) changes accordingly. Therefore to

compensate both the changes, namely rotation (3.52) and the flop (3.61), all we need

is to express the M-theory lift of the fluxes in terms of (3.49) and the transformed

(3.50). The latter can be easily performed by first expressing the G-fluxes in terms of

(3.50) and then change Σi to the transformed Σi (recall that we are using the same

notation for Σi and its transformed version).

To achieve all this, we can express the differential coordinates completely in terms

of σi and Σi. Since there are seven differential coordinates (dr, dθ1, dϕ1, dθ2, dϕ2, dψ1, dψ2)

but six one-forms (σi,Σi), we can assume dr goes to itself, and then the rest of the

4 In the limit where ϵ in (3.31) or (3.36) is a small but finite number, the type IIA
flux components (3.43) and (3.46) will be large but finite. In the following analysis
we will allude to this case only.
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differential forms map to the (σi,Σi) in the following way:

dθ1 = cosψ1σ1 − sinψ1σ2, dθ2 = cosψ2Σ1 − sinψ2Σ2,

dϕ1 − tanλ4dr = secλ1

[
sin(ψ1 + λ1)σ1 + cos(ψ1 + λ1)σ2

]
,

dϕ2 − tanλ5dr = − secλ2

[
sin(ψ2 − λ2)Σ1 + cos(ψ2 − λ2)Σ2

]
,

dψ − tanλ3dr = σ3 − Σ3 −∆1cos θ1

(
sinψ1σ1 + cosψ1σ2

)
+∆2cos θ2

(
sinψ2Σ1 + cosψ2Σ2

)
dx11 = σ3 + Σ3 +∆1cos θ1

(
sinψ1σ1 + cosψ1σ2

)
−∆2cos θ2

(
sinψ2Σ1 + cosψ2Σ2

)
(3.69)

Under the rotation and flop the flux components mix in rather non-trivial way. We

therefore expect, after the IIA reduction from M-theory, the three-form and four-form

flux components of type IIA (3.43) and (3.46) respectively before geometric transition

go to new three- and four-form flux components. They can be expressed as:

Bnow = b̄ijdx
i ∧ dxj, Fnow = f̄ijkldx

i ∧ dxj ∧ dxk ∧ dxl (3.70)

where xi,j,k,l = r, θi, ϕi, ψ and b̄ij and f̄ijkl are functions of (r, θi) and not of (ϕi, ψ)

because of the underlying T-duality symmetry.

3.2.5 Type IIB after mirror transition

With the type IIA picture at hand, we are now at the last chain of the duality

transformation that will give us the supergravity dual of the confining gauge theory

on the wrapped D5-branes. Our starting points are now:

• The type IIA metric (3.66).

• The remnant of the D6-brane charges, i.e the one-form fluxes (3.67).

• The type IIA string coupling, or the dilaton (3.68), and

• The BNS and the F4 fluxes (3.70) from the remnant of the IIB shift transformations.
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Before moving ahead, let us make two observations. The first is that now we do

have components like b̄ϕ1ϕ2 , b̄ψϕi in (3.70). This would mean that the mirror type

IIB should become non-geometric! This is what one would have expected generically,

and our analysis does confirm this. Observe that locally, as in [112], this aspect of

non-geometricity was not visible because most of the extra fluxes were pure gauges.

In the global case, the system is rather non-trivial and the dual gravitational descrip-

tion may become non-geometric. Question now is whether we can look for a special

case where we can study the system as a geometric manifold. It turns out at the

orientifold point there might be a situation where we can switch off the extra flux

components and consider only the standard B-field components. Recall that due to

various rotations (3.52) and shifting (3.26) the orientifolding is more involved, as all

the internal coordinates are mixed up in these transformations. However this may not

generically remove all the necessary components. Therefore to simplify the situation,

in the following, we will study the type IIB mirror by first keeping:

b̄ϕ1ϕ2 = b̄ψϕi = 0 (3.71)

so that the mirror could be geometric. Switching on (3.71) in the IIA scenario will

then make the system non-geometric.

Secondly, note that except for the BNS and the F4 fluxes, rest of the components for

the metric or the one-form fluxes, or even the dilaton are all finite. The BNS and

the F4 fluxes are large, and in the limit ϵ in (3.31) is a small but finite integer, these

would also be finite (but large). To proceed further let us define:

Dϕ1 ≡ dϕ1 − bϕ1θ1dθ1 − bϕ1rdr, Dϕ2 ≡ dϕ2 − bϕ2θ2dθ2 − bϕ2rdr (3.72)

Using this, the type IIA metric can be rewritten as:

ds210 = F0ds
2
0,1,2,3 + F1dr

2 + e2ϕ
(
dψ − bψµdx

µ +∆1cos θ1 Dϕ1 + ∆̃2cos θ2 Dϕ2

)2
+ F1

(
dθ21 +Dϕ2

1

)
+ F2

(
dθ22 +Dϕ2

2

)
(3.73)
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In this form the non-Kählerity is obvious in terms of the fibrations Dϕi and the

resolution parameters of the two two-cycles are determined completely in terms of Fi

as:

F1 = e
2ϕ
3 a2(k2G2 + kG3 +G1), F2 = e

2ϕ
3 b2(µ2G2 + µG3 +G1) (3.74)

It is now clear that to determine the type IIB mirror using SYZ [80] we have to make

the base bigger as before. The manifold (3.73) still retains isometries along (ϕi, ψ), so

after we enlarge the base we can perform SYZ in the usual way. Since these details

are rather straightforward to work out, we will not redo them again now. To put the

type IIB metric in some suggestive format, let us define the following quantities:

ᾱ =
(
j̄ϕ1ϕ1 j̄ϕ2ϕ2 − j̄ϕ1ϕ2 + b̄2ϕ1ϕ2

)−1

, D̃ψ ≡ dψ + grψdr

D̃ϕ1 ≡
√
gϕ1ϕ1
gθ1θ1

(
dϕ1 + gϕ1θ1dθ1 + grϕ1dr

)
, D̃ϕ2 ≡

√
gϕ2ϕ2
gθ2θ2

(
dϕ2 + gϕ2θ2dθ2 + grϕ2dr

)
(3.75)

where j̄µν denote the components of the IIA metric (3.73), and gµν are defined in

terms of j̄µν in Appendix C of [42]. Using these definitions, and taking brϕi = brψ = 0,

the mirror manifold in type IIB theory takes the following form:

ds2 = F 2
0 ds

2
0,1,2,3 + grrdr

2 + gψψ

(
D̃ψ + ∆̂1 D̃ϕ1 + ∆̂2 D̃ϕ2

)2
(3.76)

+gθ1θ1

(
dθ21 + D̃ϕ2

1

)
+ gθ2θ2

(
dθ22 + D̃ϕ2

2

)
+ gθ1θ2

(
dθ1dθ2 + ∆̂3 D̃ϕ1D̃ϕ2

)
which looks surprisingly close to the warped resolved-deformed conifold! Clearly the

manifold is non-Kähler and ∆̂i are defined as:

∆̂1 ≡

√
gθ1θ1g

2
ψϕ1

gϕ1ϕ1
, ∆̂2 ≡

√
gθ2θ2g

2
ψϕ2

gϕ2ϕ2
, ∆̂3 ≡

√
gθ1θ1gθ2θ2g

2
ϕ1ϕ2

gϕ1ϕ1gϕ2ϕ2g
2
θ1θ2

(3.77)

The type IIB fluxes are rather involved, but they could be worked out exactly as

in Appendix B of [42]. We will not do so here, but discuss their implications in our

follow-up paper [76]. It is interesting that the solutions that we get in type IIA as well

as type IIB for the gravity duals look very close to what have been advocated in the
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literature so far in the limit where we switch off certain components of the b̄-fields as

well as brϕi , brψ. Once we keep these components then the metric (3.76) cannot be the

global description. The global description will have to be a non-geometric manifold.

In the present chapter we will not discuss the non-geometric aspect anymore, and

details on this will be presented in our upcoming paper [76]. We end this section by

noting that the duality cycle that we advocated here (and also in [44, 112] earlier)

does lead to the correct gauge/gravity dualities for the confining theories.
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Chapter 4

Gravity dual of finite temperature
field theory

4.1 Introduction

Lots of analytic results coming from gauge/gravity duality are derived for con-

formal gauge theories with N = 4 supersymmetry in the large N limit. One may

thus genuinely be concerned about their applicability to QCD for which all these are

not true. Recent progress in this area, however, has provided us with strong hints to

overcome these limitations, and move towards models of gauge-gravity duality that

are not supersymmetric, and are non-conformal (in a sense that will be made precise

later).

The first set of models that managed to expand the original AdS/CFT construc-

tion to incorporate renormalization group runnings are [66] and [67] that connected

conformal fixed points at IR and UV, and [68] that connected the UV N = 4 con-

formal fixed point to a N = 1 confining theory. The next set of models, that we

would be mostly interested in, do not have any fixed points (or fixed surfaces) in the

paths of the RG flows. The key example in this set is the Klebanov-Strassler (KS)

model [6] (with an extension by Ouyang [115] to incorporate fundamental matters)

that provided an IR dual of, although not exactly QCD, but at least its closest cousin:

large N supersymmetric QCD. The UV of the original Klebanov-Strassler model is
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now known to have some issues, like the divergences of the Wilson loops at high en-

ergies, and additional Landau poles once fundamental matters have been introduced.

This means that UV completion is necessary, and to have the full gravity dual of the

corresponding gauge theory that behaves well at high energies, the KS geometry has

to be augmented by a proper asymptotic manifold.

Other extensions to the original KS model quickly followed. For example in [104,

97] the cascading picture of the original KS model was extended to incorporate black-

hole without any fundamental matter, which was then further extended to incorporate

matter in [98]. However none of the above models actually considered the full UV

completion as most of the analysis of these works were directed towards unravelling

the IR physics. Therefore issues like UV divergences of Wilson loops and Landau

poles were not investigated.

In a series of works [70, 71, 107] done over the last couple of years, the authors

tried to address these concerns. The aim therein was to incorporate the backreactions

from the black-hole, fluxes, and branes consistently so as to have a well defined UV

completion that not only allow one to get rid of all the poles etc., but also give one

a model that could come closest to what one might have expected from a large N

thermal QCD. The authors did manage to at least successfully generate such a UV

completed dual picture, but many of the backreactions turned out to be too difficult to

incorporate fully. The main aim of this chapter is to make progress in this direction.

4.2 Analysis of the background

Let us start with the model that was studied in [70]. The IR physics is captured

by the Ouyang-Klebanov-Strassler-black-hole (OKS-BH) geometry, namely, the small

r physics is determined by a warped resolved-deformed conifold with fluxes, seven-

branes and a black hole in the ten-dimensional spacetime. On the other hand the UV

physics is conformal, and is captured by an asymptotically AdS geometry with fluxes

and seven-branes.
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As discussed in [71], these two geometries, namely the asymptotic AdS and OKS,

can be connected by an intermediate configuration with brane sources and fluxes.

These branes sources were elaborated in details in [71], although many coefficients in

the background geometry were left undetermined therein. In the following we will fill

up some of these missing steps.

Let us begin with the basic ansatze for the metric in the three regions. For all the

three regions we assume that the radial coordinate r spans b < r < rmin for Region

1 where we expect all the confining dynamics to take place; rmin < r < ro for the

intermediate region called Region 2; and ro < r <∞ for Region 3 which captures the

asymptotically conformal region. The minimum radius r = b, which signifies the cut-

off coming from the blown-up S3 (as well as S2, although for most of the calculations

in this chapter we will only consider a warped resolved conifold instead of a warped

resolved-deformed conifold), maps to the expectation of the gluino condensates of

the dual gauge theory at zero temperature. Considering all these regions, the non-

extremal metric takes the following form:

ds2 =
1√
h

[
− g1(r)dt

2 + dx2 + dy2 + dz2
]
+
√
h
[
g2(r)

−1dr2 + dM2
5

]
≡ −e2A+2Bdt2 + e2Aδijdx

idxj + e−2A−2B g̃mndx
mdxn (4.1)

where gi(r) are the black-hole factors and we have taken g1 = g2, the components go

as i, j = 1, 2, 3 and m,n = 4, ..., 9, the warp factors A,B are defined as:

A = − 1

4
log h, B =

1

2
log g1 (4.2)

dM2
5 is typically the metric of warped resolved-deformed conifold and h is the warp

factor that behaves differently in the three regions as shown in [71].

Observe that in the extremal limit, g1 = g2 ≈ 1 and the extremal metric is dual

to the low temperature confining phase of the gauge theory. To see this, note that

in the absence of any seven branes, Region 1 of the geometry of [71] in the extremal

limit is identical to the IR geometry of Klebanov-Strassler (KS) model [6]. If seven

branes are placed far away from Region 1, that is rmin ≫ b, we can neglect their

85



back-reactions and consider the axion-dilaton field to be effectively constant as in

[6]. Hence in the extremal limit, Region 1 of [71] is identical to the IR region of KS

which, in turn, is dual to the low temperature confining phase of the SU(M) gauge

theory wherein chiral symmetry is broken. The extremal geometry can incorporate

temperature of the field theory once we analytically continue to Euclidean signature

with it→ τ and impose periodic and anti-periodic boundary conditions for the bosons

and fermions on the closed time circle. Furthermore, in extremal case the entropy will

vanish. This is expected as the entropy from the dual geometry arises from the fluxes

which are at least O(Neff), where Neff is effective brane charge. As the deformed cone

represents confinement of charge, we expect to get Neff = 0 from the dual geometry.

This is indeed what happens as energy scale for a thermal field theory is set by the

temperature and at low temperature, only the IR degrees of freedom are excited. This

means in the dual geometry, all we need is the region near r ∼ b of the deformed cone

− but in this region the five-form flux vanishes [6] and we get Neff = 0.

As the temperature is increased, we expect that the non-extremal solution will

have less free energy than the extremal solution, just as in the case for the AdS-black

holes [96], and Hawking-Page phase transition will take place [101]. The focus of this

work will be to analyze the non-extremal solution which is dual to the deconfined

phase of large N thermal QCD, while a detailed analysis of phase transitions will be

presented in a follow up paper[102].

The non-extremal solutions we present in this chapter are precisely dual to the

high temperature regime of the gauge theory − where chiral symmetry is restored

and the light degrees of freedom are deconfined. However, heavy quarkonium states

arising from the seven branes placed in the UV region can coexist with the chirally

symmetric phase above the deconfinement temperature. But as temperature is raised

even further, the heavy quarkonium states will eventually melt [108, 71].

For both extremal and non-extremal cases, typically h would have logarithmic

factors in Region 1 whereas it would have inverse r behavior in Region 3. In the

intermediate region, the warp factor will typically have both the logarithmic and
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the inverse r behavior. Therefore to summarise, the background should satisfy the

following properties:

• Fluxes are non imaginary self-dual i.e non-ISD, and become ISD once the black-

hole factors gi in the metric are removed. Therefore the deviation for ISD property is

proportional to the horizon radius rh.

• The gravity dual of the deconfined phase is given by resolved warped-deformed

conifold with a black-hole. In the limit where the deformation parameter is small, the

background can be succinctly captured by a resolved conifold with fluxes and black

hole.

• The resolution parameter is no longer constant because of the various back-reactions.

In fact the resolution parameter becomes function of rh/r as well as gsNf , and gsM
2/N

where gs is the string coupling, M is the number of bi-fundamental matter, N is the

number of colors, and Nf is the number of fundamental flavors.

From the above set of arguments, we can use the following ansatze for the internal

metric:

g̃mndx
mdxn = dr2 + r2e2B

[
A(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2 +O(gsM
2/N, r4h/r

4)

+B(dθ21 + sin2θ1dϕ
2
1) +

1

6
(1 + F )(1 + G)

(
dθ22
1 + G

+ sin2θ2dϕ
2
2

)]
(4.3)

+ 2fb

[
cos ψ(dθ1dθ2 + sin θ1 sin θ2dϕ1dϕ2)− sin ψ(sin θ2dϕ2dθ1 − sin θ1dϕ1dθ2)

]
where we will only consider the resolved conifold limit, with F being related to the

resolution parameter (whose value will be determined later). In other words, we take:

fb → 0, F ≡ 6a2

r2
, G → 0

A =
1

9
+O(gsM

2/N, r4h/r
4), B =

1

6
+O(gsM

2/N, r4h/r
4) (4.4)

where the numerical factor of 6 is inserted to bring certain expressions in a better

format. As we will see, this F (or equivalently a) determines the squashing factor
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between the two spheres, and we can consistently keep the second squashing factor,

G, to be zero.

The resolution parameter discussed above needs a bit more elaboration. First of

all, as we mentioned earlier, a2 is not a constant in our model. As we will show in

(4.54), the resolution parameter takes the following form:

a2 = a20 + r2hO(gsM
2/N) + r4hO(g2sM

2Nf/N) (4.5)

where we have switched on a bare resolution parameter a20 to allow for the theory to

have a baryonic branch [99]. However even if we switch off the bare resolution param-

eter, the background EOMs will still generate a resolution parameter proportional to

the horizon radius rh. This not a contradiction with the result of [85] wherein it was

argued that one may not be able to simultaneously resolve and deform a Calabi-Yau

cone. The fact that our metric is non-Kähler takes us away from the constraints

imposed in [85].

In the following section we will argue for these parameters and their dependences

on the horizon radius by analysing the non-extremal limit of the warped resolved-

deformed conifold background1 .

1 We will continue calling this background as the Klebanov-Strassler background
as they all fall in the same class of supergravity solution.
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4.2.1 Derivation of the non-extremal BH solution for the
Klebanov-Strassler model

We first compute the non-extremal metric arising from Type IIB supergravity

action given, in the notations of [103], in the following way2 :

SIIB =
1

2κ210

∫
d10x

√
−g

[
R− ∂aτ∂

aτ̄

2|Imτ |2
− G3 · Ḡ3

12Imτ
− F̃ 2

5

4 · 5!

]

+
1

8iκ210

∫
C4 ∧G3 ∧ Ḡ3

Imτ
+ Sloc (4.6)

where Sloc is the action for all the localized sources in ten dimensional geometry i.e five-

branes and seven-branes mostly from Region 2 onwards. Our aim is to re-analyse the

non-extremal Klebanov-Strassler solution. Recall that for Klebanov-Tseytlin model

the non-extremal solutions were analyzed in [104], while in [70] there have been stud-

ies of gravity duals of finite temperature cascading gauge theory with fundamental

matters3 . However in [70] precise background fluxes and the warp factors taking into

the backreactions of the BH geometry were only conjectured. Here we will derive

the non-extremal metric dual to a UV complete gauge theory that mimics features of

large N QCD at the lowest energies, justifying the proposals made in [70, 71]. One

immediate outcome of this would be the verification of the conjectured dependence

of the resolution parameter a2 on the horizon radius rh.

Our ansatz for the metric is (4.1). We look for solutions with regular Schwarzschild

horizon at r = rh. This is achieved by imposing eB(rh) = 0 and considering solutions

to A such that eA(rh) ̸= 0, which guarantees a non-singular horizon [104]. By solving

the Einstein equations along with the flux equations with these boundary conditions,

we will find the non-extremal solutions with regular horizons.

2 Although in this section we will use the Einstein frame to express the metric,
we will however not distinguish between the two frames in later sections because the
dilaton will be considered constant, unless mentioned otherwise.

3 See also [105] where somewhat similar analyses were also done.
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Observe that we have warped Minkowski four directions, a non-compact radial di-

rection r and a compact five manifoldM5. The back reactions of the fluxes G3, F̃5 and

axion-dilaton field τ will modify the warp factor eA+B while g̃mn will be altered due to

the presence of a black hole and the various sources. In particular g̃mn will be a warped

resolved-deformed conifold with a bare resolution parameter a0. Note however that

only the warp factor eA+B will be essential to analyze the confinement/deconfinement

mechanism for the boundary field theory [71]. The linear confinement of quarks and

the string breaking mechanism which eventually describes the deconfinement of QQ

pair, is only sensitive to the warp factor. The exact solutions for the internal metric

in the non-extremal limit taking into account the back reaction of the various fluxes is

not essential to study free energy of the QQ pair. Nevertheless we will find the exact

form of the internal metric up to linear order in resolution function F .

We restrict to fluxes and axion-dilaton field τ which only depend on xm and not

on the Minkowski coordinates xµ. Then the Einstein equations can be written as

Rµν = −gµν

[
G3 · Ḡ3

48 Imτ
+

F̃ 2
5

8 · 5!

]
+
F̃µabcdF̃

abcd
ν

4 · 4!
+ κ210

(
T loc
µν − 1

8
gµνT

loc

)

Rmn = −gmn

[
G3 · Ḡ3

48 Imτ
+

F̃ 2
5

8 · 5!

]
+
F̃mabcdF̃

abcd
n

4 · 4!
+
G bc
m Ḡnbc

4 Imτ
+
∂mτ∂nτ̄

2 |Imτ |2

+ κ210

(
T loc
mn −

1

8
gmnT

loc

)
(4.7)

where F̃5 is given by the following self dual form

F̃5 = (1 + ∗10)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (4.8)

with α = e4A and T loc being the trace of

T loc
ab = − 2√

−g
δSloc

δgab
(4.9)

Using the form of the five-form flux (4.8), the first equation in (4.7) becomes

Rµν = −gµν
[
G3 · Ḡ3

48 Imτ
+
e−8A−2B∂mα∂

mα

4

]
+ κ210

(
T loc
µν − 1

8
gµνT

loc

)
(4.10)
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On the other hand, the Ricci tensor in the Minkowski direction takes the following

simple form

Rµν = −1

2

[
∂m(g

mn∂ngµν) + gmnΓMnM∂mgµν − gmngν
′µ′∂mgµ′µ∂ngν′ν

]
(4.11)

where ν ′, µ′ = 0, .., 3 and ΓMnM is the Christoffel symbol. Now using the ansatz (4.1)

for the metric, (4.11) can be written as

Rtt = e4(A+B)
[
▽̃2(A+B)− 3g̃mn∂nB∂m(A+B)

]
Rij = −ηije2(2A+B)

[
▽̃2A− 3g̃mn∂nB∂mA

]
(4.12)

where we have defined the Laplacian as:

▽̃2 = g̃mn∂m∂n + ∂mg̃
mn∂n +

1

2
g̃mng̃pq∂ng̃pq∂m (4.13)

The set of equations can be simplified by taking the trace of the first equation in (4.7)

and using (4.12). Doing this we get

▽̃2(4A+B)− 3g̃mn∂nB∂m(4A+B) = e−2A−2BGmnpḠ
mnp

12Imτ
+ e−10A−4B∂mα∂

mα

+
k210
2
e−2A−2B(Tmm − T µ

µ
)loc (4.14)

On the other hand using (4.10) in (4.12), one gets

Rt
t −Rx

x = 0 (4.15)

which in turn would immediately imply

▽̃2B − 3g̃mn∂mB∂nB = 0 (4.16)

Minimizing the action (4.6) also gives the Bianchi identity for the five-form flux,

namely

dF̃5 = H3 ∧ F3 + 2κ210T3ρ3 (4.17)
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where ρ3 is the D3 charge density from the localized sources [103]. Using (4.8) in

(4.17) and subtracting it from (4.14) one gets the following

▽̃2(e4A+B − α) =
e2A−B

6Imτ
|iG3 − ∗6G3|2 + e−6A−3B|∂(e4A+B − α)|2

+3e−2A−2B∂mB∂
m(e4A+B − α) + local source (4.18)

The Ricci tensor, on the other hand, for the xm,m = 4, .., 9 directions takes the

following form

Rmn = R̃mn + g̃mn▽̃2 (A+B)− 3g̃mng̃
λk∂λB∂k (A+B)

+ 3▽̃m∂nB + ∂mB∂nB − 8∂mA∂nA− 2∂(mA∂n)B (4.19)

where ▽̃m is the covariant derivative given by

▽̃mVc = ∂mVc − Γ̃bmcVb (4.20)

for any vector Vb. Here R̃mn is the Ricci tensor and Γ̃bmc is the Christoffel symbol for

the metric g̃mn. The equation for R̃mn is given by:

R̃mn = −gmn
G3 · Ḡ3

24Imτ
+
Gmab · Ḡab

n

4Imτ
+

∂mτ∂nτ̄

2 | Imτ |2

+
FmabcdF

abcd
n

4 · 4!
+ gmn

FµabcdF
µabcd

16 · 4!
+ 8∂mA∂nA

−3▽̃m∂nB − ∂mB∂nB + 2∂(mA∂n)B (4.21)

which means, in general, this could lead to twenty different equations in six-dimensions

(including another one for the trace). On the other hand the equation of motion for

G3 can be expressed in terms of a seven-form Λ7 ≡ ∗10G3 − iC4 ∧G3 in the following

way:

dΛ7 +
i

Imτ
dτ ∧ ReΛ7 = 0 (4.22)

where typically Λ7 would study the deviations from the ISD behavior. For example,

using our metric ansatz we can express Λ7 as

Λ7 =
[
e4A+B ∗6 G3 − iαG3

]
∧ dt ∧ dx ∧ dy ∧ dz (4.23)
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The above choice of Λ7 leads us to three different classes of solutions from the G3

EOM (4.22). These three classes can be tabulated in the following way:

• If α = e4A+B in (4.23) and Λ7 = dΛ7 = 0 then G3 must be ISD. When B = 0 then

this is the same as GKP solution [103], and in this case τ is not restricted4 .

• If α ̸= e4A+B then we can take Λ7 ̸= 0 but keep dΛ7 = 0 and dτ = 0. This means

Λ7 is closed but not necessarily exact, and τ is a constant5 .

• If α ̸= e4A+B then we can again take Λ7 ̸= 0 but now dΛ7 ̸= 0 and dτ ̸= 0 such that

(4.22) is satisfied. This means both axion and the dilaton could run in this scenario.

In this chapter we are taking α = e4A, so we have to consider the last two cases.

Expressing Λ7 as Λ7 = T3 ∧ dt∧ dx∧ dy ∧ dz we have eB ∗6G3 − iG3 = T3 where T3 is

non-zero as long as B is non-zero. A simple solution then would be to restrict oneself

to the second case, i.e

dT3 = 0, τ = constant (4.24)

Notice also that at far infinity, i.e r → ∞, B → 0, therefore T3 → 0 as well6 . Using

the above argument, G3 can then be expressed in terms of T3 as

G3 =
eB ∗6 T3 + iT3

1− e2B
(4.25)

4 One can find solutions for α = e4A+B case when B ̸= 0, but this solution doesn’t
have correct conformal limit, i.e. when we switch off G3, it doesn’t reduce to the KW
solution. In the dual gauge theory the charge obviously varies with the temperature
which is not the case in the ordinary gauge theory.

5 Or τ = dλ−1 i.e d of a (−1)-form. The functional form for the (−1)-form is
non-trivial, so this option is more cumbersome to use.

6 This is of course without considering the UV completion. With UV completion
the large r behavior is non-trivial as discussed in [70, 71].
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Since τ = constant, this means the closure of G3 will involve a non-trivial constraint

connecting the internal metric components with B and T3. However in this chapter

we will not be solving these equations explicitly but approximating G3 by Ouyang-

Klebanov-Strassler flux G
(0)
3 which is ISD in their metric. This approximation suffices

for our case, as we show below.

Let us substitute G3 = G
(0)
3 and α = e4A into (4.23). This will convert Λ7 to a

simpler seven-form in the following way:

Λ7 = e4A(eB ∗6 G0
3 − iG0

3) ∧ dt ∧ dx ∧ dy ∧ dz

≈ 3e4A(e2B − 1)grrϵ de
rabc G

(0)
rde dx

a ∧ dxb ∧ dxc ∧ dt ∧ dx ∧ dy ∧ dz

≈
3r4h
N
grrϵ de

rabc G
(0)
rde dx

a ∧ dxb ∧ dxc ∧ dt ∧ dx ∧ dy ∧ dz (4.26)

At large N the right hand side is small and therefore deviation from OKS flux is of

O(rh, 1/N) so one may consider Λ ≈ 0. This means G3 = G
(0)
3 is a good approxima-

tion. Additionally, since F5 is self-dual, R̃mn can be simplified as

R̃mn = −gmn
G3 · Ḡ3

24Imτ
+
Gmab · Ḡab

n

4Imτ
+

∂mτ∂nτ̄

2 | Imτ |2
+ 8(1− e−2B)∂mA∂nA

−3▽̃m∂nB − ∂mB∂nB + 2∂(mA∂n)B (4.27)

We see the first two terms are suppressed by gsM
2/N and the third term is removed

because τ is a constant. So we can ignore these contributions for the time being.

Then, assuming A and B only depends on r, (4.27) will lead to

R̃rr = 8(1− e−2B)∂rA∂rA− 3▽̃r∂rB − ∂rB∂rB + 2∂(rA∂r)B

R̃ab = −3

2
∂rg̃ab∂rB (4.28)

where (a, b) denote the angular directions. We now see that for r > rh, the R̃ab

contribution is suppressed equivalently as the R̃rr contribution, therefore we need to

keep both the parts. This conclusion can also be extended to Rmn in (4.19), which

implies that the Rrr and Rab contributions are equally suppressed. All this then
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further implies that we need to solve the twenty-one metric equations. This is a

formidable exercise. Is there a way by which we can avoid doing this?

A possible way out would be to study the relative suppressions of various terms in

the system of equations. This criteria was already anticipated in [70]. For example,

as we discussed in [70], we can equivalently take:

(gs, N,M,Nf ) → (ϵc, ϵ−a, ϵ−b, ϵ−d) (4.29)

This would clearly show that (gsN, gsM) are very large but (gsNf , gsM
2/N, g2sMNf )

as well as M/N are suppressed in the following way:

(gsN, gsM) → (ϵc−a, ϵc−b)

(gsNf , gsM
2/N, g2sMNf ,M/N) → (ϵc−d, ϵc−2b+a, ϵ2c−b−d, ϵa−b) (4.30)

provided (a, b, c, d) satisfy the following inequalities7 :

a > b > c > d, a+ c > 2b, 2c > b+ d (4.31)

Let the smallest scale in our problem be the ratio M/N . Then if the argument of the

relative suppressions of various terms in Rmn has to make sense, one would require

the precise range of r where our approximations hold water. This gives us:

r ≥ rh

(
N

M

)1/4

(4.32)

Thus if we are in this range, we can see that the curvature terms simplify drastically.

This would give us a hint that if we solve the simplest trace equation along with the

flux equations (4.16), (4.17), and (4.18) we would be reasonably close to the correct

7 A solution to the inequalities is a = 8, b = 3, c = 5/2, d = 1, as given in [70]. One
can of course allow other values of (a, b, c, d) that satisfy the inequalities.
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answer because the other twenty component equations would only change the results8

to O(r4h/r
4). So once we are in the range (4.32) the only corrections to our simplified

trace equation will be to O(gsM
2/N) and O(r4h/r

4). This is not so bad because if we

choose ϵ in (4.29) to be ϵ = 0.1, then

N = 108, M = 103, Nf = 10, gs = 0.0032, r > 17.78rh (4.33)

which means for r beyond 17.78rh the contributions coming from the individual com-

ponent equations to the solution generated using only the trace equation will not be

too drastic.

Therefore, once the dust settles, tracing the second equation in (4.7), using (4.14),

(4.16) and (4.19), we get

R̃

6
+

4

3
g̃mn∂mA∂nA

(
e−2B − 1

)
+
g̃mn

6

(
3▽̃m∂nB + ∂mB∂nB

)
− g̃mn

3
∂(mA∂n)B =

g̃mn∂mτ∂nτ̄

12|Imτ |2
(4.34)

where R̃ = g̃mnR̃mn and we have ignored all local sources.

Our goal now is to solve the system of four equations (4.16), (4.17), (4.18) and

(4.34) and find solutions for the warp factors A,B, the internal metric g̃mn and the

fluxes. In obtaining the solutions, we will be working in the limit where there is no

local sources, G3 is closed while the explicit form of the fluxes that solve the flux

equations are described in the following subsection9 . As we mentioned earlier, if we

8 This in particular means that not only the coefficients of all the terms of the
internal metric will change to O(r4h/r

4) but also any new component will appear to
O(r4h/r

4). This is exactly how we choose our initial metric ansatze (4.3) and therefore
the system is self-consistent.

9 It is of course possible to consider additional sources to obtain a UV complete
solution as done in [71]. But for the purpose of the current section, which is to analyze
the non-extremal limit for the IR geometry, we will ignore local sources and discuss
their effects briefly towards the end.
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choose α = e4A, (4.18) will imply that G3 is ISD, in the extremal limit i.e eB = 1.

On the other hand, G3 is not ISD on a deformed cone in the presence of a black

hole, and the terms in G3 which make it non-ISD are precisely proportional to the

blackhole horizon and the deformation function F that appears in g̃mn. With these

considerations and our choice of internal metric g̃mn we get

|iG3 − ∗6G3|2 =
∣∣∣i ∗6 T3 + T3

1 + eB

∣∣∣2 ∼ O(F 2, r8h/r
8) (4.35)

Thus with a choice of α = e4A +O(F 2), (4.18) can be solved exactly. But if F ≪ 1,

we can ignore O(F 2) terms which means up to linear order in F , (4.18) becomes

▽̃2(e4A+B − e4A) = e−6A−3B|∂(e4A+B − e4A)|2 + 3e−2A−2B∂mB∂
m(e4A+B − e4A)

(4.36)

Thus ignoring O(F 2) in (4.18)10 , we are essentialy solving (4.16), (4.17), (4.34) and

(4.36). In fact we will show that (4.17) dictates F ≪ 1 and our explicit numerical

solutions will also be consistent with this assumption, justifying our perturbative

analysis.

Now only considering up to linear order terms in F , we get α = e4A which relates

the warp factor to the five-form field strength which in turn depends on G3 by the

Bianchi identity (4.17). Thus eA depends on the non-ISD G3 as G3 is modified in the

presence of a black hole. But the choice of α = e4A also means that the dependence of

G3 on blackhole horizon rh appears in the form of a resolution parameter a = a(rh),

a crucial fact that was first conjectured in [70] and will be further illustrated in the

next subsection.

10 The term in (4.35) appearing in (4.18) contributes as ∼ O(F 2(gsM
2/N)l), l ≥ 1

which can be easily obtained by using e−4A ∼ O(gsN) [1 +O(gsM
2/N)]. As

gsM
2/N ≪ 1, we can ignore O(F 2gsM

2/N) terms. See also (4.29), (4.30) and (4.31)
for more details on the various scaling limits.
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As already mentioned, equation (4.17) determining eA also depends on the internal

metric g̃mn. In the absence of any flux and axion-dilaton field, g̃mn is the metric of

base of the deformed conifold T 1,1 which has the topology of S2×S3. In the presence

of a black hole horizon and various sources, the internal metric will be modified in

the following way:

g̃mn = g̃[0]mn + g̃[1]mn (4.37)

where g̃
[0]
mn is the metric of a resolved deformed cone (or more appropriately, here, the

resolved cone) with base T 1,1 and therefore g̃
[1]
mn denotes all the corrections due the

black hole and all other sources. This means that g̃
[1]
mn contains all the informations of

the resolution factor and its subsequent dependence on the horizon radius etc. Note

also that, as we have a horizon at r = rh with M units of fluxes11 and Nf number of

seven branes, g̃
[1]
mn must at least be of O(M,Nf , r

4
h/r

4). We will evaluate eA and g̃
[1]
mn

to lowest order in gsM2

N
and gsNf which in turn will drastically simplify our analysis.

Our choice of g̃
[0]
mn and g̃

[1]
mn will be such that we have (4.3) for the internal metric.

The Bianchi identity for the five-form flux, in the absence of any three-brane

sources, reads

dF̃5 = H3 ∧ F3 (4.38)

where F3 and H3 are the RR and the NS three-form fluxes. They are given as

F3 = F
(0)
3 +O(F ), H3 = H

(0)
3 +O(F ) (4.39)

where F
(0)
3 , H

(0)
3 are the fluxes in the absence of any squashing, that is for F = 0

(we expressed this earlier as G
(0)
3 ≡ F

(0)
3 − τH

(0)
3 ). For the regular cone, taking into

account the running of the τ field, F
(0)
3 and G

(0)
3 are exactly the Ouyang fluxes [115],

11 In the intermediate region, i.e Region 2 of the geometry, we will also have (p, q)
five-brane sources.
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while the exact form of the fluxes in a deformed conifold were discussed in [89] [6].

Now from the form of the fluxes on deformed cone one gets that

F3 ∼ M [1 +O(F )], H3 ∼ gsM [1 +O(F )] (4.40)

Using this and (4.39) one readily gets that

H3 ∧ F3 = F
(0)
3 ∧H(0)

3 +O(M2F ) (4.41)

An immediate question is: what can be said about the squashing function F? In the

absence of the three-form fluxes, i.e M = 0, there is no squashing as the Klebanov-

Witten solution [7] with running dilaton [115] needs no squashing. This remains true

even when we introduce temperature. To see this, observe that the non-extremal limit

of Klebanov-Witten(KW) model does not require any modification of the internal

space: which means F = 0 with e2B = 1− r̄4h/r4 and the internal space is exactly T 1,1.

There could be squashing due to the running of τ field in the KW blackground, but

squashing would be at O(g2sN
2
f ), so we can ignore it as we will only consider up to

linear order in gsNf . These behaviors indicate that F must be at least proportional

to M . In the following subsection, we will justify this claim.

4.2.2 Behavior of F and various scaling limits

Let us go to the case when there is no blackhole but we have non-zero three-form

flux i.e M ̸= 0. For this case we are back to Klebanov-Strassler-Ouyang background

with no squahing and F = 0. This means, F must also be proportional to the

blackhole horizon rh. Combining this with the form of the Ouyang fluxes, taking into

account of the back reactions of the seven branes, we expect

F ∼ O(a20, rhgsM
α/Nβ, rhg

2
sN

2
f ) (4.42)

with a0 being the bare resolution parameter discussed earlier and (α, β) are some

integers. Notice that we have inserted a suppression factor of N−β assuming β > 0 in

anticipation of a possible perturbative expansion. Therefore using our ansatz (4.42)
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in (4.41) gives us

F3 ∧H3 = F
(0)
3 ∧H(0)

3 +O(a40, r
2
hg

2
sM

α+2/Nβ+1, r2hg
2
sN

2
f ) (4.43)

implying that up to quadratic order inM , we only need Ouyang fluxes to solve (4.38).

But to guarantee that we only need to consider up to quadratic order in M , we must

show that higher order i.e O(g2sM
α+2/Nβ+1) terms are small compared to the gsM

2/N

terms coming from F
(0)
3 ∧H(0)

3 . This will indeed be the case once we solve (4.38) up

to O(M2) 12 . We will see F ∼ M/N where N ≫ M and this justifies ignoring the

second term in (4.43). In fact solving (4.38) with our ansatz for the warp factor shows

that 1
gsN

(F3 ∧ H3) is the relevant term that enters into the equaton of motion (see

Appendix A). Hence in solving (4.38) with our choice of warp factor, we are really

ignoring O(gsM
3/N2) and keeping terms only up to O(gsM

2/N). This truncation is

consistent for N ≫M which is achievable as we showed in (4.29) and (4.30). However

one might question the suppression terms in (4.42) and in (4.43) if (α, β) exponents

are arbitrary compared to the range that (4.29) would impose. That this will not be

the case will become apparent from the following discussions.

To start then we shall continue using the following five-form flux:

F̃5 = (1 + ∗10)dα ∧ d4x (4.44)

With this form of F̃5 and α = e4A = 1/h, (4.38) becomes an equation involving h,

e2B and F . We already know that in the AdS limit e2B = 1− r̄4h/r
4. In our non-AdS

geometry we expect:

e2B = 1− r̄4h
r4

+G (4.45)

12 If the solution to (4.38) up to O(M2) tells us that F > 1, then we cannot ignore
the second term in (4.43) and therefore have to include O(M3) and higher in solving
(4.38). But, as we will argue soon, our solutions show that F ≪ 1, which justifies our
truncation.
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where G is at least O(M,Nf ). Using this expansion for e2B, along with the precise

form of the Ouyang three-form fluxes F
(0)
3 , H

(0)
3 and only considering up to O(M2)

terms 13 , (4.38) reads[
∂r∂rh

1 +
1

g
∂θi
(
ḡθiθi0 ∂θih

1
)
+
r4h/r

4

g
∂θi
(
ḡθiθi0 ∂θih

0
) ]
r5 + 5r4∂rh

1 = 4L4∂rF (4.46)

where ḡmn0 is proportional to the deformed conifold metric (see Appendix A), h =

h0 + h1 with h0 being the Ouyang warp factor

h0 =
L4

r4

{
1 +

3gsM
2

2πN
logr

[
1 +

3gsNf

2π

(
logr +

1

2

)]

+
3g2sM

2Nf

8π2N
logr log

(
sin

θ1
2
sin

θ2
2

)}
(4.47)

and h1 is the contribution due to the presence of the black hole.

We can readily see from (4.46) why F ∼ M/N . First note that the non-extremal

limit of Klebanov-Witten model has an exact solution, h = L4/r4 with h1 = 0. h1

is only non-trivial due to the presence of three form fluxes, the black hole and other

sources. Thus, h1 ∼ O(M, gsNf , r
4
h/r

4). On the other hand L4 = gsNα
′2 and thus

one gets from (4.46) that F ∼ O(M/N, gsM
2/N). But L4/α′2 ≫ 1 and we can choose

it large enough such that N ≫ M which guarantees that F ≪ 1. This is of course

consistent with (4.29)14 .

13 Again in ignoring higher order terms in M , we are assuming that F,G ∼
O(M/N) < 1, which will be consistent with our solution. On the other hand, the
O(M2) term that enters into (4.46) from the Ouyang warp factor should be under-
stood to be of O(gsM

2/N). Terms of O(M3) in (4.46) come from products of gsM
2/N

with F and since F ∼ O(M/N) < 1, the O(M3) ≪ O(M2) can be ignored. Thus
we have sometimes ignored the 1/N factor or gs/N factor, but they can always be
inserted back in appropriate context.

14 Note that the third term in (4.46), because of the θi derivative, is suppressed as
g3sM

2Nf . Using (4.29) and footnote 7 this would go to zero as ϵ1/2. Also comparing
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The key point in the above argument came from L4/α′2 ≫ 1 appearing in the

Ouyang solution, which is on a regular cone while we have a deformed cone. How can

we use the form of h0 as given by (4.47) for the case of a deformed cone? The answer

lies in the fact that for large radial distances, the deformed cone coincides with the

regular cone. The Klebanov-Strassler solution in the large r regime behaves as the

Klebanov-Tseytlin solution, i.e the warp factor for KS model becomes

hKS ∼ α′2

r4

[
g2sM

2log

(
r

r∗

)]
=

α′2

r4

[
g2sM

2log b+ g2sM
2log

(
r

br∗

)]
=

L4

r4

[
1 +

gsM
2

N
log

(
r

r0

)]
(4.48)

where b is some scale and L4 = gsNα
′2 with N = gsM

2log b, r0 = br∗. The above

expansion shows that the KS warp factor in the deformed cone can really coincide

with the Klebanov-Tseytlin solution. Once back-reactions of the flavor D7 branes are

taken into account, KS solution in the deformed cone background will take the form

of the Ouyang solution. We can of course choose log b ≫ 1 such that L4/α′2 ≫ 1,

so our argument that M/N ≪ 1 holds even if we started with KS solution and not

the Ouyang solution15 . Hence it is justified to use the Ouyang solution even for the

deformed cone.

Also note that, although there were no D3 branes in the KS solution, an effective

N = gsM
2log b reappears in the warp factor of KS model in the large r region. This

N can be identified with the N appearing in the Ouyang solution which also justifies

using the Ouyang solution on the deformed cone background for large r region. For

this term with gsM , the fall-of is g2sMNf which from (4.30) goes to zero as ϵ. Therefore
from all criteria in (4.46), h1 ∼ O(M) seems consistent.

15 Incidentally, using (4.29), we would require b to go to infinity as exp
(
ϵ−9/2

)
.
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small radial distances, we cannot use the h0 as given in (4.47) − hence the non-

extremal solutions we consider are only valid for large radial distances. This also

means, we are considering large horizon rh and the geometry is dual to the high

temperature regime of the gauge theory. A conclusion that is consistent with our

earlier works.

4.2.3 Analysis of the full background with backreactions

Once the behavior of F and the suppression orders for various terms are laid out,

we are ready to tackle the backreactions to order gsNf and gsM
2/N . We start from

the equation of motion for τ given in the following way:

▽̃2τ ∼ g̃mn∂mτ∂nτ̄ (4.49)

However, the underlying F-theory picture [106] on which we based our solution [71],

dictates that ∂τ ∼ O(gsNf ) and therefore we will ignore terms of O(g2sN
2
f ). So the

precise form of τ will not appear in any of the equations (4.46), (4.16), (4.34) and

(4.36).

Thus with our ansatz for the metric (4.1), (4.3) and choice of fluxes, we have four

equations (4.46), (4.16), (4.34) and (4.36) that we need to solve and three unknown

functions h1, G and F . However, it is more convenient to write h1 ∼ A1L4/r4 and

then from (4.46) one readily sees that

A1 ∼ O(M/N) ≪ 1, with F ∼ O(M/N) +O(gsM
2/N) +O(g2sM

2Nf/N) ≪ 1

(4.50)

and so the third term in F is even more suppressed. Now what can we say about G?

As already pointed out, G ∼ O(M, gsNf ). But using the form of F as given above in

(4.50), one readily gets from expanding (4.16), that

G = O(F ) ∼ O(M/N) +O(gsM
2/N) +O(g2sM

2Nf/N) ≪ 1 (4.51)
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Thus it is reasonable to consider only up to linear order terms in A1, G and F . But

(4.36) is a trivial equation up to linear order (see Appendix A) and hence the only

non-trivial equations we are solving are (4.46), (4.16) and (4.34). Thus we have a

system of three equations and three functions A1, G and F − which can be easily

solved.

Note that once the above three equations are solved, the corrections from all the

other Einstein equations are automatically suppressed, as long as we are in the range

(4.32), and the precise functional form of the axion-dilaton field τ and the non-ISD

three-form flux G3 do not influence the four equations up to linear order in A1, G and

F . This is because (4.46) is obtained from (4.17) which is identical to (4.14) (up to

linear order in A1, G and F ) which in turn is obtained by tracing Einstein equations

in the Minkowski directions. On the other hand, (4.34) is obtained from tracing the

Einstein equations in the internal directions. Hence a solution to (4.46) and (4.34)

along with the background Ouyang warp factor h0 and three form fluxes G3 minimizes

the action (4.6) where only Ricci scalar and the flux strength appear for the radial

range (4.32). Thus solving (4.46) and (4.34) really means putting the action on shell

which guarantees that individual Einstein equations change the metric only to order

r4h/r
4 as depicted in (4.3).

The form of the solutions to the three equations along with the boundary condi-

tions that dictate the behavior of the warp factor A,B near the horizon is discussed

in Appendix A. Here we only quote the functional form of the solutions

h1 =
L4

r4
(
A0 + A1 log r + A2 log2r

)
e2B ≡ g = 1− r̄4h

r4
+G ≡ 1− r̄4h

r4
+ g0 + g1 log r + g2 log2r

F = F0 + F1 log r + F2 log2r (4.52)

where Ai, gi, Fi for i = 0, 1, 2 are in general functions of r and the internal coordinates

θj, ϕj, ψ, with j = 1, 2. In Appendix A we have worked out the simplest case where
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Ai, gi, Fi are assumed to be functions of r only by neglecting O(gsNf ) terms16 . This

is a reasonable assumption for small number of flavors. Furthermore, the thermody-

namics of the field theory is dictated by the behaviour of the dual geometry near the

black hole horizon (4.32). If we keep all the seven branes away from the black hole,

we can ignore running of τ near the black hole. On the other hand, for constant τ we

expect a Klebanov-Strassler type solution which essentially means the warp factors

A,B and squashing factor F are only functions of r. Hence, as long as we are dealing

with the light degrees of freedom that arise from the deformed cone ignoring the back

reaction of seven branes, we can neglect the contributions from the seven branes far

away from the black hole and consider the solution in (4.52) to be functions of r only.

To account for the heavy quarks, we have to include O(gsNf ) terms but our ansatz

(4.52) remains the same with the understanding that now Ai, gi, Fi are additionally

funtions of the internal coordinates. Interestingly, however, to analyze the melting

of the heavy quarkonium states, we can consider string world sheets that are fixed in

the internal directions which results in evaluating the warp factors A,B only for fixed

values of the angles θj, ϕj, ψ. This means our above analysis would suffice. Hence,

even for the study of linear confinement and melting of heavy QQ pairs, it is sufficient

enough to treat the solutions in (4.52) as being functions of the radial coordinate only

(see [118, 119] for related works in this direction).

In Figures 4.1, 4.2 and 4.3 we have plotted g(u), A0(u) and F0(u) where u ≡ r/r̄h

using the numerical solutions to equations (4.46), (4.16) and (4.34). As discussed

in Appendix A, at the lowest order of perturbation, only keeping up to linear order

terms in gsM
2/N , equations (4.46), (4.16) and (4.34) drastically simplify. We obtain

a solution with only A0, g0 and F0 non trivial while A1 = A2 = g1 = g2 = F1 =

F2 = 0. For the plots, we have chosen 3gsM
2/2πN = 1/2 and the following boundary

16 It should also be clear that Ai ∼ O(M/N) from (4.50).
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conditions17

A0(∞) = 0, A′
0(∞) = 0

g0(∞) = 0, g′0(∞) = 0

F0(∞) = 0, F ′
0(∞) = 0 (4.53)

Note that g(1.04) ∼ 0, indicating that the horizon has shifted from the AdS black

hole value of r̄h and we have obtained a larger black hole with horizon rh ∼ 1.04 r̄h.

The fact that the black hole is of larger size than the AdS limit is consistent with

the underlying gauge theory structure18 . The presence of the fractional branes has

increased the effective mass of the black hole. In fact, the black hole entropy is larger

than the corresponding AdS limit since A0(rh) > 0 and using Walds formula, one

readily gets that s/T 3 ∼ N2
eff > N2 where we have defined gsNeff = r4hh(rh). However,

we should be careful about these numerical results. Notice that there is an additional

condition eq.(4.32) to satisfy. Suppose we take the same value of N , gs as in eq.(4.33),

then M ≃ 1.8×105 to get 3gsM
2/2πN = 1/2. According to eq.(4.32) we get r & 5rh,

which means we can only trust our numerical results in the regime r > 5rh. With

different values of N , M and gs, we will find different minimum ratios of r and rh

according to eq.(4.32), nevertheless the ratio must always be greater than 1. To find

geometry near the black hole horizon we need to consider higher order corrections

which is not studied here.

17 Let us assume, for simplicity and for performing the numerical analysis,
3gsM

2/2πN = 1/2 to be the smallest scale in the theory (instead of M/N that
we took earlier). Then the argument used earlier in (4.32) will imply that we should
trust our result for r > 1.19rh.

18 Also note that the result is consistent with the first law of black hole thermody-
namics which states that the increase in horizon radius is related to the increase in
the mass of the black hole. The addition of five-branes have increased the effective
mass of the black hole compared to the AdS limit.
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Figure 4.1: The blackhole factor g as a function of u ≡ r/r̄h. We have plotted g along
the y-axis and u along the x-axis.

Finally, note that the identification of F with a2 in (4.4) implies that the resolution

parameter is given by

a2 = a20 +
5gsM

2p11r
2
h

32πN
+
gsM

2

N

r2h
4π

[
p12log r + p13log

2r
]

+
1

4π

(
gsM

2

N

)
(gsNf ) r

4
h

(
p14

log r

r2
+
p15
r2

)
log

(
sin

θ1
2
sin

θ2
2

)
(4.54)

where we show the bare resolution parameter19 in F and a2. The coefficients pij are

constant numbers that could be determined from (4.52) and Appendix A. The above

representation of the resolution parameter is perfectly consistent with our conjecture

in [70]: the resolution parameter will pick up dependence on the horizon radius rh.

Interestingly we now have managed to get the leading order gsM2

N
log r corrections to

the result.

19 In the limit where the bare resolution parameter vanishes, which is the Klebanov-
Tseytlin solution, we see that the gsM

2/N corrections actually make the small r
regions non-singular creating an apparent resolution parameter proportional to the
horizon radius.
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Figure 4.2: Non-extremal contribution to the warp factor given by A0 plotted as a
function of u ≡ r/r̄h. A0 is plotted along y-axis, and u is still along the x-axis.

However there is one issue that might be confusing the reader. From Figure 4.3

we see that F0 is always negative for all values of r in the range rh ≤ r < ∞. Our

identification of F with a2 would then imply a to be a purely imaginary number.

However surprisingly this does not create a problem. As we will show in the next

subsection, all the fluxes etc. are completely expressed in terms of a2, so that a does

not appear anywhere. Even terms with logarithms appear as log |a2|, so that a2 < 0 do

not create any inconsistencies. This is of course shouldn’t come as a surprise because

the resolution parameter appear in the metric (4.3) as 1 + F0 and since |F0| < 1 it

shouldn’t lead to any inconsistencies no matter how we relate F0 to a.

In our opinion the result that we presented above is probably the first time where

the backreaction effects from black hole, including the resolution factor, are taken into

account in a self-consistent way to lowest orders in gsNf and gsM
2/N . To this order,

as we showed above, the backreactions from fluxes and branes could be consistently

ignored in the near horizon limit (4.32). One may now take this background and

compute the IR effects for largeN thermal QCD. However before we go about studying

these effects we would like to dwell, just for the sake of completeness, on the corrections

to the Klebanov-Strassler three-form fluxes that arise from the backreactions of the

black-hole, local brane sources, and the resolution parameter. Readers wishing to
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Figure 4.3: The squashing factor given by the resolution function F0 as a function
of u ≡ r/r̄h. Note that F0 is always negative for all distances outside the black hole
horizon. We plot F0 along the y-axis, and u is along x-axis.

know our results may however skip the next sub-section altogether and proceed on

with the calculations of the RG flows and the effects of the chemical potential.

4.2.4 Short detour on dualities and dipole deformations

Our final aim of this section would be to take a short detour and study the effect

of the dipole deformations on the flavor seven-branes in the gravity picture. This

dipole deformation, since it affects the seven-branes, should also have some effect on

the fundamental quarks in the gauge theory. We will make some speculations how

the dipole deformations effect the far IR picture.

Our starting assumption would be that the solutions presented in the earlier sub-

sections have isometries along ϕ1, ϕ2 and ψ directions. This in particular means that

the coefficients appearing in (4.52) i.e (Ai, Fi, Gi, gi) are all functions of (r, θi) only

and not of (ϕi, ψ). This is not a strong assumption as we saw earlier that even to

O(g2sM
2Nf/N) the (ϕi, ψ) dependences do not show up. It could be that the back-

ground retains its isometry along (ϕi, ψ) directions to all orders in gsNf and gsM
2/N ,

but we haven’t shown this here.

Before moving ahead let us clarify a point here. Dipole (or non-commutative)

deformations can be studied in two possible ways. In the conformal case, one takes
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the D3-brane metric written in terms of its harmonic functions, and then use TsT (T-

duality, followed by a shift s, and then another T-duality) to generate new solution.

The new solution is still given in terms of D3-branes and harmonic functions, but now

there is a background BNS field. One then takes the near horizon limit to determine

the gravity dual of this scenario. The gravity dual has no D3-branes, but both F5

as well as H3 = dBNS fluxes are still present. The near horizon geometry do not

change the internal metric too much, and therefore analysis on both sides of the story

is somewhat similar.

The above criteria changes quite a bit once we go to the non-conformal case. The

gravity dual is not simply given by taking the near-horizon limits of the D3 and the

wrapped D5-branes. To avoid naked singularities of the Klebanov-Tseytlin form, one

now has to deform the internal space also. This means making a TsT transformation

on the brane side, one may not necessarily get the full gravity dual picture easily.

This is also clear in the geometric transition set-up, whose supergravity solution is

developed in [112, 42]. So we could do TsT transformations on two sides of the

picture, leading to two possible different interpretations.

Thus, once we have solutions for both sides, namely the gauge-theory and the

gravity sides, we can use TsT transformations to deform them into various differ-

ent solutions. In this chapter we will not consider the dipole (or non-commutative)

deformations on the gauge-theory side of the story20 , but concentrate only on the

gravity side. This means, given the background metric (4.1) with fluxes, five-branes

20 The dipole deformations on the gauge theory side, at least in the far IR and in the
local case, has been discussed earlier in [113]. The readers may refer to those papers
for more details on the multiply allowed dipole deformations.

110



and seven-branes, the TsT transformed backgrounds will be related to some interest-

ing deformations of the four-dimensional thermal gauge theories. These deformations

can be classified to fall into four categories. They are listed as follows21 :

• T-dualize along one space direction say x3 then shift along another space direction

say x2 mixing (x2, x3) and then T-dualize back along x3 direction.

• T-dualize along x3 and then shift22 along one of the internal directions that are

isometries of the background, namely along ϕ1, ϕ2 or ψ directions23 , and then T-

dualize back along x3 direction.

• T-dualize, shift and then T-dualize along internal directions. The shift will mix two

of the internal directions in some appropriate way.

The first operation will lead to a non-commutative gauge theory on the D7-branes

with [x2, x3] = iB23 as our algebra. The second one is more interesting. T-dualizing

along x3 but making a shift on the directions along which the D7-branes are oriented

i.e along ϕ1, θ1 and ψ (recall that the D7-branes wrap the two-sphere parametrised by

(θ1, ϕ1) and are spread along (r, ψ) directions) will lead again to a non-commutative

gauge theory on the D7-branes. On the other hand, if we make a shift along the

orthogonal direction parametrised by ϕ2, then the theory on the D7-branes will be

a dipole gauge theory. For the last case, one is T-dualizing and shifting along the

directions of the D7-branes. This will again lead to non-commutative theory on the

D7-branes. On the other hand if we shift along ϕ2 but T-dualise along the D7-brane

directions, we will get dipole theory on the D7-branes.

21 We will use (x0, x1, x2, x3) as a convenient reparametrization of (t, x, y, z) used
earlier. The former will be more convenient for the next couple of sections.

22 Again mixing x3 with one of the internal directions.

23 For simplicity we will only consider the isometry directions.
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To analyse these in case-by-case basis, let us study the first kind of deformation

first. We choose the shift to be

x2 7→
x2

cos θ
+ sin θx3, x3 7→ cos θx3 (4.55)

After the series of transformations discussed above, i.e TsT , the metric (4.1), be-

comes24 :

ds2 =
1√
h

[
−g1dx20 + dx21 + J(dx22 + dx23)

]
+
√
h(g−1

2 dr2 + dM2
5) (4.56)

with the Lorentz breaking deformations along (x2, x3) directions specified by J . There

is also a background BNS field that accounts for the non-commutativity. Both J and

the BNS field are defined as:

J−1 = sin2 θh−1 + cos2 θ, B23 = tan θh−1J (4.57)

The metric has the same form as in [64] and the gauge theory on the D7-branes

become non-commutative in the x2 and x3 directions.

For the second kind of deformation we follow similar procedure as above except

that now we shift along ψ direction and T-dualise along x3 direction. The resulting

metric is

ds2 =
1√
h

(
−g1dx20 + dx21 + dx22 +

9

9 cos2 θ + r2 sin2 θ
dx23

)
(4.58)

+
√
h

[
r2(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2

9 cos2 θ + r2 sin2 θ
+ ...

]
where note that the x3 and the ψ circle is non-trivially warped. The dotted terms are

unchanged from the original metric (4.1). However the BNS field now is non-trivial

24 For this section we will ignore the O(gsM
2/N, r4h/r

4) corrections to the internal
metric (4.3). A more precise result will not change the physics to the order that we
are studying here.
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because of the ψ fibration structure:

B =
r2 tan θ

9 cos2 θ + r2 sin2 θ
dx3 ∧ (dψ + cos θ1dϕ1 + cos θ2dϕ2) (4.59)

The scenario now is interesting because we have three components of the BNS field,

with two of the componentsB3ψ andB3ϕ1 parallel to the D7-branes and one component

B3ϕ2 having one leg orthogonal to the D7-branes. Existence of these three components

would lead to a complicated theory on the D7-branes that in some limit may be

considered as a combination of both dipole and non-commutative deformations of the

world-volume theory on the D7-branes.

As an example for the third kind of deformation25 we first T-dualize along ψ

direction and then shift along ϕ2 direction. The resulting metric, keeping both the

squashing factors (F,G) in (4.1), will look like

ds2 =
1√
h
(−g1dt2 + dx2 + dy2 + dz2) +

√
h
[
r2J(dψ + cos θ1 cos θdϕ1 + cos θ2dϕ2)

2

+
3

2
r2J(1 + F )(1 + G) sin θ22dϕ2

2 + ...
]

(4.60)

with the dotted terms being the terms unchanged from the original metric (4.1). As

expected, note that both the ψ fibration structure as well as the ϕ2 directions get

warped by J . As before there is also a BNS field. Both J and BNS are given by:

Bψϕ2 =
1

6
tan θ sin2 θ2 (1 + F )(1 + G)J

J−1 = 9 cos2 θ +
1

6
hr2(1 + F )(1 + G) sin2 θ2 sin

2 θ (4.61)

25 Note that we cannot construct another theory by shifting along θ2 direction and
then T-dualing along ϕ2 direction because θ2 is not an isometric direction. A shift
along the non-isometry directions, like the θ2 direction, will destroy the existing isom-
etry directions making the T-duality operations highly non-trivial.
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This solution shows that the gauge theory on the D7-branes has become a non-local

dipole theory26 .

All these solutions generated from our TsT duality operations lead to new gauge

theories on the D7-branes. As mentioned earlier, it is not clear to us whether these

deformations are the corresponding gravity duals of the respective deformations on

the gauge theory side of the picture. One thing however is clear: due to the dipole

deformations on the D7-branes, the KK masses of the fluctuations are different from

the original theory. In fact the dipole deformations (along appropriate directions) tend

to make the KK states heavier [113]. Therefore we would expect operator dimensions

on the field theory side to also change accordingly.

The TsT duality operation doesn’t change the warp factor nor the BH factor.

Naively applying the criteria from [71] one would think this doesn’t change the thermal

behavior of the theory. However, notice that now there is an extra non-constant BNS

field that cannot be gauged away. This means when we write down the Nambo-Goto

action for the strings, the effect of the BNS field can no longer be ignored and it’ll

definitely change the criteria of the confinement/deconfinement transition studied in

[71]. This shouldn’t be surprising because one would expect the thermal behavior of

the dipole deformed quarks to be different from the un-deformed ones.

26 On the other hand, the shifts and the duality directions that we choose are not the
most generic ones. We can make numerous other shifts. One simple example could
be as follows: we T-dualize along space direction x3, then shift as z 7→ z + λθ22/2 and
finally T-dualize back to generate a non-trivial background with the metric

ds2 =
1√
h
(−g1dt2 + dx2 + dy2 + dz2) +

√
h(g−1

2 dr2 + dM2
5 + λ2 θ22 dθ

2
2)

and a BNS field, B3θ2 = λθ2. This would generate dipole deformation on the D7-
branes.
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Chapter 5

Summary and discussion

In this thesis, we studied the gravity duals of three gauge theories with different

properties that we list below.

In Chapter 2 we studied the scalar spectrum of the Y p,q manifold and obtained

both upper and lower bounds for all the eigenmodes λk of the scalar Laplacian. We

also tried to extend this gravity dual to that of the non-conformal gauge theories

by resolving and deforming the Y p,q manifold. It is clear that there is much that

can be done for this case. First, we would like to find the exact eigenvalues of the

scalar Laplacian, this might be achieved by following numerical methods, and then

matching them with the operators at the gauge theory side; secondly, we would like

to find the deformed Y p,q manifold and study the geometric transition between the

resolved and deformed Y p,q as in Chapter 3; thirdly, we would like to find out the

brane constructions on the gauge theory side.

In Chapter 3, we studied the duality between a non-conformal gauge theory and

type IIB supergravity on a deformed conifold at the bottom of the cascade. This is

described by a geometric transition between resolved and deformed conifold in type

IIB theory or a flop transition between two G2 structure manifolds when lifted to M

theory. We find that generally the final gravity duals have non-geometric configu-

rations. One of the issue that we left unstudied is to understand the non-geometric
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aspects of the mirror configurations. Understanding these far IR regions of the grav-

ity solutions can help us understand certain properties of the dual gauge theories at

strong couplings, such as confinement.

In chapter 4, we studied the backreactions from black hole, branes and fluxes on

the background geometry and on the various UV completions. Two challenges still

remain: one, to study the equations at r = rh in Region 1 and two, to study them

in the intermediate buffering region i.e Region 2. In both cases the analysis may get

very involved because for the first case one would now have to solve all the twenty

internal Einstein equations; and for the second case the (p, q) five-brane sources and

fluxes will further complicate the scenario. These details are left for future works.

In summary, our aim is to understand the gauge theories in strongly coupled

regimes. Gauge/gravity duality provides a good tool. However, the gravity duals

can easily get complicated when gauge theories lose some nice properties such as

supersymmetry and conformality, or when the structure of the gauge group becomes

complicated. Nevertheless, as depicted in this thesis, many interesting properties

of the corresponding gauge theories may in fact be extracted in these solutions. The

story, however, is far from being complete and there are many more interesting avenues

to investigate now.
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Appendix A

Details on the squashing and the
warp factor computations

In the absence of blackhole that is e2B = 1, the warp factor α = e4A = 1/h

only depends on r, θ1 and θ2 even when D7 back reaction is taken into account by

considering the running axion-dilaton field [115]. In this extremal limit rh = 0, we

have ISD three-form fluxes G3 and the internal metric g̃mn describes a Ricci flat

deformed cone. For the non-extremal case, we will demand similar behavior for the

warp factor h and will find that such solutions do exist. Using h ≡ h(r, θ1, θ2) only,

in the non-extremal case we get,

dF̃5 = d

([
∂rh ζ + e−2B

(
ḡθ1θ1∂θ1h η1 + ḡθ2θ2∂θ2h η2

)] r5(1 + F + G/2)
108

sinθ1sinθ2

)
≡ dD (A.1)

where we have used our metric ansatz (4.1, 4.3) and definition of the five-form flux

(4.44). We have only kept linear terms in F,G and this is justified as we look for

solutions F,G ≪ 1 and ignore terms higher order term. In the above we have also

defined

ḡpq = e−2B g̃pq (A.2)
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where p, q run over the compact directions and thus (A.2) implies ḡpq is indepndent

of B. Here ζ, ηi are five-forms given by

ζ = dψ ∧ dϕ1 ∧ dϕ2 ∧ dθ1 ∧ dθ2

η1 = dψ ∧ dr ∧ dϕ1 ∧ dϕ2 ∧ dθ2

η2 = dψ ∧ dr ∧ dϕ1 ∧ dϕ2 ∧ dθ1 (A.3)

Just like the extremal case, we will assume that ∂θih ∼ O(g2sNfM
2/N) and we

will find that this choice is consistent with all the Einstein equations and equations

for the fluxes . With this assumption, we readily get up to O(gsM
2/N), and ignoring

O(F,G,G)O(gsM
2/N) (since F,G,G ≪ 1)

ḡθiθi∂θih = ḡθiθi0 ∂θih (A.4)

where i = 1, 2 and ḡpq0 is zeroth order in M,Nf . But at zeroth order in M,Nf , the

compact five dimensional internal space M5 is exactly the deformed cone and thus

ḡpq0 is precisely the metric of deformed T 1,1. Our ansatz for the black hole factor e2B

is given in (4.45) where G is at least O(M/N, gsM
2/N, gsNf ). This is a sufficient

condition as in the absence of five-branes and seven branes, we have AdS × T 1,1 with

black hole where e2B = 1− r̄4h
r4

and r̄h ≫ b. This is because for large r, the deformed

cone becomes the regular cone and considering r̄h ≫ a, we are effectively putting a

black hole in a regular cone. In other words, the non-extremal limit of the geometry

only ‘sees’ the regular cone and deformation of the cone is hidden behind the black hole

horizon. This also means our non-extremal solution is valid only for large horizon, that

is the non-extremal solution only captures the large temperature deconfined chirally

symmetric phase of the gauge theory. The extremal solution without any black hole

is dual to the confined phase.
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Now using (4.45) in D reads

D =

[
∂rh ζ +

1

1− r4h
r4

(
ḡθiθi0 ∂θih ηi

)]
r5
sinθ1sinθ2

108
(1 + F +G/2)

=
[
∂rh

0 ζ + ḡθiθi0 ∂θih
0 ηi
]
r5
sinθ1sinθ2

108
+

[
∂rh

1 ζ +
1

1− r4h
r4

ḡθiθi0 ∂θih
1 ηi

+
r4h/r

4

1− r4h
r4

ḡθiθi0 ∂θih
0 ηi

]
r5
sinθ1sinθ2

108
+ r5

(F +G/2) sinθ1sinθ2
108

∂rh
0 ζ (A.5)

where we have only considered up to O(gsM
2/N) terms. Here h0 is the Ouyang

solution and h1 is the correction due to the black hole which alters the internal compact

space M5. But the Ouyang solution satisfies Bianchi identity exactly as:

d

[(
∂rh

0ζ + ḡθiθi0 ∂θih
0ηi
)
r5
sinθ1sinθ2

108

]
= H

(0)
3 ∧ F (0)

3 (A.6)

Using this in (4.38) we get

d

[(
∂rh

1ζ +
1

g
ḡθiθi0 ∂θih

1ηi +
r4h/r

4

g
ḡθiθi0 ∂θih

0ηi

)
r5
sinθ1sinθ2

108
+ r5

(F +G/2) sinθ1sinθ2
108

∂rh
0ζ

]
= 0

which gives us (4.46). The derivations of (4.16), (4.34) and (4.36) have already been

discussed in section 2.2.

We will now solve the four equations (4.46), (4.16), (4.34) and (4.36) by ignoring all

terms of O(gsNf ). In this limit, all angular dependences vanish and all the functions

A,F and G are only functions of the radial coordinate r. This also means we are

ignoring the back reaction of the seven branes and our solution should be considered

as the non-extremal generalization of Klebanov-Strassler theory with modified UV
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behavior. For Nf = 0, with e−4A = h = h0 + h1, we take the following ansatz

h1 =
L4

r4
(
A0(r) + A1(r)log r + A2(r)log

2r
)

e2B ≡ g = 1− r4h
r4

+ g0(r) + g1(r)log r + g2(r)log
2r

F = F0(r) + F1(r)log r + F2(r)log
2r

(A.7)

With our ansatz, only taking up to linear order terms in Ai, Fi and gi one obtains that

the equation derived from (4.36) is trivial. Also up to linear order, A1 = A2 = F1 =

F2 = g1 = g2 = 0 is a solution with A0, F0, g0 being the only non-trivial functions.

The equations resulting from (4.46),(4.16) and (4.34) are as follows

(i) rA′′
0 − 3A′

0 − 4F ′
0 = 0

(ii) 5r4g′0 + 4r̄4hF
′
0 + r5g′′0 = 0

(iii)
6gsM

2

Nπ
r̄4h + 56r4g0 + 16r4F0 + 4rr̄4hA

′
0 + 49r5g′0 + 24r5F ′

0 + 12rr4hF
′
0

+ 7r6g′′0 + 4r6F ′′
0 − 4r2r4hF

′′
0 = 0 (A.8)

To solve these second order differential equations, all we need to do now is specify

the boundary conditions. As we have second order differential equations, we can

choose two boundary conditions. A priori we do not know where the horizon is, that

is we do not rh such that e2B(rh)=0, so we cannot specify the boundary condition at the

horizon. Additionally we cannot take r to be smaller than the range (4.32). However,

since we are looking for solution such that asymptotically we recover the extremal

geometry, we can impose the following boundary conditions:

limr→∞ A0(r) = 0

limr→∞ g0(r) = 0

limr→∞ F0(r) = 0 (A.9)
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From the form of the equations in (A.8), we see that inverse power series in r is a

possible candidate for the solutions that obey the boundary conditions (A.9). On

the other hand, as already discussed in section 2.1, we expect Ai, gi and Fi to be

proportional to the horizon rh. Thus our anstaz is

A0(r) = ā0k

(rh
r

)k
, F0(r) = f̄ 0

k

(rh
r

)k
g0(r) = ζ̄0k

(rh
r

)k
, (A.10)

where ā0k, f̄
0
k and ζ̄0k are atleast O(M/N, gsM

2/N), and the radial coordinate r is

assumed in the range (4.32). The boundary condition (A.9) implies

ā00 = f̄ 0
0 = ζ̄00 = 0 (A.11)

We can further choose three other boundary conditions. Again since (a) we do not

know where the horizon is and (b) the radial coordinate is constrained by (4.32), we

will choose the following boundary conditions: at r = ∞ and choose

limr→∞ A′
0(r) = 0

limr→∞ g′0(r) = 0

limr→∞ F ′
0(r) = 0 (A.12)

which is automatically solved by our ansatz (A.10). With the set of boundary con-

ditions (A.9) and (A.12), we solve (A.8) numerically. The exact solution (whose

validity should be considered for r > (N/M)1/4rh) is plotted in Figures 4.2.3, 4.2.3,

4.2.3. Observe that the numerical solutions are consistent with the analytic behavior

in (A.10). When M = 0, equations (A.8) imply that we have the trivial solution, i.e.

A0 = g0 = F0 = 0. But since M ̸= 0, we must have non-trivial solutions to satisfy

(A.8).
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