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Abstract

This thesis presents three trie organizations for various binary tries. The new trie
structures have two distinctive features: (1) they store no pointers and require two
bits per node in the worst case, and (2) they partition tries into pages and are suitable
for secondary storage. We apply trie structures to indexing, storing and querying both
text and spatial data on secondary storage. We are interested in practical problems
such as storage compactness, I/O efficiency, and large trie construction.

We use our tries to index and search arbitrary substrings of a text. For an index
of 100 million keys, our trie is 10% — 25% smaller than the best known method. This
difference is important since the index size is crucial for trie methods. We provide
methods for dynamic tries and allow texts to be changed. We also use our tries to
compress and approximately search large dictionaries. Qur algorithm can find strings
with k& mismatches in sublinear time. To our knowledge, no other published sublinear
algorithm is known for this problem.

Besides, we use our tries to store and query spatial data such as maps. A trie
structure is proposed to permit querying and retrieving spatial data at arbitrary
levels of resolution, without reading from secondary storage any more data than is
needed for the specified resolution. The trie structure also compresses spatial data
substantially. The performance results on map data have confirmed our expectations:
the querying cost is linear in the amount of data needed and independent of the data
size in practice. We give algorithms for a set of sample queries including geometrical
selection, geometrical join and the nearest neighbour. We also show how to control
query cost by specifying an acceptable resolution.



Résumé

Cette thése présente trois méthodes de structuration de tries binaires. Ces nouvelles struc-
tures de trie ont deux caractéristiques distinctives: (1) elles ne requi¢rent pas d= pointeurs
tout en utilisant qu’un maximum de deux bits par noeuds, et {2) elles permettent de paginer
les tries de maniere & pouvcir les stocker en mémoire secondaire. Nous appliquons ces struc-
tures de trie 4 I'indexage, la sauvegarde, et 'interrogation de textes et de données spatiales
conservées en mémoire secondaire. Nous nous sommes intéressés i des problémes pratiques
de représentation compacte des données, d'efficacité des entrées/sortics, et de construction
de gros tries.

Nous utilisons nos tries pour indexer et effectuer des recherches de sous-chaines dans
un texte. Pour un index de 100 millions de clés, notre trie est de 10 & 25% plus petit
que celui obtenue par la méthode la plus connue. Cette différence est importante puisque
la grosseur de l'index est cruciale pour les méthodes utilisant des tries. Nons proposons
des méthodes pour des tries dynamiques et permettons des changements aux textes. Nous
utilisons aussi nos tries pour compress-r de gros dictionnaires et faire des recherches ap-
proximatives dans ceux-ci. Notre algorithme peut trouver des chaines de caractéres ayant
k différences avec I'argument de recherche en temps sous-linéaire. A notre connaissance,
aucun autre algorithme sous-linéaire n'a été publié pour ce probléme.

De plus, nous utilisons nos tries pour stocker et interroger des données spatiales comme
des cartes. Une structure de trie est proposée pour permettre I'interrogation et 'extraction
de données spatiales & des niveaux de résolution arbitraires, sans avoir i lire de la mémoire
secondaire plus de données qu'il n’en faut pour la résolution spécifié¢e. La structure de
trie compresse aussi les données spatiales de facon significative. Les resultats des tests
effectués sur des cartes ont confirmé nos attentes: le coiit des requétes est linéaire par
rapport au nombre de données nécessaires, et est indépendant de la grosseur des données
en pratique. Nous donnons des algorithmes pour un ensemble de requétes qui inclut la
selection géométrique, la jointure géométrique, et la recherche du plus proche voisin. Nous
montrons aussi comment; controler le coiit des requétes en spécifiant un niveau de résolution
acceptable.
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Chapter 1

Introduction

1.1 Motivation

Suppose we are looking for the word text in a thick English dictionary. Suppose
the dictionary has a thumb-indez. By checking the thumb-index, we can immediately
locate all the t pages. If the dictionary has a secondary thumb-index for these t
pages, we can then locate all the te pages. In general, if a thumb-index is available
up to the first x letters, then it is possible, in = lookups, to locate all the pages that
contain all the words prefixed with the same first z letters. The lookup of thumb-
indices is called digital search [Knu73]. The data structure associated with the digital
search is a ¢rie which comes from the word retrieval [Fre60]. Trie structures were first
developed by [Bri59], and have been discussed intensively by [Knu73] and in other
data structure text books.

Tries (or digital trees [Knu73]) are simple but very powerful data structures. First
of all, trie shape is independent of the order in which data are presented to the trie
construction algorithms. Trie shape is uniquely determined by its data set. Trie
methods do not need various construction algorithms, as tree methods do, to prevent
tries from degenerating. Neither do they need various reorganization algorithms, as
tree methods do, to keep tries balanced.

However, the most distinctive characteristic of tries is the way they classify the
data set into hierarchical groups. In contrast to tree structures which partition the

1



CHAPTER 1. INTRODUCTION 2

data set according to the data presented, trie structures partition the data set accord-
ing to the data space. Tries recursively partition the data space into equally sized
subspaces. Each subspace corresponds to one subtrie which contains at least one
datum refers to the underlying space. When traversing a trie down to a subtrie, we
get a focussed view on a certain part (a subspace) of the data space. When walking
up from a subtrie, we get a broadened view on a larger portion of the data space.
Each subspace or subtrie may contain as much as the whole data set, or as few as
one datum. In oiher words, tries are hierarchical data structures which preserve the
scale of each part of the space at each level. Tries group the data sets in terms of
resolution (or level of abstraction, or approximation, or remoteness). We call this trie
zeoming.

Yo text searching, trie zooming has ornly been interpreted as prefix searching.
Tries were used for text searching by Morrison [Mor68] and exploited by Gonnet
et al [Gon88, GBYS92, Tom92] for the Par trie implementation of the electronic
version of the New Ozford English Dictionary { New OED) which covers 20 volumnes
of print or 600MB. Trie methods give search costs often proportional only to the
length of the string being sought, and in the worst case, to the logarithm of the
size of the text being searched. No other sublinear methods for full text search
are known. However, a major difficulty with tries is the size. For example, the
Pat trie for the OED has 119 million keys, each starting at a word and continruing
until the end of the entire dictionary. If it used two pointers per node, it would
take 2x12Bx119M=2.9GB, assuming four bytes for pointer and node. This is not
acceptable in practice. Minimizing the trie size of such a large text is indispensable.

Trie methods are capable of doing other kinds of text searches (see §3.5) which
are either difficult or ineffictent over other data structures. However, we still face
the challenge to make full use of trie methods for text searching [GBYS92]. Specif-
ically, the connections between trie zooming and the approximate string matching
are yet to be established. As we have stated, tries provide different levels of string
approximation. This can be useful in approximate string matching.

In spatial data searching, tries have been applied to spatial indexing ranging from
the kd-trie [Ore82] to various quadtries [Hun78, Sam90]. However, the power of tries
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provides us not only with efficient methods to navigate to the subspace of interest, but
also with data structures to group spatial data at varying degrees of resolution and to
store only one copy of the data. Furthermore, since the common prefixes of all data
elements are stored only once each, trie structures give substantial data compression.
These are important assets in spatial data, where gigabytes and terabytes of data
are becoming the norm. For example, each topological map at 1:50,000 resolution
provided by Energy, Mines and Resources of Canada, requires 16MB storage space.
There are 13,000 such maps currently available, and these cover only half of Canada.

We are interested in practical problems that relate to trie methods for storing and
querying bulk and persistent data. The trie size, as we have mentioned, is a major
problem. Large trie construction is another important problem. A trie construction
algorithm usually requires n lg(n)xt time, where n is the total number of data clements
and t is the disk access time. For the New OED, a naive approach would take
119M x27x20ms = 2.0 years, assuming 20ms per disk access. Even with one random
disk access per key insertion, the total disk time is still 119Mx20ms == 27.5 days.
This is not acceptable in practice. We need algorithms that work with secondary
storage efficiently.

1.2 'Trie Methods

A (full) trie is 2 |S|-ary tree! in which each link (or edge) has a symbol from the
alphabet £ and each root-to-leaf path corresponds to a key. Here, |£] is the alphabet
size. Selection of subtries at level 7 is determined only by the ith symbol of the search
key, not the whole key. For example, when searching trie (a) of Figure 1.1 for the
word text, the first letter t leads us to the right descendant. The third letter x leads
us to the right most descendant. Eventually, the search terminates at a leaf node.
On the other hand, if we look for the word tax, the second letter a leads us to a null
link which means no such word is in the trie. An unsuccessful search terminates at

t Assuming no index key is a prefix of another key. This is the case for the sistrings of Chapter 3.
To prevent a key being a prefix of other keys, we can append either a unique string or a unique
symbol, say null, after each key. in the latter case, the arity of the trie is [Z]|+1-ary.
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(a) Full Trie (b) Ordinary Trie (c) Patrica Trie

Figure 1.1: Trie Structures

an internal node.

Trie (a) in Figure 1.1 is referred to as full trie [CS77] (pure trie [Ore82]). There
are two other tries. Trie (b) is an ordinary trie (radiz search tree, pruned trie [Knu73,
CS77], or simply trie in most literature). Trie (¢) is a Patricia trie [Mor68] (collapsed
trie, compact trie [CS77, Szp92]). All three tries in Figure 1.1 are constructed from
the same words: deed, deep, tea, testify, and text.

For an ordinary trie, all single descendant nodes that lead to a leaf node are
removed. The pruned links (symbols) are usually stored outside the trie structures
and pointed to by pointers in leaf nodes (the rectangular boxes). An ordinary trie is
the smallest full trie such that paths truncated at leaves are all patrwise different.

For a Patricia trie, all single descendant nodes are eliminated. To search a Patricia
trie, we have to follow the links and numbers in the internal nodes. The number
can be either height, the level number in the corresponding ordinary trie, or skip,
the number of removed nodes from the nearest parent which has more than one
descendant. Height is the testing symbol position of the search key, and skip is the
number of symbols to skip over before the next inspection. Skips are more compact
to store than heights. To avoid false matches, a Patricia trie must either store the
skipped symbols inside each node (see §2.1.3), or be able to recover them by pointers
in the leaf nodes.

Trie structures have many properties. (1) The common prefixes of all key elements
are stored only once each. This may give substantial data compression. (2) Trie
searching is directed by the search string, and gives sezrch time proportional to the
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length of search string rather than the trie size. (3) Tries group data according to
the data space, not the data presented. Tries preserve the scale of the subspaces at
each level, which is a necessary condition for zooming. (4) Trie shapes are uniquely
determined by their data presented, not by the orr =rs of key insertions. Tries do not
need reorganization algorithms. (5) Tries allow interleaved keys and are suitable for
searching multi-keys. (6) Ordinary and Patricia tries are capable of indexing very
long, variable length and even unbounded key strings.

1.2.1 Trie Applications

Prefix Searching

Many applications require recognizing keywords from a dictionary, and often demand
efficient prefix search. Traditional dictionary lookup techniques, such as hashing or
tree search, are inadequate because they do not generally allow the search keys to
be prefixed or abbreviated. Trie search has been used in many applications: lexical
analyzers and compilers [ASU86)], pattern recognition [BS89, DTK91], spelling check-
ers [LEMRS9], natural language analysis [TITK88, Jon89)], knowledge base retricval
[YKH89], parallel searching [HCE91], and even a custom VLSI chip which can scarch
many tries simultaneously [PZ92].

Text Searching

A great advantage of tries is their potential use in searches which are either difficult
or very inefficient over other data structures. Besides prefix searching, tries have
been applied to substring searching, proximity searching, range searching, longest
repetition searching, most frequent searching [GBYS92, GBY91, ST93)], and regular
expression searching [BYG89). We shall give two examples below. Trie methods for
text searching will be surnmarized in §3.5.

The longest repetition searching problem is to find two longest and ideatical sub-
strings in the entire text. This search has been used to recognize and remove repeti-

tions for text compression [ZL77, FG89]. It can also be used to check documents for
plagiarism.
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The most frequent searching problem is to find the most frequently occurring
words (or substrings) in a text. This search has been used to generate key phrases in
automatic indexing [Jon89). It can be used to detect frequently occurring subcodes
and encode them into macros or machine languages to provide faster performance.
Another potential usage of this search is to analyze the personal writing habits of
authors {or writing styles in general).

Spatial Data Representation

Ordinary tries have been used to index spatial data, e.g., kd-trie [Ore82], quadtree
[Hun78], octree [Mca82], pr-trie [Sam90], ..., etc. Unfortunately, the term quadtree
(and other related terms) takes more than one meaning. Most often, it refers to a trie
structure and hence, should be called quadtrie. However, it may also refer to a tree
structure, e.g., quad tree in [FB74], and point quadtree in [Sam90]. We shall discuss
trie structures for spatial data in §1.4.

Trie Hashing
In trie hashing [Lit81], the hash function is defined by an ordinary trie with leaf nodes
pointing to buckets (bucket trie). Address calculation is carried out by searching the
trie.! Trie hashing has been claimed to be one of the fastest access methods (with no
more than two disk accesses) for dynamic and ordered files [TB83, Lit85, LNLH91].
Since tries preserve the key order, they are tidy functions [Mer83]. The trie hashing
can also be made perfect, i.e., to identify keys with no conflict. Furthermore, when
a Patricia trie is used to define the trie hash function, all irrelevant bits of keys are
removed from the function. The benefits are twofold: a smaller trie size and a faster

access time.

Telecommunications

In telecommunications, messages are usually encoded and transmitted as a sequence
of bits. Thus, message decoding becomes typically a trie search process. Another trie
application is to solve communication conflict when a number of spatially isolated and

Trie hashing is not really 2 hashing method. It takes O(lgn) time to find a bucket.
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independent sources try to access a single channel. Collision resolution algorithms in
[Cap79, Ber84, MF85a] were based on trie search.

1.2.2 Trie Parameters

A pumber of trie parameters are of interest to us. Trie depth is the average path
length from the trie root to its leaf nodes. External path length is the sum of path
lengths of all leaf nodes. The average trie depth, denoted by A, is the expected trie
depth of tries with n leaves. A, gives the average number of symbol inspections made
during a successful search. Trie height (or maximal depth) is the longest path of a
trie. The expected trie height, denoted by H,, it the expected trie height of tries
with n leaves. H, tells the expected worst search time.

The average unsuccessful search time is not directly related to A4,. It has been
found [Knu73, Szp90] that, for ordinary and Patricia tries, the unsuccessful scarches
are more likely terminated at internal nodes.

The average value is a rather poor measurement and higher moments are needed.
For example, the depth variance provides information on how well a tri2 is balanced,
and the third centralized moment is a measurement of the skewness. Ideally, we would
like to know depth distributions. Trie depth has a rich research history [Knu73, Dev82,
Dev84, Pit85, KP89, Szp90, Szp91, Jac9l].

In practice, the measurement of trie size is as important as the access time. Let
trie size, S,, be the expected number of trie nodes of tries with n leaf nodes. For
ordinary tries, S, has been explored by [Knu73, Reg89, Jac91).

To estimate Patricia trie size, we need to know both S, and the average skip length
or skip length distributions. Binary Patricia tries have S, = 2n—1 nodes. No formal
discussions were found for S, of |T]-ary Patricia tries. In [Szp90, Szp91], Szpankowski
stated the total number of internal |Z|-ary Patricia trie nodes is n—|Z|~1. We found
this formula valid only when [E|=2 and this was accepted by Szpankowski in a private
communication. We do not find iu the literature studies on skip length distributions.
The only thing we know is that the sum of the skip lengths plus the total number of
nodes equals the total number of nodes in the corresponding ordinary trie.
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Given a set of n keys, we assume each key K = kik,... is a sequence of symbols
from alphabet T chosen independently at random. Let p; be the probability of using
the ith symbol of £. If py = p2 = ... = pjgy = 1/|Z], ie., symbols are uniformly
distributed, then the constructed trie is called a symmetric trie. Otherwise, it is an
asymmetric trie. Table 1.1 [Pit85, Reg88, Szp88, Szp90, Szp9l] shows some expected
asymptotic results for asymmetric tries, where the entropy & = 21-2'1 pilnl/p; and
R=1nT™ 1/p2 If symbols are uniformly distributed, h = R = In|Z].

|X]-ary Ordinary Tries |E]-ary Patricia Tries
Total Nodes, S, n+nfh (n|Z]-1)/(|Z}-1) .. 2n—-1
Average Depth, A, In(n) /R {n) [h
Height, H, 21ln{n) /R In(n) /h

Table 1.1: Asymmetric Trie Parameters

For binary trees (symmetric), where keys are independent and uniformly dis-
tributed, the expected average depth is 1.391g(n) [Knu73] and the expected height
is 2.981g(n) [Dev87]. Compared with binary tries (symmetric), where A,=lg(n) and
H,=21g(n), tries are better. In terms of balance property, tries are also better. On
average, symmetric tries resemble a complete tree, i.e., an ultimately balanced tree.
Symmetric Patricia tries are much better because even H, is logg)(n). Symmetric
tries do not need additional reconstruction to keep them balanced. For asymmetric
tries, the situation is slightly different. The entropy, k, changes depth distribution.
The more asymmetric the alphabet is, the more skewed a trie is.

So far, most asymptotic results are for the tries whose keys are independent.
However, when keys are suffixes from the same text, they are dependent. There is no
proper probabilistic model for dependent keys. In §3.2.1 and §6.4.1, we shall show
trie parameters measured for the text and spatial data respectively.

1.2.3 Trie Representations

Tabular Representation

The most straightforward implementaticn of |Z]-ary tries is to store each node by an
array of |Z| pointers, and a trie by an array of S, nodes. To save the storage space,
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all pointers that point to leaf nodes are replaced by pointers pointing to the keys. In
other words, leaf nodes are not stored. As a result, a |E|-ary trie is represented by a
|Z|x(Sn) table [Fre60, Mor68, Knu73, CS77, RBK89). In the tabular representation,
each table column represents an internal node, and each table entry contains cither
a column number (internal node), or a null pointer (empty), or a pointer to the key
(leaf node). The first column is the trie root. To search is to lookup in the table,
which takes A, time on the average to find a key.

Dynamic operations such as changing links and inserting nodes are trivial. Dele-
tion leaves an empty column which can be replaced by the last column. However, the
parent node of the last column needs to be changed, too. The parent node can be
located by adding a reverse pointer to each node [MF85b]. We propose the following
procedure without using the auxiliary structure: (1) search for a keyword by walking
down the subtrie rooted in the last column, and (2) search for the keyword once again.
The second search passes the node of the last column and its parent.

There is a more subtle implementation which uses three arrays [TY79, FK84,
ASUS86]. The idea is to shift down each column certain entries and overlap the
columns into an array such that no two non-null pointers occupy the same entry. The
displacements of columns are stored in the second array. The third array is used to
remember column numbers of the pointers in the first array. Even though it is a
NP-complete problem to minimize the array size [TY79], Tarjan gavz a number of
effective methods to construct the arrays in size S, +|Z|.

Aoe [Aoe89] reduced the three array implementation to a double array structure.
By empirical observations, he found that the expected size is indeed S,+|Z].

Linked List Representation

Tabular representation is prohibitive with large |Z|. An alternative is to use dynamic
data structures such as linked lists [Bri59, Sus63, AHU83, Jon89, Dun91, HTW92]. In
the linked list representation, each trie node is a linked list of outgoing trie links. Each
link contains a symbol and a pointer to the left most sibling of the child nodes. In
the literature, this data structure is referred to as a doubly chained tree after {Sus63).
Conceptually, a doubly chained tree is a binary representation of the |Z|-ary trie.
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A doubly chained tree is a highly flexible and general structure. Together with
dynamic memory allocation techniques, insertions and deletions can be implemented
straightforwardly. Even when tries are too big to fit in memory, it is still possible to
update tries and keep 100% usage of space at the same time. This can be achieved
by using the same trick we suggested for the tabular representation (see the 2nd
paragraph of the previous subsection).

A doubly chained tree does not store null outgoing links and therefore requires
lesser storage space especially when |Z| gets larger. However, doubly chained trees
cannot select a child node in constant time. In the worst case, all outgoing links of a

node have to be examined.

Other Representations

In the compressed trie [Mal76], each internal node contains a base address and a bit
array. Each bit of the bit array indicates whether the corresponding link is a null.
All sibling nodes are stored consecutively pointed by the base address of their parent
node. Bitstring [Ore82] goes further, all nodes are stored consecutively and there are
no base addresses. Pointerless repiresentations will be discussed in §2.1.

Severance [Sev74] suggested a number of heuristic implementations which used a
tabular approach for the top few levels and doubly chained trees for the remaining
levels. The fact is that fan out at the top of tries is much larger than that in the
bottom. This also leads to bucket trie [Knu73, Lit81]. A bucket trie places b leaf
nodes into a bucket, and reduces trie nodes by a factor b. When b = n, the extreme
case of bucket trie, the whole trie degenerates to 2 single array of sorted leaf nodes.
This is the case of Par array [GBYS92]. As the trie nodes are reduced, the binary
search of buckets increases. The tradeoff between the bucket size and search time was
discussed in [RBK89).

Comparisons

Both tabular and linked list representations require pointers to follow the child nodes.
Tables can be searched efficiently but are wasteful in space when they are sparse.
Linked lists are more compact but require longer time to be searched. The following
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calculations we make show the quantity comparison (all on the average) of different
representations. We assume tries are symmetric, i.e., all n keywords are distinct and
independent, symbols from T are uniformly distributed.

The tabular implementation has {S,—n) = n/ In|E| columns and |T| rows. Totally,
it has 2.89n table entries (pointers) when |Z|=2 and 7.98n when |Z|=26, the size of
English alphabet. Among these entries, S, of them store pointers pointed cither
to columns (internal nodes), or to actual data (leaf nodes). The non-null pointer
occupancy is S, /(|T| x (S,—n)) = (1+1n]Z|)/|Z|, e.g., 84.7% when |T|=2 and 16.4%
when |E|=26 (very wasteful).

The double array implementation uses two arrays. Each array has (S,+[Z|)
elements [TY79]. The total number of array elements is 4.89n when |E|=2 and 2.61n
when |Z|=26. As the case of the tabular representation, leaf nodes need not be stored
since the pointers to them can be set directly to the actual keys. Therefore, there are
n null pointers.

The doubly chained tree requires two pointers for each of S, nodes, e.g., 4.89n
pointers when |Z|=2 and 2.61n when |£|=26. Among the pointers, n/In|Z| are null
pointers, e.g., 29.5% are null pointers when |T|=2 and 11.7% when |Z|=26.

The expected search time of the doubly chained tree is 1dn/|Z|, where d is the
average number of child nodes of internal nodes. Since dr/InjZ| = n—1+n/In|Z|, we
have d = In|Z|+1. When |E]=2, this is 1.761gn, slower than a binary search. When
|E|=26, this is 0.941gn, slightly better than a binary search but 0.94/0.21=4.5 times
slower than the tabular representation.

Table 1.2 shows comparison among the three representations. As we can see, with
2 binary alphabet, the tabular representation takes no more space than the doubly
chained tree, and still has 15.3% null pointers. With a 26-letter alphabet, the tabular
representation requires 3.1 times more space, but is 4.5 times faster as compared with
the doubly chained tree. The double array representation combines the merits of the
other two representations. However, all these trie implementations take more storage
space than the keyword set itself. We need more compact trie representations.
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Implementations Tabular Doubly Chained Tree | Double Array |
Total Entries |E[n/ n|Z] 2n + 2n/1n|T| 2n + 2n/ 1n|%|
Null Pointers | (|JZ]—1)»/I0|T] = n n/ 1n|Z| n
Disk Accesses logig n (Inn + loge n)/2 logig

Examples Tabular Doubly Chained Tree | Double Array
Total L=2 2.89n (15.3%) 4.89n (29.5%) 4.89n (20.5%)
(Null/Total) [ [E]=26} 7.98n (83.6%) 2.61n (11.7%) 2.61n (38.3%)
" Disk T|=2 lgn 1.76lgn lgn
Accesses | [S]=26 021lgn 0.94lgn 0.21lgn

Table 1.2: Trie Representation Comparison

Binary Tries

There are several reasons to use binary tries. (1) All keys inside computers are binary
numbers. (2) Binary tries are simple in both concept and implementation, e.g., tries
in [Lit81] and doubly chained trees are implemented as binary tries. (3) The expected
null pointers in binary tries are minimal. This saves not only the storage space but also
the number of branching tests. As we have seen, the ratio of null pointer occupancy in
the tabular representation increases monotonically when |Z| increases. In the doubly
chained tree representation, however, only the youngest child has a null pointer. The
null pointer ratio decreases when |Z] increases. (4) The number of nodes in binary

Patricia tries is minimal. We shall examine binary trie representations in §3.2.2.

1.3 Text Searching

Text information is very different from common data applications, and conventional
database methods do not help in this case. For example, queries such as “find the word
trie in a text” can be answered by searching a keyword list (or inverted file [Knu73]).
But other queries such as “find the phrase trie method”, “how many words did
Shakespeare introduce into the language between 1610-11 [BY89]", “which English
words may correspond to the misspelled word exsample”, involve either searching
the whole text or using advanced index structures.
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1.3.1 Exact Text Searching

Given a text T of length n and a pattern P of length r, the exact text searching
problem is to find the occurrences of P within T. A pattern can be as simple as &
keyword, a substring, or as complicated as a regular expression, the longest repetition,
the most used word, etc. Text searching may also be stated as to determine whether T
isin the language specified by " PX", where ¥ is the alphabet of the text. Orthogonal
to the pattern, the occurrences can be the left most one, all of them, or simply pattern
frequency. There are four basic search techniques: (1) scquential search, (2) tree
search, (3) trie search, and (4) hashing.

Sequential Search

A sequential search (or linear search, brute-force search, full tezt scanning [Knu73,
Gon83, Fal85)) is to check P at every position of T. This straightforward method
has no space overhead but requires rn comparison for the unsuccessful search, and
rn /2 for the average successful search. It is a time consuming process. The general
method is to construct a finite automaton M from pattern P, and simulate M on T.
The simulation takes O(rn) comparison if M is nondeterministic, or (2" + n) if M
is deterministic with 2" states [AHUS3].

Some algorithms are more efficient than the automaton approach. The idea be-
hind the Knuth-Morris-Prait algorithm [KMP77] is to use knowledge of the previous
symbol comparison. When a mismatch occurs, the position in P yields enough infor-
mation to recreate the text previously scanned. Thus, by preprocessing P and keeping
information in an auxiliary table, we can slide P to the right as far as possible. This
algorithm takes O(r + n) comparison. The Aho-Corasick algorithm [AC75] combines
this idea with the automaton approach. Their algorithm can search a set of strings
simultaneously.

Inspecting pattern P from right to left generates more information [BM77]. Sup-
pose we are comparing T with P from right to left, one symbol at a time. If the
current testing symbol s ¢ P, we do not need to check symbols of T before s and
can align P with the next symbol of s. This is the Boyer-Moore algorithm [BM77]
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which takes c¢{r + n) comparison. Here ¢ < 1 and gets smaller when r increases. Hor-
spool [Hor80] demonstrated that Boyer-Moore algorithm is indeed an astonishingly
fast method for text searching. It even outperforms hardware with built-in search
instructions. However, this algorithm has two problems: (1) it finds only the first oc-
currence, and (2) it may back up through the text. This adds annoying complications
for secondary storage.

Some large text files, such as dictionaries and encyclopedias, do not change or
are updated at a very low frequency. It is worthwhile to preprocess these files and
build indices for them to speed up the search time. Indexing generates an index file
which contains a set of keywords and pointers to the text. The search is fast but
is often restricted to the words in the control dictionary. The following three search
techniques belong to this category.

Tree Search

Tree search (search by key comparison) is based on key order. Binary search of
inverted file [Knu73] or Pat array [GBYS92] is a typical tree search. It takes, at most,
rlg(n) symbol comparison to search an index with n keywords, and O{nlgn) time
to build an index. The Par array is a sequence of index points sorted according to
the text that they point to. Instead of using a control dictionary, it allows to index
every possible suffix of a text, and therefore, to search for any arbitrary substring of
the text.

Binary search uses an smplicit binary tree which makes insertions and deletions
rather more expensive. This leads us to store keywords in ezplicit trees. A major
difficulty with trees is that they may be degenerated with a certain insertion order.
A degenerate tree takes O(rn) symbol comparison. We need algorithms to construct
fairly balanced trees, or reorganization methods when trees are badly balanced. The
AVL tree [AVL62] is a height balanced tree with such a property: any two subtrees at
a common node differ in height no more than one. The B-tree [BM72] is a balanced
(2m+1)-ary tree with two properties: (1) each internal node (except the root) has at
least m+1 descendants, and (2) all leaf nodes appear at the same level. The 2-3 tree
[AHUBS3] is the special case of B-tree with m=1. The Prefiz B-tree [BU77] is a B-tree
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which uses prefixes of keywords as keys.
Trees have received wide attention in the literature and are relatively well under-
stood. Tree structures permit keywords to be added or deleted dynamically, and still

remain balanced. Most tree methods take O(lgn) time, in the worst case, to insert
or delete a keyword.

Trie Search

Instead of comparing a whole key, trie search (search by key decomposition) makes use
of the digital property of the keywords. It views a keyword as a string and inspects
symbols in the string one by one. Trie search can find a pattern in r comparison,
which is independent of the index size n. Furthermore, since keywords are stored
along the path, not inside the node, tries can handle very long keywords. As we have
mentioned in §1.2.2, tries do not need reorganization algorithms. Trie search for text
documents will be summarized in §3.5.

Hashing Methods

Hashing is a direct access method which locates keywords by address calculation. To
hash is to redistribute access space from a large keyword space to a small storage
space. Ideally, we would like to have a hash function which reduces the space of all
possible keywords to the space of the presented keywords without conflicts, i.e., a
minimal perfect hash function. If this was the case, we could retrieve any keyword in
constant time,

[CHKS3] presented a practical algorithm to build perfect hash tables. In addition
to allowing constant retrieval time, hash tables can be updated in constant expected
time, and therefore be built incrementally in time O(n). However, the tables take
more than 20n bytes of storage. [FHCD92] gave an algorithm to build, practically,
a minimal, perfect and order preserving table. The method avoided the common
problem of wasted space and time. The address calculation takes no more than three
accesses to the hash table. The table itself takes a little more than 4n bytes, where
n, the number of keywords, may go over one million. However, this algorithm works
only for static keywords.
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Signature files [FC87] is another example of hashing based text searching. In 2
simple signature file, text words or phrases are hashed into bit patterns, called word
signature. Word signatures are either used as keywords for a hash function, or stored
in a separated file, called signature file. A signature file usually takes less than 10%
of the text size. We scan the signature file for the querying word signature. However,
a positive answer does not necessarily mean that the querying word is in the text.
We can either verify it or accept it as a fact. In the latter case, there may be 2
small number of incorrect answers, or false drops. The probability of errors can be
controlled by choosing an adequate length of the signature. Signature searching can
reject many non-qualifying strings and, in practice, provide a tenfold speedup over
sequential searches. However, it is a O(n) search method.

1.3.2 Approximate String Matching

Misspelling detection, corruption-correction in communication and pattern recogni-
tion, the DNA sequence analysis in genetic science require non-exact string matching.
The k approzimate string matching problem specifies, in addition to the given set of n
keywords (or n substrings of a text) and the pattern string P of length r, the parame-
ter k of differences (insertions, deletions, substitutions, and/or transpositions) allowed
in a match. Various algorithms have been developed to solve the k approximate string
matching problem [HD80, SK83, Kuk92].

The basic approach is to search keywords for the minimum edit distance using
the dynamic programming technique. §4.1 will give a short introduction to these two
concepts. In Chapter 4, we shall propose an approximate search algorithm which
combines the dynamic programming technique with the trie method. Trie methods
have only been previously used as an alternative to dynamic programming to improve
search time. Algorithms in [MT77, Dun81] use heuristic searches on trie structures
and examine a small subset of trie branches. But their algorithms check only restricted
typographic errors.

Knuth [Knu73] suggested using two indices, one in the prefix order and the other
in the suffix order (reversing keywords). Misspelled keywords agree up to half or more
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their length in one of the two indices when only one error occurs. No theoretical or
empirical results concerning this method are reported. Soundez [OR22] is a commonly
adopted technique for spelling checkers. The goal is to reduce words into some codes
that tend to bring sound-similar keywords together. Soundex codes classify keywords
into equivalence classes, and hence can be searched by the exact searching techniques.
Baeza-Yates and Perleberg [BYP92] gave an algorithm based on counting symbols of
the text, which takes time proportional to the text length, independent of r and &
when all symbols in P are different.

The n-gram technique is often used in approximate searching for text rccognition
[Har72, KST92]. The idea is to break keywords down to smaller segments. If a
keyword has only one or two mismatches, most of its segments are correct. With a
table that contains all the segments and the associated keywords, we may trace back
to the right keyword(s).

1.4 Spatial Data Structures

Spatial data are points, lines, etc., in a multi-dimensional space. Usually in an n-
dimensional space, data between 0 to n dimensions are acceptable spatial data. Data
structures for retrieving alphanumeric data are not adequate for them because range
query on multi-keys is one of the common operations. However, to give details on
spatial data structures is not within our scope. Comprehensive surveys can be found
in [Ben75, 00i90, Sam90]. Also, this thesis deals only with vector representations of
spatial data; we do not review data structures for raster images. We start with some
structures for multi-dimensional point data.

1.4.1 Multi-dimensional Point Structures

The kd-tree [BenT5)] is a generalization of the one dimensional binary tree. The first
level discriminator is the the first attribute of the data. All data with the first
attribute values less than, equal to or greater than a certain value go to the left
subtree, root or the right subtree respectively. The second level discriminators are
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the second attribute. The second level nodes are constructed according to the values
of the second attribute. This process cycles recursively among 2ll the attributes until
there is only one datum left. Range search with kd-tree is straightforward. The kd-
tree has been the subject of intensive studies and many variants have been proposed
to improve the performance such as clustering, storage efficiency and balancing.

The kd-trie [Ore82] is a generalization of the one dimensional binary trie. The
binary trie divides the space (not the data presented) by successive powers of two.
This corresponds to using the first bit to determire if the datum is in the first or
second half of the space, using the second bit to determine if it is in the first or
second half of this subspace, and so on. A kd-trie is a binary trie with keys that
consists of the data coordinates interleaved bit-by-bit. A point quadtrie {FB74] is a
4-ary trie using the interleaved keys.

In multi-dimensional hashing, data space is divided into disjoint regions. Data
contained in one region are stored in one or few buckets. The grid file NHS84, Hin85]
partitions k-dimensional space into orthogonal grids. The grid boundaries on each
dimension are stored in & one dimensional arrays, called scales. Bucket addresses are
stored in a k-dimensional array, called grid directory. Scales are much smaller and
can be stored in memory. Consulting the scales, we can find the subscripts to the
grid directory and then find the bucket address. A major problem is the storage for
the directory. Multipaging [MOB82] uses % tidy functions to replace the k-dimensional
directory. EXCELL [Tam82)] requires grids to be of equal size. It simplifies the grid
partition but uses larger directories.

Another approach is to organize k-dimensional data according to a certain linear
order. The idea is to map the data set from k-dimensional space {o one dimensional
space, and then to use a point data structure such as a B-tree to index them. The
commonly used orders (recursive space filling curves, locational keys) are: Z-order
{OM84), Hilbert order and Sierpinski order [NB94). The Linear quadtree [Gar82] and
QUILT [SSN9()] used this approach.
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1.4.2 Non-point Structures

Spatial features such as roads and lakes in maps consist of point sets. They usually
do not form any fixed shape. It is expensive to perform queries on their exact location
and extent, and hence we often use minimum bounding rectangles (MBR) or other
conservative approximations [BHKS93] to filter and approximate irregular shapes.
However, we still need data structures to handle both location and extent. Access
methods for non-point data can be classified into three groups [00i90]:

Transformation Features in a k-dimensional space are represented as points in a
higher (> k) dimensional space [SK88]. Coordinates for extent arc taken as
different dimensions. For edges, intervals or MBRs, it could be called, more
distinctively, dimension doubling. More generally, we speak of dimension raising

[MS94].

Clipping Data space is partitioned into pairwise disjoint subspaces. If a feature
intersects with a set of subspaces, either its identifier or the feature itself is
included (duplicated) in each of the subspaces.

Overlapping Data space is covered by a set of rectangle scheme such that features
are totally covered by one of the rectangle schemes. The rectangle schemes may
overlap with each others.

R-tree {Gut84] is a generalization of the one dimensional B-tree, and hence it is
height balanced. In an R-tree, each leaf node contains a pointer to an MBR, and
each internal node contains a rectangle scheme that covers all the rectangles in the
subtree. In searching, the decision whether to visit a subtree depends on whether
its rectangle scheme overlaps the query region. It is common that several rectangle
schemes overlap the query region, and this results in the traversal of several subtrees.
Minimization of the overlaps of the rectangle scheme as well as the coverage of these
rectangles is of primary importance in R-tree construction.

The segment tree [Sam90] is an example of clipping. A segment tree is a one
dimensional region quadtree for intervals. Its nodes contain an interval identifier if
and only if the interval it covers is contained in the interval indicated and the interval
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of its parent node is not contained in the interval. In other words, each identifier may
be stored in many tree nodes (clipping). When a segment tree is searched, only the
nodes that intersect with the query interval are visited.

RR quadtree [Sha86) is a quadtrie structure that uses the clipping technique for
rectangles. It splits unpartitioned data space into quadrants until the subspace either
intersects with just one rectangle, or covers a set of rectangles which overlap each
other. All rectangles are associated with leaf nodes. When none of the rectangles
overlap, each node of RR quadiree contains a part of one rectangle. The storage
requirements for RR quadtree are very high.

PLOP-Hashing [KS88] is a grid file extension for non-point data. The method
is a multi-dimensional dynamic hashing based on Piecewise Linear Order Preserving
(PLOP) hashing. PLOP-Hashiny partitions data space into orthogonal grids and uses
k binary trees to replace the scales in grid file. Binary trees map order information
oriented along axes to grid numbers. Two extra values are stored in each leaf node
to bind the objects whose centroid are in the corresponding grid. Merrett [MD85]
combined the multipaging and clipping techniques to represent diagrams which consist
of sequences of small edges.

1.4.3 Summary

Spatial searching requires multi-key searching. However, features often cover irregular
areas in multi-dimensional space and cannot be solely represented by point locations.
Conventional data structures may not be suitable to non-point data.

Besides the technique to approximate irregular shapes by MBRs, three major
techniques have been used to handle non-point data. In the transformation technique,
non-point data become point data of a higher dimensional space. It requires no
alteration of data structures. However, spatially close data may be torn apart in the
higher dimension space. As a consequence, searching may be slow, especially when we
deal with secondary storage. The most important property of the clipping technique is
that data structures used can be direct extensions of point data structures. However,
it requires extra storage and becomes more expensive in insertion and deletion. To
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reduce duplications, feature identifiers are usually maintained in the structures and
features are stored in another file. This results in additional disk access. For the
overlapping technique, maintaining the “minimal” overlap is very difficult. Ineffective
overlapping schemes tend to overlap and results in searching more paths.

Both trees and tries are hierarchical structures. Tree methods such as B-trees,
kd-trees and R-trees [Gut84] are height balanced trees to limit the worst-case perfor-
mance. However, trees divide the data often by the medians of the data presented.
They do not preserve the scale of the data space at each level. Trie methods recur-
sively divide the data space in half, and thus preserve the scale of subspaces at each

level. They allow us to read tries down to a certain depth, and retricve only this
subset of the file.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 1 shows the motivation of the thesis and
the problem domains. It introduces trie methods and their applications, parameters
and representations in general. This chapter also gives a literature overview on text
searching and spatial data structures.

After the introduction, we present the underlying trie structures which are used
throughout the thesis. There are four topic chapters, one for each trie application:
exact text searching, approximate string matching, map displaying, and spatial data
querying. All applications deal with very large collections of data, e.g., gigabytes or
terabytes. Two problems are discussed in great detail: the efficient use of storage and
the I/O performance.

Chapter 2 presents three trie structures: FuTrie for binary full trie, OrTrie for
binary ordinary trie, and PaT¥rie for binary Patricia trie. It deals with the problems
of maintaining trie structures in secondary storage. Our goal is to partition a trie
into pages and to operate at the cost of only few disk accesses and a small amount of
data transport. Problems related to large trie construction are also considered.

Chapter 3 examines trie methods for text searching. The major problem with tries
is that their sizes can be even lacger than the text. Recent work on tries has focussed
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on reducing the tric size. We show that our PaTrie index achieves size factors of less
than 3 for 100 million keys, as compared with 3.4 for the best previous method.

Chapter 4 discusses approximate string matching. The discussion is restricted to
search keywords for the best match, e.g., the spelling check problem. The cost of the
algorithm we present is independent of the dictionary size. This is the first known
algorithm that achieves the time complexity.

Chapter 5 describes ZoomTrie, a trie structure for storing spatial data such as
maps. ZoomTrie gives a continuous zoom, say, from the full details of 2 map of many
gigabytes of data, up to a mere outline, while storing only one copy of the map and
reading only the amount of data to be displayed. The discussion focuses on polyline
maps. But the method can be applied to any set of multi-dimensional homogeneous
features.

Chapter 6 demonstrates that ZoomTrie can be used not only in the ubiquitous
operations of displaying and plotting, but aiso in geometrical queries and other spa-
tial data processing. With examples, we show that ZoomTrie can be used as an
index structure to answer various queries. The idea is to examine data in the order
of increasing resolution, and for each resolution level, some part of search space is
eliminated from the consideration. The algorithms and results shown in this chapter
are for line queries: line-point, line-line and line-region. But they can be extended
for point queries and region queries.

Chapter 7 summarizes the contributions of this thesis and future research that we
propose.



Chapter 2
Trie Organization

In this chapter, we shall present three pointerless trie structures: FuTrie for the binary
full trie [CS77), OrTrie for the binary ordinary trie [Fre60] and PaTrie for the binary
Patricia trie [Mor68]. Our trie organizations have two distinctive features: (1) they
store no pointers and require 2o more than two bits per node, and (2) they partition
tries into pages and are suitable for secondary storage. Throughout this thesis, we
shall use our trie structures either as auxiliary structures for indexing data, or as
main structures for storing and indexing data.

Problems related to the new trie structures such as trie partitioning, trie scarching
and static trie construction will be discussed in this chapter. From this chapter on,
we shall consider binary tries exclusively except for some examples in chapter 4.

2.1 Pointerless Representations

The pointerless trie representations of this section and the partition strategy of the
next section are based on the work by Orenstein [Ore82, Ore83]. We shall extend his
trie representation for Patricia trie and use one bit plus either a skip or a start for
each node. We shall also make the pointerless trie representations capable of storing
complete data elements in contrast to the previous versions that store only partial
data elements.

23
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Figure 2.1: Tries and Bitstrings

2.1.1 FuTrie

A FuTVrie is a binary tree whose nodes do not store information and whose links are
labelled with 0 for the left links and 1 for the right links. The branching decision
for internal nodes at level i is made according to the ith bit of the search string.
If the test bit is 0, the search goes to the left descendant, or else it goes to the
right descendant. Each root-to-leaf path corresponds, one to one, to a key string.
For example, Figure 2.1 (a) shows a FuTrie constructed over key strings 00000011,
00101100, and 10000000. The darkened path gives the sequence of lirirrill, where {
means left and r means right. This corresponds to 00101100.

Orenstein represented the FuTrie using bitstring [Ore82], a pointerless structure.
The bitstring is a list of trie nodes organized from the root level to the lowest leaf
level, and from the left most node of a level to the right most node. Each trie node
has two bits. Bit pairs 11, 10 and 01 represent an internal node with two descendants,
one left descendant only and one right descendant only respectively. 00 represents an
external node (leaf). Figure 2.1 (a) also shows the bitstring of the FuTrie.

Each on bit of the bitstring represents an outgoing link. The jth on bit at level
i is the link to the jth node of level i+1. The child node has a displacement of 25—2
bits. For example, in the bitstring of Figure 2.1 (a), the bold bit at level 3 is the
second on bit. So it is the link to the second node of the next level. The child node is
the 25—1st and the 2jth bits at level 4. However, in order to access the grand-child
nodes, ve have to scan 27 bits to count the on bits of level 4.
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Table 2.1 defines the FuTrie structure.

PointerlessTrie  u=  Array | | of TrieLevel
TrieLevel = Array [ ] of TrieNode
11 /N
. o 10 /
TrieNode = 0 N\
00 e

Table 2.1: FuTrie Structure

2.1.2 OrTrie

An OrTrie is a pruned FuTrie in which all node chains that lead to leaves have been
pruned. Figure 2.1 (b) shows the OrTrie transformed from 2.1 (a). The darkened
path, 001, gives only a prefix of key 00101100. To recover the whole key string, each
OrTrie leaf stores either a pointer (start) to the key, or the remaining bits of the key
(suffiz). Note that leaves are placed as high as possible in the OrTrie, and that a trie
does not continue below the levels at which a subtrie contains only one key.

OrTrie leaves are varying in size. If all keys are of the same length, say d bits
each, the suffix length at level i will be d—i+1 bits long. However, for variable length
keys, we need a counter to remember the suffix length.

For OrTrie, the bitstring and the implicit addressing are the same as for FuTrie,
except that the suffix information is excluded when the bits are being counted.

Table 2.2 defines the OrTrie structure.

Pointerless Trie :=  Array | ] of TrieLevel
TrieLevel :=  Array [] of TrieNode
11 N )
10 s
TrieNode = 01 :
{length} {suffix}
00{ or {start} } *

Table 2.2: OrTrie Structure
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2.1.3 PaTrie

A PaTrie is also a pruned FuTrie. This time, not only the node chains leading to
lcaves but also all the internal node chains are pruned. Figure 2.1 (c) shows the
PaTrie transformed from 2.1 {a). PaTrie has only n—1 internal nodes, where n is the
total number of leaves (or keys). It gives a much shallower trie.

PaTrie adds costs of storing either height — the level number in the corresponding
FuTrie, or skip — the number of removed one-way nodes from the parent, in each
internal node. For example, the internal nodes in Figure 2.1 (c) are skips. To choose
an outgoing link , the height tells which bit of the search key to inspect, while the
skip tells how many bits from the last inspected bit to skip over. Skips are more
compact to store than heights, but we shall also use the height later.

If we use the PaTrie as an index structure, we need only to store skips in the
internal nodes and starts (pointers to the data) in the external nodes. The complete
key strings can be recovered by following starts to keys. However, if we want to
use PaTrie as a data structure to store the entire keys, we need to remember the
skipped key bits in both the internal and external nodes. For example, for each node
of Figure 2.1 (c), the second number in the parentheses is the pruned key bits, and
the first number is the length (in bits) of the second number.

We extend the bitstring to represent PaTries. Since PaTVie nodes have either two
descendants or none, one bit is sufficient to distinguish them, i.e., 1 for the internal
node and 0 for the external node. In addition to the bit, each internal node has a skip,
and optionally, the skipped key bits. Each external node has a start, or alternatively,
a length counter and the remaining key bits (suffix).

Table 2.3 defines the PaT¥vie structure.

PointerlessTrie  u=  Array | ] of TrieLevel
TrieLevel ==  Array [] of TrieNode
{skip}{substring}
. Wor {skip} </
frielode oflmanoma”
or {start}

Table 2.3: PaTrie Structure
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Each on bit represents two outgoing links. The jth on bit at level i connects to
the 2j—1st node and the 2jth node of level i+1. The left child is the 2j—1st bit. The
right child is the 2jth bit. The bits for the skips and suffixes are not counted. For
example, the bold bit in Figure 2.1 (c) is the first on bit of level 2. So, its left child
is the first bit of level 3, and the right child is the second bit if we do not count the
bits inside the parentheses.

2.2 Trie Partitioning

Unfortunately, to find the jth on bit involves scanning the bitstring. This scanning
has to be done for every level and is expensive. To avoid scanring the entire trie,
we slice the trie into layers of k levels each, and then chop each layer into pages of
subtries. In each page, the child nodes of each level are either entirely on or entirely
off that page. In other words, links can only cross the horizontal boundaries of pages,
not the vertical boundaries.

The partitioned trie restricts the sequential search within the pages, and reads
no more than one page per layer per search. This partition strategy was originally
proposed by Orenstein [Ore83] for FuTries and OrTries. It also works for PaTries.
Figure 2.2 gives an example of a paged PaTrie with k=3.

Each page in Figure 2.2 has two integers, T'count and Bcount. The two counters
contain the number of links into and out of the page layer. The counting stops right
before the page they belong to. Tcount and Bcount are used to find, for example,
the right link of node X, i.e., the second link leaving the page. This link is also the
2+18=20tk link (Bcount) out of the page layer. The fourth page of the next page
layer contains link 20. Link 20 is also the 20—16=4th link (Tcount) into the fourth
page.

Once again, to avoid scanning page layers for T'counts, we collect Tcounts of the
sibling pages into the parent page. As shown in Figure 2.3, each page contains a
Bcount and a set of T'counts of the child pages and pointers to the pages. Table 2.4
defines the paged pointerless trie structure.
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Figure 2.3: Page Structure

PagedTrie
TriePage

Array [ | of TriePage
Record
Bceount : Integer;
LinkTo : Array [] of Record
Tecount : Integer;
Page : TTriePage;
End
SubTries : Bitstring;
End

Table 2.4: Paged Trie Structure
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2.3 Trie Searching

There are four variables associated with the node being searched. Variable iLevel is
the trie level of the node, jNode the node number in the level, Tnode the total nodes
of the level, and QutLink the number of outgoing links counted from the left most
node of the level. If j is the on bit number of the node, we have j equal QutLink for
FuTrie and OrTrie or 1OutLink for PaTrie (see §2.1).

To find the right child node (if it exists), we scan to QutLink nodes in level
iLevel+l. A new level starts when we reach the last node (Tnode) of the previous
level. Tnode is the total outgoing links of the previous level.

If iLevel is the last level of the page, we need to search the LinkTo list for
the child page. Bcount+QutLink is the outgoing link in terms of the whole trie.
The result minus Tcount of the child page is the incoming link in term of the child

page. LinkTo.Page points to the child page. Algorithm 2.1 spells out the scarching
procedure for the paged pointerless trie.

2.4 Trie Construction

Large trie construction is a problem. As we have pointed out in §1.1, even with
one random access per key insertion (a very minimal requirement), the total disk
time for constructing a trie of n=100 million keys would be 100Mx20ms = 23.1
days, assuming 20ms per disk access. This is not acceptable in practice. We need
construction algorithms tuned for secondary storage.

Another problem with this dynamic or updating approach is that we cannot
achieve fully occupied pages. Usually a dynamic method may require as much as
doubled space requirement reported in the static method. Updating FuTries or Or-
Tries is straightforward and will not be discussed. Updating PaTries will be discussed
in §3.3.1

To build the whole trie, we can do much better than the incremental algorithm by
careful use of sorting. This approach is based on two theorems. Theorem I: the list
of ordered keys is equivalent to the list of leaf nodes obtained by inorder traversal of



CHAPTER 2. TRIE ORGANIZATION 30

Algorithm 2.1 Pointerless Trie: Searching Child Node

Type Anode = Record
Page : [TriePage;

ilLevel, jNode : Integer; /* node location */

Tnode, Outlink : Integer; /* level information */

skip, start, height : Integer; /* node information */
End;

Procedure GetChild{ var n: Anode: which):
begin
Position := n.Outlink; /™ calculate the child position */
if (which = left) and (n has right child) then
Position := Position - 1;

vhile (n.jNode < n.Tnede) do /* scan to the last node of iLevel */
m := the next node;
n.jNode := n.jNode + 1;
n.Outlink := n.OutLink + OutLinks( m);

if ((n.iLevel mod k) = 0) then [* child fall out the current page */
Position := Position + n.Page] Bcount; [* in whole trie */
Find i such that: [* search for the connected page */

(n.Pagel LinkTo. [f] .Tcount < Position) and
{n.PageT LinkTo. [i+1] .Tcount > Position);

Position := Position - n.Page| LinkTo[i].Tcount; [* in page */
n.0utiink := n.0utLink + n.Page] Bcount

- n.Pagef LinkTo[i].Tcount;
n.Page := n.Pagel LinkTo[i] .Page; /* read the new page */

n.Tnode := n.0utLink; /* start a new level */

n.iLevel := n.ilLevel + 1;

n.jNode := 0; n.Cutlink := 0;

vhile (n.jNode < Position) do /* scan to the child node */
m := Read the next node;
n.jNode := n.jNode + 1;
n.Outlink := n.OutLink + QutLinks( m);

end;
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the trie structures. Theorem 2 given such an ordered list, we can uniquely construct
a trie structure. We shall state formally and prove the two theorems in §2.4.3 for
the PaTrie structure. However, the proofs are also valid for the FuTrie and OrTrie
because all three tries can be transformed from one to another. When a trie is
constructed from the ordered list, it grows only in one directicn. This avoids random
disk access.

In the following discussion, we assume no key string is a prefix of another key.
String comparison uses lexicographic ordering.

2.4.1 FuTrie Construction

We construct FuTrie as a whole by scanning the sorted key strings. In general, the
procedure is: (1) sort the key strings in a lexicographic order, (2) treat cach key
string as a FuTrie by writing it vertically and changing 0 to 10, and 1 to 01, and
(3) append each key string to the FuTrie under construction. For example, given
00000011, 00101100, and 10000000, after steps (1) and (2), we have:

0170117 107712077017
oglio]]|o 1wl 10
key, 00000011 ol117]0 wl|lor|] 10
el|1of]o 10|l10]} 10
key, 10000000 oy11110 10)]o1|] 10
¥ ofl21¢y]0 10|lot|] 10
1110]|0 o1 || 10|} 10
L1fLo]Lo] (o1 )]10]] 10

Step (3) merges, one by one, FuTries of the sorted key strings from the smallest
key to the largest key. The merge procedure scans both the previous and the current
key strings from top down until the bits of the two strings are different, i.e., the bits
of the previous key string is 10 and the bits of the current key string is 01 (because
of lexicographic ordering). At this moment, the merge procedure goes to the second
phase: (3.1) change bits 10 of the FuTrie in constructing to bits 11, (3.1) copy the
remaining bits of the current key string to the FuT¥rie in constructing until the end
of the key string. Continuing from the above example, after step (3), we have:
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Algorithm 2.2 FuTrie: Appending Key

Var last :

Array [0 of Integer;

/* last node of trie T */

Procedure FuTrieMerge( var T:Fulrie; s:string);

begin

rootLevel :»= 1; leaflLevel := length(s)+1;
for i := rootlevel to leaflevel-1 do
if T[i)[last[i]] = 10 and s[i] = 1 then
bifurcation := i;

break;

T[ bifurcaticn] [ last[bifurcation]] := 1i;
for i := bifurcation+l to leafLevel-1 do
last[i] := last[i] + 1;
TLil [ last[i]] := FuTrie(s)[i1[1];

last[ leafLevel]l := last[ leafLevel]+l;

/* shared path */

/* bifurcation point */
/* appended path */

/* treat s as a FuTrie %/

/" create leaf node */

T[ leafLevel] [ last[leafLevel]] := 11;

end;
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Algorithm 2.2 shows the merge procedure. In FuTrieMerge, trie nodes are ap-
pended (not inserted) to each level. The constructed nodes will no longer be referred
to except the last one of each level. Therefore, only the current string and the last
node of each level need to stay inside the main memory. The rest of the constructed

trie can be dumped to the disk.

Trie paging can be done during the merge. When nodes in a page layer exceed
a preset limit (say 8KB), we create a trie page and write it to the disk. To prevent
links from crossing the vertical boundaries of a page, we need to check the next string.
Only the binary nodes may cause links to cross the vertical boundaries.
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Our algorithm reads the ordered keys once and writes the trie once. Assume 16
bytes (4 coordinates, see §5.1.2) per key, 16n bytes for the FuTrie, 20us seek time,
1us transfer rate, and 8K bytes per I/O buffer, this method takes:

(16 4+ 16)n « 20+8
8K 3600 x 103

of I/O time (excluding the sorting time) to build a FuT¥rie of n = 10° strings.

= 3.1 hours

2.4.2 OrTrie Construction

The OrTrie can be constructed in the same way as the FuTrie, except that we do not
construct subtries after the last binary nodes. Instead, we construct leaf nodes with
the truncated suffixes. We shall not elaborate on the algorithm.

2.4.3 PaTrie Construction

The following theorem establishes that adjacent keys in the inorder traversal of a
PaTrie are ordered and have common prefixes up to bit h, where h is the height at
the internal node falling between them in the traversal. It follows that a PaTrie has
a unique list representation. The second theorem shows that this list representation
gives a unique PaTrie.

Let K, = sy, 82, ..., Sn, be a set of n>1 key strings. Let s;’ be the jth bit of string
8;, List(K,) be a list [s1, k1, 52, A2, ..., Bn—1, $a] Such that K, is ordered and h; is the
length of the longest common prefix of s; and s;+). Let PaTrie(K,,) be a PaTrie
constructed over K,. We assume the PaTrie stores heights in the internal nodes and
starts in the external nodes (see §2.1.3). Let Trav( PaTrie) be the list of starts and
heights of the inorder traversal of the PaTrie.

Theorem 1 For any (s;, ki, sis1), {1£1<n), in Trav(PaTrie(K,)), we have:

i =0 ifj=h
sy =1 if j = hy (A)

s = sy f1<i<hy
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Proof:

e When n = 2, Trav(PaTrie( K3)) = [s1, by, s2]. Since hy, the height of the only
internal node, is the discriminant bit position of s; and s, and s; is the left
leaf node, (A) is true for [sy, h, 52].

¢ Suppose Vi<icn-1(8i, hi, si41) € Trav(PaTrie(Ka-1)) — (A).

o For any Trav(PaTrie(K,)), let h be the height of PaTrie(K,)’s root. Let
PaTrie(K,) be the left subtrie, and PaTrie( K,) be the right subtrie. We have:
¢+ r = n, and Trav(PaTrie(K,)) =

[Trav(PaTrie(K)), h, Trav(PeTrie(K,))] = [81, ..y Sty Ry Sea1y oes Stgr]
By hypothesis, (A) is true for all [s;, h;, Si41], except [se, &, Se41)-
By definition, & is the discriminant bit position for all s; € K, and s, € K.
Hence, (A) is true for (s, h, s,.). m;

Corollary: Vparvie(x,)Trav(PaTrie(K,)) = List(K,).
Proof: (A) implies strings in Trav( PaTrie( K, )) are totally ordered, i.e., 5)<s2<
e Sy, and h; of Trav(PaTrie(K,)) is the discriminant bit position of s; and
8;i4+1- By definition, Trav(Patr(K,)) = List(K,). wi

Theorem 2 V,.)List(K,) — unique PaTrie(K,)
Proof.

e When n = 2, List(K3) = [s1, hy, s2] has only one PaTrie.

e Suppose VcicnList(K;) — unique PaTrie(K;).

e For any List(K,) = [s1,h1,52,..., hn—1, 8a), let b € List{K,) be the smallest
height. Let List(Ke) = [s1, k1, 52, ooy he—1, 8¢) and List(K,) = [se41, Rew1y ooey Sa)-
Since any height of a PaTrie is strictly larger than the height of its Parent
nodes, h must exist and it is the height of the root. Therefore, we have:
List(K,) = Trav(PaTrie(K,)) =

[Trav(PaTrie(K)), h, Trav(PaTrie(K,))] = [List(Ky), h, List(K,)|
By the hypothesis, both PaTrie(K,) and PaTrie{K,) are unique.
Hence PaTrie(K,) is unique. o



. CHAPTER 2. TRIE ORGANIZATION 35

Algorithm 2.3 PaTrie: Parsing List(h,)

Procedure PaTrieBuild( var T:PaTvrie; list:List(K.));
Var heightStack : Stack of Inleger; trieStack : Stack of PaTrie;
left, right : PaeTrie; currltem : Integer;
begin;
currltem := read List; [* List(K,) = 0,81, h1,92,..,Rpn_y.8,,0 */
push({ currItem, heightStack);
currltem := read next List;
do forever
if (currltem is a start) then

push( currItem, trieStack); /* create an one node trie */
currltem := read next List;
else
it (both curritem and top of heightStack is 0) then
T := pop( trieStack); /* end of PaTrie construction */
break;
else /* current item is a height */
it (top of heightStack) < currItem then /* no decision yet */

push( currItem, heightStack);
curritem := read next List;
else repeat J* find a subtrie */
left := pop( trieStack);
right := pop{ trieStack);
convert hetghts of left and right to skip;
newTrie := left /pop(heightStack)\ right;
push{ newTrie, trieStack);
until (top of heightStack) <= (previous height); /* no more subtries */
end;

Corollary: PaTrie(K,) is unique. Proof: List(K,) is unique for any given K,. ©

We preprocess key strings and construct the PaTrie as a whole. The procedures
are: (1) sort K, and produce List(K,), (2) treat List(K,) as an expression by inter-
preting heights as operators and starts as operands, (3) parse List(K, ), and (4) page
the constructed PaTrie.

As we have proved in Theorem 2, constructing PaTrie from the List{K,) is a
special case of parsing expressions with operator precedence [ASU86]. Here we have

. only binary operators and no ambiguity (PaTrie is unique). The higher precedence
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corresponds to the larger height. Algorithm 2.3 shows the procedure of PaTrie con-
struction. After parsing, a PaTrie is represented as a list of node levels. As for paging
FuTrie, PaTrie can be paged in a single pass.

The I/0O cost of Algorithm 2.3 can be calculated as follows. The input is n heights
and n starts. The height size is bounded by lg(H,). The start size is lgn. When
a trie level becomes too big, we write the level to the disk and replace it by a page
pointer. The output is n starts, (n—1) heights, and 2 bits plus negligible pointers.
Assuming 20us seek time, 1us transfer rate, and 8K bytes per page, the cost is:

2n(lgn + 1g(16 x 8) + 1) -(l + 1) N 20+38
8 x 8K B 60 x 103
of I/O time (excluding the sorting time) to build a PaTrie of n = 10° keys and 16
bytes each. Here B is the page size in 8KB, large enough for 1/B < 1.

= 50.4 minutes

2.5 Summary

We have proposed a set of three new trie organizations. In the next four chapters, we
shall apply them to applicationsin exact text searching, approximate string matching,
map data displaying, and spatial data querying in general. All these applications
deal with bulk data, and no matter whether we use tries as index structures or data
structures, the trie size is always a critical issue. Our trie organizations require one
bit per node for the PaTrie, iwo bits per node for the FuTrie or OrTrie, and there
are no pointers. Qur representations are smaller than all known methods.

Another problem with tries is that they are often too large to be stored in the
main memory. We have given a method to partition tries into pages for secondary
storage. To search our trie down to level 1, we need to read i/k trie pages. Here k is
a preset number and k = 8 in all our implementations.

Even with one random disk access per key insertion, the total I/0 time will be 23
days for building a trie of 200M keys. We have presented algorithms which minimize
random disk access. Qur algorithms carefully use the order properties among the
key strings, and construct tries as a whole. The expected I/O time is 3.1 hours for
constructing a FuTrie of 100 million keys, and 50.4 minutes for a PaTrie.



Chapter 3
Exact Text Searching

In this chapter, we shall examine trie index structures in searching very large texts.
Trie methods give search costs which are often proportional only to the length of the
string being sought, and in the worst case, to the logarithm of the sizc of the text
being searched. For very large texts, trie methods are indispensable.

Index tries for text searching have been used by Morrison [Mor68] and exploited
by Gonnet et al. [GBYS92, Tom92] for the implementation of the electronic version
of the New OED. However, a major difficulty with tries is that the index generated
can be even larger than the text. For example, Morrison’s Patricia index could be
eighteen times the size of the text.

When applying PaTrie to index 100 million keys, our experiments show size factors
of less than 3, as compared with 3.4 for the best previous method. Qur measurements
also show expected access costs of 0.1 second, and construction times of 18 to 55
hours, depending on the text characteristics. We shall show that our index structure
can handle dynamic texts, and will give new algorithms for text trie inserting and
deleting. This chapter is an extended version of [MS93a].

3.1 Text Trie

We follow Gonnet in using semi-infinite strings (or sistring [Gon88)), in which a text is
viewed as a very long sequence of letters without concern for the structure. Sistrings

37
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are suffixes of the text. For example, sistrings in text there! are: there!, here!,
ere!, re!, e!, and !. If a text is infinite in length (by appending null characters
after the text), all sistrings are semi-infinite and can be uniquely identified by their
starting positions (start) in the text.

We define tert trie as an OrTrie or PaTrie built over sistrings of the text. In text
trics, leaf nodes contain starts (pointers to the text). Sistrings are truncated when
their prefixes become unique in the text. The trie will not grow below the level where
the search path identifies a unique sistring in the text. Exterrnal nodes are placed as
close to the root as possible. Figure 3.1 shows the text tries for text there!.

Text t h e r e !
o_,o Start 1 2 3 4 S 6
@,0-05, ASCII Code | oniotoo 01101000 01100101 01110010 GIIGGIO! 0010000}
F]
- @ S
ol o@ s o’ '@
ol:‘o o'O:: ¢ )
o=’; @ v X, ROy
& A e o
@ ® 6 ®
(a) OrTrie Index (b) PaTrie Index

Figure 3.1: Text Tries

Text tries may have to become quite deep to distinguish between similar sistrings.
For example, we must go to ten bits to distinguish ere! from e!. As we have stated
in §1.2.2, the PaTrie gives a much shallower trie, but adds the cost of storing height
or skip information at each internal node. Figure 3.1 (b) shows a PaTrie with skip
information in the internal nodes.

In this chapter, we assume texts are terminated with a unique symbol, say a null
character, and a search can find a string beginning at any byte of the text. Thus,
a text of N bytes has exactly n=N distinguishable sistrings. Sometimes, we might
ask to search for text strings beginning only at word starts. Since words average five
characters in length and are delimited by blanks, a text would have about n=N/6
sistrings, and result in a much smaller text trie.
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3.2 Statistics on Text Tries

Text statistics will help us show that index size is a significant problem, not just in
the worst case, but for normal usage of languages such as English. This is true even
for the methods used for the New OED. This section is primarily about PaTries, but
the statistics that follow will include OrTries, o that we can show that the cost of
storing skips is more than offset by the reduced height.

3.2.1 Measured Distributions

To estimate text trie performances, we need to know: (1) the total numbers of irie
nodes, S, for the trie size, (2) the average trie depth, A,, for the average access time,
and (3) trie height (or the maximum depth), Hy, for the expected worst access time.
Trie parameters have been analyzed by many people (see §1.2.2). Most theorctical
results are based on the assumption that all keys are independently and uniformly
distributed, and all symbols of the keys are also uniformly distributed (symmetric or
random trie). Table 3.1 are cxpected asymptotic results for binary tries.

Total Nodes, S, | Average Depth, A, Heigat, H,
Ordinary Trie 2.44n lgn 2lgn
Patricia Trie 2n~1 ign Ign

Table 3.1: Random Trie Parameters

Unfortunately, sistrings from natural language texts are not uniformly distributed.
For example, e is much more common than d in English. Nor are they independently
distributed. All sistrings are suffixes of the same text. Worst of all, sistrings are
context related. Theoretical analyses fail to model context dependency within such a
large scope. Therefore, we must measure these quantities on actual texts. We shall
find that the theoreti~al values provide extremely lower bounds.

For five texts of 4.5 to 9.5MB each, we picked 20 segments of 1MB each at random
from each text, and constructed tries for sistrings beginning at each byte. The texts
are: Shakespeare’s Complete Works, provided by Oxford University Press for NeXT
Inc.; The King James’ Bible, provided by ftp from akbar.cac.washington.edu; Sec-
tion One of man pages for unix'™ from Solbourne Computer Inc.; C source programs
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selected randomly from a departmental teaching machine; and Webster’s Ninth New
Collegiate Dictionary, provided by NeXT Inc.

We calculated A, and H, for both OrTries and PaTries, and S, for OrTries
only. For both tries, we found the cumulative distribution of depths for n=1 million
sistrings, that is, the proportion of nodes lying at or above a given depth in the trie.
Finally, to estimate PaTrie size, we need to know skip length. There is no theoretical
analysis for it in the literature. So, we found the cumulative distribution of skips
for n=1 million sistrings, that is, the proportion of skip lengths that are less than or
equal to a given number of bits. This we used to estimate the average skip sizes. The
results are plotted in Figure 3.2.

A qualitative inspection of these results shows that the texts can be ranked for
Sny An, H, and skip sizes of PaTries. From best to worst: (1) Shakespeare’s Complete
Works, (2) The King James’ Bible, (3) man pages from unix, (4) C source programs,
and (5) Webster’s Ninth New Collegiate Dictionary.

Webster was significantly worse than the others in all of these cases. The reason is
that we copied the dictionary redundantly’ from the NeXT by following all pointers,
even if they lead to the same text. So our copy has many long, single repetitions. It
is apparent that this is just what is bad for tries, but excellently handled by PaTries.
So we expect Webster to behave well under PaTries, because it is effectively much
shorter than the other texts, and that is what we find.

For H, and A, of PaTries, the rankings of the texts are almost consistent. The
UNIX man pages are noticeably worse than the others. Websteris the best, as expected,
and, together with the Bible, has significantly lower H,.

As we can see from Figure 3.2, most of skip lengths, say 75%, are less than 60 and
can be stored in counters of 6 bits long. However, some of them require much larger
counters. One of the best methods to compress the skew skips is to encode them by
Huffrnann encoding [Knu68] (whick requires one more pass over the data in order to
construct the codes). The first part of Table 3.2 shows, both in bits, the maximum
skip length and the average skip length by Huffmann encoding. The second part
shows skip ranges and the corresponding quantities: £ — skip counter length, p —
Huffmann code length, and ¢ — total skip percentage in the range. For example, for
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Skip Length (bit) | Shakespeare Bible Unix Man | C Program Webster
Maximum length 11 11 14 16 16
Average Length 424 479 5.36 6.55 7.98
Skip Length Skip Distribution (Huffmann Code Length)
! L (Y] S (P () L ()] ()
0 0 30.85% (2) 30.26% (2) 27.82%(2) | 24.29% (2) | 20.39% (2)
1 0 14.06% (3) 10.95% (3) 13.50% (3) 11.85% (3) 9.35% (4)
2 0 4.63% (4) 4.19% (5) 5.18% (4) 4.36% (4) 3.73% (4)
3.4 1 11.46%(3) | 8.18%(3) 9.17% (3) 8.86% (4) 6.77% (4)
5.8 2 15.65% (3) 14.61% (3) 12.21% (3) 11.54% (3) 11.84% (3)
9.16 3 10.20% (3) 10.70% (3) 8.47% (3) 8.64% (4) 9.77% (4)
17..32 4 754%3) | 10671%(3) | 7.66% (4) 8.97% (3) 8.48% (&)
33..64 5 4.27% (5) 6.67% (4) 1.85% (4) 8.02% (4) 6.48% (1)
65 .. Largest |NgtLarp| 133%¢5) | 3.77%(5) | 8.14% @) | 13.47%(3) | 23.19%(2)
Table 3.2: Skip Distributions
Rm:m Avenge Depth, A, Height. H,, Toal Nodes, S,
Measured Data OrTrie PaTrie OrTrie PaTrie OrTrie
Random Ign Ign 2ign Ign 2.44n
Shakespeare 47g0-80 | 211gn-80 1511gn-1637 | 2041gn-212 | 102n-13037
Bible 60lgn-137 | 20%gn-79 1381gn- 1472 s2ger-33 15.1n - 32635
Unix Masual 35ign-68 | 26ign-124 | 4251gn-4886 | 2251gn-230 | 32.6a-560816
C Prognm 2851gn-2020 | 211gn-95 | 27561gn-37061 | 1921gn-219 |111.4n- 3464685
Webster 63.11gn+3640 | 1.81gn-65 | 41201gn-50590 | 4.11gn-21 | 529.1n+58419

Table 3.3: Regression Fitting
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skip lengths between “5..8" inclusive, we need a count (£) of 2 bits to identify the 4
different skips. In the Shakespeare, 15.65% (8) of skips are betwcen 5 and 8 in length,
and the corresponding Huffrmann code length (p) is 3 bits. The average skip length
is calculated by E6(£+p).

Table 3.3 shows the results of regression fits of the data of Figures 3.2 for 4, H,
and S,. Comparing with theoretical results, we can find random tries are much better
than any of our actual text tries. Regression formulas will be used to estimate trie
performances. Table 3.4 shows the values of the regression formulas for IMB texts,

and for comparisons, the values (in parentheses) actually measured on these texts.

n = 1.000.000 Avenage Depth, A, Height. H, Toul Nodes, S,
m) OrTrie PaTrie OrTrie PaTrie OrTrie
Random 20 20 40 20 244 M
Shakespeare 86(85) @33 1373 (1408) 195 (206) 1a2(02)M
Bible 106(105) 232 1279(1383) T 151 Q5.0 M
Unix Manual 163 (168) 39Q9) 3585 (4022) 219 (230) 2a029M
C Prognm 366 (383) 233 17870 (22651) 164 (180) | 107.9(108.1)M
Webser 1721 (1622) 290 31528 (36955) 61 {63) 5292531 M

Table 3.4: Comparing Regressions

3.2.2 Estimated Performance

With text trie parameters on hand, we now can estimate text trie performances. The
costs of trie searching are proportional to A, and H, in the average case and the
expected worst case! respectively. We give only calculations for the average costs. In
the following calculations, we use N for the text size in bytes, and n for the number
of sistrings. We usually set N=n and assume N=100M=10%. But sometimes, we
let N=6n=600M for comparison with the New OED work which involves a text of
600MB and n=119M sistrings, each beginning at a word.

*Given a degenerate trie, the worst search time is n which is of no interest to us. We are interested
in average tries and the average performances.
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A simple PaTric implementation requires two pointers per node. For n sistrings,
there are 2n—1 tric nodes, and therefore, g 2n bits per pointer. Each start requires
lg N bits to address the N bytes of the text. The average skip length lies between
4.24 bits and 7.98 bits for the measured texts, as shown in Table 3.2. Thus an
implementation with two pointers takes

n 424 10.7
2 (21g2n+1gN + = n bytes
8( genT® {7.98 }) {11.2} 4

for a N=100MB file, about eleven times the text size. In this and following calcula-
tions, the upper numbers in the braces are for the best measured text and the bottom
numbers are for the worst measured text.

As shown in Table 3.3, we have the shortest A, = 1.81gn for Webster, and the
tallest A, = 2.61gn for unix manual pages. Thus, for a disk with 20ms average seek
time, and n=100M sistrings, the average access time is

1.8 6.5 41.3 0.83
lgn— = accesses » = seconds.
2.6 12.4 56.7 1.13

We can remove one pointer by storing trie nodes in, say preorder, so that left de-
scendents will be immediate neighbours of their parent nodes and so need no pointers.
This saves us §lg2n = 3.4n bytes. We can also shorten start by using text pages as
the target of the start pointers, instead of individual bytes. If the text is stored in
pages of 4KB, the starts are shorter by 12 bits each. Botk improvements together
reduce the index size to

B llgon+ige+d 2240 18 L e
g\ ° 8IK 7.98 6.3

for a N=100MB file, about six times the text size. This implementation reduces
access time by half because one of the two descendents will be retrieved in the same
time as its parent node.

The Pat array [GBYS92] has no pointers at all, and is not even a tree. It stores
nothing but starts. The idea is to store these starts in a lexicographical order of the
sistrings they point to, and to use them for a binary search of the text. The Par
array requires 3(nlgN) = 3.3n bytes for a N=n=100M file. This would seem the
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absolutely minimal index for addressing any character in a text. We find that it is not.
The major consideration is that Par array cannot use the text paging improvement
to reduce the start size. This is because the binary search must make a comparison
with the text each time it looks up a start, and therefore, the start must point to the
starting bytes of the text, not merely to a page.

Because of the extra comparison, Pat array takes 2 lg n accesses for a search. This
is much more expensive than searching a well-made tree, with reference to the text
only from the leaf nodes. For an index of 100M sistrings, this is 27 accesses to the
text and 27 accesses to the Pat array. However, if we read a page of 2!? starts, the
last ten lookups of the PaT array will all be on the same page, so the cost will be only
about 18 accesses to the Pat array, and a total of 45 accesses. A better improvement
can be found in [MS93b).

The OrTrie implementation requires two bits per node, plus n starts. As shown
in Table 3.3, we have the smallest S, = 10.2n for Shakespeare, and the largest S, =
529.1n for Webster. Combined with our text paging technique, an OrT¥rie index has

n N 10.2 4.4
= |lg—+2x = n bytes
8 (g4K { 529.1 }) { 134.1 } Y

for a N=100MB file. Thus, the index size is no smaller than Pat arrays, and can be
immensely larger.

The average time of OrTrie searching is A,/k, where k = 8 is the number of levels
in a page. For a disk of 20ms average seek time, an index of n=100M sistrings, and
A, of Table 3.3, the average access time is

1 4.7 ~8.0 14.6 0.28
= lgn + = accesses ¢ = seconds.
8 68.1 364.0 271.7 543

Finally, for the PaTrie implementation, we must store n skips, n starts, and one
bit for each of the 2n—1 nodes. So, it takes

2 N [ 424 2.6
] (2'“3&"'{ 7.98 }) - { 3.1 }" bytes

for a N=100MB file, about three times the text size, and less than the Par array.
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The average access time of a PaTrie index is

1 1.8 6.5 5.2 0.10
- lgn - = accesses } = seconds.
81| 26 12.4 7.1 0.14

Table 3.5 summarizes the calculations made throughout this section for various
implementations. We assume that n=100M=108 and that sistrings start at each byte.
For timing, we assume a disk with 20ms expected seek time and 1us transfer time
per byte. The text pages are 4KB where applicable. The I/O buffers are 4KB for Pat
arrays and 1KB for both OrTries and PaTries. The “best” and “worst” refer to the
five measured texts.

Expected Trie Sizes Expected # Disk Accesses
Implementations (bytes) Average Maximum
best worst best worst best worst
2 pointers 10.7n 11.2n 413 96.7 88.0 367.9
1 pointer 5.8n 6.3n 20.7 28.3 44.0 184.0
Pat array 3.3n 45
OrTrie 4.4n 134.1n | 146 2717 | 2744 73626
PaTrie 2.6n 3.1n 5.2 7.1 11.0 46.0

Table 3.5: Binary Trie Comparison

In this section, we have determined formulas for various trie performances. Each
formula uses one or two of the four trie parameters, i.e., average trie depth A,, trie
height H,, total trie node S, and average skip length. We used statistics from actual
text to fit these parameters. In §3.4, we shall show experiments on PaTries for these
texts and demonstrate that the fermula for trie size has an error < 4%.

3.3 Text Trie Construction

We consider texts that have no changes, or low update frequency such as historical
data and dictionaries. For this type of texts, it is much more efficient to add all
the data at once than, say, inserting sistrings by their text order (sce §2.4.3). The
problem is how to sort numerous and extremely long sistrings. But first, we give an
algorithm to handle small changes to a text.



CHAPTER 3. EXACT TEXT SEARCHING 47

3.3.1 Dynamic Text

We start with an algorithm that builds or updates PaTries dynamically. The example
of Figure 3.3 shows the insertion of a at start 7 of there! to give there!a. The new
PaTrie is shown in solid lines, and the old, where it differs, in dashed lines. The new

start, 7, is lexicographically between starts 6 and 5, but shares a subtrie with starts
5 and 3.

Text t h - r e ! a
Start 1 2 3 q S [ 7
ASCIY Code 01110100 01101000 01100101 01110010 01100100 0010000} 0110000]

11}
0{6} 1{1}

- 1{0} 1{1}

logn 13 1/ @042l 044) ofn
'o(s} 0(3} | 03} “07{3}!

L

Figure 3.3: Updating PaTrie

We see that while the positions of the entries may be altered within their levels,
or may change levels, the changes to entries are localized. In the example, we have
changed the node 1{4} to 1{0}, have moved down the nodes below it, and have
inserted a new level for the new leaf and internal node. Algorithm 3.1 shows the
procedures for sistring insertion and deletion.

If a new text is added to anywhere but at the end of the old text, the starts will be
out of order, or many starts will have to be changed (but only by a constant offset).
This ceases to hold, however, if the starts point to pages rather than to byte locations.
In that case, text can be added to a new page without changing pointers in any old
text page. Thus, all insertions cause only local changes.

Another problem of inserting a text anywhere but at the beginning of the old text
is that it changes sistrings before the insertion point (sistrings are suffixes). To insert
at arbitrary position, we must first find a unique sistring before this position: this
sistring will distinguish all preceding sistrings from each other. Than we delete the
text from the unique sistring to the insertion point, and prepend this deleted text to
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Algorithm 3.1 Text Trie: Inserting and Deleting

Procedure Sistringlns( Start:integer; Text:siring: Var T:PaTrie);
Var Xnode, Pnode, Cnode : Anode;
begin
Xnode := a leaf node of T by searching Text[Start]; /* search for sistring */
if Text[Start] = Text[Xnode.start] then
error; /* sistring already in T */
prefix := (longest common prefix of Text[Start] and Text[Xnode.start]);
Xnode :» a node of T by searching prefix;
Cnode.start := Start; /* create a new leaf node */
Pnode.skip := length(prefix)-(height of Xnode's parent);
if (Xnode is an internal node) then
Xnode.skip := Xnode.height-length(prefix); /* modify skip */

insert Pnode into the bit-string before Xnode;
shift subtrie(Xnode) entirely down one level; /* replace subtrie(Xnode) by */
if Text[Start+length(prefix)+i] = O then

ingsert Cnode before Xnode; /* Cnode,/Pnode\ Xnode */
else
insert Cnode after Xnode; /* Xnode/Pnode\ Pnode */

end;

Procedure SistringDel( Start:integer; Text:siring; Var T:PaTrie);
Var Xnode, Pnode, Cnode : Anode;
begin
Xnode := a leaf node of T by searching Text[Start]; /* search for sistring */
if Text[Start] <> Text[Xnode.start] then
error; /* sistring is not in T */

if (Xnode is the Root of T) then

T := empty; /* Xnode is the only node of T */
e¢lse

Pnode := (The parent node of Xnode);

Cnode := (The sibling node of Xnode) ; /* Xnode /Pnode\,Cnode */

Cnode.skip := Cnode.skip+Prode.skip+1;

delete Xnode and Crode; /* replace Xnode,Pnode\,Cnode by */

shift subtrie(Cnode) entirely up one level; /* subtrie(Cnode) */

end;
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the text to be inserted. A similar consideration applies if the text to be inserted is in
fact a replacement for some part of the original text.

Fortunately, we do not have to search far for unique sistrings. Because a unique
sistring maps from the root to a leaf of the trie representing the text, a unique sistring
will start no earlier than the trie height, H,, before the insertion point. We expect
to search only A, bits, the average trie depth.

To build a PaTrie by updating or incrementally inserting sistrings is prohibitive
(see §2.4). Essentially Algorithm 3.1 takes A, /8 accesses per insertion Xn insertions
X, say 20ms per disk access, or

nlgn 20 x 1072 x{ 1.8 } ={ 138 }days
8 3600 x 24 2.6 200

I/O time to build a PaTrie index of n=100 million sistrings.

3.3.2 Sistring Sorting

As we have demonstrated in §2.4.3, random disk access is minimized when tries are
built as a whole. Algorithm 2.3, thereafter, is provided to build a PaTrie from a
List(K,). Here, K, is a set of n sistrings and List(K,) is a list of sorted sistrings
alternatively witk height information. We now show how to generate the List(K,,)
from a given text.

. To sort numerous and extremely long sistrings, we have to seek for external sort
techniques. In general, an external sorter will: (1) chop data into pieces, (2) sort each
piece inside RAM (called initial run}), and (3) merge all pieces together. RAM size is
critical since the larger the RAM capacity is, the fewer the initial runs will be, and
the less the sorting time.

Sistrings are too long to be stored entirely inside RAM. We can only sort starts.
To do this, RAM must be divided to hold both starts and one segment of the text.
We create an initial run by internally sorting the starts corresponding to the text
in RAM. If we fit n' starts (about 3 bytes each) into RAM together with the text
segment (n'xN/n bytes), for 20MB of RAM, the expected run lengths will be
20 5M sistrings if N=»n=100M 20 |, ..
} = { } initial runs.

3+ N/n 2.2M sistrings if N = 6n= 600M
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Replacement selection [Knu73] can generate runs twice the size of RAM. However,
to sort sistrings, we have to store both text and starts in RAM. Our experiments show
that the extra text in RAM is 4 times larger than for quicksort, and that leads to
initial runs of twice the number of starts in RAM. (These factors, 4 and 2, deviate by
less than 1.5% over all our texts.) The number of initial runs is 18 for N=n=100M,
and 68 for N=6n=600M. This is comparable to quicksort for N=n, but substantially
worse for N/n=6. Our experiments also confirm Knuth’s assertion [Knu73] that
quicksort is three times faster than the heapsort used in replacement selection. So,
we generate initial runs using quicksort on 2 fixed amount of text held in RAM. The
next two sections show how to merge the initial runs.

Prefix Sort
Our first approach is simple, but requires a very large temporary workspace. In the

next section, we give a method which is better in both space and I/O time.

At the output time of initial runs, we append to each start enough bytes from the
text to distinguish it from any other start. Let us call this H bytes. If all sistrings
are distinguishable by these H bytes, the merge procedure simply reads the output
of initial runs, calculates the heights at the same time by comparing neighbours, and
outputs List(K,), the starts and heights. For H=50B and N=n=100M, this method
takes (H+41gN)n = 5.3GB temporary storage space.

The time required to do the merge and the height calculation is the time to read
the initial runs and write the output. All reading and writing can be done sequentially.
If using buffers of 64KB, the merge procedure costs

n 3 204-64
@?(H +§‘gN) X 3600 % 108 — 22 houss.

The corresponding quantities for N=6n=600MB are 5.4GB and still 2.2 hours.
However, 50 bytes does not fully resolve all sistrings. From the results of cumulative
PaTric depth in §3.2.1, we have the following percentages of sistrings unresolved by
H=50: 1% for both Shakespeare and Bible, 8% for unix, 14% for C Programs, and
42% for Webster. In the best case, we must do direct access to 1% of the text, which
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is one million accesses at, say 20ms each, or 5.6 hours. Thus, to generate List{K,),
this method takes ten hours of I/O times (over a day for N/n=6).

Counter Sort

To avoid re-reading the text during the merge phase, Gonnet et al suggested an
algorithm [GBYS92] to include counters in the initial runs. The counters tell the
number of starts in all previous runs which are between two adjacent starts of the
current run. We extend their method by including height information, two per start,
to give the positions of the bits that distinguish the start from its predecessor and
successor in the current and all previous runs.

This changes the above run-size calculations. Starts are lg/N bits and heights

cannot exceed lg8N. For N=n=100M, they take about 10 bytes. Thus, a 20MB
RAM will hold

20 1.8M sistrings if N=n=100M 5 | . ..
—_—= o . = initial runs.
10+ N/n 1.3M sistrings if N'= 6n= 600M 7

The workspace to hold the initial runs will be 1CB for N=n=100M sistrings.
Algorithm 3.2 captures this discussion. We illustrate it for the text thero! (o is

01101111 and is introduced to keep the third initial run interesting). The initial runs

are:
Run 1 094 410

Run2 o 93% , 446
Run 3 0 062 2 656

This is interpreted as follows. The main entries are starts, the subscript entries are
counters, and the superscript entries are heights. Run 1 has no counters. Thus, in
run 3, the first counter, o, tells us that no start in any previous run (1 or 2) points
to a sistring sorting before it is pointed to by the first start, 6, in run 3. The second
counter, 2, in run 3, tells us that two sistrings come between those at starts 6 and 5
(they are at starts 3 and 2).

The height, 2, after 6 in run 3, is the bit position distinguishing the sistring at 6
(1) from that at 3 (e), its successor. The height, , before 5, distinguishes the sistring
at 2 (h) from that at 5 (o). The height, 4, after 5, distinguishes o at 5 from r at 4.
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Algorithm 3.2 Counter Sort: Generating Initial Runs

Type Run = Array [J of Record
Counter, Start :Integer;
Lheight, Rheight : Integer; /* Max Heights */
End;
Procedure Countlnitial{ Text:string; R:file of Run);
Var StartBuf : Run;
StartBase, CurrRun : inieger;
begin
StartBase := 0;
CurrRun := 1;

while StartBase < N do /* sort until no more text */
read( Text, TextBuf); /* read in one piece text */
for i := 1 to Length(TextBuf) do
StartBuf[i].Start := i; /* initial starts */
QuickSort( StartBuf); /* sort starts in lexicographical order */
Let S; be the sistring pointed by StartBuffi].Start;
for i := 1 to Length(TextBuf) do /* initial counters */

StartBuf[i] .Counter := 0;
StartBuf [i] .Lheight := Height(S;, Si+1);
StartBuf [i] .Rheight := StartBuf[i].Lheight;

tor (each sistring Textfx] in run [1..CurrRun-1)) deo /* scan Text */
find i such that /* search position of Textfx] */
(Si—1 < Text[z] < S;);
StartBuf [i] .Counter := StartBuf[i]+1;
StartBuf [i] .Lheight := Max(startBufli].Lheight, Height(Text[x],5;));
StartBuf [i] .Rheight := Max(startBuffi-1).Rheight, Height(S;-1,Textfx]));
StartBuf [i] .Start := StartBuf [i].Start+StartBase;

write( R, StartBuf); /* output one initial run */
CurrRun := CurrRun + 1; /* prepare for the next run */
StartBase := StartBase + Length{TextBuf);

end;
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Algorithm 3.3 Counter Sort: Merging Initial Runs

Procedure CountMerge( R:tile of Run; L:List(K,));
Var OutSoFar, DutPosi :Axray [1..TotalRun] of integer;
Height, Start, LastHeight, CurrRun :integer;
begin
OutSoFar := Q;
OutPosi := 1;
LastHeight := 0;
for i := 1 to n do /* for each of n starts */
CurrRun := TotalRun;
j := DutPosifCurrRun];
while CurrRun>1 and R[CurrRun] [j}.Count<>QutSoFar{j] do
CurrRun := CurrRun + 1; /* run that has the start to be output */
j := OutPosi[CurrRun];
Height := Max( LastHeight ,R[CurrRun] [i].Lheight);
Start := R[CurrRun] [j].Start;
LastHeight := R[CurrRun] [j].Rheight;
CutSoFar := QutSoFar + 1;
QutSoFar [CurrRun] := 0O;

OutPosi[CurrRun] := j + 1; /* prepare next output */
Write( L, Height, Start); /™ output one height-start pair */
Write( L, 0); /* final output: 0,sy, k), 82,...s Rn1, 30,0 */

end;

We see that each run considers only the runs before it. To do this, it must scan the
text for all previous runs, that is, from the beginning to the position corresponding
to the present run. In all, this is (# runs)/2 or 28 passes for N=n=100M, and 39 for
N=6n=600M.

The cost of geﬁerating the initial runs is dominated by these passes of the text
file. With 64KB text buffer, it costs

(0+64)N f28] _ [ 10hours if N=n=100M
64x36x108 " | 39 [~ | 8.5hours if N=6n=600M |

Algorithm 3.3 merges the initial runs with counters and heights in a single pass.

The merge phase looks at the first entry in each initial run. Continuing with our

example, we see that the merge picks the start 6 because of the ¢ counter before it

. and the fac: that of the two entries with a zero counter, the 6 has the larger run
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number. The height, 2, is also output. It then must look for two starts from earlier
runs, because of the counter, 2, in run 3: it takes 3% from run 2, because of the counter
o before it; and 2 from run 1 becaunse the counter ; in run 2 makes us look in run 1.
The two star:s nceded by the counter 2 in run 3 are now forind, so 95 is output from
run 3. The one start needed by the counter ; in run 2 has also been found, so we
output ¢ from run 2, then finally 1 from run 1. The merged output is 62352654461,
Writing and reading the workspace of 1GB takes about 44 minutes assuming
buffers of 64KB. This does not add much to the time required to sort the starts.
The costs in time and space are summarized in Table 3.6 for a N=100MB text,
assuming 20ms seek iime and lus transfer time per byte. For a text of N=600MB
but n=100M sistrings, such as the New OED, the time for the counter sort will be
39 hours. Let us compare it with the statement of Gonnet et al [GBYS92] that the
New OED index can be built “during a weekena’. What is new here is that our
version includes height information and thus builds the faster pointerless PaTrie, not

Just & Par array.

Prefix Sort Counter Sort
_ Time Space Time Space
Initial Runs 2.2 hours 5.3GB 1.0 hours 1.0GB
Merge 7.8 hours 44 minutes

Table 3.6: Sorting: Time and Space

3.4 Experimental Results

In §3.4.1, we partially check the PaT¥ie size formula (see §3.2.2) with actual indices of
1, 2, and 4M sistrings extracted from each of the five texts. We give calculated sizes
for the purpose of comparing with OED. In §3.4.2, we compare the calculated access
time against the measurement time. We find a factor of 2 for indices of one million
sistrings. The discrepancy is due to the CPU time (on our relatively slow NeXT)
which the formula does rot take into consideration. We don’t know the CPU time
for indices of 100 million sistrings. But we can expect the factor is the same as the
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measurement, and so we use them to compare with OED. In §3.4.3, we combine the
measured time with the calculated time to extrapolate construction time for PaTries
for comparing with OED. All the measurements were carried out on a NeXT ( M68030,
28MB RAM, and 25MHz clock) with two disks (13.5ms average seek time, and 0.5us
data transfer per byte).

3.4.1 Text Trie Sizes

Instead of Huffmann encading for skip information, which requires skip distributions,
w¢ propose two simpler methods. Method 1: skip counters are all large cnough to
hold the largest skip. For example, according to Table 3.2, the largest skip length for
Shakespeare is 11 bits. As we have seen, more than 80% of skips are less than 16 (4
bits), and (11—4)n = Tn bits are wasted. Method 2: skip counters are all 5 bits long.
When a skip length is larger than 5 bits, we set the counter to all 1s, and allocate
another skip counter to hold the largest skip. The skip columa of Table 3.7 shows the
average length of this method on the measured texts. As compared with Huffmann

method shown in Table 3.2, this method increases the couster size by no more than
two bits.

N=n=xIM N=a=2M Nenmd4M N=100M
Index Tric Size | SKp
O} | Cacolaied | Measured | Culcolated | Memsored | Caicuimed | Messured | Calculsiod

Shakespexre'sWoks | 572 | 197MB | 199MB | 418MB | 421MB | 886 MB | 895MB | 2840MB
King James'Bible | 627 | 203MB | 210MB | 432MB | 434MB | 9.04MB | 925MB | 2009MB
UnixManual Pages | 7.35 | 217MB | 2.12MB | 459MB | 466MB | 9.68MB | 1008 MB | 3044MB

C Programs 860 | 233MB | 239MB | 49%0MB | 457MB | 1030MB | 1059MB | 3200MB

Webster Dictionary | 991 | 249MB | 247MB | s23MB | s2oMB | 1096MB | 1095MB | 3364MB

Note:  Cakulaied: nx(2+] 1g(NWAK hSKipV8 and exchuding paging overhead =2%;

Table 3.7: PaTrie Sizes

Table 3.7 shows PaTrie sizes as measured and as calculated using the formula in
§3.2.2. The discrepancy does not exceed 4%. We also show the calculated size for
texts of 100M sistrings, one sistring per byte: we have not built indexes of this size.
For both implementation and calculation, text and index pages are 4KB each.
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3.4.2 Search Times

Table 3.8 shows the successful and unsuccessful search time as measured for each of the
five text tries. It also shows the successful search time as calculated. Unlike successful
searches which always terminate at the external nodes, unsuccessfil searches may
stop at the internal nodes. The internal nodes are closer to the root than the external
nodes. Therefore, unsuccessful searches are faster than successful searches. This was

confirmed by our measurements. There is no analysis for unsuccessful searches.

N=n=1M N=n=100M
Index Search Time
Measumed Measured Calculated Factor Calculated
Webster Dictionary 10243 116.10 56.26 206 79.54
King James® Bible 115.58 121.40 62.08 1.96 87.30
C Programs 118.12 12333 62.08 199 89.24
Shakespeare's Works 116.72 12567 65.96 191 93.12
Unix Manual Pages 144,40 14545 75.66 192 110.58
Unsuceessful Successful Search Time (ms.)
Notc:  Calculated: (An/ 8)% {135 ms. +4*0.5ms. ) = 1.94 X Ay (ms.);

Table 3.8: PaTrie Search Times

Table 3.8 shows a discrepancy factor of 2 between the measured time and the
calculated time. Our trie method requires substantial CUP time for bit masking
which is not included in the formula of §3.2.2. We expect the discrepancy factor will
remain the same for larger indices.

3.4.3 Construction Times

Table 3.9 shows the costs of PaTrie constructions by the two sorting methods outlined
in §3.3.2, the prefix sort and the counter sort techniques.

The first part of the table shows the times for sorting 4M sistrings, starting at each
byte. We scaled down RAM size to 28MBx4/100 = 1.2MB so that we can assume
28MB RAM when sorting 100M sistrings. The prefix sort takes 248MB workspace
and running time ranges from 35 minutes (Shakespeare) to 1.83 hours ( Webster). The
counter sort needs a smaller workspace of 96MB and tighter execution time, between
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(1]
bl |

fodex Construcion Tme | Shakespeare | Bible | UnixMan | CProgam | Webser | Calculnted
Prefix Sort (minutes) 35 37 52 80 110
Counter Soct_(hours) 54 54 57 55 53 012
E:;"_":’l‘f&';? Shakespeare | Bible UnixMan | CProgram | Webster | Calcutated
Prefix Sont(hours) 177 187 263 404 $5.5 22
Counter Sont (days) 140.6 1406 1484 1432 1484 0.04

Table 3.9: PaTrie Construction Times

5.4 and 5.7 hours. The calculated times based on the formula of §3.3.2 serve only as
loose lower bound since CPU time such as bits comparing and counter setup are not
counted.

The second part of Table 3.9 shows extrapolation for 100MB texts, assuming prefix
sort algorithm takes ¢,n lg n time and counter sort algorithm takes cn? time, where ¢,
and ¢ are constant coefficients. The extrapolation tells that, to sort 100M sistrings,
the predicted times for prefix sort range from 18 to 56 hours with an overhecad of
5.3GB, and the predicted times for counter sort are about 5 months with only 2.4GB.
However, the counter sort may not be impractical if we had a computer wkich is 50
times faster than our NeXT because the predicted I/O time is quite small.

3.5 Other Trie Searches

In this section, we shall examine other trie algorithms [BY89, BYG89, GBYS92, ST93]
for exact text searching. Except for the k longest common substring search, all these
algorithms have done before. We mention them here to skow that they can also be
done by our method. For simplicity, we shall mainly use the FuTrie structure, which
differs from OrTrie or PaTrie structures only in implementation matters. Let K, be
a set of n strings, which can either be independent of keywords, or be sistrings from
a text. We assume a finite alphabet size.
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Keyword Search

Starting at the root, we search FuTrie(K,), the FuTrie structure constructed over
K,, by following the pattern string. If the search ends at a leaf node, the pattern
exists. Otherwise the search fails. This search requires O({) time in the worst case,
where ¢ is the length of the pattern.

We can do better when searching for a set, Py, of m pattern strings. The search is
equivalent to superimposing FuTrie( P, ) with FuTrie{ K,). Only the patterns whose
leaf nodes overlap with the leaf nodes of FuTrie(K,,) are in K,,. This search requires
O(m) time in the worst case. Both algorithms are independent of n, the size of K,.

Prefix Search

This is to search K, for strings with a given prefix. The search is the same as the
keyword scarch except that it can be terminated at an internal node. All the strings
inside the subtrie of the internal node are the answers. This search requires O({+k)
time in the worst case, where £ is the pattern length and k is the answer size.

In general, we can search for a set of prefixes. Let P,, be a set of m prefixes specified
by the prefized regular expression [BYG89). We superimpose the FuTrie(P,,) with
FuTrie( K, ). Only the strings whose root-to-leaf path overlaps with the leaf nodes of
FuTrie(P,,) are in K,,. This search requires O{m+%) time in the worst case.

Regular Expression Search

We first construct a DFA (or a NFA) machine for a given regular expression, and
then simulate the automaton along with a depth-first search of FuTrie(K,,). For each
trie node which associates with a final state, we accept the whole subtrie and stop
searching down that subtrie. Since this algorithm does not need outgoing transitions
for final states, it takes sublinear search time or average [BYG89).

Proximity Search

This search is to find all places where one string is at a fixed (given by the user)
number of characters away from the other string. We search FuTrie(K,) for the two
pattern strings, and then sort the two answer sets by text position (starts). The final
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answers are obtained by merging the two sorted sets!. Let k; and k; be the respective
answer set sizes, this algorithm requires O(k Igk; + ko lgks) time. Better solutions
can be found in {GBYS92].

Range Search

This is to search A, for all the strings within a range of two pattern strings. We search
FuTrie( K, ) to find the search paths of the two pattern strings, and then collect all
the subtries between (and including) the two search paths. This search takes Q(f+k)
time in the worst case, where ¢ is the maximum string length of the two patterns and
k is the numbers of answer strings.

The Most Common Substring Seaich

This is to search a text for the most commonly used string, e.g., find the most common
word of a text. We build a FuTrie over every possible sistring of the text, and add
a counter to each internal node to indizate the size of its subtrie. To find the most
common word is equivalent to searching for the largest subtrie whose search path
begins with a space and ends with a second space. This can be achieved by a simple
traversal of the FuTvie which takes at most O(n/k) time. Here k is the number of
words found in the text [GBYS92].

The Longest Common Substring Search

When K, are keywords, we are searching for the longest prefix shared by two key-
words. When they are sistrings starting at characters, we are searching for the longest
repetition of the text. This search is equivalent to finding the lowest internal node
(within a subtrie) of OrTrie(K,). By adding an extra bit to each internal node to
indicate which side has the tallest subtrie, we can find the lowest internal node in
O(H,) time in the worst case, where H,, is the height of OrTrie(K,).

However, it is not necessary to keep the extra bit. Since our tries are organized
by levels, we have no difficulty in finding the lowest internal n=1::s. By scanning the

I exact locations are not maintained, we necd subsequent examination of each matched page.
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bit-string in reverse, we can walk our tries from leaves to the root. We shall not
claborate on the algorithm in this thesis.

In general, we can use tries to solve the k longest common substring problem. The
algorithm can be described as follows. (1) Build an OrTrie over all possible sistrings
of the k strings. (2) Color the trie nodes. We paint an internal node black if its subtrie
contains sistrings from each of k strings. Otherwise we paint it white. (3) Find the
lowest black node. This a:gorithm tages O(n) time to color and search the OrTrie.
To our knowledge, this is the first algorithm of its kind.

3.6 Summary

We finish this chapter by comparing our text tries with three other index methods
for exact text searching: signature files, inverted files and Pat arrays. Signature files
[FC87), use hashing techniques and are 10% to 20% of the text size. They have small
storage overhead, but require linear search time. Furthermore, they may return some
answers that do not match the query.

An inverted file [Knu73] is a sorted list of keywords with pointers pointing to
the text. The storage overhead of inverted files may vary from 30% to 100% of the
text size depending on the data structure and the number of indexed keywords. The
search time for keywords is logarithmic. Similar performances can be achieved by
Par arrays [GBYS92). However, Pat arrays have the advantage over inverted lists
in efficient searching of substrings. In such a case, the indexes have 340% storage
overhead.

Our text tries are smaller than Par arrays. Trie methods can be used in other
searches as we have shown in §3.5, which are either difficult or inefficient over inverted
files or Pat arrays. More importantly, our tries take much fewer random disk accesses
than Pat arrays. (Minimizing random disk access is an especially crucial issue when
using optical disks, which have very slow random access time.)



Chapter 4

Approximate String Matching

In this chapter, we shall use tries to solve the k differences approzimate string match-
ing problem. We shall focus on dictionary lookup related applications, such as spelling
checkers, in which one searches a keyword list or a dictionary for the pattern string
which may have k (k>0) spelling errors. If k is very large, say larger than the longest
keyword, any keyword qualifies as a match since every letter can be a mistake. Ob-
viously, this is not an interesting problem for spelling checkers. Damerau [Dam64)
found that 80% misspellings are single errors, i.e., either a letter extra, a letter miss-
ing, a letter wrong, or two letters reversed. In other words, with an approximate
search of k=1, a spelling checker can find the right keywords for 80% of misspellings.
We restrict the approximate search to few mistakes, say & < 3.

This thesis is primarily on searching bulk data on secondary storage. However, our
proposed trie structures work also with small data. As a result, we do not illustrate
in this chapter with large data.

4.1 String Similarity

The degree of string similarity is often measured in terms of the minimum edit dis-
tance — the minimum number of edit operations to change one string into another.
Finding the minimum edit distance is an optimization problem and is often solved
by the dynamic programming technique. In the next two sections, we will give a brief
introduction to edit distance and dynamic programming.

61
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4.1.1 Edit Distance
Minimum edit distance [WF74] (or Levenshtein distance [Lev66]), D(Pn, W), is the

minimum number of mismatches between the pattern string Pn=pips...pm and the
target string Wy=w,ws...w¢ over an alphabet £. A mismatch is defined as: (1) a
symbol in W corresponds to no symbol in P, (2) a symbol in P corresponds to no
symbol in W, (3) a symbol in P corresponds to a different symbol in W, or (4} two
adjacent symbols in P correspond to two reversed symbols in W. Insertion, deletion,
substitution and transposition are four corresponding edit operations to revise the
mistakes.

Formally, our k& approximate searching problem is to find strings in some set, K,
of n strings such that they have at most &k mismatches, or are the best match for the

pattern P. That is,
(1) [W|WeK,.AD(P,W)<k],and

(@) [W|W € Kn AVweex, (D(P,W') 2 D(P,W)) ].

4.1.2 Dynamic Programming

Minimum edit distance can be recursively defined as follows:
f

00 ifi<0Vji<O
i+j i=0Vj=0
pEW) =y [ DT
min | PE-6Wi)+1 £i>0A;>0
D(P;y,W;_1) + di;
\ D(Pi—2,Wi_2) + dic1j+dij-1 +1

Here d;; = 0 if p; = w;, or 1 if p; # w;, and py = wy = ¢.

In order to find the minimum distance, we need to invoke D four times with
both subscripts decreased by no more than two. Hence, a brute-force evaination
of D(Pn,We) must take O(2™"m0) time. However, there are only mx¢ possible
D(F;,W;) for 1<i<m and 1<j<{f. The dyramic programming algorithm [Sel80]
evaluates D(P,,, W) by storing every possible D(P;, W;) in a mx£ table. Table 4.1
shows a 2x3 dynamic programming table for P=ab and W=bbc.
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¢ u=b wr=b wy=_c

Wy = é b & ¢
=6 0 T 3 3 _, e[0Ji2]s
p=a 1 D(P, W) | D(P,Wy) | D(A,W;) a{l]1[2]3
pe=bl 2 DB, W,) | D Wy) | D(P. W) A HRE

Table 4.1: Dynamic Programming

Furthermore, it is not necessary to evaluate each of mx € entries. Ukkouen {UkkS9)
proposed an algorithm to reduce the table evaluations. His algorithm works as follows:
Let C; be the maximum i such that D(P;,W;) < k for the given j (C;=0 if no
D(P;,W;) < k). Given a Cj-,, compute D(P;,W;) up to ¢ £ C;._;+1, and then sct
C; to the largest ¢ (0< i < Cj_1+1) such that D(P;,W;) < k. Chang [CL92] proved
that this algorithm evaluates O(k?) expected entries. As shown in Table 4.2, for
P=adfd and W=acdfbdf of 4x7=28 entries, Ukkonen’s algorithm evaluates only 15
entries when k=1.

¢ a ¢cd f b d f ¢ a ¢ d f b d f
d[ONLIT2[3]4[5]6]7] sfOf1[2[3[4[5[6]7
e[1([0]1]2]314]|5](6 afl1ffo[1]273(4
dizif1i1[1[2(3[4|5! = d[2( T |1 [1]|2]3
fl3z12121112]|3]4 fl3 22112
d[43]3]21212]2]3 dl 4] 2

Co Ci C; C3 C;, Cs Cg C7
Taole 4.2: Ukkonen's Cutoff

Initially, we have Cp=1. We evaluate the first column up to row Cp+1=2. The
largest row such that D{P;, W;)<1 is 2, i.e., C;=2. Therefore, we evaluate the second
column up to row C)+1=3. The largest row such that D(P;,W;)<1 is 2, i.e., Co=2.
Therefore, we evaluate the third column up to row C,+1=3, and further to have
C3=2, C4=3, and Cs=0. Cs=0 indicates that it is impossible to change any prefix of
adfd to acdfb in less than one operation. In other words, we get D(Py, W7)>1 for
sure. We need to evaluate more entries only if we want to know D(FP;, Wr).

In the following sections, we assume all keywords end with a unique end-of-word
symbol, e.g., the null symbol, so that no keyword in a dictionary is 2 proper prefix of
another keyword. All keywords will be pairwise distinguishable.
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Figure 4.1: Dictionary Trie

4.2 Approximate Searching

Figure 4.1 shows a dictionary trie constructed over a set of six keywords. To make our
discussion simpler, we usc |E|-ary tries, where |Z] is the alphabet size. What we shall
show is that the & approximate searching can be carried out by a depth-first traversal
with cutoffs on the dictionary trie. The search will maintain a dynamic programming
table during the traversal, and evaluate one column of the table per trie node. The
result of the evaluation will tell whether the search should continue or the traversal
should be cut off. The algorithm is based on the following two observations.

4.2.1 Observations
Observation 1

Suppose we are searching keywords in Figure 4.1 for the best match to pattern string
sane, To find the minimum distances of all keywords from sane, we need to evaluate
six tables, one for each keyword. Table 4.3 shows three of them. For each table,
the entries of the ith column depend only on entries of the j<i th column, or the
first i letters of the keyword. Keywords sample and same have the same prefix sam,
and therefore, share the table entries up to the third column. And so does the first
column of keywords echo, enface, enfold and example, the first three columns of
keywords enface and enfold. In general, given a traversal path of length z, all the
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¢ s a m p l e @ s a m e ¢ ¢ n f.-
o[ 0 J1]2[3]4]5]6] o[O0f1]2[3[4]| o[OI[2]3 -
s{ 1 JJoJ1i213[4}5 sy10]l1] 2713 s{1f1]2
a| 2 fj1]o0[12]3]|4 a|21}0}1(2 al202]2
n| 3 [[2]1}1]12[3]4 n|3 271112 n|3}3]2
e| 4 [i312[2]2]3]3 el4f2|212]1 el4[3]3
column: 1 2 3 4 5 6 1 2 3 4 1 2 3.

Table 4.3: Dynamic Programming Tables

table entries for keywords inside the subtrie are identical up to the xth column.
With a depth-first traversal of the dictionary trie, the observation enables us to
find the minimum distance to each of the keywords. Since each path from the root is
a prefix shared by all keywords inside the subtrie, the corresponding columns of the
dynamic programming tables are identical and need to be evaluated only once.

Observation 11

In the last table of Table 4.3, all entries of the second column are >1. If we are
searching for keywords with k=1 mismatch, we can stop evaluating this table because
for sure the distance between sane and enface or enfold will be >1. In the same
way, after evaluating the fourth column of table sample, we can stop the evaluation
because all entries of the column are >1.

This observation tells us that, if all entries for a trie path are >k, we can stop
searching down the subtrie, because no word in the subtrie will have a distance <k.
This is equivalent to cutting off the traversal of a subtrie when C;=0 (see §4.1.2).

4.2.2 Algorithm

Suppose we have a misspelled word P=exsample and a dictionary trie as shown in
Figure 4.1. We want to find all the keywords with k=1 mismatch. Figure 4.2 shows
some intermediate results of the algorithm.

After evaluating D(P, eck), we find that entries on the third column are all >2.
According to observation II, no keyword W with the prefix eck can have D(P,W) < 1.
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Figure 4.2: Approximate Trie Searching

Since the search is on a leaf node, we reject keyword echo 2nd continue the traversai.
After evaluating D(P, enf), we know, once again, no keyword W with the prefix enf
can have D(P,W) < 1, and therefore, there is no need to search down this subtrie.
We cut off the subtrie and continue the traversal. Since ech and enf share the same
prefix e, we copy the first column of ech when evaluating erf (observation I). After
evaluating the search path 3, we find D(P, example) = 1. The traversal stops when
the subtrie of search path 4, sa, has been et off.

The search algorithm is essentially a depth-first traversal of a trie with cutoffs.
Given a node = in the trie, the root-to-n path, vy ws...w,, is the longest prefix shared
by all strings in SubT'rie(n). If changing wyws...w, to any possible prefix of the pat-
tern costs riore than k, there will be no string in SubTrie(n) that has <k mismatches
with the pattern string. Hence, there is no need to search down to Subtrie(n). A
cutoff happens. Each letter w; (1<j<z) on the path will cause evaluation of the jth
column of the table. We use Ukkonen'’s algorithm to minimize the table evaluations.
Algorithm 4.1 spells this out.

Algorithm 4.1 can also be used to search for the best match (a keyword with the
shortest edit distance). This time, we first set k¥ to a small number, say 5. Each
time we find a better string, i.e., a string with a distance d<k, we replace &k by d. k
decreases monotonically during the search. A good initial & can be the edit distance
to the string that shares the longest common prefix with P. This gua.ranteﬁ that &

. is never too small.
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Algorithm 4.1 Dictionary Trie: Approximate Search

Var T :array [0..m][0..£] of integer; /* DP table, T'[i,0]=i and T{0j]=j */
C :array [0..f] of integer; [*Co=Cl0)=k™/
P, W :string; /* pattern and target string */

k :integer;

Procedure ApproxMatch( n: Anode);
begin
if (n <> nil) then
if (n is a leaf node) then
for each symbol W[j] in the suffix deo
if Dist( j) = O then

return /* more than & mismatch */
output W;
else /* depth-first scarch */
if (n.iLevel is aligned to a symbol) then
it Dist( j) = O then /* W3] is current symbol */
return; /" cutoff */

ApproxMatch( LeftChild( n));
ApproxMatch( RightChild( n));
end;

Function Dist( j :integer) :integer;
begic /* evaluate one column */
C[j] := 0
for i := 1 to Min( C[j-1]1+1, length(P)) do
dl := if (W[j] = P[i]) then O else 1;
T[i,j] := Min( T[i-1,j-1)+d1, Min(T[i-1,j], T[i,j-11)+1);
if (i > 1 and j > 1) then
d2 := if (W[j] = P[i-1]) then O else 1;
43 := if (W[j-1] = P[i]) then O else 1;
T[i,3] := Min( T[4,j], T[i-2,j-2]+d2+d3+1);
if (T[i,j] <= k) %hen /* update C; */
Cl3] := i;

return( C[31);
end;
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4.3 Experimental Results

We have examined the size and search time of the pointer and pointerless trie repre-
sentations in §1.2.3 and §3.2.2. Tries in those sections were used as index structures
in which leaf nodes store pointers pointing to the actual data. Tries in this chapter
are used to organize and store the data set, and therefore, the skipped symbols will
be stored inside the trie structures. In this section, we shall look at the performance
issues of this kind of trie structures.

We built OrTries to store three dictionaries: (1) dictionary used by unix look pro-
gram, (2) Webster dictionary for NeXT, and (3) all words from (1) and (2). Words
were separated by a new-line character. Table 4.4 shows the sizes of the three dictio-
naries and the corresponding OrTries. The search times were measured on a2 25MHz
NeXT with 28MB memory.

Dictionary | #Words (N) | File Size (n) | OrTrie Size | #Nodes (S,) | Depth (4,)

Unix (look) | 25,144 02IMB__| 0.11MB 156.634 | 43.5 (bits)
Webster 234,936 240MB__| LISMB | 1796319 | 623 (bits)

Combined | 240,009 253MB_ | 1I7MB__| 1.821.125 | 61.9 (bits)

Table 4.4: Dictionary and Trie Sizes

4.3.1 Dictionary Trie Sizes

We use OrTrie to store the keyword list. A OrTrie requires two bits per node and
a suffix string in each leaf node. When scanning to a leaf node, the search algo-
rithm needs to know how long the suffix: is. It needs a counter of, in the worst case,
Ng(max-suffix-length)] bits long. We may apply some compression techniques such
as Huffmann encoding described in §3.2.1 to compressing the counters. In the foliow-
ing calculations, we assume to have counters of 1g(average-suffix-length) bits on the
aversge. According to the measurement, the average suffix length is 15.67 bits, the
maximum suffix length is 139 bits, and the total number of trie nodes is S, = 7.16n.
Without considering the overhead of paging OrTries as described in §2.2 (which is
less than 2% of the total trie size), a OrTrie takes:
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139 7 ‘OTS
2 (oxri6+1567+4 NEIOLLY _J 475 worst d e
8 1g15.67 4.24 average

In our implementation, the counters are large e.ough to indicate the longest suffix
length. Comparing the actual trie sizes, as shown in Table 4.4, with the calculated
sizes, we found the the discrepancies do not exceed 3%. If keywords are stored
sequentially without any structure, the three dictionaries take 210KB, 2.49MB and
2.53MB respectively. Qur OrTries compress these keyword lists by 48%, 54% and
54% respectively.

We could also use PaTrie, which requires one bit per node, reduces the total nodes
to 2n—1, but needs additional skip counters. For comparison, we found the average
skip length (5.65), the maximum skip length (119 for Webster) and the suffix length
parameters {the same as for OrTrie) based on the tested dictionaries. A PaTvie takes:

139 .
P (2456544 81 1567y NEIONL) _} 479 worst { e
8 1g5.65 1g15.67 3.72 average

The skip counter plays the most important role in reducing the PaTrie size. If
we simply let each skip counter hold the largest skip length, i.e., [lg119], the PaTrie
size will exceed the OrTrie size.

4.3.2 Search Times

Let p{k) be an average number of columns evaluated before assuring that D{(P,W) >
k. p(k) has two properties: (1) p(k) > k if k is less than the target length, (2)
p(k) = O(k) [Ukk85, CL92].

p(k) relates to the search time. It indicates, on the average, how deep the search
goes. If p(k) is less than the average trie depth, the dynamic programming will take
no more than p(k)[Z]#*¥) expected time, which is independent of the dictionary size.
Here |Z| is the alphabet size. However, this expected worst time is a very loose upper
bound even if for the small & which we are considering. We will measure p(k).

We randomly picked up 14 words from each of the three dictionaries and modified
them by 1, 2 and 3 edit operations based on randomly chosen positions. Thus, we
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had three sets of strings for each dictionary, 14 strings for each set. and at least one
word from each dictionary has 1, 2 or 3 mismatches. We compared each of the strings
with linear search and OrTVrie search of the dictionaries. Lincar search takes the same
amount of I/O time for any k search. I/O time for OrTrie search is expected to be
proportional to the number of accessed trie nodes. OrTrie search reads in fewer nodes
for small & search. The measured results are shown in Table 4.5.

Dictionary 1(3) Linear Time | OrTrie Time | Accessed / Total
Unix (look) 2.17 2.9 (sec.) 1.0 (sec.) 2.7 % (nodes)
k=1 Webster 2.17 279 (s -, 2.2 (sec.) 0.3 % (nodes)
Combined 2.21 28.9 (sec.) 3.0 (sec.) 0.4 % (nodes)
Unix (look) 3.30 4.6 (sec.) 3.1 (sec.) 15.2 % (nodes)
k=2 Webster 3.32 44.9 (sec.) 9.8 (sec.) 2.8 % (nodes)
Combined 3.35 49.4 (sec.) 10.9 (sec.) 3.1 % (nodes)
Unix (look) 4.40 6.6 (sec.) 8.6 (sec.) 41.5 % (nodes)
k=3 Webster 4.50 66.1 (sec.) 28.5 (sec.) 11.6 % (nodes)
Combined 4.49 84.8 (sec.) 29.2 (sec.) 11.7 % (nodes)

Table 4.5: Approximate Search Times

We measured the ratio of the searched trie nodes against the total nodes. The
results show that for k = 1, less than 3% of OrTrie nodes are searched. For large tries,
the ratio is getting smaller, e.g., 0.4% for the dictionary of 240,000 words. Suppose
we have a dictionary of 100MB. The OrTrie representation will shrink the dictionary
to S50MB. 0.4% of 50MB is 200KB. That is to say, to search a 100MB dictionary for
words of one mismatch results in reading 200KB information. For those searched
nodes, most of them are near the trie root and are physically clustered in terms of
trie pages.

In both searches, CPU times increase substantially due to dynamic programming.
OrTrie search gets even worst because of its extensive bit masking. And therefore, it
does not obtain ore Lundred percent speedup for £ = 1. A faster computer should
improve the search time accordingly.
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4.4 Soundex Searching

Spelling checkers based on the minimum edit distance work well for typographic mis-
spellings. However, they often fail to detect phonetic errors. For example, exsample
and example have one mismatch, but nacherlly and naturally have four. This
section will explain how to adapt Algorithm 4.1 to detect phonetic misspellings.
The idea behind the Soundex system [OR22, Knu73] is to reduce strings into a
code in which strings that are sounding similar (in English) will bave an identical
code. The Soundex code consists of the first letter of encoding strings followed by a
sequence of digits (often truncated to 3). Digits are assigned to letters as follows:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
012301200224558012623010202

Zeros are removed and repeated digits 2ie reduced to a single digit. For example, th:c
Soundex code for exsample is €2205149 => €2514 and example is 205140 = e2514.

Let S=p,d,d,..d be the Soundex code for pattern string P=p;ps...pm (€<m). Al-
gorithm 4.1 is a depth-first search of OrTrie. For 2 given node n€OrTrie, the root-
to-n path, wyws...w; (x<m), is the longest prefix shared by all strings in SubT'rie(n).
The Soundex code, wydid,..d; (i<f), is also the longest Soundex prefix for all these
strings. If w dd)..d} is not a prefix of S, then no Soundex code of strings in
SubTrie(n) matches S. We can stop searching down SubTrie(n).

/o\‘
/‘?f. *Q | Pautemn String: | exsample | e2514 |

F -

1 c n X 3 a
Er ¢ ) '@ }? Depth First Swing__| Soundex | _Action
s m Search Path 1; echo o2 reject
A ;5\ Search Path 2 en a5 cutoff
a i P e SearchPath3: | example 62514 accept
Search Path 4: 8 8 cutoff
= [ 0

Figure 4.3: Soundex Searching

Figure 4.3 shows search example for Soundex code ¢2514. When a search goes
down to a leaf node, e.g., ko, we have a complete Soundex code. If this code is identical
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to the pattern code 2514, such as example = e2514, the string will be accepted.
If they are different, such as echo = e2 3 2514, the string will be rejected. When
searching an intcrnal node, we get a partial (prefix) Soundex code, e.g., s. If this
code is a prefix of e2514, we need to traverse down the subtrie to check the remaining
code sequence. If not, we stop traversing down the subtrie since every Soundex code
of strings in the subtrie cannot be equal to the sought Soundex code.

This code is either a prefix of e2514, and therefore needs to traverse down the
subtrie to check the remaining code sequence, or not. For example, s is not a prefix
of e2514. Since every Soundex code of strings in this subtrie is started with s, no
string can be accepted, and therefore, we stop traversing down to this suhtrie during
the search.

4.5 Summary

Tries have been used for a long time as a dictionary structure for exact keyword
lookup. In this chapter, we have expanded the exact trie search to apnroximate
searching and Soundex search. Our trie structure, OrTrie, also compresses the key-
word lists up to 54%. And the search is carried out directly upon the structure
without any decompression operation.

The k approximate search algorithm of this chapter is a combination of the trie
method and the dynamic programming technique. It stores keywords in a trie, and
finds the approximate keywords by deptl-first traversing the trie, and at the same
time, evaluating a dynamic programming table to provide cutoffs of the traversal. The
expected worst time is O(k|Z[*). This search time is independent of the dictionary
size when k < A, the average depth of the dictionary trie. To our knowledge, no
other published algorithm achieves this time complexity.



Chapter 5
Spatial Zooming

In this chapter, we shall propose a trie method to store and display map data. A
major issue in representing and displaying large quantities of map data is how to
change resolution, or level of abstraction, or remoteness, or zooming. The proposed
trie structure permits displaying a map at any desired level of detail after rcading
from the file only the amount of data to be displayed. It gives a continuous zoom,
say, from the full details of a digital map of many gigabytes of data, up to a mere
outline, while storing only one copy of the map.

We assume map data are sequences of coordinate vectors. This chapter will focus
on displaying two dimensional maps. However, the method under discussion works
for other pictorial data, such as points, minimal bounding rectangles, triangulated
polygons, cubes, k dimensional line segments, etc. Chapter 6 will discuss spatial data
queries in general.

This chapter uses FuTrie only for spatial zooming because (1) it is the simplest
trie and (2) it gives the exact data requested. Both OrTrie and PaTrie give much
better compression (see §6.4.2). OrTrie will be used in Chapter 6 for spatial searching
and other applications. PaT¥rie, however, does not improve data compression much
further and requires a more complicated construction procedure. We do not consider
PaTrie in spatial applications. This chapter is an extended version of (MS94].
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5.1 Map Data Representation

5.1.1 Map Relation

A map contains many objects, both simple and complex. Simple objects are point
data, such as houses, monuments, and elevations. They may have associated names,
descriptors or values. Complex objects are collections of points, such as contours,
coastlines, rivers, roads and boundaries. Points may be connected by cubic splines or
gquaadratic segments, but are usually linked by straight edges. We are concerned with
non-point data, i.e., the “complex objects”.

We assume a map is represented as a set of edges. We think of it as a relation
MAP(Priority, P,, P.). Attribute Priority is an integer and is used to distinguish
map features in terms of importance. For example, major highways are more impor-
tant than unpaved roads, and 100-foot contours are considered more important than
10-foot contours. More important features are given smaller priority numbers. Larger
priority numbers are used in such a way as to include the smaller numbers, so that
when low priority features are selected, the important ones will also be displayed. We
do not always show priority, and when we do, we represent it as m bits, p;—mPo—m-..Do-

Attribute P, and P, are two k-dimensional points, and can be interpreted as two
ending points of an interval (k=1), or an edge (k=2), or a line segment (k>2), or
two diagonal points of a rectangle (k=2), or a cube (k=3), etc. We assume that each
coordinate is an integer of d-bits long.

5.1.2 Dimension Doubling and Zoom Tries

We transform each (P,, P,) into a point, called geometrical key. A geometrical key,
K = p1ps...paka, is a bit string formed by interleaving bits of the 2k coordinates. For
example, when k=2, the coordinates of two vertices can be derived as:

P, = (3,y) = (1iT2...Ta,N1¥2--Y4) = (P1P5Ps---Pid-3, P2PEP10---Dad—2)

P = (@¥) = (15T %-¥2) = (PapiPu1..Pad-1, PaPsPr2--Ped)-
I (x,y) = (111,111) and (z,y) = (001, 010), we have K = 1100 1101 1110 (see
Figure 5.2 (b)). In kd-tree [Ben75], bit interleaving becomes cyclic discriminators. In
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Figure 5.2: Map and ZoomTrie

Z-order [OM84], all points are connected by lexicographical order of their geometrical
keys.

The transformation of a k-dimensional edge to a 2k-dimensional point is called
transformation to parameter space [NH85], T-schemes [SK88], or simply transfor-
mation. For edges, intervals, or rectangles oriented along the axes, it could be
called, more distinctively, dimension doubling [MS94]. There are several approaches
to dimension doubling. We illustrate two of them in Figure 5.1. Given an interval
(P,,P.) = (3,5) at resolution 2® (a), we can represent it as a point (shown as a white
disc) by using the two end points (b), or the start point and the length (c). The
places where intervals can appear are shaded. The dark shading corresponds to the
intervals of zero length.

We shall use the end-point representation, without claiming that it is the best.
For example, the start-length representation usually compresses the data more, and

. occupies the full quadrant. However, other representations differ only in detail.
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A ZoomTrie is a trie built from geometrical keys. Figure 5.2 shows a map (a), bit
interleaving (b) and the FuTrie implementation of Zoom Trie.

5.1.3 Data Resolution

We define edge at resolution 27 as an edge with each coordinate specified to the first
r bits. For example, given 2 2-dimensional edge (P,, P,) at the full resolution, the
corresponding edge at resolution 27 (1 < r < d) is (P}, P]) and

(PuP) = ((1%2-Tay1¥e-Ya), (T170--T4 N¥o-Va)) = (PLFE)

(P PD) = ((t122-Tr, 1¥2--9)s (212520, 9195--80))-

To show an edge (P,, P,) on & display of 2"x2" (1<r<d) pixels, we need to scale
cach of the four coordinates, say z, by ]
?=[exg] = 5=l

Operation |z/2477] is equivalent to removing the last d—r bits of z, or retrieving
the first » bits. This is equivalent to show (P, Pl). Figure 5.3 shows the map of
Figure 5.2 at quarter resolution 21, half resolution 22 and full resolution 23,

® @ ® 00 @ @
Figure 5.3: Zooming by ZoomTrie

To display (P,, P.) at an arbitrary resolution r'xr’ (1<r'<29), we scale x by

"_ r z Yol z r
TENFX 5| T odnen1 X ghee | |_24-ﬂs-‘1]x2ﬂsr'1 '

Since { < (' /2“5"']) < 1, the error of the approximate z” is less than one pixel.
In other words, if we show (PI",Pr"), the error is less than one pixel, where 7" =
d—{lgr’]. We shall only discuss resolution at 2",
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Each (P], Pr) covers a set of edges. For example, a 2-dimensional edge (P,, P,)=
((z,9), (z'¥)) € (P}, F¢) #f and only if

7122..2.0..0 < r < 71707, 1.1, iy . 3:0..0 < y < yive...ye 1.1
S——— ~ v -’ - ~ 4 N pr—

d d d d
2575..200..0 € 2 < 2izh.2l1..1, #4500 < ¥ < yivh..yll..1.
: A Q%2 Ze el ¥ ¥ { ,

d d d d

In general, a k-dimensional edge (P], P7) defines a region W™ = WrUW; UW,,,
where
W, o= glpa...p%._lOO...qs P, < P1P3--Pake-111...1

ied &d
W{ == pops..-pur00..0 < P, < popy...pairll...l
kd kd

W;. = convex hull of W] and W minus W and W[

All edges (P2, P9) € W™ of higher resolutions (¢>r) are not distinguishable at
resolution 2". Furthermore, P? C W} and P? C W]. (P],P]) gives an abstraction,
or a zoom out, or an approximation view of covered edges {for both location and
extension). The higher the resolution (the closer we look), the more precise the view
of these edges. We shall use these ideas and notations in this and next chapters.

5.2 Displaying Operations

Given a M AP relation, we want to display the whole map (1), the map at resolution
27 (2), the map with Priority up to P (3) and a map region inside a rectangle window
W (4). Formally, we are searching M AP relation for:

(1) {(B.P) | (Priority, P,,P.) € MAP},

(2) {(Pr,P7)| (Priority,P,,P.) € MAP A 1<r < d},
(3) {(B,,P,) | (Pricrity, P, P.) € MAP A Priority < P},
(4) {(P,,P.) | (Priority,P,,P.) e MAP A (F,,F)CW}.

In the next two sections, we shall define two primitives: Scan() and Search(), 2s shown
in Algorithm 5.1, for displaying operations.
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Algorithm 5.1 ZoomTrie Primitives: Scan and Search

Procedure Scan( n: Anode; r:integer);
begin
if (n <> nil) then
if (n.ildevel <= m+4r) then /* m is priority length in bits */
Scan( LeftChild{n), 7);:
Scan( RightChild(n), r);
else
output (F7,F7); /* find an edge */
end;

Procedure Search( n: Anode; r:integer; P:predicate);

begin
if (n <> nil) then
if (n.ilevel <= m+4r+1) then /* for each (P!, Pl} € SubTrie(n) */
it —P(Priority) or J(p, P )esubTrie(n)"P(Py, F,) then
Search( LeftChild(n), v, P); /* keep searching down */
Search( RightChild(n), r, P);
elae
Scan( n, 7); /* collect edges € SubT'rie(n) */
end;
5.2.1 Scan

Given a trie node n and a resolution 2" (1<r<d), function Scan(n,r) collects paths
from the root to each node r € SubTrie(n) at level m+4r+1. Since paths of the
top m+4r-+1 levels represent all possible edges of resolution 2" and their priorities,
the function returns all (P7, Pr) € SubTrie(n). For the FuTrie implementation of
ZoomTrie, Scan() collects (P], Pl} without reading any unnecessary bits and more
than one edges which are not distinguishable at the resolution.

With this primitive, we can draw a whole map (1) by invoking Scan( roct, d),
or & map at resolution 2" (2) by invoking Scen( root, r). As shown in Figure 5.3,
Scan( root, 1) for quarter resolution, Scan( root, 2) for half resolution, and Sean{
root, r=d=3) for full resolution. |
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5.2.2 Search

Let n be a trie node and P be a predicate which is either Priority < P or (P,,P,) C
W. Here P is a Priority and W is a rectangle window on the map. Function Search(
n,r,P) collects nodes, say r, such that all (Priority, P,, P.) € SubTrie(x) satisfies
P, and some (Priority, P,, P.) € SubTrie(Parent(x)) does not. In other words,
Search() finds all largest subtries such that all keys within them satisfy P. For each
node z, Search() invokes Scan( z,r) to collect the edges.

We now can draw maps with priority < P (3) by Search( root, d, Priority < P),
or within window W (4) by Search( root, d, (P,,P,) € W). Each Scan{) within a
Search() can be changed to draw at a lower resolution in obvious ways. Algorithm 5.1
shows Scan() and Search().

7y RN /oy 7N

4 \ 4 \ 4 \ \
/

LY

. SubTrie

—_ e = e = -

(a) Feature Priority (b) Map Window
Figure 5.4: Priority and Window Searching

The search operations are illustrated in Figure 5.4. In (a), the top of a ZoomTrie
is shown with paths to subtries of Priority < 2 highlighted. Search() identifies the
two shaded nodes, and Scan() extracts all paths from the two subtries thus found
and passes them to the draw routine. In (b), window W covers 3---2 of the map.
Search() identifies the two shaded nodes and invokes Scan() to draw edges within the
two corresponding subtries.

The window on the map specifies a region which can be described by 2 PR quedtree
[Sam90} or PR-Trie. The PR-Trie has two different leaf nodes: black if the corre-
sponding part of the space is contained in a region of interest; white if otherwise. In-
ternal nodes lead to at least one black leaf and one white node. In fact, the Search()
operation identifies and collects nodes that correspond to the black nodes of the



CHAPTER 5. SPATIAL ZOOMING

oL
=

window's PR-Trie. This operation can be made much faster by superimposing a pre-
compiled PR-Trie on the ZoomTrie, instead of recomputing condition P for every

path. Chapter 6 will give a general discussion on ZoomTrie scarching,

5.3 Experimental Results

Maps used in the experiment are road and contour overlays extracted from 31H1,
“Memphremagog”, 1:50,000, from Energy, Mines and Resources of Canada. The road
map has n=46,313 short edges and the contour map has n=483,063. All coordinates
are 16 bit integers and the maximum resolution is, therefore, 64K x64K. Figurc 5.6
and 5.5 show the road map and the contour map with contours at every 50 fect.
First, we compared ZoomTries with a simple filtering technique which read all
the data but drew only visible edges. That is, after drawing an cdge, it rcad the
subsequent points in the sequence until the displacement was great enough to span at
least one pixel. Then it drew the resultant edge. The data for this simple filtering was
highly compressed, being stored as differentials after the first point in cach sequence.
Table 5.1 shows that ZoomTries also compress the data, but by a factor of about two
less than the simple method. Both drawings are a little slow on our 25MHz NeXT,
requiring waits in the order of minutes. ZoomTrie performs even worse because of
the extensive bit masking operations. Data compression will be examined in §6.4.2.

Simple Filter ZoomTrie
File Size = Drawing Time | File Size Drawing Time
" Roads | 0.22MB 25.4 sec. 0.31MB 93.2 sec.
Contours 1.7MB 112 sec. 3.2MB 957 sec.

Table 5.1: Map Filtering v.s. ZoomTrie

5.3.1 Resolution and Feature Priority

The results in Table 5.1 show ZoomTries in their poorest guise. The drawings in
that case are presented to the full resolution of 64K x64K pixels. We now present
ZoomTries for various resolutions, still displaying the whole map. For the two maps



CHAPTER 5. SPATIAL ZOOMING

Figure 5.6: Memphremagog Contour (at Every 50 Feet) Map

81
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using Zoom Tries, Table 5.2 shows the time required to process the file without actually
drawing it, as well as the total amount of time including drawing. It also indicates

the number of nodes of the trie that are processed.

" Resolution Contour with Priority Road
(pixels) 0 1 2 3 (seconds)

12.1 25.3 56.6 107.3 13.5 | Display+Scarch
512x512 6.2 13.3 28.1 49.0 6.9 Search Only
88K 187K 406K 733K | 103K | Accessed #Nodces
222 46.5 1084 2188 23.1 Display-+Secarch
1Kx1K 12.1 249 56.6 110.1 13.3 | Accessed #Nodes
178K 376K 855K 1651K | 196K | Accessed #Nodces
33.8 711 1685 3516 35.1 Display+Scarch
2Kx2K 21.0 434 99.9 204.5 21.8 Search Only
313K 662K 1544K 3118K | 332K | Accessed #Nodes
45.0 944 2264 476.9 46.8 | Display+Search
4Kx4K 30.7 64.2 1527  320.3 32.1 Search Only
476K 1004K 2374K 4941K | 499K | Accessed #Nodes
88.4 1856 552.1 956.9 93.2 | Display4-Scarch
64K x64K 744 1555 388.0 820.6 83 Search Only
1166K 2458K 5897K 12638K | 1234K | Acceased #Nodes

Table 5.2: ZoomTries at Various Resolutions and Friorities

We see that the ZoomT¥ie is faster than simple filtering for resolutions up to a
megapixel, in the case of the road map (which does not compress so much for the
simple filter), and up to 512x512 pixels in the case of the contour map. We also see
that the contour map, being ten times larger, is ten times slower than the road map.

Table 5.2 also shows the time for various priorities. We have assigned four levels
of priority to the contour map: every 100 feet, every 50 feet, every 30 or 50 feet, and
every 10 feet. These priorities are numbered 0, 1, 2. and 3, respectively. At priority
0, all resolutions are faster than the simple filter; at priority 1, resolutions up to 16
megapixels are faster; and at priority 2, resolutions up to one megapixel are faster.

We do not usually display at more than one megapixel, although we may plot
at 16 megapixels. Figure 5.6 plots the map at resolution 4Kx4K and with contours
at every 50 feet. Figure 5.7 plots the same map but at a lower resolution, 256256
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pixels. It took only 14 seconds to draw the map. Note that zigzag patterns are visible
on the map.

We could also have assigned priorities to the road map, determined by the number
of digits in the route number. Similarly, rivers and coastlines, political boundaries,

ctc. could have been assigned priorities.

5.3.2 Windows on Map

Finally, we built the windowing algorithm, which requires an implementation of search
operation in addition to scan. We picked four square windows about ll—sth of the
map area to represent various data complexities. Figure 5.8 shows one such zoom
window on the bottom left corner of the contour map. The map region was plotted
at resolution 4K x4K and with contours at every 10 feet.

Tablc 5.3 shows the processing time (without drawing) averaged over these four
windows. We see that the larger numbers are jzth of the corresponding results in
Table 5.2.

Resolution Contour with Priority (seconds) Road
(pixels) 0 1 2 3 (seconds)
256x256 1.0 13 1.8 2.3 0.8
512x512 1.0 1.8 30 - 43 1.1
1Kx1K 2.0 2.8 5.3 8.5 14
2K x2K 2.3 4.0 8.0 14.3 1.8
4K x4K 3.3 5.8 11.8 21.8 2.5

64K x 64K 6.3 13.0 26.8 52.0 4.8

Table 5.3: Window Search Times

5.3.3 Extrapolations

The aggregation of all the measurements described above gives the plotting of the
number of nodes against the map resolution, and drawing and processing time against
the number of nodes shown in Figures 5.9 and 5.10.

We see that the number of nodes is initially exponential in the resolution, and then
linear when it passes the trie height. The processing time is linear in the number of
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nodes. We made the lincar regression fit the time data, and obtained
Scan{) alone 0.065 x n + 0.195

Search() and scan() 0.074 x n+ 1.525
where n is total leaf nodes in thousands.

- —
e e - -

Search Time (second)

Accessed Trie Nodes (thousand)
Figure 5.10: ZoomTrie: Search Times v.s. Accessed Nodes

The search time depends entirely on how much data is displayed, which in turn
depends on the resolution and on the priorities selected. The search time does not
depend on the size of the source file. This is just what we would expect. If we
had all 13,000 maps for Canada at 1:50,000, the file would be some 80GB (assuming
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32 bits per coordinate). But if it were plotted at 1l x4K resolution, showing the
kind of detail illustrated in Figure 5.6, it would require the same amount of time
(assuming the same data distribution), i.e.. about eight minutes on our workstation.
By contrast, the same data displayed through a filter would require reading 40GB
(the compression is about twice that of the ZoomTrie), which would take at least six
hours on our machine.

The exponential-to-linear variation of nodes with resolution is also expected. The
resolution is just the trie depth. The upper levels of the Zoom Trie resemble a complete
binary tree, which grows exponentially. After a certain level, most paths will not
bifurcate, so the number of nodes grows linearly.

For our 16 bits per coordinate, we found level 40 to give a reasonable break
between the exponential and linear pieces. This corresponds to a resolution of 2! in
each coordinate, or IKx1K pixels. We did exponential and linear fits asymptotically,
as shown in Figure 5.9. This gives the following normalized results (which must be
multiplied by the total number of trie nodes).

| Exponential Part Linear Part
Contour Map | 2(0443xr-195) (1 <r<40)  0.038xr —1.43 (40<r)
Road Map | 200417x=177) (1<r<40)  0.037xr —1.37 (40<7)

54 Summary

We have described a trie representation for map data which allows us to display maps
at arbitrary levels of resolution, without reading from secondary storage any more
data than is needed for the specified resolution. The basic technique can automati-
cally match the amount of data retrieved with the number of pixels to be displayed.
A simple refinement, which requires independent classification of features in hierar-
chies, permits selection of features in terms of importance. This selection can be
independent of the resolution, or can be linked to it.

In order to show a map at different levels of detail, one could store several versions
of the map in a hierarchy. For example, Energy, Mines and Resources of Canada
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provides a series of topological maps. At 1:250,000, a2 thousand maps are needed to
cover the country. At the next level, 1:50,000, the linear resolution increases by 5, the
area resolution increases by 52, and twenty-five thousand maps are needed. Compared
with the Zoom Trie representation, this solution has four disadvantages. (1) The data
are stored redundantly, ouce for cach level. (2) The zoom is discontinuous and permits
only a few levels of resolution. (3) The map is cut to pieces, and additional efforts
arc required to align them up. (4) The only way to adjust for the pixel size at each
level is still to filter the input rather than avoid reading it.



Chapter 6
Spatial Querying

In this chapter, we shall investigate ZoomTrie search in gencral. It is important to
establish that ZoomTrie can be used not only for the ubiquitous opcrations of display
and plot but also for geometrical queries and other spatial data processing.

For spatial data structures, two basic issues have to be addressed: the efficient usc
of storage and the ease of locating objects based on the spatial proximity. ZoomTrie
stores the common prefixes of all data elements only once each, which gives substantial
spatial data compression. ZoomTrie enables us to work at various resolutions withont
having to filter a large data file or store different copies of the same data at different
levels of detail. The two properties make ZoomTrie an efficient data structure to store
and index spatial data.

Tries recursively partition a data space into equally sized subspaces. Each sub-
space contains at least one datum. If a subspace is outside the query region, then it
does not contain answer data and need not be searched. If a subspace is inside the
query region, then all the data in the subspace are answers and what we nced do is
to collect them. Otherwise, we have to partition the subspace by searching down the
trie structures. As we shall show, this method takes O(n?¥) time in the worst case for
all interval queries [All83], where n is the total number of intervals.

The algorithms and results of this chapter are for line queries: line-point, line-
line and line-region. However, they are also suitable for point queries and can be
generalized to region and other queries.

88
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6.1 Query Categories

Let GEO be a set of (P,, P,). By analogy with the relational algebra [Cod 70, Mer83),
we define two types of queries: Geometrical selection which selects edges from a
ZoomTrie built over one GEO, and Geometrical join which selects edge pairs from
two ZoomTries. We focus on the predicate whose truth is determined for each edge
without comparison with other edges. We call it a linear predicate. Similarly, the
truth of a quadratic predicate is determined by an edge pair without comparing with
other pairs. We formulate queries using predicate P on edges. That is

e [(P,P) | (P,P)e GEOAP(P,P) ],
(P,,P.) € GEO A(P.,P!) € GEO'

. [ (P, P, Py, P,)
L AP(F,, P, P,, P;)

€.1.1 Geometrical Selection: Examples
Linear Predicate
LO: Retrieve each edge in GEO:
P(P,,P,) z= (P, P.) € GEO
L1: Find intervzls that are contained in interval I:

p(Pa!Pe)::=(Ia<Pa$Ic)A(Ia$PeSIc)

L2: Find edges that connect to point P:

P(P,P):=(P,=P)V(P,=P)
L3: Find edges that intersect with line L:

P(P,,P,) u=(P,,P,) intersect L
L4: Find edges that are contained in region R:

P(&,,F,) == (P,,F,) inside R

L5: Find edges that are longer than £

P(P,,P,) ::= distance(P,,P,} > ¢
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Non-Linear Predicate

NL1: Find the nearest edge to point P:
P(P_,. Pc) = V(pt..pv')ecso(mindg‘?t(}:’, (P’,, 'P’e)) 2 mindist(P,(P,, Pc)))*

NL2: Find the longest edge:
P(P,,P,) ::=Vp, pyecro(distance(P,, P',) < distance(P,, P,))

6.1.2 Geometrical Join: Examples

Quadratic Predicate

Q1: Find edge pairs such that one connects to the other:
P(P,,P.,P,,P):=P, =P,

Q2: Find edge pairs such that one intersects with the other:
P(F,, P., P, P} u= (P,, P,) intersect (P’,, P',)

6.2 ZoomTrie Search: Algorithms

90

ZoomTries in this chapter are implemented by the OrTrie. In contrast to the FuTrie
implementation, an OrTrie has no chain nodes after the last binary node. The trun-
cated paths are stored inside leaf nodes. This increases data compression. But we

may retrieve more bits than necessary when search down to the leaf node.

6.2.1 Primitives

We define two primitives: Scan() and Search(), as shown in Algorithm 6.1, for linear
predicates. Scan(r) collects all edges within a subtrie rooted at n. Search(root, 1,
P) finds all largest subtries such that they are as close to the root as possible and all
edges inside them satisfy the predicate P. Search() checks each P(P],PT) (1<r<d)in
the increasing order of resolution. The evaluation, as shown in Algorithm 6.1, yields

three possible answers:

Ymindist(P, (P,, P,)) is the minimum distance from point P to edge (P,,P,).
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Algorithm 6.1 ZoomTrie: Geometrical Selection

Procedure Search( n: Anode; r:integer; P ;predicate);
begin
if (n <> nil) then
if (n is not a leaf node) and (n.i_level <= 2kr) then

Search( LeftChild(n}, r, P); /* for each (P7, PT) in the subtrie */
Search( RightChild(n), v, P);
else
it Y(p, p)esusTrie(n)P(F,, P,) then
Scan( n); /* collect edges € SubT'rie(n) */
else
if Y(p, p)eSutTrie(n)"P(F,, F.) then
retuxrn; /* ignore all edges € SubTrie(n) */
else /* has to be an internal node */
Search( n, r+1, P); /* check each (Pr+!, Prtl) g SutTrie(n) */

end;

Procedure Scan( n: Anode);
begin
if (n <> nil) then
if (n is not a leaf node) then /* for each (P,, P,) € SubTrie(n) */
Scan( LeftChild(n));
Scan( RightChild(n));
alse
output (P,,P.) /* find an edge */
end;

e P(P,,P,)is true for all (P,, P,) C (P, Pl). We collect every (P,,P,) C (Pr,Pl)
by invoking Scan().

¢ P(P,,P,) is false for all (P,, P,) C (F], P{). We ignore all (P,,F,) C (F],FY)
by stopping searching down the subtrie (cutoff).

o Otherwise, i.e., some of (P,, P,) satisfy P and others do not. We have to increase
the resolution by searching down the subtrie.

Similarly, as shown in Algorithm 5.2, Product() and Join() are two primitives for
quadratic predicates. Product{ n,m) returns the Cartesian product of all edges in
the two subtries rooted at n and m respectively. Join{ n,m,1,P) finds all the largest
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Algorithm 6.2 ZoomTrie: Geometrical Join

Procedure Join( n, m: Anode; r:integer; P :predicate);
begin
it (n <> nil) and (m <> nil) then
if (n is not a leaf node) and (n.ilevel <= 2kr)
Join( LeftChild(n); m, r, P); [* for each (P}, Pr) € SubTrie(n) */
Join( RightChild(n); m, r, P);
else
if (m is not a leaf node) and (m.ilevel <= 2kr)
Join( n, LeftChild(m}; r, P);  [* for each (P';, P']) € SubTric(m) */
Join( n, RightChild(m); r, P);

else

it V(p, P, )eSubTric(n) A(P',.P'.)eSubTric(m)P ({Par Pe)y (P'5, P'c)) then
Product( n, m); [* output SubTrie(n) X SubTrie(m) */

else

if ¥(p, P )eSubTrietn) \(P'..P".)eSubTrie(m) P (Pas Fe)y (P, P'c)) then
return; /* stop scarching both subtries */

else
Join( n, m, r+1, P); /* search cown both subtries */

end;

Procedure Product( n, m: Anode);
begin
if (n <> nil) and (m <> nil) then

it (n is not a leaf node) then [* for each (P,, P,) € SubT'rie(n) */
Product( LeftChild(n), m);
Product( RightChild(n), m);

else

if (m is not a leaf node) then /* for each (P,, P',) € SubTrie(m) */
Product( n, LeftChild(m));
Product( n, RightChild(m));

else

output( (P, F,), (F,, P'.)); /* output the edge pair */
end;
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subtrie pairs such that all edge pairs from them satisfy P. Since Join() compares
all edges in the two ZoomnTries, it is an Q(n?) algorithm. However, a join such as

merging two ZoomTries can be executed in linear time complexity.

6.2.2 Linear Predicate Precompiling

A PR-Trie is a trie structure for representing points and regions [Sam90]. It has
two types of leaves: (1) black leaf if the corresponding subspace is inside the region
of interest, and (2) white leaf if the corresponding subspace is outside the region of
interest. An internal node leads to at least one black leaf, and so corresponds to a
space overlapping the region of interest.

A linear predicate specifies a set of 2k dimensional points. The set forms the region
of interest, and therefore can be represented by a PR-Trie. With such & PR-Trie, the
ZoomTrie selection becomes a search for the keys covered by the black leaves. The
procedure is: (1) superimpose the PR-Trie onto the ZoomTrie, (2) remove PR-Trie
node if there is no corresponding Zoom Trie node, and (3) traverse the superimposed
ZoomTrie. For black leaves, all edges inside the subtrie satisfy P. We collect them
by invoking Scan(). For white leaves, no edge inside the subtrie satisfies P. We cut
off the subtries.

One way to convert a linear predicate to the PR-Trie representation is to enu-
merate all possible answers and then to construct the trie. But this is too expensive.
For some linear predicates, such as the examples shown in §5.1.3, PR-Tries can be
constructed more directly. In these cases, searches can be made much faster by pre-
compiling the linear predicates into PR-Tries, rather than recomputing the condition
for every (P}, P[).

6.3 ZoomTrie Search: Implementations

The purpose of this section is to apply the four primitives in §6.2.1 to linear and
quadratic predicates in §6.1. The discussion will focus on predicate evaluation, i.e.,
to check whether P is true or false for all (P,, P,) C (Pr, P7). In addition, we consider
the two non-linear predicates in §6.1 and propose a special algorithm for them.
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6.3.1 Linear Selection
LO: Retrieve cach edges in GEO. This query invokes Scan( root) only.

L1: Find intervals that are contained in interval [:

P(P,,P)i=(L, S P SL)A(L, <P L)

Intervals are transformed into point data in 2-dimensional space when constructing
a ZoomTrie. Figure 6.1 shows an example of six intervals, a, b, ¢, 4, e and £ (a), their
transformation (see §5.1.2) in 2-dimensional space (b), and the OrTrie implementation
of ZoomTrie (c).

There are thirteen possible relationships between two intervals. Figure 6.2 (a)
shows the relationships (using Allen’s notation [All83]) to resolution 23. The labeled
regions show the relationships to the given interval, the = sign. The cight squares on
the diagonal indicate the five possible point-interval relationships.

1.1 ® /
01 2 34 5 6 78 .“lm
l L1 I | I ................. [ -~ i
L'-| P Sy ' a
e —— : f
@ i I d b e ¢
(2) 6 Intervals {b) Intervai Space (¢) ZoomTrie

Figure 6.1: Interval Space

() Interval Relationships (b) Interval Containment (¢) PR-Trie for Containment (d) Superimposing
Figure 6.2: PR-Trie for Containment Searching
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Query L1 consists of four interval relationships, i.e., d, 8, f and =, which in
general is a triangular region with apex at the = sign and base along the diagonal.
This is shown in Figure 6.2 (b), where I = (2,5) is the interval in question, and
a,b,c,d,e and f are the candidate intervals for containment. Figure 6.2 (¢} shows the
PR-Trie for this containment relation and (d) shows the result of superimposing (c)
with Figure 6.1 (c). By superimposing, we mean to traverse both tries simultaneously.
The test to go left (or right) requires a left (or right) descendant in both tries. If
we come to a white leaf of the PR-Trie, no edge in the corresponding sub-Zeom Trie
satisfies P. If we come to a black leaf, all edges in the subtrie are answers.

In higher dimensions, intervals are rectangles aligned with the axes, and are rep-
resented in the same way as edges, so this query can be modified to give any of the
other relationships between intervals in any number of dimensions.

L2: Find edges that connect to point P:
P(P,,P,)u:=(P,=P)V(P.=P)

When searching Zoom Trie down to a rode at level 2kr+1, we have a path pyps...pir
which is an edge (P/, PT) and defines two rectangular regions W, and W, (see §5.1.3).
If neither P inside W, nor P inside W, i.e., the first r bits between P and P}, P and
P; are different, no ending point of (P,, P,) C (P;, P) can be identical with P. We
can cut off the search. Otherwise, we have to search the subtrie.

L3: Find edges that intersect with line L:
P(P,, P,) = (P,, P,) intersect L

When k=2, relationship between L and W™ (see §5.1.3) of (P, Pr) is:

Ve pacer PP, P,) = L intersect W,
Ve pycprpn PP, F,) = L notintersect W”

or otherwise, i.e., L touches W, or W;. We cannot tell whether they intersect in this

case. We have to increase the resolution by calling Search({). Figure 6.3 shows the
three situations.
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..........................

(a) All Crossing (b) None Crossing (¢) Some Crossing
Figure 6.3: Edge-Line Crossing

L4: Find edges that are contained in region R:
P(P,,P,) == (P,,P,) inside R
For a given (P], P[), we have

Ve pycprpnP(P,,P) = W~ inside R

Wr not intersect R

Vip,.pacips Py P(P,, Pe)

If R is convex (a special case), the predicate can be decomposed into a conjunction
of two components, i.e., P(P,, P,) ::= P, inside R A P, inside R. For a given (P}, P7),
if both P! and PT are inside R, then all (P,, P,) C (P!, PT) satisfy P(P,, P,). If onc
of them is outside R, then no edge inside satisfies P(P,, P.). Otherwise, (P, Pl)
overlaps with R and we have to check them in higher resolutions.

This example illustrates superimposition that involves three tries. We traverse the
three tries simultaneously. On odd steps, the test to go left (or right) requires a left
(or right) descendant of the first PR-Trie and the ZoomTrie. We do not traverse the
second PR-Trie on odd steps. On even steps, the test requires a descendant of the
second PR-Trie and the ZoomTrie. As before, we do not traverse the first PR-Trie
on even steps. If two adjacent steps stay on black leaves of the PR-Tries, it means
every edge in the sub-Zoom Trie satisfies P. If a step arrives at a white leaf, no edge
in the subtrie satisfies P.

LS5: Find edges that are longer than ¢
P(P,,P,) == distance(P,,P,) > ¢

For the interval space, P specifies a triangular region, as shown in Figure 6.4 (a).
. This figure also shows the space to resolution 22 (b), and the PR-Trie (c).
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Figure 6.4: PR-Trie for Length Searching

For higher dimensions, this query becomes another example of a decomposable
PR-Trie. Each dimension produces a PR-Trie that is the same as shown in Figure 6.4.
We traverse the ZoomTrie, and at the same time, cycle among the PR-Tries.

6.3.2 Non-Linear Selection
NL1: Find the nearest edge to point P:
P(P,,P,) ==Y (p, p jecpo(mindist(P,(P',, P',)) > mindist(P,(P,, F,)))

This is an optimization query which involves comparing edges with others. This
query does not fall under the general primitives described in §6.2.1. We introduce
Algorithm 6.3 (with Dist being previously initialized) to solve this query.

mindist() is the minimum distance from point P to point P,, point P, and the
extended line of edge (P,, P,). For simplisity, we assume mindisf() is the minimum
distance from P to the ending points of (P,,P.). Dist is an approximate minimal
distance which decreases monotonically during the search. A better initial Dist could
be set to an ending point which shares the longest prefix bits with P.

MaxDist( P, (Pr, Pr)) is the distance from point P to the farthest corner points of
W, and W,. Here W, and W, are rectangular regions defined by (P, PT). MinDist( P,
(Pr,Pr)) is the distance from P to the nearest corner points of W, and W,.. However,
if P is contained in W, or W, MinDist() is always 0.

NL2: Find the longest edge:

P(P,, P,) == Y(p, pr )ecEo(distance(P’,, P',) < distance(P,, P,))
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Algorithm 6.3 ZoomTrie: Searching the Nearest Edge

Procedure NcarestBdge( n : Anode; r:integer);
begin
if (n <> nil ) then
if (n is not a leaf node) and (n.ilevel <= 2kr) then

NearestEdge( LeftChild(n), r); /* for cach (P7, P/) in the subtric */
NearestEdge( RightChild(n), r);
else
it (MinDist(P, (P;,FP7)) > Dist) then
return: /* no closer edge in the subtrie */
else

Dist := Min(Dist, MaxDist(P, (P],FP[)})); /* a better estimation */
if (n is a leaf node) and (mindist(P, (P,,P,)) = Dist) then
Ansver := (P, P.); /* find a closer cdge */
else [* search down the subtrie */
NearestEdge( n, r+1);
end;

Algorithm 6.3 can be applied. But the function MaxDist necds to be redefined. Let
MazxDist(P], PT) be the maximal distance from a corner point of W, to a corner point
of W,. By definition, Distance(P,, P,) < MazDis{{ P!, Pr) for any (P,, P,) C (PI, PI).
So, if MazDist{ P!, PT) is less than the edge length found so far, we can cut off the
subtrie. Otherwise, we have to search down the subtrie.

——

6.3.3 Variable-Resolution Selection

A major advantage of ZoomT'ries is that they are scale invariant and can be used to
answer queries to any level of resolution. The cost of the query can be controlled by
specifying the acceptable accuracy, i.e., to search the tries only down to a prespecified
depth. However, we must decide what to do with edges at this resolution that may
contain only some of the answer edges. The easiest supposition is to take all contained
edges. This makes sense because at least one edge satisfies the query predicate. An
alternative supposition is to take all contained edges if the number of satisfied edges
exceeds a prespecified threshold.

Let us consider the first supposition and apply it to a query “find intervals that are
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Figrre 6.5: Variable-Resolution Querying

not shorter tha.nﬁl = 5. Figure 6.5 shows the PR-Trie for the query at full resolution
24=93_ half resolution 29~'=22, and quarter resolution 29-2=2!, The shaded square
boxes are answer intervals.

At the full resolution, the PR-Trie identifies all possible answers. At the half
resolution, six extra intervals satisfy the predicate. Among those intervals, 3 and 15
have length 3. Their errors to [ are 2. At the quarter resolution, four more intervals
are added to the answer set. Interval 11 has length 1 and its error to l is 4. In general,
at resolution 2" (r<d), the maximum error of each endpoint is 2¢-"—1 (by ignoring
the d—r least significant bits). Therefore, the maximum error for this length query
is 2(29-"—1). If we satisfy the answer within a specified error, we can get it much
faster, by searching the tries to only the appropriate depth.

6.3.4 Geometrical Join

_ Q1: Find edge pairs such that one connects to the other:
P(PuPﬂHaP:-) =F. = P:

Algorithm 6.2 checks P for every edge pair of GEO x GE(Q' in order of increasing
resolution. Each edge pair (P],P) € GEO and (P',,P'",) € GEO' defines two
rectangular regions W, and W,. If the two regions do not intersect with each other,
then the two edges cannot share a same ending point, i.e., P, = P]. We cut off the
subtrie. Otherwise, we increase resolution r by calling Join().
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Q2: Find edge pairs such that one intersects with the other:
P(P,, P F,, P) u= (P,, P,) intersect (P, I"',)

It is hard to visualize the answer space, but the relationships between (P;, Pl)
and (P';, P";) can be classified as shown in Figure 6.6. If both W, cross each other
(a), then all edges contained in (P,, P.) intersect with all other edges contained in
(P, P'7). If the two W™ are separated (b), then none of their edges intersect. Oth-
erwise W] or W/ intersects with the W of the other edge (c). In this case, we have
to increase the resolution of both edges.

(a) All Crossing (b) None Crossing (c) Some Crossing
Figure 6.6: Edge-Edge Crossing
The consequence of this classification is that we can avoid comparing every possible
edge pair when the answer set is less than n2. Views at lower resolutions give partial
answers. Only the edge pairs with ambiguity need further tests at higher resolutions.

6.4 Experimental Results

We built OrTries over two maps described in §5.3. This section shows OrTrie pa-
rameters, compression comparisons and search time analyses. All the measurements
were carried out on a 26MHz NeXT with 28MB of memory.

6.4.1 ZoomTrie Trie Sizes

The OrTrie implementation requires two bits per each of S, nodes, and a suffix string
per leaf node. Since all geometrical keys have the same length, the suffix length at
level 1 is of 2kd—14-1 bits, and therefore, needs not to be indicated. On an average, a
suffix has 2kd—A,, bits, where A, is the average OrTrie depth. In total, OrTrie has
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2S5, bits for the nodes, nx(2kd—i+1) bits for the suffixes, and less than 2% of the
total size for the overhead of trie paging.

We measured A, and S, for the two OrTries at resolution 2' (3<i<16). Figure 6.7
plots the measured results ard analytical results for tries built over uniformly and
independently distributed numbers (random trie). The case for A, is worst than
logarithm due to data clustering. We give a lower bound fit (the deeper A, is, the
smaller a trie will be). Table 6.1 shows the regression fits of the results.
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Figure 6.7: ZoomTrie Distributions

Total Nodes (S,) | Average Depth (A4,) OrTrie Size
Random Tirie 2.44n lgn
Road Trie 3.66n 3.171gn —12.59 28n+ (2kd—Ap)n
Contour Trie 3.17n 2351gn —6.19

Table 6.1: Regression Fitting

6.4.2 Data Compression

For data compression, we compare OrTrie with three other line representations which
are not necessarily of the same expressive power — (1) set of edges: (P,P,—P,),
(P2y P3 = Po),+++ ,(Pr1, Po— Pa1), (2) sequences of points: Py, P,---,P, and (3)
sequences of differentials after the first points: Py, (Po—FP;), (Ps=P), -« ,(Py—=Fp-1).
For natural map data, such as contours and coastlines, edges are usually small. Ta-
ble 6.2 shows the length statistics on our measured maps. We can see that the average
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length of differentials takes no more than one third of the coordinate bits. So., we
assume that the average line differential is < 2%/3, i.e., it takes 1d bits.

Under the above assumption and k=2 and d=32, the sct representation (1) takes
(kd+kd/3)n=85.33n bits, the sequence representation (2" takes kdn==64n bits, the
differential representation {3) takes kdn/3=21.33n bits, and the OrTrie represcntation
(4), as seen in the previous section, takes 25,4+ (kd+kd/3—A,)n bits. Table 6.3 shows
the sizes of the four representations.

r Coordinate | ¥ Coordinate Line Differentials
Maximum Maximum | Maximum | Average | Std Dev
Road (bits) 40181 (16) 28925 (15) | 1420(11) | 19.26 (5) | 35.12

Contour (bits) | 40147 (16) 29110 (15) 466 (9) 11522 (4) | 1225

Table 6.2: Map Overlay Statistics

(1) (2) (3) (4) OrTrie

Set Sequence | Differential Road Contour
n=10° 10.67KB | S8KB 267KB | 9.19KB | 9.30KB |
n = 106 10.67MB 8MB 2.67MB 523MB ; 6.36MB

n = 10° 10.67GB 8GB 2.67GB 1.27GB 3.42GB

Table 6.3: Line Representation Comparison

As we have seen, when n = 10%, the road OrTrie size is only 12.7% of the sct file
and 47.6% of the differential file. In the case of the contour map, the OrTrie size
takes 42.8% of the set file and 128.1% of the differential file. However, we do not
need to scan the whole file to restore the coordinates of the last point. In general, the
larger the = is, the more compact the OrTrie will be. Since the OrTrie is designed
for secondary storage, it performs well in both compressing and retrieving very large
spatial data.

6.4.3 Search Time

We implemented and measured some of queries shown in §6.1. First of all, we expect
the search time to be linearly proportional to the number of visited trie nodes. This
is confirmed by the measured times plotted in Figure 6.8. For linear and quadratic
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predicates, we expect the number of visited trie nodes to be proportional to the
number of sclected (output) geometrical keys. In other words, the search time should
not depend on the size of the source file. For non-linear selections, the search should

visit only a small amount of the trie nodes.
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Figure 6.8: ZoomTrie Search Times

Selection Time

We measured LO by retrieving all the map edges at each resolution 27 (3<r<d). As
shown in Table 6.8, the total number of visited nodes is strictly proportional to the
number of output keys.

In order to determine whether one ending point of an edge is identical to the given
point P, L2 has to check every bit of the ending point, and hence, invokes Search()
only. The search time of Search() depends on complexity of the predicate. As we can
see from Figure 6.8, for the same number of visited nodes, it takes L2 about an order
of magnitude more time than LO. This indicates that the search is CPU bound.

For simplicity, we chose region R of 14 as rectangular windows which covered

about z:th of the whole map area. We measured R on ten randomly chosen locations.



CHAPTER 6. SPATIAL QUERYING 104

This query invokes Search{) to locate R and Scan() to collect edges inside R. On the
average, each scarch visited 2.53% of the total nodes for the road OrTric and 2.32%
for the contour OrTrie. Just as we expected, this is the amount of data required., i.c.,
= ~ 2.1%.

For L5, we measured ¢ at ave, ave+o, ave+20, ave+io, ave+8o, %max. mazx
and 2maz, where ave is the average map edge length, o is the standard deviation of
the length, and max is the longest edge. L5 takes about the same amount of time as
L0 because of the simplicity of the predicate checking.

NL1 was measured using ten randomly selected points on both maps. On an
average, NL1 visited 4.25% of the total trie nodes for the road OrTrie and 2.52% for
the contour OrTrie. Overall, our algorithm searches less than 5% of the whole file.

Searched Koys & Nodes

Output Key Pairs (Joinned Keys)
Figure 6.9: ZoomTrie Join Performance

Join Times

We constructed OrTries over edges (from 5 to 2000) randomly selected from the
two maps, and then joined them with the original OrTrie maps. As we can see
from Figure 6.9, the total numbers of searched keys or trie nodes are strictly linearly
proportional to output keys. In other words, the join time does not depend on the size
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of the source file. In general, we expect the join algorithm to have time ~omplexity

proportional to the numbers of the output keys, rather than the OrTrie sizes.

The Worst Case Analysis

As we have shown in §6.2.2, queries based on linear predicates can be answered by
superimposing ZoomTrie on a PR-Trie. For interval queries, as shown in Figure 6.2
(a), all possible answers form a single region. It has been proved that PR-Trie for a
polygon with perimeter p at resolution 2" has a maximum O(p + r) nodes [Hun78,
Dye82, Sam90]. As a consequence of superimposing ZoomTrie on PR-Trie, we search
only those nodes that are on the boundary of the queried region. The rest of space
is either cut off or scanned.

Given n uniformly distributed intervals in 2-dimensional space, there are O(n?)
intervals on the boundary of a queried region. In other words, we can answer any one
of the thirteen interval queries in O(n*) worst time. In general, our search method
reduces the data dimensions by one, i.e., from 2k data space to 2k—1 search space,
in the worst case.

6.5 Summary

This chapter has demonstrated that ZoomTrie can be used beyond displaying or
plotting operations. We have shown how to query and process spatial data using
ZoomTries, and given general query methods for linear and quadratic predicates, i.e.,
predicates that scek edges satisfying conditions that do not involve other edges. We
have also presented special algorithms for two non-linear predicates, and shown how
to specify the resolution acceptable for controlling the query costs. The experimental
results confirm our expectations: the query cost depends only on the amount of data
needed.

We have observed that for natural map data, e.g., contours and coastlines, edges
are very short. That is, ending points will lie very close to the diagonal in the double-
dimensional space. This effectively reduces the dimensionality by one. By removing
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one dimension, Zoom Trie compresses the spatial data still further. Our extrapolation
shows, when n = 230, ZoomTrie size can be as small as 12.7% of the sct file, and
47.6% of the differential file. The larger the spatial data is, the better the ZoomTrie
performs.

Algorithms and results presented in this chapter are for line queries. However,
they can be extended for polygon queries. The basic idea is to replace polygons by
their minimal bounding rectangles or triangulations. We shall leave this for future
research.

We have concentrated-on FuTrie and OrTrie implementation of the Zoom Trie. We
do not report our experiments with the PaTrie implementation because of limitation
of space. However, the general cc. -lusions are (1): a PaTrie does not give much

further compression as comparing with OrTrie, (2): a PaTrie is more difficult to
construct.



Chapter 7
Conclusion

The main objective of this thesis has been to design trie structures for secondary
storage and apply them to indexing, storing and querying text and spatial data. This
chapter summarizes contributions and the major results of this thesis project. Some

future research is also outlined.

7.1 Claim of Originality

To the author’s knowledge, the methods and the corresponding experimental results
listed below are the original contributions of this thesis:

e PeaTrie, a pointerless representation for the binary Patricia trie.
e Construction algorithms for very large FuTrie, OrTrie and PaTrie.

o Statistics on text tries — OrTvie and PaTrie, dictionary tries — OrZTrie and
PaTrie, and map tries — FuTrie, OrTrie and PaTrie.

¢ PaTrie for indexing large texts.
e OrTrie for storing large dictionaries and k-approximate string matching.

o Trie algorithms for spatial zooming and spatial querying by zooming.

107
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7.2 Contributions
Trie Organization

We have proposed three pointerless structures, FuTrie, OrTrie, and PaTrie, for var-
ious binary tries. The data structures have two distinctive features: (1) they store
no pointers and require two bits per node in the worst case (FuTVrie), and (2) they
are partitioned by pages and are suitable for secondary storage. Our experimental
results have shown that the trie structures have excellent performance in both storage
compactness and I/O efficiency. Therefore, the proposed structures are particularly
useful in applications that deal with persistent bulk data.

We have investigated large trie constructions for static data. We have mapped
the trie construction problem to the well studied sorting problem. In particular, we
have proved that Patricia trie construction is a special case of parsing expressions
with an operator precedence. Instead of spending 80 hours of computer time to build
a Patricia trie of one million leaves (our first experience with large trie construction),
we now need less than 10 minutes to build the same trie. We have given two external
sorting algorithms for numerous and extremely long sistrings: one requires a large
intermediate workspace and the other takes longer running time. The latest report
on the PaT array says it can be built over a weekend for the New QED. Our PaTrie
construction takes 18 to 55 hours for a comparable text, but requires more working
space than used in earlier work.

Text Searching

We have applied trie methods to indexing very large text documents on secondary
storage (text trie). By examining statistics for various text tries, we have concluded
that the Patricia trie performs much better than other tries when indexing text files.
We have shown that our PaTrie implementation is 10% — 25% smaller than the best
previous data structure. This difference is important since the index size is crucial to
the trie approach. Our search time is several times faster than the competitive trie
indexes, and our method retains all the flexibility of the other trie methods. We have
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also presented methods for dynamic index tries, so that the text may change.

We have demonstrated that dictionary tries for English words are 60% ( OrTrie
representation) to 70% (PaTrie representation) smaller than the simple lists of the
words. Dictionary tries gives approximate views of words. Combined with the dy-
namic programming technique, tries are used to solve the k approximate approximate
string matching problem. The expected worst time of our algorithm is O(¥|T[F),
which is independent of the dictionary size and the search string length. Here, we
assume Kk, the number of mismatches, is very small, say less than 4. We have also
shown that dictionary tries can be used for Soundex code searching.

Spatial Data Zooming and Querying

We have applied trie methods to representing and indexing spatial data on secondary
storage (map trie). We have proposed the ZoomTrie structure for map data storing,
displaying and querying. ZoomTrie permits us to query and retrieve the data at
arbitrary levels of resolution, without reading from secondary storage any more data
than is needed for the specified resolution. Our performance results on map displaying
have confirmed that the processing cost is linear in the amount of data needed and
independent of the total data size.

We have described a general ZoomTrie query method for linear (and quadratic)
predicates that seek edges (and edge pairs) satisfying conditions that do not involve
other edges (and edge pairs). We have given specific algorithms for a set of sample
queries ranging from geometrical selection and geometrical join, to the nearest neigh-
bour. We have also shown how to specify the acceptable resolution to control the
query cost. We have implemented and tested most of the queries. The performance
data on map querying has confirmed our expectations: the cost depends only on the
amount of data needed.
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7.3 Future Research

We have modeled texts as sequences of symbols and provided a trie structure to
store extremely long sequences (sistring) in a very compact way and yet to preserve
search efficiency. Many applications require storing, searching, and manipulating
long sequences, e.g., molecular biology, human speech recognition, file comparison,
text editor, etc. Although trie searching for exact subsequences (see §3.5) has been
widely explored, the full use of text and dictionary tries nevertheless is still an open
problem.

Oane classical problem of sequence manipulations is to find the longest common
substring among k strings (k-LCG problem). The longest repetition search {GBYS92,
ST93] solves k-LCG for k=1. We have proposed a solution to arbitrary k in §3.5. We
could also extend trie hashing by using a binary Patricia trie as the hash function.
Binary Patricia tries retain only the bits that distinguish a key from the others. All
irrelevant bits of keys are removed. This will give better hashing performance.

The approximate searching of dictionary tries has many potential applications,
e.g., removing duplicated entries from a mailing list in which a name and address
may have been written in different forms or with a few misspellings, and finding the
right molecule when measurement of atom quantity is inaccurate, etc.

Spatial data in ZoomTries are organized in a Z-order. It has been noted that a
Z-order is not a continuous mapping, i.e., spatially nonadjacent points can become
adjacent in the Z-order space. Discontinuity degenerates range query performance,
specially when data are stored in secondary storage. Trie methods based on other
mapping schemes need to be explored.

We have not mentioned updating spatial data represented by ZoomTries. The
problem boils down to the ability to update tries, which we have discussed for very
large text tries. We anticipate no difficulty in making occasional changes to maps.
However, we have shown that trie construction methods are much more efficient when
all the data are added at once than when a large trie grows one edge at a time.
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