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Abstract 

This research is concerned with a Markov-model-based solution to the problem of 

lexical disambiguation in natural language. We investigate three ways of improving 

current statistical solutions to this problem. First, three techniques for reducing or 

eliminating the necessity for a manually tagged training corpus are described. Two 

completely automatic methods are shown to be inadequate, but a semi-automatic 

method is found to be effective in reducing the number of tokens which must be 

manually analyzed. Second, various methods of improving the tagging performance 

of an automatic disambiguator are described. Good-Turing and combined-order 

estimation techniques are shown to yield small gains. Finally, an effective algorithm 

for detecting and flagging potential tagging errors is presented. 

Dans le cadre de ce pro jet de recherche, nons nous interessons a resoudre le probleme 

de la desambiguisation lexicale de la langue naturelle en utilisant un modele de 

Markov. Nous examinons trois methodes visant a ameliorer les solutions statistiques 

existantes pour ce probleme. Nons decrivons d'abord trois techniques qui reduisent 

ou eliminent la necessite d'un corpus d'entrainement etiquete a la main. De ces 

techniques, deux qui sont enW~rement automatiques s'averent inadequates, mais 

une troisieme, semi-automatique celle-la, reduit effectivement le nombre d'occur­

ences qui doivent etre analysees manuellement. Nous decrivons ensuite di:fferentes 

methodes pour ameliorer la qualite de 1' etiquetage d 'un systeme de desambiguisation 

automatique. Nous demontrons que les techniques d'estimation de Good-Turing et 

d'ordre combine ne produisent que de maigres ameliorations. Enfin, nous presentons 

un algorithme pour detecter et marquer les etiquetages possiblement errones. 
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Chapter 1 

Introduction 

1.1 Lexical Disambiguation 

Most words in human languages are ambiguous: they can have more than one 

sense, depending on the context in which they appear. In written language, this 

phenomenon is called homography and refers to different meanings attached to a 

lexical form[24]. Lexico-syntactic ambiguity is a type of homography in which a lex­

ical form assumes different grammatical roles. The distinction between homography 

and lexical ambiguity1 is illustrated by the following phrases: 

a brush with death 

a hair brush 

brush your teeth 

Here each instance of the word brush is distinct from a homographic point of view 

because each has a different meaning. The first two instances are lexically indistin­

guishable however, because brush acts as a noun in both. 

The problem of resolving lexical ambiguities is known as lexical disambiguation 

or tagging. The latter term refers to the assignment of a single label or tag to each 

word which denotes its grammatical category. 

1Henceforth lexical ambiguity is used as shorthand for the more accurate but unwieldy term 

lexico-syntactic ambiguity. 

11 
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1.2 Computer Solutions 

Lexical disambiguation is an important problem in computational linguistics be­

cause it is crucial to parsing, which in the traditional view is essential to a complete 

analysis of language. Disambiguating programs are also useful in their own right, 

and have potential applications in many language-related areas such as lexicogra­

phy, speech recognition and synthesis, error correction, machine translation and 

text analysis. 

It has been assumed that the disambiguation problem is not easily separable 

from higher levels of analysis in the traditional hierarchy: syntactic, semantic and 

pragmatic. However, recent work has shown that higher level knowledge is required 

in only a small minority of cases. Programs which use statistical methods and rely 

on very local context have achieved correct disambiguation rates of over 95%. 

1.3 This Project 

Although existing programs perform impressively, there are some areas in which 

improvement is possible. The purpose of this thesis is to investigate three of them: 

training-finding ways in which the manual effort required to train existing taggers 

can be reduced or eliminated; performance-finding ways of improving tagging per­

formance; and error detection-having the disambiguator identify tag assignments 

about which it is uncertain. 

In each area, several alternate approaches were compared. To facilitate testing, 

an experimental statistical tagging system was constructed. It is capable of making 

category assignments with a fairly low error rate for any text in any language for 

which a good dictionary is available. 

1.4 Organization 

The next chapter describes the tagging problem in more detail and outlines the type 

of statistical solution considered here. Previous work is reviewed and the deficiencies 

which motivated the current project are identified. Some ways in which they can 

12 
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be rectified are proposed. 

Chapter 3 desciibes the general methods used for testing. An overview of the 

software is given, and its theoretical basis is set out. Test corpora and performance 

metrics are described. 

Chapters 4, 5 and 6 describe the results of the investigation in each area: train­

ing, performance and error flagging, respectively. The alternate methods used to 

attack each problem are described and tagging results are presented. Chapter 7 

summarizes the findings. 

The appendices contain documentation for the tagging system and a listing of 

category sets used for the test corpora. 

13 
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Chapter 2 

Background 

2.1 The Nature of the Problem 

In some cases, the disambiguation problem is easy enough to be solved by examining 

only the local context of an ambiguous word. For example, in the sentence 

Electricians always wire carefully. 

knowledge of the preceding word gives a strong indication that wire is a verb and 

not a noun. In other cases, such as 

I prefer electricians that wire carefully. 

Hand me that wire carefully. 

there is no such local clue, but a complete syntactic analysis of the sentence would 

provide enough information for disambiguation. In the most general case, however, 

semantic or pragmatic knowledge is necessary. The sentence 

Fish wire carefully. 

could be interpreted as an injunction to a human wire-fisher or as a remarkable 

discovery about fish; only knowledge about which of the two is more likely in a 

wider context can be of help in resolving the ambiguity. 

14 
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2.2 Traditional Approaches 

The existence of sentences like the one in the last example has led computational 

linguists to suppose lexical disambiguation a fairly hard problem. Both syntactic 

and semantic analyses are dearly required for the general solution; it has also been 

assumed that both are required for reasonable tagging performance. Under this 

assumption, there is not much point in considering the problem in isolation; more 

sensible would be to integrate it into deeper levels of analysis such as parsing. 

This view seems to have been widely accepted: in a fairly recent survey of natural 

language parsers [7], for example, there is no mention of lexical disambiguation as 

a separate problem. 

There were some early attempts to create stand-alone disambiguating programs 

for special purposes [41, 33]. The latest was Greene and Rubin's TAGGIT program 

[33], written circa 1971 to tag the million-word Brown corpus of American English. 

TAGGIT used a set of hand-written disambiguation rules which apply over a context 

of two words on either side of the word to be tagged. It attained a success rate of 

about 77%-low enough to seem to corroborate the assumption that disambiguation 

is hard. 

2.3 The Statistical Paradigm 

Recent developments have proven this assumption to be false. Statistical algorithms 

which work in linear time complexity and use only the previous part of speech and 

the current word to predict the current part of speech have been able to categorize 

over 95% of their input correctly. It appears that a significant proportion of sen­

tences are of the type exemplified by "Electricians always wire carefully", which can 

be disambiguated reliably on the basis of local context. Many of the remaining sen­

tences seem to fall into distinct patterns of use, so that the most likely categorization 

is correct in a large majority of cases. 

Disambiguation has been one of the most striking successes to date in what 

might be termed an emerging statistical (or empirical, or corpus-based) paradigm 

in computational linguistics. Large scale statistical methods were first applied to 

15 
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natural language modelling by researchers in speech recognition about fifteen years 

ago [22, 43, 37, 3]. In the early 1980's, workers associated with UCREL1 [49], aware 

of achievements in speech recognition, built a successful statistical tagger as an 

aid to disambiguating the LOB (Lancaster/Oslo-Bergen) corpus [38]. Several other 

researchers have subsequently duplicated or built upon their work, as described 

below. Similar methods are beginning to be used for many other natural language 

applications including lexicography [39, 17, 18], machine translation [8, 9, 11, 20, 19], 

parsing [6, 13, 23, 49, 51], text analysis [14], and spelling correction [1, 16, 49, 25]. 

A hallmark of this paradigm is the use oflarge computerized corpora as sources of 

statistics from which parameters for a probabilistic model are automatically inferred. 

Currently, the model of choice for disambiguation (and many other problems as well) 

is one which is based, with varying degrees of rigour, on the Hidden Markov Model 

(HMM) formalism [50]. Another model-one which borrows more from linguistics­

is that of a stochastic grammar [51, 23]. 

The statistical paradigm differs from the traditional, rule-based paradigm in 

three key ways which make it more suited to large scale practical applications (at 

least at the current state of the art). First, the models used are often simpler and 

algorithms have lower time complexity. Second, model parameters are estimated 

automatically, rather than manually via detailed linguistic analysis. This allows 

them to be tailored to any domain, including very large ones, with a minimum of 

human effort. Finally, it is easy to create statistical systems which do not "break" 

when confronted with difficult problems. This provides the robustness necessary to 

deal with the vagaries of natural language over large a.nd varied domains. 

The statistical approach is not without drawbacks. Simple models are often 

demonstrably too crude to attain the performance of which more sophisticated 

models are theoretically capable. This is certainly the case, for example, with 

lexical disambiguators which use only the previous part of speech a.nd the current 

word. Another problem is that some models, particularly HMMs, tend to replace 

sophistication with brute force. Although time complexity may not suffer, space 

complexity usually does. A straightforward implementation of a third-order HMM 

1The Unit for Computer Research in the English Language, affiliated with Lancaster University 
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to predict word sequence probabilities for a large vocabulary, for example, would 

require on the order of 1016 parameters. Cleverness in implementation and ample 

resources are required to overcome such difficulties. 

2.4 Statistical Disambiguation 

Six programs which use statistics for lexical disambiguation are described in the 

literature, due to Church [13], de Marcken [26], DeRose [28], Hindle [34], Merialdo 

[45] and the UCREL team [49]. These are summarized in (roughly) chronological 

order in the sections which follow. 

To provide a framework for comparison, it is worthwhile to :first sketch the basic 

plan of a statistical tagger. The type we consider here disambiguates a word in some 

textual context by computing a probabilistic score for every grammatical category 

which is valid for the word, then using the scores to decide the correct category. 

Three aspects of this process are fundamental: the form of the scoring function, the 

means of estimating its probabilistic components, and the method of choosing the 

correct category. These are discussed below under the headings scoring, estimation 

and tagging. 

2.4.1 Nomenclature 

We begin with a short list of definitions: 

word A word in the usual sense, but including punctuation marks. A word is 

ambiguous if it has more than one permissible grammatical category. 

token An occurrence of a word in a text (there are 19 words and 21 tokens in this 

sentence). This term is sometimes used in a wider sense to denote occurrences 

of entities other than words. 

n-gram A sequence of n words or tokens. 

category A grammatical category. 

tag A label assigned to a token, denoting a single category. 

17 
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n-eat A sequence of n categories or tags. 

path A sequence of tags which represents a possible interpretation for a corre­

sponding sequence of tokens. 

tagged corpus A body of text where each token is tagged with the grammatical 

category to which it belongs. 

Assume that a tagger has vocabulary V, category set C and operates on token 

sequence 0. The current path is I. These are: 

V = {Vt, •.. , VM} 

c = {c17 ••• ,cL} 

0 = 01 ••• 0']', Ot E V Vt 

I = it ... iT, it E C Vt 

Each word v E V has a set Cv C C of Lv < L permissible categories. 

2.4.2 Scoring 

A function to score a tag for some token can incorporate both lexical and contextual 

information. Lexical scores measure the strength of the association between the tag 

and the token. Contextual scores measure the likelihood of the tag given the context 

in which the token appears. Although it is possible to imagine many different ways 

of computing scores, previous work has demonstrated that nothing too elaborate is 

necessary. Because of this, and for reasons of efficiency, we limit the form of scoring 

function considered here to the following: 

where SL is the lexical scoring component, Se the contextual scoring component 

and the argument of Se is some n-eat in I (where n = n1 + n2 + 1) which contains 

it. In other words, a scoring function is the product of a lexical scoring function 

which depends only on the current token and tag, and a contextual scoring function 

which depends only on a sequence of n tags, one of which is the current tag. The 

order of the scoring function is defined as the length, n, of the tag sequence used 

for context. It is important to note that this type of scoring function evaluates a 

18 



0 

c 

tag only with respect to a single path I, although in general a tag can be on many 

paths. The task of choosing the path(s) for which scores are to be computed is 

considered part of the tagging mechanism and is discussed in section 2.4.4. 

It is most common to use probability estimates as scoring function components. 

The conditional probability of the current tag given the current word is often used 

as the lexical score, with the conditional probability of the current tag given the 

previous ( n- 1 )-cat used as the contextual score. For example, with order = 3 this 

would be2: 

(2.1) 

Although it is possible to come up with a probabilistic interpretation for this prod­

uct, it should be noted that its use is motivated mainly by practical considerations­

there are other scoring functions (described below) which are of more theoretical 

interest. 

2.4.3 Estimation 

At some level, the components of a scoring function are usually either probabilities 

or are congruent to probabilities. To use the scoring function, these probabilities 

must be estimated from some sample of text in such a way as to be representative 

of the domain over which the tagger is to operate. The process by which this 

is accomplished is called training and the text sample used is called the training 

corpus. 

The obvious way to estimate probabilities is to use relative frequency counts from 

a tagged corpus. For example, suppose that 0 is a tagged corpus with tag sequence 

J; assuming the scoring method of equation 2.1, a relative frequency estimate for 

the lexical score of category c with word v would be: 

Pr( cjv) = Pr( c, v )/ Pr( v) (Bayes' law) 

~ ¥1¥ (2.2) 

~ f(c, v)/ f(v) 

2Pr will be used to denote both probability a.nd estimated probability unless there is a need to 

distinguish between the two. 
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where f(e) is the frequency of event e in 0. Similarly, a. relative frequency estimate 

for the contextual score of category Ck;, given the previous 2-cat CiCj would be: 

Pr( ck!c;c;) = Pr( c;c;ck)/ Pr( c;c;) 

"" f(CiCjCk) I ftCiCj) 
- T-2 -t 

(2.3) 

~ j( CiCjCk)/ j( CiCj) 

The estimates in this example are ca.lled maximum likelihood estimates, because 

they have the property of maximizing the estimated probability of occurrence of the 

training corpus. An unfortunate side-effect of this is that they assign a. probability of 

zero to any event which does not occur in the training corpus. (This can be readily 

verified by inspecting the numerator in the last line of equation 2.3.) Intuitively, it 

is unwise to assign zero probability to any grammatical construct because it has not 

occurred in a. specific corpus, no matter how large the corpus or how unlikely the 

construct may seem. The problem is even worse for lexical probabilities, because 

certain valid word/ category combinations are extremely rare. 

If a. statistical ta.gger attempts to disa.mbigua.te a. token sequence which contains 

n-cats or word/category combinations to which it assigns a. zero score, it is quite 

likely that it will fail to find a path. To avoid this problem, maximum likelihood 

estimates are usually modified in some way. The most common is to simply add 

a. small amount to each score. More sophisticated methods of dealing with the 

problem are available, however, and are discussed below. 

2.4.4 Tagging 

Once the ta.gger has been trained, it can be used to disa.mbigua.te. We consider 

two types of algorithm to choose a. path for the token sequence: path-based and 

token-based. 

2.4.4.1 Path Based Tagging 

Pa.th-ba.sed tagging is the simpler of the two. It involves enumerating all possible 

paths corresponding to a token sequence and scoring each by taking the product of 

the scores of the tags which it comprises. The path with the highest score is then 

selected as the correct one for the sequence. 
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Path-based tagging is potentially very expensive, since the number of possible 

paths is exponentiai in the length of the token sequence. Fortunately, resource 

requirements can be reduced through the use of the well-known Viterbi algorithm 

[53] (or a variant thereof) to find the path with the highest score. This algorithm 

relies on the fact that the scoring function depends only on local context, and is 

of time and space complexity which are linear in the length of the sequence and 

polynomial, of order equal to the order of the scoring function, in the maximum 

number of categories per word. It is described in detail in chapter 3. 

2.4.4.2 Token Based Tagging 

An alternate disambiguating algorithm is token-based tagging. While path-based 

tagging picks the most likely grammatical interpretation for a sequence of tokens, 

token-based tagging picks the most likely interpretation for a single token, given 
' 

the sequence in which it occurs. Each tag for a token is assigned a total score and 

the tag with the highest total score is chosen. 

Total scores are not the same as the tag scores computed by the scoring function: 

while each tag has a single total score, it will in general have many tag scores, one 

for each path to which it belongs. A very simple way of computing a total score 

would be to ignore context and use the lexical component of the tag score, since 

this is the same for all paths. A more sophisticated total score for a tag is the 

sum of path scores for all paths to which it belongs. There is an analog to the 

Viterbi algorithm, sometimes called the FB (for "forward backward") algorithm, 

which allows all paths passing through a tag to be summed in linear time and space 

complexity. 

2.4.4.3 Sequence Segmentation 

For very long token sequences, even linear space complexity can be prohibitive. 

Space requirements can be reduced considerably by dividing such sequences into 

segments. Since the scoring function uses only n tags of context, an unambiguous 

( n-1 )-gram in any sequence effectively splits it in two as far as scoring is concerned; 

neither ambiguous half has any affect on the other. A tagger can take advantage of 
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this by identifying segments which begin and end in unambiguous (n- 1)-grams. 

For low n, such segments are usually fairly short, since most punctuation is unam­

biguous. For higher n, this method of segmentation could be simulated by using the 

last few tags of the previous segment after it has been disambiguated. In practice, 

however, n is low enough that this is not a necessity. Another method of segmenting 

a sequence would be to try to divide it into sentences, for which standard boundary 

conditions could be assumed. Although it is appealing to base path judgements on 

a well-defined grammatical unit, sentence boundaries can sometimes be difficult to 

identify. Sentences can also be long: one can always find extreme examples, such 

as the last chapter of Joyce's Ulysses, which would defeat a sentence-based tagger3. 

2.4.5 Tagging Example 

An example will serve to illustrate the operation of a statistical tagger. We use the 

second order scoring function 

(2.4) 

which differs from the more common version of equation 2.1 in having a "reversed" 

lexical component. Path scores computed with this function have a probabilistic 

interpretation as Pr(J, 0), ie the joint probability of the token sequence with a 

particular path. (This is the scoring function used by an HMM; it is described 

further in chapter 3). 

Consider the following sentence, extracted from a corpus of parliamentary Han­

sard proceedings: 

"Tous les visiteurs etrangers en ont conclu ce que nous savons depuis 

toujours, a savoir que notre pays est incomparable." 

The sequence conclu ce que nous can be disambiguated in isolation by a tagger with 

a second order scoring function, because both conclu and nous are unambiguous. It 

is analyzed as: 
3 That is, one which uses a straightforward implementation of the Viterbi algorithm. As Y. 

Normandin has pointed out, a partial backtrace technique of attemting to trace all currently active 

paths back to a single common node would probably be effective in reducing the space complexity 

of a sentence-based ta.gger to an acceptable level. 
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CAT 2-CAT WORD/CAT 

CS DT PN VB ce que 

CS 105 1 29 40 3 - 57 

DT 833 1 2 0 3 16 -

PN 293 0 5 58 212 12 16 

VB 659 36 143 12 130 - -

Table 2.1: Observed frequencies from 5,000 word training corpus 

CAT 2-CAT WORD/CAT 

CS DT PN VB ce que 

CS 113 2 30 41 4 - 57.5 

DT 857 2 3 1 4 16.5 -

PN 324 1 6 59 213 12.5 16.5 

VB 1045 37 144 13 131 - -

Table 2.2: Modified frequencies 

conclu/VB ce/(DT I PN) que/(CS I PN) nousfPN 

where the tags denote basic parts of speech: CS-subordinating conjunction, DT­

determiner, PN-pronoun and VB-verb. 

The first step is to obtain a training corpus and collect frequencies from it. For 

this example, a 5,000 word hand-tagged subset of the Hansard corpus was used. 

The frequencies of the categories, 2-cats and word/tag combinations required for 

the above sequence are given in table 2.1. 

The next step is to modify the observed frequencies so that no probability es­

timates will be zero. To do this, we assume that the training corpus has been 

augmented by another, in which every possible 2-cat and word/tag combination 

occurs exactly once. To avoid swamping the observed data, each word/tag com­

bination in the fictitious corpus is counted as 1/ Lv occurrences, where Lv is the 

number of possible categories for word v. Table 2.2 displays the results of this 

modification. 

In the observed corpus, marginal sums taken over the frequencies of joint events 
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Pr(CATIX) Pr(XIWORD) 

X CS DT PN VB ce que 

CS .014 .216 .295 .029 - .509 

DT .002 .003 .001 .005 .019 -

PN .003 .018 .180 .651 .039 .051 

VB .053 .208 .019 .189 - -

Table 2.3: Contextual and lexical probabilities 

equal the frequencies of individual events. For example, for any category c: 

M 

l:J(c,vi) = f(c). 
i=l 

A consequence of using a fictitious corpus to augment frequencies is that, in general, 

this relation will not hold: modified frequencies and any probability estimates made 

from them will be inconsistent. In order to preserve a probabilistic interpretation 

for scores, the frequencies of individual events can be defined as marginal sums 

over joint events for the purposes of estimation. The "CAT" column in table 2.2 

contains the frequencies of individual categories which have been computed from 

joint word/category frequency sums in this way. (The same was done with 2-cat 

frequency sums, but the results are not listed.) Note that summed frequencies can 

be quite different from observed frequencies. That of the category VB, for example, 

is about 1.5 times greater than the observed frequency, due to the fact that many 

words in the vocabulary can act as verbs. 

Table 2.3 contains probabilities estimated from the modified frequencies, roun­

ded to three digits. Lexical probabilities for conclu and nous are not required 

because they can make no difference to the outcome. 

Once estimates have been made, the sequence can be tagged. Table 2.4 lists the 

four possible paths for this sequence. 

The number which follows each tag in each path is the partial path probability 

at that point; the number after the last tag in each path is the probability for that 

path. A path-based method would tag the sequence as 

conclu/VB ce/DT quefCS nous/PN 

24 



c 

c 

1. VB(l.O x 10°) PN(7.2 x 10-4 ) CS(l.l x 10-6) PN(3.3 x 10-7 ) 

2. VB(l.O x 100) PN(7.2 x 10-4 ) PN(6.7 x 10-6 ) PN(1.2 x 10-6 ) 

3. VB(l.O x 10°) DT(4.0 x 10-3 ) CS(4.7 x 10-6 ) PN(1.4 x 10-6) 

4. VB(l.O x 100) DT( 4.0 x 10-3 ) PN(2.3 x 10-7 ) PN( 4.2 x 10-8 ) 

Table 2.4: Alternate paths with partial scores 

because path 3 in table 2.4 has the highest score. A token method which was based 

on the sum of the scores of all paths which pass through each tag would give: 

conclu/VB ce/PN quefCS nous/PN 

In this case, both methods give the wrong answer, although the token-based method 

is closer. It is interesting to note the difference made by the frequency modification 

step. If the observed frequencies had been used to compute lexical probabilities, the 

path with the highest score would have been path 2-the correct interpretation­

instead of path 3. Of course, this cannot be taken as evidence that modified es­

timates are always worse than maximum likelihood. In fact, the problem of dis­

tinguishing between a relative pronoun and a subordinating conjunction is a good 

example of one which a 2-cat-based model is too weak to handle. 

2.5 The UCREL Tagger 

The UCREL tagger (49] is part of a system called CLAWS (Constituent Likelihood 

Automatic Word Tagging System), which analyzes raw input text and produces 

tagged output text in a series of stages. The actual tagging is performed by two 

of the stages, called idiom tagging and tag disambiguation. Idiom tagging is a non­

statistical procedure which attempts to identify and tag common expressions. The 

details are not pertinent here, but UCREL reports a performance contribution of 

3% for this component. 
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2.5.1 Scoring 

The tag disambiguation component uses lexical scores which are based on a small 

set of qualitative "rarity markers". Each category which is valid for a word is 

labelled with a rarity marker which indicates its likelihood with respect to the 

word. The lexical scores themselves are scaling factors associated with the rarity 

markers, whose values were arrived at by "trial and error". 

Contextual scores are second order; for the :final version described in [49], they 

consist of the estimated ratio of the joint probability of the previous tag with the 

current tag, to the product of their individual probabilities4 • Some heuristically 

selected 3-cats are also used to modify the 2-cat-based scores in this version. 

2.5.2 Estimation 

The tag disambiguation component of CLAWS was originally trained on the tagged 

Brown Corpus (the category set for the LOB corpus is quite similar to that for the 

Brown), then on the LOB corpus as more of it was disambiguated. 

The estimation problem for lexical scores in this system is that of assigning 

rarity markers to the valid categories for each word; how this was accomplished is 

not specified in [49]. Estimation for contextual scores was by relative frequencies, 

with a small value added to each zero score. 

2.5.3 Tagging 

The tagging method is path-based, augmented by a token-based verification step. 

First the optimum path is found. Then, for each token, the total score of each valid 

tag is computed by summing the scores of all paths which pass through that tag. If 

the tag on the optimum path has a total score which exceeds that of any other tag 

for the token by some threshold (a separate threshold is used for each category), it 

is selected. If not, CLAWS does not disambiguate that token but instead produces 

a list, sorted by total score, of all possible tags and their total scores. 

•This is quite similar to the information-theoretic concept of mutual information, defined as 

log Pr(a, b)/(Pr(a) Pr(b)), which measures the strength of the association between events a and b. 
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A serious deficiency in CLAWS is that it does not make use of the Viterbi 

algorithm, but actually enumerates all possible paths in order to compute their 

probabilities. When this causes it to run out of space, it resorts to " ... a simpler 

method ... which is an approximation to the method described here ... " ([49], p 49). 

The alternate method is not described, nor is indication given of how often it had 

to be employed during tagging. 

Final success rates for CLAWS on the LOB corpus (presumably after having 

been trained on the LOB) are 90% of ambiguous tokens correctly tagged and 96-

97% of all tokens correctly tagged. 

2.6 DeRose's Tagger 

In creating his VOLSUNGA tagger [28}, DeRose sought to improve on CLAWS 

in two ways: to increase efficiency by using the Viterbi algorithm instead of path 

enumeration for finding the best path; and to create a cleaner model by eliminating 

"unsystematic augments": idiom tagging, qualitative lexical scoring, 3-cat-based 

score modification, and token-based tagging. Despite being simpler and using less 

information than CLAWS, VOLSUNGA achieves similar performance. 

2.6.1 Scoring 

Lexical scores are computed from conditional word/tag probabilities as in equa­

tion 2.1, except that excessively high scores are "normalized" by truncating them 

at some (unspecified) threshold value. Contextual scores are computed by the sec­

ond order analog to equation 2.1. 

2.6.2 Estimation 

VOLSUNGA was trained on the Brown corpus. Scores were estimated using relative 

frequencies, apparently without modification. The problems with this estimator 

would not have surfaced if, as was probably the case, DeRose trained VOLSUNGA 

on the entire Brown corpus and thereafter confined his testing to portions of it. 
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2.6.3 Tagging 

Tagging is based solely on the best path. Performance on the Brown corpus without 

using lexical scores was 92-93%; performance with lexical scores was 96%. 

2. 7 Church's Tagger 

Church's tagger [13], is similar to deRose's, except that it uses third order contextual 

scoring. 

2. 7.1 Scoring 

Lexical scores are as in equation 2.1. Contextual scores are "backward" 3-cat-based 

probabilities, in which the current tag is predicted from the two succeeding tags: 

2. 7.2 Estimation 

The Brown corpus was used for training. Probabilities were estimated by relative 

frequencies, with each observed frequency augmented by one. Modifying the es­

timator in this way has the property of preserving normalization, as explained in 

section 2.4.5. 

2. 7.3 Tagging 

Tagging is by best path, with sequences evaluated from right to left. Performance 

on the Brown corpus was 95-99%. 

2.8 Hindle's Tagger 

Hindle's tagger [34] is a component of Fidditch, his wide-coverage English parser. It 

uses statistical methods to acquire a set of symbolic disambiguation rules which are 

applied deterministically. This type of system is outside the scope of the discussion 

here, but it is worth noting that results appear to be similar to those obtained by 

the "pure" statistical approach. 
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2.9 de Marcken's Tagger 

De Marcken's tagger [26] was designed to serve as the front end for a parser. It 

incorporates a novel method of tagging, which includes the feature, also used in 

CLAWS, of presenting several alternate tags when no clear disambiguation can be 

made. 

2.9.1 Scoring 

The scoring function is identical to that of equation 2.1, except that contextual 

probabilities are second order. 

2.9.2 Estimation 

The tagger was trained on the LOB corpus. The estimation method was the same 

as that used by Church. 

2.9.3 Tagging 

The standard Viterbi algorithm for finding the best path moves over its input from 

left to right, one token at a time. It maintains a set of scored partial paths which 

consists of the best path that passes through each tag for the latest token considered. 

When the end of the sequence is encountered, it picks the path in this set which 

has the highest score. 

De Marken's tagger uses a variation on this algorithm which dispenses with 

the backtracking necessitated by delaying path selection until the final token has 

been seen. For each token, it picks the tag with the highest partial path score. It 

also picks as alternates any tags which lie on partial paths having scores within 

some factor of the best score. As de Marcken points out, this algorithm does not 

necessarily give the same results as the standard Viterbi (ie, find the optimum path), 

even if no alternate tags are selected. This is because the best partial path at some 

token will not necessarily remain the best path once all of the input has been seen. 

Despite its simplicity, de Marcken's tagging method achieves a 96% success rate 

on the LOB corpus, which is comparable to that of the much more intricate UCREL 
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tagger on the same corpus. When an average of one alternate tagging was admitted 

for about 10% of all tokens, the rate climbed to 98.6%. It should be noted however, 

that one can achieve arbitrary levels of performance by admitting more and more 

alternate tags and counting any token whose set of alternates includes the correct 

tag as a success. A more significant datum is the efficiency of the algorithm by 

which alternates are chosen, as discussed in chapter 6 below. 

2.10 Merialdo's Tagger 

Merialdo [45] used the most systematic and sophisticated approach of any in the 

group reviewed. He also tested different options for training and tagging. 

2.10.1 Scoring 

A 3-cat-based Hidden Markov Model is used to compute scores. HMMs are de­

scribed in chapter 3 and will not be presented in detail here. The scoring function 

is the third order analog to that of equation 2.4. 

2.10.2 Estimation 

Merialdo's tagger was trained on the LOB corpus, modified to use a tag set consist­

ing of 76 tags instead of the original 133. Two types of estimation are considered: 

relative frequencies modified by interpolation with a uniform distribution; and rees­

timation. 

Reestimation is an iterative algorithm which maximizes the probability which 

the HMM assigns to the training corpus. It is a maximum likelihood estimator 

which, in principle, will yield exactly the same results as maximum likelihood esti­

mation from relative frequencies. Its advantage is that, unlike the relative frequency 

method, it can be used on untagged as well as tagged training corpora. 

2.10.3 Tagging 

Merialdo's paper describes the use of both path and token-based tagging. The 

path-based method employs the usual Viterbi algorithm. The token-based method 
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computes total scores from the joint probability of each tag5 with that of the entire 

sequence. 

When trained with relative frequencies, the tagger attained a success rate of 97% 

on the LOB corpus with path-based tagging and a slightly higher rate with token­

based tagging. Reestimation over a large untagged corpus was found to improve on 

the relative frequency estimates from a small tagged corpus, until the size of the 

latter reached about 5,000 sentences. 

2.11 Problems with Existing Taggers 

Although the programs summarized above perform well, they are not without defi­

ciencies. 

2.11.1 Training 

Perhaps the most obvious problem with existing taggers is that, with the exception 

of Merialdo's, they must be trained from a tagged corpus. Any statistical tagger is 

limited to the language and tagging scheme of the corpus on which it was trained, 

and is also-in a sense-optimized for the language variety to which that corpus 

belongs. Since large tagged corpora are not common and take a long time to produce 

manually, this limits the usefulness of these programs. 

2.11.1.1 Reestimation 

Merialdo's method provides a solution to the problem. However, as is demonstrated 

in his paper, reestimation is a. weaker method than training with relative frequencies 

from a tagged corpus. It is also a much more complex method, both in terms of 

programming effort and resource requirements. 

2.11.1.2 Training From an Untagged Corpus 

Other solutions are worth investigating. One very simple idea which does not seem 

to have been tried is that of using the "naturally" unambiguous words in an untagged 

5 More precisely, the HMM state-the two a.re not equivalent for a. third order HMM. 
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corpus as a source of relative frequencies for estimation. Although this data can say 

little about lexical probabilities, their lack might not have too serious an effect. 

2.11.1.3 Bootstrap Training 

Another solution is suggested by the capability of statistical taggers to identify 

alternate tags. This is a semi.automatic "bootstrap" method, in which a tagger 

trained on a small hand-tagged corpus is used to disambiguate a larger corpus and 

flag questionable tag assignments for manual review. If the tagger is accurate in 

identifying assignments of which it is uncertain, only a modest human effort would 

be required to yield a final corpus with a low error rate. It should also be possible 

to use the procedure recursively to quickly generate very large tagged corpora. 

2.11.2 Performance 

Although a success rate of 97% seems excellent, there is an alternate measure, 

suggested by de Marcken, which makes it appear less spectacular. This is the 

average number of words per error, in which 97% is rendered as about 33. For 

a human, a mistake every few sentences on a task as easy as tagging would be a 

dismal record6• Furthermore, even this figure is probably inflated, because it reflects 

tagging performance on the training corpus. Unless the training corpus is superbly 

representative of the domain (and this is unlikely for the megaword corpora used) 

one can expect performance to be somewhat lower on other text. 

There is clearly a limit to how well statistical taggers of the type considered here 

can perform. It is not clear what this limit is, nor how it can be achieved. It does 

not seem, however, that the repertoire of techniques available within the current 

scope has been exhausted. At least two new techniques can be identified: better 

estimators for low frequency events, and combined order models. 
6If this seems discouraging, however, it should be kept in mind that progress has been made: 

TAGGIT's rate was roughly one error every four words. 
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2.11.2.1 Low Frequency Estimators 

As described in section 2.4.3 above, natural language has the property that, no 

matter how large a corpus is chosen, certain events will occur with low or zero fre­

quency. There is considerable literature which deals with the problem of estimating 

probabilities for such events, most of it from the field of speech recognition (see, eg 

[21, 15, 37, 40, 46, 47, 48]). Two common estimators are Held Out and Good-Turing, 

both of which rely on a modification of observed frequencies before they are used in 

the standard formula (eg, equations 2.2 and 2.3) to compute probabilities. Either 

of these methods should result in improved performance compared to the more ad 

hoc ways of avoiding zero probabilities used by the taggers reviewed above. 

2.11.2.2 Combined Order Estimators 

As the order of a scoring function is increased, the potential accuracy of its predic­

tions increases, but it becomes less reliable. This is due to the fact that for a given 

training corpus size there are proportionally fewer ( n + 1 )-cats represented than n­

cats; on average, an estimate made from an ( n+ 1 )-cat will involve a lower frequency 

than one made from an n-eat and hence will be less apt to be representative. A 

solution to this problem is to combine scoring functions of different orders in some 

appropriate way so that the reliability of the lower order function(s) complements 

the precision of the higher order functions(s). Two types of combination have been 

used in speech recognition: linear, in which the final scoring function is a linear 

combination of functions of different orders [3, 29, 31, 52]; and non-linear, in which 

some other method is used for combination [15, 40]. 

2.11.2.3 Other Enhancements 

Although outside the scope of this project, many interesting ways of enhancing 

and extending pure HMMs for improved natural language modelling have been 

investigated by researchers in speech recognition. Some of these are described in 

the papers [2, 9, 10, 27, 30, 42, 44]. 
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2.11.3 Error Detection 

The results of the de Marcken and UCREL research show that a tagger which 

produces occasional ambiguous assignments is both viable and useful. The problem 

of making ambiguous assignments can be seen as part of a. more general (and less 

ambitious) problem of identifying erroneous assignments. A systematic investigation 

into the ways in which a tagger can extract information from the model about 

tagging uncertainties seems worthwhile. 

Recall that there are two basic methods of tagging, based on the highest scoring 

path and the path consisting of the highest scoring tag for each token. This suggests 

that when either tagging method is chosen, the other can be used to corroborate 

the results. It is also possible to go one step further and use the second best path 

of each type for additional corroboration. 

Another method of identifying uncertainty would be to have the tagger recognize 

when it is making a decision based on a context or lexical association which has 

occurred with very low frequency during training. In such cases, its knowledge is 

probably insufficient to allow it to properly distinguish between the alternatives. 
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Chapter 3 

Methods 

The purpose of this thesis is to test the viability of some of the ideas for improving 

statistical taggers mentioned in the last section of the previous chapter. This chapter 

sets out the general methods used to do so. 

3.1 Software 

An experimental system for performing lexical analysis and disambiguation was 

constructed. The system is language independent and capable of converting raw 

(unprocessed) input text into a sequence of tagged tokens. It comprises two inde­

pendent parts: lex, a lexical analysis program; and ytag, a lexical disambiguation 

system. This section gives an overview of both parts. Further details are in the 

appendices: appendix A contains documentation for lex; appendix B contains an 

account of how lex was customized for French, using two large test corpora; and 

appendix C contains documentation for ytag. 

3.1.1 Lex 

Lexical analysis is used here to mean the task of converting unprocessed text into 

a sequence of tokens (words or punctuation), and assigning to each token a set of 

tags denoting its permissible grammatical categories. When working with a tagged 

corpus such as the Brown or LOB, there is no need for lexical analysis, as the corpus 

is already tokenized, and the set of permissible parts of speech for each token can be 

35 



0 

0 

inferred from an examination of the entire corpus. However, one of the objectives of 

this project was to be able to use untagged corpora for testing, and this necessitated 

the construction of a lexical analyzer. 

By the above definition, lexical analysis consists of two separate problems: to­

kenization and tag set assignment. Tokenization has not been the subject of much 

formal investigation but tag set assignment has, especially insofar as it coincides 

with the problem of morphological analysis (see, eg, [12, 36]). 

As an example of what is involved, consider the task of identifying proper nouns. 

This is a tag set assignment problem but one which also serves to give the flavour of a 

typical tokenization problem. Many proper nouns will not be found in a dictionary, 

so recognition must be based on their lexical form. If it is assumed, optimistically, 

that sentence boundaries can be detected, then proper nouns which do not begin a 

sentence do not pose too much of a problem, as they are usually capitalized. This 

is not the case for those which begin a sentence, as of course all such words are 

customarily capitalized. Those which are not found in a dictionary can reasonably 

be assumed to be proper nouns, but no decision can be made on those which are, 

as many proper nouns are homographs. The only solution in this case is to as­

sign multiple tags and thus add to the burden of later stages of analysis. Proper 

nouns are not the only problem which confronts an analyzer; others include abbre­

viations, acronyms, numerals, hyphenated forms, expressions, quotations, foreign 

words, inflected and derived forms, and words which contain or abut punctuation 

marks. 

No attempt was made to model this complexity in a formal way. Lex uses 

a pragmatic approach which consists of four steps, executed in sequence until a 

tag set has been found: tokenization, dictionary lookup, token transformation, and 

guess. To preserve language independence, all application-specific knowledge is read 

in from external data files. Briefly, the steps are as follows: 

tokenization This step identifies the next token from the input. One regular 

expression is used to match tokens and another to match whitespace; the two 

are leapfrogged over each other in a standard way. Tags for certain tokens, 

such as punctuation, are assigned at this point. 
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dictionary lookup This step attempts to find the token in a dictionary. Provision 

is made for a dictionary with morphological information: if the initiallookup 

fails, a set of suffix transformations can be applied to test if the token is an 

inflected form of some word in the vocabulary. 

token transformation This step applies a sequence of more complex transforma­

tions to tokens which match any of a corresponding sequence of triggering 

regular expressions. It is appropriate for capitalized forms and those which 

contain hyphens, apostrophes, periods, etc. After each transformation, the 

new form( s) is looked up in the dictionary. Matches can result in token suf­

fixes being pushed back onto the input. 

guess The last resort is to guess a set of tags. Different sets may be associated with 

different tokens, depending on which of a list of regular expressions matches. 

Although considerable effort was invested in lex, both in programming and cre­

ating data files, lexical analysis is not really central to this thesis. Accordingly, all 

further details have been relegated to the appendices as mentioned above. 

3.1.2 Ytag 

Ytag is a lexical disambiguation system. Its only link with lex is that it expects 

input in the same format that lex uses for its tokenized output. To be precise about 

the formats of corpora, we adopt the following nomenclature: 

raw corpus Unprocessed natural language text. 

lexed corpus A corpus in the format written by lex and expected as input by 

ytag. 

tagged corpus A corpus in which each token is labelled with a single nominal 

grammatical category. The output from ytag is a tagged corpus. 

untagged corpus Any corpus which is not a tagged corpus. 

It is a simple matter to convert any tagged corpus such as the Brown or LOB into 

a lexed corpus so that it can be used to test ytag. 
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Stage Program Input File( s) Output File Report Pgm 

statistics collection coll lexed stats rstats 

estimation est m stats HMM valhmm 

reestimation reestm lexed, HMM HMM valhmm 

tagging tag lexed, HMM tagged perf 

Table 3.1: Ytag stages 

Ytag is designed to facilitate experimentation with different ways of attacking 

the tagging problem within an HMM-based framework. It comprises a collection 

of separate programs which interact through files (or Unix pipes). The process 

of estimating a model and using it to tag is divided into four stages: statistics 

collection, estimation, reestimation and tagging. With each stage there is associated 

an intermediate file, a program to generate it and another program to report on its 

contents. Each generating program has switches which allow different modes to be 

selected. The stages are summarized in table 3.1. 

Two noteworthy characteristics of ytag are its segmented design and the fact 

that it is based on an explicit formal HMM. 

A segmented design has several advantages. First, it is easy to analyze the effects 

of using different modes for each stage, because the contents of intermediate files 

may be examined with the reporting programs. Second, each stage can be tested in 

isolation without the necessity of re-running all previous stages. Finally, memory 

requirements are lower than they would be for a monolithic program; this can be a 

significant consideration when working with very large corpora. 

The central module in Ytag implements operations on an abstract HMM data 

type. This is made explicit in that the intermediate file written by the estimation 

and reestimation programs, and expected as input by the tagging program, is an 

encoded HMM. 

The main reason for adopting HMMs is practical. Code is cleaner and algo­

rithms, particularly complex ones such as reestimation, are easier to program. Scor­

ing functions of different orders can be elegantly accommodated by mapping them 

to the same underlying HMM implementation. Finally, the general purpose HMM 
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module is reusable. This would facilitate experimentation with scoring functions 

not considered here such as, for example, ones based on the last n content words 

rather that the last n-eat. 

There are also theoretical advantages. Unlike most of the more ad hoc methods 

discussed in the previous chapter, HMMs are a complete, albeit weak, model of the 

way language is produced. This means that the scores assigned to various language 

phenomena are true probability estimates. It also means that probabilities are 

available for more phenomena-for example, any sequence of words-than those 

usually considered to be directly relevant to the tagging problem. The strengths 

and weaknesses of a model are easier to assess when its underlying assumptions are 

apparent. 

3.2 Hidden Markov Model Theory 

Due to the importance of HMMs to this thesis, it is worthwhile to give a formal 

definition and a description of the main algorithms at this point. The presentation 

which follows is of an abstract HMM; the application of HMMs to the tagging 

problem is discussed in the following section. 

3.2.1 Definition 

We view a Markov modeP as a source which generates a sequence ofT output sym­

bols, 0 = Ot •• • oT, by entering a sequence (or path) of states, I= it .• • iT, and pro­

ducing one symbol per state entered. Formally, an HMM is a tuple (V, Q, {),A, B), 

where: 

V = { v17 ••• , VM} is a set of output symbols 

Q = { q~, ... , qN} is a set of states 

iP = { t/>i, i = 1, ... , N} is a set of initial state probabilities: tPi = Pr( it = qi) 

A = { aij, i,j = 1, ... , N} is a set of state transition probabilities: aij = Pr( it+l = 

qjlit = qi) 

1The viewpoint and much of the notation are those of Rabiner and Juang [50] 
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B = {bij, i = 1, ... , N,j = 1, ... ,M} is a set of output probabilities: bij = Pr(ot = 
Vjlit = qi) 

The source begins in some state it = qi with probability tPi· If it is in state 

it = qi at any time t, it will make a transition to a next state it+l = qk at time t + 1 

with probability ajk, and produce symbol Ot+l = vz with probability bA:z2• Note the 

key Markov properties: the probability of the transition to a next state and that of 

producing the current symbol depend solely on the current state. 

The source is called hidden because, although the string of output symbols which 

it produces is observable, the corresponding sequence of states is, in general, not. A 

non-hidden source is one in which each state generates some symbol with probability 

one. 

We adopt the term ergodic to refer, loosely, to an HMM in which most transition 

and output probabilities are non-zero. A non-ergodic model is one in which a 

significant proportion of either distribution is zero. 

3.2.2 Symbol Sequence Probability 

The probability, Pr(O), assigned to any symbol sequence 0 by an HMM is the sum 

of the probabilities with which it produces 0 by each possible state path: 

where 

Pr(O) = L Pr(J,O) 
all! 

Pr(/,0) = Pr(OIJ)Pr(J) 

= TIT b· X ..1... nT-1 a· . f:::::l ltOt 'f'll t:::::l ltlt+l 

(3.1) 

Since the number of paths is exponential in T, the use of equation 3.1 to compute 

symbol sequence probabilities is not practical except for very short sequences. 

An alternate algorithm takes advantage of the fact that at any timet, all paths 

20cca.sionally, we will abuse this notation to let the l's and o's stand for state and symbol 

indices, so that we write, for example: tP<, ai,it+P and bitot. No distinction between states and 

state indices is necessary. 
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must pass through one of N states. It is based on the recursion: 

so that 
N 

Pr(O) =I: aT;· (3.2) 
j=l 

An inductive proof demonstrates that the recursive expression for at; equals 

Pr(it = q;,o1 ... ot)· The base case is obvious. Fort we have: 

O:tj = b;ot l:f:1 aij Pr(it-1 = qi,ol .• . Ot-1) (induction hypothesis) 

= b;o, Ef::t Pr(it = q;lit-1 = qi!Ot• •• Ot-1) Pr(it-1 = qi,Ot· .. Ot-d 

= b;o, Ef::1 Pr(it-1 = qi,it = q;,o1 ... Ot-t) (Bayes' Law) 

= Ef:1 Pr( otlit-t = qi, it = q;, Ot .. . Ot-t) Pr( it-1 = qi, it = q;, Ot ... Ot-t) 

= Pr( it = q;, ot ... Ot) 

In the second and fourth lines we have made use of the Markov properties described 

in the previous section. Equation 3.2 allows sequence probabilities to be computed 

in O(T N 2) time. 

3.2.3 State and State Transition Probabilities 

It is often useful to know the probability that an HMM will be in a particular state 

qi at timet, or the probability that a transition between two states, qi and q;, will 

occur at t. We use the following notation for these events: 

lti = Pr(it = %0) 

and 

Since 
N 

lti = L:6tij 
j=l 
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we concentrate on finding a method of computing 6. From the definition: 

Otij = Pr( it = qh it+t = qj, o1 ... oh ot+t .•• OT) 

= Pr( it = qi, it+t = qh o1 ... ot) Pr( Ot+t .. ·OTiit = qi, it+t = qj, o1 • .. Ot) 

= Pr(it = %it+l = qj,Ot ... Ot)Pr(ot+t .. ·OTiit+l = qj) 

= Pr( it = qi, 01 ••• Ot) Pr( it+l = qj I it = qi) Pr( Ot+t ••• OT I it+l = qj) 

If we define 

then we can write 

Since we have an algorithm for computing a from the previous section, it only 

remains to specify one for /3. This is the following "backwards" recursion: 

t=T 

1?!:t<T 

The proof is analogous to that given for the a recursion. 

Thus, Dtii (and hence 'Yti) can be computed in O(T N 2 ) time by making a single 

pass over 0: from the beginning of the sequence tot to compute atii and from the 

end of the sequence tot+ 1 to compute f3(t+l)i· 

3.2.4 Finding the Most Likely Path 

The path I for which Pr(J, 0) is a maximum is also of interest. It can be found 

using the Viterbi algorithm [53], which operates on the same basic principle as the 

algorithm for computing the symbol sequence probability given above. The idea is 

to keep track of the most likely partial paths which end in each state at a given 

time t, and extend these to the most likely partial paths into each state at t + 1. 

Formally, let Vii be the probability of the highest probability path which ends 

in the jth state at time t, and Uti be the state at time t - 1 on this path. Then 

t=1 

1 < t s T 
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O'ti = arg 1~~(auV{t-t)i), 1 < t S T 

Once V and u have been computed for all t, the most likely path can be found 

by backtracking over u: 

argma.xt<i<N VTj, t = T 

1$ t< T 

The proof that V has the required properties proceeds by induction on t. The 

base case is obvious, since there is only one path through each state at t = 1. The 

induction step is also straightforward. The most likely path through state qi at t 

must come from some state qi at t - 1. By the induction hypothesis, this path has 

probability V(t-l)i at t- 1, and hence probability 

at t. Clearly, qi is the state for which this product is a maximum. 

Proof of the backtracking step is trivial: it merely finds the path of highest 

probability at the end of the sequence, then backtracks along the u's to retrieve the 

states on this path. 

The time complexity of the Viterbi algorithm is O(T N 2). 

3.2.5 Reestimation 

Before using an HMM, it is necessary to specify values for its parameters-the 

initial, transition and output distributions ~. A and B. The usual way to do this 

is to infer them from some symbol sequence which is representative of the domain 

to be modelled. This procedure is called training the model; the symbol sequence 

used is called a training set. 

For some modelling problems, parameters can be estimated directly from relative 

frequencies in the training set using the maximum likelihood estimator described 

in section 2.4.3 or some other method. This is the case with all problems which 

give rise to non-hidden models. In general, however, direct methods cannot be used 

because states are hidden and the frequencies of state transitions and state/symbol 

associations are therefore not available. 
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A key result is the reestimation algorithm due to Baum [5], which provides a 

way to estimate parameters for hidden state models. Reestimation is an iterative 

algorithm which is guaranteed to converge to a set of parameters for which the 

probability assigned by the HMM to a given training set is a local maximum. 

Two factors affect the success of this technique. The first is the starting point: 

since the maximum located by the algorithm is local, it obviously depends on the 

initial set of parameters. The degree of dependence varies inversely with the num­

ber of constraints placed on the model by the domain. If there are no constraints 

then the model is fully ergodic and the maximum located by the algorithm is very 

dependent on the starting point. On the other hand, if there are strong constraints 

then the model may be completely non-ergodic (ie, one state per symbol) and rees­

timation will always converge to the same maximum likelihood estimate obtained 

by the relative frequency method, no matter what starting point is taken. 

The other factor which affects the quality of the model obtained by reestimation 

is how representative (in some appropriate sense) the training set is of the domain 

to be modelled. This is a concern which is common to all methods which attempt 

to draw conclusions about a population from a sample. 

3.2.5.1 Reestimated Parameters 

The reestimated parameters are defined in terms of various probabilities assigned 

to a training sequence 0 by the current model: 

</>i = Pr(it = qi,O)/Pr(O) 

b;.; = E[=l,ot=v; Pr( it = % 0) / Ef=l Pr( it = qi, 0) 

a;.; = Ef=11 Pr(it =% it+I = q;, 0)/ Ef=l Pr(it = qi, 0) 

If the parameters of the current model are replaced by these estimates, the new 

model will yield a higher value for Pr(O). 

Algorithms to compute all of the probabilities in the reestimation equations have 

been given in previous sections. Replacing the probabilities with the expressions 
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used previously, we have: 

7fi = 71i/Pr(O) 

bij = r:.i=t,oc='llj 7td Ef=t iti 
7iij = Ef=11 

litij I ET=t iti 

Recall that the computations of 7 and li for any state at time t require a. forward 

recursion from the beginning of the sequence to t to compute the a component, 

and a. backward recursion from the end of the sequence to t + 1 to compute the 

f3 component. This suggests that the values of ; and li for all t required by the 

reestima.tion equations can be computed in two passes over the sequence: a. forward 

pass to compute (and store) all values of a, and a. backward pass to compute f3 

and the necessary products of a and {3. This algorithm allows each reestima.tion 

iteration to be completed in O(TN2) time and O(N(N +V +T)) space. It is known 

as the FB, or Forward-Backward algorithm. 

3.3 Using HMMs for Tagging 

When natural language is modelled as a Markov source, output symbols are words 

and states are based on some attribute of a word sequence which captures context. 

It is common in speech recognition, for example, to use n-grams as states, an as­

signment which has the advantage of resulting in a non-hidden model. Another 

simple-but hidden-model uses n-cats as states. This is the natural choice for 

the tagging application because it converts the tag assignment problem into one of 

finding an optimum state path. 

The overlap between the notation used in the previous section for an HMM, 

and that used in section 2.4 to describe statistical tagging accords with an n-eat­

based model. V and 0 are identical in both contexts; I is not, but there is a 

close relation between state and tag paths. Henceforth, when there is a need to 

distinguish between the two, we use I for the former and J for the latter. The 

mapping between Q and C depends on the order of the HMM. 

The details of HMM-based tagging break down conveniently into the same 

categories-scoring, estimation, and tagging-that were used previously to describe 
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statistical tagging in general. 

3.3.1 Scoring 

Recall that the scoring function defined in section 2.4.2 was the product of lexical 

and contextual components. 

3.3.1.1 Contextual Scores 

Contextual scores for HMM tagging are state transition probabilities. The context 

for any tag therefore consists of a previous state and a current state. To be consistent 

with the earlier use of n as the number of tags used for context, we define an n-th 

order HMM as one whose states are ( n - 1 )-cats, since two states will span n tags. 

It is possible within this framework to choose any position for the current tag 

within the current n-eat. This position determines the tag's context, which may be 

anything from the preceding ( n- 1 )-cat to the succeeding ( n- 1 )-cat. The effect of 

context position has not been formally investigated, but Church's tagger provides 

evidence that it is small. For convenience, ytag uses the preceding ( n - 1 )-cat as 

context. 

3.3.1.2 Lexical Scores 

Lexical scores are HMM output probabilities. In fact, output probabilities are 

more general than the lexical scores defined in section 2.4.2 because they use the 

current state to predict the probability of a symbol whereas the latter use only the 

current tag. However, given the fact that tag context is already represented by 

transition probabilities, it is hard to see that it could be of much additional value 

for predicting symbols. For this reason, and to reduce the cost of the model, the 

output probabilities for all states which end in the same tag were mapped to the 

same value. That is: 

Pr(vlit-n+2 .. ·it):::= Pr(vjc) whenever it= c 

for any word v and category c. 
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3.3.1.3 Complete Scoring Function 

The complete scoring function for HMM tagging is: 

Bayes' Law and the Markov properties can be applied to transform this into 

so that the score associated with each state may be seen to be the joint probability 

of the state with the current output symbol, given the previous state. 

3.3.2 Estimation 

There are two ways of estimating HMM parameters: from relative frequencies as 

described in section 2.4.3, or by reestimation. Only reestimation can normally be 

used on an untagged corpus, since there is no straightforward way to collect relative 

frequencies from ambiguous words. 

A point not covered previously is the estimation of HMM initial probabilities, 

Pr(qi = il), for each state qi. These are supposed to indicate when a state is likely 

to begin a path. If the corpus to be tagged is segmented as described in section 2.4.4 

however, paths will begin in quite arbitrary circumstances. It is difficult to know 

how to estimate initial probabilities in this case, but absolute probabilities can he 

used as good approximations. This means interpreting each </>i as Pr(qi) instead of 

Pr(qi = i1). This is the approach taken by ytag. 

3.3.3 Tagging 

Conceptually, tagging a token sequence with an n-eat-based HMM involves enumer­

ating all tag paths which correspond to the sequence, converting these into state 

paths, choosing an optimum state path, and converting this hack into a tag path. 

Converting a tag path into a state path presents a problem. Consider the rela­

tionship between some tag path J and the corresponding state path I when n > 1: 

it = it-n+2 ... it for t = n - 1 ... T 
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where it E J and it E I, Vt. The problem is that the first n - 2 states are not 

uniquely specified by the tag path3 • It can be dealt with by assuming that any tags 

are possible for the n- 2 tokens which precede the first token in the sequence which 

gave rise to the tag path. This can be expensive however, because it means that 

each tag path corresponds to Ln-2 state paths. A better solution is to segment the 

corpus to be tagged so that each ambiguous token sequence is preceded by a known 

( n - 2)-cat which fixes an initial state for each alternate tag path. 

The tagging program in ytag goes one step further by segmenting on the basis 

of unambiguous ( n - 1 )-cats. This not only fixes the initial state for each tag path, 

but implies a single initial state for all alternate tag paths. It has the effect of 

minimizing the contribution of initial probabilities; these are only used when it is 

impossible to find an unambiguous (n - 1)-cat, as is sometimes the case at the 

beginning of the corpus. 

Once state paths are available, the best can be chosen on the basis of path or 

token information, as described in section 2.4.4. The natural choice for path-based 

tagging is the path I for which Pr(I, 0) is a maximum; this is directly available 

via the Viterbi algorithm. The natural choice for token- based tagging is the path 

I for which Pr(it,O) is a maximum for each it E I. Using the FB algorithm, 

'Ytj = Pr( it = qj, 0) can be computed for all t and j in the same linear time 

complexity as the Viterbi algorithm, and it is a simple matter to pick the state of 

maximum probability at each t. 

The final step is to convert the best state path into a tag path. This is easily 

accomplished, because the tag for each state is just the last tag in the ( n - 1 )-cat 

which corresponds to the state. 

3.3.4 Representation 

Space is an important concern in HMM-based tagging because of the large matrices 

required to store probabilities. For an M word and L tag vocabulary, an nth 

order model has M output symbols and N = Ln-l states. A straightforward 
3This problem is not unique to HMMs: it will attend any tagging method which uses an nth 

order scoring function. 
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representation of the model would require Ln-l locations for initial probabilities, 

L2n-2 for transition probabilities, and M x Ln-l for output probabilities. Typical 

values of M and L are 100, 000 and 100 respectively, so a third order model would 

need over 100 million locations in this scheme. 

Ytag supports a general non-ergodic representation for an HMM which reduces 

this requirement in two ways. 

First, the transition matrix does not have to be N x N, if some transitions are 

guaranteed never to occur. This is the case in the tagging application whenever n 

is greater than 2. A transition between two states is only possible if the last n - 2 

tags in the first state's ( n - 1 )-cat coincide with the first n - 2 tags in the second 

state's (n- 1)-cat. In other words, each of the Ln-l states can go to only one of 

L possible next states. The space requirement for the transition matrix is therefore 

reduced to Ln. 

The second economy concerns output probabilities. Rather than storing a prob­

ability for each symbol/state combination, ytag stores probabilities for a short list 

of state codes for each symbol. Each code represents a set of potential states, of 

which a subset is valid in the context of any particular previous state. This rep­

resentation works well with all of the algorithms described above, which need to 

iterate down a list of states for a current symbol in the context of a list of states 

for a previous symbol. Before each such iteration, the list of codes for the current 

symbol is expanded into a list of valid states. Although it takes time to perform 

the expansion, this scheme is faster overall if the subset of states which are valid in 

any one context is small, as is the case with the tagging application. 

Given the restriction, described above, that output probabilities depend only on 

tags, it is possible to use tags as state codes for the tagging application. Expanding 

the list of codes into a list of states amounts to enumerating the ( n- 1 )-cats which 

begin with the last n-2 tags of each previous state and end in each current alternate 

tag. The space requirement for the output matrix is M x L11 in this scheme, where 

Lv is the average number of tags per word. This is significantly less than M x Ln-l, 

since Lv is usually much less than L. It has the added benefit of being order­

independent. 
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When full use is made of ytag's non-ergodic features, an nth order HMM can 

be stored in 0( Ln + M) space. For the third order HMM of the example above, if 

Lu is assumed to be ~ 10, this means a drop of two orders of magnitude, from 100 

million to about one million locations. 

3.4 Testing 

The validity of each estimation or tagging method under consideration was tested 

empirically by measuring tagging performance. For this, the ideal measure would 

of course be some index of tagging potential which was independent of any par­

ticular training and test corpora. Unfortunately, no such index is known, nor is it 

likely, given the profusion of tagging schemes and the diversity of corpora, that the 

formulation of one would be simple. 

In the absence of a universal measure, an effort has been made to ensure that 

the results cited below are at least somewhat independent of the test apparatus. 

The emphasis is on relative results: if one technique is found to be significantly 

better than another, it is assumed that the difference will generalize to any domain, 

even though absolute performance may vary. 

A standard set of corpora and test metrics were used for evaluation. 

3.4.1 Measurement 

The usual measure of tagging performance is success rate (SR): the proportion of 

correctly tagged tokens. The problem with SR is that it gives no indication of how 

much work was actually performed by the tagger. A success rate of 99% is not 

very impressive, for example, if 95% of tokens were unambiguous to begin with. 

While this example is extreme, there is enough variety in both corpora and tagging 

schemes to render SR performance figures imprecise at best. 

Most factors which affect the difficulty of a tagging task are not easy to measure. 

The exception is ambiguity: in some sense, the higher the ambiguity of a corpus, 

the harder it is to tag. This observation motivates the definition of an alternate 

measure of performance, chance gain ( CG), as the ratio of a tagger's performance 
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on the ambiguous words in a corpus to the performance expected if tags were picked 

at random. Formally: 

CG = SRa 
Ta/ Ll=1,L0 t>1 Lot 

where Lot is the number of tags for token Ot, SRa is the success rate on the ambiguous 

portion of the corpus, and Ta is the number of ambiguous tokens. Because tagging 

difficulty is not solely a function of ambiguity, CG is quite crude as a universal 

measure of performance, but it is nonetheless useful as a complement to SR. 

SR and CG are the standard measures of performance in the chapters which 

follow. 

3.4.2 Corpora 

In keeping with the goal of reducing dependence on a single corpus, three corpora 

were used for testing: the French version of the Canadian Hansard (Hans); the 

LOB corpus (LOB); and a version of the LOB with a simplified tag set (LOB/s). A 

lexed version of Hans was created with the program lex and a French morphological 

dictionary; lexed versions of the other two corpora were prepared by making a list 

for each word of all categories assigned to the word throughout the corpus. As 

Merialdo has pointed out, it is possible that this introduces a favourable bias by 

omitting some categories which a dictionary would indicate as valid for a word, but 

which happened never to occur in the LOB in conjunction with that word. 

The three corpora differ in their categorization schemes. LOB uses fine cat­

egories which include attributes such as person and number; the other two have 

coarse categories which are mostly limited to part of speech. The category sets are 

listed in appendix D. 

A one million token training set and a smaller test set were extracted from 

separate portions of each corpus. For the two LOB corpora, the test set consisted 

of ten 10,000 token segments selected at random from the original corpus4 • No 

tagged version of Hans is available, so a small 5,000 word test set was hand tagged. 

Table 3.2 summarizes the training sets and gives some pertinent statistics. 

41t was possible to use a one million token training set with a. disjoint 100,000 token test set 

because the LOB corpus actually contains about 1,115,000 tokens when punctuation is included. 
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Corpus Tokens Ambiguous Words Ambiguous Categories 

Tokens Words 

Hans 1M 313460 23294 5179 34 

LOB/s 1M 508622 46065 4359 41 

LOB 1M 550369 46065 5357 131 

Table 3.2: Training corpora 

Seg LOB LOB/s 

SR CG SR CG 

1 98.0 3.74 97.8 3.12 

2 97.9 3.77 97.6 3.10 

3 97.6 3.70 97.3 3.05 

4 97.9 3.76 97.6 3.09 

5 97.7 3.81 97.5 3.17 

6 97.8 3.82 97.5 3.12 

7 97.9 3.82 97.8 3.10 

8 97.6 3.76 97.5 3.08 

9 97.9 3.73 97.7 3.09 

10 97.6 3.66 97.3 3.11 

test 97.7 3.75 97.4 3.09 

Table 3.3: Tagging results for 100,000-token segments from LOB and LOB/s 

3.4.3 Significance 

As it would probably be meaningless to characterize the tagging difficulty of lan­

guage with a statistical distribution, no formal analysis of statistical significance 

was undertaken. To give some idea of the representativeness of a 100,000 word test 

set for the LOB corpus, ten consecutive 100,000 word segments were extracted and 

tagged with a simple second order model, trained on the entire corpus. The results 

for both LOB and LOB/s are presented in table 3.3; the final line in the table gives 

the results for the segments used for testing. 

There are several things to note about these results. First, there is not much 
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measure LOB LOB/s 

SR CG SR CG 

mean 97.8 3.77 97.6 3.10 

sdev .15 .040 .18 .031 

Table 3.4: Means and standard deviations for 100,000-token segments from LOB 

and LOB/s 

variation between 100,000 word segments, despite the fact that the LOB corpus 

comprises text drawn from a. number of different domains. This is corroborated 

by the sample means and standard deviations in table 3.4. Second, the test sets 

are fairly representative, and a.ll are within approximately one standard deviation 

of the mean. Third, SR and CG are not strongly correlated, a. fact which helps to 

justify the use of CG. Fina.lly, note that SR scores for the two category sets are 

similar, although CG scores for LOB/s are consistently lower. This suggests that 

the extra. precision afforded by a. fine tag set can overcome the higher ambiguity 

which it introduces. 

For the Hans corpus, as only a. single hand-tagged 5,000 word test set was avail­

able, no survey of the kind presented in table 3.3 was possible. A rough indication 

of the representativeness of a 5,000 word corpus may be gotten from table 3.5, 

which contains tagging results for ten 5,000 word segments selected at random from 

LOB/s, whose category set is similar to that of Hans. The standard deviations for 

these data. are .47 for SR and .069 for CG. 
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Seg LOB/s 

SR CG 

1 97.2 3.13 

2 98.1 3.23 

3 96.6 3.97 

4 97.2 3.18 

5 97.6 3.07 

6 97.3 3.09 

7 98.0 3.11 

8 97.8 3.07 

9 97.4 3.10 

10 98.0 3.12 

Table 3.5: Tagging results for 5,000-token segments from LOB/s 

0 
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Chapter 4 

Training 

The requirement to train on a tagged corpus limits the application of most existing 

statistical taggers to domains for which large tagged corpora are already available. 

In this chapter, we investigate three ways of circumventing this limitation: by col­

lecting statistics from an untagged corpus; by reestimation; and by semi-automatic 

bootstrapping from a small tagged corpus. 

4.1 Training From an Untagged Corpus 

Some words in any corpus are unambiguous. The idea of training from an untagged 

corpus is to use these words as a "naturally" disambiguated training corpus. This 

approach is appealing because it is very simple to implement. Its success depends 

on three assumptions: that enough naturally occurring unambiguous n-cats are 

available, that these are sufficiently representative of the population to specify a 

good model, and that doing without lexical probabilities will not have too serious 

an effect. 

The first assumption can be satisfied if a large enough training corpus is avail­

able, no matter how small the proportion of unambiguous n-cats may be. Since 

untagged corpora are abundant, it is safe to assume that this condition can always 

be met. The remaining two assumptions can be tested empirically. 
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4.1.1 Implementation 

Frequencies of unambiguous n-cats were collected from lexed training corpora in 

an obvious way: by simply eliminating all ambiguous words and treating each re­

sulting sequence of unambiguous words as if it had occurred in isolation. To avoid 

normalization problems resulting from disparities between the frequencies of n-cats 

for different n, transition probabilities were estimated from marginal frequencies, as 

described in section 2.4.5 above. 

The method used to estimate lexical probabilities takes advantage of the knowl­

edge implicit in having a small set of permissible tags for each token. Consider the 

maximum likelihood formula for estimating lexical probabilities: 

In an untagged corpus, the value of the numerator in this expression will be identical 

for all categories Cj which are valid for word Vi, but this is not necessarily the case 

for the denominator. Category frequencies can be counted over both ambiguous 

and unambiguous tokens as: 

T 

f(cj) ~ L 1/L0 , 

t=l,cjECo, 

where Cot is the tag set for token Ot and Lot is the size of C0 ,. This divides the 

frequency "mass" of 1 normally assigned to each token equally among the tags in 

its tag set1• 

This technique was used to estimate different lexical probabilities for each cate­

gory validly associated with each word. It is interesting to note its implication: if a 

rare category and a common category are both permissible for some word, the rare 

category will be considered more probable. 

4.1.2 Testing 

The method was tested by making a straightforward comparison between a second 

order tagger trained on an untagged corpus and one trained on a tagged version of 
1 An analogous method could have been devised for transition probabilities, but this would have 

been more difficult and in any case would just emulate what reestimation accomplishes in a provably 

optimum way. 
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Training Size Lex Probs Trans Probs All Probs 

Corpus SR CG SR CG SR CG 

Untgd. Hans 1,000,000 88.8 1.41 93.0 1.69 94.8 1.81 

Untgd. LOB/s 1,000,000 72.7 1.56 74.6 1.67 81.2 2.09 

Tagged LOB/s 251,283 90.9 2.69 88.9 2.56 97.1 3.07 

Untgd. LOB 1,000,000 68.4 1.72 69.4 1.78 75.5 2.20 

Tagged LOB 209,705 82.1 2.67 91.0 3.28 97.2 3.71 

Table 4.1: Tagging performance with tagged and untagged training corpora 

the same corpus. To be fair, the size of the tagged corpus was limited to the effective 

size of the untagged corpus-the number of unambiguous 2-cats which it contained. 

The results for each of the standard training/test combinations are given in table 4.1 

(the entry for tagged training on Hans is missing because there is no tagged version 

of the Hans training set). The columns entitled "Lex probs" and "Trans Probs" 

contain the results obtained using only the indicated set of probabilities when a 

uniform distribution was assumed for the others. 

It is obvious from these data that training on an untagged corpus is a very weak 

method. Both lexical and contextual probabilities appear to be much less accurate 

than their counterparts estimated from a tagged corpus. This is not too surprising 

in the case of lexical probabilities, since one would not expect overall tag frequencies 

to be a very good indicator of the grammatical behaviour of individual words. It is 

somewhat more surprising that the contextual estimates are so poor. Clearly, the 

distribution of unambiguous 2-cats is quite atypical. 

It is possible that performance would improve if a more powerful model or a 

larger training corpus were used. However, preliminary investigations showed that 

SR actually decreased slightly when a 3-cat-based model was used, probably due 

to the extreme scarcity of unambiguous 3-cats. Given this, it was not considered 

worthwhile to experiment with other tagging variations. Likewise, larger corpora 

were found to make little difference; the curve of performance versus training corpus 

size seems to be essentially flat above approximately 104 tokens. 

Another way of improving performance would be to modify the basic method 
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Training Size Lex Probs Trans Probs All Probs 

Corpus SR CG SR CG SR CG 

LOB/s 1,000 79.9 2.02 85.3 2.35 90.1 2.70 

LOB 1,000 77.6 2.31 85.8 2.90 88.3 3.08 

Table 4.2: Tagging performance with small tagged training corpora 

by trying to identify and correct for the source of bias in unambiguous n-eat 

frequencies-perhaps an overrepresentation of punctuation marks or an underrep­

resentation of grammatical words. But the amount of effort involved in such a 

modification seems hardly justified given the weakness of the foundations on which 

it would build. An indication of just how weak these are can be got ten by comparing 

table 4.1 with table 4.2, which contains results for a second order tagger trained on 

a 1,000 word tagged corpus. 

4.2 Reestimation 

Recall from section 3.2.5 that reestimation is an iterative algorithm which finds a 

set of parameters for an HMM so as to maximize the probability, Pr(O), which it 

assigns to a training sequence 0. The fact that no unique state sequence need be 

specified for 0 makes reestimation of interest for the tagging problem. 

There is no guarantee that an HMM which maximizes Pr(O) will be optimal 

for tagging. However, as mentioned in section 3.2.5, for a fully constrained model 

in which each symbol sequence completely specifies a corresponding state sequence, 

reestimation will give the same results as maximum likelihood estimation from rel­

ative frequencies. The model we use for tagging is not fully constrained, but it is 

quite strongly constrained because the set of permissible categories for each word 

is small compared to the total number of categories. The hope is therefore that 

category constraints will guide convergence to a set of parameters not too far from 

the ideal of direct estimation from a tagged corpus. 
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4.2.1 Implementation 

As the implementation of the reestimation algorithm is not completely straightfor­

ward, it is worth describing some of the salient features. 

Recall from section 3.2.5 that the reestimation parameters are: 

;jJi = Pr( it = q;., 0)/ Pr( 0) 

b;.; = "£J=l,of=v; Pr(it = qi,O)/''f:.f=t Pr(it = qi,O) 

liij = Ef.;l Pr(it = qi,it+I = q;,O)/Ef=t Pr(it = qi,O). 

4.2.1.1 Initial Probabilities 

The comments made in section 3.3.2 concerning the estimation of initial probabilities 

pertain to reestimation as well. Basing reestimated initial probabilities solely on the 

first token in a training corpus as in the formul.a above means that only those states 

corresponding to tags which are valid for the first token will have non-zero initial 

probabilities. To improve on this very arbitrary estimate, the absolute probability 

of each state was used instead. The reestimate for initial probabilities becomes: 

T 

;jJi = L:Pr(it = q;.,O)/Pr(O) 
t=l 

4.2.1.2 Sequence Buffering 

Using this version of initial probabilities, the reestimated parameters expressed in 

terms of the 1 and o functions defined in section 3.2.3 are: 

;jJ, = Ef=l 'Ytd Pr( 0) 
bij = Ef=l,ot=Vj 'Yti/ Ef=l 'Yti. • 

iiij = ET-16 ··/ET 'Y. t=l h.7 t=l ta 

With the FB algorithm, the sums over o and 'Y in these expressions may be 

computed in two passes over the training sequence: a forward pass to compute and 

store values of the a function; and a backward pass to compute values of the {3 

function, take products of a and {3 to get 'Y and 6, and sum 1 and 6. 

In practice, space lhnitations often preclude storage of all the a values for long 

training sequences. Ytag detects when this will be the case and compensates au­

tomatically. It finds the number of a values which can be stored and divides the 

59 



c 

c 

training sequence into segments of this length, then makes a forward pass over the 

sequence to compute and store seed values of a at the beginning of each segment. 

When the end of a new segment is encountered during the backward pass, the a 

values for that segment are computed from its seed value and stored. Since each a 

value must be computed twice, this method takes more time than the FB algorithm, 

but it remains in the same time complexity class. 

4.2.1.3 Scaling 

Another practical detail concerns the computation of a and {3. Recall that these 

functions are computed with the recursions: 

and 

t =T 

1 ~ t < T 

For a sequence oflength T, the values of aTj and {31j are proportional to pT, where 

p < 1, so clearly some modification to the above formulas is required to prevent 

underflow for any sizeable T. Ytag uses the following scaled versions: 

and 

where St is a scaling factor whose value for each t is chosen as a is computed in order 

to control its rate of growth2• When computed over the entire training sequence, a 

and {3 differ by only a factor of the initial probabilities, so it is possible to use the 

same St for both. 

21t is theoretically possible to choose a. constant sca.ling fa.ctor rather tha.n one which depends 

on t, but this is difficult in practice; values which a.re too small or too large will rapidly tend to 

zero or infinity. 
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A nice property of a and /J is that they can be substituted directly for a and fJ 

in the reestimation equations. To demonstrate this, we need to show that: 
t 

&tj = IT Su at; 
u=l 

which is easily accomplished by induction on t. For the base case, we have 

And for the inductive step: 

&t; = Stbjoc Ef:1 aij&(t-l)i 

Similarly, for fJ we have: 

= Stbjoe Ef:l aii n~::\ SuO(t-l)i 

= n~=l Subiot Ef:l aijO(t-l)i 

= n~=l Suatj. 

T 

Pti = IT Su/Jtj • 
u=t 

Now if $ and 1 are defined as 

and 
N 

i'ti = I: $tij 
j=l 

then equations 4.1 and 4.2 allow us to write 

and 

i'ti = S1ti 

(4.1) 

(4.2) 

where s = n~=l Su. The reestimation formulas with & and /J substituted for a and 

fJ then become 

~i = E'f:t S!ti/E'f=t SaT; 

= 41i 

bij = Ef=I,oc=v; S!ti/ Ef=t S1ti 

= bij 

lLij = Ef;:/ Soti;/ Ef=t S!ti 

= ai; 
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4.2.1.4 Floor Thresholds 

Because reestimation finds a maximum likelihood estimate, the probabilities that it 

assigns to states, state transitions and state/symbol associations which do not occur 

in the training corpus will tend to zero as the algorithm converges. Ytag uses a very 

simple method to avoid this undesirable condition: it maintains a floor threshold 

value for each set of probabilities-initial, transition and output3 • If a particular 

reestimated parameter is not above the applicable floor threshold, then it is not 

used to replace the old value of that parameter. Preliminary experimentation with 

different floor threshold values indicated that zero works best. All of the results 

reported below were generated with floor thresholds set to zero for all three sets of 

probabilities. 

4.2.1.5 Convergence Measurements 

The obvious point at which to stop iterating is when the tagging performance of 

the reestimated HMM reaches a peak. Since it is not always possible or convenient 

to assess tagging performance a priori however, two other measures of convergence 

were considered. 

The first is a direct measure, model error, which is the average change in pa­

rameters between the original and reestimated HMMs. It is defined as the sum over 

all parameters of the absolute value of the difference in each parameter, divided by 

the total number of parameters which were changed. Model error should decrease 

as the algorithm converges. 

Another measure is perplexity [4], which is commonly used in speech recognition. 

Perplexity is inversely proportional to the probability which the HMM assigns to 

the training sequence, normalized to be independent of the length of the sequence. 

As such, it is a measure of the poorness of the "fit" between the model and the 

sequence, and is affected by both the difficulty of the sequence and the quality of 

the model. If the hypothesis which motivates the use of reestimation for tagging is 

correct, low perplexity should correlate with high tagging performance. 

3 There are more sophistica.ted wa.ys of a.ccompJishing this. One is the deleted interpolation 

method of the IBM group [3]. 
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Perplexity is defined as 
1 

V'Pr(OJ 
or, equivalently, in terms of the notation of section 4.2.1.3: 

This is easy to compute because & is available during reestimation and In S is just 

LJ=llnSt. 

4.2.2 Testing 

Three factors were tested for their effects on the reestimated model: the number of 

iterations, the model components and the initial model. 

4.2.2.1 Iterations 

Figure 4.1 shows SR for a 2nd order model plotted against number of iterations 

for each of the three standard corpora. Reestimation was applied to both lexical 

and contextual probabilities, beginning with a uniform distribution. The shape of 

the curve is roughly the same for each test corpus, with peak performance attained 

after about 12 iterations. It is interesting to note that for the corpus with the 

most precise tag set-the LOB-performance actually begins to degrade after the 

peak is reached. This may be a consequence of the fact that reestimation is a 

maximum likelihood method: as the fit of the model to the training data is improved~ 

idiosyncrasies in that data become more significant. The reason the phenomenon 

does not occur for the other two corpora may be that their coarser tag sets preclude 

an exact fit to the training data. 

Figures 4.2 and 4.3 display the model error and perplexity for the same test 

sequence. Model error is clearly not a very good indicator of peak tagging perfor~ 

mance. Apart from an initial very sharp decrease during the :first few iterations~ it 

follows a more or less uniform exponential decay until well past the performance 

peak. The oscillations in this measure may be a result of using floor thresholds to 

keep parameters from being driven to zero. 
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Figure 4.1: Performance of 2nd order reestimated model versus number ofiterations. 

Peak values for SR and CG are: Hans-97.1, 1.96; LOB/s-93.4, 2.84; and LOB-

86.0, 2.93. 

Perplexity is slightly better at predicting peak performance. By the twelfth 

iteration, perplexity has essentially reached a minimum for each corpus, although in 

each case it continues to decrease slowly. (This accords with the above explanation of 
, 

the performance decay observed for LOB.) The perplexity minima cited in figure 4.3 

clearly illustrate the nature ofthis measure. The minimum is higher for LOB/s than 

for LOB because, although the token sequence is the same, the finer category set 

of the LOB makes for a more precise language modeL The low perplexity of the 

Hans corpus is an artifact of the easy token sequence, which contains only half as 

many word types as the LOB corpora and is drawn from a much more homogeneous 

source. 

A comparison between table 4.2 and figure 4.1 shows that reestimation is a more 

promising method than relative frequency training on an ambiguous corpus. The 

reestimated model performed slightly better than the model trained on a tagged 

1,000 word corpus for LOB/s and slightly worse for LOB. Given this reasonable 

start, it is worth investigating some variations to see if the relative performance can 

be improved. 
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Figure 4.2: Model error for successive iterations 
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Figure 4.3: Perplexity for successive iterations. Lowest values are: Hans-246; 

LOB/s-589; and LOB-431. 
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Figure 4.4: Performance of single-component 2nd order reestimated models on the 

LOB corpus versus number of iterations. 

4.2.2.2 Model Components 

It is possible to reestimate a subset of HMM parameters while holding the others 

fixed. This suggests an experiment to determine the contribution of the main model 

components-contextual and lexical probability sets-to the reestimated model4 • 

Figure 4.4 shows the performance of models in which only a single component was 

reestimated. Compared to the standard combined model, these do very poorly. 

The decline in performance for the model based solely on lexical probabilities 

suggests that reestimation of lexical probabilities might actually be detrimental to 

the performance of the combined model. This hypothesis was tested by reestimating 

both components for the first iteration (since the lexical model peaked at that 

point), then only contextual probabilities thereafter. Although the resulting model 

did better than either of the single-component models in figure 4.4, it was not as 

good as the combined model. Apparently there is a synergistic effect from which 

the combined model benefits. 

4Initial probabilities are ignored because, in ytag's implementation, they play a negligible role. 
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Figure 4.5: Performance of 2nd order reestimated models on the LOB corpus versus 

size of training corpus used for initial model. 

4.2.2.3 Initial Model 

Since the maximum Pr(O) found by reestimation is a local one, it is possible that it 

depends on the model with which the algorithm begins. For tagging purposes, the 

most fruitful way to modify the uniform initial model used previously is probably 

to add knowledge by training on a small tagged corpus. Figure 4.5 shows the effects 

of such a change on reestimated models after 10 iterations. 

It is evident that there is some dependence on starting point: an initial model 

trained on a 1,000 word corpus, for example, produced a reestimated HMM which 

achieved an SR of 92.2% on the LOB, compared to 86.0% when the initial model 

was uniform. However, this rate of gain does not persist with increasing training 

corpus size; the performance curve quickly flattens after about 4,000 words. 

Interestingly, perplexity seems to be quite independent of the initial model in 

this experiment. Since perplexity is a fairly direct measure of Pr(O), this suggests 

either that each initial model directs convergence to a separate local maximum or 

that all converge on a single broad maximum. The former possibility is implausible 

given the observed stability of the reestimation algorithm; if the latter is the case, 

it emphasizes the weakness of the link between Pr(O) and tagging performance. 
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4.2.2.4 Conclusion 

None of the variations investigated was able to make reestimation as powerful a 

training method as direct estimation from relative frequencies over a tagged training 

corpus. Reestimation is useful to enhance the performance of a. directly estimated 

model, but, as is evident from figure 4.5, only if the training corpus size is less than 

about 7,000 words. This is essentially the same conclusion reached by Merialdo in 

[45], although the cutoff point he finds is considerably higher. 

4.3 Bootstrap Training 

Given the inadequacy of the automatic training methods described in the preceding 

sections, it appears that any successful training technique must rely, at least in part, 

on human tagging. In this section we sketch a bootstrapping method whose aim is 

to make more efficient use of expensive hand-tagged tokens. It should be noted that 

the work described below is intended as a proof of concept rather than a thorough 

analysis of the technique. 

4.3.1 Method 

The standard manual training method involves hand tagging a training corpus from 

which the parameters of a model can be directly estimated. Bootstrap training is 

an attempt to improve on the performance of such a modeL It consists of three 

basic steps and can be iterated any number of times: 

1. Use an existing model to tag some corpus larger than the one on which it was 

trained. 

2. Manually correct some of the errors in the resulting tagged corpus. 

3. Use the corrected corpus to train a new model. 

This algorithm depends on having some means of identifying errors which is 

more efficient than just checking each token. One such is to have the tagger itself 

flag assignments of which it is uncertain. As described in chapter 6 below, this 

is quite feasible; by flagging a. fairly modest proportion of the tokens in a corpus, 
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ytag can detect the majority of the errors it has made. The details of how this is 

accomplished are not pertinent here, except that it is easy to adjust the number of 

:flags and hence the number of tokens which must be hand checked. 

Another condition on which the validity of the method depends is that the 

performance of the bootstrapped model be better than that of a standard model 

trained on a corpus which contains the same number of tokens as were hand checked 

during the bootstrapping procedure. This is not a foregone conclusion, because the 

corrected corpus will contain some errors unless a very high proportion of its tokens 

were hand checked. 

4.3.2 Testing 

Parameters to the bootstrapping procedure include the number of iterations, the 

size of the initial corpus, the amount by which the corpus size is increased on each 

iteration and the number of tokens which are checked on each iteration. The pro­

cedure was tested for only one combination of parameter values: a single iteration, 

an initial corpus size of 10,000 tokens, and a final corpus size of 100,000 tokens, 

of which 10,000 were checked. This setup is fairly realistic because 20,000 tokens 

can be tagged with a modest effort and performance from a 100,000 token training 

corpus is quite respectable. 

The LOB corpus was used to simulate hand tagging and checking. An initial 

model was generated from a tagged 10,000 token segment and used to tag an un­

tagged 100,000 token segment (disjoint from the smaller segment), and :flag 10% 

of it. Each of the 10,000 :flagged tokens in the resulting corpus was then assigned 

the correct tag by comparing it to the original tagged LOB. The corrected 100,000 

token corpus was then used to generate a final model. The performances of both 

the initial and final models were tested on the standard test corpora. The results 

for LOB and LOB/s are shown in table 4.3. 

The first two lines in this table give the performances of the initial and final 

bootstrapped models; the last two lines give the performances of standard models 

of the indicated sizes. Bootstrapping is clearly worthwhile for both corpora, but 

the results are especially good for the LOB. The performance gain achieved by 
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Model LOB LOB/s 

SR CG SR CG 

initial (10k) 95.4 3.59 94.5 2.91 

final (lOOk) 96.9 3.69 95.8 2.99 

std (20k) 96.1 3.64 95.6 2.98 

std (lOOk) 97.2 3.71 97.0 3.06 

Table 4.3: Performances of bootstrapped and non-bootstrapped models 

bootstrapping is more than twice the gain achieved by tagging an additional 10,000 

tokens for standard training. Moreover, the performance of the final bootstrapped 

model is within .3% of the performance of a standard model trained on 100,000 

tagged tokens, despite the fact that the latter would require five times more tokens 

to be hand tagged than the former. 
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Chapter 5 

Performance 

The work described in the previous chapter suggested that the best method of 

training an HMM for tagging is direct estimation from a tagged training corpus. In 

this chapter, we take that as a starting point for the investigation of two enhanced 

methods of estimation: Good-Turing frequency modification and order combina­

tion. Since the aim is to identify the ingredients of an optimum model, two other 

factors which were largely ignored in the previous chapter-model order and tag­

ging method-are also considered. Models of orders of 2 and 3 are tested with 

both token-based maximum likelihood (ML) tagging (the method of the previous 

chapter) and path-based Viterbi (Pl) tagging, as described in section 3.3. 

5.1 Good-Turing Estimation 

As discussed previously, the problem with maximum likelihood estimation for natu­

ral language phenomena is that any practical corpus is bound to be small compared 

to the number of valid constructions admitted by the language. Hence there will 

always be a significant number of rare events which are predicted poorly, most of 

which will be assigned a probability of zero because they do not occur in the training 

corpus. 

A general form of solution to this problem relies on modifying the observed 

frequencies so as to make them more accurate; in particular, zero frequencies are 

proscribed. The modified frequencies are then used in the standard maximum like-
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lihood formula to estimate probabilities. 

The frequency modification technique used in the previous chapter and in the 

tagging example of chapter 2 was the augmented corpus (AC) method, in which 

it is assumed that the training corpus has been augmented by one containing a 

single occurrence of every possible n-eat and permissible word/tag combination. 

Individual frequencies and frequency totals are modified in accordance with this 

assumption. In ytag's version of AC, word occurrences are assumed to be ambiguous, 

and word/tag frequencies are counted using the method for ambiguous corpora 

described in section 4.1.1. This prevents the augment data from overwhelming the 

observed data when the vocabulary size is large. Words encountered during tagging 

which are not in the vocabulary are treated the same as words in the vocabulary 

which did not occur in the training corpus1• 

A more sophisticated technique uses the Good-Turing (GT) formula, which is 

a general method for estimating the proportions of binomially distributed types in 

a mixed population. It was proposed by Good in [32] and has been widely used 

in language models for speech recognition and elsewhere. In this section, we com­

pare the performances of the GT and AC estimators for n-eat and word/category 

probabilities. 

5.1.1 Implementation 

The GT formula defines a modified frequency f* as 

(5.1) 

where f is the observed frequency and N1 is the number oftypes (ie, word/category 

combinations or n-cats) with frequency f. The probability of any type which occurs 

with frequency f is then estimated as usual: 

Pr = f*/N 
1 Recall that the input to ytag is a lexed corpus, so the permissible tag sets for such words are 

always known. 
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where N is the size of the sample: 

The main problem in using GT estimation for natural language is that the N1 

data are unruly, especially for large f. The set of points labelled "raw Nj'' in 

figure 5.1 shows N1 values plotted against frequency on a log/log scale for word/tag 

combinations in the Hans corpus; the behaviour for n-eat values is similar. It is 

obvious from these data that some smoothing must be undertaken. Equation 5.1 is 

critically dependent on the ratio of adjacent N1 values, and for the raw data these 

are very erratic and in some cases undefined because N 1 is zero. 

Ytag uses a two-step procedure to revise the raw data. The first step is to make 

more reliable estimates for N 1 where data are sparse. It is accomplished using a 

formula borrowed from Church and Gale [15]: 

where /i, /j, and fk are successive frequencies for which the corresponding Nj's are 

non-zero. This averages each non-zero N1 over the zero intervals which border it; 

the factor of 2 accounts for the overlap between successive averaging intervals. The 

main effect of this step is to bring the long tail of high frequency points into line 

with the rest of the data by decreasing their N 1 values below one. This can be seen 

in figure 5.1, where the revised points are labelled "averaged Nj''. Note that the 

averaging has no effect on points which are not adjacent to a frequency for which 

N1 is zero. 

The second step is to fit a curve to the averaged points. This is somewhat 

difficult because, as is apparent from figure 5.1, the relationship between f and N1 

is something like: 

which has a very sharp bend near the origin and is not easy to fit with a simple 

function such as a least-squares polynomial. However, the data can be rendered 

more tractable by taking the logarithm of both f and N1 at each point. Ytag 

adopts this ad hoc strategy, then uses a third order least-squares polynomial to fit 
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Figure 5.1: Raw, averaged and smoothed NJ versus f for word/tag combinations 

in the Hans corpus. The smoothed curve is a third order polynomial least squares 

fit. 
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I Co~us Ill---s-:_L_T_aggt..,.l_·n_g C-G--411-1--s-:-1-T_aw..,.,·_ng_C_G_-1 

LOB/s 97.298/97.349 3.08/3.09 97.270/97.331 3.08/3.09 

LOB 97.501/97.561 3.73/3.74 97.492/97.554 3.73/3.74 

Table 5.1: Comparison of tagging performance between AC/GT estimators for 2nd 

order model. 

ML Tagging P1 Tagging 

Corpus SR CG SR CG 

LOB/s 97.535/97.634 3.10/3.10 97.557/97.641 3.10/3.10 

LOB 97.614/97.725 3.74/3.75 97.608/97.717 3.74/3.75 

Table 5.2: Comparison of tagging performance between AC/GT estimators for 3rd 

order model. 

the transformed points. The final smoothed N 1 values are the antilogs of the points 

on this curve. They are shown as "smoothed N !'' in figure 5.1. 

5.1.2 Testing 

GT estimation was compared to AC estimation using 2nd and 3rd order taggers on 

the LOB and LOB/s corpora with both maximum likelihood (ML) and best path 

(P1) tagging methods, as mentioned above. The results for 2nd order tagging are 

presented in table 5.1, and those for 3rd order tagging in table 5.2. For both of the 

standard measures of performance, the figures for AC and GT in these tables are 

given together, separated by a slash, (ie "AC/GT") to facilitate comparison. 

The performance improvement resulting from the use of GT is disappointing 

considering the amount of effort invested. It is only about .05% for 2nd order and 

.1% for 3rd order taggers; the difference between ML and P1 tagging methods is 

insignificant. The fact that GT performs relatively better with a 3rd order model 

is probably due to the fact that 3-cats are rarer than 2-cats. For example, in the 

LOB corpus the mean number of tokens per 2-cat type is 145 while the mean per 
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related to that described by Katz in [40]. Although it is applicable to both initial 

and transition probabilities, ytag uses it only for the latter. 

The idea is that no (AC or GT modified) frequency is ever used to make a 

probability estimate unless it is above some threshold. If an n-eat frequency does 

not meet this criterion, then the frequency of its rightmost constituent ( n -1 )-cat is 

tested, and so on recursively to lower orders until the threshold condition is met or 

only a single category is left. All of the estimates made for any order are scaled so 

that they sum to the "unused" probability mass from the next higher order. This 

maintains the requirement that all probabilities sum to one and also means that the 

role of lower order estimates is merely one of distinguishing between alternatives for 

which higher order estimates are unreliable; no lower order estimate ever contributes 

information to a higher order estimate which is considered reliable. 

Formally, let 

C be the set of categories, n the order of the model, and f denote 

frequency as usual; 

r be the threshold frequency; and 

c = Ci1 ••• Cin-l be an ( n - 1 )-cat which corresponds to some state in an 

nth order model, and i!r = Cin-r+t ••• Cin-l be the rightmost (r- 1)-cat 

in C. 

The rth order estimate of the probability of any category c given c (equivalently, 

the probability of a transition from the state corresponding to Ci1 ••• Cin-l to the 

the state corresponding to Ci2 ••• Cin-l c) for all categories c E G is given by the 

recursion: 

l'>':(r)( I;;'\ { P.r/Srxf(i!rc)/f(cr), f(ifrc)~rorr=l 
Pr cc,= 

Pr(r-l)(c!C), else 

where P.r is the probability mass remaining for order r and Sr is the sum of all 

pure rth order probability estimates. Both are defined in terms of Cr, the set of 

remaining categories for which an rth order (or lower) estimate is required: 

{ 
c, 

Cr = 
{c E Cr+IIf(ifr+Ic) < r}, 1 ~ r < n 

r=n 
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So that 
1, r = n 

"i'L(r+l)( I;;"\ 
Jlr+I - Ece(Cr+t-Cr) rr CC" 1 $ r < n 

and 

S,. = L f(C,.c)f f(C,.). 
cec .. 

The algorithm based on these recursions begins with r =nand stops when C,. 

is empty or when r = 1. Note that when T = 0, Cn-1 is always empty, so the 

computation reduces to pure nth order estimation. Although yta.g uses AC or GT 

modified frequencies for all orders, frequency modification is only strictly necessary 

for r = 1, to prevent these last-recourse estimates from being zero. 

More sophisticated versions of the algorithm are possible, in which r varies with 

order or even with individual state, but these variations were not implemented in 

ytag. 

5.2.2 Testing 

Combined order estimates were tested with a. 3rd order GT model using ML and P 1 

tagging methods on the LOB and LOB/s corpora. A range of different threshold 

values was used to determine the optimum for each corpus. The results are shown 

in figure 5.2 for LOB and figure 5.3 for LOBfs. 

Order combination is clearly effective only for the LOB corpus, where it improves 

performance over pure 3rd order GT estimation by slightly over .2%. For LOB/s, 

the best combined order estimates are exactly the same as the pure 3rd order GT 

estimates given in table 5.2. As before, the difference between ML and Pl tagging 

is minuscule, with ML tagging having a slight edge. 

The reason for the impotence of order combination on the LOB/s corpus seems 

to be that a million words is enough to saturate 3-cat frequencies for the simple 41-

ca.tegory set used. That is, if all 3-cats are classed roughly as either grammatical or 

ungrammatical, then a majority of grammatical 3-cats have appeared much more 

often than have those in the ungrammatical class. In other words, most 3-cat 

frequencies are accurate. 
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Figure 5.2: Performance of a combined 3rd order GT model on the LOB corpus 

versus combination threshold frequency. Peak is SR = 97.958 and CG = 3. 76 for 

ML tagging at a threshold of 1.6. 
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Figure 5.3: Performance of a combined 3rd order GT model on the LOB/s corpus 

versus combination threshold frequency. Peak is SR = 97.641 and CG = 3.10 for 

Pl tagging at a threshold of 0.0. 
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To see why order combination can be detrimental in this situation, consider 

some low frequency (ie, ungrammatical) 3-cat CiCjCk, where 

and suppose that the 2-cat CjCk is very common: 

The combined order estimate based on CiCjCk will then be: 

Pr( ck!CiCj) ~ Pr( cklci) 

~ f(cick)/ f(ci)· 

Without making any special assumptions about f(cj) or f(cicj), one might expect 

this estimate to be considerably higher than that made from the original 3-cat 

frequency, ie: 

So that if/( CiCjCk) is accurate, the revised estimate is not. 

Some supporting evidence for the saturation hypothesis is that the performance 

difference between pure 2nd and 3rd order models listed in tables 5.1 and 5.2 is 

greater by a factor of about 1.8 for the LOB/s corpus than for the LOB. If it 

is assumed that 3-cat frequencies for the latter are relatively unsaturated (which 

is reasonable, given that its category set is almost three times larger) and hence 

somewhat inaccurate, this is what would be expected. More direct evidence is 

provided in figure 5.4, which shows number of 3-cat types plotted against corpus 

size for both training corpora. Although the curve for LOB/s is not quite flat at 

one million words, both its slope and second derivative are less than those of the 

LOB curve. Unfortunately, no larger tagged corpus is available on which to test the 

behaviour of the LOB's category set at saturation. 

It can be concluded that order combination is worthwhile for precise catego­

rization schemes and/or small training corpora. However, given an appropriate 

mechanism for choosing a threshold value, combined order estimates are guaran­

teed to perform no worse than pure nth order estimates for any corpus and category 

set. 
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Figure 5.4: Number of 3-cat types versus corpus size for standard corpora. 

5.3 Performance Limits 

The work described in this chapter and the previous one served to identify an 

optimum tagger within the current framework as one which is based on a 3rd order 

HMM trained with combined order Good-Turing estimation on a tagged corpus, 

and which uses the maximum likelihood path for tagging. When trained on a 

million word subset of the standard LOB corpus, the tagger was able to successfully 

disambiguate 98.0% of a representative 100,000 word test corpus disjoint from the 

training corpus. As it is customary in the computational linguistics literature to 

cite performance figures when training and test sets are identical, we note that 

the optimum tagger successfully disambiguated 98.3% of its million word training 

corpus, with a chance gain of 3. 79. 

It is interesting to speculate on how close this tagger comes to achieving the best 

performance of which a pure HMM-based approach is capable. An easy upper bound 

on SR for an nth order tagger is just the number of disambiguations which require n 

or fewer tags of context, as the tagger cannot be expected to cope successfully with 

those which require more. It might be the case that this bound is only dependent on 

n, and that arbitrary performance levels could be attained by using HMMs of high 
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enough order. But if the difference between second and third order models observed 

here is indicative, the orders required to achieve significant gains are likely to be 

very high. Even under the optimistic assumption that performance varies linearly 

with order, for example, an extrapolation from the most generous interpretation of 

this difference predicts that a 7th order model would be needed to achieve a success 

rate of 99%. Besides being esthetically unappealing, such a huge model would 

present considerable practical problems. It seems best to concede that HMM-based 

tagging is most appropriate for those problems which depend on local context and 

are thus accessible to low-order models. Accordingly, we can limit the scope of this 

discussion to third order HMMs without too much loss of generality. 

For a third order model, the contextual performance bound is the proportion of 

disambiguations which require three or fewer tags, and this can be established by 

an analysis of some representative corpus. This may be misleading however, as it 

sets a human performance standard; there are probably some fundamental inaccu­

racies in the HMM language model which would prevent a tagger from attaining 

that standard, even if it used the same amount of context as a human competitor. 

To get a more realistic bound we can use an alternate approach which consists in 

identifying the parameters important to the tagging process and extrapolating per­

formance with respect to each. In addition to order, there are at least three such 

parameters: estimation method, tagging method and training corpus size. The cor­

pus and category set used for testing will also affect the results obtained, but as we 

have seen, the relative results are fairly insensitive to these quantities. That is, what 

is of interest is the model's performance relative to the best that can be achieved, 

and it can be hoped that this ratio will be roughly the same for all test corpora and 

tagging schemes. 

It is difficult to quantify the effect of estimation method on performance. How­

ever, the scant difference (about .4%) between the most simple-minded and the 

most sophisticated techniques tested indicates that it is small. It can be expected 

to become smaller still with increasing training corpus size, as more saturation of 

3-cat frequencies occurs and simple maximum likelihood estimates become more ac­

curate. While it is certainly possible to refine the estimation techniques used here, it 
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seems unlikely that any refinements within the scope of a strict HMM-based model 

would have significantly greater effect. 

The situation is similar for tagging method. The two methods tested yielded 

remarkably close results, considering that they work quite differently. These algo­

rithms are the only two which are theoretically optimum in any sense. In fact, the 

only method in the literature which is substantially different from either is that of 

de Marcken, which sacrifices some information3 for the sake of speed. As would be 

expected, de Marcken's results are not quite as good (96% for a 2nd order tagger 

trained on the LOB and tested on a 64,000 token subset of that corpus) as those 

achieved by the standard methods (both around 97.5% for a 2nd order tagger with 

the standard test and training corpora used here). 

The final important parameter is training corpus size. Obviously, larger training 

corpora will give improved performance, up to some eventual limit. In the absence 

of a tagged training corpus larger than one million words, this limit cannot be 

determined directly, but performance can be extrapolated from smaller corpora. 

Figure 5.5 shows SR plotted against training corpora which range from 100,000 to 

one million words. There is a clear levelling trend, and at about 700,000 words the 

curve becomes quite flat. The two lower curves in this figure are the performances 

which resulted when only lexical or contextual information was used. The contextual 

curve displays the same levelling characteristic as the combined curve but the lexical 

curve continues to grow, and it is probably this component that will yield most of 

the performance gains for larger training corpora. However, figure 5.5 demonstrates 

that the overall performance is quite insensitive to variations in lexical accuracy, so 

these gains are unlikely to be significant. 

To conclude, the tagger described here seems to be quite close to the optimum 

for a third order HMM-based approach. Although it is impossible to give an exact 

figure, it would be surprising if changes to the estimation or tagging methods, or 

increases in training corpus size resulted in SR gains of more than half a percent. 

3 De Marcken's algorithm ignores all tokens to the right of the current token. 
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Figure 5.5: Tagging performance versus training corpus size for LOB. 
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Chapter 6 

Error Detection 

The probabilities which an HMM-based tagging system associates with tag assign­

ments are a reflection of the confidence with which it makes the assignments. If 

the model is accurate, assignments which it deems improbable or those for which 

competing alternatives have similar probabilities should be the ones on which it 

has a good chance of making an error. This suggests the possibility of having a 

tagger identify its own potential errors by evaluating assignment probabilities. This 

chapter describes an error detection mechanism which is based on that idea. The 

emphasis is on identifying errors rather than proposing alternatives, but the work 

can easily be extended to include the latter capability. 

6.1 Implementation 

In the previous chapter we considered methods of tagging based on two state paths, 

identified as Pl-the best, or Viterbi path; and ML-the path of most likely states. 

An obvious method of error detection is to compare these paths to each other using 

some criterion and flag as errors the differences established by that criterion. Ytag's 

error detection mechanism is based on a generalization of that idea. 

6.1.1 Error Detection Algorithm 

The algorithm uses three (not necessarily distinct) state paths: a tagging path (de­

noted Ita9 }, a comparison path (Icmp), and a replacement path (Irep)· The first step 
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is to use the tagging path to tag some prefix, 0, of the remaining token sequence in 

the usual way. The comparison path is then used to identify states on the tagging 

path which are potentially erroneous, and the replacement path is used to furnish 

alternates for those states. An error flag is raised for each token in 0 where the 

replacement path tag differs from the tagging path tag. (An easy extension to this 

scheme would be to make the replacement path tags available in the output as 

proposed alternatives to the tagging path tags.) 

Crucial to this process is the criterion by which tagging path states are deemded 

erroneous; ytag uses one of two criteria. State-based comparison indicates an error 

at each state itag, where: 

Pr( itag, 0)/ Pr( icmpn 0) < r 

for some threshold value r. Path-based comparison deems all states on Itag erroneous 

if: 

Pr(Itag 1 0)/ Pr(Icmp' 0) < r. 

So state-based comparison tests the relative likelihood of each state on the tagging 

path, while path-based comparison tests the relative likelihood (or grammaticality) 

of the path as a whole. A more general scheme would combine these two criteria 

in some way, but as will be evident from the test results, a simple method such as 

comparing states on dubious paths is unlikely to be effective. 

Four standard paths are used for tagging, comparison and replacement. In 

addition to the ML and Pl paths, these include the path of second most likely 

states (NL) and the second most likely path (P2). The most natural use for NL is 

to corroborate ML in a state-based comparison, and the most natural use for P2 is 

to corroborate Pl in a path-based comparison. The four paths are defined formally 

as: 

ML The path I= it ... iT of most likely states it = argmaxi=t,N Pr( it = qj, 0). 

NL The path I = it ... iT of 2nd most likely states it = 2nd arg maxi=I,N Pr( it = 
qj, 0). 

Pl The path I'= argmaxall1 Pr(I,O) 
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P2 The path I' = 2nd arg ma.xalli Pr( I, 0) 

The comparison methods outlined above constitute a test for errors which is 

based on the relative probability of the state or path used for tagging. One way of 

assessing relative probability is to use the probability of another state or path (such 

as the one with second highest probability) for comparison; another is to use the 

total probability of all paths. For both state and path-based comparison, the sum 

over all paths is just Pr(O), the total sequence probability. Ytag defines a special 

"path", TT, which may be selected as the comparison path and which causes Pr( 0) 

to be used in place of Pr(Icmp,O) or Pr(icmp0 0) for all t. From Bayes' law, it 

is apparent that this test is equivalent to comparing the conditional probabilities 

Pr(Ita9 IO) or Pr(ita9,IO) to some fixed threshold value. 

In addition to TT, there is another special path, PX, which may be used in the 

role of replacement path, and which is guaranteed to generate a path of tags which 

differs from the original tag assignment for 0 at each point. This is useful when it 

is desired to force each potential error identified during comparison to be flagged as 

such. For instance, suppose that the tagging path is ML and the comparison path 

is NL. One might think that all potential errors would be flagged if NL was also 

used as the replacement path, since NL differs from ML at each token for which 

more than one state is possible. However, the fact that two states differ does not 

necessarily mean that the tags to which the states map will differ as well; hence, 

replacing an ML state by an NL state does not guarantee that an error flag will be 

raised, as it would if the PX state were used. 

6.1.2 Computation 

The error detection algorithm involves five paths and two comparison criteria. This 

section describes how these items were computed. As will be evident from what 

follows, no item requires more than O(T N 2) time, so this is the complexity of the 

entire detection algorithm as well. 
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6.1.2.1 Computing TT 

In section 3.2.2, the function at; was shown to be equal to the joint probability of 

a given state and the symbol sequence up to time t: 

so the total probability is just: 

N 

Pr(O) = L aT;· 
j=l 

The time required to compute aT; for all j is O(T N 2), so this is the complexity for 

Pr( 0) as well. 

6.1.2.2 Computing ML and NL 

Recall from section 3.2.3 that the probability that the HMM will be in state qi at 

time t is given by the 1 function: 

which can be computed with the FB algorithm in O(T N 2) time. Each state it on 

the ML path can thus be obtained by maximizing over 1 at t: 

it = arg }llax 'Yti. 
J=l,N 

And the states on the NL path are those which correspond to the second highest 1 

value. Once 1 has been computed for all times t and states j, either of these paths 

can be found in O(T N) time, so the total time complexity is: 

6.1.2.3 Computing Pl and P2 

The Pl path is identical to the Viterbi path (I for which Pr(I, 0) is a maximum) 

and may be computed via the Viterbi algorithm in O(T N 2) time as described in 

section 3.2.4. 

The algorithm to find the second most likely path is similar to the Viterbi 

algorithm and operates in the same time complexity. Recall from section 3.2.4 that 
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the Viterbi algorithm keeps track of the most likely partial path ending in each state 

at any given time. To find the second most likely path, we need to keep track of 

the second most likely partial paths as well. When the end of the symbol sequence 

is reached, the algorithm backtracks along either the second most likely path which 

ends in the same state as the most likely path, or the most likely path of highest 

probability out of those paths which end in any other state. 

Formally, let Vi; be the probability of the highest probability path which ends in 

state q; at timet, and Utj be the state at timet -1 on this path, as in section 3.2.4. 

Let Vt; be the probability of the second highest probability path which ends in 

the state qi at t, and iitj be the state at time t - 1 on this path. As shown in 

section 3.2.4: 

and 

t=1 

1<t=s;T 

Utj = arg 1~fN(aiiV{t-l)i), 1 < t :s; T. 

The recursion is more complicated for the second most likely path probability: 

and 

t = 1 

l<t=s;T 
(6.1) 

The backtracking step is similar to that for the Viterbi algorithm. Recall that 

the last state in the Viterbi path I is 

iT = arg max VTj· 
l<j<N 

The last state in the second most likely path 1 is 

if VTix ~ max;J=;tix(VTj) 

otherwise 

The remainder of the path is obtained by backtracking over the ii's: 
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The proof that Vt; has the required properties (ie, is the probability of the second 

most likely path through q; at t) is by induction on t. The base case is obvious; 

since there is only one path through each state at t = 1, the second best path is 

assigned a probability of 0. 

For the induction step, suppose that there is some path which passes through 

state qh at timet -1 and (/j at t, with probabilities P(t-t)h and Ptj = b;otah;P(t-t)h 

respectively, such that: 

From 6.1, we can write: 

so that: 

V.; ~ b;.,a;; x { 
Vet-l)i if i = O'tj 

V{t-t)i else 

{ 

Yct-l)h if h = O'tj 
P(t-t}h > 

V(t-l)h else 

From the induction hypothesis and the established properties of l'ti, this equation 

can only be satisfied if h = Utj, so we have shown that only the most likely path can 

have a higher probability than Vt;. It remains to note that the two paths are not 

identical, which is clear from an inspection of 6.1. The proof of the backtracking 

step is trivial. 

6.1.2.4 Computing Comparison Criteria 

Path-based comparison requires that Pr(I, 0) be known for both the tagging and 

comparison paths. For a given sequence of states I, this quantity may be computed 

directly from the HMM parameters in O(T) time: 

Pr(I,O) = Pr(OII) Pr(I) 

- flT b· X A.. nT-Ia·. - t=l ltOt ¥'11 t=l ltlt+l • 

Given any two paths I = it .. . iT and J = j 1 •• • }T, state-based comparison 

requires that Pr(ittO) and Pr(jt,O) be known for each t. These are available in 

O(T N 2) time via the 1 function and the FB algorithm. 
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6.2 Testing 

Eight error detection methods were tested on the standard LOB corpus, using the 

optimum tagger described in the previous chapter. Before presenting the results, we 

describe the method used to measure detection performance and give the rationale 

for limiting the number of methods considered to eight. 

6.2.1 Measurement 

Four basic parameters are sufficient to characterize the performance of an error 

detector on a given corpus: 

T The total number of tokens tagged. 

E The number of tokens erroneously tagged. 

F The number of tokens flagged. 

H The number of "hits", that is, valid error flags. 

There are several quantities of interest which can be defined in terms of these 

parameters. The first is the effectiveness of the detector-the proportion of actual 

errors which are flagged: 

effectiveness = HI E. 

Of course, by taking F large enough, one can attain arbitrary levels of effectiveness, 

and it is no feat to achieve an effectiveness of lOO% when F is close to T. This 

suggests that some notion of efficiency is required. One measure is the proportion 

of error flags which are hits: 

efficiency = HI F. 

Another measure related to efficiency is covef'-the proportion of flags relative to 

the total number of tokens: 

cover= FIT. 

Both effectiveness and efficiency can be assessed by comparing them to the 

values which would be expected if F flags were assigned at random. These values 
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can be computed from the number of chance hits-the expected number of hits from a 

random flagging procedure for given F, E and T. If it is assumed that each token has 

probability F fT of being flagged, and an (independent) probability E /T of being 

an actual error, the probability of a random hit is EF/T2• If the token probabilities 

are independent, the number of random hits will follow a binomial distribution, 

with an expected value of: 

chance hits= EFfT. 

To be completely fair, the random flagging procedure should be limited to the 

ambiguous tokens in the corpus, soT in the preceding equation should be changed 

to Ta, the number of ambiguous tokens. This method of calculation was used for 

the figures cited below. 

All of the detection methods described in the first section of this chapter depend 

on the threshold parameter r. As r is increased, F will also increase, and so, 

hopefully, will H. The most useful description of a detection method is thus a 

characterization of its performance over the entire range of r for which H changes. 

Potential applications for the detector will have different requirements which may 

correspond to operation within different regions of this range. For instance, a parser 

may require effectiveness to be 100% regardless of the cover required to attain this 

level. With human checking, on the other hand, high cover may be impractical, and 

an effectiveness significantly lower than 100% may be tolerable. 

In the results presented below, a standard plot is used to characterize a detector's 

performance for various values of r. Since r is of no intrinsic interest (and differs 

from method to method), cover (which varies with r) is used as the independent 

variable. The dependent variable is effectiveness. The slope of the resulting curve 

serves as a rough guide to efficiency, because the latter measure is proportional to 

the ratio of effectiveness to cover. Good performance is therefore reflected in a curve 

which has a steep slope and which reaches maximum effectiveness well before 100% 

cover. 
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6.2.2 Choosing Detection Methods 

It is obvious that the number of detection methods admitted by Ytag's framework 

is impractically high; the field must be winnowed in some way. Fortunately, not all 

possible path combinations are interesting. For a start, only the two best paths-PI 

and ML-need to be considered in the role of tagging path. 

Another economy arises from the fact that ML and Pl are very similar. On the 

standard LOB test corpus, for example, they differed on less than 0.1% of all tokens. 

This means that their maximum effectiveness is a negligible 5% of the erroneous 

tokens (which constitute about 2% of the whole corpus). This is not unexpected, 

but somewhat disappointing because, had the paths differed significantly, their sim­

ilar (high) tagging success rates would have made them very efficient at mutual 

error detection. In any case, the impact on the testing process is that the two are 

interchangeable in the role of tagging path. For the sake of symmetry, ML was used 

for all state-based comparisons and Pl was used for all path-based comparisons. 

A third reduction comes from the fact that, for each method of comparison, 

only two of the available comparison paths can reasonably be expected to be good 

indicators-those which represent the second most likely alternative (P2 for path­

based and NL for state-based), and the total probability TT. Furthermore, the best 

of the two can be identified by testing each with the same replacement path, and 

only the best need be considered with any other replacement paths. This limits the 

number of detection methods which must be tested to eight; four for each method 

of comparison. 

6.2.3 Results 

Path and state-based comparisons are considered separately in the following two 

sections; the final section compares the two and summarizes results. For brevity, 

each detection method is identified by a tuple: 

(comparison, ltag, lcmp, I rep) 

where comparison indicates the comparison method: "P" for path-based and "S" 

for state-based. 
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Figure 6.1: Path-based error detection performance with comparison paths P2 and 

TT. 

6.2.3.1 Path Based Comparisons 

The first step is to decide whether P2 or TT makes the best comparison path. 

Figure 6.1 shows the performances of (P,Pl,P2,P2) and (P,Pl,TT,P2). It is obvious 

from the plot that the two paths give virtually identical results, with P2 having a 

very slight, but not statistically significant, advantage. TT can therefore be used 

for practical purposes, as it is much simpler to compute than P2. 

The next step is to compare the possible replacement paths P2, PX and NL. 

Figure 6.2 shows the performances of these replacements when P2 is used as a 

comparison path. 

Each of the curves follows a similar trajectory: an initial region of high efficiency, 

then a levelling off as maximum effectiveness is approached. Maximum effectiveness 

depends on the number of states which differ between Pl and the replacement path; 

as might be expected, it is lowest for P2 and highest for PX. Unfortunately, efficiency 

runs in the opposite direction. The best curve is a composite "envelope" of all three 

which follows (P,P1,P2,P2) up to an effectiveness of 70% and a cover of about 10%, 

then (P,Pl,P2,NL) up to an effectiveness of 90% and a cover of about 30%, and 

finally (P,P1,P2,PX) up to an effectiveness of 100% and a cover of about 50%. This 
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Figure 6.2: Path-based error detection performance with comparison path P2 and 

replacement paths P2, PX and NL. 

last segment is quite poor, as it is barely better than the cover of 52% required by 

a random flagging process to attain (an expected) 100% effectiveness. 

6.2.3.2 State Based Comparisons 

The same testing scheme was used for the state-based comparison methods. Figure 

6.3 shows the performance for comparison paths NL and TT. As before, the two 

are very similar; since they are equally easy to compute, either could be used in 

practice. 

Figure 6.4 shows the performances of replacement paths NL, PX and P2, when 

NL is used as the comparison path. The shape of the curves is similar to those for 

path-based comparison; the main difference is that the optimum envelope consists of 

only two segments, due to the fact that the maximum effectiveness of P2 is low (as 

would be expected, given the similarity of P2 to Pl, and Pl to ML ). The envelope 

follows (S,ML,NL,NL) up to an effectiveness of 93% at a cover of about 13%, then 

(S,ML,NL,PX) up to lOO% effectiveness at about 40% cover. 
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Figure 6.3: State-based error detection performance with comparison paths NL and 

TT. 
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Figure 6.4: State-based error detection performance with comparison path NL and 

replacement paths NL, PX and P2. 

96 



""""' 
~ 

c 

100 

80 

E 
f 60 
f 
e 
c 
t. 40 

(%) 

20 

0 
0 5 10 

(S,ML,NL,NL)- LOB ~ 
(S,ML,NL,PX) - LOB +­

(S,ML,NL,NL)- LOB/S .Q­

(S,ML,NL,PX) - LOB/S -7E-

15 20 25 30 
Cover(%) 

35 

Figure 6.5: State-based error detection on LOB and LOB/S 

6.2.3.3 Summary 

40 

It is obvious from the data presented in the preceding sections that state-based 

comparison is superior to path-based comparison; the envelope curve of the former 

method is everywhere greater than that of the latter, significantly so for effectiveness 

above 70%. Although this result was derived from testing on the LOB corpus, it 

can be expected to generalize; figure 6.5 shows that the behaviour of a state-based 

detector is very similar on the LOB and LOB/S corpora. For practical purposes 

then, one could use (S,ML,NL,NL) for applications where an effectiveness lower 

than about 90% is tolerable, and for which small savings in cover are important; 

otherwise, (S,ML,NL,PX) would be the best method. 

The performance curve of the optimum detector can be divided into two regions 

depending on whether or not it operates significantly better than a random flagging 

process on the errors which it has yet to detect. At any point along the curve, 

the number of undetected errors is proportional to the distance between the curve 

and the horizontal line representing 100% effectiveness. If a random flagging process 

(limited to previously unflagged ambiguous tokens) were begun at any such point, its 

performance would be represented by a line between that point and the point on the 

lOO% effectiveness line at which all ambiguous tokens were flagged. Figure 6.6 shows 

97 



~ 

c 

100 

80 

E 
f 60 
f 
e 
c 
t. 40 

(%) 

20 

0 
0 10 20 30 

Cover(%) 

(S,ML,NL,PX) *­
random 1-+­
random 2 .g_ 
random3 ~ 
random 4 A-

40 50 

Figure 6.6: State-based error detection compared to random flagging. 

several random performance lines plotted at various points along the performance 

curve for (S,ML,NL,PX). It can be seen that, for the LOB, the boundary between 

the two regions occurs slightly above 95% effectiveness, as this is the point at which 

performance approaches that of a random process. 

The boundary is distinct enough to admit the hypothesis that each region cor­

responds to a specific type of error: the first region to soft errors, about which the 

tagging model has some knowledge; and the second to hard errors, about which it 

has none. The model cannot hope do any better than chance on the detection of 

hard errors; fortunately, these seem to constitute less than 5% of the total error 

population. 99.9% of all (LOB) tokens will be either correctly tagged or soft errors, 

and all soft errors can be detected if a flagging level of 15% is accepted. 
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Chapter 7 

Conclusion 

This thesis is concerned with improving current statistical solutions to the problem 

of lexical disambiguation in natural language. Three goals were identified: finding 

a way to reduce the manual effort required to train an automatic tagger; improving 

tagging performance, given an optimum training method; and having a tagger detect 

its own potential errors. 

7.1 Methods 

Different approaches for each goal were compared experimentally by measuring the 

performance of an automatic statistical tagging system on a standard set of test 

corpora. 

The tagging system is explicitly based on a Markov model for natural language, 

in which states correspond to sequences of grammatical categories. Having a clearly 

defined theoretical basis facilitated the identification and computation of various 

interesting quantities such as the second most probable sequence of categories for a 

token sequence. 

Three corpora were used for testing: the LOB [38], a version of the LOB with 

a simplified tag set, and a French Hansard corpus. A one-million-word training 

segment and a smaller test segment (100,000 words for the LOB; 5,000 words for the 

Hansard) were extracted from different portions of each corpus. The idea of using 

three different corpora was to make the results-particularly the relative results, in 
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which different methods were compared-more general. 

7.2 Training 

Two ways of eliminating, and one of reducing, the manual effort required to train a 

tagger were tested. 

The first method involves the use of the unambiguous words which occur in 

any untagged corpus as a "naturally" disambiguated training set. This method 

proved to be very weak, both because it offers no good way of estimating lexical 

probabilities, and because the distribution of unambiguous category sequences does 

not seem to be typical. The performance of a tagger trained on the standard 

corpora with this method was about 10% lower than that of one trained on a tiny 

1,000 word hand-tagged corpus, so attempts at refining the algorithm were not 

considered worthwhile. 

The second method makes use of the reestimation algorithm to find a set of 

model parameters for which the probability assigned to an untagged training corpus 

by the model is a local maximum. The effects of three factors-the number of iter­

ations, the lexical and contextual components, and the initial parameter set-were 

tested to find the model which gave the best tagging performance. The optimum 

combination was found to be about 12 iterations with a combined-component model, 

starting from an initial set of parameters estimated (directly) from a tagged corpus 

of about 2,000 words. The performance of the resulting tagger was reasonable, but 

still significantly worse than one trained on a 10,000 word hand-tagged corpus. 

The final method is a semi-automatic bootstrapping approach in which a tagger 

is first trained on a small hand-tagged corpus, then used to tag a larger corpus 

and :flag potential errors for manual correction; the corrected corpus can be used to 

train an improved tagger. IT the :flagging algorithm is accurate, this procedure can 

be repeated with larger and larger corpora to generate a sequence of increasingly 

accurate taggers. Although only a preliminary investigation of this method was un­

dertaken, it shows considerable promise of being able to reduce the number of tokens 

which must be manually tagged in order to attain a given level of performance. 
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7.3 Performance 

The effort to improve tagging performance centered on two methods of probability 

estimation which are more powerful than the straightforward use of relative fre­

quencies: Good-Turing and order combination. Both of these techniques have been 

applied to natural language modelling by researchers in speech recognition, but nei­

ther has previously been used specifically for lexical disambiguation. Both methods 

are intended primarily to address the problem of making accurate estimates for 

events (category sequences or word/category eo-occurrences) which occur rarely or 

not at all in a training corpus. 

Good-Turing estimation modifies the observed frequency of an event-by an 

amount which depends on the number of other events which occurred with that 

frequency-prior to using it in the standard relative-frequency formula. It was 

found to yield a very slight gain of about .1% with a third order model. 

Combined order estimation is only applicable to probabilities for category se­

quences. It uses lower order estimates (ie estimates from shorter sequences) to re­

place those higher order estimates which are judged unreliable because they depend 

on frequencies below a certain threshold. When used with an optimum threshold 

value, this method was found to yield a gain of about .2% over pure Good-Turing 

estimates for a third order model. 

Although the gains from these two estimators were slight, they nevertheless 

combined to boost performance with a third order model on the LOB to 98.0% 

for disjoint test and training corpora, and 98.3% for identical test and training 

corpora. It was argued that these performance figures must be dose to the maximum 

attainable by the type of statistical method considered here. Supporting evidence 

for this contention was produced by extrapolating performance from other relevant 

factors: model order, tagging method and training corpus size. 

7.4 Error Detection 

The final portion of the thesis concerns automatic error detection. A general frame­

work for error detection was described, based on the premise that tagging errors 
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correspond to situations in which the model assigns similar probabilities to com­

peting alternatives. The framework accommodates several alternate tag sequences 

which may be compared using either sequence probabilities or individual tag prob­

abilities as criteria. 

The best method was found to be a comparison of tag probabilities between 

the most likely and the second most likely tag for each token. The number of 

errors detected with this method was found to increase rapidly as a function of the 

number of tokens flagged until the latter reached about 15% of the test corpus, 

at which point it levelled off quite abruptly. This behaviour led to the hypothesis 

that tagging errors fall into two categories: soft errors, about which the model has 

some knowledge, and hard errors, about which it has none. By flagging 15% of the 

LOB test corpus, the tagger was able to ensure that 99.9% of all tokens were either 

correctly tagged or were flagged soft errors. 

7.5 Future research 

The most promising area for future research indicated by this work is that of im­

proved error detection and bootstrap training algorithms. It is quite unlikely that 

significant gains in raw tagging performance can be achieved within the strict frame­

work considered here, but modifications to the framework, particularly those which 

incorporate longer-distance dependencies, would certainly be worth investigating. 
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Appendix A 

Lex: A Lexical Analyzer for 

Natural Language 

A.l Introduction 

This note describes lex, a lexical analyzer for natural languages. Lex is intended to 

be language-independent; it provides a basic algorithm which must be augmented 

by language-specific rules and data read in from external data files. The input to 

lex is any text file; the output is a listing of the words in the file, one per line, with 

one or more alternate tags-which may denote grammatical category or any other 

property defined by the user-assigned to each (note that lex does not attempt to 

perform tag disambiguation). 

A.l.l Nomenclature 

For the present purposes, lexical analysis will be taken to mean the process of 

converting an input text into a sequence of strings, called tokens (usually words or 

punctuation), and assigning to each token a set of alternate labels, called tags. Each 

tag is a free form string which is defined in the data files and is not interpreted in 

any way by lex. 

The nomenclature may be summarized as follows: 

token a string from the input, possibly modified in some way 
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tag a label assigned to a token 

tag set a set of alternate tags for a token 

A.1.2 Running Lex 

Lex requires four data files named token, diet, inflect and rules (see section A.3). 

Although these names are fixed, the location of the files may be varied: if not found 

in the current directory, they are sought at the paths contained in the LEXDIR and 

HOME environment variables, in that order. 

The syntax for invoking lex is as follows: 

lex -h, or 

lex [ -v I -x data I -g data] [text-file [lex-file I -o]] 

where: 

text-file is the input file to be analyzed; if omitted, lex reads from standard input 

and writes to the standard output. 

lex-file or -o specify that the output be written to lex-file or the standard output, 

respectively; if both are omitted, (and text-file was specified) the output is 

written to name.lex, where name is the base name of text-file. 

-h produces a help message 

-v selects verbose progress reports 

-x directs that the data sources specified by data be ignored. 

data may contain any of the letters T, D, I or R, standing for the token, diet, 

inflect and rule data files; or the letters t, d, i or r for the corresponding 

internal sources. The purpose of this option is mainly to allow the compiled­

in information in internal sources to be ignored for testing purposes; in the 

current implementation, this is only relevant for the dictionary. 

-g directs that C versions of the specified data files be written, in a format suitable 

for compiling and linking with lex source code. data has the same interpre­

tation as in the previous option, except that no distinction is made between 
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lower and upper case letters. The C data files are always written to the cur­

rent directory; each has the same base name as the data file from which it was 

generated, and an extension of .c. The input file text-file may be omitted with 

this option, in which case lex will stop after having generated the selected C 

data files. The purpose of having compiled-in data is to avoid the delay caused 

by reading large external data files. Currently, diet is the only data file for 

which this capability is provided. 

A.2 Algorithm 

The program first identifies some prefix of the remaining input as a token, then 

chooses a tag set for it. It consists of four steps, of which the last three are performed 

only if the previous step failed to find a tag set. 

A.2.1 Token Matching 

The first step is to identify the next token. This is accomplished by running two 

finite automata (DFAs) over the input in succession. The first is used to read 

through zero or more whitespace characters and locate the next character of interest. 

The second accepts a regular set which is intended to include all possible tokens; 

the next token is just that portion of the input which it matches, beginning where 

the first DFA left off. If no input is matched, then the next token is taken to be all 

input between the current character (inclusive) and the first character of the first 

string matched successfully by either of the two DFAs. 

Both of these DFAs are generated from regular expressions (REs) read from 

the token data file (see section A.3 for a complete specification). The second DFA 

identifies each matched token as belonging to one of a set of token types defined in 

the data file. 

Each token type may have an associated tag set which is assigned to any token 

of that type. Punctuation marks and special forms such as numbers, which can be 

described succinctly by REs, are good candidates for tagging at this step. Since 

this is the fastest method of assigning a tag set, certain frequently occurring words 
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such as articles could also be considered for inclusion in the regular set. 

Token types may also have a transform associated with them. Transforms are 

specifications for transforming strings in standard ways, as described in detail in 

section A.3. If a transform is associated with a token type, it will be applied to all 

tokens of that type. The application of a transform at this step is different from 

applications at later steps in that it is permanent: the original token cannot be 

recovered after the transformation has taken place. The purpose of this is to allow 

for the transformation of certain forms which are known not to be recognizable by 

later stages of the algorithm. For example, words which are split over two lines 

(ie, with a hyphen) could be joined together, or words containing capitals could be 

converted to lower case (if the dictionary contains only lowercase words). 

A.2.2 Dictionary Look-up 

The second step is to look up the token in a dictionary. This takes place in two 

stages: the first is a straightforward search for the token; the second is a check to 

see if the token is an inflected form of some word. 

The search stage consists of looking up the token in a hash table which contains 

the entries defined in the diet data file (section A.3). If the token is found, it is 

assigned the tag set associated with the entry. 

The inflection stage depends on the set of inflection rules defined in the inflect 

data file, which are interpreted and applied according to lex's model of a word. This 

is an abstract entity characterized by a set of attributes, each of which may take 

on a range of values (including a null value). Each vector in this attribute space is 

denoted by a unique tag; in theory, all combinatorially possible tags could be used. 

In practice however, the tag set is limited because some attribute values combine 

only with null values of other attributes ( eg when part of speech = noun, tense 

= null). Generally, a word will have a set of applicable tags, generated by fixing 

the value of some attribute(s) (usually part of speech) and letting the others vary. 

There is an inflected form of a word for each applicable tag, but these forms are not 

necessarily lexically distinct. 

The way in which a word inflects is modelled by assigning it an inflection class, 
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which specifies a mapping between some canonical form-which is stored in the 

dictionary-and all other possible inflected forms of the word. This mapping re. 

moves a fixed suffix from the canonical form and, for each tag (ie, valid combination 

of attributes), replaces it with another fixed suffix to create the inflected form cor­

responding to the tag. 

Although the model is straightforward when used to describe lexical generation 

as above, there are multiple ambiguities which affect recognition. First, a token 

must be tested for matches with a set of suffixes, each of which could be common 

to many different inflection classes. (Note that this applies to canonical forms as 

well, since they could be inflected forms of other words.) For each inflection class, 

the matching suffix must be replaced by the canonical suffix for the class and the 

resulting form looked up in the dictionary. If it is found, and if the class matches 

one of the inflection classes listed for the entry (there could be several, since the 

dictionary form could be common to several different words), then the set of tags 

associated with the class can be added to that for the current token. The reason 

that this is a set of tags rather than a single tag is that, for any inflection class, 

several inflected forms could be lexically identical; hence a single lexical form can 

have multiple tags. 

The only reason for having inflection rules is to save space, since exactly the 

same set of words could be specified by listing them all explicitly in the dictionary. 

In fact, this is a tradeoff, since the suffix matching step takes considerably longer 

than a single look-up. Three measures are used to speed the process somewhat. 

First, rules are chained so that only a single suffix match is ever performed on a 

token. Each rule has a list of rules having suffixes which are contained in its own. 

The longest possible suffix is always chosen to ensure that all applicable rules are 

in the list of the matching rule. 

The second measure is applied to inflection rules with a null suffix and null 

replacement strings. These rules perform the .function of associating some fixed tag 

set with every word in an inflection class without having to duplicate the tag set 

in the dictionary entries for all words in the class. The standard match sequence is 

redundant in this case, since it will apply to every word. Instead, a table of default 
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tag sets for each inflection class is maintained. After the first stage look-up, each 

retrieved inflection class for a word is checked against this table and the token's tag 

set is augmented with the results. 

Finally, tag sets for previously encountered tokens are stored explicitly, so that 

inflection rules do not have to be used more than once. Since about 98% of all 

tokens occur more than once in a typical corpus, this saves a significant amount of 

time. It also adds space, but for a reasonably extensive dictionary and a moderate 

sized corpus, this will be less space than would be required to store the dictionary 

in explicit form in the first place. 

A.2.3 Transformation 

This step attempts to identify a variant form of a token such as one containing 

capital letters, apostrophes, hyphens, periods, etc, and transform it into a standard 

form which may be found in the dictionary. It uses a set of transformation rules 

contained in the rules data file, each of which consists of a triggering RE pattern 

and a token transform. 

The rules are applied in the sequence in which they are defined in the data file. 

Each rule is applied to a list of transformed tokens (to start with, this contains only 

the original token) created by its predecessors, beginning with the most recent and 

working backwards. If the rule's triggering RE matches any token in its entirety, it 

is applied to create a new token. If the new token is found in the dictionary, the 

search terminates; if not, it is added to the end of the list. 

Some rules can split the token into a prefix and a suffix. Although subsequent 

rules operate only on the prefix, the suffix is retained (and possibly added to by later 

rules of the same type). If a look-up succeeds on a prefix, the corresponding suffix 

is pushed back onto the input, to be read again as the next token. This capability 

should be taken into account when defining token types for step 1: since there is no 

provision for performing the opposite operation of concatenating successive tokens, 

an attempt should be made to recognize the longest possible token from the input. 

It should be noted that the algorithm for this step has the potential to grow 

exponentially in the number of rules applied. In practice, this will not happen, 
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since the list of transformed tokens is limited in length (to 20), but care should 

nonetheless be taken in the formulation of triggering patterns and the selection of 

rule order. 

A.2.4 Guess 

As its name implies, this is the last resort. The original token is matched against a 

set of RE patterns defined in the rules data file. If a match occurs, a corresponding 

token set is inferred. 

If this step does not succeed, lex assigns the error tag "???" to the token. 

This can, of course, be replaced by any other tag or set of tags by associating the 

preferred tag( s) with a wild-card pattern which matches all possible tokens. 

A.3 Data Files 

The program uses four external data files, as mentioned in the previous section. 

They are: 

token defines token types 

diet the dictionary 

inflect contains inflection rules 

rules contains transform and guess rules 

A.3.1 Lexical Conventions 

All data. files share common lexical conventions for data. items, which may be sim­

ple or compound. Simple items are character strings, delineated by whitespa.ce or 

surrounded by double quotes. Compound items are lists of items (either simple 

or compound), delineated by parentheses. A null simple item is a pair of double 

quotes; a null compound item is a pair of empty parentheses. 

Certain characters have special interpretations. They are: 

; begin a comment which ends at the next newline 
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- interpret any immediately following digits as decimal character codes 

( begin a compound item 

) end a compound item 

" Begin and end a quoted string. To quote a double quote, use its code: 

-34. 

A.3.2 Syntax 

An Extended Backus Normal Form (EBNF) syntax convention, somewhat modified, 

is used in the descriptions of the data files which follow. The use of m eta characters 

is illustrated in the following table: 

form meaning 

a=b b is the definition of a 

[item] 0 or 1 instance of item 

{item} 0 or more instances of item 

+{item} 1 or more instances of item 

item1 I item2 either item1 or item2 

lowercase letters a symbol 

UPPERCASE letters a literal 

It should be noted that parentheses() are used as literals throughout. 

A.3.3 Token File 

This file contains definitions for token types and for the whitespace between tokens. 

Its syntax is as follows: 

token-file= (({re-class-list}) whitespace-def +{token-def}) 

token-def = (re ({tag}) [transform]) 

transform= (affix I map I pat-rep) 

affix =A pfx 

map = M applic from to 

from, to = char-char I char 

pat-rep = P applic pat rep 
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applic = Lft I All IRgt 

where: 

re-class-list is a character class definition which is active in every subsequent reg­

ular expression (RE) in the file; the syntax for class definitions and REs is 

described in re.doc. To prev.ent special characters from being intercepted by 

the data file reader, class definitions and REs should be enclosed in quotes. 

whitespace-def is an RE which defines the set of patterns which are to be skipped 

when searching for tokens, as described in section 2. 

token-def is a single token type definition 

re is an RE which defines the set of tokens corresponding to the token type as all 

strings which match a prefix of the input after whitespace has been skipped. 

tag is a character string which identifies a tag; it is a single element in the tag set 

for the token. Any future instance of the same string will be considered to 

denote the same tag. 

transform is a string transformation 

affix is a transformation which splits the string into a prefix (the part which is 

matched by the RE pfx) and a suffix (the remainder of the string). 

map performs a character mapping on the string, taking any character in the se­

quence from to the character at the same position in the sequence to. These 

sequences must be of the same length. Applic specifies that the mapping 

be applied to the leftmost character only, to all characters, or to all but the 

leftmost character (Lft, All, Rgt respectively). 

from, to designate sequences of characters. The form char-char designates a range 

of characters; the form char designates a single character. For example, ad-fz 

designates the sequence "a,d,e,f,z". 

pat-rep replaces portions of the string which match the pat RE with the string 

rep; applic specifies that only the leftmost, all, or only the rightmost matching 
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portions are to be replaced (Lft, All, Rgt respectively). Note tha.t a. rightmost 

transform can ha.ve unintuitive results due to the algorithm employed: work 

ba.ckwa.rds over the string, trying to match the pattern (in a. forward direction) 

starting at each character. 

A.3.4 Diet File 

This file contains the dictionary. Its syntax is as follows: 

diet-file = ( {entry}) 

entry = (word infl-class (+{tag})) 

where: 

entry is an entry for each word 

word is a single word form. It may appear in multiple entries. 

infl-class is an inflection class label for the word. It may be any string-subsequent 

occurrences of the same string denote the sa.me inflection class. 

tag is a character string which identifies a tag; it is a single element in the tag set 

for the word. Any future instance of the same string will be considered to 

denote the s~e tag. 

Note that duplicate entries in this file (ie those whose word, inflection class, and 

tag set are exactly the same as some previous entry) are harmlessly discarded. 

A.3.5 Inflect File 

This file contains the set of inflection rules used to match inflected forms of words 

in the dictionary. Its syntax is as follows: 

inflect-file = ( {i-rule}) 

i-rule = ( sfx +{replacement}) 

replacement: (rep-string +{ ta.g-pair}) 

tag-pair = (infl-class (+{tag}) 

where: 
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i-rule is an inflection rule 

sfx is a suffix which identifies words to which the rule applies 

rep-string is a string which replaces the suffix for the dictionary look-up 

infi-class is an inflection class label for the word 

tag is one of a set of tags which is inferred for a word if the word matches sfx and 

the form created by replacing sfx with rep-string is found in the dictionary 

with an inflection class which matches infl-class 

A.3.6 Rules File 

This file contains the set of transform and guess rules which are applied to words 

not found in the dictionary. Its syntax is as follows: 

rules-file= (+{re-class-def} ({t-rule}) ({g-rule})) 

t-rule = (trigger [prev-cond] transform) 

g-rule = (trigger [prev-cond] (+{tag})) 

prev-cond= tag I !tag 

where: 

re-class-def is a character class definition which is active in every subsequent reg­

ular expression (RE) in the file; the syntax for class definitions and REs is 

described in re.doc. To prevent special characters from being intercepted by 

the data file reader, class definitions and REs should be enclosed in quotes. 

t-rule is a transform rule 

transform is a transform specification as described in section 3.1 

g-rule is a guess rule 

trigger in an RE which must match a token to trigger a rule 

prev-cond stipulates that a previous tag must match the given tag-or must not 

match if the !tag form is used-in order for the rule to be applied. The test 

always fails if the previous token had more than one tag. 
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tag is one of a set of tags which is inferred for the current word if the g-rule is 

triggered 

A.4 Improvements 

Speed is the main problem. Two causes for this can be identified. First, it takes 

time to parse and read in the four data files. Adding the capability of compiling C 

versions of all data files (currently possible only with the dictionary) would help, 

although some initialization time would probably still be required (to make entries 

into hash tables, etc) unless this was done very cleverly. Another improvement 

would be to allow multiple input files to be analyzed following a single data file 

read. 

Second, the process of applying inflection rules is very inefficient under the 

current implementation, as each new form requires a separate look-up in the hash 

table. A better way would perhaps be to store the dictionary as a special trie: once 

the prefix of a word has been found, a list of alternate suffixes could be quickly 

tested by working forward from that point in the trie. 
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Appendix B 

Lexical Analysis of French 

B.l Introduction 

This is a description of a French lexical analyzer built around lex, a language­

independent lexical analysis program, and the Dictionnaire Morphologique du Fran­

~aise (DMF) [35]. The program reads a French text, identifies tokens (words or 

punctuation marks) and assigns to each token a set of tags. Each tag corresponds 

to a unique grammatical characterization; in a specific grammatical context, only 

one of the tags associated with a word is appropriate. 

The algorithm used by lex to find a set of tags for a token consists of four steps, 

executed in sequence until one succeeds: tokenization, dictionary lookup, token 

transformation and guess. External data files contain language-specific information 

for each step: token for tokenization; diet and inflect for lookup; and rules for 

transformation and guess. A detailed description of the algorithm and the format 

of the data files is given in the program documentation for lex. 

Most of what follows-sections 2 through 4-is a description ofthe design ofthe 

data files. This was guided by two principles: compatibility with the DMF, which 

forms the core of the language-specific knowledge in the analyzer; and reliance 

on a small number of general rules, rather than a large number of specific ones, to 

describe various lexical phenomena. The analyzer was tested on two large corpora of 

French text (Hansard transcripts and CRTC hearing proceedings); the final section 

describes the results. 
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B.2 Token Data File 

The token file enumerates token types, each of which is described by a regular 

expression. Some token types may be assigned tag sets in this file; tokens of these 

types are tagged by lex as soon as they are matched. This is appropriate for types 

comprising a single token or those whose tokens are all expected to display similar 

grammatical behaviour. 

Token types are categorized as words, numeric expressions, or punctuation, 

based on regular expressions over classes of characters. Four classes partition the 

ISO character set: letters (upper and lower case and all accented forms), deci­

mal digits, whitespace and special characters (all remaining characters). A fifth 

class, special punctuation, is a subset of the special character class and consists 

of the hyphen, period, and apostrophe characters. The categories of token types 

are described in the following sections, with reference to this system of character 

classification. It should be noted that the whitespace class is of special significance 

to lex, which uses it to find the beginning of the next token; this does not however, 

preclude its inclusion in some tokens. 

B.2.1 Words 

Most words are defined but not tagged in the token file; with a few exceptions 

described below, tagging is left to later stages in the algorithm. Since later stages 

have the ability to split a token if necessary, but not the ability to join successive 

tokens, it is essential that word definitions in the token file include the longest 

strings which have the potential of being recognized as words. The following sections 

identify three main types of words. 

B.2.1.1 Standard Words 

Words come in a number of variant forms which can make it difficult to distinguish 

between a word and surrounding punctuation. As it is hard to anticipate every 

possible valid variant, standard words are modelled by a simple regular expression 

which is correct in the majority of cases. This defines a word as any string made up 
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of letters and special punctuation characters which contains at least one letter and 

does not contain two adjacent special punctuation characters. Thus, chef-d'oeuvre 

is a word, but chef-d'oeuvre would initially be tokenized as chef-. This example 

illustrates the main reason for proscribing adjacent special punctuation characters 

within words: it prevents multi-character punctuation marks such as dash, ellipsis 

and doubled single quote from being erroneously included in words. In the example, 

since chef exists in the dictionary, the transformation rule stage (see section 4) would 

push the hyphen back on the input and the final tokenization would be two words 

separated by a dash: chef, -,and d'oeuvre. 

One possible problem with the model is that it does not allow potentially valid 

combinations of special punctuation characters such as".-", which do not correspond 

to a multi-character punctuation mark, to occur within a word. However, these seem 

to be very rare in general text (they are non-existent in the Hansard corpus). In 

any case, none of the nine possible combinations occurs in the DMF, so these would 

not be recognized without an augmented word list. 

Another problem is that any special punctuation character which is contiguous 

with a word will always be included in its token, whether it was intended to be part of 

the word or not. This is in keeping with the goal, described above, of always finding 

the longest possible token which is potentially a word, but it leads to a consistently 

wrong initial tokenization for some common combinations, such as words followed 

by a sentence-ending period or surrounded by single quotes. For most strings, this 

problem-although detrimental to performance-does not result in errors, as the 

transformation step eventually separates the word from the punctuation. However, 

a few strings will always be tokenized erroneously. For example, an '1' would be 

analyzed as a quote followed by an ell apostrophe since the latter token is in the 

dictionary, rather than a quoted ell as would probably have been intended. Errors 

of this kind may be an inevitable consequence of the attempt to provide for forms 

such as abbreviations which end with a period or words which begin or end with 

an apostrophe-it is difficult to see how these could be eliminated on the basis of 

lexical knowledge alone. 
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B.2.1.2 Broken Words 

These are words which are broken over two lines, with a hyphen to mark the break. 

More precisely, they consist of two standard words as defined in the previous section, 

separated by any amount of whitespace containing at least one newline character, 

and of which the first word ends in a hyphen. They are concatenated into a single 

token, with the intervening whitespace removed. Hyphens are left in because their 

removal would be irreversible and would cause true hyphenated words to be missed. 

The transformation stage strips hyphens when required. 

B.2.1.3 Expressions 

An expression is a sequence of words which can be sometimes be treated as a unit 

for grammatical purposes. Some special expressions, such as quant a or parce que, 

always form such a unit: any tags which are normally assigned to their constituent 

words are always irrelevant within these expressions. Although general expressions 

require more complex treatment, members of this special class can be tagged exactly 

as if they were words. Since lex provides no mechanism for assigning a single tag to a 

sequence of tokens, it was considered appropriate to identify this type of expression 

as a single token. Since each must be explicitly described by a regular expression, 

it is most efficient to assign tags at this step as well, although it would be possible 

to do this during the lookup stage, as is normal for other word tokens. 

The DMF contains numerous expressions; the problem of determining which 

ones form invariant units is not a trivial one. However, it is obvious that any 

expression which contains a word having no separate entry of its own-as do the two 

listed above-must be a member of this class. All such expressions were extracted 

from the DMF and nine of the most common ones were included in the token file. 

(More could have been, but lex requires considerable space to store, and time to 

parse, a large regular expression.) The definitions for these unit expressions allow 

for variation in the amount of whitespace between words, the case of the initial 

letter and the elision of the final vowel ( eg parce que or Parce qv.,. Provision was 

not made for variant forms resulting from inflection or the insertion of extra words 

( eg notamment in afin notamment de), as this would have lengthened the regular 
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expressions considerably. Because of this, some words such as parce will occasionally 

go unrecognized. 

B.2.2 Numeric Expressions 

This category includes any string of non-whitespace characters which contains one 

or more decimal digits and begins and ends in a letter or a decimal digit. These 

make up about 1% of the tokens in the Hansard corpus, and take on a variety of 

grammatical roles which include quantifier, cardinal, ordinal, and proper noun. It is 

not clear that this list is exhaustive; such things as dates, for example, could behave 

in grammatically unique ways. Because of this ambiguity, and the fact that it is 

difficult to assign any subset of these roles to any subset of tokens in the category, 

it was decided to assign the single tag NN to all numeric expressions. 

The stipulation that a numeric expression be bounded by a letter or decimal 

digit is made to prevent valid punctuation marks which immediately border the 

expression from being included in its token. Since numeric expressions-unlike 

words-are tagged solely during the tokenization stage, there is no opportunity for 

these marks to be pushed back onto the input later. 

B.2.3 Punctuation 

This includes all standard marks as well as all unknown characters. Most are single 

characters: the exceptions are dash, which comprises one, two or three contiguous 

hyphens; ellipsis, which comprises two or three contiguous periods; doubled single 

quote, which comprises two contiguous single quotes; and doubled back quote, which 

comprises two contiguous back quotes. Tag labels for most single-character marks 

consist of the character itself; those for the multi-character marks are "-", " ... " 

and a double quote, respectively. 

Certain marks are considered close enough in grammatical usage to warrant 

being grouped under a single tag. These include all varieties of quotation mark, 

which are tagged with a double quote (no distinction is made between left or right); 

left brace, bracket and parenthesis, which are tagged with a left parenthesis; and 

right brace, bracket and parenthesis, which are tagged with a right parenthesis. 
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Characters in the special punctuation class require special consideration because 

they can begin or end words. They should only be considered punctuation when 

followed by whitespace (this is a sufficient condition because lex tokenizes left to 

right). There is no need to explicitly impose this condition, however, due to the 

fact that lex always matches the longest possible prefix of the remaining input. For 

example, the string - able can only be tokenized as a dash followed by the word 

able. The string -able, on the other hand, is ambiguous because it can be tokenized 

as above or as a single word. Since the word -able is a longer prefix of the input 

than the dash '-' however, the string will always be tokenized-as intended-as a 

single word. This of course applies to the initial tokenization only; if no dictionary 

entry existed for -able, the transformation stage would strip the hyphen. 

The final class included under this heading is that of unknown characters: any 

special characters which are not considered punctuation. It is important that these 

be tagged during tokenization to avoid their being assigned a default set of tags, 

intended for words, by the guess stage. They are tagged as X. 

B.3 Diet and Inflect Data Files 

These files contain the dictionary and a list of inflection rules which are used to 

recognize inflected forms of the words in the dictionary. They were created from 

the DMF's main dictionary and inflection tables with the help of a set of conversion 

programs. This process was mechanical but quite involved; it is described in detail 

in the following sections. 

B.3.1 Character Set 

The first issue concerns the method of handling the ISO character set in which 

the DMF is encoded. French corpora which do not have any representation for 

accents cannot be analyzed properly using the DMF in its current form-a seven­

bit ASCII version is required. To create one, and to facilitate working with non­

ISO compatible editors, an ISO-to-ASCII conversion program (iso) was written. It 

has three different modes of output: a viewing mode, which creates a facsimile of 
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each accented character using two or more ASCII characters; a strip mode, which 

removes accents from characters; and a code mode, which represents ISO characters 

by decimal codes, in a format compatible with the lex data file reader. 

Since the Hansard corpus is bilingual, and since useful information is lost when 

accents are removed, the version of lex described here uses ISO data files. 

B.3.2 Mnemonic Labels 

DMF mnemonic labels for inflection class, POS, and some attributes were used. 

Labels for inflection classes were used verbatim; others were mapped into (possibly) 

different strings for compactness and to allow greater control of lex's tagset. All 

DMF labels used by lex as well as their mappings to lex labels are defined in the 

file wordtagset.c; to ensure consistency, this data was used by all of the conversion 

programs described below. Future versions of the DMF should be checked against 

wordtagset.c to ensure continuing compatibility. 

B.3.3 Dictionary Conversion 

B.3.3.1 Conversion of dmfp24.unx 

The conversion of the DMF dictionary file (dmfp24.unx) into a lex diet file was 

performed by the program dmf2dict, which reads each entry in the DMF and writes 

a corresponding entry in diet format. Words are copied verbatim from the DMF; 

tags and inflection class labels are created from the DMF's mnemonic labels as 

described below. 

Dmf2dict scans the labels associated with a word in the DMF entry left to right, 

looking for a POS, an inflection class and any known attribute labels. Exactly one 

POS and at most one inflection class label must be found, or an error is signalled; if 

no inflection class label is found, a default label is used. When the entire entry has 

been scanned, a tag is created by appending the strings into which the attribute 

labels were mapped to that into which the POS was mapped. A diet entry consisting 

of the word, the DMF inflection class label (unchanged), and the tag is then written. 

Note that the order of the mapped attribute strings within the tag is the same 

order in which the attribute labels were listed in the DMF entry. This means that 
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and quantifier entries by replacing the initial 'n' with 'a', 'o', and 'q', respectively. 

Changes to the inflection class tables were also required, as described below. 

B.3.3.4 Omitted and Added Forms 

Dmf2dict has the capability of omitting entries which are associated with certain 

labels. The only such label was loc, which identifies expression entries. These 

were omitted because the sequence of words in the expression does not necessar­

ily always act as an expression and hence should not automatically be tagged as 

such. Some exceptions to this rule are tagged during tokenization, as described in 

section B.2.1.3. 

Some other special forms were manually deleted from the diet file created by 

dmf2dict. These were the unmarked contractions au, aux, du and des; they were 

omitted to allow them to be handled specially during the rules phase, as described 

below. 

Some very common words which are not in the DMF were manually added to 

the diet file. These included d', j', 1', qu', jusqu', and lorsqu'. 

B.3.4 Inflection Rule Conversion 

This stage involved the conversion of DMF inflection tables to lex inflection rules. 

Of the four inflection tables, two-the one for pronouns, and that for determiners­

were ignored. These tables do not add any new word forms to the DMF's lexicon, 

although they do add additional tags to some words. In most cases, the additional 

tags represent fairly fine distinctions and were not considered to be worth the extra 

ambiguities which they induced. 

The verb inflection table was converted by the program verb into an intermediate 

format which contains many duplicate suffixes, each associated with a replacement 

string, an inflection class and a single tag. 

The program noun is used to do the same thing for noun-format inflection ta­

bles. Due to the inflection class problem mentioned in the previous section, it was 

necessary to create separate tables for each of the parts of speech formerly assigned 

the 'n' inflection class. For quantifiers and ordinals, the tables are small, since they 
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used only a few of the 'n' inflection labels (11 and 3 respectively). Since this is 

not the case for adjectives, the entire noun inflection table was duplicated, with 'n' 

class labels changed to 'a' class labels. The noun program takes a string as input, 

which it uses as the main POS label and places at the beginning of each tag which 

it writes. For the four new inflection tables, the strings NC, AQ, OD and QN were 

used. 

The final stage in inflection rule conversion was performed by the program mr· 

grules, which merges identical elements in successive rules, beginning with suffixes 

and ending with tags. Mrgrules requires that its input be sorted so that rules in 

the intermediate form which have identical elements are adjacent. This was ac­

complished by concatenating the five intermediate inflection rule files and using the 

unix sort program on the concatenation. The final output from mrgrules is thus an 

inflect data file with rules in the proper format which includes all inflection classes. 

B.4 Rules Data File 

This file is divided into two parts, the first containing token transformation rules 

and the second containing guess rules. Since the two types of rules operate inde­

pendently, they are discussed in separate sections below. 

B.4.1 Transformation Rules 

Transformation rules are transformations which are applied to tokens which could 

not be found in the dictionary. Each consists of a triggering regular expression which 

defines the set of tokens to which it applies, and an action, which can be a character 

mapping, a pattern replacement, or a suffix removal (the latter with the intention 

that, if the rule succeeds, the stripped suffix is pushed back onto the input to be 

recognized as the next token). Rules are applied sequentially in order of occurrence 

in the file to all results of all previous rules (including the original token), working 

backwards from the most recent, until one of the transformed tokens is found in the 

dictionary. 

Due to the design of the token file (see section 2), the only tokens which will be 
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encountered at the transformation stage are words. These may be divided into five 

classes of interest, defined by the presence of capital letters, periods, apostrophes, 

hyphens and unmarked contractions. Although these classes are not disjoint, it is 

convenient to discuss them separately because a distinct set of transformation rules 

applies to each. The classes and their rules are described in the following sections. 

A discussion of the optimum ordering of the four rule sets is postponed until the 

final section. 

B.4.1.1 Capitalized Words 

Most capitalized words in any corpus will require conversion to lowercase, since very 

few entries in the DMF are capitalized. To avoid interfering with other words­

included in the token because they are attached with an apostrophe or hyphen­

before they have been looked up in their original form, lowercase conversion is 

performed only on the first letter of a word. Words consisting solely of capitals can 

easily be converted prior to lexical analysis if they are frequent enough to present 

a problem. 

There are four usual reasons why a word is capitalized: it is part of a title, it is 

capitalized by convention, it begins a sentence, or it is a proper noun. Words in the 

first three categories should be converted to lowercase and looked up in the dictio­

nary; proper nouns should not, as there is a possibility that they have a homonym 

whose tags they will erroneously be assigned. There is clearly no way to identify 

proper nouns, but sentence-initial capitals are easy to pick out. This observation 

suggests a strategy of converting only those words which begin a sentence, thereby 

hopefully circumventing the homonym problem. Hit is assumed that there is a 

guess rule which tags all capitalized words as proper nouns, the performance of the 

sentence-initial strategy (B) compared to the default strategy of making all words 

lowercase (A) will depend on the frequencies of capitalized words as follows: 

error proportion for A = P X PH 

error proportion for B = Pp x PH + W - W F 

where 
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P is the proportion of proper nouns in the corpus 

PH is the proportion of proper nouns with homonyms in the dictionary 

Pp is the proportion of proper nouns in the corpus which immediately follow a 

period 

W is the proportion of capitalized non proper nouns in the corpus 

Wp is the proportion of capitalized non proper nouns in the corpus which immedi­

ately follow a period 

For the Hansard corpus, these proportions were estimated as follows: P = 3%, 

Pp = 1%, W = 6%, Wp = 3%. This makes A the better choice, regardless of 

the value of PH, so it was the strategy selected. However, it is not clear that the 

Hansard corpus is representative-the value for W in particular seems suspiciously 

high-so strategy B should perhaps be considered for other corpora. 

Another idea would be to add a proper noun tag to all capitalized words which 

do not follow a period. Unfortunately, this is not currently possible with lex. In 

any case, it would benefit only PH X (P- Pp) of the words and would unnecessarily 

increase the ambiguity of W- Wp of the words (assuming strategy A is used). If 

PH is estimated at 20%, the relevant proportions are .2% and 3% respectively. 

B.4.1.2 Words Containing Periods 

These include acronyms, abbreviations and tokens to which a sentence-ending period 

has been erroneously appended. Tokens in the first two categories which have not 

been found in their original form in the dictionary will probably not benefit from 

a transformation. In an attempt to recognize tokens in the latter category, a suffix 

removal rule was used to strip trailing periods. 

The problem is to distinguish between tokens to which this rule can be usefully 

applied and those to which it cannot. Although it is obviously not foolproof, a fairly 

good heuristic is to take the presence of periods within the token as indicative of 

an acronym-accordingly, such tokens were not included in the triggering pattern 

for the period stripping rule. 
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B.4.1.3 Words Containing Apostrophes 

For contractions marked with apostrophes, a suffix rule was used to split the token 

after the first apostrophe. For example, j'ai becomes j' and ai. This works because 

prefixes for most common contractions are in the DMF. 

Apostrophes occurring at the beginning or end of a word can be single quotes 

which have been erroneously tokenized with the word. Suffix rules were used to 

separate the quote mark from the word in both of these cases. To make the rule 

work when a quote precedes a word, an entry for the single quote character was 

added to the dictionary. Thus the token 'octobre would be first split into ' and 

octobre. Since the single quote is in the dictionary, the rule would succeed and 

octobre would be pushed back onto the input. 

The rule for apostrophes and those for single quotes can interact. If the rule 

for apostrophes comes first, any tokens to which it has been unsuccessfully applied 

will match the triggering regular expression for the quote rule which strips a trailing 

single quote. For example, the token aaa'bbb would be split into aaa' and bbb by the 

apostrophe rule. If aaa' is not in the dictionary, it will be converted into aaa and 

' by the quote rule; this will probably result in an error, as apostrophes embedded 

within words are not usually intended as quotes. To avoid this problem, the quote 

rules were defined before the apostrophe rule, thereby precluding any possibility of 

interaction between the two. 

B.4.1.4 Words Containing Hyphens 

Before considering true hyphenated words, there are two artificial forms, created 

during tokenization, which must be dealt with: words which were contiguous with 

a dash and to which the first hyphen in the dash was appended, and broken words 

which were tokenized with an extra hyphen inserted. The first of these forms re­

quires a suffix rule to push a trailing hyphen back onto the input; the second a 

replacement rule to strip all hyphens. Rule order for the two must be as indicated, 

otherwise trailing hyphens would be deleted rather than pushed back to form part 

of the dash. Both rules have potential side-effects for normal tokens, but neither 

is harmful. The first will cause any valid words with a trailing hyphen to be inter-
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preted as being followed by a dash, which is probably as likely an interpretation as 

any. The second will allow words with variant hyphenated forms to be recognized. 

True hyphenated words to which neither of the previous two rules apply are 

likely to be either a series of words joined with hyphens, or standard affixes joined 

to words. In either case, it is reasonable to split the token at the hyphen( s) in an 

attempt to recognize its component parts. Two rules were used to accomplish this: 

the first is a suffix rule which splits the token after the first hyphen and the second 

is a pattern rule which removes a trailing hyphen. The idea is that the first rule 

tests for the presence of a known prefix (which are listed with trailing hyphens in 

the DMF) and the second will test for an ordinary word; rule order must obviously 

be preserved. 

There are two deficiencies in these rules: they do not test for known suffixes, and 

they stop at the first unrecognizable component of a hyphenated form. Although 

it would require an awkward rule set, both of these problems could be corrected; 

the main reason for not doing so is that it would be detrimental to speed. The 

reason for choosing to recognize prefixes but not suffixes is that there are more of 

them listed in the DMF (741 versus 295), and because they seem more likely to be 

attached with a hyphen (ie, instead of being con catenated directly). 

B.4.1.5 Unmarked Contractions 

There are four very common contracted forms in which two words are merged with­

out explicit markings: au, aux, du and des. These forms correspond to a preposition 

followed by a determiner (eg du = de+ le), and it is most accurate to tag them as 

such. To do this, a pattern rule was first applied to split each form into two dummy 

constituents, separated by a period; eg, du becomes de.le. An affix rule was then 

used to push the second constituent, beginning with a period, back onto the input. 

The final tokenization is therefore a preposition, eg de, followed by a determiner 

marked with a period to indicate that it is an artificial token, eg .le. Entries for .le 

and .les, tagged as determiners, were added to the dictionary to make this work. 
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B.4.1.6 Ordering for Correctness 

The order of application of transformation rules can affect both the correctness and 

speed of the analysis. Although the ordering of each of the four rule sets (for words 

containing capital letters, periods, apostrophes and hyphens) must be as specified 

in the previous sections, the order of the sets themselves can be varied and should 

be chosen to optimize performance. 

The comparative analysis of alternate sequences of rules is simplified by the 

fact that each of the rule sets defined in the previous sections operates on words 

with a single distinguishing feature. Rules ca.n only interact on words which are 

characterized by two or more of these features. Most interaction occurs on words 

with exactly two features, as those with three or more are rare. This suggests that 

an analysis which considers only pairs ofrules (rather than triples or quadruples) is 

appropriate. Moreover, since the last set of rules described in the previous section 

(those for unmarked contractions) operate only on four specific tokens, they will not 

interact with any other rule set except the one for capital letters so the correctness 

requirement in that case can obviously be satisfied by placing the contraction rules 

after the capital rules. The discussion which follows therefore applies to only the 

first three rule sets. 

If A and B are any two rules which apply to some token x, call xA the string 

resulting from A acting on x, xB the string resulting from B acting on x, and xAB 

the string resulting from B acting on xA. The string sequence resulting from the 

application of AB to xis then xA, xAB, xB and that resulting from the application 

of BA to xis xB, xBA, xA. Both of these sequences will be generated only up to 

the first string which is found in the dictionary. Because the rules defined above 

are commutative, xBA = xBA for all x to which both A and B apply. There is 

therefore no string generated by a particular sequence of two rules which is not 

eventually generated by the inverse sequence. This does not mean that order is 

irrelevant however. Consider the sequence AB above and suppose that xB is in the 

dictionary and is a valid interpretation of x. If xA is also in the dictionary, but is 

invalid for x, then AB will make a mistake because it will generate only xA. BA 

will not make a mistake because it will generate only xB. 
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This is illustrated by the token A vant-corps, to which the capital and hyphen 

rules apply. Ignoring stripped suffixes, the strings potentially generated by the 

capital/hyphen sequence and its inverse are, respectively: 

avant-corps, avant-, avant, Avant-, Avant 

A vant-, A vant, avant-, avant, avant-corps 

The capital/hyphen sequence will therefore stop after generating the correct inter­

pretation, avant-corps, since this word is in the dictionary. The inverse sequence 

will stop after generating the incorrect interpretation, avant, since it is the first 

word in the dictionary. 

The goodness of any rule sequence AB can be characterized by the probability 

that it finds a valid interpretation for some token x to which both A and B apply: 

Pr(AB!x) = Pr(xAix) x Prd(xA) + Pr(xAB!x) x Prd{xAB) x !Prd(xA) 

+ Pr(xB!x) x Prd(xB) x !Prd(xA) x !Prd(xAB) 

where Pr(ylx) is the probability that the transformed string y is the correct 

interpretation of x, Prd(y) is the probability that string y will be found in the 

dictionary, and !Prd(y) = 1 - Prd(y). The three terms in the expression are the 

probabilities for each of the three strings generated by AB; the negated factors in 

the second and third terms are the probabilities that the preceding strings will not 

be found in the dictionary. 

It is possible to estimate the individual probabilities in this expression. Con­

ditional probabilities can he obtained from a sample of tokens to which both rules 

apply by (hand) evaluating each of the three alternate interpretations and counting 

the proportion of correctness for each. Dictionary probabilities can be obtained 

by selecting a sample of strings of a given form from a corpus and counting the 

proportion of successful lookups. (It is tempting to count forms in the dictionary 

itself, but this would not take token frequencies into account.) 

The tedium of making estimations is obviated by some observations. First, any 

rule pair for which the three forms of generated strings are disjoint with respected 

to membership in the DMF is order independent. For example, if AB generates xA, 

xAB, and xB, but it is known that at most one of these strings can be in the DMF 
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for any x, then BA will always yield the same result. The rule pairs capital/period, 

capital/apostrophe and apostrophe/period can be eliminated from consideration on 

this ground. 

The remaining three pairs of rules all contain the hyphen rule set as a mem­

ber. For the pairs hyphen/capital and hyphen/period, placing the hyphen rule last 

corresponds to trying the entire hyphenated token (with the period stripped or an 

initial capital made lowercase) before trying a hyphenated prefix. It seems obvious 

that this is the best order, because it gives precedence to hyphenated words which 

are in the DMF over any prefixes ofthe same words which are also in the DMF. 

The situation is less dear, and the interaction more complex, for the final pair 

of rules, those for apostrophes and hyphens. These combinations are too rare, 

however-they occur in only 11 tokens out of almost 800,000 in the CRTC corpus­

to justify an exhaustive analysis. 

B.4.1. 7 Ordering for Efficiency 

The simplest ordering for efficiency is to put those rules which are used most often 

first. Rule use in the CRTC corpus was as follows: 

capitals: 80326 applications 

apostrophes: 33969 applications 

periods: 17550 applications 

hyphens: 7399 applications 

This order meets the constraints discussed in the previous section. For the sake 

of clarity in the final version of the rules file, the period rule was placed before the 

apostrophe rule; this did not significantly affect performance. 

B.4.2 Guess Rules 

Guess rules are applied during the final stage of lex's algorithm if all transformation 

rules have failed. Each consists of a regular expression and a tag set; if a token 

matches the regular expression, it is assigned the corresponding tag set. 

The most obvious use for a guess rule is to tag all tokens which begin with an 

uppercase letter as proper nouns, as discussed in section B.4.1.1. The only other 
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orthographic characteristic which is clearly associated with a tag is the presence 

of leading or trailing hyphens, which are identified as affixes, in keeping with the 

DMF's convention. 

The tokens which remain unidentified after these rules are applied are not nu­

merous (about .3% of the CRTC corpus). Many seem to be spelling errors or 

English words, so it is doubtful whether derivational morphology would be useful. 

Since they obviously play some grammatical role, however, it was decided to tag 

them with generic tags for the three most common open word categories: common 

noun, verb and adjective. 

B.4.3 Results 

Lex analyzed the CRTC corpus, containing 792,856 tokens, at a rate of 1720 tokens 

per second. 

A random sample of 200 tokens was examined and found to 98.5% correct. 

Assuming that the distribution of the sample proportion is approximately Normal, 

this gives a 95% lower confidence bound of about 97%. 
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notation interpretation 

V= {vt, ... ,vM} word set containing M words Vi 

C = {c17 ••• ,cL} tag set containing L tags Ci 

0 = 01·· .OT corpus containing T tokens Ot, where each Ot = some Vi 

Table C.l: Nomenclature 

a training corpus-one from which HMM parameters are inferred; lexed corpora 

can also serve in the role of a test corpus-one which is used to test the tagging 

performance of the system. 

A lexed corpus consists of a series of tokens (occurrences of words or punctu­

ation), one per line, each of which is followed by at least one tab character and a 

space-separated list of potential tags for the token. Lists of tags are assumed to be 

identical for all tokens of the same word. No restrictions apart from those which are 

implicit in this definition govern the orthography of tokens or tags. Neither tokens 

nor tags have any intrinsic significance to ytag: the system is language independent, 

and any file in the proper format will work. 

A tagged corpus has exactly the same format, except that only one tag (pre­

sumably the correct one) is listed for each token. Because tags depend on context, 

different tokens of the same word may be associated with different tags. 

Corpora and vocabulary are formally represented as shown in table C.l. 

C.1.3 Hidden Markov Models 

An HMM consists of a set of states, a set of output symbols, and three probability 

distributions. It may be viewed as a source which enters successive states and 

generates one output symbol per state. The initial state, transitions between states, 

and the association between states and symbols are all random processes governed 

by the HMM's probability distributions. The formal components of an HMM are 

given in table C.2. 

The coincidence between the notation for words and HMM output symbols, 

and corpora and symbol sequences is intentional, as they are identical for ytag's 

purposes. To emphasize this, HMM output probabilities will hereafter be referred 
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1 component interpretation 

V = { 'V1, ••• , 'V M} symbol set • 

Q = { Qt, ••• ' QN} state set 

{Pr(qi), i = 1. .. N} initial probabilities 

{Pr(q.~clq;), j,k = 1. .. N} transition probabilities 

{Pr(vh!Qt), h= l. .. M,l= l. .. N} output probabilities 

0=o1 ••• 0T symbol sequence produced by the HMM 

I= i1 .. • iT state path for 0 

Table C.2: HMM nomenclature 

Stage Program Input File( s) Output File Report Pgm 

lexical analysis re tag lexed lexed 

statistics collection coli lexed stats rstats 

estimation est m stats HMM valhmm 

reestimation reestm lexed, HMM HMM valhmm 

tagging tag lexed, HMM tagged perf 

Table C.3: Ytag stages 

to as lexical probabilities. 

C.2 Overview 

Ytag comprises a set of programs which interact through files (or pipes) which they 

read and write. There is no overall control program or menu; the programs must 

be manually invoked as Unix commands. 

Figure x illustrates the operation of the system. Its main function is to create an 

HMM from a training corpus and use it to tag a test corpus. This is accomplished 

in a series of stages: lexical analysis; statistics collection; estimation; reestimation; 

and tagging. Each stage involves an intermediate file, a program to generate it and 

in most cases another program to summarize its contents. Table C.3 lists the normal 

sequence of events in ytag, with the files and programs associated with each. 
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C.2.1 Lexical Analysis 

The first step in creating an HMM is to lexically a.na.lyze a. text file to produce a.lexed 

file in the format described above; this task is not performed by yta.g. However, 

yta.g provides a. tool-the program reta[f-which may be used to map any tag set 

into another one of equivalent or lesser specificity. 

C.2.2 Statistics Collection 

The next step is to gather statistics from a training corpus. This is performed 

by the program coli and results in a stats file whose contents may be summarized 

by the program rstats. The purpose of the stats file is to retain the information 

necessary for the estimation of HMM parameters-frequencies of words, word/ tag 

combinations, tags, a.nd tag sequences oflength 2 (ta.g·pairs) and 3 (tag-triples)­

in compact form. This saves space a.nd makes it possible to try different ways of 

generating a.n HMM from the same training corpus without having to make repeated 

(lengthy) passes through it. 

Either a lexed or a tagged corpus can serve as a source of statistics for coli. 

There a.re some differences in the way coli operates on each type of corpus which 

affect the estimation process. 

C.2.2.1 Constructing Valid Tag Sets 

The first concerns the way in which the set of valid tags for each word is constructed. 

For a lexed corpus, this set is assigned the first time a word is encountered and is 

not altered thereafter. For a tagged corpus, the (single) tag associated with each 

token is checked against a list for the corresponding word and added if it is not 

already present. This implies that the list of tags for a word will be incomplete if 

some valid combination never occurs in a tagged training corpus. To remedy this, 

coll provides a special vocabulary acquisition mode which learns words and tags 

from a lexed corpus without recording any frequencies. (There is also an analogous 

tag acquisition mode, in which only tags a.re of interest.) A sta.ts file created in 

this way can be designated as an initialization file for coli to ensure that the sets 

of tags for all known words a.re complete, no matter how small a training corpus is 
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statistic increment 

word frequency 1 

word/tag frequency 1/L for each tag 

tag frequency 1/ L for each tag 

tag-pair frequency 0 

tag-triple frequency 0 

Table C.4: Statistics from an ambiguous word 

subsequently used. This precaution is only necessary if a tagged training corpus is 

to be used, since it is assumed that the lists of tags provided in a lexed corpus are 

complete. 

C.2.2.2 Using Ambiguous Words 

Another issue is the method of treating ambiguous words-those with more than 

one possible tag-within a lexed corpus. This varies depending on the statistic 

being collected: word frequencies are counted normally but word/tag and tag fre­

quencies are incremented fractionally, and tag-pair and tag-triple frequencies are 

not counted. The latter are ignored because there is no simple way to determine 

the contribution which ambiguous words should make; their counts therefore reflect 

only the "naturally" unambiguous words in a lexed corpus. The following table 

summarizes the contribution made to each statistic by an ambiguous word with L 

possible tags1 . 

C.2.3 Estimation 

In this step, the program estm uses the frequency statistics in a stats file to estimate 

probabilities for an HMM, then writes the resulting model to an "HMM" file. The 

program valhmm may be used to report on the contents of an HMM file and check 

1 It should be noted that the fractional increments described here a.re not a.ctua.lly performed 

when coli counts frequencies, so they will not be reflected in the report generated by rstats. How­

ever, the stats file contains a.ll information needed to make these increments and they a.re always 

performed prior to estimation. 
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probability HMM prob order= 2 order= 3 

initial Pr(qi) Pr(ci) Pr(chcm) 

transition Pr(q;lqi) Pr(c;lci) Pr( cnlcl, Cm) 

lexical Pr(vhlqi) Pr(vhlci) Pr(v,.lcm) 

Table C.5: HMM {::} word/tag probabilities for orders 2 and 3 

its validity by ensuring that certain sets of probabilities sum to one (this is chiefly 

useful for debugging purposes). The estimation process has three main parameters 

which may he controlled by the user: the order of the model, the method used to 

modify observed frequencies, and the method used to compute probabilities from 

frequencies. 

C.2.3.1 Model Order 

The first parameter specifies the order of the HMM. This determines the length of 

the sequence of tags which constitutes an HMM state. In general, the higher the 

order, the more powerful (and expensive) the model. Ytag provides a 2nd order 

model in which states correspond to tags and a 3rd order model in which states 

correspond to tag-pairs. The mapping from word and tag probabilities to HMM 

probabilities depends on the order of the model. This is summarized in table C.5, 

for orders 2 and 32• 

C.2.3.2 Frequency Modification 

The second estimation parameter specifies the method of frequency modification 

to be used. If the observed frequencies from the stats file were used to make di­

rect maximum likelihood estimates (see below), they would assign a probability of 

zero to each event (word, word/tag pair, tag, tag-pair or tag-triple) which did not 

occur in the training corpus. For any training corpus of finite size, this would he 

2Note that the lexical probability for order 3 listed in the table is an approximation to 

Pr(vhiC!,Cm). It is customary to make this approximation, which is motivated by considerations 

of efficiency and justified by the intuition that conditioning word probabilities on the previous two 

tags does not add information which is not already inherent in the transition probabilities. 
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inaccurate, so estm corrects all zero frequencies to some small non-zero value and 

adjusts all other frequencies to compensate before using them to estimate probabil­

ities. Two methods of modifying frequencies are provided: augmented corpus and 

Good-Turing. 

In order to modify the frequencies for non-occurring events, it is necessary to 

decide exactly what these events are. For tags, tag-pairs and tag-triples, this is not 

a problem, as it is reasonable to assume that the universe of tags is exactly the set 

contained in the stats file. (For small training corpora, it is possible that rare tags 

will not occur-in these cases, coli can be used with an init file which contains all 

desired tags.) A similar assumption cannot be made for words or word/tag pairs, 

as no corpus can be expected to contain the entire vocabulary of a language. Estm 

therefore adopts the strategy of mapping all unknown words into a single special 

word whose list of tags contains all possible tags. A probability estimate is made 

for this word and for each word/tag pair in which it participates. These are used 

during tagging (see below) to make predictions for all words which are unknown to 

the HMM. (In this context, it should be noted that estm discards any words in the 

stats file which have zero frequency. Such words would have been placed in the stats 

file by coli's vocabulary mode and would not have occurred in the training corpus.) 

Augmented Corpus Frequency Modification 

The simplest way to avoid zero probabilities is to assume that the observed training 

corpus has been augmented by another in which every possible event occurs exactly 

once, and to modify the observed frequencies in accordance with this assumption. 

For words, word/tag pairs, and tags, the augmented corpus is also assumed to be 

ambiguous and the modification is performed so as to be consistent with the method 

used by coli to count events in an ambiguous corpus. 

Good-Turing Frequency Modification 

A more sophisticated method of modifying frequencies is to use the Good-Turing 

formula: 
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where 

f' is the modified frequency 

f is the observed frequency 

N 1 is the number of events with frequency f 

The use of this formula is critically dependent upon the method for smoothing 

the Nb which tend to be very noisy and sparse, especially for large values of f. 
The smoothing method used by estm involves a two step procedure which first 

averages each N1 by the zero values (if any) which surround it, then fits a 3rd order 

polynomial to the log N 1, log f averaged data points. 

Another requirement of the Good-Turing formula is that N0-the number of 

events which occur with zero frequency-be known. For tags, tag-pairs and tag­

triples this presents no problem, because the number of tags is assumed to be fixed, 

as described above. For word/tag pairs, No is estimated by assuming a fixed (large) 

vocabulary size and a number of valid tags per word equal to the average number 

of tags per word in the training corpus. 

C.2.3.3 Probability Estimation 

The final estimation parameter specifies the method of estimating HMM proba­

bilities from the corresponding (modified) frequencies. Estm provides three esti­

mators-equal probability, maximum likelihood and combined order-each of which 

is valid for any combination of model order and frequency modifier, and each of 

which can be used independently for each set of HMM probabilities (initial, transi­

tion and lexical). 

Equal Estimation 

The simplest estimator ignores frequencies and makes all probabilities within each 

distribution equal. This effectively removes the source of knowledge embodied in 

the distribution from the system and is useful in allowing its contribution to be 

assessed. (Note that, for lexical probabilities, there is an apparent problem with 
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probability HMM Prob order 2 estimate order 3 estimate 

initial Pr(qi) f(ci)/T f(c~,cm)/T 

transition Pr(q;lqi) f(ci,c;)/ f(ci) J( cz, Cm, Cn)/ J( Cz, Cm) 

lexical Pr(vhlqi) j( Vh, Ci)/ f(ci) !( vh, cz)/ !(er) 

Table C.6: Maximum Likelihood estimates for orders 2 and 3 

this method in that the sums reported by valhmm do not add to one. This is due 

to an implementation detail and does not affect performance.) 

Maximum Likelihood Estimation 

The standard method for estimating probabilities is to use the ratio of the frequency 

of an event of interest to the total frequency of events in its class; in statistical 

terminology, this is maximum likelihood estimation. Table C.6 gives the maximum 

likelihood estimates for 2nd and 3rd order models. where: 

J( e) denotes the frequency of event e 

T is the number of tokens in the training corpus 

Q, V, C are state, word and tag sets as usual 

vh, c; denotes the joint occurrence of word Vh with tag Cj (the comma is normally 

used to indicate joint events; where no conflict of meaning arises, it is also 

used to indicate sequence, as in Ci, Cj) 

The estimates listed for the conditional probabilities in table C.6 are via Bayes' 

law expansions, with the denominators cancelled, as they are all very close approxi­

mations to T. For a lexed training corpus, this approximation breaks down because 

the numbers of "naturally" unambiguous 2 and 3 token sequences in the corpus will 

not generally be equal, either to each other or to the number of tokens. Due to 

this, it is necessary to use marginal sums for the denominators in the estimates. 

For example, the third order transition probabilities are actually estimated by: 

L 

Pr(q;lqi) = f( cz, Cm, Cn)/ L f( Cz, Cm, Cn) 
n=l 
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Combined Order Estimation 

As the order of an estimator is increased, the potential accuracy of its predictions 

increases, but it becomes less reliable. This is due to the fact that for a given training 

corpus size there are proportionally fewer (n + 1)-tag sequence types represented 

than n-tag sequence types; an estimate made from an (n + 1)-tag sequence will in 

general involve a lower frequency than one made from ann-tag sequence and hence 

will be less apt to be representative. The problem is exacerbated by the use of a 

lexed corpus, since, for example, tag-triples are only collected when a stretch of at 

least three naturally unambiguous words occurs. 

One solution to this problem is to combine estimators of different orders in some 

appropriate way so that the reliability of the lower order estimators complements 

the precision of the higher order estimators. Ytag uses a simple, non-linear method 

of combination, in which only one order is ever used for any particular estimate. In 

this scheme, the highest order estimator (beginning with the value selected for the 

order parameter: 2 or 3) whose frequency is above a threshold value (which may 

be set by the user) is always used. If no estimator has this property, a first order 

estimate is used3 • 

C.2.4 Reestimation 

The next step is an optional one which involves refining an HMM with respect to 

some training corpus by means of the reestimation algorithm. This is performed 

by the program reestm, which reads a lexed corpus and an HMM file and creates a 

new HMM file. 

C.2.4.1 The Reestimation Algorithm 

Reestimation is an iterative algorithm which modifies HMM parameters using a 

training corpus. It is guaranteed to converge to a local maximum of the probability 

which the HMM assigns to the training corpus as a whole (Pr(O)), in the notation 

presented above). The idea is that, if a large and representative corpus is used, 

3This has the useful side effect of allowing the user to force the system to make first order 

estimates by specifying a. very high value for the threshold frequency. 
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prob HMM prob reestimate 

init Pr(qi) Ef=l Pr(O, it= qi)/ Pr(O) 

trans Pr(q;lqi) Ef=11 Pr(O, it= qi, it+I = qj)/ Ef=l Pr(O, it= qi) 

lex Pr(vhlqi) Ef=l Pr(O, it= qi,Ot = vh)/ Ef=t Pr(O, it= qi) 

Table C.7: Reestimates 

maximizing this probability will yield an HMM which reflects the language well; 

in the current context, this means an HMM which can tag well. Reestimation is 

particularly useful for tagging because, unlike the estimators described above, it 

uses all of the information contained in the ambiguous words of a training corpus. 

Each pass of the algorithm uses the HMM to compute joint state, symbol se­

quence probabilities (symbol sequence = training corpus) at each word position in 

the corpus. These are summed to compute maximum likelihood estimates for the 

parameters of a new HMM as shown in table C. 74 • 

C.2.4.2 Reestimation Parameters 

There are three basic parameters for reestimation: the starting point, the conver­

gence criterion and the probability sets to be reestimated. 

Starting Point 

The first choice to make is that of a training corpus. To an even greater extent than 

is true of estimation, larger reestimation training corpora produce better models 

but incur more cost. 

Once a training corpus has been chosen, estm must be used to generate an initial 

HMM from it. Although reestm does not enforce the requirement that the initial 

HMM be generated from the training corpus, this is the usual convention. For 

efficiency, reestm has no mechanism for handling words which occur in the training 

4 An alternate formula. for initial probabilities is based on the probability with which each state 

appears at the beginning of the sequence, Pr(O, it = q;). For the current problem, this would 

yield very arbitrary estimates which depend solely upon which word happens to head the training 

corpus. Ytag therefore uses the absolute probability of each state, which is a. much more reliable 

source of information. 
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corpus but not in the initial HMM; hence if the convention is to be departed from, 

care must be taken to ensure that the vocabulary of the initial HMM includes all 

words and tags in the training corpus. 

The order of the initial HMM is the most important factor affecting reestima­

tion, as this determines the order of the reestimated HMM. The other estimation 

parameters are also important because the probability maximum found by rees­

timation is a local one and therefore depends on the starting point. In general, 

the better the initial HMM, the better the results, although once a certain level is 

reached, the difference can be expected to become insignificant. 

Convergence Criteria 

Reestm computes two quantities which may be used to determine the number of 

iterations required for convergence: error and perplexity. Error is a measure of the 

difference between the initial and reestimated HMMs for a single iteration (where 

initial means the HMM with which the iteration begins and not necessarily the initial 

HMM for the program). It is defined as the average absolute change made to each 

probability, taken over all probabilities which were changed. The error generally 

decreases monotonically, but its rate of decrease depends on the initial HMM, as 

well as the size and nature of the training corpus. Reestm has the capability of 

terminating automatically when the error falls below a specified threshold. 

Perplexity is a more direct measure of the quantity which reestimation is sup­

posed to maximize: Pr(O). It is defined as 

1/ Pr(0)11T 

ie, the reciprocal of the Tth root of the probability assigned to the corpus by the 

HMM, where T denotes the size of the training corpus as usual. Perplexity is a 

measure of both the inherent complexity of the training corpus-independent of 

corpus size-and the degree to which the HMM "fits" it: higher values mean more 

complexity and/or less fit. Any determination of convergence based on perplexity 

must be manually applied, as reestm does not provide this capability. It should 

be noted that, due to efficiency considerations, the perplexity values reported by 
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reestm at each iteration are those for the HMM with which the iteration begins, 

rather than that which it produces. 

Probability Sets 

A nice property of reestimation is that it can be applied to some of the HMM prob­

ability distributions while other(s) are held fixed. This allows, for example, lexical 

probabilities to be reestimated from a large corpus while estimates for initial and 

transition probabilities from some other source are not changed. Reestm provides 

the capability of fixing any combination of probability sets in this way. 

Another property of reestimation is the fact that, as a consequence of its conver­

gence to a maximum likelihood estimate, it will assign a probability of 0 to unseen 

events ( eg lexical combinations, transitions, etc, which do not occur in the training 

corpus). This is obviously undesirable, as it is precisely the condition which the fre­

quency modification techniques used by estm are designed to avoid. Some balance 

must therefore be struck between the HMMs yielded by estimation-which model 

common events poorly but uncommon events relatively well-and those yielded by 

reestimation, which model common events better but uncommon events poorly. An 

ad hoc way of doing this is to stop iterating before the point at which reestimation 

drives the probabilities of unseen events to zero. Another is to set some a priori 

lower bound on all reestimated probabilities. This capability is provided by reestm, 

which allows the specification of a floor threshold for each set of probabilities. 

C.2.5 Tagging 

The final stage is performed by the program tag, which reads a lexed file, uses the 

Markov model contained in an HMM file to disambiguate it, and writes a corre­

sponding tagged file. By default, tag writes a header to the tagged file containing 

information about the training file, estimator, and tagging method used to create 

it. The program perf creates a tagging performance report which includes this in­

formation as well as statistics on the number of correct tags (for which it requires 

a correctly tagged benchmark version of the originallexed file). 

When tag reads a lexed file, it is dependent on the vocabulary known by the 
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HMM. Its behaviour on encountering a tag or word not in this vocabulary is con­

sistent with the assumptions made by estm when generating the HMM: unknown 

tags cause immediate errors; unknown words are mapped onto a special unknown 

word in the model. The lexical probability of an unknown word given any tag with 

which it is listed is taken from the lexical probability of the special unknown word 

for the same tag. Tag is silent if it encounters a known word with a tag list which 

differs from the tag list in the HMM, but the latter is always used. (In other words, 

tag only uses the tag lists in a lexed file for unknown words). 

To disambiguate, tag uses an integrated tagging and self-error detection system 

which depends on five main user-controlled parameters, one of which specifies the 

tagging method and four of which specify the error detection (flagging) method. 

C.2.5.1 Tagging Methods 

Tag offers four different methods of tagging, each of which corresponds to a distinct 

method of picking an HMM state path (and therefore a sequence of tags) for a 

sequence of words. Sequences of words submitted to the tagging algorithm are 

chosen as the shortest possible sequences of ambiguous words which begin and end 

with an unambiguous word (although this may not be the case at the beginning 

and end of the lexed corpus). 

The first path (ML) is the maximum likelihood path, which consists of the state 

for each word which maximizes the joint state/word sequence probability. The 

second path (NL) consists of the next most likely state for each word. The third 

path (Pl) is the one for which the joint path, word sequence probability is highest. 

The fourth path (P2) is the one for which the joint path, word sequence probability 

is next highest. Formally: 

NL: I ::: it ... iT, where it ::: 2nd arg maxq;J=t ... N Pr( 0, it = q;) 

Pl: argmaxr Pr(O,I) 

P2: 2nd argmaxr Pr(O,I) 
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It should be noted that the four paths are not necessarily disjoint; in particular, 

ML, P 1 and P2 often coincide. NL will always usually differ from ML at each 

ambiguous word (it will always differ for second order models). 

The most useful paths are ML and P1: if the HMM's estimates are very accurate, 

P1 tends to give better performance because it reflects the plausibility of the path 

as a whole; if not, ML is the better choice. The two other paths are chiefly useful 

for comparison purposes and for error flagging, as described below. 

C.2.5.2 Error Flagging Methods 

When error flagging is selected, tag attempts to identify the tag assignments about 

which it is uncertain. These are marked with an error flag in the output file. (No 

attempt is made to correct the assignments or propose alternatives.) 

The algorithm used by tag for error flagging involves comparing the path used for 

tagging (the tagging path) with one other (the comparison path). If the ratio of the 

tagging path to the comparison path (defined in an appropriate sense, described 

below) does not meet a given threshold, the tagging path is deemed to contain 

potential errors at certain points. At each such point, the state from the tagging 

path is compared to the state from a third path (the alternate path); if the two 

differ, an error flag is set. 

This algorithm has five parameters which are under user control: the method 

of making comparisons between the tagging and comparison paths, the threshold 

value used for comparisons, the tagging path, the comparison path, and the alternate 

path. The tagging path is fixed when the tagging method is selected, as described 

above; the other four parameters are described in the following sections. 

Comparison Method and Threshold Value 

Two methods of comparing paths are provided: path based and word based. 

Path based comparison involves taking the ratio of the path probability for the 

tagging path to that of the comparison path: 

Pr(O,Itag)/ Pr(O, !compare) 
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If this is less than the threshold value, each state on the tagging path is deemed to 

be a potential error. 

Word based comparison involves taking the ratio of the maximum likelihood 

probability of each state on the tagging path to that of the corresponding state on 

the comparison path: 

where 

Pr(O, it)/ Pr(O,it) 

ltag = it···iT 

/compare = it · · ·iT 

For each t where the ratio is less than the threshold value, the state it is deemed 

to be a potential error. 

The useful range and the sensitivity of the threshold value depend on the tag­

ging and comparison paths selected-both quantities can vary widely. In all cases 

however, the sense is the same: increasing the value increases the number of errors 

flagged, until the saturation point is reached (usually when all ambiguous tokens 

have been flagged as errors). 

Comparison Path 

The path used for comparison can be any of the four paths-ML, NL, Pl and 

P2-available for tagging (although it makes little sense to choose the same path 

for tagging and comparison). In addition, one other "path" is available: the total 

probability, Pr(O), which the HMM assigns to the sequence as a whole. For path 

based comparisons with this option, Pr(O) is substituted for the comparison path 

probability; for word based comparisons, Pr(O) is substituted for the maximum 

likelihood probability of each state on the comparison path. 

Alternate Path 

As described above, the alternate path is used as corroboration for points on the 

tagging path deemed to be potential errors by the comparison process: errors are 

flagged only if the alternate and tagging paths differ at such points. The alternate 
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path may be any of the four standard paths, plus one other-the PX path-which 

is guaranteed to differ from the tagging path (no matter which one has been chosen) 

at each ambiguous word. 

The behaviour of the alternate path comparison is dependent on the order of 

the model. Because states do not correspond directly to tags in a third order model, 

state paths which differ at some point can map to tag paths which do not differ at 

that point. This may cause confusion when the alternate path is being relied upon 

to differ from the tagging path at each point. In such cases, it is safe to use the PX 

path, which is not affected by order. 

C .3 Program Descriptions 

This section describes the individual programs which comprise ytag. The descrip­

tions are in alphabetical order by program name in the sections which follow. 

There are two switches-undocumented in what follows-that are common to 

all programs: 

-h Print a help message with the syntax, options and a brief description of the 

program's function. 

-d Activate debugging, if any. 

Four types of file are used throughout ytag: 

lexed A lexically analyzed file. Each line must begin with a token, followed by 

any number of tab characters, followed by a space-separated list of tags, of 

which.there must be at least one. The list of tags must be identical for each 

occurrence of a token. 

tagged A tagged file. Each line must begin with a token, followed by any number 

of tab characters, followed by a single tag. Different occurrences of a token 

may be associated with different tags. 

stats A statistics file, generated by the program coll. This contains lists of words 

and tags from a lexed file, along with frequency statistics for words, word/tag 

pairs, tags and tag sequences of length two and three. 
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HMM An HMM file, generated by the programs estm or reestm. This is a. binary 

file representation of a.n HMM, along with a.ll information necessary to use the 

HMM for tagging. 

C.3.1 Coll 

Collect statistics on a. lexed or tagged file a.nd write them to a. sta.ts file. 

C.3.1.1 Syntax 

coll [ -v 1-t] [ -i init.file] [ -r rep· file] [src [dst]] 

C.3.1.2 Parameters 

src Input lexed or tagged file (or stdin). 

dst Output sta.ts file (or stdout ). 

-v Vocabulary mode. Coil collects words name, ta.g names, a.nd word/tag lists only; 

no frequencies a.re recorded. The purpose is to create a.n init-file in which ta.g 

lists for each word a.re complete. This option is not designed to work with 

tagged src files. 

-t Ta.g mode. This is the same as vocabulary mode, except that only tag names 

are collected. The purpose is to ensure that the tag set contained in a. stats 

file is complete. 

-i Designate stats file init-file as an initialization file. The contents of this file are 

read prior to reading src; a.ll statistics from src are added to those from init­

file. If no init-file is specified, the environment variable COLLINIT is checked. 

If it is active, its contents specify the name of the initialization file; otherwise 

none is used. 

-r Write a statistics report to rep-file. This is the same report generated by rsta.ts; 

its format is described below. 
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C.3.2 Estm 

Estimate a tagging HMM from the word and tag statistics in a tagged file. 

C.3.2.1 Syntax 

estm [-e [o]/[tJ/[i]/[t]/[w]] [-r th] [-z] [src [dst]] 

C.3.2.2 Parameters 

src Input stats file (or stdin). 

dst Output HMM file (or stdout ). 

-e Specify the estimator to use (the default is 2T/AC/HL/HL/HL): 

o is order of the model: 2T or 3T 

f is the frequency modifier: AC or GT 

i is the initial probability estimator: EQ, HL, or CO 

t is the transition probability estimator: EQ, HL, or CO 

i is the lexical probability estimator: EQ, HL, or CO 

where: 

2T means 2nd order; HMM states correspond to tags. 

3T means 3rd order; HMM states correspond to tag pairs. 

AC means augmented corpus; each type in each statistic (words, word/tag 

pairs, tags, tag-pairs, tag-triples) is assumed to have occurred once­

frequencies in the stats file are modified accordingly. 

GT means Good-Turing; each frequency in the stats file is modified to (f + 
l)NJ+l/NJ, where f is the original observed frequency and NJ the num­

ber of types with frequency f. 

EQ means set the probabilities of all types equal. 

HL means maximum likelihood; estimate probabilities from relative frequen­

cies. 
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CO means combined order; use the ML estimate of the highest order (3, 2 or 

1) whose frequency count is above some threshold. The default threshold 

of 1.0 can be changed with the -r option. Currently, CO estimates are 

only available for transition probabilities; selecting CO for any other 

probability set causes ML estimates to be used. 

-r Set the threshold frequency for CO estimators to th. 

-z Keep all words which have zero frequency in src, but modify their frequency to 

one. The default is to discard such words. This option is only intended for use 

with reestimation, when the initial model is estimated from a smaller corpus 

than that on which reestimation is to performed. 

C.3.3 Perf 

Make a status and performance report on a tagged file. 

C.3.3.1 Syntax 

perf [-b bmk] [src [dst]] 

C.3.3.2 Parameters 

src Input tagged file (or stdin ). This file must have a header (ie, have been generated 

by running tag without the -n switch). For maximum information in the 

report, it should also be in list format, with all applicable tags listed after the 

selected tag for each token (ie have been generated by running tag with the 

-1 switch). 

dst Output report file (or stdout ). This is in two parts: the first is a copy of the 

header written by tag and contains a summary of the files and methods used 

to create the tagged file. This includes: 

Lexed file the name of the lexed file which was tagged. 

Tagged file the name of the tagged file. 

Statistics file the name of the stats file used to create the HMM. 
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Tagging Method a coded description of the parameters to tag, in the fol­

lowing format: 

f/t/d/a/r 

Where f is the flagging method, t is the tagging path, d the comparison 

path and a the alternate path, as described in section C.3.7. r is the 

error flagging threshold, as described in the same section. 

The second part of the report contains statistics on the tagging and flagging 

performance. The following items are included (those which are followed by 

a "-1" in parentheses are not valid unless the -1 switch was selected for tag): 

• average tags per token-the average number of tags per token in the 

lexed file (-1). 

• average tags per ambig token-the average number of tags per ambiguous 

token (those with more than one tag) in the lexed file (-1). 

• tokens-the total number of tokens in the lexed file (and in the tagged 

file). 

• am big tokens-the number of ambiguous tokens; also expressed as a per­

centage of the total number of tokens ( -1). 

• tokens correctly tagged-the number of tokens correctly tagged (by com­

parison to those in the benchmark file); also expressed as a percentage 

of the total number of tokens. 

• ambig tokens correctly tagged-the number of ambiguous tokens cor­

rectly tagged; also expressed as a percentage of the total number of 

ambiguous tokens ( -1). 

• ambig tokens tagged by chance-the percentage of ambiguous tokens 

which would be correctly tagged by picking tags at random, estimated 

by the number of ambiguous tokens divided by the total number of tags 

associated with all ambiguous tokens (-1). 

• error flags-the number of error flags (ie, the number of tokens flagged 

as errors by tag); also expressed as a percentage of the total number of 

tokens. 
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• valid error flags-the number of error flags which are valid; also expressed 

as a percentage of the total number of error flags. 

• actual errors flagged-the number of tagging errors which were flagged; 

also expressed as a percentage of the total number of tagging errors. 

• errors flagged by chance-the percentage of tagging errors which would 

be flagged by assigning this number of error flags to ambiguous tokens at 

random, estimated via the joint independent error and flag probabilities. 

(-1) 

-b Designate bmk as a benchmark file, that is, a correctly tagged version of src 

for comparison. If this parameter is not specified, the benchmark file name 

is taken from the environment variable TAGBENCHMARK. If TAGBENCH­

MARK is not active, or the benchmark file cannot be opened, perf aborts. 

C.3.4 Reestm 

Reestimate an HMM using a lexed training corpus. 

C.3.4.1 Syntax 

reestm [ -v] [ -s s] [ -i i] [ -t t] [ -f f) [ -r r] trg hmm I+ [dst] 

C.3.4.2 Parameters 

trg Lexed training corpus to use for reestimation. If + is specified, this is taken 

from stdin. 

hmm HMM file containing the HMM to be reestimated, which may be one produced 

by a previous reestimation. Reestm does not make allowance for unknown 

words in trg, so hmm should originally have been generated from trg or a 

superset thereof. 

dst Output file for reestimated HMM (or stdout). This may be the same as hmm. 

-v Select verbose mode; issue status reports. The first report echoes reestm's pa­

rameter settings; subsequent reports are issued for each iteration and include 
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the following items: 

error The difference between the initial and final HMM's, computed as the 

average change in probabilities taken over all changed probabilities. 

perplexity This is the reciprocal of a normalized version of the probability, 

Pr(O), assigned to the word sequence 0 (ie, trg) by the initial HMM. 

Specifically, perplexity= 1/ Pr(0)1/T, where T is the number of tokens 

in 0. 

-s Set the number of segments used to s (the default is 1). Using more segments 

causes reestm to use less memory. Normally, the number of segments are 

adjusted automatically, but there are occasions when the automatic algorithm 

fails. If reestm returns a "can't alloc" error message, setting the number of 

segments to some small value greater than 1 will normally correct the problem. 

- i Set the maximum number of reestimation iterations over trg to i (the default is 

10). (Note: reestimating for a fixed number of iterations n produces exactly 

the same results as running reestm n times with hmm set to the dst file 

produced on the previous run. The former method will be faster because it 

avoids the overhead of reading in trg for each iteration-for large corpora, this 

is not a trivial consideration!) 

-t Set the tolerance for convergence tot (the default is 0.001). At the end of each 

iteration, the reestimation error (described above) is compared to t; if it is 

less than t, reestm stops. 

-f Fix (do not reestimate) the specified set of probabilities. f may be any of I, T 

or L, for output, transition and lexical (if all three are selected, no change is 

made to the original HMM). 

-r Set a :floor threshold for each set of probabilities. r must be of the form: fi/ft/fl, 

where fi, ft and fl are the thresholds for initial, transition and lexical proba­

bilities respectively (the default is 0/0/0). If a reestimated probability is less 

than or equal to the :floor threshold, it is not used to update the corresponding 

HMM probability. 
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C.3.5 Retag 

Retag a lexed file using a different tag set. 

C.3.5.1 Syntax 

re tag [ -r] map-file [src [dst]] 

C.3.5.2 Parameters 

src Input lexed file (or stdin) 

dst Output lexed file (or stdout) 

map-file File containing mappings from tags in the old set to tags in the new set. 

Each line in this file is of the form: 

old-name new-name 

and specifies that all occurrences of the tag old-name in src are to be replaced 

by new-name in dst. Any tags in src with no entry in map-file are copied 

verbatim to dst. Any duplicate tag entries in the tag lists written to dst are 

removed (whether or not they were caused by the mapping); if map-file is 

empty, this is the only action performed by retag. 

-r Reverse the order in which the new tag lists are written. 

C.3.6 Rstats 

Make a summary of the statistics in a stats file. 

C.3.6.1 Syntax 

rstats [src [dst]] 

C.3.6.2 Parameters 

src Input stats file (or stdin). 
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dst Output file (or stdout) for the statistics report. This report includes the fol­

lowing items: 

Vocabulary the number of words and tags in the total vocabulary contained 

in src. This reflects the contents of the initialization file (if any) and the 

lexed file which were used by coli to create src. 

Sample the number of words, tags and tokens in the lexed file used to create 

src. The discrepancy between these numbers and those for the "Vocab­

ulary" entry is due to the contribution made by the initialization file. 

(Note: it is possible that the number of tags listed under "Sample" will 

be less than that listed under "Vocabulary", even if no initialization file 

has been used to generate src. This is because the "Sample" counts do 

not include tags with frequency zero--those which never occur in the 

lexed file as the sole tag for a token.) 

Table of statistics the next item is a table containing six statistics of in­

terest from the lexed file used to create src (no contribution is made by 

the init-file). The following list describes the entry in each column of the 

table (beginning with "Types") for each statistic: 

words number of words; number of word tokens; min, max, mean, and 

standard deviation of tokens per word. 

ambig words number of ambiguous words; number of ambiguous to­

kens; min, max, mean and standard deviation of tokens per ambigu­

ous word. 

tags per word number of words over which the tags per word statistic 

was taken; total number of tags for all words; min, max, mean and 

sdev of tags per word. 

tags number of tag types; number of tag tokens for unambiguous words; 

min, max, mean and sdev of tag tokens per tag. 

hi-tag sequence number of distinct hi-tag sequence types (taken over 

unambiguous words) which occur at least once; total number of hi­

tag sequence tokens collected; min, max, mean and sdev of hi-tag 
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tokens per bi-tag type. 

tri-tag sequence number of distinct tri-tag sequence types (taken over 

unambiguous words) which occur at least once; total number of tri­

tag sequence tokens collected; min, max, mean and sdev of tri-tag 

tokens per tri-tag type. 

C.3.7 Tag 

Tag a lexically analyzed file, using the data contained in an HMM file. 

C.3.7.1 Syntax 

tag [-n] [-11-L] [-t [tJ/[t]/[d]/[a]] [-r th] hmml+ [src [dst]] 

C.3.7.2 Parameters 

src Input lexed file (or stdin). 

dst Output tagged file (or stdout ). This is a disambiguated version of src, with an 

optional header prepended (see section C.3.3 for a description of the header's 

contents). There are two formats for dst: single tag, in which only the chosen 

tag is listed for each token; and list, in which the chosen tag heads a list of all 

applicable tags for the token (the remainder of the list is in no special order). 

Error flags may also be present: these are circumflex characters ( ~) placed 

one space before the first tag. 

hmm HMM file to use for tagging. If + is given instead of a file name, the HMM 

will be read from the standard input. If the input lexed file is also to be read 

from standard input (ie, src has been omitted), it must follow the HMM on 

this stream. 

-n Suppress the header which is normally written to a tagged file. 

-1 Write dst in list format, as described above; the default is to use single tag 

format. The list of tags supplied for each token is taken from the vocabulary 

in hmm, not from the tags listed in src. 
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a lexed file from a tagged file, using the vocabulary and tag sets in hmm. 

-t Specify the tagging method (the default is FN/ML/NL/NL): 

f is the type of error flagging: FN, FP, or FS 

t is the tagging path: ML, NL, P1 or P2. This is the path used to assign tags. 

d is the comparison path: ML, NL, P1, P2 or TT. This path is compared to the 

tagging path to determine if it contains errors. 

a the alternate path: ML, NL, P1, P2 or PX. This is the path used to propose 

replacement tags for those on the tagging path which have been identified 

as potential errors. 

where: 

FN specifies that no error flagging is to be attempted. 

FP selects path based flagging: path probabilities are compared to determine 

if a path contains errors. 

FS selects word based flagging: maximum likelihood tag probabilities (taken 

in the context of the entire word sequence) are compared to determine if 

each tag assignment is erroneous. 

ML is the path of maximum likelihood tags for each word. 

NL is the path of next maximum likelihood tags for each word. 

P1 is the path with the highest path probability. 

P2 is the path with the next highest path probability. 

TT is the total sequence probability 

PX is a path which differs from the tagging path at every ambiguous word. 

-r Set the error flagging threshold to th. Default is 1.0. This value is compared 

with the ratio of the tagging to the comparison paths (either the ratio of path 

or tag probabilities, depending on the method of error flagging); if the ratio is 

less than th, a potential error is deemed to have occurred (although no error 
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will be flagged unless the alternate path differs from the tagging path at that 

point). 

C.3.8 Valhmm 

Create a report on the contents of an HMM and validate it by computing sums of 

probabilities. 

C.3.8.1 Syntax 

valhmm [ -s] [src [dst]] 

C.3.8.2 Parameters 

src Input HMM file (or stdin). 

dst Output report file (or stdout ). The report consists of the following items: 

Statistics file The statistics file used by estm to create the HMM. 

Estimator a coded description of the estimator used to create the HMM. 

The first part of the code is a representation of the parameters to estm, 

in the following format: 

o/f/i/t/1/r 

where o, f, i, t and 1 are the selected order, frequency modifier, and 

initial, transition and lexical probability estimators as described in sec­

tion C.3.2.2. ris the value of the combined order threshold, also described 

in that section. 

The second part of the code describes any reestimation passes made on 

the original HMM. There may be any number of segments to this part, 

each of which represents one run of the program reestm, in the following 

format: 

+itx,i/t/l,err,ppx 

where it is the number of iterations made; i, t and 1 describe the reesti­

mation for initial, transition and lexical probabilities-this is either the 
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corresponding floor threshold value, or fix, to indicate that no reestima­

tion was applied; err is the reestimation error; and ppx is the sequence 

perplexity. See section C.3.4 for a description of these parameters. 

Number of tags The number of tags in the vocabulary. 

Number of words The number of words in the vocabulary. 

Number of states The number of states for the HMM. 

Number of symbols The number of symbols for the HMM. 

Initial state The sum over states of the initial probability for each state (this 

should equall). 

State transition and output sums A list of states, with two sums per­

taining to each state: 

state transition sum the sum over all states of the probability of a 

transition from the current state {this should equal 1). 

output sum the sum over all symbols of the output probability from 

the current state (should also equall). 

-s Limit the report to a brief summary of the HMM's contents, which excludes the 

probability sums. 

C.4 Design 

Ytag is programmed in C and is based on a modular design. Modules are of three 

types: program modules, of which there is one for each program in the system; utility 

modules, which provide some basic service and may be used by several program 

modules; and library modules, which implement an abstract data type such as a 

list. The latter are not specific to ytag and are documented elsewhere. 

Program modules correspond directly to source files with a .c extension; there 

is one for each program described above: coll.c, estm.c, perf.c, reestm.c, retag.c, 

rstats.c, tag.c and valhmm.c. 

Each utility module has two parts: a .c file which contains type, function and 

variable definitions and constitutes the implementation portion of the module; and 
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a .h file which contains declarations of exported types, functions and variables and 

constitutes the interface portion of the module. Modules which use a utility module 

must include its .h file. The interface for each utility module is extensively com­

mented to allow it to be used without the need for the user to be familiar with the 

details of the implementation. The utility modules in ytag are the following: 

collect Representation of frequency statistics from a lexed file and routines for 

counting, reading and writing them. 

hmm Representation of a generic HMM with provision for efficient non-ergodic 

models; all basic operations on HMMs are supported, as well as routines for 

reading and writing them. 

hmmt Representation of a tagging HMM. This module is an interface between 

the generic routines in hmm, which deal with states and symbols, and the 

programs in ytag which deal with tags and words. 

lexio Routines to read and write lexed and tagged corpora. 

There is also one other .h file which is not part of a module. This is the file 

params.h which contains various size parameters and can be used to customize ytag 

for a specific tag set and vocabulary. 
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Appendix D 

Category Sets 

D.l Categories for the Hans Corpus 

There are 31 categories in this set, which includes the following punctuation tags: 

! .. $ "1. &: ( ) * + ' -- • • . • I : ; < ? 

and the following grammatical tags: 

AJ - adjective 

AV - adverb 

AX - affix 

cc - coordinating conjunction 

CS - subordinating conjunction 

DT - determiner 

IJ - interjection 

NC - common noun 

NN - numeral 

NP - proper noun 

OD - ordinal 

PN - pronoun 

PP - preposition 

QN - quantifier 

VB - verb 
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X - unknown 

D.2 Categories for the LOB Corpus 

The following 131 categories were used for the LOB. See (38] for a description of 

these tags. 

! tFO tFW () *' **' •- , .... : ; ? ABL ABN ABX AP AP" AP$ 

APS AT ATI BE BED BEDZ BEG BEM BEN BER BEZ CC CC 11 CD CD-CD COl 

CD1$ CD1S COS CS CS" DO DOD DOZ DT DTI DTS DTX EX HV HVD HVG 

HVN HVZ IN IN" JJ JJB JJR JJT JNP MD NC NN NN$ NNP NNP$ NNPS 

NNS NNS$ NNU NNU" NNUS NP NP$ NPL NPL$ NPLS NPS NPS$ NPT NPT$ 

NPTS NR NR$ NRS OD PN PN 11 PN$ PP$ PP$$ PP1A PP1AS PP10 PPlOS 

PP2 PP3 PP3A PP3AS PP30 PP30S PPL PPLS PPLS 11 QL QLP RB RB" RBR 

RBT RI RN RP TO TO" UH VB VBD VBG VBN VBZ WDT WDTR WP WP$R 

WPOR WPR WRB XNOT ZZ 

D.3 Categories for the LOB/s Corpus 

Each tag in the LOB corpus was mapped to one of the 41 tags in the following set to 

create the LOB/s corpus. In most cases, the mapping was accomplished by simply 

truncating the LOB tag after the first two characters. 

! tFO tFW () *' **' *-, .... : ; ? AB AP AT BE CC CD CS DO 

DT EX HV IN JJ MD NC NN OD PN PP QL RB TO UH VB WH XN ZZ 

164 



c 

c 

Bibliography 

[1] Eric Steven Atwell. Grammatical analysis of english by statistical pattern 

recognition. In Proceedings of the 4th International Conference on Pattern 

Recognition, pages 626-635, Cambridge, UK, 1988. Springer-Verlag. 

[2} L. Bahl, Brown P., de Souza P., and Mercer R. A tree-based statistical lan­

guage model for natural language speech recognition. IEEE Transactions on 

Acoustics, Speech and Signal Processing, ASSP-37:1001-1008, July 1989. 

[3} Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum likelihood 

approach to continuous speech recognition. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, PAMI-5(2):179--191, March 1983. 

[4] L.R. Bahl, J.K Baker, F. Jelinek, and R.L Mercer. Perplexity: a measure of 

difficulty of speech recognition tasks. In 94th Meeting of the Acoustical Society 

of America, Miami, December 1977. 

[5] L.E. Baum, T. Petrie, Soles G., and Weiss N. A maximization technique 

occurring in the statistical analysis of probabilistic functions of markov chains. 

Annals of Mathematical Statistics, 41:164-171, 1970. 

[6] E. Black, J. Cocke, T Fujisaki, and J. Jelinek. Probabilistic parsing method 

for sentence disambiguation. In Proceedings of The International Workshop on 

Parsing Technologies. Carnegie Mellon University, 1989. 

[7] Leonard Bole, editor. Natural Language Parsing Systems. Springer-Verlag, 

1987. 

165 



0 

c 

(8] Peter F. Brown, John Cocke, Stephan A. Della Pietra, Vincent J. Della Pietra, 

Frederick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roosin. 

A statistical approach to machine translation. Computational Linguistics, 

16(2):79-85, June 1990. 

[9] Peter F. Brown, Step hen A. Della Pietra, Vincent J. Della Pietra, and Robert L. 

Mercer. Word sense disambiguation using statistical methods. ???, 1991. 

[10] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, and Jenifer C. Lai. 

Class-based n-gram models of natural language. ???, December 1990. 

[11] Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. Aligning sentences in 

parallel corpora. In Proceedings of the 29th Annual Meeting of the Association 

for Computational Linguistics, Berkeley, CA, 1991. 

[12] Roy J. Byrd and Evelyne Tzoukermann. Adapting an english morphological an­

alyzer for french. In Proceedings of the 26th Annual Meeting of the Association 

for Computational Linguistics, Buffalo, NY, June 1988. 

[13] K. Church. A stochastic parts program and noun phrase parser for unrestricted 

text. In 2nd Conference on Applied Natural Language Processing, Austin, 

Texas, 1988. 

(14] K. Church. Text analysis. In Mellish, editor, Encyclopedia of Language and 

Linguistics. Pergamon Press, Aberdeen University Press, 1991. 

[15] K. Church and W. Gale. A comparison of the enhanced good-turing and deleted 

estimation methods for estimating probabilities of english bigrams. Computer 

Speech and Language, 5(1), 1991. 

[16] K. Church and W. Gale. Probability scoring for spelling correction. Statistics 

and Computing, 1991. 

[17] K. Church, P. Hanks, D. Hindle, and W. Gale. Using statistics in lexical 

analysis. In Zernik, editor, Lezical Acquisition: Using on-line Resources to 

Build a Lezicon. Lawrence Erlbaum, 1991. 

166 



0 

c 

[18] K. Church, P. Hanks, D. Hindle, W. Gale, and R. Moon. Substitutability. 

In Atkins and Zarnpolli, editors, Computational Approaches to the Lexicon: 

Automating the Lexicon II Schema. Oxford University Press, 1991. 

[19] Kenneth W. Church and Williarn A. Gale. Identifying word correspondences 

in parallel texts. In Proceedings of the DARPA Workshop, 1991. 

[20] Kenneth W. Church and Williarn A. Gale. A program for aligning sentences 

in bilingual corpora. Draft, 1991. 

[21] K.W Church and W. A Gale. Estimation Procedures for Language Context: 

Poor Estimates are Worse than None, pages 69-74. Physica-Verlag, Heidelberg, 

1990. 

[22] R.A. Code, editor. Perception and Production of Fluent Speech. Erlbaurn, 

1980. 

[23] A. Corazza, R. DeMori, R. Gretter, and G. Satta. Computation of probabilities 

for an island-driven parser. Technical Report SOCS 90.19, McGill University, 

Montreal, January 1991. 

[24] David Crystal. Dictionary of Linguistics and Phonetics. Basil Blackwell Ltd, 

Oxford, 1985. 

[25] F.J. Damerau, E. Mays, and R.L. Mercer. Context based spelling correction. 

In Proceedings of the IBM Natural Language ITL, Paris, France, March 1990. 

IBM. 

(26] de Marcken. Parsing the lob corpus. In Proceedings of the 28th Annual Meeting 

of the Association for Computational Linguistics, pages 243-251. ACL, 1990. 

[27] Renato De Mori and Roland Kuhn. A cache-based natural language model 

for speech recognition. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, PAMI-6(6):570-583, June 1990. 

[28] S. DeRose. Grammatical category disambiguation by statistical optimization. 

Computational Linguistics, 14(1), 1988. 

167 



0 

0 

[29] A-M. Derouault and B. Merialdo. Natural language modeling for phoneme­

to-text transcription. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, PAMI-8(6):742-743, November 1986. 

[30] Anne-Marie Derouault and Marc Elbeze. A morphological model for large 

vocabulary speech recognition. In IEEE International Conference on Acoustics, 

Speech and Signal Processing, volume 1, pages 577-580, Albuquerque, 1990. 

[31] P. Dumouchel, V. Gupta, M Lennig, and P. Mermelstein. Three probabilistic 

language models for a large vocabulary speech recognizer. In IEEE Interna­

tional Conference on Acoustics, Speech and Signal Processing, pages 513-516, 

New York, 1988. 

[32] I.J. Good. The population frequencies of species and the estimation of popu­

lation parameters. Biometrika, 40(3):237-264, 1953. 

[33] B.B Greene and G.M Rubin. Automatic Grammatical Tagging of English. 

Brown University, Providence, R.I., 1971. 

(34] D. Hindle. Acquiring disambiguation rules from text. In Proceedings of the 

27th Annual Meeting of the Association for Computational Linguistics, pages 

118-125, Vancouver, 1989. ACL. 

[35] PROGICIELS Bourbeau-Pinard Inc. Dictionnaire morphologique du fran~ais. 

[36] Hajic J., G. Russell, and WarwickS. Searching on tagged corpora: Linguisti­

cally motivated concordance analysis. In Proceedings of the 6th Annual Con­

ference of the UW Centre for the New Oxford English Dictionary, pages 10-18, 

Waterloo, 1990. 

[37] F. Jelinek and R.L. Mercer. Interpolated estimation of markov source param­

eters from sparse data. In E.S. Gelsema and L.N. Kanal, editors, Pattern 

Recognition in Practice. North-Holland, Amsterdam, 1980. 

[38] Stig Johansson. The Tagged LOB Corpus User's Manual. Knut Hofl.and, 

Bergen, 1986. 

168 



c 

c, 

[39] Church K. and Hanks P. Word asssociation norms, mutual information and 

lexicography. Computational Linguistics, 16(1):22-30, March 1990. 

[40] Slava M. Katz. Estimation of probabilities from sparse data for the language 

model component of a speech recognizer. IEEE Transactions on Acoustics, 

Speech and Signal Processing, ASSP-35(3):400-401, March 1987. 

[41] S. Kline and R.F. Simmons. A computational approach to the grammatical 

coding of english. Journal of the AGM, 10:334-347, 1963. 

[42] Julian Kupiec. Probabilistic models of short and long distance word dependen­

cies in running text. In Proceedings, Speech and Natural Language Workshop, 

pages 290-295, Philadelphia, February 1989. DARPA. 

[43] W.A. Lea, editor. Trends in Speech Recognition. Prentice Hall, 1980. 

[44] B. Merialdo. Multilevel decoding for very-large-size dictionary speech recogni­

tion. IBM Journal of Research and Development, 32(2):227-237, March 1988. 

[45] B. Merialdo. Tagging text with a probabilistic model. In Proceedings of the 

IBM Natural Language ITL, pages 161-172, Paris, France, March 1990. IBM. 

[46] Arthur Nadas. A decision theoretic formulation of a training problm in speech 

recognition and a comparison of training by unconditional versus conditional 

maximum likelihood. IEEE Transactions on Acoustics, Speech and Signal Pro­

cessing, ASSP-31( 4):814-817, August 1983. 

[47] Arthur Nadas. Estimation of probabilities in the language model of the ibm 

speech recognition system. IEEE Transactions on Acoustics, Speech and Signal 

Processing, ASSP-32( 4):859-861, August 1984. 

[48] Arthur Nadas. On turing's formula for word probabilities. IEEE Transactions 

on Acoustics, Speech and Signal Processing, ASSP-33(6):1415-1417, December 

1985. 

[49] Garside R., Leech G., and Sampson J., editors. The Computational Analysis 

of English. Longman, 1987. 

169 



0 

c 

[50] L.R. Rabiner and B.H. Juang. An introduction to hidden markov models. IEEE 

ASSP Magazine, pages 4-16, January 1986. 

[51] S. Seneff. Tina: A probabilistic syntactic parser for speech understanding 

systems. In IEEE International Conference on Acoustics, Speech and Signal 

Processing, pages 711-715, Albuquerque, 1989. 

[52] K. Shikano. Improvement of word recognition results by trigram model. In 

IEEE International Conference on Acoustics, Speech and Signal Processing, 

1987. 

[53] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically op­

timal decoding algorithm. IEEE Transactions on Information Theory, IT-

13( 4):260-269, April 1967. 

170 


