
optical music recognition
infrastructure for large-scale music

document analysis

Andrew Noah Hankinson

Music Technology Area
Department of Music Research

Schulich School of Music

McGill University, Montréal, Québec

December 2014

A thesis submitted to McGill University in partial fulfillment of
the requirements of the degree of Doctor of Philosophy

© 2014 Andrew Hankinson

Contents
Abstract xiv

Résumé xvi

Acknowledgements xviii

1. Introduction 1
1.1. Background 3
1.2. Structure of the Dissertation 17
1.3. Original Contributions 18

2. Large-Scale Text Digitization 21
2.1. Early Systems (1950–1990) 22
2.2. The Emergence of Image Navigation (1990–1995) 37
2.3. Industrial Digitization (1995–2001) 51
2.4. Mass Digitization (2001–present) 59
2.5. ocr Systems Summary 70
2.6. Image and Text Alignment Formats 71
2.7. Chapter Summary 75

3. Music Document Recognition 77
3.1. Visual and Symbolic Representations of Music 77
3.2. History of OMR 78
3.3. omr as a Process 82
3.4. Evaluation of omr Results 103
3.5. Large-scale processing 108
3.6. Server-based omr 113
3.7. omr for Older Music Notation 115
3.8. Chapter Summary 117

4. Towards Large-scale Music Document Recognition 121
4.1. Costs and Scale in omr 122
4.2. Workflow Software 124
4.3. Distributed omr 137
4.4. Collaborative omr 147
4.5. Networked Adaptive omr 152
4.6. The Music Encoding Initiative 155
4.7. Chapter Summary 167

v

5. Rodan 169
5.1. Development History 169
5.2. The Design of Rodan 176
5.3. The Rodan Server 199
5.4. The Rodan Client 201
5.5. Chapter Summary 209

6. Technologies supporting large-scale recognition 211
6.1. LibMEI 211
6.2. Diva: Document Image Viewer 224
6.3. Neume Notation Encoding 245
6.4. omr Interchange Package 249
6.5. Crowdsourced Correction Tools 252
6.6. Chapter Summary 257

7. Applications 259
7.1. Liber usualis 259
7.2. Salzinnes I 270
7.3. Salzinnes II 273
7.4. Chapter Summary 278

8. Conclusions, Contributions, and Future Work 279
8.1. Summary of Contributions 281
8.2. Future work 285
8.3. Conclusion 288

Appendix A. Open Source Projects 291

Appendix B. Rodan REST API 295

Bibliography 303

Colophon 331

vi

List of Figures
1.1 Text-image overlay, maintaining correspondence between

ocr text and original page image. 8

1.2 Image and music correspondence, shown in the Aruspix
omr notation editor 10

2.1 Table of ascii codes 24

2.2 Early electro-mechanical ocr system (Handel 1931) 25

2.3 National Agricultural Library Laser Optical Picture Disc
Display System (from McCone 1992) 32

2.4 Text Digitizing at the National Agricultural Library (from
McCone 1992) 33

2.5 The National Library of Medicine Electronic Document
Storage and Retrieval System (from Thoma et al. 1985) 34

2.6 Data Flow in the core Project (from Entlich et al. 1997).
acs is the American Chemical Society; cas is the
Chemical Abstracts Service. These services provide
textual content, which is then aligned with a digitized
paper representation. 43

2.7 Internet Archive Scribe book scanning workstation (from
Miller 2012) 68

2.8 The dafs expression of physical and logical structure of a
chapter (from Dori et al., 1997) 73

3.1 The omr Process in the do-re-mi system (Prerau 1971) 83

3.2 A simplified representation of the stages of the omr
process 84

3.3 Example image pre-processing steps 87

3.4 A page image demonstrating bleedthrough 89

3.5 The Adaptive omr process (Adapted from Fujinaga et al.
1991) 92

3.6 The Gamera classifier interface 93

vii

3.7 Two different glyphs with identical height, width, and
black area. 94

3.8 Diagonal projections of glyphs 95

3.9 Editor interface in Aruspix 97

3.10 The Audiveris recognition view 99

3.11 The Audiveris classifier training configuration 99

3.12 Score-audio synchronization in probado (from Kurth et
al. 2008) 111

3.13 SyncPlayer interface for the probado project (from
Thomas et al. 2012) 112

3.14 Example of Renaissance single-impression music printing
116

3.15 Example of St. Gallen neume notation 117

4.1 Simplified visual representation of a workflow 125

4.2 Graphical workflow example composed in Taverna. This
workflow was extracted from a Grave’s Disease case study
example (from Oinn et al. 2006). 129

4.3 Graphical representation of a workflow in Meandre. This
workflow was built to provide genre analysis of audio
data. 130

4.4 Network interface for a command-line application in
Taverna (from Neudecker et al. 2011). This is a generic
representation of one tool (i.e., node) in a workflow. 131

4.5 Evaluating the effects of image de-warping on ocr
recognition results (from Neudecker et al. 2011) 133

4.6 A multi-page omr workflow 142

4.7 A parallelized representation of a multi-page omr
workflow 143

4.8 Distribution of pages among several nodes in a cluster 144

4.9 1…N Workflows and three Tasks distributed across N
nodes. Variations in shading indicate the workflow (W) to
which a task (T) belongs. 144

viii

4.10 Example mei as xml (top) and as a tree representation
(bottom) 158

4.11 Left: xml Encoding; Right: Possible graphical
representation (nb: Clef and Time Signature are given for
reference and are not present in the encoding) 159

4.12 The odd customization process 162

4.13 Simplified example of music and image correspondence
in mei 163

4.14 A simplified non-hierarchical method of encoding a slur
164

4.15 Spatial and temporal alignment in mei. The emphasized
attributes illustrate the linking and relationship
mechanism between the elements in different parts of the
mei encoding. 165

4.16 Multiple page images aligned with a single symbolic
encoding 166

5.1 Workflow for the Liber usualis project 170

5.2 A page of the Liber usualis segmented using Aruspix 171

5.3 Simple Gamera image manipulation workflow in Taverna
173

5.4 The first Rodan web application front page 175

5.5 Workflow definition screen of the first version of Rodan
175

5.6 Two jobs waiting for human intervention (highlighted in
blue; the jobs are “segmentation” and “binarise”). 176

5.7 Overview of the Rodan Client and Server architecture 177

5.8 Model-View-Controller Representation 179

5.9 The Rodan Entity Relationship Diagram 181

5.10 A sample Rodan job definition for interactive rotation 183

5.11 Rodan job data input and output types 183

5.12 Run Job states 186

5.13 Rodan workflow system overview 187

ix

5.14 Interactive JavaScript Binarization interface. Original
image on the left; binarised image on the right. The user
can adjust the level of binarization interactively by
moving the slider seen above the image on the right. 197

5.15 Interactive JavaScript staff segmentation interface. The
blue boxes represent automatically-detected staves. The
user is asked to correct this to ensure all the musical
content can be segmented from other content (e.g., lyrics,
decorations, noise, etc.). 198

5.16 The Rodan Client interface 203

5.17 Project Management View 204

5.18 The Rodan Application Toolbar 204

5.19 Workflow management view 205

5.20 Workflow designer view 206

5.21 Jobs view 207

5.22 Results view 208

6.1 LibMEI Object Structure 213

6.2 Comparison of LibMEI note object instantiation in
LibMEI core (top) and extended (bottom) 216

6.3 Generic (top) and mix-in (bottom) methods of accessing
the @pname attribute. 219

6.4 Sample Mix-In implementation in LibMEI 220

6.5 Sample mix-in function implementation for pname 221

6.6 Example include definition for the Tie element 222

6.7 Example definition for the Tie element, showing the
comment where the custom methods will be injected. 223

6.8 The Diva interface, showing multi-page scrolling (top) and
zoom functionality (bottom). 225

6.9 Book browsing interface from the Early English Books
Online database 227

6.10 Current Google Book Viewer 228

6.11 The Internet Archive BookReader interface 229

x

6.12 Initial version of the DocumentViewer 231

6.13 Viewing two books (Violin I and II) in the
DocumentViewer interface 232

6.14 Liber usualis interface showing region highlighting of
search results 233

6.15 A high-level overview of Diva. Page images are digitally
captured, and then served by the iip Image Server as tiles
to the user’s browser, which uses pre-computed
measurement data about the document stored and
transferred in json to establish document and page
layout. 234

6.16 JSON-encoded Diva document dimensions 235

6.17 Diva loads only the tiles that are displayed in the visible
area of the user’s browser 238

6.18 Illustration of the page loading optimization. Diva
maintains the html elements for just three pages
(previous, current, next) regardless of the total number of
pages 239

6.19 Diva scroll-loading Flowchart 240

6.20 Diva grid view at eight pages per row 241

6.21 The Schubert Manuskripte Image Viewer Interface. The
image manipulation toolbar sends commands to the
server, which then re-processes the image and sends the
image back to the browser. 242

6.22 Browser-based image manipulation in Diva. A page image
has been rotated 90° to view text written on a leaf that
runs perpendicular to the orientation of the document
image. Note the smaller preview image above for the
manipulation controls. 243

6.23 An example of the Solesmes neume notation showing a
four-line staff, neumes, and divisions (vertical lines). 246

6.24 Valid and invalid use of the <division> element defined in
the Solesmes module. 247

6.25 Declaration of the <division> element in odd 248

xi

6.26 Declaration of the att.solesmes.division class to describe a
common attribute group. 249

6.27 A generalized oip structure 251

6.28 Neon.js editing interface. The transcribed notation
(darker) can be seen overlaid with the original image
(lighter). 254

6.29 The Gamera classifier interface (from Gamera 2012) 255

6.30 Web-based Gamera Classifier Interface used for
classifying St. Gall neume shapes 256

7.1 A sample of neume notation from the Liber usualis 261

7.2 Neume shapes and their names 261

7.3 Workflow used for creating the searchable Liber usualis
262

7.4 A page of the Liber usualis segmented using Aruspix 263

7.5 A Liber usualis page loaded into the Gamera classifier
interface 264

7.6 Custom neume editor in Aruspix developed for the Liber
usualis project. 266

7.7 Sample search index entry 267

7.8 Liber usualis web application interface with a highlighted
search query (“edcdeee”) 269

7.9 Sample Solr record for the Salzinnes chant interface 271

7.10 Search and browse interface for the Salzinnes I project 273

7.11 The Salzinnes II interface 274

7.12 A workflow in Rodan processing a Salzinnes page image
276

7.13 Interactive Segmentation Interface in Rodan 276

7.14 A Salzinnes page corrected in the Neon interface 277

xii

List of Tables
3.1 omr steps and some example tasks for each step 85

5.1 Categories of http status codes 194

5.2 Supported Rodan status codes 195

7.1 Neume shapes and their Gamera class names 265

7.2 Salzinnes image characteristics as digitized by the
Canadian Conservation Institute 274

xiii

xiv

Abstract
Optical music recognition (omr) is a technology that can transform
large quantities of music document page images, acquired through
mass digitization efforts, into searchable and retrievable document
entities. Current omr systems, supporting tools, and best practices are
not designed to support large-scale music digitization and recogni-
tion projects. The dissertation will present several novel techniques
for large-scale music document recognition programs, with the goal
of creating large, searchable symbolic music corpora derived from lib-
raries’ and archives’ print and manuscript collections.

Optical character recognition (ocr) is used in large-scale text re-
cognition projects to automatically transcribe the content of page im-
ages. These transcriptions maintain the relationship between the tex-
tual content and its spatial location on a page image, and are used to
build systems capable of simultaneously delivering a visual repres-
entation consistent with the original source (i.e., the digital image),
while also allowing page-level textual content search and retrieval.
While this technique has been developed and deployed in several
prominent text digitization efforts (such as Google Books and jstor),
no similar techniques have been developed for music document re-
cognition and retrieval. A discussion of the emergence of this tech-
nique in textual recognition will be the starting point of the disserta-
tion as a precursor to discussing techniques for developing similar
approaches for music document image retrieval.

Optical music recognition may be described as a process of discrete
steps, involving computer-based tools developed by experts in image
processing, machine learning and classification, music theory and pa-
laeography. Scientific workflow systems are proposed as a model for
building bespoke music recognition systems by co-ordinating the
flow of images and data between different image processing and mu-
sic recognition tools.

In addition to workflow-based omr, the dissertation will describe

xv

several tools that have been built to support large-scale omr systems
development. Rodan, a prototype system for workflow-based omr, is
presented along with tools that support omr, digital symbolic music
representation, digital image navigation, and web-based crowd-
sourced correction.

Finally, the dissertation will describe three prototype projects built
to demonstrate the use of rich content-based data for image-based
navigation and retrieval for music: The Liber usualis project, an on-
line application containing automatically transcribed and searchable
chant notation; and two projects involving the Salzinnes Antiphonal
that demonstrate metadata and notation image navigation of a 16th-
century manuscript source.

Creating large collections of transcribed music documents is the
first step in developing globally-accessible and navigable document
image collections drawn from libraries the world over, transforming
how people interact with these collections and enabling new meth-
ods of content-based exploration and understanding.

xvi

Résumé
La reconnaissance optique de partitions musicales («optical music re-
cognition» ou «omr») est une technologie qui sert à transformer des
images de partitions musicales – acquises par le biais de vastes pro-
jets de numérisation – en documents permettant la recherche de don-
nées. Cependant, les systèmes d’omr et les outils de soutien
existants, de même que les meilleures pratiques développées, ne sont
pas conçus pour supporter les projets de numérisation et de recon-
naissance musicale à grande échelle. La thèse présentera plusieurs
techniques nouvelles destinées à des programmes de reconnaissance
de documents musicaux d’envergure, techniques dont l’objectif est de
permettre la recherche à travers un vaste corpus de symboles musi-
caux créé à partir de collections d’imprimés et de manuscrits en
provenance de bibliothèques et d’archives.

La reconnaissance optique de caractères («optical character recogn-
ition» ou «ocr») est utilisée dans les projets à grande échelle de
reconnaissance de texte pour transcrire automatiquement le contenu
d’images de texte. Ces transcriptions maintiennent la relation entre le
contenu textuel et sa position sur la page. Elles sont utilisées pour
créer des systèmes capables de livrer une représentation visuelle con-
forme à la source originale (c’est-à-dire l’image numérique), tout en
permettant la recherche du contenu textuel dans la page. Alors que
cette technique a été développée et est employée dans plusieurs pro-
jets importants de numérisation de textes (tels que Google Books et
JSTOR), aucune technique similaire n’a été développée pour des doc-
uments musicaux. Une présentation de l’émergence de cette tech-
nique de reconnaissance textuelle sera le point de départ de la thèse,
ce qui permettra ensuite d’aborder des techniques visant le dévelop-
pement d’approches similaires pour les documents musicaux.
La reconnaissance optique de partitions musicales peut être décrite
comme un processus d’étapes distinctes impliquant non seulement
des outils informatiques développés par des experts en traitement de

xvii

l’image, mais aussi l’apprentissage automatique («machine learning»),
la classification, la théorie musicale et la paléographie. Des systèmes
scientifiques de flux opérationnels («workflow») sont proposés
comme modèles pour bâtir sur mesure des systèmes de reconnais-
sance de partitions musicales en coordonnant le flux d’images et de
données entre les différents outils de traitement d’images et de recon-
naissance de partitions.

En plus de l’omr basé sur des flux opérationnels, la thèse décrira
plusieurs outils qui ont été conçus pour supporter le développement
de systèmes d’omr à grande échelle. Le prototype Rodan – un sys-
tème d’omr basé sur le flux de travaux – sera présenté, de même que
des outils qui prennent en charge l’omr, la représentation de mu-
sique symbolique numérique, la navigation d’image numérique et la
correction en externalisation ouverte (crowdsourcing).

Finalement, la thèse présentera trois prototypes conçus pour la
récupération d’images et la navigation à travers des ouvrages musi-
caux au contenu imposant : le projet Liber usualis – une application
en ligne permettant la recherche à travers un corpus de transcriptions
automatiques de plain-chants – de même que deux projets autour du
Salzinnes Antiphonal, qui démontrent la navigation par métadonnées
et par images pour une source de notation musicale manuscrite du
16e siècle.

La création de vastes collections de transcriptions de partitions
musicales est la première étape en vue du développement de collec-
tions d’images de documents navigables et accessibles à tous proven-
ant de bibliothèques à travers le monde, transformant la façon dont
les utilisateurs interagissent avec ces collections et permettant de
nouvelles méthodes d’exploration et de compréhension de leurs
contenus.

xviii

Acknowledgements
To say that this dissertation was a collaborative effort would be a
gross understatement. My supervisor Ichiro Fujinaga has gone far
above and beyond the call of duty in supporting this work. Julie
Cumming, my co-supervisor, has likewise been constant in her sup-
port and enthusiasm. I am especially indebted to both.

My friends and colleagues, past and present, have made the Dis-
tributed Digital Music Archives and Libraries lab a wonderful and
supportive environment. Jason Hockman, Johanna Devaney, John
Ashley Burgoyne, Darryl Cameron, Andrew Horwitz, Cory McKay,
Alastair Porter, Gabriel Vigliensoni, Greg Burlet, Jordan Smith, Beinan
Li, Jessica Thompson, and Hannah Robertson have provided en-
couragement and support, both academic and personal, and I am
deeply indebted to them. Laurent Pugin deserves special mention as
a long-time colleague, collaborator, and sounding board.

I am especially grateful to the students employed in the course of
the many projects and development efforts: Christopher Antila, Ryan
Bannon, Laurier Baribeau, Ruth Berkow, Remi Chiu, Andrew Fogarty,
Wei Gao, Mahtab Ghamsari, Peter Henderson, Anton Khelou, Jamie
Klassen, Saining Li, Wendy Liu, Evan Magoni, Mikaela Miller, Lillio
Mok, Laura Osterlund, Deepanjan Roy, Harry Simmonds, Caylin
Smith, Brian Stern, and Timothy Wilfong. Their specific contributions
will be described later in the acknowledgements, but I wish to ex-
press my gratitude here.

Perry Roland has been an inspiration and a friend. Much of my
work would not have been possible without his long-time, constant,
and unswerving dedication to the Music Encoding Initiative. Erin
Mayhood, Daniel Pitti, and the folks at the University of Virginia Mu-
sic Library graciously hosted me on two occasions, first in April of
2011, and then in May of 2012 as a visiting scholar, where I was able
to work alongside Perry and pester him about a great many things.

Many others have provided invaluable support through these sev-

xix

en years: Eric Lewis and Wilson Blakely at the Improvisation, Com-
munity and Social Practice project; Cynthia Leive, Cathy Martin,
Brian McMillan, and Andrew Senior at the Marvin Duchow Music
Library; Jamil Ragep and Andrew Staples in the Islamic Studies de-
partment; Richard Freedman and Micah Walter at Haverford College.
Alexis Risler provided the French translation of my abstract. Thank
you all.

The Social Sciences and Humanities Research Council has been
my primary source of funding. The Centre for Interdisciplinary Re-
search in Music Media and Technology (cirmmt) has supported this
work with several grants and travel funding. The Schulich School of
Music has also provided several travel grants.

My parents, Bruce and Deborah, have been a constant source of
love and support on this long road, and I could not have done any of
this without them. Finally, Catherine Motuz has had the patience of a
saint and a limitless amount of love to endure the day-to-day chal-
lenges in writing this dissertation.

Specific Contributions

This section will outline the contributions of the individuals involved
in the tools and projects discussed in the dissertation. I was fully or
partially responsible for planning and supervising each of these initi-
atives, and in many cases have contributed significantly to their im-
plementation; I have noted where I have not been the primary de-
veloper. A detailed log of software contributions are maintained in
the commit logs available on each project’s GitHub page.

Software

Rodan

Project page: https://github.com/DDMAL/Rodan
Preliminary investigations into building a workflow-based omr sys-
tem were undertaken using the Taverna environment. Gabriel Vigli-

xx

https://github.com/DDMAL/Rodan

ensoni was responsible for the integration of Gamera and the impact
Interoperability Framework within Taverna.

Rodan has undergone two revisions. The first version was built in
the summer of 2012. I proposed the design of the system, including
the workflow and job system, to our development team. The prin-
ciple software authors for this version were Alastair Porter and
Wendy Liu, with contributions from Brian Stern, Anton Khelou, and
Peter Henderson.

In the fall of 2012 and winter of 2013, I rewrote large portions of
the Rodan server system, including the design and development of
the rest api and a full re-write of the workflow running compon-
ents. This also included the initial development of the browser-based
client application, written using the Cappuccino toolkit. In the sum-
mer of 2013 my work was expanded by Ryan Bannon, Deepanjan
Roy, and Laurier Baribeau.

Gabriel Vigliensoni was the principle author of the Rodan pitch-
finding system, the core of the neume recognition process, under the
supervision of John Ashley Burgoyne and myself. The first version of
this was developed to support the Liber usualis project, with several
refinements contributed in the years following. A set of supporting
Gamera modules was developed by Anton Khelou and myself (ht-
tps://github.com/DDMAL/rodan_plugins). The document pre-pro-
cessing toolkit was developed by John Ashley Burgoyne and Yue
Ouyang in 2009 as part of the Gamut for Early Music on Microfilms
(GEMM) project. Laurier Baribeau was responsible for creating the
first web version of the Gamera classifier interface under my
supervision.

Tim Wilfong’s tireless efforts at testing the Rodan interface are par-
ticularly noted. He has been responsible for constantly “kicking the
tires” in the process of creating transcriptions of the Salzinnes and St.
Gall manuscript sources.

Work on Rodan continues. In May 2014, Ryan Bannon, Ruth
Berkow, and Harry Simmonds have been developing a new workflow

xxi

https://github.com/DDMAL/rodan_plugins
https://github.com/DDMAL/rodan_plugins

execution system and user interface. Discussion of these components
are not included in the dissertation.

Neume Notation Encoding

I have had two visiting research positions at the University of Virgin-
ia, the first in April of 2011, and the second in June of 2012. While
there I worked closely with Perry Roland on several mei-based tools.
Perry provided advice and feedback during the creation of the
Solesmes neume notation encoding schema in 2011, and the first ver-
sions of the SibMEI plugin in 2012.

LibMEI

Project page: https://github.com/DDMAL/libmei
I developed the initial version of LibMEI as a Python module to sup-
port the Liber usualis project (https://github.com/ahankinson/py-
mei/). Afterwards it was decided to port this module to c++ to make
it more readily accessible in a wide range of software applications.
Alastair Porter and I designed this library, with Alastair responsible
for establishing most of the design patterns and testing framework.
Mahtab Ghamsari-Esfahani provided the initial implementation of
the library following these designs, and Alastair and I have continued
this work. To make it possible to use LibMEI in a Python environ-
ment I wrote the Boost Python wrappers. Gregory Burlet contributed
several significant bug-fixes to this code.

Jamie Klassen contributed the first version of the library auto-gen-
eration code, which I re-wrote and expanded to support the genera-
tion of c++, Python, and the Sibelius ManuScript language.

SibMEI

Project page: https://github.com/DuChemin/sibmei
I developed the initial version of the Sibelius plugin while on my vis-
iting research position at the University of Virginia in 2012. Over the
summer of 2013 this work was expanded by Micah Walter at Haver-
ford College as part of the Digital Du Chemin project under the su-

xxii

https://github.com/DDMAL/libmei
https://github.com/ahankinson/pymei/
https://github.com/ahankinson/pymei/
https://github.com/DuChemin/sibmei

pervision of Richard Freedman. In the winter of 2014, Zoltan Kom-
ives contributed several bug fixes.

Diva

Project page: https://github.com/DDMAL/diva.js
I developed the initial version of Diva.js (then called “Docu-
mentViewer”) with Laurent Pugin in 2008 as part of a project
sponsored by the Swiss Répertoire International des Sources Mu-
sicale (RISM) working group. This was demonstrated at two interna-
tional conferences: iaml (Amsterdam) and ismir (Kobe) in 2009. The
first version was developed using the ExtJS JavaScript library. This
version contained the core tile and page layout algorithms.

To support the Liber usualis project we ported the viewer to
jQuery. I contributed the initial project setup and design, however
Wendy Liu developed the bulk of the current Diva.js system. Her
contributions are particularly noteworthy since they include dynamic
dom element loading and unloading, browser-based image manipula-
tion, the grid layout view, jpeg2000 support, and an optimized meth-
od for loading the page layout information from the server. Wendy
was also responsible for the development of the image manipulation
plug-ins. Since her departure from our lab, I have maintained and
continued to develop the Diva project. Since May 2014 Evan Magoni
has continued developing Diva.

Neon.js

Project page: https://github.com/DDMAL/Neon.js
The overall design of Neon.js, and the choice to create a web-based
omr correction editor, was the product of several conversations
between John Ashley Burgoyne and myself. We assigned Gregory
Burlet to build this component. He is responsible for the complete
implementation of the editor, including both the client and server in-
teractions, the user interface, and the “neumify” algorithms.

xxiii

https://github.com/DDMAL/diva.js
https://github.com/DDMAL/Neon.js

Interactive Correction Interfaces

Project page: https://github.com/DDMAL/js-image-suite
The interactive interfaces for correction were initially developed as a
standalone library, the JS Image Suite, which I initiated. These com-
ponents were implemented and developed primarily by Brian Stern
and Wendy Liu. In the summer of 2013, Ryan Bannon and I rewrote
significant portions of these components to integrate them into a
newer version of Rodan.

Projects

Liber usualis

Project page: http://ddmal.music.mcgill.ca/liber/
The Liber usualis project involved several people over a number of
months. The project was jointly managed by John Ashley Burgoyne
and myself under the supervision of Ichiro Fujinaga. Remi Chiu de-
veloped the neume classification system for the Gamera shape classi-
fier, and performed a large portion of the shape correction work. Mi-
kaela Miller, Catherine Motuz, Laura Osterlund, and Caylin Smith
were our long-suffering correctors for the project. Gabriel Vigliensoni
and I wrote much of the custom code necessary for “gluing” the tools
together. Jamie Klassen wrote the custom neume correction interface
for Aruspix. Saining Li handled the ocr tools with the Ocropus
toolkit. Wendy Liu, Saining Li, and Alastair Porter handled the devel-
opment of the web interface. Jessica Thompson wrote the search in-
dexing system, first using ElasticSearch and CouchDB, and then us-
ing Solr.

Salzinnes I

Project page: http://ddmal.music.mcgill.ca/salzinnes/
The first version of the Salzinnes web interface used personal photos
from Judy Dietz, who also supplied the cataloguing data through the
cantus project. Judy was also responsible for putting us in touch
with the staff at the Canadian Conservation Institute (cci), who sent

xxiv

https://github.com/DDMAL/js-image-suite
http://ddmal.music.mcgill.ca/liber/
http://ddmal.music.mcgill.ca/salzinnes/

us high-resolution versions of the manuscript for use in the second
phase of the Salzinnes project.

Catherine Motuz and I worked on a system for “massaging” the
cantus data into a human-readable format and indexing this data in
Solr. Saining Li, Wendy Liu, and Alastair Porter developed the web-
site interface.

Salzinnes II

Project page: http://cantus.simssa.ca
The first version of the Salzinnes II project was developed for a
presentation at the International Association of Music Libraries con-
ference in Vienna in July 2013. For this version, I re-wrote the website
interface to incorporate the cci images and provide an interface for
searching both text and notation. Ryan Bannon developed the pro-
cessing workflows in Rodan and managed the correction of twenty
demonstration pages.

In May 2014 development of a new manuscript viewing interface
was started. Andrew Horwitz and Andrew Fogarty have developed
this system as a more formalized version of the previous one. The
demonstration page data has been loaded into this system.

Publications

Several papers and presentations have emerged in the course of this
dissertation, and are cited within. In each of the publications where I
am listed as first author I have been the primary contributor to that
paper or presentation.

xxv

http://cantus.simssa.ca

1.
Introduction

Large-scale digitization initiatives, including the well known Google
Books project, have digitized over 20 million items—books,
magazines, newspapers—held in libraries and archives worldwide.
This mass digitization effort has created billions of digital page im-
ages. For textual materials, optical character recognition (ocr) is used
to automatically transcribe these sources, enabling the search and re-
trieval of these page images. Users can retrieve a specific page from a
book, held in a library thousands of kilometres away, using full-text
search engines. The immediacy of access and comprehensive cov-
erage of these collections are facilitating new ways of interacting
with library collections, prompting people to develop new insights
into the information contained in digitized print media the world
over.

Optical music recognition (omr) provides the same automated
transcription possibilities as ocr, but existing music recognition sys-
tems are not designed to process the large quantities of page images
produced by mass digitization efforts. Current omr systems are de-
signed to provide music document transcription for personal use, and
scaling this process to cover large collections or corpora requires re-
thinking the design of omr tools to provide high-throughput systems
capable of digitizing and transcribing billions of pages.

The starting point, and central hypothesis, for the dissertation is
that the development of systems which maintained alignment
between images and transcribed text was a major catalyst in allowing
large-scale recognition initiatives to move forward. The development
of the alignment technique replaced a transcription-centred view of
ocr, where the text was extracted from the image with no reference
to the original, with one where the transcription was conceived of as

1

an “invisible layer” on the image. This layer was used in retrieval sys-
tems to provide full-text search, while still allowing users to read the
document from the original image. This technique had the effect of
mitigating the impact of error-prone transcriptions on a user’s ability
to read and understand the text content of the original document.

The same transition beyond a transcription-centric recognition
model has not occurred for omr. In current omr systems, and in the
research literature of the field, the emphasis is placed on achieving
complete accuracy in the recognition process, while a labour-intens-
ive manual post-correction stage is seen as a necessary component to
creating a useable transcription. While accuracy is an important con-
sideration in any recognition system, relying on automated systems,
of any sophistication, to create error-free transcriptions of millions of
page images is an impossible task. omr systems that preserve align-
ment between transcribed musical content and page images can al-
low “good-enough” automated transcriptions to be used in a docu-
ment retrieval system without the need for extensive and costly
human involvement in the process.

Creating a large corpus of digitally transcribed music documents is
the first step in constructing a symbolic music retrieval system for the
purposes of large-scale search and analysis. How users will interact
with these systems, however, is not yet known. In what forms can
users express musical queries? How are musical queries posed to a re-
trieval system? What kinds of responses will they expect when they
search? These are important questions that must be addressed in fu-
ture work, but are outside of the scope of this dissertation. For the
present purposes, I will focus on methods of building digital corpora.
In the conclusion of this dissertation, I will provide further thoughts
on the issue of search and retrieval.

INTRODUCTION

2

1.1 Background

This section will include a short introduction to recognition technolo-
gies and some of the common techniques and challenges shared by
omr and ocr. It will describe the emergence of mass digitization
efforts for text and the techniques developed in these efforts that
pertain to issues of accuracy and scale, introducing issues discussed
further in Chapter 2. Applications of similar technologies to music
document recognition will be provided as a prelude to longer discus-
sions in Chapters 3 and 4.

1.1.1 Introduction to Recognition Technologies

ocr and omr are similar technologies. Both are used to extract a
symbolic representation from a visual representation of a page (i.e., a
digital image), applying a combination of image processing, symbol
matching, and heuristic knowledge to transcribe the content of the
image. For ocr, the general technique is to match a collection of
pixels to known character shapes to produce text suitable for search-
ing and manipulating (e.g, editing, reformatting) on a computer. For
omr the goal is much the same: to extract music notation symbols in
order to recreate a structural representation suitable for searching,
editing, or auditory synthesis. Both technologies provide automated
transcription functions, turning pixels into symbols—textual or mu-
sical—thereby circumventing manual transcription.

A symbolic representation is the most convenient format for ma-
nipulating the textual or musical content of an image. Symbolic rep-
resentations of text and music may be edited, indexed, searched, re-
trieved, manipulated, and analyzed. Symbolic representations of
music may also be heard with the application of audio synthesis
techniques. Without optical recognition to extract the graphical con-
tent of digital images into a symbolic representation, a human is re-
quired to transcribe image contents; an extremely labour-intensive

1.1 BACKGROUND

3

process. Automated recognition, using omr and ocr, can be used to
provide a representation that a computer can understand, and in sig-
nificantly less time than a human could perform the same task.

While automated recognition is a relatively quick process to per-
form on an image, it is also an error-prone process. Each step required
in processing an image for recognition, including rotation, de-skew-
ing, de-warping, or binarization, can introduce errors. Damage to the
physical item, including mould, insects, or simply wear and tear, can
also have an impact on the readability of the image and cause prob-
lems with the recognition process. Document layout processing re-
quires a computer to automatically segment an image into regions
that contain different page elements, such as advertisements, tables,
pictures, columns, or headings. Mis-identification of a region will
likely lead to unusable recognition results.

Automated recognition of music documents is a significantly more
complex task than textual recognition, as described in detail by Bain-
bridge and Bell (2001). In music documents, document structure and
symbol are tightly bound. Staves, clefs, measures, systems are all page
elements that do not immediately translate into a performable ele-
ments, yet they are crucial to providing a structure in which the notes
and rests—the elements that most directly translate to the “content”
of piece of music—can hold meaning. Translating a visual indication
of structure into a well-defined and logical symbolic representation of
that structure such that it may be understood and manipulated in a
computer is at the heart of the challenge of optical recognition
technologies.

Despite the complexities associated with recognition, ocr and
omr systems are both capable of transcribing their respective con-
tents with high levels of accuracy. For ocr, transcription of content is
frequently well above 90% accuracy for most documents, sometimes
approaching 99% accuracy (for certain types of documents) (Rice et
al. 1996). While there are no widely accepted standards for omr sys-

INTRODUCTION

4

tems comparison and evaluation (Bellini et al. 2007; Byrd et al. 2010),
accuracy rates better than 90% are frequently reported for individual
systems (Bainbridge and Wijaya 1999; Pugin et al. 2007a; Rebelo et al.
2010). Yet even with these high accuracy rates, the amount of work
required to create completely accurate transcriptions can be
significant.

Despite high accuracy rates that rival other omr systems,
counted in terms of editing cost, the computer reconstructed
music required on average 10 editing operations per 100 notes,
which represents considerable effort in correcting the data
generated. Accuracy rates quoted as percentages, therefore, can
be deceptive in the amount of human effort they require to
correct (Bainbridge and Wijaya 1999, 477).

To create error-free transcriptions, the results of recognition soft-
ware may be proofread by a person, who can correct the errors to pro-
duce an accurate representation of the symbolic content of the page
(Newby and Franks 2003). While this produces a faithful transcrip-
tion of the content, the introduction of a person into the process
comes at a significant expense, measured in both time and money.
Compared to computers, people are slow, expensive, and easily bored
with repetitive and menial tasks. Yet in a transcription-only context,
there is a dependence on a person to provide a corrected version of
the page. While people are the most effective means of producing ac-
curate transcriptions, their involvement does not scale to large opera-
tions. One of the largest book digitization initiatives, the HathiTrust
(Christenson 2011), has over three billion page images in its collec-
tion, representing over 11 million volumes. Even assuming an average
(and very optimistic) correction time of just one minute per page, it
would take over 74 centuries of constant effort for a single human to
correct the errors on every page of the collection. Spreading this over
several humans does little to negate the effects of scale in any prac-
tical sense. Employing 1,000 people in full-time jobs it would still

1.1 BACKGROUND

5

take over 40 years to manually correct every page image. While the
size of music collections is comparatively much smaller than text col-
lections, the effects of scale and accuracy remain the same.

The enormity of the task presents the first challenge that must be
addressed when discussing large-scale music document recognition.
While optical recognition systems are accurate enough to be a useful
tool in automatically transcribing the contents of images, the com-
plexities involved in accurately transcribing a structured representa-
tion from these images all but guarantee that this process will never
be error free. For text recognition projects, a solution to this challenge
was developed in which recognition results were aligned with the
original page images, offering opportunities for interacting with both
representations simultaneously. This same approach has not yet been
adopted by music recognition projects.

1.1.2 Symbolic and Visual Alignment for Text

The late 1980s and early 1990s were a period of tremendous growth
in computer systems. Advances in technology and the decreasing
cost of computing contributed to rapid growth in personal computer
systems. Graphical user interfaces (guis), an alternative to the older
command-line text interfaces, allowed users to view and manipulate
information visually. For the first time since the development of the
computer system, there were systems capable of displaying digital im-
ages on personal computers without exotic or expensive hardware.

Concurrent with these developments, organizations began to
investigate, and invest in, the creation of large digital document col-
lections motivated by the advantages of digitized media over physic-
al media. A digital book could be used by many people at once, did
not require library shelf space, did not deteriorate with intensive use,
and could be distributed to remote locations over electronic networks
very quickly. Some of the first efforts at building document image
collections attempted to use sophisticated document analysis sys-

INTRODUCTION

6

tems to provide complete and accurate translations of print collec-
tions into structured digital formats (Myka and Guntzer 1993; Farrow
et al. 1994; Myka 1994). These systems demonstrated this was not a
feasible approach without extensive human intervention.

Visual interfaces that could simultaneously display and manipu-
late both images and text were adopted by document digitization
efforts (Story et al. 1992; Atkinson and Stackpole 1995). Systems
began emerging that could display ocr-derived text, while simultan-
eously offering users the ability to view the original page image
(Loughry 1993). The creation of this technique allowed digitization
efforts to separate the visual representation from the automatically-
transcribed ocr content, providing users with a familiar “interface” to
the content (i.e., the page image) while still retaining the advantages
of automatically-transcribed information—the indexing, searching,
and retrieving of pages within digitized materials—by maintaining a
relationship between the page image and its extracted text content
(figure 1.1).

While we do use [ocr] to obtain the text for searches, the ocr
results are never visible to the user, but are spatially associated
with the location of the text on each page image… The main
reasons for displaying the image and not the ascii is that most
readers are already familiar with general graphical layout
conventions, especially those used in journals they have read
before, so they can rely on this familiarity when they scan the
page images for content. A second practical reason is that ocr
and page layout analysis results are not guaranteed to be
flawless. Rather than display ocr errors to the users, the
problem is sidestepped by showing only the image, and “hiding”
the associated ocr text and layout planes (Hoffman et al. 1993,
447).

While complete layout alignment was not strictly necessary to allow
retrieval of a page image, many systems adopted a symbolic repres-
entation format that preserved information about the locations of

1.1 BACKGROUND

7

each word on the page. This allowed a search system to retrieve the
exact page, and to highlight the occurrence of the word or search
phrase on the image.

Figure 1.1: Text-image overlay, maintaining correspondence between OCR
text and original page image.

This new technique marked a departure from the conventional use
of ocr to transcribe content. The use of invisible ocr text offered an
important navigation method, permitting users to retrieve and inter-
act with a page image based on its textual content. It also mitigated
the presence of inaccurate transcription by allowing humans to inter-
act with both the symbolic and visual representations of a page sim-
ultaneously. This technique was originally developed and described
in several prototype or small-scale digitization and recognition initi-
atives (Nagy et al. 1992; Hoffman et al. 1993; Lesk 1994), but was
gradually adopted by large digitization initiatives such as jstor
(Schonfeld 2003), the British Library newspapers digitization projects
(Deegan et al. 2001), and eventually, the Google Book digitization
project (Sherman 2003) and the HathiTrust (Christenson 2011).

INTRODUCTION

8

The emergence of the image overlay technique is a largely un-re-
marked development in the history of large-scale recognition.
Chapter 2 of the dissertation will provide an in-depth history of this
development. By addressing, or more properly, side-stepping the issue
of providing completely accurate transcriptions, this method has al-
lowed for the creation of document recognition workflows with min-
imal human involvement necessary for correcting the texts. This cre-
ates a faster, more efficient, and practical solution to the complexities
inherent in recognition techniques, allowing page images to be pro-
cessed in a fraction of the time but still providing a way of searching,
navigating, and viewing documents within a retrieval system.

1.1.3 Alignment and Music Document Recognition

Despite the widespread application of page image and symbolic
alignment in textual document digitization efforts, it has not been
widely adopted by music document recognition efforts. omr systems,
symbolic representation file formats, and software for viewing and
manipulating this type of file have not been integrated in such a way
as to make this possible. Adopting the alignment technique from text
recognition systems for use with music documents may be the first
step in allowing music recognition efforts to scale to millions of
pages. It provides a way to grant access to page-level symbolic music
content but mitigates the need for providing completely accurate
transcriptions, removing the dependency on human correction from
the process and, in doing so, provides a way to process the large
quantities of page images produced by mass music document digitiz-
ation programs.

1.1 BACKGROUND

9

Figure 1.2: Image and music correspondence, shown in the Aruspix OMR
notation editor

An example of music and image alignment is given in figure 1.2,
where the omr-derived results are shown in overlay on the original
image (top), but the musical representation can be viewed and edited
(bottom). Despite errors in the omr (specifically, the key signature
has been mis-recognized as a time signature and the fifth note has an
incorrect pitch), the user may still view the notation on the original
page image.

Addressing symbol and image correspondence is the first step to-
wards building large-scale music document recognition systems. Sev-
eral other design considerations will be proposed in this dissertation,
addressing issues of workflow, throughput, accuracy, collaboration,
and representation of omr results in the context of large-scale music
document recognition processes.

1.1.4 Scientific workflow systems

Scientific workflow software systems (Taylor et al. 2007) have been
developed to manage a wide variety of software-based processes in a
variety of disciplines, including astronomy, bioinformatics, and data
mining. These workflow systems allow users to design a data pro-

INTRODUCTION

10

cessing pipeline by connecting processing tools together using a dir-
ected graph metaphor, where nodes represent tools for manipulating
a particular data representation, and edges represent the flow of data
between the tools. The output of one tool becomes the input to a
subsequent process.

Prior to the development of scientific workflow systems, tools and
processes were combined within a contained and static system, typic-
ally useful for a single purpose and only modifiable by a developer
experienced with the software. These scripts were typically only use-
ful for a single experiment, and are characterized by Gil (2007) as “un-
assisted workflow systems.” A formalized workflow system, where
tools and data flow can be designed, allows non-developers to as-
semble heterogeneous collections of software tools in processes that
are reusable, re-purposable, and repeatable.

Workflow systems have been used in historical (pre-20th century)
document recognition (Dogan et al. 2010; Neudecker et al. 2011) as
part of the Improving Access to Text (impact) project. They demon-
strated that adopting a scientific workflow system approach for his-
torical text recognition allowed users to design and execute custom-
ized document recognition processes using tools drawn from a
number of different software systems, into a single bespoke recogni-
tion system that was tailored to the particular needs of those docu-
ment images. Workflow systems change document recognition sys-
tems from a single piece of tightly-integrated software to a system
where many different tools, from many different toolkits, can be as-
sembled and re-organized to build bespoke recognition systems cus-
tomized for a specific application. As a result, scientific workflow sys-
tems present new opportunities for creating and executing the omr
process using procedures drawn from a number of tools.

Designing and executing the omr process in a workflow system
can provide high-throughput systems to automatically process large
quantities of page images in a consistent and repeatable manner.

1.1 BACKGROUND

11

New analysis methods may be introduced in the workflow to cus-
tomize the omr process for different repertoires, or to improve the re-
cognition of existing workflows. Different techniques may be auto-
matically compared and evaluated for their effectiveness on a given
repertoire. A workflow approach can be used to build customized re-
cognition systems that can address issues of complexity and accuracy
by providing customizable processes to document images.

1.1.5 Distributed omr

Conventional omr systems are designed and built as desktop applic-
ations, operated by a single user on a single workstation. Naturally,
this limits the number and location of the people using these applica-
tions (i.e., one person per application, sitting at one workstation), and
also limits the amount of computing power available to process page
images to that of the desktop computer being used.

Web applications have demonstrated that it is possible to create
sophisticated software systems that behave like conventional
desktop applications, but that are accessible over a network connec-
tion through a web browser (Garrett 2005). Users may be geographic-
ally distributed, yet may access and operate a common omr system,
opening up new avenues for collaboration.

The web browser interface creates a separation between the con-
trol surface (i.e., the interface) and the underlying systems that per-
form image manipulation and recognition tasks. These tasks can be
handled by a remote server system, containing significantly more
hardware resources (faster and larger storage systems, more ram,
faster cpus) than desktop or laptop systems. Server systems can be
networked together, creating a “cluster” of computers operating in
concert using distributed and parallel computing techniques. omr
tasks may be allocated to many machines for simultaneous pro-
cessing. omr systems built for these clusters can utilize all available

INTRODUCTION

12

computing resources, rather than just the resources available in a
single workstation, resulting in faster processing.

A distributed omr system offers new ways of creating systems for
large-scale omr initiatives that go beyond the conventional design of
a desktop omr system. A workflow-based omr system, operated
through a web browser and with a theoretically limitless amount of
computing power behind it opens up new possibilities for processing
large numbers of page images, and making human interaction in the
process more efficient.

1.1.6 Collaborative omr

Aligning a visual representation with an automatically-transcribed
symbolic representation of a page image does not imply accepting
bad recognition results in perpetuity. Error correction may be ad-
dressed in other ways that do not impose a dependency on human
involvement prior to making a document searchable and accessible.

Fully automated methods may be employed to re-process docu-
ment page images as new and improved omr techniques become
available. Advances in automated image processing, new symbol clas-
sification techniques, or entirely new workflows may be applied to
collections of music document images, offering opportunities for in-
crementally, and automatically, increasing automated transcription
accuracy.

“Crowdsourced” correction is another method of dealing with inac-
curacies. Crowdsourcing solicits members of a population to contrib-
ute small, easily-accomplished tasks. Uncorrected recognition results
may be corrected by users interested in contributing their time and
effort to improving recognized documents. Crowdsourced correction
efforts have been employed, some with great success, by several
large-scale text digitization efforts, giving the general public access to
uncorrected ocr results and soliciting their corrections (von Ahn et

1.1 BACKGROUND

13

al. 2008; Holley 2009b). The same approach has only started to
emerge for music recognition efforts (Dalitz and Crawford 2013).

Combining human contributions with computational techniques
may help address issues of building recognition systems that can pro-
cess a wide variety of music documents. Symbol shapes can vary
from one publisher to another, and some repertoires, including those
written in older notation and in newer avant-garde notation, can in-
troduce new symbols to a standardized library, or change how a sym-
bol is to be interpreted within a musical structure. Adaptive optical
music recognition (Fujinaga 1996a) uses human-supplied transcrip-
tions as “ground-truth” data, employing corrected music recognition
results to “learn” how to interpret new symbols. Human feedback can
be also used to build a recognition system that improves in accuracy
as more pages are corrected (Pugin et al. 2007a). In a networked en-
vironment, annotations and corrections may be collected from one
user and employed in the recognition processes of other members of
that network, allowing a collaborative approach to building con-
stantly-improving adaptive recognition systems.

1.1.7 Representation of Results

A symbolic representation preserves musical structures in a way that
can be read and manipulated in a software environment. There have
been many efforts at encoding symbolic music notation in a com-
puter-readable format beginning with systems using computers to
analyze symbolic music (Kostka 1971; Selfridge-Field 1997a)

In general, a symbolic representation format strives to maintain
the properties of, and relationships between, musical symbols. A clef
symbol, for example, has a shape and position on a musical staff, but
it also dictates the relationships between pitches on that staff by es-
tablishing the pitch of a reference staff line (e.g., a treble clef establ-
ishes the pitch of the second staff line, “G”,and by extension, all of the
other lines and spaces).

INTRODUCTION

14

A common representation format provides a means of interchange
between software systems that manipulate or process symbolic music
notation. The output of omr systems have typically been used for in-
put into notation editing software, such as MusicXML (Good 2009)
or for audio synthesis using midi (MIDI Manufacturers Association
1996). These representation formats are not capable of storing the re-
lationships between a visual page representation (i.e., a digital image)
and the symbolic content of that page, and are most often designed
to encode conventional Western music notation (cwmn) music nota-
tion. The midi format, to take a familiar encoding example, can en-
code a pitch and duration of a note event; however, it cannot encode
the differences between enharmonic equivalents—a C♯4 and a D♭4
are represented by the same numeric value (61), making it impossible
to distinguish once it has been decoded. Some formats, such as the
Lilypond format (Nienhuys and Nieuwenhuizen 2003) prioritize
visual layout over preserving music structure, while others, such as
the Kern format (Huron 1997) prioritize the musical structure without
reference to a visual realization of the notation.

In a large-scale recognition initiative, a wide variety of music docu-
ments, demonstrating different styles of notation, are likely to be en-
countered. Music notation has evolved over time according to vary-
ing needs to communicate performance information (Selfridge-Field
1997b). As a result, accurately preserving musical structure in an en-
coding system across many different repertoires can be complex. A
format that is designed to support cwmn exclusively cannot support
the musical semantics present in mensural notation without requir-
ing a translation from one system into another. Imposing modern
notational conventions onto music that was conceived with a differ-
ent understanding of rhythm and meter, for instance, is a “lossy” con-
version, removing information present in the original and implicitly
adding information (Bent 1994).

The need to “natively” represent the semantics of a system of nota-

1.1 BACKGROUND

15

tion must be balanced with the practical complexities of using many
incompatible methods of encoding music notation. To encode the
particular semantics of multiple systems of notation, the convention-
al approach has been to create dedicated encoding systems represent-
ing one type of notation at the exclusion of all others. Formats for en-
coding neume notation (Barton 2002), mensural notation
(Dumitrescu and Berchum 2009), or lute tablature (Crawford 1991)
have been developed to accommodate the particular needs of each
type of notation, but these initiatives have resulted in “data silos,”
where a particular encoding system was developed for a specific pur-
pose, but eventually abandoned once the project ended. These cor-
pora cannot be easily decoded without access to the tools used to cre-
ate them. When dealing with large and varied music document
corpora, a balance must be found between accommodating variation
in musical semantics between all sources of notation and the practic-
al consideration of having a common representation for the purposes
of compatibility between software components and an eye towards
future maintenance of the schema.

The Music Encoding Initiative (mei) (Roland 2009) is a symbolic
encoding format that is especially suited for use in large-scale docu-
ment recognition projects. It provides methods for maintaining cor-
respondence between visual and symbolic representations, and its
modular design provides mechanisms for encoding repertoire-specific
notation features within a broader document encoding framework,
allowing all mei-encoded documents to share common encoding
practices, while simultaneously providing a means of customizing the
format to accommodate different repertoires. It is the flexibility, ad-
aptability, and community-developed nature of the mei system of
notation encoding that makes this an especially suitable format for
building large corpora of automatically-transcribed music notation.

INTRODUCTION

16

1.2 Structure of the Dissertation

This dissertation is organized into eight chapters, including this intro-
duction. Chapter 2 describes the emergence of ocr as a document
navigation technology that allows document images to be automatic-
ally transcribed and made available for electronic retrieval.

Chapter 3 provides an overview of the omr process, and describes
the current state of this field. Issues of evaluation, previous efforts at
large-scale processing, server-based omr systems, and omr tech-
niques for medieval and renaissance music notation provide back-
ground to specific aspects of omr that will be expanded in later
chapters.

The first part of chapter 4 introduces several new applications of
existing techniques and technologies to omr, each offering possibilit-
ies for addressing aspects of scaling music recognition to accommod-
ate the processing of large document image collections. Workflow
systems and software present opportunities for managing and creat-
ing custom omr systems to process a wide variety of music docu-
ments. Distributed omr is introduced as a means of dividing the tasks
associated with omr processing among many different participants,
human and computer. Collaborative omr is introduced to describe
methods of allowing several people to operate omr systems collect-
ively, using shared systems to build collectively accessible resources.
Finally, a section on networked adaptive omr describes systems that
use distributed and collaborative omr processes to build data sets
suitable for constant re-integration into a machine-learning approach
(i.e., adaptive) to omr.

Chapter 4 continues with a discussion of structural music notation
representation and its importance in the omr process. The Music En-
coding Initiative (mei) is described, and two unique aspects of this
encoding format are highlighted in detail, explaining why the MEI

1.2 STRUCTURE OF THE DISSERTATION

17

format is the most appropriate choice for encoding omr-derived sym-
bolic music.

Several tools and techniques have been developed in the course of
this research program. Chapter 5 provides details on Rodan, a proto-
type omr workflow system, and describes the underlying design and
specific implementation details. Chapter 6 describes several tools
built to support large-scale music document recognition. Chapter 7
presents details on three prototype projects, each dedicated to invest-
igating aspects of music document image navigation: The Liber usual-
is project, and two prototype systems built around the Salzinnes An-
tiphonal. Finally, chapter 8 is the conclusion of this dissertation and
includes a discussion of opportunities for future work.

1.3 Original Contributions

This work will contribute several novel techniques and tools useful
for designing and implementing large-scale music document recogni-
tion systems. Chapter 2 is, as far as I know, the first comprehensive
history of the emergence of image and symbol alignment in large-
scale recognition projects. Given the pervasiveness of this technique
in digitization projects, this represents an important contribution to
the general literature for document image analysis and large digital
document libraries, beyond the specific focus of this dissertation on
music document digitization.

The application of scientific workflow software to the omr process
has not been previously explored. Likewise, descriptions of distrib-
uted, collaborative, and networked adaptive omr represent unique
contributions to guide and direct future omr systems development
and applications.

The tools presented in the latter half of this dissertation were de-
veloped in the course of this research program. Each tool was built to
address a perceived need in the overall infrastructure required for

INTRODUCTION

18

large-scale omr and, as such, each represent unique contributions.
Furthermore, all systems developed as part of this research are avail-
able as open-source software, allowing them to be re-used and built
upon in future work.

Finally, the projects presented in chapter 7 of this dissertation rep-
resent first attempts at building systems focused on large-scale image-
based music document navigation. Although they have been de-
veloped as prototypes, they are publicly available on the Internet and
our web server logs indicate that they are in use by the general pub-
lic. While these systems were built through a collective effort of sev-
eral teams of people, I had a significant role in their design and exe-
cution, managing or co-managing the teams and directing their
development efforts. This dissertation represents the first compre-
hensive history and description of all three projects. Full disclosure
about individual contributions are provided in the acknowledge-
ments of the dissertation.

Creating large collections of transcribed music documents is the
first step in developing globally-accessible and navigable document
image collections drawn from libraries the world over, transforming
how people interact with these collections and enabling new meth-
ods of content-based exploration and understanding.

✻

1.3 ORIGINAL CONTRIBUTIONS

19

2.
Large-Scale Text Digitization

This chapter will focus on the development of optical character re-
cognition (ocr) systems for large-scale text document digitization
programs. ocr is the method used to extract a symbolic representa-
tion (i.e., text) from digital images. This chapter will trace the growing
importance of images in ocr projects from the time the subject was
first conceived to the present. This discussion will serve to highlight
how the alignment of image and text has been the underlying tech-
nology that allows digitization projects with text recognition com-
ponents to scale and, in comparison, how the same techniques have
not been adopted in omr research and development.

For early computer systems, digital images were difficult and ex-
pensive to manipulate with a computer. They were extremely ineffi-
cient representations of textual content, so they were used as a meth-
od of translating a physical page to a digital format for the purposes
of transcription, and then discarded. As ocr technology developed it
became increasingly clear that a “perfect” ocr system capable of ac-
curately capturing all document content was not feasible. Computers
advanced to a point where working with and manipulating images
was not as cumbersome, so new methods began emerging that used
both the original image and the ocr-transcribed text in document re-
trieval systems. This mitigated the effects of imperfect ocr by
presenting humans with an accurate representation of the page im-
age, while still providing a means of searching and navigating physic-
al document collections in an electronic context. This technique was
adopted by several large document digitization initiatives. In this
chapter, I will argue that employing the original image, rather than
relying on a purely transcriptive approach, is an under-recognized but
key development in the creation of large-scale document databases.

21

The first section of this chapter (§ 2.1) covers the beginning of the
modern computing era from the 1950s through the 1980s, reviewing
some of the earliest developments in digital text document retrieval,
as well as the emergence of ocr. The next section (§ 2.2) looks at the
emergence of document image retrieval systems, coinciding with the
development of affordable consumer-level computer systems, the In-
ternet, and a realization that a purely transcriptive approach to ocr
was unlikely to produce satisfactory results. After these develop-
ments, a number of large initiatives emerged (§ 2.3) that represent the
beginning of the industrial digitization era. These projects would set
the stage for the true mass-digitization projects (§ 2.4) that have
demonstrated that it is possible to search and access a large body of
printed materials held in libraries distributed around the world. Fin-
ally, a brief discussion of document text encoding formats is provided
(§ 2.6).

2.1 Early Systems (1950–1990)

The beginning of the modern computing era was marked by an op-
timism that complex human-computer interaction problems were
solvable in the near term (Samuel 1964). This era was one where prac-
tical, generally-available solutions for speech recognition, natural lan-
guage processing, artificial intelligence, and “reading” machines cap-
able of perfectly extracting text from digital images was expected to
be less than twenty years away.

At the beginning stage it was thought that it would be easy to
develop an ocr, and the introduction of a very rigorous reading
machine was expected in the 1950’s. Roughly speaking, the
1950’s and 1960’s… were periods when researchers imagined an
ideal ocr, even though they were aware of the great difficulty of
the problem. Actually this is an instance of a common

LARGE-SCALE TEXT DIGITIZATION

22

phenomenon which occurred in the research field of artificial
intelligence in general (Mori et al. 1992, 1033).

The push for these reading machines, of which the technology be-
came known as “optical character recognition,” was seen as a practic-
al solution to the post-war information explosion. Vannevar Bush’s
seminal article, “As we may think” (Bush 1945) imagines information
tools in the office of the future and is an oft-cited article in this era,
providing inspiration for many researchers in ways in which com-
puters could help create this future. ocr was a means of converting
large amounts of paper documents to an electronic format as a way
of "taming" information creation and bringing about efficiencies in
office work, saving time in data entry applications and co-ordinating
efforts between remote locations.

The need for fast, reliable character recognition has become
more acute in recent years… Consider data storage and
information retrieval alone. It is estimated that man's total
accumulation of knowledge doubled during the 7 years from
1960 to 1967… This information merely augments what anyone
who has recently made a literature search knows—information
storage and retrieval is a very real problem with us today (Balm
1970, 152).

There were several developments in the early years that have been
of lasting importance for document text encoding and retrieval. The
American Standard Code for Information Interchange (ascii) (Gorn
et al. 1963), was introduced in 1963 as a solution to multiple incom-
patible methods of representing text across different computer sys-
tems. The ascii standard specifies how text is stored and transmitted,
representing Roman characters, punctuation, and specialized control
codes with 7-bit binary integers (figure 2.1). Its adoption by large com-
puter manufacturers made it the lingua franca of encoded text in
computer systems, peripherals, and software. ascii was instrumental
in allowing digitized texts to be shared. Project Gutenberg, founded

2.1 EARLY SYSTEMS (1950–1990)

23

in 1971 (Hart 1992), was the first networked project dedicated to creat-
ing and sharing existing electronic texts among networked com-
puters. A subsequent character encoding system, Unicode, features
expanded cross-platform character encoding for over one million pos-
sible characters (The Unicode Consortium 2014).

Figure 2.1: Table of ASCII codes

Meanwhile, other research was developing new methods of textu-
al search and retrieval. The Cranfield experiments (Cleverdon and
Keen 1966; Cleverdon et al. 1966), conducted between 1957 and 1966,
were experiments that demonstrated the effectiveness of “single-
term” indexing for document retrieval. Prior to these experiments,
complex indexing schemes featuring controlled terms, abstract con-
cepts (i.e., subject indexing), and hierarchical structures were pre-
sumed to provide superiour document retrieval methods, but had not
been rigorously tested. In hindsight, the Cranfield experiments were
a key factor in demonstrating the effectiveness of “full text” search
for document retrieval.

Through the 1960s and 1970s, the types of data that could be easily
manipulated by computer systems were limited. Encoded text was

LARGE-SCALE TEXT DIGITIZATION

24

the easiest format to work with. It could be efficiently and easily
stored, transmitted, and displayed on remote mainframe terminals.
Graphics—pictures, diagrams, charts—were more cumbersome and
needed to be stored and transmitted separately on analogue media
such as videotape or microfilm (Haring and Roberge 1969; Knudson
and Teicher 1969).

The ocr process on these machines required significant human in-
tervention in the scanning and image manipulation process (Nagy
1968). Image processing for complete page images was slow and even
the smallest images could only be processed on dedicated research
machines. Using computer systems with video display terminals for
any length of time was not a comfortable experience due to the poor
legibility of text and flicker present on these displays (Muter et al.
1982; Mills and Weldon 1987).

2.1.1 Early ocr Systems

The origins of OCR technology extend back to the early twentieth
century, with electro-mechanical character recognition methods used
to convert typewritten texts into alternate representations, such as
printed cards (Tauschek 1929; Handel 1931) (figure 2.2).

Figure 2.2: Early electro-mechanical OCR system (Handel 1931)

2.1 EARLY SYSTEMS (1950–1990)

25

Computerized OCR systems were first introduced in the 1950s. A
1953 patent (Jones 1953; Shephard 1953) describes an ocr machine
that was built by the Intelligent Machines Research Corporation.
This machine was the first commercially-available OCR system, sold
to corporations such as AT&T and Reader’s Digest (Nagy et al. 1999;
Martin 2007).

From the 1950s through the 1980s, computers evolved from large,
warehouse-size systems to machines that could be easily moved by a
single person. For ocr applications, this era began with systems with
highly limited graphical capabilities, and ended with interactive visu-
al display systems. The next three sections will describe several case
studies of large-scale text digitization initiatives that exemplify these
transition periods.

2.1.2 darpa and the United States Military

For organizations, the possibility of automatically transcribing full-
text versions of their paper documents showed potential for reducing
costs and increasing co-ordination in large-scale efforts. Military pro-
curement efforts were one such area, where large quantities of paper-
work, including technical handbooks, engineering specifications, and
regulations, could be digitized and distributed electronically to all
parties involved, reducing the amount of co-ordination and duplica-
tion of effort between different sites.

The United States Military and the Defense Advanced Research
Projects Agency (darpa) began to explore the use of ocr technology
in large-scale information retrieval applications in the mid-1960s and
throughout the 1970s (Varley 1969; Agnew et al. 1974; McGeehan and
Maddock 1975). Technical reports prepared for these organizations be-
gin to make note of ocr as a document transcription technology that
could save time and effort for co-ordinating large procurement pro-
jects. However, they also note several major challenges in making
this a reality, most notably the ability to deal with multiple typefaces

LARGE-SCALE TEXT DIGITIZATION

26

and graphical information such as diagrams, tables, or illustrations.
Varley (1969) discusses data input techniques for converting print col-
lections of military logistics data to computer-based information sys-
tems, focusing specifically on error detection. While the primary fo-
cus of this report is on manual transcription, the author makes a note
in his “Future Trends” section:

The future use of Optical Character Recognition (ocr) during
the next decade will produce great cost saving for certain areas.
The use of multi-font machines is just coming into being, and
will be perfected within the next few years. (Varley 1969, 43).

Several years later in 1974, a quarterly report (Agnew et al. 1974) for
the arpanet (Advanced Research Projects Agency NETwork), a
darpa project and the precursor of the modern Internet, listed ocr
as a suitable technology for managing and co-ordinating military pro-
curement information: technical manuals, handbooks, regulations,
and numerous other document types. The authors of this report iden-
tified the military equipment procurement process as an application
of recently-networked computer systems, because it required refer-
ences to large files of information, constant communication among
many different partners, standardized forms, and many people requir-
ing timely access to the same data.

This arpanet report estimated that the total size of the procure-
ment texts to be converted at around 1.7 billion characters, and calcu-
lated that manual re-typing of all materials to make these materials
available for online indexing and storing would be prohibitively ex-
pensive, between 0.4¢ and 1¢ per character ($4–$10 per thousand),
resulting in a total cost between $5–21 million for conversion (Agnew
et al. 1974, p. C-7). By comparison, a theoretical multi-font ocr sys-
tem, with a cost-per-character of 0.0046¢ ($0.04, or 4¢, per thousand),
would lead to a significant cost savings. However, the authors of the
report take care to note that the ocr technology required to achieve

2.1 EARLY SYSTEMS (1950–1990)

27

this was “just at the edge of the state of the art” and they estimate
that a system capable of handling the variety of document types was
still two years away. They advised the readers of their report to wait
to implement their proposed system until the technology was ready.
It is unknown whether their system was ever built.

The authors of the arpanet report spent considerable time trying
to devise a system that could retrieve graphical document ele-
ments—diagrams, figures, tables, and other illustrations. They ima-
gined a hybrid system for physical retrieval of microfiche, where
codes for a given graphic could be inserted in the ocr-derived text
and, if the user wished to consult the graphic, they could send a re-
quest for this figure to a central operator. The request could be de-
livered, hours or days later, by a human operating a flying spot scann-
er transmitting an image of the microfiche to a user’s television
display, or with a facsimile machine that could queue image requests
and transmit a paper version of the graphic back to the user.

2.1.3 Kurzweil Data Entry Machine

In 1976 Kurzweil Computer Products introduced an optical character
recognition machine designed to help blind people read textbooks.
This machine, the Kurzweil Reading Machine, was equipped with
several technologies that would become important in later digitiza-
tion and recognition programs: the ccd (charge coupled device) flat-
bed scanner, and the first omni-font character recognition software
(Kleiner and Kurzweil 1977). The Reading Machine also featured the
first commercially available text-to-speech system.

The technology pioneered in the Kurzweil Reading Machine was
later repurposed for the Kurzweil Data Entry Machine (kdem). The
first customer of this system was the Mead Corporation for its data-
bases, Lexis (a legal documents indexing service) and Nexis (a news
indexing service) (Kurzweil 2013). The kdem provided these organiza-
tions with the means to index a constant stream of paper documents

LARGE-SCALE TEXT DIGITIZATION

28

(including newspapers and legal decisions), a task that other indexes
were accomplishing by manual re-keying. The kdem was used to
transcribe these reports into an online database and make the con-
tents available for full-text searching.

The kdem was used in several other projects. Oxford University
was the first academic institution to purchase and install a kdem in
1980 (The cost of a kdem was $80,000 after Kurzweil was acquired
by Xerox in 1980; before that it was $100,000 (Galloway 1981)). The
kdem used an adaptive system to provide multi-font recognition fun-
ctionality. An initial recognition phase allowed the system operator
to train the system on the particular typeface in use (Hockey 1986).
In practical use, up to 20 A4 pages could be processed in an hour.

2.1.4 National Libraries of the United States

Throughout the 1980s, several of the national libraries and archives
of the United States identified ocr as a technology that had the po-
tential to address their large-scale data entry problems. These institu-
tions included the National Agricultural Library (nal), National
Archives and Records Administration (nara), and the National Lib-
rary of Medicine (nlm). Each of these institutions embarked on sev-
eral projects that sought to use ocr to make the text of their large
collections of documents searchable and retrievable.

In 1983 the nara identified ocr as one of three potential conver-
sion technologies that could have a significant impact on the future
of archival work (the other two being speech pattern recognition and
digital image scanning). Their initial study, published in their 1984
Technology Assessment Report (Dollar and Hooton 1984), investigated
the process of converting typed index cards into electronic texts with
“disappointing results.” Nevertheless, work continued on automated
conversion techniques and two subsequent projects in 1985 and 1986
(Allen 1987) examined ocr in greater detail specifically for two areas
of interest: The conversion of typed archival finding aids into an elec-

2.1 EARLY SYSTEMS (1950–1990)

29

tronic database using ocr, and the development of an ocr system
for handwriting recognition. The transcription rate for the finding
aids on index cards demonstrated that ocr held significant promise
for the bulk conversion of these materials. The results showed that an
ocr system could convert 2621 characters per minute, while manual
keying of the same data converted a maximum of 223 characters per
minute. The ocr system that was used could accurately read 40% of
the documents with an error rate of less than 10%. The ocr data was
automatically loaded into a database system to permit searching with
Boolean operators and proximity searches on the full text of the tran-
scribed finding aids.

In 1986 the nara entered into a contract with a London (uk)
company, Optiram Automation, to produce a pilot project for several
of its handwritten document collections (Andre and Eaton 1988). An
initial report of this initiative is filled with high expectations that the
handwritten document recognition barrier was finally broken.

In late 1984…there were reports that an English company
[Optiram] had broken the handwriting barrier, with accuracy
rates of 99.9 percent and fee schedules less than those for
manual data entry (Allen 1987, 94).

The promise was that this technology would open up several valu-
able archival collections, including handwritten American Civil War
records, to full-text search and retrieval. By 1988, however, this enthu-
siasm had been tempered by the realisation that there was a consid-
erable amount of manual labour involved in preparing data for the
ocr process, due to the wide range of variability among the docu-
ments in their collections:

…Optiram found numerous data anomalies and special cases not
covered in the specifications. In the case of archival documents
or finding aids comprising formatted document sets, some of
which were generated before the age of automation, the authors

LARGE-SCALE TEXT DIGITIZATION

30

could not have foreseen the need for consistency in data format
going from one document to the next (Holmes 1988, 32).

Optiram was secretive about the processes used to produce its res-
ults, and its software was exclusively available in-house. They pre-
ferred to act as an ocr service provider rather than as a software
vendor. Holmes notes that Optiram was reluctant to disclose its exact
procedures, preferring to say that their technique involved a “large
complement of mathematical algorithms, developed and refined over
an 8-year period” (Holmes 1988 p. 29). However, Holmes deduces
that they were in fact using an adaptive character recognition system
(Nagy and Shelton 1966) that required a significant corpus of training
data, likely supplied by individuals in-house.

By 1989 a post to the Humanist Discussion Group by Bob Kraft
(1989) indicates that Optiram had hit a wall for the accuracy of their
handwriting recognition technique. Kraft indicates that he had con-
tacted Optiram for a quote to perform recognition on his great-grand-
father’s handwritten journal collection. He was quoted $3.25 per 1000
ascii characters, or almost $5 per page. He then notes that he was
currently paying a student $7 per hour, transcribing between five and
seven pages per hour. Thus, the price of automatic transcription was
almost three times as expensive, and would still need human correc-
tion to resolve ambiguous characters after recognition.

2.1.5 National Agricultural Library

During the 1980s, the National Agricultural library was involved in
several image-based document digitization projects, including The
Pork Industry Handbook (1984) and Laser II (ca. 1986); and The Im-
age Transmission Project (1989). These projects are summarized by
McCone (1992).

Figure 2.3 shows the retrieval system used to search and retrieve
page images and text for the Laser Optical Picture Disk display sys-

2.1 EARLY SYSTEMS (1950–1990)

31

tem, used in early nal digitization efforts (1984), starting with The
Pork Industry Handbook. Of particular interest is the wide variety of
peripherals needed to support image retrieval shown in figure 2.3. In
this system Laserdisk was used to store analogue (not digital) copies
of the graphics. A television monitor was controlled by the computer
system and was used to display the document graphics when a page
of text was called up on the computer display.

Figure 2.3: National Agricultural Library Laser Optical Picture Disc Display
System (from McCone 1992)

The National Agricultural Text Digitization Project (natdp) was
founded in 1987 as a partnership between the nal and 44 land-grant
university libraries in the United States (Andre and Eaton 1988;
Andre et al. 1988). This database was published on cd-rom and dis-
tributed to the partner libraries. The initial disks used ocr to create
full-text indexes of the journals, while a built-in retrieval system al-
lowed the document page images to be retrieved from the cd-rom.
However, the recognition results (around 95% accuracy) were deemed
unacceptable without labour-intensive manual correction, and as
such the full text index was omitted for later disks, and the database
contained just bibliographic data for each article (McCone 1992).

Figure 2.4 shows the workflow for the natdp project (1987), and
the process by which the scanned image, marc (Machine Readable

LARGE-SCALE TEXT DIGITIZATION

32

Cataloging) cataloging record, and the ocr-extracted text were all
combined on a single cd-rom to allow the search and retrieval of
document images.

Figure 2.4: Text Digitizing at the National Agricultural Library (from McCone
1992)

2.1.6 National Library of Medicine

The National Library of Medicine (nlm) built a prototype system for
scanning, storing, retrieving, and displaying biomedical documents
(Henderson 1983; Cookson 1984; Thoma et al. 1985). It used biblio-
graphic data to retrieve digitized images of documents, which were
then displayed on a dedicated high-resolution crt monitor (1728 ×
2200 pixels) or printed using a laser printer. Figure 2.5 shows a block
diagram of the various hardware systems involved in this initiative.
The prototype system had a storage capacity of approximately 1,000
images. The user had the option of viewing the digitized images on
the “soft copy” (screen) display, or sending it to a “hard copy” printer.

In an updated report on their document image retrieval system
some years later, Walker and Thoma (1990) provide further details
about the performance of this system in a real-world context. They

2.1 EARLY SYSTEMS (1950–1990)

33

noted that in their original prototype the architecture did not allow
them to scale the system to add more terminals. They also had prob-
lems with error rates in transmitting compressed images over their
networks. They proceeded to describe a new system that used both
optical media (cd-rom) as an image storage platform as well as a net-
work-connected image server. When a user found a document they
were interested in viewing, the search system would give the index
number of the cd-rom on which the document was available. The
user could then either load the cd-rom into a local workstation or, if
their organization had a “jukebox” disk system, they could call up the
images to their workstation over a local area network.

Figure 2.5: The National Library of Medicine Electronic Document Storage
and Retrieval System (from Thoma et al. 1985)

LARGE-SCALE TEXT DIGITIZATION

34

2.1.7 Early ocr Summary

In early computer systems the textual content of page images was
the easiest, most manipulable, and most useful representation of a
physical document. It was the format that could be transcribed, en-
coded, searched, indexed, retrieved, displayed, manipulated, and
shared without needing exotic hardware capabilities. By contrast, im-
age data in early computer systems were expensive to store, transmit,
and slow to manipulate. As a result, early ocr (and, by extension,
early omr) systems were not designed to preserve any relationship
with the original page image. The textual content was of primary im-
portance, and the expected arrival of the “perfect” ocr system came
with the assumption that a recognition system would be capable of
perfectly transcribing page text and layout faster and better than a
human transcriber.

Towards the end of this era there was a Conference on Application
of Scanning Methodologies for Libraries , held 17–18 November 1988
in Beltsville, Maryland (Blamberg et al. 1988). This was the same con-
ference where the aforementioned nara report concerning the per-
formance of Optiram for handwritten ocr, along with similar reports
on ocr from the nal, the Library of Congress, and a number of other
institutions were presented. The concluding address of this confer-
ence was provided by Robert Hayes who, among other things, ex-
pressed some doubt that the age of the “magic wand” of perfect ocr
had arrived:

Joe [Howard’s]1 concept was that of a magical waving of a wand
across text, from wherever it came, a journal published in India
or some handwritten script, with the text automatically being
converted into the desired abstracts. With all due respect to the
claims of Optiram, I think that vision is not yet here…. I suspect,

1. Joe Howard was at the National Agricultural Library working on their
digitization and ocr initiatives.

2.1 EARLY SYSTEMS (1950–1990)

35

though, that they have a room full of, not elves perhaps, but at
least persons sitting before crts and keying when it is
appropriate to do so. (Hayes 1988, 135)

Later, in the same address, Hayes brought forward one of the first
mentions of the importance of the digital document image. He repor-
ted on several studies conducted at the University of California, Los
Angeles (where he was the dean of the library and information stud-
ies faculty). These studies were aimed at trying to identify the inform-
ation needs of the faculty at ucla.

The result of these studies has been the identification across the
campus of some generic needs. It is on one of them that I want
to focus, since it is directly related to this conference and is
paramount among the needs that have been identified. I’m
personally convinced that it will represent one of the most
important components of research progress over the coming
decades. It is the digitized image [emphasis original]. Perhaps it
comes as no surprise to this audience that digitized images are
important in faculty research, but I haven’t seen that much
attention paid to it in the library literature. (Hayes 1988, 137)

Hayes goes on to describe the full spectrum of digital imaging
technologies, from the conversion of print collections to work with
digital satellite images. He concludes, however, that:

The crucial point in all of this is that you need the
supercomputer to do the image processing, but you also must
have the files of digitized images to be retrieved, processed,
compared, and analyzed. You need to have the tools for
organization and management of these files and for retrieval
from them. (Hayes 1988, 140)

In this address, we see the beginnings of the emergence of the
digital image in its own right as an important artifact in a text digitiz-
ation initiative. Prior to this, the digital image may have been treated
as a means to an end—an intermediary format required to move a

LARGE-SCALE TEXT DIGITIZATION

36

text into a digital context, but was generally discarded once the text
was extracted from the image. The decreasing costs associated with
digital image storage, and the growing number of graphical interfaces
on which images could be displayed may have played a part in seeing
the image as a useful visual representation of the page, and not just
data from which text could be extracted.

2.2 The Emergence of Image Navigation (1990–1995)

By the 1990s, computers available to consumers and researchers had
advanced beyond storing and processing textual information. The in-
troduction of Intel’s 80486 cpu in 1989 represented a significant ad-
vance in the processing speed available in a consumer cpu (Lewis
1989). Progress in hard disk technology allowed these systems to
affordably store increasingly large numbers of images (McCallum
2013). These developments coincided with the adoption of new inter-
net-connected systems and, in businesses and universities especially,
the availability of high-speed local-area networks.

Throughout the 1980s, graphical user interfaces (guis) had been
developed that allowed computer users to interact with a computer
using pictorial representations. The Xerox Alto (Thacker et al. 1982),
first developed in 1973, was the first computer system that featured a
bitmapped user interface and a mouse for interaction (English et al.
1967). The Apple Macintosh computer (Williams 1984), first intro-
duced in 1984, was largely responsible for the creation of the desktop
publishing industry (Gray 1986), in which documents were capable of
being composed visually, rather than programmatically. By the begin-
ning of the 1990s, operating systems featuring graphical user inter-
faces, such as Microsoft Windows, Apple’s MacOS, NeXTSTEP, and X
Windows, were widely available, and allowed users to work with
scanned page images on the screen with commonly-available
hardware.

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

37

In this era there were corresponding advances in document digitiz-
ation and recognition technologies. At the beginning of the 1980s,
even the most powerful computers were not capable of easily storing
and processing large images, but by the early 1990s researchers had
access to systems capable of decomposing entire page images and
performing advanced layout analysis on them (Casey and Nagy
1991). ccd-based flatbed scanners were becoming increasingly afford-
able and available for digitization projects (Drummond and Bosma
1989).

Refinement of character recognition techniques continued, but
were beginning to be integrated into systems designed to extract
more than just textual information from a page image. Two fields
began to emerge that dealt with in situ page details, rather than
simple text extraction: Document image analysis, which was an at-
tempt to automate the identification of document geometry, investig-
ating methods of identifying and separating physical page compon-
ents (e.g., columns, rows, lines); and document understanding, an
attempt to automate the identification of logical document structures
by investigating semantic structure within the document (e.g., identi-
fying titles, authors, abstract regions on a page image) (Tang et al.
1991; Palowitch and Stewart 1995). Each of these technologies em-
ployed ocr as a component, but the focus of the field was increas-
ingly moving towards methods of automatically understanding and
reproducing complex document layouts.

How the original image could be used in an ocr workflow was
not immediately understood. In a report to the Council on Library
and Information Resources, Lesk (1990b) elaborates on the need for
studying whether the page image or a “purely” structural representa-
tion composed of ascii-encoded text with encoded layout informa-
tion would better meet the needs of users of digitized texts:

There is a question as to whether even those who wish to read

LARGE-SCALE TEXT DIGITIZATION

38

the texts will prefer images of pages to ascii; more research is
needed on this point. In general ascii storage preserves the
words in the text only, not their appearance, and some users
express a need for the appearance… Some disciplines that rely
highly on images and on the book as an artifact in their research
will prefer image storage. In the long run, however, scholars are
likely to prefer ascii storage of text for many of their
informational needs. ascii storage permits searching, copying,
and duplicating in much more powerful ways than any image
storage. Online catalogs, for example, are replacing microfiche
catalogs throughout the United Kingdom, and we see no
libraries moving towards fiche for catalogs (unless perhaps they
are moving from cards). At present, however, it's too expensive
to get to full ascii; and, for most of the relatively rarely used
material considered for preservation, it is likely to remain too
expensive to use ascii until optical character recognition
becomes feasible (Lesk 1990b).

The last sentence of this quotation provides evidence that the uni-
versal ocr system was still an expected outcome, and that the avail-
ability of the original image was a stop-gap measure until ocr be-
came “feasible” or, more directly, capable of accurately transcribing
and reproducing complex page layouts.

As the decade progressed, however, page images began to take an
increasingly central role in document retrieval.

Yet the scholar may prefer to work with the page images
because, in general, it is the only digital representation that
maintains the full information content of the original, including
illustrations, layout, and uncommon markings (as in musical or
mathematical notation). This is vitally important for historically
significant documents such as hand-written manuscripts,
illuminated books, and fine press materials, where the
typography materially contributes to the value of the work.
Even were the ocr to be perfect, translations into other digital
representations inevitably lose information. And it is difficult to
predict what needs preserving; at the extreme, it is possible that
in the course of time that even the worm holes become

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

39

significant, as a variant interpolation of the text eaten out may
yield a different translation and, perhaps, a new interpretation.
(Phelps and Wilensky 1996, 101)

Lesk mentions that the National Agricultural Library (nal) had
conceived of and worked on a system for image-based retrieval of
text documents as early as the 1970s:

Although ocr reaches an adequate level of performance on
very clean modern printing or typing, it is not accurate enough
on old print or deteriorated paper to be a replacement for the
[page images]. What ocr can do, however, is provide a text to be
used for indexing…. This approach has been suggested for at
least two decades. It was first tried seriously at the National
Agricultural Library in the mid-1970s…. (Lesk 1997, 64).

Unfortunately, no sources could be found that describe these sys-
tems, so this claim cannot be confirmed.2

This period of emerging image delivery and navigation systems
featured several prototypes or short-lived projects as people began to
explore options enabled by image storage and delivery systems. This
section will trace the development of these projects, chosen because
they demonstrate the unsure nature of electronic document delivery
services and a period of trial, error, and experimentation.

2. In an e-mail conversation with Michael Lesk, I asked if there was a reference for
this claim. While he could not remember a specific reference, he wrote: “My
memory is that I was talking around the idea of ‘if ocr has too many errors, use it
only for indexing and only display the scanned images’ and somebody told me in
conversation ‘[The National Agricultural Library] did that’ … The person who told
me was probably Jan Olsen, then librarian of the Mann Library at Cornell ….” (M.
Lesk, e-mail communication with the author, 9 January 2014).

LARGE-SCALE TEXT DIGITIZATION

40

2.2.1 adonis: Document Image Delivery Service

adonis3 was a project established by a consortium of biomedical
publishers concerned with the loss of revenue and subscriptions due
to the availability of photocopying devices (Compier and Campbell
1992; Grant 1994). It was one of the first large-scale document image
delivery services. First established in 1980, it introduced a commercial
service for libraries in 1991, after a decade of market studies and pilot
projects. adonis delivered page images and article indexes on cd-
rom to subscribing libraries and covered 600 journals in the science,
technical, and medical fields. The articles were retrievable using an
index on a restricted number of fields (e.g., article title, author), but no
full-text search was possible. It was hoped that providing journal sub-
scriptions through an image-based document delivery service would
encourage libraries to pay a per-item licensing fee when a user prin-
ted an article, thereby replacing the lost subscription revenue.

When adonis was introduced to the public the cd-rom was the
easiest and most cost-effective solution for storing and transmitting
page images. However, for libraries there were fundamental problems
with the delivery of document images in this format. Most notably,
the storage capacity of cd-roms, the amount of material that re-
quired imaging, and the desire to limit the disks published per year to
50 (to reduce administrative overhead for the libraries), meant that a
new image storage file format was needed to fit the required page im-
ages on a single disk. The working memory (Random Access Memory,
or ram) of computers was low (typically restricted to 640kb),
presenting challenges to loading the large page images for viewing.
“Multi-tasking,” the ability for an operating system to run more than

3. The name adonis, as far as is indicated in the literature, is styled in all capitals
but is not an acronym.

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

41

one program at a time, was not readily available in ms-dos and so
work-arounds needed to be devised (Compier and Campbell 1992).

Since the goal of the adonis project was to have users pay when
they printed an article, the availability of high-speed laser printers
was also a concern. Page images could take between 50 seconds and 3
minutes to print on many printers available at the time. This was
deemed unacceptably slow. The introduction of larger networked
printers was offered as a potential solution to this problem.

Although adonis was one of the first large-scale document image
delivery services, it was never seen as a particularly cost-effective re-
placement for paper-based journals. To control licensing, it required
dedicated workstations, a large “jukebox” for switching and loading
cd-roms, and access to a networked printer. By 1996 the British Lib-
rary had determined that it was not a viable service (Braid 2003). By
this time, networked databases and journal access over the World
Wide Web had largely replaced cd-rom as the most promising media
for document image distribution.

2.2.2 The core Project

The core (Chemical Online Retrieval Experiment) project (Lesk
1990a; Entlich et al. 1997) was undertaken at Cornell University in
partnership with the American Chemical Society, Chemical Abstracts,
Bell Research Laboratories, and oclc (Online Computer Library Cen-
ter). The core project is notable for its focus on usability and its
study of how users in chemistry—a discipline noted for its equal reli-
ance on both textual and graphical information in the form of visual
chemical formulas—would interact with the contents of digitized
journals.

The core project provided page image search of journal articles by
using an existing corpus of machine-readable text, drawn from the
desktop publishing files used to print the journals. Figure 2.6 illus-
trates the workflow in the core project to create a searchable repres-

LARGE-SCALE TEXT DIGITIZATION

42

entation of a digitized text from the text and microfilm images. De-
veloped at the peak of cd-rom acceptance, the core project was
notable for instead delivering images and text over the network using
dedicated client software for pc, Macintosh, and unix workstations.

In the initial project report, Lesk (1990a) identifies three main ob-
jectives for the core project:

1. Develop and test page analysis software to partition page im-
ages into textual, tabular, and pictorial regions.

2. Develop and test search software to search on the full-text re-
cords of the journals.

3. Test existing browsing and reading software for reading ma-
terial journals on-line.

Figure 2.6: Data Flow in the CORE Project (from Entlich et al. 1997). ACS is the
American Chemical Society; CAS is the Chemical Abstracts Service. These

services provide textual content, which is then aligned with a digitized paper
representation.

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

43

This initial project report provides the results of an evaluation of two
software packages for displaying the data from their system. The “Su-
perbook” system used ascii page text. Graphical elements—dia-
grams, illustrations, chemical formulas—loaded only when a user re-
quested it. Lesk notes that this display has the advantage of enabling
on-the-fly page layout to optimally fit the display and the window
size of the user’s system. Since the text was provided using an ascii
representation, the Superbook display also made it possible to high-
light a user’s search terms in this display, allowing them to quickly
identify occurrences of keywords.

The other display, “Pixlook,” displayed the images of the original
pages. Each article was first displayed at a resolution of 100 ppi
(pixels-per-inch), 1-bit per pixel. At this resolution it was possible to
make out larger page structures, but it was not suitable for reading
smaller text or viewing fine details in illustrations. The user could
zoom in on the page image up to 200 ppi, which Lesk notes is “nor-
mally adequate for reading.” No keyword highlighting was available,
but users could retrieve individual pages that contained their search
terms.

Lesk offers some preliminary conclusions on the differences and
effectiveness of use between the two display systems:

Experiments with Superbook in the past have shown superior
performance for searches aimed at specific target information.
Not only is the searching efficient…but the display is effective at
calling the user’s attention to the material found. However, we
have not evaluated Superbook formally in applications such as
skimming, nor for the problem of known-item retrieval in a large
document collection. Image-based displays may well be superior
in these applications since they retain the format the users find
familiar and which has been tailored over the years for effective
use by chemists. (Lesk 1990a 5-3)

In the final report of the core project (Entlich et al. 1997) the au-

LARGE-SCALE TEXT DIGITIZATION

44

thors provide a summary of the work and lessons derived from this
project. They describe attempts at fully encoding the structural and
textual representations, but conclude that data that involve more
than flat ascii are “tricky” and introduce problems in providing users
with the ability to accurately read and understand complex docu-
ments, due to inadequate character set standardization for complex
chemical formulae and mathematical equations. They also note the
value of presenting users with the graphical components of page im-
ages such as diagrams, figures, and chemical formulae, and note that
users preferred to flip through the interface looking at the graphics
and diagrams as a means of navigating the documents before attem-
pting to read the text.

2.2.3 torpedo

The torpedo project (The Optical Retrieval Project: Electronic Docu-
ments Online) was an experimental project at the us Naval Research
Laboratory (nrl) to deliver digitized issues of two journals from the
American Physical Society, Physical Review Letters and Physical Re-
view E (Atkinson and Stackpole 1995). The journals were scanned
and stored as tiff files, and ocr was performed using Calera Word-
Scan Plus software. Both the image and ascii files were then impor-
ted into an image management database from Excalibur Technolo-
gies, efs. This software was a server-based system with native clients
for Windows, Macintosh, and unix systems running X Windows. Im-
ages and text were imported into the database and indexed for full-
text search. The entire import process for a single journal issue took
24 hours from the time the library received the physical issue.

Users could search the journal articles from their workstations us-
ing a number of methods: browsing, full-text search, or “fuzzy” search
that was apparently resilient to raw (“dirty”) ocr-processed text.
Field-based search of specific bibliographic data was also available.

In 1996 the decision was made to migrate the nrl’s electronic doc-

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

45

ument resources to a web-based delivery system (Stackpole and
Atkinson 1998). By 1999, the torpedo system, by then called tor-
pedo Ultra, was widely available within the Naval Research Laborat-
ory as part of their larger digital library system (Stackpole and King
1999). The torpedo Ultra project contained over two million pages,
drawn from technical reports, press releases, conference papers, and
over 200,000 articles from more than 200 journals. The articles were
distributed as pdf files, either created from scanned raster images or
as native pdfs created by desktop publishing software as part of the
issue production process.

 2.2.4 RightPages

The RightPages project (O'Gorman 1992; Story et al. 1992; Hoffman et
al. 1993) was an initiative by at&t Bell Labs to develop a journal de-
livery system to their employees. This project was developed to deliv-
er page images and text directly to users’ workstations over a network
connection. Along with Gobbledoc and Dienst (described in the next
two sections) it is one of the earliest systems to feature spatially
aligned ocr text with page images, rather than a non-aligned tran-
scription of the ascii text of the page. This spatial alignment was
conceived of as an “invisible layer” of text over page images and was
designed specifically to present the document in a format that was fa-
miliar to users, and to side-step the need for a “perfect” ocr system.

While we do use [ocr] to obtain the text for searches, the ocr
results are never visible to the user, but are spatially associated
with the location of the text on each page image… The main
reasons for displaying the image and not the ascii is that most
readers are already familiar with general graphical layout
conventions, especially those used in journals they have read
before, so they can rely on this familiarity when they scan the
page images for content. A second practical reason is that ocr
and page layout analysis results are not guaranteed to be
flawless. Rather than display ocr errors to the users, the

LARGE-SCALE TEXT DIGITIZATION

46

problem is sidestepped by showing only the image, and “hiding”
the associated ocr text and layout planes. (Hoffman et al. 1993,
447).

In addition to performing ocr on the page images, the RightPages
system incorporated a document layout analysis component that
automatically segmented and labelled page regions. This allowed
users to restrict their full-text searches to particular page elements
without the need to manually enter that content into a field-based
retrieval system. For example, users could restrict their searches to
just article titles derived from automatic page region identification of
page titles.

The results of the ocr process were saved in a plain text ascii file,
with additional data stored to identify spatial positions for each
word. These encoded ascii files were loaded into the system at
runtime and parsed into c++ objects. This was the initial database
system used for search and retrieval.

Users of the RightPages system interacted with the system using a
X Windows-based graphical interface installed on their workstation.
When a journal was digitized the document text was automatically
recognized. The system would automatically alert users if the content
of the article matched their interests based on pre-specified keywords
in their profile. Users could open the RightPages client software to
browse to the page images of the journal article where their
keywords appeared. While RightPages was initially developed for use
internally at at&t, it was eventually adopted as the software underly-
ing a journal delivery project at the University of California, the Red
Sage project (Arnold et al. 1997).

The RightPages and Sage project user interface was a departure
from how most people thought electronic journals would be de-
livered. Considerable effort was being placed on creating electronic
journal delivery systems that would be driven by text-based displays
using semantic markup technologies to create interactive publica-

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

47

tions (see, for example, Kirstein and Montasser-Kohsari 1995). The
RightPages system placed an emphasis on delivering the journal to
the scholar in a way that closely represented the “look and feel” of
print by presenting the user with the original page image.

While others in higher education are working to create new-
fangled, interactive electronic journals that have little
resemblance to their paper ancestors, the Red Sage Project is
taking a much more conservative approach. “We're not trying to
create on-line journals,” [Richard] Lucier says. “We're just
starting the whole process by putting journals on line.”

The strategy behind the project, he notes, is to make the
computerized version of a journal as similar as possible to the
paper edition so that faculty members are comfortable using it.
(Loughry 1993)

The initial version of the RightPages user interface displayed only
black and white images, but with plans to offer colour images as well
as interactive image manipulation tools like zooming, rotating, and
colour adjustments (Loughry 1993). A Macintosh version of the client
was made available in 1995, but development of a Windows version
was suspended as “access to the Red Sage Digital Journal Library
through the World Wide Web is being actively investigated” (Lucier
and Brantley 1995).

2.2.5 Gobbledoc

Gobbledoc was a prototype journal article delivery system under de-
velopment at Rensselaer Polytechnic (Nagy et al. 1992). This system
was developed to research electronic journal retrieval with an initial
corpus of just 41 pages drawn from the IBM Journal of Research and
Development and the IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

Like the RightPages system, Gobbledoc was developed to deliver
digitized journal article images to network-connected users. However,

LARGE-SCALE TEXT DIGITIZATION

48

it featured several advanced document analysis systems in addition
to ocr. A semantic document analysis process was performed on
documents in the Gobbledocs system to automatically provide labels
for page segments, such as titles, authors, section headers, and graph-
ics. The character recognition stage was handled by the OmniPage
ocr software. The Gobbledocs system used the output of the page
analysis system to retrieve segmented portions of a full-page image
containing a user’s query term, and then a page layout browser
provided the user with the ability to navigate images containing one
segment of the page to another (e.g., from the title to the left column,
or from one column to another).

2.2.6 Dienst

Dienst was a server and a protocol developed in a partnership
between Xerox Corporation and Cornell University (Lagoze et al.
1995; Entlich et al. 1997). It was designed as a digital library system
for computer science technical reports and supported a variety of me-
dia types, including html, plain text, and several types of image files.
Retrospective document conversion was done by scanning paper
documents at 600 ppi, but the system also supported importing Post-
script files. It was one of the first digital library systems implemented
to run on the World Wide Web, allowing users to interact with it us-
ing their web browsers.

Dealing with image files was a significant challenge in the imple-
mentation of a digital library with Dienst. In Lagoze et al. (1995) they
note that their powerful (for the time) Sun SPARCStation 10 could
require over 30 minutes to perform a simple 90° rotation on a page
scanned at 600 ppi. Network transfer speeds were also a important
performance consideration. The tiff files could not be displayed us-
ing a standard web browser, and were so large that serving them to
users would have had a significant effect on network performance. As

2.2 THE EMERGENCE OF IMAGE NAVIGATION (1990–1995)

49

such, the images were pre-processed to produce smaller image files
for viewing.

Dienst featured a full-text search extension providing users with
the ability to search the text of the documents and to retrieve page
images. Although it was possible to extract text directly from Post-
script files, the implementation team at Cornell chose to convert
PostScript documents to tiff images, and then use ocr to extract the
text and document structure from these documents. Presumably, the
extraction of paragraph and other document structure from the Post-
script files was more complex and error-prone than extracting it with
ocr software:

At Cornell…we have chosen to use the results of ocr as the
input for full-text indexing, because ocr not only extracts text
but structure (e.g., paragraph) information about the
documents.(Lagoze et al. 1995, 37)

Along with the text results, the ocr system extracted the physical
positions of paragraphs on a given page image. When a user clicked
on an image in the user interface, the system used the physical co-or-
dinates information to retrieve the ascii text, which was then used
as an input to a search system to find articles similar to the one being
viewed.

Another feature of the Dienst system was the “Page-Level Zoom”
package, an optional utility that provided users with the ability to
point and click on an image and have a portion of it shown to them
enlarged. This image processing was performed on-demand from the
original tiff image, and was necessary since the display resolution of
72 ppi was not sufficient to read smaller text or equations.

2.2.7 Summary

The late 1980s and early 1990s was a period of experimentation with
new forms of electronic publication. Structured document markup

LARGE-SCALE TEXT DIGITIZATION

50

systems, the beginnings of hypertext, graphical user interfaces, and
network communications were converging to produce new modes of
publishing. The extensive work on creating structured document
publishing platforms, and the creation of automated document image
analysis systems that combined ocr, logical, and semantic page
structure analysis, were seen to have a symbiotic relationship.

Yet for historic backfiles of documents, some saw an opportunity
to display the original document images, providing the same benefits
of fully structural documents for viewing the document, while ocr
was used as a largely invisible process for searching these images.
This effectively side-stepped the need to automatically extract struc-
tural representations of existing printed material, a process that, des-
pite significant technological advances, was still a costly, error-prone,
and labour-intensive process.

In the next section we will look at how the document image align-
ment techniques moved from the early small-scale initiatives to what
is best described as industrial digitization processes, involving many
people and producing millions of document images capable of being
searched and retrieved.

2.3 Industrial Digitization (1995–2001)

At the end of the 20th century, a number of institutions initiated “in-
dustrial” digitization projects, moving digitization beyond small, fo-
cused projects into large-scale production initiatives. These projects
were unprecedented in scope and scale, and were driven by hundreds
of people across several institutions, producing databases containing
millions of document images. These digitization projects typically fo-
cused on collections with large and extensive back-catalogues,
primarily long-running newspapers and journals.

2.3 INDUSTRIAL DIGITIZATION (1995–2001)

51

2.3.1 British Library Newspaper Digitization

The efforts of the British Library were among the first large-scale doc-
ument digitization initiatives, designed to open archives of historical
periodicals to the general public and to provide tools for navigating
these publications in digital form. In a retrospective review of the
availability of digitized British newspapers online, Holland writes:

Modern technology advances have made possible the creation
of this great corpus of historical newspapers. The falling cost of
computer storage, the spread of broadband, software advances
and fast communications with low-cost offshore conversion
houses have all contributed. What makes so many millions of
newspaper pages so useful today is our ability to search and find
individual words and phrases within them, thanks to the
advances made in optical character recognition (ocr) software….
(Holland 2008, 20)

The British Library engaged in microfilm digitization efforts once
digital technology became cost-effective to implement over a multi-
year period. Their efforts began in 1992 with an initiative to digitize
microfilms of the Burney Collection of Newspapers, a collection of
periodicals from the mid-17th to mid-18th centuries. By the time the
project had concluded in 1996, they had collected 21gb of image data,
digitizing approximately 6,000 frames of microfilm per month. How-
ever, experiments with applying ocr software to this collection was
unsuccessful as it was felt that currently-available software did not
produce acceptable results. Images were instead indexed by hand
(Entlich 2002; King 2005; Holley 2009a).

A subsequent newspaper digitization program at the British Lib-
rary, initiated in 2001, was a pilot project to provide online full-text
searching of historic newspapers (Deegan et al. 2001; King 2005). This
project was a collaboration between the British Library and Olive
Software, a uk-based commercial software developer. Microfilms of
newspapers were scanned at 300 ppi and sent to Olive Software’s pro-

LARGE-SCALE TEXT DIGITIZATION

52

cessing facility. The newspaper page images were automatically seg-
mented into smaller semantic units (e.g., articles, pictures, advertise-
ments) which were then run through a character recognition process.
The output of the ocr was stored using Preservation Markup Lan-
guage (prml), which stored the co-ordinates for each word, as well as
co-ordinates for page elements: paragraphs, columns, or titles. This
was then ingested into the ActivePaper Archive system, where users
could search the full-text archive and retrieve news articles and their
original page images.

The reason for aligning the page image and the full-text transcrip-
tion was to enhance users’ ability to navigate and read the historical
newspapers. In a 2001 project report for the British Library, Deegan et
al. (2001) comment on the importance of separating “readability” and
“searchability:”

“Readability,” defined as the user’s capacity to view and
comprehend historic text, and “searchability,” defined as the
user’s capacity to reach relevant content through provision of
search criteria, can be said to be the two components of
“accessibility,” or the user’s capacity to retrieve and read relevant
content….

In the past, it was thought that text generated by ocr (Optical
Character Recognition) could provide both readability and
searchability. Due to the difficulty of extracting high-quality text
from historic scans, this approach is now known to be
impractical. ActivePaper Archive™ is among the first
technologies based on, and enabling, separation of readability
from accessibility. (Deegan et al. 2001, 6)

As previously discussed, the separation of “readability” and “search-
ability” had been developing for almost a decade before this report
was written, so the novelty claims of ActivePaper are perhaps over-
stated. Nevertheless, there seems to have been a realization that ocr
was unlikely to provide a tool for enabling perfect, universal tran-

2.3 INDUSTRIAL DIGITIZATION (1995–2001)

53

scription, while at the same time understanding that ocr could be re-
purposed to provide an enhanced form of accessibility for document
images.

2.3.2 Making of America

The Making of America project was a collaboration initiated in the
fall of 1995 between the University of Michigan and Cornell Univer-
sity (Shaw and Blumson 1997). The project focused on creating an on-
line digital archive of printed materials documenting the United
States social history from the years 1850–1877. The project proceeded
in two phases. Phase I (1995–1996) involved the digitization of 1,600
books and 50,000 journal articles from the University of Michigan for
a total of over 650,000 pages. The Cornell initiative at the same time
totalled 907,750 page images from 967 monographs and 955 serial
volumes (University of Michigan 2001). Phase II, also known as
“Making of America iv” (moa4) was a further expansion of the first
phase but focused on collecting research data on conversion methods
and processes involved in digitization for the principle funding body,
the Andrew W. Mellon Foundation.4 The moa4 project added 2.5 mil-
lion pages of monographs to the collection.

A notable feature of the moa projects is their early adoption of the
Standard Generalized Markup Language (sgml) Text Encoding Initi-
ative (tei). This was used to provide minimal markup regarding the
logical structure of the document. Document navigation, such as
tables of contents, were also encoded using sgml markup. This was
then converted to html when a user requested a page allowing the
tei-encoded content to be viewed in a web browser. This markup did
not include the full text of the document.

4. The Mellon Foundation at this point was heavily involved in the creation of
jstor, also being developed at the University of Michigan. This will be discussed in
the next section.

LARGE-SCALE TEXT DIGITIZATION

54

The full-text results of the ocr process were incorporated into the
sgml markup but the word positions were not directly mapped to
the image in the interface. Users could perform a full-text search over
the entire corpus and retrieve the page images where their query res-
ult could be found. The first phase of the project used the Xerox
ScanWorX ocr software, while the second phase used the PrimeOCR
software from PrimeRecognition. While the word locations were not
specified in the sgml markup, a relationship was maintained
between the page image and the extracted text.

The project had a direct impact on facilitating access to previously
forgotten materials. The moa archive was freely available on the In-
ternet with no restrictions. In the year 2000, materials that had previ-
ously been in inaccessible “cold” storage were searched an average of
120,000 times per month, and that users viewed over 500,000 digit-
ized pages each month (University of Michigan 2001).

2.3.3 jstor

The early history of jstor is comprehensively covered in Roger
Schonfeld’s book, JSTOR: A history (Schonfeld 2003). This history is of
particular importance in documenting the use of ocr in digitization
initiatives, particularly with respect to documenting contemporary
ideas surrounding image-to-text alignment around the time when the
Internet was an emerging, and not yet fully-understood, distribution
method.

The jstor project began in 1993 when William Bowen, the presid-
ent of the Andrew W. Mellon Foundation, conceived of a project to
digitize back catalogues of journals. Bowen had studied the impact of
scholarly journal publication on libraries, especially with respect to
the ever-increasing cost of storing and maintaining growing physical
collections of these publications, including the cost of new buildings
or renovations to existing buildings. By the early 1990s, no viable

2.3 INDUSTRIAL DIGITIZATION (1995–2001)

55

solution had emerged to help libraries deal with the space and man-
agement costs associated with housing scholarly journal collections.

Initially jstor was developed as a project to miniaturize journal
collections by digitizing backfiles of journal microfilms and distribut-
ing these to libraries on cd-rom. This would allow libraries to move
the paper journal issues to cheaper off-site storage, or to deaccession
these collections altogether while still providing their users with ac-
cess to the complete collection. However, after seeing the growth of
the Internet over the first few years of the decade, Bowen was con-
vinced by Ira Fuchs, then vice-president of Computing and Informa-
tion Technology at Princeton, to focus on distributing this collection
over inter-institutional networks and, eventually, the World Wide
Web,5 even though network distribution in the mid 1990s was not
without its own technical challenges.

The pilot librarians worried that ‘even a single user printing a full
article composed of bitmapped images may seriously degrade
performance’ on the campus Internet gateway—slowing
network traffic to a halt for all campus users. (Schonfeld 2003,
30)

Despite these concerns, the idea of distributing the journal back files
on cd-rom was scrapped and replaced with a decision to deliver the
content over the World Wide Web.

Early in the planning and requirements phase there was some con-

5. For context, the World Wide Web was still in the early stages of adoption at this
time and may have been viewed as a “fad” in some circles. The first widely-
distributed web browser, NCSA Mosaic, was only released on 23 January 1993.
Schonfeld relates in his book: “In addition librarians, from the prospective test sites
were adamant that, as a set of distributed cd-roms, jstor would ‘provide little
advantage over either microfilm or bound copies of the periodicals.’ Fuchs recalls
that their adamancy on this point was particularly valuable in pushing Mellon to
deliver jstor over the Internet. There was as yet no specific decision as to how
jstor could be brought online, wither via Gopher, the web, or some other
application.” (Schonfeld 2003, 30).

LARGE-SCALE TEXT DIGITIZATION

56

cern over the format in which the digitized journals would be de-
livered. Contemporary experiments with electronic journal systems
were favouring the use of text-based document markup languages,
such as sgml or the Open Document Architecture (oda) (Farrow et
al. 1994), for online delivery since they offered a more efficient and
adaptable means of delivery document content without the need to
send large image files over slow networks. However, it was determ-
ined that the cost of re-creating page layouts in the journal backfiles
to a document markup language would have been prohibitively ex-
pensive for the jstor project, increasing the cost from $0.08 to over
$2 per page. As noted by Schonfeld:

…it was clear that jstor’s electronic version would have to offer
perfect fidelity to the original pagination and layout, as well as
an accurate reproduction of the text. Scholars needed to know
the page on which a sentence appeared, for their footnotes, and
textual accuracy was of course imperative. A purely textual
representation was ruled out early on because display would not
be true to the original format and 100 percent accuracy would
be laborious and exceedingly expensive to attain…had it been
necessary to use text for display, it is likely that the economics
would have been so prohibitive as to prevent the creation of
jstor (Schonfeld 2003, 28).

However, it became clear that a system with only page images,
without some means of navigating and retrieving them using text
searches, was not desirable. Initial proposals for digitization did not
include ocr as part of the process, but based on significant feedback
on the initial proposal, an ocr phase in the digitization workflow
was added.

Many advisory committee members were convinced that
fulltext searchability was a requirement of the electronic
medium. Yet the page-image architecture seemed to preclude
such searchability: some scholarly resources, such as
experiments being undertaken at Cornell and Yale universities,

2.3 INDUSTRIAL DIGITIZATION (1995–2001)

57

used images without searchable text. But jstor’s commitment
to be responsive to user needs pushed it to add text files that
would be searchable while remaining invisible behind the
images. The layer of text could substantially enhance jstor’s
usefulness to scholars and students, who would be able to
search the text of the journal for phrases…. With images in place
for display, the fulltext’s accuracy was of less concern—it could
be, at least to some degree, “dirty.” (Schonfeld 2003, 28–9)

The initial version of jstor was launched for the public in January
1997 with ten journals and approximately one million pages digitized
from original documents (not microfilms, as was originally intended).
Every page image was digitized at 600 ppi, processed with ocr soft-
ware, and then manually corrected to 99.95% accuracy (Guthrie
1999). The results of each page were stored in a plain text file, which
was not displayed to the users but used as an ‘invisible’ full-text
search field for each page.

For a retrospective collection like jstor, this database structure
offers users the advantage of images (perfect fidelity to the
original) without sacrificing the chief benefit of text files
(allowing full-text searches). The resulting system is a powerful
research and teaching tool. (Guthrie 1999, 293)

Although this system allowed users to search and retrieve page im-
ages based on the full-text of the journal, the text was not spatially
aligned with the original page images. The data necessary to accom-
plish spatial alignment was collected and stored, however, and the
present interface for jstor does provide alignment of text and page
images.

While the jstor project was started with the goal of addressing
the rising costs of collection infrastructure, libraries and users largely
ignored this benefit, focusing primarily on the increased access to
their journal back collections that this system provided. By 1997,

LARGE-SCALE TEXT DIGITIZATION

58

jstor had become a web-based system for searching and navigating
millions of journal page images using full-text search.

jstor’s dilemma has been that library demand for its collections
seems to derive principally from access rather than space-saving,
even at the many libraries that could benefit from both. Further
expansion of jstor’s collections will be most sensible if
librarians perceive that real costs are saved…. Librarians have
tended to view jstor more as an access tool to important
journal backfiles than as a space-saver for titles of less interest.
(Schonfeld 2003, 367)

The jstor project fundamentally changed how individuals used
back catalogues of journal articles by creating a full-text image search
system. Prior to jstor, historical journal issues were largely ignored
parts of a library’s collections since they presented a formidable and
time-consuming navigation challenge, making them inaccessible for
all but the most dedicated researcher. However, with jstor, opening
up these backfiles with search has allowed researchers and students
to instantly retrieve articles they likely would not have found other-
wise (DeLoughry 1996; Bronner 1999; Chapman 2001). Today jstor
is widely regarded as a resounding success and has set important pre-
cedents for subsequent digitization projects.

2.4 Mass Digitization (2001–present)

“What do you do with a million books?” was the question asked by
Gregory Crane (2006) in an article discussing the emergence of mass
library digitization programs. The digitization projects that Crane was
referring to were different from any previous efforts by “orders of
magnitude in at least five and probably six dimensions:”

• Scale The new digital libraries were at least 1,000 times larger
than the largest previous initiatives, on the order of tens of mil-
lions of books and billions of pages;

2.4 MASS DIGITIZATION (2001–PRESENT)

59

• Heterogeneity Unlike previous projects that focused on a
single collection or document type (newspapers, journals), these
large-scale digitization programs were digitizing everything, in all
languages;
• Granularity While previous projects focused on the physical
object as the fundamental organizing unit of the digital library,
new projects were focusing on extracting content and working
with information inside the materials, providing methods of re-
purposing and relating information in multiple sources beyond
simple bibliographic search and retrieval;
• Noise Previous digitization projects tried to reduce the amount
of “noise” in the automatically recognized texts by relying on
manual correction or human re-keying of automatically-tran-
scribed texts. The new generation of digitization projects em-
phasized input and throughput, rather than accuracy, with a cor-
responding increase in the amount of noise—textual errors—by
orders of magnitude.
• Audience Previous attempts, like jstor, provided digitized
text services to well-defined audiences like academics, librarians,
or historians. The audiences of massive open-access digital librar-
ies would be the general public, and might be two orders of mag-
nitude larger than that of the largest subscription-based services.
• Collections and Distributors A unified digital library inter-
face that provided global access to the entirety of the printed
output in libraries would effectively replace the need to maintain
the highly fragmented assortment of different library systems,
each with their own unique interfaces and minimally-compatible
back-end systems. The points of entry to the collective output of
human cultural heritage would be reduced as the ease-of-use of a
single point of entry gained popularity and ubiquity.

Collectively these projects have become known as “mass digitiza-

LARGE-SCALE TEXT DIGITIZATION

60

tion” efforts (Coyle 2006; Hahn 2008). In the intervening years since
Crane’s article there have been a number of changes to the mass digit-
ization project landscape. The HathiTrust has emerged as a partner-
ship between more than 80 organizations engaged in large-scale
book digitization efforts, including Google and the Internet Archive.
There were approximately 7 million books digitized when Crane
wrote his article. Today, estimates indicate that between 20 and 30
million books have been digitized.

With advances in digital imaging devices came the introduction of
the digital camera, which, once sufficiently mature, came to replace
the use of flatbed scanners in digitization initiatives (Taylor et al.
1999; Doermann et al. 2003). Digital cameras allowed organizations
and institutions to process documents much faster because they
could capture a page image in an instant (as opposed to the few
seconds required by a flatbed scanner), reducing the the amount of
physical effort in the digitization process.

Mass digitization projects feature ocr as a central navigation tech-
nology, enabling users to search and browse through their page im-
ages using highly-optimized search systems. Unlike previous pro-
grams, such as jstor, the emphasis of the mass digitization effort is
on throughput, and not accuracy, in recognition. In many cases, no at-
tempt is made to correct the recognition results of page images, res-
ulting in systems with high recognition error rates. The errors in the
recognition do not prevent these systems from being useful; Rather
the ocr serves as an invisible search layer, preserving the spatial rela-
tionship between every word. This technique, discussed in the previ-
ous section, was a departure from extraction-only ocr and served to
provide page-level access to the digital page images.

2.4.1 Carnegie Mellon Million Book project

The Million Book project, also known as the Universal Library Pro-
ject (mbp/ulp), was started in 2000 as a collaboration between

2.4 MASS DIGITIZATION (2001–PRESENT)

61

Carnegie Mellon University (with a grant from the National Science
Foundation) and several universities located in China and India
(Reddy and StClair 2001). The goal of this project was to create a uni-
versal digital library, containing books drawn from many countries, in
many languages. The initial goal for this project was the digitization
and ocr of one million books. By 2007 the project had digitized and
performed ocr on over 1.5 million books in over 20 languages (Uni-
versal Digital Library 2007). Although the project had aspirations of
reaching 10 million books by 2010, this project seems to have fin-
ished digitization and been integrated into the Internet Archive’s
Book Digitization program (see Internet Archive 2014b).

Sankar (2006) provides details about the workflow and overall
throughput of a single digitization centre at the Regional Mega Scan-
ning Center (rmsc) in Hyderabad, India. This scanning centre
achieved a throughput of 140,000 pages, or approximately 500
books, per day. There were 50 scanning stations operating 8 hours per
day. For ocr, they determined that a single pc could process approx-
imately 2000 images per day, including image editing. They had 125
ocr machines operating 8 hours per day, and achieved between 90%
and 95% accuracy on texts in languages in Latin script. For texts in
other scripts they noted that ocr was not possible.

The images were captured at a high resolution (600 ppi) but with a
significant amount of loss due to their chosen image representation
format. They chose tiff with ccit Group 4 Fax compression, a biton-
al (black and white) image format suitable for low-bitrate transmis-
sion over standard telephone lines, for most of their documents. Only
rare materials were digitized in full colour.

The Internet Archive currently hosts a subset of the books scanned
in the mbp/ulp (Internet Archive 2014b). Today many of the links to
texts seem to be broken on the Universal Digital Library main portal
(http://ulib.org). It could not be determined if the collections of

LARGE-SCALE TEXT DIGITIZATION

62

scanned books have been made available to other organizations par-
ticipating in book digitization projects.

2.4.2 Amazon.com

While not as philanthropic or altruistic as many efforts at creating a
digital library, the online retailer Amazon.com deserves a mention as
one of the first efforts to create a large-scale online digital library
from printed collections in 2003 (Kirkpatrick 2003; Price 2003). This
project allows people to find books for purchase from the
Amazon.com website by typing a search phrase and being taken to
the page in a book where their search phrase occurred. It is unknown
exactly how many books are available with the “Search Inside!” and
“Look Inside!” programs.

2.4.3 Google Book Search

The Google Book Search project is an ambitious and unprecedented
digitization initiative that has, to date, digitized over 20 million items
held in major university and public libraries around the world. It is
the primary contributor to the HathiTrust Consortium (§2.4.5) and
has been a lightning rod for public engagement with digitized print
collections. It has also faced significant legal challenges in the course
of digitization, facing lawsuits from numerous publishing and authors
groups that felt mass digitization initiatives were trampling legal
rights. Today, Google integrates book search results into its main
search interface, providing users with instant access to billions of
pages of printed texts, applying the same technology that has made
their search engine an overwhelmingly popular gateway to the
Internet.

Google's book digitization efforts were separate from their opt-in
program for publishers to submit books for scanning and search (the
“Partners Program,” see Smith 2005). The Google Print project first
launched experimentally in 2003 as a closed trial program that

2.4 MASS DIGITIZATION (2001–PRESENT)

63

sought participation from major publishers and rights holders (Sher-
man 2003). In 2004 the project was publicly launched with an an-
nouncement that Google had partnered with the university libraries
of Harvard, Stanford, Michigan, Oxford, and The New York Public
Library to begin digitally scanning the books in their collections to
make them available for searching (Google 2004). In 2005 the name
of the project was changed to Google Book Search to avoid confusion
with a service for printing documents (Grant 2005).

The book digitization program sought to digitize all books in part-
ner libraries, making out-of-copyright works freely available and
providing small previews of in-copyright works, with links to pur-
chase or find a book in a library. Initially Google wanted to make
books that were in-copyright but out-of-print (and thus difficult to
consult) freely available. Almost immediately after announcing its
library partnerships, Google was the focus of several lawsuits, most
famously from the Association of American Publishers and the Au-
thors Guild, for infringing author’s copyrights. Several agreements
and conclusions to legal proceedings have been reached among the
various lawsuits. The first agreement in 2008 allowed the book digit-
ization program to proceed (Drummond 2008). Most recently a
second lawsuit brought by the Authors Guild was dismissed in
November 2013 (Mullin 2013).

Google has since expanded its library digitization program to in-
clude partnerships with several large international libraries, such as
the Austrian National Library (Österreichische Nationalbibliothek,
Austria), the Bavarian State Library (Bayerische Staatsbibliothek, Ger-
many), the Lyon Municipal Library (Bibliothèque Municipale de Lyon,
France), and over 40 other libraries (Google 2014a).

As of 2012, Google had scanned more than 20 million books and
has quietly started to scale back its operations, switching from scann-
ing entire shelves to selecting individual items in its partner libraries
that have not yet been digitized (Howard 2012).

LARGE-SCALE TEXT DIGITIZATION

64

Users of Google Books (the current name) see several variations of
the book view, depending on the book’s copyright status and the
agreements Google has in place with the publisher. The “full view”
provides users full access to all pages of the book, and users may
search within the book, their search terms highlighted, in situ, as a
coloured overlay to the page image. Limited Preview is used for
works that are still in copyright, but for which the rights holders have
granted Google permission to display a portion of the book. When a
user searches the book they will be shown their search term in situ,
but only a few pages before and after the search hits are shown.
Users are directed to libraries or online book dealers to borrow or pur-
chase the book, respectively. Snippet View will display just a few sen-
tences of the book that match a user’s search terms. Finally, there is a
view for which no preview is available that just displays limited bibli-
ographic data about the book, but no page image or content is shown
(Google 2014b).

Access to Google’s scanning facilities is tightly controlled since the
company sees their workflow and tools as proprietary and offers a
significant competitive advantage. As such, little is known about
their equipment and workflow, or how the technologies developed
by their research scientists are employed in a production context. A
public faq on the scanning agreement between Google and the Uni-
versity of Michigan, one of its founding partners, offers some insight
into the techniques used to digitize the volumes (University of
Michigan 2005). Specifically:

• Google does not remove the binding from the materials that
they are digitizing;
• Materials sent to a Google digitization facility to be digitized
are unavailable for only a few days;
• Google provides each library with digital copies of the books
from the library’s collections, scanned at 600 ppi, with aligned
ocr text provided;

2.4 MASS DIGITIZATION (2001–PRESENT)

65

• Google pays for all costs related to scanning, including pulling
and re-shelving material selected for digitization.

The agreement that libraries would receive copies of all digital im-
ages created by the book scanning project would become an import-
ant point several years later when the HathiTrust was founded.

Google has funded the research and development of related tech-
nologies for ocr and text digitization, despite the fact that their pro-
duction workflows are a closely-guarded corporate secret. The Tesser-
act ocr system, first developed by Hewlett Packard Labs in 1994 was
open-sourced in 2005 after almost a decade of stalled development
(Smith 2007). In 2006 Google re-released Tesseract, fixing a number
of bugs (Vincent 2006). Since then it has been funding development
of this software. Although it was initially developed for English-only
texts, Tesseract has been adapted to support multilingual document
recognition (Smith et al. 2009) and recognition based on adaptive
language and image models (Lee and Smith 2012).

In addition to Tesseract, Google has also been funding the devel-
opment of OCRopus, a character recognition, page layout and docu-
ment analysis system (Breuel 2008; Breuel 2009). OCRopus is de-
veloped by the Image Understanding and Pattern Research group at
the University of Kaiserslautern in Germany. It is designed as a mod-
ular ocr system featuring three primary components:

• Physical layout analysis identifies and segments text areas
(e.g., columns, blocks, lines, and reading order);
• Text line recognition converts images to text, along with
identifying possible alternate characters;
• Statistical language modelling integrates the text recogni-
tion with prior knowledge about the language, vocabulary, gram-
mar, and domain of the document.

It is widely believed that Google’s digitization program uses Tesseract
and ocropus, but to date there has been nothing published on how
these tools are used in their digitization program.

LARGE-SCALE TEXT DIGITIZATION

66

2.4.4 The Internet Archive

In 2004 the Internet Archive began a pilot project at the University
of Toronto, digitizing 2,000 out-of-copyright books (Carlson and
Young 2005). The Open Content Alliance (Hafner 2005) was formed
in 2005 through an alliance between The Internet Archive, Yahoo!,
Adobe Systems, The European Archive, HP Labs, The UK National
Archives, O’Reilly Media, Prelinger Archives, the University of Cali-
fornia, and the University of Toronto (Advanced Technology Librar-
ies 2005). The focus of the oca was to digitize only out-of-copyright
works, focusing on particular collections at partner organizations. Mi-
crosoft was also briefly involved with the book scanning projects, but
has since backed out of the project (Nadella 2008).

Today the oca partnership largely lives on under the auspices of
The Internet Archive’s book scanning and archiving initiatives (Inter-
net Archive 2014a). The Internet Archive claims to have scanned
over 600 million pages and placed 3.9 million books online, drawn
from over 1,000 partnerships. They claim to have 33 scanning centres
in 7 countries, actively scanning 1,500 books per day. Currently the
digitization initiatives are funded on a project basis, with libraries
paying the costs associated with digitization through grants or discre-
tionary project funding.

Unlike the Google book scanning project, the Internet Archive
publishes details about its scanning process and the tools they use
(Miller 2012). At the core of their project is a specially-developed
book digitization workstation called the “Scribe,” (shown in figure 2.7)
containing two digital cameras for simultaneously capturing the
opening of a book (recto/verso) on a V-shaped cradle. A glass plate,
operated by a foot pedal, is lowered onto the opening, and photo-
graphy-grade lighting illuminates the pages.

2.4 MASS DIGITIZATION (2001–PRESENT)

67

Figure 2.7: Internet Archive Scribe book scanning workstation (from Miller
2012)

The Internet Archive uses Abbyy ocr software to provide search-
able representations of their texts. Each digitized book is run through
their ocr software, and the resulting Abbyy xml file is stored and
parsed by several tools to provide in situ search and image retrieval.
The Internet Archive provides libraries with copies of the digitized
images as well as perpetual free storage of the books on their servers.
Currently the organization claims it stores 3.5 petabytes of digitized
books and associated data and metadata.

2.4.5 HathiTrust

The HathiTrust emerged in 2008 as a partnership of thirteen univer-
sities in the United States, two of which (Wisconsin and Michigan)
were involved in the Google Books digitization initiative. It is a clear-
inghouse of digitized texts held by the member organizations, includ-
ing those digitized by third-party initiatives such as Google and the
Open Content Alliance. Since 2008 the HathiTrust partnership has
grown to include over 60 research libraries and consortia from the

LARGE-SCALE TEXT DIGITIZATION

68

usa, Canada, and Europe (York 2009; Conway 2010; Christenson
2011; HathiTrust 2012).

The size of the digital library collection as of January 2014 was:
• 10,885,715 total volumes
• 5,714,014 book titles
• 286,517 serial titles
• 3,810,000,250 page images
• 488 terabytes (tb)
• 3,531,165 works in the public domain

By far the largest contributors to the HathiTrust are the libraries
participating in the Google Books digitization initiative, with 96.8%
of the items in the HathiTrust contributed through this program. A
further 2.9% is contributed through the Internet Archive Book digit-
ization program, and local digitization efforts have contributed the
remaining 0.3% (Downie 2012). The page images are encoded in
jpeg2000 and tiff formats and occupy approximately 98% of the
488tb, with textual data (ocr and metadata) occupying just 2% or
approximately 13tb.

Storing word positions derived from ocr data is a significant tech-
nical challenge for providing fast search and retrieval. Co-ordinate
data indicates where each ocr-transcribed word is located on every
page image, and provides users with the ability to navigate the page
images using a full-text search interface with their search word or
phrase highlighted on a page image. An early HathiTrust blog post
(Burton-West 2009) indicated that storing the word locations con-
sumed approximately 85% of the total index size, meaning that the
text itself likely occupied less than 15% of the search index. At the
time, the index size was 4.5tb and 7 million documents. Extrapolat-
ing for the size of the collection today, the word position index
would be approximately 11.5tb. The most commonly-occurring word
in the English-language corpus was the word “the,” occurring over 4.3

2.4 MASS DIGITIZATION (2001–PRESENT)

69

billion times, and the size of the word positions index for all occur-
rences of the word “the” was 4.3gb—it has probably grown to 10gb
since then.

The HathiTrust Research Centre (htrc) was established to provide
access to the data generated by the project, and lead efforts for data
analysis, text mining, and retrieval tools. The texts of digitized works
in the public domain are available in two datasets that are freely
downloadable for researchers: Works digitized by Google (approxim-
ately 2.8 million as of February 2013), and works digitized by partner
institutions (approximately 350,000 as of February 2013) (HathiTrust
2014). The HathiTrust Data api provides another means of accessing
the content of the HathiTrust using a web service.

2.5 ocr Systems Summary

Leonid Taycher, an engineer on the Google Books project, has estim-
ated that there are approximately 130 million distinct titles of printed
books, based on estimates of unique International Standard Book
Numbers (isbn) and other unique identifiers from library systems
(Taycher 2010). With numbers of this magnitude it is obvious that the
current pace of document digitization and recognition will be both
time consuming and expensive.

Recently, attention has turned back to document recognition tech-
niques for historical books and handwritten archival materials. The
Improving Access to Text impact project (Balk and Ploeger 2009)
was an initiative looking at methods of improving ocr for historical
(pre-1900) documents. Notably, aligned image and ocr-extracted text
for the purposes of retrieval is listed as one of the primary uses of
ocr in this project (Anderson 2010). Text and image alignment has
also been proposed as a method to enable historical handwritten doc-
ument retrieval (Toselli et al. 2007; Zinger et al. 2009; Toselli et al.

LARGE-SCALE TEXT DIGITIZATION

70

2011). The next section will examine the various formats used to store
image and text alignment results.

2.6 Image and Text Alignment Formats

While ascii makes it possible to share text between computer sys-
tems, it is only a character encoding format. Additional formats have
been developed to preserve spatial positioning of text in relation to
an image. The inclusion of this data has become essential for digitized
text collections. In later chapters, encoding and storing spatial rela-
tionships for symbolic music will be discussed, so this section is given
as a review of the historical and current text formats commonly used
for the same purposes.

2.6.1 pdf

The Portable Document Format (International Standards Organiza-
tion 2008) was first released by Adobe as an application-independent
means of distributing digital documents for print publications. Over
time it has become the de facto standard for distributing fixed-layout
documents over the web, since it can maintain font definitions, lay-
out specifications, and image placement in documents shared
between users on different computer platforms.

In a pdf file page images are placed as a background layer, and the
precise location of each word is specified through a co-ordinate sys-
tem. This has allowed ocr results to be aligned with original page im-
ages, and has been widely adopted. Many digitization efforts that in-
clude an ocr step will typically, as a matter of course, embed the ocr
results in a pdf representation. This allows users of these files to both
download a scanned page image and search a document, with the
pdf reader software highlighting their query terms on the page
image.

2.6 IMAGE AND TEXT ALIGNMENT FORMATS

71

2.6.2 DjVu

DjVu, first introduced in 1998, featured a new image format using
wavelet-based compression to achieve higher compression ratios
than existing image compression techniques (Haffner et al. 1998). It
was targeted specifically at image-based digital libraries, as a means of
providing users with access to documents containing scanned page
images that could be distributed over the Internet at non-broadband
speeds. Like pdf, the DjVu format also included an invisible text layer
that could store the results of ocr, providing a mechanism for search-
ing within a document. The developers of DjVu claimed that the ad-
vanced compression on DjVu make it a superior document image de-
livery format than pdf (Rile 2002), but it never achieved similar
levels of adoption by document digitization initiatives and has
largely fallen out of use.

2.6.3 xdoc

The xdoc format (Connelly et al. 1999) was the output of a number
of related ocr systems. It was the output file format of ScanSoft
ScanWorX (and related systems) but had its origins in the Kurzweil
omni-font recognition system. In 1980 Kurzweil sold the ocr plat-
form his company had developed to Xerox. In 1999, ScanSoft Inc.
purchased the rights to the ocr software. As one of the more success-
ful commercial ocr applications in the 1990s, it was a widely accep-
ted format for processing the results of ocr in many image retrieval
systems (Lagoze et al. 1995; Phelps and Wilensky 1996; Weir et al.
1997).

2.6.4 DAFS

The Document Attribute Format Specification (dafs) (Dori et al.
1997) was an attempt at providing a container format for relating a
document’s logical structure with its physical layout. Figure 2.8 shows

LARGE-SCALE TEXT DIGITIZATION

72

the representation of a “chapter,” (reading from the bottom) and its
physical structure (reading from the top). This format was expressed
using sgml. One notable application of the dafs format was its use
as a container for character-level ground-truth data in an automated
ocr evaluation system (Wang et al. 2001). dafs is no longer suppor-
ted or used by any ocr systems.

Figure 2.8: The DAFS expression of physical and logical structure of a chapter
(from Dori et al., 1997)

2.6.5 mets/alto

The mets (Metadata Encoding and Transmission Standard) schema is
an xml-based file format used to describe descriptive, administrative,
and structural information of objects in digital libraries (Library of

2.6 IMAGE AND TEXT ALIGNMENT FORMATS

73

Congress 2013). The alto (Analyzed Layout and Text Object) exten-
sion for mets is used to encode the physical content and layout of
the document, including the precise pixel co-ordinate locations for
each word on a digital image (Boddie 2009; Library of Congress
2014b). Using this format it is possible to encode logical structures
(chapters, sections, individual news articles, advertisements) and to-
correlate these structures with their physical locations and contents
on a page image. This can provide a rich source of data for advanced
search and retrieval systems. mets/alto is used as the underlying
format in several library digitization programs, notably the National
Library of New Zealand’s “Papers Past” newspaper digitization project
(83 newspaper titles, 490,856 issues, 3,108,938 page images) (National
Library of New Zealand 2013), the Australian Newspapers Digitiza-
tion Program (650 newspaper titles, 12 million page images) (Holley
2009b; National Library of Australia 2013), and the US National
Newspaper Digitization Program (Littman 2007; Library of Congress
2014a).

2.6.6 hocr

The hocr format was developed as part of the ocropus document
analysis and ocr system (Breuel 2007). Due to its relationship with
ocropus, it is likely that this is the file format being used by the
Google book digitization project as the output from its scanning and
recognition processes, but due to the secrecy surrounding Google’s
text digitization and recognition workflows this could not be
confirmed.

hocr extends the standard html tags with ocr-specific informa-
tion, with the rationale that software clients that do not understand
the special extended markup, such as web browsers, can still display
the text of the document (Breuel 2010). Specially-designed client soft-
ware, however, may use the extended positional markup to provide

LARGE-SCALE TEXT DIGITIZATION

74

pixel-based alignment between the recognized text and the underly-
ing image.

2.6.7 Summary

Spatial relationship encoding between ocr-transcribed text and its
location on a page image is an important component of document
image retrieval systems. This section has reviewed some of the histor-
ical and current formats that have enabled this functionality in a
text-based context, in preparation for later discussions on enabling
this in a symbolic music context.

2.7 Chapter Summary

This chapter has been written with the intent to provide a back-
ground against which to contrast the efforts of large-scale text recog-
nition with that of large-scale music recognition. Through the history
of large-scale ocr we have seen how ocr, a technology that was ori-
ginally conceived as a system for moving texts from a paper-based
medium into a transcribed textual medium, has been repurposed to
facilitate navigating and retrieving digitized document images. This
change was largely facilitated by increasingly sophisticated hardware
capabilities, but was identified as a useful technology with the realiz-
ation that a purely transcriptive approach to ocr resulted in docu-
ments containing too many errors to be useful. This approach is now
a fundamental part of how the leading large-scale text recognition
initiatives are providing access to digitized materials from libraries
and archives the world over.

Image-based document retrieval systems are fundamentally chan-
ging the way we interact with texts and libraries. A search on the
HathiTrust website today will scan the contents of over 3 billion
pages in a matter of seconds. The same search, even just a decade ago,

2.7 CHAPTER SUMMARY

75

would have had to be performed manually and taken many lifetimes
to complete.

For printed music materials, there are no large-scale digitization
and transcription efforts currently underway. While ocr tools, best
practices, search, retrieval, and display techniques have been steadily
developed to provide text transcription for image navigation, the
same cannot be said of omr tools. The context in which omr tools
currently operate is that of transcription of musical content, and
these tools are not designed to produce results compatible with any
systems for image content search and retrieval. The next chapter will
examine the current state of the art for omr tools.

❁

LARGE-SCALE TEXT DIGITIZATION

76

3.
Music Document Recognition

This chapter will present a review of optical music recognition (omr)
systems. The review will focus on several themes to be touched on
later in the dissertation. Comprehensive reviews of omr systems and
development have been published many times previously—approx-
imately once per decade for the last forty years: (Kassler 1972; Carter
et al. 1988; Selfridge-Field 1994; Bainbridge and Bell 2001; Bellini et
al. 2008; Rebelo et al. 2012), as well as several recent graduate-level
theses and dissertations with extensive literature reviews (McPher-
son 2006; Pugin 2006a; Johansen 2009; Rebelo 2012). As such, this
review will provide a more thematic approach to the literature,
identifying several areas of research and development so that it can
be referred to in later chapters.

A brief history of the development of omr will be presented (§3.2).
Next, the omr process will be discussed, along with the various tools
and technologies used to convert an image into a symbolic music rep-
resentation (§3.3). This will be followed by a discussion of the state of
evaluation in omr systems (§3.4). Previous attempts at large-scale
processing of music document image collections will be described
(§3.5), along with a short review of server-based omr solutions (§3.6).
Finally, a review of omr for non-cwmn (common Western music
notation) will be provided (§3.7).

3.1 Visual and Symbolic Representations of Music

Optical music recognition describes the process of converting a visual
representation of music notation to a symbolic representation. Visual
representations may come in two forms: raster images, where the
symbolic music shapes are composed of tiny discrete picture ele-

77

ments (pixels); or vector images, where the image is composed of geo-
metrical primitives (points, lines, curves). Symbolic representations
encode music notation symbols using a system of tokens. These
tokens are stored in a way that maintains the musical relationships,
or “semantics” of, and among, the notation symbols. Symbolic repres-
entations require software for rendering and manipulating the en-
coded music symbols (e.g., editing, transposition), which may be fur-
ther used to produce a visual representation using a graphical layout
system suitable for printing, or a synthesized audio representation.
Encoded symbolic music may also be used for symbolic computation-
al analysis or score searching and retrieval. There have been many
symbolic music formats developed; see Selfridge-Field (1997a) for a
overview of most historical formats.

3.2 History of OMR

The first efforts at omr were described in a dissertation by Pruslin
(1966). The system described operated on a single measure of cwmn,
and was capable of recognizing a limited set of musical symbols. Sev-
eral years later, Prerau (1970) introduced the “do-re-mi” omr system,
capable of recognizing three measures of printed cwmn consisting of
a single voice on two staves in a single font.

The goal of most early omr development was a universal recogni-
tion system, capable of recognizing the entirety of music notation
output, in much the same way that early ocr systems were envi-
sioned as universal transcribers of textual content. Thus, despite the
limitations of the early omr systems, Prerau concludes that the soft-
ware “should be able to be expanded to the recognition of all printed
music” (Prerau 1971). Kassler echoes a similar sentiment in his 1972 re-
view of these first two dissertations:

Perhaps the greatest accomplishment of the authors is that, as a
result of their work, the logic of a machine that ‘reads’ multiple

MUSIC DOCUMENT RECOGNITION

78

parallel staffs bearing polylynear [sic] printed music in at least
one ‘fount’ and size can be seen to be no further than another
couple of M.I.T. dissertations away. Quite possibly such
dissertations may get completed before much thought is
directed toward deciding what wisely to do with the masses of
musical data that an operational [music] ocr system could make
available for computer processing. It is remarkable, nonetheless,
that (of all things) this technology may cause return of
musicologists' attention to the core concepts of their field which
constitute musical theory. (Kassler 1972, 253–4).

However, by the 1990s most omr researchers had abandoned the
idea of building a single music recognition system that could reliably
process the output of all music notation.

…in practice, composers and publishers often feel free to adapt
old notation to new uses, and invent new notation, as they see
fit. There are in fact national “dialects” of music notation, and
musical works use many different levels of notational
complexity. Thus it may not be possible to devise a single
recognition system capable of recognizing all music notation.
[Pruslin 1966] states that a complete solution to the music
recognition problem is “the specification of: which notes are
present, what order they are played in, their time values or
durations, and volume, tempo, and interpretation.” This level of
recognition suffices for only some of the applications listed
[later in this paper]. (Blostein and Baird 1992)

The realization that a single, universal recognition system was not
a likely outcome of omr systems development occurred at approxim-
ately the same time as similar realizations in ocr systems develop-
ment. As discussed in the previous chapter, this realization roughly
coincided with the simultaneous development of aligned image and
transcribed textual content, thereby reducing the need for developing
a completely accurate universal recognition system. However, while
textual initiatives transitioned to building systems with images and
aligned symbolic transcriptions, these technologies were not de-

3.2 HISTORY OF OMR

79

veloped to support similar capabilities in music document recogni-
tion research. Instead, omr systems have continued with a transcrip-
tion-based design that produces output suitable for editing in
notation software, with no attempt to maintain a relationship
between the notation and the recognized image.

As research and development continued through the 1990s and
2000s, contemporary omr systems were developed to specialize in
transcribing specific repertoires or styles of notation. In addition to
cwmn recognition systems, repertoire-specific recognition systems
exist for many different music notation styles, including lute tabla-
ture (Dalitz and Karsten 2005; Wei et al. 2008; Dalitz and Pranzas
2009), Byzantine chant (Gezerlis and Theodoridis 2002; Dalitz et al.
2008b), mensural notation, both in print (Pugin 2006a) and manu-
script sources (Tardón et al. 2010), and others.

Several omr toolkits have also been developed to help assemble
bespoke omr systems. These systems have been used to build several
of the aforementioned systems, and provide a generalized structure
and toolset from which these customized omr systems may be built.
Examples of these frameworks include the cantor system (Bain-
bridge 1997) and the Gamera system (MacMillan et al. 2002). While
these systems present a more flexible approach to omr, they require
significantly more development expertise to create and run omr
than “turnkey” systems and, as such, are generally only used in re-
search contexts.

3.2.1 Current omr Software Systems

At present there are a number of commercial and open-source omr
systems available. The most common application of these systems is
on sources of printed cwmn. Of the commercial systems, the most
established systems are PhotoScore (Neuratron 2014), SmartScore
(Musitek 2014), and capella-scan (Capella Software 2014). Develop-
ment on SharpEye (Jones 2008b), previously regarded as one of the

MUSIC DOCUMENT RECOGNITION

80

best systems, seems to have stopped. There is at least one omr ap-
plication for mobile devices, iSeeNotes (Gear Up AB 2014). In the
open-source community, Audiveris (Bitteur 2014) is the most mature
and continually developed omr application for cwmn.

There is very little published literature detailing how both com-
mercial and open-source omr systems work and what processes they
use to perform their recognition. Open-source software has the ad-
vantage that developers can read the source code for details on the
implementation, but this is not generally available to users of these
applications. The user has no means of configuring or substituting di-
fferent techniques within the process. As a result, these systems oper-
ate largely as “black boxes,” where an image input is provided and a
transcription is produced, but with no indication of the specific im-
plementation of each step, or the combination of steps used to pro-
duce the result.

omr systems developed for research purposes are better described
in the literature, but are often highly customized to address a special
need or research topic. As well, many omr systems developed for re-
search are never made publicly available. Since research systems are
often built for a distinct environment, they require difficult and oner-
ous setup outside of their development environment. They are also
designed for a specific type of input, as a means of evaluating a par-
ticular component of the omr process, such as staff-line removal
(Dutta et al. 2010), a particular recognition technology (Rebelo et al.
2011), or different approaches to musical symbol re-construction
(Raphael and Wang 2011). While these systems may serve as useful
development platforms for a portion of the omr process, they are not
intended for use as complete systems.

3.2.2 Summary

omr has been a topic of active development since the late 1960s. In
the beginning it was thought to be a panacea for transcribing all pos-

3.2 HISTORY OF OMR

81

sible musical documents, but this is no longer a widely-held belief. In-
stead, current omr systems primarily focus on transcription of a par-
ticular type of music notation.

Since the beginning, omr has been conceived of as a process
through which an image is transformed into a transcribed symbolic
representation. A number of tools and techniques have been de-
veloped that can be used in this process, but most commercial and
open-source implementations of omr software intended for use by
the general public implement only one chain of these processes. The
next section will focus on omr as a process, and present a selection
of different approaches to each step within the process.

3.3 omr as a Process

omr refers to a process involving a number of steps, where each step
requires a different technique for manipulating an image or a symbol-
ic representation of the notation. Some steps use image manipulation
and transformation techniques, preparing an image for the recogni-
tion step where shapes are identified and classified into musically re-
cognizable symbols. The results from this step are passed on to a rep-
resentation stage where the identified symbols are related and
assembled into data structures, and individual symbols are given a
musical context—for example, a note symbol is determined to be on
a specific staff, with its pitch and duration governed by contextually-
appropriate clef and key signature symbols. Finally, this musical struc-
ture is encoded in a known symbolic representation and saved as a
file, to enable sharing the symbolic musical results among other soft-
ware programs.

MUSIC DOCUMENT RECOGNITION

82

Figure 3.1: The OMR Process in the DO-RE-MI system (Prerau 1971)

While omr is widely recognized as a process involving many di-
fferent sub-systems, there is no universal agreement on the names
given to each stage in this process, the order in which they must be
executed, or on the specific methods used for processing. Many omr
authors have given different names to each component in this pro-
cess. Prerau (1971) divides the process into input, isolation, recogni-
tion, and output (figure 3.1), producing symbolic music encoded in the
Ford-Columbia Music Representation (a.k.a. darms) format (Erickson
1975). Rebelo et al. (2012) describe the steps in the process as prepro-
cessing, music symbol recognition, musical notation recognition, and fi-
nal representation construction. Others, such as Bainbridge and Bell

3.3 OMR AS A PROCESS

83

(2001) identify the process as consisting of staff line identification,
musical object location, musical feature classification, and musical se-
mantics. Bellini et al. (2008) describe the process as segmentation, ba-
sic symbol recognition, music notation symbol reconstruction, and mu-
sic notation model. McPherson (2006) describes a system in which
data may pass through several components, but the system is capable
of automatically identifying ways of improving the recognition sys-
tem with automated feedback, sending an image back to a previous
stage to adjust the processing parameters to obtain better results in
later stages. Depending on the requirements of a particular system
the exact composition of the process changes to meet the specific
needs of the recognition system.

For the present discussion, the stages of this process will be de-
scribed as image pre-processing, symbol recognition, notation recogni-
tion, and representation construction (figure 3.2). This description of
the process provides a high-level overview of the entire omr process,
and broadly groups the tools required to perform each task into logic-
al divisions.

Figure 3.2: A simplified representation of the stages of the OMR process

MUSIC DOCUMENT RECOGNITION

84

Within each of these broad stages there are many tasks that may
be performed (some examples are listed in table 3.1), but the specific
techniques used to implement each stage varies from system to sys-
tem. For example, an omr system designed to accept and process im-
ages digitized from microfilm (Pugin 2006b; Burgoyne et al. 2008)
may employ different tasks in the pre-processing stage than one de-
signed to accept high-resolution, full-colour scans of an original
source. Specialized processes for older documents may combine tech-
niques for foreground and background separation to reduce ink
bleed-through (Leedham et al. 2002; Rowley-Brooke and Kokaram
2012), or to identify and remove extraneous image information from
borders (Ouyang et al. 2009). Similarly, a system designed for pro-
cessing cwmn requires different symbol classification and musical
reconstruction techniques than music set in neume notation (McGee
and Merkley 1991; Helsen 2011) or mensural notation (Carter 1992;
Pugin 2006a; Tardón et al. 2010).

Step Example Tasks

Image Pre-Processing Binarization, de-skewing, de-warping, rotation
correction, foreground-background estimation,
segmentation, staff-line region identification /
removal, staff-height normalization

Symbol Recognition Connected component analysis, classification,
template matching, glyph feature extraction

Notation Recognition Determine inter-symbol relationships (clefs to
notes, etc.), re-introduce staff lines, encode note
pitch, duration, chord voicing, structural
identification (measures, systems, staves, etc.)

Representation
Construction

Translate musical structure to encoding format
(MIDI, MusicXML, MEI, etc.)

Table 3.1: OMR steps and some example tasks for each step

While “full,” or complete transcription is the most common applic-
ation of optical music recognition, some systems have been proposed

3.3 OMR AS A PROCESS

85

to extract different representations from a music document image.
Vigliensoni et al. (2013) propose a system for recognizing the location
of bar lines and measures to align multiple sources of the same work.
Several systems have been proposed that operate primarily on textu-
al underlay (i.e., lyrics) of music scores (George 2004; Burgoyne et al.
2009). While these systems require many of the same operations at
some stages of the process, they also require custom recognition sys-
tems and tools for later stages.

In the next sections the four stages of recognition will be reviewed,
describing some of the newer or more notable techniques for each
stage.

3.3.1 Image Pre-Processing

Image pre-processing is the stage in the omr process where a digital
image is manipulated to prepare it for processing by later stages. The
sequence of images shown in figure 3.3 demonstrates one possible
application of techniques used to prepare a particular image for sym-
bol recognition. The original image (figure 3.3a) is first binarized to re-
move the colour information (figure 3.3b). The decorative border is
then removed (figure 3.3c) and then certain page elements (staves, lyr-
ics, ornate first letters) are also masked (figure 3.3d). The result is an
image that contains only music notation. The staff line locations are
identified, and the staff lines automatically removed to prepare the
image for musical symbol classification (figure 3.3e).

MUSIC DOCUMENT RECOGNITION

86

3.3.1.1 Binarization

Binarization creates a binary image from the original colour image,
and is typically one of the first steps in any document recognition
process. The process of binarization simplifies the image by separat-
ing the foreground, or page content, from the background, or “noise”
through the application of a threshold. Pixels that represent content
are coloured black and referred to as the “foreground,” while pixels
that do not represent the content are coloured white, and represent
the “background.” Accurately separating the foreground from the
background is crucial to minimizing recognition errors later in the
process. Sezgin and Sankur (2004) present an overview of several
types of image thresholding techniques. Leedham et al. (2002)
present a survey of global thresholding techniques for working with
degraded documents. They conclude that no single technique can
perform adequately on all types of documents, and instead propose
multi-stage thresholding, where an image may be subjected to mul-
tiple iterations of a thresholding technique.

For older documents, where the paper can exhibit a degraded
physical state, such as bleedthrough, mildew, water stains, or foxing,
accurate separation between foreground and background is difficult
to achieve. Recto-verso registration (Burgoyne et al. 2008; Rowley-
Brooke and Kokaram 2012) has been proposed as one method of
dealing with bleedthrough (figure 3.4), where ink from the other side
of the page has “bled” through and presents itself as a candidate for
the foreground. The registration process aligns the reverse of the page
with the front, and then subtracts the content of the reverse from the
front, effectively removing bleedthrough.

MUSIC DOCUMENT RECOGNITION

88

3.3.1.2 Image Segmentation

Image segmentation is a class of image analysis techniques to auto-
matically classify document regions for the purposes of removal or
applying specialized recognition techniques to specific types of con-
tent. For example, image border detection and removal (Ávila and
Lins 2004; Ouyang et al. 2009) can remove extraneous information
from the margins of page images, including illustrations or artefacts of
the digitization process, such as black borders, colour bars, or rulers.
Lyrics, titles, or other textual regions of the page may be automatic-
ally segmented from music notation, allowing an ocr process to be
applied only to these regions. Different approaches are used for di-
fferent types of segmentation tasks. For example, Carter (1992), work-
ing with printed mensural notation sources, describes a system that
identifies and removes ornamental first letters simply by identifying
the largest object in the upper-left hand of the document. Burgoyne
et al. (2009) describe a technique for segmenting text underlay (i.e.,
lyrics) from music notation. They take advantage of the fact that lyric
lines are largely uniform in their horizontal upper and lower bound-
aries (due to the near-uniform nature of letters), while music notation
symbols undulate across a page. By identifying areas of uniform
baselines, they can mask either the areas containing lyrics (i.e., lyric
removal), or preserve only areas containing lyrics (i.e., lyric
extraction).

Staff line region identification and removal is a music-specific form
of page segmentation. This process identifies areas of musical content
on page images by attempting to automatically determine staff re-
gions. On a binarized image, staff lines connect most of the musical
symbols, making it difficult to apply shape classification techniques
to these symbols. Several approaches for staff line identification and
removal have been proposed (Wijaya and Bainbridge 1999; Fujinaga

MUSIC DOCUMENT RECOGNITION

90

2004; Rebelo et al. 2007; Cui et al. 2010). Dalitz et al. (2008a) provide
a comparative study of staff removal algorithms.

Recently a competition-style evaluation has been organized as
part of the International Conference on Graphics Recognition (Fornés
et al. 2011b; Fornés et al. 2013; Visani et al. 2013). The tasks for this
competition have focused on score writer identification (i.e., identify-
ing the handwriting of a particular person by the shape of the sym-
bols they write) of and staff removal algorithms. These were tasks
tailored to exploit the ground-truth data available in the cvc-mu-
sicma dataset described in Fornés et al. (2011a).

After the pre-processing step, the image is now ready to proceed to
a symbol recognition stage.

3.3.2 Symbol Recognition

The symbol recognition stage attempts to label shapes on the page
with an identification as a musical symbol. There have been several
approaches to symbol classification, many of which are discussed and
compared in Rebelo et al. (2012). One area that is not covered extens-
ively by this paper is the use of an adaptive recognition system to dy-
namically improve symbol classification with human feedback.

3.3.2.1 Adaptive omr

Adaptive optical music recognition, first proposed by Fujinaga (1989,
1996a), is the re-integration of corrected and verified symbols back
into a recognition system effectively creating a system that can
“learn” new symbols or increase the recognition accuracy for known
symbols (figure 3.5). With adaptive recognition, a human editor veri-
fies and corrects the output of the recognition stage.

3.3 OMR AS A PROCESS

91

Figure 3.5: The Adaptive OMR process (Adapted from Fujinaga et al. 1991)

An adaptive omr recognition stage, like non-adaptive omr sys-
tems, begins by using a process to match a visual representation of a
symbol with a label identifying that particular shape. The specific pro-
cedure can vary from system to system, but generally speaking, a
database of known symbol instances are compared against unknown
symbol instances (i.e., the symbols extracted from the page) and an at-
tempt is made to match an unknown symbol with a known symbol.

With the addition of human feedback correcting mis-recognized
symbols, the database of symbols is continuously expanded to in-
clude these new exemplars. With subsequent attempts to recognize
that symbol there is a much greater likelihood that it will be correctly
identified.

Later in this dissertation, an adaptive approach to omr will be
presented as having significant advantages over non-adaptive ap-
proaches. To provide background for these discussions, this section
will describe and compare two adaptive omr systems available, Gam-
era and Aruspix, and discuss the adaptive capabilities of the Audiver-
is omr system.

Gamera

Gamera (MacMillan et al. 2001) is a framework for document analysis
written in Python and c++. It is a “toolbox” for building custom re-
cognition systems (Droettboom et al. 2003), which may include music
documents as well as other document types. It contains a wide vari-

MUSIC DOCUMENT RECOGNITION

92

ety of image processing algorithms, as well as a symbol classifier
based on the k-nearest neighbour (knn) algorithm.

Figure 3.6: The Gamera classifier interface

The classifier interface (figure 3.6) is a graphical user interface for
correcting and maintaining the database of symbols. The “connected
components” on the page—that is, the areas of contiguous black
pixels extracted from a binarized image—are compared against a
classifier containing labelled symbols, constructed using human feed-
back. New exemplars of known symbols can be added to provide a
more robust characterization of that symbol. As subsequent pages are
processed, the results of each page, and the additions to the classifier,
allow the recognition system to constantly learn new symbols and
improve results.

The knn classifier (Cover and Hart 1967) uses feature sets extrac-
ted from each glyph. Features are essential descriptors used to quanti-
fy certain properties of a shape. Simple features might include the

3.3 OMR AS A PROCESS

93

height or width of the glyph, while others, such as projections or
central moments may be computed properties of the glyph (Fujinaga
et al. 1991). While a single feature is unlikely to carry enough inform-
ation to accurately distinguish between two symbols, features may be
combined to create a unique “fingerprint” that serves to uniquely de-
scribe a glyph. The k-nearest neighbour classifier in Gamera compares
the features of each unknown glyph with the features of the known
glyphs in the database, and assigns the unknown glyph the label of
the group to which it most closely resembles.

 A B

Figure 3.7: Two different glyphs with identical height, width, and black area.

To illustrate, two glyphs are shown in figure 3.7. They are represen-
ted as a grid of pixels of equal height, width, and area (i.e., equal num-
bers of black pixels to white pixels). Each of these measurements
constitute a single feature of the glyph. Despite being obviously di-
fferent symbols to a human, the height, width, and area features
alone do not provide enough information to discriminate between
the symbols. To accurately classify the two symbols another feature
may be calculated, the diagonal projection (figure 3.8). This feature is
extracted by rotating the glyph clockwise 45°, and then collapsing all
the pixels in the glyph into a single dimension, forming a histogram
of the glyph. This histogram may be added to the features set for the

MUSIC DOCUMENT RECOGNITION

94

classifier, providing additional information to help discriminate
between the two glyphs.

 A B

Figure 3.8: Diagonal projections of glyphs

In addition to the knn classifier, Gamera has a feature weighting
system that uses genetic algorithms (ga) to optimize and improve re-
cognition (Fujinaga 1996b). Calculating the solution to the optimal
weighting of all features over all symbols is a computationally diffi-
cult task, so a ga is used to discover the most optimal solution in a
reasonable amount of time. Using the ga, a solution is derived that
places more or less emphasis on features depending on their contri-
bution to recognition accuracy on a given symbol set. Thus a feature
that provides greater discriminatory effect within the classifier is giv-
en emphasis over a feature that has less of an effect.

The gamut system (Gamera-based Adaptive Music Understand-
ing Tool) was an omr system built using the tools available in Gam-

3.3 OMR AS A PROCESS

95

era (MacMillan et al. 2002; Droettboom and Fujinaga 2004). It used
the Gamera tools for feature extraction and knn classifier to provide
symbol recognition, but required custom-built code for musical se-
mantic assembly.

Aruspix

Pugin (2006b, 2006a) is an adaptive OMR system designed for recog-
nition of 16th-century single-impression printed music sources. Un-
like most other omr systems, Aruspix does not need to remove staff-
lines to segment the musical symbols into separate glyphs. Instead it
treats a musical symbol and its intersection with a staff as a complete
glyph (this reflects how the source was originally printed, making
Aruspix, in essence, a system for recognizing individual pieces of
single-impression type). Aruspix uses a hidden Markov model (hmm)
classifier to provide symbol recognition using the htk software
(Young et al. 2006).

The initial version of Aruspix was tested with 240 pages of music
drawn from a number of different 16th-century print sources (Pugin
2006a). Staves in Aruspix are normalized to a constant 100 pixel
height by analyzing and identifying staff regions on the page, and
automatically segmenting them from non-staff regions. A non-over-
lapping window, 2 pixels wide and 100 pixels high, is passed over the
staves, and six features are calculated for each window. Two recogni-
tion accuracy rates were reported: An “effective” recognition rate cal-
culated considering all deviations from the evaluation data, and a
“musical” recognition rate that ignored errors that were of no musical
consequence (e.g., a mis-recognized clef would only count as a single
error, despite causing all notes on the staff to have an incorrect pitch
value). The system achieved an effective recognition rate of 96.82%
and a musical recognition rate of 97.11% on a mixed corpus of prints.

The first version of Aruspix was a non-adaptive omr system.
hmm-based classifiers are computationally intensive and very slow to

MUSIC DOCUMENT RECOGNITION

96

train, often taking several hours to re-integrate new data into its re-
cognition system. Therefore, automatically re-training the recognition
system as pages were corrected was not feasible. To address this, a
faster adaptation stage was added (Pugin et al. 2007b) using maxim-
um a posteriori (map) adaptation (Gauvain and Lee 1994). This tech-
nique provided online adaptation of the recognition system based on
human feedback without requiring a full re-training step.

Figure 3.9: Editor interface in Aruspix

To provide correction data, Aruspix features a notation editor (fig-
ure 3.9). Users may correct the transcribed notation (shown on the
bottom half of the screen) and may enable an overlay that shows im-
age and symbol correspondence (shown on the top). This second in-
terface allows users to very quickly identify mistakes in the recogni-
tion and correct these mistakes.

The adaptive recognition component allowed Pugin et al. (2007a)
to introduce a book-adaptive and book-dependent approach to recog-
nition. This was inspired by similar initiatives in speech recognition,
where a “base” recognition model could be adapted to recognize
words spoken by a particular speaker (Huang and Lee 1993). In the

3.3 OMR AS A PROCESS

97

same way, a varied corpus of music notation data was used to create a
generic recognition system for a baseline transcription. This generic
recognition model could then be tailored to a specific book—more
accurately, the typeface used in that book—as pages of that book
were subject to the correction process, and the results fed back in to
the recognition process. This approach follows similar techniques in
ocr (Xu and Nagy 1999; Rawat et al. 2006; Kluzner et al. 2009; Lee
and Smith 2012).

Gamera and Aruspix Compared

Pugin et al. (2008) compared the symbol classification techniques
employed by Gamera/gamut (knn) with those employed by
Aruspix (hmm). They evaluated both systems on a set of four 16th-
century part books printed using single-impression techniques. Their
results show that the hmm-based approach was more accurate than
the knn approach in recognizing this particular set of documents. In
addition they compared the optimization techniques available: Fea-
ture weighting using the built-in ga optimization in Gamera, and n-
gram modelling of musical sequences for Aruspix. They concluded
that the behaviour of both systems demonstrated the strengths of an
adaptable system for learning and adapting to a diverse set of books
and symbols, as would be encountered in a large-scale recognition
effort.

Audiveris

The Audiveris omr system (Bitteur 2014) features a trainable neural-
network recognition system. Symbols can be interactively added to
the classifier, and then the recognition system re-trained to accom-
modate new symbols.

To build the classifier, users select a symbol and are presented with
the automatically transcribed properties of the symbol, as well as an
ordered ranking of the most likely interpretations of the symbol (fig-

MUSIC DOCUMENT RECOGNITION

98

ure 3.10). If the system cannot recognize a symbol, the user can
manually assign the interpretation.

Figure 3.10: The Audiveris recognition view

Figure 3.11: The Audiveris classifier training configuration

Once a customized classifier has been built with additional sym-
bols, the system can be re-trained to accommodate the new symbols.
The configuration panel for this system is shown in figure 3.11. Unlike

3.3 OMR AS A PROCESS

99

both Gamera and Aruspix, there have been no published descriptions
or evaluations of the adaptive components of this software.

3.3.2.2 Summary

This section has discussed adaptive omr classification techniques, by
discussing the implementations of this technique in the systems cur-
rently available. The end result of both adaptive and non-adaptive
approaches to symbol classification is a set of labelled symbols. These
symbols will now proceed to the next stage, where these musical
symbols are placed in context with other symbols, thereby introdu-
cing the semantics of the symbolic representation.

3.3.3 Notation Reconstruction

The notation reconstruction stage attempts to reproduce the formal-
ized rules of music notation by examining spatial relationships
between the classified symbols. Spatial proximity between symbols,
in both horizontal and vertical dimensions, is an important consider-
ation for reconstructing the “semantics” of a particular notated piece
of music. For example, in symbolic notation the pitch of a given note
is determined by a clef. To re-construct this symbolic relationship us-
ing shapes, the pitch of a given shape identified as a note must be in-
ferred by locating the nearest and most probable shape identified as a
clef, and then determining how the clef, staff lines, and note head
align to identify the pitch of that note.

Grammar-based approaches (Coüasnon and Camillerapp 1995; Fer-
rand et al. 1999; Bainbridge and Bell 2003) re-construct musical struc-
tures by assembling the notation primitives according to a formalized
declaration of musical syntax, similar to those which govern natural
language grammars (e.g., “a complete sentence must contain a subject,
verb, and object”). This approach attempts to re-construct their func-
tion in a “top-down” approach by examining all primitives on a given
scene and applying syntactic rules for which symbol might be found

MUSIC DOCUMENT RECOGNITION

100

in a given context. In other words, a grammar-based approach at-
tempts to pre-define all of the given contexts in which a particular
symbol can appear, and its behaviour when encountered in a context.
For example, a sharp symbol (♯) that appears directly following a clef
symbol is understood to have a high likelihood that it is specifying a
key signature, while the same symbol encountered immediately pre-
ceding a note symbol is understood to alter the pitch of that note, but
only within the scope of the current measure. The advantage of the
grammar-based approach is that several syntaxes may be used on the
same set of musical primitives, which can be useful for identifying
several hypotheses about the interpretation of the musical symbols,
and then determine the most probable interpretation from these
hypotheses.

Another approach is to apply heuristic knowledge of the nature of
the symbols to reconstruct the musical structures based on supplied
rules for each symbol (Droettboom et al. 2009; Vigliensoni et al. 2011).
This is a deterministic process, providing a single set of known rules
to which each symbol must adhere. To return to the previous ex-
ample of identifying a sharp symbol, a heuristic approach to recon-
structing the score might specify that, should a sharp symbol be en-
countered within a certain distance from the left of a stave, it is
recognized as a component to a key signature. Identifying an acci-
dental may be done as a sub-process of note identification, where the
immediate area around every note is searched for a sharp or flat sym-
bol, within a pre-specified distance. Conceptually this is a relatively
straightforward approach, but it is inflexible to different possible in-
terpretations of a symbol and may require complex logic to identify
and handle all possible symbols. This means that most heuristic ap-
proaches to notation reconstruction are bound to a very narrow set of
notation styles, and are difficult to modify to accommodate docu-
ments that fall outside of the style.

3.3 OMR AS A PROCESS

101

3.3.4 Encoding and Music Representation

After symbol classification and music reconstruction, the output of
an omr system is typically encoded in a symbolic music representa-
tion format, for interchange between the omr system and other soft-
ware such as notation editors or audio synthesis. This requires conver-
ting the derived notation representation into a standardized
structure.

Structural representations of music notation in machine-readable
formats have existed since the early days of computing. Selfridge-
Field (Selfridge-Field 1997a) has compiled the definitive resource for
both functional and historical overviews of many of them. Some
formats, like Kern (Huron 1997) or MuseData (Hewlett 1997), use as-
cii text based structures while others, like niff (Grande and Belkin
1996), are binary file formats. In recent years, xml has been the basis
for several structural music encoding initiatives (Castan et al. 2001),
including MusicXML (Good 2001), ieee1599 (Baggi and Haus 2009),
and the Music Encoding Initiative (mei) (Roland 2002). Formats that
were once popular in notation software, like darms (Erickson 1975),
are not used in most current generation software systems. While
midi is a commonly-accepted standard, the representation of symbol-
ic music in this format is very poor when encoding anything other
than performance information (Selfridge-Field 1997b). For example,
since midi encodes a pitch value as an integer, it does not distinguish
between enharmonic equivalents; C♯4 and D♭4 are both represented
using the integer value 61. Similarly, midi does not encode indica-
tions of dynamics, but represents dynamics in a playback context by
varying the volume at which a particular note is sounded.

Most commercial omr systems offer export in multiple notation
formats, typically for use in either sound synthesis applications (e.g.,
midi) or editing in a music notation editor (e.g., MusicXML and
niff). Most omr systems also have their own internal data storage

MUSIC DOCUMENT RECOGNITION

102

format (Jones 2008a), but these are rarely understood by other soft-
ware systems and, as such, are not suitable formats for interchange
between systems.

3.3.5 Summary

omr systems are composed of several distinct sub-processes that
transform an image into a digital symbolic representation of the mu-
sic notation. The specific operations used in this process differ from
system to system, depending on the expected input or the desired
output from the system, but they generally fall into the categories of
image pre-processing, symbol recognition, notation reconstruction,
and music representation. Each of these steps typically take an input,
process it, and produce an output suitable for processing by another
tool, or a final representation for use in other tools.

While there are many software tools for performing omr tasks,
evaluating their performance relative to each other is not a solved
problem. Each task within the process may produce results that have
an impact on the overall accuracy of the entire omr process. To as-
sess and compare the impact and efficacy of each tool, their perform-
ance must be evaluated using agreed-upon benchmarks. Automated
methods of evaluating the process is a particularly difficult area of
omr systems development and will be discussed next.

3.4 Evaluation of omr Results

Evaluation of omr software allows researchers and developers to
quantitatively understand improvements within their own system,
and compare the performance of their system to others. Unfortu-
nately, there are few commonly accepted benchmarks for performing
these evaluations, or for expressing the results of these evaluations.
Byrd and Simonsen (2013) provide an overview of some of the more

3.4 EVALUATION OF OMR RESULTS

103

significant challenges in constructing an effective evaluation protocol
for omr systems.

The most challenging aspect of omr evaluation is creating an
automated method of comparing the uncorrected results of an omr
system with a human-corrected version to determine the errors.
Automated systems are necessary tools for comparison, as manually
evaluating every musical symbol produced by several different sys-
tems is extremely labour intensive and time consuming. However,
automated comparison systems have not been developed due to sev-
eral challenges. The difficulty of comparing the results stems primar-
ily from the amount of processing, interpretation, and contextual
knowledge required to “read” musical symbols. Errors may be intro-
duced at any stage of the omr process, and there is a need to distin-
guish between the errors that may be introduced within each of the
stages: image processing, symbol recognition, and errors in the score
reconstruction or musical semantics phase.

To give an example: if a note is correctly recognized and placed on
a staff but the clef governing its pitch was either mis-recognized, mis-
interpreted, or ignored, the system will assign the note the wrong
pitch value. The mis-recognition of the clef may be due to over-zeal-
ous binarization or staff-removal operations. Moreover, since the clef
governs the pitch on the staff, the pitch of every note on that staff
would likely be incorrectly identified. A naïve automated evaluation
system that simply checks against a known-correct representation for
the proper pitch would add an error for every note when, in fact, it is
just a single recognition error with the clef. However, the recognition
error would not indicate a problem with clef shape recognition, since
the error was likely introduced in the image processing task, produ-
cing an illegible clef symbol.

Another challenge for automated evaluation is that omr systems,
as they are presently conceived for end-users, are essentially “black
boxes,” where an input is provided and an output observed, but with

MUSIC DOCUMENT RECOGNITION

104

no opportunity to evaluate the impact each of the steps in the pro-
cess has on the output. Should a new technique come up that shows
promise for a given task, it cannot be “swapped” with a component in
a commercial omr system. Some methods of addressing this have
been developed, for example, the cost- and goal-directed evaluation
techniques (§3.4.6) but this does not completely address a need to
quantify the impact of each step in the overall process.

In this section, several approaches to evaluation will be presented.
None of these systems have, at the time of this writing, developed
into a commonly-accepted approach to omr systems evaluation.

3.4.1 Two-level evaluation

Bellini et al. (2007) propose an assessment criteria for judging omr
systems performance. They note that one of the challenges of com-
paring omr systems is the variety of music notation encoding
schemes. The same musical sequence may be modelled in several di-
fferent, but correct, ways within a single representation scheme.
Without a means of objectively and consistently assessing different
omr systems, indications of relative performance and identification
of techniques that improve recognition are difficult to discover. Their
assessment criteria are based on two levels of recognition. The first is
the correct identification of basic symbol primitives, designed to eval-
uate the symbol classification phase, while the second evaluates the
correct identification of composite symbols, designed to evaluate the
musical reconstruction phase.

3.4.2 Symbol-level Evaluation

Droettboom and Fujinaga (2004) describe a system for evaluating
small unambiguous units by relying on a purely graphical evaluation
of the system’s symbol interpretation, rather than relying on an un-
derlying representation language. They provide an example of a sys-
tem for identifying dots of augmentation where the presence of a dot

3.4 EVALUATION OF OMR RESULTS

105

of augmentation is identified as a binary condition. This creates a
very simple and straightforward means of evaluating the accuracy of
the system. They claimed that this evaluation system was particularly
useful in their adaptive recognition system for improving the results
of correctly pitched note-head symbol recognition.

3.4.3 Semantic-level Evaluation

Szwoch (2008) proposed an evaluation system that operates directly
on the underlying symbolic representation—in this case, MusicXML
was chosen as the symbolic representation. They note the difficulty
in comparing a complex symbolic representation across different sys-
tems, where it is unlikely that two omr systems will generate the ex-
act same encoding for the same musical content. As such they pro-
pose a method where the omr system is used to create the initial
encoding. This encoding is then hand-corrected, and the original and
hand-corrected encodings are compared for consistency. While this
approach was successful, it does little to reduce the labour-intensive
nature of omr evaluation.

3.4.4 Multiple-recognizer omr

Multiple-recognizer omr (mromr) was introduced by Byrd and
Schindele (2006; Byrd et al. 2010) and further developed by others
(Bugge et al. 2011). In this system, the output of multiple “black box”
recognition systems are combined, on the theory that each system
will have different failure modes. One system may recognize acci-
dentals better than another, but may perform worse on clef
recognition.

The heart of an mromr system is an evaluation method for com-
paring and “voting” on particular musical output features. If a symbol
is transcribed the same way across all omr systems it is likely to be
correct. Disagreement between systems would indicate a problem. By
identifying and understanding the failure modes, a weighting may be

MUSIC DOCUMENT RECOGNITION

106

assigned to a particular recognition system for that specific mode.
They give the example of note beams, where the SharpEye system
was the most accurate system for beam recognition. As such, the out-
put of SharpEye with respect to beams could be considered higher,
even if all other recognition systems (incorrectly) identified beams in
that location.

3.4.5 SmartScore, SharpEye, and O3MR

Jones et al. (2008) proposed two different types of evaluation. The
first is an evaluation based on an export to midi to provide a com-
mon, standardized encoding scheme across several omr systems. Un-
fortunately, as they note, an export to midi reduces the amount of in-
formation contained in the score. midi would discard several
important musical features such as staccato markings, dynamics, and
other performance indicators.

Their second evaluation focused on the symbolic reconstruction
phase of omr. Their evaluation focused on a system’s ability to cor-
rectly relate symbol primitives with higher-level complete musical
symbols. For example, they propose a metric for identifying pitch and
duration of a note, which is dependent on accurately recognizing and
relating the note head, stem, and flags (i.e., eighth- or sixteenth-note
stems). They report the results of this evaluation against three differ-
ent omr systems, SharpEye, SmartScore, and O3MR. Their evaluation
criteria allowed them to identify which relationships a particular
omr system had difficulties processing. For example, they demon-
strated that the SharpEye system could correctly detect a clef or clef
change with 66.21% accuracy, while the O3MR system could correctly
identify it with 96.55% accuracy. They concluded that the SharpEye
system had the best average performance of the three systems across
all of their criteria.

3.4 EVALUATION OF OMR RESULTS

107

3.4.6 Cost-directed Evaluation

In Pugin et al. (2007a) they extend the goal-directed evaluation tech-
nique to estimate the real-world “cost” of errors based on an estimate
of the amount of human involvement needed to correct errors. For
example, deleting an extra note is low cost as it involves a single
operation (hitting a delete key), while adding a missing symbol is the
most expensive operation involving several selection and insertion
operations. They evaluated an adaptive system that improved its re-
cognition rate as more symbols were corrected and re-integrated into
the adaptive recognition system. They reported a decrease in human
editing cost by a factor of three as the accuracy of the system
improved.

3.4.7 Summary

Evaluating the performance and accuracy of different omr systems is
one of the largest unresolved issues in omr systems development.
Systems for automatically evaluating and comparing different ap-
proaches to omr are needed to measure improvements to the tools
in the field, but there are currently no available “out-of-the-box” tools
for evaluating omr systems.

3.5 Large-scale processing

[omr] has been an active area of research since its inception in
1966, and even though there has been the development of
many systems with impressively high accuracy rates…it is
surprising to note that there is little evidence of large collections
being processed with the technology… (Bainbridge and Wijaya
1999, p. 474)

In this section we will look at several omr systems capable of pro-
cessing large amounts of music documents. These systems are in

MUSIC DOCUMENT RECOGNITION

108

varying stages of implementation (including existing as just a propos-
al), but none are currently available for public use (as far as I know).

3.5.1 cantor

cantor was designed as a “general framework” for omr (Bainbridge
and Bell 1996; Bainbridge 1997), where jobs within the omr process
are controlled by a co-ordinating process. A single cantor instance
may incorporate many different techniques to perform the same task,
and the co-ordinator process can automatically “judge” the outcome
and use the result of the task that produces the fewest errors later in
the pipeline (McPherson and Bainbridge 2001). The cantor system
is designed to run “headless”—that is, without a graphical user inter-
face—which makes it suitable for automated processing.

Bainbridge and Wijaya (1999) report the results of processing a 672
page “Fake Book” of popular songs, and The Sacred Harp, a 417 page
book of music for four-part choirs. To evaluate the accuracy of their
system they use the number of edit operations needed to correct the
score to be a “faithful reproduction” of the original. Despite their sys-
tem achieving high accuracy rates (above 90% in most cases), they
note that this translated to approximately seventeen edits per hun-
dred notes for the Fake Book, and three per hundred for The Sacred
Harp to recreate the original source. This translates into “considerable
effort” on the part of a human editor. The cantor system was used
as the omr component in the Melody Index (meldex) project, part
of The New Zealand Digital Library project (Bainbridge et al. 1999;
Bainbridge 2000).

3.5.2 Lester S. Levy Sheet Music Collection

The Lester S. Levy Collection of Sheet Music at Johns Hopkins Uni-
versity was the first project to propose the development of a work-
flow system for large-scale optical music recognition retrieval systems
(Choudhury et al. 2000a; Choudhury et al. 2000b; Choudhury et al.

3.5 LARGE-SCALE PROCESSING

109

2001). While these workflow solutions were proposed it appears,
however, that only a few components of this project were actually
built.

3.5.3 imslp and Peachnote

The International Music Score Library Project (imslp) (Project
Petrucci 2014), also known as the Petrucci Music Library, is a crowd-
sourced wiki of public domain scores. As of this writing it contains
79,962 works by 11,106 composers. Users digitize and upload scanned
scores to the website, of varying quality and resolution, and these
scores are then curated to check that the submitted files are in order
and do not infringe copyright. The scores that users submit may be
digitized from printed or manuscript sources, or they may be editions
that were digitally typeset by that user.

Viro (2011) developed a system, Peachnote, for performing omr on
the entire imslp corpus with the goal of making the music search-
able. An automated system was built that would automatically
download a pdf document from the imslp database and perform
omr on the page images using commercially-available omr systems.
The uncorrected recognition output was indexed as melodic n-grams
(Downie 1999) to enable search and retrieval of these scores. Users
can provide a query for pitch and rhythm, and the results are visual-
ized using the Google n-gram viewer (Michel et al. 2011), with links
provided to download the pdf from the imslp collection. No details
have been provided on the accuracy of commercial omr systems on
such a diverse set of documents, or on the effectiveness of retrieval
using the extracted data.

3.5.4 probado

The probado project is an initiative for developing content-based
analysis for non-textual materials, including music documents. One
of the goals of this project is to create automated methods of aligning

MUSIC DOCUMENT RECOGNITION

110

multiple representations of music, particularly audio recordings and
their scores (Damm et al. 2012). They apply omr to scanned sheet-
music images, extracting a mid-level chroma representation of the
scanned score from an uncorrected midi representation. A similar
representation is extracted from the audio recording. These mid-level
representations are automatically aligned and synchronized using dy-
namic time warping (figure 3.12) (Müller et al. 2006; Kurth et al.
2008). This approach is robust to noise caused by errors in both the
omr and the polyphonic audio transcription. This technique was re-
ported to correctly align scores and audio 87% of the time (Fremerey
et al. 2008).

Figure 3.12: Score-audio synchronization in PROBADO (from Kurth et al. 2008)

Users of the probado Music interface may search and navigate a
multimodal collection of score images, audio, and lyrical information.
The synchronization data is used in their SyncPlayer application
where the interface displays the original image with a highlighted re-

3.5 LARGE-SCALE PROCESSING

111

gion indicating the location as the score plays (figure 3.13) (Thomas et
al. 2012b).

Figure 3.13: SyncPlayer interface for the PROBADO project (from Thomas et al.
2012)

A custom-built workflow system, macao, is used to maintain a
consistent chain of tools and processes for each piece of material
(Thomas et al. 2009; Thomas et al. 2012a). This system was used to
process approximately 72,000 score page images and 800 commercial
CDs held by the Bavarian State Library. (Due to copyright concerns
these materials are not available outside of the library.) A proof-of-
concept system6 was built using public domain materials, containing

6. The address for this proof-of-concept site is provided at http://www-
mmdb.iai.uni-bonn.de/probado/ (accessed 8 July 2014). However, despite trying to
access it several times in the course of writing this chapter, the actual demo site
(http://probado.iai.uni-bonn.de:8080) has been inaccessible. A video (in German)
showing the system is available at https://www.youtube.com/
watch?v=ubp9QGVmxrQ, beginning at 2:00.

MUSIC DOCUMENT RECOGNITION

112

a further 1,900 score pages and 31 hours of audio recordings (Thomas
et al. 2012a).

3.5.5 Summary

Although omr was conceived from the beginning as a technology
that could operate on large collections of document images, in prac-
tice this application of the technology has not been widely deployed.
In this section we have examined some of the most notable projects
in large-scale music document processing.

One promising avenue for enabling large-scale processing is server-
based omr systems. Remotely-accessible servers can allow multiple
simultaneous users of a shared omr application to take advantage of
enhanced hardware resources for processing larger quantities of docu-
ment images than desktop or laptop systems. The next section will re-
view existing server-based omr systems.

3.6 Server-based omr

Most omr software packages, especially those intended for use by
the general public, are locally-installed desktop applications. This in-
cludes popular commercial packages such as PhotoScore (Neuratron
2014) and SmartScore (Musitek 2014), as well as open-source applica-
tions such as Audiveris (Bitteur 2014). These applications present
users with a graphical user interface (gui) featuring tools for perform-
ing omr on page images or pdf files that are locally available on a
user’s computer.

Server-based omr systems differ from locally-installed applica-
tions. They are designed to run on remote computers and can be used
by multiple people interacting with the same software over a net-
work connection. This has several advantages. Updates to the soft-
ware are immediately available to all users of the system, without re-
quiring individuals to download and install patches or updates. A

3.6 SERVER-BASED OMR

113

server-based omr system can take advantage of the higher perform-
ance components and networks available in these systems when
compared to desktop and laptop systems: faster processors, larger and
faster hard disk systems, greater amounts of ram, and faster network
connections. As well, multiple server systems may be networked to-
gether to provide a cluster-based solution for omr, where the recogn-
ition workload may be distributed over multiple computers.

Some server-based omr systems are designed to run “headless” or
without a graphical interface for user input. This is suitable for auto-
matically processing large numbers of image files. Other server-based
systems provide a remotely-accessible interface, such as one available
in a web browser, to control and interact with the system over a net-
work connection.

While server-based omr system design has been proposed several
times before (Bainbridge and Wijaya 1999; Choudhury et al. 2000a;
Choudhury et al. 2000b), there are currently no publicly-available ser-
ver-based omr systems available. However, two are known to have
been implemented as prototype systems.

3.6.1 omrsys

The omrsys system described by Capela et al. (2008) was implemen-
ted as a Ruby on Rails application that ran on a web server. Users
could upload images to a web server to be processed. To perform omr
it used the Openomr library (Desaedeleer 2006), although there
were provisions for integrating multiple omr recognition stages. The
uploaded images were submitted to the omr process, and a Mu-
sicXML file was produced of the score. A text-based notation editor
(i.e., an xml editor) allowed users to edit the MusicXML file directly.

3.6.2 Audiveris

Audiveris is an open-source desktop-based omr application for re-
cognizing cwmn. At the 2013 Music Hack Day in Vienna a prototype

MUSIC DOCUMENT RECOGNITION

114

system for using Audiveris on a server system was demonstrated (Bit-
teur 2013; Bonte et al. 2013). To perform omr on a page image, a user
uploaded an image using a web browser. This image was then pro-
cessed by a remote installation of Audiveris running on an Amazon
EC2 instance (Amazon.com 2013). There was no graphical user inter-
face for controlling the Audiveris process. The results of the omr pro-
cess were sent back to the user as a MusicXML file.

3.6.3 Summary

Server-based omr is a promising application for scaling omr systems
to accommodate multiple users on computer systems that typically
have more hardware and software resources than personal desktop or
laptop computers. This section has reviewed the few known in-
stances of server-based omr systems.

3.7 omr for Older Music Notation

The final section of this chapter will review applications of omr for
older music notations. Later chapters of this dissertation will examin-
ing systems built for document analysis of non-cwmn music docu-
ments; in particular, chant and mensural notation. This section is
presented as background.

The first system for performing omr on older notation systems
was proposed by McGee and Merkley (1991). Their system was used
to recognize handwritten manuscripts of chant notation. Although
they were operating on notation with distinct staff lines and absolute
pitches (given by a clef) their paper makes no mention of how the
pitches were identified. Rather, they claim that their system can oper-
ate by identifying bounding rectangles and the neume shapes could
be classified based on this information. Staff lines were removed at
an early stage in the process, but they provide no details on how
these staff line positions were re-integrated with the neume symbols.

3.7 OMR FOR OLDER MUSIC NOTATION

115

classification of square note notation based on handwritten manu-
scripts of the 14th-17th century. Recently the “Optical Neume Recog-
nition Project” has been attempting to automate transcription of
neume notation written in the staffless St. Gallen style (figure 3.15)
(Helsen 2011).

Figure 3.15: Example of St. Gallen neume notation

3.8 Chapter Summary

This chapter has reviewed several specific areas in music document
recognition. In particular, it has attempted to frame omr as a process
composed of several stages. There is a wide range of tools available
for performing each step in the omr process, with each tool or tech-
nique demonstrating different strengths and weaknesses when ap-
plied to specific types of document images. Many of these tools are
readily available in open-source toolkits and frameworks and have
been used to implement several omr systems suitable for transcrib-
ing a wide range of music document types, featuring many different
notation styles.

Yet most omr systems available make it difficult or impossible to
integrate these different tools. Commercial systems are provided as
opaque “black boxes” and must be evaluated based on the output of
the entire process. Open-source systems have the advantage of hav-
ing the source code readily available, but integrating different tech-
niques means the user must become a developer. Research systems

3.8 CHAPTER SUMMARY

117

are not generally available and are often highly customized to ad-
dress a specific need or research topic.

Evaluating omr systems is one of the largest open issues that must
be addressed. Evaluation allows comparisons of different approaches
but with the black-box approach it is difficult to identify the particu-
lar stages in any given omr system that have the greatest (or least)
impact in the process and, more importantly, it does not provide a
means of quantifying the differences between systems. Several ap-
proaches have been developed to address this problem, but no tech-
niques have been widely adopted by the community.

There is currently no omr software available for use in large-scale
recognition projects. Despite the similarities between omr and ocr,
music recognition research is still focused on a transcription-only ap-
proach. omr systems capable of high-throughput page image pro-
cessing, enough flexibility to deal with the wide variety of notation
symbols and document types, and symbolic notation formats capable
of capturing and communicating omr results between systems are all
under-developed areas in omr research.

Very few large-scale omr projects have been proposed, and even
fewer successfully implemented. This is likely due, at least in part, to
the amount of work required to correct the results such that tran-
scribed output of the omr process is as error-free as possible. In a
transcription-only omr process, the correction process is crucial to
creating an accurate representation of the underlying source material.
However, error correction requires significant human intervention in
the process, and is labour-intensive and costly. As such the ability to
scale recognition projects within time and financial budgets is dir-
ectly related to a project’s requirements for accuracy in the system.

Despite the challenges in evaluating omr systems, many of the
systems that have been developed report accuracy rates approaching
or greater than 90%. While this represents a significant number of er-
rors to correct, it may be that these omr systems can still provide us-

MUSIC DOCUMENT RECOGNITION

118

able results in an uncorrected context. In textual recognition, usable
systems for ocr-based document retrieval were created by employ-
ing the technique of aligning transcriptions and images. This same
technique is needed for music recognition, and may represent the
first step to enabling music document retrieval at a similar scope and
scale.

The remaining four chapters of this dissertation will describe sev-
eral novel approaches and tools for omr that may be applied to build
music document image collections.

❃

3.8 CHAPTER SUMMARY

119

4.
Towards Large-scale Music Document

Recognition
Large-scale music document recognition is the application of optical
music recognition techniques and technologies to mass digitization
efforts, transcribing music notation content from these images to
make them searchable and retrievable. As discussed in chapter 2,
mass digitization projects are notable for their scale and scope, apply-
ing character recognition to diverse collections of texts regardless of
content, language, or historical importance. In the same way, systems
for mass digitization of music documents need to accommodate a
wide variety of music document types, including different notation
systems and printing methods.

Existing omr systems are designed for small-scale recognition.
Very few omr systems have been built to process large quantities of
music document images, and no purpose-built systems for this task
have been developed since the beginning of the mass digitization era.
ocr has become the core tool for enabling text-search navigation
through document image collections. No omr systems exist that can
provide the same document image navigation as those available for
textual materials. This chapter will discuss some of the reasons be-
hind this, and suggest ways to build omr systems designed for large-
scale recognition tasks.

To accomplish large-scale music document recognition, new sys-
tems should be built to decentralize, distribute, and co-ordinate omr
processing tasks in such a way that many people, with varying skill
sets and in many different places, can work together towards optical
music recognition of millions of digitized music documents—a sub-
stantial undertaking. While most omr systems to date have focused

121

on small-scale initiatives, there is almost no literature that discusses
the implications of scaling omr systems to millions of documents.

This chapter will begin with a brief discussion of cost and scale in
digitization workflows (§4.1). It will then look at scientific workflow
management software (§4.2) and discuss how it can serve as a useful
model for designing large-scale music document recognition systems.
Three novel techniques for omr will be described: Distributed omr
(§4.3), Collaborative omr (§4.4), including opportunities for “crowd-
sourced” participation, and Networked Adaptive omr (§4.5). Finally
this chapter will introduce the mei format for symbolic encoding of
music notation (§4.6), suitable for use in a large-scale omr system.

4.1 Costs and Scale in omr

One of the primary challenges to address for music recognition is
how to design omr systems that are capable of high throughput (i.e.,
processing large quantities of page images) while minimizing human
involvement. Current omr systems are designed for small-scale re-
cognition tasks, and have a built-in dependency on human involve-
ment to operate the process on a single workstation. This chapter will
describe new ways of designing the omr process so that a single hu-
man can control the recognition of thousands, or even millions, of
page images. Similarly, methods of distributing omr tasks across
many different computers and involving many different people are
also proposed as a means of optimizing human involvement. These
are all designed to ultimately help reduce the costs of large-scale mu-
sic recognition so that libraries and other institutions can have a prac-
tical means of creating electronically searchable representations of
their digitized print collections.

Large-scale digitization and recognition initiatives are a costly ven-
ture. There have been several detailed studies about large-scale text
document digitisation and recognition, focusing especially on costs

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

122

associated with these projects (the jstor and Making of America sec-
tions discussed in Chapter 2, for example). The processes associated
with digitizing and transforming digital images into searchable, re-
trievable entities using ocr frequently run in the millions of dollars
for large collections. Brewster Kahle (2009), founder of the Internet
Archive and the Open Content Alliance, gives estimates of the costs
of several book digitization programs. Notably, he estimates that the
cost of the Google Book project is between $5–$10 per book, which
gives a total cost for 20 million books at between $100 and $200 mil-
lion. (Google has not released any official numbers providing these
details.) Of these costs, the cost of human involvement, including
salaries, tools, and working environments, is the single biggest ex-
pense in a digitization initiative (Arms 2000).

There have been no similar studies on the cost of large-scale music
document digitization and recognition. However, it is safe to assume
that such initiatives would incur similar, if not higher costs due to the
greater complexity of music notation and the challenges of recon-
structing a symbolic music representation from a page image.

Optimizing omr workflows for large-scale digitization and recogn-
ition requires re-evaluating existing tools to identify ways in which
human and computer actors may co-operatively accomplish tasks.
Computers do not get bored or require breaks, and as such can be
tasked with applying the same operation to many images, but a fully-
automated recognition system is likely to produce unacceptable re-
cognition results. Humans, on the other hand, can manage the pro-
cess and provide the computer with direction, feedback, and discern-
ment. Humans can also work together to co-operate and co-ordinate
efforts to produce accurately transcribed materials.

The following design principles for large-scale omr systems are
proposed as ways of producing music document transcriptions from
large quantities of document images through the use of both human
and machine contributions:

4.1 COSTS AND SCALE IN OMR

123

1. Scientific workflow systems for consistent, repeatable, and
scalable processes to collections of music document page
images.

2. Distributed omr to decentralize the omr process, and dis-
tribute the tasks in the omr process across multiple people
and multiple computer systems.

3. Collaborative omr, including crowdsourcing, where mul-
tiple individuals are provided with web-based tools to
provide correction, verification, or quality control to an omr
process.

4. Networked Adaptive omr, where adaptive omr tech-
niques can be expanded in the context of networked omr
systems, collecting correction data to improve the accuracy of
the recognition process across the entire network.

5. Output format encoding, using the Music Encoding Initiat-
ive supports storage and retrieval of music notation in rela-
tionship to the digitized document images, for use in search
and analysis systems.

The remainder of this chapter will examine each of these design
principles, and describe how they may be used to create omr systems
that scale to large numbers of page images, while at the same time
addressing issues of cost and workload on human participants in the
process.

4.2 Workflow Software

Workflows are at the heart of many industrial processes. In their
most basic form they are chains of individual tasks that, when joined
together form a “pipeline” through which an object passes, with each
step producing an output for the subsequent task. Workflows are
present in factory assembly lines, business processes, and many other
areas where a consistent and reproducible result is desired.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

124

Generally stated, workflows are directed graphs. Nodes in a work-
flow represent operations or tasks, while directed edges (arrows) rep-
resent the flow of data or materials between nodes. A visual repres-
entation of a workflow can provide a high-level representation of the
overall process by showing these nodes and edges. A simple visual
representation of a workflow is given in figure 4.1.

Figure 4.1: Simplified visual representation of a workflow

Several software systems have been developed to design work-
flows for various disciplines. Business procedures, accounting sys-
tems, customer support services, industrial assembly lines, and other
process-oriented tasks often have specialized software to model the
flow of data or goods through a pipeline of tasks.

Scientific workflow software is a class of applications that is used
to construct and execute experimental processes by co-ordinating the
flow of data between different data processing tools and data sources.
These systems allow scientists to use heterogeneous collections of
tools (i.e., software drawn from several different toolkits) to share, co-
ordinate, and co-operatively develop experimental processes. These
are used in a variety of disciplines to, for example, process data
gathered by astronomy telescopes, genetic sequences, or textual data
mining. They have also been used for document recognition where
scientific workflow systems have been used to define the process for
extracting text or document image structure from large collections of

4.2 WORKFLOW SOFTWARE

125

page images (Neudecker et al. 2011; Blanke et al. 2012). The key fea-
ture of these systems is their ability to chain together different tools,
drawn from different toolkits, in an environment where the docu-
ment recognition process can be designed visually and, when ex-
ecuted, can run these processes on several computer systems with
minimal human oversight.

This section will discuss scientific workflow systems, including an
in-depth look at how they were used for historical document recogni-
tion in the Improving Access to Text (impact) project. The advant-
ages of employing scientific workflow systems for omr will then be
described.

4.2.1 Scientific workflow systems

Scientific workflow software systems were developed as an alternat-
ive to the conventional method of experimental data processing us-
ing custom-built “glue” software to bind together tools in a one-off
system for a single experiment. Gil (2007) refers to the conventional
method as “unassisted workflow composition” and notes that this ap-
proach has several limitations in terms of usability and scale. These
limitations include: the re-usability of the workflow by people other
than the original developers of the system, application of the tools to
different data sets, tight coupling of the processing steps such that
adding or removing a task in a workflow requires intimate know-
ledge of the underlying implementations of previous and subsequent
tasks, and the error-prone nature of manually managed processes. As
an alternative, Gil suggests the use of scientific workflow software to
manage complex scientific workflows, where custom glue code is re-
placed with a formalized environment for defining the tools in the
process and the flow of data between these tools.

While workflow systems have not been proposed for omr applica-
tions, they have been proposed for other aspects of music informa-
tion retrieval (mir). Page et al. (2013) notes that the formalized work-

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

126

flow approach differs significantly from traditional approaches to
data processing in mir. In their paper they examined how research-
ers applied several popular audio processing tools to research in mir.
In most instances, these researchers chose a single, integrated envir-
onment for processing their data, rather than choosing to integrate a
wide variety of tools drawn from a heterogeneous collection of pro-
cessing toolkits. Page et al. posit that the “monolithic,” integrated ap-
proach was favoured due to the lower “overhead,” or effort required
to integrate tools drawn from several different frameworks.

While our study has shown that no single mir system provides
comprehensive coverage across all notions of reuse, it also raises
plentiful opportunities for systems that share common concepts
to use these as a basis for abstraction and interoperability. Yet
ismir proceedings indicate little cross-fertilization of most
systems beyond the “home” lab and close collaborators. An
explanation for this may be the difference between the potential
for reuse and the overhead of actual implementation. (Page et al.
2013, 450)

They conclude that this overhead, as Gil also suggests, is caused by
the lack of formalized methods of interoperability between hetero-
geneous tools—or, to be more specific, the lack of systems to provide
“reusable, repurposable, and repeatable” methods of performing mir-
related research by leveraging heterogeneous collections of pro-
cessing tools and environments. They conclude that scientific work-
flow systems can provide this type of environment.

Repeatability and re-usability of a particular workflow is one of the
key advantages of using a workflow system for building a data pro-
cessing environment (Curcin and Ghanem 2008). Conclusions drawn
from experimental data can be verified by running the same work-
flow with different data and checking if the initial conclusions can be
verified and generalized. A workflow may be shared with others in
order to re-create a process that someone has developed for perform-

4.2 WORKFLOW SOFTWARE

127

ing a specific task. Shared workflows may be collaboratively built,
creating a mechanism for iteratively refining a process to accommod-
ate different data or investigate new hypotheses (Goble and De
Roure 2007).

Several scientific workflow management software applications
have been created. These include Taverna (Hull et al. 2006), Kepler
(Michener et al. 2007), and Meandre (Llorà et al. 2008) each de-
veloped as workflow systems to manage analysis of large amounts of
scientific data for use in a wide range of fields, including climate stud-
ies, genetics, or astronomy.

All of these workflow systems operate along similar lines. A graph-
ical user interface allows users to visually compose a workflow by
arranging (and re-arranging) a graph representation of the workflow.
Nodes in the graph represent tools that can be used to perform a giv-
en task. Tools may be provided by locally-installed software, or may
be provided by a remote system over a network connection. The flow
of data between tools is represented by lines that connect the nodes
(i.e., the edges of the graph). The user creating the workflow can con-
figure each tool with settings to customize the behaviour of the tool.
An example of a graphical representation of a workflow developed in
Taverna Workbench is shown in figure 4.2, taken from a figure
provided in Hull et al. (2006). A second example showing a workflow
in Meandre is shown in figure 4.3 reproduced from Page et al. (2013).

After it is designed a workflow is executed. The user provides one
or more input sources (e.g., one or more datasets, depending on the
task), and the data progresses through each task, taking input from a
previous task and producing an output for the next task. These tasks
may be provided by different software tool sets. The same workflow
application may be used to assemble workflows for processing gen-
omic data (Curcin and Ghanem 2008), astronomy (Walton and
Gonzalez-Solares 2009), or text mining (Llorà et al. 2008). Tools ori-
ginally designed for searching genomic data may be integrated with

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

128

generalized interfaces for downloading specific data sets, or provided
by a tool for performing a specific statistical analysis.

Figure 4.2: Graphical workflow example composed in Taverna. This workflow
was extracted from a Grave’s Disease case study example (from Oinn et al.

2006).

4.2 WORKFLOW SOFTWARE

129

Figure 4.3: Graphical representation of a workflow in Meandre. This workflow
was built to provide genre analysis of audio data.

Scientific workflow systems are also used for document image ana-
lysis and ocr, bringing different tools together to operate on digital
page images. This will be examined further in the next section.

4.2.2 Workflows in Document Image Recognition

A flexible approach to building document workflow systems has
been proposed as part of the Improving Access to Text (impact) pro-
ject (Dogan et al. 2010). The focus of the impact project was to devel-
op textual recognition systems for historical texts that standard com-
mercial ocr software could not accurately recognize. As part of this
process, they identified a need for a highly customizable ocr system
where they could integrate multiple independent tools for dealing
with variations in font faces, page layouts, or page images taken from
damaged sources.

4.2.2.1 IMPACT and Taverna

As part of their investigations, the impact project adopted the Tav-
erna scientific workflow system to provide processing “pipelines” for
performing document analysis. Using Taverna, they were able to in-
tegrate existing tools into custom document image processing

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

130

pipelines. These tools were installed on remote systems, allowing
users to use them without needing to install and maintain these sys-
tems independently. Interfaces to these tools were created following
a service-oriented architecture (soa) approach (Perrey and Lycett
2003) so that individual components could be accessed by sending
network requests to the host system for that tool. This is shown in
figure 4.4.

Figure 4.4: Network interface for a command-line application in Taverna
(from Neudecker et al. 2011). This is a generic representation of one tool (i.e.,

node) in a workflow.

In Neudecker et al. (2011) they identified several benefits of this
approach over traditional approaches to document image analysis. In
these scenarios, a developer is a person or group of people develop-
ing new software tools for performing document image recognition
tasks, while a user is an individual who uses these tools to design and
execute workflows composed of these tasks.

Distributed development

Remotely-hosted services (i.e., server-based software installations)
do not require users to install and maintain document image analysis
systems on their local machines. Users have access to a large library
of document analysis tools, as well as computing resources, with no
systems administration overhead for installing or maintaining up-
dated versions. Developers of these systems can make new recogni-

4.2 WORKFLOW SOFTWARE

131

tion techniques available to these users by installing them on a single
server, making a single installation available to all users. Developers
may focus on developing a single tool that can be integrated into
users’ workflows, rather than developing entire applications.

Demonstration design

The method of building a document recognition system by dragging
and dropping objects onto a workspace provides a straightforward
visual metaphor for integrating a wide variety of remotely-hosted
tools. Users may build their own workflow, or modify an existing
workflow, to incorporate new tools as they become available. Using a
visual method of building the workflow allows the user to visually
“demonstrate” and communicate the design. In non-workflow sys-
tems this is typically accomplished by editing the underlying code for
the application to add new functionality.

New Service Mashups

In Taverna, workflows themselves may be exposed as complete ser-
vices. This creates the opportunity for users to incorporate existing
workflows into their own, creating a “mashup” composed of many
workflows. The tasks, and the software used to perform these tasks, is
hosted on a remote machine but network access means that users
can integrate services drawn from several sources into a single
workflow.

Evaluation

Evaluation services, to measure recognition accuracy or other per-
formance measurements, may be incorporated into a workflow. The
impact project developed several tools to automatically compare
workflow results with pre-transcribed “ground truth,” giving research-
ers the ability to quickly iterate tool designs to increase accuracy.

An example is shown in figure 4.5 where a simple workflow has

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

132

been developed to compare the results of an image de-warping pro-
cess on the resulting ocr results. (This resembles the goal-directed ap-
proaches to evaluation discussed in the previous chapter; see also Tri-
er and Jain 1995). Using an automated evaluation task, researchers
can incorporate new processes very easily and immediately see a
quantitative analysis of the results of these modifications in the re-
cognition output.

Figure 4.5: Evaluating the effects of image de-warping on OCR recognition
results (from Neudecker et al. 2011)

Scalability

Taverna was designed to handle and process very large data sets in
disciplines such as bioinformatics and astronomy, and can take ad-
vantage of parallel and distributed computing approaches to scale
and distribute workloads over several processors, or even several
computers. For document recognition workloads, this means that sev-
eral computers may be employed in executing a single workflow,
with a central Taverna instance co-ordinating the distribution of im-
ages and collecting results from several systems.

4.2.2.2 Taverna in Use

As of this writing, the impact project has made 484 tools available
to users of its platform for performing text digitisation (IMPACT Pro-

4.2 WORKFLOW SOFTWARE

133

ject 2014). Users of their digitisation system can access this library of
tools and incorporate them into their own workflows for processing
their collections. As of 2011, they reported that over 100,000 page im-
ages had been processed by the Taverna workflow system (Neu-
decker et al. 2011).

While the impact project has demonstrated that workflow soft-
ware is a promising approach to developing document recognition
systems for textual materials, there have been no investigations of
their use for music document recognition systems. In the next sec-
tion we will look at conventional approaches to building omr soft-
ware, and propose a novel approach using workflow systems to build
customizable omr processes.

4.2.3 Workflows in omr

While textual and musical document recognition processes share
many similarities, they are sufficiently different in the tools and pro-
cesses they use to warrant explicit investigation and discussion of a
music-specific approach to document recognition workflows. To date,
there have been no investigations of the use of scientific workflow
systems for omr.

The conventional approach to omr systems can be described as a
vertically-integrated system, created using the “unassisted workflow
composition” techniques discussed previously. As discussed in
Chapter 3, there are a wide variety of tools and approaches that have
been developed for each stage of the omr process. However, all exist-
ing omr systems incorporate just a small selection of these ap-
proaches, incorporating them into a single, purpose-built omr applic-
ation. Users may have the ability to change a few settings to adjust
the execution parameters of a given task, but they have no ability to
change the order, or composition, of the overall process without edit-
ing the underlying code. In most omr systems designed for general

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

134

use, modification of the omr process to use different techniques is di-
fficult or, in the case of closed-source systems, impossible.

In a workflow-based omr system, the recognition system is the ag-
gregate of the tasks assembled in the workflow, and not a single piece
of software. Using workflow management software, custom omr sys-
tems may be assembled from a pool of available processing tech-
niques, with tools available to be “mixed and matched” according to
their performance on a given set of document images. The “glue” that
binds each task together is the workflow execution environment, and
connecting these tasks, from the output of one to the input of anoth-
er, allows the user to direct data from task input to task output using
a heterogeneous collection of tools.

4.2.4 Criticisms

While workflow management systems provide a way of chaining to-
gether disparate systems, the tools and interfaces required to repres-
ent the process to the user can pose several problems.

One problem is the use of visual programming interfaces for dis-
playing and manipulating the workflow process. Whitley (1997)
provides a thorough discussion of the areas and tasks where a visual
programming approach may lead to problems with understanding
the design of a software application. While these interfaces have
been shown to be effective in some cases for learning and under-
standing logic flow in a programming environment, the “leaky ab-
stractions” (Spolsky 2004) that must be made to translate software
design to this visual representation can obscure many of the underly-
ing implementation details and hamper the debugging process.

A second problem is that a workflow system can provide a user
with less flexibility despite being designed to provide greater inter-
operability between disparate components. Reijers (2006) presents an
anecdotal case for this by observing that workflow management sys-
tems in traditional business applications were difficult to set up. Once

4.2 WORKFLOW SOFTWARE

135

set up, individuals were reticent to disturb a “precious balance,” even
at the expense of developing ad-hoc software to fill un-met needs.
Rijers notes, however, that once established, a workflow system
helped to standardize procedures, practices, and information sources
among participants in the workflow.

[Workflow management systems] are widely applied and have
become popular because of their positive effects on logistic
parameters such as flow time, service time, and resource
utilization. At the same time, the promise of bringing flexibility
to the work floor has not yet been fulfilled (Reijers 2006, 272).

4.2.5 Summary

This section examined scientific workflow systems and their uses in
processing a wide variety of data. A workflow system allows users to
design and manage the process of transforming data from one repres-
entation to another, for the purposes of extracting specific informa-
tion from a diverse range of possible data input. Workflow systems
were contrasted with the more conventional approach of unassisted
workflow composition, where manually-created workflows built us-
ing custom, single-purpose “glue” code were critiqued for their limited
scalability and re-usability.

The impact project has demonstrated the viability of a workflow
approach for building document recognition systems for historical
document recognition. This inspired us to create workflow-based ap-
proaches to omr, Rodan (Chapter 5). In an omr workflow, tasks may
be assembled into customized recognition workflows that are
tailored to processing a given input and producing a specific output.
Tasks that specialize in processing certain types of data, such as de-
graded images or specialized notation symbol classification, may be
combined with other tasks, providing users with the ability to build a
processing system customized for the specific needs of a project, cor-
pus, or document collection.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

136

The next three sections will propose several novel principles for
designing omr systems. These techniques are an expansion of the be-
nefits of workflow-centric systems proposed by the impact project,
and are proposed as a way to further develop omr systems that can
be used to process large numbers of music document images.

4.3 Distributed omr

Distributed omr refers to the distribution of tasks in an omr work-
flow across multiple actors. These actors may be human or computer,
and all actors may be in geographically different locations from each
other, communicating across a network. Unlike desktop-oriented
omr systems, where a human operator controls the software installed
on their personal computer, a distributed omr system allows mul-
tiple users to interact with remotely-hosted omr tools, running on
one or more remote server systems. The distribution of omr tasks
across several individuals and across several machines has not been
explored as an area of development for omr systems. This section
will review two technologies that enables distributed omr systems:
Web applications, for distributing control and interaction across sev-
eral users, and parallel and distributed computing for distributing task
execution and processing across several computers.

4.3.1 Web Applications

One of the first requirements of a distributed omr system is the sep-
aration of a control surface, or user interface, from the system that
performs the omr. This requirement allows several individuals at di-
fferent workstations to connect with, observe, and control a remote
omr system. This section will provide a brief background of how web
applications function, and a discussion of how they can be used to
provide a new kind of omr system.

The World Wide Web (www) was first conceived as a system for

4.3 DISTRIBUTED OMR

137

delivering remotely-hosted documents, or “pages,” to a user’s com-
puter (Berners-Lee et al. 1992). These documents are structured using
the HyperText Markup Language (html), a minimal programming
language that provides a method of “marking up” text documents
(e.g., delineating paragraphs or headings) as well as the ability to cre-
ate links to other html pages on other remote systems. Web clients,
of which the most common is the “web browser,” use this markup to
render the page in a visually suitable way for a user.

Every document on the www is identified by a unique Uniform
Resource Locator (url), or, more colloquially, an “address.” These ad-
dresses contain enough information to allow the underlying network
system to resolve the address to a specific page hosted on a specific
server. Users type in an address, or follow a link in a page, and re-
trieve the desired page hosted by that server.

The protocol governing the transmission of html between the cli-
ent and server is the HyperText Transport Protocol (http) and is de-
signed to be asynchronous and stateless (Fielding et al. 1999). State-
less communication requires that both the client and the server have
to assume no prior knowledge (“shared state”) of each other. Any
communication between a client and a server requires the client to
first send a full record identifying it, and the type of information it is
requesting. In other words, it does not matter if a client has requested
a page one time, or a thousand times—the complete information to
identify the client and its request must be sent each time. In the first
web browsers, this translated to a need to re-load a page should new
information become available on the server.

In 1995, Brendan Eich, working at Netscape, created the JavaScript
programming language (W3 Consortium 2012). JavaScript allows a de-
veloper to write and execute small programs in the browser
(“scripts”), creating a programmatic way to manipulate the structure,
appearance, and function of a web page. With the introduction of
JavaScript, the static html document became a dynamic and inter-

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

138

active interface on which increasingly sophisticated web pages were
being built. However, the reliance on the underlying http protocol
still dictated that retrieving new information from a server still re-
quired a complete re-load of the page.

In 2000, Microsoft added a new application programming inter-
face (api) to the Internet Explorer browser, XMLHTTP. This api was cre-
ated to allow their web browser-based e-mail client, “Outlook Web
Access,” to emulate the responsive and dynamic nature of a desktop
application (Hopmann 2007). The XMLHTTP api could be triggered by
a JavaScript program, and allowed the browser to initiate communic-
ation with the server without requiring a complete page re-load. The
results retrieved from the server could be dynamically re-integrated
into the html of the page, using JavaScript, without requiring a com-
plete refresh. This change in communication paradigm did not
change the underlying http protocol—all communication was still
asynchronous and stateless—but it provided a means of interacting
with a remote web server, and dynamically updating a page with new
information thereby giving the illusion of synchronous, shared-state
communication.

In time other web browser developers, such as Mozilla Firefox and
Apple’s Safari, adopted the same api within their own browsers.
Eventually this mode of communication, and the associated techno-
logies that enabled it, were given the term “ajax”, or “Asychronous
JavaScript and xml” (Garrett 2005). Increasingly sophisticated
browser-based applications were introduced that emulated locally-in-
stalled software, but required no installation and were available
through any web browser. The technologies under the umbrella term
ajax were used to emulate a synchronous communication protocol,
giving the appearance of a constant communication between a web
client (e.g., a browser) and a web server. This, in turn, was used to de-
velop applications that ran in a web browser, but which emulated
native software applications. These were called web applications.

4.3 DISTRIBUTED OMR

139

Web applications provide a way to separate a control surface (i.e., a
user interface in a web browser) from software running on a remote
server machine, through the use of apis that emulate synchronous
communication. The next section will discuss this specifically in the
context of omr systems.

4.3.1.1 Web Applications and omr

In conventional omr systems, the user interface and the processes
that actually perform the music recognition tasks are “tightly
coupled” and cannot be separated. This tight coupling of interface
and processing system dictates that these omr applications must be
operated and controlled by only one user, on one workstation, at a
time (i.e., a user sitting at a single workstation where the software is
installed).

In contrast, a distributed omr system built as a web application,
separates the control surface from the processing system. In such a
system, the control surface is operated through a web browser, but
the image processing and recognition systems are located on remote
systems. The separation of control surface from the underlying pro-
cessing software provides a way for multiple users to interact with
the processing software through multiple control interfaces in many
users’ browsers. The ajax apis allow a distributed omr web applica-
tion to exhibit behaviours of a traditional application—transparent
updates to the state of the application without needing a page re-
load—while still operating in a networked context.

There are several further advantages to this approach. Software up-
dates to the user interface or to the underlying omr system can be
made available to users immediately, without requiring them to
download and install any new software. In a workflow-based system,
new tools may be made available to all users of the system. Web
browsers are available on all modern computing devices, including
tablets and smartphones, as well as traditional desktop and laptop

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

140

systems. Users are familiar with how browsers operate, and despite
earlier problems with web applications that do not work the same
way in every browser, most browser developers have been producing
standards-compliant systems ensuring consistent behaviour across
browsers and computing platforms.

Distributed omr describes the distribution of tasks among both
human and computer-based actors in the omr process. This section
on web applications looked at how web applications work, and how
the introduction of ajax techniques can provide a native desktop ap-
plication-like interface in a user’s web browser to provide a means of
distributing access to multiple human actors in the overall process.
The next section will discuss how parallel and distributed computing
can enable multiple computers to interact and distribute workloads
across multiple server systems.

4.3.2 Parallel and Distributed Computing

Parallel processing is the concurrent execution of tasks in a comput-
ing system. A parallel processing workload can be distributed among
several processing units, either within a single computer or across
several physical systems. A distributed computing system is a net-
work of discrete physical computer systems co-ordinated to operate
on shared tasks in parallel. The main advantage of parallel and dis-
tributed computing is the reduction in processing time required to
complete any given task.

4.3 DISTRIBUTED OMR

141

Figure 4.6: A multi-page OMR workflow

Executing a single omr workflow on multiple pages is an example
of an “embarassingly parallel” problem. Each page in the workflow
will undergo the same process without a dependence on the previous
or next page and so the workflow for each page may be executed
simultaneously.

To illustrate, a sequentially processed representation of a multi-
page workflow is shown in figure 4.6. Multiple pages (shown at the
top) are processed in turn by a number of tasks in a workflow. This
workflow would require a total time of w × p seconds, where w is the
total time taken to process a workflow of one page, and p is the num-
ber of pages to be processed.

Figure 4.7 shows this same workflow, re-factored as a parallelized
omr process. Assuming all parallel workflows are processed in a con-
stant w seconds, the total time to process all pages is dependent on
the number of parallel processes, n, available to compute the work-
flow. The time to completely process a workflow approaches a theor-
etical maximum of ((w × p) / n) seconds. (This is a theoretical maxim-
um, since n < p requires a queue system to hold waiting tasks and
assign them to processors as they become available, which requires

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

142

some overhead in task management and execution.) As p ⟶ n, the
time to compute the results of p workflows approach w, or the time
required to compute a single workflow. In other words, the example
given in figure 4.7 illustrates that given an equal number of pages and
available computers to process each page, the amount of time to ex-
ecute all workflows on all pages is equal to the amount of time to
compute one workflow on one page.

Figure 4.7: A parallelized representation of a multi-page OMR workflow

Parallel processing of tasks within a single physical system is lim-
ited by the number of instruction “cores” contained within the sys-
tem’s cpu. However, distributed computing allows a virtually unlim-
ited number of processors to be connected by providing a
communication and co-ordination layer over a network-connected
group of physical systems. Parallelizable tasks may be distributed
across these systems, each capable of running multiple concurrent
processes. A group of computers capable of acting in concert on dis-
tributed tasks may be referred to as a “cluster,” while individual sys-
tems within a cluster may be referred to as a “node.”

4.3 DISTRIBUTED OMR

143

Figure 4.8: Distribution of pages among several nodes in a cluster

A task distribution and communication system monitors the pro-
gress of each task (figure 4.8). As tasks are completed, new tasks are
automatically assigned from a queue of available tasks waiting to be
processed. A machine that has completed a task is automatically giv-
en another available task, regardless of which task, in which work-
flow, it had previously executed. An example of workflow task distri-
bution across a number of nodes is shown in figure 4.9.

Figure 4.9: 1…N Workflows and three Tasks distributed across N nodes.
Variations in shading indicate the workflow (W) to which a task (T) belongs.

Distribution of tasks across several discrete server systems for par-
allel processing is not a new concept. However, the relatively recent
development of “cloud” computing services has created several op-
portunities for using distributed virtualized computers available in re-
mote data centres over the public internet. These systems are distin-
guished from traditional distributed cluster computing by providing

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

144

users with the ability to create ad hoc clusters running on remotely-
accessible machines.

4.3.2.1 Cloud Computing

The term “cloud computing” was coined as a reference to remotely-
hosted computer services available over the public internet. The term
seems to have originated from the common practice of representing
the Internet as a “cloud,” or amorphous shape, in network or process
diagrams. The phrase was first coined in a 1996 internal presentation
at Compaq Computer Corporation (Compaq Computer Corporation
1996; Regalado 2011).

In 2006 Amazon.com launched a new service, “Amazon Web Ser-
vices” (aws) (Amazon.com 2013). This was one of the first instances
of a commercially-available cloud platform for purchasing time on
systems hosted in remote data centres. The aws service utilizes the
computing power of idle server systems by allowing users to provi-
sion ad hoc “virtual” servers on demand. This is also known as the “in-
frastructure as a service,” or “IaaS” model. A virtual server is a self-
contained instance of computer system that utilizes a portion of the
resources available on the underlying physical hardware. A single
physical computer system may support many virtualized computer
systems. These virtual servers can be created and deleted on-demand,
providing a method of quickly commissioning computing nodes to
act on a distributed computing task. Costs for these virtual computers
are determined according to the amount of hardware resources alloc-
ated (cpu, memory, and disk space) and the length of time it is in use.

As a result of cloud services, computing resources have been com-
moditized as “utility computing.” Users interested in creating applica-
tions that require distributed and parallel computing over large data
sets do not need to maintain physical infrastructure (hardware, cool-
ing, backup power). Additional processing power, storage, or memory

4.3 DISTRIBUTED OMR

145

may be added or removed as needed up to the maximum available
on the host system.

The previously mentioned scientific workflow systems (Taverna,
Kepler, and Meandre) are all designed to operate on cloud-based sys-
tems. They are capable of co-ordinating and distributing tasks across a
network, permitting distributed and parallel computing of large work-
flows that require large amounts of computing power to process
(common in fields such as genomics and astronomy). The next sec-
tion will discuss the application of parallel and distributed computing
for omr.

4.3.2.2 Distributed computing and omr

Distributed computing platforms for omr have not been developed.
A distributed approach to task execution in an omr system would al-
low potentially large clusters of networked computers to work in con-
cert on an omr process. When compared to the current system of a
single, dedicated workstation with an omr software installation, this
is an obvious enhancement for large-scale music document image re-
cognition initiatives. Cloud computing offers a way to scale an omr
system to accommodate large workloads without needing large num-
bers of dedicated hardware systems.

The omr process on multiple page images is an easily parallelized
problem. Page images may be treated separately from each other and
their recognition results determined in parallel, with no dependen-
cies across page images (i.e., the results of one page are not determ-
ined by the results of the previous page). Tasks that may require inter-
page dependency, such as determining continuation of musical lines
across pages, may be handled in a separate step after the music recog-
nition process has completed.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

146

4.3.3 Distributed omr Summary

Distributed omr is a novel approach to omr that has not been ex-
tensively explored in the literature. The distribution of human actors
in the omr process can be enabled by separating the control surface
from remotely-hosted omr systems. This control surface is provided
as a web application, running in a user’s web browser. Users interact
with a remote omr system capable of executing recognition
workflows.

For large-scale omr, distributed human and computer actors are
necessary components for processing large numbers of music docu-
ment page images. With distributed humans, many individuals may
work together to accomplish a single task, regardless of their geo-
graphic location. With distributed computing, recognition tasks may
be executed in parallel across several networked systems.

Distributed computing has been commoditized with the introduc-
tion and availability of cloud computing and “infrastructure-as-a-ser-
vice” (IaaS) models. An omr system designed to process large num-
bers of page images should have the ability to dynamically scale the
number of computers available to execute the omr process on these
pages.

4.4 Collaborative omr

Chapter 2 reviewed several initiatives that used collaboration in text
digitization projects to enable groups of people to work together to
improve digitized texts. These have become known as “crowd-
sourced” correction initiatives. The distribution of tasks across many
different human actors has provided a level of human oversight and
quality control in large text recognition initiatives that was not previ-
ously possible due to time and expense. This section will propose col-
laborative omr for the same reasons. It will discuss how omr sys-

4.4 COLLABORATIVE OMR

147

tems using workflow-based operations provide an opportunity for
distributing tasks among several actors in the process, and how
crowdsourcing, either to the general public or to targeted specialist
groups, can enable correction and quality control beyond the capabil-
ities of any single organization.

4.4.1 Task Distribution

A distributed omr system allows for shared access to a remote server
capable of executing omr workflows. Many users may log in to the
same system from their personal computers and participate in build-
ing or executing an omr workflow.

In large-scale digitization projects, different parties are involved in
converting physical page images to a digitized representation. Digitiz-
ation activities may be spread among many different people, each re-
sponsible for one component of the whole process. A library may
have a department dedicated to document imaging, or they may en-
list the services of a third-party digitization service. Several staff
members may be in charge of image or metadata quality control. Re-
cognition and correction activities may be performed by separate
groups of people, including the general public. Systems staff may be
responsible for importing the results of the recognition process into
software for search and display. All of these tasks may be overseen
and directed by project managers.

A collaborative approach to omr can be enabled by distributing
tasks to groups of actors participating the overall process, and by
providing a shared virtual space and tools that run in a web browser
for them to meet and participate in the process. Allowing individuals
to focus, or even specialize, in accomplishing a given task provides a
division of labour similar to that of an assembly line.

Collaborative activities can be divided into two categories. It may
either be explicit, where individuals knowingly participate with each
other to accomplish a single task, or implicit, where contributors

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

148

simply execute a given task without being aware of their collaborat-
ors. In the latter case, collecting and utilizing the efforts of many indi-
viduals can enable massively collaborative omr systems that are bey-
ond the means of any single organization. There are many examples
of these systems in text digitization and recognition workflows, but
to date there are very few that seek corrected data from automatic-
ally-recognized symbolic music.

The next two sections will discuss how enabling interactivity in a
workflow can leverage the abilities of humans and computers for col-
laborating on the same tasks in a workflow.

4.4.2 Interactivity in workflow systems

Scientific workflow systems typically separate workflow creation and
execution. A user will define a workflow by creating a chain of tools,
and connecting them together to indicate how the data is to flow
from one tool to another. Once a workflow has been created, a user
provides data input and then “runs” the workflow. In most workflow
systems, once a workflow has started executing, it will continue until
it finishes or meets an error condition. Humans cannot interact with
a workflow that is currently executing, and so cannot supply deci-
sion-making or discernment information to a task to help the com-
puter complete the task accurately. This has an impact on later tasks
in the chain. Should a computer provide a sub-optimal solution to a
given problem, it may have an effect on how well later tools in the
workflow perform. An interactive workflow system would allow a
human to provide input into a currently-executing workflow, and in
doing so potentially increase the accuracy of later workflow tasks.

There have been some attempts at introducing interactivity in sci-
entific workflow systems. Sonntag et al. (2010) have proposed mer-
ging scientific and business workflow systems for creating interactive
workflows that incorporate human interaction with in-process work-
flows. Cao et al. (2011) have proposed an expansion of the Kepler

4.4 COLLABORATIVE OMR

149

workflow system to accommodate human interaction in the work-
flow process. Neither of these approaches have been incorporated as
a core component of any scientific workflow system.

Incorporating humans in a workflow execution provides a mech-
anism to support runtime human involvement in the execution of a
task. Automated methods of certain image processing tasks, such as
segmenting between musical and lyrical content, or discriminating
between foreground and background components, are not perfectly
reliable due to variations in image contents and conditions. A human
is capable of applying decision making and discernment to assist the
process in arriving at the best possible solution.

The next chapter of this dissertation will describe a new workflow
system, Rodan, modelled on scientific workflow systems but with the
ability to incorporate human feedback in the execution of a work-
flow. In the proposed interactive workflow system there are two
types of workflow tasks: A non-interactive task, which can be com-
puted reliably without the need for human intervention; and an in-
teractive task, which requires the input of a human, either in a veri-
fication or a processing role, before the task can be completed and
the data sent to the next process in the chain. A hybrid semi-interact-
ive task may pre-compute a possible solution and simply ask the hu-
man to verify and, if needed, adjust the computed solution.

An example of a non-interactive task might be cropping or resizing
an image to a given size. This requires applying settings prior to work-
flow execution, but once the workflow is started it may be applied to
each image in turn without requiring further input.

An example of a semi-interactive task would be correcting auto-
matically-determined page layout analysis. Layout analysis attempts
to differentiate between page elements: the location of staves and
systems, lyrics, titles, and other elements. Automated methods for de-
termining these elements exist, but are not always completely accur-
ate. A human can use the result of the automated analysis as a start-

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

150

ing point for correcting and verifying that the layout analysis can be
used for the next process.

Finally, a fully interactive task might be the creation of a database
of labelled symbols, suitable for pattern recognition and machine
learning purposes. Humans may supply labels to unlabelled shapes,
building a database of known symbol and label groups.

4.4.3 Crowdsourcing and omr

Initiatives such as recaptcha (von Ahn et al. 2008), The Gutenberg
Project’s Distributed Proofreader platform (Newby and Franks 2003),
or the Australian Libraries’ Trove Newspaper Digitization (Holley
2009b) have all provided different approaches to collecting ocr cor-
rections from the general public. These initiatives have provided vol-
untarily-supplied human-generated data beyond the capabilities of
their own staff.

The only known crowdsourced initiative for symbolic music cor-
rection is proposed by Dalitz and Crawford (2013). They report on a
system for collecting lute tablature correction data from an optical
tablature recognition project of 16th-century lute tablature using a
web-based correction tool. They report attracting over 50 participants
to their project.

There are many possibilities for integrating crowdsourcing into an
omr workflow depending on the audience and the nature of the
task. Initiatives like recaptcha may be developed with simple dis-
crimination tasks that can be accomplished by a large audience of
non-expert users. These tasks may include shape, position, or colour
discrimination which requires no special training and which may be
solved in a few seconds. On the other end of the spectrum may be a
dedicated platform for collecting large amounts of user-supplied mu-
sical corrections, following the model of the Trove Newspaper Digit-
ization project. This platform would present omr-recognized music

4.4 COLLABORATIVE OMR

151

and solicit musical corrections from musically-trained participants
(i.e., those who can read musical notation).

Since few large-scale omr initiatives exist, the tools for collecting
crowdsourced corrections have not been developed. Chapters 5 and 6
of the dissertation will contain proposals for new tools to enable
crowdsourced omr correction similar to those that have been imple-
mented for text recognition.

4.4.4 Collaborative omr Summary

A distributed omr workflow system provides a platform that can be
used to enable collaborative efforts in many areas of the omr process.
Collaborations may either be explicit, where participants have a set
role in the overall process, or implicit, where participants simply sup-
ply answers to a given problem. Both of these types of collaborations
are enabled through operating in a shared space in which the results
of one individual’s work can be used and built on by others.

The next section will discuss how collaboratively-collected data
can be used to augment the traditional approach to adaptive omr by
enabling many users to participate in the human feedback compon-
ent of this technique. This will be referred to as “Networked Adaptive
omr.”

4.5 Networked Adaptive omr

Networked adaptive omr refers to the use of adaptive omr tech-
niques in a distributed, collaborative environment. Adaptive omr
(§3.3.2.1) is a technique for incorporating human feedback in the re-
cognition process. With adaptive omr new symbols may be added to
the recognition system, or symbol discrimination can be improved
with the addition of more shape exemplars. The introduction of col-
laborative omr techniques will allow individuals to co-operatively
build these exemplar collections. With networked adaptive omr, the

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

152

contributions of a single individual may be used in the recognition
tasks of all participants in the network. In a computationally distrib-
uted context, virtual machines may be tasked with monitoring in-
coming training data and applying this data to various machine
learning techniques, creating a continuously adaptive omr system.
This creates a system where the results of a single individual’s correc-
tions may be applied to the recognition processes of all members of
the network. This section will explore some of the potential applica-
tions of adaptive omr in a networked context.

4.5.1 Networked Adaptation

As demonstrated by Pugin et al. (2007a, 2007b) adaptive approaches
that specialize in a single source or set of symbols (i.e., a particular
font used by a single printer) can result in significant improvements
in recognition accuracy by creating a recognition engine specialized
in that particular set of symbols. They demonstrated that an adaptive
omr system, Aruspix, can be adapted to the typeface used in a single
book—or, more correctly, a specific musical font—yielding a recogni-
tion system that is specialized for symbol recognition of that particu-
lar source. A “book adaptive” or “book dependent” approach was
shown to yield a significant improvement in recognition accuracy
over a “book independent” (i.e., generic) model trained on data
gathered from a more varied data set. In a networked adaptive omr
system this same technique may be applied at a larger scale, enabling
the creation and storage of “book-adaptive” models for previously re-
cognized and corrected musical materials.

In a distributed, collaborative omr system, the incoming correc-
tion data, possibly supplied by a crowdsourcing interface, can be used
to develop libraries of specialized recognition models. As users sub-
mit corrections drawn from a variety of sources, these data may be
used to create ground-truth libraries that enable recognition of a giv-
en typeface or symbol set. A library of these specialized models may

4.5 NETWORKED ADAPTIVE OMR

153

be maintained such that individuals who submit images containing
notation for which an trained classifier already exists do not have to
go through the additional step of submitting corrections for the pur-
poses of increasing recognition accuracy.

In addition to specialized typeface or symbol recognition models,
continuously-adaptive systems can leverage collectively-created data
sets to apply pattern recognition and classification to new contexts.
Pugin (2006a, 2006b) notes that in addition to typeface recognition,
the recognition system used in Aruspix can model musical sequences
and predict likely (and unlikely) transitions between notes as an addi-
tional error-checking and validation step in producing accurate recog-
nition output. Models that specialize in particular genres or instru-
mentation can detect unlikely output and either automatically
correct it, or alert a human user to a particular area where it has de-
tected a likely error.

4.5.2 Networked Adaptive omr Summary

Adaptive omr systems have been shown to significantly increase re-
cognition accuracy on heterogeneous collections of music notation
images but, to date, these systems have developed as conventional
software installations on discrete workstations. Bringing adaptive
omr techniques into a networked workflow-based omr context
offers new opportunities for collecting and utilizing ground truth
data supplied by others to simultaneously improve the recognition
results of all members of the network.

Continuously-adaptive omr in a distributed system is a novel ap-
proach to document recognition, even among text recognition initat-
ives. It offers new opportunities for integrating multiple classifier sys-
tems to provide competing hypotheses for symbol classification. It
also serves to reduce the amount of effort required to build a trained
classifier in adaptive omr—a very labour-intensive process—by al-
lowing training data to be shared across the entire network.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

154

4.6 The Music Encoding Initiative

The goal of omr is to convert a visual representation of music to an
encoded symbolic music file. This chapter and the previous chapter
have discussed the mechanics behind producing these symbolic en-
codings, but the specific output of the omr process as encoded sym-
bolic notation has not been considered yet. This is a critical compon-
ent of all omr systems, as the information stored in the encoding is
crucial for enabling functionality in subsequent software systems for
searching, analysing, displaying, and manipulating the results of
omr.

This section will present the Music Encoding Initiative (mei) as an
especially suitable format for omr output encoding. The mei is an
open-source effort to define a system for encoding musical docu-
ments in a machine-readable structure. The mei closely mirrors work
done by text scholars in the Text Encoding Initiative (tei) (Text En-
coding Initiative Consortium 2014) and, while the two encoding initi-
atives are not formally related, they share many common character-
istics and development practices (Roland 2002). The mei, like the tei,
is an umbrella term to simultaneously describe an organization, a re-
search community, and a markup language. It brings together special-
ists from various music research communities, including technolo-
gists, librarians, historians, and theorists in a common effort to discuss
and define best practices for representing a broad range of musical
documents and structures. The results of these discussions are formal-
ized into the mei schema, a core set of rules, expressed as an eXtens-
ible Markup Language (xml) schema, for recording physical and in-
tellectual characteristics of music notation documents.

The mei offers a flexible and extensible format that may be used
to describe a wide variety of notation types in a way that maintains
both the structure and semantics of a particular notation type, as well
as the spatial relationships between the notation symbols and the

4.6 THE MUSIC ENCODING INITIATIVE

155

page image from which it was originally derived. Few standard sym-
bolic music encoding formats provide formalized methods of encod-
ing and synchronizing visual and symbolic representations. As such,
mei is the most promising symbolic encoding scheme on which to
build systems for searching and navigating document image
collections.

This section will provide a short overview of the principles of nota-
tion encoding, and then discuss the mei format providing further de-
tails on how the mei can be used in an omr system.

4.6.1 Notation Encoding

The wide variety of encoding formats and approaches to music rep-
resentation may be attributed to the complexity of music notation it-
self. Music notation conveys meaning in multiple dimensions (Carter
et al. 1988; Dannenberg 1993). This complexity creates significant
challenges for creating a comprehensive standard that can represent
all dimensions accurately. As a result, most notation formats focus on
a particular application or musical style. Some formats focus on visual
representation (i.e., object placement for printing), while others focus
on representing the logical structure of the notation itself, with no
visual information. Still others, such as Csound (Vercoe 1991), contain
data that represent the performed sonic properties of the score, with
little information to connect it to either the visual or a recognized
conventional symbolic notation.

Maxwell (1981), for use in the Mockingbird music notation editor,
outlined a model which described three separate domains: physical,
logical, and graphical. This model was later extended by the Standard
Music Description Language (smdl) (International Standards Organ-
ization 1995), an encoding system that was expressed using the
Standard General Markup Language (sgml) (Goldfarb and Rubinsky
1990) (sgml was a precursor to later representations using xml (Bray
et al. 2006b).) smdl built upon the Mockingbird model and extended

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

156

it to define a representation model consisting of four domains for
music notation representation: logical, gestural, visual, and analytical.
Although smdl was not widely adopted, these domains remain use-
ful for separating the functions of symbols within a music representa-
tion system.

In this model, the logical domain includes the musical content or
structure including pitches, time values, articulations, dynamics, and
all other elements—defined as the symbols that communicate the
composer’s intentions. The gestural domain relates to a performed in-
terpretation of the logical domain (i.e., it encodes information that
may be added by a performer such as explicit realizations of “swing”
or rubato). The visual domain describes the contributions of an editor,
engraver, or typesetter, and encodes information about the physical
appearance of the score, such as symbol locations, page layout, or
font. Finally, the analytical domain covers commentary and analysis
of the music document in any of the three previous domains.

The mei maintains these distinctions in its design. It is possible to,
for example, encode the structural function of a note separate from
its visual appearance on the page, or encode a performance realiza-
tion separate from the written notation. Each of these domains may
be encoded using elements and attributes inside a hierarchical text
structure: the “encoding.” More importantly, a given encoding may be
validated against a pre-defined schema to ensure that it conforms to
these rules. This process is explained in the next section.

4.6.2 xml Representation

xml is a hierarchical encoding system. An example of a very simple
mei xml hierarchy is shown in figure 4.10, showing both the xml
representation and the same structure using a “tree” diagram. Ele-
ments are the core objects in an xml representation, and are repres-
ented using “tags.” These tags are a name enclosed in angle brackets
(e.g., a note object is represented using the <note> tag). These tags

4.6 THE MUSIC ENCODING INITIATIVE

157

may be nested within each other such that every tag (except for the
“root,” or top-most, element) has one and only one “parent.” Each ele-
ment may contain zero or more “children.” The child elements of a
single parent are all “siblings” (or “peers”) of each other. Extending
the family metaphor further, a parent of a parent (and so on “up” the
tree) are known as “ancestors,” while children of children are called
“descendants.” For the sake of brevity and clarity, this section will use
the term “structure” to refer to a collection of elements that are all
descended from a single parent element, and form a sub-tree of a
more complete encoding.

<mei meiversion=”2013”>
 <meiHead>
 <fileDesc>…</fileDesc>
 </meiHead>
 <music>
 <body>
 …
 </body>
 </music>
</mei>

Figure 4.10: Example MEI as XML (top) and as a tree representation (bottom)

Attributes of an element are used to define properties of a particu-
lar object and are represented as key-value pairs, taking the form
key="value". A <note> object that represents “middle C” (C4) on a
keyboard would be encoded in mei as <note pname="c" oct="4"

/>. (In prose, attribute and element names are distinguished by an

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

158

additional “@” character on the attribute name, (e.g., @pname), even
though this symbol does not appear in the xml encoding.)

At a minimum, a valid mei-encoded file contains two structures
within the parent <mei> element: the <meiHead> and <music> ele-
ments. The <meiHead> structure contains elements that describe the
work (i.e., metadata), including information about authorship, encod-
ing standards, and provenance. The <music> structure contains in-
formation regarding the encoded music itself. The music notation is
represented using xml tags, arranged in a hierarchical relationship.
One possible encoding of a small fragment of music notation is
shown in figure 4.11.

<beam>
 <note xml:id="d1e129"
 stem.dir="up"
 pname="f"
 dur="8"
 oct="4" />
 <note xml:id="d1e130"
 stem.dir="up"
 pname="c"
 dur="8"
 oct="4" />
</beam>

Figure 4.11: Left: XML Encoding; Right: Possible graphical representation (NB:
Clef and Time Signature are given for reference and are not present in the

encoding)

The mei provides support for musical encoding by grouping the
symbol definitions into modules. These modules define the elements
and the rules on how these elements should interact to support a
wide range of music notation encoding features. Several notation sys-
tems are supported, including common Western music notation
(cwmn), mensural notation, neume notation, and guitar and lute tab-
lature. Other modules provide support for analytical markup, editorial

4.6 THE MUSIC ENCODING INITIATIVE

159

processes, and extended cwmn elements. A full list of the mei 2013
modules is available in the Music Encoding Initiative Guidelines
(Music Encoding Initiative Council 2013).

The structure of an mei file can be validated to ensure that the
xml used to express an encoded representation of the notation fol-
lows the rules set out by the mei guidelines. This process, which is
common across all xml representation formats and not just mei, uses
a schema that encodes the rules and behaviours of the elements and
attributes, governing where and how they may be used. There are
several xml schema languages, such as dtds, w3c xml Schema, or
Relaxng (Quin 2010). They are used in conjunction with validation
software (e.g., xmllint, Veillard 2014) to validate whether a particular
document conforms to the rules of a given schema. This can be used
to determine whether an encoded document will cause problems for
interoperability between different systems.

For example, an mei file that contains lyric information as a subset
of a <rest> element would not pass the validation process, since this
does not conform to the rules that the mei schema defines for the be-
haviour of both the rest and lyric elements. This behaviour is encoded
in the schema to formalize the way that the music itself is known to
function; in most repertoires, a lyric item attached to a rest is a music-
al error.

Yet in some cases, including avant-garde notation, composer-
specific repertoire, or ancient notation, it may be desirable to custom-
ize the behaviour of the mei schema to include rules for validating
the behaviour of uncommon practices for music notation. The mei
accomplishes this using a process called “schema customization,”
where the behaviour of the encoding can be altered to produce new
schemas.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

160

4.6.3 Schema Customization

mei is expressed in a meta-schema language developed by the Text
Encoding Initiative (Hankinson et al. 2011b). The “One Document
Does-it-all” (odd) format (Burnard and Rahtz 2004) is designed to en-
code both the behaviours of the document encoding, and the hu-
man-readable documentation following a “literate programming”
technique (Knuth 1984). From a single odd file, a formalized schema
in one of the previously-mentioned xml schema languages, as well as
human-readable documentation for that schema, may be derived. The
mei schemas and guideline documentation are created using the
Roma software developed to support the tei project (Burnard and
Rahtz 2004).

To generate a schema and documentation, two files must be
provided to the Roma processor. The first is the mei “core” odd file.
This contains the rules and definitions of the behaviours of all ele-
ments supported by mei, in all modules. The second is a “customiza-
tion” file. This file, also written using odd, is used to modify the en-
coding features supported in the generated schema, either by altering
the behaviour of the core mei elements or by defining new ones. A
customization file may also specify that entire modules in the mei
core are not necessary to include in the resulting schema. This
provides a mechanism for generating dedicated schemas for validat-
ing only cwmn notation documents, and rejecting documents that
encode, for example, neume or mensural notation, or vice-versa.
These customization files may be shared with other users, allowing
co-operative development of customized encoding systems for differ-
ent repertoires. The customization process is shown in figure 4.12.

4.6 THE MUSIC ENCODING INITIATIVE

161

Figure 4.12: The ODD customization process

This customization method is unique among music encoding sys-
tems. Customization and validation provide a flexible but testable
means of producing mei encodings that conform to a particular set of
musical rules, and a formalized method of customizing and extend-
ing mei make it especially suitable for encoding heterogeneous mu-
sic document collections. Should new features be needed to encode a
particular type of notation, it is not necessary to develop an entirely
new document encoding system to support this notation. Instead,
users may add or modify the behaviour of the mei core to adapt the
encoding system to support new musical features.

4.6.4 Synchronizing Media

ocr encoding systems that maintained correspondence between the
transcribed symbol (i.e., text) and the location on the image where
that text occurs have been previously discussed (§2.6). To enable a
similar approach for music, mei can be used to capture the corres-
pondence between a transcribed music symbol and its location on an
image. A highly simplified example of the mei encoding for this is
given in figure 4.13, where note elements are related to zone ele-
ments through the use of the @facs attribute.

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

162

<zone id="z2" ulx="100" uly="50" lrx="120" lry="80" />
<zone id="z3" ulx="130" uly="45" lrx="150" lry="75" />
<zone id="z4" ulx="160" uly="40" lrx="180" lry="70" />
<zone id="z5" ulx="210" uly="40" lrx="230" lry="70" />

<note pname="e" oct="5" facs="z2"/>
<note pname="f" oct="5" facs="z3"/>
<note pname="g" oct="5" facs="z4"/>
<note pname="g" oct="5" facs="z5"/>

Figure 4.13: Simplified example of music and image correspondence in MEI

Before examining the mechanics of image and notation corres-
pondence, however, it may be useful to examine the generic mechan-
ism used by the mei to synchronize many media types with symbolic
music, both spatially expressed (i.e., images) as well as temporally ex-
pressed (i.e., sound, video). For omr we are primarily interested in
spatial alignment but this section will discuss both spatial and tem-
poral alignment strategies in mei since they use similar methods.

Although mei is expressed in xml, which is an inherently hier-
archical format, there are occasions where music notation is not best
served by adhering to a strictly hierarchical design. This mechanism is
used throughout mei, and is the mechanism used to synchronize me-
dia, but it may be easily understood using the example of a slur over
several notes. Since the slur involves multiple notes, the correct rela-
tionship between slur and note is not hierarchical. The slur is not a
child of any single note, yet it is also not really correct to suggest that
the slur is the “parent” of each note. This may be further complicated
when considering multiple groupings under the slur, such as eighth-
note beams. Is the slur a child of a beamed group, or is it the parent?
If the encoding required adherence to this purely hierarchical system,

4.6 THE MUSIC ENCODING INITIATIVE

163

the encoding would create implicit relationships that simply are not
musically correct.

The mei approach circumvents this hierarchy by providing a sys-
tem of “pointers” that can reference elements outside of a given hier-
archy. This system uses attributes that may refer to another element’s
unique id. In the example of a slur, a separate <slur> element out-
side of the note hierarchy can “point” to the member notes in a way
that makes the relationship unambiguous but non-hierarchical. A
simplified example of this is shown in figure 4.14.

<beam>
 <note xml:id=”n1” />
 <note xml:id=”n2” />
 <note xml:id=”n3” />
 <note xml:id=”n4” />
</beam>
...
<slur startid=”n1” endid=”n4” />

Figure 4.14: A simplified non-hierarchical method of encoding a slur

For synchronising multiple media types, mei uses a similar meth-
od. Separate hierarchical structures contain descriptions of the media,
and attributes are used to point between the unique identifiers of the
structures to relate one element to another. An element that de-
scribes a symbolic notation feature—for example, a <measure> ele-
ment—may contain attributes that point to other elements present
in a hierarchy that describes that element’s position in space or time.
The @facs attribute, for example, may be used to point from the
<measure> element to a <zone> element that defines pixel-based co-
ordinates in relation to an image. Similarly, the <measure> element
may also employ the @when attribute to point to a <when> element
within a separate <timeline> structure that contains references to
points in time within the media file. An example of both spatial and
temporal alignment is shown in figure 4.15. Combining both spatial
and temporal alignment, an encoded symbolic representation can

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

164

supply the necessary synchronization points for measure-by-measure,
or even note-by-note, highlighting on a page image as an audio or
video performance of the work is played.

<facsimile>
 <surface>
 <graphic xlink:href="bwv_232_print.tiff"/>
 <zone xml:id="z1" uly="58" ulx="21" lry="64" lrx="23"/>
 <zone xml:id="z2" uly="63" ulx="35" lry="65" lrx="36"/>
 </surface>
</facsimile>
...
<timeline avref="bwv_232.mp3" origin="w1">
 <when xml:id="w1" absolute="00:00:01.00"/>
 <when xml:id="w2" absolute="00:00:04.05"/>
 <when xml:id="w3" absolute="00:01:00.00"/>
</timeline>
...
<measure n="1" when="w1" facs="z1"/>
<note when="w2" facs="z2"/>
<chord when="w3" />

Figure 4.15: Spatial and temporal alignment in MEI. The emphasized
attributes illustrate the linking and relationship mechanism between the

elements in different parts of the MEI encoding.

This method, however, can only be used to relate a single type of
media (i.e., an image or a recording) with a musical structure. If mul-
tiple media of the same type are present this method does not allow
synchronization between them. The reason is that the @facs attribute
can only make reference to a single image, and the @when attribute to
only one timepoint. To address this an alternate method is provided
that changes the direction in which the attributes point. In the first
example, the attributes point from the symbolic representation to the
alignment information. By reversing the direction from the alignment
element (the <zone> or <when> elements) to the symbolic element
with the @data attribute, the encoding can accommodate multiple
media representations pointing to the same musical element. The
@data attribute on the media definition holds a reference to the
@xml:id of the notated object. An example of multiple page image
alignment is given in figure 4.16. In this example, two images—one a

4.6 THE MUSIC ENCODING INITIATIVE

165

manuscript and one a printed version—are related to the same mu-
sical structure.

Excerpt of bwv_232_ms.tiff

Excerpt of bwv_232_print.tiff

<facsimile>
 <surface>
 <graphic xlink:href="bwv_232_ms.tiff"/>
 <zone data="m1" uly="58" ulx="21" lry="64" lrx="23"/>
 <zone data="n1" uly="63" ulx="35" lry="65" lrx="36"/>
 </surface>
</facsimile>
<facsimile>
 <surface>
 <graphic xlink:href="bwv_232_print.tiff"/>
 <zone data="m1" uly="58" ulx="21" lry="64" lrx="23"/>
 <zone data="n1" uly="63" ulx="35" lry="65" lrx="36"/>
 </surface>
</facsimile>
...
<measure xml:id=”m1” n="1" />
<note xml:id=”n1” />

Figure 4.16: Multiple page images aligned with a single symbolic encoding

Aligning multiple music representations, incorporating symbolic,
visual, and sonic media, has the potential to foster new means of in-
teracting with music source materials in a digital context. The ability
to spatially align symbolically-encoded notation and images is a ne-
cessary component of building music document image retrieval sys-
tems using the results of an omr process, but the ability to align mul-

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

166

tiple temporal representations may also be used to provide new ways
of interacting with transcribed symbolic scores.

4.7 Chapter Summary

This chapter has discussed several new techniques for omr in an
effort to identify ways to design new systems to handle large recogni-
tion workloads. Large-scale recognition initiatives are costly, and the
most significant costs are centred around areas of human involve-
ment. As a result, one of the first considerations of large-scale initiat-
ives should be to examine the overall process and look for areas
where human involvement can be optimized. Current omr systems
are designed for a single human operator at a single workstation, pro-
cessing a single page image at a time. To optimize human involve-
ment there are several areas where computers can play a larger role
in managing and applying processes to a greater number of images,
and where a human, or groups of humans acting together, can ob-
serve and manage the parts of the omr process with much greater
effect on the overall throughput.

Scientific workflow systems have been designed to apply a consist-
ent and repeatable result on large data sets. These systems were ex-
amined for their usefulness and application to document recognition
processes. These workflow systems are notable for their flexible ap-
proach to visually building processing pipelines, and for providing
opportunities to share and build on workflows created by others.

Three new techniques for omr were presented. Distributed omr
was presented as a way of decentralizing omr systems and allowing
many actors, both human and computer, to take part in the process.
Collaborative omr, including crowdsourced participation, is one res-
ult of the distribution of tasks, allowing many people to participate in
the same process regardless of geographical location or institutional
affiliation. Finally, Networked Adaptive omr builds on established
techniques in adaptive omr. It proposes using distributed and collab-

4.7 CHAPTER SUMMARY

167

orative systems to build shared datasets capable of being used as
training data for adaptive omr systems. These data can be used by
machine learning algorithms to build constantly-improving systems
for optical music recognition, allowing all participants in the network
to take advantage of work done by others for improving their own re-
cognition tasks.

The mei notation format was discussed as the most promising can-
didate on which to construct systems for searching and navigating
document image collections. Features for aligning multiple represent-
ations, both spatial and temporal, were examined as a way to enable
image and notation correspondence, similar to previously discussed
formats developed for text recognition initiatives. Additionally, mei
may be used to build custom notation encoding formats, a require-
ment for dealing with the variety of music notation systems that will
be encountered in any large-scale recognition initiative.

The next chapter will present Rodan, a web-based omr workflow
system that was built to provide an implementation of these ap-
proaches to omr.

❁

TOWARDS LARGE-SCALE MUSIC DOCUMENT RECOGNITION

168

5.
Rodan

This chapter introduces Rodan, a workflow-based prototype omr sys-
tem designed using the principles of distributed, collaborative, and
networked adaptive omr. This chapter begins with a history of the
development of Rodan (§5.1), design patterns, data types, and com-
munication protocols (§5.2) and then continues with a look at the
specific implementations of the Rodan server (§5.3) and the Rodan
client (§5.4).

5.1 Development History

The Liber usualis project, described in full in Chapter 7, was a project
to perform omr and ocr on the complete Liber usualis, a 19th Cen-
tury Roman Catholic service book containing chants and texts used
in the Roman liturgy. This project required a number of software
tools and involved several individuals over a period of approximately
six months.7 After completing the project, we formalized the work-
flow that had emerged; this is shown in figure 5.1. The lessons drawn
from the Liber usualis project, especially in co-ordinating tasks,
people, and computing resources to complete the chain of steps for
each page image, were what inspired the creation of a formalized
omr workflow system composed of interchangeable and interoper-
able tools.

In the Liber usualis project, the co-ordination between tasks and
people was an example of “unassisted workflow composition” (Gil
2007; discussed previously in §4.2.1). Several customized omr and
ocr tools were created and assembled in an ad hoc fashion. For ex-

7. These individuals are credited in the acknowledgements of the dissertation.

169

Figure 5.2: A page of the Liber usualis segmented using Aruspix

Another challenge was managing data transformations among
team members, co-ordinating file versions and determining what
work was completed or waiting to be completed. This included ensur-
ing that each person knew which files they could work on, what
needed to be done to them, and where the results of their task
should be placed so that they could be used in subsequent tasks in
the workflow.

A third challenge was the inevitable software failures and bugs
due to the custom nature of the tools used to perform the processing.
Since many of the tools we were using were being custom-developed
for a given step in our workflow, we would only become aware of
problems in the software once a number of pages had been pro-
cessed, sometimes even after hundreds of pages had been manually
corrected. One particular example stands out to illustrate this. There
was a bug in one of our tools where the image dimensions, after crop-
ping and de-skewing, were improperly calculated and stored. The res-
ult of this error was that the symbolic omr results could not be
aligned with the original images since we had lost the data to re-align
the images after these image transformations. Unfortunately we only

5.1 DEVELOPMENT HISTORY

171

noticed this after processing and manually correcting several hun-
dred pages, as the error did not present itself until we attempted to
align symbol and image data. To fix this without re-doing the manual
corrections (several person-weeks worth of work) we had to re-calcu-
late the page dimensions for all files, and then merge the already-cor-
rected files with the files that still needed to be corrected to produce
a single corpus from which our human annotators could work.

Ultimately, each of these challenges had an impact on the reprodu-
cability of the overall workflow. After completing the Liber usualis
project, we were asked to expand this technique to perform omr on
other sources. Unfortunately, the custom nature of the tools, and the
“glue” scripts built outside of a formalized environment for construct-
ing a workflow resulted in an over-specified system for performing
omr on a single source. After the Liber usualis experience, it was
realized that a new approach was needed where workflows, and
tasks within these workflows, could be centrally defined and man-
aged, and performed within a shared context.

5.1.1 Experimentation with Taverna

In November 2011 I attended the impact project’s final conference at
the British Library in London. There I saw a presentation on the im-
pact Interoperability Framework (iif) (Neudecker 2011; Neudecker
et al. 2011), a tool that used the Taverna workflow system to create
and run document recognition and ocr workflows. This was the in-
spiration for building a similar system for omr. We attempted to
build a similar system for omr by implementing a very simple Gam-
era-based image manipulation workflow in Taverna, using the iif. A
screenshot of our workflow in the Taverna Workbench application is
shown in figure 5.3.

The Taverna environment was the first implementation of our
workflow-based omr system, but we determined that one desired
feature was missing. In our Liber usualis workflow we were able to

RODAN

172

incorporate human feedback within the workflow, providing the abil-
ity for a human to correct the results of automated processing before
passing the images on to the next step in the workflow. Additionally,
experiments within our lab on adaptive omr had shown the value of
incorporating human feedback in the omr process, increasing recogn-
ition accuracy while simultaneously reducing overall costs (Pugin et
al. 2007a; Pugin et al. 2007b). With a Taverna workflow, it was not
possible to pause an executing workflow to wait for human input.
Workflows, once started, would continue executing until they had
finished or encountered an error condition. These environments did
not support the introduction of a human actor in the workflow to re-
act to previously-computed tasks in the workflow. Moreover, a curs-
ory study of the existing workflow software systems at the time did
not yield any systems that permitted interactivity in the workflow.
We began investigating alternative workflow solutions, and eventu-
ally decided to build our own.

Figure 5.3: Simple Gamera image manipulation workflow in Taverna

5.1 DEVELOPMENT HISTORY

173

5.1.2 Initial Version of Rodan

The initial version of Rodan8 was developed during the summer of
2012. The front page of the web application is shown in figure 5.4.
The concept of the workflow was the central feature retained from
the initial work with the Taverna system. In Rodan, users could de-
fine workflows by chaining together a number of available processing
jobs (figure 5.5). These jobs were then executed, in order, on each
page image. Users of the Rodan system would be alerted if there were
interactive jobs that required human involvement before a workflow
could continue executing (shown in figure 5.6). Users could click on
the indication of a waiting job, perform a task, and then submit their
answers. The system would then continue executing the workflow
until another interactive task was encountered.

In the autumn of 2012, Rodan was re-written to integrate several
enhancements to the application. This included a clean separation
between the client and server components with a well-documented
api connecting these components, a simpler task management and
execution subsystem, and greater flexibility in workflow definitions.

8. The name “Rodan” is taken from a fictional Japanese kaiju monster, similar to the
origins of the name Gamera. Rodan, a pterosaur, could be said to be a “cloud-based”
creature, much like a web-based distributed omr system (“omr in the cloud”).

RODAN

174

Figure 5.4: The first Rodan web application front page

Figure 5.5: Workflow definition screen of the first version of Rodan

5.1 DEVELOPMENT HISTORY

175

Figure 5.6: Two jobs waiting for human intervention (highlighted in blue; the
jobs are “segmentation” and “binarise”).

5.2 The Design of Rodan

The current version of Rodan is developed as two components. The
Rodan server component is a web application that runs on a remote
server system and manages the underlying image processing and mu-
sic recognition tools. The Rodan client is a graphical user interface
built to run in a web browser. It acts as a control surface for a user to
interact with and control a remote Rodan server instance.

An overview of the Rodan client and server architecture is
provided in figure 5.7. Working from left to right in the diagram:

• People (“users”) interact with clients. This may be the “official”
Rodan client web application, or other clients (e.g., a smartphone
or tablet application) designed to interact with a Rodan server.
• Interaction between the Rodan clients and a server takes place
over the public internet (the “cloud”) using the HyperText Trans-
fer Protocol (http)
• Clients interact with the Rodan server using a well-defined Ap-
plication Programming Interface (api). The api manages bi-direc-

RODAN

176

tional (send and receive) communication with the client
applications.
• The Rodan server has three components. The api sends status
information and retrieves control messages from clients to con-
trol the server, the Object-Relational Mapper (orm) system man-
ages a persistent storage layer in the form of a relational data-
base, and the task queue system co-ordinates workflow
processing among nodes in a cluster, distributing omr tasks to be
processed with assorted image processing and omr toolkits.

Figure 5.7: Overview of the Rodan Client and Server architecture

This section will describe the design patterns employed in the con-
struction of both the client and the server applications, and give an
introduction to the communications protocols used in communica-
tion between the Rodan server and client applications.

5.2.1 Model-View-Controller

The Model-View-Controller (mvc) design pattern governs the struc-
ture, representation, and manipulation of data in an application. This

5.2 THE DESIGN OF RODAN

177

pattern was introduced by Trygve Reenskaug during a period where
he was a visiting scientist at Xerox parc in 1978–9.

The essential purpose of mvc is to bridge the gap between the
human user's mental model and the digital model that exists in
the computer. The ideal mvc solution supports the user illusion
of seeing and manipulating the domain information directly. The
structure is useful if the user needs to see the same model
element simultaneously in different contexts and/or from
different viewpoints. (Reenskaug 2010)

mvc was first popularized in the Smalltalk-80 programming lan-
guage (Krasner and Pope 1988). It has since become one of the most
important design patterns for structuring and modelling data and
user interactions within applications.

mvc makes a distinction between three types of objects in an ap-
plication. Model objects define the data that are stored and manipu-
lated in the application, and therefore represent a large part of the
underlying structure and purpose of the application. View objects are
responsible for displaying the data, and presenting controls (e.g., but-
tons) for interacting with the system. Controller objects control inter-
actions between models and views, taking actions initiated by the
user and routing it to the appropriate actions for managing and ma-
nipulating the data. A representation of this is given in figure 5.8 (ad-
apted from the Apple Cocoa Design Patterns documentation, Apple
Computer 2012). The Rodan server uses the Django application
framework (Django Project 2014) to manage the mvc interactions in
a web-based environment. In this environment, models represent per-
sistent data stored in a database.

RODAN

178

Figure 5.8: Model-View-Controller Representation

Since the models describe the application state and the data con-
tained in the application, understanding the model layer is funda-
mental to understanding the structure of an application. The next
section will present the Rodan models and describe how they inter-
act with each other.

5.2.2 Entity-Relationship Diagram

The relationship between models in Rodan is presented as an Entity
Relationship Diagram (erd) shown in figure 5.9. This graphical rep-
resentation illustrates the properties of, and relationships between,
model objects in Rodan. Lines that connect the models are termin-
ated with indications of how the models are related to each other, as
indicated in the legend.

5.2.3 Rodan Models

Each model object defines the data stored in instances of that model.
An instance of a model is an occurrence of a particular record. For ex-
ample, the Project model defines how data for individual projects are
stored, while an instance of the Project model would structure the
data describing a particular project. In a Django application, model
instances are mapped to the underlying database storage system
through an Object-Relational Mapper (orm). When a new object is
created (e.g., a new project), a reference to this object and its proper-
ties (name, creator), is created and stored in the database.

All model objects are uniquely identified by a Universally Unique

5.2 THE DESIGN OF RODAN

179

id (uuid) to ensure that entities within a single Rodan installation
can be uniquely identified in a global context, and across distributed
systems, without needing significant central co-ordination. The uuid
is a 128-bit randomly-generated alphanumeric string that has a very
low probability of introducing identifier collisions (i.e., it is highly un-
likely that two randomly-generated uuids will be the same). An ex-
ample of a uuid would be “38a65ed6-931c-428b-
b837-4a34e62dd52b”. The uuid for all objects is used as the primary
key identifier in the database.

5.2.3.1 Users

User objects represent a human actor in the system. Users are identi-
fied by a user name and password, and can authenticate and “log in”
to the system. Permissions and group assignment, using the built-in
Django authorization system, are used to govern the activities in
which a User may participate.

5.2.3.2 Projects

A Project is the basic organizational unit in Rodan. A Project must be
created to organize resources and workflows into logical groups. For
example, a project would be used to organize all recognition activities
around a particular book, or a particular collection. Users may be re-
stricted to accessing only certain projects in the system, providing a
way of restricting access to projects for which they do not have
permissions.

RODAN

180

Figure 5.9: The Rodan Entity Relationship Diagram

5.2.3.3 Pages and Images

A Page represents an image, the basic object for analysis in a docu-
ment recognition system. A Page has a one-to-one relationship with
an image, but it also contains extra information about the image in
both a recognition context and in its relationship with other Page im-
ages. Multiple Pages may belong to a single project. Pages are given a
sequence number as a way of ordering the images, often correspond-
ing to the order of pages in a book.

Pages are created when a user uploads an image to the Rodan serv-
er. In this process, a “compatible image” is automatically created. This
is a derivative image that has been translated to a standard, lossless
image format. The compatible page image format in Rodan is the
Portable Network Graphics (png), (Roelofs 1999). The compatible im-
age simplifies processing the image data by providing a known image
format derived from the wide variety of formats that users may up-
load (e.g., jpeg, tiff, gif). Another automatic process creates several
thumbnail images from the compatible image, allowing smaller image
representations to be displayed in the interface.

5.2.3.4 Jobs

Jobs represent abstractions of individual manipulation tasks that may
be applied to pages. A simplified example of a Job definition is
provided in figure 5.10. Job objects use a dot-delimited name as an in-
dication of the tool that provides the processing task. In the example
below, “gamera.toolkits.rodan_plugins.rdn_rotate.rdn_rotate”
indicates that this job is provided by the Gamera toolkit, but is part of
a third-party toolkit (“rodan_plugins”) and provides the “rdn_ro-
tate” function (the last component of the name is always the func-
tion provided by that particular job).

RODAN

182

URL: http://example.com/job/f6769a3c9a394a4998f8acb9e5fc4f0b/
JOB NAME: "gamera.toolkits.rodan_plugins.rdn_rotate.rdn_rotate"
SETTINGS: [
 {
 name: “angle”
 type: “int”
 default value: 0
 }
],
INPUT TYPES: {
 pixel types: [0, 1, 2, 3, 4, 5]
},
OUTPUT TYPES: {
 pixel types: [0, 1, 2, 3, 4, 5]
}
CATEGORY: “Rotation”,
INTERACTIVE: True

Figure 5.10: A sample Rodan job definition for interactive rotation

“Input Types” and “Output Types” specify the types of data that
this Job can accept and produce. The “pixel types” are used to identify
the particular types of data the job may accept, process, and produce.
This is a misnomer, since Rodan jobs may accept and produce non-
image data, but is presently named for historical and compatibility
reasons. A more accurate name would be “data types.” A list of data
types currently accepted by Rodan jobs is provided in figure 5.11.

ONEBIT = 0
GREYSCALE = 1
GREY16 = 2
RGB = 3
FLOAT = 4
COMPLEX = 5
MEI = 6
JPEG2000 = 7
(a `package` is used to
produce multiple outputs from
a single job.)
PACKAGE = 8
GAMERA_XML = 9

Figure 5.11: Rodan job data input and output types

The “Settings” field stores an array of settings for executing a par-
ticular job. Each setting defines a name, a default value, and an ex-

5.2 THE DESIGN OF RODAN

183

pected data type for the setting value. In the example, the job takes
one parameter, identified as “angle,” with a default value of “0” (no
rotation) and expects a signed integer. This particular job definition is
set to be interactive (identified by the “interactive” parameter). Once
this Job is placed in a Workflow (described in the next section) this
parameter identifies that a particular job definition is designed to
pause the workflow and wait for human input. The human input will
modify the value of the settings to provide, in this case, a custom ro-
tation angle. For organizational purposes a job is assigned to a cat-
egory to group similar functions. In this case, the rotate job is, un-
surprisingly, assigned to the “Rotation” jobs category.

5.2.3.5 Workflows and WorkflowJobs

In Rodan, a Workflow can be thought of as an organizational object
that relates a collection of processing tasks and a collection of page
images to be processed by these tasks.

A Project may contain multiple Workflows. Each Workflow may
operate on one or many Pages. Several Workflows may be defined to
process the Page images in a project. Users may organize their Work-
flows and Pages to provide custom processing tasks for features
unique to a subset of images. To give an example, a user may wish to
create two Workflows for processing a single book, designed to ac-
commodate differences in camera frame orientations or image size in-
troduced in the digitization process. Thus one Workflow may be
tailored to processing the recto page images, and the other tailored to
processing the verso page images.

In Rodan, a distinction is made between the definition of a Job (de-
scribed above), and its existence in a particular workflow. When a Job
is assigned to a workflow, an instance of another model is created, the
“WorkflowJob.” When a user adds a Job to a Workflow, the informa-
tion in the Job object is copied to a new instance of a WorkflowJob

RODAN

184

and added to the workflow. The default settings of a Job are copied to
the WorkflowJob.

A distinction is made between objects that represent the definition
of the Workflow, and objects that are created in the process of runn-
ing a Workflow (see figure 5.13). Workflows, Jobs, WorkflowJobs, and
Pages are the objects that are used to define the function of a Work-
flow prior to execution, while WorkflowRuns, RunJobs, and Result
objects are created when executing a workflow.

5.2.3.6 WorkflowRuns and RunJobs

Once a Workflow has been created by defining a sequence of Work-
flowJobs, the user can execute the Workflow, where each Job pro-
cesses each Page attached to the Workflow. When a Workflow is ex-
ecuted, the system creates a new instance of a WorkflowRun, which
represents a running workflow. This object is created to store the
status of a running Workflow. A Workflow may be executed several
times, each time generating a new WorkflowRun object. Since the
Job settings, and indeed the entire Workflow definition, may change
between successive runs, each WorkflowJob definition is used to de-
rive a new instance of a RunJob object, containing the settings used
to process an image.

A RunJob represents the application of a processing task to an im-
age, and as such represents the core of the processing system. A Run-
Job can have several states, shown in figure 5.12. Many of these states
are self-explanatory. States that may require further explanation are
WAITING_FOR_INPUT and RUN_ONCE_WAITING. A RunJob that is waiting
for input is an interactive job that is waiting for a human to complete
a task so that it may finish executing. A RUN_ONCE_WAITING RunJob is
a particular feature of the co-operative nature of task execution in
Rodan. In this case, a preliminary operation has been applied to a
particular image, and the RunJob is waiting for a human to correct or
verify the solution before continuing.

5.2 THE DESIGN OF RODAN

185

NOT_RUNNING = 0
RUNNING = 1
WAITING_FOR_INPUT = 2
RUN_ONCE_WAITING = 3
HAS_FINISHED = 4
FAILED = -1
CANCELLED = 9

Figure 5.12: Run Job states

An example of a RunJob in a RUN_ONCE_WAITING state is a process
for staff segmentation. A particular staff-line recognition algorithm
has automatically identified the locations of each staff on the page
for the purposes of segmenting the musical content from other page
elements (e.g., textual, lyrical). (A picture of this is shown in figure
5.15 along with a description of the interactive task.) The automated
pass is designed to minimize human involvement by providing a pre-
liminary solution to the segmentation task. The system is then set to
hold the task and wait for the human to verify, and possibly correct
the automated solution.

Separating Workflows and WorkflowJob from the WorkflowRuns
and the RunJobs objects provides a mechanism for accessing the res-
ults of all previous workflow runs, as well as the settings used to com-
pute every result in past runs. This allows the results of different sett-
ings to be compared, to determine the settings that produce the most
desirable output in a workflow.

5.2.3.7 Results

The Results object holds an image or data that represents the output
of a RunJob instance. If a RunJob is expected to produce output for
the next job in the workflow, it is the Result object that is used as in-
put for the next job.

RODAN

186

5.2.3.8 Summary

An overview of the process of defining and running a workflow is
shown in figure 5.13. Entities involved with defining a workflow are
shown above the “start” line, while the entities created when a work-
flow has started execution are represented below this line.

Figure 5.13: Rodan workflow system overview

A Workflow (1) is composed of Pages (3A) and WorkflowJobs (3B).
Jobs (2) provide a representation and definition of every processing
task available in the system. Thus Workflows are combinations of
Pages and Jobs that are applied to a workflow, or WorkflowJobs. After
a Workflow is executed (“start”), a new WorkflowRun (4) is created.
WorkflowRuns are ordered collections of RunJobs (5), with each Run-
Job instance representing an instance of a WorkflowJob and a Page
(for the first task in the Workflow) or Result image (i.e., the output of
the previous task). A RunJob produces a Result (6), and this Result
may be used as the input to the next RunJob in the sequence (repres-

5.2 THE DESIGN OF RODAN

187

ented by the dotted line connecting Results to RunJobs). The initial
RunJob in a workflow is paired with a Page image to provide the ini-
tial input into the workflow (represented by the dotted line connect-
ing Pages to RunJobs).

The workflow system is the central component of Rodan, and
provides a way for different, independent image processing and mu-
sic recognition tasks to be chained together to form bespoke omr
systems with processes tailored for individual recognition projects.
The next section will describe how the workflow system is managed
and controlled through a HyperText Transport Protocol (http) api.

5.2.4 Application Programming Interface and rest

An application programming interface (api) is a specification for in-
teraction between software components. Through an api, software
can provide input for a certain operation, control a running process,
or inquire about the status of a process.

The Rodan server component features a web api that defines how
other systems can interact with the server over the http protocol.
Rodan is designed to separate the user interface from the underlying
omr system implementation. All functions, including authentication,
uploading pages, and creating and running workflows, are operated
through the http api.

5.2.4.1 Representational State Transfer (rest)

The Rodan api follows the Representational State Transfer (rest)
design (Fielding 2001) to govern the structure of the api. rest was
designed to take advantage of the underlying mechanisms of http,
and in doing so, simplify and formalize the mechanisms with which
two pieces of software can interact over the World Wide Web
(www).

rest is not, in itself, a protocol. Instead, it is a description of how

RODAN

188

http can be used to design a remote service api. The author of rest,
Roy Fielding, was one of the original authors of http.

rest's client-server separation of concerns simplifies component
implementation, reduces the complexity of connector semantics,
improves the effectiveness of performance tuning, and increases
the scalability of pure server components. Layered system
constraints allow intermediaries—proxies, gateways, and
firewalls—to be introduced at various points in the
communication without changing the interfaces between
components, thus allowing them to assist in communication
translation or improve performance via large-scale, shared
caching. rest enables intermediate processing by constraining
messages to be self-descriptive: interaction is stateless between
requests, standard methods and media types are used to indicate
semantics and exchange information, and responses explicitly
indicate cacheability (Fielding 2001, 98–9).

Adhering to a restful design allows a developer to maximize the
underlying mechanisms of http for addressing and interacting with
remote resources. It also leverages the existing infrastructure that
makes up http-based communication, simplifying the mechanism of
sending and receiving messages.

There are several alternatives to rest for web service protocols.
One of the most widely used alternative is the Simple Object Access
Protocol (soap) (Gudgin et al. 2007). The soap protocol defines a
platform for exchanging information between two remote systems
using a defined message format, implemented as an xml-structured
file. Messages may be transferred over a network connection to re-
quest information from a remote system, or trigger an action of some
sort. Message encapsulation allows soap to be transport-agnostic. It
may be used over a wide variety of communication protocols includ-
ing http, the Simple Mail Transport Protocol (smtp, used for e-mail),
or even the Transport Control Protocol (tcp), the “raw” communica-
tion protocol of the Internet.

5.2 THE DESIGN OF RODAN

189

However, when designing a system that is designed to be operated
exclusively over http, employing a soap-based protocol leads to a
large amount of duplication of effort. The http protocol contains
several pre-built mechanisms to define how systems may interact.
soap-based apis largely ignore these mechanisms. soap-based sys-
tems need dedicated software to manage these interactions on both
the client and the server, while rest, since it is based directly on the
http specification, will work with a wide range of standard web
browsers and web servers. For Rodan, we chose rest to avoid incom-
patibilities and reduce the amount of extra software needed to man-
age the communication process between the Rodan server and its cli-
ent applications.

5.2.4.2 Resources and Identifiers

In Rodan, models (§5.2.3) are exposed as resources in the api. In a
restful design, the resource is the central organizing principle. A re-
source is an object that can be identified by a unique, global identifier
(typically a Universal Resource Identifier, or uri)9. These resources
are addressed using Element uris, pointing to a single instance of a
resource, or Collection uris, a list of all available resources of a partic-
ular type. To give an example, the uri for all jobs available in a given
Rodan installation may be accessed at:

http://example.com/jobs/

When this uri is requested the server will respond with a list of all
job objects in the system. To access one particular job instance, a cli-
ent may use the uri of the job object—a globally unique identifier
(truncated for space):

9. A uri is a globally unique identifier for a particular object (a unique name). A
Universal Resource Locator (url) is a location where that resource may be found (a
unique address). In most systems, uris and urls are the same thing, since a
globally unique name, and a globally unique address, can be one and the same.

RODAN

190

http://example.com/job/f6769a3c9a...e5fc4f0b/

This will return a representation of a single job object, for further use
(display or manipulation) by the client (these representations will be
discussed later in §5.2.4.4).

5.2.4.3 http Methods

To tell the server to take an action, the Rodan api makes use of the
pre-defined http methods, or “verbs.” These verbs identify actions
that the client wishes to invoke on the server, and include get, post,
put (or patch) and delete. Every http request includes one of
these methods. get is the most frequently used method, as it is used
to request information from a server. In our previous example we
used the following uri:

GET http://example.com/job/f6769a3c9a...e5fc4f0b/

In practice this would be used by a client, such as a web browser, to
indicate that we were requesting a particular resource from the serv-
er. Other http methods may be used to manipulate resources avail-
able at a given uri. To delete a particular job, the server would re-
quire a different verb:

DELETE http://example.com/job/f6769a3c9a...e5fc4f0b/

Request methods have expected actions. The designer and the user of
a rest api can therefore rely on convention, rather than documenta-
tion, to understand the expected actions and responses to a particular
method. These responses include:

• get When sent to a Collection uri (a uri that is expected to
provide a list of objects) returns the list. When sent to an Ele-
ment uri (a single object) returns the object.
• delete Will delete all objects in a collection, or a single
element.
• put or patch Typically used to modify a single resource. The

5.2 THE DESIGN OF RODAN

191

put method specifies that a complete record must be sent to an
Element uri, replacing the record available at that address. The
patch method supports partial updates, so a client may simply
send the modified fields to update the resource. (The patch
method is a proposed extension of http and is not a part of the
standard to date. It is, however, supported by many newer soft-
ware systems and is expected to be standardized in the next ver-
sion of the http protocol)
• post Creates a new resource. A post request sent to a Collec-
tion uri is expected to return a newly-created resource with the
uri to address it. A post request to an Element uri is rarely
used, since the expected behaviour (create a new resource) is not
compatible with addressing a single, existing resource.

Utilizing existing methods and conforming to expected actions
given a method is designed to make an api easily understandable,
and support knowledge transfer across different apis.

5.2.4.4 Serialization

The Rodan api currently supports resource serialization using the
json format. All requests to, and responses from the server must be
formatted as json-serialized messages. A json object is a method of
serializing and exchanging structured data between a client and a ser-
ver, and is so named because it corresponds to the format in which
JavaScript objects can be represented. In Rodan, model objects stored
on the server side (Workflow, Job, Project, etc.) are serialized as json
and sent between client and server. Clients that request a list of pro-
jects from a Rodan server send a get request to the uri identifying
the project collection (http://example.com/projects/) with Ac-

cept: application/json as a header in the request object. The serv-
er responds with the list of projects serialized as a json object, which
may be parsed in a JavaScript environment (i.e., a browser).

RODAN

192

5.2.4.5 Authentication and Authorization

Two types of authentication are available in Rodan. Session authen-
tication allows a user to provide log-in credentials to the server. If the
user credentials match an existing user account (i.e., a user success-
fully logs in), the server responds with a shared secret in the form of a
“cookie,” a small randomly generated and encrypted identifier. This
cookie is automatically included with each request by a user’s
browser. Before fulfilling a request, the server verifies that the cookie
value matches the value it has stored. If it matches, it permits the re-
quest to proceed; if it does not match the server assumes the client is
not authorized and refuses the request, returning an error to the
client.

Token authentication is an alternative to session authentication.
In this method, every user is assigned a randomly-generated token,
stored on the server. A user can request their token from the server
and, if the username and password match, the server will respond
with their unique token. This token may then be stored on the client
side, negating any need for future authentication requests or cookie
management system. The client can then include this token in each
http request in the Authorization header, e.g.,

"Authorization: Token 655aff7dc865866fc9bd9e7fafb32bfeb"

This token uniquely identifies the user operating a client, and
provides an indication that this user has been duly authenticated.
The server uses this token to manage the actions permitted to that
user. This is provided as an alternative to Session authentication since
it does not rely on a cookie-based session identification. Cookies can
be cumbersome to maintain in a non-browser environment, so Token
authentication may be used in clients that are not browsers, such as
third-party software interacting with a remote Rodan instance.

5.2 THE DESIGN OF RODAN

193

5.2.4.6 Status and Error Codes

Status and error notifications are an important component in com-
municating the state of the server system, and provide indications of
error conditions within the system as well as available means of cor-
recting these errors. The http specification defines a number of
status codes which can be used by a server to communicate the
status of a request. The full list of http status codes is given in the
http protocol (Fielding et al. 1999). Status code categories are identi-
fied by their leading digit. The categories of status codes are given in
table 5.1.

1XX Informational

2XX Successful

3XX Redirection

4XX Client Error

5XX Server Error

Table 5.1: Categories of HTTP status codes

Every http response contains a status code to indicate the status
of the request. The most common status code is 200 OK, which identi-
fies that the request has been successfully fulfilled by the server;
however, this is typically not seen by most users. The 404 Not Found

status code is perhaps the most visible in everyday use. This error is
sent by a server in response to a request for a resource that is not
present, either because the request was malformed (a mistyped url,
for example) or because the resource has been moved to a different
location.

In Rodan, the standard http status codes are used, rather than a
custom status system. Among other things, this provides a level of
compatibility with existing http clients such as web browsers. A
table listing some of the status codes used in Rodan is given in table
5.2.

RODAN

194

200 OK A request for a resource was successful

201 Created A POST request resulted in the creation
of a new resource

400 Bad Request A client has sent a malformed request
(i.e., a request that is missing
required information)

401 Unauthorized A client has attempted to perform an
action without authorization

403 Forbidden A client has attempted to perform an
action for which it does not have
permission

404 Not Found A client has requested a resource that
does not exist

405 Method Not
Allowed

A client has used an HTTP Request
Method that it is not allowed to use
(e.g., a POST request by a non-
authenticated user)

500 Server Error The server has encountered an error and
cannot continue

Table 5.2: Supported Rodan status codes

A client that accepts and understands these codes should be able
to recover from them, or pass them along to the user for further diag-
nosis. For example, a 401 Unauthorized error can prompt a software
client to present an opportunity for the user to authenticate and au-
thorize (“log in”) by redirecting them to a log-in page.

5.2.4.7 api Summary

The Rodan api provides a mechanism for external clients to interact
with a remote Rodan server for all activities related to creating and
managing the data held on this server. This section provided an over-
view of the design patterns governing this api, primarily expressed
through a restful design and utilizing the underlying mechanisms of

5.2 THE DESIGN OF RODAN

195

the http protocol. The complete Rodan api documentation is
provided in Appendix B.

5.2.5 Interactive Jobs and Interactive Interfaces

Interactivity within a running workflow allows humans to engage
with tasks, providing decisions that may improve the accuracy of the
recognition process in a way that cannot be achieved by a fully auto-
mated process. Rodan implements interactivity in the workflow by
specifying that a job can pause and wait for a human to supply it
with further input before it continues to execute subsequent jobs in a
workflow.

In Rodan, several JavaScript-based user interfaces have been de-
veloped to aid the user in accomplishing these tasks using their web
browser.10 These interactive jobs use the html canvas element to
draw and manipulate the images at the pixel level within the
browser. For each of these tasks the image in the browser serves as a
proxy for the image on the server. The interface is used to determine
the values (e.g., a binarization threshold or a rotation angle) which
are then sent to an identical processing algorithm on the server. This
reduces the amount of image data required for processing in the web
browser, and allows the values, as determined by the user, to be ap-
plied to the full quality images.

10. The tools discussed in this section are integrated as part of the Rodan
interactive workflow system, but are also developed as standalone components in
the JS Image Suite package. Source code for these implementations are available at
https://github.com/DDMAL/js-image-suite.

RODAN

196

Figure 5.14: Interactive JavaScript Binarization interface. Original image on
the left; binarised image on the right. The user can adjust the level of

binarization interactively by moving the slider seen above the image on the
right.

For example, in the binarization interface we have implemented a
simple thresholding algorithm in JavaScript, where the value from
the slider is used as the threshold value (figure 5.14). The goal of this
task is to interactively determine the optimal global threshold of the
image in response to the movement of the slider, rather than assum-
ing one value for all pages in a workflow. The value is sent back to
the server, which then applies the user-determined threshold value
to an image.

A different interface provides an interactive way of separating mu-
sical staves from other page content, including lyrics, text, and noise
(figure 5.15). A server-side process for determining the staff locations
is executed on an image on the server side. This results in a polygon
representing the locations of the musical staves as determined by a
staff finding algorithm. These polygons are then used by the correc-
tion interface to draw an interactive polygon shape over those re-
gions of the image. The user may use the mouse to adjust the size
and shape of these polygons, with the goal of masking all the areas of
musical content, while leaving areas of non-musical content (e.g., lyr-
ics, ornate letters) un-masked. When the user submits a solution, the
interface sends a corresponding list of polygon shapes back to the ser-

5.2 THE DESIGN OF RODAN

197

ver, which then applies these polygons as a mask to remove areas of
the image, leaving only the musical content.

Figure 5.15: Interactive JavaScript staff segmentation interface. The blue
boxes represent automatically-detected staves. The user is asked to correct
this to ensure all the musical content can be segmented from other content

(e.g., lyrics, decorations, noise, etc.).

Other interactive interfaces, such as image rotation, cropping, de-
speckling, and lyric region identification, have been implemented or
are in the process of being implemented.

5.2.6 Design Summary

This section examined some of the design considerations underlying
the development of the Rodan server. The Model-View-Controller
pattern represents a structural separation of functionality among di-
fferent components in the application. Clients interact with the
Rodan Server over an http api designed according to the principles
of Representational State Transfer (rest). Tasks in Rodan workflows
may include human interaction, and JavaScript correction interfaces
allow users to participate in the recognition process by providing
feedback within a running workflow.

RODAN

198

The next sections will examine several implementation details of
the Rodan Server and Rodan Client, including development plat-
forms and core dependencies.

5.3 The Rodan Server

The Rodan Server is implemented using the Python programming
language, and built using the open-source Django web application
framework (Django Project 2014). Django is implemented using Py-
thon, and contains several tools to manage interactions between
http clients, database systems, and distributed processing queues.

5.3.1 The Rodan Job System

The core function of Rodan’s Job system is to allow heterogeneous
document processing and omr tools to interact within a single work-
flow. These tools may take the form of a command-line application,
or a Python module, or a remote web service.

For each tool, a task definition defines how the job should be ex-
ecuted, what sorts of input the tool accepts and the type of output
the tool produces. This task definition is written in Python, and forms
the bridge between the tool and the Rodan server.

In Rodan, the execution environment for tools is provided by the
“Celery” module, a Python implementation of the RabbitMQ Mes-
sage system, which will be discussed next.

5.3.2 RabbitMQ and Celery

Rodan uses the RabbitMQ (Videla and Williams 2012) message
broker system for managing task execution. Celery (Lunacek et al.
2013) is a Python module that provides the language-specific tools for
interacting with RabbitMQ. These systems provide Rodan with a dis-
tributed task queue, allowing image processing tasks to be “queued
up” and executed in turn. These systems are designed to operate on a

5.3 THE RODAN SERVER

199

single computer system, or to distribute tasks across a number of
“workers” on networked computer systems.

Rodan is designed to handle large, high-quality document images,
and perform computationally-intensive tasks on them. As such, a dis-
tributed task queue is necessary to separate the components users in-
teract with from the task execution system. When a message is re-
ceived by the server to perform a task, this task is queued up for
processing, and a status message is immediately sent back to the user
notifying them that their job has been queued, with a url that can
be periodically queried to retrieve the status of the job.

An interactive job is treated as a special case in the workflow exe-
cution process. The presence of an interactive job effectively pauses
the execution of a workflow until a human can provide the data
needed to continue that task. In the queue system, an interactive
task will be assigned to a worker for execution. If the system has not
received human input (i.e., it has the status WAITING_FOR_INPUT or
RUN_ONCE_WAITING) it will be marked for later execution and placed
back into the queue. Should input be provided between execution at-
tempts, the data is saved in the RunJob model, and the status of the
RunJob is changed to NOT_RUNNING. The next time this job comes up
for execution it will be executed with the provided input and the
workflow will continue until it finishes or the next interactive job is
encountered.

5.3.3 Server Summary

The Rodan server provides the ability to create, execute, and store
workflows. With the Rodan server, many different toolkits can be in-
tegrated to form workflows.

However, the Rodan server does not have a human-friendly inter-
face. All aspects of the Rodan server are controlled through its http
api, which is designed for computer-mediated interaction. The next

RODAN

200

section will describe the Rodan client, a browser-based user interface
for the Rodan server.

5.4 The Rodan Client

The Rodan client is the reference implementation of functionality
available from the Rodan server. While it is dependent on an in-
stance of the Rodan server to operate (i.e., it has no workflow man-
agement or image processing systems itself), it is developed as a sep-
arate, standalone application. The Rodan client runs in most modern
web browsers. A single instance of a Rodan server may interact with
many client instances operating in many users’ browsers.

5.4.1 Objective-J and Cappuccino

The Rodan client application is written using a dialect of the Java-
Script language called Objective-J (Cappuccino Project 2014a). This
dialect draws its inspiration from Objective-C, a programming lan-
guage most commonly used in development for Apple devices
(Macintosh and iOS). Objective-C adds object-oriented programming
patterns to the c language, while also being a strict superset of the C
programming language, meaning that any valid C code is also valid
Objective-C code. In the same way, Objective-J is a strict superset of
JavaScript, but adds several object-oriented features to the language.
Since web browsers do not understand the Objective-J dialect a spe-
cialized compiler is used to translate code written in Objective-J to
standard JavaScript.

The Cappuccino Framework (Cappuccino Project 2014b) utilizes
the Objective-J language to provide a number of tools and “wid-
gets”—buttons, form controls, windows—for building browser-based
applications. Cappuccino mimics the Cocoa Framework (Hillegass
and Preble 2011), Apple’s api for developing on Mac OS X. The Cap-
puccino framework includes methods for creating and interacting

5.4 THE RODAN CLIENT

201

with controls (buttons, sliders), information display (tables, progress
bars) and ajax communication.

One of the advantages of writing the client application using Cap-
puccino is that this framework abstracts most of the underlying web
technologies into a single programming environment. Most web ap-
plications require developers to write the interface using a combina-
tion of html and Cascading Style Sheets (css) for the visual ele-
ments, and JavaScript to define the behaviour of the application.
With Cappuccino, however, these browser technologies are abstrac-
ted from the developer, and a single language environment, Object-
ive-J, is used for all aspects of application development, including
rendering a button, managing application state, or interacting with a
remote server.

5.4.2 Application User Interface

Although the Rodan client application runs in a web browser, its
visual design mimics that of a desktop application (figure 5.16). This is
a feature of the Cappuccino framework, designed to emulate a
desktop application built using the Cocoa frameworks. It was
specifically chosen for Rodan to provide a visual bridge between tra-
ditional desktop applications while still operating in a user’s browser.

5.4.2.1 Project Managment

The project management view (figure 5.17) is the first screen users see
after they have successfully authenticated in the client against a
Rodan server. This screen allows the user to choose or delete an exist-
ing project, or create a new project. Once they have chosen a project,
they can click the “Open” button to proceed to the main Rodan ap-
plication view (figure 5.16).

RODAN

202

Figure 5.16: The Rodan Client interface

5.4.2.2 Main Application View

The main application view is the primary view of the Rodan client
(shown with the “Pages” sub-view in figure 5.16). It is divided into se-
parate screens that segment information views and interfaces in the
client. The menu bar and toolbar sections at the top of the applica-
tion (figure 5.18) are always available and allow the user to navigate
between the different screens of the application. These screens will
be discussed in turn.

5.4 THE RODAN CLIENT

203

Figure 5.17: Project Management View

Figure 5.18: The Rodan Application Toolbar

5.4.2.3 Status

The status section, currently a placeholder and not implemented,
offers users a visual overview of the Rodan server, the availability of
the queues, and other status-related information relating to the state
of the remote server.

RODAN

204

5.4.2.4 Users

The user management pane, also not currently implemented, offers
administrators the ability to assign and manage users and their roles
in a project.

5.4.2.5 Pages

The pages view (shown in figure 5.16) provides the user with an inter-
face for uploading and viewing all pages, and page images, associated
with a project. Users click the “Upload new page images” button and
are shown a file browser, allowing them to choose multiple files on
their local machine to upload to the server. The list of uploaded page
images are displayed in the central table, and a thumbnail representa-
tion of a selected page is displayed to the right of the table.

5.4.2.6 Designer

The designer view displays management controls for working with
workflows associated with a project. When clicking on the designer
toolbar icon, they are taken to a workflow management view (figure
5.19) where they can create a new workflow, or edit or delete existing
workflows.

Figure 5.19: Workflow management view

5.4 THE RODAN CLIENT

205

To open a workflow, users select a workflow from the list and click
the “Open” button. The user then sees the main workflow designer
view (figure 5.20). This view allows the user to manage the pages
(left) and runs (left, tab not shown), tasks (centre), and job settings
(right, above), and view the library of jobs available (right, below).

Users add previously-uploaded pages to the workflow by clicking
the “+” button below the page area, or choosing the “Workflow”
menu and selecting “Add Pages…”. They may drag and drop jobs from
the job library into the central workflow designer area. Users can fil-
ter the available jobs list by category or alphabetically. Each job indic-
ates whether it is an interactive or non-interactive job in the list of
available jobs. Jobs placed in the central workflow area are executed
in order, from top to bottom. If a user attempts to drag and drop a job
that cannot follow another, the system will not allow it. Clicking on a
job that is placed on the workflow area shows the settings available
for that job in the upper-right region.

Figure 5.20: Workflow designer view

RODAN

206

Figure 5.21: Jobs view

5.4.2.7 Jobs

The jobs view (figure 5.21) displays the status of every job in a work-
flow that has been executed or is being executed. The interface also
provides a central place to view all interactive jobs that are waiting
for human intervention. Users can select a job and click the “Work
on Job” button, which will then display an interface (similar to those
shown in figures 5.14 and ?) for performing this task.

5.4.2.8 Results

The results view (figure 5.22) is the central control panel for viewing
and managing workflows that have started, are currently running, or
have finished.

5.4 THE RODAN CLIENT

207

Figure 5.22: Results view

Project workflows are shown in the upper-left corner. Selecting a
workflow will display a list of workflow runs in the upper-left centre
column. Selecting a run will display the pages associated with that
run in the right column. Selecting a page from the list will display fur-
ther information about that page in the bottom half of the view. The
results of all jobs in the workflow are shown in the bottom left, while
the bottom right displays a thumbnail image of the original page
image.

The upper-right quadrant displays information and controls for the
currently selected workflow and workflow run. Choosing a page will
display a list of jobs, and their status, associated with that page. Users
also have controls for performing any interactive tasks associated
with a given page image.

RODAN

208

5.4.3 Client Summary

The current user interface for Rodan is a preliminary attempt at build-
ing a control surface for a remote Rodan server instance Using the
Rodan client application, many users can log in and interact with a
remote Rodan server instance, working collaboratively to build and
run workflows, interact with running workflow tasks, and administer
the remote Rodan server instance all through a standard web
browser.

5.5 Chapter Summary

Rodan is a novel prototype application for building workflow-based
omr systems, utilizing aspects of web application programming and
distributed computing. The core function of Rodan is to serve as a
bridge between large, mixed collections of independent image pro-
cessing, machine learning, and symbolic music processing toolkits,
creating an environment where they can interoperate in bespoke
omr processes, managed and executed in a web-based environment.

The design of Rodan was inspired by the manual process and pro-
cedures encountered in the omr workflows for the Liber usualis pro-
ject. This led to preliminary attempts at building an omr system us-
ing Taverna, a scientific workflow system. In these investigations we
discovered a need to integrate human feedback into the overall pro-
cess, a feature that Taverna did not support at the time. This led to the
creation of Rodan, a workflow system that can support interactive
workflows and execution of tasks based on human input.

Rodan is developed as two separate projects, a server and a client.
The Rodan server system uses the Django web application frame-
work, an mvc-based environment for developing customized applica-
tions using the Python programming language. Interaction with the
Rodan server uses a well-defined api based on the principles of rest,

5.5 CHAPTER SUMMARY

209

using built-in methods and notification systems of the http protocol.
Rodan is designed to bring together existing image processing, ma-
chine learning, and symbolic music processing tools, providing an en-
vironment where these tools can interoperate as a components in an
omr workflow.

The Rodan client application is a graphical user interface that
provides a way for people to interact with the Rodan server api in a
web browser. The Rodan client is built using the Objective-J language
and the Cappuccino Framework, abstracting many of the technolo-
gies underlying web application development (html, css, the dom)
and integrating them into a single development environment.

With the Rodan client application users can organize recognition
projects, upload images, and build and manage custom document re-
cognition workflows. These workflows can then be executed on a re-
mote server, with built-in mechanisms for utilizing distributed and
parallel computing. The ability to run several workflows in parallel
across many computer systems creates the opportunity for scaling
the capacity of an omr system to accommodate larger workloads
than may be executed on a single personal computer. While the net-
worked adaptive omr functionality has not been developed yet,
Rodan will provide an ideal environment for building and experi-
menting with this technique.

While Rodan is the central prototype developed as part of this dis-
sertation, several other tools for supporting large-scale, web-based re-
cognition, search, and retrieval of music documents have been de-
veloped in the course of this research program. The next chapter will
examine these tools.

✽

RODAN

210

6.
Technologies supporting large-scale

recognition
The previous chapter presented Rodan, a platform for creating dis-
tributed omr (Optical Music Recognition) workflows. This chapter
will present several tools and technologies developed to support
large-scale omr projects.

Each section of the chapter describes a different tool or process de-
veloped in the course of the dissertation. The first section (§6.1) de-
scribes a software library, LibMEI, to read, write, and manipulate mei
files. Diva (§6.2) is a document image viewer that uses several novel
techniques for displaying large, high-resolution images in a web
browser. The Solesmes mei neume notation customization (§6.3) was
developed as way to encode the notation used in the Liber usualis
project (described in chapter 7). The omr Interchange Package (oip) is
presented as a package file format for sharing and using the image
and notation results of an omr system (§6.4). Finally, two prototypes
for web-based crowdsourced correction tools are presented (§6.5).

Several of the projects mentioned in this chapter were the result of
collaboration with others, who will be mentioned in this chapter
where appropriate. The acknowledgements of the dissertation
provides a detailed description of individual contributions.

6.1 LibMEI

LibMEI is an object-oriented, open-source c++ library for reading and
writing mei-encoded files. It was built to provide an interface
between “raw” mei xml and applications that support reading and
writing mei files. It has been tested on Linux and Macintosh operat-
ing systems. The source code and documentation are publicly avail-

211

able on GitHub (Hankinson and Porter 2014). Alastair Porter was co-
designer of this library, and helped formulate many of the core func-
tions of this software.

An initial version of LibMEI was built using the Python language.
This version was used to prototype features and behaviours of the lib-
rary. The Python prototype was then ported to c++ to help improve
performance and to provide greater compatibility with other software
applications. Python compatibility with the c++ version of LibMEI is
handled using the Boost Python library (Abrahams and Grosse-
Kunstleve 2003) to create “bindings” between the two language
environments.

While mei is most often expressed as xml, it may also be ex-
pressed in other structured representation formats; for example, Java-
Script Object Notation (json) (ECMA International 2013). Similarly,
LibMEI is designed to be “expression-agnostic.” LibMEI translates an
xml encoding into its own internal object hierarchy. This abstraction
allows the user to work with the mei structure using methods and
data structures native to the language (e.g., c++, Python, or Java-
Script), rather than relying on xml-centric parsing libraries. This
makes LibMEI suitable for use in, for example, a web application
where a server reads in an xml file but produces a json representa-
tion that can be sent to a browser and manipulated by JavaScript
methods.

6.1.1 LibMEI Core

The core of LibMEI provides basic functionality for reading, parsing,
writing, and traversing mei structure. Since LibMEI is expression-ag-
nostic, xml-specific functionality is limited to reading and writing; all
other functions for traversing and manipulating the underlying mei
operate on an internal data structure. Expression of mei in any other
document serialization format (e.g., json) would operate in a similar
way, where the form is parsed into the internal format.

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

212

There are four “core” object classes in LibMEI:
• MeiElement

• MeiDocument

• MeiAttribute

• MeiNamespace

In addition, there are two object classes for reading and writing xml:
• XmlImport

• XmlExport

Figure 6.1 illustrates the relationships between these objects. The
import and export functionality (left of the dotted line) is separate
from the mei object structure. A hypothetical json import and ex-
port is shown here to indicate that LibMEI can support multiple rep-
resentations. Importing and exporting are handled via the
MeiDocument class, which acts as a container object and provides
some global document functionality, such as searching and traversing
all objects in the document.

Figure 6.1: LibMEI Object Structure

In LibMEI, relationships between objects are maintained by point-
ers. A pointer is a programming language construct that allows a
single object to be referenced in many places without requiring mul-
tiple copies of the object. (Technically, a pointer references the loca-
tion in a computer’s memory storage system where an instance of the

6.1 LIBMEI

213

object is stored). When an mei file is parsed, MeiElement objects are
created in memory for each element. These objects are related to each
other by maintaining pointers between elements, allowing a single
object to be referenced in two places (e.g., as the parent object of one
element, and the child of another).

The MeiDocument object holds a pointer reference to a single
MeiElement object as the root of the document. Each MeiElement

contains an ordered array of pointers to child objects, as well as a
pointer to its parent MeiElement object. Each MeiElement also holds
an array of attributes that act as simple containers for storing keys
and values for each attribute of an object. A pointer to a
MeiNamespace object provides functionality for handling objects from
different xml namespaces (Bray et al. 2006a), and applies to both
MeiAttribute and MeiElement objects.

Finally, the XmlImport and XmlExport objects are classes built to
convert xml into MeiDocument and MeiElement objects, and vice-
versa. xml importing is handled via libxml2, a third-party library for
handling xml files (Veillard 2014).

When an mei file is loaded into LibMEI, several different repres-
entations of the structure are generated to assist in parsing and tra-
versing the document. A tree representation corresponding to the
hierarchical structure is generated through parent-child relationships
on each element. An ordered 1-dimensional representation, created
as a simple array of pointers, is also created. This array is a flattened
list containing pointers to all the elements in the mei file. This is an
optimization for navigating the xml tree structure, transforming
search operations from a recursive operation to a linear scanning
operation. Since every element is a pointer containing other pointers
to its parent and its children, the tree hierarchy may be entered and
traversed using any element without any unnecessary duplication of
structure (e.g., two copies of objects that represent the same element).

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

214

6.1.2 Library Generation and LibMEI Extended

LibMEI is distributed with a tool, parseschema2.py, to parse an odd
(“One Document Does-it-all”) schema file and automatically generate
a customized library for reading and writing mei files. While this was
initially conceived as a means of keeping LibMEI synchronized with
developments in the mei schema, it also has the benefit of providing
a strongly-typed system for supporting customized versions of mei.
For example, it is possible to generate a c++ library specifically for
use in mensural notation software which would fail to parse a mei
file that uses elements drawn from the Common Music Notation
(cmn) module. This failure is designed as an explicit safety feature to
ensure that a software system (e.g., a notation editor) does not try to
parse an mei file containing data that it is not designed to handle.
The schema parsing script generates source code for classes corres-
ponding to mei elements defined in the odd file.

Other systems, known as “bindings,” exist for automatically pars-
ing an xml schema to a native representation in a programming lan-
guage. These bindings allow programmers to interact with objects de-
fined in an xml schema as objects available in their programming
language. For Java, jaxb (Project JAXB 2014) and Castor (Exolab
Group 2013) provide automatic generation of bindings, while Code-
Synthesis xsd (Code Synthesis Tools 2014) provides similar function-
ality for c++. Before writing our own, we examined these libraries.
We chose to implement the core of our library in c++ to provide a
wider range of supported platforms, but bindings generated by the
CodeSynthesis xsd tool produced an overly complex system, so it
was decided to build our own tool to generate the bindings directly
from the odd representation.

LibMEI is distributed with a library generated from the “mei All”
customization, a schema that includes all modules, elements, and at-
tributes specified in mei. This allows LibMEI to read and write mei-

6.1 LIBMEI

215

encoded notation files that would pass validation by the mei All Re-
laxNG schema.

The code generation functionality for LibMEI has been used
through three major versions of the mei schema: 2011-05, 2012, and
2013. In addition, it has been used to generate libraries for reading
and writing customized schemas for the Liber usualis (§7.1) and
Salzinnes projects (§7.2, §7.3). The next sections will describe how the
elements, attributes, and auxiliary functionality are accommodated
with the parseschema2.py script.

6.1.2.1 Typed Objects

The customization system automatically generates c++ code that de-
fines classes for every element defined in mei. This code can be com-
piled by a c++ compiler. These generated classes wrap and extend
the functionality available in the LibMEI core by providing a “type
system” for every mei element; that is, the <note /> element is auto-
matically converted to the c++ code that defines a Note object. Every
typed element inherits from the base MeiElement class.

To illustrate the differences between the “core” LibMEI and the ex-
tended, type-specific functionality, figure 6.2 shows two procedures
for creating an mei “note” element. The example on the top uses the
LibMEI “core,” creating a MeiElement object with the name “note.”
The example on the bottom uses objects auto-generated from the
odd file. This example shows that a Note object can be constructed
simply by instantiating the corresponding class that was auto-gener-
ated from the mei odd file.

MeiElement *p = new MeiElement("note");

Note *p = new Note();

Figure 6.2: Comparison of LibMEI note object instantiation in LibMEI core
(top) and extended (bottom)

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

216

LibMEI uses the extended, typed version of the library when read-
ing in an xml file. This is accomplished using a mapping system that
maps the name of an element with the particular class used to instan-
tiate an object for that element. For each automatically-identified
class definition, derived from the mei odd file, there are two pre-pro-
cessing macros defined, REGISTER_DECLARATION and
REGISTER_DEFINITION. At compile-time these macros register a string
corresponding to the element name (e.g., “note” or “meiHead”) and
map it to the symbol of the compiled class definition, creating a class
registry. When an xml file is imported at run-time, the import layer
reads the element name, finds the corresponding class symbol in the
class registry, and then instantiates that class to represent that ele-
ment. If the tag name is not found, either because of an error in the
mei file or the particular customization of mei does not contain sup-
port for that element, the library will raise an exception and will fail
to import the file.

When the parseschema2.py script generates the library, it divides
the source code into separate source files corresponding to the mei
module from which the code was derived. This includes creating both
header and implementation files. The Note class, for example, can be
found in the shared.h (header) and shared.cpp (implementation)
files, since the <note> element is a member of the MEI.shared

module.

6.1.2.2 Attribute Groups

Element definitions in mei may belong to many attribute groups. At-
tribute groups are used to bring together similar attribute definitions
so that they are defined in one place but may also be shared between
elements. For example, both <note> and <rest> elements belong to
the att.duration attribute class, but only the <note> element would
belong to the classes that define attributes for pitch and octave value
(i.e., @pname and @oct, respectively). Attribute groups are used to en-

6.1 LIBMEI

217

sure consistent behaviour of attributes across all elements in the
schema. The code generation script uses this information to consolid-
ate attribute classes into similar classes that define methods for ma-
nipulating those attributes on that object. When the mei schema is
parsed each attribute class is added to the elements that belong to
that class by using a “mix-in” system following the composition
design pattern.

The composition design pattern (Freeman et al. 2004) is a method
of achieving polymorphic behaviour in an object-oriented system
without using multiple inheritance. The distinction between tradi-
tional multiple-inheritance polymorphism and the composition pat-
tern may be expressed as the difference between is-a and has-a. A
class that inherits from two superclasses in the traditional inheritance
model may be described as having the attributes of both classes; thus,
ClassX is-a composite of both ClassA and ClassB. The has-a pat-
tern, used in composition, allows methods to be defined as members
of multiple classes without needing to explicitly inherit from this
class. So ClassY, implemented using composition, has the methods
defined in ClassA and ClassB without inheriting from them.

The purpose of employing the composition pattern in LibMEI is to
reduce the amount of repeated code for managing attributes on the
element class objects. This is accomplished by mix-ins, or attribute
class definitions that can be added to elements (“mixed in”) as
needed. As of this writing, the Note class has 51 separate mix-in
classes, each containing definitions of one or more attribute classes.
The mix-in pattern significantly reduces the amount of generated
code by grouping and re-using these method definitions on multiple
elements. In addition, pre-defined accessors for each attribute can re-
duce the amount of “boilerplate” code for working with attributes
(figure 6.3).

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

218

MeiAttribute *a = new MeiAttribute("pname", "c");
p->addAttribute(a);
std::string *v = p->getAttribute("pname").getValue();

p->m_Pitch->setPname("c");
std::string *v = p->m_Pitch->getPname();

Figure 6.3: Generic (top) and mix-in (bottom) methods of accessing the
@pname attribute.

A fragment of the implementation for the LibMEI Note class is giv-
en in figure 6.4. The mix-in class, PitchMixIn, (in sharedmixins.h)
contains methods for working with an attribute defined in the
schema for this class, pname. Four methods are defined in this mix-in
for this attribute: getPname, setPname, hasPname, and removePname. In
the Note class definition, the PitchMixIn class is set as member vari-
able, m_Pitch. The class initialization list, shown in shared.cpp (also
in figure 6.4), sets the m_Pitch member variable when the object is
created. This places the instantiation of each mix-in class as part of
the instantiation process of the Note object. For each mix-in, a pointer
to the specific instance of the class (“this”) is passed to the mix-in
constructor. In the implementation of each mix-in function, this

provides a way to access the member variables defined in the Note

object, and is available in the mix-in class via the member variable b

(for “base”). The mix-in function implementation for the pname attrib-
ute is shown in figure 6.5. The script examines an element’s member-
ship in attribute groups, and automatically builds a dedicated class
used to hold accessors (“get,” “set,” “has,” and “delete” methods) for
supported attribute classes on that element.

6.1 LIBMEI

219

// sharedmixins.h

class PitchMixIn {
 public:
 explicit PitchMixIn(MeiElement *b);
 virtual ~PitchMixIn();
 MeiAttribute* getPname();
 void setPname(std::string _pname);
 bool hasPname();
 void removePname();
 private:
 MeiElement *b;
};

// shared.h

class MEI_EXPORT Note : public MeiElement {
 public:
 Note();
 Note(const Note& other);
 virtual ~Note();
 CommonMixIn m_Common;
 PitchMixIn m_Pitch;
 ...
 private:
 REGISTER_DECLARATION(Note);
};

// shared.cpp

mei::Note::Note() :
 MeiElement("note"),
 m_Common(this),
 m_Pitch(this),
 ...;
{}

Figure 6.4: Sample Mix-In implementation in LibMEI

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

220

// sharedmixins.h

MeiAttribute* mei::PitchMixIn::getPname() {
 if (!b->hasAttribute("pname")) {
 throw AttributeNotFoundException("pname");
 }
 return b->getAttribute("pname");
};

void mei::PitchMixIn::setPname(std::string _pname) {
 MeiAttribute *a = new MeiAttribute("pname", _pname);
 b->addAttribute(a);
};

bool mei::PitchMixIn::hasPname() {
 return b->hasAttribute("pname");
};

void mei::PitchMixIn::removePname() {
 b->removeAttribute("pname");
};

Figure 6.5: Sample mix-in function implementation for pname

6.1.2.3 Custom methods

While auto-generation of library functions allows for easier code
maintenance with newer revisions of the mei schema, this comes
with a significant drawback. Custom methods for performing tasks
beyond simple accessor functions are difficult to integrate into the
library, since all of the source code for each class definition is auto-
generated and is therefore lost when the library is re-generated. In
other words, anything not defined in the odd schema or derived
from getting or setting attribute values on objects is lost when the lib-
rary is re-generated. To address this drawback, a method for injecting
custom methods into the library generation process is provided by
the parseschema2.py script. Custom methods are defined in an in-
cludes file, and are automatically added to the source code when it is
re-generated. When the include function is run in the library genera-
tion process, the methods to be included are written into the appro-

6.1 LIBMEI

221

priate place in the source code, which may then be compiled in to
LibMEI as an available library function.

This process will be illustrated by way of an example of extending
the auto-generated class definition of the Tie element. Suppose we
want to write a custom method, getMembers, available on the Tie ob-
ject that, when called, could return all Note objects (“members”) at-
tached to that Tie. Since this is custom functionality for the Tie ob-
ject, we need to devise a way of injecting this method after the class
code has been automatically generated from the odd schema.

The Tie object is defined in the cmn.h and cmn.cpp files. Custom
methods are stored in files within an includes directory, with each
file named in a way that allows the parsing system to automatically
discover them. For this example, the files we create would be in-

cludes/cpp/cmn.cpp.inc and includes/cpp/cmn.h.inc. Our custom
code for our getMembers method would be placed within a specially-
formatted comment block for both the header and implementation
files. An example definition for injecting the appropriate code into
the header file is shown in figure 6.6.

// cmn.h.inc

/* <tie> */
MeiElement* getSystem();
std::vector<mei::MeiElement*> getMembers();
/* </tie> */

Figure 6.6: Example include definition for the Tie element

When the mei schema is parsed and the class definitions are cre-
ated from the odd file, a “bookmark,” in the form of a specially-
formatted comment, is injected into the appropriate place in the class
definition. In this case, the comment would be /* include <tie> */

(figure 6.7), injected into the file close to the Tie object definition.
The includes-parsing stage of the parseschema2.py script examines

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

222

the includes directory for any definitions to inject. If it finds a in-
cludes file, it examines this file for any custom methods. It then uses
the specially-formatted comment blocks to inject these methods back
into the source code by replacing the comment in the object defini-
tion with the custom method defined in the includes file.

class MEI_EXPORT Tie : public MeiElement {
 public:
 Tie();
 Tie(const Tie& other);
 virtual ~Tie();

/* include <tie> */

 CommonMixIn m_Common;

Figure 6.7: Example definition for the Tie element, showing the comment
where the custom methods will be injected.

The resulting Tie object, once compiled, would then contain the
getMembers() method, allowing the developer to call Tie->getMem-
bers() on the object. This method would then parse the information
available on the Tie object, and, depending on the implementation,
likely return an array of pointers to the Note objects that are mem-
bers of the Tie.

6.1.3 SibMEI

The SibMEI plug-in (Hankinson and Walter 2014) is open-source soft-
ware that uses LibMEI idioms to bring mei import and export func-
tionality to the Sibelius notation editor. It is a separate project from
LibMEI and does not use the C++ core of LibMEI, but it does use the
schema parsing system to automatically generate a Sibelius plug-in
that contains functions for reading and writing mei files.

One of the first challenges when bringing mei functionality to Si-
belius was the lack of an xml library for reading and writing mei
within the Sibelius development environment. Developers write Si-

6.1 LIBMEI

223

belius plug-ins in a dedicated language called ManuScript (Finn et al.
2011). This environment supports reading and writing plain-text files
(including Unicode) but has no functionality for parsing or writing
xml files. To allow SibMEI to import mei files, an xml parser was
ported to ManuScript from an existing Java implementation (Brandt
2002). For export, an original xml exporter was written.

At the time of writing, mei export from Sibelius is fully functional.
For import, an mei file can be opened and parsed into an internal
representation, but actually drawing the notation in Sibelius is not
currently implemented and is slated for future work.

6.2 Diva: Document Image Viewer

Diva (Document Image Viewer with Ajax) is a book image viewer
suitable for displaying large, high-quality book images in a web
browser without needing to install special plug-ins (Hankinson et al.
2009; Hankinson et al. 2011a; Hankinson et al. 2012). With Diva it is
possible to view smaller, low-quality images (suitable for fast brows-
ing and document navigation) or larger, high-resolution pages (suit-
able for close study) in the same interface, while maintaining the abil-
ity to scroll through all the images in the document, similar to
scrolling through a multi-page word processing or pdf document (fig-
ure 6.8). The central feature of the Diva viewer, and one which is
unique among all known document image viewers, is that it
combines both of these features in a single interface.

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

224

Figure 6.8: The Diva interface, showing multi-page scrolling (top) and zoom
functionality (bottom).

6.2 DIVA: DOCUMENT IMAGE VIEWER

225

6.2.1 Development History

The Diva project began as a pilot project with the Swiss working
group of the Répertoire International des Sources Musicale (rism)
project. rism is an international initiative, founded in 1952, whose
purpose is to identify and catalogue musical sources held in libraries
and archives around the world. In 2008, the Swiss rism working
group received funding for an exploratory project in digitizing music-
al sources (prints and manuscripts) by Swiss composers held in librar-
ies and monasteries across Switzerland. The goal of this project was
to build a system capable of publishing high-quality images of a
source online, along with the extensive, research-quality metadata
gathered by rism.

6.2.1.1 Environmental Scan of Digital Image Viewers

Several web-based document image viewers have been developed in
recent years, primarily in response to extensive document digitiza-
tion efforts. Presented here are the results of an environmental scan
conducted prior to the development of Diva. The goal of this review
was to examine tools and current practices for displaying high-resolu-
tion document images online.

Document Image Gallery

The most common method of displaying document images in digit-
ized book systems uses the “document image gallery” format, where
page images are displayed as individual images and users navigate
through document images by clicking on small thumbnail represent-
ations arranged on a grid or in a list. An example of this type of inter-
face is illustrated in figure 6.9, taken from the Early English Books
Online (eebo) interface. We found that interfaces designed in this
style make it difficult to navigate the pages of the book as a cohesive

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

226

unit, requiring users to click through several separate web pages as
they move from one page to another.

To illustrate: All pages of a book are presented as a grid view, with
each cell containing a small page image. To examine any single page,
the user must click on an image from the grid view. This brings up a
second view of the page optimized for viewing in the browser, but
may not be usable for close examination if the text on the page is too
small. Should a user wish to examine any part of a page in particular
detail, the site may provide an option to download a larger, high-res-
olution image. The user must wait for this large image to download to
their browser, which may take several minutes depending on the
speed of the network connection and the size of the image. If the
user is waiting for the full-quality image to download but wishes to
continue browsing the document on the next page they must open a
new window, navigate back to where they were, then traverse
through the smaller thumbnails and start the process again.

Figure 6.9: Book browsing interface from the Early English Books Online
database

6.2 DIVA: DOCUMENT IMAGE VIEWER

227

Google Books

The Google Books project presents items as a single scrollable entity
embedded within the webpage (Google 2014b). This allows users to
quickly scroll and navigate through the entire work. Their viewer
software is integrated with their own book image delivery system
and is not available as a separate component for libraries and
archives to integrate into their own collections.

Figure 6.10: Current Google Book Viewer

When the Google Book project launched in 2005 it used the image
gallery format for viewing book images. Users were required to click
“next” and “back” links to navigate between book page images. How-
ever, in 2006 the company launched a new interface that used ajax
techniques to automatically download page images as a user scrolled
through the book (Chitu 2006) (figure 6.10). This mimicked the func-
tionality of the popular Adobe Acrobat pdf browser plug-in but ran
“natively” in the users browser without requiring installation of an
extra plug-in. The Google Book viewer could load page images on de-
mand as the user scrolled, and the user did not have to wait for the
entire document to download to their computer before displaying the

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

228

first page. The interface provides limited zoom functionality. Each
page is delivered to the browser as a single image.

Internet Archive

The Internet Archive BookReader, developed for the OpenLibrary
project, displays document page images in either a scrolling frame or
as a physical book metaphor, allowing users to navigate the book by
“turning” the pages (figure 6.11). Both the Google Books viewer and
the Internet Archive BookReader serve full page images to the
browser, but the entire image must be downloaded to view it. For
high-resolution pages this can be slow as the user must wait for the
complete image to download before the user can view the page.

Figure 6.11: The Internet Archive BookReader interface

6.2.1.2 Design

Based on our initial environmental scan we developed five design
criteria that drove the development of the first versions of this docu-
ment viewer, and which have largely persisted throughout its
development:

1. Preserve document integrity. Documents presented online
should not be presented as disconnected images in an “image
gallery” format. A user should have the ability to browse all

6.2 DIVA: DOCUMENT IMAGE VIEWER

229

document images in a single web page, without needing to
navigate between separate web pages for variants of the
image.

2. Allow side-by-side comparison of items. For early music
documents, especially, it may be highly desirable to display
the images from multiple physical items in the same inter-
face. The most common uses for this may be to display a score
and parts, or images taken from multiple part books.

3. Provide multiple page resolutions. For some books it may
be desirable to zoom in and out on a page, viewing greater or
lesser image detail. For page images that have been digitized
at very high resolutions this allows users to view small details
that may otherwise be lost in versions of the image that have
been resized or compressed to accommodate reasonable
download times.

4. Optimize page loading. While it is desirable to view high-
resolution images, these images can be slow to download and
consume a significant amount of bandwidth. Using gigapixel
image viewer technology, it is possible to break large images
into smaller chunks, thereby optimizing the loading time by
only downloading the portion of the images that the user is
viewing at any time. (These gigapixel image viewers are typic-
ally used to view large images of the universe or detailed
panoramic cityscapes.)

5. Present item and metadata simultaneously. Many librar-
ies present their images separate from the metadata that de-
scribes the item they are viewing. If users are consulting the
images, they typically have to flip back and forth between the
images and the item record on different pages. This causes a
disconnect between the two representations of the document.

Furthermore, we wanted to ensure that this image viewer ran nat-
ively in the browser without needing a plug-in, which places an extra

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

230

barrier for usability of the digital collection, as users would have to
download and install a plug-in before viewing the collection. We also
felt a plug-in would impose a significant amount of development
overhead, as it would need to function in many different browsers.
We decided to implement the image viewer using only the technolo-
gies available in all web browsers: html, css, and JavaScript.

6.2.1.3 The DocumentViewer

The initial version of Diva, then simply called “DocumentViewer,”
was developed in 2008 using the Ext JS JavaScript framework (Orch-
ard et al. 2009). It was developed as part of a prototype interface for
viewing score images in the rism database. Figure 6.12 shows the ini-
tial version of the interface “zoomed” in on a score, while figure 6.13
demonstrates the use of this interface to view two physical books
simultaneously.

Figure 6.12: Initial version of the DocumentViewer

6.2 DIVA: DOCUMENT IMAGE VIEWER

231

Figure 6.13: Viewing two books (Violin I and II) in the DocumentViewer
interface

6.2.1.4 Current Version

When developing the Liber usualis project a viewer was needed to
present images and search results in a web browser. We decided to re-
implement the DocumentViewer core as a jQuery plug-in (jQuery
Foundation 2014). This provided a more “lightweight” implementa-
tion of the page layout and viewing components, and made it easier
to distribute the document viewer as a component that could be in-
tegrated into existing web applications. The DocumentViewer was re-
named “Diva” and made publicly available as a standalone compon-
ent. The first deployment of this new implementation was in the
Liber usualis project, where it provided the interface for navigating
through this book (figure 6.14).

Wendy Liu contributed several significant components for the cur-
rent Diva viewer, developing the system through two releases of the
software. She designed and implemented several of the components

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

232

that will be discussed in the next section, including the dynamic dom
manipulation, the grid view, and the image manipulation functions.

Figure 6.14: Liber usualis interface showing region highlighting of search
results

6.2.2 Components

A Diva installation has two primary software components, the iip Im-
age Server and a front end written in JavaScript (see figure 6.15).
Measurement data encoded in json is served by a web server and
used by the front-end to control the dimensions of the html ele-
ments used to display the page images in the interface.

6.2 DIVA: DOCUMENT IMAGE VIEWER

233

Figure 6.15: A high-level overview of Diva. Page images are digitally captured,
and then served by the IIP Image Server as tiles to the user’s browser, which

uses pre-computed measurement data about the document stored and
transferred in JSON to establish document and page layout.

6.2.2.1 Measurement data

An image pre-processing step generates measurement data for each
document, and each image in the document. The data encoded in
this file is listed below. Field names in the measurement data are in-
tentionally succinct to reduce file size and optimize network transfer
times. An example of the json measurement data stored by the pro-
cess is given in figure 6.16.

The fields are as follows:
• item_title: The title of the document
• dims: A set of global dimensions for the entire document,
including:
◦ a_wid: Average page width at each zoom level
◦ a_hei: Average page height at each zoom level
◦ max_w: Width of the widest page at each zoom level
◦ max_h: Height of the tallest page at each zoom level
◦ max_ratio: The largest width:height ratio
◦ min_ratio: The smallest width:height ratio
◦ t_hei: Total height of all pages placed end-to-end

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

234

◦ t_wid: Total width of all pages placed edge-to-edge
• max_zoom: The maximum number of zoom levels a page has in
the document
• pgs: An ordered array of individual page measurements. Each
page object contains the following fields:
◦ d: An ordered array of dimension objects describing the
page at each zoom level. The fields present in this object are:

– c: Number of tile columns
– r: Number of tile rows
– h: Page height at that zoom level
– w: Page width at that zoom level

◦ m: The max number of zoom levels for that page
◦ f: The file name for that page

{"item_title":"Salzinnes-cci",
"dims": {
 "a_wid":[137.93,275.87,551.75,1103.5,2207,4414],
 "a_hei":[216.52,433.05,866.11,1732.22,3464.45,6928.91],
 "max_w":[137.9375,275.875,551.75,1103.5,2207,4414],
 "max_h":[218.53125,437.0625,874.125,1748.25,3496.5,6993],
 "max_ratio":1.5842772995016,
 "min_ratio":1.4961486180335,
 "t_hei":[103717,207434,414869,829738,1659476,3318952],
 "t_wid":[66072,132144,264288,528576,1057153,2114306]
},
"max_zoom":5,
"pgs": [
 {"d":[{"c":1,"r":1,"h":218.53125,"w":137.9375},
 {"c":2,"r":2,"h":437.0625,"w":275.875},
 {"c":3,"r":4,"h":874.125,"w":551.75},
 {"c":5,"r":7,"h":1748.25,"w":1103.5},
 {"c":9,"r":14,"h":3496.5,"w":2207},
 {"c":18,"r":28,"h":6993,"w":4414}
],
"m":5,
"f":"salz-001r.tif"},
{...other pages...}]
}

Figure 6.16: JSON-encoded Diva document dimensions

6.2 DIVA: DOCUMENT IMAGE VIEWER

235

6.2.2.2 iip Image Server

The iip Image Server (Pitzalis et al. 2006) is an open-source image
server designed to serve high-resolution images over http. It accom-
plishes this by allowing a client to request just a portion of the full
image. Images are stored as formats that support a multi-resolution
version of the image. To serve the image, iip can address sections of
each image as a tile. Each layer, and each tile within that layer, may
be individually retrieved from the server using a url.

The iip Image Server is typically used to present extremely large
images in a browser. A typical use for it might be to serve a high-res-
olution image of the entire earth, of a portion of the universe taken
from satellite photographs, or detailed images of paintings and art-
work (Pillay 2012). We use the iip Image Server to provide the Diva
viewer with the ability to view large, high-resolution images. Prior to
serving the document images they must be converted to a format
that supports high-resolution document viewing. This will be dis-
cussed next.

6.2.2.3 Image Processing

The high-resolution images served by the iip server must be encoded
in an image format that supports multiple resolution tiled image de-
livery. The iip Image Server supports two such formats: Multi-resolu-
tion (“Pyramid”) tiff and jpeg2000.

The number of image resolutions available for a given image is de-
termined by the maximum resolution of the original file and the size
of the individual tiles. The formula for calculating the number of res-
olutions (n) available for a given image size is given in equation 6.1.

Equation 6.1: Number of resolutions based on image and tile sizes

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

236

The largest dimension, D, of the image (width or height) and the tile
size, Ts, are both given in pixels. For example, an image with the
largest dimension of 4120 pixels and a tile size of 256 pixels would
result in an image with six discrete zoom levels. Each of these zoom
levels are then decomposed into a representative number of 256 ×
256 pixel tiles.

jpeg2000 (der Knijff 2011; JPEG Group 2014) is a newer and more
advanced image format that supports tiling and multiple-resolution
representations. Rather than store copies of the same image at vary-
ing resolutions, like multi-resolution tiff, jpeg2000 uses wavelet
transforms to create an image which may be dynamically represented
at multiple resolutions by extracting lower or higher-resolution rep-
resentations of the file (Li 2001).

6.2.3 Functionality

This section will present a few of the features of the Diva interface
and provide some implementation details.

6.2.3.1 Preserve document integrity

To preserve document integrity, Diva presents the user with an entire
document (i.e., a collection of page images) on a single web page. The
user can scroll through this collection of page images in the docu-
ment without needing to visit multiple web pages. Users also have
the ability to “zoom” in and out to view multiple image sizes (i.e.,
high and low resolution representations of the images) within same
scrolling interface, eliminating the need to visit multiple independent
pages to view the images at larger or smaller sizes.

6.2.3.2 Multi-resolution image display

Whether Diva is displaying the complete page, or a small portion of a
much larger page image, the number of tiles needed to represent the
page images remains largely constant (figure 6.8). Should a user zoom

6.2 DIVA: DOCUMENT IMAGE VIEWER

237

in on an image to a point where the full image is larger than the vis-
ible area in the browser (figure 6.17), Diva optimizes the page image
loading by requesting just the tile images that are visible to the user.
Tiles that are immediately outside of the viewing area are pre-loaded
to reduce waiting times for the user as they move the image. Moving
the image within the visible area to expose previously-unloaded
areas will automatically trigger the software to fetch and place the
image tiles in their appropriate location.

Figure 6.17: Diva loads only the tiles that are displayed in the visible area of
the user’s browser

6.2.3.3 Optimized page loading

In Diva, the decomposition of the page into tiles creates a highly op-
timized viewing system that can present high-resolution page images
to users without requiring that they first download the entire docu-
ment, or even the entire page image—a significant advantage over
methods that distribute entire images or, in the case of pdfs, an entire
document in a single file.

The JavaScript component manages the html elements for just
three pages at a time (figure 6.18). This is done to reduce the memory

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

238

usage of Diva, especially on devices with restricted processing and
memory resources. Creating thousands of non-visible <div> elements
was found to consume large amounts of memory in documents with
many pages, resulting in reduced performance on all browsers, espe-
cially those with reduced memory resources such as tablets and
smartphones. As the user scrolls, the JavaScript component adds and
removes the page elements from the underlying html elements via
the Document Object Model (dom) interface. Page elements, and
their associated tile elements, are dynamically added and deleted
from the dom as the user scrolls through the document images. A
flowchart of the page loading and unloading process is shown in
figure 6.19.

Figure 6.18: Illustration of the page loading optimization. Diva maintains the
HTML elements for just three pages (previous, current, next) regardless of the

total number of pages

6.2 DIVA: DOCUMENT IMAGE VIEWER

239

6.2.3.4 Grid view

The Diva grid view was introduced to utilize available space in the
browser to display multiple document page images. The grid view dis-
plays all the pages in a row and column arrangement (pages are ar-
ranged from the left to right, and then top to bottom) (figure 6.20).
The number of pages per row can be dynamically adjusted. If a user
sees a page they would like to view in detail, double-clicking on the
page image will bring the image up in the page-view interface, where
they can zoom in on the image further. Users may switch back and
forth between grid and page view while maintaining their position in
the whole document. This provides users with an overview display of
the document without leaving the Diva viewing interface.

Figure 6.19: Diva scroll-loading Flowchart

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

240

Figure 6.20: Diva grid view at eight pages per row

6.2.3.5 Permanent linking

Diva preserves the state of a user’s viewer (zoom level, page position)
in a url. This url may be bookmarked and shared, and used to re-
create the original view in a later browsing session, or in another
user’s browser.

6.2.3.6 Synchronized viewer instances

Multiple Diva viewers may be instantiated on a single web page, al-
lowing multiple documents to be viewed simultaneously. Viewers
may be scrolled independently, or they may be “locked” together to
synchronize scrolling between two documents on the same web
page.

6.2.4 Browser-based image manipulation

A unique feature in Diva that is not available in other digital docu-
ment viewers is the ability to perform basic image manipulation tasks
on the page images. These image manipulations include rotation,
brightness, contrast, and rgb colour channel manipulation. This fea-
ture was designed especially to help users enhance particular aspects
of a document image to make it more readable.

6.2 DIVA: DOCUMENT IMAGE VIEWER

241

For example, image rotation can be useful to view marginalia that
run perpendicular to the page orientation, or perpendicular fly-outs
that have been folded over a page. Brightness, contrast, and colour
channel manipulations may be used to enhance faded inks on a ma-
nuscript page, making them more legible.

Previous attempts at image manipulation in a document viewer
have used tools installed on the server. In systems of this type, rotat-
ing a page image sends a request to the server, which performs the
image manipulation operation and then returns the resulting image.
This is a high-latency operation, as the user has to wait for the server
to perform the manipulation and the browser to re-download the im-
age. This type of interface is used, for example, in the Schubert
Manuskripte project (Wienbibliothek im Rathaus 2010) (figure 6.21).

Figure 6.21: The Schubert Manuskripte Image Viewer Interface. The image
manipulation toolbar sends commands to the server, which then re-processes

the image and sends the image back to the browser.

Instead of employing a server-side approach, Diva uses the html
canvas element for pixel-level manipulation of images. Browser-
based image manipulation is still a relatively new technology, and
browsers cannot manipulate images with the same speed expected of
a modern desktop application. On larger images this poses a user in-

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

242

teraction problem, since an image transformation cannot be applied
to the page image in a real-time reaction to user interactions. We mit-
igate this problem by providing users with a smaller preview image
that can provide real-time feedback on how their manipulation
might look when applied to the larger image. When the user is sat-
isfied with their manipulations, they can then apply the manipula-
tion to the larger image (figure 6.22).

Figure 6.22: Browser-based image manipulation in Diva. A page image has
been rotated 90° to view text written on a leaf that runs perpendicular to the

orientation of the document image. Note the smaller preview image above for
the manipulation controls.

6.2.5 Extending Diva

There are two ways for programmatic interaction with Diva. One is
an api that allow other software to “hook” into its processes, receiv-
ing notifications of actions performed in the viewer, or changing the
state of the viewer. Developers may define methods (“callbacks”) to
react to events that are triggered via interactions such as scrolling,
zooming, switching modes (fullscreen or contained), or views (page
view or grid view). This can be useful for loading extra information as

6.2 DIVA: DOCUMENT IMAGE VIEWER

243

the user scrolls through pages, such as loading and displaying
metadata to the user about the currently visible page to the user.

A formalized method of extending Diva is the plug-in system. The
plug-in capability was provided as a means of extending Diva
without needing to modify the “core” functionality. Developers may
write plug-ins to extend the functionality of Diva to accommodate
new sources of information, or display new interfaces that can use
the page images. A default installation of Diva comes with two plug-
ins. One is browser-based image manipulation tools (§6.2.4), and the
other is a simple plug-in that provides a link to download a given
page image.

6.2.6 Discussion

While Diva is not the first, or the only, web-based document image
viewer, it has several features that set it apart from other document
viewers. The unique tile-based document image delivery system,
along with the ability to scroll through all pages in a document, was
designed to preserve document integrity and give users the feeling
that they are browsing a complete document rather than a series of
separate images. Diva does not require any third-party browser plug-
ins. Integrated scrolling and zooming is a novel application of tile-
based image viewers, incorporating document navigation and multi-
resolution image views. Optimized page loading presents the user
with a nearly “instant-on” view of the document, as only the visible
portions of the document are loaded at any given time. Basic client-
side image manipulation in a document viewer is also an important
new feature, providing users with tools to manipulate document im-
ages through simple transformations and adjustments such as rota-
tion, brightness, and contrast controls. Finally, a callback system al-
lows developers to “hook” into the Diva viewer to interact with other
page elements, while a plug-in system provides a method to extend

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

244

the document image and delivery system to incorporate new func-
tions without needing to “hack” the core system.

Several new features are in the planning stage for Diva. A docu-
ment structure system will provide the viewer with the ability to
present document images using metadata that describes physical lay-
out (i.e., page openings), as well as structural data (i.e., chapter or sec-
tion locations). A new plug-in is under development that allows for
page-region highlighting. This may be used to integrate Diva with im-
age-based document navigation, where page regions can be high-
lighted when they match a user’s search query.

6.3 Neume Notation Encoding

This section will describe the creation of a customized mei schema
for encoding music from the Liber usualis (Benedictines of Solesmes
1961). This omr project is described in further detail in chapter 7 of
this dissertation. A description of the customization process, includ-
ing definitions of the terminology and typographical conventions
used here, is provided in chapter 4 (§4.6).

6.3.1 About the Liber usualis

The abbey at Solesmes, France was responsible for reviving the tradi-
tion of Gregorian chant in the late 19th century (Bergeron 1998). They
produced a number of liturgical service books for the Catholic
Church including missals, graduals, and, perhaps most famously, the
Liber usualis, a book containing chants for Mass and offices for the
most important feasts of the church year. These books were notated
using square-note neume notation on a four-line staff (an example is
shown in figure 6.23).

6.3 NEUME NOTATION ENCODING

245

6.3.2 mei Customization

Although mei has included provisions for encoding neume notation
since 2007, it lacks several elements needed to accurately capture
Solesmes-style neume notation. A customized version of mei was de-
veloped to add support for certain features of the notation that was
not already supported in the encoding schema, such as divisions (sim-
ilar, but not exactly equivalent to breath marks, graphically represen-
ted by several types of vertical lines across the staff), episema (a sign
indicating note stress) and neume names and forms that were not
present in the existing mei encoding system.

Figure 6.23: An example of the Solesmes neume notation showing a four-line
staff, neumes, and divisions (vertical lines).

The odd (One Document Does-it-all) modification file created for
the Solesmes customization defines four new elements for mei, as
well as accompanying attribute definitions. A RelaxNG xml schema
(§4.6.2) was derived from these definitions to validate the mei-en-
coded output of our omr system. In this section, the Solesmes cus-
tomization will be illustrated by examining the definition of just the
<division> element. Figure 6.24 shows how this element could be
used in valid and non-valid contexts.

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

246

<division form=”comma” />
Valid, @form can take comma as a value.

<division form=”bell” />
Invalid, the value of @form must be one of the specified
values: comma, major, minor, small, final.

<division name=”long” />
Invalid, @name is not allowed on this element.

<clef>
 <division />
</clef>
Invalid, division cannot be a child of the clef element.

Figure 6.24: Valid and invalid use of the <division> element defined in the
Solesmes module.

6.3.2.1 Element Definitions

The <elementSpec> definition (figure 6.25) is used to define a new
element, <division>, with the name specified using the @ident at-
tribute. The @module attribute specifies the mei module to which this
element belongs (MEI.solesmes), and the @mode attribute specifies the
mode the Roma processor should use for this element. The @mode at-
tribute may be one of “add,” for adding a new element, “delete,” for
removing an existing element from the resulting schema, or “re-
place,” for re-defining an existing element (the “delete” and “re-
place” attribute values are not shown).

The <desc> tags enclose the documentation for this element. The
Roma processor uses this information to derive the documentation
for the resulting schema customization. The <classes> element
specifies the classes, or groups of like-functioning elements, to which
this element will belong. In this case, the <division> element be-
longs to, and automatically inherits, the xml attributes specified in
the att.common, att.facsimile, and att.solesemes.division

classes. Of these three attribute declaration classes the first two are
defined in the mei core, while the third is declared in the Solesmes
customization.

6.3 NEUME NOTATION ENCODING

247

<elementSpec ident="division" module="MEI.solesmes" mode="add">
 <desc>Encodes the presence of a division on a staff.</desc>
 <classes>
 <memberOf key="att.common"/>
 <memberOf key="att.facsimile"/>
 <memberOf key="att.solesmes.division" />
 </classes>
</elementSpec>

Figure 6.25: Declaration of the <division> element in ODD

6.3.2.2 Attribute Definitions

The <classSpec> declaration (figure 6.26) creates a new class of at-
tributes, att.solesmes.division. This class defines a new group of
attributes on any element that is a member of this class; in this case,
only the <division> element is a member of this class. More general
classes of attributes may be defined that apply to multiple xml ele-
ments (like the att.common class). The @form attribute is declared by
the <attDef> element. Additional attributes may be declared by cre-
ating more <attDef> children of the <attList> element. The @usage

attribute on <attDef> declares this attribute to be optional, meaning
that it is acceptable if a <division> element does not possess a @form

attribute. Required attributes may be specified by setting the value of
this attribute to “req”.

The <valList> element defines the possible values that the @form

attribute may have; in this case the only valid values for the @form at-
tribute are given by the <valItem> elements. Since the value list here
is a closed set, specified by the value of @type, any values supplied in
the @form attribute that is not one of those specified will not pass val-
idation (figure 6.24).

The full Solesmes module contains definitions for four new ele-
ments, <division>, <episema>, <neume>, and <nc> (neume compon-
ent) and eight new attributes to accompany these elements. When
this customization is processed with the Roma processor against the

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

248

2013 mei core, a schema is produced that can be used to validate
Solesmes-style neume notation mei files.

<classSpec ident="att.solesmes.division"
 type="atts" mode="add">
 <desc>Divisions are breath and
 phrasing indicators.</desc>
 <attList>
 <attDef ident="form" usage="opt">
 <desc>Types of divisions.</desc>
 <valList type="closed">
 <valItem ident="comma" />
 <valItem ident="major" />
 <valItem ident="minor" />
 <valItem ident="small" />
 <valItem ident="final" />
 </valList>
 </attDef>
 </attList>
</classSpec>

Figure 6.26: Declaration of the att.solesmes.division class to describe a
common attribute group.

6.4 omr Interchange Package

The purpose of the omr Interchange Package (oip) (Hankinson et al.
2010) is to define a file structure that combines image files and the
omr-derived mei files into a single container suitable for transport-
ing between software systems. The oip format may be used by both
omr applications and applications that use the results of the omr
process.
For text documents there are similar formats that can be used to
maintain correspondence between text and image (reviewed in
Chapter 2, §2.6). For music notation applications, there are no file
formats available that maintain both images and notation data as a
single file, similar to pdf or DjVu. Likewise, for omr systems there are
no equivalent formats for encapsulating and transmitting the output
of the omr process in a way that preserves correspondence between
the symbolic and the visual representation, like hocr, mets/alto, or

6.4 OMR INTERCHANGE PACKAGE

249

xdoc. There is a need for a file format that can preserve both symbol-
ic music notation data and image files in a single file, suitable for in-
terchange between different software components, including search
systems and display systems. The oip format was developed to meet
this need.

An oip file is a collection of files and folders serialized as a single
file, (i.e., a zip file). A minimal standard for organizing the content of
these files, the “BagIt” specification, was chosen to impose a stand-
ardized file contents structure, rather than simply defining an ad hoc
method of bundling these files and folders together.

6.4.0.1 BagIt

The BagIt format is a lightweight file bundling specification main-
tained by the Library of Congress and the California Digital Library. It
is currently an Internet Engineering Task Force (ietf) draft standard
(Boyko et al. 2014). The name, “BagIt,” refers to a colloquial rendering
of the Enclose and Deposit method (Tabata et al. 2005), also known
as the “bag it and tag it” method.

This format defines a simple hierarchy of files and folders, known
collectively as a “bag.” These can be represented plainly on any com-
puter system as standard files and folders, and may also be a single
file compressed using standard zip or tar packaging systems.

Minimally, one directory and two files must be present in every
bag in order to be considered compliant to the standard. One of the
required files is a bagit.txt file that stores the version of the BagIt
specification to which that bag conforms and the character encoding
used for the metadata files. The second required file is a manifest file
listing checksums for each file within the data directory, helping to
ensure the integrity and identity of each of the files in the bag. A
data directory must be present, but this is unstructured and may con-
tain any arrangement of files or folders. This is the bag’s “payload.”
Other optional files are outlined in the BagIt specification.

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

250

6.4.0.2 omr-specific folder layout

For the oip format, we specify a file hierarchy within the data direct-
ory of a bag. A folder is created in the data directory for each page in
a multi-page document, allowing the format to accommodate docu-
ments of any number of pages. In each page folder, we store files re-
lating to this page, including any image files (originals or derivatives
generated from the omr process), and notation files (i.e., mei) con-
taining the transcribed symbolic music notation. Other files may be
stored in each page folder, as desired. A generalized example of the
oip structure is given in figure 6.27.

<bag-directory>
 |- bagit.txt
 |- manifest-md5.txt
 |- [other optional bagit files]
 |- data
 |- [page 1]
 | |- [image files]
 | |- [notation files]
 | |- [metadata files]
 |- [page 2]
 | |- [image files]
 | |- [notation files]
 | |- [metadata files]
 |- [etc.]

Figure 6.27: A generalized OIP structure

The BagIt specification allows for a free-form structure within the
data directory. Software capable of processing BagIt files can there-
fore guarantee the integrity and identity of each file in the bag
without needing to understand the oip format. Since the format
specifies a standard compression technique, and the structure is im-
plemented using a standard directory structure, there are countless
tools that can uncompress and display the contents of the BagIt file.
However, further processing of the contents, to perform tasks such as
validating file contents against their stored checksums, or ensuring

6.4 OMR INTERCHANGE PACKAGE

251

the structure conforms to the BagIt specification, requires software
that understands and implements that specification.

6.4.1 PyBagIt

PyBagIt (Hankinson 2013) is a Python software library for creating,
reading, validating, and writing BagIt files. Currently it can work with
BagIt files that conform to version 0.96 of the specification. It was de-
veloped as a tool for creating oip packages, but it may be used in oth-
er systems as a generic implementation of the BagIt specification—it
contains no oip-specific functionality. As a Python module it can be
incorporated into many of the tools used for omr as a tool for pack-
aging and delivering the results of an omr process.

6.4.2 oip Summary and Future Work

The omr interchange format was developed to specify a consistent
file structure between different omr clients, as well as any software
that may be used to further process or display these results. Several
uses for oip files have been implemented or envisioned as part of fu-
ture work on building omr-derived notation search systems:

1. As the input for a notation and image search system.
2. As a format for interchange of omr “ground truth” informa-

tion between adaptive omr systems.
3. As a format, similar to pdf, for allowing users to browse mu-

sical images in either a web-based or desktop-based applica-
tion. These applications might also supply in situ search and
highlighting within the document, similar to searching within
a pdf file.

6.5 Crowdsourced Correction Tools

In chapter 4, we looked at how a collaborative approach to omr
could enable distributed participation in the omr process. This sec-

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

252

tion will describe two browser-based tools developed to collect hu-
man-supplied notation correction data. These tools are envisioned as
part of a larger effort to enable distributed music correction interfaces
for large-scale omr, and also as a core component of the vision for
networked adaptive omr. By focusing on developing browser-based
interfaces for these tools, we forego the need to install any extra soft-
ware on a user’s computer, providing a large potential user base for
performing crowdsourced tasks.

One area where crowdsourced omr collaboration will be most
needed is in the area of automated transcription correction. Beyond
the obvious need for correcting mistakes in automated recognition,
an adaptive recognition system can use human-corrected results to
adapt and refine its recognition models to improve its recognition ac-
curacy on subsequent documents.

The first system presented is Neon.js, a web-based neume notation
editor that supports correction and image alignment of automated re-
cognition results. The second, a web-based classifier interface, is an
initial prototype that mimics the Gamera symbol classification inter-
face in a web context.

6.5.1 Neon

Neon (Burlet et al. 2012) is a web-based neume notation editor. It was
developed as both a standalone editor and an interactive tool in the
Rodan omr system. It was designed primarily as a correction inter-
face for omr, preserving the direct relationship between the symbolic
notation and the original image (figure 6.28). Neon was developed by
Greg Burlet, working under my direction. Greg is responsible for de-
veloping all of the internal layout, notation interaction system, and
the development of the “neumify” algorithm that attempts to predict
a neume shape based on the configuration of individual pitches. For
example, if two pitches are placed in ascending order and then

6.5 CROWDSOURCED CORRECTION TOOLS

253

grouped, the neumify algorithm will produce a podatus; If they are
placed in descending order and grouped, it will produce a clivis.

In Neon the music notation is encoded in mei, along with the pos-
itional information, storing where, on the original image, a particular
musical symbol (notes, clefs, staves, etc.) is located. As users edit, add,
or delete symbols from the score displayed on-screen, the underlying
encoding is updated to maintain their correspondence with the page
image.

The Neon interface features several controls to help the user in
their correction task. The opacities of the original image and the nota-
tion layer may be adjusted, allowing users to configure their view to
align the notation and the image.

Figure 6.28: Neon.js editing interface. The transcribed notation (darker) can
be seen overlaid with the original image (lighter).

The initial version of the Neon editor was designed to work with
notation from the Liber usualis. It has since been used to correct omr
results from pages of the Salzinnes Antiphonal (see §7.2, §7.3).

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

254

6.5.2 Web-based Gamera Classifier

The Gamera classifier interface (figure 6.29) was developed by Mi-
chael Droettboom and Karl MacMillian at The Johns Hopkins Uni-
versity. This interface is designed for labelling connected compon-
ents—glyphs formed by contiguous black pixels—for use in the
Gamera shape classifier. Users see a list of previously-used symbol
classes (the sidebar on the left), the classified glyph shapes (right, top),
the unclassified page glyphs (right, centre), and the original context of
the glyph on the page image (right, bottom). Selecting a glyph on the
page image or the page glyphs section allows the user to assign a la-
bel to the glyph, adding it to the available glyphs in the classifier.

Figure 6.29: The Gamera classifier interface (from Gamera 2012)

While the Gamera interface works well for its designed purpose, it
requires the installation the Gamera software, a task typically per-
formed by software developers and not one suited for most computer

6.5 CROWDSOURCED CORRECTION TOOLS

255

users. Users also need to manually manage the xml files generated
by the classifier interface.

For Rodan we developed a browser-based version of the Gamera
classifier interface (figure 6.30) as part of an interactive workflow task
for collecting labels for page glyphs. Laurier Baribeau was responsible
for implementing this interface using the Cappuccino framework
(§5.4.1).

Using this interface, users of Rodan can assign labels to shapes.
This interface automatically reads from, and writes to, a server-side
xml file, negating the need to manually manage classifier data. As
users supply label data, these become accessible to all Gamera-based
classifier tasks in a Rodan workflow. This allows a classifier used for
one page to be extended using symbols from other pages, and allows
pre-built classifiers to be used by other workflows without needing to
re-build and re-train the classifier database for additional documents.

Figure 6.30: Web-based Gamera Classifier Interface used for classifying St.
Gall neume shapes

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

256

6.6 Chapter Summary

This chapter presented several tools created to support the vision of
large-scale omr, although several of these tools have also been used
in contexts outside of omr.

LibMEI was created as an expression-agnostic tool for working
with mei files. With LibMEI it is possible to express mei files in sev-
eral hierarchical constructions, which demonstrates the applicability
of the mei rules of encoding beyond any specific expression format.
Using the tools developed for LibMEI, one can auto-generate an ex-
tended version of the library that conforms to either the core, or a
customized, version of the mei schema. In addition to the c++ and
Python versions of LibMEI, a derivative version of the library was
created to enable reading and writing mei files in the Sibelius nota-
tion editor.

The Diva document image viewer is a web-based, multi-page, high-
resolution document image viewer. The client-side system and inter-
face is implemented entirely in JavaScript, html, and css, while the
server-side system depends on the iip Image Server and a standard
web server for delivering image measurement data. Diva has several
unique features among existing book image viewers, including highly
optimized page loading techniques, browser-based image manipula-
tion, and the ability to write “hooks” and “plug-ins” to further integ-
rate the Diva viewer into existing interfaces, and extend the function-
ality of the core viewer.

For the Liber usualis project we developed a customized mei en-
coding schema to encode the neume notation used by the monks of
Solesmes for their publication of the Liber usualis. The process of de-
veloping a customized mei schema was illustrated by way of discuss-
ing the specific implementation details of our custom neume nota-
tion encoding scheme.

The omr Interchange Package (oip) is a file format designed to

6.6 CHAPTER SUMMARY

257

store the results of an omr process. This format uses the BagIt
specification to control the structure of the file, but the oip describes
a hierarchy of files and folders for page images into a single serialized
file (i.e., a zip file) suitable for sharing between software clients. A re-
view of similar file formats for text recognition revealed that there
are several methods for delivering aligned text and images, but there
are currently no formats available for delivering the same functional-
ity for music notation.

Finally, distributed correction tools were developed for performing
browser-based omr correction. Neon.js is a JavaScript neume nota-
tion editor, designed to show both images and notation simultan-
eously to aid users in correcting the output of omr results. The Gam-
era classifier interface was ported to run as a component of Rodan,
offering users the ability to perform connected-component classifica-
tion in a way similar to that offered by the Gamera classifier interface.

The next chapter will present three prototype projects developed
in the course of this research. These projects provided the impetus for
the development of these tools, and have served as a technology
demonstration platform to inform and direct their design and
implementation.

✿

TECHNOLOGIES SUPPORTING LARGE-SCALE RECOGNITION

258

7.
Applications

The previous chapters have discussed processes, tools, and applica-
tions for large-scale omr. These were developed in the context of sev-
eral proof-of-concept projects, each designed to investigate page im-
ages as the central means of navigating a digitized music document.
This chapter will describe each of these projects, beginning with the
Liber usualis (§7.1), and will then describe two projects centred on the
Salzinnes Antiphonal (§ 7.2, § 7.3).

7.1 Liber usualis

The Liber usualis was chosen as the basis for our first large-scale pro-
duction efforts because it features a number of characteristics useful
for prototyping large-scale omr, as well as providing a useful resource
for scholars and students. It is a moderately large book (2,340 page
images in the digitized version), which made it suitable for observing
characteristics of a large-scale omr effort that might not be notice-
able with a project involving fewer page images. It is mechanically
produced (i.e., printed), so the layout and symbols are uniform across
the whole book (unlike hand-produced sources, i.e., manuscripts). It
contains a mixture of text (lyrics, liturgical texts, performance instruc-
tions, etc.) and music notation, which provides a real-world example
of a mixed-content source where the software must identify and sep-
arate the musical content from non-musical content. The music is
monophonic (a single line of music) and as such does not require
rhythmic alignment or separation of multiple voices (e.g., chords or
multiple instruments on a single staff). The tools that provide symbol
recognition and notation reconstruction are therefore relatively
straightforward to build, providing opportunities to observe the

259

throughput of the entire system without having to deal with some of
the more complex aspects of cwmn.

The Liber usualis is an important reference book for musicologists
and librarians attempting to locate chants and information about
them. The Liber usualis contains codified versions of chants intro-
duced as early as the 8th century. This book is still used as a service
book in the liturgies of the Roman Catholic church. As well, it serves
as a reference for identifying chants used as the cantus firmus in a
polyphonic work. In the Liber usualis project a web-based search in-
terface is provided to help users search and retrieve the chants from
the page images. This web interface is currently available at:
http://ddmal.music.mcgill.ca/liber/

7.1.1 Music notation in the Liber usualis

Neume notation is a broad term used to describe several styles of mu-
sic notation. It is widely believed that it emerged as a mnemonic
device to provide a singer, or a group of singers, with a way of record-
ing a melody for singing a liturgical text (Helsen 2013). The music in
the Liber usualis is notated using square-note neume notation (figure
7.1), a system dating back to the 12th and 13th centuries (Helsen 2013),
but modified in the printed Solesmes chant books.

The neume notation of the Liber usualis is placed on a four-line
staff. A short example of neume notation from the Liber usualis is
shown in figure 7.1. Pitches are grouped into graphical symbols called
“neumes” which are used as guides for singing syllables of text, where
a single syllable may get two, three, or more pitches; in melismatic
passages many neumes may be present on a single syllable. There are
a number of standard neumes shapes, each with its own name, but
custom groupings of neumes may also be formed and fall under the
general “compound” neume type. Some examples of these are given
in figure 7.2.

In figure 7.1, the first symbol on the staff is a “C” clef on the top

APPLICATIONS

260

http://ddmal.music.mcgill.ca/liber/

line. The syllable “Ky” is sung to a two-note podatus. The first syllable
of “e-le-i-son” is notated using nine pitches arranged in several
neumes.

Figure 7.1: A sample of neume notation from the Liber usualis

Figure 7.2: Neume shapes and their names

7.1.2 Workflow

A description of the history of the workflow for processing the Liber
usualis can be found in Chapter 5 (§5.1). This was provided as back-
ground for the development of a generic workflow system for omr.
Here the specific steps of the Liber usualis project workflow, includ-
ing the lessons learned from this project, will be discussed. A diagram
of the workflow is given in figure 7.3.

7.1 LIBER USUALIS

261

Figure 7.3: Workflow used for creating the searchable Liber usualis

7.1.2.1 Image Processing

The page images for the Liber usualis were extracted from a pdf file
made available by the Canons Regular of St. John Cantius (Canons
Regular of Saint John Cantius 2010). This pdf contains images taken
from the 1961 edition of the Liber usualis. The page images were ex-
ported from pdf using Adobe Acrobat Professional as 500 ppi tiffs,
resulting in 2,340 image files. The source file had been previously pro-
cessed for ocr using abbyy FineReader (Abbyy 2014), and so the res-
ulting image files had been previously binarized using the built-in
abbyy binarization tools.

APPLICATIONS

262

7.1.2.2 Layout Analysis

Once the images were exported, we performed automated page lay-
out analysis on them using a modified version of Aruspix, an omr
system designed for early music (Chapter 3, §3.3.2.1). This layout ana-
lysis automatically detected five different types of page elements:
music, titles, lyrics, ornate letters, and other text elements (figure 7.4).
A sixth option, “blank,” is generally used for image artifacts like bor-
ders and creases that may appear as black pixels on the image but are
not part of the content of the page. A Python script was written to
automatically run Aruspix on every image without human interven-
tion. After all the pages were analyzed we had a human confirm and
correct any errors. The median layout correction time per page was 77
seconds, with the majority of pages taking between 30 and 130
seconds. The result was an image that could be segmented into separ-
ate layers containing textual or musical content exclusively. The lay-
ers containing musical notation were sent to omr software, while the
text layers were sent to ocr software.

Figure 7.4: A page of the Liber usualis segmented using Aruspix

7.1 LIBER USUALIS

263

the intervals in the neume was provided using dot-separated nota-
tion (see table 7.1 for examples). For complex compound neumes
where the pitch contour could not be inferred from the name, direc-
tion information was encoded in the class name. Thus, the specific
pitch content of a particular neume shape could be reconstructed
from knowing only its starting pitch and the width of each interval.
For example, a three-note torculus (which goes up, then down) be-
longing to the torculus.3.2 class and starting on a G would outline
the notes G, B, and A. Additional features of the neume shape could
also be encoded in the class name, including horizontal and vertical
episemas and dots. Full details of this work, including performance
evaluations of this technique, can be found in Vigliensoni et al.
(2011).

Neume Class Name Shape
neume.torculus.3.2

neume.scandicus.2.2.2.he

neume.compound.u2.u2.d2.u2

Table 7.1: Neume shapes and their Gamera class names

7.1.2.4 Encoding and Correction

After the music recognition was complete the staff lines were re-in-
troduced on the image. The clef shape (F or C) and position for each
staff was identified, and correlated with a staff line. The initial pitch
for each neume was identified based on the lowest-left corner of the
shape, and correlated relative to the staff line and the clef. The neume
class name was used to identify each of the pitches in that neume.

The Music Encoding Initiative (mei) format (Roland 2009) was

7.1 LIBER USUALIS

265

words.11 For lyrics, syllables with dashes between them were automat-
ically joined to form a single word for the purposes of searching the
text underlay. The results of the ocr process were not corrected or
verified by a human due to time constraints, and are therefore suit-
able as a proof-of-concept but not entirely reliable. The ocr output
for each line of text was correlated with a region on the image in or-
der to allow us to highlight search results in situ. The text lines with
position information were stored in the mei file for each page, but
with no encoded relationship between the musical content and the
text (i.e., the text underlay was not encoded as a component of the
music notation).

7.1.2.6 Indexing and Search System

To provide a very basic pitch search, the neume pitches in each mei
document were indexed using simple n-grams, ranging from 2- to 10-
grams. We used a variation of the technique presented by Downie
(Downie 1999), storing the explicit pitch value of each n–gram, con-
tour, interval, and component neume names (figure 7.7). In addition,
the co-ordinates of each n-gram on the page image were calculated
and stored. Pre-computing these indexes into text allowed us to store
the indexed content in readily-available tools for textual search.

contour: 'dduurr'
intervals: 'd2_d2_u2_u2_r_r'
location: [{'width': 407, 'ulx': 257, 'uly': 1459,
'height': 65}]
neumes: 'punctum_clivis_podatus_punctum_punctum'
pagen: 157
pnames: 'edcdeee'
semitones: '-2_-2_2_2_0_0'

Figure 7.7: Sample search index entry

11. The complete list of words used for training the corrector is available at:
https://github.com/DDMAL/liberusualis/blob/master/ocr/latin-english.txt.

7.1 LIBER USUALIS

267

The initial system used ElasticSearch (Kuć and Rogoziński 2013) as
our search software (Thompson et al. 2011). This software responded
to updates to our CouchDB (Anderson et al. 2010) databases and
automatically updated its index as new content was added, facilitat-
ing very fast lookups over large indexes. While this setup provided
the desired functionality, ElasticSearch crashed regularly and needed
constant monitoring. To remedy these problems we replaced both the
CouchDB and ElasticSearch components with a Solr (Smiley and
Pugh 2009) installation, which is still in use.

Our Solr instance contains 3,006,964 unique n-gram documents in
an indexing structure identical to the one shown for our CouchDB
system. Indexing the Liber usualis corpus was performed with a cus-
tom Python script, and took one hour to complete. Response times
for searching these n-grams is nearly immediate, resulting in very fast
look-up times for users of our web application. The text content of
the pages was also indexed, with just the ocr-transcribed text and
the location of the line available in the index.

7.1.2.7 Web Application

The recognized and encoded Liber usualis is made available on the
web using a custom-built web application to provide an interface for
viewing and searching the omr and ocr results of the document (fig-
ure 7.8). The web application serves html and JavaScript to the users,
and manages the server-side components for the image viewer, in-
cluding a system for communicating with the Solr index.

A modified version of the Diva document image viewer was used
to provide an image-based search system. To provide search result
highlighting on the image, we used the co-ordinates stored during the
n-gram indexing to highlight the results of a pitch sequence search
on the pages. Highlighting the search result on the image uses an
html <div/> element overlaid over the region of the image. This ele-
ment is positioned using the n-gram pixel-coordinate data stored in

APPLICATIONS

268

metadata to provide a search and navigation interface; the second,
Salzinnes II, used the Rodan system to provide a proof-of-concept
symbolic notation search interface.

7.2 Salzinnes I

The first instance of the Salzinnes project was developed in the fall of
2011. The goal of this project was to synchronize the extensive data
available for the Salzinnes Antiphonal in the cantus project
(Koláček and Lacoste 2014a) with high-quality digital images of the
original manuscript. The Salzinnes I project did not include notation
search. The web application developed for this project is available at:

http://ddmal.music.mcgill.ca/salzinnes/

7.2.1 About the Manuscript

The Salzinnes Antiphonal (cdn-Hsmu M2149.L4) is a liturgical ser-
vice book produced at the Abbey of Salzinnes in Belgium in 1554. It
is now housed at St. Mary’s University in Halifax, Nova Scotia,
Canada. The antiphonal was described in detail and catalogued by Ju-
dith Dietz as part of her Masters in Arts degree (Dietz 2006). The
cataloguing metadata was contributed to the cantus project, a data-
base of ecclesiastical chant manuscripts and early printed sources.

7.2.2 Search System

The format of entries in the cantus database abbreviates the data
stored in the fields, both to maintain consistency between entries as
well as to efficiently utilize limited computer resources (the cantus
database was first designed in 1987). This format is described by
Koláček and Lacoste (2014b). In the Salzinnes I project these abbrevi-
ations were expanded to a more human readable form. These expan-
sions were then indexed into a Solr search system. A sample record
of one chant is shown in figure 7.9. In this example, the original value

APPLICATIONS

270

http://ddmal.music.mcgill.ca/salzinnes/

for the “genre” field, “A” has been expanded to a more readable value
of “Antiphon.”

<str name="cantusidnumber_t">2085</str>
<str name="caonumber_t">cao2085</str>
<arr name="concordances_strm">
 <str>I-IV 106 (Ivrea: Biblioteca Capitolare)</str>
 <str>CH-SGs 390-391 (Sankt Gallen: Stiftsbibliothek)</
str>
 <str>GB-Lbl add. 30850 (London: The British Library)</
str>
</arr>
<str name="feastcode_t">1011000</str>
<str name="feastname_t">Dom. 1 Adventus</str>
<str name="feastnameeng_s">1st Sunday of Advent</str>
<str name="feastnameeng_t">1st Sunday of Advent</str>
<str name="folio_t">001r</str>
<str name="fullmanuscripttext_t">Custodit dominus</str>
<str name="fullstandardtext_t">Custodit dominus omnes
diligentes se</str>
<str name="genre_t">Antiphon</str>
<str name="id">0001</str>
<str name="incipit_t">Custodit dominus*</str>
<str name="mode_t">No music</str>
<str name="office_t">First Vespers</str>
<str name="sequence_t">1</str>
<str name="siglum_t">CDN-Hsmu M2149.L4</str>

Figure 7.9: Sample Solr record for the Salzinnes chant interface

7.2.3 Image Processing

The images for the Salzinnes I interface were photographed by Judith
Dietz. The images were delivered as jpeg files, and then converted to
pyramid tiff files for use by the iip image server in a Diva viewer
instance.

7.2.4 Web Application

A dedicated web application was written for this project using the
Tornado web server and following the model developed in the Liber
usualis project (figure 7.10). The browser interface uses a customized
version of Diva. As the user scrolls the page images, this triggers an

7.2 SALZINNES I

271

ajax call to the Solr search system. The folio number of the visible
page is used to query the Solr system for all chants on that page. The
results of this are rendered in the interface and displayed to the user
on the right-hand side of the page. The left-hand side of the page
provides the user with a page-level metadata search system. The
items in the list of search results are linked to the specific page and
chant containing their query. Clicking on a result displays the corres-
ponding page image in the centre, and the full record for the chant
on the right. The fields available for full-text search are:

• Melodic Mode
• Liturgical Office
• Genre (e.g., Antiphon, Responsory)
• Liturgical Position (e.g., Antiphon for the Magnificat)
• Textual incipit
• Full text of the chant (standardized)
• Full text of the chant (as written in the source)
• Feast name
• cao (Corpus Antiphonalium Officii) Number
• For illuminations, a short description or title

This manuscript is organized by chants for use on a specific litur-
gical feast day. Users could also choose a particular feast from the
drop-down list of feasts catalogued in the manuscript. Selecting a par-
ticular feast displays the page image in the centre where the chants
for that feast begin.

7.2.5 Discussion and Lessons Learned

The Salzinnes I project helped to further refine techniques for
metadata-based page image retrieval. Although the cantus data-
base contains extensive information for manuscripts at the folio and
page level, this project was the first to experiment with synchroniz-
ing a page image representation with that information. This has al-
lowed users to search and browse the manuscript images, seeing the

APPLICATIONS

272

results of their textual query in its original context on the document
images.

Figure 7.10: Search and browse interface for the Salzinnes I project

7.3 Salzinnes II

The Salzinnes II project was a further refinement of the methods de-
veloped in the Salzinnes I project and in the Liber usualis project.
This project was the first to use the Rodan workflow system to
provide omr-based notation search results on the manuscript. The
results of the Salzinnes II project are available at:

http://cantus.simssa.ca/manuscript/133/

As part of conservation and restoration efforts on this manuscript
it was brought to the Canadian Conservation Institute (cci) in Ott-
awa, Ontario for high-resolution digitization. They provided copies of
the tiff files produced in this imaging process. There are a total of
480 page images each approximately the same file size for a total
document size of 82GB (table 7.2).

Like the Salzinnes I project, the image files were integrated into a
web application that featured an instance of the Diva image viewer

7.3 SALZINNES II

273

http://cantus.simssa.ca/manuscript/133/

(figure 7.11). The cantus data from the previous Salzinnes project
was indexed into a new Solr instance. As users scroll the images in
the Diva interface, the document metadata updates to display de-
tailed descriptions of the page content. Users can also search and re-
trieve pages using the same field indexes.

Size (pixels) 6993 x 4414

Resolution ~300 PPI

Bit Depth 16

Color Model RGB

Size (MB) ~175MB

Table 7.2: Salzinnes image characteristics as digitized by the Canadian
Conservation Institute

Figure 7.11: The Salzinnes II interface

However, this instance of the Salzinnes viewer also features music
notation data from an omr process. This brought the same mode of
interaction for searching and retrieving music notation demonstrated
in the Liber usualis project into the Salzinnes interface. The process
of performing recognition is described in the next section.

APPLICATIONS

274

7.3.1 Integration of omr Data

The Rodan workflow system was used to develop a custom omr
workflow for analyzing the Salzinnes document images (figure 7.12).
The following Rodan jobs were used to perform this recognition:

1. DjVu Threshold (Non-interactive job). Binarization of the
colour images. This was drawn directly from the Gamera
toolkit.

2. Segmentation (Interactive job). Separate the staff regions
from the non-staff (e.g., text, illustrations) regions. An initial
solution was calculated automatically, and users were asked
to correct this using an interactive JavaScript interface (figure
7.13). This job used the Musicstaves toolkit to determine the
staff region locations, and then presented the detected staff
regions to the user to correct using a JavaScript interface.

3. RT (Roach & Tatum) Staff Removal (Non-interactive job).
Uses the Roach and Tatem (1988) approach to remove the
staff lines from the image. This was drawn directly from the
Gamera Musicstaves toolkit.

4. Rdn (“Rodan”) Despeckle (Non-interactive job). Removes
small “noise” particles from the binarized image to clean the
image for the connected-component classifier. This used the
Gamera despeckle functionality, but modified for use in the
Rodan workflow system.

5. Automatic classification (Non-interactive job). A pre-built
Gamera classifier was provided to the system, built using the
neume from several pages of the Salzinnes.

6. Find Pitches (Non-interactive job). Uses the approach de-
scribed by Vigliensoni et al. (2011) to re-introduce musical se-
mantics to the classified shapes. This used elements of Gam-
era, but was primarily developed as a custom job for this
particular purpose.

7.3 SALZINNES II

275

7. Pitch Correction (Interactive job). Used the Neon neume
editor to allow users to correct the results of the automatic
classification (figure 7.14).

Figure 7.12: A workflow in Rodan processing a Salzinnes page image

Figure 7.13: Interactive Segmentation Interface in Rodan

In total, the omr results for 20 pages were obtained using this pro-
cess. The mei files were indexed in Solr using the same methods as
those used in the Liber usualis project. As of this writing the remain-
ing pages have not been processed due to time and human resource
constraints; however, as they become available they will be loaded
into the search system.

APPLICATIONS

276

Figure 7.14: A Salzinnes page corrected in the Neon interface

7.3.2 Discussion and Lessons Learned

The Salzinnes II project was the culmination of the tools, techniques,
and processes developed in the course of this dissertation. The tools
and techniques developed in the previous two projects were further
refined and generalized to support different document types.
Specifically, the Rodan workflow system was demonstrated to be an
effective approach to building a distributed and collaborative omr
system.
In the course of building the infrastructure for the Salzinnes II pro-
ject, several of the tools developed for the earlier projects were en-
hanced to improve performance, reliability, or useability. LibMEI lib-
rary (§6.1) was re-written from the original Python prototype to c++
to improve parsing speed, the Neon.js correction interface (§6.5.1) was
developed to fill the need for a visual method of correcting omr res-
ults, and several interactive JavaScript-based image manipulation
tools (mentioned in §5.2.5) were developed. In addition, enhance-
ments were made to the Diva document viewer software to allow
others to take advantage of the image highlighting capabilities
without requiring a customized version of the software.

The Salzinnes II project is the first publicly-available effort to
provide document image navigation for music manuscripts using spa-
tially aligned search results. Using the systems designed in the course

7.3 SALZINNES II

277

of this project we feel it is now possible to generalize our approach to
cover recognition for a wide range of document types, from the earli-
est manuscripts to modern-day printed sources.

7.4 Chapter Summary

This chapter has discussed three projects developed to demonstrated
document image-based search and retrieval. The Liber usualis and
Salzinnes II projects have demonstrated that it is possible to create
systems similar to those available for textual document retrieval that
align queries with their spatial location on digital page images. The
Salzinnes I project was an important stepping stone between these
two projects, and provided a means to refine metadata-based tech-
niques for page image search and retrieval. The combination of both
content and page-level metadata search provides users with a com-
prehensive way of accessing the data contained within a manuscript
by searching and navigating large collections of music document
images.

❈

APPLICATIONS

278

8.
Conclusions, Contributions, and Future

Work
The dissertation discusses ways to design optical music recognition
systems for use in large-scale music document digitization initiatives.
Chapter 2 discussed the emergence of image-based search and re-
trieval of textual document images using spatially aligned optical
character recognition (ocr). This was used as a point of reference
throughout the dissertation to illustrate several key points: that the
emergence of this technique was a crucial development for enabling
large-scale text recognition by mitigating the effects of imperfect ocr
systems; that spatially aligned transcriptions provide users of these
documents with a means of navigating large image collections; and,
most importantly, to underline the point that a common and pervas-
ive technique in large-scale ocr initiatives has not been adopted by
optical music recognition (omr) systems. omr initiatives still rely on
a purely transcriptive approach to document image recognition, sep-
arating their transcriptions from the original page image. This has the
effect of requiring a “perfect” transcription of the document—an im-
possible requirement given the scope and scale of the task.

Chapter 3 provided an overview of omr systems and techniques.
omr was framed as a process (§3.3) composed of several steps. While
there is no universal agreement on the order of the steps, or on the
tools and techniques to be used in each step, every omr system in-
corporates aspects of image processing, machine learning and classi-
fication, music palaeography, music theory, symbolic notation encod-
ing, and several other techniques, chained together to form a process.
Other aspects of omr research were presented, including a discussion
of evaluation techniques for omr (§3.4), previous attempts at large-

279

scale music document recognition initiatives (§3.5), server-based omr
systems (§3.6), and omr systems for historical, non-cwmn music
notation (§3.7).

Chapter 4 presented the proposals central to the dissertation, intro-
ducing techniques for scaling omr systems to process large numbers
of music document images. A discussion of scientific workflow sys-
tems (§4.2) was proposed as an alternative approach to creating omr
systems capable of large-scale data processing, enabling the creation
of bespoke omr systems for specific repertoires, projects, document
images, or automated evaluation tasks. The chapter then presented
three new design patterns for omr systems to meet the challenges
presented by large-scale digitization initiatives: Distributed omr
(§4.3), which uses geographically and computationally distributed in-
dividuals and computers to accomplish omr tasks; Collaborative
omr (§4.4), which enables distributed and heterogeneous groups to
work together on omr tasks; and Networked Adaptive omr (§4.5),
which uses distributed, collaborative omr systems as a constant
source of training and evaluation data to develop and deploy adapt-
ive omr systems shared by all users of a network. The Music Encod-
ing Initiative (mei) was introduced (§4.6) as a symbolic music encod-
ing system with several unique characteristics making it the most
suitable format for use in a large-scale music document recognition
context.

Chapter 5 introduced Rodan, a web-based workflow system de-
signed following the principles set out in Chapter 4. Rodan is de-
veloped following the model of the scientific workflow system. Un-
like scientific workflow software packages, however, Rodan features
methods for interacting with a running workflow, allowing humans
to participate in the overall recognition process. Rodan is designed to
execute omr processes on remote server systems, accessible through
a web browser.

Chapter 6 introduced several tools developed in the course of the

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

280

research program to support large-scale omr. A c++ and Python lib-
rary, LibMEI, was presented (§6.1) as a software tool for reading and
writing mei files. The Diva document image viewer was described
(§6.2) as a way to present and navigate high-resolution document im-
age collections in a web browser. The neume encoding system used
for the Liber usualis project was presented (§6.3), which also served
as a discussion of how to customize mei schema for different nota-
tion repertoires. The omr Interchange Package was described (§6.4)
as a technique for capturing and sharing omr results between soft-
ware systems. Finally, several interfaces for web-based document cor-
rection were presented (§6.5), demonstrating first steps towards a
crowdsourcing approach to distributed and collaborative omr.

Chapter 7 described three prototype projects developed as techno-
logy demonstrations. The Liber usualis project (§7.1) represented the
first attempt at image-based omr navigation over a large collection of
document images. The Salzinnes I project (§7.2) focused on creating a
system for navigating a 16th century chant manuscript using extens-
ive metadata provided by the cantus project. Finally, the Salzinnes
II project (§7.3) incorporated the cantus metadata and several pages
of omr-derived chant notation into a single interface for music score
searching.

8.1 Summary of Contributions

The goal of the dissertation is to provide new ways of designing,
building, and interacting with omr software systems as means of
building searchable digital collections. In the course of the disserta-
tion, several novel contributions were developed to meet this goal.

8.1.1 Techniques for aligning images and omr results

The dissertation takes as its starting point the hypothesis that align-
ing recognized text and images was a catalyst for the creation of

8.1 SUMMARY OF CONTRIBUTIONS

281

large-scale ocr initiatives, starting with small prototype projects
(§2.2), and resulting in application in global mass digitization efforts
such as Google Books (§2.4). The most significant contribution of the
dissertation, therefore, may be the proposal that a similar technique is
required to enable omr on the same scale. Previous attempts at large-
scale omr have not used the alignment technique and required com-
plete and accurate human-supplied corrections to arrive at a useable
representation of a music document—a labour-intensive and costly
process. Aligning images with automatically transcribed notation
gives the user of a hypothetical search and retrieval system a way to
navigate the collection using the omr-transcribed document con-
tents, but presented using the original page images thereby present-
ing the user with a readable representation of the document despite
any underlying recognition errors. Alignment of transcribed music
notation and page images may prove to be a similar catalyst for en-
abling large-scale music document recognition by presenting an in-
terface where the documents can be readable without requiring com-
pletely accurate transcriptions.

8.1.2 History of Alignment in Text Recognition

As far as could be determined, no comprehensive history of text and
image alignment in ocr initiatives, such as was provided in chapter 2
of the dissertation, has been written. Given the pervasiveness of this
technique in modern text digitization and recognition initiatives, this
dissertation contributes a significant amount of historical research,
tracing its development from the earliest recognition initiatives
through to the present day. This may be of interest to researchers in
fields beyond music document recognition.

8.1.3 Music document recognition workflows

Scientific workflow software has been tested and deployed for text-
based documents, most notably in the impact project (§4.2.2.1).

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

282

Chapter 4 of the dissertation presents a novel proposal for interact-
ive, workflow-based omr systems, which allow users to create be-
spoke omr systems customized to a specific document type and
composed of heterogeneous collections of remotely-hosted and ex-
ecuted document recognition tools. The distinction between interact-
ive and non-interactive workflow jobs is also unique among all work-
flow systems, as are the web-based image manipulation interfaces
used to perform interactive jobs in Rodan.

8.1.4 Distributed, collaborative, and networked adaptive omr

The formalization of three design patterns of distributed, collaborat-
ive, and networked adaptive omr is a unique contribution of this dis-
sertation, and will serve to guide how new omr systems are designed
and implemented. First, distributed omr (§4.3) proposes that new
omr systems can be designed as web applications, which have sev-
eral advantages over traditional desktop-based omr systems. Distrib-
uted omr systems provide separation between the user interface and
the underlying implementation of the omr system, allowing multiple
users to interact with a single, remote omr installation. Distributed
and parallel computing techniques, operating on clusters of remote
computers, can provide greater computing resources, allowing the
omr process to accommodate larger workloads. Secondly, collaborat-
ive omr (§4.4) proposes that geographically distributed users can
work together on a central task. This can take place either as part of
an explicit collaboration, in which individuals know and understand
their role in the overall process, or as an implicit collaboration where
individuals may only be given a small and well-defined task. The lat-
ter collaboration allows crowdsourcing, where globally distributed
networks of people provide many small contributions that, in aggreg-
ate, contribute significantly to a project. Finally, networked adaptive
omr (§4.5) is proposed as a technique that uses the data provided by
distributed and collaborative omr systems to build large sets of

8.1 SUMMARY OF CONTRIBUTIONS

283

“ground-truth” data suitable for training and improving adaptive omr
systems. Corrections and improvements to recognition can be distrib-
uted back to a network, allowing the contributions of one individual
to have an impact on the recognition accuracy of all other members
of the network.

8.1.5 Web-based omr

While several web-based omr systems have previously been pro-
posed (§3.6), the system described in this dissertation, Rodan
(Chapter 5), represents the first comprehensive approach to a fully in-
teractive web-based omr system.

8.1.6 Supporting technologies

Several of the tools developed to support the development of large-
scale omr and described in Chapter 6 are novel contributions in their
own right.

8.1.6.1 Contributions to the Music Encoding Initiative (mei)

Novel contributions to the mei community include LibMEI software
(§6.1), specifically its techniques for automatically deriving a strongly-
typed library from the One Document Does-it-all (odd) definition of
mei (§6.1.2). In the future this approach could be expanded to work
with the Text Encoding Initiative (tei). In addition, the SibMEI plu-
gin (§6.1.3) uses the same design principles to enable mei output
from the Sibelius notation software. The omr Interchange Package
format (§6.4), based on mei and the proposed BagIt packaging stand-
ard, represent first attempts at creating a common interchange format
for omr systems and for software that uses the output of omr
systems.

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

284

8.1.6.2 Diva

The Diva document viewer (§6.2) employs several novel techniques
for presenting large document images in a web browser. The most dis-
tinguishing characteristic is the interface which combines scrolling
through pages and zooming to see the highest-quality version of an
image all in the same interface—no other document viewer integ-
rates both scrolling and zooming to the same extent. This is accom-
plished by assembling document images using tiles, allowing Diva to
request and display only the portion of a page image that the user is
currently viewing. The integration of client-side image manipulation
tools is also unique among document image viewers.

8.1.6.3 Crowdsourcing and omr

While crowdsourcing has successfully been used by text recognition
initiatives to allow large numbers of people to contribute time and
energy to data correction and quality control, it is only starting to be
used for music recognition. This dissertation attempts to introduce
the use of crowdsourcing for omr, with preliminary attempts to de-
termine how crowdsourcing may be used in a music recognition con-
text (§4.4). Several browser-based prototype interfaces (§5.2.5, §6.5)
for collecting music correction contributions from individuals using
web-based tools are also presented.

8.2 Future work

The most obvious avenue for future work is to continue developing
new techniques for omr that can be integrated into customizable
omr workflows. This will allow users, rather than developers, to cre-
ate and deploy omr systems tailored to a particular use. While this
dissertation has focused primarily on the use of omr for complete
document image transcription, the scientific workflow system model
for constructing bespoke omr systems offers several opportunities

8.2 FUTURE WORK

285

for extracting new types of information from music document page
images. For example, omr developers can build workflows to auto-
matically evaluate and compare tools and techniques, fulfilling one
of the most pressing needs in omr systems development. Already,
Rodan has been used to extract and synchronize multiple images of a
single piece by automatically identifying and aligning measures from
different editions of the same piece (Vigliensoni et al. 2013). Special-
ized workflows can be used to automatically identify and classify the
use of different hands in a manuscript source. In a document recogni-
tion context, workflow systems hold possibilities for working with
and manipulating document images in unique and exciting ways.

8.2.1 simssa

The Single Interface for Music Score Searching and Analysis (sim-
ssa) project is a seven-year funded project to develop the tools and
techniques described in this dissertation. The simssa project is struc-
tured along two principle axes, Content and Analysis, designed to ad-
dress issues relating to both music document recognition (Content) as
well as music document search, retrieval and analysis (Analysis). Un-
der simssa, Rodan and many of the other tools mentioned in this
dissertation will continue to be developed.

8.2.2 Crowdsourced omr

Crowdsourcing is, by its nature, dependent on large-scale deployment
and adoption. At the time of writing, crowdsourcing interfaces for
symbolic music are in very early stages of development. Future work
in this area should study how to attract and engage masses of users
to contribute corrections to large-scale music document recognition
initiatives and include studies on user interfaces for these tasks.

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

286

8.2.3 Continuous machine learning

The networked adaptive omr proposed in the dissertation may
provide new ways to design adaptive recognition systems. A net-
worked omr system capable of collecting a constant stream of correc-
tion data from a distributed user base, and of using this data to con-
tinuously train and improve multiple recognition systems, is a new
concept that deserves attention from software developers and com-
puter scientists in many different fields.

8.2.4 Towards Search and Retrieval

This dissertation has not discussed methods for search and retrieval,
but has instead focused on technologies for enabling large-scale
search and retrieval. In this section however, I will attempt speculate
on how we can move forward with creating search and retrieval in-
terfaces based on the output of large-scale omr initiatives.

At present, it is not obvious how anyone will interact with a sys-
tem that contains millions of transcribed musical documents. For mu-
sic, there is only so much structure a person can be reasonably expec-
ted to provide a search system by using ascii characters in a text
field. Instead, I see a future where people interact with a large music-
al document corpus in ways that differ from text-based search. Mod-
els of style, genre, geography, composer, and countless other descrip-
tions may be derived from the notation itself, allowing a search
system to match user-provided descriptions with the underlying sym-
bolic data.

It is my experience that people expect a notation-based retrieval
system to provide access to a nearly unlimited number of possible
musical dimensions. Pitch and rhythm are currently the most explicit
dimensions for retrieval and, as such, are the dimensions used by
most search interfaces. Beyond pitch and rhythm, however, addition-
al dimensions such as timbre, form, harmonic function, counterpoint,

8.2 FUTURE WORK

287

texture, or tessitura may also provide valuable dimensions by which
musical works may be retrieved, and which may be automatically de-
rived from the notation content itself. Systems that can automatically
derive searchable representations based on a limitless number of pos-
sible dimensions will be required, and will pose challenges to our cur-
rent methods of abstracting and pre-indexing music documents.

8.3 Conclusion

Large-scale music recognition is the only viable means of converting
the vast back-catalogues of printed music into a form that is immedi-
ately usable in a search context. This dissertation imagines a future
where physical collections will have digital counterparts that do not
replace the originals but complement them, offering exciting new
modes of interacting with our global music collections.

❉

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

288

Appendix A: Open Source Projects
This appendix provides a reference to the open source projects and
source code written for this dissertation. Each project contains a com-
plete contribution and revision history. A listing of contributions is
provided in the acknowledgements of the dissertation.

Full Projects

These projects are full software systems.

Rodan

https://github.com/DDMAL/Rodan

Rodan Client

https://github.com/DDMAL/RodanClient

Rodan Gamera Plugins

https://github.com/DDMAL/rodan_plugins

Diva.js

https://github.com/DDMAL/diva.js

LibMEI

https://github.com/DDMAL/libmei

NB: An earlier Python-only version is archived at
https://github.com/ahankinson/pymei

SibMEI

https://github.com/DuChemin/sibmei

PyBagIt

https://github.com/ahankinson/pybagit

291

https://github.com/DDMAL/Rodan
https://github.com/DDMAL/RodanClient
https://github.com/DDMAL/rodan_plugins
https://github.com/DDMAL/diva.js
https://github.com/DDMAL/libmei
https://github.com/ahankinson/pymei
https://github.com/DuChemin/sibmei
https://github.com/ahankinson/pybagit

Prototypes

These projects are prototypes or experimental software systems, but
may provide implementations of particular methods or processes
which others may find useful.

JS Image Suite

https://github.com/DDMAL/js-image-suite

Solesmes MEI Customization

https://github.com/music-encoding/mei-incubator/tree/master/
solesmes

Neon.js

https://github.com/DDMAL/Neon.js

The Gamera AOMR Toolkit

https://github.com/DDMAL/aOMR

Web Applications

These web applications have been developed for specific projects.
They require a database and/or a Solr back-end containing the data
for the application and cannot be redeployed by others, but may still
provide useful information for specific technology implementations.

The Liber usualis Web Application

https://github.com/DDMAL/liberusualis

The Salzinnes (I) Web Application

https://github.com/DDMAL/salzinnes-original

The Salzinnes (II) Web Application

https://github.com/DDMAL/cantus

292

https://github.com/DDMAL/js-image-suite
https://github.com/music-encoding/mei-incubator/tree/master/solesmes
https://github.com/music-encoding/mei-incubator/tree/master/solesmes
https://github.com/DDMAL/Neon.js
https://github.com/DDMAL/aOMR
https://github.com/DDMAL/liberusualis
https://github.com/DDMAL/salzinnes-original
https://github.com/DDMAL/cantus

Project Contributions

In addition to the projects initiated as part of this dissertation, several
existing open source projects were contributed to in the course of
this work.

Gamera

http://gamera.informatik.hsnr.de/index.html

Cappuccino

http://www.cappuccino-project.org

Aruspix

http://www.aruspix.net

The Music Encoding Initiative

http://music-encoding.org/home

The Gamera Document Preprocessing Toolkit

https://github.com/DDMAL/document-preprocessing-toolkit

293

http://gamera.informatik.hsnr.de/index.html
http://www.cappuccino-project.org
http://www.aruspix.net
http://music-encoding.org/home
https://github.com/DDMAL/document-preprocessing-toolkit

Appendix B: Rodan REST API

Characteristics

All resources are identified using plurals for collections, and singular
for elements. For example, http://example.com/projects/ will
return a list of all projects, while http://example.com/project/:id

will return a single project that matches the given ID.

All resources are identified using a uuid. This is to reduce the
possibility of collisions, as well as make it easier to uniquely identify
resources without relying on serial database keys.

All resources may be browsed at http://example.com/browse/

Four http verbs are used by Rodan: get, post, patch, delete. The
put method is not supported in favour of the patch method, since
put requires a complete (changed) record while patch simply
requires the fields that have been updated.

Errors are returned to the user in the form of http Status Codes. You
must not return an error message with a non-error code. (i.e., do not
return an error with a status code of 200 OK.)

At present, the serial form of the data must be json-encoded.
Content type and Return Type are negotiated via http Headers, not
via query parameters. (i.e., you must send a message with an
Accepts: application/json header).

Django models often map api resources, but they do not have a 1-
to-1 mapping.

Some query parameter values will be processed if they are set,
regardless of their value. For example, by_page=true will have the
same effect as by_page=false, since the check is only whether the
by_page parameter is set or not. Check the documentation for
indications of where this may apply.

295

Authentication

Rodan implements two types of server authentication: Session-based
and Token-based. Session-based authentication is most appropriate
for browsers, where the session information is stored as a cookie.
Token-based is useful for scripted and non-browser-based interaction.

Token Authentication

A token is created when your user account is created. To retrieve your
token, you can send a request to the Rodan server with your user-
name and password, e.g.,:

$> curl -v -XPOST -d username=$USERNAME -d
password=$PASSWORD http://example.com/auth/token/

This will respond with:

{"token": "655aff7dc865866fc9bd9e7fafb32bfeb484365a"}

This may then be used for requests to the Rodan server via the Au-

thorization header:

curl -XGET -H "Authorization: Token
655aff7dc865866fc9bd9e7fafb32bfeb484365a" http:/
/localhost:8000/

Session Authentication

Currently the Rodan client web application uses Session authentica-
tion. If you are not authenticated, you will be asked to log in to the
Rodan web application when you first visit. This will set two cookies,
crsftoken and sessionid. These are persistent in your browsing ses-
sion. “Logging out” will effectively delete these cookies, and require
re-authentication on your next visit.

If you are browsing the JSON API in your browser, your session
authentication credentials will be used for this. If you attempt to visit
a URL and are not authenticated, you will be denied access.

296

Resources

All endpoints support the options and head methods. Although
the server currently replies indicating support for the put method,
this should not be used.

Projects

Collection

uri: /projects/
Returns a list of projects that the user has permissions to view. Ac-
cepts a post request with a data body to create a new project. post
requests will return the newly-created project object.

• Methods Supported: get, post
• Permissions: Authenticated

Element

uri: /project/$ID/
Performs operations on a single project instance.

• Methods Supported: get, patch, delete
• Permissions: Authenticated

Workflows

Collection

uri:: /workflows/

Returns a list of all workflows. Accepts a post request with a data
body to create a new workflow. post requests will return the newly-
created workflow object.

• Supported Query Parameters:
◦ project=$ID: Retrieve workflows belonging to project
$ID.

• Methods supported: get, post
• Permissions: Authenticated

Example:

297

This returns the workflows associated with the supplied project ID.

$> curl -XGET http://localhost:8000/workflows/
?project=201e13914eb14e1ba08c7e55b3b

Element

uri: /workflow/$ID/
Performs operations on a single workflow instance.

• Methods Supported: get, patch, delete
• Permissions: Authenticated

Jobs

Collection

uri: /jobs/
Returns a list of all workflows. Does not accept `POST` requests, since
Jobs should be defined and loaded server-side.

• Supported Query Parameters:
◦ enabled=true: Filter the list of available jobs by their en-
abled/disabled status.

• Methods Supported: get
• Permissions: Read-only (public)

Element

uri: /job/$ID/
Returns a single instance of a Job. Read-only.

• Methods Supported: get
• Permissions: Read-only (public)

Pages

Collection

uri: /pages/
Returns a list of all pages. Accepts a post request with a data body to
create a new page. post requests will return the newly-created work-

298

flow object. Page image data should be sent with the Content-type:

multipart/form-data header.
• Supported Query Parameters:

◦ project=$ID: Retrieve pages belonging to project $ID
• Methods Supported: get, post
• Permissions: Authenticated

Element

uri: /page/$ID/
Performs operations on a single page instance.

• Methods Supported: get, patch, delete
• Permissions: Authenticated

Workflow Jobs

Collection

uri: /workflowjobs/
Returns a list of all workflows jobs. Accepts a post request with a
data body to create a new workflow job. post requests will return the
newly-created workflow job object.

• Supported Query Parameters:
◦ workflow=$ID: Retrieve workflow jobs belonging to
workflow $ID.

• * Methods supported: get, post
• * Permissions: Authenticated

Element

uri: /workflowjob/$ID/
Performs operations on a single workflow job instance.

• Methods Supported: get, patch, delete
• Permissions: Authenticated

299

Workflow Runs

Collection

uri: /workflowruns/
Returns a list of all workflows runs. Accepts a post request with a
data body to create a new workflow run. post requests will return
the newly-created workflow run object.

Creating a new WorkflowRun resource starts the workflow. When a
WorkflowRun instance is created, Rodan will cycle through all the
pages attached to the workflow, and apply all of the WorkflowJobs
assigned to this workflow to each page. Each WorkflowJob is conver-
ted to a RunJob instance and the run is stored in the database.

This method also supports running a workflow in Test mode (see
Supported Query Parameters below). Running a workflow in test
mode requires a single page ID to operate on. Each non-test run of a
workflow will increase the runs value on the Workflow model.

• Supported Query Parameters:
◦ workflow=$ID: Retrieves all runs for workflow $ID. (get
only)
◦ run=int: Retrieves a single run for a workflow. Most use-
ful if combined with the workflow parameter. (get only)
◦ test=true: Sets whether this is a test run or not. (post
only)
◦ page_id=$ID: If this is a test run, you must supply a page
id to test the workflow on. (POST only)

• Methods supported: get, post
• Permissions: Authenticated

Element

uri: /workflowrun/$ID/
Performs operations on a single workflow run instance.

• Supported Query Parameters:

300

◦ by_page=true: If true, re-formats the returned workflow
run object by returning it based on page-and-results, rather
than runjob-and-page.
◦ include_results=true|false: Sets whether to include
the results (per page) for the workflow run (get only; only
checked if by_page is present).

• Methods Supported: get, patch, delete
• Permissions: Authenticated

Run Jobs

Collection

uri: /runjobs/
Returns a list of all run jobs. Run Jobs are created by the server when
a workflow is executed, so this does not accept post requests.

• Supported Query Parameters:
◦ requires_interaction=true: Sets whether only those
Run Jobs that currently require interaction will be returned
or not (get only).
◦ project=$ID: Retrieve runjobs belonging to project $ID
(get only).
◦ workflowrun=$ID: Retrieve runjobs belonging to work-
flow run $ID (get only).
◦ page=$ID: Retrieve runjobs belonging to page $ID (get
only).

• Methods Supported: get
• Permissions: Authenticated

Element

uri: /runjob/$ID/
Performs operations on a single Run Job instance. Does not support
the delete method.

• Methods Supported: get, patch
• Permissions: Authenticated

301

Users

Collection

uri: /users/
Returns a list of users. Accepts post requests to create new users. A
successful post request will return the newly created user object.

• Methods Supported: get, post
• Permissions: Administrator Only

Element

uri: /user/$ID/
Performs operations on a single user record.

• Methods Supported: get, patch, delete
• Permissions: Administrator Only

302

Bibliography

Abbyy. 2014. ABBYY Finereader. http://finereader.abbyy.com (accessed 24 March
2014).

Abrahams, D., and R. Grosse-Kunstleve. 2003. Building hybrid systems with
boost.python. C/C++ Users Journal 21 (7).

Advanced Technology Libraries. 2005. Consortium forms OCA to bring additional
content online. Advanced Technology Libraries 34 (11): 1, 9–10.

Agnew, C., P. Baran, D. Caulkins, V. Cerf, R. Crane, P. Goldstein, and E. Parker. 1974.
ARPANET management study: New application areas. Advanced Research
Projects Agency Second Quarterly Technical Report. CableData Associates Inc.

Allen, M. 1987. Optical character recognition: Technology with new relevance for
archival automation projects. The American Archivist 50 (1): 88–99.

Amazon.com. 2013. Amazon web services: About us. http://aws.amazon.com/
about-aws/ (accessed 7 March 2014).

Anderson, J., J. Lehnardt, and N. Slater. 2010. CouchDB: The definitive guide.
Sebastapol, CA: O’Reilly.

Anderson, N. 2010. Optical character recognition: IMPACT briefing paper. IMPACT
Project. https://www.digitisation.eu/fileadmin/user_upload/240/docbook/
media/fd9fd1c8-cd6a-5324-65fb-54d836b9ed84.pdf (accessed 24 June 2014).

Andre, P., and N. Eaton. 1988. National agricultural text digitizing project. Library
Hi Tech News 6 (23): 61–6.

Andre, P., N. Eaton, and J. Zidar. 1988. Scanning and digitizing technology
employed in the national agricultural text digitizing project. In Proceedings of
the Conference on Application of Scanning Methodologies for Libraries.
Beltsville, MD, 17–18 November, 61–73.

Apple Computer. 2012. Model-view-controller. Concepts in Objective-C
Programming. https://developer.apple.com/library/mac/documentation/
General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-
View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14 (accessed 15
March 2014).

Arms, W. 2000. Automated digital libraries: How effectively can computers be used
for the skilled tasks of professional librarianship? D-Lib Magazine 6 (7/8).
http://www.dlib.org/dlib/july00/arms/07arms.html (accessed 10 March 2014).

Arnold, J., R. Badger, and R. Lucier. 1997. Red Sage final report. http:/
/www.librarytechnology.org/ltg-displaytext.pl?RC=9762 (accessed 13 January
2014).

303

Atkinson, R., and L. Stackpole. 1995. TORPEDO: Networked access to full-text and
page-image representations of physics journals and technical reports. The
Public-Access Computer Systems Review 6 (3): 6–15.

Ávila, B., and R. Lins. 2004. Efficient removal of noisy borders from monochromatic
documents. In Proceedings of the International Conference on Image Analysis
and Recognition. Porto, Portugal, 29 September–1 October, 249–56.

Baggi, D., and G. Haus. 2009. IEEE 1599: Music encoding and interaction. Computer
42 (3): 84–7.

Bainbridge, D. 1997. Extensible optical music recognition. Ph.D diss., University of
Canterbury.

———. 2000. The role of music IR in the New Zealand digital library project. In
Proceedings of the Conference of the International Society for Music
Information Retrieval. Plymouth, MA, 23–25 October,

Bainbridge, D., and T. Bell. 1996. An extensible optical music recognition system.
Australian Computer Science Communications 18 (1): 308–17.

———. 2001. The challenge of optical music recognition. Computers and the
Humanities 35 (2): 95–121.

———. 2003. A music notation construction engine for optical music recognition.
Software: Practice and Experience 33 (2): 173–200.

Bainbridge, D., C. Nevill-Manning, I. Witten, L. Smith, and R. McNab. 1999. Towards
a digital library of popular music. In Proceedings of the The Fourth ACM
Conference on Digital Libraries. Berkeley, CA, 11–14 August, 161–9.

Bainbridge, D., and K. Wijaya. 1999. Bulk processing of optically scanned music. In
Proceedings of the International Conference on Image Processing and its
Applications. Manchester, UK, 13–15 July, 474–8.

Balk, H., and L. Ploeger. 2009. Impact: Working together to address the challenges
involving mass digitization of historical printed text. OCLC Systems and
Services 25 (4): 233–48.

Balm, G. 1970. An introduction to optical character reader considerations. Pattern
Recognition 2: 151–66.

Barton, L. 2002. The NEUMES project: Digital transcription of Medieval chant
manuscripts. In Proceedings of the Web Delivering of Music. Darmstadt,
Germany, 9–11 December, 211–8.

Bellini, P., I. Bruno, and P. Nesi. 2007. Assessing optical music recognition tools.
Computer Music Journal 31 (1): 68–93.

———. 2008. Optical music recognition: Architecture and algorithms. In
Interactive Multimedia Music Technologies, edited by K. Ng, and P. Nesi, 80–
110. Hershey, PA: Information Science Reference.

304

Benedictines of Solesmes. 1961. The Liber usualis, with introduction and rubrics in
english. Tournai, Belgium: Desclée.

Bent, M. 1994. Editing early music: The dilemma of translation. Early Music 22 (3):
373–92.

Bergeron, K. 1998. Decadent enchantments: The revival of Gregorian chant at
Solesmes. Berkeley, CA: University of California Press.

Berners-Lee, T., R. Cailliau, J.-F. Groff, and B. Pollermann. 1992. World-wide web: The
information universe. Internet Research 2 (1): 52–8.

Bitteur, H. 2013. Audiveris: Optical music recognition. Presentation given at the
Music Hack Day, Vienna, Austria, http://www.mdw.ac.at/mdwMediathek/
ClassicalMusicHackDay/AudiverisMusicHackDayVienna2013.v1.pdf (accessed
14 February 2014).

———. 2014. Audiveris: Open music scanner. https://audiveris.kenai.com (accessed
11 February 2014).

Blamberg, D., C. Dowling, and C. Weston, eds. 1988. Proceedings of the Conference
on Application of Scanning Methodologies for Libraries. Washington, DC:
National Agricultural Library.

Blanke, T., M. Bryant, and M. Hedges. 2012. Open source optical character
recognition for historical research. Journal of Documentation 68 (5): 659–83.

Blostein, D., and H. S. Baird. 1992. A critical survey of music image analysis. In
Structured Document Image Analysis, edited by H. Baird, H. Bunke, and K.
Yamamoto, 405–34. Berlin: Springer.

Boddie, S. 2009. What’s METS/ALTO and should you care? http:/
/www.dlconsulting.com/metadata/whats-mets-alto-and-should-you-care/
(accessed 12 January 2014).

Bonte, T., N. Froment, and H. Bitteur. 2013. MuseScore and Audiveris as a service.
Presentation given at the Music Hack Day, Vienna, Austria, http:/
/www.youtube.com/watch?v=a-OdfNs0v_U (accessed 12 February 2014).

Boyko, A., J. Kunze, J. Littman, L. Madden, and B. Vargas. 2014. The BagIt file
packaging format (v0.97). https://tools.ietf.org/html/draft-kunze-bagit-10.
(accessed 23 March 2014).

Braid, A. 2003. The use of electronic journals in a document delivery service. Serials
16 (1): 37–40.

Brandt, S. 2002. Java tip 128: Create a quick-and-dirty XML parser. http:/
/www.javaworld.com/article/2077493/mobile-java/java-tip-128--create-a-
quick-and-dirty-xml-parser.html (accessed 26 July 2014).

Bray, T., D. Hollander, A. Layman, R. Tobin. 2006a. Namespaces in XML 1.1. 2nd ed.
http://www.w3.org/TR/xml-names11 (accessed 9 December 2014).

305

Bray, T., J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan. 2006b.
Extensible markup language. http://www.w3pdf.com/W3cSpec/XML/2/REC-
xml11-20060816.pdf (accessed 4 April 2014).

Breuel, T. 2007. The hOCR microformat for OCR workflow and results. In
Proceedings of the International Conference on Document Analysis and
Recognition. Curitiba, Brazil, 23–26 September, 1063–7.

———. 2008. The OCRopus open source OCR system. Proceedings of the SPIE:
Document Recognition and Retrieval 6815.

———. 2009. Recent progress on the OCRopus OCR system. In Proceedings of the
International Workshop on Multilingual OCR. Barcelona, Spain, 25 July, 1–10.

———. 2010. The hOCR embedded OCR workflow and output format. https:/
/docs.google.com/document/d/1QQnIQtvdAC_8n92-
LhwPcjtAUFwBlzE8EWnKAxlgVf0/preview (accessed 9 January 2014).

Brink, A., and N. Pendock. 1996. Minimum cross-entropy threshold selection.
Pattern Recognition 29 (1): 179–88.

Bronner, E. 1999. You can look it up, hopefully. The New York Times. http:/
/www.nytimes.com/1999/01/10/weekinreview/ideas-trends-you-can-look-it-
up-hopefully.html (accessed 24 January 2014).

Bugge, E., K. Juncher, B. Mathiasen, and J. Simonsen. 2011. Using sequence
alignment and voting to improve optical music recognition from multiple
recognizers. In Proceedings of the Conference of the International Society for
Music Information Retrieval. Miami, FL, 24–28 October, 405–10.

Burgoyne, J. A., J. Devaney, L. Pugin, and I. Fujinaga. 2008. Enhanced bleedthrough
correction for early music documents with recto-verso registration. In
Proceedings of the Conference of the International Society for Music
Information Retrieval. Philadelphia, PA, 14–18 September, 407–12.

Burgoyne, J. A., Y. Ouyang, T. Himmelman, J. Devaney, L. Pugin, and I. Fujinaga.
2009. Lyric extraction and recognition on digital images of early music sources.
In Proceedings of the Conference of the International Society for Music
Information Retrieval. Kobe, Japan, 26–30 October, 723–7.

Burgoyne, J. A., L. Pugin, G. Eustace, and I. Fujinaga. 2007. A comparative survey of
image binarisation algorithms for optical recognition on degraded musical
sources. In Proceedings of the Conference of the International Society for Music
Information Retrieval. Vienna, Austria, 23–27 September, 509–12.

Burlet, G., A. Porter, A. Hankinson, and I Fujinaga. 2012. Neon.js: Neume editor
online. In Proceedings of the Conference of the International Society for Music
Information Retrieval. Porto, Portugal, 8–12 October, 121–6.

Burnard, L., and S. Rahtz. 2004. RelaxNG with Son of ODD. In Proceedings of the
Extreme Markup Languages. Montréal, QC, 2–6 August,

306

Burton-West, T. 2009. Slow queries and common words (part 1). HathiTrust: Large-
scale Search Blog. http://www.hathitrust.org/blogs/large-scale-search/slow-
queries-and-common-words-part-1 (accessed 11 January 2014).

Bush, V. 1945. As we may think. The Atlantic 176 (1): 101–8.

Byrd, D., W. Guerin, M. Schindele, and I. Knopke. 2010. OMR evaluation and
prospects for improved OMR via multiple recognizers. http:/
/www.informatics.indiana.edu/donbyrd/MROMR2010Pap/
OMREvaluation+Prospects4MROMR.doc (accessed 22 February 2014).

Byrd, D., and M. Schindele. 2006. Prospects for improving OMR with multiple
recognizers. In Proceedings of the Conference of the International Soceity for
Music Information Retrieval. Victoria, BC, 8–12 October, 41–6.

Byrd, D., and J. Simonsen. 2013. Towards a standard testbed for optical music
recognition: Definitions, metrics, and page images. Indiana University.
Working Paper. http://www.informatics.indiana.edu/donbyrd/OMRTestbed/
OMRStandardTestbed1Mar2013.pdf (accessed 13 June 2014).

Caldas Pinto, J., P. Vieira, M. Ramalho, M. Mengucci, P. Pina, and F. Muge. 2000.
Ancient music recovery for digital libraries. In Proceedings of the European
Conference on Digital Libraries. Lisbon, Portugal, 18–20 September, 24–34.

Canons Regular of Saint John Cantius. 2010. Liber usualis. http:/
/www.sanctamissa.org/en/music/gregorian-chant/choir/liber-
usualis-1961.html (accessed 13 July 2014).

Cao, G., L. Dou, Q. Hart, and B. Ludaescher. 2011. Kepler/g-pack: A kepler package
using the Google cloud for interactive scientific workflows. In Proceedings of
the Ninth Biennial Ptolemy Miniconference. Berkeley, CA, 16 February,

Capela, A., J. Cardoso, A. Rebelo, and C. Guedes. 2008. Integrated recognition
system for music scores. In Proceedings of the International Computer Music
Conference. Belfast, Northern Ireland, 24–29 August,

Capella Software. 2014. Info capella-scan. http://www.capella.de/us/index.cfm/
products/capella-scan/info-capella-scan/ (accessed 8 July 2014).

Cappuccino Project. 2014a. Learning Objective-J. http://www.cappuccino-
project.org/learn/objective-j.html (accessed 27 March 2014).

———. 2014b. What is Cappuccino? http://www.cappuccino-project.org/learn/
(accessed 27 March 2014).

Carlson, S., and J. Young. 2005. Yahoo works with academic libraries on a new
project to digitize books. The Chronicle of Higher Education 52 (8): A34. https:/
/chronicle.com/article/Yahoo-Works-With-Academic/28449 (accessed 16
January 2014).

307

Carter, N., R. Bacon, and T. Messenger. 1988. The acquisition, representation and
reconstruction of printed music by computer: A review. Computers and the
Humanities 22 (2): 117–36.

Carter, N. P. 1992. Segmentation and preliminary recognition of madrigals notated
in white mensural notation. Machine Vision and Applications 5 (3): 223–30.

Casey, R., and G. Nagy. 1991. Document analysis: A broader view. In Proceedings of
the International Conference on Document Analysis and Recognition. Saint-
Malo, France, 30 September–2 October, 839–49.

Castan, G., M. Good, and P. Roland. 2001. Extensible markup language (XML) for
music applications: An introduction. Computing in Musicology 12: 95–102.

Castro, P., R. Almeida, and J. Caldas Pinto. 2008. Restoration of double-sided
ancient music documents with bleed-through. In Proceedings of the
Iberoamerican Congress on Pattern Recognition. Valparaiso, Chile, 13–16
November, 940–9.

Castro, P., and J. Caldas Pinto. 2007. Methods for written ancient music restoration.
In Proceedings of the Image Analysis and Recognition. Montreal, Canada, 22–
24 August, 1194–205.

Chapman, K. 2001. An examination of the usefulness of JSTOR to researchers in
finance. Behavioral & Social Sciences Librarian 19 (2): 39–47.

Chitu, A. 2006. The new Google Book Search. http://googlesystem.blogspot.ca/
2006/11/new-google-book-search.html (accessed 14 January 2014).

Choudhury, G., T. DiLauro, M. Droettboom, I. Fujinaga, B. Harrington, and K.
MacMillan. 2000a. Optical music recognition system within a large-scale
digitization project. In Proceedings of the Conference of the International
Society for Music Information Retrieval. Plymouth, MA, 23–25 October,

Choudhury, G., T. Dilauro, M. Droettboom, I. Fujinaga, and K. Macmillan. 2001.
Strike up the score: Deriving searchable and playable digital formats from
sheet music. D-Lib Magazine 7. http://dlib.org/dlib/february01/choudhury/
02choudhury.html (accessed 30 January 2014).

Choudhury, G., C. Requardt, I. Fujinaga, T. DiLauro, E. W. Brown, J. W. Warner, and
B. Harrington. 2000b. Digital workflow management: The Lester s. Levy
digitized collection of sheet music. First Monday 5 (6). http://firstmonday.org/
ojs/index.php/fm/article/view/756 (accessed 30 January 2014).

Christenson, H. 2011. HathiTrust: A research library at web scale. Library Resources
& Technical Services 55 (2): 93–102.

Cleverdon, C., and M. Keen. 1966. Factors determining the performance of indexing
systems. Aslib Cranfield Research Project. 2.

Cleverdon, C., J. Mills, and M. Keen. 1966. Factors determining the performance of
indexing systems. Aslib Cranfield Research Project. 1.

308

Code Synthesis Tools. 2014. Code Synthesis XSD. http://www.codesynthesis.com/
projects/xsd/ (accessed 18 July 2014).

Compaq Computer Corporation. 1996. Internet solutions division strategy for cloud
computing. http://www.technologyreview.com/sites/default/files/legacy/
compaq_cst_1996_0.pdf (accessed 7 March 2014).

Compier, H., and R. Campbell. 1992. ADONIS—latest developments and its role in
the changing publisher/library relationship. Health Libraries Review 9: 3–13.

Connelly, D., B. Paddock, and R. Harvey. 1999. XDOC data format: Technical
specification. ScanSoft Inc. Version 4.0.

Conway, P. 2010. Measuring content quality in a preservation repository: HathiTrust
and large-scale book digitization. In Proceedings of the International
Conference on Preservation of Digital Objects. Vienna, Austria, 19–24
September, 95–102.

Cookson, J. 1984. A demonstration database for document images. Proceedings of
the Society of Photo-Optical Instrumentation Engineers 0515: 30–41.

Coüasnon, B., and J. Camillerapp. 1995. A way to separate knowledge from program
in structured document analysis: Application to optical music recognition.
International Conference on Document Analysis and Recognition : 1092–7.

Cover, T., and P. Hart. 1967. Nearest neighbour classification. IEEE Transactions of
Information Theory 13 (1): 21–7.

Coyle, K. 2006. Mass digitization of books. The Journal of Academic Librarianship
32 (6): 641–5.

Crane, G. 2006. What do you do with a million books? D-Lib Magazine 12 (3). http:/
/www.dlib.org/dlib/march06/crane/03crane.html (accessed 15 January 2014).

Crawford, T. 1991. Applications involving tablatures. Computing in Musicology 7:
57–9.

Cui, J., H. He, and Y. Wang. 2010. An adaptive staff line removal in music score
images. In Proceedings of the International Conference on Signal Processing.
Beijing, China, 24–28 October, 964–7.

Curcin, V., and M. Ghanem. 2008. Scientific workflow systems-can one size fit all?
In Proceedings of the Biomedical Engineering Conference. Innsbruck, Austria,
13–14 February, 1–9.

Dalitz, C., and T. Crawford. 2013. From facsimile to content based retrieval: The
electronic corpus of lute music. Phoibos - Zeitschrift für Zupfmusik 2: 167–85.

Dalitz, C., M. Droettboom, B. Pranzas, and I. Fujinaga. 2008a. A comparative study
of staff removal algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (5): 753–66.

309

Dalitz, C., and T. Karsten. 2005. Using the Gamera framework for building a lute
tablature recognition system. In Proceedings of the Conference of the
International Society for Music Information Retrieval. London, UK, 11–15
September, 478–81.

Dalitz, C., G. Michalakis, and C. Pranzas. 2008b. Optical recognition of psaltic
Byzantine chant notation. International Journal on Document Analysis and
Recognition 11 (3): 143–58.

Dalitz, C., and B. Pranzas. 2009. German lute tablature recognition. In Proceedings
of the 10th International Conference on Document Analysis and Recognition.
Barcelona, Spain, 371–5.

Damm, D., C. Fremerey, V. Thomas, M. Clausen, F. Kurth, and M. Müller. 2012. A
digital library framework for heterogeneous music collections: From document
acquisition to cross-modal interaction. International Journal on Digital
Libraries 12 (2-3): 53–71.

Dannenberg, R. 1993. Music representation issues, techniques, and systems.
Computer Music Journal 17 (3): 20–30.

Deegan, M., E. King, and E. Steinvil. 2001. Project report: British Library
microfilmed newspapers and Oxford grey literature online. The British Library,
London.

DeLoughry, T. 1996. Journal articles dating back 100 years are being put on line. The
Chronicle of Higher Education 43 (15): A30, A32.

der Knijff, J. 2011. JPEG 2000 for long-term preservation: JP2 as a preservation
format. D-Lib Magazine 17 (5). http://dlib.org/dlib/may11/vanderknijff/
05vanderknijff.html (accessed 22 July 2014).

Desaedeleer, A. 2006. Reading sheet music. MSc diss., Imperial College, University
of London.

Dietz, J. 2006. Centuries of silence: The discovery of the Salzinnes Antiphonal. MA
diss., St. Mary’s University.

Django Project. 2014. Django. https://www.djangoproject.com (accessed 27 March
2014).

Doermann, D., J. Liang, and H. Li. 2003. Progress in camera-based document image
analysis. In Proceedings of the International Conference on Document Analysis
and Recognition. Edinburgh, UK, 3–6 August, 606–16.

Dogan, M., C. Neudecker, S. Schlarb, and G. Zechmeister. 2010. Experimental
workflow development in digitisation. In Proceedings of the Second
International Conference on Qualitative and Quantitative Methods in
Libraries. Chania, Crete, Greece, 25–28 May, 377–84.

310

Dollar, C., and W. Hooton. 1984. Technology assessment report: Speech pattern
recognition, optical character recognition, digital raster scanning. National
Archives and Records Administration Service. PB125217/AS.

Dori, D., D. Doermann, C. Shin, R. Haralick, I. Phillips, M. Buchman, and D. Ross.
1997. The representation of document structure: A generic object-process
analysis. In Handbook on Optical Character Recognition and Document Image
Analysis, 421–56. Singapore: World Scientific.

Downie, J. S. 1999. Evaluating a simple approach to music information retrieval:
Conceiving melodic n-grams as text. PhD diss., University of Western Ontario.

———. 2012. Introduction to the HathiTrust research center: A briefing.
Presentation given at the The Faculty of Information & Media Studies,
University of Western Ontario, http://www.hathitrust.org/documents/HTRC-
UWO-201212.pptx (accessed 24 June 2014).

Droettboom, M., and I. Fujinaga. 2004. Symbol-level groundtruthing environment
for OMR. In Proceedings of the Conference of the International Society for
Music Information Retrieval. Barcelona, Spain, 10–14 October, 497–500.

Droettboom, M., I. Fujinaga, and K. MacMillan. 2009. Optical music interpretation.
In Proceedings of the IAPR International Workshops on Structural, Syntactic,
and Statistical Pattern Recognition. Windsor, Ontario, 6–9 August, 378–87.

Droettboom, M., K. MacMillan, and I. Fujinaga. 2003. The Gamera framework for
building custom recognition systems. In Proceedings of the Symposium on
Document Image Understanding Technologies. Greenbelt, MD, 9-11 April, 275–
86.

Drummond, D. 2008. New chapter for Google Book Search. http:/
/googleblog.blogspot.ca/2008/10/new-chapter-for-google-book-search.html
(accessed 16 January 2014).

Drummond, J., and M. Bosma. 1989. A review of low-cost scanners. International
Journal of Geographical Information Systems 3 (1): 83–95.

Dumitrescu, T., and M. Berchum. 2009. The cmme occo codex edition: Variants and
versions in encoding and interface. In Digitale edition zwischen experiment
und standardisierung, edited by P. Stadler, and J. Veit, 129–46.

Dutta, A., Pal. U., A. Fornés, and J. Lladós. 2010. An efficient staff removal approach
from printed musical documents. In Proceedings of the Twentieth IAPR
International Conference on Pattern Recognition. Istanbul, Turkey, 23–26
August, 1965–8.

ECMA International. 2013. The JSON data interchange format. ECMA-404. http:/
/www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.
(accessed 27 March 2014).

311

English, W., D. Engelbart, and M. Berman. 1967. Display-selection techniques for
text manipulation. IEEE Transactions on Human Factors in Electronics 8 (1): 5–
15.

Entlich, R. 2002. Where are they now? Digitizing microfilmed newspapers. RLG
Diginews 6 (3).

Entlich, R., J. Olsen, L. Garson, M. Lesk, L. Normore, and S. Weibel. 1997. Making a
digital library: The contents of the CORE project. ACM Transactions on
Information Systems 15 (2): 103–23.

Erickson, R. 1975. The DARMS project: A status report. Computers and the
Humanities 9 (6): 291–8.

Exolab Group. 2013. The Castor project. http://castor.codehaus.org (accessed 18 July
2014).

Farrow, G., C. Xydeas, and J. Oakley. 1994. Conversion of scanned documents to the
open document architecture. In Proceedings of the IEEE Conference on
Acoustics, Speech, and Signal Processing. Adelaide, Australia, 19–22 April, 109–
12.

Ferrand, M., J. A. Leite, and A. Cardoso. 1999. Hypothetical reasoning: An
application to optical music recognition. In Proceedings of the Joint Conference
on Declarative Programming. Aquila, Italy, 6–9 September, 367–81.

Fielding, R. 2001. Architectural styles and the design of network-based software
architectures. PhD diss., University of California, Irvine.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
1999. Hypertext transfer protocol: HTTP/1.1. RFC 2616. http://www.w3.org/
Protocols/rfc2616/rfc2616.html. (accessed 6 March 2014).

Finn, J., J. Larcombe, Y. Assam, S. Whiteside, M. Copperwhite, P. Walmsley, G.
Westlake, and M. Eastwood. 2011. Sibelius 7: Using the ManuScript language.
Avid Technology. Burlington, MA. http://www.sibelius.com/download/
documentation/pdfs/sibelius710-manuscript-en.pdf (accessed 18 July 2014).

Fornés, A., A. Dutta, A. Gordo, and J. Lladós. 2011a. CVC-MUSCIMA: A ground
truth of handwritten music score images for writer identification and staff
removal. International Journal on Document Analysis and Recognition 15 (3):
243–51.

Fornés, A., A. Dutta, A. Gordo, and J. Llados. 2011b. The ICDAR 2011 music scores
competition: Staff removal and writer identification. In Proceedings of the
International Conference on Document Analysis and Recognition. Beijing,
China, 18–21 September, 1511–5.

312

Fornés, A., A. Dutta, A. Gordo, and J. Lladós. 2013. The 2012 music scores
competitions: Staff removal and writer identification. In Proceedings of the
International Conference on Graphics Recognition. Seoul, Korea, 15–16
September, 173–86.

Freeman, E., K. Sierra, and B. Bates. 2004. Head first design patterns. Sebastopol,
CA: O’Reilly.

Fremerey, C., M. Müller, F. Kurth, and M. Clausen. 2008. Automatic mapping of
scanned sheet music to audio recordings. In Proceedings of the Conference of
the International Society for Music Information Retrieval. Philadelphia, PA,
14–18 September, 413–8.

Fujinaga, I. 1996a. Adaptive optical music recognition. PhD diss., McGill University.

———. 1996b. Exemplar-based learning in adaptive optical music recognition
system. In Proceedings of the International Computer Music Conference. Hong
Kong, 55–6.

———. 2004. Staff detection and removal. In Visual Perception of Music Notation:
Online and Offline Recognition, edited by S. George, 1–39. Hershey, PA: IRM
Press.

Fujinaga, I., B. Alphonce, and B. Pennycook. 1989. Issues in the design of an optical
music recognition system. In Proceedings of the International Computer Music
Conference. Columbus, OH, 2–5 November, 113–6.

Fujinaga, I., B. Alphonce, B. Pennycook, and K. Hogan. 1991. Optical music
recognition: Progress report. In Proceedings of the International Computer
Music Conference. Montreal, QC, 66–73.

Galloway, P. 1981. Hardware review: KDEM. Computers and the Humanities 15 (3):
183–5.

Gamera. 2012. Training tutorial. http://gamera.sourceforge.net/doc/html/
training_tutorial.html (accessed 25 March 2014).

Garrett, J. 2005. AJAX: A new approach to web applications. http:/
/www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
(accessed 6 March 2014).

Gauvain, J.-L., and C.-H. Lee. 1994. Maximum a posteriori estimation for
multivariate gaussian mixture observations of Markov chains. IEEE
Transactions on Speech and Audio Processing 2 (2): 291–8.

Gear Up AB. 2014. Iseenotes. http://www.iseenotes.com).

George, S. 2004. Lyric recognition and Christian music. In Visual Perception of
Music Notation: Online and Offline Recognition, edited by S. George, 198–226.
Hershey, PA: IRM Press.

Gezerlis, V., and S. Theodoridis. 2002. Optical character recognition of the orthodox
Hellenic Byzantine music notation. Pattern Recognition 35 (4): 895–914.

313

Gil, Y. 2007. Workflow composition: Semantic representations for flexible
automation. In Workflows for e-Science, edited by I. Taylor, E. Deelman, D.
Gannon, and M. Shields, 244–57. London: Springer.

Goble, C., and D. De Roure. 2007. MyExperiment: Social networking for workflow-
using e-scientists. In Proceedings of the Workshop on Workflows in Support of
Large-scale Science. Monterey Bay, CA, 25 June, 1–2.

Goldfarb, C., and Y. Rubinsky. 1990. The sgml handbook. Oxford, UK: Oxford
University Press.

Good, M. 2001. MusicXML for notation and analysis. Computing in Musicology 12:
113–24.

———. 2009. Using MusicXML 2.0 for music editorial applications. In Digitale
edition zwischen experiment und standardisierung, edited by P. Stadler, and J.
Veit, 157–74. Tübingen: Max Niemeyer.

Google. 2004. Google checks out library books. http://googlepress.blogspot.ca/
2004/12/google-checks-out-library-books.html (accessed 15 January 2014).

———. 2014a. Library partners. http://books.google.com/googlebooks/library/
partners.html (accessed 15 January 2014).

———. 2014b. What you’ll see when you search on Google Books. http:/
/books.google.com/googlebooks/library/screenshots.html (accessed 15 January
2014).

Gorn, S., R. Bemer, and J. Green. 1963. American standard code for information
interchange. Communications of the ACM 6 (8): 422–6.

Grande, C., and A. Belkin. 1996. The development of the notation interchange file
format. Computer Music Journal 20 (4): 33–46.

Grant, J. 2005. Judging book search by its cover. Google Official Blog. http:/
/googleblog.blogspot.ca/2005/11/judging-book-search-by-its-cover.html
(accessed 16 January 2014).

Grant, S. 1994. ADONIS: For developing countries? In Proceedings of the
International Federation of Library Associations Conference. Havana, Cuba, 21–
27 August, 217–25.

Gray, P. 1986. Desktop publishing. Evaluation Practice 7 (3): 40–9.

Gudgin, M., M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, A. Karmakar, and Y.
Lafon. 2007. Soap version 1.2 part 1: Messaging framework. http:/
/www.w3.org/TR/soap12-part1/ (accessed 31 March 2014).

Guthrie, K. 1999. JSTOR: Large scale digitization of journals in the United States.
LIBER Quarterly 9 (3): 291–7.

314

Haffner, P., L. Bottou, P. Howard, P. Simard, Y. Bengio, and Y. Le Cun. 1998.
Browsing through high quality document images with DjVu. In Proceedings of
the International Forum on Research and Technology Advances in Digital
Libraries. Santa Barbara, CA, 22–24 April, 309–18.

Hafner, K. 2005. In challenge to Google, Yahoo will scan books. New York Times, 3
October. http://www.nytimes.com/2005/10/03/business/
03yahoo.html?_r=2&scp=2&sq=open%20content%20alliance&st=cse&oref=sl
ogin& (accessed 16 June 2014).

Hahn, T. 2008. Mass digitization: Implications for preserving the scholarly record.
Library Resources & Technical Services 52 (1): 18–26.

Handel, P. 1931. Statistical machine. US Patent 1,915,993, filed 27 April 1931, and
issued 27 June 1933.

Hankinson, A. 2013. Pybagit. https://github.com/ahankinson/pybagit (accessed 23
March 2014).

Hankinson, A., W. Liu, L. Pugin, and I. Fujinaga. 2011a. Diva.js: A continuous
document image viewing interface. Code4lib Journal 14. http:/
/journal.code4lib.org/articles/5418 (accessed 17 June 2014).

———. 2012. Diva: A web-based high-resolution document image viewer. In
Proceedings of the Theory and Practice of Digital Libraries. Paphos, Cyprus, 23–
27 September, 455–60.

Hankinson, A., and A. Porter. 2014. LibMEI. http://github.com/DDMAL/libmei
(accessed 27 March 2014).

Hankinson, A., L. Pugin, and I. Fujinaga. 2009. Interfaces for document
representation in digital music libraries. In Proceedings of the Conference of the
International Society for Music Information Retrieval. Kobe, Japan, 26–30
October, 39–44.

———. 2010. An interchange format for optical music recognition applications. In
Proceedings of the Conference of the International Society for Music
Information Retrieval. Utrecht, The Netherlands, 9–13 August, 51–6.

Hankinson, A., P. Roland, and I. Fujinaga. 2011b. The Music Encoding Initiative as a
document encoding framework. In Proceedings of the Conference of the
International Society for Music Information Retrieval. Miami, FL, 24–28
October, 293–8.

Hankinson, A., and M. Walter. 2014. SibMEI. https://github.com/DuChemin/
SibMEI (accessed 27 March 2014).

Haring, D., and J. Roberge. 1969. A combined display for computer generated data
and scanned photographic images. In Proceedings of the Spring Joint
Conference of the American Federation of Information Processing Societies.
Boston, MA, 14–16 May, 483–90.

315

Hart, M. 1992. The history and philosophy of Project Gutenberg. http:/
/www.gutenberg.org/wiki/
Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael
_Hart (accessed 14 January 2014).

HathiTrust. 2012. The HathiTrust digital library. http://www.hathitrust.org/
(accessed 9 January 2014).

———. 2014. Datasets. (accessed 19 January 2014).

Hayes, R. 1988. Concluding address. In Proceedings of the Conference on
Application of Scanning Methodologies for Libraries. Beltsville, MD, 17–18
November, 135–40.

Helsen, K. 2011. ‘venite et vidite’: First results in the optical neume recognition
project. In Proceedings of the Cantus Planus. Vienna, Austria, 26 September,

———. 2013. The evolution of neumes into square notation in chant manuscripts.
Journal of the Alamire Foundation 5 (2): 14374.

Henderson, B. E. 1983. Prototype for an electronic document storage and retrieval
program. Proceedings of the Society of Photo-Optical Instrumentation Engineers
0418: 112–5.

Hewlett, W. 1997. MuseData: Multipurpose representation. In Beyond MIDI: The
Handbook of Musical Codes, 402–47. Cambridge, MA: The MIT Press.

Hillegass, A., and A. Preble. 2011. Cocoa programming for Mac OS X. Boston:
Addison-Wesley.

Hockey, S. 1986. OCR: The Kurzweil data entry machine. Literary and Linguistic
Computing 1 (2): 63–7.

Hoffman, M., L. O’Gorman, G. Story, J. Arnold, and N. Macdonald. 1993. The
RightPages™ service: An image‐based electronic library. Journal of the
American Society for Information Science 44 (8): 446–52.

Holland, M. 2008. Historical British newspapers online. Library Hi Tech News 7.

Holley, R. 2009a. How good can it get? Analysing and improving OCR accuracy in
large scale historic newspaper digitisation programs. D-Lib Magazine . http:/
/www.dlib.org/dlib/march09/holley/03holley.html (accessed 16 June 2014).

———. 2009b. Many hands make light work: Public collaborative OCR text
correction in Australian historic newspapers. National Library of Australia
Staff Papers. http://www-prod.nla.gov.au/openpublish/index.php/nlasp/
article/viewArticle/1406 (accessed 7 January 2014).

Holmes, W. 1988. Comparison of scanning methodologies for conversion of typed,
printed, handwritten, and microfilmed materials. In Proceedings of the
Conference on Application of Scanning Methodologies for Libraries. Beltsville,
MD, 17–18 November, 25–33.

316

Hopmann, A. 2007. The story of XMLHTTP. http://www.alexhopmann.com/
xmlhttp.htm (accessed 6 March 2014).

Howard, J. 2012. Google begins to scale back its scanning of books from University
libraries. The Chronicle of Higher Education. http://chronicle.com/article/
Google-Begins-to-Scale-Back/131109/ (accessed 16 January 2014).

Huang, X., and K. Lee. 1993. On speaker-independent, speaker-dependent, and
speaker-adaptive speech recognition. IEEE Transactions on Speech and Audio
Processing 1 (2): 150–7.

Hull, D., K. Wolstencroft, R. Stevens, C Goble, M. Pocock, P. Li, and T. Oinn. 2006.
Taverna: A tool for building and running workflows of services. Nucleic Acids
Research 34: 729–32.

Huron, D. 1997. Humdrum and kern: Selective feature encoding. In Beyond MIDI:
The Handbook of Musical Codes, 375–401. Cambridge, MA: The MIT Press.

IMPACT Project. 2014. Overview on available tools for text digitisation. http:/
/www.digitisation.eu/tools-survey/index-coc (accessed 7 April 2014).

International Standards Organization. 1995. Standard music description language.
ISO 10743.

———. 2008. Document management — portable document format — part 1:
PDF 1.7. 32000-1. http://wwwimages.adobe.com/www.adobe.com/content/
dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf. (accessed 28 March
2014).

Internet Archive. 2014a. Digitizing print collections with The Internet Archive.
http://archive.org/scanning (accessed 16 January 2014).

———. 2014b. Universal library. https://archive.org/details/universallibrary
(accessed 18 January 2014).

Johansen, L. 2009. Optical music recognition. MSc diss., University of Oslo.

Jones, G. 2008a. OMR engine output file format. http://www.visiv.co.uk/tech-
mro.htm (accessed 4 April 2014).

———. 2008b. Sharpeye music scanning. http://www.visiv.co.uk (accessed 23
February 2014).

Jones, G., B. Ong, I. Bruno, and K. Ng. 2008. Optical music imaging: Music
document digitisation, recognition, evaluation and restoration. In Interactive
Multimedia Music Technologies, edited by K. Ng, and P. Nesi, 50–79. Hershey,
PA: Information Science Reference.

Jones, S. 1953. Machine that can read type face described as an office time-saver.
New York Times, 26 December. 18.

JPEG Group. 2014. Jpeg 2000: Our new standard! http://www.jpeg.org/jpeg2000/
(accessed 21 July 2014).

317

jQuery Foundation. 2014. JQuery. http://jquery.com (accessed 25 March 2014).

Kahle, B. 2009. Economics of book digitization. http:/
/www.opencontentalliance.org/2009/03/22/economics-of-book-digitization/
(accessed 10 March 2014).

Kassler, M. 1972. Optical character recognition of printed music: A review of two
dissertations. Perspectives of New Music 11: 250–4.

King, E. 2005. Digitisation of newspapers at the British Library. The Serials
Librarian 49 (1–2): 165–81.

Kirkpatrick, D. 2003. Amazon plan would allow searching texts of many books. The
New York Times. http://www.nytimes.com/2003/07/21/business/amazon-
plan-would-allow-searching-texts-of-many-books.html (accessed 9 January
2014).

Kirstein, P., and G. Montasser-Kohsari. 1995. The c-oda project: Experiences and
tools. The Computer Journal 38 (8): 670–80.

Kleiner, A., and R. Kurzweil. 1977. A description of the Kurzweil reading machine
and a status report on its testing and dissemination. Bulletin of Prosthesis
Research 10 (27): 72–81.

Kluzner, V., A. Tzadok, Y. Shimony, E. Walach, and A. Antonacopoulos. 2009. Word-
based adaptive OCR for historical books. In Proceedings of the 10th
International Conference on Document Analysis and Recognition. Barcelona,
Spain, 26–29 July, 501–5.

Knudson, D., and S. Teicher. 1969. Remote text access in a computerized library
information retrieval system. In Proceedings of the Spring Joint Conference of
the American Federation of Information Processing Societies. Boston, MA, 14–
16 May, 475–81.

Knuth, D. 1984. Literate programming. The Computer Journal 27 (2): 97–111.

Koláček, J., and D. Lacoste. 2014a. CANTUS: A database for Latin ecclesiastical
chant. http://cantusdatabase.org (accessed 18 July 2014).

———. 2014b. CANTUS: Field contents. http://cantusdatabase.org/description
(accessed 1 April 2014).

Kostka, S. M. 1971. Recent developments in computer-assisted musical scholarship.
Computers and the Humanities 6 (1): 15–21.

Kraft, B. 1989. Pricing of Optiram’s OCR service. Humanist Discussion Group. http:/
/dhhumanist.org/Archives/Virginia/v03/0367.html (accessed 13 January 2014).

Krasner, G., and S. Pope. 1988. A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1
(3): 26–49.

318

Kuć, R., and M. Rogoziński. 2013. Elasticsearch server. Birmingham, UK: Packt
Publishing.

Kurth, F., D. Damm, C. Fremerey, M. Müller, and M. Clausen. 2008. A framework for
managing multimodal digitized music collections. In Proceedings of the
European Conference on Digital Libraries. Aarhus, Denmark, 14–19 September,
334–45.

Kurzweil, R. 2013. Keynote speech: Lawtech futures conference. http:/
/www.youtube.com/watch?v=zcUxmRvjxM8 (accessed 7 January 2013).

Lagoze, C., E. Shaw, J. Davis, and D. Krafft. 1995. Dienst: Implementation reference
manual. Computer Science Department, Cornell University, Ithaca, NY.

Lee, D., and R. Smith. 2012. Improving book OCR by adaptive language and image
models. In Proceedings of the 10th IAPR International Workshop on Document
Analysis Systems. Gold Coast, Australia, 27–29 March, 115–9.

Leedham, G., S. Varma, A. Patankar, V. Govindarayu, and D. De Roure. 2002.
Separating text and background in degraded document images – a comparison
of global threshholding techniques for multi-stage thresholding. In Proceedings
of the Eighth International Workshop on Frontiers in Handwriting Recognition.
Buffalo, NY, 6–8 August, 244–9.

Lesk, M. 1990a. Full text retrieval with graphics. In Proceedings of the Bridging the
Gap: Technical Information Panel Specialists’ Meeting. Trondheim, Norway, 5–
6 September, 5-1–13.

———. 1990b. Image formats for preservation and access. A report of the
Technology Assessment Advisory Committee to the Commission on
Preservation and Access. Council on Library and Information Resources. http:/
/www.clir.org/pubs/reports/pub5/lesk.html/lesk.html#digpaper (accessed 16
June 2014).

———. 1994. Experiments on access to digital libraries: How can images and text
be used together? In Proceedings of the 20th Conference on Very Large
Databases. Santiago, Chile, 655–67.

———. 1997. Practical digital libraries: Books, bytes, and bucks. San Francisco:
Morgan Kaufmann.

Lewis, P. 1989. The executive computer: The race to market a 486 machine. The New
York Times. http://www.nytimes.com/1989/10/22/business/the-executive-
computer-the-race-to-market-a-486-machine.html (accessed 22 March 2014).

Li, J. 2001. Image compression: The mechanics of the jpeg 2000. Microsoft
Research. http://research.microsoft.com/en-us/um/people/jinl/paper_2001/
msri_jpeg2000.pdf (accessed 21 July 2014).

Library of Congress. 2013. METS: Metadata encoding & transmission standard.
http://www.loc.gov/standards/mets/ (accessed 9 January 2014).

319

———. 2014a. Chronicling America: Historic American newspapers. http:/
/chroniclingamerica.loc.gov (accessed 12 December 2014).

———. 2014b. Using ALTO with METS. http://www.loc.gov/standards/alto/
techcenter/use-with-mets.php (accessed 9 January 2014).

Littman, J. 2007. Actualized preservation threats: Practical lessons from Chronicling
America. D-Lib Magazine. http://www.dlib.org/dlib/july07/littman/
07littman.html (accessed 12 December 2014).

Llorà, X., B. Ács, L. Auvil, B. Capitanu, M. Welge, and D. Goldberg. 2008. Meandre:
Semantic-driven data-intensive flows in the clouds. In Proceedings of the
Fourth IEEE International Conference on eScience. Indianapolis, IN, 7–12
December, 238–45.

Loughry, T. 1993. Putting scholarly publications on line. The Chronicle of Higher
Education . http://chronicle.com/article/Putting-Scholarly-Publications/
71440/ (accessed 13 January 2014).

Lucier, R., and P. Brantley. 1995. The Red Sage project: An experimental digital
journal library for the health sciences. D-Lib Magazine . http://www.dlib.org/
dlib/august95/lucier/08lucier.html (accessed 13 January 2014).

Lunacek, M., J. Braden, and T. Hauser. 2013. The scaling of many-task computing
approaches in Python on cluster supercomputers. In Proceedings of the
International Conference on Cluster Computing. Indianapolis, IN, 23–27
September, 1–8.

MacMillan, K, M Droettboom, and I Fujinaga. 2002. Gamera: Optical music
recognition in a new shell. In Proceedings of the International Computer Music
Conference. Gothenburg, Sweden, 482–5.

MacMillan, K., M. Droettboom, and I. Fujinaga. 2001. Gamera: A structured
document recognition application development environment. In Proceedings
of the Conference of the International Society for Music Information Retrieval.
Bloomington, IN, 15–17 October, 15–6.

Martin, D. 2007. David H. Shephard, 84, dies; Optical reader inventor. The New York
Times, 11 December. http://www.nytimes.com/2007/12/11/us/11shepard.html
(accessed 16 April 2014).

Maxwell, J. 1981. Mockingbird: An interactive composer’s aid. M.S. diss., MIT.

McCallum, J. 2013. Disk drive prices (1955-2013). http://jcmit.com/diskprice.htm
(accessed 26 November 2013).

McCone, G. 1992. Preservation R&D activities at the National Agricultural Library.
In Proceedings of the Round table on Preservation Research and Development.
Washington, DC, 28–29 September, 62–9.

McGee, W., and P. Merkley. 1991. The optical scanning of medieval music.
Computers and the Humanities 25 (1): 47–53.

320

McGeehan, T., and J. Maddock. 1975. DDC 10 year requirements and planning study.
Interagency survey report. Defense Documentation Center.

McPherson, J. 2006. Coordinating knowledge to improve optical music recognition.
PhD diss., University of Waikato.

McPherson, J., and D. Bainbridge. 2001. Coordinating knowledge within an optical
music recognition system. In Proceedings of the The 4th New Zealand
Computer Science Research Students’ Conference. Christchurch, New Zealand,
50–8.

Michel, J., Y. Shen, A. Aiden, A. Veres, M. Gray, The Google Books Team, J. Pickett, D.
Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. Nowak, and E. Aiden.
2011. Quantitative analysis of culture using millions of digitized books. Science
331 (6014): 176–82.

Michener, W., J. Beach, M. Jones, B. Ludäscher, D. Pennington, R. Pereira, A.
Rajasekar, and M. Schildhauer. 2007. A knowledge environment for the
biodiversity and ecological sciences. Journal of Intelligent Information Systems
29 (1): 111–26.

MIDI Manufacturers Association. 1996. The complete MIDI 1.0 detailed
specification. http://www.midi.org/techspecs/midispec.php (accessed 27
March 2014).

Miller, R. 2012. The Internet Archive book digitization process. The Internet
Archive. https://archive.org/details/ProcessDocument (accessed 10 January
2014).

Mills, C., and L. Weldon. 1987. Reading text from computer screens. ACM
Computing Surveys 19 (4): 329–57.

Mori, S., C. Suen, and K. Yamamoto. 1992. Historical review of OCR research and
development. Proceedings of the IEEE 80 (7): 1029–58.

Müller, M., H. Mattes, and F. Kurth. 2006. An efficient multiscale approach to audio
synchronization. In Proceedings of the Conference of the International Society
for Music Information Retrieval. Victoria, BC, 8–12 October, 192–7.

Mullin, J. 2013. Google Books ruled legal in massive win for fair use. Ars Technica.
http://arstechnica.com/tech-policy/2013/11/google-books-ruled-legal-in-
massive-win-for-fair-use/ (accessed 15 January 2014).

Music Encoding Initiative Council. 2013. The Music Encoding Initiative guidelines,
release 2013. Charlottesville, VA: Music Encoding Initiative Council.

Musitek. 2014. Smartscore music scanning software. https://www.musitek.com
(accessed 11 February 2014).

Muter, P., S. Latrémouille, W. Treurniet, and P. Beam. 1982. Extended reading of
continous text on television screens. Human Factors 24 (5): 501–8.

321

Myka, A. 1994. Putting paper documents in the world-wide web. In Proceedings of
the Second International WWW Conference. Chicago, IL, 17–20 October, 199–
208.

Myka, A., and J. Guntzer. 1993. Using electronic facsimiles of documents for
automatic reconstruction of underlying hypertext structures. In Proceedings of
the Second International Conference on Document Analysis and Recognition.
Tsukuba City, Japan, 20–22 October, 528–32.

Nadella, S. 2008. Book search winding down. Microsoft Search Blog. http:/
/www.bing.com/blogs/site_blogs/b/search/archive/2008/05/23/book-search-
winding-down.aspx (accessed 11 January 2014).

Nagy, G. 1968. Preliminary investigation of techniques for automated reading of
unformatted text. Communications of the ACM 11 (7): 480–7.

Nagy, G., T. Nartker, and S. Rice. 1999. Optical character recognition: An illustrated
guide to the frontier. Proceedings of the SPIE: Document Recognition and
Retrieval 3967: 58–69.

Nagy, G., S. Seth, and M. Viswanathan. 1992. A prototype document image analysis
system for technical journals. Computer 25 (7): 10–22.

Nagy, G., and G. Shelton. 1966. Self-corrective character recognition system. IEEE
Transactions on Information Theory 12 (2): 215–22.

National Library of Australia. 2013. Australian newspaper digitisation program.
http://www.nla.gov.au/content/newspaper-digitisation-program (accessed 9
January 2014).

National Library of New Zealand. 2013. Papers past. http:/
/paperspast.natlib.govt.nz/cgi-bin/paperspast (accessed 9 January 2014).

Neudecker, C. 2011. The IMPACT interoperability framework: Workflows for OCR
and beyond. Presentation given at the IMPACT Final Conference, London,
UK, http://vimeo.com/32027994 (accessed 24 June 2014).

Neudecker, C., S. Schlarb, Z. Dogan, P. Missier, S. Sufi, A. Williams, and K.
Wolstencroft. 2011. An experimental workflow development platform for
historical document digitisation and analysis. In Proceedings of the 2011
Workshop on Historical Document Imaging and Processing. Singapore, 16–17
September, 161–8.

Neuratron. 2014. Photoscore music scanning software. http://www.neuratron.com/
photoscore.htm (accessed 11 February 2014).

Newby, G., and C. Franks. 2003. Distributed proofreading. In Proceedings of the Joint
Conference on Digital Libraries. Houston, TX, 27–31 May, 361–3.

Nienhuys, H., and J. Nieuwenhuizen. 2003. Lilypond, a system for automated
music engraving. In Proceedings of the 14th Colloquium on Musical
Informatics. Firenze, Italy, 8–10 May, CIM-1–6.

322

Norvig, P. 2014. How to write a spelling corrector. http://norvig.com/spell-
correct.html (accessed 6 August 2014).

O’Gorman, L. 1992. Image and document processing techniques for the RightPages
electronic library system. In Proceedings of the International Conference on
Pattern Recognition. The Hague, Netherlands, 30 August–3 September, 260–3.

Orchard, L., P. Pehlivanian, S. Koon, and H. Jones. 2009. Part III: Ext JS. In
Professional javascript frameworks prototype, YUI, Ext JS, Dojo and Mootools,
335–450. Indianapolis, IN: Wiley.

Ouyang, Y., J. A. Burgoyne, L. Pugin, and I. Fujinaga. 2009. A robust border
detection algorithm with application to medieval music manuscripts. In
Proceedings of the International Computer Music Conference. Montréal, QC,
16–21 August, 101–4.

Page, K., B. Fields, D. de Roure, T. Crawford, and J. S. Downie. 2013. Capturing the
workflows of music information retrieval for repeatability and reuse. Journal of
Intelligent Information Systems 41: 435–59.

Palowitch, C., and D. Stewart. 1995. Automating the structural markup process in
the conversion of print documents to electronic texts. In Proceedings of the
Theory and Practice of Digital Libraries. Austin, TX, 11–13 August,

Perrey, R., and M. Lycett. 2003. Service-oriented architecture. In Proceedings of the
Symposium on Applications and the Internet. Orlando, FL, 27–31 January, 116–9.

Phelps, T., and R. Wilensky. 1996. Toward active, extensible, networked documents:
Multivalent architecture and applications. In Proceedings of the First ACM
International Conference on Digital Libraries. Bethesda, MD, 20–23 March,
100–8.

Pillay, R. 2012. IIP image server: Demos. http://iipimage.sourceforge.net/demo/
(accessed 25 March 2014).

Pinto, T., A. Rebelo, G. Giraldi, and J. Cardoso. 2011. Music score binarization based
on domain knowledge. In Proceedings of the Pattern Recognition and Image
Analysis. Palmas de Gran Canaria, Spain, 8–10 June, 700–8.

Pitzalis, D., R. Pillay, and C. Lahanier. 2006. A new concept in high resolution
internet image browsing. In Proceedings of the International Conference on
Electronic Publishing. Bansko, Bulgaria, 14–16 June, 291–8.

Prerau, D. 1970. Computer pattern recognition of standard engraved music notation.
PhD diss., Massachusetts Institute of Technology.

———. 1971. Computer pattern recognition of printed music. AFIP Joint Computer
Conferences 39: 153–62.

Price, G. 2003. Amazon debuts new book search tool. SearchEngineWatch.com.
http://searchenginewatch.com/article/2064555/Amazon-Debuts-New-Book-
Search-Tool).

323

Project JAXB. 2014. Project jaxb. https://jaxb.java.net (accessed 18 July 2014).

Project Petrucci. 2014. International music score library project. http://imslp.org/
wiki/Main_Page (accessed 13 June 2014).

Pruslin, D. 1966. Automatic recognition of sheet music. Sc. D. diss., Massachusetts
Institute of Technology.

Pugin, L. 2006a. Lecture et traitement informatique de typographies musicales
anciennes: Un logiciel de reconnaissance de partitions par modèles de Markov
cachés. PhD diss., Geneva University.

———. 2006b. Optical music recognition of early typographic prints using hidden
Markov models. In Proceedings of the Conference of the International Society
for Music Information Retrieval. Victoria, BC, 8–12 October, 53–6.

Pugin, L., J. A. Burgoyne, D. Eck, and I. Fujinaga. 2007a. Book-adaptive and book-
dependent models to accelerate digitization of early music. In Proceedings of
the NIPS Workshop on Music, Brain, and Cognition. Whistler, BC, 7–8
December, 1–8.

Pugin, L., J. A. Burgoyne, and I. Fujinaga. 2007b. MAP adaptation to improve
optical music recognition of early music documents using hidden Markov
models. In Proceedings of the Conference of the International Society for Music
Information Retrieval. Vienna, Austria, 23–27 September, 513–6.

Pugin, L., J. Hockman, J. A. Burgoyne, and I. Fujinaga. 2008. Gamera versus Aruspix:
Two optical music recognition approaches. In Proceedings of the Conference of
the International Society for Music Information Retrieval. Philadelphia, PA,
14–18 September, 419–24.

Quin, L. 2010. XML technology: Schema. http://www.w3.org/schema (accessed 21
March 2014).

Ramirez, C., and J. Ohya. 2010. Symbol classification approach for OMR of square
notation manuscripts. In Proceedings of the Conference of the International
Society for Music Information Retrieval. Utrecht, The Netherlands, 9–13
August, 549–53.

———. 2011. OMR of early plainchant manuscripts in square notation: A two-stage
system. Proceedings of the SPIE 7874: 1–10.

Raphael, C., and J. Wang. 2011. New approaches to optical music recognition. In
Proceedings of the Conference of the International Society for Music
Information Retrieval. Miami, FL, 24–28 October, 305–10.

Rawat, S., K. Kumar, M. Meshesha, I. Sikdar, A. Balasubramanian, and C. Jawahar.
2006. A semi-automatic adaptive OCR for digital libraries. In Proceedings of
the International Workshop on Document Analysis Systems. Nelson, New
Zealand, 13–15 February, 13–24.

324

Rebelo, A. 2012. Robust optical recognition of handwritten musical scores based on
domain knowledge. PhD diss., University of Porto.

Rebelo, A., A. Capela, J. da Costa, C. Guedes, E. Carrapatoso, and J. Cardoso. 2007. A
shortest path approach for staff line detection. In Proceedings of the Third
International Conference on Automated Production of Cross Media Content for
Multi-channel Distribution (AXMEDIS). 33–44.

Rebelo, A., G. Capela, and J. Cardoso. 2010. Optical recognition of music symbols: A
comparative study. International Journal on Document Analysis and
Recognition 13 (1): 19–31.

Rebelo, A., I. Fujinaga, F. Paszkiewicz, A. Marcal, C. Guedes, and J. Cardoso. 2012.
Optical music recognition: State-of-the-art and open issues. International
Journal of Multimedia Information Retrieval 1 (3): 173–90.

Rebelo, A., J. Tkaczuk, R Sousa, and A. Cardoso. 2011. Metric learning for music
symbol recognition. In Proceedings of the International Conference on Machine
Learning and Applications. Honolulu, HI, 18–21 December, 106–11.

Reddy, R., and G. StClair. 2001. The million book digital library project. http:/
/www.rr.cs.cmu.edu/mbdl.htm (accessed 19 December 2013).

Reenskaug, T. 2010. MVC: Xerox PARC 1978–79. http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc-index.html (accessed 15 March 2014).

Regalado, A. 2011. Who coined ‘cloud computing’? MIT Technology Review . http:/
/www.technologyreview.com/news/425970/who-coined-cloud-computing/
(accessed 7 March 2014).

Reijers, H. 2006. Workflow flexibility: The forlorn promise. In Proceedings of the
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises. Manchester, UK, 26–28 June, 271–2.

Rice, S., F. Jenkins, and T. Nartker. 1996. The fifth annual test of OCR accuracy.
Information Science Research Institute. TR-96-01. University of Nevada, Las
Vegas, Las Vegas, NV.

Rile, J. 2002. DjVu-digital vs. “super hero” PDF. http://djvu.org/resources/
djvu_digital_vs_super_hero_pdf.php (accessed 24 June 2014).

Roach, J. W., and J. E. Tatem. 1988. Using domain knowledge in low-level visual
processing to interpret handwritten music: An experiment. Pattern Recognition
21 (1): 33–44.

Roelofs, G. 1999. PNG: The definitive guide. O’Reilly: Sebastapol, CA.

Roland, P. 2002. The Music Encoding Initiative (MEI). In Proceedings of the First
International Conference on Musical Applications Using XML. Milan, Italy, 19–
20 September, 55–9.

325

———. 2009. MEI as an editorial music standard. In Digitale edition zwischen
experiment und standardisierung, edited by P. Stadler, and J. Veit, 175–94.
Tübingen: Max Niemeyer.

Rowley-Brooke, R., and A. Kokaram. 2012. Bleed-through removal in degraded
documents. Proceedings of the SPIE: Document Recognition and Retrieval 8297.

Samuel, A. 1964. The banishment of paper-work. New Scientist 21 (380): 529–30.

Sankar, K., V. Ambati, L. Pratha, and C. Jawahar. 2006. Digitizing a million books:
Challenges for document analysis. In Proceedings of the International
Workshop on Document Analysis Systems. Nelson, New Zealand, 13–15
February, 425–36.

Schonfeld, R. 2003. JSTOR: A history. Princeton, NJ: Princeton University Press.

Selfridge-Field, E. 1994. Optical recognition of musical notation: A survey of current
work. Computing in Musicology 9: 109–45.

Selfridge-Field, E. 1997a. Beyond MIDI: The handbook of musical codes. Cambridge,
MA: The MIT Press.

———. 1997b. Introduction: Describing musical information. In Beyond MIDI: The
Handbook of Musical Codes, edited by E. Selfridge-Field, 3–38. Cambridge, MA:
The MIT Press.

Sezgin, M., and B. Sankur. 2004. Survey over image thresholding techniques and
quantitative performance evaluation. Journal of Electronic Imaging 13 (1): 146–
65.

Shaw, E., and S. Blumson. 1997. Making of America: Online searching and page
presentation at the University of Michigan. D-Lib Magazine 3 (7/8). http:/
/www.dlib.org/dlib/july97/america/07shaw.html (accessed 21 March 2014).

Shephard, D. 1953. Apparatus for reading. US Patent 2,663,758, filed 27 April 1931,
and issued 27 June 1933.

Sherman, C. 2003. Google introduces book searches. SearchEngineWatch.com.
http://searchenginewatch.com/article/2065619/Google-Introduces-Book-
Searches (accessed 14 January 2014).

Smiley, D., and E. Pugh. 2009. Solr 1.4 enterprise search server. Birmingham, UK:
Packt Publishing.

Smith, A. 2005. Making books easier to find. http://googleblog.blogspot.ca/
2005/08/making-books-easier-to-find.html (accessed 14 January 2014).

Smith, R. 2007. An overview of the Tesseract OCR engine. In Proceedings of the
International Conference on Document Analysis and Recognition. Curitiba,
Brazil, 23–26 September, 629–33.

326

Smith, R., D. Antonova, and D. Lee. 2009. Adapting the Tesseract open source OCR
engine for multilingual OCR. In Proceedings of the International Workshop on
Multilingual OCR. Barcelona, Spain, 25 July, 1–8.

Sonntag, M., D. Karastoyanova, and E. Deelman. 2010. Bridging the gap between
business and scientific workflows: Humans in the loop of scientific workflows.
In Proceedings of the IEEE International Conference on e-Science. Brisbane,
Australia, 7–10 December, 206–13.

Spolsky, J. 2004. The law of leaky abstractions. In Joel on software, 197–202.
Berkeley, CA: Apress.

Stackpole, L., and R. Atkinson. 1998. The national research library alliance: A
federal consortium formed to provide inter-agency access to scientific
information. Issues in Science and Technology Librarianship 18. http:/
/www.istl.org/98-spring/article6.html (accessed 16 June 2014).

Stackpole, L., and R. King. 1999. Electronic journals as a component of the digital
library. Issues in Science and Technology Librarianship 22. http://www.istl.org/
99-spring/article1.html (accessed 16 June 2014).

Story, G., L. O’Gorman, D. Fox, L. Schaper, and H. Jagadish. 1992. The RightPages
image-based electronic library for alerting and browsing. Computer 25 (9): 17–
26.

Szwoch, M. 2008. Using MusicXML to evaluate accuracy of OMR systems. In
Proceedings of the Fifth International Conference on Diagrammatic
Representation and Inference. Herrsching, Germany, 19–21 September, 419–22.

Tabata, K., T. Okada, M. Nagamori, T. Sakaguchi, and S. Sugimoto. 2005. A
collaboration model between archival systems to enhance the reliability of
preservation by an enclose-and-deposit method. In Proceedings of the 5th
International Web Archiving Workshop. Vienna, Austria, 22–23 September,

Tang, Y., C. Suen, C. Yan, and M. Cheriet. 1991. Document analysis and
understanding: A brief survey. In Proceedings of the International Conference
on Document Analysis and Recognition. Saint-Malo, France, 30 September–2
October, 17–31.

Tardón, L., S. Sammartino, I. Barbancho, V. Gómez, and A. Oliver. 2010. Optical
music recognition for scores written in white mensural notation. EURASIP
Journal on Image and Video Processing 2009.

Tauschek, G. 1929. Reading machine. US Patent 2,026,329, filed 27 May 1929, and
issued 31 December 1935.

Taycher, L. 2010. Books of the world, stand up and be counted! All 129,864,880 of
you. Google Book Search Blog. http://booksearch.blogspot.ca/2010/08/books-
of-world-stand-up-and-be-counted.html (accessed 24 June 2014).

327

Taylor, I., E. Deelman, D. Gannon, and M. Shields, eds. 2007. Workflows for e-
Science. London: Springer.

Taylor, M., A. Zappala, W. Newman, and C. Dance. 1999. Documents through
cameras. Image and Vision Computing 17 (11): 831–44.

Text Encoding Initiative Consortium. 2014. TEI: Text Encoding Initiative. http:/
/www.tei-c.org/ (accessed 5 August 2014).

Thacker, C., E. McCreight, B. Lampson, R. Sproull, and D. Boggs. 1982. ALTO: A
personal computer. In Computer structures: Principles and examples, edited by
D. Siewiorek, C. Bell, and A. Newell, 549–72. New York: McGraw-Hill.

The Unicode Consortium. 2014. The Unicode standard, version 7.0.0. Mountain
View, CA: The Unicode Consortium.

Thoma, G., S. Suthasinekul, F. Walker, J. Cookson, and M. Rashidian. 1985. A
prototype system for the electronic storage and retrieval of document images.
ACM Transactions on Information Systems 3 (3): 279–91.

Thomas, V., D. Damm, C. Fremerey, M. Clausen, F. Kurth, and M. Müller. 2012a.
PROBADO music: A multimodal online music library. In Proceedings of the
International Computer Music Conference. Ljuljana, Slovenia, 9–14 September,
289–92.

Thomas, V., C. Fremerey, D. Damm, and M. Clausen. 2009. Slave: A score-lyrics-
audio-video-explorer. In Proceedings of the Conference of the International
Society for Music Information Retrieval. Kobe, Japan, 26–30 October, 717–22.

Thomas, V., C. Fremerey, M. Müller, and M. Clausen. 2012b. Linking sheet music and
audio: Challenges and new approaches. In Multimodal music processing, edited
by M. Müller, M. Goto, and M. Schedl, 1–22. Leibniz, Germany: Dagstuhl
Publishing.

Thompson, J., A. Hankinson, and I. Fujinaga. 2011. Searching the Liber usualis:
Using CouchDB and ElasticSearch to query graphical music documents. Poster
presented at the Conference of the International Society for Music
Information Retrieval, Miami, FL, 24–28 October.

Toselli, A., V. Romero, and E. Vidal. 2007. Viterbi based alignment between text
images and their transcripts. In Proceedings of the Workshop on Language
Technology for Cultural Heritage Data. Prague, Poland, 28 June, 9–16.

———. 2011. Alignment between text images and their transcripts for handwritten
documents. In Language technology for cultural heritage, edited by C.
Sporleder, A. Bosch, and K. Zervanou, 23–37. Berlin: Springer.

Trier, Ø., and A. Jain. 1995. Goal-directed evaluation of binarization methods. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17 (12): 1191–201.

Universal Digital Library. 2007. Current status. http://www.ulib.org/
ULIBProgressReport.htm (accessed 9 January 2014).

328

University of Michigan. 2001. Assessing the costs of conversion: Making of
America IV: The American voice 1850–1876. The Andrew W. Mellon
Foundation. The University of Michigan.

———. 2005. [University of Michigan] library/Google digitization partnership
FAQ. http://www.lib.umich.edu/files/services/mdp/faq.pdf (accessed 15
January 2014).

Varley, T. 1969. Data input error detection and correction procedures. George
Washington University Logistics Research Project. http://oai.dtic.mil/oai/
oai?verb=getRecord&metadataPrefix=html&identifier=AD0689365 (accessed
16 June 2014).

Veillard, D. 2014. The XML C parser and toolkit of Gnome. http://xmlsoft.org
(accessed 27 March 2014).

Vercoe, B. 1991. Csound. Cambridge, MA: Massachusetts Institute of Technology.

Videla, A., and J. Williams. 2012. RabbitMQ in action: Distributed messaging for
everyone. Shelter Island, NY: Manning Publications.

Vigliensoni, G., J. A. Burgoyne, A. Hankinson, and I. Fujinaga. 2011. Automatic pitch
detection in printed square notation. In Proceedings of the Conference of the
International Society for Music Information Retrieval. Miami, FL, 24–28
October, 423–8.

Vigliensoni, G., G. Burlet, and I. Fujinaga. 2013. Optical measure recognition in
common music notation. In Proceedings of the Conference of the International
Society for Music Information Retrieval. Curitiba, Brazil, 4–8 November, 125–
30.

Vincent, L. 2006. Announcing Tesseract OCR. Google Code Blog. http:/
/googlecode.blogspot.ca/2006/08/announcing-tesseract-ocr.html (accessed 15
January 2014).

Viro, V. 2011. Peachnote: Music score search and analysis platform. In Proceedings of
the Conference of the International Society for Music Information Retrieval.
Miami, FL, 24–28 October, 359–62.

Visani, M., V. Kieu, A. Fornés, and N. Journet. 2013. The ICDAR 2013 music scores
competition: Staff removal. In Proceedings of the International Conference on
Document Analysis and Recognition. Washington, DC, 25–28 August, 1407–11.

von Ahn, L., B. Maurer, C. McMillen, D. Abraham, and M. Blum. 2008.
ReCAPTCHA: Human-based character recognition via web security measures.
Science 321 (5895): 1465–8.

W3 Consortium. 2012. A short history of javascript. https://www.w3.org/
community/webed/wiki/A_Short_History_of_JavaScript (accessed 25 July
2014).

329

Walker, F., and G.R. Thoma. 1990. Access techniques for document image databases.
Library Trends 38 (4): 751–86.

Walton, N., and E. Gonzalez-Solares. 2009. Astrogrid and the virtual observatory. In
Jets from young stars v, edited by J. Gracia, F. Colle, and T. Downes, 81–113.
Berlin: Springer.

Wang, Y., I. Phillips, and R. Haralick. 2001. Automatic table ground truth
generation and a background-analysis-based table structure extraction
method. In Proceedings of the International Conference on Document Analysis
and Recognition. Seattle, WA, 10–13 September, 528–32.

Wei, L., Q. Salih, and H. Hock. 2008. Optical tablature recognition (OTR) system:
Using fourier descriptors as a recognition tool. In Proceedings of the
International Conference on Audio, Language and Image Processing. Shanghai,
China, 1532–9.

Weir, C., S. Liebowitz Taylor, S. Harding, and B. Croft. 1997. The skeleton document
image retrieval system. In Proceedings of the Symposium on Document Image
Understanding Technologies. Annapolis, MD, 30 April–2 May, 8–15.

Whitley, K. 1997. Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages and Computing 8: 109–42.

Wienbibliothek im Rathaus. 2010. Schubert-autographe. http://www.schubert-
online.at (accessed 14 January 2014).

Wijaya, K., and D. Bainbridge. 1999. Staff line restoration. In Proceedings of the
Seventh International Conference on Image Processing and Its Applications.
Manchester, UK, 13–15 July, 760–4.

Williams, G. 1984. The Apple Macintosh computer. BYTE Magazine February: 30–
54.

Xu, Y., and G. Nagy. 1999. Prototype extraction and adaptive OCR. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21 (12): 1280–96.

York, J. 2009. This library never forgets: Preservation, cooperation, and the making
of HathiTrust digital library. In Proceedings of the Archiving Conference.
Arlington, VA, 4–7 May, 5–10.

Young, S., G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D.
Ollason, D. Povey, V. Valtchev, and P. Woodland. 2006. The HTK book.
Cambridge, UK: Cambridge University Engineering Department.

Zinger, S., J. Nerbonne, and L. Schomaker. 2009. Text-image alignment for historical
handwritten documents. Proceedings of the SPIE: Document Recognition and
Retrieval 7247.

330

Colophon
This dissertation was written with Mellel, a highly regarded word pro-
cessor by a small software company, RedleX. I have been a user of
Mellel for almost 10 years, and have found it to provide a more-than-
adequate replacement for Microsoft Word without needing to under-
stand the intricacies of LaTeX.

The body of this dissertation is set in 12 point Huronia Latin Pro, a
font designed by Canadian typographer Ross Mills at Tiro Typeworks
in Vancouver, British Columbia. Titles and monospace fonts are from
the Adobe Source Sans Pro and Source Code Pro families, respect-
ively. These are designed by Paul D. Hunt, and notable for being
Adobe’s first efforts at producing an open-source font.

montréal, quebec
december 2014

␄

331

