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Abstract

In this thesis~ we introduce SableCC~ an object-oriented framework that generates
compilers (and interpreters) in the Java programming language. This framework
is based on two fundamental design decisions. Firstly, the framework uses object
oriented techniques ta automatically build a strictly-typed abstract synta..,,< tree that
matches the grammar of the compiled language and simplifies debugging. Secondly,
the framework generates tree-walker classes using an extended version of the visitor
design pattern which enables the implementation of actions on the nodes of the ab
stract synta..x tree using inheritance. These two design decisions lead ta a tool that
supports a shorter development cycle for constructing compilers.

Ta demonstrate the sirnplicity of the framework, we discuss the implementation
of a state-of-the-art almost linear time points-to analysis. We also provide a brier
description of other systems that have been implemented using the SabieCC too1.

We conclude that the use of object-oriented techniques significantly reduces the
length of the programmer written code, can shorten the development time and finally,
makes the code easier ta read and maintain.

ü



•

•

Résumé

Dans cette thèse, nous présentons SableCC, un environnement orienté-objet qui sert
à construire des compilateurs et des interpréteurs dans le langage de programmation
Java. Deu..x décisions fondamentales forment les assises de cet environnement. En
premier lieux, l'utilisation de techniques orientées-objet sert à construire un arbre
syntaxique strictement typé qui est conforme à la synta.xe du langage compilé et qui
simplifie le déverminage des programmes. En second lieu..'C, l'environnement génère
des classes qui traversent l'arbre synta..~que. Ces classes utilisent une version amendée
du modèle de conception orienté-objet "le visiteur". Ceci permet d'ajouter des actions
à exécuter sur les noeuds de l'arbre synta..xique en utilisant les techniques d'héritage
objet. Ces deux décisions font de SabieCC un outil qui permet d'abréger le cycle de
programmation du développement d'un compilateur.

Pour démontrer la simplicité de SableCC, nous expliquons les étapes de program
mation d'une analyse à la fine pointe des techniques de compilation appelée "analyse
de pointeurs en temps presque linéaire". De plus, nous décrivons brièvement d'autres
systèmes qui ont été bâtis avec BableCC.

Nous concluons que l'utilisation de techniques orientées-objet permet de réduire
substantiellement la quantité du code écrit par le programmeur tout en écourtant
possiblement le temps de développement. Le code s'en trouve plus lisible et facile à
maintenir.
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Chapter 1

Introduction

The number of computer languages in use today is ovenvhelming. Ranging from
general purpose ta highly speciaIized, th~y are present in almost all areas of com
puting. There are mainstream programming languages Iike C, Fortran, Pascal, but
also many other languages used in domain-specifie applications. Computer languages
can be used ta describe many things, other than computer processing. For exam
pie, HT~IL["V3C971 or TeX[Knu84] are used to describe formatted documents. A
domain-specifie languages like HL7[ANS97) is used to exchange health care informa
tion uniformly across the world. It would impossible to list an the uses here, but it
is worth noting that these languages are often embedded in larger applications. For
example, many word processing applications have their own small macro or scripting
language to allow the automation of commands.

In the 1950'5, writing a compiler was very difficult. lt took 18 staff-years to Îm
plement the first FORTRAN compiler[BBB+57]. Since then, advances in the theory
of compilers and the development of many compiler tools have simplified this task
greatly. Writing a compiler is now a feasihle task for any programmer with minimal
knowledge of compiler techniques. This simplicity is achieved due ta the use of com
piler compilers. A compiler compiler is a program that translates a specification ioto
a compiler for the programming language described in the specification. This relieves
the programmer from the burden of writing the lexical and syntacticaJ analysis code.

Over the years, many compiler compilers have been developed. The scope of
these taols varies. While sorne will build a complete compiler (end-to-ena1, others
will only build the front-end of a compiler (lexer and/or parser). It may seem, at
first glance, that an end-tû-end compiler compiler will be more powerfuI. Hawever, in
practice, front-end compiler compilers are normally integrated with a general purpose

1
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programming language. This way, the implementatian of complex data structures,
optimizations or code analyses is easier because it is done in the programmer's na
tive programming language. Front-end compiler compilers exist for almost all major
programming languages in use today.

In the last few years, the Java™ programming language{GJS96], developed and
trademarked by Sun Microsystems inc., has gaioed a remarkable popularity 00 the In
ternet. Although superficially Java has a syntax similar to C++, Java also has many
additional features of modern high-Ievel object-oriented programming languages. For
example, Java has a garbage collector, a cleaner inheritance mechanism with classes
and interfaces, and a rich standard cross-platform library with support for graphical
user interfaces and network programming. One of the most interesting properties of
Java is the portability of abject code. Java source files are compiled ta platform inde
pendent ByteCode iostructions[LF97]. At ruotime, these ByteCodes are interpreted
by a Java Virtual iV/achine[LF97] ta perform the actual computation.

It is no surprise that existing compiler compilers bave been ported to Java. For
example CUP[Hud97] is a Java version ofYACC and ANTLR[Ins97] is a Java version
of PCCTS. But, because these tools were designed with a different target language
in mind, they fail to take advantage of many new features of Java.

The tapie of this thesis is SableCC, a new compiler compiler for Java. SableCC
sits in the middle between front-end and end-to-end compiler compilers. It not ooly
generates a lexer and a parser, but it also builds a complete set of Java classes.

In the following sections we will discuss related work, then we will state the contri
butions of this thesis. Finally, we will outline the general organization of the remaining
chapters of the thesis.

1.1 Related Work

The most widely used compiler compilers today falI into two main families: Lex[Les75]
/ YACC[Joh75] and PCCTS[Par97]. Keeping in mind that many compilers are writ
ten by normal programmers to compile mini-languages, we discover that while many
languages like LISP, ML and other languages are sometime used as the accompanying
general purpose programming language, the most used languages are C, C++ and
more recently Java. C is probably most used because of its undeniable popularity.
This popularity is due to its relative simplicity and mostly, its speed performance.
C is fast because it has been designed as a portable intermediate-Ievel programming
language for implementing the Unix operating system. C++ follows, having gained

2
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most of its popularity from its complete backward compatibility to the C language.
C++ adds object-oriented elements to the C language.

Object-oriented programming has the advantage of simplifying the maintenance of
a compiler over time. The interest in building compilers in the Java language lies in
its platform independence, its robustness from a software engineering point of view
and its popularity among defectors from C++. Java is sometimes called "C plus plu.s
minus minus" because it lacks many undesirable features of C and C++ like pointer
arithmetic.

ln the following subsections, we study both tool families and look at their most
popular Java implementations.

1.1.1 Lex/YACC

Lex(Lesi5] and YACC[Joh75] (Yet Another Compiler Compiler) are a pair of tools
that can be used together ta generate a compiler or its front-end. Nlany variations on
these tools are in use today. Among the most popular versions are the Open Software
Foundation's GNU system Flex and Bison tools. These tools use the C language ta
specify the action code. (We use the tenn actions ta refer ta the code written by a
programmer to be executed at specific points of a lexer and/or parser execution).

Lex is normally used to partition a stream of characters into tokens. 1t takes
as input a specification that associates regular expressions with actions. From this
specification, Lex builds a function implementing a deterministic fini te automaton
(DFA) that recognizes regular expressions in linear time. At runtime, when a regular
expression is matched, its associated action is executed.

YACC is a parser generator. Like 1ex, YACC reads a specification that contains
both the grammar of the compiled language and actions associated with each alter
native of a production of the grammar. It then generates a parser that will execute
the action code associated with each alternative as soon as discovered. YACC gener
ates LALR(l) parsers, and has a few options to deai with ambiguous grammars and
operator precedence.

The combination of Lex/YACC allows a programmer to write a complete one pass
compiler by simply writing two specifications: one for Lex and one for YACC.

A version of Lex has been ported ta Java. It is called JLex[Ber97}. It has been
developed by Elliot Joel Berk, a student of the Department of Computer Science,
Princeton University. 1t is quite similar in functionality to Flex.

3
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A Java version ofYACC is called CUP[Hud97] (Constructor of Useful Parsers). It
has been developed by Scott E. Hudson, Graphies Visualization and Usability Center,
Geargia Institute of Technology. It is very similar to YACC, but actions are written
in the Java language.

We now list the advantages and drawbacks of using the JLex/CUP pair of tools
ta build compilers.

Advantages

• JLex DF.J\ based lexers are usually faster than hand written lexers.

• JLex supports macros to simplify the specification of complex regular expres
sions.

• JLex supports lexer states~ a popular feature found in GNU FLEX.

• CUP generates LALR(1) parsers and can deal with sorne ambiguous grammars
using options to resolve LALR conflicts.

• The set of languages that can be recognized by an LALR(1) parser is a superset of
LL(k) languages. In addition, LA.LR(l) grammars can be left recursive whereas
LL(k) grammars can't.

• LALR(l) parsers are usually faster than equivalent PCCTS LL(k) parsers for
the same language, because PCCTS uses costly syntactic predicates ta resolve
parsing conflicts.

• Both JLex and CUP are available in source code forro.

Drawbacks

• JLex supports only 8 bits characters. But, Java has adopted 16 bits Unicode
characters as its native character set. JLex has a %unicode directive, but it is
not yet implemented.

• JLex still has known bugs in presence of complex macros.

• JLex macros are treated much like C macros. This means that they are textually
replaced in regular expressions. This cao lead to very hard to find bugs similar
ta those found in C in presence of unparenthesized macros l .

llr li macro M is defined as alb, then the regular expression aMb will be interpreted as aalbb :: (aa)l(bb), not
a(alb}b as intended.

4
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• JLex and CUP have not been specially designed to work together. So, it is the
programmer's job ta build the links between the code generated by bath tools.
JLex has %cup directive, but it has no effect.

• CU? options for handIing ambiguous grammars can be quite dangerous in the
hand of a novice, because it is hard to clearly determine the recognized grammar.

• Action code embedded in CUP parsers cao be quite difficult to debug. The
abstraction required ta clearly understand the operation of a table-based LALR
parser is the source of this difficulty for casual users of CUP.

• With today's low memory prices and faster processors, many programmers prefer
to work on an Abstract Syntax Tree (AST) representation of parsed programs.
CU? offers no support for building ASTs. 50, the programmer has to write the
appropriate action code to build nodes for every production alternative of the
grammar.

• The lack of support for ASTs renders CUP ill suited for multiple pass compilers.

• The fact that actions are embedded in the specification is a big software en
gineering problem. It means that resulting specifications are ofteo enormous.
Since CUP does oot allow the specification to be broken inta multiple files, the
specification may result in one huge file. Furthermore, the duplication of action
code in the specification and in the resulting program is quite bad. It leaves
to the programmer the responsibility of keeping the specification and resulting
program consistent. So sa/ely debugging JLex/CUP action code involves the
fol1owing tedious cycle:

Repeat

1. Writing or modifying action code in the specification file.

2. Compiling the specification.

3. Compiling the resulting code.

4. Executing the resulting program to find errors.

5. Locating the errors in the program.

6. Looking back in the specification for the related erroneous action code.

UntiI success

• Taking a shortcut in the previons cycle by fixing errors directIy in the generated
program can result in unsynchronized specification and working code, if the
programmer does not take the time to update the specification accordingly. This

5
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is most likely ta happen when a programmer debugs actions in an Integrated
Development Environment.

1.1.2 PCCTS

PCCTS[Par97] stands for Purdue Compiler Construction Tool Set. It has been devel
oped mainly by Terence Parr. originally, PCCTS was written in the C++ language
to generate compilers written in C++. Lately, PCCTS 1.33 has been ported ta Java
and renamed ANTLR2.xx[Ins97].

ANTLR 2.xx is a single tool combining together all three parts of PCCTS. PCCTS
1.33 consisted of:

1. ANTLR (ANother Tooi for Language Recognition),

2. DLG (DFA-based Lexical analyzer Generator) and

3. SORCERER, a taol for generating tree parsers and tree transformers

A very similar tool has been developed in parallel by Sun ~Iicrosystems inc., called
JavaCC. There are no major differences between the two products but for the copy
right and source code availability. While ANTLR i5 in the public domain, JavaCC is
a commercial product, not available in source code format.

PCCTS has been developed in reaction to the complexity of using Lex/YACC to
resolve compilation problems. Mainly, the table based bottom-up parsing of YACC
resulted in very hard ta debug compilers. Instead, PCCTS builds LL(k) recursive
descent parsers. An LL(l) recursive-descent parser is constituted of a set of functions
called recursively to parse the input. Each function is responsible for a single pro
duction. The function gets a token from the lexer and determines the appropriate
alternative based on it. This very intuitive approach was used to build early LL(l) one
pass Pascal compilers. Today, sorne programmers still code LL(1) recursive-descent
parser by hand, withaut the help of compiler compilers. Figure 1.1 shows a small
LL(l) grammar and the recursive functions used to parse it. The problem is that
LL(l) grammars are very restrictive. Many cornmon programming constructs are not
easily written as an LL(l) grammar. The most cornmon problems are:

1. LL(l) grammars require two alternatives of a production to be distinguishable by
loaking only at the next available token. This means that the following grammar
is not allowed: A = aAla.

6
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A = 'a' A {action1} 1

'b' B {action2};
B = 'b ' {action3};

The recursive functions:

void AO
{

Il A = 'a' A l 'b' B;

switch(lexer.peek(»
{

case 'a': Il A = 'a' A
lexer.get(); Il We match the 'a'
A()j Il We call recursively to handle A
Il the code in action1 is inserted here

Il A = 'b' B
Il We match the 'b'
Il We calI recursively to handle B

code in action2 i8 inserted here

break;
case 'b':

lexer.get();
BO;
Il the

break;
defauIt:

Il error!
}

}

void BO
{

lIB = 'b';

switch(lexer.peek(»
{

case 'b': lIB = 'b 1

lexer.get(); Il We match the 'b'
Il the code in action3 is inserted here

break;
default:

Il error!
}

1-

Figure 1.1: A small LL(I) grammar and its parsing functions

•
7



• 2. LL(l) grammars cannat be left recursive. Sa, this is not allowed: A = A.ala.

PCCTS offers LL(k) parsing and many powerful features. The most important
ones are: (1) semantic predicates, (2) syntactic predicates, (3) Extended Backus
Naur Form2 (EBNF) syntax, and (4) AST building and Tree-parsers.

A semantic predicate specifies a condition that must be met (at run-time) before
parsing may proceed. In the following e."<ample, we use a semantic predicate ta dis
tinguish between a variable declaration and an assignment alternative, using PCCTS
syntax:

statement:
{isTypeName(LT(l»}? ID ID
ID "=" expr ";11;

Il .11, 1 Il declaration "type varName;"
Il assignment

•

The parsing logic generated by PCCTS for this example is:

if(LA(l)==ID t& isTypeName(LT(l»)
{

match alternative one
}

else if (LA(l)==ID)
{

match alternative two
}

else error

This example showed us how one can influence the parsing process with semantic
information using sematic predicates.

Syntactic predicates are used in cases where finite LL(k) for k> 1 is insufficient
ta disambiguate two alternatives of a production. A syntactic predicate executes
the parsing function calls of the predicate, but it does not execute any action code.
If the predicate succeeds, then the alternative is chasen and the parsing caUs of
the alternative are executed along with action code. If the predicate fails, the next
matching alternative (or predicate) is executed.

One of the most popular features of PCCTS is its directive to build abstract syntax
trees (AST) automatically. The resulting AST has a single Java node type shared by

2EBNF is BNF augmented with the reguJar expression operators: 0, ., ? and +.

8
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all the nodes. One gets specifie information about the parsing type of the nodes by
calling methods on the node. Additionally, PCCTS allows for building tree-parsers..A.
tree-parser is a parser that scans the AST for patterns. If it finds a specified pattern,
it executes the action code associated with the pattern. A tree-parser is very similar
in its specification and implementation to normal parser. 1t uses the same LL(k)
EBNF and predicates as normal parsers and it is built using recursive functions.

We will now list the advantages and drawbacks of using the Java versions of PCCTS
(ANTLR2.xx and JavaCC) when building compilers.

Advantages

• Bath tools have a tight integration of the lexer and the parser.

• JavaCC DFA-based lexers accept 16 bits Unicode characters.

• ANTLR lexers are LL(k)-based (with predicates) and share the same syntax as
parsers.

• Action code is much easier ta debug with ANTLR and JavaCC than with
L.ALR( 1) table-based parsers, due to the natura! behavior of recursive-descent
parsers.

• Bath tools support EBNF.

• Bath tools have options to generate ASTs automatically.

• Both tools support recursive-descent tree-parsers.

• The support for ASTs is very convenient for multiple-pass compilers.

• The range of languages that can be parsed by these tools is much bigger than
LL(l), and is relatively comparable ta LALR(l). The use of semantic predicates
enables the parsing of context-sensitive grammars.

• Both tools are free. Additionally, ANTLR is provided in source code form and
is in the public domain.

• Bath tools are relatively weIl supported, with dedicated newsgroups on the In
ternet.

9
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Drawbacks

• ANTLR lexers do not support 16 bits Unicode character input.

• The flexibility of predicates cornes with a very high cost in performance if used
poorly by a programmer.

• vVhile semantic predicates allow the parsing context-sensitive grarnmars, they
also are a software engineering problem. Semantic verifications must happen
along with parsing in arder ta enable semantic predicates. Furthermore, the
predicates are somehow an integral part of the resulting grammar. This obscures
the grammar.

• Syntactic predicates are very expensive in computation time.

• A majority of predicate uses would oot be needed by an LALR(1) parser to
recognize the same grammar.

• LL(k) grammars cannot be left recursive. This handicap can be fixed by widely
know grammar transformations and the use of EBNF syntax. A = Aala => A. =
(a)+.

• ANTLRjJavaCC specifications suffer from the same important software engi
neering problems as JLex/CUP. They tend to become huge, and debugging ac
tion code involves the same tedious cycle.

• As with JLexjCUP, the responsibility of keeping the specification and the gen
erated code synchronized is left to the programmer. So taking a shortcut in the
debugging cycle by fixing errors in the program directIy can result in unsyn
chronized specification and working code. This is most likely to happen when
debugging semantic predicates in an Integrated Development Environment.

• The integrity and the correctness of the AST is left in the hands of the pro
grammer. There will be no waming if a transformation on the AST results in
a degenerate tree. Sucb bugs are extremely difficult to track, because they may
result in a null pointer exception, or sorne other error condition in unrelated code
thousands of instructions after the transformation occurred. This is comparable
ta C and C++ array out of bound problems.

10
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1.2 Thesis Contribution

This thesis reports on SableCC, a new compiler framework for building compilers in
the Java programming language. SabieCC uses design patterns and takes advantage
of the Java type system ta deliver highly modular, abstract syntax tree (AST) based,
object-oriented compilers.

Our approach differs from other approaches in that SableCC specification files
don't contain any action code. Instead, SabieCC generates an object-oriented frame
work in which actions can be added by simply defining new classes containing the
action code. This leads to a tool that supports a shorter development cycle.

SableCC generated ASTs are strictly-typed. This means that the AST is self pre
serving, preventing any corruption from occurring in it. This contrasts with ANTLR
(and JavaCC) generated ASTs where the integrity of the AST is left in the hands of
the programmer.

In summary, the main contributions of this thesis are:

• The design of a new approach ta build easy ta maintain, AST based, object
oriented compilers in the Java language.

• The use of abject-oriented techniques ta clearly separate machine-generated code
and human-written code. This simplifies the maintenance of a compiler and leads
ta a shorter development cycle.

• The introduction of an extended visitor design pattern that supports evolving
structures. This simplifies the addition ofcustom node types in the AST, without
modifying existing classes.

• The implementation of SableCC, an object-oriented compiler framework.
SableCC consist of:

1. A deterministic finite automaton (DFA) based lexer generator.

2. An L.>\LR(l) parser and AST builder generator.

3. An object-oriented AST framework generator.

• The implementation of the front-end of a compiler for the Java programming
language using SableCC.

• The implementation of a SIMPLE C compiler front-end and a state-of-the-art
points-ta analysis for SI1tIPLE C programs, as a proof of concept on the simplic
ity of using SableCC.
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• The public release of the SableCC software along with examples on the Internet.
SableCC is available, free of charges, from the web site
http://www.sable.mcgill.ca/sablecc/. A. discussion mailing-list is aise provided3 .

1.3 Thesis Organization

Chapter 2 provides the required background to read this thesis. Chapter 3 presents an
overview of the SableCC compiler compiler along with a complete example. Chapter 4
describes in details the lexing portion of SableCC. Chapter 5 describes the grammat
ical specifications of SableCC and ùiscusses their relation with the generated A5T.
Chapter 6 detaiis SabieCC generated frameworks and discusses the techniques ta
make most efficient use of the framework. Chapter 7 details a few case studies, and
chapter 8 presents our conclusions and points out directions for future work.

3See Appendix 8.2 for details.
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Chapter 2

Background

This chapter presents sorne basic compiler notions that will he required in the follow
ing chapters. These notions are normally acquired in undergraduate compiler courses,
sa we will be brier. This chapter also presents an introduction to the Java type system
which provides the background required ta understand the robustness of the typed
ASTs created by SableCC.

2.1 Regular Expressions and Deterministic Finite Automata
(DFA)

Regular Expressions and Deterministic Finite Automata (DFA) are used ta specify
and implernent lexers. Before going further, we state a few definitions.

Definition 1 : A string S over an alphabet ~ is a finite sequence of symbols drawn
{rom that alphabet. The length of a string s is the number of symbols in s. The
empty string, denoted E, is a special string of length zero.

Definition 2 : A language Lover alphabet E is a set of strings ouer this alphabet. l

In less formai terms, a string is a sequence of characters and a language is just a set
of strings. Table 2.1 defines the union, concatenation and Kleene closure operations
on languages. These operations will be useful in the definition of regular expressions
that follows.

l The empty !et and the set {(} that contains only the empty string are languages under this definition.
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Operation Definition
union (L U M) Lu M = {s 1 s is in L or s is in 1\tf}

concatenation (LM) LM = {st 1 s is in L and t is in M}
00

Kleene closure (L·) L· = U Li J where Ln =LL...L.
i=O ~

n times

Table 2.1: Operations on languages

Definition 3 : Here are the ro,les that define a regular expression over alphabet
E:

1. E is a regular express'&on that denotes the language {f}, the set containing the
empty string.

2. If c is a symbol in I:, then c 'is a regular expression that denotes the language
{cl, the set containing the string c (a string of length one).

3. If T and sare regutar expressions denoting the languages L(r) and L(s) respec
tively, then:

(a) (r) is a regular expression denoting the language L(r).

(b) (r)l(s) is a regular expression denoting the language L(r) U L(s).

(c) (r)(s) is a regular expression denoting the language L(r)L(s).

(d) (rf is a regular expression denoting the language (L(r))-.

In practice, a few additional mIes are added ta siInplify regular expression notation.
First, precedence is given ta operators. The • operator gets the highest precedence,
then concatenation then union. This avoids unnecessary parentheses. Second, two
additional operatars are added: + and '?, where r+ = Tr· and r? = rlf. These new
operators get the same precedence as the • operator.

Here are sorne examples of regular expressions and the language they denote.

Example 1 : a- = {f, a, aa, aaa, ...}

Example 2 : a+ =aa- = {a, aa, aaa, ...}

Example 3 : a?b =ablb = {ab, b}

Example 4 : (alb)(alb) = {aa,ab,ba,bb}

14



• Example 5 : ala*b =al(a*b) = {a,b,ab,aab,aaab,aaaab, ...}

Let's look, now, at deterministic finite automata. First we state a definition.

Definition 4 : A deterministic finite automaton is a mathematical model that
consists of:

1. A set of states S.

2. A set of input symbols E.

3..4 transition function move that maps state-symbol pairs to astate.

4. Astate So that is called the initial state.

5. A set of states F called final states.

:\ DFA accepts (or recognizes) an input string s = CtC2 •••Cn if and only if Sn exists2

and is a final state, where Si+l =maue(si, C&+d, starting with state sa. Here are sorne
oFAs and their recognized languages.

Example 6 :

1. S = {sa, fll f2}

2. E = {a,b}

{

if S = So and c = a
if s = sa and c = b

:J.move(s, c) = if s = ft and c =a

if s = /2 and c = b

•

4. initial state = So

5. final states = {fI, /2}

This DFA recognizes the language {a, b, aa, bb, aaa, bbb, aaaa, bbbb, ...}. It is worth
noting that it is the same language as the language recognized by the regular expression
a+lb+. Figures 2.1 and 2.2 show two other representations for this DFA.
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Figure 2.1: Graphical DFA accepting a+lb+.

Figure 2.2: Another notation for DFA accepting a+lb+.

Regular expressions and DFAs are proven ta he equivalent[HU79], in the sense
that for every regular expression there exists a deterministic Bnite automaton that
recognizes the same language, and for every deterministic finite automaton there
exists a regular expression that recognizes the same language.

On the practical side, however, regular expressions are much easier ta use by
humans ta specify recognizable fOrIns, while DFAs are easily implemented in tables
to recognize a language in linear time in the size of the input stream. Sa, usually,
a lexer generator reads token definitions in regular expression form and generates a
lexer based on the equivalent DFAs.

:lNote that maye does not have to map every state-syrnbol pair to a state. For example, the empty transition
function is a vaUd transition funetion.
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2.2 Grammars

The syntactic structure of a programming language is usually expressed using a
context-free grammar (or simply grammar) , commonly called Backus-Naur Form3

(BNF). Figure 1.1 contained an example of a very simple grammar. Here is a formai
definition for context-free grammars.

Definition 5: A context-free grammar or Backus-Naur Form (BNF) is a
quadruple G = (VN , vT, P, S) where vr is a set of tokens called terminais, VN is a
set of nonterminals, P ç VN X (VN U VT t is a set of productions where each produc
tion consists of a nonterminal called left-hand side and a sequence of nonterminals
and/or terminals called right-hand side, and S E VN is the start symbol.

As a notational shortcut, productions with the sarne left-hand sicle are normally
grouped together and a "1" is used to separate right-hand sides.

Certain classes of grammar can be parsed efficiently. Specifically, LL(I) and LR(I)
grammars can be parsed in linear time in the size of the AST. 1t is worth noting that
ANTLR/JavaCC implementation of LL(k) grammars are not linear in the size of the
AST. LL parsers are called top-down parsers, and LR parsers are called bottom-up
parsers.

L..-\.LR(I) grammars are a subset of LR(I) grammars that can he implemented
using a more compact representation of parsing tables. NIost modern programming
constructs can he expressed easily using LALR(l) grammars. In difficult cases, a
slight rela.xation of the grammar rules (by making the grammar accept a larger lan
guage including sorne invalid input) resolves LALR(l) conflicts. Invalid constructs
are eliminate at later stages of the compilation process.

Example 7 : The following grammar is not LALR(l):

A = BdelCdf

B =blc

C=c

To see the problem, we look at the input: c· df (the dot represents the current
parsing location). The problem is that with one character lookahead, the parser cannat
determine if the input is: B· d... or C . d.... This can be easily resolved by eliminating
production C which is a subset of production B.

3Sometimes called Backw nonnal form
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A. = BdelBdf

B=blc

This will accept sorne invalid strings like bd!. Such strings can be elirninated after
the parsing process.

LL(l) grammars, on the other hand, are a very small subset of LR(l) grammars.
It is often difficult to express sorne cornmon programming constructs using LL(l)
grammars. For example, the grarnmar E = E + nln that represents left-associative
expressions is not LL(l).

There is an additional notation called Extended BNF (EBNF). This is simply the
BNF notation extended with regular expression operators {O; ,+ ,'?}. So instead of
writing P = ablE, using EBNF we can write P = (ab)?

2.3 The Java Type System

In this section, we discuss the most important features of the Java type system for
this thesis. The type system of Java is relatively complex but simpler and safer than
C++.

Java, like many other abject oriented languages, makes a clear distinction between
the declared type of a variable and the actual type of the value held inta that variable.
There are two families of types for declaring variables, specifically: basic types and
reference types.

Basic types are predefined and cannot be redefined. They include int, long, char,
boolean, float, etc. Variables and fields declared of a basic type can only contain values
of this exact type.

Reference types can he user defined. They faH into two categories, classes and
'interfaces. (Arrays are a special kind of classes). AlI classes share a cornrnon ancestor,
the abject class. Classes and interfaces differ in the following terms:

• Interfaces support multiple inheritance. An interface is said to extend other
interfaces.

• Interfaces contain only method prototypes and constants (final static fields).

• Classes support single inheritance only, but can implement multiple interfaces.
A Class is said ta extend another class.
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• Classes can define methods and fields.

An interface can be viewed as a contract to define sorne methods. A class that
implements an interface signals its intention of assuming the terms of this contract.
The Java compiler and runtime environments insure that such contracts are respected.

When a variable is declared of a reference type, it can be assigned, at compile
time, only values that are either:

• declared as this sarne reference type,

• declared as a derived reference type.

A type cast can be used to bypass these rigid rules, but the compiler wiU issue an
error if it can prove that such a cast would always be invalid at ruotime.

This leads us to the dynamic type checking of Java. At runtime, Java performs
dynamic type checking to insure that aIl variables of reference type are assigned values
whose type is either (1) the declared type of the variable or (2) a derived type. This
contrasts with the compile time type checking in that it is the actu.al type of the value,
not its declared type, that is checked.

It is important ta see that the dynamic type checking is what makes the Java type
system very robuste 1t is not possible, at runtime, to bypass the type system, even
though it is possible to fool the compiler at compile time using type casts.

Example 8 : The foLlowing method will be compile but, at run time, a ClassCastEx
ception will be generated by the Java runtime system:

void foo()
{ Object a =new Integer(5);

Vector b = (Vector) a;} Il Exception at runtime!

Variables of reference type hold a reference (a pointer) ta the actual value, not the
value itself. ~Iethod parameters of reference type are passed a capy of the reference,
not a copy of the value. A value of class type is called an instance, or commonly
an object. AIl instances are explicitly created with the new operator and there are
no hidden copies. AU abjects are allocated on the heap by the Java runtime system.
They are garbage-collected automatically when they are no longer in use. Java offers
no free operator, preventing any corruption due ta the unintended use of freed objects,
as can happen with C++.

19



•

•

Java has four different scopes for the visibility of definitions. public, protected,
package (or default) and private. Public definitions are visible ta all classes. Protected
definitions are visible to derived classes and ta classes of the same package. \Vhen
no scope is specified, it is assumed that a definition has package scope, that is, it is
visible ta all classes of the same package. Private definitions are visible only to the
class itself. Informal1y, a package is a collection of classes defined in the same directory.
They alleviate the need for the notion of friends, as found in other object-oriented
languages.

Version 1.1 of Java has introduced the notion of inner classes and anonymous
classes. An inner class is a class defined in the scope of an enclosing class. An
anonymous class, much like anonymous functions in ML, can be defined in expressions.
SabieCC uses bath inner classes and anonymous classes.

A complete description of the Java type system can be faund in the Java Language
Specification[GJS96] .
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Chapter 3

SabieCC

In this chapter, we introduce the SableCC compiler compiler. After a brief introduc
tian, we list the steps required ta build a compiler using SableCC. Then, we discuss
the SabieCC specification file and give an overview of the files that are generated.
vVe explain the impact of SabieCC on the development cycle, and finally, we show a
complete example of a very simple compiler generated with SableCC.

This chapter serves mainlyas an introduction ta subsequent chapters. Its purpose
is to give a general idea of how SableCC is used.

3.1 Introduction to SabieCC

SabieCC represents the result of our research ta develop a Java compiler compiler
that meets new cornpiler implementation trends. ~Iore specifically:

• Modem compilers usually implement many passes over the compiled program.
One pass compilers (like early PA.SCAL compilers) are seldom used anymore.

• lVlany campilers work on AST (Abstract Syntax Tree) representation of programs.

• As a compiler evolves over time, new analyses and optimizations are added to
the compiler.

• A compiler, like any other software, must be maintainable.

Ta address these issues we have developed a new approach for compiler compiler
tools. In our approach, the compiler compiler place in the development cycle has
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been reduced to merely build an initial object-oriented framework that is based solely
on the lexical and grammatical definition of the compiled language. This has the
advantage of limiting framework modifications to the case where the grammar of the
cornpiled language is changed.

On the other hand, the richness of the generated environment has been increased.
Sa, in the generated framework:

• The parser automatically builds the AST of the compiled program.

• Each .A.ST node is strictly typed, ensuring no corruption occurs in the tree.

• Each analysis is written in its own class. \JVriting a new analysis requires only
extending sorne tree walker class and providing methods to do the work at ap
propriate nodes.

• Storage of analysis information is kept in the analysis class itself, outside the
definition of node types. This ensures no modification to a node type is needed
when a new analysis is added ta or removed from the compiler.

The framework makes extensive use of object-oriented design patterns ta achieve
modularity of code. The resulting compiler becomes a very maintainable compiler.
In sorne cases we have opted for good object-oriented design over fast code. 1t is
our helief that over time, new processors get faster and memory gets cheaper, but
the same oid code base is often used to generate new compilers. So good software
engineering is important in the long term.

vVe have developed SabieCC in the Java programming language. 1t runs on any
platform supporting the Java Development Kit 1.1 or newer.

3.2 General Steps to Build a Compiler Using SabieCC

Producing a compiler using SabieCC requires the following steps (as shown in Figure
3.1):

1. Creating a SabieCC specification file containing the lexical definitions and the
grammar of the language to be compiled.

2. Launching SabieCC on the specification file ta generate a framework.

3. Creating one or more working classes, possibly inheriting from classes generated
by SableCC.
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Specification
'l'oltens
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Figure 3.1: Steps ta create a compiler using
SabieCC

4. Creating a main compiler class that activates lexer, parser and working classes.

5. Compiling the compiler with a Java compiler.

By working classes we mean classes that contain the core compiler functionality.
These classes can be analyses, transformations on the AST, or simply code generation
classes.

We must note that SableCC, as other compiler compiler tools, can aIso be used ta
build interpreters. In such a case, a working class can he the interpreter itself.

3.3 SableCC Specification Files

A SableCC specification file is a text file that contains the lexical definitions and the
grammar productions of the language to be recognized by the generated compiler
framework. It also specifies a destination root Java package for generated files.

Unlike other compiler compilers, there is no place to put action code associated
with a token or a production. This design bas the advantage of adding stability to
the framework. Modifications ta the framework are limited ta when the grammar of
the compiled language is changed. Adding, changing or even removing action code
(in working classes) does not affect the generated framework in any way.
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Lexical definitions use regular expressions and the grammar is written in Backus

Naur Form (BNF).

3.4 SabieCC Generated Files

On output, SabieCC generates files into four sub-packages of the specified root pack
age. The packages are named: lexer, parser, node and analysis. Each file contains
either a class or an interface definition.

• The lexer package contains the Laxer and LexerException classes. These
classes are, the generated lexer and the exception thrown in case of a lexing
error, respectively.

• The parser package contains the Parser and ParserException classes. As
expected, these classes are the parser and the exception thrown in case of a
parsing errors.

• The node package contains aIl the classes defining the typed AST.

• The analysis package contains one interface and three classes. These classes
are used mainly ta define A5T walkers.

3.5 Compiler Development Cycle

The choices we have made in the design of the SableCC compiler framework have a
direct effect on the development cycle of a compiler.

As illustrated by the left diagram of Figure 3.2, with traditional compiler compilers,
the cycle involves the following steps. First, the programmer writes or fixes the
grammar and action code in the specification file. Then the source code for the
compiler is generated. The source code is then compiled to an executable program.
The program is then tested and debugged. The problem in this cycle is that the
debugging process is done using the source files generated by the compiler compiler.
So, if a bug is round in this source code, the programmer has ta find the corresponding
code in the specification file and fi.x it there.

As shawn by the right diagram of Figure 3.2, with SableCC, this debugging cycle
is shortened. Since actions are written directly as Java classes, the source code being
debugged was written by the programmer. This enables interactive debugging in an
Integrated Development Environment.
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Figure 3.2: Traditional versus SableCC actions debug
ging cycle

3.6 Example

In this section. we will demonstrate all the steps ta create a very simple synta.x
translator that translates arithmetic expressions ioto postfix farm.

Creating the Specification File and using SableCC

First, as illustrated in Figure 3.3, we create a new text file that we name
postfix .grammar. In it we put a Package declaration specifying postfix as the
destination root package far SabieCC generated files.

Under the Tokens section, we add lexical definitions for numbers, arithmetic ap
erators, parentheses and blanks.

In the Ignored Token section, we put blanks, to specify that blanks are ignored
by the parser.

Finally, we list the productions af the grammar under the Productions section.
We precede each alternative of a production with a name between curly braces.
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• package post:r~Xj

Tokens
number = [JOJ

plus = J+J;

minus J_J.,
mult = J * J ;

div = J / J ;

mod J Y. J ;

l_par = J ( J ;

r_par = J) J ;

blank ( J J

Ignored Tokens
blank'

1"roauc~~ons

expr =
{factor} factor 1

{plus} expr plus factor 1

{minus} expr minus factor;

factor =
{term} term 1

{mult} factor mult tarm
{div} factor div term 1
{mod} factor mod term;

1 13 1 10)+;
term =

{number} number 1

{ex-pr} l_par eX'Pr r_pu;

Figure 3.3: postfix. grammar

•

This name serves ta identify a specifie alternative of a production. We save the
file postfix. grammar in the root directory of our project. At the shell prompt, in
this direetory, we issue the following command:

java SableCC postfix.grammar

Figure 3.4 shows the exeeution trace of SableCC. Once SabieCC is finished, we
can look in the postfix subdirectory. As expected, we see four subdirectories named
lexer. parser, node and analysis. Further exploration in these subdireetories will
reveal aIl the Java classes generated by SableCC.

Creating the Translation Class

Ta translate a normal infi..x notation into a postfLx notation, we simply need ta do
a depth first traversaI of the tree, print numbers as we encounter them and print
operators after having visited the subtree of the production containing the operator.

The final code for the Translation class is shown in Figure 3.5. We will explain
in forthcoming chapters all the details of how this class works. For the time being,
we will simply gÏve the general idea.

We define the class Translation as extending class DepthFirstAdapter. This
automaticaIly provides a depth-first traversai of the AST. To print numbers as we en
counter them, we simply define the method caseTNumber, the type name of "number"
nodes being TNumber.
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• C:\Java\Projects\Postfix>Java SableCC postfix.grammar
Verifying identifiers.
Generating token classes.
Generating production classes.
Generating alternative classes.
Generating analysis classes.
Generating utility classes.
Generating the lexer.

- Constructing NFA.

- Constructing DFA.

- resolving ACCEPT states.

1 ~~~~~~~~~~.~~~.~~ser.

C:\Java\Projects\Postfix>

Figure 3.4: SabieCC execution on Windows 95

The name of every alternative in Figure 3.3 is prefixed with an Aand concatenated
ta the name of its production to produce a type name for the alternative. For example:

expr = 1 {plus} expr plus factor 1 ... ; => APlusExpr

•

To print operators after the traversaI of a subtree, we define the methods
outAPlusExpr, outAMinusExpr, outAMultFactor, outADivFactor and
outAModFactor. These methods get executed after the subtree rooted at each node
of their respective type 1 has been visited, in the depth first traversai of the tree.

Creating the Compiler Class

As shown in Figure 3.6, we define the Compiler class as containing the main method.
This will he the starting point of our program. In main, we create an instance of the
lexer, reading from the standard input. We pass the lexer ta the constructor of the
parser. Theo we parse the input. This gives us in return a reference to the root of
the AST. We store it in variable tree. Ta apply the transformation, we simply pass
a new instance of the Translation class to the apply method of tree.

lThe type being the name of the method without the out. SOt outAPlu.Expr gets executed after the subtree of a
node of type APludxpr bas been visited.
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package posttlX;
import postfix.analysis.*;
import postfix.node.*;

class Translation extends DepthFirstAdapter
{

public void caseTNumber(TNumber node)
{II When we see a number, ve print it.

System.out.print(node);
}

public void outAPlusExpr(APlusExpr node)
{II out of alternative {plus} in Expr, we print the plus.

System.out.print(node.getPlus(»);
}

public void outAHinusExpr(AMinusExpr nodal
{II out of alternative {minus} in Expr, we print the minus.

System.out.print(node.getMinus(»;
}

public void outAMultFactor(AMultFactor node)
{II out of alternative {mult} in Factor, we print the mult.

System.out.print(node.getHult(»;
}

public void outADivFactor(ADivFactor node)
{II out of alternative {div} in Factor, va print the div.

System.out.print(node.getDiv(»;
}

public void outAModFactorCAHodFactor node)
{II out of alternative {mod} in Factor, wa print the modo

System.out.print(node.getHod(»;
}

1-

Figure 3.5: postfix\Translation.java

Compiling and Running the Postfix Translator

To compile the whole program, we simply type:

javac postfix\Compiler.java

and to ron the postfix translator, we type:

java postfix.Compiler
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package postt1.X;

import postfix.parser.*;
import postfix.lexer.*;
import postfix.node.*;
import java.io.*j

public class Compiler
{

public static void main(StringO arguments)
{

try
{

System.out.println("Type an arithmetic expression:");

Il Create a Parser instance.
Parser p =

new Parser(
new Laxer(
new PushbackReader(
new InputStreamReader(System.in), 1024»);

Il Parse the input.
Start tree =p.parse();

Il Apply the translation.
tree.apply(new Translation(»;

}

catch(Excaption a)
{
System.out.println(a.getMassaga(»;

}

}

l-

Figure 3.6: postfix\Compiler. java

Theo, we type sorne arithmetic expression. \Vhen we are finished, we type the End
Of File character. On Windows 95, this means we type Ctrl-Z. As shown in Figure
3.7, we see the postfix translation of our expression. It worked!

In Figure 3.8 we show the typed AST created at execution time for the expression
(45 + 36/2) * 3 + 5 * 2 used in Figure 3.7.
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C:\Java\Projects\Postfu>javac postflx\Compiler.java

C:\Java\Projects\Postfix>java postfix.Compiler
Type an arithmetic expression:
(45 + 36 / 2) * 3 + 5 * 2
45 36 2 / + 3 * 5 2 * +
C:\Java\Proiects\Postfix>

Figure 3.7: Compiling and executing the Syntax Translation program

Figure 3.8: Typed AST of expression (45 + 36/2) * 3 + 5 * 2
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Chapter 4

Lexer

In this chapter, we will discuss the Iexer generator part of SahleCC. There are four
sections in the specification file that influence the lexer generator of SableCC, the
Package, Helpers, States and Tokens sections. On output, SahleCC generates a lexer
c1ass whose behavior can he customized through inheritance, without modifying the
generated code. We will begin by exploring the details of the specification file, then
we will discuss the lexer c1ass and the extent of its customization.

We will present simplified parts of the synta..x of the lexer. The complete and
accurate syntax of SabieCC cao he found in Appendbc B.

grammar = package_declaration? helper_declarations?
states_declarations? token_declarations?
ign_tokens? productions?;

4.1 Package Declaration

package_declaration = 'Package' pkg_name?;
pkg_name =pkg_id pkg_name_tail* ';';
pkg_name_tail = J.' pkg_id;
pkg_id = letter(letterldigit)*;

The package declaration is optional. If it is used, it specifies the root package for
a11 classes generated by SableCC. If it is not specified, the default (empty) package is
used instead.

Example 9 : Package ca.mcgill.sable. example;
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4.2 Characters and Character Sets

character = char 1 dec_char 1 hex_char;
set = J[' basic bin_op basic 'J'

J[' character J .• ' character J]J;

basic = character 1 set;
bin_op = J+' 1 J_';

char = J" not_cr_lf "';
dec_char = digit+;
hex_char = 'Q' ('x' l'X') hex_digit+;

SabieCC generated lexers can read 16 bit Unicode character streams. Ta simplify
the expression of these characters, SabieCC accepts three different ways of specifying
characters.

1. Quoted character: An ASCII character between two single quates represents
itself. Example: 'a'.

2. Decimal number: A decimal number represents the Unicode character with
this same index. Example: 13 (carriage return).

3. Hexadecimal number: A hexadecimal number is prefixed with OX or Ox. It
represents the Unicode character with the same index. Hexadecimal 'a' ta 'f'
digits can be lowercase or uppercase. Example: Oxffff.

1t is often useful ta specify a set of characters, instead of a single character. For
this purpose, SabieCC allows the definition of character sets and defines the union
and difference operations on sets.

A character set consists of any of the following:

• A single character.

• A. range of character (based the Unicode ordering). A range is specified as
foIlo\vs: [begin .. endJ, where begin and end are characters. It includes all Unicode
characters with an index greater or equal ta begin and less or equal to end.

• A union of character sets. A union is specified as: [setl + set2). It includes aIl
characters in setl and set2.

• A. difference of character sets. A difference is specified as: [setl- set2]. It includes
all characters in setl that are not in set2.
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• Characters and character sets can be used in regular expressions, in the Helpers
and Tokens sections of the specification file.

Example 10 : [['a '.. 'z'l + ['A '.. 'Z'lJ: Alphabetical characters.

Example Il : [['0'.. '9'l + [l'a'.. 1'l + ['A '.. 'F'l}}: Hexadecimal digits.

4.3 Regular Expressions, Helpers and Tokens

reg_exp = concat reg_exp_tail*;
reg_exp_tail = '1' concat;
concat = un_exp*;
un_exp = basic un_op?;
basic = character 1 set string 1 id 1

'C' reg_exp ')';
un_op = '*' l'?' l '+';

helper_def = id '=' reg_exp ';';
token_def = id '=' reg_exp look_ahead?
look_ahead = 'l' reg_exp;

, . , .
J J

•

The syntax of regular expressions in SabieCC is very similar ta the formal defini
tian of regular expressions. As we said earlier, a regular expression can use character
sets in addition to characters. Additionally, strings can aIso be used, and are specified
with single quotes as in: 'texe. SabieCC regular expressions support union regexpl 1

regexp2, concatenation regexpl regexp2 and Kleene closure regexp*, as weIl as paren
theses (), and the? and + operators, as defined in chapter 2. There is no symbol for
the empty string f. The ? operator or an empty regular expression can be used ta
express this string.

Example 12 : tine_comment = ï' '/' [[0 .. OxffffJ - [10 + 13JJ* (10 1 131 10 13),-
, .... '

regular apre.f.f10n

This regular expression accepts the following string: / / some comment

UnUke other compiler compilers, SabieCC bas no support for macros. Instead,
SabieCC allows the use of helpers. A helper is a character set or a regular expression
denoted by an identifier. Helpers are defined in the Helpers section of the specification
file by writing:
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helper_name = character_set or regular_expression;

When SabieCC sees a helper identifier in a regular expression, it replaces it se
mantically (not textually) with its declared character set or regular expression. This
avoids the pitfalls of macros.

Example 13 : The following definitions give the expected result (uniike macros):

Helpers

h = 'a' l 'b';

Tokens

t = 'a' h 'b';

t denotes the language {"aab", ·'abb"}. A similar macro definition of h with tex

tuaI replacement ('a' h 'b' ==> 'a' 'a' l 'b' 'b') 'Would have resulted in the language
{ "aa", "bb"} because of the precedence of concatenation over union.

Tokens are defined in the Tokens section of the specification file \Vith a syntax
similar to helpers. For a given input, the longest matching token will be retumed by
the lexer. In the case of two matches of the same length, the token listed first in the
specification file will he returned.

For convenience, a token definition can contain an optional lookahead regular ex
pression. A lookahead regular expression is specified by appending a '1' at the end
of a token definition followed by the lookahead regular expression. The generated
lexer will recognize the token ooly if it is followed by a string matching the lookahead
regular expression.

Example 14 : do = "DO" 1 (letter 1 digit)* '=' (letter 1 digit)* ','; recognizes the
DO keyword of Fortran.

A. token is given a name using an identifier. Here's the syntax for identifiers in
SableCC:

id = name;
name = name_part (' _' name_part) *;
name_part = letter (letter 1 number)*;
letter = ['a' 'z'];
number = [ , 0' .. ' 9,] ;
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For each token, SableCC generates a class in the package root.node with the name
of the token as the class name. To be accurate, the exact name given to the class
is computed from the name of the token by prefixing it with a capital 'T', replacing
the first letter with its uppercase, replacing each letter prefixed by an underscore
with its uppercase, and rernoving all underscores. For example, for a token named
'some_token', SabieCC would generate a class 'root.node.TSomeToken' . AIl token
classes inherit from (or extend) the class 'root.node.Token'.

4.4 States

state_declarations = 'States' id_list? J;';

id_list = id id_list_tail*;
id_list_tail = J,J id;
token_def = state_list? id J=, reg_exp ';';
state_list = '{' id transition? state_list_tail* J}';

state_list_tail = JJ' id transition?;
transition = J_>' id;

SabieCC supports the very popular Lexer states feature of GNU FLEX. Lexer
states define a DFA on top of token definitions. Each state is associated with a set
of tokens. vVhen the lexer is in astate, only the tokens associated with this state
are recognized. States can be used for many purposes. For example, they can help
detecting a beginning of line state, and recognize sorne tokens only if they appear at
the beginning of a lîne.

In SableCC, state transitions are triggered by token recognition. Every time a
token is recognized, the lexer applies the transition specified for the current state and
the recognized token.

This leads us ta the specification of states. First, aIl states must be declared in
the States section of the specification file. The first state is used as the initial state
of the DFA.

Each token definition can be optionally prefi.xed by a list of states (possibly with
transitions). By default, if no state list is specified, the token is associated with aH
states (and is therefore always recognized). In this case, no state transition occurs.
If there is astate list, the token is recognized only when the lexer is in one of the
listed states. If the token is recognized and there is a transition '->' associated with
the current state of the lexer in the state list of the token, this transition is applied.
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Example 15 : The following Lexer will toggLe between beginning of Hne (bol) state
and inline state, every time an end of Hne is reached.

States

bol, inline;

Tokens

{bol->inLine, inLine} char = [[O .. OxffffJ - [10 + 13JJ;

{bol, inLine->bol} eol = 10 1131 10 13;

On input "abc", the lexer begins in state bol and returns "char a". This triggers
the transition bol->inline. Then the Lexer returns "char b". The lexer stays in state
inline. Next, the Lexer retums oIchar c" and stays in state inline. Finally, it retums
"EDF" (and stays in state inline).

For each state, SabieCC generates a constant of type root.lexer. Lexer .State.
The name of the constant is the name of the state where aliletters are replaced \Vith
their uppercase. For example, the two constants root.lexer. Lexer .State .BOL and
root.lexer .Lexer .State. INLlNE would be defined in the previous example. The
ide) method on each constant can be called to obtain a unique integer value for the
constant. This can be useful in switch statements.

4.5 The Lexer Class

From the specification, SabieCC generates a DFA based lexer in the class
root.lexer .Lexer. This class contains public and protected members.

The public members of the lexer class are:

• public Lexer(PushbackReader in) //constructor

• public Token peek() throws LexerException, IOException

• public Token next() throws LexerException, IOException

The constructor requires a java. io. PushbackReader. The lexer pushes back
lookahead characters into this reader, after it recognizes a token. (A reader is a
Unicode character stream, in Java 1.1). The next and peek methods return the next
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available token on the stream, but the next method advances to the next token, while
consecutive caUs ta peak return the same token.

It is important to note that a token is recognized only once. After the first caU to
peek, a reference to the token is kept in a private variable. Subsequent caUs to peek
return this reference. A. caU to next returns this reference but clears the variable.

The protected members are used in derived classes to customize the lexer behavior.
They are:

• protected Token token;

• protected State state;

• protected void filter();

The key to eustomization is the filter method. This method is called every time
a token is recognized through a caU to next or peak, but not necessarily on all snch
caUs, as we have said earlier. To customize the lexer, the programmer ereates a new
class that inherits from the Laxer c1ass, and averrides the filter method. Before
a calI the filter class, the lexer puts a reference ta the newly recognized token in
the token variable. On return from the calI to filter, the lexer checks the token
variable, and cloes one of two things:

1. If the token variable is set to null, the lexer restarts scanning the input reader
for a new token, in the state state.

2. If the token variable contains a non-null reference, the le.xer returns this reference
as the next token. The nen time the token scans the input for a new token, it
does it in the state state.

In the filter methods, it is possible to change the token and/or state variables l .

It is therefore possible for derived lexer class ta use sorne additional information to
affect the state of the lexer, accumulate tokens or return a different token. The filter
method can even be used to push back characters into the input reader.

4.6 Example Lexer

In this section, we develop a customized lexer that recognizes identifiers, blanks and
nested comments. Nested comments cannat he implemented without customÎzation.

LIn a future version of SableCC, accessor methods (gee/set) will be used to read/modify the token and state
variables.
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But with custamization, they are fairly easy to implement. Herets the SabieCC
specification:

Helpers
aIl = [0 .. Oxffff];
letter = [[, a' .. 'z'] + [' A' .. ' Z']] ;

States
normal,
comment;

Tokens
{normal} blank = (' , 1 10 1 13 1 9)*;
{normal} identifier = (letter l '_')*;

{normal->comment, comment}
comment = ' 1*' ;

{comment} comment_end = '*1';
{comment} comment_body = [aIl - ['*' + '1']]*;
{comment} star = '*';
{comment} slash = 'l';

This specifies a lexer that enters the comment state when it recognizes a comment
taken, but never leaves this state. Two things ta note: (1) The state and token
namespaces are independent. This allowed us ta have both a comment state and
token. (2) The comment taken is not what we are looking for. It returns "j*" instead
of the full nested comment.

Ta fix this problem, we derive a new class from the Lexer class. In this class we
keep the count of" j*" and ,,* j" tokens, and we accumulate the text. When the count
reaches zero, we return a comment token with the full te..'Ct, and we change the state
ta normal. Here's the Java code:
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import lexer.Lexer;
import lexer.Lexer.State;
import node.*;
public class KyLexer extends Lexer
{ private int count;

private TComment comment;
private StringBuffer text;
Il We define a constructor
public KyLexer(java.io.PushbackReader in)
{ super(in)i
}

Il We define a filter that recognizes nested comments.
protected void filter()
{ Il if we are in the comment state

if(state.equals(State.COKHENT»
{ Il if we are just entering this state

if(comment == null)
{ Il The token is supposed to be a comment.

Il We keep a reference ta it and set the count to one
comment = (TComment) token;
text =nev StringBuffer(comment.getText(»;
count = 1;

token =nullj Il continue to scan the input.
}

else
{ Il ve vere already in the comment state

text.append(token.getText(»i Il accumulate the text.
if(token instanceof TComment)

count++;
else if(token instanceof TCommentEnd)

count--;
if(count != 0)

token = null; Il continue to scan the input.
eise
{ comment.setText(text.toString(»;

token =comment; Ilreturn a comment vith the full text.
state = State.NORKAL; Ilgo back to normal.
comment =null; Il We release this reference.

}

}

}

}

}
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4.7 Summary

We have explained the specification of a lexer in SabieCC language2• We have dis
cussed how a generated lexer can be customized easily through inheritance. And
final1y, we have shawn an example of how ta build a customized lexer.

Customized lexers cao be quite powerful, but they have a very simple and clean
implementation. The SabieCC generated code is never modified ta add functionality
ta the lexer. Additionally, there is no need ta duplicate code between the customized
lexer and the base lexer in order to perform this customization.

2We have intentionally omitted to discuss the algoritbm used to generate the lexer tables. SabieCC implements
the algoritbm round in [ASU88].
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Chapter 5

Parser

In this chapter, we will study the parser generator part of SableCC. There are four
sections in the specification file that influence the parser generator: Package, Tokens,
Ignored Tokens and Productions. On output, SabieCC generates a parser class that
automatically builds a typed abstract syntax tree (AST) while parsing the input.
The default AST constructed by SabieCC matches the concrete syntax tree (CST).
The parser class can be customized through inheritance ta modify the AST as it is
constructed.

We will begin by exploring the specification of the parser. Then, we will discuss
the parser class and how it can be customized.

grammar = package_declaration? helper_declarations?
states_declarations? token_declarations?
ign_tokens? productions?;

5.1 Package and Tokens

vVe have seen the details of the package and tokens sections in chapter 4.

SabieCC uses the package declaration to determine the root package of gener
ated classes. The parser generator uses token declarations (and production declara
tians) ta resolve the type of terminais (and nonterminaIs) on the right-hand sicle of
productions l .

1See Chapter 2.
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• 5.2 Ignored Tokens

ign_tokens = ,Ignored' 'Tokens' id_list?
id_list = id id_list_tail*;
id_list_tail = ',' id;

, ., ., ,

•

NIany programming languages use blanles ta separate tokens. Often, they also
allow the programmer ta add comments ta augment the readability of the code. These
blanks and comments do not usually appear in the grammar of these programming
languages. In fact, it would be very complicated ta add them ta the grammar without
rendering it overly complicated. 50, normally, these tokens are recognized by the lexer,
but they are oot used by the parser.

In its specification file, SableCC allows the programmer ta specify the list of tokens
ta he ignored by the parser. The generated parser will receive these tokens, but it will
discard them. Sorne compiler compilers hide these tokens at the lexer level, instead.
It would be possible to write a customized SabieCC lexer ta discard the tokens at the
lexer stage.

SableCC will issue an error message if a programmer tries ta use an ignored token
in the definition of a production.

Example 16: Here 'is a specification that forces the parser ta ignore blanks and
comments.

Ignored Tokens

blanks, comments;
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5.3 Productions

prod = id '=' alts ';';
alts = alt alts_tail*;
alts_taïl = J l'aIt;
aIt = alt_name? elem*

'(J alt_name? elem* 'l';
alt_name = J{' id J}J;
elem = elem_name? specifier? id un_op?;
elem_name = J(J id ']J J:';
specifier = token_specifier J.' 1

production_specifier J. J;

token_specifier = 'T J
;

production_specifier = 'P';

SabieCC supports an EBNF2 like synta"'{ for productions. Unlike YACC and PC
CTS, there is no place for action code in the specificationJ

• But, in order to offer the
best support for typed abstract synta"'{ trees, SabieCC extends the syntax to allow
for the specification of names in the grammar.

Before explaining all the details of the specification, we will study the structure of
the typed AST and its relation ta the grammar. For the sake of simplicity, we will
begin with the BNF4 notation.

Let's begin with a smal1 grammar:

Token 1* token definitions */
l_par = '(J; r_par = J)J;
plus = '+'; number = ['0' .. J9'];

Productions /* grammar */
exp = number 1

add;
add = l_par exp plus exp r _par;

This grammar specifies a small arithmetic language. In this example exp is a
production that has two alternatives (number and add), and add is a production that
has a single alternative (l_par...r _par). An alternative has zero or more elements. For

2See chapter 2.
3 We caU actioru the code ta be executed every time a production is recognized.
"See chapter 2.
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example, the last alternative had five elements. Each element is either a production
name (nonterminaI) or a token name (terminal).

The second element (exp) of the single alternative of production add, stands for
all possible alternatives of production exp. Note that it cannot stand for anything
eise. This behavior can he mimicked through inheritance in Java. SableCC couId
generate an abstract class PExp denoting production exp, and we define two classes
AExpl extends PExp and AExp2 extends PExp, denoting respectively the first and
second alternatives of production exp. This would give us a type system that enforces
a variable of type PExp to hold only values of type !Expl or AExp2.

For our example grammar, SableCC would generate the following classes defining
an abstract syntax tree for the grammar:

abstract c1ass PExp {}
c1ass AExpl extends PExp { TNumber e1eml; }
c1ass AExp2 extends PExp { PAdd eleml; }
abstract class PAdd {}
c1ass AAddl extends PAdd
{ TLPar eleml; PExp e1em2; TPlus e1em3;

PExp elem4; TRPar elem5; }

PExp and PAdd are abstract classes (meaning that no instance of these types can be
created, only instances of derived types), to prevent the construction of meaningless
ASTs.

vVe have implemented this inheritance and naming scheme in an early version
of SableCC. But, after sorne usage and feedback, it was felt that looking for the
fourth (or was is the fifth?) element of the third alternative of production p was quite
cumbersome and Ied to code that was difficuit to maintain. It is easy ta inadvertently
type PExp2 instead of PExpl in a variable declaration, but it can he quite difficult to
find such an error.

Ta resolve this problem, we decided to add names to alternatives and ta elements
in the current version of SableCC. In the following suhsection, we will describe the
naming rules of SahleCC.
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SableCC Naming Rules

Every production class is automatically named by using the production name, pre
fixing it with an uppercase 'P', replacing the first letter with an uppercase, replacing
each letter prefixed by an underscore with an uppercase, and removing all under
scores. In our example grammar, as we have seen, this results in classes: PExp and
PAdd.

If a production has a single unnamed alternative, the alternative class is named
like its production class, but the uppercase 'P' prefix is replaced by an uppercase 'A'.
In our example, the single alternative of production add would be named: AAdd.

When there is more than one alternative, SabieCC requires a name for each alter
native. SabieCC accepts one exception to this mIe. It allows one alternative ta be
left without a name. This is for backward compatibility of evolving grammars. (If
a production had only one alternative and a new alternative is added, then giving a
name to the original alternative would change its type name).

A name is given ta an alternative in the grammar by prefixing the alternative
with an identifier between curly brackets. The class that corresponds to the named
alternative is nanled by applying to the alternative name the usuai uppercase trans
formations, prefixing it by an uppercase 'A', and postfixing it with the transformed
production name.

Unlike alternatives, elements have an obvious candidate for name which is the
identifier of the element itseif. This will work, as long as an element does not appear
twice in the same alternative. In that case the CUITent version SabieCC requires a
name for at least one of the t,vo elements. (For backward cornpatibility, one occurrence
of the repeated elernent can remain unnamed). SabieCC will issue an error if not
enough names are provided. Element names are specified by prefixing the element
with an identifier between square brackets followed by a colon.

SabieCC does not give direct access to element variables. Instead, it provides
accessor methods. Accessors are getxxx and setxxx methods, where the xxx is the
name of the element (with the usuaI uppercase transformation). SabieCC uses these
accessors to further prevent the construction of an invalid AST. For example, it
enforces the "tree" property of the AST (e.g., anode cannot have more than one
parent), and also provides a free parent() method ta all AST nodes. The programmer
does not (and cannat!) set this reference. It is done automatically every time a
setxxx method is called.
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Here is our example grammar modified ta abide by SableCC naming rules:

Productions 1* grammar *1
exp = {constant} number

{add} add;
add = l_par [left] :exp plus [right]:exp r_par;

And, here is a model of the classes that would be generated by SableCC for this
grammar:

abstract class Node {}
abstract class PExp extends Node{}
class AConstantExp extends PExp
{TNumber getNumber(){ ... }

void setNumber(TNumber number){ ... };
}

class AAddExp extends PExp
{ PAdd getAdd(){ ... }

void setAdd(PAdd add){ ... }
}

etc.

EBNF Syntax

Let 's get back to our EBNF notation. SableCC does not completely support EBNF.
This is by design. The reason for this is that there is no obvious type safe abstract
syntax tree for productions like:

p = (a al b) * 1 (c d) +;

How many alternatives does this production have? Two? If sa, what are (a a)
and (b)? What names should they have? ..

On the other hand, SableCC supports the following three operators on elements:
*, + and '1. They carry the same semantics as in regular expressions.

Later, we will explain the implementation of these operators in the parser. But
DOW, we will look at their representation in the AST. The ? operator denotes an
optional element. Elements in a SableCC AST can contain null references. (Enforcing
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non-nuU references would be too restrictive. 1t would unnecessarily complicate the
implementation of tree transformations). So, the if operator has no effect on the
definition of AST node types.

From an A.ST point of view, the + and *operators are identical. They are both
implemented as collections, or more precisely, typed linked lists. A typed linked list
is a linked list that will generate a ClassCastException exception if an attempt is
made ta insert a value of an invalid type.

SableCC implements the specification of linked lists containers of the upcoming
Java 1.2 Collection application programming interface (A.PI). Sa, as soon as the next
version of Java will be released, SableCC ASTs will be able ta take advantage of this
new API.

Example 17 : prod = [tokens]: token*; will generate the follo'Wing class:

class AProd{

LinkedList getTokens();

void setTokens(LinkedList tokens); }

\Vhat is not shawn in this example, is that the linked List private field of AProd is
initialized with a typed linked list that applies a dynarnic cast to type TToken on all
nodes inserted inta the list. 1t is beyand the scope of this thesis ta explain the details
of collection classes.

Ignored Alternatives

In arder ta support the easy creation of customized abstract synta.'C trees, SabieCC
allows the programmer ta add new productions and alternatives to a grammar, while
keeping these alternatives hidden from the parsing process. An ignored alternative is
simply enclosed in parentheses.
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Example 18 : This is a grammar with an ignored alternative:

id~ist =

{temp} id id-list_tail*

(id+); 1/ ignored

id-list_tail =

comma id;

The parser will construct an AST for the grammar without the ignored alternative.
But, this grammar enables the programmer to apply tree transformations and get an
AST for the following grammar:

id_list = id+;

This new AST is not only smaller, it is also easier to use.

5.4 Implementation Details

In this section we describe the implementation of EBNF operators in the parser.

Instead of redesigning LALR(l) parser construction algorithms to accept the new
operators (*, + and ?), we have decided to create a parse time LALR(!) BNF gram
mar derived from the EBNF specification. This is done by applying the following
transformations to the grammar iteratively, until no operators remain.

1. For each element with a (?) operator, we remove the operator and we create a
new alternative without the element.

2. For each element with a (+) operator, we change the type x of the element to t,
a new production name. And we add the following production to the grammar:
t = t x 1 x;

3. For each element with a (*) operator, we change the element e? ta (e+)? This
is an internai temporary representation. It is illegal in specifications.
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Example 19 : We show a SableCC EBNF and its BNF parsing grammar:

a = b*;

becomes:

a = temp 1 ;

temp = temp b 1 b;

We have learned, by experience, that the obvious implementation for (?), by creat
ing a new production (temp = xl;) causes more LALR(l) conflicts than our current
implementation.

Once parsed, aH temporary productions are automatically converted to linked lists
and inserted in the AST. So, this process is completely invisible to the programmer.

5.5 The Parser Class

From the specification, SableCC generates an LALR(1) parser in the class
root.parser .Parser, unless there is an LALR(1) conflict, in which case, a detailed
error message is given ta the programmer. This message contains the nature of
the conflict (shift/reduce, etc.), the lookahead token and the complete set of LR(l)
items[ASU88].

The parser class automatically builds the AST while parsing. This is done by
shifting the tokens received from the lexer on the parse stack. On every reduction,
the parser creates a new instance for the reduced alternative, it pops the elements off
the parse stack and attaches them ta the new instance, then it pushes the instance
back onto the parse stack.

The parser class exposes two public members:

1. public Parser(root.lexer. Lexer lexer); /Iconstructor

2. public Start parse ()

throws ParserException. LexerException. IOException

The constructor takes a lexer as a parameter. The parse method parses the input
and returns a reference ta the root of the AST that is always of the type Start. The
Start production is defined as:
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Start = first production EDF;

This is usually all the knowledge required in arder to use the Parser class. The
programmer only has to create a parser instance and calI the parse method to get
the AST of the compiled program.

5.6 Customized Parsers

In sorne cases, it is necessary ta apply sorne AST transformation at parsing time.
\Vhile we believe that this is nat the best tinl€ ta impleIuent any action, the reality is
that sometimes creating a full AST in memory cao consume too much memory. This
is especially true when parsing huge files.

In arder ta address this problem, the Parser class exposes two protected members:

1. protected void filterO;

2. protected Node node;

The filter method warks exactly like the filter method in lexers. It is called on
every reductian, allowing an advanced programmer ta change the node pushed onto
the parse stack. In arder to do sa, the programmer should assign ta node a reference
ta a new alternative of the same production. Ignored alternatives are usually used to
create classes for this step.

lyVe do not reeommend this usage, beeause it is errar prone. The compiler does not
check that the new alternative node derives from the same abstraet production class
as the initial node. (But the Java type system will generate a ClassCastException
at runtime). The main advantage of this method is to reduee the size of the AST at
construction time. This is necessary when eompiling huge programs written in large
programming languages.

In the future, customized parsers will aIso serve to do error recovery. The eurrent
version of SabieCC generates parsers that will stop at the first error and throw a
ParserException with a detailed error message.

A. complete example of a parser was shown in section 3.6. An exarnple of a cus
tomized parser is given in Appendix C. It is reeommended that the reader understands
Chapter 6 before looking at this more advaneed exarnple.
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5.7 Summary

We have explained the specification of a parser in the SableCC language and how the
generated classes of the typed AST relate ta the grammar. Then, we have discussed
the detaiIs of the generated parser cIass and how to use it can be customized ta reduce
the size of the AST at parse time5

.

We have seen that, unlike other compiler compilers, SableCC generates a parser
whose sole purpose is ta build a typed AST. The parser does not contain any embed
ded action code. In the next chapter, we will explain how the typed AST along with
a visitor pattern eliminates the need for parser embedded actions.

5We have intentionally omitted to disCUS8 the a1gorithm used ta generate the parser tables. SabieCC implements
the a1gorithm round in [ASU88}.
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Chapter 6

Framework

At the heart of an abstract syntax tree based compiler is the tree walking process.
In arder ta build AST-walker classes that can be easily extended to add actions on
specifie nodes of the AST, SableCC uses an adaptation of the -uisitor[GH95] design
pattern. In this chapter, we will revisit this design pattern, extend it, and then explain
how it is used by SableCC ta achieve our design goals. Finally, we will discuss a few
additional features of SabieCC generated frameworks.

6.1 The Visitor Design Pattern Revisited

A somewhat formal definition of the visitor design pattern has been given as "a
solution to the problem of adding operations on the elements of an object structure
without changing the classes of the elements on which it operates"[GH95]. In our
view, and according ta our experience in teaching it ta novices in object-oriented
programming, the name of this design pattern is not very intuitive. Sa, in reaction
ta this, we have developed new names for the constituents of this design pattern. We
describe the design pattern as it is often used. We say that it is an object-oriented
way of implementing a switch on the type of an element.

Here is a small example. vVe have three classes Circle, Square and Rectangle,
aIl derived from class Shape. These classes are used in a program with a graphical
user interface that shows circles, squares and rectangles ta the user. Every time the
user points an abject with the mouse pointer and clicks on the mouse button, the
method Selected is called with the selected abject in parameter.
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• In the method Selected, we would like ta priut a diagnostic message saying "a x
was selected", where x is either circ1e, square or rectangle, depending on the type of
the selected object. One way of doing this, in Java, would he ta use the instanceof
operator:

void Selected(Shape obj)
{ if(obj instanceof Circle)

System.out.println("a circie was selected");
eise if(obj instanceof Square)

System.out.println("a square was selected");
else

System.out.println("a rectangle was selected ll
);

}

The problem with this approach, is that if we had 100 shapes, it could take up to
99 comparisons ta find the shape of an object. Thus finding the shape of an abject
is 0 (n) (worst case) where n is the number of available shape classes. We would like
ta do this operation in 0(1). One way of making this possible would be to define an
abstract method id in class Shape, and override it in each shape class to return a
user defined unique ID.

•

abstract class Shape
{

abstract int ide);
}

class Circle extends Shape
{

static final int ID = 1;
int ide) { return ID; }

}

class Square extends Shape
{

static final int ID = 2;
int ide) { return ID; }

}

class Rectangle extends Shape
{

static final int ID = 3;
int ide) { return ID; }

}
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This would enable us to write:

void Seleeted(Shape obj)
{ switch(obj.id(»

{ case Cirele.ID:
System.out.println(ll a eirele was selected ll

); break;
case Square. ID:

System.out.println("a square vas selected ll
); break;

case Rectangle. ID:
System.out.println("a rectangle vas selected"); break;

}

}

This approach has sorne problerns. For example, it leaves the responsibility of
keeping the IDs unique in the hands of the programmer and it is easy to forget to
write the break statement. Additionally, the unique ID is redundant information.
vVe can already identify the type of an object using the instanceof operator.

Fortunately, there exists an abject oriented way of doing this switch statenlent.
without defining a unique integer ID for each class. This method, uses inheritance
and interfaces ta achieve its goal.

The first step in this solution is ta define a Switch interface as follows: for each
class derived from Shape, we add a method called casexxx where xxx is the name of
the class.

interface Switeh
{

void caseCircle(Circle obj);
void caseSquare(Square obj);
void caseRectangle(Rectangle obj);

}

This interface, will be implernented by every switch statement class used ta tailor
actions based on the type of a shape object.

The second step is ta modify each shape class to implement an apply method.
The apply method will calI the appropriate method on a switch abject passed as a
parameter.
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abstract elass Shape
{

abstraet void apply(Switeh sw);
}

elass Cirele extends Shape
{

void apply(Switeh sw)
{ sw.easeCirele(this); }

}

etc.

Notice how the Cirele. apply method caUs the easeCirele method, passing a
reference to this in parameter. This means that when Circle.apply is called, the
easeCircle method of sw is called with the circle as the parameter.

Finally, we can use an anonymous Java class to implement the object-oriented
switch on the type of a shape. The following code demonstrates this:

void Seleeted(Shape obj)
{ obj.apply(new Switch()

{ void easeCireleCCircle obj)
{ System.out.println("a cirele was selected"); }
void easeSquareCSquare obj)
{ System.out.println(lIa square was selected"); }
void caseRectangle(Rectangle obj)
{ System.out.println(ll a rectangle was selected"); }

}) ;
}

This code is relatively similar to the previous implementation of the Selected
method, but this time, we used the apply method on obj, instead of the switch
keyword.

This is normally caUed the visitor design pattern. In the usual presentation of the
visitor pattern, apply is called accept, and the caseXxx methods are called visitXxx.
The anonymous class (or any class implementing Switch) is called a visitor.
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6.2 Extending the Visitor Design Pattern

The visitor pattern, as described in the previous section has sorne limitations. As
stated in [GH95], the visitor pattern makes it bard ta add new element types ta
the visited structure, and visiting across class hierarchies is impossible. In SableCC
generated frameworks, we have made sorne modifications ta the visitor design pattern
to overcome these limitations and render the design usahle in the context of evolving
structures.

To do 50, we redefine the Switch interface to he more generic.

interface Switch { }

This interface will he the ancestor of aIl switch interfaces in the framework. Then,
we define a new Switchable interface:

interface Switchable { void applyCSvitch sv); }

Every switchable class (like Circle, Square, and Rectangle) should implement
this interface. Here's our modified code:

interface ShapeSvitch extends Switeh
{ void caseCireleCCircle obj);

void caseSquareCSquare obj);
void caseReetangleCRectangle obj);

}

abstract class Shape
implements Switchable

{ ...
}

class Cirele extends Shape
{

void applyCSwitch sv)
{ (CShapeSwitch)sv).caseCirele(this); }

}

etc.

The introduction of the new Switch and Svitchable interfaces allows us to add
a new Oval shape without modifying any existing class:
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interface ExtendedShapeSwitch extends Switch
{

void caseOval(Oval obj);
}

class Oval extends Shape
{ ...

void applyCSwitch sw)
{ «ExtendedShapeSwitch)sw).caseOval(this); }

}

Sa, in shart~ ta add a new shape (or a collection of new shapes), we define a llew
intelface that extends Switch and includes a caseXxx method for each new shape.
Then we make sure that each new shape class implements the Switchable interface.
\Ve can DOW write:

interface AllShapesSwitch
extends ShapeSwitch, ExtendedShapeSwitch {}

void Selected(Shape obj)
{

obj.apply(new AllShapesSwitch()
{

void easeCircle(Circle obj)
{ System.out.println(lIa cirele was selectedll ); }
void caseSquare(Square obj)
{ System.out.println(lIa square was selectedll ); }
void caseRectangle(Rectangle obj)
{ System.out.println(lla rectangle was selected ll

); }

void caseOval(Oval obj)
{ System.out.println(lIan oval was selected"); }

});

}

6.3 SabieCC and Visitors

In each generated framework, SabieCC defines an Analysis interface that extends
S'litch. This interface cantains aIl the caseXxx methads for taken classes (TXxx and
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Token) and alternative classes (AXxx and Start). Naturally, class Node, the ancestor
of all AST classes, implements Switchable.

In addition, SabieCC implements a utility class called AnalysisAdapter that im
plements Analysis and provides a default implementation for aIl methods. Unless a
method is overridden, it will calI the defaultCase rnethod. This makes it possible
ta implement a switch by extending AnalysisAdapter, specifying only relevant cases
and catching aIl unspecified cases in a default handler.

Here's an example of the implementation of a switch adapter for our (extended)
shape example:

class AllShapesSwitchAdapter implements AllShapesSwitch
{ void caseCircleCCircle obj)

{ defaultCaseCobj); }
void caseSquareCSquare obj)
{ defaultCase(obj); }
void caseRectangle(Rectangle obj)
{ defaultCase(obj); }
void caseOval(Oval obj)
{ defaultCase(obj); }
void defaultCase(Shape obj) { }

}

We could use it to detect circles:

void Selected(Shape obj)
{ obj.apply(new AllShapesSwitchAdapter()

{ void caseCircle(Circle obj)
{ System.out.println(lIa circle was selected"); }
void defaultCase(Shape obj)
{ System.out.println(IIThe selected object is not a circle"); }

}

}

6.4 AST Walkers

One of the basic functionalities required ta work on an AST is visiting its nodes. A
tree-walker is a class that will visit all the nodes of an AST in a predefined arder.
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• By default, SableCC provides two tree-walker classes. One that visits the nodes in
a normal depth-first traversal. The second class visits the AST nodes in the reverse
depth-first traversai.

To implement the tree-walkers, SableCC uses the exteoded visitor design pattern
presented in earlier sections.

How does SableCC implement tree-walkers? A first approach would be to use a
switch class with a set of recursive methods, like:

class DephFirstAdapter extends AnalysisAdapter
{

void caseStart(Start node)
{

node.getAXxx().apply(this); Il Xxx child of Start
node.getEOF().apply(this); Il EDF child of Start

}

}

void caseXxx(Xxx node)
{

node.getYyy.apply(this);
node.getZzz.apply(this);

}

Il Yyy child of Xxx
Il Zzz child of Xxx

The problem with this approach is that if we want to add sorne action code when
visiting a node of type Xxx in a derived c1ass, we must override the caseXxx method
and add iota it the tree walking code. For example:

class Action extends DepthFirstAdapter
{

•
}

void caseXxx(Xxx node)
{ ...

action code
node.getYyy.apply(this);
node.getZzz.apply(this);

}

Il first child of Xxx
Il second child of Xxx
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• Since reuse (without copying and pasting source code) is important, SableCC
provides overridable methods that are called just before and after visiting anode
while walking the AST. These methods are called inXxx and outXxx respectively,
where Xxx are the types of grammar alternatives. So the general design of the
DepthFirstAdapter class is:

class DephFirstAdapter extends AnalysisAdapter
{

}

void caseStart(Start node)
{

inStart(node);
node.getAXxx() .apply(this);
node.getEOF() .apply(this);
outStart(node);

}

void inStart(Start node) {}
void outStart(Start node) {}
void caseXxx(Xxx node)
{

inXxx(node);
node.getYyy.apply(this);
node.getZzz.apply(this);
outXxx(node);

}

Il first child of Start
Il second child of Start

Il first child of Xxx
Il second child of Xxx

•

This class walks the tree in a depth-first traversaI, calling the inXxx and outXxx
methods on entering and leaving nodes. But more interestingly, it is easy ta extend
this class and provide sorne action code ta he executed when entering or leaving sorne
type of node by simply overriding the appropriate inXxx or outXxx method. There
is no need ta copy the recursive caIls that walk the tree.

lt is interesting ta note that this approach isolates tree walking code and action
code in their own separate classes. This is a big gain in software reuse, because the
same tree-walker can be used as the parent of many different action classes.

lt is also possible ta implement new tree-walkers by extending one of the two
provided tree-walker classes and overriding appropriate methods. This can be quite
useful for tree-based dataflow analyses. For example, an abstract interpretation of
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a loop might compute fi.xed points by walking a subtree over and over untU sorne
condition is met. 1t would be possible ta create an appropriate walker that would caU
an overridable method ta test the loop condition.

6.5 Additional Features

Ta prevent any corruption in the AST, SableCC implements some additional safe
guards. The tree nature of the AST is enforced by SableCC. 1t is not possible to
create directed acyclic graphs (DAG). So, if an AST node is attached to a new parent,
the link between the node and its old parent is automatically deleted. This happens
also with nodes in collections.

The only limited corruption intentionally left in the AST is the ability to use null
references. This was necessary to keep sorne flexibility in the AST. Enforcing both
non-nuU references and strict trees (no DAG) would unnecessarily complicate tree
transformations.

The Node class, ancestor of all AST classes, implements a parent () method that
returns the parent of a node or null if there isn't one. The programmer does Dot set
this reference. In fact, he/she can't. The reference is simply provided with no help
from the programmer. The implementation of this is made possible by the use of
package scoped methods and because children are always accessed through accessor
methods and collections (linked lists).

AIl AST node classes are intentionally declared final. This rnakes it impossible ta
extend anode class to store information directIy in the node. Instead, analysis data is
stored in analysis classes. On the other hand, the AnalysisAdapter class implements
four methads:

Object getln(Node node);
Object getOut(Node node);
void setln(Node node, Object in);
void setOut(Node noda, abject out);

These methods can be used ta save and retrieve information from/ta internai hash
tables. The advantage of this approach is that it makes it possible to free ail references
to analysis data by simply setting references ta the analysis class to null. The garbage
callectar will find all the garbage. This alsa eliminates the need ta walk the AST ta
free data.
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Method Name Description
applyO Implements the extended visitor pattern.
clonee) Copies an entire subtree.
smart constrnctor Takes children as parameters.
get/setLine () (Tokens only) gets/sets the line number.
get/setPos 0 (Tokens only) gets/sets the tine position.
get/setText () (Tokens only) gets/sets the te.xt of the token.
parent 0 Returns the parent of the node (or nul!)
replaceBy() Replaces the subtree by another subtree.
toStringO Retums a text representation of the subtree.

Table 6.1: NIethods available on aIl nodes.

AST nodes implement additional features like the toString() method that prints
the complete subtree, the clone() method that clones a subtree, smart constructors,
and the replaceBy() method that simplify AST modifications. Table 6.1 shows a
summary of methods available on all nodes.

6.6 Summary

In this chapter, we have discussed the visitar design pattern. We then explained our
extensions ta render the pattern usable in evolving structures. We finally explained
the design of tree-walkers and a few other features of SabieCC generated frameworks.
A complete functional example of a compiler with embedded actions can he found in
chapter 3.
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Chapter 7

Case Studies

In this chapter, we will discuss five case studies of the use of SableCC. Two of these
case studies used an aIder version of SabieCC; version 1.0. Based on the conclusion of
these first studies. we did important additions to SableCC. The result was SableCC
version 2.0, which was used in the last studies. SabieCC version 2.0 is the version
that is described in this thesis.

7.1 SabieCC with SabieCC

The first case study consisted of the rewriting SableCC using SableCC. The first
preliminary version of SableCC was written with the help of CUP and JavaLex (now
called JLex). In this first version. SableCC was already designed intemally around a
typed AST, but we had to code by hand all the AST classes, and insert AST building
actions in the CUP grammar specification.

In SableCC 1.0, preliminary version, the framework provided a basic DFA based
lexer (without lexer states), a typed AST based on a pure BNF specification (without
names for alternatives and elements), an LALR(1) parser that automatically built the
AST, and a depth-first AST traversai class.

In the course of the summer of 1997, we have rewritten SableCC version 1.0 using
our preliminary version. This automatically provided all the additional features of
SableCC generated AST nodes, like accessors and automatic parent pointer~ improv
ing the robustness and usability of the internai AST of SableCC.

Rewriting the AST building code of SabieCC using SableCC proved to he easy.
We had only to provide a specification file containing token definitions and grammar
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productions. 'vVe ran SabieCC on this specification and we gat a new AST and .AST
builder. The use of accessors (get/set methods) in this new AST required a few
cosmetic changes to core classes of SableCC, but the Java compiler did a fairly good
job of finding all modification sites.

Our use of a typed AST from the beginning proved quite useful. We didn't ex
perience any difficulty ta find discrepancies in the code. In fact, most errors were
found at cornpile time, because they resulted in type errors. 50 once type errors were
resolved, we had a stable product.

Parent pointers have not proved useful before we did sorne major changes to
SableCC, in yersion 2.0. As the reader might have guessed, we have \\LÎtten the
second version of SabieCC using the first version.

The biggest annoyance experienced, while using SableCC version 1.0, was the
constant need to refer ta the grammar of SableCC to find the type name of an
alternative or the name of an element. (Is it node5 or node6?)

7.2 Code proftling

In the Fall term of 1997, we performed the first field test of SabieCC in the form of an
assignment for students of the advanced compiler course at NIcGill University. In this
assignment, students had three options, two of which are relevant ta this thesis. The
first option was to insert profiling statements in the AST of SUvIPLE C programs, in
the context of the NIce.AT C compîler(Sri92}(written in Cl. The second option was to
insert profiling statements in the AST of programs written in the Smallianguage, a
toy language similar to SnvIPLE C, but without functions. A Small compiler, written
in Java using SableCC version La, was provided to the students. The compiler had
a Small AST to C file translator, 50 students could execute their programs and test
their transformations.

At that point in time, we were mainly interested in the usability of SabieCC gen
erated frameworks. So we collected verbal and written feedhack (in e-mail nlessages)
from the students. rvlost students, that picked the SableCC options (7 students in
total), were new ta Java and object-oriented programming in general. This proved
ta he a good challenge, in the presence of a framework strongly based on advanced
object-ariented programming techniques, like the visitor design pattern, anonymous
classes and the use of Java packages. On the other hand, the students that picked
the McCAT option were already familiar with the C programming language.
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Both group of students \Vere provided with a general overview of the respective
frameworks, along with documentation (extensive in the case of !vlcCA.T, minimal in
the case of SableCC) and examples.

Surprisingly, the students choosing the SabieCC option were able to use visitors
and anonymous classes without understanding all the underlying theory. They used
them as s\vitch statements on the type of AST nodes and as tree walkers, basing their
code on provided examples.

Sa, unlike what we expected, the major difficulties were of a more technical nature.
Getting the Java Development Kit 1.1 appropriately instaIled, understanding the
behavior of the Java CLASSPATH variable and getting programs ta compile wcre
the biggest problems experienced by students.

The next problem, in importance, was understanding the structure of an abstract
syntax tree, for students without a background course on compilers. (This course was
on optimization techniques and did not caver the lexing and parsing stages of a com
piler). So, for these students, it was a first experience on programming trees. This
difficulty was shared by students in the rvlcCAT options without a compiler back
ground. This difficulty was reLatively easily overcome by expLaining to the students
the relation between the AST and the grammar, and then by going through aIl the
details of a tree transformation example.

It is interesting to note that students in the SableCC option experienced most
of their problems early in the coding process. Often, they had compiler errors due
to type problems in their code: missing type casts or invalid assignments. Nlany,
possibly hard to find discrepancies, were avoided this way. In fact, when we corrected
the assignments, we found that almost aIl problems were of a high level nature. A.
student would not have inserted the right profiling code.

The were very few problems of a technical nature in the solutions. But in one case,
a small bug proved quite difficult ta find. A student had coded his tree transformations
in a class derived from a tree walker, but at execution time, sorne transformations did
not seem to happen. Finally the bug was round. The student had written: public
void inStmt4(Stmt3 node) instead of public void inStmt4(Stmt4 node). So he
was creating a new overload for the inStmt4 method instead of overriding it. This
error would have been much easier ta find, if alternatives had names, like in SabieCC
2.0.

!v[cCAT option students, on the other hand, experienced their problems Later. Nor
maIly, most of their code would compile, but at execution time, aIl kind of problems
occurred. NIost problems were due to dereferencing null pointers or AST corruption.
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Errors of the first nature were relatively easy ta detect, but AST corruption problems
proved very difficult ta find. l'1IcCAT implements an A8T verifier, but this tool will
report that sorne corruption has happened. It won't report on the location of erra
neous source code. Sa, sorne solutions exhibited problems with a few benchmarks,
while working correctiy on most others.

In general, both group of students delivered an equivalent quality in their assign
ment solutions, even though, most SabieCC option students had ta learn Java in
addition to solve the assignment. There was one student that already knew Java and
had taken a base compiler course. He not only delivered a perfect assignment, but he
did it a few days before the assignment submission deadline.

It is in the correction of the assignments that we detected the biggest problem of
SableCC. Reading source code that assigns values to node4 and node9, aod retrieves
information from an object of type Stmt9 is oot easy to understand. It would have
been easier ta read that information was retrieved from an object of type ForStmt.

50, in conclusion of this experience, we decided to add names for alternatives and
elements in the specification grammar of SableCC.

7.3 A Java Front End

As a part of a testbed for possible compile-time optimizations for Java built by the
Sable Research Group of ~rcGill University, a front-end for the Java language was
developed using SableCC.

This proved quite simple. using SabieCC 2.0. We simply typed the LALR(l)
grammar for Java 1.02, found in (GJS96}. The longest part \Vas to give a narne to
every alternative.

We tested this front end on many prograrns, and we found no problems with either
the lexer or the parser.

'vVe did experience sorne problems with the Java runtime system, though, when
cornpiling huge Java source files. These problems are related ta the Java rnernory
management system. Java programs compile fast until they ron out of physical mem
ory. When the Java garbage collector looks for free space in virtual memory, the
process slows down considerably.

To minimize this problem as much as possible, we have reduced the number of
abject instantiations in generated lexers and parsers. By doing 50, we were able ta
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reduce the compile time of our biggest Java source file (1.3 Megabyte) from 55 minutes
ta 1 minute 29 seconds.

We think that future versions of Java, using state-of-the-art techniques, will over
come these memory and speed limitations. Nleanwhile, we think that an AST based
approach will be useful, as long as the AST fits into physical memory. Customized
parsers can also be used to reduce the AST size at parsing time.

7.4 Fast Points-to Analysis of SIMPLE C Programs

As a proof of concept on the simplicity of using SableCC, we have developed a front
end compiler for the SHvIPLE C language, the intermediate language used in the
NlcCAT C compiler[Sri92]. Then we have implemented a state-of-the-art almost linear
time points-to analysis on the typed AST generated by SableCC. AlI details on the
algorithms for this analysis can be found in (Ste96].

vVe have implemented the calculation of the storage model of a program. Ta do
50, we have used three passes over the AST.

1. In the first pass, we modify the AST ta simplify the implementation of analyses.

2. In the second pass, we create an initial storage modp.l.

3. In the third (and final) pass, we calculate the final storage mode!.

The implementation of each pass has been done in a separate Java class. This
made the implementation of the analysis quite easy, using SableCC. In the following
subsections, we gÏve a quick overvie,v of these three passes.

A8T Modifications

The abstract syntax tree constructed by SabieCC exactly matches the concrete syntax
tree of a program. In order to build a SIlVIPLE C front-end using SableCC, we had ta
solve a few LALR(I) conflicts by rewriting sorne parts of the grammar. In particular,
we had ta eliminate the following alternative: type_specifier = ... 1 {typedef}
identifier; This has led to the addition of other alternatives at different places in
the grammar.

In our first pass over the AST, we reintroduce the (ignored) typedef alternative.
vVe also remove from the AST all the alternatives that were added to resolve LALR(l)
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conflicts. This is simple in a SableCC framework, using the replaceBy method and
the node constructors.

Here are the first lines of the class ModifyAST. java:

import ca.mcgill.sable.simple.analysis.*;
import ca.mcgill.sable.simple.node.*;
import ca.mcgill.sable.util.*;
Il Reintroduce in the AST the "identifier" alternative of
Il Ittype specifier" and the first "val ue" element of the
Il IIbinary_expression" production.
Il This removes the modifications done to the grammar in
Il order to make it LALR(l).
class ModifyAST extends DepthFirstAdapter
{

public void outAldentifierParameterDeclaration(
AldentifierParameterDeclaration node)

{

node.replaceBy(new AParameterDeclaration(
new ATypedefTypeSpecifier(node.getldentifier(),
node.getDeclarator(»);

}

public void outAAbstractldentifierParameterDeclaration(
AAbstractldentifierParameterDeclaration node)

{

node.replaceByCnew AAbstractParameterDeclaration(
new ATypedefTypeSpecifier(node.getldentifier(»,
node.getAbstractDeclarator(»);

}

}

Initial Storage Madel

In order to implement the storage model, we have defined the following Java classes:
Type, Lam, Ref, Bottom and Variable. Type is an abstract class and the parent of
Lam, Ref and Bottom. In addition, we have implemented the utility methods (for
fast union-find) in class Variable.
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For example, here's sorne pseudo-code written in [Ste96}:

settype(e, t)

type(e) f- t

for x E pend-ing(e) do join(e,x)

and here is the Java source code for it:

import ca.mcgill.sable.util.*;
class Variable
{

void setType(Type t)
{

Variable e = this.ecr();
e.type = t; Il type(e) (- t
for(Iterator i = e.pending.iterator(); i.hasNext();)
{

e.join«Variable) i.next(»; Il join(e)x)
}

}

}

The next step is the implementation of a Declaration class ta collect al! variable
declarations and initialize the storage model. AlI variables are initialized ta ref(1., 1.):

Il Hashtable for Type Variables
Hashtable variables = new Hashtable(l);

Il v = Ref(bottom. bottom)
variables.put(id, new Variable(new Ref(»);

Creating the final storage model

There are six rules ta implement a fast paints-to analysis. (We ignore a few cases of
[Ste96} that do not apply ta SIMPLE C).
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We have encoded these rules in the class PointsToAnalysis. Here's the pseudo-code
and implementation of rule 1:

x =y:

let ref('l x Àd = type(ecr(x)),ref('2 x À2 ) = type(ecr(y)) in

if '1 # '2 then cjoin(,L, 12)

'if À1 # À2 then cjoin(À1l À2 )

Il x = y
private void rulel(Variable x, Variable y)
{

Variable refl = «Ref) x.ecr().type).ref.ecr();
Variable laml = «Ref) x.ecr().type).lam.ecr();

Variable ref2 = «Ref) y.ecr().type).ref.ecr();
Variable lam2 = «Ref) y.ecr().type).lam.ecr();

if (ref1 != ref2)
{

refl.cjoin(ref2);
}

if(laml != lam2)
{

laml.cjoin(lam2);
}

}

The next step is to apply these rules appropriately. In SI~IPLE C, there are 5
kinds of left-hand side and 19 kinds of right-hand side in lhs = rhs; We anaIyze
these two sides separately. When we have an indirect left-hand side, we perform the
following assignment *lhs = tempo Since the analysis is flow insensitive, this is valid.
Then we use temp on the left-hand side: temp = rhs.
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Here are sorne exerpts from the PointsToAnalysis class:

PRhs rhs;
Variable lhs;
public void outAModifyExpressionBasicStatement(

AModifyExpressionBasicStatement node)
{

Il [3] lhs = rhs;
Il Dissect the 5 lhs cases (and get rhs)
node.getHodifyExpression().apply(nev AnalysisAdapter()
{

public void caseADirectModifyExpression(
ADirectHodifyExpression node)

{

rhs =node.getRhs();
node.getVarname().apply(nev AnalysisAdapter()
{

public void caseAComprefVarname(
AComprefVarname node)

{

node.getCompref().apply(nev AnalysisAdapter()
{

public void caseAlndirectCompref(
AlndirectCompref node)

{

Il (2) (*identifier).identifier... = rhs
lbs = nev Variable(nev Ref(»;
Il (*identifier).identifier ... = temp
rule5(variable(node.getldentifier(».lhs);

}

... }}}}}
Il Dissect the 19 rhs cases
rhs.apply(nev AnalysisAdapter()
{

public void caseABinaryRhs(ABinaryRhs node)
{

Il (1) (value binop value)
ABinaryExpression exp = (ABinaryExpression) node.getBinaryExpression();
rulel(lhs. (Variable) PointsToAnalysis.this.getOut(exp.getLValue(»);
rulel(lhs. (Variable) PointsToAnalysis.this.getOut(exp.getRValue(»);

}

...}}
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Conclusion

As we have shawn, the object-oriented features of SabieCC allowed us ta implement
a state-of-the-art analysis on an AST representation of SINIPLE C programs, by
writing cIear and concise Java code. This not only simplified the implementation of
this complex analysis, but the strict-typing of the AST helped discover at compile
time smaii discrepancies that would have been very difficult to find otherwise.

1.5 A Framework for Storing and Retrieving Analysis Infor
mation

As a project for the advanced compiler course (CS-3D8-621A), Amar Goudji1 has
developed a framework to save analysis information along with the source code of
programs and retrieve it at a later time[Gou97].

The problem is the following. In most compilers, analyses are developed ta collect
information on compiled programs. This information is volatile; is only stored in
memory structures. 1t is therefore quite difficult for a human ta analyze the quality of
this information, or share it with other compiler groups. So, Amar Goudjil developed
a framework that enables compiler developers to write this information into comments
embedded in the source code of the analyzed program.

Here is a high level view of the system operation. The developer creates a grammar
to structure analysis information into comments. Then the compiled program and
its analysis information are dumped to a file, using comments formatted according to
this new grammar. SableCC is then used ta generate two parsers, one for the original
language, and one for the analysis information grammar. Finally, both parsers are
combined ta build a typed AST, where analysis information is restored.

Amar Goudjil used lexer states ta allow the coexistence of multiple grammars
using different keywords. This coexistence allowed multiple analyses ta dump their
information into a single file.

The use of SabieCC made this project relatively simple to implement. The test
framework, shawn in Figure 7.1, was built ta dump analysis information from the
McCAT C compiler[Sri92] and retrieve this same information in a SI~IPLE C compiler
built in Java using SableCC.

It is easy to see a close relation between this project and the Points-to Analysis
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Figure 7.1: Framework for storing and retrieving analysis information

project described in Section 7.4. Both projects share the same SI~IPLE C gram
Inar. By combining bath projects, it is possible ta use the lVlcCAT compiler as a
front-end ta simplify C programs and run currently implemented analyses on them.
After writing this information into a file and retrieving this information into a Java
SI~IPLE C compiler, we can use this information to develop new analyses in the Java
programming language.
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Chapter 8

Conclusion and Future Work

8.1 Summary and Conclusions

Writing a small compiler or interpreter, or just writing a parser to read sorne formatted
text has become a common task. Compiler compilers are tools used by programmers
to accomplish these tasks. As the Java language appeared on the Internet and gained
popularity, existing compiler compilers have been ported to Java.

In this thesis, we have discussed SableCC, a new compiler compiler that we devel
oped specifically ta take advantage of rnany modern features of Java. Specifical1y, we
explained how the design of SableCC shortens the development cycle of a compiler.
The we showed how ta use SabieCC ta generate a lexer and how the lexer can be
customized cleanly through inheritance. Then we explained how SabieCC reads a
grammar description and automatically generates a typed abstract syntax tree for
the described language.

We discussed how we implernented and extended the visitor design pattern in
SableCC generated frameworks. vVe also explained our implementation of tree-walkers
and how action code can he added by simply inheriting from a tree-walker class. We
explained how a SabieCC generated AST uses the Java type system and accessors
ta provide automatic parent pointers and protection against corrupted trees. And
finally, we discussed five case studies. We explained how early studies have infiuenced
the evolution of SableCC and later studies confirmed the simplicity of using SabieCC
ta build compilers.
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Throughout this thesis, we have detailed a new object-oriented approach to com
piler construction, using design patterns, interfaces and inheritance. We have demon
strated the modularity of resulting compilers. We showed how easily one can add
new analyses ioto a SableCC framework without modifying existing code.

8.2 Future work

We have made SableCC available on the Internet (http://www.sable.mcgill.ca/J. vVe
will continue to enhance SableCC to meet its users needs

There is sorne room for further development of SableCC in the following directions:

• The choice of parser technology is of low importance in the design of SableCC.
lt would be interesting ta provide the choice of many parsing strategies ta users
of SableCC. SableCC could support LL(l), LALR(l) and possibly a (slower)
general context-free grammar parser.

• Error recovery has not been covered in this thesis. vVe plan to add error recovery
features to SabieCC lexers and parsers. The handling of error recovery would
happen through inheritance in customized lexers and parsers.
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Appendix A

SabieCC Online Resources

The SabLeCC software can be obtained online from the Sable Research Group's web
site http://www.sable.mcgill.ca/ormoredirectly,http://www.sable.mcgill.ca/sableccf.
An electronic copy of this document and a short introductory document on SableCC
can be obtained as weIl.

Ta joïn the SableCC discussion mailing-list, send an e-mail message to sablecc-list
request@sable.mcgill.ca with 'subscribe sablecc-list' in the body.

SableCC is distributed in both source and binary formats. SahleCC can be re
distributed and/of modified under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or any
later version.
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SableCC 2.0 Grammar

/. This grammar defines the SableCC 2.0 input language .•/

Package ca.mcgill.sable.sablecc; // Root Java package for generated files.

Relpera

/. These are charac~er sets and regular expressions used in the definition of tokens .•/

all :lE [0 .. OxFFFF];

lovercase • ['a' .. 'z'];
uppercase • [' A' .• 'Z '] ;
digit :lE ['0' .. '9'];

hex_digit • [digit + [['a' .. 'f'] + ['A' .. 'F']]];

tab • 9;
cr :1 13;

If • 10;
801 • cr If 1 cr If; // This takes care of different platforms

not_cr_lf • (all - (cr + If]];
not_s~ar :1 [all - '.'l;
not_star_slash • (not_star - 'l'];

blank • (' , 1 tab 1 eol)+;

short_comment • 'II' not_cr_lf. eol;
long_comment· '/.' not_star. '.'+ (not_st&r_slash not_star. '.'+). '/';
comment • short_comment 1 long_comment;

•
let~er • loverease 1 uppercase
id_part • loverease (loverease

'_' l'S';
digit).;
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• States
normal, /. The tirst state is the initial state.•/
package;

Tokens

/. These are token definitions. It is alloved to use helper regular •
• expressions in the body of a token definition. •
- On a given input, the longest valid definition is chosen, In -
• case of a match, the definition that appears first is chosen. •
- Example: on input -) 's' (- "char" vill bave prececlence on -
• "string", because it appears first. -/

{package}
pkg_id =letter (letter 1 digit)-;

{normal->package}
package = 'Package';

states = 'States';
helpers = 'Helpers';
tokens = 'Tokens';
ignored = 'Ignored';
productions = 'Productions';

token_specifier = 'T';
production_specifier· 'P';

J , •. ,.. ' ,... .
{normal, package->normal}

semicolon :a ';';

equa! = '.';
l_bkt = '(';
r_bkt = ']';
l_par = '(';
r_par a')';
l_brace· '{';
r_brace· '}';
plus la '+';

minus • '-';
C{JIl&l'k • ' ? ' ;

star· '.';
bar· 'l';
comma. •

, ,.
1 1

•
slash • 'l';
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arrov = '->';• colon • J.' ....

char = '" not_cr_lf "';
dec_char • digit+;
hex_char • '0' ('x' l'X') hex_digit+;

" ..
1

•

blank = blank;
comment = comment;

Ignored Tokens

/. These tokens are simply ignored by the parser.•/

blank.
comment;

Productions

/. These are the productions of the grammar. The first production is -
- used by the implicit start production: •
• start· (first production) EDF; -
• ?, • and + have the s~e meaning as in a regular expression. -
- In case a token and a production share the same name, the use of •
• P. (for production) or T. (for token) i8 re~uired. •
• Rach alternative can be explicitely named by preceding it vith a -
• name enclosed in braces. •
• Each alternative element can be explicitely named by preceding it -
• vith a name enclosed in brackets and folloved by a colon. ./

grammar •
P.package? P.helpers? P.states? P.tokens? ign_token8? P.productions?;

package •
T.package pkg_name?;

pkg_name •
pkg_id [pkg_idsl:pkg_name_tail. semicolon;

pkg_name_tAil •
dot pkg_id;

helpers :z
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helper_def =
id equa! reg_exp semicolon;

states =
T.states id_list? semicolon;

id_list ::II:

id [idsl:id_list_tail.;

id_list_tail ::II:

comma id;

tokens •
T.tokens (tQken_defsl:token_def-;

token_def =
state_list? id equa! reg_exp look_ahead? semicolon;

state_list ::II:

l_brace id transition? [state_listsl:state_list_tail- r_brace;

state_list_tail ::II:

comma id transition?;

transition •
arroil id;

ign_tokens ::II:

ignored T.tokens id_list? semicolon;

look_ahead •
slash reg_exp;

reg_exp •
concat [concats]:reg_exp_tail*;

reg_exp_tail •
bar concat;

concat •
[un_expsl:un_exp.;

un_exp •
basic un_op?;

basic •
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• {char}
{set}
{string}
{id}
{reg_exp}

P.char
set 1

string
id 1
l_par reg_exp r_parj

•

char •
{char} T.char 1
{dec} dec_char
{hex} hex_char;

set ~

{operation} l_bkt (left]:basic bin_op [rightJ:basic r_bkt 1
{interva!} l_bkt [left]:P.char d_dot [right]:P.char r_bkt;

UD_Op :=

{star} star 1

{q_mark} q-mark

{plus} plus;

bin_op ..
{plus} plus 1
{minus} minus;

productions •
T.productions [prods]:prod.;

prod •
id equa! &lts semico1on;

alts •
aIt (alts]:a1t8_tai1.;

alts_tai1 =
bar alti

alt •
{parsed} alt_Dame? [elemsl:elem* 1
{ignored} l_par alt_Dame? [elems]:elem* r_par;

&lt_name •
l_brace id r_brace;

elem =
elem.name? specifier? id un_op?;

elem-name =
l_bkt id r_bkt colon;
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specifier =
{token} token_specifier dot 1

{produc~ion} production_specifier dot;
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'\v' ;
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Appendix C

Simple C Grammar

Package ca.mcgill.sable.simple;

Helpera

all = (0 .. 127];
digit • (, 0 ' •• ' 9 ') ;

nondigit • (' _' + ((' a' .. 'z ' ) + (' A' •• ' Z' )]] ;

digit_sequence • digit+;
fractional_constant • digit_sequence? '.1 digit_sequence 1 digit_sequence J.';
sign • '+ ' l ' -' ;
e%ponent_part • ('e' r 'E') sign? digit_sequence;
floating_suffix = 'f' l 'F' l 'l' 1 JL';
simple_escape_sequence = '\' '1' 1 '\'J,
'\a' 1 '\b' l '\f' 1 '\n' l '\r J 1 J\t'

octal_digit • ('OJ .• '7');

octal_8scape_sequence • '\' octal_digit octal_digit? octal_digit?;
hexadecimal_digit • (digit + [(, a ' •• ' f ' ] + (, A' •• ' F' ]]] ;
hexadecimal_escape_sequence • '\x' hexadecimal_digit+;
escape_sequence • siœple_escape_sequence 1 oc~al_escape_sequence

hexadectmal_escape_sequence:
s_char • [all - [, fi' + (, \ J + [10 + 13]]]] 1 escape_sequence;
s_chu_sequence • s_chu+;
Donzero_digit = ('l' .. '9'];
decimal_constant • Donzero_digit digit.;
oc~al_constant • '0' octal_digit-;
hexadecimal_constant = '0' ('x' l'X') hexadecimal_digit+:
UDsigned_suffix· 'u' l 'U';
long_suffix • 'l' 1 'L';
integer_suffix • unsigned_suffix long_suffix? 1 long_suffix UDsigned_suffix?:
c_char = [all - ['" + ('\, + [10 + 13]]]] 1 escape_sequence;
c_chu_sequence • c_char+;

cr • 13;
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• lf ::1 la;

not_star· [all - '.'];

not_star_slash = (not_star - 'l'J;
tab = 9;

TokeDB

dot =
comma
colon

, , .. ,
, ,.

, 1

,., .
• 1

semicolon = ';';
1_par = '(';
r_par .. ')';

1_bracket ' (, ;

r_bracket = ']';
1_brace ,{, ;

r_brace '}';

star • '.';
div '/';
mod::l '%':
ampersand = 'a';
plus • '+';

minus • '-';
caret

tilde =
, .... , ..

1

J- J.
1

,.,

'1' ;

•

quest_mark =

bar • 'l';
ellipsis • '
equa! la '.';

eq • '=-';
neq • '!=';
lt • '(';
lteq • '(.';
gt la ')';

gteq • ').';
&rra" • '-)';
plus_plus • '++';
minus-minus '--';
shI '«';
shr '»';
ampersand_ampersand :II , ti' ;
bar_bar • '1 (, ;
star_equa.! • ' •• ';

div_equaI • '/-';
mod_equal • '%=';
plus_equa.! • '+.';
minus_equal • '-=';
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shl_equa! .. '«~a';

shr_equal = '»=';

ampersand_equa! = 't=';
caret_equa! = '-.';
bar_equa! = '1=';

case = 'case';
default = 'default'.
if = 'if'.
else .. 'else';
svitch" 'svitch';
while • 'vhile'.
do • 'do';
for" 'for';
goto .. 'goto';
continue = 'continue';
break = 'break';
return = 'return';
typedef = 'typedef';
ertern = 'ex'tern ' ;
s'tatic = 's'tatic';
auto" 'auto';
regis'ter = 'register';
void = 'void';
char • 'char';
int • 'int';

short • 'short';
long • 'long';
float = 'f108ot';
double 'double';
signed = 'signed';
unsigned .. 'unsigned';
struct .. 'struct';
union" 'union';
enum • 'enum';
const • , const' ;
volatile = 'volatile';
sizeof = 'sizeof'.

identifier • nondigit (digit 1 nondigit).;
floating_cons'tant =fractiona!_constant exponent_part? floating_suffix? 1

digit_sequence exponent_part f108oting_suffix?;
s'tring_Iittera! .. ' L'? '''' s_char_sequence? '''';
tnteger_constant =decimal_cons'tant integer_suffix? 1 octal_constant integer_suffix? 1

hexadecimal_constant integer_suffix?;
charaeter_cons'tant· 'L'? '" c_ehar_sequence "';
blank .. (cr 1 If 1 tab l ' ')+;

comment • '/-' not_st~ '.'+ (not_star_s1ash not_star. '.'+)- 'l';
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• Ignored Tokens

blank.
comment.
ertem.
static.
auto.
register.
const.
volatile;

Productions

translation_unit •
declaration_or_definition.;

declaration_or_definition =
{struct_declaration} struct_declaration 1
{union_declaration} union_declaration 1

{enum_declaration} enllm-declaration 1
{typedef_declaration} typedef_declaration 1

{function_declaration} function_declaration 1

{variable_declaration} variable_declaration 1

{function_definition} function_definition;

struct_declaration •
struct identifier l_brace member_declaration* r_brace semicolon:

member_declaration •
type_specifier declarator semicolon;

•

type_specifier •
{void}
{char}
{signed_char}
{signed_short}
{signed_int}
{signed_long}
{unsigned_char}
{unsigned_short}
{unsigned_int}
{unsigned_long}
{float}
{double}
{long_doUble}
{struct}
{union}

void_specifier 1
chu_specifier 1

signed_char_specifier 1
signed_short_specifier 1
signed_int_specifier 1
signed_long_specifier 1
UDsigned_chu_specifier
UDsigned_short_specifier 1
UDsigned_int_specifier 1

UDsigned_long_specifier 1
float_specifier 1

double_specifier 1

long_double_specifier
struct_specifier 1

union_specifier 1

86



Il for modified AST
({typedef} identifier);• {enum} enum..specifier

•

void_specifier
voidi

char_specifier =
chari

signed_char_specifier •
sigueci char;

signed_short_specifier ~

{short} short
{signed_short} signed short
{short_int} short int 1
{signed_short_int} signed short int;

signed_int_specifier ~

{int} int 1

{signed} signed
{signed_int} signed inti

signed_Iong_specifier •
{long} long 1
{signed_long} signed long 1
{long_int} long int 1
{signed_long_int} signed long inti

unsigned_char_specifier •
unsigned char;

unsigned_short_specifier •
{unsigned_short} unsigned short
{unsigned_short_int} unsigned short inti

unsigned_int_specifier •
{unsigned} unaigned
{unsigned_int} unsigned inti

unsigned_Iong_specifier •
{unsigned_Iong} uneigned long
{unaigned_long_int} unaigned long int;

float_specifier •
float;
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double_specifier =
double;

long_double_specifier =
long double;

struct_specifier •
struct identifier;

union_specifier =
union identifier;

enum_specifier =
enum identifier;

declarator •
{pointer} pointer
{direct} direct_declarator;

pointer •
{direct} star direct_declarator 1

{pointer} star pointer;

direct_declarator =
{identifier} identifier
{array} array_declarator
{function} function_pointer_declarator;

array_declarator •
{identifier} identifier l_bracket integer_constant? r_bracket 1
{pointer} l_par pointer r_par l_bracket integer_constant? r_bracket
{array} array_declarator l_bracket integer_constant? r_bracket;

function_pointer_declarator •
(plp):l_par pointer (prp]:r_par (pllp):l_par parameter_Iist? (plrpl:r_par;

parameter_list •
parameter_declaration parameter_Iist_tail.;

parameter_declaration •
type_specifier declarator 1

{abstract} type_specifier abstract_declarator? 1

{identifier} identifier declarator 1 Il viII be removed from AST
{abstract_identifier} identifier abstract_declarator?; Il will be removed from AST

abstract_declarator •
{pointer} abstract_pointer
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{direct} abstract_direct_declarator;

abstract_pointer =
{direct} star abstract_direct_de:larator?
{pointer} star abstract_pointer;

abstract_direet_declarator =
{array} abstract_array_declarator 1
{function} abstract_function_pointer_declarator;

abstract_array_declarator •
{integer} l_bracket integer_constant? r_bracket 1

{pointer} l_par abstract_pointer r_par l_bracket integer_constant? r_bracket
{array} abstract_array_declarator l_bracket integer_constant? r_bracket;

abstract_function_pointer_declarator •
[plpl:l_par abstract_pointer [prpl:r_par (pllpl:l_par parameter_list? [plrpl:r_par;

parameter_list_tail =
comma parameter_declaration;

union_declaration •
union identifier l_brace member_declaration. r_brace semicolon;

enum-declaration •
enum identifier l_brace enumerator additional_enumerator* r_brace semicolon;

additional_enumerator •
comma enumerator;

enumerator •
{automatic} identifier 1

{specifie} identifier equal constant;

typedef_declaration •
typedef type_specifier declarator semicolon 1

{identifier} typedef identifier declarator semicolon; Il viII be removed from AST

function_declaration •
type_specifier functioD_declarator semicolon 1

{identifier} identifier function_declarator semdcolon; Il viII be removed from AST

function_declarator •
{pointer} pointer_funetion 1
{direct} direct_function_declarator;

pointer_function •
{direct} star direct_funetion_declarator
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• {pointer} star pointer_functionj

direct_function_declarator ~

{array} array_function_declarator
{identifier} identifier l_par parameter_list? r_par 1

{function} (plpl:l_par pointer_function [prpl:r_par [pllpl:l_par
parameter_list? [plrpl:r_par;

array_function_declarator •
{pointer} l_par pointer_function r_par l_bracket integer_constant? r_bracket
{array} array_function_declarator l_bracket integer_constant? r_bracket;

variable_declaration •
type_specifier declarator additional_declarator. semicolon
{identifier} identifier declarator additional_declarator.

semicolon; Il ~ill be removed from AST

additional_declarator =
comma declarator;

function_definition •
type_specifier function_declarator function_body 1

{identifier} identifier function_declarator function_bodYi Il viII be removed from AST

function_body
l_brace variable_declaration. statement- stop_statement? r_bracei

compound_Btatement •
l_brace statement- stop_statement? r_brace;

statement •
{comp_stmt}
{basic_stmt}
{if}
{if_then_else}

{if_else}
{~hile}

{do}
{for}

{s~itch}

compound_statement 1

basic_Btatement semicolon
if l_par conditional_expreBsion r_par compound_Btatement 1

if l_par conditional_expression r_par [then_comp_stmt]:compound_statement
else [else_comp_stmt]:compound_statement 1

if l_par conditional_e~pressionr_par semicolon else compound_statement
vbile l_par conditional_expression r_par compound_statement 1

do compound_statement ~bile l_par conditional_expression r_par semicolon 1

for l_par [start]:basic_statement? [sc_onel:semicolon conditional_expression?
[sc_tvol:semicolon [iter]:basic_Btatement? r_par compound_statement 1

s~itch l_par value r_par case_seatements;

•

basic_statement •
{calI_expression} calI_expression 1

{modify_expression} modify_expression
{deadl} simpla_expression 1

{dead2} l_par star identifier r_par 1
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• {dead3} l_par ampersand varname r_par
{dead4} unop identifier 1

{dead5} l_par unop identifier r_par 1

{dead6} l_par type_name r_par varname
{dead1} l_par type_name r_par constant;

rhs Il

{binary} binary_erpression
{unary} unary_erpression;

binary_expression •
{identifier} l_par identifier binop value r_par 1 Il will be removed from AST
{constant} l_par constant binop value r_par 1 Il will be removed from AST

Il For modified AST
{ l_par [l_value):value binop [r_value):value r_par )i

value ::
{identifier} identifier
{constant} constant;

constant :1

{floating} unop? floating_constant 1

{string} unop? string_litteral 1

{iuteger} unop? integer_constant 1
{character} unop? character_constant;

•

binop •
{relop}
{star}
{div}
{mod}
{ampersand}
{plus}
{minus}
{caret}
{excl-Mark}
{bar}
{sU}

{shr}

{ampersand_ampersand}
{bar_bar}

relop :;
{eq} eq 1

{neq} neq 1

{lt} lt 1
{lteq} 1teq 1

relop 1

star 1

div 1

mod [
ampersand
plus 1

minus 1

caret 1

exclJD&1"k
bar 1

shi 1

shr 1

ampersand_ampersand
bar_bari
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• {gt} gt 1

{gteq} gteq;

unary_expression =
{simple} simple_expression
{reference} l_par star identifier r_par 1

{address} l_par ampersand varname r_par
{call} call_expression 1

{unop} unop identifier 1

{par_unop} l_par unop identifier r_par 1

{cast} l_par type_name r_par varname
{cast_const} l_par type_name r_par constant;

simple_expression =
{varname} varname 1

{constant} constant;

varname =
{arrayref} arrayref 1

{compref} compref 1

{identifier} identifier;

arrayref •
identifier reflist+;

reflist •
l_bracket value r_bracket;

compref •
{indirect} l_par star identifier r_par idlist+ 1

{direct} identifier idlist+;

idlist •
clot identifier;

calI_expression •
identifier I_par arglist? r_par;

arglist •
value arglist_tail.;

arglist_tail =
comma value;

•

unop •
{plus}
{minus}
{tilde}

plus 1

minus 1

tilde 1
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stop_statement =
{break}
{continue}
{return}
{return_value}
{return_par}

•

•

type_name =
type_specifier abstract_declarator? 1

{identifier} identifier abstract_declarator?; Il vill be removed from AST

modify_expression =
{direct} varname equal rhs 1
{indirect} l_par star identifier r_par equal rhsj

conditional_expresaion •
{rel} l_par [left]:value relop [right]:value r_par 1
{value} valuej

case_statements =
l_brace case_statement+ default_statament r_brace;

case_statement •
{body} case constant colon l_brace statement* stop_statement r_brace 1

{empty} case constant colon;

break semicolon dead_code. 1

continue semicolon dead_code.
return semicolon dead_code. 1

return value semicolon dead_code.
return l_par value r_par semicolon dead_code.j

dead_code =
{deadl} statement 1
{dead2} break semicolon
{dead3} continue semicolon
{dead4} return semicolon 1

{dead5} return value semicolon
{dead6} return l_par value r_par semicolon;

default_statement •
{body} default colon l_brace statement* stop_statement r_brace 1
{empty} default coloni
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Appendix D

Customized Parser

In this Appendix, we present a customized parser that simplifies the A8T of a small
arithmetic grammar. Here is the ~ammar:

Tokens
number = ['0' .. '9']+;
plus = J+'; minus = '_J;
l_par = J(J; r_par: J)';
blank = , ';

Ignored Tokens blank;
Productions

expr =
{plus} expr plus number 1

{minus} expr minus number
{par} l_par expr r _par 1

{number} number 1

( {op} [lett]:expr op [right] :expr ); /1 for modified AS!
op :::

( {plus} plus) 1 Il for modified AS!
( {minus} minus ); Il for modified AST

In other words, our initial grammar is (Productions section only):

Productions
expr =

{plus} expr plus number 1

{minus} expr minus number
{par} l_par expr r _par 1

{number} number;
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Here is a customized parser that simplifies the AST while it is constructed.

import ...
public class CustomParser extends Parser
{ ... /1 Constructor

AstFix fix = new AstFix();
private class AstFix extends AnalysisAdapter
{ public void caseAPlusExpr(APlusExpr node)

{ CustomParser.token = nev AOpExpr(
node .getExpr 0 .
new APlusOp(node.getPlus(».
ne~ ANumberExpr(node.getNumber(»);

}

public void caseAHinusExpr(AMinusExpr node)
{ CustomParser.token =nev AOpExpr(

node .getExprO •
new AMinusOp(node.getMinus(».
new ANumberExpr(node.getNumber(»);

}

public void caseAParExpr(AParExpr node)
{ CustomParser.token = node.getExpr();
}

}

protected void filter()
{

token.apply(fix)
}

}

Our final grammar is (Productions section only):

Productions
expr =

{number} number 1

{op} [left):expr op [right):expr;
op =

{plus} plus 1

{minus} minus;
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