
I~I Nation2111brary
01 C"n.1da

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bill::?graphie Services Branch des services bibliographiques

39S Welhnglon Strcel 395. fUI! Welllngion
Qnawa. Orlt3f1C Dnawa (Onlana)
K1A.lN' K1A 0N4

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is govemed by
the Canadian -Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une quaiité

. supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a tait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

TRIE METHÛDS FOR TEXT AND SPATIAL DATA

ON SECONDARYSTORAGE

by

HEP/NG SHANG

School of Computer Science

McGill University

Montréal, Québec

Canada

January 1995

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND REsEARCH

OF MCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

Copyright © 1995 by HEPING SHANG

••• National Ubrary
of Canada

Bib:iothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliograph:ques

395 Welh!"lOton Street 395. rue Wellington
ona..... 0ri1anO """"'8 (00'8110)
K,A0N4 K,A0N4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF ffiS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TInS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHORRETAINS OWNERSmP
OF THE COPYRIGHT IN ffiSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT ffiSIHER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSmON DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA. PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTŒLS DE CELLE
CI NE DOIVENT ETRE IMPRIMES OU

. AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05794-1

Canad~

•

•

Abstract

This thesis presents three trie organizations for various binaI)· tries. The new trie

structures have two distinctive features: (1) they store no pointers and require two

bits per node in the worst case, and (2) they partition tries into pages and are suitable

for secondary storage. We apply trie structures to indexing, storing and querying both

text and spatial data on secondary storage. We are interested in practical problems

such as storage compactness, 1/0 efticiency, and large trie construction.

We use our tries ta :ndex and search arbitrary substrings of a text. For an index

of 100 million keys, our trie is 10% - 25% smaller than the best known method. This

difference is important since the index size is crucial for trie methods. We provide

methods for dynamic tries and allow texts to be changed. We also use our tries to

compress and approxiulately search large dictionaries. Our algorithm can find strings

with k mismatches in sublinear time. To our knowledge, no other published sublinear

algorithm is known for this problem.

Besides, we use our tries to store and query spatial data such as maps. A trie

structure is proposed to permit querying and retrieving spatial data at arbitrary

levels of resolution, without reading from secondary storage any more data than is

needed for the specified resolution. The trie structure also compresses spatial data

substantially. The performance results on map data have confirmed our expectations:

the querying cost is linear in the amount of data needed and independent of the data

size in practice. We give algorithms for a set of sample queries including geometrical

selection, geometrical join and the nearest neighbour. We also show how to control

query cost by specifying an acceptable resolution.

ii

•

•

Résumé
Cette thèse présente trois méthodes de structuration de tries binaires. Ces nouvclles Ntnlc

tures de trie ont deux caractéristiques distinctives: (1) elles ne requièrent pa& de pointcu""

tout en utilisant qu'un maximum de deux bits par noeuds, et (2) clles permettent de paginer

les tries de manière à pouvcir les stocker en mémoire secondaire. Nous appliquons ces struc

tures de trie à l'indexage, la sauvegarde, et l'interrogation de textes ct de données spatiales

conservées en mémoire secondaire. Nous nous sommes intéressés à des problèmes pratiques

de représentation compacte des données, d'cflicacité des entrées/sorties, et de constnlction

de gros tries.

Nous utilisons nos tries pour indexer et effectuer des recherches de sous-chaines dans

un texte. Pour un index de 100 millions de clés, notre trie est de 10 à 25% plus petit

que celui obtenue par la méthode la plus connue. Cette différence est importante puisque

la grosseur de l'index est cruciale pour les méthodes utilisant des tries. Nons proposons

des méthodes pour des tries dynamiques et permettons des changements aux textes. Nous

utilisons aussi nos tries pour compress·'r de gros dictionnaires et faire des recherches ap

proximatives dans ceux-ci. Notre algoritbme peut trouver des chaines de caractères ayant

k différences avec l'argument de recherche en temps sous-linéaire. À notre connaissance,

aucun autre algoritbme sous-linéaire n'a été publié pour ce problème.

De plus, nous utilisons nos tries pour stocker et interroger des données spatiales comme

des cartes. Une structure de trie est proposée pour permettre l'interrogation et l'extraction

de données spatiales à des niveaux de résolution arbitraires, sans avoir à lire de la mémoire

secondaire plus de données qu'il n'en faut pour la résolution spécifiée. La structure de

trie compresse aussi les données &patiales de façon significative. Les resultats des tests

effectués sur des cartes ont confirmé nos attentes: le coût des requêtes est linéaire par

rapport au nombre de données nécessaires, et est indépendant de la grosseur des données

en pratique. Nous donnons des algoritbmes pour un ensemble de requêtes qui inclut la

selection géométrique, la jointure géométrique, et la recherche du plus proche voisin. Nous

montrons aussi comment contrôler le coût des requêtes en spécifiant un niveau de résolution

acceptable•

ili

•

•

Acknowledgements

I would like first and foremost to express my gratitude to my supervisor and men

tor, Professor Tim Merrett, whOSP. support and encouragement were indispensable

throughout my doctoral program. He contributed a great deal of his time, effort and

thought to the wor1': presented in this dissertation. Professor Merrett showed dedica

tion to his students, his profession and his family. He and his wife, MaIj° Ann, have

becn role models for me in my life. During the years of my study in the program,

I also received generous financial support from him, without which it would be im

possible for me to complete this program. I consider myself fortunate to have been

working in association with him and the bond we have formed over the years will be

a source of my strength and courage in the years to come.

I am grateful to the School of Computer Science and IRIS (Centres of Excellence)

for their financial support, and to my thesis committee members, Prof. Monty New

barn, Prof. Nathan Friedman and Prof. Luc Devroye, for their comments. Thanks

also go to Prof. Frank Wm. Tompa, the extemal examiner, for bis extremely thorough

examination of this thesis and many constructive suggestions, to Ms. Vicki Keirl for

her patience and readiness to provide administrative help.

I wish to thank ail my friends during my years at McGill and Montréal for the

joy and fun we shared. Special mention should be made of Samir Douik, Luminita

Stancu, Xiaoyan Zhao, David Bremner, Jasée Turgeon, André Clouâtre, Yu Miao and

Chenfeng Huang.

Thanks must also go to my parents, my late father-in-Iaw, and my extended family

for their love and constant support.

Finally, I give my special thanks to my wife, Xiaohui, for her devotion to the

family, and my son, Jimmy, for the cheer and love we share in the family.

iv

•

•

To

Zou Xiaohui,

high school sweetheart, wife and friend who

has made this thesis possible.

v

•

•

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Motivation................................. 1

1.2 Trie Methods .. 3

1.2.1 Trie Applications .. 5

1.2.2 Trie Parameters .. 7

1.2.3 Trie Representations .. 8

1.3 Text Searching 12

1.3.1 Exact Text Searching .. 13

1.3.2 Approximate String Matching 16

1.4 Spatial Data Structures. .. 17

1.4.1 Multi-dimensional Point Structures 17

1.4.2 Non-point Structures .. 19

1.4.3 Summary .. 20

1.5 Thesis Outline. .. 21

2 Trie Organization 23

2.1 Pointerless Representations. .. 23

2.1.1 .l'ù7He............................... 24

2.1.2 OrThe............................... 25

vi

•
2.2

2.3

2.4

2.5

2.1.3 PaTrie

Trie Partitioning . .

Trie Scarching

Trie Construction

2.4.1 FUTrie Construction . .

2.4.2 OrTrie Construction

2.4.3 PaTrie Construction .

Summary .

26
.)
_1

29

29

31

33

33

36

•

3 Exact Text Searching 37

3.1 T'lXt Trie. .. 37

3.2 Statistics on Text Tries . 39

3.2.1 Measurcd Distributions. 39

3.2.2 Estimated Perfonnance 43

3.3 Text Trie Construction .. 46

3.3.1 Dynamic Text .. 47

3.3.2 Sistring Sorting 49

3.4 Experimental Results 54

3.4.1 Text Trie Sizes 55

3.4.2 Search Times 56

3.4.3 Construction Times. 56

3.5 Other Trie Searches . 57

3.6 Summary 60

4 Approximate String Matching 61

4.1 String Similarity 61

4.1.1 Edit Distance . 62

4.1.2 Dynamic Programming . 62

4.2 Approximate Searching .. 64

4.2.1 Observations 64

4.2.2 Algorithm............................. 65

vii

•

•

4.3 Experimental Results

4.3.1 Dictionary Trie Sizes .

4.3.2 Search Times

4.4 Soundex Searching .

4.5 Summary ...

5 Spatial Zooming

5.1 Map Data Representation .

5.1.1 Map Relation

5.1.2 Dimension Doubling and ZoomTri,:; ...

5.1.3 Data Resolution.

5.2 Displaying Operations

5.2.1 Scan .

5.2.2 Scarch.........

5.3 Experimental Results

5.3.1 Resolution and Feature Priority ..

5.3.2 Windows on Map

5.3.3 Extrapolations .

5.4 Summary .

6 Spatial Querying

6.1 Query Categories .

6.1.1 Geometrical Selection: Examples

6.1.2 Geometrical Join: Examples

6.2 ZoomTrie Search: Algorithms • .

6.2.1 Primitives .

6.2.2 Linear Predicate Precompiling . . .

6.3 ZoomTrie Search: Implementations . • .

6.3.1 Linear Selection

6.3.2 Non-Linelll" Selection

6.3.3 Varîable-Resolution Selection . .

viii

68

68

69
il

72

73

74
74
74
76

77

78

79

80

80

83

83

86

88

89
89
90
90
90

93
93
94

97

98

•
6.4

6.5

6.3.4 Geometrieal Join . . .

Experimental Results

6.4.1 ZoomTrie Trie Sizes .

6.4.2 Data Compression ..

6.4.3 Search Time . . .

Summary .

99

100

100

101

102

105

•

7 Conclusion

ï.1 Claim of Originality .

ï.2 Contributions ..

ï.3 Future Research .

Bibliography

ix

107

10ï

108

110

III

•
List of Tables

•

1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5
3.6
3.7
3.8

3.9
4.1

4.2

4.3

4.4

4.5
5.1

5.2

5.3

Asymmctric Trie Parameters. . .

Tric Representation Comparison .

.FU7He Structure

Or7He Structure

Pa7He Structure ...

Page<! Trie Structure . . .

Random Trie Parameters

Skip Distributions.

Regression Fitting.

Comparing Regressions

Binary Trie Comparison . . .

Sorting: Time and Space

Pa7He Sizes .

Pa7He Search Times

Pa7He Construction Times .

Dynamic Programming

Ukkonen's Cutoff . •

Dynamic Programmjng Tables • • • . • .

Dictionary and Trie Sizes. . • • . • •

Approximate Search Times. •

Map Filtering v.s. Zoom7He•..............

Zoom7Hes at Varions Resolutions and Priorities .

W mdow Search Times • •

x

8

12

25
25
26

28
39
42

42

43

46
54
55

56
57
63
63

65
68
70

80

82
83

•

•

6.1 Regression Fitting.

6.2 Map O\'erlay Statistics

6.3 Line Representation Comparison

xi

101

102

102

•

•

List of Figures

1.1 Tric Structures 4

2.1 Tries and Bitstrings .. 24

2.2 Page<! PaTrie .. 28

2.3 Page Structure 28

3.1 Tcxt Trics .. 38

3.2 Tcxt Tric Distributions .. 41

3.3 Updating PaTrie .. 4ï

4.1 Dictionary Tric .. 64

4.2 Approximate Trie Seal"'".hing .. 66

4.3 Soundcx Searching .. il

5.1 Dimension Doubling ï5

5.2 Map and ZoomTrie .. ï5

5.3 Zooming by ZoomTrie ï6

5.4 Priority 'md Window Searchiag .. ï9

5.5 Mcmphrcmagog Road Map. .. 81

5.6 Memphrcmagog Contour (at Every 50 Feet) Map ..•........ 81

5.ï Contour Map at Resolution 256x256 ". 84

5.8 Contour Map Zooming . • • .. 84

5.9 ZoomTrie: Trie Nodes v.s. Resolutions •• 85

5.10 ZoomTrie: Search Times v.s. Accessed Nades•......•. 85

6.1 Interval Space • . . . • . . • . . • 94

6.2 PR-Trie for Containment Searching 94

6.3 Edge-Linc Crossing • • •. 96

•

•

6.4

6.5

6.6

6.ï

6.S
6.9

PR-Trie for Length Searching .

Variable-Resolution Querying .

Edge-Edge Crossing.

ZoomTrie Distributions. . . .

ZoomTrie Search Times .

ZoomTrie Join Perfonnance .

xili

9;

99
100

101

103

10-1

•

•

List of Algorithms

2.1 Pointericss Trie: Searching Child Node ' 30

2.2 .FU7He: Appending Key 32

2.3 Pa7He: Parsing List(Kn) •••••••••••••••••••••••• 35

3.1 Text Trie: Inserting and Deletïng 48

3.2 Counter Sort: Generating Initial Runs 52

3.3 Counter Sort: Merging Initial Runs 53

4.1 Dictionary Trie: Approximate Search 6ï

5.1 Zoom7He Primitives: Scan and SeaTCh ï8

6.1 Zoom7He: Geometrical Selection 91

6.2 Zoom7He: Geometrical Joïn .. 92

6.3 Zoom 7He: Searching the Nearest Edge 98

xiv

•

•

Chapter 1

Introduction

1.1 Motivation

Suppose we are looking for the word text in a thick English dictionary. Suppose

the dictionary has a thumb-index. By checking the thumb-index, we can immcdiatcly

locate all the t pages. li the dictionary has a secondary thumb-index for thcsc t

pages, we can then locate all the te pages. In general, if a thumb-index is availablc

up to the first x letters, then it is possible, in x lookups, to locate all the pages that

contain all the words prefixed with the same first x letters. The lookup of thumb

indices is called digital search (Knuï3]. The data structure associated with the digital

search is a trie which comes from the word retrieval (Fre60]. Trie structures were first

developed by (Bri59], and have been discussed intensively by (Knu73] and in other

data structure text books.

Tries (or digital trees (Knu73]) are simple but very powerful data structurcs. First

of all, trie shape is independent of the order in which data are prescnted to the trie

construction algorithms. Trie shape is uniquely determined by its data set. Tric

methods do not need varions construction algorithms, as tree methods do, to prevent

tries from degenerating. Neither do they need varions reorganization algorithms, as

tree methods do, to keep tries balanced.

However, the most distinctive characteristic of tries is the way they classify the

data set into hierarchical groups. In contrast to tree structures which partition the

1

• CHAPTER 1. INTRODUCTION 2

•

data set according to the data prescnted, trie structures partition the data set accord

ing to the data space. Tries recursively partition the data space into equally sized

subspaccs. Each subspace corresponds to one subtrie which contains at least one

datum refers to the underiying space. When traversing a trie down to a subtrie, we

get a focussed view on a certain part (a subspace) of the data space. When wa1king

up from a subtrie, we get a broadened view on a larger portion of the data space.

Each subspace or subtrie may contain as much as the whole data set, or as few as

one datum. In n.her words, tries are hierarchical data structures which preserve the

scale of each part of the space at each level. Tries group the data sets in terms of

rcsolution (or level of abstraction, or approximation, or remoteness). We cali this trie

zL'oming.

!n text searching, trie zooming has only been interpreted as prefix searching.

Tries were used for text searching by Morrison [Mor68] and exploited by Gonnet

et aL [Gon88, GBYS92, Tom92] for the PAT trie implementation of the electronic

version of the New Oxford English Dictionary (New OED) which covers 20 volumes

of print or 600MB. Trie methods give search costs often proportional only to the

length of the string being sought, and in the worst case, to the logarithm of the

size of the text being searched. No other sublinear methods for full text search

are known. However, a major difficulty with tries is the size. For example, the

PAT trie for the OED has 119 million keys, each starting at a word and continuing

until the end of the entire dictionary. If it used two pointers per node, it would

take 2x12Bx119M=2.9GB, llSSuming four bytes for pointer and node. This is not

acceptable in practice. Minimizing the trie size of such a large text is indispensable.

Trie methods are capable of doing other kinds of text searches (see §3.5) which

are either difficult or inefficient over other data structures. However, we still face

the challenge to make full use of trie methods for text searching [GBYS92]. Specif

ically, the connections between trie zooming and the approximate string matching

are yet to be established. As we have stated, tries provide different levels of string

approximation. This cau be useful in approximate string matching.

In spatial data searching, tries have been applied to spatial indexing ranging from

the kd-trie [Ore82] to varions quadtries [Huni8, Sam90]. However, the power oftries

• CHAPTER 1. INTRODUCTION 3

•

provides us Dot only with efficient methods to na~;gate to the subspace of intcrcst, but

also with data structures to group spatial data at varying degrces of resolution and to

store only one copy of the data. Furthermore, since the common prelb.::cs of all data

elements are stored only once each, trie structures give substantial data compression.

These are important assets in spatial data, where gigabytes and terabytes of data

are becoming the norm. For example, each topological map at 1:50,000 resolution

provided by Energy, Mines and Resources of Canada, requires 16MB storage space.

There are 13,000 such maps currently available, and these cover only half of Canada.

We are interested in practical problems that relate to trie methods for storing and

querying bulk and persistent data. The trie size, as we have mentioned, is a major

problem. Large trie construction is another important problem. A trie construction

algorithm usually requires n Ig(n)xt time, where n is the total number of data clements

and t is the disk access time. For the New OED, a naïve approach would take

119Mx2ix20ms ~ 2.0 years, assuming 20ms per disk access. Even with one random

disk access per key insertion, the total disk time is still 119Mx20ms ~ 2i.5 days.

This is not acceptable in practice. We need algorithms that work with sccondary

storage efficiently.

1.2 Trie Methods

A (full) trie is a II:I-ary treet in which each link (or edge) has a symbol from the

alphabet I: and each root-to-leafpath corresponds to a key. Here, II:I is the alphabet

size. Selection ofsubtries at level i is determined only by the ith symbol of the scarch

key, not the whole key. For example, when scarching trie (a) of Figure 1.1 for the

word text, the first letter t leads us to the right descendant. The third letter x leads

us to the right most descendant. Eventually, the search terminates at a leaf node.

On the other hand, ifwc look for the word tu, the second letter a leads us to a null

link which means no such word is in the trie. An unsuccessfu1 scarch terminates at

tAssumiDg no iDdex key is a prefix of aDother key. This is the case for the aùtringo of Chapter 3.
To prevent a Iœy beiDg a prefix.of other Iœys, _ C&II append either a UDique striDg or a unique
symbol, say null, after each key•. .ID the latter case, the arity of the trie is It\+l.ary.

• CHAPTER 1. INTRODUCTION 4

(a) Full Trie f

Y
(b) Qrdinary Trie (c) PalricaTrie

•

Figure 1.1: Trie Structures

an internaI node.

Trie (a) in Figure 1.1 is referred to as full trie [CSïï) (pure trie [Ore82)). There

arc two other tries. Trie (b) is an ordinary trie (radix search tree, proned trie [Knu73,

CS77), or simply trie in most literature). Trie (c) is a Patricia trie [Mor68) (collapsed

trie, compact trie [CSïï, Szp92)). AIl three tries in Figure 1.1 are constructed from

the samc words: deed. deep. tea. testify, and text.

For an ordinary trie, al! single descendant nodes that lead to a. leaf node are

removed. The pruned links (symbols) are usuaIly stored outside the trie structures

and pointed to by pointers in leafnodes (the rectangular boxes). An ordinary trie is

the smaIlest full trie such that paths truncated at leaves are al! pairwise different.

For a Patricia trie, a11 single descendant nodes are eliminated. To search a Patricia

trie, wc have to follow the 1inks and numbers in the internaI nodes. The number

can be either height, the level number in the corresponding ordinary trie, or skip,

the number of removed nodes from the nearest parent which has more than one

descendant. Height is the testing symbol position of the search key, and skip is the

number of symbols to skip over before the next inspection. Skips are more compact

to store than heights. To avoid faIse matches, a Patricia trie must either store the

skipped symbols inside each node (sec §2.1.3), or he able to recover them by pointers

in the leaf nodes.

Trie structures have many properties. (1) The co=on prefixes of a11 key clements

are stored only once each. This may give substantiaI data compression. (2) Trie

searching is directed by the search string, and gives seuch time proportionaI to the

• CH.4.PTER 1. INTRODUCTION 5

•

length of search string rather than the trie size. (3) Tries group data according to

the data space, not the data presented. Tries preserve the scalc of the subspaccs at

each level, which is a necessary condition for zooming. (4) Tric shapes arc uniqucly

determined by tueir data presented, not by the ori ers of key insertions. Tries do not

need reorganization algorithms. (5) Tries allow interleaved kcys and are suitablc for

searching multi-keys. (6) Ordinary and Patricia tries are capable of indcxing very

long, variable length and even unbounded key strings.

1.2.1 Trie Applications

Prefix Searching

Many applications require recognizing keywords from a dictionary, and oftcn dcmand

efficient prefix search. Traditional dictionary lookup techniques, such as hashing or

tree search, are inadequate because they do not generally allow the search keys to

be prefixed or abbreviated. Trie search has been used in many applications: lexical

analyzers and compilers [ASU86), pattern recognition (BS89, DTK91), spelling chcck

ers (LEMR89), naturallanguage analysis [TITK88, Jon89], knowledge base retrieva!

(YKH89), para11el searching (HCE91l, and even a custom VLSI chip which can search

many tries simultaneously (PZ92).

Text Searching

A great advantage of tries is their potential use in searches which are either difficult

or very inefficient over other data structures. Besides prefix searching, tries have

been applied to substring searching, proximity searching, range searching, longest

repetition searching, most frequent searching [GBYS92, GBY91, ST93l, and regular

expression searching (BYG89). We shall give two examples below. Trie methods for

text searching will be summarized in §3.5.

The longest repetition searching problem is to find two longest and identica1 sub

strings in the entire text. This search bas been used to recognize and remove repeti

tions for text compression [ZL77, FG89). It cau also he used to check documents for

plagiarism.

• CHAPTER 1. INTRODUCTION 6

•

The most frequcnt scarching problem is to find the most frequently occurring

words (or substrings) in a text. This search has been used to generate key phrases in

automatic indr.xing [Jon89]. It cao be used to detect frequently occurring subcodes

and encode them into macros or machine languages to provide faster performance.

Another potential usage of this search is to analyze the personal writing habits of

authors (or writing styles in general).

Spatial Data Representation

Ordinary tries have been used to index spatial data, e.g., kd-trie [Ore82], quadtree

[Hunï8), octree [Mea82), pr-trie [Sam90), ..., etc. Unfortunately, the term quadtree

(and other relatcd terms) takes more than one meaning. Most often, it refers to a trie

structure and hence, should be called quadtrie. However, it may also refer to a tree

structure, e.g., quad tree in [FBï4), and point quadtree in [Sam90). We shall discuss

trie structures for spatial data in §1.4.

Trie Hashing

In trie hashing [Lit8I), the hash function is defined by an ordinary trie with leafnodes

pointing to buckets (bucket trie). Address calculation is carried out by searching the

trie.t 'nie hashing has been claimed to be one of the fastest access methocls (with no

mc.re than two disk accesses) for dynamic and ordered files [TB83, Lit85, LNLH9I).

Since tries preserve the key order, they are tidy functions [Mer83). The trie hashing

can also be made perfect, i.e., to identify keys with no conflict. Furthermore, when

a Patricia trie is used to define the trie hash function, all irrelevant bits of keys are

removed from the function. The benefits are twofold: a smaller trie size and a faster

access time.

Telecommunications

In telecommunications, messages are usually encoded and transmitted as a sequence

of bits. Thus, message decoding becomes typically a trie search process. Another trie

application is to solve communication conflict when a number ofspatially isolated and

tTrie hashiDg is not really & hashiDg method. It takes O(lgn) tilDe to bd & bucket•

•

•

CH.4.PTER 1. INTRODUCTION

independent sources try 1.0 access a single channel. Collision rl'Solution algorithms in

[Capï9, Ber84. MF85a] were based on trie search.

1.2.2 Trie Parameters

A number of trie parameters are of interest 1.0 us. Trie dcptll is the average path

length from the trie root 1.0 its leaf nodes. Extemal path lengl.h is the sum of path

lengths of allleaf nodes. The average trie depth, denoted by .4.", is the expectcd tric

depth of tries v;ith n leaves. An gives the average number of symbol inspections maclc

during a successful search. Trie height (or ma.ximal depth) is the longest path of a

trie. The expected trie height, d"notcd by Hn , i, the expectcd tric height of tries

with n leaves. Hn tells the expected worst search time.

The average unsucœssful search time is not directly rclated 1.0 An. It has bccn

found [Knuï3, Szp90] that, for ordinary and Patricia tries, the unsucccssfui searches

are more likely terminated al. intemal nodes.

The average value is a rather poor measurement and higher moments arc nccde<:'

For example, the depth variance provides information on how weB a tri':! is balanccd,

and the third centralized moment is a me!lSurement of the skewncss. Ideally, wc would

like 1.0 know depth distributions. Trie depth has a rich research history [Knui3, Dev82,

Dev84, Pit85, KP89, Szp90, Szp91, Jac91].

In practice, the measurement of trie size is as important as the acccss time. Let

trie size, Sn, be the expected number of trie nodes of tries with n leaf nodes. For

ordinary tries, Sn has been explored by [Knui3, Reg89, Jac91].

To estimate Patricia trie size, wc need 1.0 know both Sn and the average sl.:ip length

or skip length distributions. Binary Patricia tries have Sn = 2n-l nodes. No formai

discussions were found for Sn of IZI-ary Patricia tries. In [Szp90, Szp91], Szpankowski

stated the total number ofintemallEI-ary Patricia trie nodes is n-IEI-l. We found

this formula va1id only when IEI=2 and this was accepted by Szpankowski in a private

communication. We do not find tu the literature studies on skip length distributions.

The only thing we know is that the sum of the skip lengths plus the total number of

nodes equals the total number of nodes in the corresponding ordinary trie.

• CHAPTER 1. INTRODUCTION 8

•

Given a set of n keys, we assume each key K = k!k2••• is a sequence of symbols

from alphabet E chosen independentlyat random. Let Pi be the probability of using

the ith symbol of E. If Pl = P2 = ... = PI:!:I = l/IEI, i.e., symbols are uniformly

distributed, then the constructed trie is called a symmetric trie. Otherwise, it is an

asymmetric trie. Table 1.1 [Pit85, Reg88, Szp88, Szp90, Szp91] shows some expected

asymptotic results for asymmetric tries, where the entropy h = :El;'! Pi ln l/Pi and

R = In:El~l!l/p"f. If symbols are uniformly distributed, h = R = ln lEI.

IEI-ary Ordinary Tries IEI-ary Patricia Tries
Total Nodes, Sn n+n/h (niEl l)/(IEI 1) .. 2n 1

Average Depth, An In(n) /h 1nen) Ih
Height, Hn 2In(n) IR 1n(n) Ih

Table 1.1: Asymmetric Trie Parameters

For binary trees (symmetric), where keys are independent and uniformly dis

tributed, the expected average depth is 1.391g(n) (Knuï3] and the expected height

is 2.98Ig(n) [Dev8ï]. Compared with binary tries (symmetric), where An=lg(n) and

Hn=2Ig(n), tries are better. In terms of balance property, tries are also better. On

average, symmetric tries resemble a complete tree, i.e., an ultimately balanced tree.

Symmetric Patricia tries are much better because even Hn is logl:!:1 (n). Symmetric

tries do not need additional reconstruction to keep them balanced. For asymmetric

tries, the situation is slightly different. The entropy, h, changes depth distribution.

The more asymmetric the alphabet is, the more skewed a trie is.

50 far, most asymptotic results are for the tries whose keys are independent.

However, when keys are suffixes from the same text, they are dependent. There is no

proper probabilistic model for dependent keys. In §3.2.1 and §6.4.1, we shall show

trie parameters measured for the text and spatial data respectively.

1.2.3 Trie Representations

Tabular Representation

The most straightforward implementation of IEI-ary tries is to store each node by an

array of lEI pointers, and a trie by an array of Sn nodes. To save the storage space,

• CH.4PTER 1. INTRODUCTION 9

•

all pointers that point to leaf nodes are replaced by pointers pointing to thc kcys. ln

other words, leaf nodes are not stored. As a rcsult, a I~I-ary tric is repr<'Sl'nted by a

I~I X (Sn-n) table [Fre60, Mor68, Knui3, CSïï, RBK89]. ln the tabular rcprcscntation.

each table c:olumn represents an internal node, and each table entry controns eithcr

a eolumn number (internal node), or a null pointer (empty), or a pointer to the kcy

(leaf node). The first column is the trie root. To search is to lookup in the table.

whicb takes An time on the average to find a key.

Oynamic operations sucb as cbanging links and inserting nodes are trivial. Ode

tion leaves an empty column whicb can be replaced by the last column. However, the

parent node of the last column needs to be cbanged, too. The parent node can be

located by adding a reverse pointer to each node [MFSSb). We propose the fo11owing

procedure without using the auxiliary structure: (1) searcb for a keyword by walking

down the subtrie rooted in the last column, and (2) searcb for the keyword once agron.

The second searcb passes the node of the last column and its parent.

There is a more subtle implementation whicb uses thrcc arrays (TYi9, FK84,

ASU86). The idea is to shift down each column certain entries and overlap the

columns into an array sucb that no two non-nu11 pointers occupy the sarne entry. The

displacements of columns are stored in the second array. The third array is used to

remember column numbers of the pointers in the first array. Even though it is a

NP-complete problem to minimize the array size (TYi9), Tarjan ga\'a a number of

effective methods to construct the arrays in size Sn+I~I.

Aoc [Aoe89) reduced the three array implementation to a double arruy structure.

By empirical observations, he found that the expected size is indeed Sn+I~I.

Linked List Representation

Tabular representation is prohibitive with large I~I. An alternative is to use dynamic

data structures sucb as linked lists [Bri59, Sus63, AHU83, Jon89, Oun91, HTW92). ln

the linked list representation, each trie node is a linked list of outgoing trie links. Each

link contains a symbol and a pointer to the left most sibling of the child nodes. ln

the literature, this data structure is referred to as a doubly chained tree after [Sus63).

Conceptually, a doubly cbained tree is a binary representation of the I~I-ary tric.

• CHAPTER 1. INTRODUCTION 10

•

A doubly chaincd tree is a highly flexible and general structure. Together v.ith

dynamic memory allocation techniques, insertions and deletions can be implemented

straightforwardly. Even when tries are too big to fit in memory, it is still possible to

update tries and kcep 100% usage of space at the same time. This can be achievcd

by using the same trick we suggested for the tabular representation (see the 2nd

paragraph of the previous subsection).

A doubly chained tree does not store nu11 outgoing links and therefore requires

lesser storage space especially when I!:I gets larger. However, doubly chained trees

cannot select a child node in constant time. In the worst case, ail outgoing links of a

node have to be examined.

Other Representations

In the compressed trie (Malï6], each internai node contains a base address and a bit

array. Each bit of the bit array indicates whether the corresponding link is a nuU.

AU sibling nodes are stored consecutively pointed by the base address of their parent

node. Bitstring (OreS2] goes further, ail nodes are stored consecutively and there are

no base addresses. Pointerless replesentations will be discussed in §2.1.

Severance (Sev74] suggested a number of heuristic implementations which used a

tabular approach for the top few levels and doubly chained trees for the remaining

levels. The fact is. that fan out at the top of tries is much larger than that in the

bottom. This aIso leads to bucket trie (Knu73, LitSI]. A bucket trie places b leaf

nodes into a bucket, and reduces trie nodes by a factor b. When b =n, the extreme

case of bucket trie, the whole trie degenerates to a single array of sorted leaf nodes.

This is the case of PAT array (GBYS92]. As the trie nodes are reduced, the binary

search of buckets increases. The tradeoffbetween the bucket size and search time was

discussed in (RBKS9].

Comparisons

Bath tabular and linked list representations require pointers to foUow the child nodes.

Tables can he searched efliciently but are wasteful in space when they are sparse.

Linked lists are more compact but require longer time to be searched. The foUowing

• CH.4.PTER 1. INTRODUCTION 11

•

calculations we make show the quantity comparison (all on the average) of different

representations. We assume tries are symmetric, i.e., all n keywords are distinct and

independent, symbols from !: are uniformly distributed.

The tabular implementation has (Sn-n) = n/ 1n1!:1 columns and \!:\ rov.-s. Tot.ally,

it has 2.89n table entries (pointers) when \!:1=2 and 7.98n when \!:1=26, the size of

English alphabet. Among these entries, Sn of them store pointers pointed either

to columns (internal nodes), or to actual data (Ieaf nodes). The non-nun pointer

occupancy is Sn/(\!:I x (Sn-n» = (l+lnl!:!)/I!:I, e.g., 84.7% when 1!:1=2 and 16.4%

when 1!:1=26 (very wasteful).

The double array implementation uses two arrays. Each array has (Sn+ I!:!)

elements [TY79]. The total number of array elements is 4.89n when 1!:1=2 and 2.61n

when 1!:1=26. As the case of the tabular representation, leaf nodes need not be storcd

since the pointers to them can be set dircctly to the actual keys. Therefore, there are

n null pointers.

The doubly chained tree requires two pointers for each of Sn nodes, e.g., 4.89n

pointers when 1I:1=2 and 2.61n when 1I:1=26. Among the pointers, n/lnlI:1 are nun

pointers, e.g., 29.5% are nun pointers when 1!:1=2 and 11.7% when 1I:1=26.

The expccted search time of the doubly chained tree is ~dn/II:I, where d is the

average number of child nodes of internal nodes. Since dn/ln\I:1 = n-1+n/lnlI:\, we

have d:::: 1n1I:1+1. When 1I:1=2, this is 1.761gn, slower than a binary search. When

1I:1=26, this is 0.941gn, slightly better than a binary search but 0.94/0.21=4.5 times

slower than the tabular representation.

Table 1.2 shows comparison among the three representations. As we can sec, with

a binary alphabet, the tabular representation takes no more space than the doubly

chained tree, and still has 15.3% null pointers. With a 26-letter alphabet, the tabular

representation requires 3.1 times more space, but is 4.5 times faster as compared with

the doubly chained tree. The double array representsl.tion combines the merits of the

other two representations. However, all these trie implementations take more storage

space than the keyword set itself. We need more compact trie representations.

• CHAPTER 1. INTRODUCTION 12

•

Implementations Tabular Doubly Chained Trec Double Array
Total Entries 12:lnflnl2:1 2n + 2nflnl2:1 2n + 2nflnl2:1
Null Pointers (i2:1-1)nflnl2:l- n nflnl2:1 n
Disk Accesses logl~ln (Inn + logl~1 n)f2 logœl n

Examples Tabular Doubly Chained Trec Double Array
Total 12:1-2 2.S9n (15.3%) 4.S9n (29.5%) 4.S9n (20.5%)

(Null/Total) 12:1=26 7.9Sn (83.6%) 2.61n (11.7%) 2.61n (38.3%)
Disk 12:1=2 19n 1.76lgn 19n

Accesses 12:1:....26 0.211gn 0.941gn 0.211gn

Table 1.2: Trie Representation Comparison

Binary Tries

Thcre are several reasons to use binary tries. (1) An keys inside computers are binary

numbers. (2) Binary tries are simple in both concept and implementation, e.g., tries

in (LitS1] and doubly chained trees are implemented as binary tries. (3) The expected

null pointers in binary tries are minimal. This saves not only the storage space but also

the number of branching tests. As wc have seen, the ratio of null pointer occupancy in

the tabular representation increases monotonically when I:EI increases. In the doubly

chained trec representation, however, only the youngest child has a null pointer. The

nun pointer ratio decreases when I:EI increases. (4) The number of nodes in binary

Patricia tries is minimal. We shall examine binary trie representations in §3.2.2.

1.3 Text Searching

Tcxt information is very different from common data applications, and conventional

database methods do not help in this case. For example, queries such as "find the word

trie in a text" can be answered by searching a keyword list (or inverted file (Knu73]).

But other queries such as "find the phrase trie method", "how many words did

Shakespeare introduce into the language between 1610-11 [BYS91", "which English

words may correspond to the misspelled word exsample", involve either searching

the whole text or using advanced index structures.

• CHAPTER 1. INTRODUCTION

1.3.1 Exact Text Searching

13

•

Given a text T of length n and a pattern P of length r, the c.'l:act text scarching

problem is to find the occurrences of P within T. A pattern can be as simple as IL

keyword, a substring, or as complicated as a regular expression, the longcst repetition,

the most used word, etc. Text searching may also be stated as to determine whether T

is in the language specified by I;"PI;', where I; is the alphabet of the text. Orthogonal

to the pattern, the occurrences can be the left most one, all of them, or simply pattern

frequency. There are four basic search techniques: (1) scquential scarch, (2) trcc

search, (3) trie search, and (4) hashing.

Sequential Search

A sequential search (or linear search, brute-force search, full text scanning [Knuï3,

Gon83, Fal85)) is to check P at every position of T. This straightforward method

has no space overhead but requires rn comparison for the unsuccessful scarch, and

rn/2 for the average successful search. It is a time consuming process. The general

method is to construct a finite automaton M from pattern P, and simulate M on T.

The simulation takes O(rn) comparison if Mis nondetenninistic, or 0(2' +n) if M

is detenninistic with 2' states [AHU83).

Some algorithms are more efficient than the automaton approacb. The idea be

hind the Knuth-Morris-Pmtt algorithm [KMP77] is to use knowledge of the previous

symbol comparison. When a mismatch occurs, the position in P yields enough infor

mation to recreate the text previously scanned. Thus, by preprocessing P and keeping

information in an auxiliary table, we cau slide P to the right as far as possible. This

algorithm takes O(r +n) comparison. The Aho-Corasîck algorithm [AC75) combines

this idea with the automaton approacb. Their algorithm cau search a set of strings

simultaneously.

Inspecting pattern P from right to lcft generates more information [BM77). Sup

pose we are comparing T with P from right to lcft, one symbol at a time. If the

current testing symbol s ~ P, we do not need to check symbols of T before 8 and

cau align P with the next symbol of s. This is the Boyer-Moore algorithm [BM77]

• CHAPTER 1. INTRODUCTION 14

•

which takes c(r + n) comparison. Here c < 1 and gets smaller when r increases. Hor

spool [HorSO) dcmonstrated that Boyer-Moore algorithm is indeed an astonishingly

fast method for text searching. It even outperforms hardware with built-in search

instructions. Howcvcr, this algorithm has two problems: (1) it finds only the first oc

currence, and (2) it may back up through the text. This adds annoying complications

for secondary storage.

Some large tcxt files, such as dictionaries and encyclopedias, do not change or

are updated at a very low frequency. It is worthwhile to preprocess these files and

build indicl'S for thcm to speed up the search time. Indexing generates an index file

which contains a set of keywords and pointers to the text. The search is fast but

is often restricted to the words in the control dictionary. The fol!owing three search

techniques belong to this category.

Tree Search

Trce search (search by key comparison) is based on key order. Binary search of

inverted file [Knuï3) or PAT array [GBYS92) is a typical tree search. It takes, at most,

rlg(n) symbol comparison to search an index with n keywords, and O(nlgn) time

to build an index. The PAT array is a sequence of index points sorted according to

the text that they point to. Instead of using a control dictionary, it allows to index

every possible suflix of a text, and therefore, to search for any arbitrary substring of

the text.

Binary search uses an implicit binary tree which makes insertions and deletions

rather more expensive. This leads us to store keywords in e:r;plicit trees. A major

difficulty with trees is that they may be degenerated with a certain insertion order.

A degenerate tree takes O(rn) symbol comparison. We need algorithms to construct

fairly balanced trees, or reorganization methods when trees are badly balanced. The

AVL tree lAVL62) is a height balanced tree with such a property: any two subtrees at

a common node difFer in height no more than one. The B-tree (BMï2] is a balanced

(2m+l)-ary tree with two properties: (1) each internal node (except the root) has at

least m+l descendants, and (2) allleaf nodes appear at the same level. The 2-$ tree

IAHU83] is the special case of B-tree with m=l. The Prefix B-tree (BUïï) is a B-tree

• CHAPTER 1. INTRODUCTION 15

•

which uses prefi.xes of keywords as keys.

Trees have received ",ide attention in the literature and arc relatively weil under

stood. Tree structures permit keywords to be added or deletcd dynarnically, and still

remain balanced. Most tree methods take O(lgn) time, in the worst case, to inscrt

or delete a keyword.

Trie Search

Instead of comparing a whole key, trie search (search by key decomposition) makes use

of the digital property of the keywords. It views a keyword as a string and inspccts

symbols in the string one by one. Trie search can find a pattern in T comparison,

which is independent of the index size n. Furthermore, since keyworch are storcd

along the path, not inside the node, tries can handle very long keywords. As wc have

mentioned in §1.2.2, tries do not need reorganization algorithms. Trie search for tcxt

documents will be summarized in §3.5.

Hashing Methods

Hashing is a direct access method which locates keywords by address calculation. To

hash is to redistribute access space from a large keyword space to a small storagc

space. Ideally, wc would like to have a hash function which reduees the space of all

possible keywords to the space of the presented keywords without conflicts, i.e., a

minimal perject hash function. If this was the case, we could retrieve any keyword in

constant time.

[CHK85] presented a practical algorithm to build perfect hash tables. In addition

to allowing COnstant retrieval time, hash tables can he updated in constant expected

time, and therefore be built incrementally in time O(n). However, the tables take

more than 20n bytes of storage. [FHCD92] gave an algorithm to build, practically,

a minimal, perfect and arder presenJÎng table. The method avoided the common

problem of wasted space and time. The address calculation takes no more than three

accesses to the hash table. The table itself takes a little more than 4n bytes, whcre

n, the numher of keywords, may go over one million. However, this algorithm works

only for static keywords.

• CHAPTER 1. INTRODUCTION 16

•

Signature files [FC8i) is another example of hashing base<! text searching. In a

simple signature file, text words or phrases are hashed into bit patterns, called ward

signature. Word signatures are either used as keywords for a hash function, or stored

in a separated file, called signature file. A signature file usually takes less than 10%

of the text size. We scan the signature file for the querying word signature. However,

a positive answer does not necessarily mean that the querying ward is in the text.

We can either verify it or accept it as a facto In the latter case, there may be a

small number of incorrect answers, or faIse drops. The probabilit)· of errors can be

controlled by choosing an adequate length of the signature. Signature searching can

reject many non-qualifying strings and, in practice, provide a tenfold speedup over

sequential searchcs. However, it is a O(n) search method.

1.3.2 Approximate String Matching

Misspelling detection, corruption-correction in communication and pattern recogni

tion, the DNA sequence analysis in genetic science require non-exact string matching.

The k approximate string matching problem specifies, in addition to the given set of n

keywords (or n substrings of a text) and the pattern string P of length r, the parame

ter k ofditrerences (insertions, deletions, substitutions, and/or transpositions) allowed

in a match. Various algorithms have been developed to solve the k approximate string

matching problem [HD80, SK83, Kuk92).

The basic approach is to search keywords for the minimum edit distance using

the dynamic programming technique. §4.1 will give a short introduction to these two

concepts. In Chapter 4, wc shall propose an approximate search algorithm which

combines the dynamic programming technique with the trie method. Trie methods

have only been previously used as an alternative to dynamie programming to improve

search time. Algorithms in [MTï7, Dun81) use heuristic searches on trie structures

and examine a small subset of trie branches. But their algorithms check only restricted

typographic errors.

Knuth (Knui3) suggested using two indices, one in the prefut order and the other

in the suffix order (reversing keywords). Misspelled keywords agree up to half or more

• CH.-\PTER 1. INTRODUCTION li

•

their length in one of the two indices when only one error occurs. No thl.'Oreticai or

empirical results conceming this method are reported. Soundex [0R.22] is a commonly

adopted technique for spelling checkers. The goal is to reduce words into some codes

that tend to bring sound-similar keywords together. Scundex codes classify keywords

into equivalence classes, and hence can be searched by the e.'i:act searching techniques.

Baeza-Yates and Perleberg [BYP92] gave an algorithm based on counting symbols of

the text, which takes time proportional to the text length, independent of r and k

when all symbols in P are different.

The n-gmm technique is often used in approximate searching for text recognition

[Harï2, KST92]. The idca is to break keywords down to smaller segments. If a

keyword has only one or two mismatches, most of its segments are correct. With a

table that contains all the segments and the associated keywords, wc may trace back

to the right keyword(s).

1.4 Spatial Data Structures

Spatial data are points, lines, etc., in a multi-dimensional space. Usually in an n

dimensional space, data between 0 to n dimensions are acceptable spatial data. Data

structures for retrieving alphanumeric data are not adcquate for them bccause range

query on multi-keys is one of the common operations. However, to give details on

spatial data structures is not within our scope. Comprehensive surveys cao be found

in (Beni5, Ooi90, Sam90]. Also, this thesis deals only with vcctor representations of

spatial data; we do not review data structures for raster images. We start with some

structures for multi-dimensional point data.

1.4.1 Multi-dimensional Point Structures

The kd-tree (Ben75] is a generalization of the one dimensional binary tree. The first

level discriminator is the the first attribute of the data. AlI data with the first

attribute values less than, equal to or greater than a certain value go to the left

subtree, root or the right subtree respcctively. The second level discriminators are

• CHAPTER 1. INTRODUCTION 18

•

the second attribute. The second level nodes are constructed according to the values

of the second attribute. This process cycles recursively among all the attributes until

there is only one datum left. Range search with kd-tree is straightforward. The kd

tree has been the subject of intensive studies and many variants have been proposed

to improve the performance such as clustering, storage efticiency and balancing.

The kd-trie [Ore82) is a generalization of the one dimensional binary trie. The

binary trie divides the space (not the data presented) by successive powers of two.

This corresponds to using the first bit to determine if the datum is in the first or

second half of the space, using the second bit to determine if it is in the first or

second half of this subspace, and 50 on. A kd-trie is a binary trie with keys that

consists of the data coordinates interleaved bit-by-bit. A point quadtrie (FBï4) is a

4-ary trie using the interleaved keys.

In multi-dimensional hashing, data space is divided into disjoint regions. Data

contained in one region are stored in one or few buckets. The grid file [NHS84, HinSS)

partitions k-dimensional space into orthogonal grids. The grid boundaries on eacb

dimension are stored in k one dimensional arrays, ca1led scales. Bucket addresses are

stored in a k-dimensional array, called grid directory. Sca1es are much smaller and

can he stored in memory. Consulting the sca1es, wc can find the subscripts to the

grid directory and then find the bucket address. A major problem is the storage for

the directory. Multipaging (M082) uses k tidy functions to replace the k-dimensional

directory. EXCELL (Tam82) requires grids to he of equal size. It simplifies the grid

partition but uses larger directories.

Another approach is to organize k-dimensional data according to a certain linear

order. The idea is to map the data set from k-dimensional space to one dimensional

space, and then to use a point data structure such as a B-tree to index them. The

commonly used orders (recursive space filling curves, locational keys) are: Z-order

(OM84), Hilbert arder and Sierpinski order [NB94). The Linear quadtree (Gar82) and

QUILT (SSN90) used this approach•

• CHAPTER 1. INTRODUCTION

1.4.2 Non-point Structures

19

•

Spatial features sucb as roads and lakes in maps consist of point sets. They usually

do not form any fL'l:ed shape. It is expensive to perform queries on their exact location

and ment, and hence we often use minimum bounding rectangles (MBR) or other

conservative approximations [BHKS93) to filter and approximate irregular shapcs.

However, we still need data structures to handle both location and e.'l:tent. Acccss

methods for non-point data can be classified into three groups [Ooi90):

Transformation Features in a k-dimensional space are reprcscntcd as points in a

higher (> k) dimensional space [SK88). Coordinatcs for extent arc taken as

different dimensions. For edges, intervals or MBRs, it could be callcd, more

distinctively, dimension doubling. More generally, we speak of dimension raising

[MS94).

Clipping Data space is partitioned into pairwise disjoint subspaces. If a featurc

intersects with a set of subspaces, either its identifier or the feature itself is

included (duplicated) in each of the snbspaces.

Overlapping Data space is covered by a set of rectangle scheme sucb that featurcs

are totally covered by one of the rectangle schemes. The rectangle schemes may

overlap with each others.

R-tree [Gut84) is a genera!ization of the one dimensional B-tree, and hence it is

height balanced. In an R-tree, each leaf node contains a pointer to an MBR, and

each interna! node contains a rectangle scheme that covers all the rectangles in the

subtree. In searching, the decision whether to visit a subtree depends on whether

its rectangle scheme overlaps the query region. It is common that severa! rectangle

schemes overlap the query region, and this results in the traversa! of severa! subtrecs.

M'inimization of the overlaps of the rectangle scheme as well as the coverage of thcsc

rectangles is of primary importance in R-tree construction.

The segment tree [Sam90) is an example of clipping. A segment tree is a one

dimensional region quadtree for intervals. Its nodes contain an intervaI identifier if

and only if the intervaI it covers is contained in the intervaI indicated and the interva!

• CHAPTER 1. INTRODUCTION 20

•

of its parent node is not contained in the interval. In other words, each identifier may

be stored in many tree nodes (clipping). When a segment tree is searchE'd, only the

nodes that intersect with the query interval are visited.

RR quadtree (Sha86) is a quadtrie structure that uses the clipping technique for

rectangles. It splits unpartitioned data space into quadrants until the subspace either

intersects with just one rectangle, or covers a set of rectangles which overlap each

other. Ali rectangles are associated with leaf nodes. When none of the rectangles

overlap, each node of RR quadtree contains a part of one rectangle. The storage

requirements for RR quadtree are very high.

PLOP-Hashing (KS88) is a grid file extension for non-point data. The method

is a multi-dimensional dynamic hashing based on Piecewise Linear Order Preserving

(PLOP) hashing. PLOP-HashiTloJj partitions data space into orthogonal grids and uses

k binary trees to replace the scales in grid file. Binary trees map order information

oriented along axes to grid numbers. Two extra values are stored in each leaf node

to bind the objects whose centroid are in the corresponding grid. Merrett [MDS5)

combined the multipaging and clipping techniques to represent diagrams which consist

of sequences of small edges.

1.4.3 Snmmary

Spatial searching requires multi-key searching. However, features often COyer irregular

areas in multi-dimensiona!space and cannot be 50Iely represented by point locations.

Conventiona! data structures may not be suitable to non-point data.

Besides the technique to approximate irregular shapes by MBRs, three major

techniques have been used to handle non-point data. In the transformation technique,

non-point data become point data of a higher dimensional space. It requires no

alteration of data structures. However, spatially close data may be tom apart in the

higher dimension space. As a consequence, searching may be slow, especiallywhen we

deal with secondary storage. The m05t important property of the clipping technique is

that data structures used cao be direct extensions of point data structures. However,

it requires extra storage and becomes more expensive in insertion and deletion. To

• CHAPTER 1. INTRODUCTION 21

•

reduce duplications, feature identifiers are usually maintained in the structures and

features are stored in another file. This results in additional disk acccss. For the

overlapping technique, maintaining the "rninimaln overlap is very diflicult. Inelfcetive

overlapping schemes tend to overlap and results in searching more paths.

Both trees and tries are hierarchical structures. Trec methods such as B-trccs,

kd-trees and R-trees (Gut84] are height halanced trees to limit the worst-case perfor

mance. However, trees divide the data often by the medians of the data presented.

They do not preserve the scale of the data space at each level. Trie methods rccur

sively divide the data space in half, and thus preserve the scale of subspaccs at each

level. They allow us to read tries down to a certain depth, and retrieve only this

subset of the file.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 1 shows the motivation of the thcsis and

the problem domains. It introduees trie methods and their applications, parameters

and representations in general. This chapter also gives a literature overview on text

searching and spatial data structures.

After the introduction, we present the underlying trie structures which are used

throughout the thesis. There are four topic chapters, one for each trie application:

exact text searching, approximate string matching, map displaying, and spatial data

querying. AIl applications deal with very large collections of data, e.g., gigabytes or

terabytes. Two problerns are discussed in great detail: the efficient use of storage and

the 1/0 performance.

Chapter 2 presents three trie structures: l'ù7He for binary full trie, Or7He for

binary ordinary trie, and Pa7He for binary Patricia trie. It deals with the problems

of maintaining trie structures in secondary storage. Our goal is to partition a trie

into pages and to operate at the cast of only few disk accesses and a small amount of

data transport. Problerns related to large trie construction are also considered.

Chapter 3 e.vamines trie methods for text searching. The major problem with tries

is that their sizes cau be even la:b;;l than the te.'Ct. Recent work on tries has focussed

• CHAPTER 1. INTRODUCTION 22

•

on reducing the trie size. We show that our PaTrie index achieves size factors of less

than 3 for 100 million keys, as compared with 3.4 for the best previous method.

Chapter 4 discusses approximate string matching. The discussion is restricted to

search keywords for the best match, e.g., the spelling check problem. The cast of the

algorithm we present is independent of the dictionary size. This is the first known

algorithm that achieves the time complexity.

Chapter 5 deseribes ZoomTrie, a trie structure for storing spatial data such as

maps. ZoomTrie gives a continuous zoom, say, from the full details of a map of many

gigabytes of data, up to a mere outline, while storing only one copy of the map and

reading only the amount of data to be displayed. The discussion focuses on polyline

maps. But the method can be applied to any set of multi-dimensional homogeneous

features.

Chapter 6 demonstrates that ZoomTrie can be used not only in the ubiquitous

operations of displaying and plotting, but ::lso in geometrical queries and other spa

tial data processing. With examples, we show that ZoomTrie can be used as an

index structure to answer various queries. The idea is to examine data in the order

of increasing resolution, and for each resolution level, some part of search space is

eliminated from the consideration. The algorithms and results shown in this chapter

are for line queries: line-point, line-line and line-region. But they can be extended

for point queries and region queries.

Chapter ï summarizes the contributions of this thesis and future research that wc
propose.

•

•

Chapter 2

Trie Organization

In this cbapter, we shall present three pointerless trie structures: fUThe for the binary

full trie [CSiï], OrThe for the binary ordinary trie [FreGO] and PaThe for the binary

Patricia trie [Mor6S]. Our trie organizations have two distinctive featurcs: (1) they

store no pointers and require no more than two bits per node, and (2) they partition

tries into pages and are suitable for secondary storage. Throughout this thesis, we

shall use our trie structures either as auxiliary structures for indexing data, or as

main structures for storing and indexing data.

Problems related to the new trie structures sucb as trie partitioning, trie scarching

and static trie construction will be discussed in this cbapter. From this chapter on,

we shall consider binary tries exclusively except for some examples in chapter 4.

2.1 Pointerless Representations

The pointerless trie representations of this section and the partition stratcgy of the

next section are based on the work by Orenstein [OreS2, Ore83]. We shall extcnd his

trie representation for Patricia trie and use one bit plus either a skip or a start for

each node. We shall also make the pointerless trie representations capable of storing

complete data e1ements in contrast to the previous versions that store only partial

data e1ements.

23

• CHAPTER 2. TillE ORG.4.NIZATION 24

11
10 10
11 10
10 10 10
10 01 10
10 01 10
01 10 10
01 10 10
00 00 00

~)le;::::;"
(00011)

{
11 }10 00(00000oo)

~~(oooll) OO{OIlOO)

1 (1)
(00000oo)
{O1100}

{00011)

{
110}{} }
111}11} 017}IOOOOOOO}
OIS} loooll} OIS} IOIlOO}

(a) FuTri~

2.1.1 FuTrie

(b) OrTm

Figure 2.1: Tries and Bitstrings

(c) P4Tri~

•

A FU7He is a binary tree whose nodes do not store information and whose links are

labclled with 0 for the left links and 1 for the right links. The branching decision

for internal nodes at level i is made according to the ith bit of the search string.

If the test bit is 0, the search goes to the left descendant, or else it goes to the

right descendant. Each root-to-lea! path corresponds, one to one, to a key string.

For cxample, Figure 2.1 (a) shows a FU7He constructed over key strings 00000011,

00101100, and 10000000. The darkened path gives the sequence of llrlrrl~ where 1

mcans left and r means right. This corresponds to 00101100.

Orenstein represented the FU7He using bitstring [Ore82], a pointerless structure.

The bitstring is a list of trie nodes organized from the root level to the lowest lea!

level, and from the left most node of a level to the right most node. Each trie node

has two bits. Bit pairs 11, 10 and 01 represent an internal node with two descendants,

one left descendant only and one right descendant only respectively. 00 represents an

e.xtcrnal node (leaf). Figure 2.1 (a) also shows the bitstring of the FU7He.

Bach on bit of the bitstring represents an outgoing link. The jth on bit at level

i is the link to the jth node of level i+1. The child node has a displacement of 2j-2

bits. For example, in the bitstring of Figure 2.1 (a), the bold bit at level 3 is the

second ou bit. So it is the link to the second node (If the next level. The child node is

the 2j-lst and the 2jth bits at level4. However, in order to access the grand-child

nodes, 're have to scan 2j bits to count the on bits of level 4.

• CH.4.PTER 2. TRlE ORG.4.NIZ.-\TION

Table 2.1 defines the FuTrie structure.

25

PointerlessTrie
TrieLevel

TrieNode

..-

..-

Array !J of TrieLevel
Array [] of TrieNode

{

11 ./'\.}10 ./
01 '\.
00 •

•

Table 2.1: FuTrie Structure

2.1.2 OrTrie

An OrTrie is a pruned FUTrie in which ail node chains that lead to leaves have bccn

pruned. Figure 2.1 (b) shows the OrTrie transformed from 2.1 (a). The darkencd

path, 001, gives only a prefix of key 00101100. To recover the wholc key string, each

OrTrie leaf stores either a pointer (start) to the key, or the remaining bits of the key

(sutfix). Note that leaves are placed as high as possible in the OrTrie, and that a tric

does not continue below the levels at which a subtrie contains only one key.

OrTrie leaves are varying in size. If all keys are of the same length, say d bits

each, the suflix length at level i will be d-i+l bits long. However, for variable length

keys, we need a counter to remember the suffi.'C length.

For OrTrie, the bitstring and the implicit addressing are the same as for FuTrie,

except that the suflix information is excluded when the bits are being cOl!ntcd.

Table 2.2 defines the OrTrie structure.

PointerlessTrie ..- Array !)of TrieLevel
TrieLevel ..- Array [] of TrieNode

11 ./'\.
10 ./

TrieNode "- 01 '\...-
00 {length}{suflix} •or {start}

Table 2.2: OrTrie Structure

• CHAPTER 2. TRIE ORGANIZATION

2.1.3 PaTrie

26

•

A PaTrie is also a pnmed FUTrie. This time, not only the node chains leading to

lcaves but a1so ail the internai node chains are pruned. Figure 2.1 (c) shows the

PaTrie transformed from 2.1 (a). PaTrie has only n-1 internai nodes, where n is the

total number of leaves (or keys). It gives a much shallower trie.

PaTrie adds costs of storing either height - the level number in the corresponding

FUTrie, or skip - the number of removed one-way nodes from the parent, in each

internai node. For example, the internai nodes in Figure 2.1 (c) are skips. To choose

an outgoing link , the height tells which bit of the search key to inspect, while the

skip tells how many bits from the last inspected bit to skip over. Skips are more

compact to store than heights, but we shall a1so use the height later.

If we use the PaTrie as an index structure, we need only to store skips in the

internai nodes and starts (pointers to the data) in the external nodes. The complete

key strings can be recovered by following starts to keys. However, if we want to

use PaTrie as a data structure to store the entire keys, we need to remember the

skipped key bits in both the internai and external nodes. For example, for eath node

of Figure 2.1 (c), the second number in the parentheses is the pruned key bits, and

the first number is the length (in bits) of the second number.

We extend the bitstring to represent PaTries. Since PaTrie nodes have either two

descendants or none, one bit is suflicient to distinguish them, i.e., 1 for the internai

node and 0 for the external node. In addition to the bit, each internai node has a skip,

and optionally, the skipped key bits. Bach external node has a start, or alternative1y,

a length counter and the remainjng key bits (sufiix).

Table 2.3 defines the PaTrie structure.

PointerlessTrie ,,- Anay [1of TrieLevel
TrieLevel .,- Anay [1of TrieNode

1 {skip}{substring}} ./"\.or {skip}
TrieNode ,.-

>{length}{suflix}
0 •or {start}

Table 2.3: PaTrie Structure

•

•

CHAPTER 2. TRIE ORGA.NIZATION

Each on bit represents two outgoing links. The jth on bit at level i connects to

the 2j-1st node and the 2jth node oflevel i+l. The left child is the 2j-1st bit. The

right child is the 2jth bit. The bits for the skips and suffixes are not countcd. For

example, the bold bit in Figure 2.1 (c) is the first on bit of levcl 2. 50, its left cllild

is the first bit of level 3, and the right child is the second bit if we do not count the

bits inside the parentheses.

2.2 Trie Partitioning

Unfortunately, to find the jth on bit involves scanning the bitstring. This scanning

has to be done for every level and is expensive. To avoid scanning the entire tric,

we sliee the trie into layers of k levels each, and then chop each layer into pages of

subtries. In each page, the child nodes of each level are either entirely on or entirely

off that page. In other words, links can only cross the horizontal boundaries of pages,

not the vertical boundaries.

The partitioncd trie restricts the sequential search within the pages, and reads

no more than one page per layer per search. This partition strategy was originally

proposed by Orenstein (Ore83) for FU7i-ies and Or7i-ies. It also works for Pa7i-ies.

Figure 2.2 gives an example of a pagcd Pa7i-ie with k=3.

Each page in Figure 2.2 has two integers, Tcoont and Bcoont. The two counters

contain the number of links into and out of the page layer. The counting stops right

before the page they beiong to. Tcoont and Bcount are used to find, for example,

the right link of node X, i.e., the second link leaving the page. This link is also the

2+18=20th link (Bcoont) out of the page layer. The fourth page of the next page

layer contains link 20. Link 20 is also the 20-16=4th link (Tcoont) into the fourth

page.

Once again, to avoid scanning page layers for Tcounts, we collect Tcounts of the

sibling pages into the parent page. As shown in Figure 2.3, each page contains a

Bcount and a set of Tcounts of the child pages and pointers to the pages. Table 2.4

defines the paged pointerless trie structure.

• CH.4.PTER 2. TRIE ORG.4.NIZ.4.TION 28

Figure 2.2: Paged Pa7He

rigure 2.3: Page Structure

18
{16,20J

10
{J

•

Paged7He ..
7HePage ::=

Array l J of 7HePage
Record

Bcount : Integer,
LinkTo : Array [1of Record

Tcount : Integer,
Page: i7HePage;

End
SubTries: Bitstring;

End

Table 2.4: Paged Trie Structure

• CH.4.PTER 2. TRlE ORG.4.NIZ.4.TION

2.3 Trie Searching

29

•

There are four variables associated v:ith the node being searched. Variable iLct,c/ is

the trie level of the node, j N ode the node number in the level, Tnode the total nodes

of the level, and OutLink the number of outgoing links counted from the left most

node of the level. If j is the on bit number of the node, we have j equal OutLink for

.FUThe and OrThe or ~OutLink for PaThe (see §2.1).

To find the right child node (if it exists), we scan to OutLink nodes in level

iLevel+l. A new level starts when we reach the last node (Tnode) of the previons

level. Tnode is the total outgoing links of the previollS level.

If iLevel is the last level of the page, we need to search the LinkTo list for

the child page. Bcount+OutLink is the outgoing link in terms of the wholc tric.

The resu1t minus Tcount of the child page is the incoming link in term of the child

page. LinkTo.Page points to the child page. Algorithm 2.1 spells out the scarching

procedure for the paged pointerless trie.

2.4 Trie Construction

Large trie construction is a problem. As we have pointed out in §1.1, even with

one random access per key insertion (a very minimal requirement), the total disk

time for constructing a trie of n=100 million keys wou1d he 100Mx20ms :::::: 23.1

days, assuming 20ms per disk access. This is not acceptable in practice. We nced

construction algorithms tuned for secondary storage.

Another problem with this dynamic or updating approach is that wc cannot

achieve fully occupied pages. Usually a dynamic method may require as much as

doubled space requirement reported in the static method. Updating .FUThes or Or·

Thes is straightforward and will DOt be discussed. Updating PaThes will be dïscusscd

in §3.3.1

To build the whole trie, wc can do much better than the incrementa! algorithm by

careful use of sorting. This approach is based on two theorems. Theorem 1: the list

of ordered keys is equiva1ent to the list of leaf nodes obtained by inorder traversai of

• CHAPTER 2. TRIE ORGANIZATION

Aigorithm 2.1 Pointerless Trie: Searching Child Node

Type Anode - Record
Page: TTriePage;
iLevel, jNode: Integer;
Tnode, DutLink: 1nteger;
skip, start, height: Integer;

End;

30

/* node location */
/* level information */
/* node information */

Procedure GetChild(var n: Anode; vhieh);
begin

Position :- n.DutLink; /* caleulate the ehild position */
if (vhieh - left) and (n has right ehild) then

Position :- Position - 1;

vhile (n.jNode < n.Tnode) do /* sean ta the last node ofiLevel*/
m :- the next node;
n.jNode :- n.jNode + 1;
n.DutLink :- n.DutLink + OutLinks(m);

if «n. iLevel mod k) - 0) then /* ehild fall out the eurrent page */
Position :- Position + n.PageT Bcount; /* in whole trie */
Find i such that: /* seareh for the conneeted page */

(n.PageT LinkTo. [t1.Tcount S Position) and
(n.PageT LinkTo. [i+1] •Tcount > Position);

Position :- Position - n.PageT LinkTo [i] .Tcount; /* in page */
n.Dutl.ink :- n.DutLink + n.PageT Bcount

- n.PageT LinkTo [i] .Tcount;
n.Page :- n.PageT LinkTo [i] . Page ; /* read the new page */

•

n.'mode :- n.DutLink;
n.iLevel :- n.iLevel + 1;
n.jNode :- 0; n.DutLink :- 0;
vhile (n.jNode < Position) do

m :- Read the next node;
n.jNode :- n.jNode + 1;
n.DutLink :- n.DutLink + OutLinks(m);

end;

/* start a new level • /

/* sean ta the ehild node • /

• CH.4PTER 2. TRIE ORG.4NIZATION 31

•

the trie structures. Theorem 2: given such an ordered list. wc can uniqucly construct

a trie structure. We shall statc formally and prove the two thcorems in §2.4.3 for

the Pa'IHe structure. However. the proofs are a1so valid for thc FU'IHe and Or'IHe

because all three tries can be transformed from one to another. Whcn a trie is

constructed from the ordered list, it grows only in one directicn. This avoids random

disk access.

In the following discussion, wc assume no key string is a prefix of anothcr kcy.

String comparison uses lexicographie ordering.

2.4.1 FuTrie Construction

We construct FU'IHe as a whole by scanning the sorted key strings. In gcncral, the

procedure is: (1) sort the key strings in a lexicographie order, (2) treat each kcy

string as a FU'IHe by writing it vertically and changing 0 to 10, and 1 to 01, and

(3) append each key string to the .FU'IHe under construction. For examplc, given

00000011, 00101100, and 10000000, after steps (1) and (2), wc have:

a a 1 10 la 01
a a 0 la la 10

[keYl 00000011]
a 1 a la 01 la
a a a la la la

keY2 00101100 ~ a 1 a ~ la 01 10
keY3 10000000 a 1 a la 01 la

1 0 a 01 la la
1 a a 01 la 10

Step (3) merges, one by one, .FU'IHes of the sorted key strings from the smallest

key to the largest key. The merge procedure scans both the previous and the current

key strings from top down until the bits of the two strings are difFerent, i.e., the bits

of the previous key string is 10 and the bits of the current key string is 01 (because

of lexicographie ordering). At this moment, the merge procedure goes to the second

phase: (3.1) change bits 10 of the .FU1He in constructing to bits 11, (3.1) copy the

remaining bits of the current key string to the .FU1He in constructing until the end

of the key string. Continuing from the above example, after step (3), we have:

• CHAPTER 2. TRIE ORGANIZATION

Aigorithm 2.2 FuTrie: Appending Key

Var lut: Array 0 of lnteger;
Procedure FuTrieMerge(var T:FuTrie; a:string);

begin
rootLevel :- 1; leafLevel :- length(a)+l;
for i :- rootLevel to leafLevel-l do

if T[i] [lut [i]] - 10 and a[il - 1 then
bUurcation :- ii
break;

T [bifurcation] [lut [bifurcation]] : - 11;
for i :- bifurcation+l to leafLevel-l do

lut[i] :- lut[i] + 1;
T[il [lut[il] :- FuTrie(a) [il [1];

lut [leafLevel] :- lut [leafLevel] +1;
T[leafLevel] [lut [leafLevel]] :- 11;

end;

la r 01 11
la la la la
11 la 11 la
la la la la la la

~
la 01 la

~
la 01 la

<==?

la 01 la la 01 la
01 la la 01 la la
01 la la 01 la la

32

r last node of trie T • /

r shared path • /

r bifurcation point • /
r appended path • /

r treat s as a FuTrie */

r ereate leaf Dode • /

•

Algorithm 2.2 shows the merge procedure. In FUTrieMe1!1e, trie nodes are ap

pended (not inserted) to each level. The constructed nodes will no longer be referred

to except the last one of each level. Therefore, only the current string and the last

node of each level need to stay inside the main memory. The rest of the constructed

trie cao be dumped to the disk.

'Iiie paging cao be done during the merge. When nodes in a page layer exceed

a preset limit (say 8KB), we create a trie page and write it to the disk. To prevent

links from crossing the vertical boundaries ofa page, we need to check the next string.

Only the binary nodes may cause links to cross the vertical boundaries.

• CHAPTER 2. TRlE ORG.-\NIZATION 33

•

Our algorithm reads the ordered keys once and \'Intes the trie once. Assume 16

bytes (4 coordinates, see §5.1.2) per key, 16n bytes for the FU7He, 20Jls S<'t'k time,

1Jls transfer rate, and SI' bytes per 1/0 bufl'er, this method takes:

(16 + 16)n 20 + S
SK x 3600 x H)3 =3.1 hours

of 1/0 time (excluding the sorting time) to build a FU7He of n = 108 strings.

2.4.2 OrTrie Construction

The Or7He can be constructed in the same v,-ay as the FU7He, e:"cept that we do not

construct subtries after the last binary nodes. Instead, we construct leaf nodes with

the truncated suffi."(es. We shall not elaborate on the algorithm.

2.4.3 PaTrie Construction

The following theorem establishes that adjacent keys in the inorder traversai of a

Pa7He are ordered and have common prefixes up to bit h, where h is the height at

the internai node falling between them in the traversai. It follows that a Pa7He has

a unique list representation. The second theorem shows that this list represcntation

gives a unique Pa7He.

Let K" =SI, S2, ..., S", be a set of n>1 key strings. Let s1 be the jth bit of string

Si, List(K,,) be a list [SI, hlo S2, h2,...,h..-h s,,) such that K" is ordered and hi is the

length of the longest common prefix of Si and Si+!. Let Pa7He(K,,) be a Pa7He

constructed over K". We assume the Pa7He stores heights in the internai nodes and

start8 in the external nodes (see §2.1.3). Let Trav(Pa7He) be the list of starts and

heights ofthe inorder traversai of the Pa7He.

Theorem 1 Forany(si,h;,Si+!), (1$i<n), in Trav(PaTrie(K,,», wehave:

r - 0 ifj=h;

~+l - 1 ifj=h; (A)

si - s1+1 if1$j<hi

• CHAPTER 2. TRIE ORGANIZATION 34

•

Proof.

• Whcn n =2, Trav(Pa'IHe(K2» =(5), h), 52]' Since h), the height of the only

intcrnal nodc, is the discriminant bit position of SI and 52, and SI is the left

leafnode, (Al is true for (5), hl, 52]'

• Suppose 'v'l<,<n-l(S" hi, SHI) E Trav(Pa'IHe(Kn_Jl) - (A).

• For any Trav(Pa'IHe(Kn», let h be the height of Pa'IHe(Knl's reot. Let

Pa'IHe(Ktl be the left subtrie, and Pa'IHe(Kr) he the right subtrie. We have:

e+ r = n, and Trav(Pa'IHe(Kn» =
[Trav(Pa'IHe(Kt», h, Trav(Pa'IHe(Kr»] = [5), ..., St, h, St+), ..., st+r]

By hypothcsis, (A) is true for ail [Si, 11;, s,+!], except [St, h, st+d.

By definition, h is the discriminant bit position for ail s,. E Kt and sr E Kr.

Hcnce, (A) is true for (st,h,sr)' 0

Corollary: 'v'PATric(K.)Trav(Pa'IHe(Kn» =List(Kn).

Proof: (A) impliesstringsin Trav(Pa'IHe(Kn» are totallyordered, i.e., SI<s2<

...< Sn, and hi of Trav(Pa'IHe(Kn» is the discriminant bit position of Si and

Si+!. By definition, Trav(Patr(Kn» =List(Kn}. 0

Theorem 2 'v'n>IList(Kn} - unique PaTrie(Kn}

Proof.

• When n =2, List(K2}= [SI> ht. S2] has only one Pa'IHe.

• Suppose 'v'1<i<nList(Ki} - unique Pa'IHe(Ki }.

• For any List(Kn} = [SI> ht. S2, ..., hn-t. Sn], let h E List(Kn} be the smallest

height. Let List(Kt} = [SI> ht.S2, ...,ht-t. St] and List(Kr} = [St+t.ht+I Sn].
Since any height of a Pa'IHe is strictly la.rger than the height of its Parent

nodes, h must exist and it is the height of the reot. Therefore, we have:

List(Kn} =Trav(Pa'IHe(Kn}} =
[Trav(Pa'IHe(Kt», h, Trav(Pa'IHe(Kr)}] =[List(Kt}, h. List(Kr}]

By the hypothesis, both Pa'IHe(Kt} and Pa'IHe(Kr} are unique.

Hence Pa'IHe(Kn} is unique. 0

• CHAPTER 2. TRlE ORG.-\NIZATION 35

Algorithm 2.3 Pa1he: Parsing List(Kn)

r find a subtrie */

r no more subtrlcs */

r create an one node tric */

r current item is a height */
r no dccision yet */

Procedure PaTrieBuild(var T:PaTrie; liet:List(Kn »);
Var heightStack Stack of Integer; trieStack: Stack of PaTrie;

18ft, right: PaTrie; currItem: Integer;
begin;

currItem :- read List;
puah(currItem, heightStack);
currItem :- read next List;
do forever

U (currltem is a start) then
puah(currItem. trieStack);
currItem :- read ncxt List;

elee
if (both currltem and top of hcightStaclc is 0) then

T : - pop (trieStack); r end of PaTrie construction */
break;

eles
U (top of hcightStaclc) < currItem thsn

puah(currItem. hsightStack);
currItem :- read ncxt List;

elss rspsat
left :- pope trisStack);
right :- pope trisStack);
convert heights of left and right to sl.:ip;
nsvTris :- lsft~pop(hsightStack)~ight;

puah(nevTrie, trieStack);
until (top of hcightStaclc) <- (previous height);

end;

Corol1ary: Pa1he(Kn) is unique. Prao/: List(Kn) is unique for any given Kn • 0

•

We preprocess key strings and construct the Parne as a whole. The procedures

are: (1) sort K n and produce List(Kn), (2) treat List(Kn) as an expression by inter

preting heights as operators and starts as operands, (3) parse List(Kn), and (4) page

the constructed Pa7He.

As wc have proved in Theorem 2, constructing Pa1he from the List(Kn) is a

special case of parsing expressions with operator precedence (ASU86]. Here we have

only binary operators and no ambiguity (Parne is unique). The higher precedence

• CHAPTER 2. TRlE ORGANIZATION 36

•

corresponds to the larger height. Algorithm 2.3 shows the procedure of PaTrie con

struction. ACter parsing, a PaTrie is represented as a list of node levels. As for paging

fUTrie, PaTrie can be paged in a single pass.

The 1/0 cast of Algorithm 2.3 can be calculated as follov.'S. The input is n heights

and n starts. The height size is bounded by Ig(H,,). The start size is Ign. When

a trie level becomes too big, we write the level to the disk and replace it by a page

pointer. The output is n starts, (n-1) heights, and 2n bits plus negligible pointers.

Assuming 20ps scck time, 1ps transfer rate, and 8K bytes per page, the cast is:

2n(lgn+lg(16x8)+1) ·(1 1) 20+8 -504 . t
8 x 8K x B + x 60 x 1()3 - . mlDU es

of 1/0 time (exduding the sorting time) to build a PaTrie of n = 108 keys and 16

bytes each. Herc B is the page size in 8KB, large enough for 1/B < 1.

2.5 Summary

We have proposed a set of three new trie organizations. In the next four chapters, wc

shall apply them to applications in exact text searching, approximate string matching,

map data displaying, and spatial data querying in general. AlI these applications

deal with bulk data, and no matter whether wc use tries as index structures or data

structures, the trie size is always a critical issue. Our trie organizations require one

bit per node for the PaTrie, t'WO bits per node for the fUTrie or OrTrie, and there

are no pointers. Our representations are smaller than all known methods.

Another problem with tries is that they are often too large to be stored in the

main memory. We have given a method to partition tries into pages for secondary

storage. To search our trie down to level i, wc need to read i/k trie pages. Here k is

a preset number and k =8 in ail our implementations.

Even with one random disk access per key insertion, the total 1/0 time will be 23

days for building a trie of 100M keys. We have presented algorithms which minimize

random disk access. Our algorithms carefully use the order properties among the

key strings, and construct tries as a whole. The expected 1/0 time is 3.1 hours for

constructing a fUTrie of 100 million keys, and 50.4 minutes for a PaTrie.

•

•

Chapter 3

Exact Text Searching

In this chapter, we shaH examine trie index structures in scarching very largc tcxts.

Trie methods give search costs which are often proportiona1 only to the length of the

string being sought, and in the worst case, to the logarithm of the size of the text

being searched. For very large texts, trie methods are indispensable.

Index tries for text searching have been used by Morrison [Mor68] and exploited

by Gonnet et al. [GBYS92, Tom92] for the implementation of the electronic version

of the New OED. However, a major difticulty with tries is that the index generated

can be even larger than the text. For example, Morrison's Patricia index could be

eighteen times the size of the text.

When applying PaTrie to index 100 million keys, our experiments show size factors

ofless than 3, as compared with 3.4 for the best previous method. Our measurements

a1so show expected access costs of 0.1 second, and construction times of 18 to 55

hours, depending on the text characteristies. We shall show that our index structure

cau handle dynamic texts, and will give new algorithms for text trie inscrting and

deleting. This chapter is an extended version of (MS93a].

3.1 Text Trie

We follow Gonnet in using semi-infinite strings (or sistring [Gon88]), in which a text is

viewed as a very long sequence of letters without concem for the structure. Sistrings

37

• CHAPTER 3. EXACT TEXT SE.4.RCHING 38

the r e
l 2 3 4 5 6

01110100 DIIO/œo DIIODIDI 01/10010 oo1סס01100101001

•

arc suffixes of the text. For example, sistrings in text there! are: there!. here!.

ere!. re!. e!, and !. If a text is infinite in length (by appending null characters

after the text), ail sistrings are semi-infinite and can be uniquely identified by their

starting positions (start) in the text.

We define text trie as an Or7rie or Pa7rie built over sistrings of the te:'<t. In text

tries, leaf nodes contain starts (pointers to the text). Sistrings are truncated when

their prefixes become unique in the text. The trie will not grow below the level where

the search path identifies a unique sistring in the text. Extemal nodes are placed as

close to the root as possible. Figure 3.1 shows the text tries for te."<t there!.

Text

-0 Stut
,-.".-0

(§)-O-V-'-O-, ASCII Code
,-.".-;;::=O--,--.r.L.----.l..-----/';'\1-------.....J

0::°--""',-0;J o~,

, "@ .et.. ~ ~
Q:::!',~ (6f0 '\i) f§J:0 '':G).

J:J:.0-V ~o , '@ (6f0 , 'liI
ciro , '@ (§)'o , '@

(a) OrTrie Index (b) PaTrie Index

Figure 3.1: Text Tries

Text tries may have to become quite deep to distinguish between similar sistrings.

For example, we must go to ten bit!; to distinguish ere! from e!. As wc have stated

in §1.2.2, the Pa7rie gives a much shallower trie, but adds the cast of storing height

or skip information at each intemal node. Figure 3.1 (b) shows a Pa7rie with skip

information in the intemal nodes.

In this chapter, we assume tcxts are terminated with a unique symbol, say a null

character, and a search cao find a string beginning at any byte of the text. Thus,

a text of N bytes has exactly n=N distinguishable sistrings. Sometimes, we might

ask to search for te.~ strings beginning only at word starts. Since words average five

characters in length and are delimited by blanks, a text would have about n=N/6

sistrings, and result in a much smaller text trie.

• CH.4.PTER 3. EXACT TEXT SE.4.RCHING

3.2 Statistics on Text Tries

39

•

Text statistics will help us show that inde;\(size is a significant problem. not just in

the worst case, but for normal usage of langnages such as English. This il' true e\'('n

for the methods uscd for the New OED. This section is primarily about Pa'IHes. but

the statistics that follow ",·m include Or7Hes, eo that we can show that the cost of

storing skips is more than offset by the rcduccd height.

3.2.1 Measured Distributions

To estimate te.xt trie performances, we necd to know: (1) the total numbers of trie

nodes, Sn, for the trie size, (2) the average trie c!epth, .4.n, for the average acccss time,

and (3) trie height (or the maximum depth), Hn , for the expectcd worst at'Ccss time.

Trie parameters have been analyzcd by many people (sec §1.2.2). Most thcoretical

results are bascd on the assumption that all keys are independently and unifonnly

distributed, and all symbols of the keys are also uniformly distributed (symmetric or

random trie). Table 3.1 are cxpected asymptotic results for binary tries.

Total Nodes, Sn Average Depth, An Heig~t, Hn 1
Ordinary Trie 2.44n 19n 2lgn

1Patricia Trie 2n-1 19n 19n

Table 3.1: Random Trie Parameters

Unfortunately, sistrings from naturallanguage texts are not uniformly distributcd.

For example, e is mucb more common than d in English. Nor are they independently

distributed. AlI sistrings are suffixes of the same tcxt. Worst of all, sistrings arc

context related. Theoretical analyses fail to model context dependeney within sucb a

large scope. Therefore, we must measure these quantities on actual texts. We shall

find that t!!e theoret; -.al values provide extremely lower bounds.

For five texts of 4.5 to 9.5MB each, we picked 20 segments of 1MB C1ICh at random

from each text, and construeted tries for sistrings beginninl; at each byte. The texts

are: Shakespeare's Complete Works, provided by Oxford University Press for NeXT

!ne.; The King James' Bible, provided by ftp from akbar.cac.washington.edu; Sec

tion One of man pages for UNIX1m from Solbourne Computer !ne.; C source programs

• CHAPITR3. EXACTITXT~ARCmNG 40

•

sclected randomly from a departmental teaching machine; and Webster's Ninth New

Collegiate Dictionary, provided by Ne..XT Inc.

We calculated An and Hn for both Or7Hes and Pa7Hes, and Sn for Or7Hes

only. For both trics, we found the cumulative distribution of depths for n=1 million

sistrings, that is, the proportion of nodes lying at or above a given depth in the trie.

Finally, to cstimate Pa7He size, we need to know skip length. There is no theoretical

analysis for it in the literature. 50, we found the cumulative distribution of skips

for n=1 million sistrings, that is, the proportion of skip lengths that are less than or

equal to a given number of bits. This we used to estimate the average skip sizes. The

rcsults are plotted in Figure 3.2.

A qualitative inspection of these results shows that the texts can be ranked for

Sn, An> Hn and skip sizes of Pa7Hes. From best to worst: (1) Shakespeare 's Complete

Works, (2) The King James' Bible, (3) man pages from UNIX, (4) C source programs,

and (5) Webster's Ninth New Collegiate Dictionary.

Websterwas significantly worse than the others in ail of these cases. The reason is

thlLt we copied the dictionary redundantl~' from the NeXT by following ail pointers,

even if they lead to the same text. So our copy has many long, single repetitions. It

is apparent that this is just what is bad for tries, but excellently handled by Pa7Hes.

So we expect Webster to behave weIl under Pa7Hes, because it is efFectively much

shorter than the other texts, and that is what we find.

For Hn and An of Pa7Hes, the rankings of the texts are aImost consistent. The

UNIX man pagl'S lLre noticeably worse than the others. Webster is the best, as expected,

and, together with the Bible, has significantly lower Hn.

As we can sec from Figure 3.2, most of skip lengths, say 75%, are lcss than 60 and

can he stored in counters of 6 bits long. However, some of them require much larger

counters. One of the best methods to compress the skew skips is to encode them by

Huffroonn encoding (Knu68] (which requires one more pass over the data in ordof to

construct the codes). The first part of Table 3.2 shows, both in bits, the maximum

skip length and the average skip length by Huffrnann encoding. The second part

shows skip ranges and the corresponding quantities: l - skip counter length, p

Huffrnann code length, and 0 - total skip percentage in the range. For example, for

• CHAPTER 3. EXA.CT TEXT SE.4.RCHING -Il

""""-'"

'-'~ -_.- .. -~ ..

.. .• " "'!"'_.

.'.......

~
:::.:=--- -",-..--- .-_.-."

~ ... -. ..- ~ - -,-~

~
._.-_ ... _c:::.:.:'='=- 6 ••••••• _ _ ••• _ •••• _1 .. _

, ---

.....................••

or'I'rWo.,dl~~

.. r-----::::::~----_::~:=::==,
. --_.---.:~-::::-~:. -...... . ..-----

r- .~", ",,,,-...-. •. ,. ,
~ : .~ .. ,
-;' ...- -....--.... :-,..:.-.

.~-.._==...... _C,"-.._.-

..

..

...

,,'

~"'" ' ..-...~...~....:
'7'":'7.- ~..~.·..~:::~::..:~.>

•......•. ~

;.:::.:::,:.::::::::.:.:..~.

..,............
"'...------_...:._-----,

.'..... ~,
...._-... "-

•• _C.....---.._.---- ,
-'~;

••'-__"".'-__.....J

NN~"I__

Figure 3.2: Text Trie Distributions

:~... =- .
i :':~:.:'C'''-.....~....._-=-= ..

..._.•....

.. ,_ ..-,...~

..

•

• CHAPTER 3. EXACT TEXT SEARCHING 42

•

Skip Length (bit) Sbakespeare Bible UDixMan CProgram Webster

Maximum lenglh II II 14 16 16

Average Lenglh 4.24 4.79 S.36 6.5S 7.9&

Sldp Lenglh Sldp Dislribution (HujfmDnn Code Lenglh)

1 8 (P) 8 (P) 8 (P) 8 (P) 8 (P)

0 0 3O.8S%(2) 30.26%(2) 27.82%(2) 24.29%(2) 20.39%(2)

1 0 14.06%(3) 10.9S%(3) 13.50% (3) 11.8S%(3) 9.3S%(4)

2 0 4.64%(4) 4.19%(S) S.l8%(4) 4.36%(4) 3.73%(4)

3 .• 4 1 11.46%(3) 8.18% (3) 9.17%(3) 8.86%(4) 6.77%(4)

S •• 8 2 IS.65%(3) 14.61%(3) 12.21%(3) 11.54%(3) 11.84%(3)

9 .. 16 3 10.20% (3) 10.70%(3) 8.47%(3) 8.64%(4) 9.77%(4)

17 •• 32 4 7.54%(3) 10.67%(3) 7.66%(4) 8.97%(3) 8.48%(4)

33 .• 64 S 4.27%(S) 6.67%(4) 7.8S%(4) 8.02%(4) 6.48%(4)

65 .. Largest r19(!.arBll 1.33% (5) 3.77%(5) 8.14%(4) 13.47%(3) 23.19% (2)

Table 3.2: Skip Distributions

l!ep'eaIoas A....Deplb. A,. Hd&hl-H" TOCI1 Nodcs. S.
011

_DaIa OrTrie PaTrie OrTrie PaTrie OrTrie

Raadom Jan Jan 2Jan Jan 2.440

SbaIa:speare 4.7Jan -8.0 2.1 Jan-8.0 151 Jan- 1637 20.41& n- 212 1Q.2n - 13037

Bible 6.0Jan- 13.7 2.0I&n-7.9 t38l&n- t472 5.2 18 n-33 IS.ln - 32635

UnI.MonuaI 8.S Jan-6.S 2.6 Ja n -12.4 425 1& n - 4886 22.SJan-230 32.60 - S608t6

CJ'ro&œn 28.S 1& n - 202.0 2.ll&n-9.5 27561& n- 37061 19.21& n- 219 t Il.4n - 34646llSw_
68.1 Ja n+364.0 t.8l&n-6.S 4120 1& n- SOS9O 4.ll&n-2t 529.ln + 58419

Table 3_3: Rt>gnS5Ïon Fitting

• CHAPTER 3. EX.4.CT TEXT SE.4.RCHING 43

•

skip lengths betwecn "5..8" inclusive. we need a count (f) of 2 bits to idcntify tht' 4

different skips. In the Shakespeare, 15.65% (c5) of skips are bctwcen 5 and 8 illiength.

and the corresponding Huffmann code length (p) is 3 bits. The average skip lt'Ilgth

is calculated by !::c5(f +p).

Table S.3 shows the results of regression lits of the data of Figures 3.2 for .4n , Hn

and Sn' Comparing with theoretica1 results, WC cao find random tries are much better

than any of our actual text tries. Regression formulas will be used to estimate trie

performances. Table 3.4 shows the values of the regression formulas for 1MB texts,

and for comparisons, the values (in parentheses) actually mcasured on these texts.

a- 1.000.000 Avcrqe 1)q>dl. A" lIdaJ>t. H. Tocal Nodea. S.
Expcctod
lM_) OrTri~ PaTrie OrTrie PaTrie OrTrie- 20 20 ~ 20 2.44M

Sb'" p:.rc 86(85) 34 (33) 1373(1408) 195 (206) 102 (\02) M

Bible 106 (lOS) 32(32) 1279(138)) 71 (71) 15.1 (l5.1l M

Ualx MaIluaI 163(168))9(39) 3585 (4022) 219(230) 32.0(32.9) M

CPropam 366(385) 32(33) 17870 (22651) 164 (1110) 107.9(108.I)M

w_ 1721 (1622) 29(30) 31528 (36955) 61 (63) 5292 <531.8) M

Table 3.4: Comparing Regressions

3.2.2 Estimated Performance

With text trie pararneters on hand, we now cao estimate text trie performances. The

costs of tric searcbing are proportional to An and Hn in the average case and the

expected worst caset respectively. We give only calculations for the average costs. In

the following ca1culations, wc use N for the text size in bytes, &Jld n for the number

of sistrings. We usually set N=n and assume N=100M=108• But sometimes, wc

let N=6n=600M for comparison with the New OED work which involves a text of

600MB and n=119M sistrings, each beginning at a word.

tGi""" a degenerate trie, the worst searcb time is Il wbicb is of DO interest to us. We are interested
in average tries and the average performances.

• CHAPTER 3. EX.4CT TEXT SEARCHING 44

•

A simple PaTrie implementation requires two pointers per node. For n sistrings,

there arc 2n-l tric nodes, and therefore, Ig2n bits per pointer. Each start requires

Ig N bits to addrcss the N bytes of the text. The average skip length lies between

4.24 bits and ï.98 bits for the measured texts, as shovm in Table 3.2. Thus an

implementation with two pointers takes

n ({ 4.24}) {10.ï }8 21g2n + IgN + _ = n bytes
1.98 11.2

for a N=100MB file, about eleven times the text size. In this and follov.ring calcula

tions, the upper numbers in the braces are for the best measured text and the bottom

numbers are for the worst measured text.

As shown in Table 3.3, we have the shortest An = 1.8lgn for Webster, and the

tallest An = 2.61g n for UNIX manual pages. Thus, for a disk with 20ms average seek

time, and n=100M sistrings, the average access time is

({
1.8 } { 6.5}) {41.3 } {0.83} ds1 n - = accesses = secon .
2.6 g 12.4 56.ï 1.13

We can remove one pointer by storing trie nodes in, say preorder, 50 that left de

scendents will be immediate neighbours of their parent nodes and 50 need no pointers.

This saves us ~ Ig2n = 3.4n bytes. We can also shorten start by using tut pages as

the target of the start pointers, instead of individual bytes. If the text is stored in

pages of 4KB, the starts are shorter by 12 bits each. Both improvements together

reduce the index size to

n (N {4.24}) {5.8}8 Ig2n+lg
4K

+ _ = n bytes
1.98 6.3

for a N=100MB file, about six times the teJI.1: size. This implementation reduces

access time by half because one of the two descenttents will be retrieved in the same

time as its parent node.

The PAT array [GBYS92) has no pointers at ail, and is not even a tree. It stores

nothing but starts. The idea is to store these starts in a lexicographica1 order of the

sistrings they point to, and to use them for a binary search of the text. The PAT

array requires ~(nlgN) = 3.3n bytes for a N=n=100M file. This would seem the

• CH.4.PTER 3. EX.4.CT TEXT SE.4.RCHIKG 45

•

ab50lutely minimal index for addressing any character in a tcxt. Wc find that it i~ not.

The major consideration is that PAT array cannot use the text paging impro\','l\Ient

to reduce the start size. This is because the binary search must make a comparison

",;th the te."(t each time it looks up a start, and therefore, the start must point to the

starting bytes of the text, not merely to a page.

Because of the extra comparison, PAT array takes 21g n acccsses for a scarch. This

is much more e."(pensive than searching a weil-made tree, with reference to the text

only from the leaf nodes. For an index of 100M sistrings, this is 27 acccsses to the

text and 27 accesses to the PAT array. However, if we read a page of 210 starts, the

last ten lookups of the PAT array ",;11 ail be on the same page, 50 the eost will be ollly

about 18 accesses to the PAT array, and a total of 45 acccsses. A better improvemellt

can be found in [M593b].

The Or7He implementation requires two bits per node, plus n starts. As shown

in Table 3.3, we have the smallest Sn = 10.2n for Shakespeare, and the largcst Sn =

529.1n for Webster. Combined with our text paging technique, an Or7He index has

n (N { 10.2}) {4.4}-8 Ig K+ 2X = n bytes
4 529.1 134.1

for a N=100MB file. Thus, the index size is no smaller than PAT arrays, and can be

immensely larger.

The average time of Or7He searching is AnIk, where k = 8 is the number of levcls

in a page. For a disk of 20ms average seek time, an index of n=100M sistrings, and

An of Table 3.3, the average access time is

1 ({ 4.7 } 1 { -8.0}) {14.6 } {0.28} d- n + = accesses = sceon s.
8 68.1 g 364.0 271.7 5.43

Finally, for the Pa7He implementation, we must store n skips, n starts, and one

bit for each of the 2n-1 nodes. 50, it takes

n (N {4.24}) {2.6}8 2+lg
4K

+ = n bytes
7.98 3.1

for a N=100MB file, about three times the text size, and less than the PAT array.

• CHAPTER 3. EXACT TEXT SEARCHING

The average access tirne of a PaTrie index is

1 ({ 1.8 } { 6.5 }) _ { 5.2 } _ { 0.10- 19 n - - accesses-
8 2.6 12.4 ï.1 0.14

} seconds.

46

•

Table 3.5 surnrnarizes the calculations made throughout this section for various

irnplernentations. We assume that n=100M=108 and that sistrings start at each b)"te.

For timing, we assume a disk with 20ms expected seek time and 1Jls transfer time

per byte. The text pages are 4KB where applicable. The 1/0 buffers are 4KB for PAT

arTays and 1KB for both Or7Hes and Pa7Hes. The "best" and "worst" refer to the

live measured texts.

Expected Trie Sizes Expected #: Disk Accesses
Implementations (bytes) Average Maximum

best worst best worst best worst
2 pointers 10.ïn l1.2n 41.3 56.ï 88.0 36ï.9
1 pointer 5.8n 6.3n 20.ï 28.3 44.0 184.0
PAT arTay 3.3n 45

Or7He 4.4n l34.ln 14.6 2ï1.ï 2ï4.4 ï362.6
Pa7He 2.6n 3.ln 5.2 ï.l 11.0 46.0

Table 3.5: Binary Trie Comparison

In this section, we have determined formulas for ,arious trie performances. Each

formula uses one or two of the four trie parameters, i.e., average trie depth An, trie

height Hn, total trie node Sn and average skip length. We used statistics!rom actual

text to lit these parameters. In §3.4, wc shal! show experiments on Pa7Hes for these

texts and demonstrate that the formula for trie size has an error < 4%.

3.3 Text Trie Construction

We consider texts that have no changes, or low update frequency such as historical

data and dictionaries. For this type of texts, it is much more efficient to add al!

the data at once than, say, inserting sistrings by their text order (sec §2.4.3). The

problem is how to sort numerous and extreme1y long sistrings. But first, wc give an

algorithm to handle smal! changes to a text•

• CHAPTER 3. EXACT TEXT 5EA.RCHING

3.3.1 Dynamic Text

-li

We start \\;th an algorithm that builds or updates Pa7Hes dynamically. The eXllmple

of Figure 3.3 shows the insertion of a at start i of there! to give there ! a. The new

Pa7He is shown in so!id lines, and the old, where it dilfers, in dashed !ines. The new

start, i, is lexicographically between starts 6 and 5, but shares a subtrie with starts

5 and 3.

the r e a
l 234 567

01110/00 01101000 01/00/01 011100/0 01100/0/0010000/ 0110000/

Text
Start

ASCII Code

1 {II
0{61 1{11

- - - - - - - 1 {Ol 1 {II
II{OI IQ'T14f'0{21 0{41
10 {71 1 {31 1 10 'S' -0'31'
10 {SI 0 {31: • ~::J - -'- ~L _

Figure 3.3: Updating Pa7He

o{II

•

We see that while the positions of the entries may be altered within their levcls,

or may change levels, the changes to entries are localized. In the example, we have

changed the node 1{4} to 1{0}, have moved down the nodes below it, and have

inserted a new level for the new leaf and internal node. Algorithm 3.1 shows the

procedures for sistring insertion and deletion.

Ifa new text is added to anywhere but at the end of the old text, the starts will be

out of order, or many starts will have to be changed (but only by a constant o!l'sct).

This ceases to hold, however, if the starts point to pages rather than to byte locations.

In that case, text cau be added to a new page without changing pointers in any old

text page. Thus, all insertions cause only local changes.

Another problem of inserting a te.~ anywhere but at the beginning of the old text

is that it changes sistrings be/ore the insertion point (sistrings are suffixes). To insert

at arbitrary position, wc must first find Il unique sistring before this position: this

sistring will distinguish all preceding sistrings from each other. Than wc delete the

text from the unique sistring to the insertion point, and prepend this deleted text to

• CHAPTER 3. EXACT TEXT SEARCHING

Algorithm 3.1 Tcxt Trie: Inserting and Deleting

48

Procedure SistringIns(Start:integer; Text:string; Var T:PaTrie);
Var Xnode. Pnode. Cnode : Anode;
begin

Xnode :- a Icaf node of T by searching Text[Start] ; /* search for sistring */
if Text [Start] - Text [Xnode. start] then

e=or; /* sistriDg already iD T */
prefix :- (Iongest common prefix of Text[Start] and Text(Xnode.startj);
Xnode :.. ... nodc of T by searching prefix;
Cnode .start :- Start; /* crcate a new leaf node */
Pnode.skip :- length(pre:tix)-(height of Xnodc's parent);
if (Xnode is an internai node) then

Xnode.skip :- Xnode.height-lengtbCprefix); /* modify skip */

iDscrt Pnode into the bit.string before Xnode;
shift subtrie(Xnode) entirely down one level; /* replace subtrie(Xnode) by */
if Text[Start+length(prefix)+l] - 0 then

insert Cnode before Xnode; /* Cnode/Pnode'\.Xnode */
e1se

insert Cnode after Xnode; /* Xnode/Pnode'\.Pnode */
end;

Procedure SistringDc1(Start:integer; Text:string; Var T:PaTrie);
Var Xnode. Pnode. Cnode : Anode;
begin

Xnode :- a leaf node of T by searchiDg Text[Start]; /* search for sistring */
if Text [Start] <> Text [Xnode. start] then

error; /* sistring is not iD T */

•

if (Xnode is the Root of T) then
T :- empty; /* Xnode is the only node of T */

else
Pnode :- (The parent node of Xnode) ;
Cnode :- (The sibliDg node of Xnode) ; /* Xnode/Pnode'\.Cnode */
Cnode.skip :- Cnode.skip+Pnode.skip+l;
delete Xnode and Cnode; /* replace Xnode/Pnode'\.Cnode by */
shift subtrie(Cnode) entirely up one level; /* subtrie(Cnode) */

end;

• CHAPTER 3. EX.4.CT TEXT SE.4.RCHING -19

•

the text to be inserted. A similar consideration applies if the text to be inscrtcd is in

fact a replacement for sorne part of the original text.

Fortunately, we do not have to search far for unique sistrings. Bccause a unique

sistring maps from the root to a leaf of the trie represcnting the text, a uniqu<' sistring

will start no earlier than the trie height, Hn , before the insertion point. We cxpcct

to search only An bits, the average trie depth.

To build a PaTrie by updating or incrementally inserting sistrings is prohibitive

(sec §2.4). Essentially Algorithm 3.1 takes An /8 accesses per insertion xn insertions

x, say 20ms per èisk access, or

nlgn x 20 x 10-
3

X { 1.8 } = { 138 } da
8 3600 x 24 2.6 200 ys

1/0 time to build a PaTrie index of n=100 million sistrings.

3.3.2 Sistring Sorting

As we have demonstrated in §2.4.3, random disk access is minimized when trics are

built as a whole. Aigorithm 2.3, thereafter, is provided to build a PaTrie from IL

List(Kn). Here, Kn is a set of n sistrings and List(Kn) is a list of sortcd sistrings

altematively witt height information. We now show how to generate the List(Kn)

from a given text.

. To sort numerous and extremely long sistrings, we have to scck for external sort

techniques. In general, an external sorter will: (1) chop data into pieces, (2) sort e&ch

piece inside RAM (called initial ron), and (3) merge ail pieces together. RAM size is

critical since the larger the RAM capacity is, the fewer the initial runs will be, and

the less the sorting time.

Sistrings are too long to be stored entirely inside RAM. We can only sort starts.

To do this, RAM must be divided to hold both starts and one segment of the tcxt.

We create an initial run by internally sorting the starts corresponding to the te:."t,

in RAM. If wc fit n' starts (about 3 bytes e&ch) into RAM together with the tcxt

segment (n'xNln bytes), for 20MB of RAM, the expected run lengths will be

20 {5M sistrings if N = li =100M } {20}"'al
:::-:---:":7""" = = lDltl runs.
3 +NIn 2.2M sistrings if N =. Gn = 600M 46

• CHAPTER 3. EXACT TEXT SEARCHING 50

•

Replacement sclection [Knui3] can generate runs twice the size of RAM. However,

to sort sistrings, wc have to store both text and starts in RAM. Our experiments show

that the extra t::xt in RAM is 4 times larger than for quicksort, and that leads to

initial runs of twice the number of starts in RAM. (These factors, 4 and 2, deviate by

less than 1.5% over all our texts.) The number of initial runs is 18 for N=n=lOOM,

and 68 for N =6n=600M. This is comparable to quicksort for N=n, but substantially

worse for N/n=6. Our experiments also confirm Knuth's assertion [Knui3] that

quicksort is thrce times faster than the heapsort used in replacement selection. 50,

wc generate initial runs using quicksort on a fixed amount of te.xt held in RAM. The

next two sections show how to merge the initial runs.

Prefix Sort

Our first approach is simple: but requires a very large temporary workspace. In the

next section, we give a method which is better in both space and 1/0 time.

At the output time of initial runs, we append to each start enough bytes from the

text to distinguish it from any other start. Let us cali this H bytes. If aIl sistrings

are distinguishable by these H bytes, the merge procedure simply reads the output

of initial runs, calculates the heights at the same time by comparing neighbours, and

outputs List(Kn), the starts and heights. For H=50B and N=n=100M, this method

takes (H + ~ 19 N)n = 5.3GB temporary storage space.

The time required to do the merge and the height calculation is the time to read

the initial runs and write the output. AlI reading and writing cao be done sequentiaIly.

If using buffers of 64KB, the merge procedure costs

n (3) 20+64
64K H + SlgN X 3600 x 103 = 2.2 hours.

The corresponding quantities for N=6n=600MB are 5.4GB and still 2.2 hours.

However, 50 bytes does not fully resolve aIl sistrings. From the results of cumulative

PaThc depth in §3.2.1, we have the following percentages of sistrings unresolved by

H=50: 1% for bath Shakespeare and Bible, 8% for UNIX, 14% for C1'rogtd.lllS, and

42% for Webster. In the best case, we must do direct access to 1% of the text, which

• CHAPTER 3. EXACT TEXT SEARCHING 51

is one million accesses at, say 20ms each, or 5.6 hours. Tlms, to generat<' List(Kn).

this method takes ten hours of 1/0 times (over a day for N/11=6).

Counter Sort

To avoid re-reading the text during the merge phase, Gonnet et al suggcstl'<! lUI

algorithm [GBYS92j to include counters in the initial rons. The counters tell the

number of starts in ail previous rons which are between two adjacent starts of the

current ron. We e.\:tend their method by including height information, two per start,

to give the positions of the bits that distinguish the start from its predccessor lUld

successor in the current and ail previous rons.

This changes the above ron-size calculations. Starts arc 19 N bits and heights

cannot exceed Ig8N. For N=n=100M, .they take about 10 bytes. Thus, a 20MB

RAM will hold

20 { l.8M sistrings if N= n= 100M} {56}"'al-,--".".,- = = !Dltl rons.
10 + N/n l.3M sistrings if N= 6n= 600M ïï

The workspace to hold the initial rons will be 1CB for N=n=100M sistrings.

Algorithm 3.2 captures this discussion. We illustrate it for the text thero! (0 is

01101111 and is introduced to keep the third initial ron intcresting). The initial rons

are:
Run 1 02"
Run 2 0 035

Run 3 0 062

•

This is interpreted as follows. The main entries are starts, the subscript entries arc

counters, and the superscript entries are heights. Run 1 has no counters. Thus, in

run 3, the first counter, 0, tells us that no start in any previous ron (1 or 2) points

to a sistring sorting before it is pointed to by the first start, 6, in run 3. The second

counter, 2, in ron 3, tells us that two sistrings come between those at starts 6 and 5

(they are at starts 3 and 2).

The height, 2, after 6 in run 3, is the bit position distinguishing the sistring at 6

(!) from that at 3 (e), its successor. The height, 6, before 5, distinguishes the sistring

at 2 (h) from that at 5 (0). The height, 4, after 5, distinguishes 0 at 5 from r at 4.

r sort until no more text */r read in one piece text */

• CHAPTER 3. EXACT TEXT SE.4.RCHING

Algorithm 3.2 Counter Sort: Generating Initial Runs

Type Run - Array 0 of Record
Counter. Start : Integer;
Lheight. Rheight : Integer;

End;
Procedure CountInitia/(Text:string; R:file of Run);

Var StartBuf : Run;
StartBase. CurrRun : integer;

begin
StartBase :- 0;
CurrRun :- 1;
vhile StartBase < N do

reacl(Text. TextBuf);
for i :- 1 to Length(TextBuf) do

StartBuf [i] •Start :- i;

52

r Max Heights */

/* initial starts */

•

QuickSort (StartBuf); r sort starts in lexic:ographic:al order */
Let Si be the sistring pointcd by StartBuf[i].Start;
for i :- 1 to Length(TextBuf) do r initial c:ounters */

StartBuf[i].Counter :- 0;
StartBuf [i] •Lheight : - Height (Si. Si+!);
StartBuf ri] .Rheight :- StartBuf [i] •Lheight ;

for (eac:h sistring Text[x] in run [l..CurrRun-lj) do r scan Text */
find i suc:h that r searc:h position of Text[x] */

(Si-l < Text[:z:] < Si);
StartBuf[i] .Counter :- StartBuf[i]+l;
StartBuf [i] .Lheight :- Max(startBuf[i].Lheight, Height(Text[x],Si»;
StartBuf [i] .Rheight :- Max(startBuf[i-l].Rheight, Height(Si_l,Text[x]));
StartBuf [i] •Start :- StartBuf [i] •Start+StartBase;

vrite(R. StartBuf); r output one initial run */
CurrRun :- CurrRun + 1; /* prepare for the next run */
StartBase :- StartBase + Length(TextBuf);

eud;

• CHAPnR3. EXACTnXT$ARCHmG

Algorithm 3.3 Counter Sort: Merging Initial Runs

53

r for each of n starts */

r prepare ncxt output */
r output one hcight-start pair */

r final output: O,SI,hl, S2, •••, h,,-hsn,O */

•

Procedure CountMerge(R:tile ot Run; L:List(Kn »;
Var OutSoFar. OutPosi :Array [1 ..TotalRun:! ot integcr;

Height. Start. LastHeight. CurrRun : integer;
begin

OutSoFar :- 0;
OutPosi :- 1;
LastHeight :- 0;
tor i :- 1 to n do

CurrRun :- TotalRun;
i :- OutPosi[CurrRun:!;
"hile CurrRun>l and R[CurrRun:! [j] .Count<>OutSoFar[j] do

CurrRun : - CurrRun + 1; r run that has the start to he output */
j :. OutPosi[CurrRun:!;

Height :- Mu(LastHeight .R[CurrRun:! [j] . Lheight) ;
Start :- R[CurrRun:! [j] .Start;
LastHeight :- R[CurrRun:! [j] .Rheight;
OutSoFar :- OutSoFar + 1;
OutSoFar[CurrRun:! :- 0;
OutPosi[CurrRun:! : - j + 1;
Write(L. Height. Start);

Write(L. 0);
end;

We sec that each run considers only the runs before it. To do this, it must scan the

text for all previons runs, that is, from the beginning to the position corresponding

to the present run. In ail, this is (# runs)f2 or 28 passes for N=n=lOOM, and 39 for

N=6n=600M.

The cost of generating the initial runs is dominated by these passes of the text

file. With 64KB text buffer, it costs

(20+64)N x{ 28 }={ l.Ohours ifN=n=lOOM }.
64 x 36 x 1()8 39 8.5 hours if N = 6n = 600M

Algorithm 3.3 merges the initial runs with counters and hcights in a single pass.

The merge phase looks at the first entry in each initial run. Continuing with our

example, we sec that the merge picks the stan 6 because of the 0 counter before it

and the fac, that of the two entries with a zero counter, the 6 has the larger run

• CHAPTER 3. EXACT TEXT SEARCHING 54

•

number. The height, 2, is also output. It then must look for two starts from earlier

runs, becallse of the counter, 2, in run 3: it takes 35 from run 2, because of the counter

o before it; and 2 from run 1 because the counter 1 in run 2 makes us look in run 1.

The two star.s nceded by the counter 2 in run 3 are now fO'lDd, so 654 is output from

run 3. The one start needed by the counter 1 in run 2 has also been found, so we

output 6 from run 2, then finally 1 from run 1. The merged output is 62352654461.

Writing and reading the workspace of 1GB takes about 44 minutes assuming

buffers of 64KB. This does DOt add much to the time required to sort the starts.

The costs in time and space are summarized in Table 3.6 for a N=100MB text,

assuming 20ms seek i:ime and 1Jls transfer time per byte. For a text of N =600MB

but n=lOOM sistrings, Sl!dt as the New OED, the time for the counter sort will be

39 hours. Let us compare it with the s~atement of Gonnet et al [GBYS92) thll.t the

New OED index can be built "during a. weekena '. What is new here is that our

version includcs height information and thus builds the faster pointedess PaTrie, not

.1u;;t a PAT array.

Prefix Sort Counter Sort
Time Space Time Space

Initial Runs 2.2 hours 5.3GB 1.0 hours 1.0GB
Merge 7.8 hours 44 minutes

Table 3.6: Sorting: Time and Space

3.4 Experimental Results

In §3.4.1, we partially check the PaTrie size formula (sec §3.2.2) with actual indices of

l, 2, and 4M sistrings ell:tracted from each of the live texts. We gh<! calculated sizes

for the purpose of comparing with OED. In §3.4.2, wc compare the calculated access

time against the measurement time. We lind a factor of 2 for indices of one million

sistrings. The discrepancy is due to the CPU time (on our relatively slow NeXT)

which the formula does not take into consideration. We don't know the CPU time

for indices of 100 million sistrings. But we cau expect the factor is the same as tb~

• CH.4.PTER 3. EX.4.CT TEXT SE.4.RCHING 55

•

measurement, and 50 we use them to compare v.;th OED. In §3.4.3, we combine the

measured time with the calculated time to extrapolate construction time for PaTries

for comparing v.;t.h OED. Ali the measurements were carried out on a Ne.."T (M68030,

28MB RAM, and 25MHz dock) v.;th two disks (13.5ms average seek time, and 0.5/15

data transfer per byte).

3.4.1 Text Trie Sizes

Iustead of Huffmann enoding for skip information, whieh requires skip distributions,

wc propose two simpler methods. Method 1: skip counters are ail large cnough to

hold the largest skip. For example, according to Table 3.2, the largest skip length for

Shakespeare is 11 bits. As we have seen, more than 80% of skips are less than 16 (4

bits), and (11-4)1< = 7n bits are wasted. Method 2: skip eounters are ail 5 bits long.

When a skip length is larger than 5 bits, we set the eounter to ail 1s, and allocate

another skip counter to hold the largest skip. The skip column of Table 3.7 shows the

average length of this method on the measured texts. As com~ared with Huffmann

method shown in Table 3.2, this method increases thE: couder size by no more than

two bits.

StIp
N-a-IM N.n-2M N.aa4M N.IOOM

Index Tric Sïzc
(bit) ~ - ~ - ~ - Cale,,··....,

Sb" : wC-IWcxb S.72 1.97MB 1.99MB 4018MB 4.21 MB 8.86MB 8.9SMB 284.0MB
KIaa JIIIlCI' Billie 6.Z1 2003MB 2010MB 432MB 4,J4MB 9.14MB 9025MB 290.9MB
Uallt_PIp 7.35 2017 MIl 2012MB 4,S9MB 4.66MB 9.68MB 100000MB 304.4MB

CPIopIa 8.150 233MB 239MB 4.9OMB 4.97MB IO.3OMB IlI.S9 MB 32O.OMBw_DIclIoIlary 9.91 2.49MB 2.47MB s.:z3MB So29MB I0.96MB I0.9SMB 336.4MB

Nole: Cala"'''''' D>«2..r1&(N)l4KltstJp)18 llllI ..ch....'IlIIIDI_ -2'lIo;

Table 3.7: Pa7rie Sizes

Table 3.7 shows Pa7rie sizes as measured and as calculated using the formula in

§3.2.2. The discrepancy does not exœed 4%. We also show the calculated sizp. for

texts of 100M sistrings, one sistring per byte: we have not built indexes of this size.

For both implemèntation and calculation, text and index pages are 4KB each.

• CHAPTER 3. EXACT TEXT SEARCHING

3.4.2 Search Times

56

•

Table 3.8 shows the successful and unsuccessful search time as measured for each of the

live text tries. It aIso shows the successful search time as caIculated. Unlike successful

searches which aIways terminate at the external nodes, unsuccessf ù searches may

stop at the internal nodes. The internal nodes are closer to the root than the external

nodes. Therefore, unsuccessful searches are faster than successful searches. This "'..as

confirmed by our measurements. There is no analysis for unsuccessful searches.

N=n=IM N=n= IOOM
Index Search Time

Mcasun:d Mcasurcd CaJc:u1aIcd FaclOr CaJc:u1aIcd

Wcbslcr Diclionary 102.43 116.10 S6.26 2.06 79.54
Kins James' Bible 115.ss 121.40 62.08 1.96 87.30

CPrograms 1iS.12 123.33 62.08 1.99 89.24
Sh'kespeare·s Works 116.72 115.67 65.96 1.91 93.12
Unix Manual Pages 144.40 145.45 75.66 1.92 llO.ss

Unsuccessful Successfu1 Sean:h TIIDC: (ms.)

Noce: CaIcuIaIed: (An 1 8) x (l3~ ms. + 40()~ ms.) = 1.94 x An Cms.);

Table 3.8; Pa7He Search Time.;;

Table 3.8 shows a discrepancy factor of 2 between the measured time and the

calculated time. Our trie method requires substantial CUP time for bit masking

which is Dot include<l in the formula of §3.2.2. We expect the discrepancy factor will

remain the same for larger indices.

3.4.3 Construction Times

Table 3.9 shows the costs of Pa7He constructions by the tv."O sorting methods outlined

in §3.3.2, the prefix sort and the counter sort techniques.

The first part of the table shows the times for sorting 4M sistrings, starting at each

byte. We scaled down RAM size to 28MBx4/100 = 1.2MB so that we cao assume

28MB RAM when sorting lOOM sistrings. The prefix sort takes 248MB workspace

and running time ranges from 35 minutes (Shakespeare) to 1.83 hours (Webster). The

counter sort needs a smaller workspace of 96MB and tighter execution time, between

•

•

CH -\PTER 3. EXACT TEXT SE.-\RCHING

lodex Coaslruclion TIme
ShaWpcue 1 Bible 1 UoIx MIll 1 C Pq.... 1N-n.4M Webller CU:u1aled

Prefix Sort (minutes) 3S 37 S2 80 !lO 9

Counter Sort (bours) S.4 S.4 S.7 S.S S.7 0.12

ExIrlpOIaIion To
ShaWpcue 1 Bible 1 UoIx MIll 1 C Pqrom 1 WebIler CU:u1aledN-u-l00M

Prefix Sort (bours) 17.7 18.7 26.3 40.4 SS.S 2.2

Counter Sort (days) 140.6 140.6 148.4 143.2 148.4 0.04

Table 3.9: PaTrie Construction Times

5.4 and 5.ï hours. The calculated times based on the formula of §3.3.2 serve only as

loose lower bound since CPU time such as bits comparing and counter setup are not

counted.

The second part of Table 3.9 shows extrapolation for 100MB te.'"ts, assuming prdix

sort algorithm takes cln Ign time and counter sort algorithm takes C2n2 tirne, where CI

and C2 are constant coefficients. The extrapolation tells that, to sort 100M sistrings,

the predicted times for prefix sort range from 18 to 56 hours with an overhead of

5.3GB, and the predicted times for counter sort are about 5 months with only 2.4GB.

However, the counter sort may not be impractical if we had a computer whi(:h is 50

times faster than our NeXT because the predicted 1/0 time is quite small.

3.5 Other Trie Searches

In this section, we sha1l examine other trie algorithms (BY89, BYG89, GBYS92, ST93)

for exact text searching. Except for the k longest common substring search, all thcsc

algorithms have done before. We mention them here to show that they can also be

done by our method. For simplicity, we sha1l mainly use the l'ù7He structure, which

difFers from Or7He or Pa7He structures onIy in implementation matters. Let K" be

a set of n strings, which can either be independent of keywords, or be sistrings from

a text. We assume a finite alphabet size•

• CHAPTER 3. EXACT TEXT SE.4.RCHING 58

•

Keyword Search

Starting at the root, we search FuTrie(Kn), the FuTrie structure constructed over

K n , by following the pattern string. H the search en<is at a leaf node, the pattern

eXÏ5ts. Otherwise the search fails. This search requires O(e) time in the worst case,

where eis the length of the pattern.

We can do hetter when searching for a set, Pm, of m pattern strings. The search is

equivalent to superimposing FuTrie(Pm) with FuTrie(Kn). Only the patterns whose

leaf nodes overlap with the leaf nodes of FuTrie(Kn) are in Kn• This search requires

O(m) time in the worst case. Both algorithms are independent of n, the size of Kn •

Prefix Search

This is to search Kn for strings with a given prefix. The search is the same as the

keyword search except that it can be terminated at an internai uode. AlI the strings

inside the subtrie ofthe internai node are the answers. This search requires O(e+k)

time in the worst case, where eis the pattern length and k is the answer size.

In generai, we can search for a set ofprefixes. Let Pm he a set ofm prefixes specified

by the prefixed regular expression (BYG89). We superimpose the FuTrie(Pm) with

FuTrie(Kn). Only the strings whose root-to-leafpath overlaps with the leafnodes of

FuTrie(Pm) are in Kn • This search requires O(m+k) time in the worst case.

Regular Expression Search

We first construct a DFA (or a NFA) machine for a given regular expression, and

then simulate the automaton along with a depth-firstsearch of FuTrie(Kn). For each

trie node which associates with a final state, we accept the whole subtrie and stop

searching down that subtrie. Since this algorithm does not need outgoing transitions

for final states, it takes sublinear search time on average (BYG89).

Proximity Search

This search is to find all places where one string is at a fixed (given by the user)

number of characters away from the other string. We:;earch FuTrie(Kn) for the two

pattern strings, and then sort the two answer sets by text position (stans). The final

• CH.4.PTER 3. EXACT TEXT SE.4.RCHING 59

•

answers are obtained by merging the two sorted setst . Let k\ and k2 be th(' r('SpcctÏ\'('

answer set sizes, this algorithm requires O(k\lgk\ + k2 lgk2) time. Better solutions

can be found in [GBYS92).

Range Search

This is to search K" for al! the strings within a range of two pattern strings. We S('afcli

Fu7i-ie(K,,) to find the search paths of the two pattern strings, and then collcct ail

the subtries between (and including) the two search paths. This search takcs O(l+k)

time in the worst case, where eis the maximum string length of the two patterns and

k is the numbers of answer strings.

The Most Common Substring Sea.ch

This is to search a text for the most commonly used string, e.g., find the most common

word of a text. We build a Fu7i-ie over every possible sistring of the tcxt, and add

a counter to each interna! node to ind.:cate the size of its subtrie. To find the most

common word is equi~~llt to searching for the largest subtrie whose search path

begins with a space and ends with a second space. This cao be achil'~edby a simple

traversa! of the Fu7i-ie which takes at most O(n/k) time. Here k is the number of

words fO:lIld in the text [GBYS92).

The Longest Common Substring Search

When K" are keywords, wc are searching for the longest prefix shared by two key

words. When they are sistrings starting at characters, wc are searching for the longest

repetition of the te.'Ct. This search is equivalent to finding the lowest internai node

(within a subtrie) of Or7i-ie(K,,). By adding an extra bit to each internai node to

indicate which side has the tallest subtrie, we cao find the lowest internai node in

O(H,,) time in the worst case, where H" is the height of Or7i-ie(K,,}.

However, it is not necessary to keep the extra bit. Since our tries are organized

by leve1s, wc have no diflicu1ty in finding the lowest interna! n;.'k'!. By scanning the

tIf exact locations are Dot maintained, _ Decd subsequent exarn;D&tiOD of each matched page•

• CHAPTER 3. EXACT TEXT SEARCHING 60

•

bit-string in reverse, we ean walk our tries from leaves to the root. Wc shall not

elaborate on the algorithm in this thesis.

In general, wc can use tries to solve the k longest common substring problem. The

algorithm can be described as follows. (1) Build an Or7he over all possible sistrings

of the k strings. (2) Color the trie nodes. We paint an internal node black if its subtrie

contains sistrings from each of k strings. Otherwise we paint it white. (3) Find the

lowest black node. This algorithm ti.td> O(n) time to color and search the Or7he.

To our knowledge, this is the first algorithm of its kind.

3.6 Summary

We finish this chapter by comparing our text tries with three other index methods

for exact text searching: signature files, inverted files and PAT arrays. Signature files

[FCSi), use hashing techniques and are 10% to 20% of the text size. They have small

storage overhead, but require linear search time. Furthermore, they may return some

answers that do not match the query.

An inverted file (Knui3) is a sorted list of keywords with pointers pointing to

the text. The storage overhead of inverted files may vary from 30% to 100% of the

text size depending on the data structure and the number of indexed keywords. The

search time for keywords is logarithmic. Similar performances can be achieved by

PAT arrays [GBYS92). However, PAT arrays have the advantage over inverted lists

in efficient searching of substrings. In such a case, the indexes have 340% storage

overhead.

Our text tries are smaller than PAT arrays. Trie methods can he used in other

searches as we have shown in §3.5, which are either difficult or inefficient over inverted

files or PAT arrays. More importantly, our tries take much fewer random disk accesses

than PAT arrays. (Minimizing random disk access is an especially crucial issue when

using optical disks, which have very slow random access time.)

•

•

Chapter 4

Approximate String Matching

In this chapter, we shaH use tries to solve the k differences approximate string match·

ing problem. We shaH focus on dictionary lookup relatcd applications, such as spellillg

checkers, in which one searches a keyword list or a dictionary for the pattern string

which may have k (k>O) spellingerrors. If k is very large, say larg~r than the longcst

keyword, any keyword qualifies as a match since evcry letter can be a mistake. Ob

viously, this is not an interesting problem for spelling checkers. Damerau [Dam64)

found that 80% misspellings are single errors, i.e., either a letter extra, a letter miss·

ing, a letter wrong, or two letters reversed. In other words, with an approximate

search of k=l, a spelling checker can find the right keywords for 80% of misspellings.

We restrict the approximate search to few mistakes, say k :s; 3.

This thesis is primarilyon searching bulk data on secondary storage. However, our

proposed trie structures work also with small data. As a result, we do not illustrate

in this chapter with large data.

4.1 String Similarity
The degree of string similarity is often measured in terms of the minimum edit dis

tance - the minimum number of edit operations to change one string into another.

Finding the minimum edit distance is an optimization problem and is often solvcd

by the dynamic programming technique. In the next two sections, wc will give a brief

introduction to edit distance and dynamic programming.

61

• CHAPTER 4. APPROXIMATE STRING MATCHING 62

4.1.1 Edit Distance

Minimum edit distance [WFi4J (or Levenshtein distance [Lev66]), D(Pm , Wt), is the

minimum number of mismatches between the pattern string Pm PI1J2•••Pm and the

target strillg Wt=WI W2..'Wt over an alphabet:E. A mismatch is defined as: (1) a

symbol in W corresponds to no symbol in P, (2) a symbol in P corresponds to no

symbol in W, (3) a symbol in P corresponds to a different symbol in W, or (4) two

adjacent symbols in P correspond to two reversed symbols in W. Insertion, deletion,

substitution and transposition are four corresponding edit operations to re'.ise the

mistakcs.

Formally, our k approximate searching problem is to find strings in some set, K n ,

of n strings such that they have at most k mismatches, or are the best match for the

pattern P. That is,
(1) [W 1W E K n AD(P, W) ~ k J, and

(2) [W 1W E K n AV'w'EK.(D(P, W') ~ D(P, W)) J.

4.1.2 Dynamic Programming

Minimum edit distance can be recursively defined as fol1ows:

00

i+j

ifi<OVj<O

üi=OVj=O

üi>OAj>O

D(P;, Wj) = Dl.?;. Wj _ I) + 1

D(Pi - h Wj) + 1
min

D(Pi - h Wj_I) + d;,j

D(P;-2, Wj _2)+d;-I,j +d;,j-I +1

Here d;,j = 0 Ü Pi = Wj, or 1 Ü Pi::fi Wj, and Po = Wo = tP.
In order to find the minimum distance, we need to invoke D four times with

both subseripts decreased by no more than two. Hence, a brute-force evaluation

of D(Pm , Wt) must take O(2min(m,lJ) time. However, there are only mxi possible

D(Pi. Wj) for l~i~m and 1~~e. The dynamic programming algorithm [SelSOJ

evaluates D(Pm , Wt) by storing every possible D(P" Wj) in a mxi table. Table 4.1

shows a 2x3 dynamic programming table for P=ab and W -bbc.•

• CH.4.PTER 4. APPROXIMATE STRING MATCHING 63

cf> b b c
0 1 2 3
1 1 2 3
2 1 1 2

=4>
a
b

W3 = cw~ =bWo=cf> wl=b .
0 1 2 3
1 D(P(,Wd D(P(, W2) D(P\, W3)

2 D(P2 ,Wd D(P2 , W2) D(P2, n:3)

Po = t/J
PI = a
P2 =b

Table 4.1: Dynamic Programming

Furthermore, it is not necessary to evaluate each of m x l' entrics. Ukkonen [Ukk85]

proposed an algorithm to reduce the table evaluations. His algorithm works as follo\\'S:

Let Cj be the maximum i such that D(P;, Wj) :::; k for the given j (Cj=O if no

D(P;, Wj) :::; k). Given a Cj-\, compute D(P;. Wj) up to i :::; Cj-l+!, and then set

Cj to the largest i (0:::; i :::; Cj _ I +1) such that D(P;, Wj) :::; k. Chang [CL92) provcd

that this algorithm evaluates O(k2) expected entrics. As shown in Table 4.2, for

P=adfd and W=acdfbdf of 4xï=28 entries, Ukkonen's algorithm evaluatcs only 15

entries when k=!.

t/> a c d f b d f
0 1 2 3 4 5 6 ï
1 0 1 2 3 4
2 1 1 1 2 3
3 2 2 1 2
4 2

t/>
a

=d
f
d

Co CI C2 C3 C4 C5 C6 C7

T,..ole 4.2: Ukkonen's Cutoff

t/> a c d f b d f
0 1 2 3 4 5 6 ï
1 0 1 2 3 4 5 6
2 1 1 1 2 3 4 5
3 2 2 2 1 2 3 4
4 3 3 2 2 2 2 3-

t/>
a
d
f
d

•

Initially, we have Co=!. We evaluate the first column up to row Co+l=2. The

largest row such that D(P;, W I):::;1 is 2, i.e., CI =2. Therefore, we evaluate the second

column up to row C1+1=3. The largest row such that D(P;,W2):::;1 is 2, i.e., C2=2.

Therefore, wc evaluate the third column up to row C2+1=3, and further to have

C3=2, C4=3, and C5=0. C5=O indicates that it is impossible to change any prefix of

adfd to acdfb in less than one operation. In other words, wc get D(P4, W7»1 for

sure. We need to evaluate more entries only if wc want to know D(P4 , W7).

In the following sections, wc assume all keywords end with a unique end-of-word.

symbol, e.g., the null symbol, 50 that no keyword in a dictionary is a proper prefix of

another keyword. All keywords will be pairwise distinguishable.

• CH.4.PTER 4. APPROXIMATE STRiNG MATCHING 64

echo
enface
enfold

example
sarnple
sarne

•

Figure 4.1: Dictionary Trie

4.2 Approximate Searching

Figure 4.1 shows a dictionary trie constructed over a set of six keywords. To make our

discussion simpler, we use IEI-ary tries, where lEI is the alphabet size. What we shall

show is that the k approximate searching can be carried out by a depth-first traversai

with cutoffs on the dictionary trie. The search will maintain adynamie programming

table during the traversai, and evaluate one column of the table per trie node. The

result of the evaluation will tell whether the search should continue or the traversai

should be eut off. The a1gorithm is based on the following two observations.

4.2.1 Observations

Observation 1

Suppose we are searching keywords in Figure 4.1 for the best match to pattern string

sane. To find the minimum distances of ail keywords from sane, we need to evaluate

six tables, one for eacb keyword. Table 4.3 shows three of them. For each table,

the entries of the ith column depend only on entries of the j$.i th column, or the

first i letters of the keyword. Keywords sample and same have the same prefix sam,

and therefore, share the table entries up to the third column. And 50 does the first

column of keywords echo, enface, enfold and example, the first three columns of

keywords enface and enfold. In general, given a traversai path of length x, ail the

• CH.4.PTER 4. APPROXIM.4.TE STRING M.4.TCHING 65

ti> sample
0 1 2 3 4 5 6
1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 1 2 3 4
4 3 2 2 2 3 3

ti>
s
a
n
e
column: 1 2 3 4 5 6

t/>
s
a
n
e

ti>same
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 1 2
4 2 2 2 1

1 2 3 4

s
a
n

e

t/> c n J ...
0 1 2 3 ...
1 1 2
2 2 2
3 3 2
4 3 3

1 2 3···

•

Table 4.3: Dynamic programming Tables

table entries for keywords inside the subtrie are identical up to the xth column.

With a depth-first traversai of the dictionary trie, the observation enablcs us to

find the minimum distance to eRCh of the keywords. Since eRCh path Crom the root is

a prefix shared by all keywords inside the subtrie, the corrcsponding columns of the

dynarnic prograrnming tables are identical and need to be evaiuated only once.

Observation II

In the last table of Table 4.3, all entries of the second column are >1. If we are

searching for keywords with k=1 mismatch, we cau stop evaiuating this table bccause

for sure the distance between sane and enface or enfold will be >1. In the sanie

way, aCter evaiuating the fourth column of table sample, we can stop the evaiuation

because all entries of the column are >1.

This observation tells us that, if all entries for a trie path are >k, we can stop

searching down the subtrie, because no word in the subtrie will have a distance ::::;k.
This is equivaient to cutting off the traversai of a subtrie when Cj=O (see §4.1.2).

4.2.2 Algorithm

Suppose we have a misspelled word P=exsample and a dictionary trie as shown in

Figure 4.1. We want to find all the keywords with k=1 mismatch. Figure 4.2 shows

sorne intermediate results of the algorithm.

After evaluating D(P, ech), we find that entries on the third column are all ~2.

According to observation II, no keyword W with the prefi.x ech cau have D(P, W) ::::; 1.

DepthFirst Smng Distance Action

Scarch Path 1: ech ~2 n:jcet

Scarch Path 2: en! ~2 cUlOff

Scarch Path 3: example .1 accepl

Scarch Path 4: sa ~2 culOff

• '::HAPTER 4. APPROXIMA.TE STRING M.4.TCHING

~e.....o-.~
/('... " 1 Paucrn SlriDg: 1exsample 1 k :S 1

[~:f~Xt~1 ~4
, 2 m

A A
• 0 P •o 0 0 lJ

Figure 4.2: Approximate Trie Searching

66

•

Silice the search is on a leaf node, we reject keywo.d echo l'.ud continue the traversai.

After evaluating D(P,enf), we know, once again, no keyword W with the prefix enf

can have D(P, W) ~ l, and therefore, there is no need to search down this subtrie.

We cut off the subtrie and continue the traversai. Since ech and enf share the sarne

prefix e, we copy the first column of ech when evaluating enf (observation 1). After

evaluating the search path 3, we find D(P,example) =1. The traversai stops when

the subtrie of search path 4, sa, has been Cl~t off.

The search algorith~ is essential!J a depth-first traversai of a trie with cutoffs.

Given anode n in the trie, the root-to-n path, WIW:!...W." is the longest prefix shared

by all strings in SubTrie(n). If changing WIW2 ...W., to any possible prefix of the pat

tern costs Clore than k, there will be no string in SubTrie(n) that has ~kmismatches

with the pattern string. Hence, there is no need to search down to Subtrie(n). A

cutoff happens. Each letter Wj (l$j~x) on the path will cause evaluation ofthe jth

column of the table. We use Ukkonen's algorithm to rniDirnize the table evaluations.

Algorithm 4.1 spells this out.

Algorithm 4.1 can also be used to search for the best match (a keyword with the

shortest edit distance). This time, we first set k to a small number, say 5. Each

time we find a better string, i.e., a stri.ng with a distance d<k, we replace k by d. k

decreases monotonically during the search. A good initial k can be the edit distance

to the stri.ng that shares the longest common prefix wit~ P. This guarantees that k

is never too small.

• CH.4.PTEH. 4. .4.PPROXIM.4.TE STRING M.4.TCHING

Algorithm 4.1 Dictionar)" Trie: Approximate Search

57

Var T :array [O..m][O..l] of integer;
C : array [O..l] of integer;
p. 1/ : string;
k :integer;

/* DP table, T[i,O]=i and T[OJ]=j */
/* Co = CIO) = k */

/* pattern and targct string */

Proeedure ApproxMatch(n: Anode) ;
begin

if (n <> nil) then
if (n is a lea! node) then

for each symbol I/[j] in the suflix do
if 1>ist(j) - 0 then

return
output 1/;

else
if (n. iLevel is aligned to a symbol) then

if L>ist(j) - 0 then
return;

ApproxMatch(LeftChild(n»;
ApproxMatch(RightChild(n»;

end;

/* morc than k mismatch */

/* dcpth-lirst scareh */

/* W[j] is currcnt symbol */
/* cutoft' */

•

Funetion 1>~t(j :integer) :integer;
beg~ /* cvaluate onc eolumn */

C[j] :- 0
for i :- 1 to Min(C[j-l]+l. length(P» do

dl :- if (I/[j] - P[i]) then 0 else 1;
T[i.j] :- Min(T[i-l.j-l]+dl. Min(T[i-l.j], T[i.j-l])+l);
if (i > 1 and j > 1) then

d2 :- if (W[j] - P[i-l]) then 0 else 1;
da :- if (W[j-l] - P[i]) then 0 else 1;
T[i.j] :- Min(T[i.j). T[i-2.j-2)+d2+d3+1);

if (T[i.j] <- k) t.hen /* update Cj */
C[j] :- i;

return(C[j]);
end;

• CHAPTER 4. APPROXIMATE STRING MATCHING

4.3 Experimental Results

68

•

We have examined the size and search time of the pointer and pointerless trie repre

sentations in §1.2.3 and §3.2.2. Tries in those sections were used as index structures

in which leaf nodcs store pointers pointing to the actual data. Tries in this chapter

are used to organize and store the data set, and therefore, the skipped symbols will

be stored inside the trie structures. In this section, we shaillook at the performance

issues of this kind of trie structures.

We built OrThes to store three dictionaries: (1) dictionary used by UNIX look pro

gram, (2) Webster dictionary for NeXT, and (3) ail words from (1) and (2). Words

were separatcd by a new-Hne character. Table 4.4 shows the sizes of the three dictio

naries and the corresponding OrThes. The search times were measured on a 25MHz

NeXT with 28MB memory.

Dietionary #Words(N) File Size (n) OrTrieSize #Nodes(Sn) Depth(An)

Unix Oook) 25.144 0.21 MB 0.11 MB 156.634 43.5 <bits)
Webster 234.936 1.49MB 1.15MB 1.796319 62.3 (bits)

Combined 240.009 2.S3MB 1.17MB 1.821.125 61.9 <bits)

Table 4.4: Dictionary and Trie Sizes

4.3.1 Dictionary Trie Sizes

We use OrThe to store the keyword list. A OrThe requires two bits per node and

a suflix string in each leaf node. When scanning to a leaf node, the search algo

rithm necds to know how long the sulfu: is. It needs a counter of, in the worst case,

[lg(max-suflix-Iength)1 bits long. We may apply some compression techniques such

as Huffmann encodiDg described in §3.2.1 to compressing the counters. In the follow

ing ca1culations, wc assume to have counter& of 19(average-suflix~length)bits on the

aveI'llge. AccordiDg to the measurement, the a\oa-age suflix length is 15.67 bits, the

maximum suflix length is 139 bits, and the total number of trie nodes is Sn =7.16n.

Without considerÏDg the overhead of paging OrThes as described in §2.2 (which is

less than 2% of ihe total trie size), a OrThe takes:

• CHAPTER 4. .4.PPROXIMATE STRIj'{G MATCHING

n ({ flg1391}) {4.ï5 worst}-8 2 x ï.16 + 15.6ï + = n bytes.
Ig15.6ï 4.24 average

69

•

In our implementation, the counters are large I:...ough to indicate the longest suffix

length. Comparing the actual trie sizes, as shown in Table 4.4, with the l"alculated

sizes, we fouud the the discrepancies do not exceed 3%. If keywords are stored

sequentially without any structure, the three dictionaries take 210KB, 2.49MB and

2.53MB respectively. Our Or7rns compress these keyword lists by 48%, 54% and

54% respectively.

We could also use PaTrie, which requires one bit per node, reduccs the total nodcs

to 2n-1, but needs adcJitional skip counters. For comparison, we found the average

skip length (5.65), the maximum skip length (119 for Webster) and the suflix length

parameters (the same as for OrTrie) based on the tested dictionaries. A PaTrie takcs:

n (2 56 {flg
119

1} 56- {flg
139

1}) {4.ï9 worst} b- +. 5+ +1 . 1+ = n ~"t('S.
8 Ig5.65 Ig15.6ï 3.ï2 average

The skip counter plays the most important role in reducing the PaTrie size. If

we simply let each skip counter hold the largest skip length, i.e., fig 1191, the PaTrie

size will exceed the OrTrie size.

4.3.2 Search Times

Let p(k) be an average number of columns evaluated before assU1'Ïhi> that D(P, W) >
k. p(k) has two properties: (1) p(k) > k ü k is less than the target length, (2)

p(k) =O(k) [Ukk85, CL92].

p(k) relates to the search time. It indicates, on the average, how deep the search

goes. If p(k) is less than the average trie depth, the dynamic programming will take

no more than p(k)II:Ip(I:) expected time, which is independent of the dictionary size.

Here II:I is the alphabet size. However, this expected worst time is a very loose upper

bound even üfor the small k which we are considering. We will measure p(k).

We randomly picked up 14 words from each of the three dictionaries and modified

them by 1, 2 and 3 edit operations based on randomly chosen positions. Thus, we

• CHAPTER 4. APPROXIMATE STRiNG MATCHING iD

•

had three sets of strings for each dietionary, 14 strings for each set, and at least one

word from each dictionary has l, 2 or 3 mismatches. We compared each of the strings

with linear search and OrTrie search of the dictionaries. Linear search takes the same

amount of 1/0 time for any k search. 1/0 time for OrTrie search is expccted to be

proportional to the number of accessed trie nodes. OrTrie search reads in fewer nodes

for small k search. The measured results are shown in Table 4.5.

Dictionary p(k) Linear TIlDe OrTrieTime Acœssed 1Total

Unix (look) 2.17 2.9 (sec.) 1.0 (sec.) 2.7 % (nodes)

k=1 Webster 2.17 27.9 (s' .' 2.2 (sec.) 0.3 % (nodes)
Combinee! 2.21 28.9 (sec.) 3.0 (sec.) 0.4 % (nodes)

Unix (look) 3.30 4.6 (sec.) 3.1 (sec.) 15.2 % (nodes)

k=2 Webster 3.32 44.9 (sec.\ 9.8 (sec.) 2.8 % (nodes)
Combinee! 3.35 49.4(Sec~ 10.9 (sec.) 3.1 % (nodes)

Unix lIook) 4.40 6.6-(sec~ 8.6 (sec.) 41.5 % (nodes)

k=3 Webster 4.50 66.1 (sec.) 28.5 (sec.) 11.6 % (nodes)
Combinee! 4.49 84.8 (sec.\ 29.2 (sec.) 11.7 % (nodes\

Table 4.5: Approximate Search Times

We measured the ratio of the searched trie nodes against tàe total nodes. The

results show that for k =1, less than 3% of OrTrie nodes are searched. For large tries,

the ratio is getting smaller, e.g., 0.4% for the dktionary of 240,000 words. Suppose

wc have a dictionary of 100MB. The OrTrie representation will shrink the dictionary

to 50MB. 0.4% of 50MB is 200KB. That is to say, to search a 100MB dictionary for

words of one mismatch results in reading 200KB information. For those searched

nodes, mast of them are near the trie root and are physically clustered in terms of

trie pages.

In both searches, CPU times increase substantially due to dynamic programming.

OrTrie search gets even worst because of its extensive bit masking. And therefore, it

does Dot obtain one hundred percent speedup for k =1. A faster computcr should

improve the search time accordingly.

• CH.4.PTER 4. .4.PPRO.XIM.4.TE STRING M.4.TCHING

4.4 Soundex Searching

il

DcpthFiISl Slring Scundcx Ae1ion
Sean:h Pa1h 1: echo e2 rejcct

Sean:h Pa1h 2: en es cUIDff

Sean:h Pa1h 3: example 82514 acccpl

Sean:h Pa1h 4: s 8 cuIDff

•

Spelling checkers based on the minimum edit distanee work well for typographie mis

spellings. However, they often fail to deteet phonetie errors. For example, exsample

and example have one mismatch, but naeherJ'!.y and naturally have four. This

section will explain how to adapt Algorithm 4.1 to deteet phonetie misspellings.

The idea behind the Soundex system [OR22, Knu73] is to reduee strings into a

code in which strings that are sounding similar (in English) will have an identical

code. The Sounde.'C code consists of the first letter of encoding strings followed by a

sequence of digits (often truncated to 3). Digits are assigned to letters as follows:

ABCDEFGHIJKLMHOPQRSTUVWXYZ
o 1 230 120 0 224 550 1 2 6 230 102 0 2

Zeros are removed and repeated digits >:.l°e reduced to a single digit. For example, the

Soundex code for exsample is e2205140 =? e2514 and example is e205140 =? e2514.

Let S=P1d1d2••dt be the Soundex code for pattern string P=PIP2"'Pm (e<m). AI

gorithm 4.1 is a depth-first search of OrThe. For a given node nEOrTrie, the root

to-n path, WIW2 ...W., (x~m), is the longest prefix shared by ail strings in SubTrie(n).

The Soundex code, wllf,.d2..cl; (i~e), is also the longest Soundex prefix for ail thcse

strings. If WI If,.d2..cl; is not a prefix of S, then no Soundex code of strings in

SubTrie(n) matches S. We can stop searching down SubTrie(n).

~.,.....o......,.~4
/t'... ~ 1 Paucm Slring: 1 exsample 1 82514 1

~C ~2Xt~ 1 \)
• . m

A A
• 1 P •

~ ~ ŒJ TI
Fignre 4.3: Soundex Searchïng

Fignre 4.3 shows search example for Soundex code e2514. When a search goes

down to a leafDode, e.g., ho, wc have a complete Soundex code. If this code is identical

• CHAPTER 4. APPROXJ.1\fATE STRING MATCHING ï2

•

to the pattern code e2514, such as example ~ e2514, the string will be accepted.

If they are different, such as echo ~ e2 ':/: e2514, the string ",ill be rejected. \\Then

searching an internai node, we get a partial (prefix) Soundex code, e.g., 5. If this

code is a prefix of e2514, we need to traverse down the subtrie to check the remaining

code seqaence. If not, we stop traversing down the subtrie since every Soundex code

of strings in the subtrie cannot he equal to the sought Soundex code.

This cod.. is either a prefix of e2514, and therefore needs to traverse down the

subtrie to check the remaining code sequence, or not. For example, 5 is not a prefix

of e2514. Since ~Y,"ry Soundc.x code of strings in this subtrie is started with 5, no

string <:411 be accepted, and therefore, we stop traversing down to this suhtrie during

the search.

4.5 Summary

Tries have been used for a long time as a dictionary structure for exact keyword

lookup. In this chapter, we have expanded the exact trie search to apl'\roximate

searching and Soundex search. Our trie structure, Or7He, also compresses the key

word lists up to 54%. And the search is carried out directly upon the structure

without any decompression operation.

The k approximate search algorithm of this chapter is a combination of the trie

method and the dynamic programming technique. It stores keywords in a trie, and

finds the approximate keywords by depti-·first traversing the trie, and at the same

time, evaluating a dynamic programming table to provide cutoffs of the traversai. The

expected worst time is O(kl:EI"). This search time is independent of the dictionary

size when k <: An, the average dept.\ of the dictionary trie. To our knowledge, no

other published algorithm achieves thiS time complexity.

•

•

Chapter 5

Spatial Zooming

In this chapter, we shall propose a trie method to store and display map data. A

major issue in representing and displaying large quantities of map data is how to

change resolution, or level of abstraction, or remoteness, or zooming. The propOSt'd

trie structure permits displaying a map at any desired level 'Jf detail after reading

from the file only the amount of data to be displayed. It gives a continuous zoom,

say, from the full details of a digital map of many gigabytes of data, up to a mere

outline, while storing only one copy of the map.

We assume map data are sequences of coordinate vectors. This chapter will focus

on displaying two dimensional maps. However, the method under discussion works

for other pictorial data, such as points, minimal bounding rectangles, triangulated

polygons, cubes, k dimensionalline segments, etc. Chapter 6 will discuss spatial data

queries in general.

This chapter uses FhThe only for spatial zooming because (1) it is the simplcst

trie and (2) it gives the exact data requested. Both OrThe and PaThe give much

better compression (see §6.4.2). OrThe will be used in Chapter 6 for spatial searching

and other applications. Pa7Tie, however, does not improve data compression much

further and requires a more complicated construction procedure. We do not consider

Pa7fie in spatial applications. This chapter is an extended version of [M594].

73

• CHAPTER 5. SPATIAL ZOOMING

5.1 Map Data Representation

5.1.1 Map Relation

ï4

•

A map contains many objects, both simple and complex. Simple objects are point

data, sucb as houses, monuments, and e1evations. They may have associated names,

descriptors or values. Complex objects are collections of points, sucb as contours,

coast1ines, rivers, roads and boundaries. Points may he connected by cubic splines or

,:!uadratic segments, but are usually 1inked by straight edges. We are concemed with

non-point data, i.e., the "complex objects" .

We assume a map is represented as a set of edges. We think of it as a relation

MAP(Priority, P., Pc). Attribute Priority is an integer and is used to distinguish

map features in terms of importance. For example, major highways are more impor

tant than unpaved roads, and lOQ-foot contours are considered more important than

lQ-foot contours. More important features are given sma11er priority numbers. Larger

priority numbers are used in sucb a way as to include the sma11er numbers, 50 that

when low priority features are selected, the important ones will also he displayed. We

do not always show priority, and when we do, we represent it as m bits, PI-mP2-m.••Po.

Attribute p. and Pc are two k-dimensional points, and cao he interpreted as two

ending points of an interval (k=l), or an edge (k=2), or a line segment (k~2), or

two diagonal points of a rectangle (k=2), or a cube (k=3), etc. We assume that each

coordinate is an integer of d-bits long.

5.1.2 Dimension Doubling and ZoomTries

We transform each (p., Pc) into a point, ca11ed geometrical key. A geometrica1 key,

K = PIP2••.P2J<d, is a bit string formed by interleaving bits of the 2k coordinates. For

example, when k-2, the coordinates of two vertices cao be derived as:

p. = (x, y) = (XIX2••.xchYIY2•••Yd) = (P!PsP9.••P4d-3, P2P6PIO•••P4d-2)

Pc = (r,u) = (~~...r",~~...v.,) = ~Pll •••P4d-I' P4P8P12"'P~)'

If (x,y) = (111,111) and (x,y) = (001,010), we have K = 110011011110 (see

Figure 5.2 (b». In kd-tree (BeniS), bit interleaving becomes cyclic discriminators. In

• CHAPTER 5. SP.-\TL-\L ZOm.IING 75

,,
i i

·+=f--!·i·· p.

(1)_(3.S) (b) Slon·Eod Rcp. (c) Slon·Lcq1Il Rcp.

Figure 5.1: Dimension Doubling

(!)® ® Ci)® @ Ci)

(c)_TM

CD • ((111.''') (D01.G10)) {l'OO 1101 "'Dt
(!) '1l""',Q10)(Q111,OOO)1 (OOClOO1'O'DODI

(!) ·1101l1,OOO)(1'.....11 (0010'010....'

@ ·(111.....)(111.11111 (101' '01' 0111)

®. ((101,Q1,)(,00,Q10)) 1'0100101 11001

® '11'00,Q10) (101,010)' ('0100101""'0)

Ci) 'll'01P'O)(101,Q1'1I (10100101 '01')

(I)AMap (b) Bit lIIIcrIcavIIl&

Figure 5.2: Map and Zoom7He

Z-order (OM84), all points are connected by lexicographical order of their geometrical

keys.

The transformation of a k-dimensional edge to a 2k-dimensional point is called

transformation to parameter space (NH85), T-schemes (SK88), or simply transfor

mation. For edges, intervals, or rectangles oriented along the axes, it could be

called, more distinctiveiy, dimension doubling (MS94). There are several approaches

to dimension doubling. We illustrate two of them in Figure 5.1. Given an interval

(P.,Pc) = (3,5) at resolution ~ (a), we can represent it as a point (shoVo"Il as a white

dise) by using the two end points (b), or the start point and the length (c). The

places where intervals can appear are shaded. The darI. shading corresponds to the

intervals of zero length.

We shall use the end-point representation, without claiming that it is the best.

For example, the start-Iength representation usually compresses the data more, and

occupies the full quadrant. However, other representations difrer only in detail.•

• CHAPTER 5. SPATIAL ZOOMING ï6

•

A ZoomTric is a trie built from geometrical keys. Figure 5.2 shows a map (a), bit

intcrleaving (b) and the FuTric implementation of ZoomTric.

5.1.3 Data Resolution

Wc definc cdge at resolution 2r as an edge with each coordinate specified to the first

T bits. For example, given a 2·dimensional edge (P" p.) at the full resolution, the

corresponding edgc at resolution 2r (1 ~ T ~ d) is (P;,P;) and

(P., p.) = «XIX2...Xd, YI!I2···Yd), (X~X2···r.t, Y.1h !I.t)) =([>f, r>:)
(P;,P;) = «XIX2,..Xro YI!I2,.·Yr), (~x'2,..x:.,Y.1h 1/..)).

To show an edge (p.. p.) on a display of2r x2r (l~T~d) pbœls, we need to scale

cach of the four coordinates, say x, by

x' = lx x~:J = l2:r J.
Operation lx/~-rJ is equivalent to removing the last d-T bits of z, or retrieving

the first T bits. This is equivalent to show (P;,P;). Figure 5.3 shows the map of

Figure 5.2 at quarter resolution 21, half resolution 22 and full resolution ~.

.._.- .-.-.-._._- H~d;;-!-'""Œr-I
@@ @ 0@ (90

Figure 5.3: Zooming by ZoomTrie

To display (p.. p.) at an arbitrary resolution r'xr' (1~r'~~),wc scale x by

x" = lx x; J= l2d-~r1 X 2~rd ~ ll2d-~srd x2~rd .
Since ~ < (r'/2[1&"'1) ~ 1, the error of the approximate x" is less than one pixel.

In other words, if we show (Pt', P;"), the error is less than one pixel, where rI' =
d- [lgr'l We shall only discuss resolution at 2r •

• CH.4.PTER 5. SP.4.TI.4.L ZOOMING 77

Each (P;, P;) covers a sct of edges. For example, a 2-dimcnsional cdgc (P.., p.) =
«x,y),(x'lI» ç (P;,P;) if and only if

XIX2 .••XrO ..•O ::; X ::; XIX2 .••Xrl...1 ,.. ,.. ,... ..
d d

x;x~ x~O ...O::;:JI ::; x;x~ x~l...l ,.. ' .. '
d d

YIY2···Yr O.•.O::; y ::; YIY2···yrl... 1.. ... '
d d

y;y~ ...y~O ...O::; 11 ::; y;y~ ...y~l...l ... '" ' '

d d

,

~
.

, w'
, ,w.. 1

w•]
1

••- PIP3...P2kr-100...O::; p. ::; PIP3...P2kr_I11...1
.. .. ' '

kt! kt!

P2P4"'P2krOO...~ ::; p. ::; P2P4...P2kr1l...1... ..
kt! kt!

convex hull of W; and W; minus W; and W;

..-

..-W;.

wr
•

In general, a k·dimensional edge (P;, P;) defines a region w r =w; Uw; UW;.,
where

wr
•

Ali edges (P:,?2) ç wr of higher resolutions (q~r) are not distinguishable at

resolution 2r • Furthermore, P: ç W; and ?2 ç W;. (P;,P;) gives an abstraction,

or a zoom out, or an approximation view of covered edges (for both location and

extension). The higher the resolution (the closer wc look), the more precise thc view

of these edges. We shall use these ideas and notations in this and next chapters.

5.2 Displaying Operations

•

Given a MAP relation, we want to display the whole map (1), the map at resolution

2" (2), the map with Priority up to P (3) and a map region inside a rectangle window

W (4). Formally, we are searching MAP relation for:

(1) {(p.,p.) 1 (Priority, p., p.) E MAP},

(2) {(P;,P;) 1 (Priqrity,P.,p.) E MAP Al::; r::; dl,

(3) {(p.,p.) 1 (Priority,P.,p.) E MAP A Priority::; Pl,

(4) {(p.,p.) 1 (Priority,P.,p.) E MAP A (P., p.) ç W}.

In the next two sections, wc shall define two primitives: Scan() and Search(), as shown

in Algorithm 5.1, for displaying operations.

• CHAPTER 5. SPATIAL ZOOMING

Algorithm 5.1 ZoomTrie Primitives: Scan and Search

ï8

Procedure Scan (n: Anode; r: integer) ;
begin

if (n <> ni1) then
if (n.i-leve1 <- m+4r) then

Scan(LeftCbild(n). r);
Scan(RigbtCbild(n). r);

e1"e
output (1';, p:);

end;

/* m is priority length in bits */

/* find an edge */

•

Procedure Scarcb(n: Anode; r: integer; P:predicate);
begin

if (n <> ni1) then
if (n.i-leve1 <- m+4r+l) then /* for each (P;,P:) E SubTrie(n) */
if ..,P(Priority) or 3(P••P.)ESubTri.(n)""P(p., p.) then

Scarcb(LeftCbild(n). r. P); /* keep searching down */
Scarcb(RigbtCbild(n). r. 'P);

e14e
Scan(n. r); /* collect edges E SubTrie(n) */

end;

5.2.1 Scan

Given a trie node n and a resolution 2" (l~r~d), function Scan(n, r) collects paths

from the root to each node x e SubTrie(n) at level m+4r+1. Since paths of the

top m+4r+1 levels represent aU possible edges of resolution 2" ~nd their priorities,

the function returns all (P;,P;) e SubTrie(n). For the .l'ùTrie implementation of

ZoomTrie, Scan() collects (P;,P;) without reading any unnecessary bits and more

than one edges which are not distinguishable at the resolution.

With this primitive, we can draw a whole map (1) by invoking Scan(root, dl,

or a map at resolution 2" (2) by invoking Scan(root, r). A$ shown in Figure 5.3,

Scan(root, 1) for quarter resolution, Scan(root, 2) for half resolution, and Scan(

root, r=d=3) for full resolution.

• CH.~PTER 5. SPATIAL ZOOMING 79

5.2.2 Search

Let n be a trie node and 'P be a prcdicate which is either Priority :s: P or (P., p.) ç
W. HerE' P is a Priority and W is a rectangle window on the map. Function Senreh(

n, r, 'P) collects nodes, say x, such that all (Priority, P., p.) E SubTrie(x) sat.isfics

'P, and some (Priority,P.,P.) E SubTrie(Parent(x)) docs not. In other words.

Seareh() finds alilargest subtries such that all keys within them satisfy 'P. For cach

node x, Seareh() invokes Scan(x, r) to collect the edges.

We now can draw maps with priority :s: P (3) by Search(root, d, Priority :s: Pl,

or within window W (4) by Seareh(root, d, (P., p.) ç W). Each Scnn() within a

Search() can be changed to draw at a lower resolution in obvious ways. Algorithm 5.1

shows Scan() and Seareh().

l "

foi
1

3, \

, \

'SubTric\
"- - - -

\

'SubTric\
'- - - -

\

.w+
(a) Feature Priority (b) Map Window

Figure 5.4: Priority and Window Searching

\

\

'SubTric\4.. _

•

The search operations are illustrated in Figure 5.4. In (a), the top of a ZoomTric

is shown with paths to subtries of Priority :s: 2 highlighted. Search() identifies the

two shaded nodes, and Scnn() extracts all paths from the two subtries thm; found

and passes them to the draw routine. In (b), window W covers ~ ... ~ of the map.

Search() identifies the two shaded nodes and invokes Scnn() to draw edgcs within the

two corresponding subtries.

The window on the map specifies a region which can be described by a PR quadtrcc

(Sam90) or PR-Trie. The PR-Trie has two diffcrent leaf nodes: black if the corre

sponding part of the space is contained in a region of interest; white ifotherwise. In

ternal nodes lead to at least one black leaf and one white node. In fact, the Search()

operation identifies and collects nodes that correspond to the black nodes of the

• CHAPTER 5. SP.-\.TIAL ZOO.\fISG 80

•

window's PR-Trie. This operation can be made much faster by sl!perimposillg a pn'

compiled PR-Trie on the ZoomTrie, instead of rccompllting condition P for t'n'ry

path. Chapter 6 will gi\'e a general discussion on ZoomTrie searching.

5.3 Experimental Results

Maps used in the c-"periment are road and contour overlays extracted from 31H1,

"Memphremagog" , 1:50,000, from Energy, Mines and Resourccs of Canada. The road

map has n=46,313 short edgcs and the contour map has n=483,063. AlI coordinatcs

are 10 bit integers and the maximum resolution is, therefore, 64Kx64K. Figure 5.6

and 5.5 show the road map and the contour map with contours at every 50 fect.

First, we compared ZoomTries with a simple filtering technique whicll read all

the data but drew only visible edges. That is, after drawing an cdge, it read the

subsequent points in the sequence until the displacement was great enough to span at

least one pixel. Then it drew the resultant edge. The data for this simple filtering was

highly comprCSSt.'<i, being stored as differentials after the first point in each sequence.

Table 5.1 shows that ZoomTries also compress the data, but by a factor of about two

less than the simple method. Both drawings are a little slow on our 25MHz NeXT,

requiring waits in the order of minutes. ZoomTrie performs even worsc bccausc of

the extensive bit masking operations. Data compression will be examincd in §6.4.2.

Simple Filter ZoomTrie
File Size Drawing Time File Size Drawing Time

Roads 0.22MB 25.4 sec. 0.31MB 93.2 sec.
Contours 1.7MB 112 sec. 3.2MB 957 sec.

Table 5.1: Map Filtering V.s. ZoomTrie

5.3.1 Resolution and Feature Priority

The results in Table 5.1 show Zoom7Hes in their poorest guise. Thedrawings'n

that case are presented to the full resolution of 64Kx64K pixels. We now present

Zoom7Hes for varions resolutions, still displaying the wholc map. For the two maps

•

•

CHAPTER 5. SPATIAL ZOOMING

Figure 5.5: Memphremagog Road Map

Figure 5.6: Memphremagog Contour (at Every 50 Feet) Map

81

• CH.4.PTER 5. 5P.4.TI.4.L ZOO.\IIl,,"G 82

•

using Zoom Thes, Table 5.2 shows the time required to proeess the lile withollt a<:tllally

drawing it, as well as the total amouDt of time including drawing. It alS{) illdi<:ates

the number of nodcs of the tric that are proccssed.

Resolution Contour with Priority Road
(pi.xels) 0 1 2 3 (seconds)

12.1 25.3 56.6 107.3 13.5 Display+Search
512x512 6.2 13.3 28.1 49.0 6.9 Search Only

88K 187K 406K ï33K 103K Accesscd #Nodcs
22.2 46.5 108.4 218.8 23.1 Display+Search

1Kx1K 12.1 24.9 56.6 110.1 13.3 Acccssed #Nodcs
lï8K 376K 855K 1651K 196K Acccssed #Nodcs
33.8 71.1 168.5 351.6 35.1 Display+Search

2Kx2K 21.0 43.4 99.9 204.5 21.8 Search Only
313K 66~K 1544K 3118K 332K Accesscd #Nodcs
45.0 94.4 226.4 476.9 46.8 Display+Search

4Kx4K 30.7 64.2 152.1 320.3 32.1 Search Only
476K 1004K 2374K 4941K 499K Acccssed #Nodcs
88.4 185.6 552.1 956.9 93.2 Display+Search

64Kx64K 74.4 155.5 388.0 820.6 78.3 Search Only
1166K 2458K 5897K 12638K 1234K Ar.c<:-'''5<.-d #Nodcs

Table 5.2: ZoomThes at Various Resolutions aIld f-riorities

We sec that the ZoomThe is faster than simple liltering for resolutions up to a

megapixel, in the case of the road map (which does not compress 50 much for the

simple filter), and up to 512x512 pixels in the case of the contour map. We al50 sec

that the contour map, being ten times larger, is ten timesslower than the road map.

Table 5.2 aIso shows the time for various priorities. We have assigned four levels

of priority to the contour map: every 100 fcet, every 50 fcet, every 30 or 50 fcet, and

every 10 fcet. These priorities are numbered 0, 1, 2, and 3, respectlvely. At priority

0, ail resolutions are faster than the simple filter; at priority 1, resolutions up to 16

megapixels are faster; and at priority 2, resolutions up to one megapixel are faster.

We do not usually display at more than one megapixel, although we may plot

at 16 megapixels. Figure 5.6 plots the map at resolution 4Kx4K and with contours

at every 50 fcet. Figure 5.7 plots the same map but at a lower resolution, 256x256

• CHAPTER 5. SPATIAL ZOOMING 83

•

pixels. It took only 14 seconds to draw the map. Note that zigzag patterns are ~;sible

on the map.

We could also have assigncd priorities to the road map, determined by the number

of digits in the route number. Similarly, rivers and coastlines, politicai boundaries,

etc. could have bœn assigncd priorities.

5.3.2 Windows on Map

Finally, we built the windoV'';ng algorithm, whicb requires an implementation of search

operation in addition to scan. We picked four square windows about 116 th of the

map area to reprœent various data complexities. Figure 5.8 shows one sucb zoom

window on the bottom left corner of the contour map. The map region was plotted

at resolution 4Kx4K and with contours at every 10 fect.

Table 5.3 shows the processing time (without drawing) averaged over these four

windows. We sec that the larger numbers are I~th of the corresponding results in

Table 5.2.

Resolution Contour with Priority (seconds) Road
(pixels) 0 1 2 3 (seconds)

256x256 1.0 1.3 1.8 2.3 0.8
512x512 1.0 1.8 3.0 4.3 1.1
1Kx1K 2.0 2.8 5.3 8.5 1.4
2Kx2K 2.3 4.0 8.0 14.3 1.8
4Kx4K 3.3 5.8 11.8 21.8 2.5

64Kx64K 6.3 13.0 26.8 52.0 4.8

Table 5.3: Window Search Times

5.3.3 Extrapolations

The aggregation of all tÎle measurements described above gives the plotting of the

number of nodes against the map resolution, and drawing and processing time against

the number of nodes shown in Figures 5.9 and 5.10.

We sec that the number ofnodes is initially exponential in the resolution, and then

linear when it passes the trie height. The processing time is \inear in the number of

•

•

CH.4.PTER 5. SP.4.TIA.L ZOŒfING

Figure 5.7: Contour Map at Resolution 256x256

Figure 5.8: Contour Map Zooming

S-l

• CHAPTER 5. 5PATI.4.L ZOO}III';G 85

nodcs. Wc made the linear regression fit the time data, and ohtaincd
Scan() alone 0.065 x n + 0.195

Sea.-ch() and scan() O.Dï4 x n + 1.525

wherc n is totalleaf nodes in thousands.

; -.

... -..----,---,------,--.,.----,-=:;:;;---:J::: :.~
1. _. ~'/"" . . .
J . •. .-;-;.r ., . ~ . 1
!.. .:/. .::::: =",...

...... ~,e.-
.'...

• "' • » • llt

"'-

--1 ~ 11--···==0-1- _.
!

• •
~..

• " "...-
Figure 5.9: ZoomThe: Trie Nodes v.s. Resolutions

1200

,...~. ,.'

1000

............; .

. .. .

800800400200

· .· .· .· ... ·· .. ···j'················T
· .· .· .· .· .
· . ~""';;::~:;;--;;~~~;'· ..
1 ~. - .. ----·, ~•.

o
o

20

40 , ..

80 , .

•

kœssed Trie Nodes (thousand)

Figure 5.10: ZoomThe: Search Times v.s. Accessed Nodes

The search time depends entirely on how much data is displayed, which in tum

depends on the resolution and on the priorities selectcd. The search time does not

depend on the size of the source file. This is just what we wouid expect. If we

had all 13,000 maps for Canada at 1:50,000, the file wouid he some 80GB (assuming

• CHA.PTER 5. SPATI.4.L ZOOMING 86

32 bits pcr coordinate). But if it were plotted at 4Kx4K resolution. showillg th.,

kind of dctail illustrated in Figure 5.6. it would require the sarne amount of time

(assuming the same data distribution). i.e.. about eight minutes on our workstati,'o.

By contrast, the same data displayed through a filter wouln requirc reading 40GB

(the compression is about twice that of the Zoom7He). which would take at least six

hours on our machine.

The exponential-to-linear variation of nodes with rcsolution is also e.'"pected. The

rcsolution is just the trie depth. The upper levels of the Zoom 7He rcsemble a complete

binary tree, which grows e."{ponentially. After a certain levcl, most paths will oot

bifurcate, 50 the number of nodes grows linearly.

For our 16 bits per coordinate, we found level 40 to givc a rcasonablc break

between the exponential and linear pieces. This corresponds to a rcsolution of 210 in

each coordinate, or 1Kx1K pixels. We did exponential and lincar fits asymptotically,

as shown in Figure 5.9. This gives the fol1owing normalizcd rcsults (which must bc

multiplied by the total number of trie nodes).

Contour Map

Road Map

Exponential Part
2(0.443xr-t9.5) (1~r<40)

2(0.417xr-17.7) (1 ~ r<40)

Linear Part

O.038xr - 1.43 (40<r)

O.03ixr -1.3i (4U<r)

•

5.4 Sl1mmary

We have described a trie representation for map data which allows us to display maps

at arbitrary levels of resolution, without reading from secondary storage any more

data than is needed for the specified resolution. The basic technique cau automati

cally match the amount of data retrieved with the number of pixels to be displaycd.

A simple refinement, which requires independent classification of featurcs in hierar

chies, permits selection of features in terms of importance. This selection cau be

independent of the resolution, or cau be linked to it.

ln order to show a map at different levels of detail, one could store severa! versions

of the map in a hierarchy. For example, Energy, Mines and Resources of Canada

• CHAPTF.R 5. SPATIAL ZOO.\fISG Si

•

providcs a series of topological maps. At 1:250,000, a thousand maps a:e necded to

coYer the country. At the next level, 1:50,000. the linear resolution increascs by 5, the

area rcsolution increascs by 52, and twenty-five thousand maps arc needcd. Compared

with the ZoomTrie reprcscntation, this solution has four disadvantages. (1) The data

arc storcd redundantly, once for each leveJ. (2) The zoom is discontinuous and permits

only a few levcls of resolution. (3) The map is eut to pieces, and additional efforts

arc rcquircd to align them up. (4) The only way to adjust for the pixel size at each

level is still to fil ter the input rather than avoid reading it.

•

•

Chapter 6

Spatial Querying

In this chapter, we shall investigate ZoomTrie search in general. It is important to

establish that ZoomTrie can be use<! not only for the ubiquitous operations of display

and plot but also for geometrical queries and other spatial data processing.

For spatial data structures, two basic issues have to be addressed: the efficient use

of storage and the ease of locating objects based on the spatial proxirnity. ZoomTrie

stores the common prefixes of ail data elements only once each, which gives substantial

spatial data compression. ZoomTrie enables us to work at various resolutions without

having to fi1ter a large data file or store different copies of the sarne data at dilferent

levels of detail. The two properties make ZoomTrie an efficient data structure to store

and index spatial data.

Tries recursively partition a data space into equally sized subspaces. Each sub

space contains at least one datum. If a subspace is outside the query region, then it

does not contain answer data and need not be searched. If a subspace is inside the

query region, then ail the data in the subspace are answers and what wc nced do is

to collect them. Otherwise, we have to partition the subspace by searching down the

trie structures. As we shall show, this method takes O(nt) time in the worst case for

ail interva! querles [All83), where n is the total number of interva1s.

The algorithms and results of this chapter are for line queries: line-point, line

line and line-region. However, they are also suitable for point queries and can be

generalized to region and other queries.

88

• CHAPTER G. SPATI.4L QUERYING

6.1 Query Categories

89

•

Let GEO he a set of (P., P,). By analogy with the relational algebra [CodïO, Mer83],

wc define two types of queries: Geometrical selection which selects edges from a

Zoom'Irie built over one GEO, and Geometrical join which selects edge pairs from

two Zoom'Iries. Wc focus on the predicate whose treth is determined for each edge

without comparison with other edges. We calI it a linear predicate. Similarly, the

truth of a quadratic predicate is determincd by an edge pair without comparing with

other pairs. We formulate queries using predicate 'P on edges. That is

• [(P., P,) 1 (P., P,) e GEO A 'P(P.. P,)] ,

• r(p.,p"p;,P,,) (p.. p.)eGEOA(p;,p,,)eGEO' J.
L A 'P(P., P" P;, P,,)

6.1.1 Geometrical Selection: Examples

Linear Predicate

LO: Retrieve each edge in GEO:

'P(P.. Pe) ::= (P., Pe) e GEO

LI: Find inte~ that are contained in interval 1:

'P(P., Pe) ::= (1. ~ p. ~ le) /1 (I. ~ Pe ~ le)

L2: Find edges that connect to point P:

'P(P" Pe) ::= (P, = P) V (Pe = P)

L3: Find edges that intersect with line L:

'P(P., Pe) ::= (P" Pe) intmect L

L4: Find edges that are contained in region R:

'P(P.,Pe) ::= (P',Pe) inside R

L5: Find edges that are longer than i:

'P(P., Pe) ::= distance(P.. Pe) ~ i

• CH.J.PTER 6. SPATHL QUERYING

Non-Linear Predicate

NLI: Find the nearest edge to point P:

P(P,. p.) ::= "i(P'•.P',lEGEO(mindist(P, (P'" p'.)) ;:: mindist(P, (P,. Pr))}1

NL2: Find the longest edge:

P(P" Pr) ::= "i(P'•.P'.lEGEo(distance(P'" p'.) :5 di..tance(P" p.))

6.1.2 Geometrical Joïn: Examples

Quadratic Predicate

QI: Find edge pai"S such that one connects to the other:

P(P"P.. P.,?;) ::= p. = p.

Q2: Find edge pairs such that one intersects with the other:

P(P., p.. P.,?;) ::= (P., p.) intersect (P'" p'.)

6.2 Zoom'I'rie Search: Algorithms

90

•

Zoom7Hes in this chapter are implemented by the Or7He. In contrast to the F'u7He

implementation, an Or7He has no chain nodes after the last binary node. The trun

cated paths are stored inside lea! nodes. This increases data compression. But wc

may retrieve more bits than necessary when search down to the lea! node.

6.2.1 Primitives

We define two primitives: Scan() and Searcll(), as shown in Algorithm 6.1, for linear

predicates. Scan(n) collects all edges within a subtrie rooted at n. Search(root, l,

P) finds alliargest subtries such that they are as close to the root as possible and all

edges inside them satisfy the predicate P. Searcll() checks each P(P;,P;) (l:5r:5d) in

the increa5ing order of resolution. The evaluation, as shown in Algorithm 6.1, yields

three possible answers:

tmindi<t(P, (p..p.n is the minimum distance from point P to edge (p.. p.l.

• CHAPTER G. SPATIAL QUERY1JVG 91

Aigorithm 6.1 Zoom7he: Gcometrical Selection

1* collect cdges E SubTrie(n) */

1* ignore a.ll cdges E SubTrie(n) */
1* has to be an intemal node */

1* check ea.ch (P."'!, P;+!) E SutTrie(n) */

Procedure ScardJ (n: Anode; r: integer; P :predicate) ;
begin

if (n <> nil) then
if (n is not aleafnodc) and (n.i..level <- 2kr) then

SearclJ(LcftChild(n), r. P); 1* for ea.ch (P;,P;) in the subtrie */
SeardJ(RightChild(n), r. P);

else
if VIP••P.)ESubT';,(nlP(P., Pt) "hen

Sean(n);

else
if VIP••P.lESubT';t(nl-'P(P.. Pt) then

return;
else

Sea.rch(n, r+l, Pl;
end;

Procedure Scan (n: Anode) ;
begin

if (n <> nil) then
if (n is not a leaf node) then

Scan(LcftCbild(n»;
Scan(RightCbild(n» ;

e18e
output (PO' Pt)

1* for ea.ch (p., Pe) E SubTrie(n) */

1* find an cdge */
end;

• P(P.. Pe) is true for all (P.,Pe) ç; (P;,P;). Wecollect every (p.. Pe) ç; (P;,P;)

by invoking Scan().

• 1'(P"Pe) is false for all (P"Pe) ç; (P;,P;). We ignore aIl (P.,Pe) ç; (P;,P;)

by stopping searching down the subtrie (cutoff).

• Otherwise, i.e., some of(p.. Pe) satisfy l' and others do not. We have to increase

the resolution by searching down the subtrie.

•
Similarly, as shown in Algorithm 5.2, Product() and Join() are two primitives for

quadratic predicates. Product(n, m) returns the Cartesian product of aIl edges in

the two subtries rooted at n and m respectively. Join(n, m,l,1') finds aIl the largest

•

•

CH.4.PTER 6. SP.4.TI.4.L QUER'fING

Algorithm 6.2 ZoomTrie: Geometrical Join

Procedure Joïn(n, m: Anode; r: integer; 'P :predicate);
begin

if (n <> nil) and (m <> nil) then
if (n is not a leaf node) and (n.i..level <- 2kr)

Joïn(Left.Child(n); m. r. 'P); /* foreach (P;,P;) E SubTric(n) of
Joïn(RightChild(n); m. r. 'P);

elae
if (m is not a leafnode) and (m.i..level <- 2kr)

Joïn(n, LeftChild(m); r, 'P); /* forea.ch (P';,P';) E SubTric(m) of
Joïn(n. RightChild(m); r. 'P);

elae

if V(P"P,lESubTrie(nl NP' ,.P'.lESubTrie(ml'P(p., Pel, (P'., P'e» then
Product(n. m); /* output SubTric(n) x SubTric(m) of

elae

if V(P..P.lESubTrie(nl NP' ..p'.lESubTrie(ml"''P«P., Pel, (P'., P'e» then
return; /* stop searching both subtrics *f

elae
Joïn (n. m, r+l. 'P); /* search c,own both subtrics *f

end;

Procedure Product(n, m : Anode) ;
begin

if (n <> nil) and (m <> nil) then
if (n ia not a leaf node) then /* for ea.ch (p.. Pe) E SubTrie(n) *f

Product(LeftChild(n). m);
Product(RightChild(n). m);

elae
if (m ia not a leaf node) then f* for each (P'.. P'e) E SubTrie(m) *f

Product(n. LeftChild(m» ;
Product(n, RightChild(m»;

elae
output((P.. Pe), (P'"p'.»; f*outputtheedgepair*f

end;

• CHAPTER 6. SPATIAL QUERYING 93

•

subtrie pairs such that aU cdge pairs from them satisfy P. Since Join() compares

ail cdgcs in the two ZoomTries, it is an O(n2) algorithm. However, a join such as

merging two ZoomTries can be executed in Iinear time complexity.

6.2.2 Linear Predicate Precompiling

A PRoTrie is a trie structure Ïor representing points and regions (Sam90]. It has

two types of leavcs: (1) black leaf if the corresponding subspace is inside the region

of intercst, and (2) white leaf if the corresponding subspace is outside the region of

intercst. An internai node leads to at least one black leaf, and so corresponds to a

space overlapping the region of interest.

A Iinear prcdicate specifies a set of2k dimensional points. The set forms the region

of intercst, and therefore can be represented by a PR-Trie. With such a PR-Trie, the

ZoomTrie selection becomes a search for the keys covered by the black leaves. The

procedure is: (1) superimpose the PR-Trie onto the ZoomTrie, (2) remove PR-Trie

node if there is no corresponding ZoomTrie node, and (3) traverse the superimposed

ZoomTrie. For black leaves, ail edges inside the subtrie satisfy P. We coUect them

by invoking Scan(). For white leaves, no edge inside the subtrie satisfies P. We cut

off the subtries.

One way to convert a linear prcdicate to the PR-Trie representation is to enu

merate all possible answers and then to construct the trie. But this is too expensive.

For some linear prcdicates, such as the examples shown in §5.1.3, PR-Tries can be

constructed more directly. In these cases, searches can be made much faster by pre

compiling the Iinear prcdicates into PR-Tries, rather than recomputing the condition

for every (P;,P;).

6.3 ZoomTrie Search: Implementations
The purpose of this section is to apply the four primitives in §6.2.1 to Iinear and

quadratic prcdicates in §6.1. The discussion will focus on prcdicate evaiuation, i.e.,

to check whether P is true or false for all (P., p.) ç;; (P;,P;). In addition, we consider

the two non-linear prcdicates in §6.1 and propose a special algorithm for them.

• CHAPTER 6. SPA.TJ..\L QUERH1\"G 9-1

6.3.1 Linear Selection

LO: Retrieve each edges in GEO. This quer)" invokes Scan(Toot) onl)·.

LI: Find intemùs that are contained in inten"a1 1:

Inten"a1s are transformed into point data in 2-dimensional space when constructillg

a ZoomTrie. Figure 6.1 shows an example of sb, intervals, a, b, c, d, e and f (a), their

transformation (sec §5.1.2) in 2-dimensionalspace (b), and the OrTrie implementation

of ZoomTrie (c).

There are thirteen possible relationships between two inten"ais. Figure 6.2 (a)

shows the relationships (using Allen's notation [Al183)) to resolution~. The labelcd

regions show the relationships to the given interval, the = sigu. The eight squares on

the diagonal indicate the five possible point-interval relationships.

d bec

0 1 2 3 • S • 7 8

1 ! ! 1 ! 1 ! 1
I-!-l ~ ~

d 1 • 1
{ 1

(a) 61D1cm18 (b) Interval Spscc

Figure 6.1: Interval Space

p.

•
d b

(c) PR-TM r...CoalaIIIIIICIIl (d) SupcrImpoIIIl&

Figure 6.2: PR-Trie for Containment Searching

• CHAPTEll 6. SPATIAL QUERYING 95

•

Query LI consists of four interval re1ationships, Le., d. s. f and =, which in

general is a triangular region with apex at the = sign and base along the diagonal.

This is shown in Figure 6.2 (b), where l = (2,5) is the interval in question, and

a, b, c, d, e and f are the candidate intervals for containment. Figure 6.2 (c) shows the

PR-Trie for this containment relation and (d) shows the result of superimposing (c)

with Figure 6.1 (c). By superimposing, we mean to traverse both tries simultaneously.

The test to go left (or right) requires a left (or right) descendant in both tries. If

we come to a white leaf of the PR-Trie, no edge in the corresponding sub-ZoomTrie

satisfies P. If we come to a black leaf, all edges in the subtrie are answers.

In higher dimensions, intervals are rectangles aligned with the axes, and are rep

resented in the same way as edges, 50 this query can be modified to give any of the

other relationships between intervals in any number of dimensions.

L2: Find edges that connect to point P:

P(P" Pe) ::= (P, = P) V (Pe = P)

When searching ZoomTrie down to anode at leveI2kr+1, we have a path Pl]l2•••Plcr

which is an edge (P;, P;) and defines two rectangu}ar regions W, and We (see §5.1.3).

If neither P inside W, nor P inside We, i.e., the first r bits between P and P;, P and

P; are different, no ending point of (P"Pe) ç (P;,P;) can be identical with P. We

can eut off the search. Otherwise, we have to search the subtrie.

L3: Find edges that intersect with line L:

P(P" Pe) ::= (P" Pe) intersect L

When k=2, relationship between L and W'" (see §5.1.3) of (P;, P;) is:

V(p.,p.)~(p;",p;")P(P"p') - L intersect~

V(p.,p.)~(P;" ,P:"l"',P(P" Pe) - L not intersect W'"

or otherwise, i.e., L touches W; or W;. We cannot tell whether they intersect in this

case. We have to increase the resolution by calling Search(). Figure 6.3 shows the

three situations.

• CHAPTER 6. SP.4.TIAL QUERHNG 96

~
.

:' w.
··ww:. se

. s.......... ..
!, ..,
I_~ •....•..••.......................•

(a) AlI Crossing (b) None Crossing

Figure 6.3: Edge-Line Crossing

..~.w:,... s
" .
l '.. :.....•

(c) Sorne Crossing

•

L4: Find edges that are contained in region R:

P(P., p.) ::= (p.. p.) in.'lide R

For a given (P;,P;), we have

V(p••p.)~(1';".1';")p(p.. p.) - W' in.'lide R
V(p.,p.)~(1';" ,1';")..,1'(p., p.) - W' not intersect R

If R is convex (a special case), the predicate can be decomposed into a conjunction

of two components, i.e., p(P"p.) ::= P, insideRA p. insideR. For a givcn (P;, P;),

if both P; and P; are inside R, then ail (P" p.) ç (P;, P;) satisfy P(P" p.). If one

of them is outside R, then no edge inside satisfies 'P(p.. p.). Otherwise, (P;,P;)

overlaps with R and we have to check them in higher resolutions.

This example illustrates superimposition that involves three tries. We traverse the

three tries simultaneously. On odd steps, the test to go left (or right) requires a lcft

(or right) descendant of the first PR-7He and the Zoom7He. We do not traverse the

second PR-7He on odd steps. On even steps, the test requires a descendant of the

second PR-7He and the Zoom7He. M before, we do not traverse the first PR-7He

on even steps. If two adjacent steps stay on black leaves of the PR-7Hes, it mcans

every edge in the sub-Zoom7He satisfies P. If a step arrives at a white leaf, no edge

in the subtrie satisfies p.

L5: Find edges that are longer than t:

P(P"P.) ::= distance(P.. p.) ~ t

For the interval space, l' specifies a triangular region, as shown in Figure 6.4 (a).

This figure also shows the space to resolution 22 (b), and the PR-7Tïe (c).

• CHAPTER 6. SPATIAL QUERYING 9ï

(O./)

•

(a) Region of Edges Longer 1 (h) Resolution al 22 (e) The PR·Trie

Figure 6.4: PRo 7He for Length Searching

For higher dimensions, this query becomes another example of a decomposable

PR-7He. Each dimension produces a PR-7He that is the same as shown in Figure 6.4.

We traverse the Zoom7He, and at the same time, cycle among the PR-7Hes.

6.3.2 Non-Linear Selection

NLI: Find the nearest edge to point P:

'P(p., Pc) ::= V(P'"P','EGEO(mindist(P, (p., Pc» ~ mindist(P, (p., Pc)))

This is an optimization query which involves comparing edges with others. This

query does not fall under the general primitives described in §6.2.1. We introduce

Algorithm 6.3 (with Dist being previously initialized) to solve this query.

mindistO is the minimum distance from point P to point P., point Pc and the

extended line of edge (PO' Pc)' For simplisity, we assume mindist() is the minimum

distance from P to the ending points of (P., Pc). Dist is an approximate minimal

distance which decreases monotonically during the search. A better initial Dist could

be set to an ending point which shares the longest prefix bits with P.

MaxDist(P, (P;,.p;» is the distance from point P to the farthest corner points of

W. and Wc' Here W. and Wc are rectangularregionsdefined by ('p;,.p;). MinDist(P,

(P;, .P;» is the distance from P to the nearest corner points of W. and Wc' However,

if P is contained in W. or W., MinDistO is always O.

NL2: Find the longest edge:

'P(P', Pc) ::= V(P'••P','EGEO(distance(PO' Pc) ~ distançe(PO' Pc»

• CH.-\PTER 6. SPATHL QUERYING 98

Aigorithm 6.3 ZoomTrie: Searching the Nearest Edge

Procedure NearcstEdgc(n: Anode; T: integer);
begin

if (n <> nil) then
if (n is not a Icaf node) and (n. i...level <- 2kT) then

NcarcstEdgc(LeftChild(n). T); r for each (P;. P;) in the "ubtrie • /
NcarestEdge(RightChild(n). T);

else
if (MinDist(P. (P;, P;» > Dist) then

r no closer OOge in the "ubtrie • /

r a better estimation */
- Dist) then
r lind a closer OOge • /

r scarch down the subtrie •/

return;
else

Dist :- l!in(Dist. MaxDistCP. (P;,P;»);
if (n is a Icaf node) and (mindi..t(P. (P., Pe»

hsver :- (P., Pe);

else
NearestEdge(n. T+l);

end;

Aigorithm 6.3 Ca!!. be applied. But the function Ma:'<Dist necds to be rOOefincd. Let

MaxDist(P;, P;) be the maximal distance from a corner point of W. to a corner point

ofWe• By definition, Distance(P"P.) ~ MaxDist(P;,P;) for any (P"p.) ç (P;,P;).

50, if MaxDist(P;,P;) is less than the edge length found 50 far, we cau cut off the

subtrie. Otherwise, we have to search down the subtrie.

6.3.3 Variable-Resolution Selection

•

A major advantage of ZO<1I1ITries is that they are scale invariant and can be uscd to

answer queries to any level of resolution. The cost of the query can be controlled by

specifying the acceptable aceuracy, i.e., to search the tries onl)' down to a prespccificd

depth. However, we must decide what to do with edges at this resolution that may

contain only 50me of the answer edges. The easiest supposition is to take ail containcd

edges. This makes sense because at least one edge satisfies the query predicate. An

alternative supposition is to take ail contained edges if the number of satisfied edges

exceeds a prespecified threshold.

Let us consider the fust supposition and apply it to a query "find intervais that are

• CHAPTER 6. SPATIAL QUERYING 99

(a) Resolution~ (c) llcsolulion21

•

Figl're 6.5: Varlable-Resolution Querying
.'

not shorter than 1=5n
• Figure 6.5 shows the PR-Trie for the query at full resolution

~=~, halfrcsolution ~-1=22, and quarter resolution ~-2=21. The shaded square

boxes arc answcr interva1s.

At the full resolution, the PR-Trie identifies ail possible answers. At the half

resolution, six extra interva1s satisfy the predieate. Among those interva1s, 3 and 15

have length 3. Their errors to 1are 2. At the quarter resolution, four more interva1s

are added to the answer set. Intervalll has length 1 and its error to 1is 4. In general,

at resolution 2" (r~d), the maximum error of each endpoint is ~-"-1 (by ignoring

the d-r least signifieant bits). Therefore, the maximum error for this length query

is 2(~-"-1). If we satisfy the answer within a specified error, we ean get it much

faster, by searching the tries to only the appropriate depth.

6.3.4 Geometrica1 Joïn

QI: Find edge pairs such that one eonnects to the other:

1'(P.,P.,P;,P;) = p. = P;

Algorithm 6.2 checks l' for every edge pair of GEO x GEO' in order of inereasing

resolution. Each edge pair (P;,P;) E GEO and (P';,P';) E GEO' defines two

rectangular regions W. and W;. If the two regions do not intersect with each other,

then the tv.'O edges cannot share a same ending point, i.e., p. =P.. We eut off the

subtrie. Otherwise, we increase resolution r by calling Join() .

• CH.4.PTER 6. SP.4.TI.4.L QFERI1NG 100

Q2: Find edge pain; sucb that one interseets with the other:

P(P.., p•. F;. 1';) ::= W" p.) intersect (P'.•• p'.)

It is hard to visualize the answer space. but the relationships between (P:. P;)

and (P:, P';) can be classified as shown in Figure 6.6. If both n;:. cross each other

(a), then all edges contained in (PO' p.) interseet v,;th all other edges contained in

(P':. P';). If the two W' are scparated (b), then none of their edges interseet. Oth

erwise W: or W; intersects with the W' of the other edge (c). In this case, we have

to increase the resolution of both edges.

r~;~rT: :
.......~.." •...... '..... '.... ~

.....bt-U...~ ,:)
:::::l.::~, ...~:...;.....i
. 1 1 1 l '

'~.~. :..: . .
i • . ' ..
; '.. ,1
~ • -1 • : •
~,~.l..., ."" . ,.. l .
• 1 !

(c) Sorne Crossing(a) AlI Crossing (b) None Crossing

Figure 6.6: Edge-Edge Crossing

The consequence of this classification is that we can avoid comparing every possible

edge pair when the answer set is less than n2• Views at lower resolutions give partial

answers. Only the edge pairs with ambiguity need further tests at higher resolutions.

6.4 Experimental Results

We built OrThes over two maps described in §5.3. This section shows OrThe pa

rameters, compression comparisons and search time analyses. Ali the measurements

were carried out on a 25MHz NeXT with 28MB of memory.

6.4.1 ZoomTrie Trie Sizes

•
The Or7He implementation requires two bits per each of S" nodes, and a suffix string

per Ica! node. Since all geometrical keys have the same length, the suffix length at

level i is of 2kd-i+1 bits, and therefo~, needs not to be indicated. On an average, a

suffix has 2kd-A" bits, where A,. is the average Or7He depth. In total, OrThe has

• CHAPTER 6. SP.UIAL QUERYING 101

2Sn bits for the nodcs, nx(2kd-i+1) bits for the suffixes, and less than 2% of the

total size for the overhead of tric paging.

We measured An and Sn for the two OrTries at resolution 2; (3:S;i:S;16). Figure 6.ï

plots the measurcd rcsults and analytical results for tries built over uniformly and

independently distributed numbers (random trie). The case for An is worst than

logarithm due to data clustering. We give a lower bound fit (the deeper An is, the

smaller a trie will bel. Table 6.1 shows the regression fits of the results.

•
...•

........ , ;: ...

."..,.... .

,..;~

.....""..~
,.

• t " ,.......~.~_...

#

..'

..'

.... +·_·;=-1. "." a.-..-_..
.'

, .•.'
".. ..•...-..- ..'

... ~._.,::-.- 0.-"-_..

..

Figure 6.ï: ZoomTrie Distributions

Total Nodes (Sn) Average Depth (An) OrTrie Size
Random Trie 2.44n 19n

Road Trie 3.66n 3.171gn -12.59 2Sn + (2kd-An)n
Contour Trie 3.17n 2.351gn - 6.19

Table 6.1: Regression Fitting

6.4.2 Data Compression

•

For data compression, wc compare OrTrie with three other line representations which

are not necessarily of the same expressive power - (1) set of edges: (PI.P2-P1),

(P2, P3 - P2),"', (Pn- 1, Pn- Pn- 1), (2) sequences of points: Ph P2,"', Pn and (3)

sequences of differentia!s after the first points: PI. (P2-P1), (P3-P2),"', (Pn-Pn- 1).

For natura! map data, such as contours and coastlines, edges are usuaIly smaIl. Ta

ble 6.2 shows the length statistics on our measured maps. We cao sec that the average

• CH.4.PTER 6. 5P.4.TI.4.L QFERHNG 102

•

length of differentials takes no more than one third of the coordinate bits. 50. we

assume that the average line differential is < zl/3, Le.. it takes ~d bits.

Under the abO\'e assumption and k=2 and d=32. the set representation (1) takes

(kd+kd/3)n=85.33n bits, the sequence representation (2' takes kdn=6-!71 bits, the

differential representation (3) takes kdn/3=21.33n bits, and the OrTrie reprcsentation

(4), as seen in the previous section, takes 25n+ (kd+kd/3-An)n bits. Table 6.3 shows

the sizes of the four representations.

x Coordinate y Coordinate Line Differentiais
Maximum Maximum Maximum Average Std Dev

Road (bits) 40181 (16) 28925 (15) 1420 (11) 19.26 (5) 35.12
Contour (bits) 40147 (16) 29110 (15) 466 (9) 15.22 (4) 12.25

Table 6.2: Map Overlay Statistics

(1) (2) (3) (4) OrTrie
Set Sequence Differentiai Road Contour

n - 10" 10.67KB 8KB 2.67KB 9.19KB 9.30KB
n =106 10.67MB 8MB 2.6ïMB 5.23MB 6.36MB
n =109 10.67GB 8GB 2.67GB 1.27GB 3042GB

Table 6.3: Line Representation Comparison

As wc have seen, when n =109, the road OrTrie size is only 12.7% of the set file

and 47.6% of the ditrerential file. In the case of the contour map, the OrTrie size

takes 42.8% of the set file and 128.1% of the ditrerential file. However, we do not

need to sean the whole file to restore the coordinates of the last point. In general, the

larger the n is, the more compact the OrTrie will be. Since the OrTrie is designcd

for secondary storage, it performs weil in both compressing and retrieving very large

spatial data.

6.4.3 Search Time

We implemented and measured some of queries shown in §6.1. First of all, wc cxpect

the search time to be linearly proportional to the number of visited trie nodes. This

is confirmed by the measured times plotted in Figure 6.8. For linear and quadratic

• CHAPTER 6. SPATIAL QUERYING 103

prcdieatcs, wc expcet the number of visited trie nodes to be proportional to the

number of sclcetcd (output) gcometrical keys. In other words. the search time should

not depend on the size of the source file. For non-linear selections, the search should

visit only a small amount of the trie nodes.

o'

• •
. •..••••••••.•.. ••. j ••.••.••••••••••••••..•••..:•••.••

: &• .. 40:
•

toI
..:,.....-:.!..

::....

,a'

10'

~ /,0

"'"..............~ ~ ..~ ~~~~.~ ~ex-"r"""

..
.. ._ ~ ,11" ~.........../. ~.;.+~.~.~ r-----'._Legend-----'---.,

"00': LO:usIngSC8n
.......: ..~ L2:~ S8arch

_ .. :-. :.... • L4: usmg S8arch &scan
~:~"~H; __(H................... • lft:,~S::SC8n ...

,
••

'o' ,OS
"cœsset1 TrIe Nades

Figure 6.8: Zoom7He Searcb Times

•

Selection Time

We measured LO by retrieving aIl the map edges at each resolution 2" (3:5r:5d). As

shown in Table 6.8, the total number of visited nodes is strictly proportional to the

number of output keys.

In order to determine whether one ending point of an edge is identical to the given

point P, L2 has to check every bit of the ending point, and hence, invokes Seo.rchf..)

only. The searcb time of Seo.rchf..) depends on complexity of the predicate. As we cao

sec from Figure 6.8, for the same number of visited nodes, it takes L2 about an order

of magnitude more time than LO. This indicates that the searcb is CPU bound.

For simplicity, we chose region R of L4 as rectangular windows which covered

about 4~th of the whole map are&. We measured R on ten randomly chosen locations.

• CHAPTER 6. SPA.TIA.L QUERYLVG 10-1

This query invokes Search() to locate R and Scan() to colll'ct cdgl'S insidl' R. On thl'

average, each search visited 2.53'70 of the total nodes for the road Or7Hc and 2.32'70
•for the contour Or7He. Just as we expccted, this is the arnollnt of data rcqllircd. i.e..

18 ::::: 2.1%.
For L5, we measured eat ave, ave+oo, ave+2oo, ave+-Ioo, ave+8oo, ~max. max

and 2max, where ave is the average map edge length, 00 is the standard deviation of

the length, and max is the longest edge. L5 takes about the sarne amount of time as

LO because of the simplicity of the predicate checking.

NLI "''as measured using ten randomly selected points on both maps. On an

average, NLI visited 4.25% of the total trie nodes for the road Or7He and 2.52% for

the contour Or7He. Overall, our algorithm searches less than 5% of the whole file .

1..
!

J

:».œ .

,..os

o

•.
. : ..J' ..••

,~.
.,' ~.

~
- _SMn:hodKeya
- RoIId: SearchId NodM.............L ----- C<nour:5eoJd\Keya

, --.-- CorOcur:Seordl_

8llO

Join Times

0uIpJI~ - (Jolnnod Keya)

Figure 6.9: Zoom7He Join Performance

•
We constructed Or7Hes over edges (from 5 to 2000) randomly selected from the

two maps, and then joined them with the original Or7He maps. AI; we cau sec

from Figure 6.9, the total numbers of searched keys or trie nodes are strictly linearly

proportional to output keys. In other words, the join time does not depend on the size

• CHAPTER 6. SP.4TIAL QUERYING 105

•

of the source file. In general, we expcct the join algorithm to havp. time ~omplexity

proportional to the numbers of the output keys, rather than the OrTrie siz<.'S.

The Worst Case Analysis

As we have shown in §6.2.2, queries base<! on linear predicates can be answered by

superimposing ZoomTrie on a PR-Trie. For interval queries, as shown in Figure 6.2

(a), all possible answers form a single region. It has been proved that PR·Trie for a

polygon with perimeter p at resolution 2" has a maximum O(p + T) nodes [HunïS,

DyeS2, Sam90). As a consequence of superimposing ZoomTrie on PR-Trie, we search

only those nodcs that are on the boundary of the queried region. The rest of space

is either cut off or scanned.

Given n uniformly distributed intervals in 2-dimensional space, there are O(nt)

intervais on the boundary of a queried region. In other words, we can answer any one

of the thirteen interval queries in O(nt) worst time. In general, our search method

reduces the data dimensions by one, i.e., from 2k data space to 2k-1 search space,

in the worst case.

6.5 Summary

This chapter has demonstrated that Zoom7He cao be used beyond displaying or

plotting operations. We have shown how to query and process spatial data using

Zoom7Hes, and given general query methods for linear and quadratic predicates, i.e.,

predicates that scek edges satisfying conditions that do not involve other edges. We

have also presented special algorithms for two non-linear predicates, and shown how

to specify the resolution acceptable for controlling the query costs. The experimental

results confirm our expectations: the query cost depends only on the amount of data

needed.

We have observed that for natura! map data, e.g., contours and coastlines, edges

are very short. That is, ending points will lie very close to the diagonal in the double

dimensional space. This effectively reduces the dimensionallty by one. By removing

• CH.4.PTER 6. SP.4.TI.4.L QFERH\'G lOG

•

one dimension, ZoomTrie compresses the spatial data still further. Our extrapolation

shows, when n = 230, ZoomTrie size can be as small as 12.ï% of the set file. 1U1<\

4ï.6% of the differential file. The larger the spatial data is, the better the ZoomTri"

performs.

Algorithms and results presented in this chapter are for line queries. Howe\"Cr,

they can be extendcd for polygon querics. The basic idea is to replace polygol\s by

their minimal bounding rectangles or triangulations. We shall leave this for future

research.

We have concentrated ·on F'uTrie and OrTrie implementation of the ZoomTric. We

do not report our experiments with the PaTrie implementation bccause of limitation

of space. However, the general cc..·lusions arc (1): a PaTrie does not give much

further compression as comparing Viith OrTrie, (2): a PaTrie is more diflicult to

construct.

•

•

Chapter 7

Conclusion

The main objective of this thesis has been to design trie structures for secondary

storagc and apply them to indexing, storing and querying te:"t and spatial data. This

chapter summarizes contributions and the major results of this thesis project. Sorne

future rescarch is also outlined.

7.1 Claim of Originality

To the author's knowledge, the methods and the corresponding experimental results

listed below are the original contributions of this thesis:

• Pa7He, a pointerless representation for the binary Patricia trie.

• Construction algorithms for very large FU7He, Or7He and Pa7He.

• Statistics on text tries - Or7He and Pa7He, dictionary tries - Or7He and

Pa7He, and map tries - FU7He, Or7He and Pa7He.

• Pa7He for indexing large texts.

• Or7He for storing large dictionaries and k-approximate string matching.

• Trie algorithms for spatial zooming and spatial querying by zooming.

107

• CH.4.PTER ï. CONCLUSION

7.2 Contributions

Trie Organization

lOS

•

We have proposcd three pointerless structures, l'U1He, Or1He, and Pa1He, for \1\1".

ious binary tries. The data structures have two distinctive featurcs: (1) the)" store

no pointers and require two bits per node in the worst case (l'U1He), and (2) the)"

are partitioned by pages and are suitable for secondary storage. Our experimental

results have shown that the trie structures have e."<cellent performance in both storage

compactness and 1/0 efficiency. Therefore, the proposcd structures are particularly

useful in applications that deal with persistent bulk data.

We have investigated large trie constructions for static data. We have mappcd

the trie construction problem to the weil studied sorting problem. In particular, we

have proved that Patricia trie construction is a special case of parsing expressions

with an operator precedence. Instead of spending 80 hours of computer time to build

a Patricia trie of one million leaves (our first experience with large trie construction),

wc now need less than 10 minutes to build the same trie. We have given two extemal

sorting algorithms for numerous and extremely long sistrings: one requires a large

intermediate workspace and the other takes longer running time. The latest report

on the PAT array says it can be built over a weekend for the New OED. Our Pa1He

construction takes 18 to 55 hours for a comparable text, but requires more working

space than used in earlier work.

Text Searching

We have applied trie methods to indexing very large text documents on secondary

storage (text trie). By examining statistics for various text tries, we have concludcd

that the Patricia trie performs much better than other tries when indexing text files.

We have shown that our Pa7He implementation is 10% - 25% smaller than the best

previous data structure. This diff'erence is important since the index size is crucial to

the trie approach. Our search time is severa! times faster than the competitive trie

indexes, and our method retains all the fiexibility of the other trie methods. We have

• CHAPTER Î. CONCLUSION 109

•

also presente<! methods for dynamic index tries, so that the te:'<t may change.

Wc have demonstrated that dictionary tries for English words are 60% (OrTrie

representation) to 70% (Pa Trie representation) smaller than the simple lists of the

words. Dictionary tries gives approximate views of words. Combined with the dy

namic programming technique, tries are used to solve the k approximate approximate

string matching problem. The expected worst time of our algorithm is O(klI:lk),

which is independent of the dictionary size and the search string length. Here, we

assume k, the number of mismatches, is very small, say less than 4. We have also

shown that dictionary tries can be used for Soundex code searching.

Spatial Data Zooming and Querying

We have applied trie methods to representing and indexing spatial data on secondary

storage (map trie). We have proposed the ZoomTrie structure for map data storing,

displaying and querying. ZoomTrie permits us to query and retrieve the data at

arbitrary levels of resolution, without reading from secondary storage any more data

than is needed for the specified resolution. Our performance results on map displaying

have confirmcd that the processing cast is linear in the amount of data needed and

independent of the total data size.

We have described a general ZoomTrie query method for linear (and quadratic)

predicates that seek edges (and edge pairs) satisfying conditions that do not involve

other edges (and edge pairs). We have given specifie algorithms for a set of sample

queries ranging from geometrical selection and geometrical join, to the nearest neigh

bour. We have also shown how to specify the acceptable resolution to control the

query cast. We have implemented and tested mast of the queries. The performance

data on map querying has confirmed our expectations: the cast depends only on the

amount of data needed.

• CHA.PTER ï. CONCLUSION

7.3 Future Research

110

•

We have modeled te.xts as sequences of symbols and providcd a tric structurc to

store extremely long sequences (sistring) in a very compact \Vay and yct to preservc

search efliciency. Many applications require storing, searching, and manipulating

long sequences, e.g., molecular biology, human speech recognition, file comparison,

text editor, etc. Although trie searching for exact subsequences (sec §3.5) has bccn

widely explored, the full use of text and dictionary tries nevertheless is still an opcn

problem.

One classical problem of sequence manipulations is to find the longest common

substring among k strings (k-LCG problem). The longest repetition search [GBYS92,

ST93) solves k-LCG for k=l. We have proposed a solution to arbitrary k in §3.5. We

could also extend trie hashing by using a binary Patricia trie as the hash function.

Binary Patricia tries retain only the bits that distinguish a key from the others. Ali

irrelevant bits of keys are removed. This will give better hashing performance.

The approximate searching of dictionary tries has many potential applications,

e.g., removing duplicated entries from a mailing list in which a name and address

may have been written in different forms or with a few misspellings, and finding the

right molecule when measurement of atom quantity is inaccurate, etc.

Spatial data in Zoom7Hes are organized in a Z-order. It has been noted that a

Z-order is not a continuous mapping, i.e., spatially nonadjacent points can become

adjacent in the Z-order space. Discontinuity degenerates range query performance,

spedally when data are stored in secondary storage. Trie methods based on other

mapping schemes need to be explored.

We h&ve not mentioned updating spatial data represented by Zoom7Hes. The

problem boUs down to the ability to update tries, which we have discussed for very

large text tries. We anticipate no difli.culty in making occasional changes to maps.

However, we have shown that trie construction methods are much more efficient whcn

ail the data are added at once than when a large trie grows one edge at a time.

•

•

Bibliography

[ACi5) A.B. Aho aud M.J. Corasick. Efficient string matching: An aid to biblio

graphie search. Communications of the ACM, 18(6):333-40, 19i5.

[AHU83) A.B. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, MA, 1983.

[AII83) A.F. Allen. Maintaining knowledge about temporal interva1s. Communi

cations of the ACM, 26(11):832-43, 1983.

[Aoe89) J.I. Aoe. An efficient digital search algorithm by using a double-array

structure. IEEE 1hJnsactions on Software Engineering, 15(9):1066-ii,

1989.

[ASU86) A.B. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA, 1986.

[AVL62) G.M. Adelson-Ve1skii and E.M. Landis. Doklady akademia nauk SSSR.

English translation in Soviet Math, 3:1259-63, 1962.

[Beni5) J.L. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509-li, 19i5.

[Ber84) T. Berger. Poisson multiple access for packet broadcast channe1s. IEEE

Thlnsactions on Information Thet>ry, IT-30:i45-51, 1984.

[BHKS93) T. Brinkhoff, H. Hom, H.P. Kriege1, and R. Schneider. A storage and ac

cess architecture for efficient query processing in spatial database systems.

III

• BIBLIOGR..4PHY 112

[BM72)

[BMïï)

[Bri59)

[BS89)

In Proceedings of Srd International Symposium. SSD·9S. pagœ 130-45.

Singapore. June 1993.

R. Bayer and E. McCreight. Organization and maintenance of large or

dercd indices. Acta Infonnatica, 13:lï3-89. 1972.

RS. Boyer and J.S. Moore. A fast string searching algorithm. Commu

nications of the ACM, 20(10):762-72, 1977.

R De La Briandais. File searching using ,'ll.riable length keys. In Procccd

ings of the Western Joint Computer Conference, volume 15, pages 295-8,

New York, 1959. Spartan Books.

R.M. Bozinovic and S.N. Srihari. Off-line cursive script word recogni

tion. IEEE TIunsactions on Pattern Analysis and Machine Intelligence,

11(1):68-83, 1989.

[BU77)

•

R Bayer and K. Unterauer. Prefix B-trees. ACM TIunsactions on

Database Systems, 2(1):11-26, 1977.

[BY89) RA. Baeza-Yates. Efficient Tut Searching. PhD Dissertation, Computer

Science Department, University of Waterloo, May 1989. Resea.rch Report

C5-89-17.

[BYG89) RA. Bae"~-Yates and G.H. Gonnet. Efficient text searching of regular ex

pressions. In Proceedings of 16th International Colloquium on Automata,

Languages and Programming, LNCS 372, pages 46-62, Stresa, Italy, July

1989. Springer-Verlag.

[BYP92) RA. Baeza-Yates and C.H. Perleberg. Fast and practical approximate

string matching. In Proceedings of3rd Annual Symposium on Combinata

rial Pattern Matching, LNCS 644, pages 185-92, Tucson, Arizona, April

1992. Springer-Verlag.

[Cap79) J.I. Capetanakis. Trec algorithms for packet broadcast channels. IEEE

TIunsactions on Information Theory, IT-25(5):505-15, 1979.

• BIBLIOGRAPHY 113

•

[CHK85] G.V. Cormack, R.N.S. Horspool, and M. Kaiserswerth. Practical perfect

hashing. Computer Journal, 28(1):54-8, 1985.

[CL92] W.I. Chang and J. Lampe. Theoretical and empirical compalisons of

approximate string matching algorithms. In Proceedings of Srd Annual

Symposium on Combinatorial P«;.ttern Matching [BYP92], pages 1ï5-84.

[CodïO) E.F. Codd. A relational model of data for large shared data banks. Com

munications of the ACM, 13(6):3ïï-8ï, 19ïO.

[CSïïJ D. Comer and R. Sethi. The complexity oftrie index construction. Journal

of the ACM, 24(3):428-40, 19ïï.

[Dam64) F.J. Damerau. A technique for computer detection and correction of

spelling errors. Communications of the ACM, ï(3):1il-6, 1964.

[Dev82) L. Devroye. A note on the average depth of tries. Computing,28:36ï-il,

1982.

[Dev84) L. Devroye. A probabilistic analysis of the height of tries and of the

complexity of triesort. Acta Informatica, 21:229-3ï, 1984.

(Dev8ï) L. Devroye. Branching processes in the analysis of the heights of trees.

Acta Informatica, 24:2ïï-98, 198ï.

[DTK91) A.C. Donwton, R.W.S. Tregidgo, and E. Kabir. Recognition and verifi

cation of handwritten and hand printed british postal addresses. Inter

national Journal of Pattern Recognition and Artificial Intelligence, 5(1

2):265-91, 1991.

(Dun81) M.R. Dunlavey. On spe1ling correction and beyond. Communications of

the ACM, 24(9):608, 1981.

(Dun91) J.A. Dundas. Implementingdynamic mjnimal-prefix tries. Software.Prac

tice and Experience, 21(20):102ï-40, 1991.

• BIBLIOGRAPHY 11-1

[Dye82] C.R. Dyer. The space efficiency of quadtrees. Computer Gmphics and

Image Processing, 19(4):335-18, 1982.

[Fal85]

[FBi4]

[FC8i]

[FG89]

C. Faloutsos. Access methods for text. ACM Computing SUnJcys,

1i(l):49-i4,1985.

RA. Finkel and J.L. Bentley. Quad trees - a data structure for retrie\'al

on composite keys. Acta Informatica, 4(1):1-9, 19i4.

C. Faloutsos and S. Christodoulakis. Description and performance analysis

of signature file methods for office filing. ACM Transactions on Office

Information Systems, 5(3):23i-5i, 198i.

E.R Fiala and D.H. Greene. Data compression with finite windows. Com

munications of the ACM, 32(4):490-505,1989.

[FHCD92] E.A. Fox, L.S. Heath, Q.F. Chen, and A.M. Daoud. Practical minimal

perfect hash functions for large dntabases. Communications of the ACM,

35(1):105-121, 1992.

[FK84]

[Fre60]

M.L. Fredman and J. Komlos. Storing a sparse table with 0(1) worst

access time. Journal of the ACM, 31(3):538-44, 1984.

E.H. Fredkin. Trie memory. Communications of the ACM, 3:490-500,

1960.

•

[Gar82] I. Gargantini. An effective way to represent quadtrees. Communications

of the ACM, 25(12):905-10, December 1982.

[GBY91] G.H. Gonnet and RA. Baeza-Yates. Handbook of Algorithms and Data

Structures: in Pascal and C (bul cd.). Addison-Wesley, Reading, MA,

1991.

[GBYS92) G.H. Gonnet, R.A. Baeza-Yates, and T. Suider. New indices for text:

PAT trees and PAT arrays. In Information Retrieval: Data Structures

and Algorithms, pages 66-82. Prentice-Hall, 1992.

• BIBLIOGRAPHY 115

[Gon83] G.H. Gonnet. Unstructurcd data bases or very efficient tc."<t searching. In

ACiJ PODS, pages llï-24, Atlanta, GA, March 1983.

[Gon88] G.H. Gonnet. Efficient searching of text and pictures. Technical Report

OED·88-02, Centre for the New OED., University of Waterloo, 1988.

[Gut84] A. Guttman. R·trccs: A dynamic index structure for spatial searching. In

Proceedings of the SIGMOD Conference, pages 45-5ï, Boston, June 1984.

[Harï2) 1.D. Harmon. Automatic recognition of print and script. In Proceedings

of IEEE 60, pages 1165-ï6, October 19i2.

[HCE91) J.J. Hardwicke, J.H. Connol1y, and J. Edwards. Parallel access to an

English dictionary. Microprocessors and Microsystems, 15(6):291-8, 1991.

[HD80] P.A.V. Hall and G.R. Dowling. Approximate string matching. Computing

Surveys, 12(4):381-402, 1980.

(Hin85) K. Hinrichs. Implementation of the grid file: Design concepts and experi

ence. BIT, 25:569-92, 1985.

(Hor80) R.N. Horspool. Practical fast searching in strings. Software Practice and

Experience, 10:501-6, 1980.

(HTW92) D.M. Hawken, P. Townsend, and M.F. Webster. The use of dynamic

data structures in finite element applications. International Journal for

Numerical Methods in Engineering, 33:1ï95-811 , 1992.

(Hunï8) G.M. Hunter. Efficient Computation and Data Structure for Graphies.

PhD Dissertation, Department of Electrical Engineering and Computer

Science, Princeton University, Princeton, NJ, 19ï8.

•
[Jac91)

[Jon89)

P. Jacquet. Anal;ysis of digital tries with Markovian dependency. IEEE

Thlnsactions on Infornl4tion Theory, IT-3ï(5):140ï-ï5, 1991.

L.P. Jones. PORTREP: A portable repeatcd string finder. Software Prac

tiee and Experience, 19(1):63-ii, 1989.

• BIBLIOGRA.PHY 116

[KMP77] D.E. Knuth. J.H. Morris. and V.R. Pratt. Fast pattern matching in

strings. Computer Journal. 6(2):323-50. 1977.

[Knu68) D.E. Knuth. Information Structures. volume 1 of The Art of Computer

Programming. Addison-Wesley, Reading. MA, 1968.

[Knu73) D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-Wesley, Reading, MA. 19ï3.

[KP89) P. Kirschenhofer and H. Prodinger. On the balance property of Patricia

tries: External path length vie\\"point. Theoretical Computer Science,

68:1-lï, 1989.

[KS88) H.P. Kriegel and B. Seeger. PLOP-hashing: A grid file without dircctory.

In Proceedings of4th International Conference on Data Engineering, pages

369-76, Los Angeles, February 1988.

[KST92) J.Y. Kim and J. Shawe-Taylor. An approximatc string-matching algo

rithm. Theoretical Computer Science, 92:10ï-17, 1992.

[Kuk92) K. Kukich. Techniques for automatically correcting words in text. Com

puting SUn/CYs, 24(4):3ï7-439, 1992.

[LEMR89) Y.H. Lee, M. Evens, J.A. Michael, and A.A. Rovick. Spelling correction

for an intelligent tutoring system. In Proceedings of Computing in the

90's. The First Great Lakes Computer Science Conference, pages ii-83,

Kalamazoo, MI, October 1989.

•

[Lev66)

[Lit81)

[Lit85]

V. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversais. Soviet Physics Dokl., 6:126-36, 1966.

W. Litwin. Trie hashing. In SIGMOD 81, pages 19-29, April 1981.

W. Litwin. Trie hashing: Further properties and performances. In Proceed

ings of the International Conference on Foundations of Data Organization

and Algorithms, 1985.

• BIBLIOGRAPHY 117

•

[LNLH91] W.A. Litwin, N.Roussopoulos, G. Levy, and W. Hong. Trie hashing v;ith

controllcd load. IEEE 7hmsactions on Software Engineering, 17(7):6ï 8

691, 1991.

[Mal76] K. Maly. Compressed tries. Communications of the ACM, 19(7):409-15,

1976.

[MD85) T.H. Merrett and B. Düchting. Relational storage and processing of two

dimensional diagrams. Computers fi Graphies, 9(3):247-58, 1985.

[Mea82) D. Mcagher. Geometrie modelingusingoctree encoding. Computer Graph

ies and Image Processing, 19(2):129-47, 1982.

[Mer83) T.H. Merrett. Relational Information Systems. Reston Publishing Co.,

Reston, VA, 1983.

(MF85a) P. Mathys and P. Flajolet. Q-ary collision resolution algorithms in random

access system with free and blocked channel access. IEEE 1hlnsactions

on Information Theory, IT-31(2):217-43, 1985.

(MF85b) T.H. Merrett and B. Fayerman. Dynamic Patricia. In Proceedings of the

International Conference, FaDO, pages 13-20, Kyoto, Japan, May 1985.

(M082) T.H. Merrett and E.J. Otoo. Dynamic multipaging: A storage structure

for large shared data banks. In Improving Database Usability and Respon

siveness, pages 237-54. Academic Press, New York, 1982.

(Mor68) D.R. Morrlson. PATRICIA - Practical Algorithm To Retrieve Information

Coded In Alphanumeric. Journal of the ACM, 14(4):514-34, 1968.

(MS91) T.H. Merrett and H. Shang. Unifying programming languages and

databases: Scoping, metadata, and process communication. In The

Third International Workshop on Database Programming Languages:

Bulk 7YPes fi Persistent Data, pages 139-48, Nafplion, Greece, ,A"gust

1991.

• BIBLIOGR.~PHY 118

[MS93a] T.H. !\'Ierrett and H. Shang. Trie methods for reprcscnting text. lu Pro

ceedings of 4th International Conference. FODO '93, LNCS ;30. pag<'S

130-45, Chicago, m, October 1993. Springer-Verlag.

[MS93b] T.H. Merrett and H. Shang. Trie methods for reprcscnting text. Technical

Report SOCS-93.5, School of Computer Science, McGill University, 1993.

[MS94] T.H. Merrett and H. Shang. Zoom tries: A file structure to support spatial

zooming. In Sixth International Symposium on Spatial Data Handling,

pages ;92-804, Edinburgh, 1994.

[MTïï) F.E. Muth,Jr and A.L. Tharp. CorrC'~ting human error in a1phanumeric

terminal input. Information Processing (; Management, 13:329-3;, 19ïï.

[NB94] W.G. Nuity and J.J Bartholdi. Robust multidimensional scarching with

spacefilling curves. In Sixth International Symposium on Spatial Data

Handling, pages 805-1;, Edinburgh, 1994.

[NH85) J. Nievergelt and K. Hinrichs. Storage and access structures for geometric

data base. In Proceedings of 2th International Conference, FODO'85,

pages 441-55, Kyoto, Japan, May 1985. Plenum Press.

[NHS84) J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adapt

able, symmetric multikey file structure. ACM 7hmsactions on Database

Systems, 9(1):38-71, 1984.

[OM84) J .A. Orenstein and T .H. Merrett. A class ofdata structures for associative

searching. In Proceedings of Third ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, pages 181-90, Waterloo, April 1984.

[Ooi90) B.C. Ooi. Efficient Query Processing in Geographie Information Systems.

LNCS 4;1. Springer-Verlag, 1990.

•
[0R22] M.K. Odell and R.C. Russell. U.S. Patent Numbers, 1,261,16; (1918) and

1,435,663, 1922. U.S. Patent Office, Washington, D.C.

• DIDLIOGRAPHY 119

•

[Or(82) .LA. Orenstein. Multidimensional tries used for associative searching. In

formation Processing Letters. 14(4):150-6, 1982.

[Ore83] J.A. Orenstein. Blocking mechanism used by multidimensional tries. Un

published letter, February 1983.

[Pit85) B. Pitte!. Asymptotical growth of a c1ass of random trees. The Annals of

Probability, 13(12):414-27, 1985.

[PZ92] T.B. Pei and C. Zukowski. Putting routine tables in silicon. IEEE Net

work, 6(1):42-50, 1992.

[RBK89) R. Rarnesh, A.J.G. Babu, and J.P. Kincaid. Variable-depth trie index

optimization: Theory and experimental results. ACM 7hlnsactions on

Database Systems, 14(1):41-74, 1989.

[Reg88) M. Regnier. Trie hashing analysis. In Proceedings of Fourth Interna

tional Conference on Data Engineering, pages 3H-81, Los Angeles, CA,

February 1988.

[Reg89) M. Regnier. New results on the size of tries. IEEE 7hlnsactions on

Information Theory, IT-35(1):203-5, 1989.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. Addison

Wesley, Reading, Mass., 1990.

[SeI80] P.H. Sellers. The theory and computation of evolutionary distances: Pat

tern recognition. Journal of Algorithms, 1:359-ï3, 1980.

[Sev74] D.G. Severance. Identifier search mechanisms: A survey and generalized

mode!. ACM Computing Surveys, 6(3):175-94, September 1974.

[Sha86] C.A. Shaffer. Application of Alternative Quadtree Representations. PhD

Dissertation, Computer Science Department, University ofMaryland, Col

lege Park, MD, June 1986. Tcchnical Report TR-1672.

• BIBLIOGR.4.PHY 120

[SK83) D. Sankoff and J.B. Kruskal. Time Warps. String Edits. and Macro

molecules: the The01'Y and Pmctice of Sequence Comparison. Addisoll

Wesley, Reading, Mass., 1983.

[SK88) B. Sccger and H.P. Kriegel. Techniques for design and implementatioll

of efficient spatial access methods. In Proceedings of 14th International

Conference on VLDB, pages 360-72, Los Angeles, August 1988.

[SSN90) C.A. Shaffer, H. Samet, and R.C. Nelson. QUILT: a geographic illfomm

tion system based on quadtrecs. International Journal of Geogmphical

Information Systems, 4(2):103-31, 1990.

[ST93) A. Salminen and F.W. Tompa. Pat expressions: an algebra for te:<t scarch.

Acta Linguistica Hungarica, 41:277-306, 1992-93.

[Sus63) E.H. Sussenguth,Jr. Use of tree structures for processing files. Communi·

cations of the ACM, 6(5):2ï2-9, 1963.

[Szp88)

[Szp90)

W. Szpankowski. Some results on v-ary asymmetric tries. Journal of

Algorithms, 9:224-44, 1988.

W. Szpankowski. Patricia tries revisited. Communications of the ACM,

37(4):691-711,1990.

•

(Szp91) W. Szpankowski. A characterization of digital search trecs from the suc·

cessful search viewpoint. Theoretical Computer Science, 85:117-34, 1991.

(Szp92) W. Szpankowski. Probabilistic analysis of generalized suffi:< trecs. In Pro

œedings of Srd Annual Symposium on Combinatorial Pattern Matcking

(BYP92), pages 1-14.

(Tam82) M. Tamminen. The EXCELL method for efficient geometric access to

data. In Proceedings of ACM IEEE 19th Design Automation Conference,

pages 345-51, Las Vegas, Nevada, 1982.

• BIBLIOGR.4.PHY 121

•

[TD83] L. Torenvliet and P.V.E. Boas. The reconstruction and optimization of

tric hashing fundions. In Proceedings of the 12th International Conference

on VLDB, pages 655-660, October 1983.

[TITK88] T. Tokunaga, M. Iwayama, H. Tanaka., and T. Kamiwaki. LangLAB:

A lIaturaJ language anaJysis system. In Proceedings of the 12th Interna

tional Conference on Computational Linguistics, pages 655-60, Budapest,

Hungary, August 1988.

[Tom92] F.W. Tompa. An overview of Waterloo's database software for t.h~ OED.

TcchnicaJ Report OED-92-01, Centre for the New OED., University of

Waterloo, 1992.

[TYï9) R.E. Tarjan and A.C.C. Yao. Storing a sparse table. Communications of

the ACM, 21(1l):606-11, 19ï9.

[Ukk85) E. Ukkonen. Fiading approximate patterns in strings. Journal of Algo

rithms, 6:132-ï, 1985.

(WFï4) R.A. Wanger and M.J. Fischer. The string-to-string correction problem.

Journal of the ACM, 21(1):168-ï8, 19ï4.

(YKH89) H. Yokota, H. Kitakami, and A. Hattori. Term indexing for retrievaJ

by unification. In Proceedings Fifth International Conference on Data

Engineering, pages 313-20, Los Angeles, CA, February 1989.

[ZLii) J. Ziv and A. Lempel. A universaJ aJgoriilim for sequentiaJ data com

pression. IEEE 7Tansactions on Information Theory, IT-23(3):33ï-43,

19ii.

