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Abstract 

The statistical properties of high dimensional dynamical systems modeled by coupled map 

lattices (CML's) and differential delay equations (DDE's) are considered in this thesis. First, 

the properties of the simplest lattices, containing only two elements are described. We high­

light the presence of coupling induced statistical cycling. Similar phenomena observed in 

arbitrarily large (but finite) systems are explained by studying the Perron-Frobenius op­

erator induced by deterministic nonsingular CML's using functions of bounded variation 

techniques. Analytic phase diagrams are given for coupled tent map lattices, when the 

coupling is either diffusive or global, as well as for a piecewise linear bimodal map. This 

approach is extended to permit a similar investigation of lattices perturbed stochastically, 

and we derive the transfer operators for these systems in the presence of additive and multi­

plicative noise. Various results concerning the spectral decomposition of these operators are 

proven. The formalism developed is then applied to coupled map lattices designed to approx­

imate differential delay equations, both with and without noise. Continuous time statistical 

cycling at equilibrium is reported in these equations, and we describe the phenomenon of 

noise-induced cycling. The results on the Perron Frobenius and transfer operators induced 

by coupled maps are invoked to describe the statistical properties of delay equations an­

alytically. Finally, the functional, continuous time transfer operator for these hereditary 

models is derived, and reduced, via functional expansions, to an infinite chain of integrable 

hyperbolic partial differential equations. 
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Resume 

Cette these porte sur les proprietes thermodynamiques ( ou macroscopiques) de systemes 

possedant un nombre eleve de degres de liberte. Les classes de modeles etudiees ici sont 

utilisees dans des champs de recherches qui vont de la theorie des reseaux neuronaux a 

l'optique nonlineaire et a la dynamique des fiuides, en passant par la description d'algorithmes 

de reconnaissance d'images et par la modelisation des fluctuations de certains marches bour­

siers. Les operateurs de transfert qui decrivent les evolutions d'ensembles statistiques pour 

certaines classes de treillis d'iterations nonlineaires couplees sont definis, et l'on exploite 

le lien conceptuel entre leurs proprietes spectrales et la thermodynamique des treillis pour 

elaborer de fac;on rigoureuse une description thermodynamique de ces systemes. Notre ap­

proche est basee sur !'utilisation des fonctions a variations bornees pour characteriser le spec­

tre des operateurs de Markov, et nous permet d'obtenir des diagrammes de phases exacts pour 

certains reseaux. Nous demontrons que les transitions de phases observees dans ces systemes 

ont pour origines certains changements qualitatifs du spectre desdits operateurs. L'infiuence 

de perturbations stochastiques dans de nombreux modeles est egalement etudiee analytique­

ment. Nous prouvons plusieurs theoremes qui etablissent que les operateurs integraux qui 

sont definis grace a des noyaux aleatoires sont des operateurs constrictifs. On demontre 

egalement que les operateurs qui regissent le tranfert de probabilite dans les reseaux aleatoires 

sont definis grace a de tels noyaux, et l'on deduit de cette analyse leurs proprietes spectrales, 

comme dans le cas deterministe. Ce formalisme, que nous developpons en vue d'etudier 

des reseaux (qui ont une structure dans l'espace, par opposition aux modeles qui decrivent 

!'evolution d'un seul point dans le temps), est, et cela de maniere surprenante, directement 

applicable a la description de systemes qui possedent une memoire (sans avoir de structure 

spatiale). On introduit pour ces derniers un operateur de transfert de dimension infinie, qui 

se reduit, grace aux techniques de la theorie des perturbations fonctionelles a une chaine 

hierarchique d'equations differentielles partielles hyperboliques integrables. 
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Chapter 1 

Introduction 

Choses races ou choses belles, 
Ici patiemment assemblees 
Instruisent l'oeil a regarder 
Comme jamais encore vues 
Toutes choses qui sont au monde. 

Paul Valery, Inscription, Musee de L 'Homme 

One of the great inventions of modern physical thought is the point particle. This theoretical 

construct allows the investigator to discard all internal structures of a system, and focus 

exclusively on the few degrees of freedom which evolve in time under the action of external 

stimuli. This mechanistic approach is justified in some areas of research (celestial mechanics 

comes to mind), but it fails to bear fruit when the systems under consideration possess a 

nontrivial internal structure, so their global evolution is due to external stimuli as well as 

nontrivial interactions between some parts of the whole. 

Systems which possess internal structure are ubiquitous in nature. In fact, it is arguable 

that all physical entities possess internal structure (with the possible exception of some 

elementary particles). Depending on the situation under consideration, this structure can 

be thought of as being continuous, in which case the appropriate mathematical models are 

usually framed as partial differential equations (PDE's), or it can be discrete in which case 

one views the system as a "network" of connected elements. The evolution of such networks 

is typically described mathematically by coupled ordinary differential equations (if time is 

continuous), or by coupled iterative maps (if time is discrete). Our work focuses on the 

macroscopic properties of the latter. 
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The term ''macroscopic", is used to denote those properties which are the result of inter­

action between the constitutive parts, and which are devoid of meaning when one describes 

the dynamics of a single element, though they must generally depend on the dynamics of the 

element. For example, the brain is a collection of anatomically distinct regions, each of which 

is a large collection of neurons, each of which is made of molecules, made of atoms, made 

of the elementary constituents of matter. Depending on which property of brain function is 

considered, the appropriate structure must be studied. The issue of whether the function 

at one level of organization ( eg. the recognition of visual inputs, resulting from the joint 

operation of the visual cortex with other centers associated with memory) can be understood 

from investigations of a different level ( eg. the organization of atoms in the molecules which 

make-up all neural tissue) is beyond the scope of our presentation, and will undoubtedly 

remain the subject of intense debate for many generations to come. However, it is clear that 

a single atom does not recognize a face, and at some level, function results from interaction. 

Describing "systems with internal structure" is a rather vague research program. We 

restrict our attention more specifically to systems which are networks of chaotic, interacting 

elements, whose evolution in time is discrete. Such systems can be profitably modeled by 

networks of coupled iterative maps, usually referred to as coupled map lattices (CML's 

for short). The research in this thesis uses novel analytical techniques to investigate the 

statistical properties of CML's, and discusses their thermodynamic behavior. 

The description of CML's has been the subject of intense scrutiny in the past decade, 

and most (though by no means all) investigations have been primarily numerical rather 

than analytical. Investigators have often been concerned with the statistical properties of 

CML's, because a deterministic description of the motion of all the individual elements of the 
lattice is either out of reach or uninteresting, unless the behavior can somehow be described 

with a few degrees of freedom. However there is still no consistent framework, analogous to 

equilibrium statistical mechanics, within which one can describe the probabilistic properties 

of CML's possessing a large but finite number of elements. For analytic insight, one is usually 

forced to reduce the model to a small lattice (as is done in Chapter 2 and the references 

cited therein, for example), or take the so-called thermodynamic limit in which the number 

of elements goes to infinity. As explained in Section 1.4.4, the thermodynamic limit is a 

useful conceptual tool of statistical mechanics when the systems under study possess simple 

local dynamics. It is often unnecessary when the models possess locally chaotic elements. 

More generally, the framework of classical statistical mechanics is not entirely appropriate 
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for the description of the probabilistic behavior of dissipative dynamical systems, and in this 

thesis we use some of the techniques developped in ergodic theory to describe dissipative 

systems in the spirit of statistical mechanics. 

1.1 Coupled map lattices: Initial presentation 

Models framed as coupled discrete time maps are not a novelty. Caianiello [23] proposed his 

"neuronic equations", which are coupled iterative maps, as generalizations of the McCulloch 

and Pitts neural networks more than three decades ago. Similarly, the work of Denman 

[45], trying to characterize the dynamics of interacting pressure and electromagnetic waves 

in plasmas, made use of coupled discrete maps, and related models were used in the early 

theory of transmission lines [179]. However, the modern body of work dealing with coupled 

map lattices can be traced back to the beginning of the eighties (cf. work by Kaneko [95], 

Wailer and Kapral [214, 215] and Deissler (43]) as phenomenological models to study the 

behavior of large collections of coupled chaotic elements (we will come back below on more 

precise descriptions of these and more recent investigations of CML dynamics). 

In their most general form, deterministic coupled map lattices are mappings <I> : ~N 1-----+ 

JRN governing the evolution of a state vector Xt, 

Xt+l = ci>(xt) t = 0, 1, · · ·. (1.1) 

More specifically, the evolution of a component x~i) of the state vector Xt is governed by the 

difference equation 

(i) - (_[)(i) ( (i)) + (_[)(i) (· • • i-1 i+l .. ·) 
Xt+l - tocat Xt neighbours 'Xt 'Xt ' 

where <I>~~a1 models the local dynamics at site i, and <I>~~ghbours denotes the mechanisms acting 

on i from a specified neighbourhood. If those mechanisms are the same for all sites on the 

lattice, and if they are locally modeled by the map S : ~ 1-----+ ~, and in the neighbourhood 

by the map T : lR 1-----+ lR one can write 

some 
neighbourhood 

In many situations of interest, it is possible to further simplify the formulation of the models 
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by letting T = S, and using a linear coupling scheme between the elements1 . In these 

circumstances, we have 

L S(x1) 
p p 

(1.2) 
neighbours 

where r:; E [0, 1] is the coupling term. Again, i denotes a discrete space index (of arbitrary 

finite dimension), and t denotes discrete time. 

In our description of CML's, we view the sites of the lattice as being located on the 

nodes of a regular body centered cubic lattice, and we will always assume periodic boundary 

conditions, except where the contrary is stated explicitly (as in Chapter 5 for example). 

There are investigations of coupled map lattices in which the underlying lattice is not as 

simple as the body-centered-cubic example chosen here, and possesses intrinsically "complex" 

(sometimes called hierarchical) structure. In these cases, it was demonstrated [39, 40] that 

the bifurcation structure of the CML can depend on the topology of the lattice, but we 

will not dwell on this point, since most of the analytical tools introduced in this thesis do 

not depend on the properties of the underlying lattice topology. Finally, we will discuss in 

Chapters 4 and 6 the properties of systems of the form (1.2) which are perturbed by noise, 

but the formal presentation of stochastic CML's is delayed until then. 

The developments which followed the introduction of CML's have established the use­

fulness of these models to investigate the dynamics of a wide variety of systems in various 

areas of research ranging from population dynamics to solid state physics. Our own research 

was motivated in part by this flurry of activity, and we therefore review the literature briefly 

before proceeding to a description of CML thermodynamics. 

1.2 Overview of models framed as CML's 

Two collections of papers on the subject, both edited by K. Kaneko [94, 50] are available. 

Some of the material discussed in the present section is taken from these collections, but we 

also mention many of the more recent published works on coupled map lattice dynamics. 

1The coupling scheme of equation (1.2) is called linear because xl21 is linearly proportional to S(xii)). 
Some authors [103] would call such architectures nonlinear, but we will adhere to this convention for reasons 
which will be clear in Chapter 3. 
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1.2.1 Biological applications 

There are many biological systems which can be thought of as collections of interacting 

elements with intrinsic nontrivial dynamics. When this is case, and if the local dynamics 

can reasonnably be modeled by discrete time maps, it is feasible to introduce models framed 

as CML's. 

This approach has been fruitful in population dynamics, in which the discrete time occurs 

naturally if generations do not overlap (insect populations are possible examples). The 

investigations of Sole et al. [198, 199] have led these authors to conclude that CML's provided 

the simplest models for discrete ecological models. Franke and Yakubu [58] have recently 

proposed a CML to investigate the inter-species competition of large bird population which 

we consider in more detail in Chapter 3. These CML's are crude models for the evolution 

of species competing for shared resources, which are obtained by straightforward (albeit not 

very realistic) multidimensional generalizations of proposed one-dimensional maps [153, 209]. 

They open the way for more realistic population competition models which could be framed 

as CML's in which the underlying lattice is not regular, perhaps taking into account some of 

the spatial features observed in the field. Cosenza and Kapral [39, 40] showed that complex 

spatial architectures can have a nontrivial influence on the bifurcation structures of the 

CML. Ikegami and Kaneko [102] have also proposed a model for host-parasitoid networks, 

and their study of the corresponding CML have led them to introduce a generalization of the 

idea of homeostasis. The proposed alternative, "homeochaos" describes an asymptotic state 

reached by networks of evolving and mutating host-parasitoid populations in which chaotic 

fluctuations in the numbers of hosts and parasitoids are observed at equilibrium. 

Beyond population dynamics, the mathematical description of neural behavior has also 

benefited from discrete time, discrete space models. The foundations of the modeling of 

cortical function were laid in two seminal papers by Wilson and Cowan (218, 219]. However, 

the original models presented by these authors are computationally costly, and are not 

easily amenable to analytic investigations. As a result, there have been attempts to reduce 

the original networks of integro-differential equations to simpler spatially extended models. 

Reduction to CML's are presently being considered by some of the same authors [151]. In 

its methodology, this work [ ibidj is typical of investigations in which the CML is proposed 

as a discrete-time version of previously considered continuous-time systems. For example, 

Molgedey et al. [155] made use of coupled map lattices to examine the effects of noise on 

spatiotemporal chaotic behavior in a neural network which was originally proposed (in its 

5 



0 

continuous-time version) by Sompolinsky et al. [200]. Following a similar path, Nozawa 

[161] has presented a CML model, obtained by using the Euler approximation in the original 

Hopfield equations. 

One of the outstanding problems motivating this neural oriented research is the identifi­

cation of organizing principles to explain the synchronization of large populations of neurons 

possessing individually complex dynamics. Such synchronizations are thought to take place 

in pathological situations ( eg. epileptic seizures) as well as in the normal brain. For example, 

Andersen and Andersson [4], and later Steriade and Deschenes [201] have hypothesized that 

such a synchronized activity of the reticular thalamic nucleus (RTN) acted as a pacemaker 

for the so-called "spindle oscillations" observed during various sleep stages. Models of the 

RTN framed as networks of coupled differential delay equations have been proposed by Des­

texhe [46], and these can be reduced, by a straightforward singular perturbation procedure 

[88), to CML's. Models of the RTN framed as coupled ODE's have also been considered 

recently, and provide a motivation for the theoretical description of globally coupled arrays 

of oscillators [65]. An interesting review of the mathematical description of cortical behavior 

in terms of coupled nonlinear units is given in [221]. A less recent, but somewhat broader 

view of the contemporary efforts to mathematically describe the behavior of neural networks 

using the conceptual tools of nonlinear dynamics is presented in [191]. For the sake of com­

pleteness, we also refer the reader to the review by Herz [77], which describes some of the 

earlier neural modeling attempts which made use of CML's, as well as some of the models 

based on delay differential equations. 

At the molecular level, Cocho et al. [34] proposed a CML model to describe the evolution 

of genetic sequences. A comprehensive account of the development of this idea can be found 

in [35]. In this simplified formalism, each genetic sequence is made up of m nucleotides, 

which come in four fiavors. The latter is determined by which of four possible bases (guanine, 

cytosine, adenine, thymine) complements the phosphate and deoxyribose groups which make­

up the nucleotide. The building block of a genetic sequence is then a triplet of nucleotides, 

called a codon (which codes for an amino acid). Cocho et al. established that for certain 

viruses, it is relevant to restrict attention to sequences containing only two types of codons, 

denoted type I and IL Hence a sequence of length L = m/3 codons is uniquely characterized 

by the number i1 of type I codons it possesses. i1 can also be thought of as a position 

index in a configuration space, and in this case two sequences are "close" if they differ by 

a small number of codons. Under specified fitness constraints (whose meaningful definition 
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imposes the most important limits on this approach), sequences can mutate: a type I codon 

becomes type 11, or vice-versa. The CML model for genetic sequence evolution describes the 

evolution of the number of sequences at location i1 in the configuration space, and therefore, 

local interactions are due to mutations, whereas ecological constraints ( i. e coming from 

limited food supplies) generate long range coupling. Recently [36], the same authors have 

extended this approach to study the mutations of the HIVl AIDS virus, and their predictions 

concerning the regularity of the chemical compositions of this virus' RN A sequences agree 

with statistical analyses of gene data banks. 

The use of CML's, though interesting from the mathematical biologist's point of view, 

is not restricted to biological models. Contemporary developments in the theory of image 

processing have led to the introduction of various algorithms which are in fact coupled map 

lattices. 

1.2.2 Image processing applications 

One of the basic challenges in image processing is the so-called "shape from shading" problem 

[20], which surfaces both in computer graphics, where shading is used to enhance realism, 

and computer vision, where the study of shading is crucial for the proper interpretation 

of a pattern's two dimensional projection (its picture). In computer vision, a typical task 

is the classification of patterns into classes ( eg. faces vs. landscapes), where the input 

patterns possess underlying "shapes" describing their essential features (nose, eyes, vs. trees 

or clouds) which are immersed in secondary information due to the shading of the image. 

Several approaches to this problem [20, 204, 210] make use of algorithms which are 

coupled map lattices, although there are no explicit acknowledgements in this literature of the 

link between the structure of the algorithms and their formulation as CML's. We illustrate 

this link with a frequently encountered model used to approach shape from shading, which 

was introduced by Brooks and Horn and is known as the B-H algorithm [19]. To derive the 

model, the shape of an object is thought of as a function which minimizes a given functional. 

After minimization of the proper errors [210], the B-H algorithm is written 

2 
x(ij) = x(ij) + ~ (E(ij) - x(ij) · s) S 
· t+I t 4A t (1.3) 

where E(ij) is the shading, x~ij) is the surface normal at site ( i, j) of the image, A and c 

describe the role of a smoothness constraint, and S is the light source vector (the light 
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source being responsible for the presence of shade), and x}ii) is the average of the normals 

in a neighbourhood of site ( i, j). The local coupling comes from this latter term, and as a 

result, the evolution of the initial image under the action of the B-H shade from shading 

algorithm is akin to the evolution of an initial vector under the action of a CML. There are 

more recent descriptions of this problem which do not make use of the variational techniques 

used to derive (1.3), and which lead to different CML's (one example is given in [210]). 

The treatment of fuzzy images is not limited to the shape from shading problem. In 

fact, prior to this analysis, "dirty" images, possibly obtained with remote sensing equipment 

must be "cleaned". This procedure, known as the segmentation of an image, is an attempt tO 

highlight edges while smoothing the noise in regions devoid of edges. A "physicist-friendly" 

presentation of the segmentation problem is given by Price et al. [171]. They introduce a 

coupled map lattice designed as an alternative to the costlier and more unstable segmenta­

tion algorithms obtained by the minimization of a cost function. Their work is an additional 

illustration of the potential benefits to the image-processing community which could fol­

low from an increased awareness of the wealth of dynamics displayed by high-dimensional 

nonlinear discrete time maps: the stability properties of the algorithms, and their possible 

pathological treatments of real images can often be determined beforehand by an indepth 

investigation of the corresponding CML. 

At a more formal level, CML's are also encountered by computer scientists interested 

in computation theory. The CML's presented in Section 1.1 are discrete time, discrete 

space continuous state dynamical systems. In that sense, they are a generalization of digital 

computers which are discrete in all three respects. 

The results presented by Price et al. [78] indicate that CML's considered as parallel 

deterministic computers probably cannot perform computations which cannot be performed 

by digital computers. However, it is likely that task specific analogue computers modelled 

accurately by CML's will be more efficient than digital computers in solving various classes 

of problems (such examples could result from the hardware implementation of the image 

processing algorithms discussed above using analogue rather than digital chips). 

In spite of the obvious interest generated by CML's for their many potential applications, 

the main motivation for their investigation from a physicist's point of view undoubtedly lies 

in their use as phenomenological models for the study of more general spatially extended 

systems 

8 



0 

0 

0 

1.3 Phenomenological models framed as CML's 

The modern body of theoretical and experimental work on the behavior of low dimensional 

chaotic dynamical systems goes back to the classical paper of Lorenz [130], which describes 

the reduction of the Navier-Stokes equation to a now famous system of three coupled ordi­

nary differential equations. The rationale for this work was to gain insight into the mecha­

nisms which underly the development of turbulence in fluids. This endeavor is ongoing, and 

although some progress has been made since the early work of Lorenz, a complete under­

standing of the fully developped turbulent regime is still lacking. The traditional description 

of turbulence, known as the Landau interpretation, views fully turbulent motion as resulting 

from the superposition of infinitely many periodic modes of incommensurate frequencies. 

This superposition of modes provides one mechanism for the observed complexity, but it 

fails to explain the mixing behavior typically associated with fluid turbulence. Furthermore, 

the intuitive notion underlying Landau's description, that complexity is a consequence of 

the interactions between many degrees of freedom, has been shattered by the developments 

of nonlinear dynamics since Lorenz' work. It is now clearly established that a single degree 

of freedom, if it evolves according to a discrete time nonlinear law can possess unpredictable 

complex behavior: it can display deterministic chaos [190]. The introduction by Ruelle and 

Takens [186, 185, 184] of nonlinear dynamical systems to describe fluid turbulence also pro­

vides mechanisms for the observed mixing which cannot be dealt with in the Landau picture 

(we will come back to this point in Section 1.4.5). 

The link between low dimensional deterministic chaotic dynamical systems and fluid 

dynamics is well documented, both theoretically and experimentally [147], and it provides a 

useful framework for the description of various non-turbulent regimes [110, 190]. In order to 

extend the understanding of more irregular fluid motion, coupled map lattices were proposed 

as natural extensions to low dimensional nonlinear models. 

1.3.1 Spatiotemporal intermittency and weak turbulence 

An example of the fruitful application of CML's to study fluid dynamics is given by the 

work of Chate and Manneville, concerning the transition to turbulence via spatia-temporal 

intermittency [27, 28]. In this work, the CML's are constructed to reflect what are thought 

to be the essential features of a fluid undergoing the transition from laminar flow to turbulent 

flow via the so-called intermittency scenario, according to which a laminar flow gradually 
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becomes turbulent by the growth of regions in the laminar regime in which the flow is tur­

bulent. Hence, the essential features of the Chate-Manneville models are the partition of 

the local phase space into two regimes: one laminar, and the other turbulent. Their anal­

ysis of the corresponding CML's lead to the identification of universality classes describing 

the "contamination process'' of the laminar flows by turbulent "islands" [27, 29, 28]. The 

usefulness of the CIVIL approach is that these models capture much of the phenomenology 

while remaining amenable to extensive numerical simulations. 

The destabilization of laminar flows does not always occur via spatiotemporal inter­

mittency. Various convective instabilities can result in alternate destabilizing mechanisms, 

and sdme of the recent work on CML's focuses on the dynamics of these instabilities in 

so-called "open flow" models [44]. Convective instabilities grow as they are transported 

downstream, and they are localized in the sense that a laborato~y observer sees them pass 

by from upstream to downstream as localized defects [147]. Such situations are encountered, 

for example, in the modeling of shear flows and boundary layers, and they provide situations 

in which spatial order can be coexistent with temporal chaos. Given the complexity of the 

full equations of motion, it has been helpful to consider reduced models framed as CML's. In 

[12], Biferale et al. describe the convective instabilities of a unidirectionally coupled CML by 

focusing on the tangent vector associated with a trajectory of the CML. This analysis could 

not have been carried out on the original PDE's governing the fluid motion, and it resulted 

in a relatively simple description of the localization of temporal chaos around the defects of 

the lattice. Other descriptions of asymmetrically coupled CML's include the works of Jensen 

[92, 91], Aranson et al. [5), and Willeboordse [217]. In all these, the coupling between the 

elements of the CML is not isotropic, and there is a preferred spatial direction in the lat­

tice along which information is more easily transmitted. In Chapter 5 we will explore the 

dynamics of such a CML, introduced as a model for a class of differential delay equations. 

In addition to these fluid-dynamical motivations, the quest for organizing principles of 

morphogenesis has led to the use of CML models to investigate the appearance of macro­

scopic patterns in spatially extended systems. It is not possible to give an exhaustive review 

of the vast literature dealing with the problem of classifying and understanding the devel­

opment of patterns in nonlinear spatially extended models. This problem arises in fields 

of research as varied as mathematical biology (for extensive reviews, consult [159, 220)), 

chemical engineering [103], and the dynamics of diffusion limited aggregation [211]. Cross 

and Hohenberg give an authoritative review of this literature related to physical applications 
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in [41). The specific applications of CML's to the discussion of macroscopic pattern forma­

tion have mostly focused on models of reaction diffusion systems, and on models of globally 

coupled elements. 

1.3.2 Reaction diffusion models 

Reaction-diffusion models play an important role in the description of real spatially extended 

systems because the competition between these two general mechanisms is ubiquitous in 

nature. In one dimension, they are modeled by the generic PDE 

du(x, t) 
dt = D\12u(x, t) + F(u(x, t)), (1.4) 

where F is the reaction term. In a seminal work, Turing [207] established that this competi­

tion was at the origin of many pattern-forming instabilities. Reaction diffusion systems have 

been the subject of many descriptions in terms of CML's because diffusion is approximated 

by a nearest neighbour coupling in CML's of the form (1.2) (examples of this reduction are 

given by Puri et al. [175] for the one dimensional Cahn-Hilliard equation, and by some of 

the same authors for the Fischer equation [163]). We note that the reduction of models 

framed as PDE's to their CML counterparts is usually not a rigorous procedure, although 

there are special circumstances (for some externally forced models) in which the CML pro­

vides a close approximation to the PDE [107]. As mentioned in [127], the benefits of using 

CML's in the majority of investigations stem from the fact that they reproduce most of the 

interesting phenomenology, without requiring the prohibitively large computing resources 

associated with PDE simulations. In addition, it is likely that as those resources increase 

with technological breakthroughs, so will the complexity of the problems considered by the 

modeling community, so that there is some intrinsic virtue in trying to understand reduced 

systems, such as CML's, to help in the study of more complicated ones. 

Because of their computational efficiency, CML's are well-suited for the introduction of 

new quantifiers of spatiotemporal dynamics, or for the multidimensional generalizations of 

one-dimensional concepts [205] (this was an important motivation for the early discussions 

[43, 214, 215]). In this spirit, Kaneko has introduced such concepts as the "comoving mutual 

information flow" [96], and various "pattern entropies" and "pattern distribution functions" 

[97], to mention a few of the frequently encountered statistical descriptors of the motion. 

Reaction diffusion CML's are then usually of the form (1.2) with p = 2 in one spatial 
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dimension, or p = 4 in two dimensions, and used to explore in great detail the behavior of 

the quantifiers of spatio-temporal motion more efficiently than if PDE's were considered. 

Similar lattices have been used to simulate interfacial phenomena in reaction diffusion 

systems [127]. In these investigations, the CML's usually arise from the phenomenological 

simplification of PDE's of the form (1.4), and they provide the simplest models which retain 

the disparate length and time scales necessary for the appearance of rich interfacial dynamics. 

Other typical examples of this approach are given for crystal growth by Oono and Puri 

(162] and for chemical waves by Barkley (7]. A phenomenological description of interfacial 

phenomena was recently given by Kapral et al. [105J, using a piecewise linear CML (with 

a branch with slope zero in the local map) which displays some of the interfacial structures 

associated with continuous time, continuous space models. In a similar spirit, the behavior 

of liquids at the boiling transition was studied by Yanagita [223] with another reaction­

diffusion CML. To conclude, we refer the intertested reader to the comprehensive review of 

the applications of CML's to capture the essential features of pattern formation in chemically 

reacting systems given by Kapral in [103] 

1.3.3 Arrays of globally coupled oscillators 

In this section, we do not give an extensive review of the burgeoning literature dealing with 

the behavior of globally coupled oscillators. We focus instead on those works which have 

made profitable use of phenomenological models framed as CML's. 

The introduction of all-to-all (or mean-field, or global) coupling in theoretical physics 

to investigate the dynamics of spatially extended systems is not novel; it has always been 

one of the standard techniques used to describe the magnetic properties of spin systems. 

As experimentalists probe ever deeper into the behavior of systems with a large number of 

degrees of freedom, new models of globally coupled oscillator arrays are introduced, in which 

the individual oscillators are either continuous or discrete in time. Some of the experimental 

situations in which global coupling arises naturally are related to nonlinear optics, with ex­

amples ranging from solid-state laser arrays (225], to multimode lasers [90]. In electronics, a 

number of experiments on Josephson junction arrays coupled in series or in parallel have in­

dicated the presence of very rich dynamics, often related to the multiplicity of attractors, or 

the linear stability properties of fully synchronized states (cf. [160] and references therein). 

The majority of models proposed to describe these dynamics are framed as globally coupled 

sets of ordinary differential equations [73, 194, 202]. The ODE's are usually not rigorously re-
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duced to CML's, and the introduction of the discrete-time map lattices is often motivated by 

the desire to improve the phenomenological insight into the evolution of the continuous-time 

oscillators. For example, Wiesenfeld and Hadley [216] found that CML's provided useful re­

duced systems to investigate the effects of low levels of noise on large globally coupled arrays 

which possess an even larger number of attractors. More recently, discrete maps were used 

to describe the dynamical properties of periodic attractors in arrays of p- n diode junctions 

[54], and the stability regions of various solution types for the CML's agreed qualitatively 

with the experimental data obtained fr.om two coupled diode junctions. We close this ad­

mittedly incomplete presentation of some contemporary discussions of global coupling in the 

physical sciences, by mentioning that CML's have recently been used to study theoretically 

the remarkable phenomenon of mutually destructive fluctuations in which the activity of 

the mean field is observed to have a much smaller variance than the individual trajectories 

[160]. This phenomenon is extremely interesting for researchers trying to understand the 

role of noise in the transmission of information in spatially extended processing systems. For 

example, it is well known that the behavior of individual neurons can sometimes be more 

erratic than that of the average behavior of a population of neurons [152]. This leads us to 

the description of all-to-all coupling in biological networks. 

Global coupling arises in the description of certain populations of insects [154], and in the 

modeling of neural activity. In this last field of investigation, global coupling is the simplest 

approximation to the highly complex inter-neuronal coupling which is anatomically observed. 

As an example, globally coupled ODE's have been introduced to model the clustering be­

havior of a population of inhibitory neurons [65]. Although this model is not framed as a 

CML, our investigation of excitable CML's with long range inhibitory coupling (cf. Chapter 

3) confirms the qualitative description of the behavior which is given in [65]. 

1.3.4 Additional comments on CML phenomenology 

To conclude this introduction, we briefly review other works whose themes do not neatly fall 

into the various sections enumerated above. Most report novel behavior which extends the 

zoology of spatiotemporal dynamics, therefore posing interesting theoretical problems. 

Crutchfield and Kaneko [42], Politi et al. [168] have reported the counterintuitive presence 

of long-lived erratic behavior, observed even when the Lyapunov exponents in the system 

are negative. Although the exact dependence of the transient length on the system size 

was initially misunderstood (and thought to grow hyperexponentially with system size), 
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this phenomenon is interesting because it highlights the importance of transient behavior in 

spatially extended dynamical systems in which nonlinearities play an important role. The 

question of transient length in CML's has also been discussed in papers by Qu and Hu [176] 

and more recently by Kapral et al. [105]. 

Qu and Hu [ibid] also discuss the bifurcation structure in locally coupled lattices, and 

their description of CML's brings us to a broad class of investigations which tend to focus on 

the identification in these spatially extended models of behaviors which are well-understood 

in lower dimensional chaotic systems. Another example is the discussion of the extreme 

dependence on both parameters and initial conditions in spatio-temporal systems given by 

Lai and Winslow [119], which generalizes to high dimensions previous descriptions of similar 

behavior in low dimensional models [57, 69]. A third example is the theoretical description 

of universal behavior in the bifurcation structure of a large class of CML's, given by Kook et 

al. [114], using renormalization group transformations to obtain the scaling exponents of the 

period-doubling cascade. This work, and similar studies due to Alstr!Zlm and Stassinopoulos 

[2] and Kuznetsov [115, 116, 118] are a first step towards a classification of universality 

classes in spatiotemporal phenomena, and they complement the strong numerical evidence for 

parameter scaling in the bifurcation diagram of various lattices of coupled maps [49, 106, 92]. 

The investigations of the possible presence of universality classes in the behavior of CML's 

is largely motivated by the desire to classify the various scenarios which are followed by 

spatially extended systems bifurcating from synchronized states to spatia-temporally chaotic 

ones. The work of Chate and Manneville, mentioned previously, was partly inspired by a 

desire to verify a conjecture of Pomeau's that the spatia-temporal intermittency transition 

in fluids was in the same universality class as the directed percolation transition. Extensive 

numerical studies of CML's lead to the contrary conclusion. 

Sometimes, the investigation of CML's can also point the way to the misunderstanding 

of results of a fundamental nature. For example, observations of the coherent behavior of 

globally coupled and some locally coupled CML's reported by Kaneko [99, 101], Perez et 

al. [164], and Chate and Maneville [31] have led to a controversy in the recent literature 

concerning an apparent violation of the law of large numbers in these models. Recently, 

Pikovsky and Kurths [165] have given a partial explanation of the phenomenon, although 

these considerations are not well grounded theoretically, because they do not make use of 

the proper tools to describe the evolution of thermodynamic ensembles of CML's. We come 

back to this discussion in Section 1.4.5.1, which illustrates that considering simple models 
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(CML's) can go a long way towards the consistent extension of classical results, e.g. the law 

of large numbers, to the study of previously exotic situations (modeled by high dimensional 

nonlinear dynamical systems for example). 

The ongoing discussion of the violation of the law of large numbers is resolved by a careful 

consideration of the statistical mechanics of coupled map lattices. Until now, there have been 

only a few attempts at a systematic construction of this formalism for high dimensional 

chaotic dynamical systems. These investigations follow two broad and intersecting paths: 

One is the extension of the so-called thermodynamic formalism of Ruelle [183], Bowen [16] 

and Sinai [195), and has led to various proofs of existence for Gibbs measures describing 

spatiotemporal chaos [21, 22, 72] in hyperbolic systems. This approach rests on the symbolic 

representation of dynamical systems, and will be briefly described in Section 1.4.4.3. The 

other path is the one we follow, and it rests on the study of so-called transfer operators. It 

was pioneered by Keller and Kiinzle [109], Goni and Boyarski [66], and it is powerful for the 

investigation of finite (but high) dimensional dynamical systems. 

Our work complements these presentations, and we will, in the next section, discuss 

exactly what is meant by "the thermodynamics of chaotic systems". 

1.4 Statistical mechanics of dynamical systems 

In the first part of this section, we consider the thermodynamics of crystals, and briefly 

describe the theoretical steps which lead to the expressions for experimentally measurable 

thermodynamic quantities. This schematic presentation is helpful to introduce the statistical 

mechanics of dynamical systems. 

1.4.1 The thermodynamics of crystals: A brief digression 

The purpose of this short digression is to introduce in a natural fashion a description of 

dynamical systems which is analogous to the description of materials given by classical 

statistical mechanics. We consider silicates because for these minerals, small amplitude 

motions are well.described by phonons (cf. the collection of articles in [189]), but we could 

have equally well discussed oscillations of magnetic moment in certain magnetic materials 

using magnons or spin waves. Our presentation is based on a paper by Price and Parker 

[171], in which the thermodynamics of silicates are examined by focusing on the vibrational 

properties of the atomic lattice. No claim is made here concerning the validity of this 
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approach, and we concentrate on the methodology of the presentation, rather than the 

relation between the ensuing results and experimental evidence. 

First, it is necessary to determine the free energy of the material. In silicates, as in 

many other minerals, it is "stored" partly in the phonons, the quantum vibrational modes 

of the atomic lattice. We now briefly illustrate how a given material is characterized, in this 

picture, by the distribution f(w) of these phonons. 

For the purpose of our discussion, a phonon is essentially a quantum harmonic oscillator, 

and the mineral is therefore thought to be a regular lattice whose normal modes of oscillation 

are described by a collection of phonons. As is well-known [61], the energy of a linear 

harmonic oscillator can assume the values 

Ez= (z+~)n.w, z=0,1,2,···. 

From maximal entropy principles, it is straightforward to show [142] (see also the more 

traditional presentation given by Cochran [37]) that at equilibrium, the probability that a 

harmonic oscillator has energy Ez is given by 

so that the mean energy is 
00 

(E) = L Ezp(Ez). 
z=O 

Recalling the identities 
00 00 

L e-kx = (1- e-x)-1 and L ke-kx ex( ex- 1)-2, 
~0 ~0 

the mean energy is of s single mode is shown to be 

[
1 1 

(E) n.w 2 + enw/kT 

Hence, the overall energy of the crystal is given by [172] 

Erot = u + foWmaro nw [~ + eliw/k;- 1] f(w) dw 

where U is the static lattice energy, and Wmax is the maximum vibrational frequency of the 

crystal. From this expression, one obtains the heat capacity of the crystal at constant volume 

C 
8Erot 

v=fiT· 
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In order to calculate the other important thermodynamic functions of the crystal, it is 

necessary to measure the molar volume Mv, the isothermal bulk modulus Kr, and the 

Gruneisen parameter 9n which is related to the average change in the frequency of one 

normal mode as a function of change in molar volume (a precise definition is given in Section 

5 of [172]). With these measured quantities, one can then obtain the heat capacity at 

constant pressure, Cp, the entropy S, the enthalpy H, the Gibbs free energy G, and other 

thermodynamic functions by making use of their basic definitions: 

Cp C g;C~T 
v+ KrMv 

s j c:; dT 

G Er at TS 

H - Erot+PMv. 

It is clear from this brief overview that the subtleties of the modeling of crystals from 

a thermodynamics point of view lie in the determination of the density of normal mode 

excitations f(w). Such subtleties are beyond the scope ofthis presentation, and we only note 

in passing that determining f ( w) is related to the study of the phonon dispersion relations in 

crystals (the interested reader is referred to [178] in which f(w) is calculated for Forsterite). 

This description of the macroscopic properties of crystals illustrates the essential connec­

tion between the thermodynamics of these systems and the density f(w). In this interpreta­

tion, the crystal itself is thought of as a large collection of independent normal modes, each 

of which describes a time-independent excitation property of the mineral (this description 

of crystals is not always appropriate, since phonons sometimes interact, but we focus here 

on those cases in which independence of the phonons is a valid approximation). Suppose 

now that the symbol w is stripped of its interpretation as a lattice normal mode, that it 

becomes time-dependent, and that it starts evolving under the action of a dynamical system 

7 (either continuous or discrete in time). Obviously, w no longer bears any relevance to the 

description of crystals, and the function f now describes the probability of occupation of the 

phase space of 7 (the exact meaning off is described in more detail in the next section). 

Thus we are lead rather naturally to the conclusion that the thermodynamic description of 

the dynamical system 7 must primarily focus on the probability of occupation of its phase 

space. 
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1.4.2 The thermodynamics of dynamical systems 

Suppose that the dynamics of a physical system are modeled by a (deterministic or stochastic) 

dynamical system denoted by T: X f---7 X (many examples of such situations are described 

in Sections 1.2 and 1.3). Suppose further that some observable CJ(:xn,), which depends on 

the state Xn of T, is being measured at time n (The observable 0 is arbitrary, though it 

must be a bounded measurable function). The expectation value of this observable, denoted 

by E(On), is the mean value of CJ(xn) when the measurement is repeated a large (ideally 

infinite) number of times. Mathematically it is given by 

(1.5) 

where fn(x) is the density of the variable Xn, i.e. the probability p(x~) of finding Xn between 

x' and x' + 8x' is n n n 
x' +ox' 

p(x~) = 1 n n fn(Y) dy. 
x' n 

All thermodynamic functions which characterize the ensemble properties of a system are 

observables whose expectation values are defined by (1.5) since() was arbitrary. Therefore, 

the thermodynamic state of the CML Tat time n is completely characterized by the density 

function fn. Hence a complete description of the thermodynamics of T must focus on the 

behavior and properties of fn. To this end, we introduce the transfer operator associated 

with T, denoted by Pr, which governs the time evolution of fn 

fn+l(x) = Prfn(x), n = 0, 1, · · ·. (1.6) 

To draw an analogy with more familiar physical systems, the transfer operators discussed 

here describe the arbitrary dynamical system T much as the Liouville equation describes the 

ensemble dynamics of ODE's, the Fokker Planck equation those of the Langevin equation 

(which is a stochastic ODE), or the Perron-Frobenius operator (defined in Section 1.4.3) 

those of deterministic maps (cf. Table 1.1). 

For the sake of completeness we mention that there are dynamical systems which are not 

associated with probability density functions. In those cases, the thermodynamic description 

is given by a measure, which for the purpose of this discussion, allows the generalization of 

the notion of density (precise measure-theoretic definitions are given in the preliminaries of 

Chapter 6). In general, the thermodynamic state of the (semi)dynamical system T: X f---7 X 

is then the measure space (X, B, 1-Lt) where B is a finite a-algebra and J.ln is a measure defined 
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on B at time n. In the cases described above, the measure J.Ln is absolutely continuous with 

respect to the Lebesgue measure, and, therefore, is associated with a density function ft(x) 

by the relation J.Ln(A) =fA fn(x)dx for all A E B. Hence, the evolution ofthe thermodynamic 

state of T is described by the evolution of the phase space densities fn associated with the 

measures J.Ln· The state of thermodynamic equilibrium for a nonsingular2 dynamical system 

T is therefore described by the fixed point f* of the transfer operator Pr governing density 

evolution, when such a fixed point exists (i.e. when there exists f* such that Prf* = f*). 

Description of the model 

Deterministic maps 
Stochastic maps 
Deterministic ODE's 

I Description of ensemble dynamics 

The Perron-Frobenius operator 
The transfer operator 
The generalized Liouville equation 
The Fokker Planck equation 
The Kramers- Moyal equation 

Stochastic ODE's (white noise) 
Stochastic ODE's (non-white noise) 
Differential delay equations The Hopf equation for the characteristic functional 

TABLE 1.1: 
Brief summary of the probabilistic descriptions associated with various types of discrete and 
continuous-time models. 

Our presentation of the statistical mechanics of CML's focuses for the first part of the 

thesis on deterministic models. We derive in Chapter 4 the expressions for the transfer 

operators for stochastic systems, and we therefore delay until then a discussion of CML's 

perturbed by noise. In the absence of noise, the CML's induce, under mild conditions, a 

transfer operator known as the Perron-Frobenius operator, which is described in the next 

section. 

1.4.3 The Perron-Frobenius operator PiP 

A discrete-time nonsingular transformation <I> : X 1----t X (X c ~N) induces an operator 

denoted P~ which acts on probability densities, and which is defined implicitly by the relation 

f P~f(x) dx = f f(x) dx, for all A c X, 
jA 1~-l(A) 

(1.7) 

2Nonsingular means in this case that tLfc(T-1 (·)) is absolutely continuous w.r.t Lebesgue measure J-tfi. on 
X. 
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and all probability densities f. Pif> is called the Perron-Frobenius operator induced by <P, 

and a study of its properties will be the cornerstone of our probabilistic description of 

deterministic CML's. If the transformation <P is piecewise monotone, it is possible to give a 

more explicit definition of Plf>, by performing a change of variable in the above definition. 

Define IT to be a partition of the phase space X which contains s(II) elements denoted 

1r1, 1r2, · · ·, 'lrs(II)· Let <Pii be the monotone restriction of <P to the set 1ri c X, i = 1, · · ·, s(II) 
(with Uf:!1 7ri =X). Let ifi denote the image of the set 7ri: ifi = <Pji(7ri)· The Perron-Frobenius 

operator induced by <P can be written 

- - s(IT) fn(<P~l(x)) 
fn+l(x) = Pif>fn(x)-,?:.: .J(<P-:1 ( ))X1r,(x), 

~=1 I~ X 
(1.8) 

where X1l";(x) = 1 iffx E ifi, and 0 otherwise, and .J(Z) is the absolute value of the Jacobian 

of Z. A more intuitive version of (1.8) is 

" fn(Y) 
Pif>fn(x) = L; .J(<P( )) . 

yEif>- 1(x) Y 

It should be clear from our presentation that the asymptotic properties of the sequence {fn} 

of the iterates of an initial density f0 under the action of Pif> determine the thermodynamic 

behavior of the dynamical system <P. These asymptotic properties of { fn} themselves de­

pendent on the spectral characteristics of the operator Plf>, and our investigations of CML 

thermodynamics will in fact focus on the spectral properties of Pif>. 

There have been several attempts at using the Perron-Frobenius operator to describe the 

dynamics of CML's [82, 83, 98, 166], but these have all concentrated on the properties of 

an operator acting on one-dimensional densities. The "proper", or complete description is 

given instead by theN-dimensional operator, and it will be the object of our attention. 

Remark 1: WHEN discussing the thermodynamics of dynamical systems, and more precisely 

to clarify the link between the notion of temperature and the control parameters of the model 

under study, it is useful to generalize the definition of the Perron-Frobenius operator and 

introduce the following alternative (183, 203]: 

s(IT) fn(<Pil(x)) 
Pif>,/3fn(x) = L [ _

1 
]pXAi(x), /3 > 0, 

i=l .1( <Pi (x)) 
(1.9) 

which reduces to our previous definition when /3 = 1. Changing /3 allows us to determine 

which of the preimages dominate the transfer of mass from fn(x) to fn+ 1(x) (i.e. which 
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microstates contribute to the density most). To illustrate the connection with classical 

statistical mechanics, apply Pl.f),f3 T times to the uniform initial density f0 (x) xx(x). Using 

the identity 

and replacing f0 (x) = xx(x) in (1.9), one obtains 

fT(x) L [det.1( <I> iN (y(i))) r{3 
y(i) Elf) iT (x) 

where the simplified notation .1(·) -+ !.'I is used. The sum over the <I>iT(x) is over the 

set of preimages (of order T) of x (which is a sum over i), whereas the sum in the exponent 

runs over iterates of initial values x0 (distributed according to f0). z:;P(f3) is known as 

the topological partition function [8] which is instrumental in the definition of meaningful 

thermodynamic quantities for dynamical systems (such as the topological pressure which 

plays the role of the free energy for hyperbolic systems since it satisfies a variational principle, 

like the free energy in classical statistical mechanics). The interested reader is referred to 

the clear discussion of the topological partition function and its relation to various other 

thermodynamic functions of chaotic systems which is given in Chapter 16 of [8]. We will 

see below that if the transformation <I> is Markov, then its topological partition function 

is exactly the partition function of an ~h order Potts model, where N is the number of 

elements of the Markov partition. Hence, changing f3 is akin to changing the temperature. 

But suppose that some parameter in transformation <I> is varied. The resulting effect on the 

partition function will be qualitatively similar to a change in {3. This somewhat convoluted 

argument helps to precisely define what the meaning of the notion of temperature is in 

dynamical systems. • 

Remark 2: THE invariant density f* is implicitly defined by the relation 

and it plays a special role in the thermodynamic description of any dynamical system, since 

it describes the state(s) of thermodynamic equilibrium(ia). Uniqueness of the invariant 
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density implies uniqueness of the state of thermodynamic equilibrium for the system, and the 

approach of the sequence {fn} to f* describes the non-equilibrium behavior of the dynamical 

system. • 

We will come back in Section 1.4.5 to the various convergence properties of the sequence 

of functions {fn}, and their relation to thermodynamics, but we first proceed to explore the 

strong link between the transfer operator methods used in this thesis and the more frequently 

described transfer matrix formalism of statistical mechanics. 

1.4.4 The operator 'Pif! and transfer matrices 

There is a strong conceptual link between our description of CML statistical mechanics 

and the formalism of transfer matrices. Beck and Schlogl [8] have described the connection 

between Pq, and the statistical mechanics of spin systems in a comprehensive manner, and 

our presentation closely adheres to their expose. The interested reader is referred to Chapters 

8, 16 and 17 of [8] for a more extensive discussion. 

We begin by describing the matrix representation of the Perron-Frobenius operator for 

the simplest possible transformation: A one-dimensional piecewise linear Markov map3. 

1.4.4.1 Pq, for a piecewise linear, Markov, expanding map 

Consider the one dimensional map <I> displayed in Figure 1.1. We are now going to illus­

trate that the Perron-Frobenius operator Pq, induced by this transformation can, in some 

circumtances, be represented by a 5 x 5 matrix. The actual dimension of the matrix represen­

tation of Pq, depends on the density f on which Pq, operates, but the all-important invariant 

density f* which describes the thermodynamic equilibrium of the map can be determined 

from the 5 x 5 matrix representation given below. This is a consequence of a result due 

to Boyarsky and Scarowsky [17] which states that the unique absolutely continuous invari­

ant measures (absolute continuity implies that measures are associated with well-behaved 

probability densities) are piecewise constant on the Markov partition. 

3 A map if! is said to be Markov, if it is piecewise monotone on a partition of the phase space, and if the 
set of all edges of this partition is if!-invariant [8, 17]. 
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c 

Xn 

FIGURE 1.1: 

The Markov map(_{) for which the Perron-Frobenius operator is explicitly given in (1.14). 

Suppose that the probability density f can be written 

5 

f(x) L ckX1rk (x), for all x E [0, 1] (1.10) 
k=l 

(cl. ... ' cs)trans, 

where the superscript denotes matrix transposition. This restriction is not as stringent as it 

might seem at first, since, as explained above, the invariant density satisfies the decomposi­

tion (1.10). 

Now, since Pif! is a linear operator, we have 

5 

L ckPif!X1rk (x) (1.11) 
k=l 

5 
Ck L l<_p'-11 Xif!k(11"k) (x) 

k=l k 

{1.12) 

_ (dl, ... 
1 
ds)trans. 

We are now in a position to derive a matrix which governs the "transfer of probability" as 

the map is iterated. We have Plf!f(x) = dj. By considering Figure 1.1, it is straightforward 

to check that the mass4 of the set 1r1 at time t + 1 comes from that which was in set 1r3 

at time t, and that the mass in set 1r2 comes from 1r2 , 1r3 and 1r5 . Suppose that the matrix 

equation of this transfer of mass is written 

(d d )trans M ( )trans 
1, · · · , 5 = if! c1, · · · , c5 . (1.13) 

4The measure-theoretic mass of a set is equivalent in this discus.sion to the integral of the probability 
density over that set. 
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From (1.12) and Figure 1.1, the only term contributing to the first term d1 is the third term 

c3 , weighted by the reciprocal of the derivative, and similarly for the other dk's, hence define 

f1jk 1 if Xt+l E 'lrj and Xt E 'Irk 

!1jk 0 otherwise, 

and (mjk) = 11jki<I>~I- 1 . Then the entries of the matrix Mq, are the mik's. For the example 

of Figure 1.1, the matrix Mq, is given by 

0 0 1 0 0 w- 11 
0 1 l 0 1 

w-11 w-11 w-11 
Mq,= 

1 1 l 1 \ (1.14) w-11 w-11 lit>~- 1 1 w-~~ w- 11 1 1 0 i \ 
w-rl lit>~- 1 1 w-11 lit>~- 1 1 1 0 0 i 0 lit>~- 1 1 lit>~- 1 1 

In other words, (d1 , · · ·, dn) = (c1 , · · ·, cn)M¥ans, and M.j;ans is the matrix representation of 

the Perron-Frobenius operator Ptt> acting on densities which can be written as in (1.10). 

Obviously, for arbitrary functions, the matrix Mq, is infinite dimensional, since the number 

of terms in the series in (1.10) is in general infinite. However, from the results in [17] the 

matrix (1.14) can be used to exactly determine the invariant density, since that problem is 

then reduced to finding the solution of 5 linear equations. 

In addition to being instrumental in determining f*, the matrix Mq, is also useful to 

calculate the "transfer of probabilities" in the system. Let q(i) denote the probability for 

the trajectory of the map to be in 'lri at some time, and let q(j, i) denote the joint probability 

to find the trajectory in 7rj at some time, and then in 'lri at the next time. Higher order 

probabilities can be defined similarly: q(i0 , i 1 , · · ·, ir-d is the probability that the system 

trajectory will visit sequentially the corresponding 7r/s. Note that if the map is Markov, it 

is possible to factor this function: 

(1.15) 

where the conditional probabilities q(ilj) are the entries of the matrix Mq,. 

Now we recall the definition of the topological partition function described in Remark 1 

of Section 1.4.3. The definition given there makes explicit use of the transformation <I>, and 

an alternate definition [8] is: 

z:p(J3) 
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L q11 (io, i11 · · ·, iT-1)· (1.16) 
io,···,ir-1 

If the map is Markov, so that (1.15) holds, we have 

(1.17) 

To establish the connection between z:;p({:J) for a general dynamical system, and the parti­

tion function for a spin system, we recall some basic results on the statistical mechanics of 

the one-dimensional Ising model with nearest-neighbour interactions and periodic boundary 

conditions. 

1.4.4.2 The transfer matrix formalism 

This section is based on the presentation of Section 8.4 in [8]. The partition function of an 

Ising model in the presence of a magnetic field B is, when the interaction between spins is 

limited to the nearest neighbours, given by 

(1.18) 

where jj is the reciprocal of the product (TemperaturexBoltzmann's constant), not to be 

confused with the parameter f3 of equation (1.16). Define the generic interaction term 

m(x, y) = exp [i3Jxy + ~jjB(x + y)] 

so that (1.18) can be written 

T 

ZT = I: m(st, s2)m(s2, sa)··· m(sT, si). 
s1,···,sr 

Now construct a matrix which contains the four possible values assumed by m(x, y): 

M ( 
m(l, 1) m(l, -1) ) 

m( -1, 1) m( -1, -1) · 

(1.19) 

(1.20) 

With this definition, the sum over s2, • • ·, sN in (1.18) becomes a matrix multiplication, while 

the sum over s1 is analogous to taking the trace of the matrix W. Hence, it is customary 

to write 

ZT trace MT. 
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The matrix elements m(x, y) are of the form e/3Exy, and Exy is an interaction energy between x 

and y. One of the basic results of equilibrium statistical mechanics states that the probability 

associated with a state of energy E is proportional to e/3E, hence it is natural to give a 

probabilistic interpretation to the matrix elements m(x, y): they describe the conditional 

probability that on our Ising chain, two neighbouring spins take on the values x and y. The 

expression (1.16) can then be recovered from {1.19) if we let 

thus demonstrating the link between transfer matrices and the Perron-Frobenius (or more 

generally the operator of Remark 1). 

1.4.4.3 Symbolic Dynamics 

The similarities between the formalisms describing the probabilistic properties of dynamical 

systems and the statistical mechanics of spin systems are a consequence of the correspondance 

between the trajectories of these dynamical systems and symbolic sequences. In a seminal 

work, Badii [6] has proposed a general framework for the construction of the statistical 

mechanics of high dimensional dynamical systems which is based on this correspondance. 

Badii's work extends the pioneering descriptions of low-dimensional hyperbolic dynamical 

systems given by Ruelle, Bowen and Sinai which form the theoretical edifice commonly 

referred to as the thermodynamic formalism. A detailed discussion of that field of research 

lies beyond the scope of this introduction, and we refer the interested reader to Ruelle's 

classic presentation [183]. However, it is instructive to understand the basic premises of the 

theory, so we illustrate them with the map of Figure 1.1. 

A trajectory of the map of Figure 1.1 can be represented by a sequence of symbols which 

take on five discrete values (1, · · ·, 5): 

Xn 1-------t i, if Xn E 1ri, i = 1, 2, 3, 4, 5. 

Since the map is Markov, there is a one-to-one mapping between the trajectory and the 

symbolic sequence (in this case, the partition IT = Ui 1ri is said to be a generating partition 

[6]). Once this is done, the trajectory of the one-dimensional map is viewed as an infinitely 

long chain of spins, which can take five different values. Hence, our dynamical system has 

been mapped to a fifth order Potts model. Since the map is Markov, the factorization 

(1.15) is possible, and hence the interaction between the spins in the Potts model are only 
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nearest neighbour. In general, this is clearly not the case, and the spin-spin interactions can 

extend to infinity. This presentation illustrates the fact that phase transitions in the sense of 

satistical mechanics, which are only rigorously defined in spin systems of infinite extent, can 

also be defined in one-dimensional maps. We will discuss the presence of phase transitions in 

CML's with a finite number of elements. The connection with symbolic dynamics discussed 

here clearly shows that if such transitions are possible in one-dimensional maps, they are a 

fortiori possible in CML's. 

If the map is multi-dimensional, the corresponding Potts model becomes cumbersome 

to work with, and the resulting analysis using the theory of Gibbs random fields is not 

welcoming to the non-specialist. This avenue is explored for certain CML's by Bunimovich 

and Sinai [21], but this aproach suffers from many short-comings. The main problem with 

these techniques is that they break down in practice when the map is no longer Markov, 

and the Markov assumption is exceedingly restrictive. Hence, we will concentrate on the 

properties of the tranfer operator in the remainder of the thesis, and proceed with our 

description of the most frequently encountered thermodynamic properties. 

1.4.5 Ergodicity, mixing and asymptotic periodicity 

Here we discuss the behavior of the sequence of densities { fn} which is intimately linked to 

the equilibrium and nonequilibrium properties of the CML. For example, T is ergodic if and 

only if the sequence is weak Cesaro convergent to the invariant density f*(x), 

1 n-1 

lim - 2: f fk(x)q(x) dx = f f*(x)q(x) dx, for all q E L1 (x), 
n--+oo n k=O fx fx. 

and all initial probability densities f0(x). A stronger (but familiar) property, mixing, is 

equivalent to the weak convergence of the sequence to f*: 

lim f fn(x)q(x) dx = f f*(x)q(x) dx, for all q E L1(x) 
n--+oo fx fx 

and all initial probability densities f0 (x). An even stronger type of chaotic behavior, known 

as exactness (or asymptotic stability) is reflected by the strong convergence of the sequence 

{fn} to the invariant density f*: 
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for all initial probability densities f0 (x). Exactness implies mixing and is interesting from a 

physical point of view because it is the only one of the properties discussed so far which guar­

antees the evolution of the thermodynamic entropy ofT to a global maximum, irrespective 

of the initial condition f0 [142]. 

The hierarchy of chaotic behaviors 

Exactness ===} Mixing ===} Ergodicity 

is discussed here because it is shown in Chapters 3 and 4 that many deterministic and stochas­

tic CML's are either exact, or possess a another dynamical property, known as asymptotic 

periodicity, of which exactness is a special case. 

Asymptotic periodicity is a property of certain Markov operators which ensures that 

the density sequence {fn} converges strongly to a periodic cycle [recall that P is a Markov 

operator if it is linear, and if for all probability densities fit satisfies (1) P f 2: 0 for f 2: 0, 

(2) liP !llu = ll!llu]. 
Definition 1: Asymptotic Periodicity 

A Markov operator P is asymptotically periodic if there exist finitely many distinct prob­

ability density functions v1 , · · · , Vr with disjoint supports, a unique permutation "( of the 

set {1, · · ·, r} and positive linear continuous functionals r 1, · · ·, r n on L1 (X) such that, for 

almost all initial densities f0 , 

{1.21) 

and 

Pvi = v'Y(i), i = 1, · · ·, r. 

Clearly, if P satisfies these conditions with r = 1, it is exact (or asymptotically stable). If 

r > 1 and the permutation"( is cyclical, asymptotic periodicity also implies ergodicity [142]. 

The early papers discussing asymptotically periodic Markov operators are [113, 112, 124, 

125, 121]. A somewhat more intuitive presentation is given in [122]. • 
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FIGURE 1.2 

0 

Illustration of asymptotic periodicity in the tent map (2.2). Top row When it is asymptotically 
periodic {AP) with period 4 (a = 1.15); the initial density is uniformly distributed on [0.562 : 
0.565]. Middle row When it is AP with period 2, (a= 1.4). The initial density was uniform on 
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[0.3 : 0.4]. Bottom row Same parameters as in b) except the initial density is now uniform on 
[0 : 1]. This illustrates a generic property of asymptotically periodic systems: The density cycle 
depends sensitively on the initial ensemble density. 

Remark 3: As illustrated in Figure 1.2 for the tent map, the phase space density fn of an 

AP system at any (large) time n is a linear combination of "basis states" (denoted vi above) 

with disjoint supports, and at every time step the coefficients (ri) of this linear combination 

are permuted by 'Y· Therefore, the density evolution in such systems is periodic, with a 

period bounded above by r!, but with the exact cycle depending on the initial preparation 

since the r/s are functionals of the initial density (cf. (1.21)). A direct consequence of 

asymptotic periodicity is that the thermodynamic equilibrium of the system consists in a 

sequence of metastable states which are visited periodically. It was shown in [122} that AP 

systems are ergodic if and only if the permutation 'Y is cyclical. We will see in Chapters 3 

and 4 that most systems of interest fall into this category. • 

Suppose that an asymptotically periodic dynamical system, for which the permutation 'Y 

in (1.21) is cyclical, generates a sequence Xt, · · ·, XN. If the distribution f of these variables 

is determined from a long time trajectory, it will, because the system is ergodic (by Theorem 

5.5.1 of [122]), converge in the weak Cesaro sense to the invariant (or equilibrium) distribution 

of the system. If, on the other hand, f is constructed as an ensemble density, it will, for almost 

all initial ensemble distributions, be time-dependent.This is a straightforward consequence 

of the spectral decomposition (1.21). 

Some of the usual misconceptions concerning the true meaning of ergodicity are exacer­

bated when supposed consequences of ergodicity are violated by systems which turn out to 

be asymptotically periodic. We illustrate this statement with the next Section, motivated 

by a recent controversy, mentioned at end of Section 1.3.4 concerning the verification of the 

law of large numbers as it applies to CML's. 

1.4.5.1 Asymptotic periodicity and the law of large numbers 

Kaneko [99], and later Perez et al. [164] have reported that "globally coupled chaos violates 

the law of large numbers, but not the central limit theorem". This claim was based on a 

numerical description of the CML: 

N 

x~~1 = (1 c-)S(x~l) + ~ . L . S(x~), n = 0, 1, 2, · · ·, 
J=l, J=P~ 
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where i = 1, ···,Nand S is the logistic nonlinearity 

S(x) = 1- ax2
• (1.22) 

Before describing the "violation", a few definitions are necessary. The mean field of the 

lattice is defined by these authors to be 

The density f of the variable h is then constructed over different times, for some fixed value 

of a and c, following a trajectory of the lattice. Numerically, this density is seen to converge, 

with increasing N to a Gaussian. Thus, by the central limit theorem, one concludes that if 

N is large, the value of h at one time is essentially independent of the value of h at the next 

time. Kaneko states that the law of large numbers is violated by the n variables h because 

E((h-h) 2 ) does not behave like 1/N as N is increased, where the mean square displacement 

is calculated with 

(1.23) 

We claim that the law of large numbers does not refer to the behavior of E((h- h)Z) if f 
is constructed from a single trajectory of the CML, and therefore, that the investigations of 

Kaneko [ ibidj and Perez [ ibidj are inconclusive. The density which should be used for the 

determination of E is the ensemble density, which would be obtained by starting many CML's 

with many initial conditions, and letting each realization evolve for some fixed number of time 

steps. Ergodicity is not quite enough to guarantee the equivalence of both constructions (i.e. 

single trajectory, and ensemble), if the system under consideration is AP. Before discussing 

the possible presence of AP in the logistic CML, we recall precisely the statement of the law 

of large numbers. 

This law comes in two fiavors, weak and strong [18], which differ in the notion of con­

vergence which is used for their definition. The weak form is associated with the notion of 

stochastic convergence, whereas the strong form refers to almost sure convergence. Concise 

definitions of these types of convergence can be found in Chapter 10 of Lasota and Mackey 

[122]. 

Definition 2: The weak law of large numbers: 

Let 6, 6, · · ·, ~N, denote a sequence of independent random variables, each distributed 

according to the function f ( ~). Denote also the mathematical expectation of the variable ~i 
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E(~i) = k ~d(~i)d~i = ei, (0 denoting the space of events) 

and let the variance of the sequence of random variables be finite: 

Then, 

M= sup E((~i- ei?) < oo. 
i 

{ 

1 n 
prob - l:::(~i 

n i=l 

(The weak form) 

for every c: > 0. If, in particular, e1 = e2 = · · · =en = e, then we have the "stochastic-limit" 

1 n 

st-lim- I: ~i e. 
n i=l 

[This notation indicates the stochastic convergence of the left hand side of the equation to the 

right hand side. Stochastic convergence is described explicitly in the penultimate relation] . 

• 
The other version of this law is due to Kolmogorov: 

Definition 3: The strong law of large numbers: 

Let 6, ~2 , · · · , ~N, denote a sequence of independent random variables with f, ei, and M 

defined as above, then 

(The strong form) 

with probability 1. • 

In the above definitions, the ~/s are independent. Hence the density function f which 

must be used to calculate (1.23) should be the distribution of mean fields obtained from 

an ensemble of realizations. Ergodicity guarantees the equivalence of both methods if the 

system is at equilibrium. If it is not, and if the system is AP, trajectory statistics and 

ensemble statistics are not equivalent. 

Hence for an AP system, the ei 's of Definitions 2 and 3 will cycle in time. 

There is strong analytical and numerical evidence that the logistic map defined above is 

asymptotically periodic for a spectrum of values of the parameter a [173]. For such parameter 

values, the law of large numbers would predict a time-dependent fluctuation of the mean ei 

(and therefore of the variable h). This is indeed observed by Kaneko [ibid.] and Perez et 

al. [ ibid] in globally coupled maps. If the globally coupled logistic CML acts as an array 
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of independent AP maps, one can (see [166]) explain the supposed violations of the law of 

large numbers by pointing out that ensemble densities and single trajectory densities are 

not equivalent, since the system converges (in weak Cesaro sense) to equilibrium, but at the 

same time converging strongly to a limit cycle (in density space). 

But the globally coupled map lattice is not always an array of uncoupled maps. The 

argument of Pikovsky and Kurths is based on the reduction of the CML to an effectively 

one-dimensional dynamical system. This is sometimes justifiable, and sometimes it is not. 

For example, when local, instead of global coupling is discussed, the reduction to a single 

map is no longer realistic. Chate and Manneville [31], and Binder and Privman [13] discuss 

"quasi-periodicity" in locally coupled CML's, so the question is then "how do we study the 

eventual ergodicity, mixing or asymptotic periodicity of the whole lattice, viewed in all its 

glory as an N -dimensional mapping, and not necessarily as a reduced system?" 

In the absence of noise, the answer lies in the investigation of the N -dimensional Perron­

Frobenius operator. In the presence of noise, the answer lies with the similar study of the 

N-dimensional transfer operator. 

1.5 Some outstanding problems 

The broad overview of the current literature presented in the first part of this introduction 

highlights the importance of CML's for the modeling of varied biological, computational and 

physical systems, as well as the crucial role they are playing as "toy models" to further our 

understanding of the phenomenology of many complex systems. 

The second part of this introduction was a brief presentation of the concepts which must 

be referred to in order to examine the statistical mechanics of coupled map lattices. The 

rest of this thesis is a detailed examination of the collective behavior of CML's, described 

from a statistical perspective. There are very few such descriptions of CML's (the exceptions 

are the works of Keller [109], Bunimovich and Sinai [21, 22] and Rand and Gundlach [72]), 

and these place the emphasis on formal situations which are not relevant to the modeling 

community. The main unaddressed problems of this field of research can be summarized as 

follows: 

1) Establish explicit criteria on the control parameters of a given model, which guarantee 

the existence of a state of thermodynamic equilibrium. 

2) Examine the non-equilibrium properties of the systems to determine whether or not a 
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system prepared out of equilibrium will relax to equilibrium, and how this relaxation process 

will take place. 

3) Determine the uniqueness of the equilibrium. 

Although these questions seem to be somewhat formal, they must be addressed before 

any serious discussion of the extensive properties of high dimensional dynamical systems can 

begin. 

The next Chapter examines these questions in the simplest possible CML: a network 

of two elements. Chapter 3 extends the results of Chapter 2 to arbitrarily large but finite 

deterministic lattices. Chapter 4 examines the statistical behavior of large lattices in the 

presence of stochastic perturbations: we derive the transfer operators, and examine their 

spectral properties to answer the questions mentioned above. Chapter 5 examines the strong 

connection between differential delay equations and coupled map lattices, and we apply the 

methods developed in Chapters 3 and 4 to these hereditary models. Finally Chapter 6 is 

a presentation of the functional transfer operator which generalizes the presentation of the 

previous chapters to infinite dimensional spaces. 
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Chapter 2 

Coupling induced statistical cycling 
in two coupled maps 

ABSTRACT 

This chapter discusses the effects of "diffusively" coupling two identical one dimensional 
maps. Attention is focused on situations where the local (isolated) maps are statistically 
stable, but where the coupled system is not. A biologically motivated map and the logistic 
map are numerically shown to display this behavior. The piecewise linear tent map is then 
investigated analytically, and we give a phase diagram of this system which displays the loca­
tion of nonequilibrium phase transitions. It is conjectured that the diffusive coupling of two 
chaotic but statistically stable maps (i.e. with asymptotically stable Perron-Frobenius oper­
ators) can yield a two dimensional system which is not statistically stable, whose associated 
Perron-Frobenius operator is asymptotically periodic. 
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Rien au monde ne dure qu 'un eternel changement 

Honorat de Bueil, Odes, La venue du printemps 

2.1 Introduction. 

The proper understanding of statistical cycling in large CML's is greatly facilitated by a 

discussion of this behavior in the simplest possible CML (with two elements). This chapter 

examines the statistical behavior of two dimensional maps obtained by coupling two identical 

one-dimensional chaotic maps. 

We discuss situations in which the statistical behavior of the decoupled maps is quali­

tatively different than that of the coupled system: the local maps are statistically stable, 

they possess an absolutely continuous invariant measure, and physical observables converge 

to a constant value in the asymptotic regime; the coupled maps however, cycle statistically: 

The invariant measure is not reached asymptotically for almost all initial preparations, but 

instead a periodic cycle in density-space is reached, indicating that the Perron-Frobenius 

operator satistifies the spectral decomposition (1.21). Physical observables in the latter situ­

ation are also seen to cycle periodically in the asymptotic regime, so that the thermodynamic 

"equilibrium" for the two maps is in fact a sequence of metastable states visited periodically. 

Statistical cycling has been numerically reported in cellular automata schemes [27, 60], 

as well as in coupled map lattices [31, 99, 164]. Houlrik's investigation of periodic symbolic 

orbits in two coupled Chate-Manneville maps [84] indicates that there is underlying statis­

tical periodicity. Previous investigations of two coupled maps, from different perspectives, 

include the works of Yamada and Fujisaka [222], Yuan et al. [226], Froyland [59], Fabiny 

and Wiesenfeld [54], and Chapeau-Blondeau and Chauvet [26] but these do not address the 

periodic statistical behavior reported here. The recent description of two coupled maps given 

by Kuznetsov [117] describes the scaling properties of the "2n" chaotic windows, but without 

mentioning that the underlying property responsible for this behavior is in fact asymptotic 

periodicity (incidentally, asymptotic periodicity also explains the "phase multistability" de­

scribed by Kuznetsov, which is a reflection of the dependence of the f/s of (1.21) on f0). 

There has been speculation in the literature concerning the possibility that such behavior 

might not be asymptotically observable in physical systems [60, 169]. The results presented 

here show that statistical cycling can be explained analytically in a simplistic model, an be 
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expected in more general settings: they clearly indicate the existence of complicated states 

of thermodynamic equilibria in the simplest CML (i.e. two elements). 

In Section 2.1.1, we introduce the three systems which will be discussed in this paper, 

as well as some of the ideas concerning the relation between phase space densities and 

thermodynamic states. In Section 2.1.2, we recall a useful definition of the two-dimensional 

Perron-Frobenius operator, and describe some properties of the Boltzmann-Gibbs entropy. 

In Section 2.2, we relate discrete time maps to differential delay equations, and numeri­

cally describe the phenomenon of coupling-induced statistical cycling in two smooth maps: 

one is obtained from the reduction of a differential delay equation used in biomathematical 

modeling, and the other is the celebrated logistic map. 

In Section 2.3, a detailed analytic and numerical investigation of the dynamics of two 

coupled generalized tent maps is presented. A phase diagram giving the loci in parameter 

space where phase transitions occur is described analytically in Section 2.3.1, while Sec­

tion 2.3.2 illustrates the temporal evolution of a statistical quantifier, the Boltzmann-Gibbs 

entropy, when the underlying system is statistically periodic. 

Section 2.4 presents a brief summary, and several conjectures concerning the Perron­

Frobenius operator associated with the two-dimensional map are put forward. 

2.1.1 Three simple maps 

The two dimensional maps considered here are constructed by diffusively coupling two one­

dimensional maps: 

. { XI = (1- c)S(x) + cS(y) 
<I> o (x, y) = (xi, YI), with Yt = (1 _ c)S(y) + cS(x), c E [0, 1], (2.1) 

where S denotes the local map. In this paper, we focus on three systems: One is the tent 

map rescaled so that it is onto [0, 1] independent of the parameter a: 

S ( ) = { az + 2 - a if z E [ 0, (a - 1) /a] 
z a(1- z) if z E [(a- 1)/a, l] and a E (1, 2]. (2.2) 

Another is obtained in Section 2.1 by taking a singular perturbation limit on a differential 

delay equation to obtain: 
S( ) az 

z = 1+zn' a, nE llt (2.3) 

The third map is the celebrated logistic map 

S(z) = az(1- z), a E (1, 4], (2.4) 
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whose behavior reproduces that of the more realistic system (2.3), suggesting that the be­

havior discussed here may be generic in systems with a locally logistic maximum. 

Depending on the system's location in parameter space, the map (2.1) with nonlinearities 

(2.2), (2.3) or (2.4) transforms the unit square into a simply connected set (as shown in 

Figures 2.1a, 2.2a, 2.4b for example) or a collection of disconnected sets (as in Figures 2.1b, 

2.2b, 2.5b or 2. 7). Here, we investigate the boundaries between regions in the (a, E) plane1 in 

which the number of these sets differ. When the attractor is a simply connected set, ensemble 

statistics can be computed from a numerically obtained invariant measure to which almost 

all initial preparations evolve; we conjecture that this reflects the asymptotic stability of the 

associated Perron-Frobenius operator. When the attractor is a collection of disconnected 

sets, almost all numerical initial conditions eventually reach a cycle in density space, and 

statistical quantities like the Boltzmann-Gibbs entropy, the temporal correlation function 

and more generally all ensemble averages are seen to cycle in the asymptotic regime with 

a period related to the number of disconnected sets forming the attractor. Such cyclical 

statistical behavior is well described for certain one dimensional maps, where it reflects 

the asymptotic periodicity of the Perron-Frobenius operator [113, 143], but it has not been 

described in two (or higher) dimensional systems. We propose strong circumstancial evidence 

that it reflects the asymptotic periodicity of the two dimensional Perron-Frobenius operator. 

Before proceeding, let us clarify the link between phase transitions ( i. e qualitative changes 

in the thermodynamic state of a system) and qualitative changes in statistical behavior 

(reflected by transitions in the number of disconnected sets forming the attractor). Consider 

the system <I>{a}: X f---t X, parametrized by {a}, a set of real parameters. <I>{a} could be a 

map, a set of ordinary differential equation, or more generally any (semi)dynamical system. 

In Section 1.4 we discussed in some detail the connection between the thermodynamic 

state of <I>{a} and the phase space density function f{a}, which gives the probability that the 

system is at a given state x E X. When f{a} changes qualitatively as a result of changing 

the parameters {a}, so does the thermodynamic state of <I> {a} and the system undergoes a 

phase transition. The problem of identifying phase transitions is therefore reduced to that 

of finding the loci in parameter space where f{a} changes abruptly. Such an abrupt change 

necessarily occurs when the number of sets on which f{a} is nonzero changes (the union of 

these sets is called the support of f{a} ). In the tent map example discussed below, the analytic 

1Note that the system is symmetric under the transformation e ++ (1- e), S(x) ++ S(y) so that we only 
consider the region of parameter space 0 ::; e::; 1/2. 
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criteria given for phase transitions are criteria for abrupt changes in the support structure 

of f{a}· The abruptness of this process indicates that the transitions are first order. 

There are fundamental differences between the approach discussed here, and the usual 

discussion of the thermodynamics of dissipative dynamical systems. As discussed in Chapter 

1, the thermodynamic formalism introduced by Bowen [16], Ruelle [183], Sinai [195] and 

others, which is the inspiration behind the existing studies of the thermodynamics of coupled 

map systems [21, 22, 72], rests on the introduction of meaningful symbolic representations 

of trajectories, so that ensemble statistics are constructed as they would be for generalized 

interacting spin systems. 

The existence of such symbolic representations for the trajectories, and consequently the 

link with interacting spins is not the underlying premise here. 

2.1.2 Definitions 

Recall from Section 1.4.3 that the Perron-Frobenius operator Pq, induced by a nonsingular 

measurable transformations <Pis given by X is 

f Pq,f(x) dx = f f(x)dx 
}A }q,-l(A) 

(2.5) 

where A c X. If the transformation <P is the two dimensional mapping defined in (2.1) and 

operating on (0, 1] x [0, 1], (2.5) can be written 

Pq,f = _!!:__ j" r f( u, V) dvdu. 
8x8y }q,-l([O,x]x[O,y]) 

(2.6) 

It is not always straightforward to numerically illustrate the the behavior of phase space 

densities under the action of (2.6). To simplify the task, we introduce a quantifier of density 

evolution which plays an important role in thermodynamics: the Boltzmann-Gibbs entropy. 

For a historical presentation of the concept, we refer the interested reader to Grandy [68]. It is 

important to note that the Boltzmann-Gibbs entropy is not necessarily the "thermodynamic 

entropy" of the system under consideration. By "thermodynamic entropy" we mean here 

that function which evolves to a maximum as a result of the second law of thermodynamics. If 

the density at equilibrium is uniform over the phase space, then the thermodynamic entropy 

is the Boltzmann-Gibbs construct (and this is the case for many of the classical systems 

discussed by Boltzmann and Gibbs a century ago), but in general, the thermodynamic 

entropy is the conditional entropy with respect to the invariant density [142, 173]. 
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The Boltzmann-Gibbs entropy HBa(f) is defined by 

HBa(f) = h f(x) lnf(x) dx, (2.7) 

where f is a probability density normalized over X. When the system is in thermodynamic 

equilibrium, the Boltzmann-Gibbs entropy is usually thought of as being stationary at a 

local maximum (the internal energy being in a local minimum). The phase space density 

describing this equilibrium is a fixed point of the operator giving the evolution of densities 

(i.e. the Perron-Frobenius operator for discrete time maps, the Liouville (or Fokker-Planck) 

operator for deterministic (or stochastic) ODE's, etc ... ]. In contrast to the situation in which 

extensive quantities can be determined from the density of the invariant measure, the (most 

probable) state of thermodynamic equilibrium for an asymptotically periodic map is, as 

discussed inSection 1.4.5 a collection of metastable states which are visited in alternation. 

Thus, the Boltzmann-Gibbs entropy in this metastable equilibrium oscillates periodically for 

almost all initial preparations: 

lim HBa(ft·) = lim HBa(ft•+,.) {:::::;::> a~~:(i) i, (i 1, · · ·, r), and 'f(i) "Y~~;(i), j < r;,. 
t•-too t*-+oo 

(2.8) 

To see this, note that vi = Vj a.e. {::} i j since two different vi's in equation (1.21) have 

disjoint supports. In addition, recall that Pvi = V'Y(i) (with i = 1, ···,rand 1 a permutation 

of the set {1, · · ·, r} ), and therefore ft· = PN.ft· # aK(i) = i. As a consequence, from (2.8), 

ft1 = ft1+v a.e. # v = 0 or a 11 (i) i. Furthermore it is easy to show that if f(x) g(x) 

a.e., HBa(f) = HBa(g) and hence 

with either v = 0 or v such that "'f11(i) = i which proves (2.8). 

This cycling behavior of HBa is numerically illustrated in Section 2.3.2 for the tent map, 

but is also observed in the sigmoidal map and the logistic map. 

2.2 Statistical cycling in the coupled maps 

We now turn to a study of coupling induced statistical cycling in three systems. The first of 

these is obtained as the singular perturbation limit of a first order differential delay equation 

(DDE). 
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2.2.1 Delayed feedback control loops and one dimensional maps 

In this section we first quickly review the connection between continuous time models of 

delayed feedback control loops framed as ODE's and one-dimensional maps. We then dis­

cuss situations where coupling induced statistical cycling is observed in the two-dimensional 

system. 

There are several connections between differential delay equations and one dimensional 

maps (see for example [132, 76], but the one making use of the singular perturbation method 

is by far the most general, because it is essentially independent of the details in the equation. 

The DOE's considered are of the form: 

dx 
dt = -(x(t) + F(x(t- 1)), ( E IR+, t ~ 0, (2.9) 

with initial function x(t) 1p(t) for t E [-1, 0] (the delay is, without loss of generality, 

rescaled to 1). Dividing by ( and taking the limit ( -+ oo, F / ( -+ S, one obtains from the 

DDE the difference equation 

x(t) = S(x(t- 1)), t ~ 0, 

with x(t) = 1p(t), t E [-1, 0). Confining our attention to integer values of time instead of a 

continuum, one obtains the one-dimensional map 

Xn+l = S(xn), nE N, 

with x0 given. The procedure outlined here is known as a singular perturbation of the 

map, and it has been extensively studied by Ivanov and Sharkovskil [88], who have been 

able to show that certain dynamical properties of the map can be extended to the infinite 

dimensional continuous time DDE. We follow this procedure to obtain the nonlinearity (2.3) 

from a DDE known in the literature as the Mackey-Glass equation, proposed as an attempt 

to model the oscillations in neutrophil numbers observed in certain patients suffering from 

chronic granulocytic leukemia [144]: 

dx iix(t- 1) 
dt = -(x(t) + 1 + xn(t- 1)' (2.10) 

Performing the singular perturbation procedure on (2.10) and setting a= limc-+oo ii/( yields 

the nonlinearity (2.3). 
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2.2.2 The sigmoidal map 

Figure 2.1 displays two projections of the phase space density on the x - y plane which 

numerically illustrates the phenomenon we conjecture to be coupling-induced asymptotic 

periodicity. 

a b 
1.2 1.2 

1 1 
set l3 

11 0.8 0.8 ' , 
, 

y 0.6 y 0.6 
set V 

0.4 0.4 

0.2 0.2 

0 0 
0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1 1.2 

X X 

FIGURE 2.1: 
Two dimensional projection of the phase space density for the map (2.1) with nonlinearity (2.3) 
with a= 1.65 and n = 8 in both panels. Timet= 6000, the figure was made with 3500 points 
and the initial density was supported uniformly on [0 : 1] x [0 : 1]. a) c: = 0.05 and each map 
"fills" a simply connected subset of~+. The maps are conjectured to be asymptotically stable. 
b) c: = 0.05 and for all initial (x,y) E 8, we numerically observe that ~(x,y) E V and points in 
V are mapped into B. This is an example of coupling induced statistical cycling. 
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The behavior displayed in Figure 2.1 can be summarized as follows: There are regions in 

the parameter space of system (2.1) with S given by (2.3) in which the individual maps are 

(numerically seen to be) statistically stable when they are decoupled (Figure 2.la). When 

the coupling is turned on, (E > 0), phase space densities cycle periodically, and they are 

supported on disjoint subsets of the phase space (as shown in Figure 2.1 b). Points belonging 

to one subset are mapped into another at the next time step and so on. The period of 

the cycle depends on the parameters a, n and E, while the details of the asymptotic cycle 

. (i.e. the fraction of points belonging to various subsets) depend on the initial distribution 

of (x, y) pairs (the support of the initial density). This behavior should be interpreted in 

light of our discussion on asymptotically periodic Perron-Frobenius operators (cf. Section 

1.4.5). We conjecture that Figure 2.1 illustrates coupling induced asymptotic periodicity of 

the Perron-Frobenius operator of lP. If the coupling E is increased further, the sets l3 and 

V of Figure 2.1 "break-up" (i.e. give rise to disconnected subsets) and the period of the 

density cycles increases. The dependence of this period on E is complicated, and has not 

been studied in detail. We mention in passing that a recent publication by He and Li [74] 

explains the symmetry of the sets on Figure 2.1 using elegant group theoretic arguments 

which are also valid for larger lattices. 

Before examining the analytically tractable tent map, we show that similar behavior is 

observed in coupled logistic maps. This is interesting since it suggests that the behavior 

presented above is probably generic in maps with a locally logistic maximum. 

2.2.3 The logistic map 

The logistic map is one of the most studied systems in the nonlinear dynamics literature. 

Here, we only review those aspects of its behavior connected with the presence of phase 

transitions. The main motivation for including this system in our discussion is that it 

reproduces the behavior displayed by the biologically motivated map of the previous example, 

while being much simpler analytically. The logistic map is defined in (2.4) and its Perron­

Frobenius operator Pq is 

P ••• ,f (x) = J l '" [1 (~ 
1--;;:-

!.G\+f(!_!.G\]. 
2 v '" -a:) 2 2 v ._ a) (2.11) 
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When a= 4, the Perron-Frobenius operator is asymptotically stable, and the density of 

the invariant measure is 
f*(x) = 1 . 

1r.jx(1- x) 

This is the only value of a for which the invariant density is known, although the existence of 

absolutely continuous invariant measures has been proven for a belonging to sets of positive 

Lebesgue measure [89]. There is, in addition, a spectrum of values labeled an, n = 1, 2, · · ·, 

where so-called banded chaos has been reported numerically [131]. At these values, the 

behavior of the iterates of the map is very similar to those of the tent map when it is 

asymptotically periodic: The phase space densities oscillate periodically in time. At the 

value a= an, the period of the density cycle is 2n. The recipe for finding the an's is given in 

[71]. A proof of the asymptotic periodicity of Pqua.d at these values is not available yet, but 

the numerics clearly indicate that the so called "banded chaos" behavior in the logistic map 

is in fact asymptotic periodicity [173]. 

From (2.6) the expression for the Perron-Frobenius operator is 

where, by inverting (2.1) with S given by (2.4), we have 

j3i(x1, x2) 

'TJi(xi) 

r(1- c)- Jr2(1- c) 2 + 4r(1- c)(c'TJi(xi) -xi) 

2r(1- c) 

r(1- c)+ Jr2(1- c)2 + 4r(1- c)(c'TJi(xi)- xi) 
2r(l- c) 

The two-dimensional version of Leibnitz's rule is 

Expanding (2.12) yields 
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82 {pi {p2 1 2 2 1 

+ 8x18x2 it it f(u 'u )du du 
82 al {32 

- 8xl8x2 h l f( ul' u2)du2dul 

82 [Jl a2 

- 8x18x2h h f( ul' u2)du2dul. 

Applying (2.16) using (2.13-2.15), (2.17) becomes 

1 c:2r 2 (2x2 - 1)(2x1 - 1) 

Checking for consistency, when c: 0 and r = 4, this expression reduces to 

1 2 1 1 [ ( 1 2) Pf(x , x ) = J J 2 f a , a 
4 1- x 1 4 1- x 

where 

1 !v1- xi 
2 2 
1 1_ I . - + -v 1- xt. 
2 2 

(2.17) 

(2.19) 

As expected, the operator defined by (2.19) possesses an invariant density f*(xl, x2
) given 

by 
1 1 

7rJx1(1- x1) x 7rJx2(1- x2). 
(2.20) 

Although we have the exact expression for the Perron-Frobenius operator for two coupled 

logistic maps, a proof for asymptotic periodicity in this operator has remained out of reach. 

Hence we proceed with a numerical description of satistical cycling in the system. 
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a b 
1 1 

0.8 0.8 

0.6 0.6 
y y 

0.4 0.4 

0.2 0.2 

0 0 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

X X 

FIGURE 2.2: 
Projection of the phase space density on the (x, y) plane for system (2.1) with the quadratic 
nonlinearity (2.4). In both panels, a = 3.8, time is t = 6000, the figure is made with 5000 pairs 
and the initial density was supported uniformly on [0: 1] x [0: 1]. In a) the maps are decoupled: 
e = 0; numerical simulations indicate that the system is asymptotically stable. b) £ = 0.06; the 
points in set 8 are mapped into set V and vice versa at every time step. This is clearly very 
similar to the behavior discussed in connection with the previous figure and is conjectured to 
reflect the underlying asymptotic periodicity of the Perron-Frobenius operator. 
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The behavior shown in Figure 2.2 is the same as that found in the sigmoidal map. It 

is presented here to highlight the fact that coupling induced statistical cycling is probably 

a generic property of maps with a logistic maximum. In fact, it also observed in a simpler 

system, the generalized tent map, which is topologically conjugate to the logistic map when 

a = 2, and which is analytically tractable. 

2.3 Analytic investigation of two coupled tent maps 

The one dimensional semidynamical system known as the tent map: 

X = { axn if Xn E [0, 1/2] 
n+l a(1- Xn) if Xn E [1/2, 1] 

where a E (1, 2] has been extensively studied during the past decade, in part because the 

Perron-Frobenius equation can be solved explicitly at different values of the parameter a 

[224, 173]. The results which concern us here deal with the existence of critical values of 

the parameter a at which the thermodynamic state of (2.2) qualitatively changes. The 

Perron-Frobenius equation for the tent map (2.2) is 

Ptentf(x) = ~ [J (~) + J ( 1- ~)], (2.21) 

where f(x) is a phase space density for the system. Depending on the value of the parameter 

a, Ptent can be proven to be either asymptotically stable or asymptotically periodic. To 

summarize its properties: 

1) a= 2: 

In this case 'Ptent is asymptotically stable and the invariant density is the uniform density 

on the phase space [0, 1]. [It is easy to check that 1[o,1J(x) satisfies (2.21)]. 

2) a E (J2,2): 
'Ptent is asymptotically stable, and the invariant density is supported on a simply connected 

subset of [0, 1]. 

3} a E (2112n+l, 2112"), n = 1, · ·-: 

Ptent is asymptotically periodic, and the period of the density cycle is 2n. The activity is 

supported on the union of 2n disjoint subsets J1, · · · , J2,. each Ji being the support of one of 

the vi's of Definition 1 (cf. (1.21) in Section 1.4.5). 
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We want to investigate to what extent this structure of the dynamics of the tent map 

survives diffusive coupling. To that effect, the phase diagram in (a, c)-space is discussed in 

Section 2.3.1. 

2.3.1 The phase diagram 

FIGURE 2.3: 
Phase portrait of the map (2.1) with nonlinearity (2.2). In the upper regions labeled 1, 2 and 4 
the map is one dimensional and respectively asymptotically stable (AS), asymptotically periodic 
with period 2 (AP-2) and period 4 (AP-4) (see Figures 2.4a,2.5a). In region Q) (2.1) is AS but 
now both ..\1 and ..\2 are > 1 (see Figure 2.4b ). In region ® IJ> is AP-2, but x and y are out 

of phase (see Figure 2.2e and the text for details). In region @ the map is AP-2, and x and y 
are either in phase or out of phase (see Figure 2.6a and the text for details). 
In regions V and @ the map is AP-4. Details concerning these regions are described in 
the section entitled AP-4 (see Figure 2.7). In regions ® and @ , the dynamics are 
not a trivial two dimensional generali:z;ation of one dimensional asymptotic periodicity, but rather 
coupling induced. 

The phase diagram of the two dimensional system (2.1) with nonlinearity (2.2) naturally 
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separates into two major regions: In the first, which corresponds in Figure 2.3 to those areas 

labeled with non circled numbers, the behavior of 4> is effectively one dimensional since the 

flow is contracted along one of the eigendirections. In the second, which encompasses the 

areas of Figure 2.3 labeled with circled numbers, the behavior is truly two dimensional, since 

both eigendirections are unstable. The eigenvalues of the absolute value of the Jacobian of 

(2.1) with (2.2) satisfy the characteristic equation 

((1- c:)a- ..\)2
- a2 = 0 (2.22) 

which has 2 solutions 

and ..\2 = a(1- 2c). (2.23) 

When c E ((a- 1)/2a, (a+ 1)/2a), the dynamics are one dimensional since in this case 

l..\11 > 1 and l..\21 < 1. The behavior of (2.1) matches that of a single map and the upper 

portion of the phase diagram (Figure 2.3) describes the dynamics of (2.1). 

We therefore focus on the regions such that ..\2 > 1. These regions are below the critical 

line cc= (a- 1)/2a in Figure 2.3. The solid lines on Figure 2.3 bound regions in which the 

the number of supports for the invariant density are fixed. We now describe each of these 

regions in detail. 

2.3.1.1 Asymptotic stability. 

Regions in which 4> is AS are labeled with a CD and a "1" in Figure 2.3. In the region 1, the 

dynamics are one dimensional since one of the eigendirections is contracting (i.e. I.X2I < 1) 

and the other is expanding (..\1 > 1). In this region, 4> is asymptotically stable, and x = y: 

The behavior is that of a single asymptotically stable tent map. Figure 2.4a displays the 

y vs. x plot for 8 x 103 points after 50 time steps. Initially, these points were uniformly 

distributed on [0 : 1 J x [0 : 1]. The boundary between 1 and ® is the line cc = (a- 1) /2a. 

The boundary between 1 and 2 is the value a= J2 (as in the one dimensional map). In 

the area labeled CD , the map is also AS, but now it is no longer effectively one dimensional. 

The plot y vs. x is given in Figure 2.4b, with the same initial conditions as in Figure 2.4a, 

but different c. The coordinates of the vertices of the rhomboid are 

Vo (0, 0) 

(rl- £ + 1 ~ )(2- a), 2e(2- a)) 
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0.8 

0.6 
y 

0.4 

0.2 

V2 (1,1) 

V3 ( 2c ( 2 - a), ( 1 - c + 
1 
~ c ]( 2 - a)) . 

a 

0.2 0.4 0.6 0.8 
X 

y 

1 

FIGURE 2.4: 

1 

0.8 

0.6 

0.4 

0.2 

b 

0.2 0.4 0.6 0.8 
X 

(2.24) 

1 

Activity of the map <P on the unit square. In a), a= 1.6 and c = 0.35 (system is in region 1), 
hence x = y eventually. In b), a= 1.7, c = 0.1 so the parameters are such that the map is in 
region (Y . The vertices of the rhomboid are Vo, · · ·, V3 given in (2.24). Both a) and b) were 
obtained numerically, using an ensemble of 8 x 103 initial conditions initially uniformly distributed 
on [0, 1] x [0, l]. 

2.3.1.2 Asymptotic periodicity: period 2. 

This behavior is observed in the three regions labeled 2, G) and ® . In 2, the behavior 

is again one-dimensional. The activity on [0, 1] x [0, l] is plotted in Figure 2.5a, and is 

supported on two disjoint subsets of the diagonal x = y. The boundaries of this region are: 

The value a= \f'2, the value a= 2114 and the line cc= (a- 1)/2a. 

Region G) 
The boundaries of region @ are the line cc = (a - 1) f2a, the value a = v'2 and the line 

separating it from region @ which will be discussed in Section 2.3.1.3. For parameter 

values in (} , the behavior is statistically periodic with period 2: all points belonging to 

set A (in Figure 2.5b) at time t* map into points belonging to C at time t* + 1 and vice 

versa. This "flipping" behavior between two sets with disjoint supports, characteristic of 
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asymptotic periodicity, is also observed for sets B and V. Every point belonging initially 

to the unit square is asymptotically attracted to one of these four sets. Furthermore, the 

images of a point belong to A U C or B U V, but do not flip between these. Schematically 

• • • 1-----t A 1-----t C 1-----t A 1-----t • .. 

• • • 1-----t B 1-----t V 1-----t B 1-----t • • · 

The behavior observed in region @ is easily understood by noting that for such values of a 

the tent map is itself AP-2. The period 2 flipping described above therefore arises from the 

underlying asymptotic periodicity of the tent map. In other words, if £ were 0, one would 

obtain a picture rather close to that illustrated by Figure 2.5b (in fact, in that case, ay vs.x 

plot yields four square projection sets instead of the four rhomboids of Figure 2.5b). Cycle 

(ACA) can be called the in phase cycle, and the other, (BVB), out of phase. We will see 

later that the out of phase cycles can be stable in regions of parameter space where the in 

phase cycle is not. This is the origin of the coupling induced statistical periodicity observed 

in regions ® and @ . The activity observed in Figure 2.5b is sensitive to the initial 

distribution of points in the sense that if all initial points were included in the preimage of 

A, all points would "flip" from set A to set C and back. Thus, the proportion of points 

which at time t* are in set A depends in a sensitive way on the initial preparation. It is 

straightforward to derive analytic expressions for the edges of the four sets. For clarity, only 

the out of phase cycle is considered, and the expression for the coordinates of the edges of 

sets B and V are given in Appendix 2A (see also Figure 2.6b ). 

The region ® 
We now turn to the description of a novel type of dynamics, which is not a trivial two­

dimensional generalization of the asymptotic periodicity well studied in 1-d maps. 

In region ® the activity of the pair (x, y) can be described as asymptotic periodicity 

(although again this is an observation which does not stem from an investigation of the 

spectral decomposition of the 2-d Perron-Frobenius operator). The supports of the 2-d 

density on [0:1]2 are disjoint as demonstrated in Figure 2.6a. These supports are symmetrical 

with respect to the x = y line, and every point belonging to one support at time t* belongs 

to the other at timet*+ 1 and vice versa. These supports form the out of phase cycle BVB 

discussed previously, the in phase cycle ACA now being unstable. Coordinates of the vertices 

of set B displayed in Figure 2.6b are given in Appendix 2A. 

These vertices of B map onto the boundary of the set V. When £ = (a 1)/2a, the 

critical value for which >.2 = 1, the points /30 through /37 (and all the points in B) collapse 
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onto the single point with coordinates 

(
(a2 +1) (a-1)) 
a(a+l)' a · 

[similarly, the points in 1J collapse onto its mirror image with respect to the x = y axis, and 

the activity on [0, l] x [0, l] is then concentrated on the diagonal, as illustrated in Figure 

2.5a.] 

y 

0.8 

0.6 

0.4 

0.2 

0.8 

a 0.6 

0.4 

0.2 

b 

set 1J 

set A .. ' :· . 

: : ·.·~ .. < :··. '; 

.; ·· .... 

0 ~~----~------~------~------~------~ 
0.2 0.4 0.6 0.8 1 

X 
0 0.2 

FIGURE 2.5: 

0.4 0.6 0.8 
X 

Two dimensional projection of the phase space density for two coupled tent maps at timet = 6000. 
The figure was made with 5000 points. In a), a= 1.38 and e = 0.35 (so (a, e) is in region 2). 
All points on the left of the gap at time t* are mapped into points on the right of the gap at 
timet*+ 1 and vice versa. In b) a= 1.38 and e = 0.05 (again (a, e) is in region()}. All points 
in A at timet* map into points belonging to C at time t* + 1 and vice versa. This flipping also 
occurs for sets B and 1J (see text for details). 

The condition on the parameters a and e such that the set B maps into 1J and vice versa 

is obtained by performing a two dimensional version of the calculation which yields the value 

a = v'2 separating AP-2 and AP-4 in the one dimensional tent map, given for example in 

[224, 173). The point whose image under <l> is the closest to the diagonal x y is {31 (see 

Figure 2.6b). We call this image {3{. Its image under <1>, f3i = <1>2 ({31), lies within set B 

52 

1 



c 

0 
y 

when the map is in region ® i.e. when 8 r--+ V r--+ B. When the map is in region 

0 , f3i does not lie within set 8 but above the line segment [/35, /36] (Figure 2.6 should 

prove useful to follow this geometrical digression). In other words, points which are in B do 

not necessarily return to B after two iterations under q> in (]) . Instead, they "fill up" the 

rhomboid displayed in Figure 2.4b. At the boundary between (D and ® , f3i crosses the 

line segment [/35 , {36 ]. Mathematically, this gives the following relation: 

or, explicitly, 

(a(2e- 1) + 1) [a3 (4e(e- 1) + 1) + a2(2e(1- 2e))- 2a((1- 2e) + 1)) = 0 (2.25) 

a b 
1 0.6 

0.8 0.5 f3s 

(33 

set V 0.4 
0.6 

0.3 
0.4 

0.2 

0.2 0.1 
f31 

0 0 
0 0.2 0.4 0.6 0.8 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

X X 

FIGURE 2.6: 
Two dimensional projection of the phase space density for two coupled tent maps at time 
t = 6000. The figure was obtained with 5000 points. a) a= 1.45 and e = 0.075 so the system 
is in region ® , with initial conditions uniformly distributed on [0, 1] x [0, 1]. b) The lines link 
the vertices given in Appendix 2A, plotted for a = 1.45 and e = 0.075 superimposed with the 
data of panel a). 

Equation (2.25) can be solved for a as a function of e analytically since it is a fourth 

order polynomial in a. We do not give the solution, but note that when e = 0, the four 

solutions ac,l···,4 are 

ac,l = 0, ac,2 = 1, ac,3,4 = ±0. 
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The root ac,3 V2 corresponds to the condition given by Provatas and Mackey for the one 

dimensional case [173]. In addition, when a E [1, 2] all the roots are real. Two of these are 

irrelevant since they correspond to c r{. [0, 1] and the other two delimit the region ® 
of Figure 2.3. Note that one of the roots coincides with the previously obtained condition 

cc= (a- 1)/2a since 
1 

ac,2 = 1- 2c 

is one of the solutions of (2.25) for all a and c. 

(2.26) 

The behavior illustrated in Figure 2.6 can be described as coupling induced statistical 

cycling since the individual maps are asymptotically stable when (a, c) E @ . We 

conjecture that it reflects the asymptotic periodicity of the Perron-Frobenius operator for 

this system. A "period 4 version" of this phenomenon is observed numerically in @ , and 

is discussed in Section 2.3.1.3. 

2.3.1.3 Asymptotic periodicity: period 4 

As in the one dimensional case, there is period 4 statistical cycling in the coupled map 

system. The behavior in region (}) is illustrated in Figure 2.7. 

It is possible to give an analytic expression for the boundary separating regions @ and 

@ There are many different equivalent ways to obtain this expression, but each of these 

involves determining the conditions on a and c such that points belonging to an element 

of a cycle (an "element" being one of the four disjoint sets forming a cycle) return to that 

element after 4 iterations under <.P. One point whose trajectory yields the desired critical 

condition has coordinates 

c(a- 1) 4c(1- a(l- c2)) - 2 +a 
a(l- c) 1- c 
a 1 

a 
(2.27) 
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1 

Ji'i/' 
1 . .. 

y 

0 0 '--''---------' 
·~ 

0 .,/ 0 '----------' 
0 1 0 1 0 1 0 

FIGURE 2.7: 
Two dimensional projection of the phase space density for two coupled tent maps. a= 1.17 and 
e = 0.05 (i.e. the system is in region @)). The 16 disjoint supports shown in panel a) can be 
grouped into the four separate cycles of period 4 shown in the bottom panels. Points belonging 
to one cycle remain in this cycle. All points of the unit square eventually settle onto one of the 
cycles. The top panel was produced with 5000 pairs initially uniformly distributed in [0, 1] x [0, 1], 
and shows a snapshot of the activity at timet= 200. To obtain each of the four bottom panels, 
the initial points were uniformly distributed in a set belonging to one cycle, and each panel is the 
superimposition of four snapshots taken at four consecutive time steps t = 200, · · · , 203. 

Following the images of this point under g), it can be shown geometrically that the 

condition analogous to (2.25) is given by 

(2.28) 

which explicitly yields 
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The above is a ninth order polynomial in a. One of its roots is, as for condition (2.25) 

1 
ac,2 = 

1 
_ 

2
c. (2.30) 

It is not possible to give the expression for the other roots but we note that at c: 0, (2.29) 

becomes a sixth order polynomial with roots 

±21/4 - ±'21/4 - 1 -0 
' 

ac 4 5 - 't ' ac 5 - ' ac 6 - . ; ) ' ) 

The root 2114 corresponds to the condition given in [173] for the one dimensional transition 

between period 2 and period 4 asymptotic periodicity. The boundary between regions 

{)and @,plotted in Figure 2.3, is the analytic curve ac,1 (.s), determined from (2.29), for 

c E (0, 1/4]. 
In region (£) the in phase cycle (cycle 3 of Figure 2. 7) disappears: this is analogous 

to the disappearance of the sets A and C (displayed in Figure 2.5) in region @ The 

"period 8 version" of this phenomenon, as well as the boundary between period 4 and period 

8 statistical cycling is discussed in Appendix 2B. 

2.3.1.4 Asymptotic periodicity of higher period: 

We conclude the investigation of the phase diagram of the map 41 (Figure 2.3), by noting that 

one can numerically observe higher order bifurcations which correspond to the transitions 

from AP-8 to AP-16, and by conjecturing that transitions from asymptotic periodicity of 

period 2n to asymptotic periodicity of period 2n+1 can probably be observed for all n. In 

other words, numerical studies strongly suggest that the one dimensional picture given in 

[173] essentially survives diffusive coupling, in the sense that there is a period doubling of 

the density cycles as the slope of the tent map is lowered from 2 to 1, but that it is modified 

by the appearance of coupling induced regions in which the behavior is not a straightforward 

generalization of the one dimensional behavior (two of which, labeled @)tnd ® are shown 

on Figure 2.3. 
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2.3.2 On the evolution of statistical quantifiers 

a 
0.-------------, 

-0.2 ••••••••••••••••••••••• _ 
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~---------~ 

50 c 
Time 

b 25 
0..------------, 

-1.6 -
-0.2 -

-1.8 -
HBa(ft) -2 -

-0.4 -

-0.6 - -
-2.2 - -

-0.8 :- -
-1 - ••••••••••• ·-

-2.4 • • • • • .. 
-2.6 • • • • • ·--1.2 - - • • • • • • • • • • • • • • • • • • 
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-2.8 • • • • • • -

-3 
4000 4025 4000 4025 

Time Time 

FIGURE 2.8 
Three types of asymptotic behavior of the Boltzmann-Gibbs entropy (2. 7). a) The map <I> is in 

region (Y : a 1.85, c = 0.1. b) The map <I> is in region Q) : a= 1.45, c 0.075. c) The 

map <I> is in region (}) : a 1.16, c = 0.05. In all three cases, the initial values of x 1 and x2 
were uniformly distributed on the set [0.3, 0.4] x [0.8, 0.9]. 

In this section, the evolution of the Boltzmann-Gibbs entropy for the tent map is discussed 

in the various regions of parameter space. The purpose of this discussion is to illustrate 

the oscillatory behavior of statistical quantifiers usually computed with the respect to an 

invariant density for equilibrium systems, in the presence of asymptotic periodicity2 . 

The cycling displayed in Figure 2.8 is observed after transients were appropriately dis­

carded: If the entropy behavior is seen to be the same for 104 time steps, then it is assumed 

that the asymptotic regime has been reached. In Figure 2.8a, the level reached by the en-

2The two coupled tent maps are not rigorously proven to be asymptotically periodic, but the analytical 
evidence provided in this chapter strongly indicates that they are. 
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tropy after about 10 iterations (for this particular initial condition) was the level at which 

the entropy was found after 104 iterations. The asymptotic cycling of HBa in Figures 2.8b 

and 2.8c, reflects the fact that the Boltzmann-Gibbs entropy is not the quantity to which 

the Second Law of Thermodynamics applies for most asymptotically periodic system (or, 

more generally, for most dynamical systems). 

2.4 Discussion 

In this chapter, we have numerically observed that for the sigmoidal map, and the logistic 

map, the diffusive coupling of two chaotic but statistically stable elements can yield a sys­

tem which shows periodic cycling of phase space densities, which we call "coupling induced 

statistical cycling". We conjecture that this behavior is a generic property of maps with a 

logistic maximum. 

Using geometrical considerations, the analytic phase diagram for two diffusively coupled 

tent maps is constructed, and it is seen that the one dimensional bifurcation structure of the 

Perron-Frobenius operator essentially survives diffusive coupling, modulo the appearance of 

regions in parameter space in which the behavior is not a straightforward two dimensional 

generalization of the one dimensional behavior. We conjecture that the two dimensional 

Perron-Frobenius operator is asymptotically periodic when the one dimensional operator is, 

but that there are regions in parameter space in which the one dimensional systems have 

asymptotic periods differing from the coupled system. 

This leads us to trace the origin of phase transitions in the coupled map system to 

qualitative changes in the spectral properties of the transfer operator. The techniques used 

in this paper to describe asymptotic periodicity are not easily extendable to larger systems, 

because the geometrical insight is rapidly lost as the number of maps coupled together 

increases. 

Hence, when considering large CML's, it is necessary to introduce specific conceptual 

tools to describe the spectral properties of the N-dimensional Perron-Frobenius operator. 

This is the program of the next chapter, where we use general results from ergodic theory in 

higher dimensions to describe asymptotic periodicity (and phase transitions) in large coupled 

map lattices. 
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Appendix 2B 

There is a region in parameter space in which the behavior is the period 8 analogue of 

that already described in regions ® and @ : The attractor on the unit square is a 

collection of 56 disjoint sets, forming 7 independent cycles of period 8 each3 . The boundary 

between region ® and region (]) is given by the following criterion: 

Mathematically, the condition is 

[a2 (2c: 1) + 1 J [a(2c- 1) + 1] x [a11 (256c:8 896c:7 + 1408c:6 - 1280c-5 + 736c-4 

-280c:3 + 72c:2 - 12c + 1) 

(2B-1) 

+a8
( -64c:6 + 160c:5 - 176c:4 104c:3 - 32c2 + 4c:) 

(2B-2) 

It is possible to factor the above polynomial into an eighth degree polynomial in E and two 

monomials, so that two of the roots can be written explicitly: 

1 1 
a - a - -r:=::::::;= 

c,l - 1 - 2c' c,2 - v1 - 2c. (2B-3) 

The boundary drawn in Figure 2.3 between regions@ and @ shows amax(c) where amax 

is the largest of the 12 other roots. When the coupling E = 0, the 14 roots of the polynomial 

are: 

roots: 

The root 2118 corresponds to the condition given in [173] for the transition from period 4 to 

period 8 AP in the one dimensional map. 

3Since the behavior is period 8, one would expect 8 independent cycles yielding 64 disjoint supports, but 
one of these, the in-phase cycle is not observed, an observation already made in the period 2 and period 4 
regimes. 
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Chapter 3 

Statistical properties of deterministic 
coupled map lattices. 

ABSTRACT 

This chapter describes the statistical properties of large coupled map lattices. Transitions 

separating statistically stable and periodic phases are numerically observed in generic models 

of reaction-diffusion systems and excitable media. The transitions are studied in lattices 

of piecewise linear expanding maps by considering the spectral properties of the Perron­

Frobenius operator acting on functions of bounded variation in !R.n, and using basic results 

from the theory of linear operators. Analytic phase diagrams for various models studied in 

the literature are presented. 
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Evolution... is a change from an indefinite 
incoherent homogeneity to a definite coherent 
inhomogeneity. 

Herbert Spencer, First Principles 

3.1 Introduction 

Having studied in some detail the properties of the smallest CML's in Chapter 2, it is now 

natural to focus our attention on the larger lattices presented in the introduction. One 

of the conclusions of the previous chapter was that a class of phase transitions in the two­

dimensional maps could be explained in terms of qualitative changes in the spectral properties 

of the Perron-Frobenius operator. The numerical evidence presented here will lead us to the 

conclusion that this is also the case in larger lattices. To butress this conclusion theoretically, 

it is necessary to introduce some techniques to deal with the Perron-Frobenius operator in 

high dimensions. We develop these techniques and apply them to a variety of systems 

discussed in the literature. 

As mentioned in the introduction of the thesis, the presence of statistical cycling in 

coupled map lattices has been studied in some detail by Chate and Manneville ( cf Section 

3.2.2 of [31], and [32)), and by Binder and Privman [13]. Similar phenomena have also been 

observed by Gallas et al. [60], and Chate and Manneville [30] in various cellular automata. In 

these references, the statistical cycling is referred to as "noisy periodicity", "quasi periodicity" 

or "periodicity in the mean". This chapter contains the first analytical description of this 

phenomenology. 

The variety of models framed as CML's precludes a general description of all these sys­

tems. Some are chaotic in time and space, others only in one of these dimensions, while 

others are periodic in one or both. Finally, and these are the most troublesome from our 

point of view, some models possess stable fixed point solutions (i.e. for which the activity 

of the lattice is time-invariant). These can be of interest from a modeling perspective, but 

they are not amenable to simple statistical treatment, because stable steady states tend to 

give rise to pathological probability densities. To avoid these difficulties, we restrict our at­

tention in the remainder of this chapter to finite dimensional models which possess bounded 

nonstationnary solutions. 
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The transitions described here occur between statistically different regimes, which are 

referred to as "phases": a spatiotemporally chaotic phase in which the statistical quantifiers 

can be computed with respect to a unique absolutely continuous invariant measure, and 

another phase characterized by the cyclical evolution of phase space densities. The former 

regime is never associated with the evolution of large scale patterns, but in the statistically 

cycling phase, one can often observe the appearance of clusters of strongly correlated activity. 

The relation between the formation of these clusters and the presence of statistical cycling 

has been noted by some investigators [74], but it is not fully understood. We discuss some 

preliminary conclusions at the end of the chapter (cf. Section 3.8). 

We motivate our analysis with a numerical description of the collective behavior of lattices 

of coupled tent and logistic maps in Section 3.2. Section 3.3 extends this numerical work to 

a class of biologically motivated CML's which are models of excitable media. In Section 3.5, 

we present the notion of variation in Rn, and use it to discuss a classic result on the spectral 

properties of linear operators acting on embedded Banach spaces. Sections 3.6-3. 7 present 

applications of this analysis to various models. 

3.2 Lattices of logistic and tent maps 

We begin our description of CML phenomenology by focusing on systems of the form (1.2) 
with periodic boundary conditions. When p = 4, the coupling in (1.2) is said to be diffu­

sive, whereas when the p-neighbourhood encompasses all sites of the lattice, the coupling 

is referred to as mean field. In this section, we restrict our attention to two maps already 

discussed in the previous chapter, namely the logistic map, and the generalized tent map. 

The tent map 
S X = { ax if X E [0, 1/2) 

( ) a(l- x) if x E (1/2, 1] 1 <a::; 2. (3.1) 

is considered here because there is strong numerical evidence of asymptotic periodicity in 

large regions of the (a, c) plane when it is coupled as in (1.2). Finally, the piecewise linear 

nature of the CML allows one to explicitly compute the eigenvalues of the absolute value 

of the derivative transformation, and carry out calculations efficiently in Section 3.6. In 

addition, the Perron-Frobenius operator induced by (3.1) was described by Shigematsu and 

Mori [224] and Provatas and Mackey [173] and the following results on asymptotic periodicity 
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are available: 

asymptotic periodicity 
2112n+l < a :::; 21; 2n ~ of n = 0, 1, 2,.. . . (3.2) 

period 2n, 

The results of Chapter 2 showed that this structure essentially survived intact in two coupled 

maps, and we are interested in studying its analogue in N coupled maps. 

The other system which will be considered here is the CML (1.2) with the local nonlin­

earity given by the logistic map: 

S(x) = ax(1 x), rE (3, 4]. (3.3) 

When a < a00 ~ 3.5699 ... , and the map is locally periodic, the CML possesses stable spa­

tiotemporal orbits (i.e. like the '(coherent structures" discussed in [3, 177]). Each lattice site 

then eventually settles onto a periodic cycle, and the lattices reach frozen spatial structures 

consisting of domains which contain different phases in the cycles (this behavior was first re­

ported by Kaneko [95]). We do not focus on this kind of evolution because it does not require 

the introduction of probabilistic tools for its discussion. At ac ~ 3.57 · · ·, the bifurcation to 

chaos occurs beyond the period doubling scenario, and there are values of a E (ac, 4) such 

that the local map possesses various types of chaotic behavior. The motivation for including 

the chaotic logistic map in this discussion is that when it is locally chaotic it is shown to 

display much of the behavior displayed by the simpler tent map, therefore leading us to the 

conjecture that the phase transitions explored here are to be expected generically in large 

classes of systems which are not necessarily everywhere expanding. 

For fixed lattice sizes, the parameters describing the evolution are a, related to the local 

nonlinearity, and the coupling parameter c. Two different sets of numerical experiments can 

therefore be carried out. The first involves changing a while keeping the coupling c constant, 

and the second involves changing the coupling c while the local nonlinearity parameter 

remains fixed. 

3.2.1 Numerical investigations 

Figure 3.1 displays nine panels, each of which is a snapshot of the activity of the tent map 

lattice after a transient of 105 iterations has been discarded. The coupling is constant in 

the figure and the parameter which is being changed is the slope a. Two qualitatively 

different types of behaviors are observed. The first is characterized by the evolution of large 
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scale patterns from the random initial conditions; this is the clustered, or ordered state 

a = 1.1, · · ·, 1.5. The panel a = 1.3 presents an interesting limiting case for which the 

"cluster" covers the entire area of the lattice; different initial conditions for such parameter 

values evolve to the more usual large scale patterns. We should mention here that the lattices 

are not at equilibrium in the panels displayed in this figure. It is not possible to observe 

the true equilibrium because of the astronomically large transients typical of a lattice of 

40000 elements. The point of our investigation is not to describe explicitly the presence, 

stability and asymptotic behavior of the patterns presented here, but to understand how the 

thermodynamics of these lattices should be investigated. Although the problem of pattern 

formation in CML's is fascinating, it is not the focus of our investigation, and we will therefore 

not spend more time discussing the pattern dynamics per se. The interesting observation 

from our point of view is that the pattern-forming behavior associated with small values of 

a is also accompanied by statistical cycling in the lattice. This is illustrated by the behavior 

of various statistical quantifiers of the motion discussed below, rather than by the snapshots 

of Figure 3.1. 

The second phase is characterized by the absence of discernable patterns, but more 

importantly, it is described statistically by a unique invariant measure generated by almost 

all initial conditions (again, more on this below). This corresponds to the spatiotemporally 

chaotic state described rigorously by Bunimovich and Sinai [21] in infinite lattices. Figure 

3.2 displays the activity of a lattice of 200 x 200 logistic maps coupled diffusively. The top 

three panels illustrate the behavior of the lattice in the statistically cycling region, while the 

bottom three illustrate the fully turbulent and statistically stable regions. Note the absence 

of large scale patterns even in the asymptotically periodic regime, in marked contrast to the 

tent map lattice. 
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LEGEND FOR FIGURE 3.l(next page): 
Snapshots of the activity at the surface of a 200 x 200 lattice of diffusively coupled tent maps 
when the coupling is constant {c- = 0.45) but the local slope is increased from a= 1.1 to a= 1.9. 
For all panels, the transient discarded is of length 105 . The 256 grey scales range from black when 
xi,j = Xmin to white when xi,j = Xmax where Xmin and Xmax are the lower and upper bounds of 
the attracting subinterval of [0, 1] respectively. The initial values on the lattice were in all cases 
given by a random number generator yielding uniform distributions on the unit interval. The 
transition from statistical cycling to statistical equilibrium occurs between a = 1.5 and a = 1.6 
for this value of the coupling. This observation is not made from Figure 3.1 but with the help 
of the statistical quantifiers of the motion described below (cf. Figures 3.4, 3.5 and 3.6). The 
time evolution for the a = 1.3 case looks very much like the evolution of the top three panels in 
Figure 3.2 for the logistic map. For other statistically cycling cases, the light shades of grey are 
mapped into darker shades and vice versa at each time step. The bottom three panels display 
fully developped turbulence. They have reached their asymptotic state. 
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LATTICE OF 2002 TENT MAPS. COUPLING IS e = 0.45 256 GREY SCALES: WHITE {:=::} 1; BLACK {:=::} 0 

FROM LEFT TO RIGHT: a= 1.1, a= 1.2, a= 1.3 

FROM LEFT TO RIGHT: a = 1.4, a = 1.5, a = 1.6 

FIGURE 3.1 
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LEGEND FOR FIGURE 3.2(next page): 
The six panels display two phases of a 200 x 200 lattice of coupled logistic maps with E = 0.45. 
105 transient iterations are discarded. Top: the system is statistically periodic with period 2, 
and r = 3.678. The evolution is reminiscent of that already observed in the tent map lattice 
with a = 1.3 and E = 0.45. lt is of interest to note that logistic map lattices were not observed 
numerically to form large scale patterns in the AP region, when the initial preparations did not 
contain any spatial information. This is in contrast with the pattern forming behavior of the 
tent map lattices. Bottom: the system is fully turbulent, and the parameter r 3.9. For other 
parameter value, cycles of period 3 can also be observed in the lattice. In all cases, the exact 
asymptotic cycle depends on the initial preparation of the system, a property expected in an 
asymptotically periodic dynamical system. 
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LATTICE OF 2002 LOGISTIC MAPS. 256 GREY SCALES: WHITE {=} 1; BLACK {=} 0 

FROM LEFT TO RIGHT: t = 105
, t = 105 + 1, t = 105 2 

FROM LEFT TO RIGHT: t = 105, t = 105 + 1, t = 105 + 2 

FIGURE 3.2 
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We now discuss the second set of numerical experiments which involves studying the 

evolution of the lattice when the slope is fixed but the coupling is varied. Figure 3.3 displays 

a transition from statistical stability to statistical cycling in the tent map CML when the 

slope is a = 1.5 as the coupling is increased from 0 to 1. When the coupling is 0, it 

follows from the results in [173] that the lattice will possess a unique invariant measure 

which will be reached for almost all initial preparations, because the local map possesses this 

property. For low values of the coupling, an invariant measure is also reached numerically, 

and this result is consistent with the analytical investigations of Keller and Kiinzle [109] 

and Rand and Gundlach [72]. When the coupling is increased (for a = 1.5), there is a 

critical value C:c above which the lattice no longer reaches statistical equilibrium. Rather it 

reaches the "ordered" phase, characterized by cyclical statistical behavior. This statistical 

cycling is therefore coupling-induced, and it is the generalization to higher dimensions of the 

phenomenon described in the previous chapter in two dimensional maps. 

Sometimes it is a nontrivial task to decide to which state a particular panel belongs to 

by simply looking at the activity of the lattice. To this end, we characterize the two phases 

with the help of statistical quantifiers which behave qualitatively differently depending on 

the phase of the lattice. 

LEGEND FOR FIGURE 3.3(next page): 
Snapshots of the activity of a 200 x 200 lattice of tent maps with a slope a = 1.5. The transients 
discarded are of length 105 in each panel. At low values of the coupling, the lattice generates an 
invariant measure for almost all initial preparations, and displays fully developped spatiotemporal 
chaos. At values of c: > cc, the lattice possesses an invariant measure, but it is almost never 
observed numerically. Instead, the phase space densities evolve to a periodic cycle which depends 
on the initial density. This reflects the coupling-induced asymptotic periodicity of the Perron­
Frobenius operator for the lattice. The critical value of the coupling, is cc <:::::::: 0.2 when a = 1.5. 
The time evolution of the lattice in the bottom three panels is similar to the "flipping" shown at 
the top of Figure 3.2 
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LATTICE OF 2002 TENT MAPS. SLOPE IS e = 1.5 256 GREY SCALES: WHITE ~ 1; BLACK ~ 0 

FROM LEFT TO RIGHT: e = 0.05, e = 0.1, e = 0.15 

FROM LEFT TO RIGHT: e = 0.25, e = 0.35, e = 0.45 

FROM LEFT TO RIGHT: e = 0.55, e = 0.65, e = 0.85 

FIGURE 3.3 
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3.2.1.1 The "collapsed density" 

The collapsed density is the density of activity on a lattice at time t. Let f(xt) denote the 

phase space density for the lattice (1.2), where Xt (x~'0 , · · ·, xf'N) is the state of the lattice. 

This density clearly cannot be represented graphically, and it is numerically expensive to 

obtain when working with large lattices. We therefore approximate its "collapsed version" 

f~(z) !·. ·! f(x) n 8(x;,j- z)dxi,j 
t,J 

(3.4) 

with the density f{ of activity across a single lattice defined implicitly by 

(3.5) 

where ( ·) denotes the average of the quantity inside the brackets. The purpose of this 

reduction is to characterize the two phases of the CML efficiently and unambiguously, and 

f[ is appropriate for this task. In addition, it is easy to show that if f[ is stationary in 

time, then f is almost surely stationary, while if f[ cycles, f must cycle. By almost surely, 

we simply mean that it is possible to initialize a lattice such that the cyclical behaviors of 

groups of sites on the lattiCe (a group consisting in a number of sites not necessarily spatially 

close) cancel each other's cycling on average, so that If does not reflect the behavior of f. 

This situation is not expected to be observed for typical preparations of finite size lattices, 

because it is not "robust": A slight statistical perturbation of the initial preparation will 

almost surely (in the space of initial densities) yield a preparation such that the groups of 

sites do not cancel anymore, and therefore f and ![ will both be time periodic. Therefore f[ 

gives an efficient tool for studying certain properties of f, and its behavior is illustrated in 

Figures 3.4 and 3.5. 

LEGEND FOR FIGURE 3.4(next page): 
The collapsed density !{ for a 200 x 200 lattice of diffusively coupled tent maps with c = 0.45. 
The first 105 iterations are discarded as transients. In a) the cycle is of period 4, and a = 1.3. 
The initial density was uniformly distributed on [0.3 : 0.4]. In b) the cycle is of period 2, a= 1.4 
and the initial density was uniformly distributed on [0, 1]. In c) the parameters are as in b) with an 
initial density supported on [0.39 : 0.43]. Note, as in Figure 3.1 the dependence of the asymptotic 
cycle on the initial density. d) The slope of the map is a 1.99 and the initial density is [0, l]. 
This density is numerically reached for all initial densities. Here the system is "fully turbulent", 
or "spatia-temporally chaotic" . 
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LEGEND FOR FIGURE 3.5(next page): 
The collapsed density g for a 200 x 200 lattice of logistic maps. In a) a cycle of period 2, obtained 
with r = 3.678 and an initial density uniformly supported on [0, 1]. In b) same parameters but 
an initial density uniformly supported on [0.2 : 0.4). lt should be noted that the cycle reached is, 
for both of these initial conditions the same one, modulo a phase difference. The fact that at 
each time the density is supported on a simply connected set reflects the absence of patterns on 
the logistic map lattice. Compare this "flipping" of densities with the behavior shown in the top 
panels of Figure 3.2. In c), r = 3.99 and the system numerically reaches the invariant density for 
all initial densities. 
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FIGURE 3.5 
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The previous figures display the evolution of /[ when the lattices are either in the sta­

tistically periodic or in the statistically stable regimes. As mentioned above, the temporal 

behavior of g reflects that of f. Hence the previous figures lead us to the conclusion that 

f cycles in time. This conclusion is corroborated by the analysis of Section 3.6, where we 

conditions on a and c which are sufficient to guarantee the cycling of f. 

When the cycling in the collapsed density is difficult to discern visually, studying the 

Boltzmann-Gibbs entropy of g (defined in Chapter 2) highlights either stationary behavior 

or cycling behavior, as illustrated by Figure 3.6. 

a b c 
0.--------------, 0.--------------, 

Entropy 
HBa(g) 

-1.5 

-2.5 

- -1.5 - -1.5 
.-.-:::::.-.-.·.·:::::::::::::. 

- -2.5 - -2.5 

-3.5 '----------~ -3.5 '---------------' -3.5 ._.._._._ ........ ~ ........ ---~~;;....., 
105 105 + 50 105 105 + 50 105 

t t t 

FIGURE 3.6 
The Boltzmann-Gibbs entropy for the collapsed density of a lattice of 200 x 200 diffusively coupled 
tent maps. c = 0.45 in all three panels. In a) a= 1.99, the CML is spatiotemporally chaotic. In 
b) a= 1.4, the CML is AP period 2. In c) a= 1.3 and the CML is period 4. The initial density 
was uniformly distributed on [0, 1] for all three panels. 

Finally, the auto- and cross-correlation functions were used to confirm the statistical 

oscillations observed in the "ordered phase". In the tent map lattice, the oscillations of the 

temporal autocorrelation functions 

(3.6) 

shown in Figure 3.7 coexist with slow oscillations in the spatial cross-correlation of Figure 

3.8, which reflect the presence of large clusters of synchronized activity. 
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FIGURE 3.7 
Temporal autocorrelation function (3.6) of the activity at site (36, 156) (chosen for no particular 
reason) on a lattice of tent maps diffusively coupled with c = 0.45 with the first 105 iterations 
discarded as transients, and the initial activity of the lattice uniformly distributed on [0, 1]. In a) 
the lattice is fully turbulent with a= 1.99. In b) the slope is a 1.4 and the cyclical behavior 
of p36,156 (k) reflects the statistical cycling in the lattice [k denotes time in this expression, as in 
{3.6)]. 

a 
1r------------, 

spatial 
correlation 

function 

spatial 
correlation . 

function 

b 

or--------~~--===._, 0 ~~~~~--~--===-~---

-0.2 '---------------' -0.2 '-------------------------
0 100 0 

Lattice space index i Lattice space index i 

FIGURE 3.8 
Spatial correlation function across a lattice of 200 x 200 tent maps diffusively coupled with 
£ = 0.45. The first 105 iterations are discarded as transients. In a) the slope is a = 1.99 and 
the system is spatially turbulent. In b) the slope is a = 1.4 and the slow oscillations reflect the 
presence of large scale patterns in Figure 3.1. The expression for this correlation function is {3.6) 
with k in this case denoting spatial position on the lattice. 
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The numerical results presented in this section clearly indicate that in the CML's con­

sidered, there are two easily identifiable "phases". In one, the statistical quantifiers of the 

motion reach a unique equilibrium, while in the other, the same quantifiers reach a peri­

odic cycle. These two phases reflect qualitatively different properties of the operator which 

evolves densities in the CML's: the Perron-Frobenius operator. 

Before proceeding to a theoretical discussion of this phenomenology, we describe very 

similar dynamics in a CML based on a model proposed by Franke and Yakubu [58] to 

describe the evolution of bob-white quail populations. 

3.3 Excitable CML's 

A biologically motivated map which has surprisingly received relatively little attention in 

the study of coupled map lattices is the asymmetric bimodal map 

Xt+I =(a+ G(~t)) Xt (3.7) 

where G(x) = 1 xn and a+ b > 1 > a > 0. These maps arise in the description of the 

growth of ecological populations [9, 33, 153], neural networks (161], in the analysis of cardiac 

arrhythmias [193], and the study of the Belousov-Zhabotinsky chemical reaction [166]. They 

describe systems in which the dynamics depend on a threshold: rapid growth, or excitation, 

occurs when the variable crosses the threshold and is followed by a relatively long period of 

decline or decay. In this sense, these maps can be regarded as simple analogues for locally 

excitable dynamics. The bifurcation diagrams for these maps are quite complex and include 

stable limit cycles as well as regions of "banded" chaos (153]. 

3.3.1 A model for competing species 

To construct a CML from {3.7), which is appropriate for the description of competing species, 

it is necessary to derive the appropriate form of the coupling architecture. The coupling is 

most easily obtained by considering an ecosystem composed of k territories in which the 

local dynamics of the k-th territory is described by (3.7). Equation (3.7) has been used 

to describe the growth of certain territorial animal populations, such as the bobwhite quail 

[58, 153], and describes a population which grows at rate rv (a+ b) when x < 1 and declines 

at rate rv a when x > 1. The decrease in growth rate for large population densities arises 

75 



0 

because of competition between individuals once the population exceeds the number which 

can be accommodated in preferred habitats. It follows that the influence of individuals in 

the i =!= j-th territory on the j-th territory must be through the term G, and hence the 

coupled map lattice is of the form 

(i) - ( b ) (i) 
Xt+l - a+ Q(i)(xt) Xt ' (3.8) 

where i 1, · · ·, k is a space index which again need not be a scalar, and Xt = (x~i), · • ·, x~k)) 
denotes the state of the lattice at time t. Franke and Yakubu [58] introduced a coupling 

scheme given by 
k 

a<i> (xt) = 1 + 2: [x~j>r 
j=l 

to describe globally coupled species of bobwhite quail competing for shared resources and 

showed that for sufficiently large n, the species in all territories except one became extinct. 

More realistically the coupling should reflect the fact that the greater the distance between 

two territories, the smaller the interaction between them. We therefore define 

(3.9) 

where Wij denotes the weight of the connection between x~j) and xli). This weight should 

decrease as the distance dist(x(i), xU>) between sites x(i) and x(j) increases. The distance 

between sites is calculated using the Euclidean metric: 

dist(x(i), xU>) 

dist(x(i1 i 2 ), x<hh)) 

li j I for dimensionality 1 

VU1 - i1) 2 + (12 - i2) 2 for dimensionality 2, etc .... 

The simplest coupling architecture decreasing with distance is piecewise constant: 

(3.10) 

where N denotes the number of territories located within euclidean distance R of x~i). In 

other words, the evolution of the local territory x(i) is influenced in an inhibitory fashion by 

the mean activity in a surrounding sphere of radius R. 

76 



The inhibitory effect of the coupling in (3.10) is illustrated by the behavior of the map 

(3.11) 

which is another way of writing (3.8) with coupling (3.9) [i.e. the sum in (3.9) is replaced 

by the constant factor e]. Figure 3.9 illustrates the fact that if e is large, which represents 

a large mean activity in the neighbourhood of any lattice site x~i), the value x~Z 1 tends to 

be smaller than x~i). The growth of x~i) is therefore inhibited locally by the activity of its 

neighbors. 

S~(z) 1.5 

0.75 
z 

FIGURE 3.9: 

Superimposition of several curves of the map (3.11) with a 

e = o, ... , o.9. 

1.5 

0.5, b 2.5, n 29 and 

The system (3.8) with (3.9) and (3.10) can now be investigated when the lattice extends 

in two spatial directions for various coupling ranges R and control parameters. When the 

parameters are such that the local maps possess stable limit cycles, the whole lattice syn­

chronizes and forms "coherent structures" whose stability properties have been discussed 

previously in the context of diffusively coupled maps [3]. We do not consider these dynamics 

further here, but instead focus on the nontrivial statistical properties of the CML which arise 

when the local maps are chaotic. 

When the local map is chaotic, numerical studies indicate that two distinct types of 

statistical evolutions are possible. Varying one (or several) control parameters can result in 

a transition from one phase to another. 
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3.3.2 Numerical investigations 

Each phase is characterized by the behavior of the various statistical quantifiers of the mo­

tion presented in the previous section. Again, these evolve in qualitatively differing ways 

depending on the phase of the CML. There are many such quantifiers which have been devel­

oped to investigate spatiotemporal dynamics, and highlight nonlinear correlations between 

the elements (e.g. the mutual information), various stretching rates (e.g. the Lyapunov 

spectrum) or other information theoretic quantities of interest (e.g. the Renyi dimensions). 

In this section, we use the same simple quantifiers as before to characterize unambiguously 

the equilibrium statistical properties of system (3.8) with (3.9) and (3.10). 
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FIGURE 3.10:(see next page for the legend) 
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Behavior of various statistical quantifiers of the dynamics of the CML (3.8) in dimension 2, with 
N x N elements and periodic boundary conditions (N = 200), and with R of equation (3.10) 
being 3. In all panels, the parameters are : a = 0.65, b = 2.15 n = 45. (a) Evolution of the 
Boltzmann-Gibbs entropy of the density if displayed in (c) and defined implicitly in (3.5). (b) 
behavior of the temporal autocorrelation function (3.6) at a "typical site" on the lattice. (c) 
The distribution of activity ff across the lattice at equilibrium; this probability density is time 
invariant and probably reflects the existence of an invariant measure. lt's invariance does not 
rigorously imply, but strongly indicates invariance of the measure in IRN

2
• (d) Spatial correlation 

function for the left panel of Figure 3.11. 

In the first phase, as shown in Figure 3.10, the statistical quantifiers of the motion relax 

to steady states which reflect the probable existence of an invariant measure describing the 

equilibrium thermodynamic properties of the lattice. In this case, the activity of the lattice 

(cf. Figure 3.11) is spatially disordered as well as temporally chaotic (we use the term 

"spatial disorder", rather than spatial chaos, since the lattices described here are finite). 

The resulting behavior is reminiscent of that observed previously in lattices of tent and 

logistic maps, where it has been described as "spatiotemporal chaos" (cf. Section 3.2.1). 

Grey Scale: White {:} N/ is 0, Black {:} N/ is 1.8. 

FIGURE 3.11: 
These two panels are snapshots of the activity of a 200 x 200-element lattice with periodic 
boundary conditions at times t = 103 {left panel) and t 103 + 1 (right panel). They display 
spatiotemporal chaos in the CML (3.8) with 200 x 200 sites. The parameters are as in Figure 
3.10. The initial distribution of sites was uniform over [0.5, 1.5]. 
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The second of the two phases mentioned above is, as in the cases of tent and logistic maps, 

characterized by the cyclical statistical behavior displayed in Figures 3.12 and 3.13 and the 

possible formation of large scale patterns, examples of which are given in Figure 3.14. The 

formation of large scale patterns occurred only in the statistically cycling regime. However, 

there is still no clear understanding of the possible link between statistical instability in this 

system and the formation of patterns (cf. Section 3.8). 

t = 103 t = 103 + 1 t 103 + 2 
2. 5 2.5 2.5 

a b c 

1.25 1.25 \\ - 1.25 

0'--L-----------"" 0'--'------------"" 
0 1.8 0 1.8 

FIGURE 3.12: 
Illustration of statistical cycling in the CML (3.8). The three panels display the distribution of 
activity defined implicitly in (3.5) across a lattice at three consecutive times, when the lattice is 
composed of 200 x 200 sites, and the parameters are: a = 0.5, b = 2.5, n 18. The initial 
distribution was uniform over [0.5, 1.5]. The exact asymptotic cycle (in density space) depends 
on the initial preparation. 

When patterns appear, two scenarios can be observed: 1) synchronized clusters can 

grow in a relatively short time (less than 103 iteration for a lattice of 0(104) elements) 

until they cover the entire lattice (as in the top panels of Figure 3.14): The statistical 

cycling is then temporal rather than spatial [the synchronization within each cluster is not 

deterministic: all the sites within one cluster are contained within a small region of the real 

line referred to as a band]; and 2) the expansion of the clusters is very slow, and during 

a very long transient, macroscopic clusters appear to be metastable. In this case, (bottom 

panels of Figure 3.14), the statistical cycling is both temporal and spatial (the spatial cycling 

reflecting the presence of correlated and anticorrelated clusters of activity). In other words, 

the main difference between the situations which give rise to the formation of large clusters 
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of correlated activity, and the situations which give rise to the synchronization of the entire 

lattice seems to be the length of transients: It appears that the patterns of Figure 3.14 

(bottom panels) eventually synchronize and look like those of Figure 3.14 (top panels), but 

the transients are, as expected [100], extremely long. 

Figures 3.11 and 3.14 display snapshots of the activities of 200 x 200 lattices of maps 

of the form (3.8) coupled together according to (3.9) with (3.10), with periodic boundary 

conditions and for different values of the radius Rand control parameters. In Figures 3.10, 

3.12 and 3.13, some of the standard statistical quantifiers of chaotic motion are displayed 

when the lattice is either in the statistically stable or the statistically periodic phase. It is 

important to realize that the regions of parameter space in which both statistical stability 

and statistical cycling are observed are "large" in the sense that they are easily located 

during preliminary numerical trials. 

Boltzmann Gibbs Entropy Autocorrelation function 
1 .---------,,------..,------, 

a 
b 

01--------------l 
......... ,.....,..,.. 11111 I 1 ' ... -.. .......,.,.,. 
~ . . ,.,., --

-1 ~--~----~----~ -0.2 '-------'------L----' 

0 50 100 150 0 25 50 75 
Time Time 

FIGURE 3.13: 
The temporal correlation function (3.6) and Boltzmann-Gibbs entropy of ff for the CML (3.8) 
when the parameters are the same as in Figure 3.12. The thermodynamic"equilibrium" for this 
system consists in two metastable states visited alternatively in time. 

3.4 Sumn1ary of the numerical investigations 

In summary, the numerical descriptions of Sections 3.2 and 3.3.2 indicate that: 

1) An initially featureless excitable CML can spontaneously organize itself into large 

clusters of correlated and anti-correlated activity (cf. Figure 3.14). 
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2) The formation of large scale patterns occurs only when the statistical behavior of the 

lattice is nontrivial. In this case the lattice does not relax to statistical equilibrium but it 

evolves to a statistically periodic state. This implies that the CML under consideration pos­

sesses a thermodynamic equilibrium unlike those described in classical statistical mechanics. 

This equilibrium consists in a sequence of states visited periodically in time. We will come 

back to the implications of this observation in the discussion. 

FIGURE 3.14 
Snapshots of the activity of a 200 x 200-site CML (3.8) when it is in the statistically cycling 
regime. Left panels: t = 103; Right panels: t = 103 + 1. The top panels illustrate the formation 
of correlated clusters of activity which cover the entire lattice. The parameters in this case are 
as in Figures 3.12 and 3.13 with 82 nearest neighbors (R = 5) included in the neighbourhood. 
The bottom panels display the formation of patterns for the same parameter values but only 28 
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nearest neighbors (R = 3) influencing the activity of a given site. The initial preparations of the 
lattices were featureless, and the initial condition for each site was a random number picked from 
a density uniform on [0.5, 1.5]. 

Given the paucity of rigorous results concerning the dynamics of large chaotic CML's, 

it is of great interest to describe this behavior analytically. Unfortunately, the map (3.8) 

cannot at present be dealt with in such a manner because it is not expanding everywhere. 

We propose in Section 3. 7 a nonlinear CML which accounts for much of the complexity 

described here, while remaining amenable to analytic treatment. This analysis makes use of 

a conceptual tool-box which is introduced in the next section. 

3.5 Mathematical preliminaries 

The transfer operators induced by the nonsingular CML's considered here act on functions 

which are elements of normed linear spaces (cf. Appendix 3C for related definitions). The 

metric properties of these spaces depend on the choice of the norm. For reasons which will 

become clear in the next section, two natural norms arise in the descriptions of CML's: The 

familiar L 1 norm, and the so-called bounded variation norm. To introduce the latter, it is 

necessary to recall the definition of the variation of a high dimensional function. The short 

discussion given here is based on the presentations of [64, 109, 227). 

3.5.1 Functions of bounded variation 

First, we define the gradient in the distributional sense \7 d· Let f be a real-valued function 

defined on an open set X c !RN, and C1 (x) denote the space of differentiable functions from 

X to X having compact support. Then the operator \7 d is the vector valued measure defined 

by 
ar ar 

vdr= (-a ,· .. ,-a ). 
X1 XN 

With this definition, it is possible to define the variation off: 

V (f) = IIV dfll (3.12) 

where 

sup { J. f ::. d!'~: hE C1(X), I hi :0: 1} , h = (h(l), · ·., h(N)), 
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and p,~ denotes the Lebesgue measure on X. A more detailed presentation is given in Chapter 

5 of [227], and in [64, 109]. 

With the definition (3.12), it is possible to introduce the bounded variation norm: 

II·IIBv- V(·)+ ll·llv- (3.13) 

The space of functions of bounded variation defined on X is a Banach space (cf. [64]) denoted 

BV(x). 

The rationale for introducing the notion of variation, and the associated norm for the 

probabilistic description of CML dynamics, is that it allows us to use the following result 

from the theory of linear operators due to Ionescu Thlcea and Marinescu. 

3.5.2 The result of Ionescu Tulcea and Marinescu 

This result was originally published in [206], and is of fundamental importance for our 

analytic description of the probabilistic properties of deterministic CML's. We do not state 

the original form of the theorem here, since it is much too general from our point of view. 

Our presentation is inspired by the descriptions of Loviscach [139]. 

Theorem 3.1: (Adapted from Ionescu Tulcea and Marinescu {206}) 

Consider two Banach spaces 

(A, 11 I lA) C (lY, llllv) 
with the properties: 

a) If {fn} is a bounded sequence of elements of A such that 

lim 11 fn- f llv= 0 
n---too 

where f ElY, then f is also an element of A, and 11 f IIA~ supn 11 fn IIA· 
b) Let P : (A, 11 IIA) ~ (A, 11 IIA), be a bounded operator which can be extended to a 

bounded operator in (lY, llllv). 
c) Suppose that there is an integer n such that 

cl. If X is a 1111A-bounded subset, then pn X is compact in lY. 

c2. supn 11 pn llv< 00 

c3. There exists wE (0, 1) and n ~ 0 such that 

11 pnf IIA~ w 11 f IIA +0 11 f llv, for all f EA. 
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0 
If conditions ( a)-(c) are satisfied, then the operator Pis asymptotically periodic, and admits 

the spectral decomposition (1.21). 

For the sake of completeness, we mention that the original version of Theorem 3.1 does 

not directly discuss asymptotic periodicity, but Rychlik showed that the properties implied 

by the theorem in turn imply asymptotic periodicity (cf. Theorems 1-3 of [187]) when the 

embedding space (Y, llllv) is (L1(X), 1111£1). In order to apply this theorem to the study of 

CML's, we follow Gon:i and Boyarski [66] in choosing (A, I IliA) = (BV(x), IIIIBv) included in 

(Y, llllv) = (L1(X), 1111£1 ). 
• Verifying a) 

By Theorem 1.9 of [64], if {fn} E BV(X), 11 fn IIBv:S: K for n = 1, 2 · · · and fn -+ f in L1
, 

then f E BV(x) and 11 fn IIBv:S: K. 

• Verifying b) and c2) 

The operators under consideration here (i.e. Perron-Frobenius operators) are Markov [122, 

134], and their operator norm is 1, hence b) and c2) are both verified. 

• Verifying cl) 
This property follows from the compactness Theorem 1.19 of [64]. 

Hence, the theorem of Ionescu Thlcea and Marinescu guarantees that the transfer opera­

tors associated with CML's admits the spectral decomposition (1.21) if the condition c3) is 

satisfied. By focusing our attention on restrictions of (BV(x), IIIIBv) and (L1(X), IIIILl) to 

the corresponding linear subspaces of normalized probability densities, and remembering the 

definition (3.13) of the bounded variation norm, the inequality in c3) becomes, for n = 1, 

v (Pr) :s: w v (f) n, (3.15) 

where n = n + w. In concrete examples, we study specific CML's and obtain conditions on 

their control parameters such that the inequality (3.15) holds. 

3.5.3 Sufficient conditions for statistical cycling 

Here we derive a sufficient condition for the asymptotic periodicity of the Perron-Frobenius 

operator Pifl for coupled map lattices composed of piecewise expanding mappings. Our 

approach, inspired by the work of G6ra and Boyarski [66], involves placing bounds on the 

variation of Pif!f, by using essentially geometrical arguments, and then using these bounds 

to invoke the result of Ionescu Thlcea and Marinescu discussed above. It should be noted 

that our analysis provides a sufficient condition for the spectral decomposition (1.21), and 
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that when condition (3.15) is not satisfied, we are not in a position to discuss the density 

evolution associated with chaotic CML's. 

For typical CML's, the requirement that (3.15) be satisfied places natural constraints on 

the control parameters of ~. To proceed, note that since ~ is a piecewise monotone mapping 

we have from (1.8) 

(3.16) 

where Q ER.+ satisfies 

1 1 ----...,......,---,.- << Q << -. ----:;---,---:-
(x) mm1r;EII (x) max?r;EII 

(3.17) 

and depends on the transformation under consideration. Each term in the sum on the right 

hand side of (3.16) can now be evaluated explicitly. From the definition (3.12), 

V (r(~h" 1 (x))x;dx)) - \\\7d [r(~h" 1 (x))X1r;(x)]\\u 

fx l\7d [r(~h" 1 (x))] Xir;(x)l dJ-L~ kN lf(~h" 1 (x))\7d [Xir;(x)] I dJ-L~ 

V (f(~h" 1 (x)))lxE?i\ + LN lf{~h" 1 (x))\7d [Xir;(x)JI dJ-L~N· (3.18) 

Since Q > .J, a simple change of variables yields 

(3.19) 

The integral in the right hand side of equation (3.18) can be simplified using example 1.4 of 

[64], which states that for any u E BV(x), and A c X with piecewise C2 boundaries of finite 

( N - 1 )-dimensional measure, 

Choosing u(x) = f(~h" 1 (x)), and A= ifi, one obtains 

fx lf(~h" 1 (x))\7d[X,r;(x)] dJ-L~N fa*; lf(~h" 1 (x))l dJ-L~N- 1 • (3.20) 
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Furthermore, for any u E BV(X), and any A as specified above, we have from Lemma 3 of 

[66] 

f u(x)d~-t~N-l ~ . ~( ) V (u(x))l + KA 
JlJA sm A xEA 

(3.21) 

where KA > 0 is bounded and sin fJ(A) depends on the smallest angle subtended by inter­

secting edges of the set A. Letting u(x) = f(<P~ 1 (x)) and A iri as before, and recalling 

identity (3.19), the integral in (3.18) satisfies 

Letting sinO(ir) = minisinfJ(?i\), and using (3.18), (3.19), and (3.22), (3.16) becomes 

(3.23) 

Therefore, comparing (3.23) with (3.15), the theorem oflonescu Tulcea and Marinescu guar­

antees the asymptotic periodicity of the Perron-Frobenius operator when 

(3.24) 

The explicit form of the CML <P enters in the calculations of Q and sinO(ir), and we therefore 

restrict our attention to specific models in order to complete the analysis. 

3.6 Lattices of tent maps 

The association of large scale patterns and asymptotic periodicity in CML's was first ob­

served for the case of a diffusively coupled CML in which the local transformation, S, is the 

generalized tent map. Hence we consider (1.2) with S given by the tent map, for various 

coupling architectures. This study is facilitated by the fact that for this choice of S, sin O(ir), 

and Q of condition (3.24) can be readily calculated. 
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3.6.1 Calculating sinB(ir) 

The phase space X of the transformation q. is the direct product X = [0, 1 ]N
2 c R.N

2 
if there 

are N 2 sites on the lattice. Note that each of the elements of this product can be divided 

into two subintervals ! 1 = [0, 1/2), ! 2 [1/2, 1] such that on each of these, S is monotone. 

Therefore the partition IT on which q. is piecewise monotone contains 2N
2 

sets, each one of 

which is of the form: 7ri = IU:-2
-i, where i = 1, · · ·, 2N

2
• In addition, note that IT is a 

rectangular partition since ! 1 and !2 are the same for all sites on the lattice. 

( ... ' 0, 1/2, ... ) 

( ... ,0,0, ... ) ( ... ,1/2,0, ... ) 

FIGURE 3.15: 
Schematic diagram of the evolution of one of the hyperplanes bounding the set 7ri under the 
action of the CML transformation q., As in the text, ifi = q.l1r;(1ri)· 

As illustrated in Figure 3.15, the "image sets" denoted ifi (i = 1, · · ·, s(IT)) are rhomboids 

whose edges subtend angles which are bounded away from 0. The smallest of these angles is 

denoted (}int' and can be calculated explicitly by noting that the two dimensional restriction 

of the CML transformation ~ to the plane (xi, xi) (xi and xi belonging to the same p­

neighbourhood) is 

~(2-d)( ) = { x~+l = (1- c:)S(xp + ~S(x{~ + C1 
Xt Ji+l (1- c:)S(xi) + e:; S(xt) c2, 

where cl and c2 depend only on the activity in the p-neighbourhood of the sites i and j 

(excluding xi and xi themselves). Hence, 

q-.(2-d) ( ... '0, 1/2, .. ·) 

~(2-d)(· .. ' 1/2, 0, .. ·) 
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<1?(
2
-d)(- · ·, 1/2,1/2, · · ·) = (-··,~+a; (1

; P) + C1,; +a; (1
; P) + C2, · ·-) = v3 

Denote by £1 the edge linking v1 to v3 and £2 the edge linking v2 to v3 • The slope of £1 is 

therefore E / p( 1 - E), and the angle (}int of intersection of i 1 and £2 satisfies 

(} _ p(1- e)[e2 - p2(1 e)2) 
tan int- [ 2 2(1 )2) EE +p -E 

(3.25) 

Using the results of Appendix 3A, since we consider a lattice with N 2 elements we obtain 

sinB(7f) = 1- COS (}int 
(3.26) 

3.6.2 Calculating Q 

To facilitate the presentation, we explicitly write the matrix form of the CML acting on the 

state vector Xt in two spatial dimensions when the coupling between the elements is diffusive: 

Xt: <P(xt) = Xt+l where 
<P(xt) = 

(1- c)S(x!) 
iS(xt) 

with 

iS(xF) o 

(1- c:)S(xr) iS(x~) 

0 

iS(xf) · ~ · ~S(xf2-N) 
0 ~S(x["+l).~· 

0 

x, [J) 

0 

(1- c)S(xt) 
(3.27) 

As an aside, this representation of the lattice activity highlights the fact that local coupling 

in two dimensions is equivalent to long range coupling in one. More importantly, it allows 

us to calculate the absolute value of the Jacobian of <1? when the slope of S is constant over 

the phase space, and this quantity will be shown below to provide a good lower bound for 

Q. The absolute value of the derivative matrix ID<PI is given by: 

(1 -c)a fa 0 fa o e 0 fa ... ... 4a . .. 
4 4 4 

fa (1- c)a f. a 0 e o 
f. a 0 

ID<PI 4 4 
4a ... 

4 

f. a 0 £a 0 e o 
f. a (1 e)a . . . . .. 4a ... 4 4 4 
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If the coupling is not diffusive, but contains an arbitrary number of neighbours, the number 

of off-diagonal entries in the matrix change, but the structure of the matrix will remain 

essentially the same for all linear coupling architectures. In general, if the tent maps (3.1) 

are coupled as in (1.2), the possible entries in the derivative matrix nq,j1rp are, 

I xkl E /1 I xkl E /2 

~ kk(x) (1 c-)a -(1- c)a 
1>~'kl(x) (c-jp)a -(c-jp)a. , 

The absolute value of the determinant of this matrix remains unchanged when entire columns 

are multiplied by -1, and so 

where !Dq,l is a real matrix, whose diagonal entries are (1 c-)a, and nonzero off-diagonal 

entries are (c/p)a. Since periodic boundary conditions are assumed, ID~Jll is also symmetric, 

and hence diagonalizable, and 
N 2 -1 

detiDq,l = IT Ak 
k=O 

where the Ak's are the eigenvalues of IDq,l· Although these eigenvalues depend on the 

coupling architecture, they are independent of both i and x when the map is piecewise linear 

with a slope whose absolute value is constant on the phase space. Therefore detiDIJl11rJ is 

also independent of x and i, and if there are N 2 elements on the lattice 

N 2-l 

.Ji-1(x) IT -X;\ Vi= 1, · · ·, 2N
2

, Vx EX (3.28) 
k=O 

where the expressions for the ,\k's for several coupling schemes are listed in Table 3.1 below. 

Recall that Q was defined implicitly in (3.16) by the requirement 

It is clear from (3.28) that 
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so it is natural to pick 

N 2-l 

Q = II >-.k. (3.29) 
k=O 

As a result, condition (3.24) for asymptotic periodicity, applied to a lattice of generalized 

tent maps (3.1) coupled linearly as in (1.2) becomes 

[
N

2

-1 l [ 1 l !! )..~ 1 + sinO(i) < 1, (3.30) 

where sin O(i) is given by (3.26) and (3.25). Exact expressions for the eigenvalues are neces­

sary to obtain concrete conditions on the parameters a,p and e such that (3.30) holds. The 

periodic boundary conditions we have chosen are helpful in this regard since they ensure that 

the matrix ID<PI is circular: the second row is obtained by shifting all the elements of the 

first row to the right by one position, so that if the entries of the matrix ID<PI are denoted 

4J~1 (k, l = 1, · · ·, N 2
) 4J~1 = .4J(k+l)(!+l)mod N2 (the modulo operator is a consequence of the 

periodic boundary conditions). For such matrices, it is well known [158] that 

k = 0, · · · , N 2 
- 1. (3.31) 

Table 3.1 below gives explicit formulae for (3.31) for an N x N lattice of tent maps with 

several coupling architectures discussed in the literature. The sum in the p nearest neighbors 

case is over half the sites which are included in the neighbourhood because each term in the 

sum arises from the contribution of two sites: xm and its mirror image relative to the center 

of the neighbourhood. The exact expressions for the bounds of this sum are easily derivable, 

but cumbersome, and therefore not shown here explicitly (the sum is evaluated below, in 

equation (3.36) for the p 28 case). 

Until now, no claim has been made concerning the period of the density cycle resulting 

from the cyclical spectral decomposition (1.21): there are no general results available to 

determine the quantity r in (1.21) (indicating the number of disjoint supports of the invariant 

density) and therefore providing a lower bound on the period of the density cycle (the upper 

bound being naturally r!). However, it is well established [cf. (3.2)] that the tent map 

(3.1) displays a period doubling scenario in the evolution of densities, and it is of interest 

to understand how this picture survives in arbitrarily large lattices of tent maps coupled 

together through various coupling schemes. 
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Coupling 

Diffusive (1- c:)a 

p nearest neighbors ( 1 - c:) a + 2;
6 [m , J1a.ites cos (~:m)] 

Mean Field 

TABLE 3.1: 
Table of the eigenvalues of the derivative matrix Dif! associated with a square lattice of tent 
maps for various coupling architectures. 

To carry out this analysis, we apply the formalism presented in Section 3.5.3 to com­

positions of the lattice transformation if! with itself. Denote by if!n the transformation if! 

composed n times with itself (i.e. if!2 =if! o if!). If the spectral decomposition (1.21) applies 

to if!2 with r = r 2 =f. 1, then it necessarily applies to if! with r = r 1 , where r 1 = 2r2. The 

same reasoning holds for higher order iterates of if! and yields r 1 nr n for if!n. We therefore 

investigate the spectral characteristics of the Perron-Frobenius operator associated with if!2 , 

if!4 etc ... 

3.6.3 Diffusive coupling: phase diagram 

Note that if Ak is an eigenvalue of the transformation if!, then AJ: is an eigenvalue of if!n, and 

so condition (3.30) for asymptotic periodicity in a lattice with N 2 sites takes the form 

(3.32) 

with sinO(ir) given by (3.26), with (3.25) calculated with p = 2 if the CML is a chain, or 

p = 4, if the CML has two spatial dimensions. 
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Phase Diagram: Diffusive Coupling 
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0 =----L----~----~--~----~----~--~-----L----~--~ 
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

slope a 

FIGURE 3.16: 
Phase diagram for the diffusively coupled tent map with periodic boundary conditions. This figure 
was obtained from the condition {3.30) for a lattice of 200 x 200 elements, and the eigenvalues 
of Table 3.1 corresponding to diffusive coupling for corresponding to .P, .P2 , etc.... The stars 
indicate the positions of the nine panels of Figure 3.1, full circles, those of the nine panels of 
Figure 3.3. Compare this diagram with the corresponding activity Figures {3.1 and 3.3). 

Figure 3.16 examines the behavior of condition (3.32) for various iterates of Q! : <P2
, lf!4 

and .P8 . For clarity, Figure 3.16 does not display the results of our analysis applied to .pn 

for n > 8, because the subsequent curves behave as expected. This phase diagram therefore 

generalizes previously published results [136] on two diffusively coupled tent maps to N 

dimensions. It should be clear that the curves displayed in Figure 3.16 do not indicate 

precisely the location in the (a, c) plane at which the spectral decomposition of the Perron­

Frobenius operator changes. Instead, these curves indicate locations in parameter space at 

which sufficient conditions for a given spectral decomposition ofPil? change. This "onion" like 

structure is consistent with numerical investigations of diffusively coupled tent map lattices 

reported in [135], and indicates that the one-dimensional picture (3.2) essentially survives 
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diffusive coupling, modulo some expected dependence on the coupling strength between the 

elements. 

3.6.4 Mean field coupling: phase diagram 

In this case, the evolution of every local site is influenced by the mean activity of the entire 

lattice. This coupling is of interest because it is a limiting case of long range couplings which 

are known to arise in optics [101], in the study of evolutionary dynamics [51], and in many 

physical models of spatially extended systems [150] (see also Section 3.6.4 of Chapter 1). The 

eigenvalues of the derivative matrix in this case are given in Table 3.1, and the condition 

(3.30) can again be evaluated explicitly. In this case, the simplicity of the eigenvalues (cf. 

Table 3.1) allows to go one step further since if N is large, we have 

In addition, if there are N 2 sites on a lattice of globally coupled tent maps, and N is large, 

the results of Appendix 3A, in conjunction with those of Section 3.6.1 (cf. (3.26)) indicate 

that 

Hence, condition (3.30) becomes 

which can be written, when N is large 

But limN-tooN(-l/N2
) 1 (if N = 200 for example, N(-l/N2

) ::: .9998675505), so the condi­

tion (3.30) for a large lattice becomes effectively 

(1-c)a < 1. 

Note also that limN-tooN(-l/nN
2

) = 1 if n > 1, so that we expect the condition (3.30) applied 

to <J>n to yield the same condition, for N large enough as the condition for <J>, so that the 

"onion-like" structure of Figure 3.16 should disappear for global coupling. This is indeed 

the case. Figure 3.17 displays the phase diagrams for the globally coupled tent map lattice. 

94 



0 

0 

This phase diagram is the analytic version of some early numerical results published by 

Kaneko on a similar model [101]. The overall shape of the transition curve published in 

that reference separating "spatiotemporal chaos" (or turbulence) and statistical cycling is 

in agreement with our analytic result, although systematic shifts in parameter space are 

clearly present. This shift is most important for low values of the coupling (c;::; 0.3) because 

in these cases, our estimates of the quantity Q are too conservative. The smaller shifts 

observed for high coupling values are probably due to a combination of transient effects 

(which render accurate numerical simulations computationally costly) and inaccuracies in 

the various bounds of condition (3.24). In any case, the presence of such discrepancies is 

not surprising given the fact that the estimates given here for the phase transition curves 

correspond to changes in sufficient conditions for asymptotic periodicity, rather than changes 

in necessary and sufficient conditions. 

Phase Diagram: Mean Field Coupling 

0.7 

0.6 

0.5 

coupling 0.4 c 

0.3 

0.2 

0.1 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
slope a 

FIGURE 3.17: 
Phase diagram for the globally coupled tent map lattice. The diagram is obtained by applying 
condition (3.30) with the eigenvalues of Table 3.1 corresponding to mean field coupling. lt should 
be noted that the diagrams for <Pn, n 2, 4, · · · yield the same curve as the one displayed here. 
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As explained in the text, this curve is accurately described by the function c = 1 1/a for all 
n;::::l. 

The most common linear coupling architectures discussed in the literature, diffusive and 

mean field coupling, have now been treated analytically in a lattice of tent maps. We next 

investigate a coupling which is closer in nature to the competing populations model presented 

in Section 3.3.1. 

3. 7 Lattices of bimodal maps 

The methods of Section 3.6 can be extended to more general systems in which the the neigh­

bourhood of a given site acts on its evolution via a nonlinear coupling mechanism. Such 

mechanisms were illustrated in Section 3.3 when considering a generic model of excitable 

media with inter-element inhibition. We now construct similar CML's which remain analyt­

ically tractable. 

3.7.1 Presentation of the model 

As an example, consider a lattice transformation of piecewise linear maps coupled in a 

nonlinear fashion to mimic the inter-element inhibition of the excitable CML of Section 

3.3.1: 
<_p(i) (xt) = (1 c)S(i)(xt) + ~ L S(j)(xt)· 

P p nearest 
neigh hors 

(3.33) 

In this Section, p is chosen so that the inter-element coupling is diffusive; 2. e. p = 2 in 

dimension 1, p 4 in dimension 2, etc ... ] The inhibitory effect of the neighbourhood is 

modeled by the local transformation: 

ax~i) 

a(2rP) - x~i)) 
a( -2rP) + x~i)) 
a(l - x~i)) 

where Tt(i) E [1/4, 1/2] depends on the mean activity e}i) in a neighbourhood of x~i): 

(i) = ! - _!_ "" (j) 
Tt - 2 4d L..-t Xt . 

96 

d nearest 
neighbors 

(3.34) 

(3.35) 
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This nonlinear coupling is chosen so an increase in the sum over the d neighbors has an 

inhibitory effect on xi21. When S of CML (3.33) is given by (3.34), the transformation pos­

sesses two statistical regimes like the excitable CML discussed in Section 3.3.1. In one phase, 

the system seems to be ergodic, possessing a unique invariant measure, a one dimensional 

projection of which is observed numerically. In the other, the statistical quantifiers oscillate 

periodically in time, indicating that the Perron-Frobenius operator might be asymptotically 

periodic. 
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Schematic diagram of the bimodal tent map {3.34). The maximum activity of the map decreases 
if the mean activity of the neighbourhood ~ increases. This inter-element inhibition is meant to 
mimic the same feature in the more realistic model of Section 3.3.1. 

The qualitative observations made concerning the two possible statistical evolutions (to 

a steady state, or to a limit cycle) of the excitable CML (3.8) hold for the system (3.33) with 

(3.34). The details of the density cycles are obviously not the same for the two systems, and 

the structure of the maps is also very different. However, they have similar nonlinear inter­

element coupling, and since we have only analytically investigated the behavior of CMUs 

in which the coupling was linear, it is of interest to generalize this analysis to nonlinearly 

coupled CML's. 

The analysis of the previous section can be completely carried out to yield conditions 

on the parameters of (3.34) sufficient for the cyclical spectral representation of the Perron­

Frobenius operator. The eigenvalues of its derivative matrix cannot be evaluated explicitly 

as a function of the slope a and the number of neighbors p and d included in the two relevant 

neighborhoods. However, it it possible to derive upper and lower bounds on the quantity Q 

of condition (3.24) for (3.34). 
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3.7.2 Calculating Q 

If the d-neighbourhood includes all the sites located within euclidean distance 3 of the site 

x~i) (there are 28 such neighbors in dimension 2), Q satisfies: 

where Q1 and Q2 are given by 

(3.36) 

and 

Q, = :~
1 

{ a(l- c)+ ae [cos(~:)+ cos c~k)]} (3.37) 

These two quantities allow us to delimit a region in the (a, c) plane in which the Perron­

Frobenius operator admits the cyclical spectral decomposition of Section 4.1. This region is 

obtained by applying the criterion (3.30) to the system (3.34) with Q Q1 and Q Q2 . 

Define 
N 2-1 

Qu = IT Aiu), U = 1, 2 
k=O 

where the Aku) are given implicitly in equations (3.36) and (3.37). 

3. 7.3 Calculating sinB(7r) 

To determine the quantity sin O(n), note that the phase space X of the transformation <P 
defined in (3.34) is again the direct product [0, 1]N

2 
if there are N 2 elements on the lattice. 

On each of the intervals in X, the transformation S(i) is strictly monotone on four segments 
(i) (i) (i) (i) (i) (i) 

/1 = [0, Tt ), !2 = [Tt , 2Tt ), Is = [2Tt , Tt + 1/2), /4 = [Tt 1/2, 1], and each of the 

4N
2 

elements of 11 is of the form 'lrf( i) lf1 
( i) x 1;2 

( i) x 1;3 
( i) x I%4 

( i) where Lj kj = N 2 

(again "i" is the index denoting spatial position on the lattice). Clearly, this partition is no 

longer rectangular (cf. Figure (3B-1)). Using the definition of the thresholds Tt(i) given by 
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equation (3.35), when p 4 (i.e. the coupling is diffusive in dimension two), and d 28, 

the minimum angle of intersection of two edges of the elements of the image partition is, 

from (3B-2) (cf. Appendix 3B) 

tan_1 [-~ (12543[16(1 + 2c:)- 15c:
2
])]· 

2 1792 - 53764c: + 507 40c: 
(3.38) 

From Appendix 3A, sin 0( 7r) can then be computed as in the linear coupling case of Section 

3.6. Hence, for the nonlinearly coupled CML (3.34), the condition (3.24) yields two criteria 

which give an estimate for the parameter space location of the transition from statistical 

stability to statistical periodicity: 

Q! [1 + sin~(?r)] < 1, u = 1,2. (3.39) 

Phase Diagram: N onlinear coupling 

0.7 

0.6 

0.5 

coupling 0.4 c 

0.3 

0.2 

0.1 1 
nf~o- 1 .\~ [1 1 

] 1 
J J sin9(1i') > 

0 ~--~----~--~----~--~----~--~----~--~--~ 
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

slope a 

Figure 3.19: 
Phase diagram for the nonlinearly coupled CML (3.34). The two curves displayed here are each 
obtained from (3.39) and they delimit a region which separates the (a, c:) plane in two: Above 
this region {in the upper left corner) the Perron-Frobenius operator for the CML admits a cyclical 
spectral decomposition as in (1.21). See text for details. 
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The two conditions in (3.39) delimit a transition region in the (a, E) plane which separates 

two "phases". In one of them, there are sufficient conditions to guarantee a cyclical spectral 

decomposition of the Perron-Frobenius operator. Figure 3.19 displays the "fuzzy" phase 

diagram resulting from the application of the two conditions in (3.39) to the system (3.33) 

with (3.34). 

3.8 AP and the formation of patterns 

The numerical investigations of Sections 3.2.1 and 3.3.2 indicate that the presence of asymp­

totic periodicity facilitates the formation of large scale patterns in certain regions of pa­

rameter space. To understand the connection between asymptotic periodicity and pattern 

formation, note that asymptotically periodic systems only occupy small regions of their phase 

spaces determined by the support of the various v/s of equation (1.21). For a lattice of N 2 

elements, the support of each vi is a product of N 2 intervals: support( vi) = h x · · · x JIN 

where there are r distinct lik c [0, 1] if i also runs from 1 to r (think of the situation for a 

lattice of tent maps when r 2, and each site belongs to one of two subintervals of [0, 1]). 

Denote the r distinct attractive subsets of [0, 1] by the symbols ~, · · · , Dr. Hence, 

The exact form of the IDlj 's depends on S and the coupling architecture. If the inter-element 

coupling in the lattice tends to correlate the activity of neighbouring sites (as is the case for 

diffusive-like couplings), the evolution of the lattice will be accompanied by the formation of 

clusters of sites whose values will tend to belong to the same IDlj. If the diffusive effects are too 

strong, all sites will eventually belong to the same IDlj at the same time, and there will be no 

pattern formation. On the other hand, if the diffusive effects are too weak, neighbouring sites 

will not tend to belong to the same IDlj, and the lack of correlation between nearby elements 

will be reflected in the lack of large scale patterns. Thus, the appearance of large scale 

patterns would appear to be the result of a balance between: 1) a coupling induced tendency 

to synchronize neighbouring sites; and 2) a tendency (due to the asymptotic periodicity) of 

all site activities to belong to a small number of disjoint subsets of the phase space. If there 

is only one attractive IDlj (i.e. r = 1), so the system is statisticaly stable, patterns should 

not form spontaneously. This is numerically observed to be the case in all the systems we 

have investigated. We are therefore lead to interpret the effective segregation of regions of 
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phase space due to asymptotic periodicity as a "reactive" mechanism, which in the presence 

of diffusive-like couplings, facilitates the appearance of patterns. 

3.9 Discussion 

The probabilistic description of CML's presented here is a first step towards a more complete 

understanding of the nonequilibrium thermodynamics and statistical mechanics of these 

models. For example, comparing Figures 3.16 and 3.17 confirms (for tent maps} the intuitive 

notion that systems with mean field coupling tend to order more easily than systems with 

short range interactions. 

The importance of the possible presence of statistical cycling in CML's and in more 

general spatially extended systems lies in its implications for the proper interpretation of the 

behavior of statistical descriptors of the motion: The notion of thermodynamic equilibrium 

for these objects must be extended to include a set of states visited sequentially in time. 

The cycling of ft observed for asymptotically periodic systems is an ensemble property and 

the classical statistical mechanics paradigm which associates a single invariant measure with 

the state of thermodynamic equilibrium does not apply here. Instead, the thermodynamic 

equilibrium of the asymptotically periodic CML consists in a sequence of states visited 

periodically in time. As demonstrated here, the CML's which possess this type of equilibrium 

are not "pathological" in the sense that they arise in the modeling of many physical and 

biological systems. 

The presence of statistical cycling also implies a type of dependence on the initial condi­

tions which is much stronger than that usually discussed in reference to chaotic dynamical 

systems. Here the ensemble statistics depend on the initial ensemble. This is a consequence 

of the dependence of the functionals ri on the initial density f0 in equation (1.21) (cf. Remark 

1 of Section 1.4.3). 

The regions of parameter space in which asymptotic periodicity occur are large for all 

the systems discussed here. Therefore, the observation that the statistical quantifiers of the 

motion cannot be effectively calculated with respect to an invariant measure which exists, 

but which is almost never observed experimentally, is ubiquitous for these CML's and not 

the result of very special circumstances. This ubiquity is reflected by the relative frequency 

of reports discussing supposed violations of the law of large numbers [70, 99, 164, 166] 

(cf. also Section 1.4.5.1 of the Introduction). The present analysis indicates that the one-
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dimensional arguments of Pikovsky and Kurths [166] can indeed be extended to arbitrary 

large dimensional systems which are not necessarily globally coupled. 

Since most realistic models of biological or physical relevance must include stochastic 

perturbations, we conclude by pointing out that analytic investigations of the transfer oper­

ator P111 for stochastically perturbed CML's using appropriate techniques should generalize 

the approach presented here to a much broader class of spatially extended systems. This 

motivates the next chapter, in which we consider the behavior of large coupled map lattices 

perturbed by noise. The investigations are both numerical and analytical, and they lead to 

the rather surprising conclusion that the presence of noise in CML's will almost always im­

ply the presence of statistical cycling, even when the noiseless system is not asymptotically 

periodic. 
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Appendix 3A 

In this Appendix, we rigorously define and calculate the quantity sin0(1f) which appears 

in condition (3.24). 

Since the partition IT = { 1ri}i=1 (IT) of X C !RN is defined such that the restriction of <I> 

to 11'i, denoted q>I11"P is differentiable and the n/s are closed bounded (i.e. compact) domains 

having piecewise hyperplanar boundaries of finite N- 1-dimensional measure, the angle at 

which edges of the 11'i 's intersect is bounded away from zero. In all the cases considered 

analytically, <I> is also piecewise linear. Hence the edges of the sets 1fi of the image partition 

fi which are of positive measure also intersect at angles bounded away from zero, because the 

images of a hyperplane under the action of a piecewise linear <I> are (piecewise) hyperplanar. 

Before proceeding with the analysis, it is useful to remind the reader with the concept of 

a regular cone in !RN: 

Definition 4: Regular Cone A regular cone in !RN is a cone whose base is aN -1 dimensional 

disk d and such that the line joining the center of d to the apex V (not to be confused with 

the symbol V used in Section 3.5 to denote the variation) of the cone is perpendicular to 

d. The angle between this central axis and any segment linking the apex of the cone to d's 

boundary is called the summit angle. • 

The apex of the cone V occurs at the singularities of derivative of <I>. Let S ~ be the set 

of all singular points of 81ri; hence if x E SPi, 

8(8ni(x)) 
OXk 

is not defined for some k. • 

Construct at any Vi E SPi the largest possible regular cone having its apex at Vi and 

lying completely in 11'i· Denote the summit angle of this cone by a(Vi)· Now let 

and define 

Finally, let 

sin 0( 1f) = min sin 0( 1fi). 
7TiEII 
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Calculating sinO{if) turns out to be straightforward when the 1r/s are bounded by hyper­

planes such that the edges of 81ri intersecting at Vi do so with angle Oint· To illustrate the 

procedure, consider Figure (3A-I) which illustrates the situation in !i? and JR3. If dist(x,y) 

denotes the Euclidean distance between points x and y, 

. l1(-) _ dist(Cs,Ce) 
sm u 7r - dist(V, Ce) (3A-I) 

where Cs is the center of the shaded circle, Ce the middle of one (and any) of the edges of 

the base of the "pyramid", and V is the apex of the regular cone. Note that if 0( if) = 1r /2, 

then it is straighhtforward from the right of Figure 3A-I that sinO(if) = I/-/3 in JR3
. 

Cs 

2d 

9(1t) 
1 

Ce 

V 

3d 
FIGURE 3A-I: 

Illustration when N = 2 and N = 3 of the embedding of a (N- 1)-sphere in a regular (N-I)­
simplex {which is one face of a regular N-simplex). Cs denotes the centroid of the (N -I)-sphere, 
Ce denotes the centroid of one edge of the (N- I)-simplex containing the (N- I)-sphere. V 
denotes the vertex of theN-simplex not contained in the (N I)-simplex. 

In JRN, (3A-I) holds when Cs is the centroid of the (N - I)-sphere embedded in one 

face of the regular N-simplex (which is a regular (N- I)-simplex), and Ce is the center of 

one of the edges of that (N I)-simplex. Although it is not possible to draw the higher 

dimensional simpleces and spheres, it is easy to embed them in an orthonormal reference 

frame and proceed with the analysis. For clarity, a simple case is considered before the more 

general result is given. 

Case 1: IT is a rectangular partition: Oint = 90° (Warm up) 
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In this case, any two adjacent edges of the N-simplex intersect at V with angle (Jint = 1r /2. 
It is easy to show that in JRN , if V is placed at the origin 

and therefore 

dist(Cs, Ce) = .j 1 
, dist(V, Ce) = .j 1 

N(N- 1) (N- 1) 

which implies that for a rectangular partition in JRN, 

sin B(7r) = ~ • (3A-2) 

Case 2: fi is not a rectangular partition: (Jint arbitrary 

In this case we still assume that any two adjacent edges of theN-simplex intersect at V with 

an arbitrary angle (Jint < 7r/2, where (Jint is the same for all angles. TheN vertices v1, · · ·, VN 

of the ( N - 1 )-simplex forming the base of the N -simplex having apex V at the origin have 

coordinates which are cyclical permutations of each other. Thus, if v1 : (#';;11 · · ·, #'i;N ), then 

vi: (Peri{f;;1,···,f;;N}) where Per{f;;I,···,f;;N} = {f;;N,f;;b···,f;;N-1}· Therefore, 

which implies 

N ( N )
2 

Ei=l N #'i;i - Ei=l #'i;i 

Lf~, ( L~j "') 
2 sin B(rr) = ~ (3A-3) 

Note that if all but one of the f;;i's are zero, and the nonzero f;;i is 1, the vertices vi all lie on 

the N dimensional hypercube, and therefore the edges which bound 81ri intersect at right 

angles: II is rectangular as in case 1, and (3A-3) yields sin0(7r) = 1/..JN as expected. 

From a practical point of view, given an N dimensional lattice transformation, it is easy 

to construct the partition II, but it can be time consuming to obtain the f;;i's used in (3A-3). 

On the other hand, it is usually straightforward to compute, in terms of the parameters of 

the transformation, the smallest angle (Jint subtended by the edges of the 1r/s. It is therefore 

useful to express sin B( 7r) in terms of this (Jint· To do so, note that the N apexes vi (with 

coordinates { #'i;i}) of a N-simplex whose summit V is placed at the origin, and whose edges 
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intersect there at angles (Jint all lie on lines which link the centroid Cs to the apexes of the N­
simplex whose edges intersect at the origin at an angle 1r /2 (think of the 2 and 3 dimensional 

situations). The equation of one of these lines is, from our discussion of Case 1, 

~1 1 
1 _ 1/N = N~2 = ···-:- N~N, (3A-4) 

and the equations for the (N -1) other lines are obtained by permuting x 1 with the remaining 

(N 1) coordinates in (3A-4). In addition, all of the vi's have to be equidistant from Cs. 

Therefore, we obtain a second set of constraints which must be satisfied by the ~/s: 

1 )2 N ( - +'E ~i 
N i=2 

1 )2 
N = d~sv 

or 

(3A-5) 

where dcsv is the distance between Cs and the vi's. Solving these equation yields, for apexes 

v1 and v2 for example, 

(
_.!_ +des J N- 1 1 _ dcsv . . . _.!_ _ dcsv ) (3A-6) 
N v N. ' N V N ( N - 1)' ' N V N ( N - 1) 

(
_.!_ _ dcsv _.!_ des ~ . . . _.!_ _ dcsv ) (3A-7) 
N JN(N -1)' N VV!r' 'N JN(N -1) . 

Now consider vectors v""{;i and v;i where i 

(Jint by definition. Therefore, 

j. The angle subtended by these two vectors is 

from which it is easy to obtain 

dcsv = 

v7ui · v;j 
I Vvi 11 Vvi I 

[1 cosfJint](N 1) 
N[(N- 1) cos Oint + 1]" 

(3A-8) 

Replacing (3A-8) in (3A-7) yields the coordinates of the v/s as a function of the angle (Jint: 

1 N 
~1 = N + N -1 

1- cosO;nt 
(N- 1) COS (Jint 

1 1 ---
N N 
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Using these expressions in (3A-3) yields, for a lattice of N elements 

sinO(?t) = 1- cosOint 
(N- 2) cosOint] · • (3A-10) 

Note that if N 3 (3A-10) reduces to 

• [j ( -) 1 ( oint ) sm v 1r = V3 tan 2 

which can be easily derived directly from Figure (3A-1) using simple geometrical arguments. 

Appendix 3B 

In this Appendix, the angle Oint and the quantity sinO(?t) are computed explicitly for the 

coupled bimodal maps of Section 3.7. Figure (3B-1) schematically illustrates the evolution of 

the unit square under the action of the transformation <P defined in 5.1. Before proceeding, 

we introduce the following notation: 

~ L x~k) k, j E p - neighbourhood of i 
4pk..J_·. ' 

T~,J 

x~ - 1 L x~k), k, j E d- neighbourhood of i 
k:j:i,j 

Hence the two dimensional restriction q>(2-d) of the transformation <P, which describes the 

evolution of one face of the hypercube X is given by: 

q>(2-d)(i) (xt) 

q>(2-d)(j) (xt) 

(1- c)S(i)(xt) + ~S(j)(xt) + x~ 

(1- c)S(j)(xt) + ~S(i)(xt) + x{ 

where the local transformation is again given by (3.34). 
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Illustration of the evolution of one face of the hypercube :X= [0, 1]N. On each of the rhomboids 
on the left panel, the transformation <I> is linear with slope ±a. The panel on the right displays 
the images of these rhomboids. B1nt is the smallest angle formed by the edges of the "image 
rhomboids". In this figure, parameters are a = 1.4, c: = 0.45, p 28, d 4, rf = t/ = 
0.15, x~ = xf = 0.225 (the symmetry was chosen for pedagogical purposes; it is in general not 
present for random initial conditions).This figure was computed with the symbolic manipulator 
MAPLE. 

Determining Bint is straightforward but lengthy, and we have relied heavily on the use of 

a symbolic manipulator to carry out the explicit calculations. The plan of the algorithm to 

compute B1nt is as follows 

1) Using the definition of <.[>(2-d), obtain the coordinates of the 25 vertices of the 16 

rhomboids on which <.[>(2-d) is linear (these are displayed on the left panel of Figure (3B-1)). 

2) Iterate each of these points, so as to obtain 16 "image rhomboids" (displayed on the 

right of Figure ( 3B-1)). 

3) Using these coordinates, find the angles of intersection of the edges of these image 

rhomboids, and find the smallest one, which is by definition B1nt· Though the problem seems 

intractable at first glance, the task is greatly simplified by the many symmetries in the 
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coordinates of the image rhombs, so that it is not necessary to perform a time-consuming 

minimization problem. 

The analytic expression for O;nt is, as expected, independent of the slope a. It is given 

implicitly by 

tan o. = -~ { (1- 16d2)[p2(1 - 2c:) c;2(1 - p2)] } . ( ) 
mt 2 4dp2 - cp(l + 8d(p + 2d)] + c;2(4d(l + p{l 4d)) + p] 

38
-
2 

This expression can then be used in (3A-10) of the previous appendix, to obtain an expression 

for the quantity sin O(ir) in terms of the control parameters of the CML of Section 3.7. 

Appendix 3C 

In this appendix we recall a few concepts from real analysis which are constantly referred 

to in the treatment of the Perron-Frobenius operator given in this chapter. We included this 

list of definitions because they do not belong to the standard conceptual tool box of statistical 

mechanics. It is obviously not meant as an exhaustive introduction to real analysis. 

We start with a few basic definitions which are necessary to clarify the notion of a Banach 

space. These are important because the phase space probability densities which are induced 

by nonlinear coupled map lattices are themselves elements of Banach spaces. 

1. Linear spaces 

A set X of elements is called a linear space if we have a function + on X x X to X and a 

function · on IR x X to X which satisfy, for x and y in X 

i. x+y = y+x; 
ii. (x y)+z=x (y+z); 
iii. There is a unique f) in X such that x +f) x, for all x. 

iv. a(x + y) ax +ay for a E JR. 

v. (a + b )x ax + bx for a, b E JR. 

vi. a(b)x = (ab)x for a, bE JR. 

vii. 0 · x = fJ and 1 · x = x. 

Clearly, + and · are the familiar addition and multiplication by scalars. 

2. Norms 
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A nonnegative real-valued function 1111 defined on a linear space X is called a norm if, for 

x, yE X, 

i. 11 X 11= 0 {:::} X = '!9. 

ii. 11 X+ Y 11::;11 X 11 11 Y 11· 
iii. 11 ax 11= !alii x 11, a E JR. 

Rigorously, a normed linear space is the pair (X, 1111). When there can be no ambiguity about 

the norm, the pair is often denoted X. An important family of norms which are frequently 

used are the so-called Lp norms: the Lp norm of a real valued measurable function f defined 

on the real interval I, is given by 

(30-1) 

3. Metric spaces 

A metric space (x, p) is a nonempty set X of elements together with a real-valued function 

p defined on X x X such that for all x, y and z in X, 

i. p(x,y) 2:: 0; 

ii. p(x, y) = 0 if and only if x y. 

iii. p(x, y) = p(y, x). 

iv. p(x, y) ::; p(x, z) + p(z, y). 

The function p is called a metric. N ormed linear spaces in which the distance between two 

elements x and y is given by the metric p(x, y) =11 x y I!Lp are known as Lp-spaces. 

To introduce the notion of a Banach space, it is useful to describe two more concepts, 

associated with the behavior of sequences of functions belonging to a metric space. 

4. Convergence of sequences; Cauchy sequences 

A sequence {fn} in a normed linear space is said to converge to an element f of this 

space if, given E > 0, there is an N such that for all n > N, 11 f - fn 11 < E. The sequence 

{/n} is a Cauchy sequence if, given E > 0, there is anN such that for all n > Nand m> N, 

11 /m- In 11< E. Each convergent sequence is a Cauchy sequence. 

5. Banach spaces 

A normed linear space is called a Banach space if every Cauchy sequence in the space 

converges. The property that all Cauchy sequences converge is known as completeness. In 

the remainder of this thesis, the standard notation for a Banach space will be (x, Ill I), where 

again X denotes a set of functions, and 1111 the norm which endows it. An example of a 
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Banach space which will be used in the following section, is the space of real valued bounded 

measurable functions defined on a subset In of IRn, endowed with the £ 1 norm (C[In], IIIIL1 ). 

We now review some basic properties of linear operators. 

6. Bounded linear operators 

A mapping M of a linear space X into a linear space Y is called a linear operator if 

(30-2) 

for all x1 , x2 E X and all real a, b. If X and Y are normed, and if there is a constant n such 

that 

11 Mx 11::; n 11 x 11 (30-3) 

for all x, then M is said to be bounded. The least such n is called the norm of operator 

M. As a consequence of the definition (30-3), it is straightforward to show that if a linear 

operator is bounded, it is also continuous and vice-versa (cf. Chapter 10 of [182]). 

7. Spectrum of an operator 
Denote by I the identity operator in a space X. The spectrum of a bounded operator M 

is the set a(M) of complex numbers A such that (M AI)-1 does not exist as a bounded 

operator in X. The functions which satisfy 

(30-4) 

are known as the eigenfunctions of the operator M. The quantity 

(30-5) 

is called the spectral radius of M. A simpler but equivalent definition of the spectral radius 

of M is: R(M) = IAmaxl where IAmaxl is the modulus of the largest eigenvalue. 
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Chapter 4 

The evolution of probability densities 
in stochastic coupled map lattices 

ABSTRACT 

This chapter describes the statistical properties of coupled map lattices subjected to the 

influence of stochastic perturbations. The stochastic analogue of the Perron-Frobenius op­

erator is derived for various types of noise. When the local dynamics satisfy rather mild 

conditions, the corresponding evolution equation is shown to possess either stable steady 

state solutions ( i. e a stable invariant density) or density limit cycles. Convergence to these 

limit cycle solutions explains the nonstationary behavior of statistical quantifiers at equilib­

rium. These results are used to explain the numerically observed phase transitions in various 

lattices of stochastic maps with short range inter-element coupling architectures. 
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Le hasard est le plus grand romancier du monde: 
pour etre fecond, i1 n'y a qu'a l'etudier. 

Honore de Balzac, La Comedie Humaine, Avant-Propos 

4.1 Introduction 

To this point, the systems investigated in this thesis have all been deterministic. Given an 

initial preparation, there was no uncertainty concerning the eventual state of the model. 

Determinism is useful, but randomness is often unavoidable, whether it is of natural origin 

or due to incomplete knowledge. When random fluctuations are an integral part of the 

situation under study, models which can incorporate some level of uncertainty are also un­

avoidable. The literature dealing with the influences of noise on deterministic dynamical 

systems is too vast to be given justice in the scope of this chapter. We refer the interested 

reader to the work of Horsthemke and Lefever [81] for an extensive description of the qual­

itative dynamical changes which can result from stochastic perturbations. A more recent 

overview of related problems, complete with many experimental investigations, is given in 

[156]. Although investigations of ODE's and one dimensional maps perturbed by noise are 

numerous, there are still few descriptions of the influence of noise on the evolution of high 

dimensional dynamical systems. This should not be too surprising, since the noise in many 

stochastic models is thought to describe the collective behavior of those degrees of freedom 

which are not the focus of the investigation. When this is the case, a system with a large 

number of degrees of freedom is sometimes modeled by a small number of effective degrees 

of freedom perturbed by noise. 

This description is not always appropriate, and sometimes it is useful to keep a high 

dimensional model and study its evolution under the action of noisy perturbations. In this 

spirit, a few numerical investigations of stochastic CML's have been presented recently [149, 

216, 160, 164]. These investigations focus on the probabilistic properties of the stochastic 

CML's for obvious reasons, and they all point to the general lack of a framework within which 

such a description should take place. We propose in this chapter to extend the presentation 

of Chapter 3 to stochastic CML's by investigating the stochastic analogue of the Perron­

Frobenius operator, referred to throughout this chapter as the transfer operator. 

We reported in Chapter 3 that when the local map S was unimodal on the interval 

[0, 1], many CML' possessed two distinct phases. In one, the statistical quantifiers of the 
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motion relaxed to a state of equilibrium. Mathematically, this phase was formally described 

by an absolutely continuous invariant measure associated with a fixed point of the Perron­

Frobenius operator. The other phase was associated with a periodic cycling of the statistical 

quantifiers of the motion, and reflected the cyclical spectral decomposition (1.21) of the 

Perron-Frobenius operator. The approach presented here rests on the observation that the 

transfer operator induced by noisy CML's is a Markov operator defined by a stochastic 

kernel. We can therefore apply results available concerning these objects to the statistical 

description of stochastic coupled map lattices. 

The types of models investigated here are introduced in Section 4.2, where we also dis­

cuss the two most important kinds of stochastic perturbations, additive vs. multiplicative 

(or parametric). Their behavior is discussed numerically in Section 4.3, when the local trans­

formation is either the tent map, the logistic map, or a piecewise linear map known as the 

"Keener map". The main analytic results are presented in Section 4.4, where the trans­

fer operators for various types of noise are derived explicitly. Implications for the proper 

construction of the thermodynamics of stochastically perturbed high dimensional dynamical 

systems are discussed in Section 4.5. 

4.2 Stochastic CML's 

To introduce stochastic coupled map lattices, recall that in its most general form, a deter­

ministic coupled map lattice is a mapping 4> : RN 1---+ R.N governing the evolution of a state 

vector Xt 

Xt+l = .P(xt), t = 0, 1, · · ·. (4.1) 

In this chapter, we will consider cases where the phase space X of <I> is a restriction of R.N 

to the N-dimensional hypercube: X = [0, 1] x · · · x [0, 1]. In two spatial dimensions, the 

evolution of each site of a deterministic coupled map lattice with linear interelement coupling 

is given by 

xi~~= .p(kl)(xt) = (1- c-)S(x~kl)) + ~ L S(x~ij)), c E (0, 1), (4.2) 
P p nearest 

neighbours 

where S : [0, 1] 1-----t [0, 1] describes the local dynamics. The perturbations considered here are 

random vectors of N numbers (for anN element CML), whose components are independent 

of one another, each being distributed according to a one dimensional probability density 
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g. The density g = (gCl), · · ·, gCN)) of the vector random variable e 
therefore be constructed as the product of its components: 

N N 
g(e) = IIu<i)(~<il) = Ilu(~(i)), i 1,2,···,N. 

i=l i=l 

(4.3) 

There are various ways in which a stochastic perturbation can influence the evolution of a 

coupled map lattice: the perturbation can be additive or multiplicative, and it can be applied 

constantly or randomly. The influence of the noise on the dynamics depends on which of 

these is considered. 

4.2.1 Additive and multiplicative perturbations 

These are perturbations applied at each iteration step. When the stochastic perturbation is 

constantly applied, it can be either added to, or multiply, the original transformation <I>. In 

the former case, the evolution of a lattice site is given by a relation of the form 

X(kl) _ <I>(kl) (x ) + t;(kl) = <I>(kl) (x ) 
t+l - t <.,t - add t (4.4) 

and e is then referred to as additive noise. In the latter, we have 

x(kl) = <I>(kl) (x ) x c(kl) _ <I>(kl) (x ) 
t+l t C.,t mu! t (4.5) 

and e is then referred to as multiplicative or parametric noise. In general, the effects of 

additive and multiplicative noise on CML's can be different, since they model different 

perturbing mechanisms. For example, it is well established that the influence of both types 

of noise can induce different behavior if the system is close to a Hopf bifurcation [81]. 

The noise density ( 4.3) of the perturbations present in ( 4.4) and ( 4.5) is always defined so 

that the phase space of the perturbed tranformations remains the N dimensional hypercube 

X defined above. In other words, <I> add : X t---+ X and <I> mu! : X t---+ X. 

Before analytically discussing the dynamics of stochastic CML's, we numerically illustrate 

typical behaviors using several transformations which have been introduced in the literature. 

4.3 Numerical investigations of stochastic CML's 

This section illustrates with simple toy models that the presence of noise in CML's can some­

times have trivial consequences, which are expected on the basis of intuition, and sometimes 
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not-so-trivial consequences, which tend to go against our common expectations of the influ­

ence of noise in dynamical systems. In order to keep with what is becoming tradition, we 

will consider again systems of tent maps, and logistic maps, and we will in addition consider 

the dynamics of a CML in which the local map belongs to a class of systems introduced by 

Keener [108], which we refer to as the Keener map lattice. 

The statistical descriptors used here to characterize the evolution of the various CML's 

are the temporal and spatial correlation functions, the Boltzmann-Gibbs entropy and the 

density of activity on the lattices. These are all defined in the previous chapters. 

4.3.1 The tent map and logistic map lattices with noise 

These CML's are of the form (4.2), with p = 4 in dimensionality 2, and the local mapS is 

either the generalized tent map or the logistic maps discussed in the previous chapters. 

4.3.1.1 The tent map lattice 

The behavior of the CML (4.2), with S given by the tent map (??), perturbed as in {4.4) 

remains qualitatively similar to that of the unperturbed system. As the local slope a is 

decreased from 2 to 1, for a given c and a given noise amplitude, the period of the banded 

chaotic behavior doubles successively from period 1 to period 2 to period 4 etc.... As the 

period increases, the separation between different bands in the deterministic system dimin­

ishes without bound away from 0. As expected, in the stochastic system, the doubling stops 

when the amplitude of the noise becomes larger than this band separation. Figure 4.1 illus­

trates this noise induced band merging, when two bands merge into a single one, under the 

action of additive perturbations. Numerical investigations of this and other CML's indicate 

that in certain regions of parameter space, the systems are more sensitive to the action of 

parametric noise than to that of additive noise. This is striking for example, in the case of 

the lattices of tent maps when the parameters are such that the deterministic lattice is in the 

period two regime. In this case the transition between period two and period one (stability) 

behavior is induced for additive perturbations which have an amplitude of about 1/10, or 

multiplicative perturbations which have an amplitude of about 1/100 (i.e. in this case the 

variable e is uniformly supported on [0.995, 1.005]). High sensitivity to multiplicative noise 

is also observed in lattices of logistic maps, and lattices of piecewise linear maps introduced 

in Section 4.3.2. Investigations of the CML introduced in Section 3.3.1, where S is smooth 
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and the inter-element coupling is nonlinear show that this system is also more "sensitive" 

to multiplicative than to additive noise. We should point out, however, that this apparent 

greater susceptibility to parametric noise is not observed everywhere in the parameter space. 

500 500 ~·-------....., 

!;(x) !;(x) !;(x) 

250 250 125 

0 ~ OIL----l"-------L----11 0 ~~--------~ 
0.482 0.591 0.467 0.606 0.455 0.6: 

X 

-1 -1 .------------, 0.----------------, 

•••••••••••••••••••• 
HBa(!J) ••••••••••••••••••• 

• • • • • • • • • • 
-2 ,.. .................. .. -2 c- -

• • • • • • • • • • 
-1 '-------------" 

103 40 103 

Time Time Time 

FIGURE 4.1: 
Noise induced band merging in a lattice of 200 x 200 tent maps coupled diffusively, with a = 1.175 
and c = 0.1. Top row: Left, the distribution of activity across a deterministic lattice at time 
t = 103; center, same distribution when the lattice is perturbed by additive noise uniformly 
supported on [0, 0.003]; right, additive noise supported on [0, 0.03). Bottom row: From left to 
right, the panels display the temporal behavior of the Boltzmann-Gibbs entropy associated with 
the densities displayed in the top row. As expected, the lattices are statistically stabilized as the 
noise amplitude increases. 

A surprising effect of the perturbation of a system by noise is the resulting "statistical 

hysteresis" shown in Figure 4.2, which displays a bifurcation diagram for the Boltzmann­

Gibbs entropy of the collapsed density of various lattices subjected to noise. As explained in 

Section?? the changes in the behavior of HBa as the control parameters are varied are signa­

tures of phase transitions in the corresponding lattice. When H8 a asymptotically reaches a 

117 



c 

c 

c 

periodic cycle, reflected by the cycling of ensemble densities, the statistical quantifiers of the 

motion are also time periodic. This cycling is the same as the behavior reported in Chapter 3 

on deterministic lattices. Note that the bifurcation diagram of Figure 4.2 depends, in certain 

regions of parameter space, on whether the parameter is being increased or decreased. This 

indicates that the ensemble properties of the CML depend on the initial ensemble density. 

We will come back in Section 4.4 to an explanation of this phenomenon, which is expected 

in large classes of stochastic CML's (including the systems whose behavior is displayed in 

Figure 4.2), on the basis of the spectral properties of the transfer operator. 

0.---..,--------,---~ 0.---..,--------,-------, 

-2 -2 

-3 -3 

Logistic CML Logistic CML 

-4 -4 
2.8 3 3.5 3.8 2.8 3 3.5 3.8 

a a 
0 -0.5 

HBa(fn HBa(fn 
-1 

-2 

-3 

-4 '-----'--------'------' 
2.8 3 3.5 3.8 

a 

-1.5 

-2.5 

-3.5 

Tent CML 

-4.5 '---____ ........__ ____ ____, 

1 1.35 
a 

1.7 

FIGURE 4.2: 
"Adiabatic" bifurcation diagrams for the Boltzmann-Gibbs entropy of the distribution of activity in 
lattices of diffusively coupled tent and logistic maps. For each value of a, the CML's were iterated 
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103 times, with an initial condition given by the last one of the 103 iterations corresponding to 
the previous a value (the increment Lla 0.002). Top row: lattice of logistic maps, with 
c = 0.1, and additive noise supported uniformly on (0, 0.05] (for a = 2.8, the initial condition was 
spatially isotropic, and uniform on [0.5, 1]). Note the hysteresis in the behavior of the entropy, 
which is shown in Section 4.4 to reflect the asymptotic periodicity of the transfer operator (cf. 
also Definition 1). Bottom left: same parameters as above, with multiplicative noise supported 
uniformly on [0.95, 1]. Bottom right: Diagram for a diffusively coupled tent map lattice, with 
c = 0.45, (as in Figure 4.3), and additive noise supported on [0, 0.01]. The rest of the parameters 
are as above. The hysteresis observed in the top row is also observed in tent map lattices, and 
when the noise is multiplicative. 

Pattern formation in the tent map lattice is illustrated in Figure 4.3. As expected, 

as the noise amplitude is increased, patterns gradually disappear. Numerical observations 

indicate that pattern formation coincides with statistical cycling in this system (this is clearly 

illustrated by the top panels of Figure 4.1 and those of Figure 4.3). To understand this 

connection, note that when the lattice cycles statistically, the density of activity is supported 

on disjoint supports (as in Figure 4.1 for example). The diffusive-like effect of the coupling in 

equation (1.2) ensures that nearby sites ter1d to belong to the same "band" (or support of the 

distribution), and if this coupling is not strong enough to force all sites into the same band, 

the state of the lattice at time t consists of clusters of sites which belong to the different 

bands (strictly speaking, the discretization of the diffusion operator yields a coupling of the 

form ( 4.2) where the p-neighbourhood includes only the nearest neighbours, but when more 

neighbours are taken into account, the coupling still mimics the effect of diffusion in a system 

with a large diffusion coefficient]. If there is only one support of the collapsed density ft 

(cf. rightmost panel of Figures 4.1 and 4.3), no discernable patterns occur since the entire 

attracting interval is occupied with nonzero probability, irrespective of the coupling strength. 

As expected [100], the transients leading to the various states of equilibria can be ex­

tremely long. The length of those transients is determined by the specificities of the local 

map, the inter-element coupling and the size of the lattice. 
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FIGURE 4.3: 
Three snapshots of the activity of a 200 x 200 lattice of diffusively coupled tent maps. Grey 
scale with 256 levels: 0 is black, 1 is white. The control parameters of the CML are a= 1.175 
and c = 0.45 in all three panels. From left to right the support of the additive noise is widened 
as in Figure 4.1. Here, 103 transients were discarded, and for each panel the initial preparation 
of the lattice was featureless: The initial value for every site was a random variable distributed 
uniformly on [0.5, 1]. 

4.3.1.2 The logistic map lattice 

The effects of the noise on the dynamics of the logistic map lattice depends to a large extent 

on whether the unperturbed CML is periodic in time and/or space, or chaotic. 

An overview of the dynamics of system ( 4.2) with S given by (??) which complements 

the descriptions of Chapter 3 is presented in [31]. When noise is present and the quadatic 

map is periodic the system can either become statistically periodic, or statistically stable, 

depending on the strength of the perturbation. In the case of additive noise, when the 

perturbation is small compared to the amplitude of the periodic cycle, the solutions are 

statistically periodic, and are reminiscent of the banded chaotic trajectories. 

If the amplitude of the perturbation is increased, possibly preexisting spatiotemporal 

structures are gradually lost, and eventually the CML's are seen to be spatiotemporally 

chaotic in the sense of Keller and Kiinzle [109], and Bunimovich and Sinai [21]. Correlations 

in time and space decay exponentially. 

When the unperturbed CML is chaotic, the influence of additive noise is exactly as 

for the coupled tent map lattices discussed above, and the resulting system is again either 

statistically periodic or statistically stable. It is of interest to note that the evolution of 

the statistical quantifiers of the motion in the deterministic case has been conjectured to be 
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quasiperiodic or chaotic (see for example the discussion surrounding Figures. 19 and 20 of 

[31]). We do not observe such statistical evolutions when the transients are long enough. 

The linearity of the Perron-Frobenius operator for the deterministic lattices [135] implies 

that statistics in these CML's asymptotically reach either stable steady states, or periodic in 

time. The results of Section 4.4 (and more specifically the linearity of the transfer operators 

for stochastic CML's) imply the same conclusion in the presence of noise, and indicate that 

the fluctuations observed by Chate and Manneville are due to finite-size effects. 

The influence of parametric noise on the evolution of the logistic map lattices is quali­

tatively the same as the influence of additive perturbations, but as with tent map lattices, 

in some regions of parameter space it is observed that the amplitude of parametric noise 

needed to statistically stabilize the lattices is much smaller than the additive noise ampli­

tude required to produce the same effect. 

We now discuss the influence of noise on a CML which possesses chaotic regimes which 

cannot be described by probability densities in the absence of noise. 

4.3.2 The "Keener map'' lattices 

Here the local transformation is a piecewise linear map with constant slope on [0, 1] which 

was first considered by Keener [108]: 

S(x) = (ax +b) mod 1 a, bE (0, 1), x E [0, 1). (4.6) 

There exists a range of values for the parameters a and b such that the trajectories are 

chaotic in the sense that they are attracted to a subset of [0, 1] of zero measure (a Cantor 

set) [108]. Numerically, this is reflected by the fact that if the histogram along a trajectory is 

constructed, the number of histogram peaks will increase as the bin size decreases (of course 

the binned trajectory must be sufficiently long for this observation to be of any interest). 

For this type of system the Perron-Frobenius operator does not possess a fixed point in 

the space of probability densities. In fact, it asymptotically transforms almost all initial 

probability densities into generalized functions. A rigorous treatment of such operators is 

possible, and studying the nonequilibrium statistical properties of the corresponding CML's 

involves the reformulation of the problem in terms of the evolution of measures. However this 

picture is simplified by the presence of noise in the map ( 4.6) because under the influence of 

noise, the map induces a transfer operator acting on well defined densities [123]. Furthermore, 
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the ensemble densities asymptotically reach a limit cycle in density space (as in Figure 4.1) 

which reflects the underlying asymptotic periodicity of the transfer operator. 

This description of the single map's behavior holds for the stochastic CML ( 4.4) with 

S given by (4.6): The CML is also statistically periodic. Figure 4.4 shows that the fractal 

nature of the at tractor of the single map survives linear coupling. The effects of adding noise 

in the system are shown in Figure 4.5, and it is clear that the activity of the lattice is no 

longer supported on a Cantor set (in JR.N). 

ff(x 
40 

4.5 

2.25 

0 '"""---'--------'-...__., _ _..,_.......,_-"' 0 IL.J 
0 1 0 

FIGURE 4.4: 

-

~- M w. ~A 
0.2 

Top Right panel displays the distribution of the activity displayed on the bottom panel. The fractal 
nature of the support of this distribution is suggested by the right panel. Bottom: activity of a 
200 x 200 lattice of diffusively coupled Keener maps ( 4.6} without noise, with a 0.5, b = 0.571 
and e = 0.45. 
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In addition, the temporal evolution of densities is reminiscent of the statistical cycling 

described above for the tent and logistic map lattices. Figure 4.5 provides a clear illustration 

of period 3 statistical cycling (also described as "quasiperiodicity"). It has been proposed 

(Section 3.2.2 of (31]) that deterministic CML's do not display such behavior. Figure 4.5 

demonstrates that this observation does not hold for noisy CML's. In addition, the fact that 

we have not found period 3 cycling in the absence of noise in the tent and logistic map lattices 

is probably due to the absence of statistical period 3 in the local transformations (2.2) and 

(2.4) for the parameters used here in the simulations. It is likely that when the local map 

does possess period 3 statistical cycling, the CML will display the same behavior (at least 

for small enough values of the coupling). An example of noisy period 3 in the logistic map is 

given by Lorenz (131]. Lukin and Shestopalov illustrate the same behavior in a map relevant 

to the modeling of resonant electromagnetic cavities with nonlinearly reflecting boundaries 

[140]. 

Note also that the stochastic perturbation of system (4.2) with (4.6) yields a (mathemati­

cally) simpler system than in the absence of noise. As mentioned above, the Perron-Frobenius 

operator associated with the deterministic map acts on (noncontinuous) measures, whereas 

the transfer operator associated with the stochastic map acts on densities. The results de­

scribing the dynamical properties of operators acting on densities are more numerous than 

those associated with measure evolving operators and, consequently, analytic investigations 

of the stochastic CML's are more straightforward than those of their deterministic counter­

parts (for a discussion of the evolution of measures under the action of linear operators, refer 

to Chapter 12 of [122]). Before proceeding, we briefly summarize our numerical experiments. 
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FIGURE 4.5: 
Noise induced statistical cycling in a lattice of 200 x 200 "Keener maps" (4.6), with a = 0.5, 
b 0.571, c; = 0.1 and additive noise uniformly supported on [0, 0.05]. The top panels display 
three successive iterations, and the bottom panels display the corresponding distributions of 
activity across the lattices. The grey scale for the top row is the same as in Figures 4.1 and 4.3. 

4.3.3 Summary of the numerical experiments 

Deterministic CML's undergo the following, changes when subjected to stochastic perturba­

tions: 

1) Not surprisingly, addition (multiplication) of noise to (by) a system generating a 

deterministic periodic cycle yields a statistically periodic system if the noise amplitude is 

small, and a statistically stable one if the noise is large enough to "wash out" the underlying 
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periodicity. Similarly, addition (multiplication) of noise to (by) a system generating a chaotic 

trajectory associated with a probability density, yields a system which is either statistically 

periodic or statistically stable at equilibrium. Again, temporal periodicities in this case 

survive only small perturbations, and disappear when the noise is sufficiently strong. 

2) Perhaps less intuitive is the observation that stochastic perturbations (no matter how 

minute) of CML's can result in fundamental qualitative changes in both the topology of the 

attracting sets, and the statistical evolution of the model. Section 4.3.2 illustrates this using 

a CML of Keener maps which possesses a Cantor set as an attractor in the absence of noise, 

and which cycles statistically (with period 3) in the presence of noise. 

3) CML's which display quasiperiodicity when they are subjected to stochastic pertur­

bations, are also likely to display statistical hysteresis displayed in Figure 4.2. In this case, 

the asymptotic value of the statistical quantifiers of the motion are seen to depend on the 

initial preparation of the system (this property is explained analytically in Section 4.4). 

In general, dynamical systems need not possess stable equilibrium states, and it is there­

fore interesting to note that perturbation by noise of all three CML's discussed here yields 

models which always eventually reach equilibrium conditions, even if the notion of equilib­

rium must be extended to include statistical periodic cycles. 

In the next section, we examine these numerical observations analytically using the theory 

of Markov operators defined by stochastic kernels. 

4.4 Analytic results 

Section 4.3 numerically illustrated the influence of noise on the evolution of several CML's. 

The numerics demonstrated the ubiquity of statistical cycling, and that of the statistical 

hysteresis displayed in Figure 4.2. 

In this section, these results are examined in light of a theoretical framework based on 

the properties of the transfer operator which describes stochastic maps like the Perron­

Frobenius operator describes deterministic ones. Using basic results from the theory of 

functions of bounded variation, the Perron-Frobenius operator associated with certain deter­

ministic chaotic CML's was shown in the previous chapter to be asymptotically periodic. The 

approach presented here to determine the spectral characteristics of the Perron-Frobenius 

operator associated with stochastic CML's is somewhat more "indirect" since it relies on 

proving a property, known as constrictiveness (defined in the proof of Theorem 4.2 in Sec-
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tion 4.4.2.2) which, by a theorem due to Komornik [112], implies asymptotic periodicity and 

the decomposition (1.21). 

First, we derive the evolution equation for the phase space density ft, for CML's perturbed 

by various types of noise. This evolution equation implicitly defines the transfer operator. 

Second, it is shown that the transfer operator is linear, Markov and that it is defined by a 

stochastic kerneL These results are then used to investigate the convergence properties of 

the sequence {ft}. The relation between these properties and the numerical results of Section 

4.3 is then discussed. 

Before proceeding, we remind the reader that a function K : X: x X 1----t JR is a stochastic 

kernel if it satisfies 

K(x,y) ~ 0, and k K(x,y) dx = 1. 

[The integral is understood as a Lebesgue integral with respect to the Lebesgue measure, 

but in general the measure of integration can be different. Consult [122] for details]. To 

simplify the algebra the model (4.2) is replaced by a one dimensional version so that the 

double superscripts of ( 4.2) and ( 4.4) are replaced by a single space index denoted i: 

(i) 
Xt+l E)S(x~i)) +:. L S(xF>) + eii)' € E (0, 1). 

P p nearest 
neighbours 

(4.7) 

The boundary conditions need not be specified explicitly. The only requirement they must 

meet is that the evolution of the elements on the boundaries be well defined (the frequently 

encountered periodic and no-flux boundary conditions obviously satisfy this requirement). 

4.4.1 Additive noise 

In this case, the lattice transformation is (4.4). Consider an initial density f0 :X: 1----t X which 

describes an ensemble of initial lattices. If the noise perturbation is distributed according to 

density g (cf. (4.3)) the evolution equation for this density is known to be [123]: 

ft+I(x) = k ft(y)g(x- <P(y)) dy, n 0, 1, · · · (4.8) 

which also defines the transfer operator Pil!a.dd for CML's perturbed as in ( 4.4) since Pil!addft(x) = 
ft+I(x). Without loss of generality, in the remainder of this section we will assume that the 

density associated with the stochastic perturbation is piecewise constant and given by 

N 

g(e) = II X[a,bj(e(i)), 0 ~ a < b ~ 1, (4.9) 
i::::l 
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where the indicator function xis defined by X[a,bJ(x) = (b a)-1 if x E [a, b] and X[a,bJ(x) 0 

otherwise. 

4.4.1.1 Sufficient conditions for statistical cycling 

If the CML <J!a.dd is written in the form (4.4), where the density of the perturbation e is given 

by (4.9), and the local map S of (4.2) is bounded and nonsingular then P~a.dd defined by 

( 4.8) is asymptotically periodic. 

This is is a consequence of the following theorem: 

Theorem 4.1 (Lasota and Mackey {122]): Let K: X x X 1----t JR. be a stochastic kernel, and P 

a Markov operator defined by 

Pf(x) = h K(x, y)f(y) dy. (4.10) 

Assume that there is a nonnegative .\ < 1 such that for every bounded liJ C X there is a 

8 = 8(11J) > 0 for which 

L K(x, y) dx :::; .\ for Jl(A) < 8, y E la, A c JIJ. (4.11) 

Assume further there exists a Lyapunov function V : X 1----t IR such that 

h V(x)Pf(x) dx:::; a h V(x)f(x) dx + {J, a E [0, 1), fJ > 0 (4.12) 

for every density f. Then P is asymptotically periodic, and therefore admits the represen­

tation (1.21). [Recall that a nonnegative function V : X 1----t IR is known as a Lyapunov 

function if it satisfies lim!x!-+oo V(x) = oo.] • 
To show that the operator P<Padd defined in ( 4.8) satisfies the conditions of Theorem 4.1, 

note that (4.8) can be written in the form (4.10) with 

K(x,y) = g(x- <P(y)). (4.13) 

Clearly g > 0, and since it is a normalized probability density, fxK(x,y)dx = 1, so (4.13) 

defines a stochastic kernel. In addition, it is straightforward to show that P<Padd is a Markov 

operator. To verify that (4.11) holds when K is given by (4.13), remember since g is inte­

grable, for every .\ > 0, there is a 8 > 0 such that 

L g(x) dx < ). for Jl(A) < 8. 
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Hence, 
f K(x, y) dx = f g(x -1>(y)) dx = f g(x) dx <A 

}A }A jA-<f?(y) 

for J.t(A -1>(y)) = J.t(A) < 8. Thus (4.11) holds for all bounded sets Jm. 

We now check that when S is bounded, (4.12) holds. To do this we pick 

N 

V(x) =IT exp lx(i)l· (4.14) 
i=l 

Using (4.9), (4.14) and (4.7) , one obtains 

(4.15) 

By definition, S is bounded, so Tif:1 [exp IS(y(i)) I] is finite. As a result, it is always possible 

to choose a E (0, 1) and a finite but arbitrarily large {3 such that 

Thus we have 

fx g(x- 1>(y))V(x) dx ~ aV(y) + {3, a E (0, 1), {3 > 0, (4.16) 

which implies (4.12). Hence all conditions of Theorem 4.1 are met and P<f?add is asymptotically 

periodic. 

This is a general result. The two main assumptions which are necessary for its derivation 

are that S be nonsingular and bounded. In light of this result, the numerics of Section 

4.3 on the dynamics of the tent, logistic and Keener map lattices are seen to reflect the 

cyclical spectral decomposition (1.21) of the transfer operator associated with these CML's. 

In particular, the statistical hysteresis of Figure 4.2 is a consequence of the dependence in 

(1.21) of the functionals ri on the initial density fo. 

128 



c 

c 

As in Chapter 3, the presence of asymptotic periodicity in systems of the form ( 4.4) also 

has important consequences for the proper interpretation of the behavior of their statistical 

quantifiers. Before discussing these consequences in detail, we consider the behavior of 

CML's perturbed by multiplicative noise. 

4.4.2 Multiplicative noise 

Here the transformation <I>mui is given by (4.5). In this section it is proved that the effects 

of multiplicative noise on CML dynamics are usually similar to the effects of additive noise 

discussed above. However, the formalism describing these two situations is different, since 

the mechanisms by which additive and multiplicative perturbations operate are themselves 

different. Our discussion is inspired by the treatment of the effects of parametric noise on 

one dimensional maps given by Horbacz [80]. 

4.4.2.1 Derivation of the transfer operator 

To derive the expression for the operator which governs the evolution of ensemble densities, 

we introduce an arbitrary bounded measurable function h: X 1-7 IR which can be written 

N 
h(x) =IT h(i)(x(i)). 

i=l 

The expectation value of h{xt+1) is given by 

E(h(xt+1)) = h h(x)ft+1(x) dx (4.17) 

However, from ( 4.5), we have 

E(h( <I>mul(xt))) 
N 11 ft(Y) IT h(i)(z(i)if>(i)(y))g(z(i)) dzdy 

X X i=l 
( 4.18) 

The preceding equation can be simplified by recalling the following identity. Let <I> : 

X 1-7 X be a nonsingular dynamical system which induces the Perron-Frobenius operator 

'Pq,. Then for all L1 function u: X 1-7 X, and an Vx; function v: X 1-7 X, we have 

h 'Pq,u(x)v(x) dx = h u(x)v(<I>(x)) dx. (4.19) 
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The operator !Cif! such that 

IC;pv(x) v(<I>(x)), for all x EX, and all v E £ 00 

is called the Koopman operator induced by <I>. Equation (4.19) expresses the fact that Pill 

and !Cif! are adjoint, and is written 

where (,) denotes the scalar product between two functions. 

Applying this identity to equation (4.18) yields 

(4.20) 

where Pill denotes the Perron-Frobenius operator induced by the deterministic CML <I>. Now 

let 

Using this change of variables, ( 4.20) becomes 

(4.21) 

where X1 Xf x · · · x XJv is a product space with each interval in the product defined to 

be Ii [0, y(i)]. Changing the order of integration in ( 4.21) yields 

( 4.22) 

where "'1.1 is a product space of intervals ~~ = [x(i), 1]. By assumption h is arbitrary. There­

fore, comparing ( 4.22) with ( 4.17) and ( 4.20), we obtain 

which is the expression for the Perron-Frobenius operator induced by the stochastic CML 

( 4.5). We are now in a position to discuss the asymptotic properties of the iterates of PiflmuJ' 
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4.4.2.2 Sufficient conditions for statistical cycling 

A CML of the form (4.5), perturbed by the noise term et distributed with density (4.3) will 

induce a transfer operator Pif>mul defined by ( 4.24). If the deterministic part of the transfor­

mation (denoted q?) is bounded and nonsingular, then Pif>mul is asymptotically periodic. 

This result follows from the application of the following theorem: 

Theorem 4.2: Let K : :X x :X 1---7 IR be a stochastic kernel and P be the Markov operator 

defined by 

Pf(x) = {
1 

... {
1 

K(x, y)f(y) dy, 
Jx{N) Jx(l) 

(4.25) 

and assume that inequalities (4.11) and (4.12) are satisfied. Then P is asymptotically peri-

odic. 

Proof: This proof rests on a result, originally published by Komornik, which states that a 

Markov operator P is asymptotically periodic if and only if it is constrictive. We therefore 

show here that an operator P satisfying the conditions of Theorem 4.2 is constrictive, and 

then invoke the Komornik result. The proof of the theorem is inspired by similar proofs 

given in Chapter 5 of [122]. Before proceeding, we introduce the notion of constrictiveness. 

Definition of Constrictiveness: Let (:X, B, Jl) be a finite measure space. A 
Markov operator P is said to be constrictive if there exists a 6 > 0 and K, < 1 
such that for every density/, there is an integer n0(!) for which 

k Pf(x) Jl(dx):::; K, for n?::: no(/) and Jl(lE):::; 6. (4.26) 

This property ensures that the iterates pn f of any initial density f are not 
eventually concentrated on a set of small or zero measure. If the space :X is 
not finite [as would be the case for CML's with a local transformation defined 
on IR rather than [0, 1]], a slight generalization of this definition is desired to 
rule out the possibility that pn f be dispersed throughout the entire space. In 
this case, P is said to be constrictive if there is a measurable set B of finite 
measure such that for every density f there is an integer n0(!) for which 

r p f(x) Jl(dx) :::; K, for n?::: no(/) and Jl(lE) :::; 8. 
Jx\nUJE 

(4.27) 

If :X is finite and B =:X, (4.27) reduces to (4.26). • 

Next, we recall the Chebyshev inequality. Let (:x, B, Jl) be a measure space, V : :X 1---7 JR 

a nonnegative measurable function, and for all densities f set 

E(VIf) = fx V(x)f(x)Jl(dx). 
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If Ga = {x: V(x) <a}, then 

{ f(x)p,(dx) 2 1- E(V!f) (The Chebyshev inequality). 
lea a 

The proof is given in [122]. For future reference, we define 

En(Vlf) = fx V(x)P~mul(x)dx. 
From ( 4.12), 

En(V!f)::; aEn-I(VIf) + /3. 

By induction, 

Recall that a E [0, 1) and that E0 (VIf) is finite for all f, so that there is a n0 = n0(f) such 

that 

c En(Vlf) ::; 
1 
~a+ 1, for all n 2 no(f). 

Hence, using Ga defined as in the Chebyshev inequality, one finds 

fx\Ga p~mul(x) dx - 1 ia p~mulf(x) dx::; En(~lf) 

< ~ (1 + - 13-) for all n 2 n0 (f). (4.28) 
a 1-a 

Let c = H1- .:\). If we choose a such that 

a2!(1 1 ~a)' (4.29) 

we have 

r pip ,f(x) dx::; c for n 2 no(f). 
Jx\Ga mu 

Hence, using (4.25), for n 2 n0(f), 

{ PfPmul(x) dx + [ PfPrn ,f(x) dx 
Jx\Ga }A u 

< c + L PfPmul(x) dx 

c < c + f 11 

· · ·11 

K(x, y)p~-1l(Y) dydx 
} A :z;(N) :z;(l) mu 
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< c + ( ( .. (

1 
K(x, y)P~- 1,f(y) dydx 

jA Jo Jo mu 

< c + ( p~- 11 f(y) dy { K(x, y) dx 
Jx mu JA 

$ c f p~-11f(y) dy f K(x, y) dx 
Jx\Go. mu JA 

+ f p~-11f(y) dy f K(x,y) dx. (4.30) 
Jao. mu JA 

From (4.11), the integrals over A in (4.30) are bounded above by A; the integral over X\ Ga 

is bounded above by c, and the integral over Ga is bounded above by 1, so we have 

f P<I>mulf(x) dx $ 2c +A 1- c for n ~ no(f) + 1 
Jx\GaUA 

which is the definition of constrictiveness when X is infinite. However, in our case, X is the 

N-dimensional hypercube, so it is not infinite, and the definition of constrictiveness is given 

by ( 4.26). To obtain this inequality, note that a as defined in ( 4.29) is arbitrary, and we can 

choose it to be large enough so that Ga =X. If we do so, the previous inequality becomes 

i P<I>mul(x) dx $ 2c +A= 1- c for n ~ n0(f) + 1 

which is equivalent to (4.26). Hence, P<I>mui is constrictive. Since it is a Markov operator (we 

show this below), it is also asymptotically periodic [112]. Q.E.D 

In the remainder of this section, it is shown that P<I>mul defined in ( 4.24) is of the form 

(4.25), that the corresponding kernel satisfies (4.11), and that inequality (4.12) holds if <I> is 

bounded. 

To see that P<I>mui is a Markov operator, note first that from ( 4.24) 

111 11 N [ (x(i)) 1 l 
· · · Pq,f(y) IT g -(.) -(.) dydx 

X a;(N) xClJ i=l y t y t 

fxfoy<~J··foyClJ Pq,f(y) fl [g (~~:~) y~i)l dxdy 

1 Pq,f(y) {loy<~> .. 111
<

1

J IT [g (x~:~) ~i)l dx} dy 
X 0 0 ~:1 Y Y 

J. 'Pof(y) { £ J fl [g (z<•l)j dz} dy 

fx Pq,f(y)dy 

fx f(y)dy = 1 
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since Pq, is itself a Markov operator. Clearly Pil>mut is linear and this completes the demon­

stration that it is Markov. Furthermore, from (4.24), Pil>mul can be written as in (4.25) with 

the kernel given by 

N [ ( x(i) ) 1 l 
K(x,y) = g g <J>(i)(y) <J>(i)(y) . ( 4.32) 

Since g is a normalized probability density on X, K(x, y) 2:: 0 and fx K(x, y)dx = 1, and 

therefore K is a stochastic kernel. 

To verify that inequality (4.11) holds when K(x,y) is given by (4.32), fix an arbitrary 

A < 1. Choose llf, c X, bounded, and A C llf,. The function g is integrable, and so there must 

be 81 > 0 such that 

[ g(x) dx :5 A for p,(A) < 81 , A c llf,. ( 4.33) 

Define 

Since X c !RN is finite, the set A is a direct product of the form A = TI!1 Ai, where each 

Ai c IRis also finite. Denote by A <I>(y) the direct product TI!1 Aij<p(i)(y). If JJ(A) < c5, 

p,(A/<I>(y)) < 81 and therefore 

[ K(x,y)dx - [ fl [g(i) ( <I>~)(~YJ <J>(i~(y)l dx 

- f g(x) dx 
jA-iJ.>(y) 

< A 

by (4.33). This verifies inequality (4.11). 

If <I> is bounded, it is possible to choose a 1 E (0, 1) and /31 > 0 such that 

N N 
0 <IT <J>(i)(x) :5 a1 IT x(i) + /31 for xCi) E [0, 1] and all i. (4.34) 

i=l i=l 

We now show that when <I> satisfies (4.34) the inequality (4.12) is valid. Choose a Lyapunov 

function V(x) = TI!1 x(i). From (4.24), 

fx V(x)Pil>mul(x) dx J. fl x< <) t, ·J.:,, f(y) fl [ g ( 1)~)( ~y)) il\(i~ (y) l dydx 

J.J.:;,· ·J.:,, P~f(y) fl [g (;;:;) ;;:;] dydx 
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where the change of variables z(i) = :z;(i) jy(i) was used between the third and fourth equalities. 

Since X is the N -dimensional unit hypercube, 

Therefore, from ( 4.34) 

N 

(z) 1 f(y) IT q,(i)(y) ::; (z)a1 1 f(y)V(y) dy + (z){31 
X ~1 X 

and as a consequence, there is a a a 1 (z) E [0, 1) and a {3 {31 (z) > 0 such that 

h V(x)'P<Pmul(x) dx::; a h V(x)f(x) dx + {3 

thus proving that ( 4.12) is satisfied. 

To summarize, all the conditions of Theorem 4.2 are met by the transfer operator associ­

ated with the stochastic coupled map lattice (4.5) and it is therefore asymptotically periodic 

when the deterministic part of this CML satisfies condition (4.34). 

So far, we have considered the statistical behavior of CML's perturbed by noise at each 

and every time step. As mentioned in Section 4.2.1, these perturbations are known as "con­

stantly applied perturbations". There is another class of perturbations, known as "randomly 

applied", which were considered in [122]. These results are briefly reviewed in the next sec­

tion. 

4.4.3 Randomly applied perturbations 

These perturbations are "strong" in the sense that when they are applied at a time t*, the 

value x~~a1 becomes independent of its preimages. Mathematically, a CML «<>with randomly 

applied perturbations is written 

(4.36) 
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where vikl) is a random variable which takes the two values 0 or 1 with the following proba­

bilities 
prob(vikl) = 1) = (1 - q), prob(vikl) = 0) = q, 

where q E (0, 1] is a control parameter, which is itself distributed with density g. Randomly 

applied perturbations are in a category which is apart from the (more familiar) constant 

perturbations of Section 4.2.1. However, their influence on CML dynamics can be investi­

gated using analytical tools related to those presented in the previous sections. In fact, there 

are strong results concerning the behavior of the iterates of the transfer operator for these 

systems [122]. 

Systems of the form ( 4.2) with randomly applied perturbations are always asymptotically 

stable. To see this, note that the transfer operator for ( 4.36) is [122] 

(4.37) 

Clearly, PwraJ > qg, which implies that qg is a nontriviallower bound function for PwraJ 

(since q > 0), and this in turn implies [122] that there exists a unique density f* such that 

Pwra.nf* = f*, and 
for every density f. (4.38) 

This property (exactness, sometimes referred to as asymptotic periodicity) implies mixing 

(which in turn implies ergodicity) of the CML. Hence we have the rather general result that 

the slightest perturbation of any nonsingular CML by a stochastic term as in ( 4.36) yields a 

system which is always exact, irrespective of the statistical properties of the original lattice 

transformation. 

It is possible to go one step further in our discussion of randomly perturbed CML's, and 

give an exact expression for the invariant density f* of the operator Pwran. Recall that if P 
is a Markov operator, it satisfies 

(4.39) 

(this property is known as the contractiveness of Markov operators, not to be confused with 

constrictiveness defined in Section 4.4.2.2 in the proof of Theorem 2 ). Applying (4.39) 

to the Perron-Frobenius operator Pw associated with the deterministic transformation gives 

11(1-q)kP~gll£1 ::; (1-q)kllgiiP· Hence the series 2:~0 (1 q)kP~g is absolutely convergent. 
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Substituting this series into the expression ( 4.37) yields 

Piflranq E(l- q)kP!g - (1- q)Pif! [q E(l- q)kP!g] + qg 

- q [E(1- q)kP!g- g] + qg 
00 

- q L (1 - q)kP!g. (4.40) 
k=O 

In other words, if f* = Ek::0(1- q)kP:g we have Piflra.nf* = f*, and f* describes the state of 

thermodynamic equilibrium of the CML (4.36). 

4.5 Summary and conjectures 

The most surprising conclusion of the analysis presented here is the ubiquity of asymptotic 

periodicity in stochastic CML's. While our discussions of deterministic lattices in Chapter 

3 were model dependent, the statements proven here are rather general. Roughly speaking, 

as long as the local mapS in a system of the form {4.4) or {4.5) is bounded, one expects 

asymptotic periodicity. We still have no way of determining the period r of the density 

cycle, and this period could be 1. The results of this chapter remain surprisingly general 

even in this case because exactness (i.e. asymptotic periodicity with r = 1) is a property 

which implies mixing. Proving mixing is usually difficult, and our considerations of the 

transfer operator therefore provide us with such a result if r = 1. Although r cannot be 

determined analytically, it is important to note that it can be determined numerically with 

great certainty since the period of the cycle for ff always (with probability 1) equals r (cf. 
the discussion of Section 3.2.1.1). 

As discussed in Chapter 1, the notion of equilibrium is usually associated in statistical 

mechanics with that of an invariant density f* which describes the ensemble properties of a 

given physical system. We know from Chapter 3 that this paradigm is too restrictive and 

needs to be extended for the proper description of the thermodynamics of nonlinear spatially 

extended systems modeled by deterministic coupled map lattices. The results presented here 

lead to the extension of this conclusion to stochastic models 

In addition, the considerations of Section 1.4 show that asymptotic periodicity of the 

transfer operator provides a mechanism for the presence of phase transitions in stochas­

tic lattices. The period r of the statistical cycle (1.21) depends on the parameters of the 
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transformation, and when this period changes, the lattice undergoes a phase transition. 

Another interesting consequence of asymptotic periodicity comes from the dependence 

of the r/s of equation (1.21) on the initial density fo since it implies a dependence of the 

statistical behavior of an ensemble of lattices on the initial ensemble. This explains the 

"statistical hysteresis" demonstrated in the bifurcation diagrams of Figure 4.2, and reported 

earlier in deterministic lattices of logistic maps (cf. Section 3.2.2 of [31]). 

Finally, the presence of asymptotic periodicity in spatially extended dynamical systems 

which can be either deterministic (as in Chapter 3, or stochastically perturbed (as in the 

present chapter) points to the possibility of this behavior in related continuous time models. 

For example, there is a strong connection (explored in detail in [53, 88, 140]) between certain 

differential delay equations and discrete time maps (cf. also our derivation of the sigmoidal 

map in Section 2.2.1). The next chapter applies the techniques developed here and in Chapter 

3 to the study of these continuous time functional equations which play a prominant role 

in various fields of investigations, ranging from nonlinear optics to theoretical population 

biology. 
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Chapter 5 

Coupled Map Lattices as Models 
Differential Delay Equations 

ABSTRACT 

We discuss the probabilistic properties of a class of differential delay equations (DDE's), 

by first reducing the equations to coupled map lattices ( CML's), and then considering the 

spectral properties of the associated transfer operators. The analysis is carried out for the 

deterministic case and a stochastic case perturbed by additive or multiplicative white noise. 

This scheme provides an explicit description of the evolution of phase space densities in 

DDE's, and yields an evolution equation which approximates the analogue for delay equations 

of the generalized Liouville and Fokker-Planck equations. It is shown that in many cases 

of interest, for both stochastic and deterministic delay equations, the phase space densities 

reach a limit cycle in the asymptotic regime. This statistical cycling is observed numerically, 

apparently for the first time in unforced deterministic continuous time systems, and discussed 

in light of our analytical descriptions of the transfer operators. 

139 



0 

0 

Les termes qui designent le temps sont em­
pruntes a la langue de l'espace. Quand nous 
evoquons le temps, c'est l'espace qui rt3pond a 
l'appel. 

Henri Bergson, La pensee et le mouvant 

5.1 Introduction 

In the absence of non-local effects, the instantaneous transmission of information between two 

systems is impossible without a violation of the assumption of causality. The delays involved 

necessarily impose a fundamental constraint on any theory describing physical interactions. 

If the time scale of the delays is comparable to that of the processes under consideration, a 

sound model must explicitly take the delays into account. 

The idea that the evolution of a system can only be predicted given some knowledge of 

its past history is not novel. A review of the relevance of time-delays in control theory can 

be found in (11]. In biological systems, delays arise because of the finite speed at which 

biochemical and electrochemical signals propagate. Hormones are carried by the blood flow 

to their targets; action potentials propagate down axons and neuro-transmitters must diffuse 

across the synaptic cleft between neurons. In the study of population dynamics, delay­

dependent models reflect the time lags that always exist between environmental stimuli and 

adaptive responses. 

The use of delay-dependent models is in no way exclusive to theoretical biology and 

biomathematics. A number of physical systems require their use to understand their behav­

ior: the stability of nuclear reactors (52, 67, 126], neutron shielding [15, 167] and bistable 

optical devices [63, 87, 86] to name just a few. As early as the 1930's Kalecki [93] proposed 

delay-differential equations as models of cyclic economic commodity market activity. In re­

cent work, delay dependent models have been used to investigate the dynamics of commodity 

price fluctuations [10, 141]. 

When a model is formulated in terms of coupled first-order ordinary differential equations 

for the vector variable x(t) =(x1 (t), ... ,xn(t)): 

dx(t) 
----;It =F(xi(t), ... ,xn(t)), F= (Fb ... ,Fn), (5.1) 

the initial values Xj(O) suffice to predict the evolution of Xj(t) for any future time. However 

as the examples cited above illustrate, it is sometimes necessary to use knowledge of the past 
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history of at least one of the variables to allow prediction. 

If the evolution of the variable xk(t) depends on some cumulative effect of all its earlier 

values, it should be replaced by some function h, weighted by a suitable factor g, and 

integrated over all previous times. Then the evolution equation is an integro-differential 

equation: 

(5.2) 

The kernel g specifies the weight to be attached to the function h of Xk at each point of time 

in the past. This is an example of a DDE with distributed delays. 

If there is a discrete time lag in the action of xk on some other variable, we speak of a 

discrete delay in the system (1.1) and in that case at least one of the set of ODE's is amended 

by replacing, for example, F( ... , xk(t), .. . ) by F( ... , xk(t- T), .. . ). Then the equation of 

evolution 
dx(t) 
----;jt = F(x1 (t), ... , Xk(t T), .. . ) 

is a DDE with discrete delay. 

In this chapter, the deterministic models we consider are of the form 

dx(t) 
dt 

-ax(t) F(x(t 1)), 

and when noise enters the problem, they can be written as 

dx(t) = [-ax(t) + F(x(t- 1))] dt + G(x(t))~(t)dt 

(5.3) 

where a > 0, ~(t)dt denotes a stochastic process whose characteristics will be discussed in 

Section 5.2.2 below, and the initial condition for the system in both cases is a function cp 

defined on [-1, 0) (the delay is taken to be 1 without loss of generality). Similar equations 

routinely appear as realistic models in mathematical biology [129, 145, 143J, in nonlinear 

optics [62, 87], and in the description of agricultural commodity markets [75, 141] to mention 

a few applications. 

The phase space of these systems is infinite dimensional. The ensemble density, which 

gives the probability of occupation of phase space is therefore a functional. The evolu­

tion equation for similar functionals, known as the Hopf equation (24, 79, 128] cannot be 

integrated due to the lack of a theory of integration with respect to arbitrary functional mea­

sures. We introduce in Chapter 5 this functional equation for DDE's, and use perturbation 
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theory to examine the solution behavior, but the analysis presented there is hampered by 

the present limits of the theory of integration. 

In this chapter we propose a reduction of the original DDE to a finite dimensional sys­

tem which is arbitrarily accurate. This approximation is framed in both the stochastic and 

the deterministic case as a coupled map lattice (CML). The work presented here strongly 

indicates that in many circumstances of interest (from a modeling perspective) the evolution 

equation for the density functionals (the Hopf equation of the next chapter) can be approx­

imated by the Perron-Frobenius equation in m_N (or its stochastic equivalent). The resulting 

description of delayed dynamics is akin to the description of ODE's given by the general­

ized Liouville equation, or of the Langevin equation by the Fokker-Planck equation. Once 

the reduction is completed, the analytical techniques available to describe the probabilistic 

properties of CML's can then be used to explain the presence of continuous-time statistical 

cycling numerically observed in the DDE's. 

In Section 5.2, the reduction of first order DDE's to CML's is described in both the 

presence and the absence of noise. Section 5.3 briefly reviews the basic concepts necessary 

to describe the evolution of ensemble densities in CML's developed in Chapters 3 and 4. In 

Section 5.4.2, the analysis of deterministic systems is presented. Numerical investigations of 

a particular model confirm analytical predictions. In Section 5.5, we extend this presentation 

to stochastic models, and explore the remarkable phenomenon of statistical cycling induced 

by noise. 

5.2 From DDE's to CML's 

The link between hereditary dynamical systems (framed as functional or delay differential 

equations) and spatially extended models (hyperbolic PDE's to be precise) has been discussed 

extensively (cf. [14, 38, 213]). In a rather formal context, Fargue [55, 56] argues that it is 

possible to interpret hereditary systems as being nonlocal, or extended. This allows the 

introduction of a field which is intrinsic to the system, and the variable which satisfies the 

hereditary model is then a functional of this field. In other words, the memory in the system 

is interpreted as a nonlocality. 

At a more applied level, Sharkovski1, Maistrenko and Romanenko [192] have shown that 

systems of hyperbolic PDE's could, given appropriate boundary condition, be reduced via 

use of the method of characteristics to differential delay equations of the first order. Lukin 
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and Shestopalov [140] have applied this reduction procedure to investigate the dynamics of 

electromagnetic fields confined to cavities possessing nonlinear reflection properties which 

are routinely used in the construction of radio-optical devices. 

5.2.1 The deterministic case 

The deterministic DDE's considered in this section are of the form 

dx(t) 
~ = -ax(t) + F(x(t -1)) (5.4) 

with an initial function lP( s) defined for s E [ -1, 0). There is a continuous time semidynam­

ical system associated with (5.4), given by 

dx (t) { ~ cp - dt 
dt - -ax'P(t) 

if t E 1, 0) 
F(x!p(t-1)) ift~O 

so that the DDE (1) defines a continuous time operator St acting on bounded functions 

defined everywhere on [-1, 0). For example, if lP denotes such an initial function, 

Stip = {x'P(s): sE [t -1, t)}, 0 ~ t ~ 1 (5.5) 

(if t > 1, the initial function is no longer If'). 
The first step in the reduction of (5.4) to a coupled map lattice is to use the Euler 

approximation to dx / dt and write 

Removing the limit, (5.6) can be approximated by 

1 
x!/l(t) = (1 +a~) [xcp(t ~) + ~F(xcp(t- 1))] 

where 0 < ~ ~ 1. 

~>0. (5.6) 

(5.7) 

Before describing the second step of the reduction, recall from (5.5) that equation (5.4) 

transforms an initial function lP defined on [-1, 0) into another function: the solution Xcp 

defined on [-1 + t, t), where 0 < t ~ 1 is continuous. Hence, if t < 1, there is an overlap 

between lP and x!/1. It is possible to vary the extent of this overlap by restricting the values 

which can be assumed by the timet in the definition (5.5). For example, if t = m~, with 

0 < ~ ~ 1 and m= 1, 2, · · ·, the continuous time definition (5.5) can be replaced by 

Sm'P {xcp(s): sE [m~- 1, m~)}, 0 ~m~< 1. (5.8) 
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If D.= 1/N, where N » 1, then m= 1, ···,N. 

x(t) 

-1 

+ .6. 

I 

0 

FIGURE 5.1: 

•: xo= q, 
c: x 1 (m=l) 
.o.: xi (m=N) 

time 

1 

Schematic illustration of the approximation of the differential delay equation (5.4) by a coupled 
map lattice: The initial function is replaced by a set of N points, and these N points form a 
vector which evolves in time under the action of a N-dimensional discrete time transformation 
(the coupled map lattice). The parameter 1 ~ m ~ N denotes the number of elements of Xn 

which are not elements of Xn+l· See text for details. 

The second step in the reduction consists of approximating the initial function <p by a 

set of N points (as illustrated in Figure 5.1), and following the evolution of these points 

approximating the corresponding solution. Hence, if m = 1 in (5.8), the initial function <p 

is replaced by by a vector c.p = (<p~, · · ·, i{JN ), and the solution {x'P(s) : sE [D.- 1, D.)} by a 

vector x 1 = (xi,···, xf) (the subscript <p has been dropped to simplify the notation). Now 

define a discrete time transformation <P1 : IRN t----+ IRN (the subscript indicates that m 1) 

such that 

Xn, n=1,2,· .. , where x 0 = c.p. 

To obtain an explicit expression for <P1 , let D.= 1/N, and suppose that ifJJ = <p( -1 + jb..), 

so that in general, x~ approximates the value of solution x(t) at timet = -1 + (n + j)D... 

Then, equation (5.7) can be approximated by anN-dimensional difference equation 
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In vector notation, the system (6.56) can be written as 

Xn+l = A1 o Xn, for n = 0, 1, · · · 

where the matrix A 1 is given by 

0 
0 

1 0 
0 1 

t::..F 0 
(Hat::..) 0 

0 
0 

1 
(Hat::..) 

(5.9) 

(5.10) 

(5.11) 

Equations (5.10) and (5.11) define a transformation 4>1 which approximates the DDE (5.4). 

In the limit N-+ oo, the solution of the difference equation (5.10) converges to the solution 

of the DDE (5.4), because x is by definition always differentiable. Xn approximates the 

continuous time solution on the time interval [n.6. - 1, n.6.), and Xn+I approximates the 

solution on the time interval [(n + 1).6. -1, (n + 1).6.). As illustrated schematically in Figure 

5.1, in general one can approximate the original DDE by a transformation 4>m such that 

Xn+I approximates the solution on [(n + m).6. 1, (n + m).6.) (with m an integer such that 

1 ~m~ N, as in (5.8)). 

If m > 1 in (5.8), the set of difference equations (6.56) becomes 

X~ x~+m 

-

x{ a{+m 

XN-m+l - 1 [ N .6.F(x6)] 1 (1 +ab.) Xo 

-
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X i 1 [ i-1 + AF( m+l+(N-i))] 

I (1 +a~) xl u Xo 

1 [ N-1 AF( m+l)] 
(1 +a~) x1 + u Xo . (5.12) 

Therefore, in vector notation, the equation which generalizes (5.10) is 

(5.13) 

where the N x N matrices Am and Bm are given by 

0 0 

[N-(m 1)] Empty rows 

0 0 

Bm= 0 
(N m) o' • 

0 1 0 0 (5.14) (I+a6.) 

0 0 1 0 0 (l+a6.) 

0 0 1 0 (l+a6.) 

and 
0 

m 01s 
0 1 0 

0 0 1 0 

Am= 
0 0 1 

(5.15) 6-F 0 0 1 
(I+a6.) (I+ aLl) 

0 6-F 0 0 (I+a6.) 

0 0 6-F 0 ... 0 (l+a6.) 

In the case where Xn and Xn+l have no overlap, which corresponds to choosing m= N, these 

matrices become: 

0 0 6-F 0 0 1 
(l+a6.) (I+ aLl) 

1 0 0 0 6-F 0 0 
BN= 

(l+a6.) 
AN= 

(l+a6.) 

' 
0 1 0 0 0 6-F 

(l+a6.) (l+a6.) 

(5.16) 

Given the form of the matrix Bm, it is possible to write 

0 (5.17) 
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We will assume from now on that F is piecewise linear, because when this is the case, (5.13) 

can be simplified by replacing composition in the right hand side by a simple multiplication: 

(5.18) 

We have therefore reduced the differential delay equation (5.4) with a piecewise linear F to 

a piecewise linear CML <Pm which can be analyzed from a probabilistic point of view. 

This probabilistic analysis is done via an investigation of the spectral properties of the 

Perron-Frobenius operator associated with <Pm· Before considering the Perron-Frobenius 

opera~or, we extend the reduction of deterministic DDE's to CML's to the case where the 

DDE's are subjected to stochastic perturbations. 

5.2.2 The stochastic case 

In this section, we explore the approximation of various stochastic DDE's by stochastic 

CML's. The stochastic DDE's we are concerned with are of the form 

dx(t) [-ax(t) + F(x(t- 1))] dt G(x(t))~(t)dt (5.19) 

where the stochastic process E(t)dt will be either a J-correlated stationary white noise process, 

or an Ornstein-Uhlenbeck process [81]. For both types of noise, the stochastic process x(t) 

is called a solution of the differential equation (5.19) when it satisfies, with probability 1, 

the integral equation 

x(t) x(t*) + 1)-ax(s) + F(x(s- l)))ds + 1: G(x(s))d~(s) (5.20) 

where 0 < t* < t and the second integral is a stochastic integral interpreted in either the Ito 

or the Stratonovich sense [81]. 

Define a partition of (t*, t) by t* = s0 < s1 < · · · < si < · · · < sk t. In the Stratonovich 

calculus, the stochastic integral in (5.20) is defined as the limit 

Similarly, the Ito stochastic integral is defined to be 

(5.22) 

147 



Both definitions are clearly not equivalent. Unlike the usual Riemann or Lebesgue integrals 

which yield the same results when the integrand is such that both are defined, the Ito and 

Stratonovich integrals of the same function can differ. The choice of either definition must 

be motivated by careful analysis of the physical situation under consideration [111, 196, 208]. 

The exact formulation of CML which results from a discrete time approximation depends 

on whether the stochastic integral in (5.20) is interpreted in the Ito or Stratonovich sense. 

However, as the reduction schemes for both cases are similar, we will illustrate it with the 

Ito interpretation of (5.20), which yields a more concise expression for the resulting CML. 

The first step in the reduction procedure involves replacing the integrals in (5.20) by the 

appropriate sums: 

where by definition of the Riemann integral A = (si- Bi-d > 0. The precise value of A 

depends on the difference t t* and will be given below. 

The sums in (5.23) are over a partition of the interval (t*, t). Hence by chosing k = 1, 

t* = s0 ::::: t - .6., and s1 ::::: t, we obtain 

k 

L .6.[-ax(si) + F(x(si 1))] ~ .6.[-ax(t) + F(x(t 1))] 
i=l 

k 

L Q (x(si_I)) [~(si)- ~(si-d] ~ Q (x(t*)) [~(t) ~(t*)] 
i=l 

Therefore, (5.23) becomes 

x(t) = x(t*) + .6. [-ax(t) + F(x(t- 1))] + Q (x(t*)) [~(t)- ~(t*)]. (5.24) 

As in the deterministic case, the second step of the reduction consists in approximating the 

function {x(s) : sE (n.6.- 1, n.6.)} by anN-dimensional vector Xn as illustrated in Figure 

5.1. If the timet is discretized as in Section 5.2.1, the approximating solution (5.24) becomes 

the N -dimensional difference equation 

where the matrices Am and Bm are given in (5.15) and (5.14) respectively, and the matrices 
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Q~2 are given by 

0 0 

[N- (m- 1)] Empty rows 

0 0 
Q~)= 0 

(N- m) 01s 
0 Q 0 0 (5.26) 

0 Q 0 0 
0 0 Q 0 

and 
0 

m 01 s 
0 1 0 

0 0 1 0 

Q~)= 0 0 1 
Q 0 0 

(5.27) 

0 Q 0 0 

0 0 Q 0 ... 0 

The entries of the N-dimensional vector en are random variables which are independent of 

one another. Hence, we define the density g(en) to be 
N N 

g(en) = IT gCi)(~~)) = IT g(~n), n = 0, 1, 2, · · ·. (5.28) 
i=l i=l 

5.3 The evolution of probability densities in CML's 

In this section, we recall some basic definitions associated with the evolution of probability 

densities under the action of discrete-time transformations in IRN. These were all described 

in some detail in the previous chapters, and they are given here to simplify our presentation. 

5.3.1 The deterministic case 

A discrete-time nonsingular transformation q. : X 1----+ X (x c RN) induces the Perron­

Frobenius operator denoted Pq. which acts on phase space probability densities, 

f Pq.f(x) dx = f f(x) dx, for all A c X, (5.29) jA }q.-l(A) 

and all probability densities f. A change of variable yields the more explicit definitions used 

in Chapter 3. 
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5.3.2 The stochastic case 

In this case, the evolution of probability densities depends both on the deterministic part of 

the transformation, and on the type of noise present in the system. 

5.3.2.1 Additive noise 

In this case, the evolution of an element of the lattice transformation is given by a relation 

of the form 
x(i) = <.l_)(i) (x ) + t(i) = <I>(i) (v) 

n+l n ~n - a.dd .no.n ' (5.30) 

where the density g = (g(l), · · ·, g(N)) of the vector random variable e = (e(l), · · ·, e(N)) is 

the product of its components as in equation (5.28). The evolution equation for phase space 

probability densities in this case is written [123] 

fn+l(x) = L fn(y)g(x- <I>(y)) dy, n = 0, 1, · · ·. (5.31) 

Equation (5.31) implicitly defines the transfer operator Pif>ood for CML's perturbed as in 

(5.30) since Pif>oodfn(x) = fn+I(x). When the noise is multiplicative, this expression must be 

altered accordingly. 

5.3.2.2 Multiplicative noise 

In this case, the evolution of a lattice site is given by 

x(i) = <I>(i) (x ) X c(i) = <I>(i) (v) 
n+l n o;,n - mu! •--n ' (5.32) 

and the transfer operator Pif>mut is given by (cf. Chapter 4 and [134]) 

1 1 N [ ( x(i) ) 1 l 
fn+l =le~>· ·i(l) fn(Y)!! 9 q>(i)(y) q>(i)(y) dy, n = 0, 1, · · ·. (5.33) 

It was shown in Chapter 4 that both Pif>ood and Pif>mul are Markov operators defined by 

stochastic kernels. This property was then used to describe the asymptotic behavior of the 

sequence of densities {fn} [i.e the convergence to a fixed point or to a limit cycle]. 

5.4 Applications to deterministic DDE's 

In this section, we derive conditions on the control parameters of deterministic CML's which 

guarantee that the associated Perron-Frobenius operator is asymptotically periodic ( i. e sat­

isfies (1.21)). 
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5.4.1 Oscillatory solutions and expansion requirements 

We say that a DDE possesses nontrivial statistical behavior when its solutions are oscillatory 

and bounded (whether they are periodic, quasi-periodic or chaotic). Hence, for a given 

equation, we restrict our attention to the regions of parameter space in which the trajectories 

are oscillatory. To illustrate this point, we use a model with F given by the tent map (a 

similar DDE has been considered by Ershov [53]): 

F(x) = { ax if x < 1/2 
a(1- x) if x;::: 1/2 

a E (1, 2]. (5.34) 

The rationale for choosing this nonlinearity is that the resulting DDE displays a wide array 

of behaviors which is generic in more general (smooth) systems, while remaining amenable 

to analytic investigations. In addition, since F maps [0 : 1] into itself, we know (cf. Section 

2.1 of [53]) that the solutions of the DDE will be bounded if the initial function takes values 

in [0, 1] and if a/a::::; 2. Finally, our in-depth knowledge about the behavior of large CML's 

in which the local nonlinearity is given by the tent map should give us some insight into the 

statistical properties of the corresponding DDE with F given by (5.34). 

The first fixed point of equation (5.4) with (5.34) is xP) = 0. It is locally stable when 

a < a, and unstable when a > a. When a > a, the equation possesses another fixed point 

x(2) =_a_ 
* a+a 

which is linearly stable when 

2a;:::a>a and Ja2-a2<cos-1
(:). 

When Ja2 - a 2 = cos-1 (~),the fixed point becomes unstable via a Hopf bifurcation, and 

the solutions of the DDE no longer converge to xi2
). As mentioned above, the solutions must 

remain bounded when the initial function belongs to the interval [0, 1], and since they do not 

converge to the fixed point, they must oscillate. We restrict our discussion of the dynamics of 

(5.4) to regions of parameter space in which the solutions are oscillatory, because stationary 

solutions are trivial from a statistical perspective. Hence our description of the probabilistic 

properties of (5.4) with (5.34) holds when the parameters of the equation satisfy 

2a;::: a> a and Ja2 - a2 > cos-1 (~). (5.35) 
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When condition (5.35) is satisfied, the corresponding CML <Pm expands distances in at least 

one direction. To see this, note that from (5.13) with (5.14) and (5.15), the total derivative 

of the variable x;(,;;_n is given by 

a N-m a N-m 
Xn+l + Xn+l 

axN ax1 
n n 

N+a 
N a 

dxN-m 

and so ;!:,1 > 1 if and only if a > a. If condition (5.35) is satisfed, this is always the 

case, and therefore when the DDE possesses oscillatory solutions, the corresponding CML is 

hyperbolic (or expanding if one chooses to define expansion by the requirement that at east 

one eigendirection be expanding). 

0.65 

x(t) Runge Kutta 

x(t) CML 

0 ~--~----~----~--~----~----~----------~ 
0 5.9 11.8 17.7 23.6 29.5 35.4 t 

FIGURE 5.2: 
Two numerical solutions of the DOE (5.4) with the nonlinearity given by (5.34), when a 
13, a= 10, and a constant initial function <p(s) = 0.2 fors E [-1, 0). Top: The solution was 
produced by a standard adaptation of the fourth order Runge-Kutta method, with 40 points per 
delay. Bottom: The solution was produced by the CML approximation (5.13), with m= N = 
1000. As expected, although both solutions are in excellent agreement with one another, the 
Runge-Kutta method is numerically more efficient than the Euler approximation which underlies 
our derivation of the CML. The motivation for the CML approach is that it yields a system which 
is amenable to analytic investigations. 

Examples of oscillatory solutions of equation (5.4) with F given by (5.34) are shown in 

Figure 5.2. The parameters used to produce that figure are the same as the ones used to 
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produce the "ensemble density" results presented in Figure 5.4 below. As expected, the 

remarkable agreement between the solutions obtained by both methods breaks down when 

N becomes too small (i.e. of order 102), and for large times when the solution is chaotic. 

Having derived the CML approximation to the DDE, we now use this expression to rigorously 

discuss the thermodynamic (or probabilistic) behavior of the equation. 

5.4.2 The result 

When the parameters a and a of the DDE (5.4), with nonlinearity F given by (5.34), satisfy 

(5.35), and the initial function cp for the equation belongs to the interval [0, 1], the corre­

sponding CML (5.13) induces a Perron-Frobenius operator which is asymptotically periodic 

and therefore admits the spectral decomposition (1.21). 

We now prove this statement. 

Using basic properties of determinants (158], for all x E X, and all i = 1, ···,M the 

Jacobian of <J>-1(x) is 

3_1 = det (I - IB~I) 
det IAm'l (5.36) 

where IA~I and IB~J can be obtained by replacing F by a in Am (defined in (5.15)) and 

Bm (defined in (5.14)) respectively. It is straightforward to verify that 

(5.37) 

Therefore, using the definition (1.8), basic properties of the variation and (5.37) 

(

s(II) f(<T>~l(x)) ) 
V(P~Pf) V ~ :J(<T>~ 1 (x))X?ri(x) 

s(II) ( f( <J>~l (x)) ) 
< ~V :J(<J>~l(x))X*i(x) 

s(II) 

:J I: V (r(<I>~ 1 (x))x*i(x)). 
i=l 

(5.38) 

As in Chapter 3 each term in the sum on the right hand side of (5.38) can now be evaluated 

explicitly, and resulting bounds can be placed on the left hand side of the equation. The end 

result is, as in Section 3.5, 
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(5.39) 

Therefore, comparing (5.39) (using (5.37)) with (3.15), the theorem of Ionescu Tulcea and 

Marinescu (cf. Section 3.5) guarantees the asymptotic periodicity of the Perron-Frobenius 

operator when 

[ 
a ]

2

m [ 1 l 1+. - <1. (N + o:) smB(1r) 
(5.40) 

In order for this inequality to yield precise conditions on the control parameters of the 

CML, it is necessary to evaluate the quantity sin 0( ir) in terms of these parameters. This 

calculation is straightforward given the analysis of Chapter 3. 

If the boundaries of the sets iri intersect at an angle which is bounded below by (}int > 0 

(for all i = 1, · · ·, s(II)), then when X, and thus the 1r/s, are subsets of JR.N, we have from 

Appendix 3A [138] 

sin B(ir) = 
1- COS (}int 

(5.41) 
N[1 + (N- 2) cos Bint]. 

Note that if the boundaries of the image sets intersect at right angles so that (}int = 90°, we 

have sinO(ir) = 1/v'N. In general however, the image partition is not rectangular, and the 

angle Bint must be determined from the definition of the CML under consideration. 

Recall that the sets 1ri are defined to be the subsets of X on which the CML given in 

(5.13) is piecewise linear. If F is given by (5.34), these sets are of the form 1ri = [0, 1/2Ji x 

(1/2, 1]2N-i, since the solution x(t) of the original DDE (5.4) satisfies 0::::; x(t) ::::; 1 for all 

t > 0 by hypothesis. Hence the 1r/s are delimited by 3N vertices, {vq = (v~1), .. ·, v~N))}, 
q = 1, · · ·, 3N where each component v~k) is either 0, 1/2 or 1 fork 1, ···,N. The images 

Vq of the vq's are the vertices of the image partition whose elements are denoted iri. 

From equations (5.13), (5.14) and (5.15), we have 

vq(k) - v(k+m) for k 1 · · · N - m 
q ' ' ' 

-(N-m+l) L).F(v~l)) v~N) 
V - + --"---...,-

q (1 o:L).) (1 + o:L).) 

i [L).F( v(j+l-p)) l P 
v~N-m+j) I) -1)(p-l) q for j = 2, ... 'm. 

p=l (1 + o:L).) 
(5.42) 

Determining the smallest angle (}int which can be subtended by edges of one of the image 

sets iri is a tedious minimization problem. However, a conservative lower bound for (}int can 
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be obtained relatively easily. If this lower bound is used in (5.41), we obtain a lower bound 

for sin8(1f), and the resulting conditions on a, a, m and N obtained from (5.40) will be 

correspondingly conservative. 

The angle Oint is defined by three points which are images of three of the 3N vertices 

delimiting the sets 1ri· The lower bound for Oint is defined by a triplet such that two of the 

three elements are distinct but as close as (5.42) permits, while being as far from the third 

as possible. Hence, to determine the lower bound for Oint' two distances must be estimated. 

The first is the greatest Euclidean distance separating two points belonging to the same face 

of one of the image sets (which is bounded above by .JN, the "diameter" of the phase space 

X). The second is the smallest distance dtfq' separating two images v q and v q' ( q q'), 

N 

dq-q' '"""[v-(k) v-(k)]2 .i...Jq-q'. 
k=l 

Minimizing this distance is straightforward since all the terms are positive, so we must first 

pick v q and v q' such that their images differ in only one of their components, and then try 

to minimize the resulting difference by choosing this component appropriately. 

There are two ways to choose v q and v q' such that v q and v q' differ in a single component. 

1) From (5.42), if vq and Vq' differ by only one component which belongs to both the 

preimage Vq,q' and the image vq,q' (i.e. v~i} = v~~) for all i except fori= k, with m< k < N), 

then dqq' must equal the distance separating v q and v q'. This nonzero distance is bounded 

below by 1/2. 

2) It is possible to obtain a more conservative (i.e. smaller) estimate for dqq' by noting 

that in the regions of parameter space which are of interest, from (5.42), cl>m is a contraction 

along some directions. If v q and v q' differ in their kth component with 1 ::; k ::; m, then 

their images v q and v q' will possess ( k m + 1) different components {j = N - ( k - m + 
1), N- (k-m)+ 1, · · ·, N}. By choosing k m, vq and Vq' differ in a single component. 

In the second case, the distance between vq and vq' is minimized, and from (5.42) it is 

easily shown to be 

> 

J?(v~) J?(v~) 

(N +a) 
a 

2(N+a)' 

since if J?(v~)- F(v~) 0, then F(v~) F(v~) 2::: a/2. 
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From plane analytic geometry, (Jint is therefore bounded below by the angle subtended by 

a horizontal line, and a line of slope 2J'NCN+o:), so 

a 
tan(Jint = 2VN(N +a). 

Therefore, if N is large we have, using the approximations cos (Jint ~ 1- (Jint' and sin (Jint ~ (Jint 

(for small (Jint) 
a 

8int ~ 2VN(N +a). 

Using the same approximations in (5.41), we obtain 

sin(J(if) ~ / 2N312 (N + a~[1 + (N- 2)) · 

Replacing this conservative estimate in the condition (5.40), we finally obtain an explicit 

condition on the parameters of the CML which is sufficient to guarantee asymptotic period­

icity: 

_2N_3_/2--'-( N_+_a....;...;)[;._1 _+____;.( N __ 2..;..;;.)) < 1. 
a 

(5.44) 

If N is large, the left hand side of the preceding inequality behaves like N-2
m N 7 14 . Hence 

the inequality is always satisfied for N large enough, and Theorem 3.1 of Section 3.5 implies 

that P.:pm is always asymptotically periodic, when <Pm approximates the DDE (5.4) with F 

given by (5.34) under the condition (5.35) (though the period could be 1). 

Numerically, this result is reflected by the temporally periodic behavior of various statisti­

cal descriptors of the motion. As an example, consider the "ensemble sample density" p(x, t). 
This function is obtained by integrating (5.4) with a large number of different initial functions 

{ 1p1 , · · ·, IPE} (E large) and then, at timet, binning the set of points {xiPi (t)}, where xiPi (t) 
denotes the solution of the DDE corresponding to the initial function IPi· Schematically, 

Figure 5.3 displays this construction. To establish a parallel with more frequently discussed 

models, if the equation satisfied by x(t) was an ordinary differential equation (rather than a 

DDE), the evolution of p(x, t) would be described by the Liouville equation. 
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Initial functions Corresponding solutions 
1 

FIGURE 5.3: 
Schematic illustration of the construction of the "sample ensemble density" p(x, t). A set of initial 
conditions {cp1, ···,'PE} generates a set of solutions {xrp.}~1 , and at timet, the distribution of 
values {xrp;(t)}~1 is given by p(x, t). 

The statistical cycling predicted by (5.44) can be observed numerically by following the 

function p(x, t) for successive times. Figure 5.4 displays such a numerical simulation for 

the DDE (5.4) with F defined in (5.34). The novel feature displayed in Figure 5.4 is the 

dependence of the asymptotic density cycle on the initial density which describes the set 

of initial functions used to carry out a set of sirriulations. This property is not observed in 

continuous-time systems without delays, and it can be understood in light of the dependence 

of the functionals r 1,. .. ,r of equation (1.21) on the initial density f0 . This dependence on 

initial conditions is in a sense much stronger than that usually discussed in relation to 

chaotic dynamical systems: Here the evolution of an ensemble of DDE's depends on the 

exact distribution of the initial ensemble. 
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0 

0.2 X 0.8 

(a) 

Time t=402.9 

p(x,t) 

0.2 X 0.8 

(b) 

FIGURE 5.4: 

p(x,t) 

Time t=400 

Statistical cycling in an ensemble of ODE's of the form (5.4) with nonlinearity F given by (5.34}. 
The parameters in the equation are a = 13, a 10, and the CML used for the solution 
contained N = 103 sites. Both (a) and (b) were produced with 22500 initial functions. (a) 
Each of the initial functions was a random process supported uniformly on [0.65, 0.75]. (b) The 
initial functions were random processes supported either on [0.65, 0.75] {for 17000 cases) or on 
[0.35, 0.45] (for the remaining 5500 initial functions). The cycling is not transient, and is observed 
for all times. The dependence of the density cycle on the initial density reflects the dependence 
of the ri's of (1.21) on fo. 

Since the pioneering work of Ikeda et al. [87]), the dynamics of optical bistable devices 
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have been modelled by equations of the form (5.4). It has been shown that in certain optical 

bistable devices perturbed by noise, the evolution of p(x, t) may involve a gradual switching 

from one preferred state to another (known as "noise-induced transient bimodality"), when 

the system was given an impulse in the form of an instantaneous change in the suitably nor­

malized field strengths ( cf [120] and the references therein). If this impulse was replaced by 

periodic modulation, one would expect to observe the same phenomenology as the statistical 

cycling of Figure 5.4. In this case, asymptotic periodicity therefore provides a theoretical 

explanation for a cycling which does not require the introduction of a potential function in 

the model equation. 

Since the presence of stochastic fluctuations in experimental situations is ubiquitous, it is 

of interest to discuss the presence of statistical cycling and asymptotic periodicity in models 

which are stochastically perturbed. 

5.5 Application to stochastic models 

In this section, we investigate the properties of the transfer operators (5.31) and (5.33) 

induced by the stochastic CML's (5.30) and (5.32). Our discussion is based on the results 

presented in [134]. In the deterministic case, deriving equation (5.44) required detailed 

knowledge of the function F. In the stochastic case, our results are, to a large extent, 

independent of the details of the model, and can be summarized as follows: 

If the solution x(t) of the stochastic DDE (5.19) belongs to [0, 1] for all t > 0, then the 

CML approximating (5.19) induces an asymptotically periodic transfer operator. 

This statement stems from the application to equations (5.31) and (5.33) of Theorem 1 

and Theorem 2 of Chapter 4. To apply these results to 'Pq.add and Pif>muP let 

Kadd(x, y) = g(x tll) 

for the additive noise case, and 

Km"'(x,y) = [! [g c~~:;~)) <pli~(y)l 
for the multiplicative noise case. Hence, from (5.31) and (5.33) 

'Pq.addf(x) fx Kadd(x, y)f(y) dy 

Pif>mul(x) 11 
· · ·11 

Kmul(x, y)f(y) dy. 
x(N) x(l) 
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Since g is a normalized probability density on X, Kadd,mu1(x, y) > 0, and fx Kadd,mu1(x, y) 1, 

so that both Kadd,mu1(x, y) are stochastic kernels. In addition, it was shown in Chapter 4 

(cf. Section 4.4.1.1 and 4.4.2.2) that they both satisfy (4.11) and (4.12). Hence, Theorems 

4.1 and 4.2 yield the desired results on the asymptotic periodicity on CML's approximating 

DDE's perturbed by additive and multiplicative noise. 

This result depends on two assumptions: The noise density g must be normalized on 

the hypercube X, and the solution x(t) defined in (5.20) must remain in the interval [0, 1] 

. for all t > 0. One of the intriguing consequences of the ubiquitous presence of asymptotic 

periodicity in stochastic CML's is explored in the next section. 

5.5.1 Noise-induced statistical cycling 

The effects of noise on dynamical systems have been the subject of intense investigations (an 

extensive overview of this literature is given in [156]). It is well understood that the presence 

of noise in nonlinear models can result in profound qualitative changes of the systems under 

study. The mechanisms which bring about these changes depend to a large extent on the 

specificities of the model under consideration. For example, Kapral and Celarier [104] have 

discussed the influence of additive noise on bistable systems, and showed in this case how 

the noise-induced transitions reflect a crossing of the basin boundaries. Here we describe a 

different class of noise-induced transitions in a DDE of the form (5.4) with a nonlinearity F 

given by 

F(x) = (ax +b) mod 1, 0 <a< 1, 0 < b < 1. {5.45) 

As we will show, these transitions are best understood as resulting from a noise-induced 

bifurcation in the deterministic part of the model. The motivation for this choice of F is 

twofold. First, the behavior of the corresponding one dimensional map Xn+l = F(xn) has 

been well-documented (see Chapter 4, Section 4.3.2). Second, the presence of stochastic 

perturbations in equation (5.4) with F given by (5.45) can result in qualitative changes in 

the statistical behavior of the solutions [122, 174]. Before describing the behavior of the 

DDE, it is helpful to recall several properties of the map Xn+I = F(xn), which are due to 

Keener [108], and complement our description of Section 4.3.2. 

As expected, the map Xn+l = F(xn) with F defined in (5.45) can possess stable limit 

cycle solutions, when 0 < a < 1, 0 < b < 1. Less expected is the presence in the same 

region of parameter space (i.e. when 0 < a < 1, 0 < b < 1), of aperiodic trajectories which 
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are attracted to a Cantor set in [0,1]. In either case, the solutions cannot be described by 

probability densities. Since the trajectories visit only a Cantor set in the asymptotic regime, 

the probability of occupation of phase space is not a differentiable function. In fact, the 

probabilistic properties of the map (5.45) are described by the evolution of noncontinuous 

measures, rather than the more usual probability densities. For fixed 0 < a < 1, a change 

in the parameter 0 < b < 1 can therefore result in a bifurcation from a periodic solution to 

a chaotic one. A similar behavior is observed when the system is perturbed by noise, such 

that 

F(x) (ax+b+e) mod 1, 0 <a< 1, 0 < b < 1. (5.46) 

where e is a 8-correlated discrete time random process distributed uniformly on subintervals 

of [0, 1]. If e has the "right amplitude", the map undergoes noise-induced bifurcations. These 

cannot be described deterministically however, since the map is then stochastic, but must be 

described in terms of the evolution of probability densities. Such noise-induced bifurcations 

have been discussed in the one-dimensional map [17 4], and in diffusively coupled lattices of 

the map (5.46) [134]. We now give numerical evidence that similar behavior is expected in 

the stochastic differential equation (5.4) with F given by (5.46). 
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0 X 1 

(a) 

p(x,t) 

Time t=400 

0 X 1 

(b) 
0 X 1 

(c) 

p(x,t) 

0 X 1 

(d) 

FIGURE 5.5: 

p(x,t) p(x,t) 

Noise induced statistical cycling in (5.4) with F given by (5.34). As in Figure 5.4, each simulation 

was performed with 22500 random initial functions. In all four panels, the parameters of the 

equation were a= 0.5, b = 0.567, a 10. For panels (a)-(c) the initial density was as in Figure 

5.4(a). (a) No noise in the system: p(x, t) is not a density, but a generalized function (see 

text for details). (b) Noise present as in (5.46), supported uniformly on [0,0.1]. The system is 

asymptotically stable, and r = 1 in (1.21). (c) Noise uniformly supported on (0, 0.2], and r = 2 

in (1.21). (d) Same noise as in {b)-(c), with an initial density as in Figure 5.4(b). Here f 1 and 

f 2 of equation (1.21) are not the same as in panel {c) because the initial density f0 has changed. 
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Figure 5.5 displays the temporal evolution of the ensemble sample density p(x, t) in 

the absence and the presence of noise, and clearly illustrates the presence of noise-induced 

statistical cycling in this equation. The behavior displayed in Figure 5.5 can be understood 

by noting the similarities between one dimensional maps Xn+l = F(xn) and equations of 

the form (5.4). Ivanov and Sharkovski'l [88] have studied the dynamics of the DDE (5.4) by 

noting that in the limit a-+ oo, and Ffa-+ Fin (5.4), and with discrete time, one obtains 

the one dimensional map Xn+l = F(xn)· Although in general the bifurcation structure 

of the one dimensional map need not survive this singular perturbation (146], Ivanov and 

Sharkovski'l showed that when the function F : IR 1---t IR leaves a subset of IR invariant, (in our 

case, this subset is [0, 1]), then the solutions of the DDE visit the locations on [0, 1] which 

are visited by the iterates of the map (consult [88] for precise statements). On the basis of 

their analysis, one therefore expects that the bifurcation structure of the one dimensional 

map will, in some regions of parameter space, yield information on the bifurcation structure 

of the corresponding DDE. 

Numerically, the bifurcations from chaotic to periodic attractors in the discrete map are 

also found in the deterministic DDE, and as illustrated in Figure 5.6, they can be induced 

by the perturbation of the function F as in (5.46). 

Hence, the noise-induced statistical cycling displayed in Figure 5.5 probably reflects the 

presence in the DDE of a noise-induced bifurcation from a chaotic attractor to a periodic one. 

The presence of noise superimposed on the periodic solution could then explain the cyclical 

statistical behavior of Figures 5.5c and 5.5d. It is interesting to note that this phenomenon 

is consistent with the spectral decomposition (1.21) which was obtained using rather general 

considerations. 

The behavior displayed in Figure 5.5, though somewhat counterintuitive at first glance, 

is therefore not unexpected for systems possessing limit cycles and chaotic attractors which 

are close in some sense in the space of control parameters. 
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present work opens the way for a more rigorous study of the present approximations, in 

the limit where the difference between the DDE and the CML vanishes. From a practical 

perspective however, the fact that there is no finite limit on the accuracy of our description of 

DDE's renders the presence of asymptotic periodicity in these systems inevitable. This would 

in turn imply the existence of semi-groups of operators which would possess the continuous 

time analogue of the decomposition (1.21), which has only been defined up to now for discrete 

time dynamical systems. More generally, the strong connection demonstrated here between 

models framed as delay differential equations and models framed as coupled map lattices 

opens the way for the cross-applications of techniques which have traditionally been used for 

the exclusive investigation of one or the other of these classes of models. 

We have mentioned in the introduction of this chapter that the proper formulation of the 

evolution of densities under the action of differential delay equations should be a field theory, 

since the phase space of the DDE's are infinite dimensional. The next chapter introduces 

the corresponding formalism. 
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Chapter 6 

The transfer operator for differential 
delay equations 

ABSTRACT 

We extend techniques developed for the study of turbulent fluid flows to the statistical 

study of the dynamics of differential delay equations. Because the phase spaces of differ­

ential delay equations are infinite dimensional, phase space densities for these systems are 

functionals. We derive a Hopf-like functional differential equation governing the evolution of 

these densities. The functional differential equation is reduced to an infinite chain of linear 

partial differential equations using perturbation theory. A necessary condition for a measure 

to be invariant under the action of a nonlinear differential delay equation is given. Finally, 

we show that the evolution equation for the density functional is the Fourier transform of 

the infinite dimensional version of the Kramers-Moyal expansion. 
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Croire tout decouvert est une erreur profonde; 
C'est prendre ]'horizon pour les bornes du monde. 

Antoine-Marin Lemierre, L 'Utilite des De couvertes faites 
dans les Sciences et les Arts sous 
le Regne de Louis XV 

6.1 Introduction 

It is clear from the development of chapter 5 that the statistical properties of certain differ­

ential delay equations can be investigated by reducing these functional equations to finite 

dimensional systems. While that approach is fruitful to understand the numerically and 

experimentally observed behavior of certain delayed control loops, it is not completely satis­

factory from a mathematical point of view, because delay differential equations are infinite 

dimensional semidynamical systems. This chapter proposes a possible description of the 

evolution of probability densities under the action of continuous-time DDE's which makes 

use of conceptual tools originally developped to investigate the probabilistic properties of 

the N avier-Stokes equations. 

More specifically, we derive a functional differential equation for the characteristic func­

tional Zt of the measure defined on the phase space of a nonlinear DDE. This functional 

equation describes the evolution of a density of initial functions We show that the evolution 

equation for Zt (a Hopf-like equation) is the Fourier transform of the infinite dimensional ex­

tension of the K-M expansion. This approach to the study of delayed dynamics was inspired 

by the work of Capinski [24] which extended functional techniques introduced by Hopf [79]. 

The formalism used throughout this paper is that of probability theory in function spaces. 

Consequently, there is a strong analogy between our presentation, field theories and the func­

tional description of fluid mechanics. In particular, perturbation theory and the expansion 

of characteristic functionals in terms of probability moments are applicable to the study of 

differential delay equations. 

The outline of the chapter is as follows. Section 6.2 recalls basic measure-theoretic 

definitions, introduces the characteristic functional Zt and presents the derivation of the 

Kramers-Moyal equation in N dimensions (N finite). Section 6.3 introduces the character­

istic functional appropriate for the discussion of DDE's, and the evolution equation for this 

functional (the Hopf equation) when the DDE's possess smooth feedback nonlinearities. In 

Section 6.4, this equation is reduced via perturbation theory to a chain of partial differential 
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equations which are examined in some detail for two examples. In Section 6.4.3 we give some 

necessary conditions which must be met by the invariant measures, and in Section 6.5 we 

explain the relation between our Hopf equation and the functional version of the Kramers 

Moyal equation. 

6.2 Preliminaries 

The spirit of our approach to the statistical study of DDE's parallels that of classical sta­

tistical mechanics in which, since the work of Gibbs and Boltzmann, physicists have grown 

accustomed to dealing with densities describing the thermodynamic states of a given system 

(whether it be discrete or continuous in time as in [133]). Here, we are interested here in 

examining the evolution of a density of functions, which characterizes a family of probability 

measures defined on a function space. We start by recalling some concepts from measure 

theory and probability theory. 

A density of functions can be described by a measure defined on a function space. A 

collection A of subsets of a function space X (here a Banach space) is called a u-algebra if: 

1) When AEA then X\A EA; 
2) Given a sequence (finite or not) {Ak} of subsets of X, Ak EA, then Uk Ak EA; and 

3) X E A. 
Further, a real valued set function M defined on a a-algebra is called a measure if: 

1) M(0) = 0; 

2) M(A) 2:: 0 for all AEA; and 

3) M (Uk Ak) = Lk M(Ak) if { Ak} is a finite or infinite sequence of pairwise disjoint 

subsets of A, that is, Ai n Ai = 0 for i # j. 
Finally, if A is a a-algebra of subsets of X and if M is a measure on A, then the triple 

(X, A, M) is called a measure space. The sets belonging to A are called measurable sets 

because, for them, the measure is defined. 

If X is a finite dimensional space and not a function space, a simple example of a measure 

space is given by taking X to be the real line, X = lit with the a-algebra chosen to be a 

partition of mutually disjoint subsets of X. If the measure M is defined by ascribing a non­

negative number to each element of A, then the measure describes a piecewise constant 

distribution of points on the real line, each constant segment corresponding to an element of 

· A. This illustrates that distributions can be associated to a measure . The same is true when 

168 



c 

0 

the space is infinite dimensional. The Wiener measure is an example of such a measure. It 

has been discussed in detail in the context of stochastic wave propagation [128, 197], and 

used to study a class of partial differential equations encountered in some cell population 

dynamics problems [122]. 

6.2.1 Characteristic functionals 

In this section, we introduce the characteristic functional which is the basic tool used to derive 

the partial differential equations for the moments of the distribution of initial functions. 

In probability theory, the moments of all order of a probability distribution W.; with 

density W(~) can be obtained from the characteristic function. If we have a random vector 

(6, · · ·, ~n) and a vector a (ab···, an), E(·) denotes an expectation, and {-, ·} a scalar 

product, then the characteristic function qy is defined by (with i 2 -1) 

E (ei(a1e1+·+anen)) fx ei(a16+··+anen) W(~)d~, 

fx ei{a,{} dW.; = qy(a). (6.1) 

[The characteristic function qy is also known as the generating function in the applied math­

ematics literature]. Differentiation of qy(a) yields 

~!I"='= i E (~), 
while in general, 

8
8nqy =in E(~n). 

an 
a=O 

Thus, differentiation of the characteristic function qy yields all the moments of the density 

W(~) when the vectors~ are finite dimensional. 

Now consider the generalization to the situation when ~ is a function f defined on an 

interval~ (finite or not). Let f be an element of a function space C with the topology given 

by the supremum norm. fJ. is a probability measure (i.e. it is normalized to 1) defined on the 

space C. If f ( r) is defined for all r E ~' the characteristic functional Z of the measure fJ. 

[sometimes referred to as the characteristic functional for the correlation functions associated 

with the distribution of functions f(r)] is defined by 

Z[J] = k exp [i i J(r)f(r) dr] dp,(J) 

\ exp [i i J(r)f(r) dr J). (6.2) 
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J(r) is called the source of the function f(r). Thus, (6.2) defines the functional analogue of 

the characteristic function. The first realization of the process will yield one function f, a 

second realization will yield a second function, etc .. 
Functionally differentiating Z with respect to the source J ( r) gives: 

oZ[J] _ 8Z[J] 
8J(r) r=e = 8J(e) (o~e) exp [i i J(r)J(r)dr]) 

- i \J(e) exp [i i J(r)f(r)dr] ) . 

In general, we have 

(1 8 ) (1 8 ) i oJ(6) · · · i 8J(en) Z[J] = 

\!(6) ···!(en) exp [i L J(r)f(r) dr]), 
so 

1 8nz[J] 

in 6J(6) · · · 8J(en) J{e)=o · 
(!(6) · · · J(en)) (6.3) 

Thus, n-fold functional differentiation of Z with respect to the sources yields the n-point 

correlation functions 

(!(6) ···!(en)), 

giving the complete statistical description of the distribution of functions in the space C of 

which f is a fixed but arbitrary element. Remember that this distribution of functions is 

also described by the probability measure J.1. defined on C. Hence, Z is sometimes called the 

characteristic functional of the measure M· Bochner's theorem (a finite dimensional 

version of which is presented in [180]) gives conditions on the measure which guarantee 

the existence of Z, and we will sate without proof that these conditions are met here. As 

an aside, note that the proof makes use of the techniques of nonstandard analysis, and is 

not included here because its statement requires the introduction of a number of c-oncepts 

and definitions which are not relevant to the rest of our discussion. Schematically, the 

nonstandard analytical methods allow to view real function spaces as hyperfinite spaces, 

and these can be treated as (finite) Euclidean spaces from a nonstandard perspective. Hence 

the construction of measures is possible, and a rigorous formulation of the ideas presented 

here results. The plan of the proof was communicated to us by Capinski (25]. For an 

introduction to nonstandard analysis, consult [1, 85]. 
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In conclusion, we extend the characteristic functional definition to a two variable density. 

The associated measure is defined on a "two-dimensional" function space C x C, elements 

of which are pairs of functions (h, f2). If these functions are defined for (r1, r2) E ~1 x ~2 
then the characteristic functional is defined by 

(6.4) 

where the brackets indicate integration with respect to the joint probability measure [128] of 

the random field (h(rt), h(r2)) (the characteristic functional for a two-variable density is 

sometimes referred to as a joint characteristic functional [128]). 

We can generalize these ideas to the case where Z = Zt is time varying, describing an 

evolving family of measures J.Lt· In particular, Zt; can describe the evolution of a distribution 

of functions under the action of a given (semi)dynamical system. For example, a DDE will 

transform a distribution of initial functions with measure J.Lo into a distribution of functions 

with measure J.Lt. at time t* > 0. The functional differential equation derived in Section 2 is 

the evolution equation for the characteristic functional of the family of measures generated 

by the action of a DDE on an initial distribution of functions. 

Before proceeding to derive this functional equation in the next section, we review how 

the evolution equation for the densities in a finite dimensional space is obtained from the 

Kramers-Moyal expansion. The Kramers-Moyal expansion is an important tool of statistical 

mechanics, and we show in Section 3 that our functional equation (6.81) is the Fourier 

transform of the functional Kramers-Moyal expansion. 

6.2.2 The Kramers-Moyal expansion for N variables 

The Kramers-Moyal (K-M) expansion, from which the Liouville and Fokker-Planck equations 

can be derived, governs the temporal evolution of the density W(x, t) of the probability of 

finding the system at location x in phase space at timet. If the system under consideration 

is a n dimensional set of ordinary differential equations 

or, alternately, 

dx = F(x) 
dt 
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the K-M expansion yields the generalized Liouville equation 

8W(x, t) = _ t 8{W(x, t) Fi}. 
8t i=l 8xi 

(6.5) 

When the system under consideration is a finite dimensional set of stochastic differential 

equations 

= R(x1 · · · x ) + CJ· ·(x)~" i = 1 · · · n ~ ' ' n ~:J '> ' ' ' (6.6) 

where ( is a white noise perturbation with zero mean and unit variance and O"i is the ampli­

tude of the perturbation, the K-M expansion reduces to the Fokker-Planck equation 

8W(x,t) 
8t 

if the Ita calculus is used to interpret (6.6) [181]. 

(6.7) 

We now derive the Kramers-Moyal expansion inN-dimensions. Consider the N-dimensiona 

random vector e (6, ... 'eN). The probability density w(e, t + t*) of finding the vector 

with value eat timet+ t* and the probability density W(e', t) are related by 

(6.8) 

where the transition probability amplitude P(e, t + t*le', t) gives the probability that if the 

system is observed at (e',t), it will be observed at (e,t + t*). Denoting the N-dimensional 

Dirac 8 function by 8(e) = 8(6) ... 8(eN ), the transition probability amplitude p satisfies 

(6.9) 

It is possible to write down a formal Taylor expansion for the 8 function about e' to give 

8(u e) 8(e'-e+u-e') 

- f: ~' ae-(~~!;e. (ujl- ejJ · · · (uj_.- ejJ 8(e'- e), (6.1o) 
.A=O • 11 :JA 

where we use the convention of summing over repeated Iatin indices (i.e. for each ".A­

term", we sum over j 1 , · · · ,j..x). [As it stands, relation (6.10) does not make mathematical 

sense: to understand its meaning, notice that multiplying (6.10) by a function of u and e', 
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and integrating over these two variables, one recovers a Taylor expansion for this function.] 

Inserting (6.10) into (6.9), we obtain 

The moments M of the probability density W are defined in terms of the corresponding 

transition probability P by (cf. [181]) 

Mt, ... ,i>- (e', t, t*) = l)ui1 - ejJ · .. (ui>- ejJP(u, t + t*ie', t) du, (6.12) 

so we can write (6.11) in terms of the moments: 

(6.13) 

Assuming that the Fourier transform of the probability W be an analytic function, we can 

expand the moments in a power series about t* = 0: 

(6.14) 

Substituting (6.13) and (6.14) into (6.8) yields, for small t*, 

Dividing (6.15) by t* and taking the limit t*--+ 0 we obtain the Kramers-Moyal expan-

si on 

(6.16) 

For an extensive discussion of the Kramers-Moyal expansion and its truncation to yield either 

the Liouville or the Fokker-Planck equation, see [181]. 

Before proceeding to derive an infinite dimensional version of the K-M expansion useful 

for the ivestigation of delayed dynamics, note that equation (6.16) can be derived from the 
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characteristic function 1> given by (6.1). To illustrate this, recall that the characteristic 

function, the conditional probability, and the moments are related by 

</>(a) 

(6.17) 

We can rewrite (6.17) as 

(6.18) 

It is possible to represent the 6 function as a Fourier integral, and the derivatives of this 

integral are then the derivatives of the 6 function (see for example Appendix A in [61]) 

[In the above, the notation is not rigorously correct, but it is standard in mathematical 

physics to discuss properties of the 6 function without explicitly having it under the necessary 

integral sign, as long as these properties are then used when the context allows it rigorously.] 

Therefore, (6.18) becomes 

which is just (6.13). Hence (6.16) can be derived directly from the definition (6.17). In 

Section ?? we use an extension of this formalism to derive the infinite dimensional version 

of (6.16) directly from the characteristic functional (6.2). 

6.3 Characteristic functionals for delay equations 

We consider DDE's of the form 

du 
ds = -au(s) + F(u(s- 1)) for 1 < s, (6.20a) 

in which the delay r is taken to be 1 without loss of generality, with the initial function 

u(s) = v(s) ifs E [0, 1]. (6.20b) 
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From now on we write (6.20a)-(6.20b) as the combined system 

{ 

u(s) = v(s) 

d~~s) = -au(s) + F( v(s- 1)) 

fors E [0, 1], 
(6.21) 

for 1 < s < 2, 

and denote by St the corresponding semidynamical system St C([O, 1]) ~-----+ C([O, 1]) given 

by 

Stv(x) = uv(x + t), (6.22) 

where Uv denotes the solution of (6.21) corresponding to the initial function v. Equation 

(6.22) defines a semidynamical system because a DDE is noninvertible, i.e. it cannot be 

run unambiguously forward and backwards in time. 

From (6.22), the system (6.21) is equivalent to considering 

~S v(x) _ { %tv(x + t) for x E [0, 1- t], (6 23) 
&t t - -au(x+t)+F(v(x+t-1)) forxE(1-t,1]. · 

Thus, we consider a segment of a solution of (2) defined on an interval It = [t, t + 1], as t 

increases (continuously) [i.e. the DDE (6.21) operates on a buffer of length 1, "sliding" it 

along the time axis]. Equation (6.23) states that the contents of this buffer are the initial 

condition v when the argument (x + t) is less than 1, and the solution u of the equation 

otherwise. 

We next introduce the characteristic functional Zt of a family of probability measures 

evolving from an initial measure. We define the characteristic functional Zt for (6.23) by 

The source functions J1 and J2 are elements of C ( [0, 1]) and the measure of integration is the 

initial measure Jlo (describing the initial distribution offunctions) composed with y;-1(v, uv) 

where 7i ( v) : C ( [0, 1]) 1-----+ C x C is defined by 

7i (V) = (V, Uv). 

For simplicity, we will use the notation J1o(T;-1(v,uv)) _ W[v,St(v)], so (6.24a) becomes 

Zt[JI, J2] = fc exp [i fo1 
JI(x)uv(x + t) dx + i 11 

J2(x)v(x) dx] dW[v,St(v)]. (6.24b) 

When no confusion is posssible, we write Wt for W[v, St(v)]. 
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If f and g are two functions defined on an interval I, we denote their scalar product by 

{f,g} = 1 f(x)g(x) dx. 

To simplify the notation we also write 

T[Jb J2; v] = exp [i{ lt(x), uv(x + t)} i{ J2(x), v(x)}]. (6.25) 

T is used from now on to denote the function of 11, 12 and v defined in (6.25). We begin by 

noting the following relations 

onzt 
oJr(~) 
onzt 

oJ!f(~) 

where it is understood that 

( (:)) = fc (:) dW[v,St(v)]. 

Note that if Mo is the probability measure on the space of all initial functions v, and A is 

any subset of C([O, 1]), then 

In other words, the probability that a randomly chosen function belongs to A at time t equals 

the probability that the counterimage of that function (under the action of St) belonged to 

the counterimage of the set A. This defines the family of measures characterized by the 

solutions Zt of a functional differential equation which is the Fourier transform of the infinite 

dimensional version of the K-M expansion. The derivation of such an equation for a DDE 

was first considered by Capinski [24]. If the semiflow St is measure-preserving with respect 

to Jko, then Jko(A) Jko(St" 1(A)). In this case, we alternately say that the measure f.ko is 

invariant with respect to St. 

We are now in a position te derive an evolution equation for the characteristic functional. 

6.3.1 A functional differential equation for Zt 

Time differentiation of the characteristic functional Zt defined in (6.24b) yields, in conjunc­

tion with (6.23), 
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&Zt 
at 

i ( T lol Jl (x) auv~t + t) dx) 

i ( T lol JI(x) auv~x + t) dx) 

( 
,1-t av(x t) {1 \ 

i T lo Jl(x) ax dx- aT lt-t Jl(x)u(x + t) dx I 

+i(T l~tJI(x)F(v(x+t-l))dx). 

Therefore, from equation (6.26) and the definition (6.23), we obtain 

(6.27) 

(6.28) 

Equation (6.28) is related to the Hopf functional differential equation for the evolution of 

the characteristic functional Zt, and contains all the statistical information describing the 

evolution of a density of initial functions under the action of the differential delay system 

(6.20a)-(6.20b). An equation similar to (6.28) was first obtained by Capinski for a differential 

delay equation with a logistic nonlinearity (see Example 1 below). 

In order to derive the Hopf equation per se, we restrict our attention to situations where 

the feedback function Fin the DDE (6.20a) is a polynomial 

n 

F(v) = L akvk. (6.29) 
k=l 

With nonlinearity (6.29), equation (6.28) becomes, with identities (6.26), 

(6.30) 

Analytically solving the Hopf equation (6.30) is not possible at present, though a correct 

method of solution should make use of integration with respect to measures defined on 

the space C. Presently, the theory of such integrals only allows their consistent utilization 
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in solving functional differential equations when the measure of integration is the Wiener 

measure [197]. 

The lack of a formalism within which to evaluate functional integrals with respect to 

general measures also poses a problem for the development of field theories in physics where 

the characteristic and the generating functionals (CF,GF) both play a fundamental role. 

The characteristic functional, presented here, is the Fourier transform of a probability dis­

tribution (i.e. by Bochner's theorem it is the Fourier transform of a measure [180]). The 

generating functional, however, is the Laplace transform of a probability distribution. 

In statistical physics, the GF is interpreted as the partition function for systems with 

an infinite number of degrees of freedom, while in quantum field theory the CF is used to 

obtain the Green's functions from which the scattering amplitudes for various processes are 

calculated. In quantum field theory, the measure of integration is the Wiener measure for 

the free particle problem for which the field equations are Wiener measure preserving; this 

is not the case when particles interact, and the systems under consideration are no longer 

Wiener measure preserving. In that case, investigators reduce the functional integral to a 

countably infinite product of finite dimensional integrals by coarse-graining the phase space 

(or, in the language of quantum field theory, replacing the continuum by a lattice) [188]. 

Before proceeding to treat the Hopf equation in a perturbative manner, we illustrate its 

specific form for a simple nonlinear delay equation. 

Example 1. The differential delay equation 

du 
ds = -au(s) + ru(s 1)[1- u(s- 1)], (6.31) 

can be considered as a continuous analogue of the discrete time logistic map 

(6.32) 

because equation (6.31) is the singular perturbation of the logistic map (6.32) as defined 

in [88]. The characteristic functional is defined by (6.24b), and the functional differential 

equation corresponding to (6.30) was shown by Capinski [24] to be 

1
) dx. • (6.33) 
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In spite of the fact that we cannot solve the Hopf equation analytically, relatively mild 

assumptions allow one to gain significant insight into the dynamics of Zt. More precisely, if 

Zt is analytic we can expand it in a power series and treat the Hopf equation in a perturbative 

manner. We follow this approach in the next section. 

6.4 The moments of the measure Wt 

The statistical properties of the random field of functions v and u are described by an infinite 

hierarchy of moments of the measure Wt. For fixed t, the average value of the contents of 

the buffer defined on It= [t, t+ 1] (i.e. v on [t, 1] and Uv on (1, 1 t]), which is just the first 

order moment of the measure Wt, is 

M!;(t, x) - [ v(x + t) dp,0 (v) for x E [0, 1 t], (6.34) 

M~(t, x)- k uv(x + t) dp,0 (v) for x E (1 t, 1]. (6.35) 

These two equations can be written as one relation: 

The definition of the second order moment (or covariance function) M 2(t, x, y) is, with the 

same notation, 

M 2 (t,x, y) 

M 2 (t,x, y) 

M 2 (t,x, y) 

M 2(t,x, y) 

[ v(x + t)v(y + t) dp,o(v)- M;v(t, x, y) for x, yE [0, 1 t] X [0, 1 t], 

[ uv(x + t)v(y + t) dp,o(v) = M~v(t, x, y) for x, yE (1 t, 1] X [0, 1- t], 

[ v(x + t)uv(Y + t) dJ.to(v)- M;u(t, x, y) for x, yE [0, 1- t] x (1- t, 1], 

[ Uv(x + t)uv(Y + t) dp,o(v) - M~u(t, x, y) for x, yE (1 t, 1] X (1- t, 1]. 

The subscripts of the various components of M 2 refer to the segments of the solution whose 

correlation is given by the particular component. For example, M~v describes the correlation 

between u and v segments of the solution as is illustrated in Figure 6.1. Remember that the 

initial function is defined on an interval [0, 1], so to complete the description of the statistical 

dependence of the solution Uv on the initial function it is necessary to introduce the functions 

M;u. M;; is the first order moment of measure J.to, M;0 is the second order moment of J.to 
etc ... . 
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It 

FIGURE 6.1 

"ull 

t+l 2 

Time 

A DDE transforms a function defined on [0, 1] into a function defined on It. Illustration of the 

"o", "v" and "u" segments of the solution. 

The moments of the measure Wt are also given by the power series expansion of the 

characteristic functional Zt as we next discuss. 

6.4.1 Taylor series expansion of the functional Zt 

The expression for the series expansion of a functional can be understood with the following 

argument. Let 

F(yt, · · ·, Yk) = F(y) 

be a function of k variables. The power series expansion of F is 

(6.36) 

where 
C' (" • ) anF(y) I 
vn 2!, ..• l tn = a a . 

Y1 · · · Yn y=O 

Passing to a continuum in the following sense 

'l --t Xi, 

Yi ( i = 1, · · · , k) --t y(x), 

-oo < X < oo, 

I: --t k dx, 
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we obtain the corresponding series expansion of a functional :F: 

where 
1 Jn :F[y] 

Cn(XI, • · ·, Xn) = 1 J ( ) J ( ) · 
n. y X1 · · · Y Xn y=O 

:F[y] is called the characteristic functional of the functions £n. 
With these conventions, the expansion of the characteristic functional (6.24b) is 

z,[ J,' J,] f;. t, { . J fpq( t, x, ... 'Xp) (;U/1 (X;) dx;) Ut J,(x;) dx;) . ( 6.37) 

The kernels £pq in the expansion are proportional to the moment functions of the measure 

W[v, Stv]. From the relations (6.26) they are given by 

1 JPZt iP 
Cpq(t, X1, · · ·, Xp) = p! JJf. JJ!l-q p! (uv(xl) · · · Uv(xq)v(xq+l) · · · v(xp)) 

·p 

~, MPq {p-q) ( t, XI, ... 'Xp)' p. U V 
(6.38) 

where from now on we use the notation M~qv(p-q)(t,xb · · · ,xp) = M~qv<v-q)(t,x). Equation 

( 6.37) is the infinite dimensional generalization of the well known expansion of a characteristic 

function in terms of the corresponding probability moments (or their Legendre transforms, 

the cumulants). 

6.4.2 PDE's for the moments 

The evolution equation of the kth moment is given by substituting the moment in question 

into (6.30) and then using formula (6.37) to the appropriate order. 

Consider the first order moments of the measure Wt. If we substitute the definitions 

(6.38) and the expansion (6.37) into equation (6.30), we obtain a P.D.E for the moment 

M 1(t,x): 

:tM;(t, x) 

!M~(t,x) 

:x M;(t, x) for x E [0, 1- t], 
n 

-aM~(t,x)+ L:akM:k(x+t-1,.~.,x t-1) 
k=l 

for x E (1 - t, 1]. (6.39) 
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Equation (6.39) is simply the Hopf equation (6.30) for the first order moments. In (6.39) 

the k arguments of M!~e indicate that it is the k-point autocorrelation function of the initial 

function distribution described by Jlo· Moments whose label does not contain u are moments 

of the initial measure. 

The second order moment functions M 2 
( t, x) are given by the solutions of the four equa­

tions: 

:XM;v(t,x,y) + :UM;11 (t,x,y) 

for (x,y) E [0, 1- t) x [0, 1- t), 

:Y M~v(t, X, y)- aM~v(t, X, y) + 
n 

+ L akM:(k-l)v(t, X t- 1, (~-;-~), x + t- 1, y) 
k=2 

for (x,y) E (1- t] x [0, 1- t], 

!M;u(t,x,y) - !M;u(t,x,y)- aM;u(t,x,y) + 
n 

+ LakM:o<k-t)(t,x,y t-1,(~-:-~),y+t-1) 
k=2 

for (x,y) E [0, 1- t] x (1- t, 1], 

-2aM~u(t, x, y) 
n 

L ak { M:(k-l}u(t, X+ t 1, (~-;-~), x + t- 1, y) 
k=l 

+M:o<k-t)(t,x,y t-1,<~-:-~),y t-1) }, 

for (x,y) E (1 t, 1] x (1- t, 1]. 

The functions M';u and M';ou are given by 

!M!(t,x,y) 
n 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

+'LakM!k(x,y+t 1,.~.,y+t-1), (6.44) 
k=2 

-aM!u(t, x, y, z) 
n 

'LakM;k(x,y,z+t l,.~.,z t-1), (6.45) 
k=3 

and similar equations give the moments M;<~<-l)u· 
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A pattern clearly emerges from the preceding analysis: The moment MP(t, x) is given by 

2P partial differential equations of the same form as (6.41) through (6.43) since MP(t, x) is 

a function of p variables, each of which can belong to one of two possible intervals ([0, 1 t] 
or (1 t,1]). The first of these equations (when all the xk's belong to [0, 1- t]) is 

(6.46) 

We call the equations which give the moments of the form M;;zu<v-zJ mixed equations because 

they yield functions which correlate mixed u and v segments of the solution. For the moment 

of order p, there are (2P- 2) mixed equations and 2 pure equations. The pure equations give 

M:v and M~v, the p-point autocorrelation functions of the v and u segments of the solution. 

If Xj E [0, 1 t] for j = 1, .. ·, l and Xj E (1- t, 1] for j = l + 1, .. · ,p, then when the 

forcing term F of equation (6.20a) is the polynomial (6.29), the generic form of the mixed 

equation for Mvzu<v-tl is 

l a 
I: -a MP1 <v-!l (t, x) a(p -l) Mv~ u<v-!l (t, x) x· vu 
i=l ~ 

n-1 

+I: aj { M~r:;R<v-1) (t, x) + M~f~IJ-1) ot (t, x)}. 
j=O 

(6.47) 

Once again, this equation is one representative of the (2P- 2) mixed equations to be solved 

to obtain the moment of order p. Deriving these equations is tedious, but the task is greatly 

simplified by the similarity existing between the systems of equations for moments of different 

orders. 

Equation (6.37) presented above is reminiscent of functional expansions in quantum field 

theory and statistical mechanics which are usually dealt with using Feynman diagrams. 

In quantum field theory, Feynman diagrams are used to represent the terms in the ex­

pansion of a characteristic functional which describes the distribution of fields (in physics, 

fields are elements of a function space: they are functions, or paths in the phase space.). 

The evolution equations for these fields are obtained by replacing various Lagrangians in 

the Euler-Lagrange equations which result from applying the principle of least action [188]. 

Feynman diagrams are used to represent the moments (or n-point correlation functions) of 

the distribution of fields. The nth moment of the distribution, (or n-point correlation func­

tion) is represented by n diagrams [170]. In our treatment of delayed dynamics, the nth 

moment can also be represented by graphs. Preliminary studies indicate that a graphical 
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treatment of (6.37) is possible but we have been unable so far to make significant progress. 

We leave as an open problem the efficient use of Feynman diagrams for the probabistic 

description of delayed dynamics. 

Before proceeding, we illustrate the ideas presented above and derive the partial differ­

ential equations analogous to (6.39) and (6.41) through (6.43) for the nonlinear DDE (6.31) 

considered in Example 1. 

Example 2. When the DDE is 

~~ = -au(s) + ru(s- 1)- ru2(s- 1), 

the first order moment equations are given by 

oMJ(t,x) 
at 

oM~(t, x) 
at 

oMJ(t,x) 
ox 

-aM~(t, x) + rM~(x + t- 1)- rM~0 (x + t- 1, x + t- 1). (6.48) 

The four evolution equations for the second order moments are 

oMJv(t, x, y) 
at 

oMJu (t, x, y) 
at 

oM~v(t, x, y) 
at 

oMJv(t,x,y) oMJv(t,x,y) c [O ] 
OX + oy , 10r X, y E , 1 - t (6.49) 

a MJu ( t' X' y) 2 ( ) 2 ( ) ox -aMvut,x,y +rMv0 t,x,y+t-1 

-r M;00 (t, x, y + t- 1, y + t- 1), for X E [0, 1 - t], y E (1- t, 1](6.50) 

oM~v(t,x,y) 2 ( ) 2 ( ) Oy -aMuv t,x,y +rM0v t,x+t-1,y 

-rM!ov(t,x+t-1,x+t-1,y), forxE (1-t,1], yE [0,1-tX6.51) 

-2aM~u(t, X, y) + r [M;u(t, X+ t- 1, y) + M~0 (t, X, y + t- 1)] -

r [ M:ou ( t, X + t - 1' X + t - 1' y) + M!oo ( t, X' y + t - 1' y + t - 1)] ' 

for x, yE (1- t, 1]. (6.52) 

To solve these equations, one needs to solve first for the moments M;u, M~0 , and M;ou which 

satisfy equations of the following form 

oM~(t,x,y) 
at 

oM;ou(t, x, y, z) 
at 

-rM;000 (X, y, z + t- 1, z + t- 1). 
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Hence, the moments can be obtained by successively solving ordinary or hyperbolic partial 

differential equations. Suppose for illustration that first order moments of the initial measure 

are real nonnegative constants: 

Ml 
0 ml 

M;o m2 

M!oo m3 

M:ooo m4. 

First Moment: 

, For M~(t,x), the evolution equation (6.50) reduces to 

aM~(t,x) __ M 1 ( ) at - a u t,x 

whose solution is 

[ ] 
r(m1- m2) 

M~(t,x)=11 + M~(O,x)-11 e-at where 11 a 

At t = 0, from (6.22) and (6.23) we know that v(1) = uv(1). In addition, M};(t, x) 

Therefore, from (6.34)-(6.35), 

MJ(t = O,x = 1) = h v(l)dJ.to = h uv(l)d~-to(v) = M~(t = O,x = 1) 

and from the initial condition ( 6.56) we conclude M~ ( t = 0, x) = m1. Hence 

M~(t,x) = 11 + [m1 -11] e-at. 

Second Moments: 

{6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

M}j(t,x). 

(6.61) 

To obtain expressions for M~v' M;u, M~u we have to solve their respective equations of 

motion (remember that M';v is given). We first tackle (6.51) (this choice is arbitrary; (6.52) 

can be dealt with in the same manner): 

aM~v(t, X, y) aM~v(t, x, y) 
at ay (6.62) 

with initial condition M~v(O, x, y) M;v(O, x; y) = m2 for all x, y in the domains defined 

in (6.51). This initial condition is, as for the first moment, obtained from equations (6.34)­

(6.35). Equation (6.62) is solved using the method of characteristics, and the solution is 

2 r(m2 m3) 
Muv(t, x, y) = 12 + [m2- 12] e-at where 12 (6.63) 

a 
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The moment M;u(t, x, y) can be obtained in a similar way and the result is 

M';u ( t, X, Y) = M~v ( t, X, Y). (6.64) 

This equality is due to the fact that the moments of the initial measure are constant. Finally, 

it is necessary to solve (6.54) and (6.54) before obtaining M~u· Using (6.57)-(6.58), 

M2 
01L 

'12 + [m2 + '12] e-at (6.65) 

M~o - '12 [m2 + '12] e-at (6.66) 

M!u '13 + [mg + '13] e-at where 
_ r(m3- m4) 

(6.67) - '13 = a 
M~00 (t) '13 + [m3 '13] e-at (6.68) 

so that (6.52), the evolution equation for M~u becomes 

8M~u(t, x, y) = -2 M2 (t ) at a uu 'x, y (6.69) 

The above is a linear first order ODE which can be solved to give 

] r [ ] 2at '12 - '13 - - '12 - '13 + ICe , 
a 

(6.70) 

where 
2r ( 1 JC - - m2 - m3 + - ('13 
3a 2 

This analysis can be carried out in a similar way when the moments are not constants, but 

such that the equations derived above remain solvable analytically. 

6.4.3 Invariant measures 

It is of physical interest to investigate the constraint to be satisfied by a measure J-L*, in­

variant under the action of a differential delay equation. For the nonlinear DDE (6.31), the 

characteristic functional Y of such a measure is defined as 

and so we have 

for all t. 
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where Zt[J1 , J 2] is given by (6.24b). The Hopf equation (6.33) becomes 

0 = 
f1~t 8 ( 6Y ) [ 1 t5Y 

lo J1(x) 8x t5J1(x) dx- a 11-t J1(x) t5J1(x) dx 

l l t5Y ·-111 62Y 
+r J1(x) t5J ( 1) dx- n J1(x) t5.fl( 1) dx, 

1-t 1 X+ t- 1-t 1 X t-
for all t. 

By choosing t = 0, the first integral in the Hopf equation must vanish so that we have, 

From this relation a necessary condition for the invariant measure follows: using (6.38), 

the moments must satisfy 

6.5 The Hopf equation and the Kramers-Moyal ex-
• panSIOll 

The treatment of delayed dynamics in this chapter is developed in the spirit of the previous 

chapters, concerned with dynamics evolving in finite-dimensional spaces. The need for such 

a treatment presented here arises from the nature of some experimental data available in the 

biological sciences where large collections of units, whose individual dynamics are given by 

DDE's, have been considered [46, 48, 47, 148]. For the sake of completeness, it is interesting 

to formalize the connection between the results presented here, and more usual presentations 

in finite-dimensional settings. 

As illustrated by the rest of this thesis, one of the powerful tools of modern statistical 

mechanics is the use of equations describing the evolution of densities of initial conditions 

under the action of a finite dimensional dynamical system. When that system is a set of 

ODE's the evolution equation is known as the generalized Liouville equation. The generalized 

Liouville equation discussed here does not require the assumption of incompressibility. [When 

this incompressibility assumption is valid, which is the case when dealing with conservative 

systems, the generalized Liouville equation reduces to the Liouville equation. Therefore, 

the Liouville equation studied in Hamiltonian mechanics is a special case of a more general 

equation of evolution for the phase-space densities of dynamical systems.] 
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When the system is a set of stochastic differential equations perturbed by realizations of 

a Wiener process, the evolution of densities is given by the Fokker-Planck equation [181]. In 

general, for finite dimensional systems the evolution of densities is governed by the Kramers­

Moyal (K-M) equation. It is of some interest to understand how the K-M formalism carries 

over to systems with an infinite number of degrees of freedom such as DDE's. 

The Hopf equation is probabilistic in the sense that it describes a set of DDE's in the same 

way that the Schrodinger equation describes a microscopic physical system (A Schrodinger 

equation can always be transformed into a Fokker-Planck equation, which is just a truncation 

of the K-M expansion, but the physical interpretation of the transformation remains unclear 

[181]). Given that this is precisely the role of the K-M expansion for finite dimensional 

dynamical systems, it is important to clarify the relation between the functional version of 

the K-M equation and the Hopf-like equation (6.30) derived here. Our derivation of the 

functional version of the K-M expansion is inspired by the derivation of theN-dimensional 

case given by Risken [181]. 

To make the connection between Zt and the K-M expansion more explicit, consider the 

expansion (6.37) of the characteristic functional Zt. Using equation (6.38), (6.37) becomes 

Let P[G, HIG1
, H'] be the transition probability functional that given the pair (G'(x + 

t), H'(x+t)) in CxC, with x E (0, 1-t] x (1-t, 1] we obtain the pair (G(x+t+t*), H(x+t+t*)) 

for x E [0, 1- (t + t*)] x (1- (t + t*), 1] (i.e. G (G') is an initial function which generates a 

solution H (H')). 
W[ V' s(t+t*) V l is related to the transition probability functional p by 

In addition, W is the inverse Fourier transform of the characteristic functional Zt(J1, J2] 

introduced in equation (6.24b) 

(6.73) 

Also, 
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and therefore, 

(6.74) 

where 

and the measure of integration V[Jb J2] is a measure like the one used in the definition (6.24a) 

of the characteristic functional. More precisely the measure W describes the distribution of 

functions in C generating pairs (v,Stv) under the action of the transformation 7 {defined 

below {6.24a), and the measure V[J1, h] describes the distribution of junctions generating 

pairs (Jb J2 ) in the same space. Inserting (6.71) into equation (6.74) we obtain 

'P[v, S<<+•·>v[v', S,v'] = fc i' [t, t, ( · -fo' :! M:,,.,_,, (t + t,, x) 

x (rriJ1(xj)dxj) (.fr iJ2(xj)dxj)] dV[J1,J2l· (6.75) 
J=l J=q+l 

The Dirac 6 functional is a straightforward generalization of the more usual N -dimensional 

version. It satisfies 

{ o[H _ G]dw = { 1 if H = _G almost everywhere 
le 0 otherwise, 

(6.76) 

where Hand G are elements of C, w is a measure defined on C and the result of the integration 

is a number (not a function). We will use this definition to simplify expansion (6.75). Before 

doing so, recall the following identity (derived in Appendix 6A): 

Introduce the symbolic differential operator 
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Using identity (6.77), equation (6.75) reduces to 

P[v, s(t+t.)VjV1
' Stv'] = [f t ~ [1 

.. ·11 

Q( u~, v(p-q))M~qv(p-q) (t + t*, x)dx] 
p=O q=O p. Jo 0 

xc5[v- v'] d[S(t+t.)V- Stv']. (6.78) 

Suppose that the moments M~qv(p-q) (t+t*, x) can be expanded in a power series about t* = 0: 

;! M~qv(p-q) (t + t*, x) = B~qv(p-q) (t, x) t* + O(t;) + · · ·. (6.79) 

Equation (6.78) with expansion (6.79) is inserted in (6.72) to yield 

W[v, S(t+t.)v] ~ J [f t 11 

· · ·11 

Q( u~, v<p-q))B~qv(p-q) (t, x)t* dx] 
C p=Oq=O 0 0 

xW[v',Stv']d"[v- v'] d[S(t+t.)V- Stv']dJLo(v') (6.80) 

where the measure JLo is defined on the space of initial functions. Carrying out the functional 

integration in (74) and dividing by t* gives 

W[v, S(t+t.)V]- W[v, Stv] 

t* 
- [t,t,J.' · J Q(u:, v(p-q))S::,""_.,(t, x)dx] 

x W[v, S(t+t.)V]. 

Taking the limit t* ---t 0, we get the infinite dimensional version of the Kramers­
Moyal expansion: 

The above analysis is not restricted to delay differential equations of the form ( 6.20a-6.20b). 

The only real constraint imposed on the dynamical system under consideration is that its 

phase-space be a normed set of functions on which probability measures can be defined. 

Therefore this analysis is also valid for the statistical investigation of partial differential 

equations. In fact this approach was pioneered by E. Hopf in [79] in which he derived an 

evolution equation for the characteristic functional describing the solutions of the Navier­

Stokes equations statistically. 

From (6.80), it is clear that taking the Fourier transform of (6.81) yields the evolution 

equation for the characteristic functional Zt[Jt, J2]. However, in Section 6.3.1, we derived 
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the Hopf evolution equation (6.30) for Zt[J1, J2]. Thus we conclude that the Hopf equation 

(6.30) is the Fourier transform of the infinite dimensional extension of the Kramers-Moyal 

expansion (6.81). 

From (6.14), the K-M coefficients are given by solving the partial differential equations 

presented in Section 6.4. 

6.6 Discussion 

The introduction of the joint characteristic functional (6.24b) provides a tool for the inves­

tigation of differential delay equations from a probabilistic point of view. This approach is 

meaningful from a physical perspective when dealing with large collections of entities whose 

dynamics are governed by DDE's. For example, it is well known that certain aspects of 

neuronal activity can be described with nonlinear DDE's of the type discussed here [143]. 

In addition physiological evidence suggests that in some cases the functional unit in the 

brain is not the single neuron, but a collection of neurons. Therefore, it is expected that 

to analyze physiologically plausible neural networks a probabilistic approach will be more 

adequate than a purely deterministic one. Moreover, a probabilistic description is clearly 

needed when the models are formulated as stochastic DDE's. In this case, the characteristic 

functional (6.24b) is no longer valid, but it can modified in a way similar to that presented 

in Section 7 of [128] (in the context of stochastic PDE's), and a three interval generating 

functional should then be considered. 

As a conclusion, we note that the expansion (6.37) is similar to functional expansions in 

quantum field theory and statistical mechanics which are treated in a perturbative manner 

and analyzed with Feynman diagrams. Although the moment PDE's of Section 6.4 might in­

deed be deduced from a graphical analysis of expansion (6.37), it remains to be seen whether 

the introduction of proper Feynman diagrams will provide, through graphical manipulations, 

significant insight into delayed dynamics. 
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Appendix 6A 

Here we derive equation ( 6. 77) 

h. T (b. iJ1(x;)) (ft, iJ2(x;)) dV[J., J2] = 

( 6 ( ) 6 ( ~~c}r ) c5 ( )) 8[v v']8[S(t+t.)V- Stv']. 
U X1 · · · U Xq V X(q+l) · · · V Xp 

(6A-1) 

Recall that the 8 functional can be written: 

8[G- H] fc e-i fol K(r)[G(r)-H(r)] dr dw, 

_ [r1dw (6A-2) 

where the functions H and G, defined on r E [0, 1], are elements of the function space 

C([O, 1]). Functionally differentiating (6A-2) yields 

68[~; H] = fc (-iK(r)) T1 dw. 

More generally, 

(6A-3) 

We can define 8[E- F], where E and F are elements of C[O, 1], in a fashion analogous to 

(6A-2): 

8[E F] _ fc e-i J: L(r)[E(r)-F(r)] dr dw 

fc T2 dw. (6A-4) 

From (6A-3), it is clear that if 8[G-H] is differentiated q times while 8[E-F] is differentiated 

(p q) times, the product of the two quantities will be 

c5q8[G H] t)(p-q)8[E- F] 
-::---:--:--:o=------''----:-X--:-----,-:'---~ 

6G(r1) · · · oG(rq) c5E(rq+l) · · · c5E(rp) 

c)P 8[G- H]8[E- F] 
c5G(r1) · · · 6G(rq)6E(r(q+l)) · · · c5E(rp) 

h. (l! -iK(r;) dr) (ft, -iL(r;)) Y 1 Y 2dV[J, J2]. (6A-5) 
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Replacing [G- H] by [v- v'] and [E- F] by [S(t+t.)V- Stv'], identifying the source functions 

K, L with J 1, J2 , and using the identity T 1 T 2 T, ( 6A-5) yields ( 6. 77). 
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Appendix 6B 

The concept of a functional is well known; a functional is a mapping whose arguments are 

functions and whose values are real numbers. Usually functionals are defined by integrals: 

<I>[-\] = 1b F[-\(r)] dr (6B-1) 

where F is a given function. A variation 8<1>[-\] of the functional <I>[-\] is defined by: 

8<1>[-\] = {<I>[-\+ 8-\] -<I>[-\]} 

where the brackets indicate that we only consider the part of the difference which is linear 

in 8-\, and 8-\(r) is zero everywhere except in a neighbourhood D.(x) of some point x lying in 

the interval [a, b]. The functional derivative (or variational derivative) of the functional 

<I>[-\] at the point x is defined by 

8<1>[-\] 
8-\(x) 

r {<I>[-\+ 8-\] -<I>[-\]} 
Ll(;g~~o fLl(x) 8-\(r) dr · 

As an example consider the linear functional 

<I>[-\] = 1b -\(r)g(r) dr. 

Its derivative is calculated according to the definition as follows: 

<I>[-\+ 8-\] = 1b -\(r)g(r) dr + 1b 8-\(r)g(r) dr, 

hence 

<I>[-\+ 8-\]- <I>[-\]= r 8-\(r)g(r) dr, J Ll(x) 

and we can calculate the functional derivative 

_8<1>_[ A_] = lim _J Ll~(x~) 8_-\_( r--,)g---,-(_r )_d_r 
8-\(x) Ll~O JLl(x) 8-\(r) dr · 

If g(r) is continuous, then by virtue of the mean value theorem, 

r 8-\(r)g(r) dr 
J Ll(x) 

x'j 8-\(r)dr, 
Ll(x) 
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Because x'-+ x as ~(x) -+ 0, one finally gets, for the functional derivative of (6B-2), 

J.\~x) [lb .\(r)g(r) dr] = g(x). 

It is possible to define functional derivatives of higher order, in analogy to the finite dimen­

sional situation. In fact, many well known results concerning the differential calculus of finite 

dimensional objects have analogues in the infinite dimensional case. For. a summary of the 

main results of functional calculus we refer the reader to Sobczyk [197]. 

Remark. The concept of a functional derivative presented here is a special case of the 

differentiation of a mapping of a topological space into another. If this space is Banach, then 

the derivatives can be Fn~chet or Gateaux derivatives. Furthermore, if the mapping under 

study is a functional whose arguments are elements of the Banach space C, then its Fnkhet 

derivative is the functional derivative defined in this section. 
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Chapter 7 

Conclusion 

On peut continuer a tout temps 
I' etude, mais non pas l'ecolage ... 

Michel Eyquem de Montaigne, Essais, II, 28 

The presentation of Chapter 1 concluded with a list of problems which surface repeatedly 

in the literature dealing with coupled map lattices. These are linked to the absence of a 

framework within which their statistical properties can be investigated, and therefore to a 

lack of understanding of the origins of thermodynamic behavior in these systems. 

The work presented in Chapters 2, 3 and 4 partially fills this theoretical void. The 

investigations of Chapter 2 on the simplest possible CML's led us to postulate that the 

phase transitions observed in larger coupled map systems could be analytically understood 

by studying the evolution of ensemble probability densities. This evolution is governed by 

operators, and their spectral characteristics hold the key to the analytical description of 

coupled map lattices from a statistical point of view. Chapter 3 focuses on the properties of 

deterministic lattices, and the analysis is presented for simple systems which are piecewise 

linear. The cornerstone of this approach is a result of Thlcea Ionescu and Marinescu which, 

loosely speaking, describes the spectral properties of a linear continuous operator by focusing 

on the behavior a function's norm as it evolves under the action of the operator. This 

technique yields analytical skeletons of phase diagrams for CML's which have been discussed 

numerically in the literature (cf. Figures 3.16, 3.17 and 3.19). Chapter 4 extends this 

approach to CML's perturbed by noise. The results obtained in this case are of a general 

nature, because they are essentially model-independent, and they are in a sense stronger 
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than those of Chapter 3 because they apply to most CML's likely to be of use in a modeling 

context (i.e. in which the local map is bounded). 

Our investigations of CML's lead in a natural fashion to a discussion of related continuous 

time models, framed as differential delay equations. The strong connection between spatially 

extended systems and DDE's has been recognized for some time [38, 55, 212, 213], but a 

number of recent investigations [53, 140, 217] have hinted at the possibility that certain delay 

differential equations might be studied explicitly by focusing on finite high dimensional 

coupled map systems. Chapter 5 introduces one reduction from DDE's to CML's, valid 

for both deterministic and stochastic equations, which allows us to apply the techniques 

of Chapters 3 and 4 to differential delay equations. This analysis points to the presence of 

cyclical statistical evolution in these equations ( cf Figures 5.4 and 5.5), and provides the first 

example of such behavior in unforced continuous-time systems. It also calls for experimental 

verifications of this prediction; we describe below an experimental setup designed for this 

purpous. 

Finally, we conclude the thesis with a rather formal presentation of the "proper" con­

struction of statistical mechanics for the differential delay equations discussed in Chapter 5. 

The spirit of the approach presented in Chapter 6 is the same as that of the rest of the thesis, 

but the methods developed are rather dissimilar, because we take the conceptual step from 

finite dimensional spaces to infinite-dimensional ones. As a result, much of the intuition is 

lost, and the formalism becomes rather cumbersome. However, this step also permits us to 

identify some unresolved mathematical problems, whose answers will also be of great use 

to investigators having to deal with functional integrals in whatever context. For example, 

some of the current research on the theory of integration with respect to arbitrary functional 

measures using the methods of nonstandard analysis is motivated by the presence of such 

integrals in various fields of research, one of which is the probabilistic description of control 

loops with retarded feedback modeled by DDE's. 

The contents of the thesis, summarized above, point to various research avenues, which 

we now briefly describe. 

Further characterization of the statistical cycle 

Although asymptotic periodicity, and the presence of phase transitions in arbitrary large 

coupled map lattices can now be proven rigorously, it is still not possible to give necessary 

and sufficient conditions on the control parameters of a given model which would locate 

these transitions unambiguously. In deterministic CML's we give sufficient conditions on 
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the parameters. This is a significant improvement from the existence results which were 

available previously [21, 22, 72, 109], but there is room for further determination of the 

statistical behavior of some of the simpler models. 

In addition, we have repeatedly mentioned the unknown (analytical) dependence of the 

functionals ri in equation (1.21) on the initial ensemble density f0 . This property has in­

triguing consequences, for it implies that the ensemble behavior of an asymptotically periodic 

system depends on the initial (out of equilibrium) ensemble considered. Hence the states 

of thermodynamic equilibria are not unique, and it would be very interesting to understand 

what the number of possible states of equilibria is (that is the number of density cycles of 

period r, where r is the number off's in (1.21)) and their relative stability (i.e. the size of 

their basins of attraction). 

CML's with an infinite number of elements 

One of the original motivations for studying CML's was to increase our understanding 

of fluid turbulence. The variety of spatial phenomena observed in CML's is staggering, and 

some systems (such as some of the examples of Figures 3.1, 3.2 and 3.4) display a spatially 

complex evolution which is reminiscent of developped fluid turbulence. However, spatial 

chaos is only possible in systems with infinite spatial extension, and so it is of interest to 

extend at least some of the results presented here to CML's with an infinite number of 

elements. Keller and Kiinzle [109] have laid the foundations for such a program by defining 

the notion of variation for functions of an infinite (but countable) number of variables. 

However, the techniques presented here are not easily extendable to these situations because 

of the absence of proper embedding theorems, and their extension to infinite lattices is 

therefore left as an open problem. We conclude by mentioning that the existing descriptions 

of infinite lattices do not make use of transfer operator techniques (except [109]), but focus 

instead on symbolic chains (cf. Sections 1.4 and 1.4.4.3) and that the results presented in 

this thesis might stimulate the search for cyclical density evolutions in such systems using 

the techniques of the thermodynamic formalism. 

Experimental verification of statistical cycling in DDE's 

The cycling density behavior discussed in Chapter 5 can be observed numerically (cf. 

Figures 5.4 and 5.5), but it has not yet been described in an experimental setup. However, 

Prof. Frank Moss (University of Missouri) has completed the design and implementation of 

a task specific analogue computer to investigate the phenomenon in a model DDE of the 
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form (5.4). The design of the analogue computer is similar to the one given in [137], and the 

experimental methods are explicitly described by Moss and McClintock in reference to the 

analogue simulation of ordinary differential equations [157]. Preliminary results indicate that 

the tell-tale features of asymptotic periodicity (dependence of the asymptotic cycle on the 

initial density, change of the period as parameters are varied) are all observed experimentally. 

These unpublished results are promising because they provide the first experimental evidence 

of statistical cycling in an unforced, continuous-time autonomous physical system. One of 

the areas of physics in which delay differential equations arise quite frequently is nonlinear 

optics, and more specifically the study of resonnant cavities filled with nonlinear media. 

It is therefore no surprise that continuous time statistical cycling is also expected in these 

systems. 

Statistical cycling in nonlinear optics 
This short discussion is based on a review paper by Lange which describes in some de­

tail the phenomenon of noise-induced transient bimodality in nonlinear optical resonnators. 

[120]. We now describe this experiment schematically, and conclude with admittedly specu­

lative remarks based on intuition rather than experience with optically bistable devices. 

The quantity measured in the experiment described by Lange [ibid.] is the output inten­

sity of light transmitted by a nonlinear resonnator which is driven by a Dye laser. When 

the input is switched from a low level to a sufficiently higher one, the output intensity also 

changes. If the experiments are performed a large number of times, the density of output 

intensities is seen to change rather abruptly, some time after the step increase of the input 

light intensity. In the absence of noise, these densities are unimodal, and centered around 

one of the two bistable attractors. In the presence of noisy fluctuations in the input light 

levels, the densities are bimodal, with peaks centered around each of the two levels for a 

transient time until the switch from one output level to the other is completed. Hence in the 

experiments described by Lange, there is no periodic cycling in the densities because there 

is no periodic input. We conjecture that periodic cycles in the densities will be observed if 

the input light intensities are modulated periodically. This observation might seem trivial, 

but our theoretical description of asymptotic stability implies that the statistical properties 

of a set of experiments will then depend on the distribution of initial conditions. Such de­

pendence is counterintuitive, and can lead to the erroneous conclusion that experimentally 

observed differences in the ensemble statistics are due to some intrinsic drift in the param­

eters of the system under consideration, when they are in fact due to a little known, but 
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Appendices 

A Computer codes 

Because of space limitations, most of the computer code developed to obtain the various 

numerical (and symbolic, using MAPLE) results presented in the thesis cannot be included 

here. For the sake of completeness, we do include the CML approximation to a differential 

delay equation used in Chapter 5 (mainly because the code is much shorter than the programs 

for Chapter 3, and because the "engine" is the same whether the model is a CML or a DDE. 

f* this program simulates the evolution of 
an ensemble of differential delay equations, approximated by a coupled 
Map lattice, via the Euler approximation of the derivative. 
The state of the equation at any given time is the state 
of a ring of coupled maps at that time. 
Can compute the collapsed densities of the activity of the ring, 
and/or the temporal correlation function at the desired site. 

The feedback functions 
are contained in the functions "mapq,h,m etc .. ", The connections are 
contained, along with the boundary conditions 
in "iterate". The functions "geLpard" and "get_pari" are used for the 
I/0 for this program (they allow the user not to have to specify all parameters 
everytime the program is run). 

The original DDE is: 
dxjdt = -ax(t)+F(x(t-tau)) 

and the map is 
XAi_t = (ab+ 1r { -1}*XA {i-1}-t+bF(xA {i-1}-{ t-1}) 

with appropriate boundary conditions and b = 1/N, N is the number of maps. 

!*******************************************************~ 
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#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include 11 ddepars . h" 

double latto[WIDTH]; 
double lattn[WIDTH]; 
double intermed[WIDTH]; 

int counter; 

main() 
{ 

int x,z,zz,Index,en_num, t, time,length,czort,other, u,k, bufc, buffer _sampled; 
int timel,time2,time3,time4,time5,time6,time7,time8,time9,timel0; 
double average,autocor,square,tcor[lOOO],tcor_buf[lOOO],xcor_buf[lOOO]; 
double BGE[lOOO],dumbg; 
int enbinplot[150](10][3]; 
double initialv ,activ _for_bin[22500] [10] [3]; 
int ens_counter,ens_size,num_oLbuf; 

FILE *para; 
FILE *tc; 
FILE *acti; 
FILE *ensl; 
FILE *ens3; 

FILE *ini; 
FILE *bg; 
FILE *Sol; 
FILE *ens2; 

tc=fopenC'ddetcor .dat", "w"); bg=fopen( 11 ddeBGentropy .dat", "w"); 
acti=fopen( 11 ddeactiv .dat", 11 w11

); para=fopene'ddedenpar .dat", "r"); 
ini=fopen("ddecodensini .dat", 11 r"); sol=fopen("solution. dat", "w"); 
ensl=fopen("noise1. 0 .4.dat", "w"); ens2=fopen("noise2. 0.4. dat", "w•'); 
ens3=fopen("noise3. 0. 4 .dat", 11 w"); 

fscanf(para, 11 %d 11
, &choice); fscanf(para, 11 %d 11

, &inichoice); 
fscanf(para, "%d 11

, &duration); fscanf(para, "%d", &tran); 
fscanf(para, "%d", &tcorchoice); fscanf(para, "%d 11

, &pikx); 
fscanf(para, 11 %d 11

, &storechoice); fscanf(para, 11 %d 11
, &codenchoice); 

202 



0 

c 

fscanf(para, "1.d", &ens...size); fscanf(para, "1.d", &num_oLcolde); 
fscanf(para, "1.d11

, &bgchoice); fscanf(para, "1.lf", &r); 
fscanf(para, 111.lf 11

, & beta) fscanf(para, 11 1.1£ 11
, &epsilon); 

fscanf(para, "1.1£ 11
, &eo); fscanf(para, 111.1£", &alpha); 

fscanf(para, "1.1£ 11
, &inileft); fscanf(para, "1.lf", &iniright); 

fscanf(para, "1.d", &seedchoice); fscanf(para, 111.d11
, &keepchoice); 

fclose(para); 

f****The following statements constitute the I/0 for the program*******! 

printf( 11 Choose F: Tent (1), quadratic (2), Keener (3): [1.d] 11
, choice); 

choice = geLpari( choice); 
printf( 11 Do you want the initial function to be a constant (0), the final one of the 

previous run (1), or a random function (use this in this version) (2) [1.d] ", inicho 
inichoice=geLpari ( inichoice); 

printfC'How many time delays should this simulation last (please use an even integ 
[1.d] 11

, duration); 
duration= geLpari(duration); 

printf("How many time delays should be discarded as transients (please use an even 
integer)? [1.d] ", tran); 

tran = geLpari(tran); 
printf("Do you want to store the activity at one time in each buffer of the last si1 

of the ensemble (1 for yes, 0 for no)? [1.d] ", tcorchoice); 
tcorchoice=get_pari ( tcorchoice); 

if( tcorchoice == 1) { 
printf("Enter that time (must be an integer in [0, 1.d]): [1.d] ", WIDTH, pikx); 

pikx=get_pari(pikx);} 
printf( 11 Do you want to store x(t), the solution of the last DDE in the ensemble? (1 

[1.d] 11
, storechoice); 

storechoice=geLpari( storechoice); 

printf("Do you want to compute ensemble-sample densities (1 for yes, 0 for no)? [%· 
11

, codenchoice); 
codenchoice=get_pari ( codenchoice); 

printf("Enter number of elements in the ensemble (make sure enbinnum is OK): [1.d] 
" ens ...size)· ' ' 

ens...size=geLpari (ens ...size); 
if( codenchoice == 1) { 

printf("Do you want to compute their BG entropy? (1 for yes, 0 for no)? [%d] ", l 
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bgchoice=get_pari (bgchoice); 
printf( "This simulation is done on an ensemble of %d elements, so \n", ens ...size); 
printf("we use %d bins for the collapsed density. \n", enbinnum);} 

if (choice 1 ){ 
printfC'Enter the value of a for the tent: [%f] ", r); 
r = geLpard(r); 
} 

else if (choice == 2) { 
printf( 11 Enter the value of L for the quadratic nonlinearity s(x)=Lx(1-x): [%f 

11 r)· 
' ' 

r = get_pard(r);} 
else if (choice 3){ 

printf("Enter the value of r for the function s(x)=(rx +b) modi: [%f] ", r); 
r = geLpard(r); 
printf("Enter the value of b for the same function: [%f] ", beta); 
beta geLpard(beta);} 

else if (choice== 4){ 
printf("Enter the value of c for the Mori function: [%f] ", r); 
r = geLpard(r);} 

printf("Enter alpha, the decay rate in the DDE: [%f] ", alpha); 
alpha=get_pard(alpha); 

if(inichoice == 0){ 
printfC'Enter the value of the initial function: [%f] ",eo); 

co=get_pard( co);} 
if(inichoice == 2){ 

printf("Lower bound of the support of the random initial functions (on [0,1])? [ 
", inileft); 

inileft=get_pard (inileft); 
printf( "Upper bound of the support of the random initial functions (on [0, 1] ) ? [ 

11
, iniright); 

iniright=geLpard(iniright); 
printf( 11 Enter the seed used to get the initial function (must be an integer): [%, 

11
, seed choice); 

seedchoice=get_pari(seedchoice) ;} 
I* print£(" Do you want to store the solution in the last delay for later use as an initial fun cl 

printf("Enter 1 for yes, 0 for no: {%d) ", keepchoice); 
keepchoice get_pari(keepchoice); *I 

para=fopen( "ddedenpar. dat", 11 W"); 
fprintf(para, "%d\n 11

, choice); fprintf(para, "%d\n", inichoice); 
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fprintf(para, "%d\n", duration); 
fprintf(para, "%d\n", tran); fprintf(para, "%d\n", tcorchoice); 
fprintf(para, "%d\n", pikx); 
fprintf(para, "%d\n", storechoice); fprintf(para, "%d\n", codenchoice); 
fprintf(para, "%d\n", ens...size); fprintf(para, "%d\n 11

, num_of_colde); 
fprintf(para, 11 %d \n 11

, bgchoice); fprintf(para, 11 %f \n 11
, r); 

fprintf(para, "%f\n", beta); fprintf(para, 11 %f\n11
, epsilon); 

fprintf(para, 11 %f\n 11
, eo); fprintf(para, "%f\n", alpha); 

fprintf(para, 11 %f \n 11
, inileft); fprintf(para, 11 %f \n 11 

, iniright); 
fprintf(para, "%d\n", seedchoice); fprintf(para, "%d\n11

, keepchoice); 

fclose(para); 

timel=O; time2=100; 
time3=200; time4=300; 
time5=400; time6=500; 
time7=600; time8=700; 
time9=800; time10=900; 
buffer...sampled=O; num_of_buf 3; 

srand48{seedchoice); /*initializes the random generator drand48() *f 
ens_counter=O; 

z=O; 
zz=O; 

I* START ENSEMBLE LOOP *I 
for( ens_counter=O; ens_counter < ens...size; ens_counter++ ){ 

x=O; 
counter=O; 
lndex=O; 

I* used for plotting collapsed densities in the proper format for plt*f 
z=O; 
zz=O; 
delta =0.001; f*delta must be 1/WIDTH, otherwise the CML doesn't approximate the 

DDE !!!*f 
t=O; 
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buffer..sampled =0; 

f*** We can now go through the integration of the CML for as long as specified by the user* 

f*********Specify the initial density: It is a linear transformation of a 
random variableuniformly distributed on {0,1}. 

if (counter == 0){ 

if(inichoice == 0){ 
Index=O; 

for(x~O; x<WIDTH; x++ ){ 
Index=lndex+ 1; 
initialv=co; 

} 

if ( inichoice == 0){ 
latto[x]=initialv;} 

else if (inichoice == 1 ){ 
fscanf(ini, 11 %lf 11

, &latto[x]);} 

x=O;} 
else if (inichoice > 0){ 

Index=O; 
for(x~O; x<WIDTH; x++ ){ 

Index= Index+ 1; 
initial v=drand 48 (); 
initialv=(iniright-inileft) *initialv + inileft; 

if( ens_counter> 18000) { 
initialv=(0.1)*drand48() + 0.65;} 

if ( inichoice == 2) 
latto[x] =initialv; 

else if (inichoice == 1) 
fscanf(ini, 11 %lf 11

, &latto[x]); 

x=O; 
} 

} 

} 

!********************************************************~ 
f**This stage makes the "old" lattice, the "new" one of the previous time step*/ 
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if (counter 2 1){ 
for(x20; x <WIDTH; x++ ){ 

latto[x]=lattn[x]; 
} 

x=O; 
} 

!*****************************************************~ 
f**The following lines store the activity for the ensemble stats. (Brutish way)**! 
if( counter 2 duration-num_oLbuf) { 
if( codenchoice == 1) { 

} 
} 

activ _for _bin[ens_counter] [O][buffer_sampled] = (latto[time1 ]-0.4)*4; 
activ_for_bin[ens_counter][l][buffer_sampled] = (latto[time2]-0.4)*4; 
activ_for_bin[ens_counter][2][buffer_sampled] = (latto[time3]-0.4)*4; 
activ _for _bin[ens_counter] [3] [buffer _sampled] = (latto[time4] -0.4)*4; 
activ _for_bin[ens_counter] (4] [buffer _sampled] = (latto[time5]-0.4)*4; 
activ _for_bin[ens_counter] [5] [buffer _sampled] = (latto[time6]-0.4)*4; 
activ _for_bin[ens_counter][6][buffer_sampled] = (latto[time7]-0.4)*4; 
activ _for_bin[ens_counter][7][buffer_sampled] = (latto[time8]-0.4)*4; 
activ _for_bin[ens_counter] [8] [buffer _sampled] = (latto[time9]-0.4)*4; 
activ _for_bin[ens_counter] [9) [buffer _sampled] = (latto[timel0)-0.4)*4; 

buffer_sampled = buffer_sampled+l; 

I** Store the temporal activity at one chosen site: pikx **I 
if( ens_counter == ens_size-1) { 
if( tcorchoice == 1) { 

if (counter 2 tran){ 
tcor _buf[t ]=latto[pikx]; 
fprintf(acti, "%f\n", latto[pikx]); 
t=t+l;} }} 

!**********************************************************~ 
I**** The ]lext loop iterates the activity at each site of the CML. This creates the "new" la 

Index=O; 
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} 

for(x=O; x <WIDTH; x++ ){ 
Index= Index+ 1; 

iterate(x); 

} 

if( counter ;:: tran && storechoice == 1 && ens_counter == ens.Jlize-1 ){ 
fprintf(sol, "%f\n11

, latto[x]);} 

x=O; 

!***********end of the temporal iteration loop ****************! 
} 

!*******Calculation of the temporal correlation function at site pikx****f 
if( tcorchoice == 1) { 

z=O; 
length= (duration-tran)/2; 
autocor=O; 
average=O; 
for(z;::O; z<length; z++ ){ 

average=average+ tcor _buf[ z J;} 
average=average /length; 

z=O; 
time=O; 
czort=O; 
square=O; 
for( time;::O; time < length; time++) { 

czort=length -time; 
autocor=O; 

for(z ;:: 0; z < czort; z++ ){ 
other=z+time; 
square = ( tcor_buf(z] -average)*( tcor_buf[ other] -average); 
autocor = autocor+square; 
if ( z == czort-1 ){ 

} 
} 

tcor(time] = autocor/czort; 
tcor[time]=tcor[time]/tcor[OJ; 
fprintf(tc, "%d\t%f\n", time, tcor[timeJ); 
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z=O; 
} 

} 

if (inichoice == 0){ 
printf( 11 N.B. The initial density was supported uniformly on [%3.2f,%3.2f] for this 
run. \n 11

, inileft, iniright);} 

if (keepchoice 1) { 
ini=fopen( 11 ddecodensini. dat 11

, 
11 W11

); 

x=O; 

for(x2:0; x< WIDTH; x++ ){ 
fprintf(ini, 11 %f\n", latto[x]}; 

} 
} 

x=O; 
z=O; 

!*******Calculation of the ensemble densities at 4 different times, for ens..size functionS**** 

if( codenchoice 1) { 
x=O; 
z=O; 
k=O; 

f*****k is the number of samples within one buffer ********! 
bufc =0; 
for(bufc=O; bufc < 3; bufc++ ){ 
for(k=O; k<10; k++ ){ 
for (x=O; x<ens....size;x++ ){ 

z=floor( activ _for _bin[x] [k] [bufc] *enbinnum); 
enbinplot[z][k][bufc]=enbinplot[z][k][bufc]+ 1;}}} 

x=O; 
z=O; 
k=O; 

for(z2:0; z<enbinnum; z++){ 

209 



c 

c 

0 

fprintf(ensl, "%d %d %d %d %d %d %d %d %d %d %d\n", z, enbinplot[z][O][O], enbin­
plot[z) [1] [0], enbinplot[z] [2] [0), enbinplot[z) [3][0], enbinplot[z] [4] [0], enbinplot[z] [5] [0], enbinplo· 
enbinplot[z] [7] [0], enbinplot[z] [8) [0), enbinplot[z] [9) [0]); 

} 
x=O; 
z=O; 

for(z~O; z<enbinnum; z++ ){ 
fprintf(ens2, "%d %d %d %d %d %d %d %d %d %d %d\n", z, enbinplot(z][0][1], enbin­

plot[z][1 ][1 ), enbinplot[z][2][1), enbinplot[z][3][1], enbinplot[z][4][1], enbinplot[z][5][1 J, enbinplo· 
enbinplot[z][7][1 ], enbinplot[z][8][1 ], enbinplot[z][9][1 ]); 

} 
x=O; 
z=O; 

for(z~O; z<enbinnum; z++ ){ 
fprintf(ens3, "%d %d %d %d %d %d %d %d %d %d %d\n", z, enbinplot[zJ[0][2], enbin­

plot[z][1][2], enbinplot(z][2][2], enbinplot[z][3][2], enbinplot[z][4][2], enbinplot[z][5][2), enbinplo· 
enbinplot[z] [7] [2], enbinplot[z] [8] [2], enbinplot[z] [9] [2]); 

x=O; 
z=O; 

} 

} 

printf( "Done \n"); 
f***End of main***! 

} 

f**********************FUNCTIONS FOLLOW****************/ 

f********The hat map*************! 

double maph(i) 

{ 
int i; 

if(latto[iJ ~ 0.5) 
intermed[i]=deltMulatto[i]; 
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} 

else if (latto[i] > 0.5) 
intermed[i]=delta*r* (1-latto[i]); 

return(intermed[i]); 

f********The quadratic map********f' 
double mapq(i) 

int i; 
{ 

intermed[i]=deltMr*(latto[i]*(l-latto[i]) ); 

return(intermed[i]); 

} 

f********The Keener maP********! 
double mapk(i) 

int i; 
{ 

double noise; 

!****Include some multiple of noise in the intermed line if you 
want to put noise in the equation (i.e the CML) *********! 

noise=drand48(); 

intermed[i]=alpha*delta*(ulatto[i]+beta-fioor(r*latto[i]+beta)); 

return(intermed[i]); 

} 

I********** The ryadic maP**********! 

double mapr(i) 
int i; 

{ 
intermed[i]=ulatto[i]+beta+(drand48()*0.4)-fioor(r*latto[i]+beta+(drand48()*0.4)); 
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return(intermed[i]); 

} 

f********** The Mori map**********f 

double mapm(i) 

{ 

} 

int i; 

if (latto[i] ~ r) 
intermed[i]=( (1-r) /r )*latto[i)+r; 

else if(latto[i] > r) 
intermed[i]=(1/(1-r))- (1/(1-r) )*latto[i]; 

return(intermed[i)); 

double iterate(i) 
int i; 

{ 
int l; 

l= WIDTH-1; 

!**************The following is for the hat map*********! 
if (choice== 1){ 

} 

if (i == 0 ){ 
lattn[i] = (1/ ( alphMdelta+ 1) )*(latto[l]+maph(i)) ;} 

else if (i == l){ 
lattn[i) = (1/(alphMdelta+1))*(lattn[i-1]+maph(i-1));} 

else if (i > 0 && i < 1){ 
lattn[i] = (1/(alpha*delta+ 1))*(lattn[i-1]+maph(i) );} 

f***********The following is for the quadratic maP**********f 
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if (choice== 2){ 
if (i == 0 ){ 

} 

lattn[i] = ( 1 I ( alpha*delta+ 1)) * (latto [1] + mapq (i));} 
else if (i == 1){ 

lattn[i] = (1l(alpha*delta+1))*(1attn[i-l]+mapq(i-1));} 
else if (i > 0 && i < l){ 

lattn[i] (11 (alpha*delta+ 1) )*(lattn[i-1 J+mapq(i) );} 

I********The following is for the Keener map**************f' 

if (choice == 3){ 
if (i == 0 ){ 

} 

} 

lattn[i] = (1l(alphMdelta+1))*(latto[l]+mapk(i));} 
else if (i == 1){ 

lattn[i] = (1l(alpha*delta+ 1))*(lattn[i-1]+mapk(i-1) );} 
else if (i > 0 && i < l){ 

lattn[i] = (1/(alpha*delta+1))*(1attn[i-1]+mapk(i));} 

return(lattn[i]); 

I* The following functions are used in the I/0. *I 

double get_pard(par) 
double par; 
{ 

} 

double parl; 
char str[20]; 
gets(str); 
if (sscanf(str, 11 %1f",&par1) 

return (par); 

1) par = par1; 

213 



c 

0 

int get_pari(par) 
int par; 
{ 

int parl; 
char str[20]; 
gets(str); 
if (sscanf(str, 11 %d 11 ,&parl) == 1) par= parl; 

return(par); 

} 
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Appendix 2A 

The coordinates of the edges of the set l3 of Figures 2.5b and 2.6 were obtained using the 

MAPLE software. They are 

(1- 2c + 2c2
) 

E-1 
2c 

a(-1 
E:-1 

f3f - -2Ea ( -1 a- 4a2E 4t:2a2 + • -- -L n
2 

-4 at: - 2 + a + 4 t:2a + 4 E - 2 t 
t:-1 

2E: 
2 + 3 aE:- 2 E:2a- 4 E:- a 

a3
E + 8 a4c4 + 6 a4c:2 

c 1 

8 

a 2 at: - a2 2 a2E: a3 + 6' 
3at:+2 a-2E:2a-4t:+2E:~-4c.-u, ""_. 

E-1 
f3f - 2ac- a- 4a2E + a2 + 4c:2a2 2c 

f35 
a( -1 5ac 8t:2a + 4a2c 4a2c-2 + 5c +a 

E' 

!- 12 a4t:2 
- 8 a4c:3 

1c:3a2 

a(32E:3a3 + 4t:3 + 8a3c: 32a4E:3 - 16c4a3 - a3
- 8a4t:) 

+~----------------------------------~ 
E 1 

a ( -1 4ac 4c-2a + 4c: +a- 4c:2
) 

(2c- 1) (2c:2a2
- 2t:2a +at:- a2E: -1) 
c--1 

( -1 - 4 ac + 4 c.-2 a + 4 c + a - 4 ~::2) a 

1- 2t: + 2.::2
- ac + 2e:2a- 4E:2a2 + a2e: + 4e:3a2 

c:-1 
f3¥- 2ac-a-4a2e:+a2 +4c:2a2 2c: 

These coordinates are obtained by forward iterations of the appropriate points of the unit 

square under the action of the map <.P. 
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