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ABSTRACT 1

ABSTRACT

This thesis consists of two parts. In the first part of the thesis, the Rayleigh-Taylor
and the Kelvin-Helmholtz instabilities of a cylindrical interface between two inviscid fluids
or two viscous fluids are analyzed from first principles (momentum and continuity
equations). Dispersion equations, relating wavenumber, k, to growth rate, G, were derived
for various conditions. Application of the dispersion equations to film boiling on a
cylindrical heater and to breakup of a liquid film around a cylindrical body led to the
development of mathematical models for the prediction of the dominant wavelengths
formed during these processes for both inviscid and viscous fluids.

Experiments were carried out to measure the dominant unstable wavelength during
the breakup of a liquid film around a cylindrical body. It was found that the dominant
wavelength decreased with a decrease in the radius of the cylindrical body in agreement
with the present theory and in contradiction to previously published work. '

In another application of the present theory, the breakup of a cylindrical liquid-in-
gas jet and a cylindrical gas-in-liquid jet was analyzed based on the Kelvin-Helmholtz
instability. It was predicted that the dominant wavelength decreased rapidly with an
increase in the jet velocity.

In the second part of the thesis, gas injection through a very narrow siot into a
liquid is examined extensively. A modified bubble formation model is proposed taking into
consideration the surface tension force and the mf.rfﬁ force.

When gas was injected into liquid through a very narrow slot (50-250xm), three
different bubbling regimes were found as the flow rate of gas was increased. They were:
regular bubble regime at low flow rates, coalescence bubble regime at medium flow rates,
and gas globe regime at high flow rates.-The gas-dispersion characteristics of each of the
regimes were discussed and mathematically analyzed. In the regular bubble regime, the
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bubble formation was dominated by both surface tension force and inertial force. In the
coalescence bubble regime, the formation of bubbles was dominated by inertial forces only.
In the gas globe regime, due to the Rayleigh-Taylor instability, multiple bubbles were
formed at separate nodes of a continuous gas blanket extending the length of the slot. The
critical transition condition between the regular bubble formation regime and the
coalescence bubble regime is given.

.
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RESUME

RESUME

Cette these est composé de deux sections. Dans la premigre section, les instabilités
de Rayleigh-Taylor et de Kelvin-Helmholtz pour des interfaces cylindriques entre deux
fluides inviscide= ou deux fluides visqueux sont analysé selon les premiers principes
(équations du moment et de continuité). Les équations de dispersion, reliant lc numero
d’onde, k, au taux de croissance, G, sont derivées pour maintes conditions. L’application
des équations de dispersion pour un film bouillant sur un radiateur cylindrique et un bris
de film de liquide autour d’un corps cylindrique, a mené au developpement de modeles
mathématiques pour la prédiction de la longueur d’onde dominante créer durant ces
procédés avec des fluides inviscides et visqueux.

Des expériences ont ét€ entreprises pour mesurer la longueur d’onde instable
dominante durant le bris d’un film de fluide autour d’un corps cylindrique. 1l a été
déterminé que la longueur d’onde dominante diminuait avec la reduction du rayon du corp

cylindrique, ce qui correspond avec la presente théorie et est en contradiction avec des
ocuvres publiés précédemment.

Dans une autre application de la présente théorie, le bris d’un jet cylindrique-d’un
liquide dans un gaz et d’un jet cylindrique d’un gaz dans un liquide a €t€ analysé selon le
théoreme d’instabilité de Kelvin-Helmholtz. La diminution rapide de la longueur d’onde
dominante avec une augmentation de la vitesse du jet d’eau a été predite.

Dans la seconde section de cette thése, I’injection d’un@?f'ﬁir/une ouverture trés
étrcite (50-250um) dans un liquide a été étudiée en grand détail. Un modele modifié€ de
formation de bulles est proposé tenant compte de la force tension de surface et des forces
d’inertie.

ey

b



RESUME

Lorsque le gaz est injecté dans le liquide par une ouverture trés étroite trois régimes
de bulies distincts sont observables en augmentant le taux de gaz injecté. Les régimes
observés sont: le régime de bulles régulier & un bas taux d’injection; le régime de
coalescence des bulles 2 un taux d’injection moyen; et le régime de gaz en globe & un haut
taux d’injection. Les caractéristiques de dispersion du gaz dans chaque regime sont
discutées et analysées mathématiquement. Dans le régime de bulles régulier, ia formation
de bulles est dominée par la force de tension de surface et les forces d’inerties. Lors du
régime de coalescence des bulles, la formation de bulles est dominée par les forces
d’inertie seulement. Dans le régime de gaz en globe, a cause de I'instabilité de Rayleigh-
Taylor, beaucoup de bulles sont formées 4 des points nodales séparées par des rideaux
continues de gaz longeant la longueur de "ouverture. Les conditions de transition critique
entre le régime de bulles régulier et le régime de coalescence des bulles sont aussi
fournies.
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NOMENCLATURE
Roman letters
a constant
a, major axis of ith ellipsoidal bubbie (m).
A constant
A, orifice cross section (m°)
A, constant
A constant
Ay constant
b; minor axis of ith ellipsoidal bubble (m).
B constant
B, constant
B, constant
G constant
C; constant
C3 constant
C phase speed in Chapter 2 (m/s)
C sonic speed in Chapter 6 (m/s)
Co phase speed in the absence of flow (m/s)
Cos minimum value of C_, (m/s)
C, drag coefficient
D constant
D, tube diameter (m)
d, bubble diameter (m)
d, vapour depth (m)
d, neck length for determining the detachment condition of the bubble

. formation (m)
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d, particle (bubble or dropiet) diameter (m)

f friction factor

S frequency of bubble formation (1/5)

L frequency of pressure fluctuation (1/s)
F e total force acting on the bubble by nozzle surface (N)
o4 force acting on a solid surface by a fluid (N)
g acceleration due to gravity {(m/s%)
G growth rate (1/s)

G, imaginary part of growth rate (1/s)

G, real part of growth rate (1/s)

h depth of slot (m)

H depth of liquid (m)

LX) modified Bessel function of the first kind
Je - =p,U,'d,/o dimensionless gas-liquid jet number
k wave number (1/m)
K, constant
K, nozzle constant (m*s/kg)
K.(X) modified Bessel function of the second kind
Koo = S50 < o0 5 Koo = SN2 - ke
2 2
Koo =2 2 - a- A5 oo - T2 - koo - B2
L length of slot (m)
m constant (1/m)
n constant (1/m) in Chapter 2; order of Bessel function in Chapters 3-5
N rnumber of the bubble sources
Noa node number of an unstable interface
- N capacitance number
n, number of the bubbles for measuring the average bubble volume
P pressure of fluid (N/m?)
AP pressure drop across a slot (N/m?)
P, atmosphere pressure (N/m?)



NOMENCLATURE

pressure inside a gas bubble (N/m?)

pressure inside a nozzle chamber (N/m?)

initial pressure inside a nozzle chamber (N/m°)

perturbation pressure of fluid (N/m?)

total pressure of fluid (N/m?)

equilibrium pressure of fluid 1 (N/m?)

equilibrium pressure of fluid 2 (N/m°)

transverse pressure (N/m?)

potential of fluid in Chapter 4 (m/s)’

gas flow rate in Chapters 6-10 (m*/s)

dimensionless gas flow rate

gas flow rate when gas flows into bubble from nozzle chamber (nv/s)
gas flow rate when gas flows into nozzle chamber from gas source (m?%/s)
total gas flow rate (m’/s)

bubble radius (m)

bubble radius at the end of first stage of bubble formation (m)
bubble radius of a hemispherical bubble (m)

radius of a circular orifice (m)

cylindrical coordinates

radius of cylindrical jet (m)

principal radii of disturbed cylindrical interface (m)

radius of cylinder (m)

radius of cylinder plus the vapour depth (m)

Reynolds number

displacement of bubble centre from orifice plate (m)

time (s)

time at the end of first stage of Kumar and Kuloor’s model (s)
time at the end of detachment (s)

temperature (K)

velocity of fluid (m/s)

superficial velocity of gas-in-liquid jet or liquid-in-gas jet (m/s)
velocity components of fluid 1 in the cylindrical coordinates (m/s)
velocity components of fluid 2 in the cylindrical coordinates (m/s)



NOMENCLATURE Xt

EE SO

LA
w
We
X,V Z
Y, Y,

upward motion velocity of bubbie (m/s)

potential of the impressed force in Chapter 4 (nr'/s%)

bubble volume (m?)

nozzle chamber volume (m?)

final bubble volume (m?)

bubble volume at the end of first stage of bubble formation (m*)
bubble volume of hemispherical at the end of first stage of bubble formation
(m*)

initial bubble volume (m?)

slot spacing (m)

Weber number

coordinates for an plane interface (m)

vertical coordinate (m)

Greek letters

R > ® v ™ o o

811 &

velocity potential of fluid due to perturbation (m?/sec)

velocity potential of fluid (m?/sec)

disturbance of an interface (m)

kR,

density of fluid (kg/m’)

wavelength (m)

angle between the horizontal axis and the symmetrical axis of the cylindrical
interface (degree)

ratio between zero order of modified Bessel function of the first kind and
its first order derivative |

ratio between minus zero order of modified Bessel function of the second
kind and its first order derivative '

ratio between nth order of modified Bessel function of the first kind and its
first order derivative

ratio between minus nth order of modified Bessel function of the second
kind and its first order derivative

ratio between the second order derivative and the first order derivative of
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83’ 84

@O ZTRH> ST Q

ﬂe m

Subscript

L)

¢, boiling

<, bubble

¢, droplet

o, LW

the zero order modified Bessel function of the first kind

ratio between the second order derivative and the first order derivative of
the zero order modified Bessel function of the second kind
interfacial tension between fluid 1 and fluid 2 (N/m)

viscosity of fluid (Kg/m/sec)

kinematic viscosity (m?sec)

dimensionless wavelength

dimensionless radius

dimensionless wave number

dimensionless liquid viscosity parameter

dimensionless growth rate

Stokes’s stream function of fluid (m*/sec)

perturbing amplitude of the interface wave during film boiling (m)
contact angle (degree)

density difference between liquid and gas (kg/m?)

fluid 1, the lower fluid for a plane interface or inner fluid for a cylindridal
interface

fluid 2, the superior fluid for a plane interface or outward fluid for a
cylindrical interface

critical wavenumber or wavelength

critical wavenumber or wavelength during film boiling on a cylindrical body
critical wavenumber or wavelength during bubble formation from a narrow
slot

critical wavenumber or wavelength during liquid film breakup on a
cylindrical body

corrected critical wavenumber or wavelength for the breakup of a liquid
film on a cylindrical body

Lienhard and Wong’s critical wavenumber or wavelength for film boiling
on a cylindrical body

Rayleigh’s critical wavelength for a liquid column
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critical wavenumber or wavelengts {Sr the Rayleigh-Taylor instability of a

<. Taylor
plane interface

4 most dangerous wavenumber or wavelength

4. boxting most dangerous wavenumber or wavelength during film boiling on a
cylindrical body

4. budble most dangerous wavenumber or wavelength during bubble formation from
a narrow slot

4, droplet most dangerous wavenumber or wavelength during liquid film breakup on
a cylindrical body

4 g most dangerous wavelength for a gas-in-liquid jet

d.jet most dangerous wavelength for a plane gas or liquid jet

d. kelvin most dangerous wavelength for the Kelvin-Helmholtz instability of a plane
interface

¢, liguid most dangerous wavelength for a liquid-in-gas jet

d. Lee Lee’s most dangerous wavenumber or wavelength for the breakup of a
liquid fiim on a cylindrical body

4 PW corrected most dangerous wavenumber or wavelength for the breakup of a
liquid film on a cylindrical body

dLw Lienhard and Wong’s most dangerous wavenumber or wavelength for film
boiling on a cylindrical body

d. Rayleigh Rayleigh’s most dangerous wavelength for a liquid column

4, Tayior most dangerous wavenumber or wavelength for the Rayleigh-Taylor
instability of a plane interface

P g

! inner fluid for a cylindrical interface

2 outward fluid for a cylindrical interface

! liquid

ro.z cylindrical coordinates

Superscript

d perturbation

total
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' inner fluid for a cylindrical interface
" outward fluid for a cylindrical interface
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CHAPTER 1

INTRODUCTION TO THE THESIS

i.1 BACKGROUND OF THE PRESENT RESEARCH

Gas-liquid interactions occur in boiling and condensation operations, and in many
chemical and metallurgical processes. The hydrodynamic instabilities of the gas-liquid
interface play an important role in film boiling', filmwise condensation® and in gas bubble
breakup®. There are two kinds of instabilities for interfaces between two fluid phases. The
first derives from the character of the equilibrium of an interface between two fluids of
different densities superposed one on another or accelerated towards each other; the
instability of the plane interface between the two fluids, when it occurs, is called the
Rayleigh*-Taylor® instability. The second type of instability arises when wo stratified
heterogeneous fluids are in relative motion; the instability of the plane interface between
the two fluids, when it occurs, is called the Kelvin-Helmholtz instabiliry®™*.

Vapour evolution during film boiling and droplet formation during filmwise
condensation are definite and highly predictable Rayleigh-Taylor instability processes. In
order to understand the film boiling and the condensation. n a cylindrical body rather than
on a planar interface, the conventional theory of the Rayléigh—'raylor instability of a planar
interface must be modified to incorporate the cylindrical curvature of the interface between
gas vapour and liquid. Therefore, the first part of the thesis is concerned with the
mathematical development and subsequent application of the Rayleigh-Taylor instability to
a cylindrical interface between two fluids.

The theme of the second part of the thesis is ihe gas injection through a very
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narrow slot. The distribution of gas bubbles into a liquid or slurry for the purpose of mass
transfer is a very often preformed operation in chemical and metallurgical engineering.
Because the main purpose of this gas phase subdivision is to increase the interfacial area,
1t is essential to produce small size bubbies. It was found in the present research that small
size bubbles could be generated through a very narrow slot (e.g., 50-250xm). When gas
was injected into liquid through a very narrow slot, the dynamic gas-liquid interface along
the length of the slot could be assumed as a cylindrical one due the capillary effect.
Because of the instability of the cylindrical interface, the dynamic gas-liquid interface
breaks-up so that small bubbles are formed separately along the slot. The mechanism of
the bubble generation through a very narrow slot is similar to that of the vapour bubble
formation during film boiling on a cylindrical heater.

1.2 OBJECTIVES OF THE PRESENT WORK

Bubble formation during film boiling on a cylindrical body and during gas injection
through a very narrow slot results from the breakup of a cylindrical interface between
liquid and gas. The breakup phenomena of a cylindrical interface between two fluid phases
was attributed to the hydrodynamic instabilities. Thus, the overall objective of this
investigation was to analyze the hydrodynamic instabilities of cylindrical interfaces with
application to several gas-liquid interaction processes. To achieve this objective, the
following studies were carried out.

1. To analyze the Rayleigh-Taylor instability of a cylindrical interface between
two fluids so that:

¢ a mathematical model is proposed to predict the film boiling phenomena
on a cylindrical heater immersed in both invisctd and viscous liquids.

® the breakup phenomena of a liquid film around a long, horizontal,
circular cylindrical body in still air is clarified. Furthermore, the erroneous
theoretical analysis and experimental result reported in the literature’ can
be corrected.
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2. To examine the Kelvin-Helmholtz instability of a cylindrical interface
between two moving fluids with applications to the breakup of a gas-in-
liquid jet and a liquid-in-gas jet.

3. To understand the gas injection phenomena through a very narrow slot so
that the bubble formation from a slot could be predicted.

1.3 STRUCTURE OF THE THESIS

This thesis consists of two parts comprising ten chapters. The first part (Chapters
2-5) covers the hydrodynamic instabilities and their applications. The second part (Chapters
6-9) presents the gas injection phenomena through a very narrow slot. Chapter 10
concludes the thesis and suggests future research.

In the first part, a literature survey on the hydrodynamic instabilities is presented
and the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability of a plane interface
are described. Film boiling on a cylindrical heater is reviewed. Previous mistakes reported
in the literature regarding the breakup of a liquid film around a cylindrical body are
pointed out and are corrected. '

Following this, the Rayleigh-Taylor instabilities of a cylindrical interface between
two inviscid fluids and between two viscous fluids with applications to film boiling on a
cylindrical heater and liquid film breakup on a cylindrical body are examined.

Finally, the Kelvin-Helmholtz instability of a cylindrical interface between two
inviscid fluids with applications to the analysis of the breakup of the gas-in-liquid jet and
liquid-in-gas jet is discussed.

In the second part, previous research about gas injection phenomena with emphasis
of bubbie formation models is first reviewed. A modified bubble formation model with
consideration of surface tension and inertial forces is then proposed. Experimental
phenomena and results as well as theoretical analysis on gas injection through a very
narrow slot are presented.
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HYDRODYNAMIC INSTABILITIES OF
A CYLINDRICAL INTERFACE
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CHAPTER 2

LITERATURE REVIEW ON INTERFACIAL
HYDRODYNAMIC INSTABILITY

Hydrodynamic interfacial instabilites occur through nature in an astonishing
diversity of physical, chemical and engineering systems. For example:
A. Natural phenomena

1 Overturn of the outer portion of the collapsed core of a massive star'.

2) The formation of high luminosity twin-exhaust jets in rotating gas clouds in

an external gravitational potential'.

B. Technological applications

1) Laser implosion of Geuterium-tritium fusion targets'2,

2) Boiling phenomera®.

This chapter reviews the hydrodynamic theory of interfacial instability, film boiling
and condensation.

2.1 INTERFACIAL INSTABILITIES

It was Helmholtz’ who first considered the stability of an interface of two
superposed semi-infinite fluids flowing with different velocities. His work was followed
by that of Kelvin®. The stability of an interface between two superposed fluids under the
action of gravity was first investigated by Stokes®. In 1883, Rayleigh* analyzed the stability
of a fluid with variable density, which was the fundamental work for the so called
"Rayleigh-Taylor instability”. The stability of heterogeneous fluids accelerated in the
direction perpendicular to the plane of stratification can be treated by the same formalism
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as used by Rayleigh. Harrison' obtained the dispersion equation, relating the
wavenumber, k, and growth rate, G, by taking into account the surface tenston and
viscosity. Harrison’s discussion was complete from an analytical standpoint. The special
case of the stability of the interface between two fluids of differing densities was also
investigated by Taylor’. Bellman and Pennington'® also reconsidered the problem by
taking into account the surface tension and the viscosity and obtained a dispersion equation
which, though very different in form, was nevertheless the same as Harrison’s result, when
certain of Harrison's misprints were corrected. From this point of view, the work of
Taylor® and of Bellman and Pennington’ was mathematically based on the work of
Harrison.

The nature of the equilibrium of a ¢ylindrical column of liquid jet in still air (zero
density) was first analyzed by Rayleigh'S. It can be considered as the first mathematical
analysis of the instability of a cylindrical interface. Lamb® extended Rayleigh’s analysis to
treat circumferential waves as well as axisymmetric ones. Rayleigh concluded that for
symmetry about the axis, the equilibrium is unstable for disturbances whose wavelength
exceeds the circumference of the jet, and the ratio of the wavelength to the diameter of jet
for the kind of disturbance which leads most rapidly to the disintegration of the cylindrical
mass is equal to 4.508, i.e.,

N toiegn = 2TR .
M royieign = 4-508 2 R) |

where A, gsepn A0A Ny gousqs are the critical and dangerous wavelengths of liquid cylindrical
column; R is the radius of the cylindrical jet.

The Rayleigh-Taylor instability of a spherical interface has also been analyzed by
several investigators 7%,

2.1.1 KELVIN-HELMHOLTZ INSTABILITY OF A PLANAR INTERFACE

-
T
NS

The Kelvin-Helmholtz instability arises at the interface of two fluid layers of
different densities, p, and p,, flowing horizontally with velocities, U, and U,, respectively.
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If the effects of viscosity of the fluids are neglected. and the perturbed flow is assumed to
be irrotational, the velocity potentials of the two fluids can be written, respectively, as:

¢ =Ux+9¢, , & =Ux~+9, )

in which x is measured in the direction of the mean velocities; ¢, and ¢, are the velocity
potentials for fluid 1 and 2 due to a perturbation; the subscript 1 indicates the lower fluid:
and all of the ¢ (¢)’s satisfy the Laplace equation.

If the direction of increasing y 1s the vertically upwards, and £ is the displacement
of the interface in the y-direction, the kinematic conditions to be satisfied at y=0 are:

%,y 2% % |y 8 . 2% (5)

ar ‘Yax  ay 3 tax oy

in which the quadratic terms in £, ¢, and ¢, are neglected. Other boundary conditions for
¢, and ¢, are, without loss of generality,

¢, >0 as y—» -0 , and ¢, >0 as y—> o (6)
which guarantee vanishing velocities at y = + .

Neglecting higher than first order terms in £, the dynamic boundary condition at
the interface is:

2 2
Pf-Pf= |0, 0% Q)

o ax? 8z
in which z is measured in a horizontal direction normal to that x, and ¢ is the surface
tension; P;* and P, are the perturbation pressures. Since the flow is assumed to be
irrotational, the Bernoulli equation can be used to evaluate P/. The linearized form of it
is:

P! ¢, 3¢

LIS RPN ; S R (8)

P, ar 13 &)
‘and a similar formula gives P,® in terms of ¢, and U,. Applying the formulas for P,* and
P,? to Equation (7) at y=¢, one has:
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&)

09, _ a‘f’l_ | _ _aéz_ a‘f’z_ __[%F | 3
"'['aT Yo g‘] "2[7 Yo "8%] ° "['—° ]

where g is the acceleration due to gravity.
If the perturbation is assumed to be periodic in x and z, the appropriate forms for

&, ¢, and & are:

¢, = c,explky + i(Gr +mx +nz)]
(10)

¢, = c,exp[-ky + {(Gr +mx + n2)]

£ = aexp[i(Gt + mx +n2)] (11

where a, c; and ¢, are constants, &k the wave number, and G the growth rate. It is evident
that ¢, and ¢, satisfy the Laplace equation if:
k2 =m? + n? (12)

and that the boundary conditions at y = oo are satisfied. Substituting Equations (10)-
(11) into Equations (5) and (9), and then eliminating ¢,, ¢, and a, yields:

_P U, + 0,0,
h* P,

-
m?pte, m?pyte (o +p)

3Q

12
+ gk APy ok* 1 _pp (U - Uz)zl (13)

If the disturbance is two-dimensional, n = 0 and m = k, Equation (13) becomes:

U U
%}=_p1 1"'Pzz+

1”2
gP-p ok _ e (U -UY (14)
p+p, -

kpy+p, p+p, (0, +p)°

which is called dispersion equation and was in effect given by Lamb and
Chandrasekhar™'®. The right-hand side of Equation (14) is the phase velocity of the
disturbance. If the propagation velocity of the surface waves is expressed by C, Equation
(14) can be rewritten as:
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U ~+p,U, \ U -U| (15)
C=- ﬂ:_i'_; +| C. - P: Py ! =
P TP I S
in which,
ct =80 "P | ok (16)
ko +p, 0 *p

-

When the root in the expression for the wave velocity C has a nonzero imaginary
part, the interfacial disturbance can grow exponentially. Hence, the flow is unstable if:

g~ P gk < A (17
- p[pz
kpo+e, »*p Py * Py

There are several important points to be recognized in this stability criterion. First,
the viscosities of the fluids are neglected; therefore, the Reynolds number plays no role in
this kind of interfacial instability. The instability of the system then is governed by three
effects-namely, the gravity force, surface tension force, and relative motion. The relative-
motion term reflects the effect of the pressure through the Bernoulli principle. The gravity
term is stabilizing only if the upper fluid is lighter than the lower fluid (p,<p,). The
surface-tension force is always stabilizing, since the flat interface has the minimum surface
area, and the surface-tension force acts to resist any deformation from the equilibrium
configuration. On the other hand, relative motion between the fluids is destabilizing.

The propagation velocity, C,,, in the absence of the flows (or the left-hand side of
the stability criterion) is a function of the wave number k. Therefore, as the wavelength
A = 2x/k changes from zero to infinite, the wave velocity decreases to the minimum value
and then increases. This minimum value of C,? is given by:

172
) [.‘ﬂ'_";_’] (18)
(o, + py)
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which occurs at the critical wave number, &_:

k

[

g

12
. [M] (19)

This corresponds to the critical wavelength A:

¢ k g(ﬂ: _pz)

<

12
A = 2% =zf[__0__] (20)

The system is stable for small disturbances of all wavelengths if the relative velocity is
sufficiently small to satisfy:

W, - U < M‘/o‘ 20, - py) QD

Py Py

For a relative velocity larger than this limit, the system is only conditionally stable for a
certain range of wavelengths. When the wavelength is large, the value of C,? in Equation
(16) is mainly determined by the gravity term. Conversely, if A is sufficiently small, the
capillary force governs the wave motion.

Since the dominant wave is the one having the maximum growth rate, it is obtained
by vanishing the derivative of the imaginary part of the growth rate, G, with respect to
wavenumber k. From Equation (14), if G = G, + iG, G, is then expressed as:

gk(p1 _pz) _ ck? . PPy (Ux - U2)2k2 . (22)

2
Gi = - =
pl+p2 pl+p2 (p1 +p2)

dG?/ak = 0 leads to:

_g(pl_pz) _ 30’k2 . 2p1pz(U1-U2)2k =
P+ P, Pyt Py (p, +p,)°

0 (23)

Furthermore:
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2T 2
)\d.xem'a -

172
d. Kelvin

: e @4
Py Py (Ul - UZ)- - PP (Ul-U:)- _ S(Pl -':02)
36(91 +p2) 36(}): "'P:) 30

A4, kevin 15 the most dangerous wavelength for the Kelvin-Helmholtz instability.

The Kelvin-Helmholtz instability plays an important role in the breakup of a jet. For
a high speed gas-in-liquid jet or liquid-in-gas jet, the gravity term, the density of the gas
phase and the velocity of the bulk phase in Equation (24) can be neglected, so that
Equation (24) is written as:

A _3xc0

djet )
P, Uje:

25

where U, is the superficial velocity of the jet and Ay ;, is the most dangerous wavelength

“of a gas-in-liquid or a liquid-in-gas jet. Because of the Kelvin-Helmholtz instability, a
liquid-in-gas jet breaks up into fine droplets and a gas-in-liquid jet breaks up into fine
bubbles. If the diameters of the droplets or bubbles, d,, are of the order of the most
dangerous wéirelengm, A4 ja» We then can define a very important dimensionless number,
Je:

2
Jo = 9P Ui (26)

o

where Je is designated as the gas-liquid jet number by the present author. In fact, it is a
Weber number. The reason for the present author to define the dimensionless gas-liquid
jet number, Je, is that the gas density to surface tension ratio dominates the droplet (or
bubbie) size of a high speed liquid-in-gas jet (or a gas-in-liquid jet) rather than the liquid
density to surface tension ratio. Many investigators who believe that the liquid density to

surface tension ratio dominates the diameters of bubbles produced from a gas jet are misled
by traditionally defined Weber number, We:
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We = dppl UJ:‘ 27
g

2.1.2 RAYLEIGH-TAYLOR INSTABILITY OF A PLANAR INTERFACE

The Rayleigh-Taylor instability is the interfacial instability between two fluids of
different densities that are stratified in a gravity field or accelerated normal to the interface.
It is commonly observed that the interface between two stratified fluid layers at rest is not
stable if the upper-fluid density p, is larger than the lower-fluid density p,. Since the
Rayleigh-Taylor instability leads to deformation of the interface, it is important in the
formation of bubbles or droplets. In particular, the critical wavelength predicted by the
related stability analysis is one of the most significant length scales for two-phase flows.

The Rayleigh-Taylor instability can be considered as a special case of the Kelvin-
Helmholtz instability with zero flow and with p, > p,. Hence the propagation velocity can
be obtained from Equation (15) by setting U, = U, = 0, i.e.,

c? E_G_;= 8 Pr =P _ ok (28)
k2 ko, *p, by te

The system is unstable if the root of the propagation velocity has a nonzero imaginary part.
Equation (28) shows that the gravitational force is destabilizing for p,>p,, whereas the
surface tension force is stabilizing. There is a critical wavelength A 1., below which C*
is always positive. This is given by:

_ 27T
N Totor = m

1”2
=% o ] 29

8 (pz -p1)

If the wavelength of a disturbance is larger than the critical wavelength, then C* becomes
negative and the interface is unstable. For fluids that extend infinitely in the plane of the
interface, the wavelength of the disturbance can be as large as necessary; therefore such
a system is always unstable. However, if the fluids are confined, the maximum
wavelength is limited to twice the system-dimension. This implies that a system is stable
if the lateral characteristic dimension is less than half the critical wavelength Ac Tuyior-  FOT
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an air-water system, this characteristic dimension is 0.86 ¢cm.

For an unstable system, any disturbance having a wavelength greater than X, v,y
can grow in time. However, the dominant waves, Ay r.i are those having the maximum
growth rate [max(-G*)]. From Equation (28) it should be:

112
ANy =273 | —% (30)
d.Taylor T‘/_ [ g (P2 _ pl) ]

This is the so-called most dangerous wavelength which exhibit the maximum growth rate.
These unstable waves can be observed as condensed water dropiets dripping from a
horizontal downward-facing surface. Quite reguiar waveforms and generation of bubbles
due to the Rayleigh-Taylor instability can be observed in film boiling. However, this
instability is not limited to the gravitational field. Any interface between fluids that are
accelerated normal to the interface, can exhibit the same instability. In such a case the
acceleration should replace the gravity field g in the analysis.

2.2 HYDRODYNAMIC THEORY OF FILM BOILING

There exist three types of boiling, namely, nucleate, transition and film boiling. The
transition from one type to another is accompanied by marked changes in the
hydrodynamic and thermal states of the system. In the film boiling regime, the superheated
wall and the saturated boiling (or subcooled) liquid are separated by a thin vapour film.
The upper limit of the attainable heat flux in the region of film boiling is determined by
the melting point of the heating material. A lower limit is given by so-called Leidenfrost
point®®, where the thickness of the vapour film reaches a minimum value that is critical
for stability. Relatively large vapour bubbles are periodically released from the upper side
of the liquid-vapour interface in film boiling. In the neighbourhood of the Leidenfrost
point, the coalescence of the individual vapour bubbles is avoided, and heat removal from
the surface is assumed to be governed by the behaviour of the bubbles, which in turn
should be related to the occurrence of hydrodynamic instabilities at the liquid-vapour
interface.
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Chang?®  Zuber®, and Zuber and Tribus®™ presented mathematical model for
film boiling on horizontal flat plates. These models are based on the Rayleigh-Taylor
instability of the liquid-vapour interface. Capillary waves are propagated along this
interface which becomes unstable if the wavelength exceeds a certain critical value.
Berenson® improved on these theories by emphasizing the importance of the mos:
dangerous wavelength, instead of the critical wavelength.

For film boiling on a horizontal cylindrical wire, the equations for the Rayleigh-
Taylor instability of a plane interface must be modified to incorporate the effect of the
surface tension along the curved periphery of the liquid-vapour interface normal to the axis
of the wire. Lienhard and Wong 2 made an assumption regarding the shape of this
cylindrical vapour-liquid interface, as shown in Figure 2.1. In this assumption, a
cylindrical heater with radius R, is immersed in liquid. The shape of the liquid-vapour
interface surrounding the wire during film boiling is assumed to take a sinusoidally
undulating, asymmetrical form. The vapour blanket surrounding the heater is assumed to
be sufficiently thin that the smallest radius of the interface is negligibly larger than the
radius of heater. The maximum perturbing amplitude, ¢, of the dominant wave occurs at
the top of the interface. The pressure due to the surface tension in the transverse direction
varies between /R, in the valleys and o/(R,+¢) at the peaks of the wave, it has an average
value of o/(Ry,+¢/2) and an amplitude of oe/(2R,). Therefore, the transverse pressure can
be expressed as®:

ap, = %% 31)

After considering the transverse pressure, the dynamic boundary condition (Equation (7))
at the interface is expressed as:
2
Pld‘Pod=‘0'[aE] -A.Pr (32)

= -2
&

in which the curvature in the x direction is replaced by the transverse pressure, AP,. If
a two-dimensional wave is assumed (n = 0), and U, = U, = 0 is considered, the
dispersion equation (Equation (14)) becomes:
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(a). The assumed geometry of film boiling on a horizontal cylindrical heater

“Fluid. 2 (hqwd)

(b). The assumed sinusoidal interface

Figure 2.1 The assumed geometry of film boiling on a horizontal cylindrical heater.

C? = -G_z - Epg*pz . ok _ o (33)
k* kpi*py PPy 2k(p, + p)R]

By setting C = 0 we have the critical wavelength:

go,-0) 1| (34)
4 2R?

}\c. Lw
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By maximizing the growth rate, the dangerous wavelength can be expressed as:

X _ 2 rﬁ
d LW
g (pz = p]) . 1
4 2R}

172 (35)

Equations (34) and (35) were obtained by Lienhard and Wong® in 1964.

By assuming that the spacing between bubbles is dominated by the dangerous
wavelength, Lienhard and Wong predicted and measured the distance between the bubbles
forming during film boiling on cylindrical wires in isopropanol and benzene. The
experimental bubble spacing exceeds the theoretical value by 25% in both isopropanol and
benzene. In 1969, Lienhard and Sun® proposed a modified formula for the prediction
of the wavelength by taking into account the minimum blanket thickness of vapour in order
to overcome the under-estimation of dangerous wavelength of Lienhard and Wong’s model.
However, comparison to experiment showed that they still under-predicted the data. In
fact, this is not surprise because they oversimplified the instability problem of the
cylindrical interface due to the use of Cartesian coordinates even though they considered
the eccentric circular contour of the interface on planes perpendicular to the heating wire
axis. They employed velocity potentials for a flat interface (which are the solutions of the
continuity equation and the momentum equations for a flat interface rather than for a
cylindrical interface) to analyze the instability problem for cylindrical interface. One of the
objectives of this thesis is to propose a correct model to predict the film boiling phenomena
on a cylindrical heater.

In order to predict the film boiling phenomena on a cylindrical wire in a viscous
system, Dhir and Lienhard®, following the same mathematical procedure as used by
~ Bellman and Pennington'® but including transverse pressure term due to cylindrical
curvature, obtained dispersion equation for viscous fluids similar to Lienhard and Wong’s
modification for a inviscid system. Again, it can only be considered as an approximation.

2.3 THE MISTAKES OF LEE’S MODEL

In contrast to film boiling on a cylindrical heater, when a horizontal cylindrical
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body, with infinite length and uniform circular cross section, is coated with a thin film of
liquid and placed in still air, the liquid film will break away from the cylindrical body due
to the Rayleigh-Taylor instability. By employing Cartesian coordinates as Lienhard and
Wong did, Lee’ presented a theoretical model to predict the dominated wavelength during
the breakup of a liquid film around the cylinder. In his theoretical analysis, not only was
the incorrect coordinate system used but also mistakes were made so that a completely
wrong, conclusion was drawn.

By assuming that the entire surface of the horizontal, infinitely long circular
cylinder is covered by a layer of liquid film thin enough to be regarded as having uniform
thickness while in equilibrium as shown in Figure 2.2, Lee got an expression for the
exponential growth rate (Equation (21) of Lee’s paper)™:

2, L[|,
- [3@2'91)+0[k E”L (36)

Pyt Py

e

Since the wave amplitude grows according to exp(iGr), G* < 0 gives unstable interface;
i.e., when: "

e > [u _ L] o

g Rf

the interface is unstable. Consequentlj?, a shorter wavelength (larger wavenumber) would
produce an unstable interface, which is wrong and also in conflict with his Figure 3.

By maximizing -G*, Lee obtained expressions for the dangerous wavenumber (in
his paper, he calied it the critical wavenumber):

In Lee's paper, C, and 3, were used to express the exponential growth rate and the wave number,
respectively, i.e., iG=C; and k=4,.
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Liquid film

Figure 2.2 The assumed geometry of gas-liquid interface during liquid film breakup on a cylindrical
body

(pl = pz) g - 1 .
o R_f (38)

V3

and the dangerous wavelength (he called the critical wavelength}:

2-:\/37

)\d. Lee 12

(p‘l - pz) 8 _ i (39)
o R:

kd. Lee

Thus, the dangerous wavelength increases with a decrease of the radius of the cylinder,
which means that extremely thin wires give the most stable interface (from Figure 3 of
Lee’s paper, when the dimensionless radius (g{p,-0,)/0)"°R,< 1, the interface is stable for
all wavelengths). Again, this conclusion is questionable despite Lee having experimental
data to verify his theory.

Lee made several mistakes in his analysis:

(1).  The expression for the curvature caused by the variation of £ in the X direction is
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not correct. Equation (16) of Lee’s paper should be:

1 _ _ 3¢
Ry dx

(40)

[F]

(2).  The dispersion Equation (36) (Equation (21) in Lee’s paper ) is wrong, it should

be:
2y - p) + o |kF - 2 k
2 1 Roz @n

(3). An incorrect criteicn was employed to explain the interfacial instability. Lee
believed that the sign of the real part of iG determines whether the wave is
amplified (Re(iG)>0) or damped [Re(iG) <0]. For Re{iG) <0 the corresponding
flow is stable for given values of wavelength whereas Re(iG) >0 denotes instability.
The correct criterion is whether {G is a real number or an imaginary value. If iG
is a real value the disturbance grows exponentially (exp(iGr)) and the system is
unstable. If /G is an imaginary value, the system is stable.

G'.’

From Equation (41) the critical wavelength above which the growth rate, G, is
always negative can be expressed as:

A . 27 _ 2x
¢, PW
kerw [y~ 0) g Ll N “42)
o R?
The dangerous wavelength is obtained by maximizing -G
2% _ 203
d, PwW -
b [ -0)g  1]" “3)
o R

Obviously, the dominant wavelength decreases with a decrease in the radius of cylinder,
. which is contrary to Lee’s conclusion.
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In fact, Equations (42) and (43) can only be considered as an approximaton to the
real solution due to the Lee’s use of inappropriate velocity potentials. The objective of the

present paper is to clarify above Rayleigh-Taylor instability phenomena by experiments and
theoretical analysis.

o

/7
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CHAPTER 3

RAYLEIGH-TAYLOR INSTABILITY OF A
CYLINDRICAL INTERFACE: INVISCID SYSTEM

3.1 THEORY

Let us consider the nature of the equilibrium of an interface between two fluids

separated by r=R, °. If the fluids are inviscid, the perturbed flow can be assumed to be
irrotational. We then have:

v = 0 44)

In the Laplace equation, $ is the velocity potential. Thus,

% 1 3¢ ad
=== U= U = — 45)
Ur or * rae 7 &z
where U,, U, and U, are the velocity components in the cylindrical coordinates™. The
Laplace equation in ¢vlindrical polar coordinates can be expressed as:

W§=ﬁ+lﬂi+laz_@+ﬁ (46)
ar? ror r?ag az?

The solution of the Laplace equation: can be obtained by using the method of separation of

In the present thesis, the cylindrical interface is assumed to be horizontal; if the interface is not
horizontal and has an angle ¢ between the vertical axis and the symmetrical axis of the cylindrical
interface, the acceleration due to gravity, g, in all derived equations of the present thesis should be
replaced by gCos(a).

In the following sections, z represents the symmetrical axis in the cylindrical coordinates.
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variables®, i.e.:

$ =R - 69 - Z() 47

Furthermore, the velocity potential can be expressed as:
$ = A (kr)exp(i(Gt + kz)] Cos(n8) +~ BK (kr)exp[i(Gt +kz)] Cos(n) 48)
in which, A and B are constants and n, the order of Bessel functions, is an integer so that

the velocity potential has same value at §=0 and at §=2=. I,(kr) and K, (kr) are known as
modified Bessel functions of the first kind and the second kind, respectively.

Equation (48) is the general solution of the Laplace equation and can be simplified
by considering the following limits:
lim I(X) = o , lim K(X) = o (49)
X-0 X0
Therefore, the velocity potentials for fluid 1 and fluid 2 ($, and &,) can be expressed as:
®, = AL kr)expli(Gt + kz)] Cos(n6) r < R,

(50
®, = BK (k1) exp[i(Gt + kz)] Cos(nf) r =R,
Let the disturbance of interface (r=R,) be:
r=R, + £6:20 Y]

The kinematic condition at the interface is that the radial velocity component must be
continuous, and this demands:

%, 39, gt _ 52)
R i (
From Equation (50) we have:
4 ol (kr) i} B dK, (kr) (53)
ar | .a ar |,

While,
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2% W
D) = = - = | == 54
5020 = [U,ar = | [ ar],_&d' G ar],_n_ &Y

The dynamic boundary condition at the interface is:

Pi=P,+o 1.1 (53)
R, R

where P;* and P, are the total pressures of fluid 1 and 2; R, and R, are the principal radii,
counted positive if the centres of curvature are toward the symmetrical axis of cylindrical
interface. In the case of absence of a disturbance, Equation (55) becomes:

P =ph+ 2 56
10 20 RO ( )
where P,o' and P, are the equilibrium pressures of fluids 1 and 2.
For the disturbance, the curvature in the direction of z is:
1 %
So=_0% (57)
R, az?

while, the curvature of the surface which differs infinitely little from a circle having its
centre at the origin is:

1 1 1 o

—==-_2° (58)
R, r rog
From Equation (51) and if the disturbance (£) is small, we have:
l = _° - E(oaiit) (59)

r R, R

Moreover,
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1 .

=1 k
R, R

1
= [s(a,z,r) + ﬁ] (60)

Thus, the perturbation pressures, P,¢ and P,%, must satisfy the following condition:

Pf=P2d+o'l—a_2E-_E--i£] (61)

From Egquations (50) and (54), we have:

FE _ 1 [3®)] ,_pn - _yp2 62

= ELw‘(kz)_ k2% (62)

% _ Lfa®] . . _ _,2 63)

o TGLE‘(n) n?t (
Thus,

pé=pisliz-L L, (64)

From the Bernoulli equation, neglecting the second order velocity term, we have:

(65)

ad ad
Pl = -, [Tt' - gECos®| , P = -, lw T 820

Substituting Equations (54) and (65) into Equation (64) and rearranging gives:
R R o

ad
[ ar |, (66)
Pz(q’z),_& —P (‘I’:),.,R.

Substituting Equations (50) and (52) into above equation, we get the required formula:

al,k,+ 1 _n?, (,=p,) 8 Cos(f)

G -
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K2 - 1-n° _ (o, = 0,)g Cos(6)

k
7 PE s (67)
G? = ?
P8, + 0,8,
where:
IR K(kR
R T SR )
I,(kR) K,(kR)

From the approximate expressions for the Bessel functions 7,(X) and K,(X) when
X is large (APPENDIX I), it is quite obvious that Equation (67) becomes Equation (28)
when R, goes to infinity.

Equation (67) gives the relationship between the exponential growth rate (G) and
the wave number (k) for a cylindrical interface. The nature of G governs the stability of
the disturbance, If G is real, the stabilizing effect of surface tension in the axial direction
will smooth out the disturbance. If G is imaginary, the force of gravity will dominate and
the disturbance will increase exponentially. G passes from real to imaginary as the right-
hand side of Equation (67) passes through zero. The critical wave number, &, and critical
wave length A, are then obtained by equating the right-hand side to zero: -

)\=21'= 27

Tk 0)8Cos® (1 -m)]| " (69)

2
o Ro

The most dangerous wavé number, k; and wave length A, were obtained by maximizing -

G? by using a numerical optimization technique such as the commercial available software
TK-Solver®.

When the equilibrium radius R, goes to infinity, the most dangerous wavelength can
be expressed analytically, i.e., Equation (30).

Since the order of Bessel function, n, equals O for a cylindrical interface, the

o r——
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dispersion equation, Equation (67), becomes:

1 _ (o, - p)g Cos(0)
Ef g (70)

pa, - pa,

ok |k -

GZ

where:

L&R)  I(kR) _ _ KfkR) _ KkR)

- - o = (71)
T Wwr) LER) T T Klar) KGRy

3.2 APPLICATION TO FILM BOILING
3.2.1 MATHEMATICAL MODEL

The dispersion equation, Equation (70), derived in Section 3.1 is applicable to a
symmetric cylindrical interface in an inviscid system. As mentioned in Section 2.2, the gas-
liquid interface (Figure 2.1) for film boiling on a horizontal cylindrical heater is
asymmetric. Using Lienhard and Wong’s geometrical assumption for the vapour-liquid
interface (Figure 2.1), the term "£0/R,>" of Equation (64) should be replaced by Equation
(31). Consequently, Equation (64) becomes:

Pl =P+

K - ,..l_] Eo (72)
2 R?

in which n = 0 has been assumed. Finally, the dispersion equation, Equation (70),
becomes:

O'k kz - 1 - (pz = pl)g
) 2R? o

Gz
Py *pya

(73)

Since bubbles are formed along the top line of the cylindrical heater dunng film boiling,
@ = 0 is used in Equation (73).
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In order to express Equation (73) in a convenient dimensionless form, we define
following dimensionless variables by considering p; = p, = 0 and p, = p;:

1). Dimensionless radius:
12
=R ["f_g] 4

2). Dimensionless wavenumber:
172
K=k [_"_] (75)

3). Dimensionless growth rate:

1
a=ic |2 |° (76)
P8
From Equation (75), we have the dimensionless wavelength:
2 12
A=2x_ 2% (m8L |28l a5 A an
K k o g
Finally, combining Equations (73)-(76), Equation (73) becomes:
1 1
R=-_|K-—-1]K (78
a, [ 21 ]
where,
= KO(kRo) - Ky(KID) (79)

a, =
K(kR) K,(KID

Equation (78) is independent of the properties of fluids. By equating {1 to zero, we get the
dimensionless critical wavelength:
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2= 2x

e J (50)

<. bodiag K
2 IF

Based on the above definitions of dimensionless groups, Lierhard and Wong's
formula for predicting the most dangerous wavelength (Equation (35)) can be rewritten as:

A . 2 _ 21'\/'3_ ‘
“ Kiw i+ i ]m @1
g

From Equation (80}, it is obvious that when the dimensionless radius, II, becomes
large (e.g. I1 > 3), the critical wavelength is independent on the radius, and so is the most
dangerous wavelength.

3.2.2 COMPARISON WITH EXPERIMENTAL RESULTS

Lienhard and Wong™ experimentally determined the dominant unstable wavelength
during film boiling of isopropanol (p=785.5 kg/m®, ¢=23.78 dyns/cm) and benzene
(p=876.5 kg/m’, 0=28.89 dyns/cm) liquids on horizontal nichrome-V wires (60-650 pm)
and tungsten wires (25-50 pm).

Figure 3.1 and Figure 3.2 present comparisons between measured® and predicted
wavelengths by Lienhard and Wong’s model (Equation (35)) and also by the present model
{(Equation (73)) for isopropanol and benzene, respectively. It is obvious that there is
excellent agreement between the present model and Lienhard and Wong's experimental
data. Because the surface tensions of isopropanol and benzene obtained from the CRC
handbook are not the saturation values, calculations were also made for the most dangerous
wavelengths based on values 25 percent less than the surface tension value given above and
are also shown in Figure 3.1 and Figure 3.2. It can be seen that a 25% variation in surface
tension does not change the agreement between the predicted values and the experimental
data.

Figure 3.3 presents the ratio between the square of dimensionless_growth rate (%)
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) ol g
1E-06 1E-05 0.0001 0.001 0.01 0.1
Heater Radius (m}

Surface tension=23.78dyn/cm Surface tension=23.78dyn/cm Surface tension=18dyn/cm
Present model Lienhard and Wong's model Present modei
Surface tension=18dyn/cm Measured data by
Lienhard and Wong's model Lienhard :md Wong

Figure 3.1 The relationships between the heater radius and the dangerous wavelengths for
isopropanol. ‘

and its maximum value (max({%) as a function of dimensionless wavelength at specific
dimensionless radii according to Equation (78). The dimensionless critical wavelength and
dangerous wavelength can be read from this figure at zero dimensionless growth rate and
maximum dimensionless growth rate, respectively. The curves in Figure 3.3 become flatter
with increasing dimensionless radius, i.e. a broad band of dimensionless wavelengths gives
growth rates with almost equal max((¥). Thus, the variability of measured dimensionless
dangerous wavelength is exp;cted to increase with increasing dimensionless radius, as
pointed out by Lienhard and Sun?.
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Figure 3.2 The refationships between the heater radius and the dangerous. wavelengths for berzene.

Figure 3.4 shows the dimensionless dangerous wavelengths predicted by Equations
(78) and (81), which should correspond to the measured average dangerous wavelengths.
The measured data® are also presented. Evidently, the present model gives the best
representation of measured average wavelength. However, in reality there is not a precise
value of the wavelength; the most dangerous wavelength is that which happens at the
maximum growth rate and corresponds to the measured average data. If it is assumed that
the measured wavelengths corresponding to a growth rate greater than some fraction of the
maximum growth rate, and setting the cut off for the wavelength at 90% of the maximum
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Figure 3.3 Calculated ratio between square of the dimensionless growth rate and its maximum value
as a function of most dangerous dimensionless wavelength at specific radius.

growth rate, the variation in the measured data is encompassed, Figure 3.4.

Figure 3.5 shows the ratios between the calculated values of the most dangerous
wavelengths and the critical wavelengths according to Equation (78). It is obvious that the
ratios are greater than'v'3, the result of Lienhard and Wong. This is why the present model
gives better correlation to the observed values than the previous models. The data shown
in Figure 3.5 are fitted by Equation (82):

Aspoing _ 2.16 + /3 0.4672 IT* ' (82)
Ac.boiﬂns 1 + 0.4672 II‘-"'

Equation (82) gives Ay, yung/Ac. bating = ¥'3 When the dimensionless radius is infinitely large
and A, pune/Ac sy = 2.16 when the dimensionless radius is zero. From Equations (30)
and (82), we have an expression for the dimensionless dangerous wavelength in a closed
form:
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Figure 3.4 The relationship between the dimensionless wavelength and the dimensionless radius.

A o 216+43 0462 I 2x
Dbl T T 40,4672 T 1"
I + ——.
[ xw =

———

(83)

~
~ =

T—

Tﬁe predicted dimensionless most dangerous wavelength based on Equation (83) is also
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Figure 3.5 Calculated ratio between the dimensionless dangerous wavelength and the dimensionless
critical wavelength as a function of dimensionless radius.

shown in Figure 3.4 by a solid line. Equation (83) predicts the dimensionless wavelength
in a great success.

3.3 BREAKUP OF A LIQUID FILM AROUND A HORIZONTAL
CYLINDRICAL BODY

As mentioned in Section 2.3, an incorrect conclusion was derived in previous
experimental and theoretical research on the breakup of a liquid film around a horizontal
cylindrical body®. The present section discusses new experiments and an appropriate
theoretical analysis.

3.3.1 EXPERIMENTS

In order to measure the distance between the nodes of a unstable liquid film around
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a long, horizontal, circular cylindrical body in still air, two different kinds of experiments
were carried out. The first one consisted of the condensation of water vapour on a cold
cylindrical tube.

......................................

Compressed air g

Figure 3.6 Schematic representation of the condensation of water vapour on the cold tube.

The apparatus is shown in Figure 3.6. It consisted of a wide water container heated
by a gas burner, surmounted by a rectangular plexiglass box with a open bottom. Boiling
water evaporated, and rose into the plexiglass box. A thin hollow tube cooled by internally
flowing freezing water is positioned across the width of the box and thus condensed some
of the vapour, which accumulated over its surface, eventually forming suspended droplets
along its length. Stainless steel tubes were held in tension with two machined brass grips,
in order to ensure their straightness. The grips are designed to gently grip the external
surface of the tubes without crushing them, and be tightened against the exterior of two
opposite walls of the plexiglass box. The glass tubes used were rigid and did not bend
under their weight or that of the feed tubes. The diameters of the glass and the stainless
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wh

steel tubes used were in the range of 0.6-8mm.

Ice water was contained in a plastic container whose cap was adapted for a
compressed air inlet at 20 psi and an ice water outlet. This rudimentary pump was adequate
to feed ample amounts of ice water to the tube, so that the heat transfer was limited by the
thermal conductivities of the tubes. This was confirmed by the observed uniform
distribution of the water droplets, with no cold spot. Photographs of the nucleation, growth
and impingement of the water droplets were taken. Each tube of given size and material
was tested several times, being wiped off with virgin cotton wool at the end of each test.
Each test or trial consisted in observing the time evolution of the droplet pattern, and
photographing it.

For each test, a photograph of the early incubation stage was taken, followed by
several photographs of the slowly changing droplet pattern. Finally, one or two
photographs of the impingement stage were included, if it was observed. Over 170
photographs were taken in all.

Figure 3.7 presents some key features of the condensation process. In general, each
trial consisted of an incubation period, where water condensed on the surface of the tubes
in small droplets. The stainless steel tube photographs show that even for the small tubes,
small droplets formed over the circumference. As these small drops were spaced closer
than the main ones underneath, the perturbation theory cannot be invoked to explain their
presence. These droplets likely nucleate on the cold surface, and are held in position
against their weight by adsorption and surface tension.

True cylindrical film formation did not occur during condensation because of the
low heat conductivity of the stainless steel and glass tubes as well as the poor wetting. For
all tubes there was no long term steady state droplet distribution reached. Instead, the
incubation time was followed by a temporarily stable, slowly evolving droplet distribution,
eventually reaching impingement and growth of favoured droplets at the expense of their
neighbours. For all radii the original pattern evolved from the cleaned tube did not recreate
itself, but rather slowly evolved into a group of large droplets. Thus, the condensation
experiments on the cooled tube did not represent the Rayleigh-Taylor instability. In fact,
This process is dropwise condensation. |
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\iNLESS STEEL
TER 1.07 mm

m 2

Figure 3.7 Condensation of vapour on 2 cooled tube (top and bottom pictures show earlier and later
stages of droplet formation, respectively).
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Because there is not a liquid film formed around the test tube during the present
condensation experiments, a second kind of experiment was carried out, which is shown
in Figure 3.8 and Figure 3.9. It consisted of a slot nozzle, a cylindrical tube attached to
the slot and a spirit-level.

The spacing and length of the slot were W=120um and L=20cm. A ruler was
placed below the tube, providing a scale to measure the droplet spacing. Tap water was
injected through the slot onto the cylindrical tube to form a liquid film around the test tube.
The flow rate of water was maintained at the minium required to form a continuous film
around the tube. The horizontal attitude of the tube was guaranteed by the spirit-level. For
each of the given tube, several pictures (5-10) were taken under different liquid flow rates.
The distance between the nodes from which the liquid film breaks up into droplets were
measured from each of the pictures. Results are presented in Table 3.1 and Figure 3.11.
In Table 3.1, D, is the diameter of the tube, o, is the standard deviation and S and G
represent stainless steel and glass, respectively.

Wmm ; Spirit-level

-«— Slot nozzle

Water inlet
Slot

Test tube

Ad water film around the tube
l.._.‘ Droplet

Figure 3.8 Schematic representation of the formation and the breakup of a liquid film around a
cylindrical tube.

A
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Figure 3.9 Photograph for a liquid film breakup experiment.

Figure 3.10 presents the breakup of liquid film around a cylindrical tube due to the
Rayleigh-Taylor instability. The distance between the nodes decreases with a decrease in
the diameter of the tube.

The diameters of the glass and the stainless steel tubes used are in the range of 0.6-
8mm. Photographs were taken at 1/500s with a macrolens 35 mm camera. For each trial,
the radius and material were indicated on a panel included on the photographs.

3.3.2 THEORETICAL ANALYSIS

In Section 3.1, general dispersion equation (Equation (70)), relating the
wavenumber and the growth rate, for the Rayleigh-Taylor instability of a cylindrical
interface was derived. For the liquid film breakup from the bottom of the test tube in still
air, substituting §=180°, p,=p, and p,=p,=0 into Equation (70) yields:
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. ' Figure 3.10 Breakup of a liquid film around horizontal glass (top picture) and stainless tubes (bottom
picture).
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(84)

2
R, 4

Py

o’k[k’-._l_.—f’;g.

G* =

Regarding the definitions of the dimensionless variables in Equations (74)-(77), Equation
(84) can be expressed in dimensionless form:

@,

92=-i|:K2-%—1]K 85)

where,

o = I(kR) _ LKD) 86)
IkR) TI(XI)

Equation (85) is independent of the properties of fluids. By equating @ to zero, we get the
dimensionless critical wavelength:

2 2

A =
¢, droplet [¥7
S T2 1) @

The dimensionless most dangerous wavelength are calculated numericaily from
Equation (85) and are presented in Figure 3.11. Very good agreement between the
experiments and the calculated values is obtained. The ratio between the most dangerous
wavelength and the critical wavelength is presented in Figure 3.12. The values shown in
Figure 3.12 are fitted by Equation (88):

Aguropis _ 1.435 + 0.072 |3 17 (88)
A, ropi 1 +0.072 II'*7

Equation (88) gives A, yupir/A. 4opis=Y'3 When the dimensionless radius is infinitely large
and Ay /A 4ropis=1-435 when the dimensionless radius is zero. Furthermore, the
dimensionless dangerous wavelength is expressed in a closed form as:



CHAPTER 3 RAYLEIGH-TAYLOR INSTABILITY: INVISCID FLUIDS 41
Table 3.1 Experimental Results for the Breakup of Liquid Film

Material S 3 S S G G
D, (mm) 15.88 9.53 5.16 3.76 7.12 3.94
2.83 2 2.26 1.6 2.28 1.92
“gﬁﬁ;f 2.3 2.7 2.08 1.91 2 1.94
between nodes 2.63 2.3 2.14 1.68 2.27 1.92
3.6 2.5 1.63 1.91 2.16 1.75
A, (cm) 2.3 2.6 1.92 2.2 1.9 1.7
2.22 2.6 1.67 1.83 1.92 1.89
2,25 2.42 1.59 2.08 2.14 2.2

2.2 2.7 1.6 1.5

1.63 1.73

1.88 1.5

1.4

Average, A, (cm)

1.4

0O\ 048 | 024 | 025 025 | o016 | 0.6 ll
@

n 203 | 176 | 095 | 0.60 131 | o7

3 72713 | 7.02
=
5

£ 0.58 0.59
)

<) 8.41 8.12

701 | 627
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Figure 3.11 The relationship between the dimensioniess most dangerous wavelength and
dimensionless radius of the tube.

A _ 1435 + 0072 {3 I 2«
warple = T L0072 T N (89)
| [

The predicted dimensionless most dangerous wavelength based on Equation (89) is also
shown in Figure 3.11 by a solid line. Equation (89) predicts the dimensionless wavelength
with a great success.
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_Fgure3.12 Calculated ratio between the most dangerous wavelength and the critical wavelength as

a function of dimensionless radius.,
3.4. CONCLUSIONS

1. A General dispersion equation, Ea~ation (70), relating wavenumber, %, to
growth rate, G, was derived for the Rayleigh-Taylor instability of a
axisymmetiic cylindrical interfaces between two inviscid fluids.

2, The Film boiling phenomenon on a horizontal cylindrical heater was
analyzed based on the Rayleigh-Taylor instability. Several conclusions can

be drawn:

(1). The dominant unstable dimensionless wavelength during film boiling
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on a horizontal cylinder is predicted successfully by Equation (83).

(2). The geometrical assumption made by Lienhard and Wong
(Figure 2.1) is reasonable.

(3). Lienhard and Sun’s conclusion” about the invalidity of theory below
II=0.1 is also suitable for the present theory.

3. Experiments and theoretical analysis were carried out to measure and to
predict the dominant wavelength during cylindrical liquid film breakup. It
was found that the distance between the nodes decreases with a decrease in
the radius of the test tube. The most dangerous wavelength is predicted
successfully by a closed-form equation (Equation (89)).
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CHAPTER 4

RAYLEIGH-TAYLOR INSTABILITY OF A
CYLINDRICAL INTERFACE: VISCOUS FLUIDS

In Chapter 3 we discussed the Rayleigh-Taylor instability of a cylindrical interface
between two inviscid fluids with applications to film boiling and liquid film breakup on a
cylindrical body. In order to understand the Rayleigh-Taylor instability phenomena in a
viscous system, the previous theory must be extended to include the viscosities of fluids.

4.1 THEORY

The linearized equations governing the motion of an incompressible, viscous fluid
are:
1. Continuity equation

19(ry) . au,

=0 (90)
r dr 0z
2. Momentum equations

U ap o129 U, 1)

r . —_1 U -

T ar P& TH l:ﬁ.r[ rar(r ')] 9z?

U, 3P 1 4| 90, 3, (92)

p_" s =+ pgz R —_—— +
ar 4 raér| or dz2 -

where P is the pressure of the fluid, g, and g, the acceleration components due to gravity
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46
and p the viscosity of fluid. If we define Q as:
Q = Py (93)
p
where V is the potential of the impressed force®!, i.e.:
av oV
v _ . v 94
= g : % &. 94)
Equations (91) and (92) can be rewritten as:
°U, _ 30, |:V2U -_U.:] ©3)
ar r r?
d
oY, .92, , vy (96)
at z -
where,
3 1 o 8°
Vi=1_+_ 1 9
ri v az? oD

and » is the kinematic viscosity. From Equation (90), we can express the velocities using

Stokes’s stream function, i.e.:

U = lav¥

r o2

— " 1 3%
- U=-_%"2
s r ar

(98)

(%9
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_do 1 [%_gd“%_c_zd:
¥ v I (100)
[l o8 23] ]
vat re v ot :
Substituting Equation (98), we have:
130 g @)y B o13[p_13)¢  qon
v ar l vor r? r oz v at
where:
-9 18 & (102)
ar* radr @z
Similarly,
190 g 8 ly--18lp_13]yg (103)
y 0z vart|l ° rar v ot
By complete differential, we have:
2 (20) _ 2 [20] ., (104
az | ar ar | 9z
Substituting the expressions for dQ/dr and dQ/dz, Equations (101) and (103), into Equation
(104) and rearranging, we obtain:
D[D-l_a_]\lrzo (105)
v dt
Equation (105) can be satisfied by putting
¥ =¥ +¥, (106)

where:
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D¥ =0 (107)
and

pw =1 % (108)

In the present question, ¥ is a function of z and 7 and is proportional to
expli(Gt+kz)]. Thus, Equations (107) and (108) become:

2
=
FY, 19V
s T i
where:
k=gt e G (111)
»
If we let:
¥, - %aa'i’c 112)
I r
¥, - %a_:ﬁ (113)
1 r

It is easy to show that &, is the velocity potential when the flow is irrotational.

Substituting Equation (112) into Equation (109), we have:

e, 193%,
3 rar

-k % =0 | (114)

Similarly,
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0" &, . l ad, YL & =0 (119)
ar? r ar

However, Equations (114) and (115) have analytical solutions™ which can be expressed
as:

$, = A Ikn) + Ay Kk (116)

$, = B I(k'D) + By K (k' (117)

where 4,",B; ", A." and B, are constants. Thus, combining Equations (112) and (113) with
Equations (116) and (117), and considering that ¥ is proportional to exp[i(Gr+kz)], we
have the following expressions for Stokes’s stream functions:

¥ = {4, rly(kr) + A, rKg(kn)] expli (Gt + k2)] -(118)

¥, = [B,r ik’ ») + B rKs (k' n]expli (Gt + kz)) (119)

where 4,, B,, A, and B; are constants. By considering the boundary conditions for fluid 1
and fluid 2, we have Stokes’s stream functions for fluid 1 and fluid 2, i.e.,

¥, = [A, rlgtkr) + B, rilytk,n]expli(Gt + k2)] (120)

¥, = [4,rK;(kr) + B, rK;(k, N]expli(Gt + k)] (121)

where k, and k; are:

kP =kt + 2 (122
¥y

k3 = k® + LS (123)
¥y

where », and », are the kinematic viscosities of fluid 1 and fluid 2, respectively.

If the disturbance of interface at r = R, is expressed by Equation (51), we then have:
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) _ [ 1 0%,
- fud- e L
k ’ ’ ., (124)
- E[A, Iy (kRy) + B, Ik, Ry| expli(Gt k)]

- é[A2 K3(kR) + B, Ky (k, R)|expl(i(Gr+iz)]

After we have the Stokes’s stream functions for fluid 1 and fluid 2 and the expression for
the disturbance of the interface, the relationship between the pressure of fluid and the
stream function has to be found.

Substituting Equations (101) and (103) into Equation (100) and considering
Equations (107) and (108), we obtain:

1a|9¥, 18 |9¥ (125)
dQ = — |~ - - £
Q roz| ot raor| ar %
From Equations (112) and (125), we have:

ad,
Q=0+ = (126)

Thus, the disturbance pressure can be expressed as:
(127)

%
Pé = -p [ a:ﬂ + gscos(ﬂ)]

which is same as the Bernoulli equation for irrotational flow, Equation (65). Combining
Equations (112) and (118) and considering the boundary conditions for fluid 1 and fluid

2, we have:

% = "'Al Glo(h) exp[i(Gt+kz)] - fOl‘ﬂuid 1 (128)
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a¢, ) . - - (129)
= = -A, G K(kr) exp[i(Gt + k2)] for fluid 2 -

Thus, the disturbance pressures for fluid 1 and fluid 2 can be expressed as:

P = p, (A, GI(kr) expli(Gr+k2)])- g & cos(B) ) (130)
4 _ 7 -+~ - (131)
Py = p, (A, GK(kr) exp[i(Gr +kz)] - g & cos(6))
The boundary conditions to be satisfied at the interface are:
Ul =y’ (132)
ul =y (133)
—Pd+2‘u_a_u:.=—Pd+2 aU'"+a' a_2$+i ‘ (134)
! 1 ar It ®, ar azz Roz
au;! au! au! au! (135)
az ar dz or

where u, and u, are the viscosities of fluid ! and fluid 2, respectively. The last two
equations state the equality of the components of the stress tensor. Substitution of the
expressions for U,, U,, P4, and £ in Equations (132) to (135) gives four conditions for the
unknown constants A;, 4,, B, and B,. From Equation (132), we have:

LkR)A, + Ij(k,R) B, - Ky(kR) A, - K;(k,R)B, = 0 (136)
From Equation (133) and Equation (136), we have:
kly (kR)A, + k Iy (k,R)B, - kKy (kR)A, -k, Ky (k,R)B,=0 (137)

From Equation (134), we have:
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B, A, ~ B,B, «+ B,4, + 8,8, =0 (138)
where:

B, = p (gkcos(e) I (kRy) - Gzlo(kRo))

k ¢ " (139)
+ 0 [k’ - = | L*R) + 2, (K*G) Iy (kR
0

B, = p, g kcos(6) I (k,Ry)

3 K| . " (140)
+ 0|k - e LkR) + 2p, (ikk,G) Iy (k,R)

B, = -p;(gkcos(8) K (kR) - G*K(kRy)) 141)

- 2u, (ik*G) Ky (kRy)
B, = -p,gkeos() Ky (k,R) - 2u, (ikk,G) K’ (k,R) (142)

In terms of the Stokes’s stream function defined in Equations (98) and (99), Equation (135)
can be rewritten as:

az

Bilar

S O A D O N U R 143
?E‘+k]?' i [ ?.é_r+k]~1r,, (143)

Substitution of Equations (120) and (121) in Equation (143) and simplifying according to
Equations (109) and (110), Equation (143) becomes:

2k L (kRY p, A, + (k] + kKD Iy (k,R)n, B,
-2k Ky (kR p, A,- (ki + KD Ky(k,R) p,B, = 0 -
Equations (136), (137), (138) and (144) are linear and homogeneous in 4,, B,, A, and B,.

They have non-trivial solutions if and only if the determinant of the coefficient vanishes,
l.e.:

(144)
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. L kRY Iy (k,R) -Ko (kR -K3 (k,R,) 1
kly (kR) k 2y (k,R) kK (kR -k, Ky kuR) | {145)
B8, B, B, B,
RIS (KR 1, &k +k) g kR, ~2k*Ka(kR)py ~(kiy +k?) Ky (kR 1y
Defining:
I
. Ic,, kR) _ LkR) _ 1 (146)
L&Rr) LKRY kR,
N
: - 10’ &RY _ LkR) _ 1 (147)
LkR) hL&RY) KR,
(KGR | KR) (148)
 KIkrR) — KGR) kR,
- Ky (kR __K kyR) 1 (149)

4

K, kR K\(k;R) kR,

The evaluation of the determinant as defined at Equation (145) gives:
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I:(P: - p)gkcos(d) ~ o [k3 - _f_?k—z’ ] * [(klz -k (kye, —ke)p, + (k? _klzx) (k;e, - ke)) -”'2] N
0
Zz'Gk{(k”s,, ~ke )|k} kD ke, ~2k2k 2, ), - (ke ~ke) ((kF ~ kD ke, —2k2k,154),,__,] (2, — )
- Gp,q, ([(kf, ~iNke, -2k kg, ~ (K - kp) k,az] By + | + K (e, - kag] ,u.l)
+ G2p,a, {[(k,’ +kke, - 2khE, + (k2 - kD ke, + |G + kD) (e, - ke p.z]) =0
(150)

where o, and o, are defined in Equation (71). Clearly, this equation relating G and k is
in general very complicated.

When R, becomes to infinite (planar interface), we have the following limits:

g—+1,; &—->1; g—=-1; ¢g—=>-1 151
o, +1 ; o=>1; 08->0; (s

By considering above liniits and having regard to Equations (122) and (123), Equation
(150) becomes:

[0, - pgk + ok* =G (o, + p)| [, (k + k) *+ 1y (k + k)] (152)
+ 41'Gk[p.1k + pzk"][uzk + i, k,] =0

This is the same as Beliman and Pennington’s expression'® for a planar interface.
When both fluids are inviscid, i.e. g, = p, = 0 and k; and &, become infinite,

Equation (150) reduces to our previous dispersion equation for an inviscid system, i.e.,
Equation (70).
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wn

4.2 APPLICATION TO FILM BOILING
4.2.1 MATHEMATICAL MODEL

For film boiling on a horizontal cylinder, there is only a need to treat the stability
of the top of the cylindrical interface (§=0). Since the gas-liquid interface is asymmetric
as shown in Figure 2.1, we have to modify the dispersion equation for the symmetrical
interface, i.e., Equation (150). As in Section 3.2 for an inviscid system, we only replace
the term "£0/R2" of Equation (134) by "£¢/ 2R*" of Equation (31). If the vapour depth,
d,, is considered, R, should be replaced by R, = R, + d;. The force balance equation
(134) is rewritten as:

aUr’ aU:’ a‘-'-
-P + 2y i - Py + 2, = a:; + 222 (153)

Following the procedure of Section 4.1, the dispersion equation for film boiling becomes:

[(p; -p,)gkcos(b) +o [k3 ~-2-%” . [(k,2 -k (kye, -kedp, + k2 - ki) (k,¢, - ke,) ,u.z] +

C
2iGl{(k, s —ke) ((k_,z +k2)ke, —2k2k’32) #, — kg, —ksl)((k,f, + kz)ka3 -2k2k"84)u,] (u, 1)
- G%p, 0, ([(kﬁ +kdke, - 2k2k,,a4 + (k% - kf:) k;“"z]‘"'z * [(*'Cr2 +k?) k€, - kﬁ,)].ul )
+ Gzr”z':"z([(k:2 +kNke, -2k*k,e, + (k* -k) k&l + [(k’?' kD) ke, - key) “2]) =0
(154)

Generally, for film boiling we can assume the density and viscosity of the vapour to be
zero, i.e. p, = 0 and g, = 0. Thus, Equation (154) can be greatly simplified to:
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1
L3 2—
[‘ng g [k ZRE

If we define:

kp, _ .
} 222 oke k (kD 202Ky )iy = (1 G0y 0, (K3 - KD) = O
iy
(155)

(156)

as the dimensionless liquid viscosity parameter, and using the dimensionless variables
- defined in Equations (74)-(77), Equation (155) can be rewritten in dimensionless form as:

1 2 .2 . |
1-K2+—— | + e K(K*2+K?) -2K2K
[ m] K+ J (157
. 1
- Qa,(K 2+K2)_ﬁ =0
where;
. K?=K +0OM (158)
and
e = - KK 1
T KK KO (159
KK'ID) | __ KOyE-aM) 1

8 -—
4 K(K'I) X'II KI(H\/Kzi-QM ) . /KzfQM

a is expressed in dimensionless form by Equation (79).

Equation (157) is the required dispersion equaion, through ‘which the dimensionless
wavenumber is related to the dimensionless growth rate. We are interested in the "most
dangerous” wavelength which corresponds to maximum growth rate of the disturbance.
Obviously, the evaluation of "most dangerous” wavelength needs numerical calculation.
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When @ = 0, we have K = K, and &; = &, Equation (157) thus reduces to:

1 12
K. e = [1 . m:] (160)
which is the expression for the dimensionless critical wavenumber and is the same as that
of inviscid system (Equation (80)). It is independent of liquid properties and is only a
function of dimensionless radius.

4.2.2 COMPARISON WITH EXPERIMENTAL RESULTS

In 1973, excellent experiments were carried out by Dhir and Lienhard{“ to observe
the wavelength, its rate of growth, and the thickness of the vapour blanket su:.‘}jv g a
wire heater during film boiling in viscous liquids. In order to compare the expe-ri'me;ital
results and predicted data by the present model, numerical calculations were made based
on dispersion equation (157) by using the commercial program TK-Solver.

Figure 4.1, Figure 4.2 and Figure 4.3 present the calculated dimensionless growth
rate as a function of dimensionless wavelength at various dimensionless radit for values of
the dimensionless viscosity parameter M equal to 1, 5.4 and 16. Maximum growth rate
points and 98% of maximum growth rate points are shown on these curves.

By comparing Figure 4.1, Figuré 4.2 and Figure 4.3, it is clear that the dispersion
curves become flatter as the dimensionless viscosity parameter (M) becomes smaller. As
shown in Figure 4.1 with M = 1, a small difference, for example 2%, from maximum
dimensionless growth rate will cause very larger variation in dimensionless wavelength,
100%. Conversely, for M = 16 as shown in Figure 4.3, a small difference of 2% in the
dimensionless growth rate only produces about 20% variation of dimensionless wavelength.
Thus, it is expected that the agreement between predicted and measured dimensionless
wavelength should be better for higher M values (e.g. M = 16) than that for lower M
values (e.g. M = 5.4). ‘
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Figure 4.1 Calculated relationships between dimensionless wavele;gl.h and dimensionless growth
rate for M=1.
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Figure 4.2 Calculated relationships between dimensioniess wavelength and dimensionless growth

. rate fo}: M=5.4.
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Figure 4.3 Calculated relationships between dimensionless wavelength and dimensionless growth
rate for M=:16.

Figure 4.4, Figure 4.5 and Figure 4.6 show the comparisons between measured and
predicted dimensionless growth rates for M=16 and at three different dimensionless radii.
Obviously, the observed growth rates occurred at the so called "most dangerous”
wavelengths according to the present theory, that is the measured points lie in the
maximum growth rate region. Dhir and Lienhard’s model underestimates the dimensionless
dangerous wavelength. However, the predicted growth rates by present theory are higher
than that observed. Possibly, the experimental error in determining the growth rates and
the small perturbation assumption which led to the linearized governing equations are
responsible for the difference between predicted and observed. Figure 4.7 and Figure 4.8
present the relationship between dimensionless wavelength and radius for M=5.4 and
M=16, respectively. From Figure 4.7, it is evident that the calculation based on the
maximum growth rate overestimates the wavelength, and predicted data based on 98% of
maximum growth rate is closer to the observed data. From Figure 4.2, this can be easily
understood since the maximum points on the curves lie on a flat region. For M = 16,
because the dispersion curves shown in Figuré 4.3 are less flat in comparison to those of

. M = 5.4, good agreement between measured data and predicted data based on the
maximum growth rate is expected, as mentioned above.
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Figure 4.4 Ex;;crimental dimensionless growth rate for 0.185 of dimensionless radius.
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Figure 4.5 Experimental dimensionless growth rate for 0.22 of dimensioaless radius.
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Figure 4.8 Experimental and calculated dimensionless wavelength for M=16.

In contrast with our analysis, Dhir and Lienhard’s model® underestimates the
dimensionless wavelength for M = 16 and gives close prediction for M = 5.4, which is
unreasonable. In fact, there was no explanation for their prediction in their paper.

4.3 CONCLUSIONS _

1. Dispersion equations (Equation (150) and (154)) relaﬁng k to G have been
derived for both axisymmetric and asymmetrical cylindrical interfaces
between two viscous fluids.

2. The present theoretical model (Equation (155)) can be used to understand
the film boiling phenomena on a heater wire immersed in a viscous liquid.
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CHAPTER 5

KELVIN-HELMHOLTZ INSTABILITY OF A
CYLINDRICAL INTERFACE:INVISCID FLUIDS

Chapter 1 mentioned that there are two kinds of instabilities for a two-phase
interface, namely, Rayleigh-Taylor instability and Kelvin-Helmholiz instability. In Chapters
3 and 4 we discussed the Rayleigh-Taylor instability for inviscid and viscous fluids with
applications to film boiling and liquid film breakup on a cylindrical body. When two
stratified heterogeneous fluids are in relative motion {(e.g., gas jet injected from a circular
orifice into liquid), the stability of the interface between two fluids depends on the relative
velocity of the fluids. In this chapter, the dispersion equation for the interfacial Kelvin-
Helmholtz instability is derived and then some of its applications are presented.

5.1 THEORY

Let us consider a cylindrical fluid jet with radius R, moving with veiocity U, in
direction Z. Fluid 2 is moving with velocity U, at the same direction. If the fluids are
inviscid, and the perturbed ﬂow is assumed to be irrotational, the velociiy potentials of the
two fluids can be written a¢ Equation (161) according to Equations (4) and (50).

® = ¢, + U, z =AL(kr)expli(Gt+kz)] Cos(n) + U, z

(161)
- $, = ¢, + U, z =B K (kr) exp[i(Gt+kz)] Cos(nf) + U, z
. If the disturbance of interface at r = R, is assumed to be expressed by Equation (51), the

kinematic conditions to be satisfied at the interface can be expressed as:
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LA S W A (162
ar "'dz ar ar a9z or

where the quadratic terms in §, ¢, and ¢, have been neglected.

Combining Equations (161) and (162) yields:

%’5;- = D exp [i (Gt + k2)] Cos (n6) (163)

where D is:
al (kr) oK (kp
AUz[a(r] —BU,[ > ] (164)
D - =R, reR,
Uz -Ul

Thus,

g = % exp [i (Gt + k2)] Cos (nf) (165)

Combining Equations (161), (162) and (165) yields:

{ « UIG k { + Uz; k
A=D o » B=D (166)
[aln(kr) 3K (kr) ‘
L o Jne r | '

If the total pressures in fluids 1 and 2 are denoted by F* and Py, and the equilibrium
pressures of fluids 1 and 2 are represented by P,¢ and P,,’, we have following relationships
for fluid 1 from the Bernoulli equation: |

In the absence of disturbance,

t
Po % Ul + g Y, = constant (167)
Py

where Y, is vertical reference height of the interface.
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In the disturbance,

%, P 1

-

ot 2 2

(ULY + g Y = constant (168)

where U}" is the total velocity of fluid 1 due to both the fluid motion and the disturbance,
Y i3 the vertical coordinate of the interface relative to Y,.
In Equation (168),

(USY = U2 + U + U

a | lae | los ! 1 |oe|
=y +2U |2 i t - |
LTE az] . Bz] i ar_] +r2[aa] (169)
2
do
2

Combining Equations (167) to (169), we obtain the expression for the perturbation pressure
of fluid 1, P?,

a a
Pld=P1"‘P|‘o=‘P. ﬁ"‘U:ﬁ"‘8«":'(-'03(9) (170)
di oz
Similarly for fluid 2,
dd ¢ (171)
Py = oy |2+ Uy 2 +gEc05(0)]
Substituting Equatibns (170) and (171) into Equation (64) and rearranging gives: °
0, ad, a¢, d¢,
U - _— U —
P2 [ at T dz b 13 T (172)

+8§ @, -p)cos() = [k’ -1 ;2"2] £ao

Combining Equation (172) with Equations (161), (165) and (172) and rearranging, we

have:
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2

. G

[pl o T Py 52] -2 [pl o U, - p, 4 Uz] G
173
l-n_(Pz‘P;)gcos(e)] . (17

R? ¢

(-3

" [915: Ui *pzﬁsz]k = [kz_

where §, and §, are defined in Equation (68). Rearranging Equation (173) gives:
G_ _P&U +p 4 U

k p, 6, *p, 0,

_plp26162(Ul-U2 ? . R;
(0,8, +0,5,8 (0,6,+p,0)k

2 (1-n?) _ (pz—pl)gcos(e)] ] (174)

Equation (174) is the required dispersion equation for the Kelvin-Helmholtz instability of
a cylindrical interface. The right-hand side of Equation (174) is the phase velocity of the
disturbance. The first term on the right hand side is a weighted (by the density and Bessel
function) mean velocity of the two streams.

If the root in the expression for the wave velocity (right-hand side of Equation -
(174)) has a nonzero imaginary ‘part, then the interfacial disturbance can grbw
exponentially, i.e., the flow is unstable. If the root of right-hand side of Equation (174)
is a real number, the interface is stable. The "most dangerous” wave number, k;, Or
wavelength, A,, which dominates the breakup of a gas or liquid jet, can be predicted by
maximizing the imaginary part of growth rate, G. If the imaginary part is denoted by G;
(i.e., G=G,+iG), we have:

o 1 _Grpgeos®)
PPy oy (U - Upf k® R: 4 (175)
(Plal +p2a2)2 (pl al +p2a2)

G: =

where n, the order of the Bessel function, has been assumed to be zero, and 6, and &, have
been replaced by «,; and o, which are expressed in Equation (71). By maximizing G;, the
dangerous wavelength can be determined.
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It is obvious that when R,~< Equation (174) reduces to Equation (14). If U, = U,
= 0, Equation (174) becomes Equation (67), which is the dispersion equation of Rayleigh-
Taylor instability for a cylindrical interface,

5.2 APPLICATIONS OF THE PRESENT THEORY
5.2.1 BREAKUP OF A GAS JET IN LIQUID

It is common practice in the metallurgical industry that gases are injected into liquid
metals at high velocities in order to carry out the refining reactions quickly. As shown in
Figure 5.1, the gas jet breaks into fine bubbles on the surface of the jet due to both
Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Since the interface between the gas jet
and liquid can be approximated as a cylindrical one, above theoretical analysis can be
_employed to understand this phenomenon.

Gzs bubbles OOO O

0
2R°+ Gas jet — U1 © 0 Of,;o:r: 0 EOO

Figure 5.1 Schematic illustration of breakup of gas jet into fine bubbles; the wavelengths on the top
surface of the jet are shorter than those on the bottom of the jet.
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For the breakup of a gas jet in liquid, the density of gas is much smaller than that
of the liquid, i.e., p, « p, and the velocity of the liquid can be assumed to be zero, U, =
0. Therefore, Equation (175) can be greatly simplified and be rewritten as:

R O 0, & Cos(6)
P, Ui k? R: 4

Py Gy Py Oy

ok

(176)
G} =

By maximizing G; according to Equation (176), we can find the most dangerous wavelength
which dominate the breakup of a gas jet into fine bubbles. Clearly, the most dangerous
wavelength is a function of superficial velocity of the gas, the jet radius, R,, the density
of liquid, p,, and the cylindrical coordinate, 6.

As an example, let us consider a horizontal air jet injected into water through a
circular orifice with diameter lcm. Table 5.1 gives the required parameters for a air jet
in liquid water,

Table 5.1 Parameters of an Air Jet in Water -

Density of air Density of water Surface tension Radius of orifice

1.29 kg/m® 1000 kg/m?® 0.072 N/m S mm

Figure 5.2 presents the relationship between the growth rate, G, and the
wavelength, A = 2#%/k at specific gas velocities, which was calculated by commercially
available software, Tk-solver. 1t is clear that there is only one maximum on each curve.
When the velocity of gas is very small (U, = 0), the top surface (6§ = 0} of the air jet is
more unstable (higher growth rate, G; and smaller dangerous wavelength) in comparison
to the surface at # = 90°. However, the bottom of the jet (§ = 18(°) is stable at U; = .0
(G? < 0 according to Equation (175)). For the air jet at high velocity (e.g. 10 m/s), the
instability of interface is mainly dominated by relative motion of fluids so that the
maximum growth rates, G;, are almost same for §=0, 90 and 180°.

Figure 5.3 represents the calculated most dangerous wavelengths as a function of
superficial gas velocity for & = 0, 90 and 180°. The dangerous wavelength decreases

RN
IRl
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Figure 5.2 Calculated G; as a function of wavelength at U, =0 and 10 m/s for air jet in water,

greatly with an increase in the gas velocity, i.e., the first term of the right hand side of
Equation (176) can not be neglected although the density of gas is very small in
comparison to that of liquid. Because the top surface (8 = 0) of the air jet is unstable from
both the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, it has the smallest dangerous
wavelength. The bottom (# = 180°) of the air jet is stable from the Rayleigh-Taylor
instability so that it has largest dangerous wavelength which becomes infinite when the
velocity of the gas jet is less than 3 ~4 m/s. The middle curve in Figure 5.3 is calculated
without considering the gravity term of Equation (176).(6 = 90, Cos(8) = 0). It can also
be considered as a relationship between the dangerous wavelength and the gas superficial
velocity for a vertical gas jet. Beyond 10 m/s of -g/as velocity all curves for §=0, 90 and
. 180° give the same dangerous wavelength, which means that the dangerous wavelength is
dominated by relative motion or the Kelvin-Helmholtz instability, and the gravity term in
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Figure 5.3 Calculated dangerous wavelength as a function of superficial pas velocity for air jet in
water.

Equation (176) becomes negligible.

When the velocity and radius of the gas jet are very small, the velocity and gravity
terms of the right hand side of Equation (176) can be neglected. Then Equation (176) is
simplified as:

oy R: K (77

K9

G? =(1-0¢

where ¢ = kR,. Numerical calculation shows that the right hand side of Equation (177)
reaches a maximum value at ¢ = 0.484, which is independent of the gas jet physical
parameters. Therefore, the dangerous wavelength at U, = 0 and R, = 0 can be expressed
as:
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A =T 2xR, _ 27R, 6.49(2R) (178)
ek ¢ 0.484

i.e., the ratio of dangerous wavelength 1o diameter of gas jet is equal to 6.45.
5.2.2 BREAKUP OF A LIQUID JET IN GAS

In contrast to a gas jet in liquid, the breakup of a liquid jet in gas (e.g., air) uses
the subscript 1 to indicate the liquid. The density of gas is much smaller than that of
liquid, i.e., p» « p; and velocity of gas can be assumed to be zero, U, = 0. Therefore,
Equation {175) can be greatly simplified and be rewritten as:

g2 L, P18 Cosd)
G = P2 Us k2 _ R: o

l P& /o

ok (179)

By maximizing G, according to Equation (179), we obtain the dangerous wavelength which
dominates the breakup of a liquid jet into fine droplets.

Consider the example of the breakup of a water jet with lcm diameter in air. The
required parameters are given in Table 5.1. Figure 5.4 presents the calculated most
dangerous wavelength as a function of superficial liquid velocity for 6 = 0, 90 and 18C°.
The dangerous wavelength decreases greatly with an increase in the liquid velocity, i.e.,
the first term of the right hand of Equation (179) can not be neglected although the density
of gas is very small in comparison to that of liquid. In contrast to an air jet in liquid, the
top surface (8 = 0) of the liquid jet is stable from the Rayleigh-Taylor instability point of
view, it has the largest dangerous wavelength. The bottom of the liquid jet (6 = 180°) has
smallest dangerous wavelength. Again, the middle curve can be considered as a vertical
liquid jet since the gravity term is equal to zero (f§ = 90, Cos(@) = 0). At high liquid
velocity (10 m/s) all curves for @ = 0, 90 and 180° give the same dangerous wavelength,
and the dangerous wavelength is dominated by the Kelvin-Helmholtz instability.

When the velocity and radius of the liquid jet are very small, the velocity and
gravity terms of the right hand side of Equation (179) can be neglected, and then Equation
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Figure 5.4 Calculated dangerous wavelength as a function of superficial liquid velocity for & water

jet in air.
(179) is simplified as:

3

R, I
p,a ] -8 Aty (180)

Gt
‘ 10

The right hand side of Equation (180) has the maximum value at { = 0.698. The
dangerous wavelength at I/, = 0 and R, = 0 can be expressed as:

2x _27R, _2%R, 4.5@2R) (181)
k ¢ 0.698

which is the classic Rayleigh’s result for a liquid jet (Equation (3)).
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5.3 CONCLUSIONS

1. The general dispersion equation (Equation (175)) relating k£ and G; has been
derived, from which the dangerous wavelengths of an unstable interface can
be predicted as a function of relative velocity of fluids and properties of
fluids.

2. Simplified dispersion egquations (Equations (176) and (179)) are given for
gas jet breakup in liquid and liquid jet breakup in gas.

3. The most dangerous wavelength of a gas jét in liquid or a liquid jet in gas
depends greatly on the jet velocity. It decreases rapidly with an increase of
jet velocity.

4, At U, = 0 and R, = 0, the ratio between dangerous wavelength and
diameter of jet is 6.49 for a gas jet in liquid and 4.5 for a liquid jet in air.

S. For relatively high speed jets, e.g. 5 m/s for an air-liquid jets from a R, =
5 mm orifice, conclusion 4 would no longer be valid and the full analysis
would be required.

1l
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CHAPTER 6

LITERATURE REVIEW ON BUBBLE FORMATION

Submerged gas injection into liquid metal baths is playing an increasingly important
role in high temperature metallurgical processes such as hot metal pretreatment,
steelmaking and metal refining processing®. The objectives of gas injection into high
temperature metallurgical baths are as follows:

supply of reactant such as O, or CO;

mixing;

increase mass transfer rates or chemical reaction rates;
impurity removal and degassing.

The gas injector elements conventionally employed in the metallurgical industry fall
into two main categories: those based upon the porous plug and those based upon the single
circular orifice. Figure 6.1 and Figure 6.2 show gas dispersion phenomena from a single
circular nozzle and from a porous plug, respectively. The main problems concerning gas
injection through traditional circular nozzles mounted on the bottom of the bath are: (a) the
erosion of nozzle refractory due to the jet action, (b) the clogging of orifices by freezing
metal inside the nozzles and (c) the large bubbles formed in the liquid metal due to the
large size of orifices or due to the coalescence of bubbles inside the circular plume. A
good nozzle should create the shortest mixing time for the bath, the lowest splashing and
spitting, the highest mass transfer rate, and the maximum bubble surface area by using the
minimum amount of injection gas.

Previous research on gas injection through non-circular nozzles into a liquid
suggested that the back-attack effect which is evident when bubbles form at a circular
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Figure 6.1 Gas dispersion phenomena in circular orifice (d,=5mm) injection.

nozzle may be reduced by changing the shape of the nozzle towards a slot-shape or
rectangular section with an appropriate aspect ratio™. -When slot-shaped nozzles were
explored for injecting different gases (nitrogen or carb-\n dioxide) at different stages during
a steelmaking process in China, the blockage effect was largely reduced®. Based upon
the above reason, a nozzle consisting of a very narrow single rectangular slot was designed
for the present study. This kind of nozzle may prevent the liquid metal from flooding into
it. It also produces a bubble wall instead of the circular plume generated by a circular
nozzle. A bubble wall consists of widely distributed bubbles and provides an effective
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Figure 6.2 Gas dispersion phenomena in porous plug injection.

means of promoting agitation and/or chemical reaction through transfer processes at the
liquid/gas interfaces. There has been little discussion of gas bubble formation and
behaviour of gas injection through a narrow slot. Consequently, it is significant to
understand the flow phenomenon of gas injection through submerged very narrow
rectangular slots into high temperature metallurgical baths by studying their aqueous or
metallic analogues and to apply this understanding to high temperature metallurgical
processes. '

The understanding of the complichted phenomena of gas injection into liquid needs
research into (a) the behaviour of gas dispersion in the liquid and (b) the transport
phenomena in gas/liquid systems, such as bubble formation, bubble motion, bubble

‘coalescence and breakup, bubble distribution in liquid, bubbling-jetting transition, mass
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transfer, and momentum transfer as well as nozzle design and its erosion and blockage.
There has been a great deal of work carried out on the development of gas injection. A
state of the art summary of this field was given recently™. The application of gas injection
in steelmaking process was reviewed by Lange®-.

Table 6.1 Gas Injection Variables

Variable Major Effects
Equipment | chamber volume fluctuation of flow rate and pressure
Vanable orifice size velocity of gas through the orifice; bubble
volume at low flow rate
I orifice constant pressure drop across the orifice
System surface tension bubble volume at low flow rate
Variabl
aniabie liquid density bubble volume at low flow rate and large
viscosity
liquid viscosity bubble volume, bubble shape and motion
in liquid
gas density bubble shape, disintegration and volume
contact angie bubble volume and bubble formation
velocity of sound in gas | fluctuation of flow rate and-pressure-
Operating gas flow rate dispersion regime; bubble volume at high
Variable flow rate
liquid depth dispersion regime at low liquid depth

liquid motion

bubble volume, motion and disinitegration;
bubble shape N

operating temperature

bubble volume

Since the present research is mainly concerned with the bubble generation through

Wy
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a very narrow slot-shaped nozzle, the literature review is limited to bubble formation.

Bubble formation at the point of gas injection into a liquid is a highly complex
phenomenon involving a variety of system and operating variables as listed in Table 6.1.
A number of models which describe the bubble growth and predict the bubbie volume and
frequency are summarized in Table 6.2. Although a number of investigators summarized
the models of bubble formation®*3%%32 no critical review has been given. Model
studies of the formation of bubbles usually involve simplifying assumptions to isolate
variables of relatively less significance in the process of interest. For ease of analysis and
experimentation, most of the models consider gas flow through a single orifice, usually of
circular geometry and located at the bottom plate of a tank of liquid.

The mechanics of bubble formation at the submerged orifice depend strongly on the
flow properties of the gas phase. The pressure in a growing bubble decreases under the
combined effects of diminishing hydrostatic and surface tension pressure components, thus
inducing an increasing amount of gas flow into the expanding bubble and correspondingly
decreasing the pressure in the source tank. Bubble formation, therefore, ordinarily occurs
under unsteady conditions of varying system pressure and gas flow rate. However, the
presence of a large pressure drop between the gas reservoir and the orifice, such as a long
capillary, can swamp the influence of bubble-growth pressure fluctuation and produce a
stable condition of “constant flow" gas injection”. Similarly, if the volume of the
reservoir or "plenum chamber” upstream of the orifice is very large by comparison with
the volume of bubbles being formed, the varying gas effux will not significantly change
the pressure in the chamber*'. For conditions intermediate between the limits of constant
flow and constant pressure, the chamber volume must be taken into account. Spells and
Bakowski*? were the first to recognize the importance of the chamber volume as a
variable. Hughes et al.*® suggested quantitative criteria for constant flow and constant
pressure gas injection on the basis of the system capacitance number, N,, given by

v
N = 2p8%

182
< ps Ao Cz ( )

where Ap=p-p, is the density difference between liquid and gas, g the acceleration due o
to gravity, V_ the chamber volume of nozzle, A4, the nozzle cross area, and C the sonic
speed. The gas injection system is considered to operate at constant flow when N, <1 and
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at constant pressure if N,>9.

The bubble formation models can be divided into spherical and non-spherical ones
according to the assumption of the shape of the bubbles. The spherical models can be
classified into constant flow, constant pressure and time dependent flow and pressure
models corresponding to different conditions. All proposed models for bubble formation
at a single circular orifice are summarized in Table 6.2.

6.1 SPHERICAL BUBBLE FORMATION MODELS
6.1.1 CONSTANT FLOW BUBBLE FORMATION

Under the constant flow conditions, the mechanism of bubble formation depends
on the gas flow rate. At low gas flow rates which normally require capillary injection to
minimise nozzle flooding, the bubble volume is determined by a balance of the upward
force acting on the bubble (buoyancy force) and surface tension forces, giving:

v < 2xr,0Cos(8)

(183)
> Ang

where r, is the radius of the circular orifice, V, the bubble volume and 8, the contact angle.
Equation (183) is widely known as "Tate’s Law". At high flow rates, the buoyancy force
is balanced by the downward inertial force. Davidson and Schuler* have proposed a diffuse
point-source model for deriving the volume of a bubble growing at a submerged orifice
under constant flow conditions. The geometrical model is shown in Figure 6.3. A closed-
form solution was obtained for the case of an inviscid liquid by considering that the surface
tension force becomes negligible in comparison with the inertia of the bubble, so that:

d 11 ds
Vbép‘g = = [v;, l’px-i-EpI] _] (184)
= dr H dr
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Table 6.2. Theoretical Models for Bubble Formation at a Single Submerged Orifice

B: buoyancy; D: drag (a: stokes: b: empirical expression: ¢: kept as constant to fit data); I: inertia (a:
C = 11/16: b: C = 1/2: c: kept as constant to fit data); M: gas momentum; P: excess pressure term;

St surface tension force; W: wake effect from previous bubble.

Condition Reference Geometrical Assumption Force included”
s constant flow | 44 Model I of Figure 6.3 B, Ia
ll: 45 Model I of Figure 6.3 B, Da, la
N 46 Model [ of Figure 6.3 B, b
r
i 47 Mcdel I of Figure 6.3 B, Ia
<
a 48 Model III of Figure 6.3 B, la
! constant 44 Modet | of Figure 6.3 B,Ia
pressure
45 Model I of Figure 6.3 B,Da, Ia
| 49 Model I of Figure 6.3, but no B,Dc,I,P, S
detachment stage
50 Modet II of Figure 6.3 B,S,Da,la
51 Model IV of Figure 6.3 B, Ia
varying flow | 52 Mode! II of Figure 6.3 B, Db, Ia, S
rate and .
pressure 53 Modei IT of Figure 6.3, but forces acting B, 1
on the bubble were calculated by pressure
distribution
54 Model I of Figure 6.3, considering the B, b, W
wake behind the bubble
55 Model IV of Figure 6.3 B,Ia, M
56,57,58 Model IT of Figure 6.3 B, Ia, Db
n | varying flow | 59 shape varies, finite difference B,Ic, S
o rate and
: pressure 60 modification of Kupferberg and B, Ia
p Jameson's® model, finite difference
b 61 modification of Marmur and Rubin’s B, Ia
¢ model®, Apply for wetting and non-
T wetting liquid
i
¢ | constant flow | 62 based on continuity and motion equations
a
! 63 based on assumption of a prolate B, Db, I, M
ellipsoidal shape of the bubbles
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where s is the displacement of the bubble centre from orifice plate, ¢ the time, p, and p,
the densities of gas and liquid. Bubble is assumed to be spherical throughout the period of
growth; hence the hydrodynamic mass coefficient, 11/16, corresponds to a submerged
sphere moving away from a solid surface®. The gas is assumed to be incompressible so
that V, = Qr; and the density of the gas is negligible in comparison with that of the liquid.
Davidson and Schuler assumed that the upward force acting on the bubble (buoyancy
force), i» always balanced by the downward force (inertia) during bubble formation, and
the bubble growth is terminated when its radius r equals s the distance travelled. Thus,
Equation (184) can be solved readily by a double integration, with the initial conditions,
s = ds/dt = 0 att = 0. The final bubble volume is:

v = 1.378 Q9° (185)

b~ g
Davidson and Schuler’s model represents the first classical solution for the bubble
volume at a submerged orifice in a constant flow system. Davidson and Schuler’s model
does not recognise the physical presence of the orifice plate and also the detachment
condition (s=r) is improbable. However, it closely predicts many experimental results. The
reason will be discussed later.

The physical limitation of Davidson and Schuler’s model was overcome by a two-
stage model of Kumar and Kuloor”, Figure 6.3. In this model, bubble formation was
assumed to take place in two stages, that is, a first or expansion stage, and a second or
detachment stage. During the first stage the spherical bubble expands while its base

“~remains attached to the orifice, whereas in the second stage the bubble base moves away

from the orifice, while the bubble itself remains in contact with the orifice through a neck
as shown in Figure 6.3. The first stage is assumed to end when the net downward force
(i.e., the sum of the viscous drag force, the surface tension force, and the inertial force)
1s equal to the upward force, namely, the buoyancy force, so that Newton’s second law of
motion is used as follows:
V,a0g = L(Mv) (186)
@ e

4

where:
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1 (187
M = [px - T.ap!l er
v oo £ _ Qo (188)
©odr,  4xr?

and V,, is the bubble volume at the end of first stage of bubble formation; ¢, is the time at
the end of the first stage. By solving Equations (186)-(188) with the assumption of
negligible gas density, the bubble volume at the end of the expansion stage (¢ = ) s
expressed as:

v, = 0160 2 (189)
g

The equation during the second stage is the same as Equation (184) with initial conditions:
t=0,r=s=r, V, =V, ds/dt = dr/dt = v,. The end of the detachment stage is
assumed when the length of the bubble neck is equal to the radius of the bubble from the
first stage, ry, i.e., 7 = L, s = r + r;, so that the subsequent expanding bubble does not
coalescence with it. With some simplifications and approximate treatment, the final bubble
volume is expressed as:

v =0976 2> (190)

In order to account the effect of deformed bubble base at the orifice plate, a
modified version of Davidson and Schuler’s model was proposed by Wraith®, where the
formation of a bubble at a plate orifice submerged in an inviscid liquid consists of two
stages. The first stage corresponds to the growth of a hemispherical bubble pressed to the
plate by the inertial force generated at the expanding bubble surface. The equilibrium
equation for t’1e expanding hemisphere (the end of the first stage) can be established at
once by settmg equal to zero the sum of the reactive force, FNmk, due to the plate. By
potential theory the bubble volume at the end of the first stage ‘is expressed as:
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6/5
v, = 0.194 £ (191)
gsrs

Since the “centre of mass’ of a hemisphere is located at a polar height (3/8)r, above the
base, the equation during the second stage is also the same as Equation (184) with initial
conditions, { = ¢, § = (3/8)r,, ds/dt = (3/8)dr,/dt and V, = V,. The end of the
detachment stage is assumed when r = ¢, s = r. The final bubble volume is:

65
v, = 1.090 £ (192)
g

6.1.2 CONSTANT PRESSURE BUBBLE FORMATION

The formation of bubbles under constant chamber pressure is presumed in system
of large capacitance as determined by Equation (182). In practice this corresponds to a
system with a subnozzle gas chamber more than about a litre in volume®. The bubble
volume under constant pressure conditions can still be determined by means of force
balance similar to the case of a constant flow system, provided the gas flow rate, Q, is
related to the steady chamber pressure P,, through the so-called orifice equation:

av,
dr

20 12
0-20 ok [pc - o EH-5) -7] (193)
where K, is the orifice constant, determined experimentally for a steady-state flow of gas
through the orifice in the absence of the liquid phase, H the depth of liquid and s the
displacement of bubble centre from orifice plate. By solving Equation (184) and Equation
(193) numerically with different initiai conditions and different detachment conditions for
varies models in Figure 6.3, the bubble volume is predicted.

In the one stage diffusion source model of Davidson and Schuler*, Equation (184)
and (193) are solved simultaneously under the following initial conditions at r = 0:
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s=0. & -0, v =3 (194)

The bubble is assumed to detach whens = r + r,.

In Satyanarayan, Kumar and Kuloor's *® two-stage model, the procedure is the same
as constant flow condition of Kumar and Kuloor’s model*’. During the expansibn stage,
Equation (193) can be used to predict the bubble growth with time. The termination of the
expansion stage is when the sum of the reactive force, Fyon., due to the orifice is equal
to zero, that is the force balance Equation (186) is applied. During the detachment stage,
Equations (184) and (193) can be solved simultaneously under the following initial
conditions:

=—., §=r (195)

The detachment condition is the saine as the constant flow model of Kumar and Kuloor.

Lanauze and Harris™ developed a two-stage model to describe the bubble formation
under the constant pressure conditions, as shown in Figure 6.3. In their model, during the
first stage the spherical segment of bubble which is above the plane of the orifice was
considered. The upward motion of the bubble centre was determined by a balance between
buoyancy and inertia, which was the same as Davidson and Schuler’s treatment, except that
the spherical segment was considered in the equations for the bubble volume, surface
tension pressure, etc. The end of the first stage was assumed to happen when s=r. During
the second stage, which was the same as the procedure of Satyanarayan, Kumar and
Kuloor*, the upward motion of spherical bubble was described by solving simultaneously
Equations (184) and (193), the detachment condition was experimentally foundas s = r

+ Iy

6.1.3 BUBBLE FORMATION UNDER UNSTEADY CONDITIONS

Bubble formation at a submerged orifice can in practice occur under conditions
where both gas flow rate and chamber pressure are unsteady, for instance, where the
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chamber volume is small but the orifice constant is relatively large. Khurana and Kumar™
considered that the bubble was formed in the same two stages as under the constant flow
condition and the constant pressure condition. At the end of the first stage, a force balance
equation was obtained by equating the buoyancy force with the sum of the inertial, surface
tension and viscous drag forces:

%) (196)
2

dMv)

Vv, 8= +2xr,0Cos(8) ~ C,xr?

Where M and v, are expressed in Equations (187) and (188); C, is the drag coefficient.
During the second stage bubble growth, Newton’s second motion law is applied, i.e.,

2 (197)
A - pvg-cr

where v is the upward motion velocity of the bubble. The bubble detaches at s = r + ry,.

Kupferberg and Jameson® developed a two stage model based on the orifice
equation:

0 = %‘;_b = K,(P.~-P) (198)

The chamber pressure equation was obtained by assuming adiabatic gas behaviour:
C2
P, = (PJy + = (V,=V,~ Q) (199)

and the bubble pressure equation was derived from potential theory:

drr 3(arl?| 2 200
S I

in which (P,), is the tnitial chamber pressure and P, the atmospheric pressure. During the
first stage (growing stage) the net force calculated by the pressure distribution around the
bubble acts downwards causing a reaction on the surface of the plate and since the bubbie
is in direct contact with the plate during this stage, s is equal to r. The condition for the
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termination of the growing stage is that the net force acting on the bubble equals to zero.
For the second stage (clongating stage) the buoyancy force and inertial reaction are in
equilibrium but s > r. Obviously, Kupferberg and Jameson's bubble formation mechanism
is similar to that of Kumar and Kuloor* as shown in Figure 6.3.

Based on the same model as (Model IV in Figure 6.3) in the constant pressure
condition, Lanauze and Harris® employed the motion equation (Equation (184)), orifice

equation (Equation (198)) and the chamber pressure equation (Equation (199)) to describe
the bubble formation under elevated system pressure.

Similar to Kupferberg and Jameson's model, a two-stage model (Model I of
Figure 6.3) was proposed by Tsuge and Hibino®. In their model, the chamber pressure is
expressed as:

dP yP
¢ o ¢ _ 201
dt A @Q,-2Q) (201)

where « is the specific heat ratio. During the expansion stage, Equations (198), (200) and
(201) are solved simultaneously under the initial conditions,

r<r,, 20, P=P_ +pgH~=Z (202)

The termination of the expansion stage is when the force balance equation similar to
Equation (184) holds. In the detachment stage, Equations (184), (198), (200) and (201),
are solved simultaneously under the following initial conditions:

(203)

The detachment condition is when the length of bubble neck equals to the diameter of the
orifice, s = r + 2r,, which is different from that of Kumar and Kuloor’s model.

6.2 NON-SPHERICAL BUBBLE FORMATION MODELS

All of the spherical bubble formation models have been forced to use an empirical
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or seri-empirical criterion for determining the instant of detachment. However, the bubble
is not spherical during its formation and the moment of the detachment is determined by
the varies of the bubble shape. A non-spherical bubble formation model was first proposed
by Marmur and Rubin® for predicting continuously the instantaneous shape of bubble
during its growth, using simplified equations of motion for the liquid, and thermodynamic
relationships for the gas in the bubble and the chamber volume. For such a model, there
is no need for a two stage formation mechanism nor for an empirical detachment criteria,
because the instant of detachment comes out naturally as the time when the neck, which
develops during the formation, attains zero width. Liow and Gray® modified the Marmur
and Rubin’s model to describe the bubble formation in wetting and non-wetting liquids.

6.3 BUBBLE FORMATION AT A MULTI-ORIFICE PLATE

The bubble formation at a multi-orifice plate is more complicated than at a single
orifice. The system comes to an equilibrium between the mean pressure drop across the
orifice, the bubble frequency, f;, the pressure fluctuation frequency, £, the bubble size and
the number of holes bubbling per pressure cycle (f/f,). Kupferberg and Jameson®
assumed that the bubbles were uniform in size and that there was negligible interaction
between neighbouring bubbles during formation. Furthermore, they assumed that the mean
diameter of bubbles formed on the multi-orifice plate was the same as that the bubbles
formed at a single orifice above a gas chamber of volume V/(f,/f) by a gas rate of
Q/(f,/f;). The major unknown in this model was the relationship between the bubbling
frequency and the pressure fluctuation frequency. Titomanlio, Rizzo and Acierno®
pointed out that for bubbles growing from a multiple-orifice plate feed from a single
chamber, the orifice plate works discontinuously at low gas flow rates and as the number
of the orifices increases "simultaneous bubbling” becomes more difficult. They carried out
experimental research for gas bubble formation in water from a two-orifice plate. They
concluded that the volume of bubbles outcoming from a single orifice approximated that
of simultaneous bubbies growing from a chamber which had double the capacitance and
was fed by double the flow rate.

Miyahara, Matsuba and Takahashi® investigated experimentally the size of the
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bubbles in bubble column, which was generated from perforated plates. They showed that
the size of the bubbles formed at a single onifice is strongly influenced by the gas-chamber
volume, but this effect weakens as the number of holes is increased, and disappears when
there are more than 15 holes. For condittons in which the chamber volume has no effect
on the bubble size, the behaviour depends on whether the ratio of the pitch to the hole
diameter is above or below eight.

Spells and Bakowski* studied experimentally the bubble formation at a single slot
submerged vertically in water. In their research, the slot widths varied between 2 and 10
mm. They pointed out that the phenomenon of bubbling of zir through a slot submerged
vertically in water might be regarded as being a periodic one, with irregularities
superimposed. Hobler and Pawelczyk®™ investigated the interfacial area in bubbling
through a slot. Recently, the gas injection phenomenon through a narrow, submerged
horizontal slot mounted in a vertical wall was studied by Kozlowski and Wraith®.

6.4 BUBBLE FORMATION IN LIQUID METALS

A number of studies have been carried out on bubble formation in liquid metals.
Sano et al.™*""2™ employed curved tubes of silica, alumina and glass as free-standing
nozzles in liquid metal. By injecting air into mercury and into molten silver, argon into
molten iron and nitrogen into mercury, they obtained the bubble size by bubble frequency
measurements and concluded that the correlations for bubble volume in aqueous systems
were generally valid for liquid metals provided the outer diameter of the nozzle was
substituted for the inner diameter to account for the non-wettability of liquid metal.
Andreini, Foster and Callen™ bubbled argon into tin, lead and copper melts under
conditions of constant pressure and orifice laminar flow, using quartz capillary tubes set
at 30 deg to the horizontal. The bubble size was determined from the frequency of noise
generated by bubble expansion.

Guthrie et. al.™’%” used X-ray cinematographic techniques and bubble
frequency measurements to study the bubbling of inert gases into moiten metals. In the
injection of argon into pig iron, they employed higher flow rates, orifice sizes, chamber
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volumes and nozzle submergence than Sano’s, but the results stll confirmed the earlier
observations, i.e., bubble formation in liquid metals was based on the outer diameter of
the nonwetted nozzie. It was found that the bubble size was uniform at low gas flow rates
but increased with increasing gas flow rate beyond a critical range, that the bubble size in
liquid metal depended strongly on the Capacitance Number. The experimental results were
confirmed by mathematical model predictions of Liow and Gray® for bottom injection,
which took both slip and contact angle of the bubble into consideration.

Hoefele and Brimacombe™ injected air, argon and helium through a horizontal
tuyere into mercury at even higher flow rates, up to 3000 cm®/s. The bubble volume was
measured by a high speed cinematography, made possible by a ’half-tuyere’ arrangement,
and found to be marginally higher than corresponding measurements in water and zinc
chloride solution but still in agreement with the Davidson and Schuler equation (Equation
(185)), but with coefficient 1.57 instead of coefficient 1.378 for liquid metals.

6.5 DISCUSSION ON BUBBLE FORMATION MODELS

Basically, there are four different geometrical models for the spherical bubble
formation models, as shown in Figure 6.3. Among them, Model II and III are similar,
since in these the termination of the first stage is when the net force acting on the bubble
equals zero (the force balance equation between the buoyancy force and inertia, viscous
forces etc. can be used only at the end of the first stage), and during second stage the
spherical bubble moves upward a certain distance before detachment. Therefore, rather
similar expressions for the bubble volume (Equation (190) and Equation (192)) were
obtained. Strictly, Equation (190) expresses the bubble volume at detachment after the base
of bubble moves upward some distance (r,) and Equation (192) represents the bubble
volume when the base of the bubble is in tangential contact with the orifice, as shown in
Figure 6.3. If the neck length defined in Model II of Figure 6.3 was considered in the
Wraith's theory, the bubble volume predicted using Wraith’s geometrical assumption would
be much larger than that of either Davidson and Schuler’s model (Equation (185)) or
Kumar and Kuloor’s model (Equatior (190)). From this point of view, it is worth noting
that although Equation (192) is almost the same as Equation (190), and that both Equations
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(190) and (192) are widely used to predict the bubble volume under constant flow

conditions, the models developed by Kumar and Kuloor and by Wraith are different in
concept.

As mentioned before, Davidson and Schuler's model has been accepted by many
investigators, and close prediction of experimental results has been seen, even though an
improbable physical model (Model I of Figure 6.3) was used. Such agreement arises
because the single stage bubble formation used by Davidson and Schuler is similar to the
second stage in two-stage models*’**, and because the bubble volume at the end of the first
stage in two-stage models (Equation (189)) is too small in comparison with the final bubble
volume (Equations (190) and (192)).

In response to the literature, Lanauze et al.™ believed that the net force acting on
the bubble due to the buoyancy, inertia etc. is always zero during bubble growth and the
end of the first stage is when the base of bubble is in tangential contact with the orifice
plate. Lanauze et al. thought that Kumar and Kuloor’s model was not correct since Kumar
and Kuloor used the so called force balance equation at, and only at, the end of the first
stage of bubble formation. In fact, Lanauze et al. may have misinterpreted Kumar and
Kuloor’s model since this model is really a dynamic growth model, i.e., at each moment,
the forces acting on bubble are in balance. This includes the period of the first stage of
bubble growth. The force acting on the bubble due to the orifice plate is larger than zero
during first stage and is equal to zero at the end of the first stage. To help explain this,
imagine that there is a uninflated balloon on a desk. The balloon doesn’t rise because the
upward force, i.e. buoyancy force acting on the balloon is much smaller than the
downward force, i.e. gravity on the balloon. Although the gravity force is not balanced
by the buoyancy, you cannot say that the balloon is not in force balance since there is an
upward force acting on the balloon due to the desk. If helium is introduced into the
balloon, the balloon expands gradually so that the buoyancy force acting on the balloon
increases. Once the buoyancy force overcomes the gravity force, the balloon wiil rise. A
similar phenomenon is at play when a bubble grows from a nozzle.

Lanauze et al. also pointed out that Kumar and Kuloor’s model cannot be used to
evaluate the bubble growth as a function of time. In fact, in Kumar and Kuloor's model
the bubble growth can be evaluated by V, = Q*r under constant flow conditions and by
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the related pressure equation under non-constant flow conditions. Lanauze et al’s model®,
in which the end of the first stage of bubble growth was assumed to be when the base of
bubble tangential contact with the orifice plate, is physically fallacious because the bubble
base never reaches tangential contact with the orifice plate in practice due to the surface
tension.

In conclusion, the mechanism of bubble formation proposed by Kumar and Kuloor
{Model II of Figure 6.3) is reasonable except for the assumption of the detachment
condition is when the base of the bubble has moved a distance equal to the bubble radius
. {rp) at lift-off. Many experimental studies have shown that the length of the bubble neck
lies between the values of the orifice radius and the orifice diameter*®53%% _ Thus, Kumar
and Kuloor’s model must be modified by considering the observed detachment condition.

For non-spherical butbhle formation model, the main assumptions are that the
pressure inside the bubble is uniform and the liquid pressure around the bubble is
calculated by potential theory. Also the Bermoulli’s. equation doesn’t account the time
derivatives of potential function. They cannot be used to predict the bubble formation in
viscid liquid. Although the non-spherical models can provide a better understanding of the
- bubble formation and can give better results in comparison with spherical models for the
inviscous liquid since the. moment of the detachment comes out naturally as the time when
the neck attains zero width, they need complicated numerical calculation method such as
finite difference.

6.6 CONCLUSIONS

1. Further research for bubble formation in a single orifice is required,
particularly for the viscous liquid and liquid metals. )

2. Since almost no research was done on the bubble formation in a multi-
orifice or very narrow slot-shaped nozzle, any studies concerning the bubble
formation and coalescence between bubbles at adjacent holes are interesting
and important both from theoretical and practical points of view.
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3. The note on bubble formation models by Lanauze et al. is incorrect.

4. The bubble formation mechanism of Kumar and Kuloor is reasonable except
for the assumption of the detachment. The bubble formation models
developed by Kumar et al. and by Wraith are different in concept although
they give quite close expressions in the final bubble volume for the bubble
formation dominated by inertial force.
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CHAPTER 7

MODIFIED BUBBLE FORMATION MODEL WITH
SURFACE TENSION AND INERTIAL FORCES

As concluded on page 93, although the mechanism of the bubble formation
proposed by Kumar and Kuloor is reasonable, an improper detachment condition is used.
In this chapter, 2 modified bubble formation model is proposed by considering a new
detachment condition. In this model both surface tension force and inertia are considered.

Bubble formation under constant flow conditions is dominated by the surface tension
force at extremely small flow rates (Equation (183)) and by the inertial force at higher flow
rates. Between these two extremes is a range of flow rate where neither the inertial force
nor the surface tension force can be neglected and the final bubble volume is highly
sensitive to both. Similar to Kumar and Kuloor’s two-stage model*’ of bubble formation
dominated by inertia, i.e. Equation (186), the condition for the end of the first stage for
bubble formation dominated by both inertial and surface tension forces can be expressed
as:

. Vo,apg = %(Mvt) +2xr,gcos(f,) (204)

Evaluation of Equation (204) by considering Equations (187) and (188) gives:

2
v, - 00474 Ly = 270056 (205)
8 %4
. The equation for the second stage of bubble growth is similar to Equation (184) except the

surface tension term has been included, i.e.:
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d 11 ds 206
V. A = _ |V + _ =1 +2 (206)
pAPE = = l: f [px T3 p,] dr] T r,ocos(f)

Expansion stage Detachment stage

Detachment condition Neck of thé détachment bubble
s=r+d,att =t

Kumar and Kuloor’s model: d,= T
Modified model:  dp=~3r,

Figure 7.1 Geometrical assumption of modified bubble formation model.

The initial conditions for the second stage are: ¢t = 0, V, = V,,, r = 5 = 1, ds/dt = dr/ds
. = v,. If the end of the detachment stage is assumed to be when the length of the bubble
neck is equal to d, (Figure 7.1), i.e. t = ¢, s = r + d,, the following expression for the
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final bubble volume can be obtained by the same mathematical procedure as used by
Kumar and Kuloor*.

.- :32 V2 - Vi) - 0.62 (U - Vi) - 32 crltl", af:os(ﬂc) V-V _
Q 0% p, 207
14
L 32xr,ocos(f) v, +0.207Q V;S _ 8g V; In | L
0 T Qp, 1@ #

Employing commercial software, TK-solver (see Appendix III), Equations (205) and (207)
were simultaneously solved. It is obvious that if the neck length, 4, is assumed to be equal
to the bubble radius at the end of the first stage, Equation (207) is the expression of Kumar
and Kuloor™. In our present analysis, d,, is assumed to beV/3r,, by which the neck of the
bubble looks like an equilateral triangle as shown in Figure 7.1. Obviously, V/3r, lies
between the orifice radius (r,) and the orifice diameter (2r,), which is consistent with
experiment.

Figure 7.2 presents the predicted bubble volumes for various orifice diameters for
water-air system using Kumar and Kuloor’s model (d, = ry) and the modified model (d,
=V/3r,). Kumar and Kuloor’s model and the modified model give quite close predictions
of bubble voiumes for the orifice diameters between 0.5 and 2cm but result in a significant
difference in the prediction of bubble volumes for very small orifice diameters (e.g.
0.01cm). As shown later, Kumar and Kuloor’s model greatly overestimates the bubble
volume for very small orifice sizes, because the neck length used by Kumar and Kuloor
(r») would be much larger than the diameter of orifice for small orifices. As mentioned
before, many experimental studies have shown that the length of bubble neck is between
the orifice radius and the orifice diameter. Thus, the modified model is expected to be
reliable. Since most of the experimental work has been done for orifice diameters between
0.5 and 2 cm, it is to be anticipated that Kumar and Kuloor’s model would give close
predictions to the experimental data although an incorrect detachment condition was used
in their model. '

Figure 7.2 shows that at high flow rates where inertial force dominates bubble
formation, Kumar and Kuloor’s model converges for different orifice diameters. Since neck
length depends on orifice size, different bubble sizes are predicted by the present modified
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Figure 7.2 The comparison between Xumar and Kuloor's model and modified model for bubble
formation dominated by both inertial and surface tension forces.

model even though inertial force dominates bubble formation. This was confirmed by the
present experiments as shown in the next chapter. At very high flow rates, the bubble size
predicted by the modified model becomes also independent of the size of the orifice
because the neck of the bubble plays less role at very high flow rate.
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CHAPTER 8

GAS INJECTION PHENOMENA THROUGH A
VERY NARROW SLOT: EXPERIMENTAL

The apparatus employed for the study of bubble formation from a slot-shaped nozzle
is illustrated schematically in Figure 8.1. It consisted of a square plexiglas vessel,
containing deionized water or methyl alcohol at a fixed temperature (T = 20°C), a slot-

shaped nozzle, a gas delivery system to supply compressed air and helium to the nozzle
and a measuring and controlling system.

Testtank —» Camera
Bubbles N Q00000000000 *
L | 000000000000
GO0 000 QOO O00
Lamp —=@ S50 000900 500

— Slot nozzle

Q000000000
000 000 000 000

Mass ﬂow meter

ag@;‘i

Pressure gauge

Pressure transducer

-

Parallel /O interface

PC microcomputer

Figure 8.1 Schematic representation of the experimental system.
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The flow rates of air or helium were measured by a mass flow meter with a range
of 0-100 slpm at high gas flow rates and by two variable area flow meters with ranges of
0-1 slpm and 0-25 slpm at low gas flow rates. The pressure inside the nozzle chamber was
measured by a pressure transducer.

Figure 8.2 Photograph of the stainless steel slot-nozzle.

Figure 8.2 is the photograph of the stainless steel slot-nozzle. Figure 8.3 presents
the side view of the nozzle. Figure 8.4 shows the configuration of the slot-shaped nozzle.
It consisted of two smooth stainless steel plates (2.54 cm in thickness). A sheet of thin
{50-250xm) U-shaped polyester film was put between two stainless steel plates to make the
slot. Thus, slot width was adjustable using different thicknesses of film.

Table 8.1 Some Related Experimental Parameters

ll L (cm) W (um) V. (mm?®) h (cm) H (cm) T (K
Lw.os 1 50-250 200 2 16 293

m— — ——————— e ——— |

The dimensions of the slot and the experimental conditions are shown in Table 8.1, in
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which L is the length of the slot, W
the slot width, A the length of the
gas flow path within the slot nozzle,
H the depth of liquid and T the
temperature of the bath. Obviously,
h is much larger than the slot
spacing, W.

Gas was introduced into the
stot through one side of the nozzle
and, came out as individual bubbles
along the top of the slot due to the
Rayleigh-Taylor instability. The
bubble formation was recorded by a
high speed camera and/or a still
frame camera. In order to measure
the number of bubbles and the
bubble size, negative black- and
white Kodak-Tmax professional
films were used to record the bubble
formation phenomena with an
exposure time = 1/1000 sec using a
still frame camera. After processing
the films, slides were made so that
high magnification (8 to 10) was
achieved. The slides were then used

Figure 8.3 Side view of the slot-nozzle.

1o measure the number of bubbles and bubble volumes.

As summarized in Table 6.1, a number of system and operating variables affect the
bubble formation from a nozzle. In the present research, small chamber volume of the slot-
shaped nozzle (200 mm®) and high pressure drop across nozzle were maintained so that the
bubble formation could be considered as a constant flow condition. In order to investigate
the effects of the densities and surface tensions of liquid and gas on the bubble formation,
water and methyl alcohol were used as liquids and air and helium were used as gases.
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(b) Side view of the slot nozzle and variation of curvature
of dynamic gas-liquid interface from lower gas flow

rate to higher gas flow rate, 1, 2, 3, respectively.

Figure 8.4 Configuration of a slot shaped nozzle and gas-liquid interface.

. During experiments the slot width was changed from 50um to 250um while the length of
the slot (L), the depth of the slot (%) and the liquid depth above the nozzle top surface (F)
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were kept constant. Table 8.2 gives the experimental conditions.

Table 8.2 Experimental Conditions for Gas Injection Phenomena from a Slot Nozzie

Exp. No. Slot Width, W (uzm) Gas - Liquid
1 125 Air _Water
2 125 Helium Water
3 75 Air Water
4 75 Helium Water
h] 75 Air Methyl Alcohol
6 50 Air Water
7 50 Air Methyl Alcohol
8 50 Helium Methyl Alcohol
9 250 Helium Water
10 250 Air Methyl Alcohol
11 250 Helium Methyl Alcohol
12 175 Air Methyl Alcohol
13 175 Helium Methyl Alcohol
14 175 Alr Water
15 175 Helium Water

r—— ]

Table 8.3 lists the properties of liquids and gases. Methyl alcohol, water, air and
helium have very low viscosities so that the drag forces can be neglected during the
analysis of the bubble formation. The surface tension of methyl alcohot is only one third
of that of water. The density of air is seven times of that of helium. Consequently, the
present liquid-gas system gives widely-distributed physical properties. However, no
attempts were made to study the effects of viscosity and contact angle on the bubble
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formation.

Table 8.3 Physical Properties of Liquids and Gases™

I [ Water Methyl Alcohol Alr Helium

Density (Kg/m?) 1000 787 1.29 0.178
Surface tension (dyn/cm)” 72 23

Viscosity (Kg/m/s) 1x103 0.597x103 2x10% 2x10*

When gas was injected into liquid through a slot-shaped nozzle, as the flow rate of
gas was increased, three different bubbling regimes were found. They were: regular bubble
regime at low flow rates, coalescence bubble regime at medium flow rates, and gas globe
regime at high flow rates. As examples, Figure 8.5, Figure 8.6 and Figure 8.7 show the
behaviour of different bubbling regimes when helium was injected into water through a W
= 125um slot.

In the regular bubble regime, the regular bubbles were formed along the slot and
the coalescence of the individual gas bubbles in the direction of slot was avoided as shown
in Figure 8.5. The average number of sites (or bubble sources) along the slot, from which
bubbles originate, increased with an increase in the gas flow rate, i.e., the distance
between the bubble sources decreased with an increase of gas flow rate. Further increase
of gas flow rate caused the bubble coalescence in the direction of slot before the individual
bubbles detached from the nozzle. Thus, the second kind of bubble regime, i.e.,
coalescence bubble regime, was found at medium flow rates as shown in Figure 8.6. In
this regime the coalescence between bubbles, which caused a considerable variation in the
measured bubble radius, became significant with an increase in flow rate until finally a
a continuous gas blanket extending the length of the slot® was reached. Because of the
Rayleigh-Taylor instability of the liquid-gas interface, this blanket breaks into multiple
bubbles at separate nodes with a characteristic wavelength A, 1., (the distance between two
nodes or two bubbles). This is the so-called gas globe regime at high flow rates and is

| It was found that the surface tension between liquid and helium was almost the same as that of
liquid-air.
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shown in Figure 8.7. As further examples, Figure 8.8-Figure 8.15 show some bubble
formation phenomena in water and methyl alcohol.

In the present research, fifteen sets of experiments were done as shown in
Table 8.2. For each of the experiments, the sizes of the bubbles in regular bubble regime
and coalescence regime and the number of bubble sources were measured as a function of
gas flow rate. The critical transformation condition between the regular bubble regime and
the coalescence regime was also determined. The number of bubble sources in the regular
bubble regime was measured by counting the number of bubbles inside a rectangle, the top
line of which was parallel to the slot and was drawn a certain distance (i.e., Smm) above
the slot as shown in Figure 8.16. The number of the bubble sources were counted as
shown in Figure 8.16.

Dunng the determination of the bubble size, the bubbles were considered as
ellipsoid with major and minor axis. The major and minor axis, ¢, and b,, of each bubble
were measured, and the volumes of whole bubbles intersecting the top line of the rectangle
were determined. Finally, the average bubble volume was calculated based on:

2
v, = dxZoh @09

3 n

The number of bubbles measured, r,, depends on the experimental parameters (e.g., flow
rate, slot spacing, liquid and gas properties) and varies from a few bubbles at low flow
rates to almost a hundred bubbles at high gas flow rates. The original resuits for the fifteen
experiments are given in Appendix II and are discussed in the next chapter.
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1.502 slpm (top picture) and Q,=4.575 slpm (bottom picture).

Regular bubble formation pattern when helium was injected into water through a slot
th W=125pm at @,

wi

Figure 8.5
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DR TN

Figure 8.6 Coalescence bubble formation pattern when helium was injected into water through a slot
with W=125,m at 0,=15.16 slpm.

Figure 8.7 Gas globe formation pattern when helium was injected into water through a W=125um
. slot at 0,=65 slpm; N, =S.
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. Figure 8.8 Regular bubble formation pattern when air was injected into water through a slot with
W=50um at 0,=0.24 slpm (top picture) and @,=0.65 slpm (bottom picture).

1
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Figure 8.9 Coalescence bubble formation pattern when air was injected into water through a slot

with W=50um at Q,=2.5 slpm (top picture) and Q,=4 slpm (bottom picture).
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. Figure 8.10 Bubble formation when air was injected into water with W=50um at Q,=0.65 slpm (top
picture) and Q,=0.9 slpm (bottom picture). These pictures show only a part of a slot.
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. Figure 8.11 Regular bubble formation pattern whea helium was injected into methyl alcohol through
a slot with W=50um at Q,=0.07 slpm (top picture) and 0,=0.88 slpm (bottom picture).
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Figure 8.12 Regular bubble fomation%aﬁ%‘ﬁén air was injected into methyl alcohol through a
 slot with W=75um at Q,=0.4slpm (top picture) and 0,=0.8 _s}pm {(bottom picture).



. CHAPTER 8 GAS INJECTION PHENOMENA: EXPERIMENTAL 113

. Figure 8.13 ‘Coalescence bubble formation pattern when air was injected into methyl alcohol through
a slot with W=75um at Q,=2.6slpm (top picture) and Q,=5.4slpm (bottom picture).
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Figure 8.14 Gas globe formation pattern when air was injected into methyl alcohol through a slot
with W=T75um at Q,=22.8slpm; N, =10.

Figure 8.15 Bubble formation pattern in “regular bubble region" when helium was injected into
methyl alcohol through a W=250um slot at ,=7.6 slpm.
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These two bubbles are considered as from the same bubble source.

l—7ﬂ/—\ (O M~ OQ |

counted as a bubble source

O not counted as a bubble source
(O  growing bubble

Figure 8.16 Schematic representation of measuring the number of bubble sources in the regular
bubble region.
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CHAPTER 9

GAS INJECTION PHENOMENA THROUGH A
VERY NARROW SLOT: RESULTS AND ANALYSIS

9.1 PRESSURE DROP ACROSS A SLOT

Pressure drop across a nozzle is one of the most important parameters during gas
injection, because it dominates the energy required to inject the gas. The relationship
between the pressure drop and the gas superficial velocity depends on Reynolds number,
Re. If the flow is the steady laminar flow ( Re < 2100 ), the pressure drop across a
narrow slot is proportional to the gas superficial velocity and is expressed as™:

_20ph _ 1R2Uph

209
WAL w? )

where p, is the viscosity of gas, O the volumetric flow rate of gas, and U, the superficial
velocity of gas. Equation (209) is known as Hagen-Poiseuille law.

For a narrow slot, the force exerted on the solid surfaces by a fluid, F,, is defined

F, = QLR G2, U f 210)

where (2Lh) is the wetted surface, and (o, U,%/2) is the characteristic kinetic energy per unit
volume. While the Reynolds Number, Re, is defined as:
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Re < 2V Y @211)
PS
Furthermore, the friction factor is defined and expressed as:
F
f= X _ APLW 212)

Ao, Ul LhpU;

where A,, = Lk is half of the wetted surface. From Equations (209)-(212) the relationship
between the dimensionless friction factor and the dimensionless Reynolds Number is
obtained:

12
= 2° (213)
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Figure 9.1 Measured pressure drop as a function of gas flow rate.
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Figure 9.1 shows the relationship between the measured pressure drop across a slot
and the gas superficial velocity. Clearly, the pressure drop is proportional to the gas
velocity and both air and helium give the same pressure drop for the same gas superficial
velocity. This means that gas density is unimportant for the pressure drop, which is
consistent with Hagen-Poiseuille law.
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Figure 9.2 The relationship between fraction factor and Reynolds Number.

The measured pressure drop shown in Figure 9.1 can be represented by the
relationship between the dimensionless fraction factor and the dimensionless Reynolds
Number (Figure 9.2). The theoretical line predicted by Equation (213) is also presented
in Figure 9.2. The agreement between the measured data and the theoretical prediction is
excellent, which shows that the flow is laminar. In fact, the maximum Reynolds number
shown in Figure 9.2 is 50, and is much less than 2100, the critical Reynolds Number for
the transformation of a laminar flow to a turbulent flow.
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9.2 BUBBLE FORMATION IN THE REGULAR BUBBLE REGIME

As mentioned above, in the regular bubble regime the regular bubbles were formed
along the slot at separate locations which we refer to as bubble sources. There was no
interaction between bubble sources. If the average number of the bubble sources is N when
the inflowing total gas flow rate is @, then each of the bubble sources can be considered
as an independent one with gas flow rate Q/N. Since the bubble formation at low gas flow
rates is dominated by surface tension, inertial and buoyancy forces, the theory of the
bubble formation for a single circular orifice can be used to analyze the bubble formation
through a very narrow slot. The only adjustment to be considered is the replacement of the
surface tension term "2xr,", the flow rate "Q" and the neck length of the bubble at
detachment "d," of Equation (207) by 2Wo, Q/N and V3W/2, respectively. Here, the
wetted perimeter is assumed to be 2W, that is, the bubble formed on a very narrow slot
has a square "mouth". Since stainless steel is well wetted by both water and methyl
alcohol, the contact angle is assumed to be zero for the present calculations.

Figure 9.3 to Figure 9.11 present the measured bubble volume as a function of gas
flow rate for various slot widths. The predicted data, Equation (207), are also shown in
these figures. In general, the agreement between measured and predicted results is good,
which demonstrates that bubble formation from a very narrow slot is dominated by both
surface tension and inertial forces. As a result, the bubble size is dependent on the slot

spacing.

From Figure 9.6 and Figure 9.7, it is clear that Equation (207) overestimates the
bubble size for the W = 50um slot. For this smallest slot width, both gas flow rate and
bubble size are very small so that surface tension becomes very important in comparison
with the inertial force. In Equation (207) the contact angle, 6., was assumed to be zero
with the result that the surface tension force was overestimated. If the real contact angle
which is larger than zero were considered in Equation (207), the calcuiated bubble volume
would be smaller than that shown in Figure 9.6 and Figure 9.7, so that good agreement
between calculated bubble volume and measured volume could be obtained.

In contrast to Figure 9.6 and Figure 9.7, it seems that Equation (207)
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underestimates the measured bubble volume for this largest width of slot (W=250um) as
shown in Figure 9.8 and Figure 9.9. In fact, the bubble formation through a wide slot is
very unstable, and coalescence between bubbles occurs even in the so called "regular
bubble regime” at low gas flow rates. As shown in Figure 8.15, the measurement of the
bubble size becomes difficult due to the coalescence of bubbles and the measured bubble
size is larger than that of a single bubble. In the present research, it was almost impossible
to form regular bubbles from a slot with W > 250um for water and methyl alcohol.

Figure 9.3 also shows the predictions of the Kumar and Kuloor's model. It is
obvious that Kumar and Kuloor's model greatly overestimates the bubble volume.

As mentioned before and shown in Figure 8.5, Figure 8.8, Figure 8.10 and
Figure 8.11, the number of bubble sources in the regular bubble regime increases with an
increase in the gas flow rate. However, the reason for this behaviour is not immediately
obvious, and there are no references in gas injection literature that are helpful on
illuminating the physical background. The key problem for understanding the bubble
formation from the slot-shaped nozzle in the regular bubble regime was to find a
relationship between the average number of bubble sources, N, (or the distance between
bubble sources) and the gas injection parameters, such as gas flow rate and slot width etc.
In order to answer this question, we looked to the Rayleigh-Taylor instability.

As discussed in Part 1 of the thesis, an interface between two fluids of different
densities is unstable when the light fluid is under the heavy fluid. When gas is injected
verticaily into water through a slot-shaped nozzle, the equilibrium gas-liquid interface can
be imagined as a cylindrical one as shown in Figure 8.4. With an increase in the gas flow
rate, the radius of the dynamic gas-liquid interface decreases. This interface is unstable
since gas is pushing the liquid and produces nodal instabilities which disrupt the interface.
Such nodes act as bubble sources along the slot. The distance between bubble sources is
dominated by so called "most dangerous wavelength”. Thus, the understanding of the gas
bubble formation through a narrow slot relies on the analysis of the Rayleigh-Taylor
instability of the hypothetical gas-liquid cylindrical interface, which was carried out in Part
1. From Equation (70) the relationship between the dangerous wavelength and the radius
of the interface can be obtained. By using the dimensionless variables defined in Equations
(74)-(77), the dispersion equation (70) becomes:
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Figure 9.3 The predicted and measured bubble volume as a function of gas flow rate per bubble
source for a W=125um slot submerged in water (from Tables A-I and A-2).
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Figure fJ:d The predicted and measured bubble volume as a function of gas flow rate per bubble
. source for a W=75um slot submerged in water (from Tables A-3 and A-4).
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Figure 9.5 The predicted and measured bubble volume as a function of gas flow rate per bubble
source for a W=75um slot submerged in methyl slcohol (from Table A-5).
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Figure 9.6 The predicted and measured bubble volume as a function of gas flow rate per bubble
. source for a W=50um slot submerged in water (from Table A-6).
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Figure 9.7 The predicted and measured bubble volume as a function of gas flow rate per bubble
source for a W=>50um slot submerged in methyl alcohol (from Tables A-7 and A-8).
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The predicted and measured bubble volume as a function of gas flow rate per bubble

source for a W=250um slot submerged in water (from Table A-9).
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Figure 9.9 The predicted and measured bubble volume as a function of gas flow rate per bubble
source for a W=250um slot submerged in methyl alcohol (from Tables A-10 and A-11).
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Figure 9.10 The predicted and measured bubble volume as a function of gas flow rate per bubble
. source for a W=175um slot submerged in methyl alcohol (from Tables A-12 and A-13).
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Figure 9.11 The predicted and measured bubble volume as a function of gas flow rate per bubble
source for a W=175um slot submerged in water (from Tables A-14 and A-15).

@=--Lle-L-1]k (214)
® Ir?

which is similar to Equation (78) of film boiling. From £quation (214) the dimensionless

critical wavelength is expressed as:

_ 2x
Ac.bnbblz = _—1 172 (215)
[

and the dangerous wavelength can be calculated by using Tk-Solver. Figure 9.12 shows the
numerically calculated ratio between dangerous wavelength and critical wavelength. It can
be fitted well by Equation (216):

Agpunie _ 2.067 +4/3 0.3108 [T+ (216)
A oo 1+0.3108 1"
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Finally, the dimensionless dangerous wavelength is expressed explicitly as:

_ 2.067+/3 0310811 24
d.bubble 1 +03108 H1.434 [ 1 ] 12 (217)

A

1+

and is shown in Figure 9.13. From Figure 9.13, it is obvious that the dangerous
wavelength decreases with a decrease in the cylindrical radius. For bubble formation
through a very narrow slot, the radius of the hypothetical gas-liquid dynamic interface
decreases with an increase in the gas flow rate. Therefore, the bubbles along the slot
become close to one another as the flow rate 1s increased.

If the curvature of the dynamic gas-liquid interface could be correlated to the gas
injection parameters (such as the gas flow rate, slot width, and the properties of liquid and
gas), we would be able to predict the distance between bubble sources using Equation
(217), and the gas bubble formation phenomena would be understood completely.
Unfortunately, the curvature of the unstable dynamic gas-liquid interface can neither be
measured nor predicted by previous existing theory. In fact, the research on a moving gas-
liquid contact line and the interface shape in a liquid-gas system is one of the most
important and difficult fields®3.85.86.87.88

Although above analysis can not predict the number of bubble sources as a function
of gas flow rate etc., it does provide us a physical picture or background on the bubble
formation through a slot. The relationship between the number of the bubble sources and
the gas injection parameters can be determined by experiments under the guidance of the
dimensional analysis. For the bubble formation through a narrow slot under the constant
flow condition, there are six variables, and the distance between bubble sources, A,, is
expressed as:

N, =flog 0, Uy W,0) (218)

where g has been neglected because most of the experimental data are in shorter A, region
(smallce R, in Eq.(69)). Changing the orientation of the slot from vertical to horizontal
verified that gravity g had very small effect on A, at very low gas flow rates and had no
effect at high gas flow rates. The dimensions of each variable are listed in Table 9.1.
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Table 9.1 Dimension of Each Varnable

N Pe o\ Ug w o

L ML’ ML’ LT L MT

In Table 9.1, M, L and T represent the mass, the length and the time, respectively.
According to Buckingham'’s pi theorem™, Equation (218) can be reduced to a relation
between three dimensionless variables because there are three of six variables which do not
form a dimensionless variable, i.e., p, U, and W. Then the three dimensionless groups are
formed by power products of these three plus an additional variable, i.e.,

IO, = o; Uy Wep, = MOLOT®

1L,

pi U WIN, = MOLOT? (219)

IL = pf U Wia = ML T°

where a, b, ¢, d, e, f, g, h and | are constants and are determined by equating exponents
of two sides of the dimensionless groups. Finally, the three dimensionless variables are
expressed as:

_ P _ N _ A U W

Rl P R 0®

(220)

g

where =, is called as dimensionless distance between bubble sources and is different from
the dimensionless wavelength defined in Chapter 2, A. Clearly, dimensionless variable =,
is called Weber number, and expressed by We.

The dimensionless analysis guarantees that the functional relationship of Equation
(218) must be of the equivalent form: '

)\d

Moo (B 221
7 g(p,We) (221)

4

The simplest form of function g is the power products of density ratio and Weber number,
i.e.,
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or

A 223
ln{W‘;] = In(c,) + czlnlpij + ¢, In(We) (223)

where ¢,, ¢, and ¢; are constants and are determined by experiments, while A is expressed
as:

G
A =¢ i
ps

From Equation (223) it is clear that the curve of the dimensionless distances (A,/W)
verses dimensionless Weber number (We) should be linear in log-log coordinates if the
function g assumed in Equation (221) is correct. The slope of the curve gives constant c;,
while the intercept represents the function In(d)=In(c,) +c.n(p/p,).

(224)

Fijure 9.14 shows the experimental relationships between the dimensionless
distance, \/W, and dimensionless Weber number, We, for the first eight experiments,
while the results of another seven experiments are shown in Figure 9.15. In general,
In(\ /W) is really a linear function of /n{We) and it seems that all of the curves have almost
the same slope. The solid iines of Figure 9.14 and Figure 9.15 are based on fitted results.
The slopes and intercepts of the fifteen curves are given in Table 9.2, from which the
average value of constant ¢ is calculated to be -0.23. The intercepts, In(4), shown in
Table 9.2 is a function of density ratio between liquid and gas and is represented in
Figure 9.17. By fitting the experimental data, we get required constants, ¢;=18.78 and
¢,=0.15. Thus, the dimensionless distance between bubble sources is expressed as:
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Figure 9.16 shows the comparison of the dimensionless distances between measured
. and-predicted by empirical Equation (225). Clearly, very good agreement is obtained.
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Equation (225) can be rewritten, in dimensional form, by:
0.0.23 WO.TI

0.15 0.089 U0.47
pg Pr I

A, = 18.78 (226)

Based on Equations (225)-(226), the dimensionless distance between bubble sources
(or the number of bubble sources) is dominated by Weber number and density ratio
between liquid and gas. With an increase in the gas density, the number of bubble sources

. decreases, i.e., the number of bubble sources for helium is less than that for air under the
same total gas flow rate. The reason is that the higher the gas density is, the smaller the
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Figure 9.16
bubbles.

The comparison between the measured and predicted dimensionless distance between the

radius of gas-liquid dynamic cylindrical interface due to the high gas momentum, and then
the shorter the dangerous wavelength. From Equation (226) it is also clear that the distance
between bubble sources increases as the decrease of the liquid density. The reason is that
the interface becomes more unstable (shorter dangerous wavelength) as an increase in the
liquid density. Of course, a decrease in the width of the slot and an increase in the gas
velocity decrease the radius of the cylindrical interface so that the dangerous wavelength
becomes shorter. Since the surface tension is always stabilizing the interface, any increase

in the surface tension leads to a longer dangerous

wavelength.
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Table 9.2 Slopes and Intercepts of InfA,/W)-In(We) Curves

Exp. No. Regression slope intercept
coefficient Cs Infc,)+cAdn(p,/p,)
I 0.965 -0.264 52.500
2 0.981 -0.239 77.500
3 0.974 -0.238 51.800
4 0.964 -0.212 66.700
5 0.988 -0.249 39.200
6 0.954 -0.271 63.700
7 0.963 -0.231 45.900
8 0.974 -0.243 47.200
I 9 0.974 -0.248 77.200
10 0.928 -0.215 46.000
11 0.849 -0.193 54.280
12 0.921 -0.182 42.600
i 13 0.928 -0.202 58.500
14 0.852 -0.304 55.600
15 0.973 -0.225 73.400

In a few words, the experimental results expressed by Equations (225)-(226) can
be fully understood by the hydrodynamic instability theory presented in Part 1, i.e., the
gas bubble formation along a slot is dominated by the Rayleigh-Taylor instability.
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P,

9.3 BUBBLE FORMATION IN THE COALESCENCE BUBBLE

REGIME

Because the number of bubble sources increases with an increase of gas flow rate,
coalescence between bubbles occurs beyond certain gas flow rate as shown in Figure 8.6
and discussed before. In the coalescence bubble formation regime, each of the bubble
sources can no longer be considered as an independent one due to the interaction between
them so that a considerable deviation in the bubble size can be observed.

In this regime, bubble formation is dominated by inertia forces only because not
only the gas flows are high but also the bubbles are formed after the interaction of the
bubble sources so that the bubbles are detached from the interaction of the bubble sources

rather than from the slot itself.
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When the bubble formation is controlled by inertial force, the bubble volume is
expressed as:

b b o3s L

615
V = K Q:IS - K {Q‘, db] g_s'ps (227)
b
4

where K, is a constant with a value =1 (Equations (185) and (190)), 4, the diameter of the
bubble, L the length of the slot, @, the total gas flow rate, @, the gas flow rate contributed
to each of the bubbles and equal to Q,*d,/L. The evaluation of Equation (227) gives an
expression for the bubble diameter:

519 0
4 - |85 , (228)
L - g B LP
The constant X, is expressed as:
L6I5 d9n’$ s
K, =X *;,53 (229)
6Q,

From this equation, the measured bubble size in the coalescence bubble formation regime
shown in Table A1-A1S of Appendix II can be used to evaluate the constant K, which is
represented in Figure 9.18. The scatter of the K, value is quite large because of the
irregular bubble formation and the random of the bubble coalescence. But, nevertheless the
K, value ranges from 0.5 to 1.4 and the average value is 0.746 which is close to the
theoretical analysis (Equations (185), (190) and (192)) and Hoefele’s empirical data for
water, 0.887¢,

Substituting the average value of X, (0.746) into Equation (228), we get the final
equation for predicting the bubble diameter in the coalescence bubble regime:

Q2!3
d, = 12172 @30)
g

Figure 9.19 presents the measured bubble size, d,, as a function of total gas flow
rate, Q,, for the fifteen experiments along with the predicted data from Equation (230).
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Figure 9.18 Measured K, values for fifteen experiments

Evidently, Equation (230) closely represents the measured data.

I
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Figure 9.19 Measured bubble diameter as a function of total gas flow rate for the fifteen

experiments.

9.4 CRITICAL TRANSITION CONDITION BETWEEN THE

REGULAR BUBBLE REGIME AND THE COALESCENCE
BUBBLE REGIME

The transition between the regular bubble formation and the coalescence bubble
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Figure 9.20 Schematic drawing of the critical transition condition between the regular bubble regime
and the coalescence regime.

formation happens when the diameter of the bubble, 4,, times the number of bubble
sources, N, is equal to the length of the slot L, i.e., the distance between the bubble
sources (or dangerous wavelength) is equal to the diameter of the bubble, Figure 9.20.
Thus, by equating the dangerous wavelength, A,, of Equation (225) to the diameter of the
bubble, d,, of Equation (230), we have following expression for the critical transformation
condition:

Q 0.13
4 - pf
Q= —0— =11.13 [Fx]

Lw?g pW'g

0.2t
o ] (@3

where Q, is defined as dimensionless gas flow rate.

The comparison between measured and calculated dimensionless flow rate, Q,, for
the transformation between the regular and coalescence bubble formation for the fifteen
experiments is presented in Figure 9.21. Clearly, Equation (231) is really an excellent
representation for the critical transformation condition.



CHAPTER 9 GAS INJECTION PHENOMENA: RESULTS AND ANALYSIS 139

250

N
o
[ ]

150

100

Measured dimensionless flow rate, Q,
3
i

0 . ! ‘ 1 . ! . ! .
0 S0 100 150 200 250

1113 (%;)0.12.82 (pl gzg }0.2064

Figure 9.21 The comparisor between measured and predicted critical transition coadition.

9.5 BUBBLE FORMATION IN THE GAS GLOBE REGIME

In the coalescence bubble formation regime, although coalescence between bubbles
happens, the bubble sources are still discontinuously distributed along the slot. As gas flow
rate is increased, the bubble sources become closer to each other and the coalescence
between the bubbles becomes significant. Finally at certain flow rate, a continuous gas-
liquid blanket extending the length of the slot is formed; and gas globe regime is reached,
Figure 9.22. This blanket is unstable from the Rayleigh-Taylor instability point of view.
It breaks into multiple large gas bubbles at separate nodes with a characteristic wavef&gih
Autaytor- Equation (30), which is 2.95¢m for water-gas and 1.87cm for methyl alcohol-gas. .

Since following relationship for the number of nodes, N,,,, should be hold:
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L h<wn, <t
)

&, Taylor d, Tavlor

.l (232

it is expected that S< N, <7 for water-gas and 9< N,

= 11 for methyl alcohol-gas for
a L=19.05cm slot. As shown in Figure 8.7 and Figure 8.14, the experiments really gave
N_..=5 for water-gas and N, =10 for methyl alcohol-gas. Experimental determined
number of nodes (Table A-1 - Table A-15) for the fifteen experiments is listed in
Table 9.3. Because the gas globe regime can be considered as the fully developed
coalescence bubble formation regime, no attempts were made to obiain a critical transition
condition between the coalescence regime and gas globe regime.

—— Bubbles
pO OO

Figure 9.22 Schematic drawing of the gas globe regime.-

] Ad=27r g_pL

Gas blanket
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Table 9.3 Experimental Determined Node Number for Gas Globe Regime

Exp. No. Flow Rate N,z
water-gas 1 39.3 7
50.7 6-8
2 52.8 6-6
64.4 5-6
3 28.6 57
24.6 6-6
14 25 8-8
50 6-7
Methyl alcokol-gas 6 14 8-8
18 9-10
22.8 7-10
324 8
7 10.5 8-8
15 8-9
10 28 6-7
‘ 25 8
) 20 7

Table 9.4 giQes the most dangerous wavelengths of globe regime for several liquid
metals according to-Equation (30). Clearly, iead has the shortest wavelength because of
highest density and lowest surface tension. '
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Table 9.4 Calculated Dangerous Wavelengths for Gas Globe Regime

Density Surface tension Ay (cm) Node number for
g/cm’) (dyn/cm) L=20cm
LANAI<N,, <LMA+1
Methyl 0.786 23 1.87 9-11
alcohol
Water 1 72 2.95 6-8
Lead 10.5 440 2.25 8-10
Aluminium 2.4 910 6.76 2-4
Nickel 7.9 1780 5.22 3-5
Iron 7.0 1900 5.73 3-5
Copper 3.0 1300 4.43 4-6

9.6 CONCLUSIONS

When gas was injected into liquid through a very narrow slot, three gas
bubble formation regimes were observed. They were regular bubble
Jformation regime, coalescence bubble formation regime and gas globe
regime.

In the regular bubble formation régime, the bubble formation is dominated
by surface tension and inertial forces. The bubble volume is predicted by
Equation (207). The average number of the bubble sources increases with
an increase in the gas flow rate. The dimensionless distance between the
bubble sources:is correlated to Equation (225).

In the coalescence bubble formation regime, the bubble formation is
dominated by the inertial force only. The bubble diameter is predicted by

“Equation (230).
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4,

The critical transformation condition between the regular bubble formation
regime and coalescence bubble formation is described by Equation (231).

In the gas globe regime, the node number is dominated by Rayleigh-Taylor
instability, and is described by Equation (232).

The pressure drop across a slot can be described by Hagen-Poiseuille law.
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CHAPTER 10

CONCLUSIONS AN SUGGESTIONS
FOR FUTURE RESEARCH

10.1 CONCLUSIONS

10.1.1 HYDRODYNAMIC INSTABILITIES OF A CYLINDRICAL
INTERFACE

1. The Rayleigh-Taylor instability of a cylindrical interface between two
inviscid fluids was analyzed. A general dispersion equation, relating
wavenumber, k, to growth rate, G, was derived:

ok iz = L _ @2~ p)gCos(d)
R? o

sra *pa,

G* =

2, A mathematical model for predicting the dominated unstable wavelength
during film boiling on a horizontal cylindrical heater was proposed:

_ 2.16 + 3 04672 '™ 2x
d,boiling 1 + 0.4672 M4 [+ 1 12
! 7

Excellent agreement between experimental resuits and predicted data was
obtained.
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Wi

(v

3.

Experiments and theoretical analysis were carried out to measure and to
predict the dominated unstable wavelength during cylindrical liquid film
breakup. It was found that the distance between the nodes decreases with a
decrease in the radius of the test tube. The most dangerous wavelength is
predicted successfully by a closed-form equation:

A _ 1435 + 0.072 /3 M 2%
e = T 4 0.072 TO7 [ 1 ]"-’ 233

Therefore, Lee’s experimental result and theoretical analysis were confirmed
to be wrong.

The Rayleigh-Taylor instability of a cylindrical interface between two
viscous fluids was analyzed. A general dispersion equation, relating
wavenumber, k, to growth rate, G, was obtained with a successful
application to film boiling on a cylindrical heater.

The Kelvin-Helmholtz instability of a cylindrical interface between two
inviscid fluids was described mathematically. A general dispersion equation,
relating wavenumber, &, to growth rate, G, was given:

G__p252U2+p16,U1

* P& *p, 0

12
2o (1mnd) _ Womp)geos@) |
_ p19,0,8,(U, ~U,)? . R; 7
(0,8, +p,8,)° (p:3,+p,0)k J

The breakup of a liquid-in-air jet and an air-in-liquid jet were discussed. It
was found that the dominated wavelength decreases rapidly with an increase
in the jet velocity.
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10.1.2 GAS INJECTION PHENOMENA THROUGH A VERY
NARROW SLOT
1. A modified bubble formation model for the prediction of bubble size was

proposed with considerations of surface force and inertial force. The bubbie
volume, V,, was calculated from:

2 2
v, - 0.0474 L yn o 27T 000)
4 h8

and

fr, = 28 oy -oe e -y - 2ol )

1'%
110 11Q%p, V7= Vo)
L1 32xr,ocos(f) V, +0207Q vis _ 8g 2| | in v
(4 11Qp, 11Q A
2. When gas was injected into liquid through a very narrow slot, three gas

bubble formation regimes were observed. They were regular bubble
Jormation regime, coalescence bubble formation regime and. gas globe
regime.

3. In the regular bubble formation regime, the bubble formation is dominated
by both surface tension force and inertial force. The bubble volume was
predicted successfully by a modified bubble formation model. The average
number of the bubble sources increases with an increase in the gas flow
rate. The dimensionless distance between the bubble sources was correlated

by:

Ay

0.15

P, -
= = 1878 | — We 08
W 8 [ ] e

Py

4, In the coalescence bubble formation regime, the bubble formation is
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dominated by the inertial force only. The bubble diameter was predicted by:

Q"
d, = 1217 ——_
b g LP
5. The critical transition condition between the regular bubble formation

regime and coalescence bubble formation was described by:

0.13 0.21
0= o - | )|
Lw*g Py pW°g
6. In the gas globe regime, the node number is dominated by the most

dangerous wavelength for the Rayleigh-Taylor instability of a plane
interface, i.e.,

7. The pressure drop across a slot followed the Hagen-Poiseuille law.

10.2 CLAIMS FOR ORIGINAL RESEARCH

This thesis covers fundamental theory, experiments and data analysis. Theoretical
analysis of the hydrodynamic interfacial instabilities of cylindrical interfaces were first
carried out with applications to boiling heat transfer, liquid film breakup and gas injection
phenomena through a very narrow slot. Then, gas injection phenomena through a very
narrow slot were comprehensively examined by means of experiments, dimensional
analysis and mathematical modelling.

In particular, I claim the following original contributions accomplished during this

. study.
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I. The Rayleigh-Taylor instability and Kelvin-Helmholtz instability of a
cylindrical interface between two inviscid fluids or two viscous fluids were
analyzed based on first principles (momentum and continuity equations).
Dispersion equations, relating wavenumber, k, to growth rate, G, were
derived for various conditions.

2. Mathematical models for predicting the dominant wavelengths during film
boiling on a cylindrical heater and during the breakup of a liquid film
around a cylindrical body were proposed for both inviscid and viscous
fluids.

3. Experimental research confirmed that dominant unstable wavelength during
cylindrical liquid film breakup on a cylindrical body decreases with a
decrease in the radius of the cylindrical body.

4, A modified two-stage bubble formation model was proposed with
considerations of surface tension and inertial forces to predict the bubble
formation through a narrow slot.

5. Gas injection phenomena through a very narrow slot were extensively
examined by means of experiments, mathematical modelling and
dimensional analysis. Three different bubble formation regimes were

described.

6. Mathematical description for each of the bubble formation regimes was
developed.

7. Gas bubble formation through a very narrow slot is attributed to the

Rayleigh-Taylor instability of a cylindrical interface. -
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10.3 SUGGESTIONS FOR FUTURE RESEARCH

1. Contact angle plays an important role in the bubble formation through a
very nartow slot, especially for the regular bubble formation regime.
Experiments should be carried out to clarify its effect.

2. The effect of liquid viscosity on the gas injection phenomena through a very
narrow slot needs to be examined.

3. Gas injection phenomena through a very narrow slot should be explored in
the liquid metal systems.
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APPENDIX I

BESSEL FUNCTION

When 7 is an integer, the Bessel functions 7 (X) and K, (X) can be expressed as:

[E a+2m

, = |2 (243)
A = m0 m! (n+m)!

1 x m 1+l++_1_244)
my |2 2 m

KX) = - [0.577216 +1In [%H I() + L
mel

KX = (=1)! [0.577216 +In [E] ] I(x) + _l "g (-D™ (n-m-1)! [f]?mn
2 2 m=Q M! 2

I' 2men
+ (-l)ﬂ E L-i-] [§ -lT . mzvn_l.]

2 maom (nem)! i I i (245)
The relationships beﬁ&n Bessel functions and their differentials are
I -
a® L& L® dD L @)
dX 2 dX
KD K0 KD  dK® Lo @47

ax 2 7 T dX !
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When X is larger (e.g. X>7 for n=0 or 1), the [,(X} and K (X) can be approximately
expressed as:

! . exp(X) - (4n%-1) _ (4n*-1)(4n*-9)
AX) — % e (248)
5 249
_ 42X (4n3-1)  (4n2-1)(4n*-9) (249)
K = l+ +
0 exp(X) [ 8X 128 X? ]
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APPENDIX 11

EXPERIMENTAL RESULTS FOR GAS INJECTION

In this appendix the original experimental results for the fifieen experiments listed
in Table 8.2 are given. In these tables Q, is the total gas flow rate; d,,... is the distance
above the nozzle surface at which the size of the bubble was measured; N the measured
number of bubble sources; N, is the error for the measurements of the bubble sources;
V, is the measured bubble volume after Equation (208) ; d, is the measured average bubble
diameter; K, is the estimated coefficient from measured bubble size in the coalescence
bubble formation regime according to Equation (229); N, is the measured node number
in the gas globe regime.

Table A-1 Experimental Results for No.1 Experiment

Regular bubble formation regime

O, (slpm) | Film No. d,pove (M) N V, (mm?) d, (mm)
0.1 33 2 7 4.504 2.049

I o1 34 2 6 4.678 2.075 .
07 0.1 35 2 8 4.569 2.059
G.4 8 2 18 5.036 2.127
| o4 9 2 17 5376 | 2174
| oa 10 2 17 4.747 2.085
R 5 2 29 6.43 | 2.308
EE 6 2 30 6533 | 2319
R 7 2 29 6.117 | 2.269
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1.1 2-30 2 26 6.254 2.286
1.1 2-31 2 27
1.9 11 2 41 7.049 2.379
1.9 12 2 38 6.676 2.336
1.9 13 2 38 8.487 2.531
2.3 2-36 2 45 8.737 2.555
2.3 2-37 2 43
2.4 14 2 49 7.924 2.474
2.4 15 2 49 7.643 2.444
2.4 16 2 40 7.983 2.480
2.9 17 2 52 8.800 2.562
2.9 18 2 60 8.184 2.500
2.9 19 2 47 11.258 2.781
3.3 2-32 2 49
3.3 2-33 2 49 10.326 2.702
3.6 20 2 59 8.507 2.533
3.6 21 2 54 9.422 2.620
3.6 22 2 54 9.091 2.589
5 23 2 61 8.858 2.567
I 5 24 2 60 10.042 2.677
Coalescence bubble formation regime
K, value
7.2 25 3 0.67478 | 32468 | 3.958
7.2 5 0.657107 | 31.063 3.900
7.2 26 3 0.58€218 | 25.621 3.660
7.2 5 0.664156 | 31.620 3.923
8.3 27 3 0.523355 | 28.249 3.779




. APPENDIX II EXPERIMENTAL RESULTS FOR GAS INJECTION 154

8.3 5 0.530721 28.914 3.808
8.3 28 3 0.569323 32.504 3.960
8.3 5 0.66565 42.177 4.319
11 29 3 0.434732 36.420 4.113
il 5 0.516698 48.569 4.527
11 30 4 0.517932 48.763 4.533
Gas globe formation regime
N
393 14 7
50.7 1-37 8
50.7 1-36 6 . N
Table A-2 Experimental Results for No;2_ Experiment
Regular bubble fomaﬁon;gime
Q, slpm) | Film No. | d,po. (mm) N V, (mm?% d, (mm)
0.286 1 2 5 5.644 2.209
0.286 2 2 4 6.932 2.366
0.286 3 2 5 6.405 2.304
0.715 4 2 16 7.861 2.467
0.715 5 2 14 8.493 2.531
0.715 6 2 16 7.100 2.385
1.502 7 2 23 10.711 2.735
1.502 8 2 24 10.518 2.718
1.502 S 2 23 11.778 2.823
| 1.788 10 2 26 15.983 3.125
e 1.788 11 2 25 12.236 2.859
o 1.788 12 2 26 13.550 2.958
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2.860 13 2 32 15.649 3.103
2.860 14 2 33 13.619 2.963
2.860 15 2 32 15.745 3.110
4.004 16 2 39 19.704 3.351
4.004 17 2 36 21.844 3.468
4.004 18 2 37 20.770 3.410
4.576 19 2 41 19.131 3.318
4.576 20 2 41 17.375 3.213
4.576 21 2 39 18.695 3.293
5.720 22 2 45 24.073 3.582
5.720 23 2 42 26.210 3.685
5.720 24 2 44 23.842 3.571
7.436 25 2 47 22.312 3.493
7.436 26 2 47 26.176 3.684
7.436 27 2 44

Coalescence bubble formation regime
K, value
8.437 1-28 10 0.696 46.984 4.477
8.437 1-29 10 0.783 57.115 4.778
8.437 1-30 10 0.666 43.648 4.368
9.724 1-31 10 0.631 52.924 4.658
9.724 1-32 10 0.795 77.758 5.296
9.724 133 10 0.823 82.532 5.402
11.297 1:34 10 0.703 85.497 5.466
11.297 1-35 10 0.634 71.980 5.161
11.297 1-36 10 0.643 73.845 5.205
13.299 - 1,37 | 10 0.581 86.219 5.481
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13.209 21 10 0.684 113.266 6.003
13.269 2.2 10 0.623 96.996 5.701
15.158 23 10 0.866 218,128 7.469
15.158 2-4 10 0.677 144,632 6.513
15.158 2.5 10

Gas globe regime
e
52.767 220 6
52.767 2.21 6
64.350 222 5
| 64350 2.23 6 -
Table A-3 Experimental Results for No.3 Experiment
- Regular bubble formation—r::gime
0, (slpm) | Film No. { d,,. (mm) N V, (mm?) d (mm)
0.015 4 2 3 1.019 1.249

| o0.015 5 2 3 0.921 1.207

| o100 6 2 16 1.124 1.290

“ 0.100 7 2 17 0.888 1.193
0.100 8 2 15 0.936 1.214

| 0.200 1 2 2 0.928 1.210

« 0.200 2 2 25 0.993 1.238
0.200 3 2 23 0.982 1.233

| 0350 9 2 40 1.473 1412

ﬂ 0.350 10 2 39 1.502 1.421
0.350 11 2 37 1.424 1.396

| o.600 12 2 43 2.296 1.637

| o.600 13 2 47 2.581 1.702
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0.600 14 2 45 2.508 1.686

1.000 15 2 52 2.507 1.686

1.000 16 2 53 2.737 1.735

1.000 17 2 52 3.075 1.804

1.500 18 2 65 2.649 1.717

1.560 19 2 64 3.856 1.946

1.500 20 2 70 3.585 1.899

2.200 21 2 79 3.407 1.867

2.200 22 2 70 4.445 2.040

2.200 23 2 74 3.982 1.967
| 2.900 24 2 80 4.960 2.116
| 2.900 25 2 36 4547 2,055
I}‘ 2.900 26 2 85 3.871 1.948

3.200 27 2 90 4.775 2.089
|| 3.200 28 2 92 3.754 1.928
| Coalescence bubble formation regime

K, value

4.150 30 -3 0.645 10.009 2.674

4.150 31 3 0.574 8.226 2.505

5.000 32 3 0.523 10.246 2.695
‘r 5.000 33 3 0.562 11.536 2.803
|| 6.650 34 3 0.586 21.885 3.470
| 6650 35 3 0473 15312 3.081

Table A-4 Experimental Results for No.4 Experiment
Regular bubble formation regime
0, (slpm) | Film No. | d,.,. (mm) N V, (mm?) d, (mm)

[I 0.014 5 2 3 1.674 1.473
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0.072 3 > 10 1.506 1.422
0.072 4 2 13 1.352 1372
0.429 6 2 29 1.456 1.406
0.429 7 2 31 1.401 1.388
0.429 8 2 29 1.326 1.363
0.787 9 2 42 2.641 1.715
0.787 10 2 a1 2.251 1.626
0.787 11 2 41 2.124 1.595
1.073 12 2 46 2.422 1.666
1.073 13 2 47 2,748 1.738
1.073 14 2 46 2.493 1.682
1.573 15 2 52 3.602 1.902
1573 | 16 2 52 3.655 1.911

| 157 17 2 54 3.253 1.838

| 2.145 19 2 59 5.021 2.125
2.145 20 2 57 4.917 2.110
2.145 21 2 56 4.652 2.071
3.003 2 2 64 6.939 2.366

|f 3.003 23 2 63 5.910 2.243

w 3.003 24 2 82 5.759 2224 |
3.575 25 2 66 7.380 2416 |
3.575 26 2 64 7.496 2.428

‘t 3.575 27 2 64 7.009 2.374
4.290 25 2 71 9.453 2.623
4.290 29 2 69 8.203 2.502
4.290 30 2 70 8.240 2.506 “

F

Coalescence bubble formation regime

|
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K,
5.577 32 3 0.587 15.451 3.090
5.577 33 3 0.527 12.903 2.910
5.577 34 3 0.535 13.216 2.933
6.435 35 3 0.546 18.212 3.264
6.435 36 3 | osm 15.805 3.114
Table A-5 Experimental Results for No.5 Experirhent
Regular bubble formation regime l
Q, (slpm) | Film No. | do. (Mmm) N V, (mm?) d, (mm)
0.020 "1 2 12 0.666 1.083
0.020 "2 2 11 0.674 1.088
0.020 '3 2 11 0.711 1.107
0.080 1-7 2 28 0.549 1.016
0.080 1-8 2 27 0.612 1.053
0.080 1-9 2 25 0.612 1.053
0.150 1-10 2 38 0.848 1.174
0.150 1-11 2 39 0.792 1.148
i 0.150 1-12 2 38 0.880 1.189
0.250 1-4 2 46 0.922 1.208
0.250 1-5 2 44 1.021 1.249
0.250 1-6 2 45 0.911 | 1.203
0.400 1-1 2 59 1.384 —i 1.383
0.400 1-2 2 60 1.273 * 1.345
0.400 1-3 2 63 1.283 1.348
0.500 1-16 2 60 1.340 - 1.368
0.500 1-17 2 64 1.325 1.363
0.500 1-18 2 58 1.355 1.373
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0.600 1-13 2 71 1.555 1.437
0.600 1-14 2 71 1.576 1.444
0.600 1-15 2 64 1.559 1.439
0.700 1-19 2 73 1.708 1.483
0.700 1-20 2 73 1.718 1.486
0.700 1-21 2 77 1.855 1.524
0.800 1-22 2 81 1.984 1.559
0.800 1-23 2 20 1.837 1.520
0.800 1-24 2 9 1.877 1.531
0.900 1-25 2 85 1757 1.497
0.900 1-26 2 85 1.719 1.486
0.900 1-27 2 77 1.831 1.518
1.100 1-28 2 93 1.915 1.541
1.100 1-29 2 87 1.696 1.480
1.100 1-30 2 38 1.631 1.460
1.400 1-31 2 98 2.526 1.690
1.400 1-32 2 99 2.672 1.722

Coalescence bubble formation regime
K, :
1.800 1-33 6 0.834 2.890 1.767
1.800 1-34 6 0.856 3.016 1.793
1.800 1-35 6 0.890 3.219 - 1.832
2.050 1-36 6 0.955 4692 . | 2077
2.050 1-37 6 0.858 3.929 1.958

| 2.600 2-1 6 0.810 5.743 2.222

| 2.600 2.2 6 0.745 4.993 2.121

| 2.600 23 6 0.815 5.799 2.229
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3.000 2-4 6 0.714 6.191 2.278
3.000 2-5 6 0.685 5.785 2.227
3.000 2-6 6 0.691 5.858 2.237
3.800 2-7 6 0.787 11.695 2.816
3.800 2-8 6 0.640 8.283 2.510
3.800 2-9 6 0.704 9.703 2.646
4.300 2-10 6 0.740 13.491 2.954
4.300 2-11 6 0.619 10.016 2.674
4.300 2-12 6 0.755 13.958 2.987
I’ 5.400 2-13 6 0.729 20.783 3.411
" 5.400 2-14 6 0.613 15.573 3.098
Gas globe regime
Noote
14.000 2-25 8
14.000 2-26 8
|| 14.000 2-27 8
18.000 2-28 9
18.000 2-29 10
18.000 2-30 9
22.800 2-31 7
22.800 2-32 9
22.800 2-33 10
32.400 2-34 8
Table A-6 Experimental Results for No.6 Experiment
Regular bubble formation regime
Q. (slpm) | Film No. | d,.,. (mm) N V, (mm’®) d, (mm)
0.650 1 2 56 1.581 1.445




APPENDIX II EXPERIMENTAL RESULTS FOR GAS INJECTION 162

0.650 > 2 56 1.361 1.375
0.650 3 > 59 1.358 1.374
0.020 13 2 6 0.388 0.905
0.020 14 2 6 0.406 0.919
0.020 15 2 0.406 0.919
0.080 10 2 18 0.339 0.865
0.080 11 2 18 0.368 0.889
0.080 12 2 18 0.396 0.911

[ 0.240 7 2 40 0.488 0.977

| 0240 3 2 39 0.675 1.088

| 0240 9 2 40 0.638 1.068

I 0380 4 2 50 1121 1.289

| o380 5 2 49 0.934 1.213

| o380 6 2 51 0.759 1.132

| oso0 | 16 2 65 1.450 1.404

" 0.900 17 2 63 1.487 1.416

| 0.900 18 2 62 1.726 1.488

I 1.200 19 2 80 1.971 1,556

| 1.200 20 2 78 1.960 1.553

| 1200 21 2 82 1.786 1.505

1600 2 2 9] 2.270 1.631

| 1.600 23 2 97 2.526 1.690

| 1600 2 2 % 2.175 1.608

" Coalescence bubble formation regime

‘} :

1 2500 28 6 0.721 4373 2.029

| 2.500 29 6 0.780 4.979 2.119
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3.000 30 6 0.670 5.569 2.199
3.000 31 6 0.643 5.196 2.149
3.500 32 6 0.746 9.059 2.586
4.000 33 6 0.596 8.138 2.496
4,800 34 6 0.614 12.315 2.865

Gas globe regime
Npnie
28.600 2-15 7
28.600 2-14 5
24.600 2-13 6
__2_&600 ‘ 2-12 6
Table A-7 Experimental Results for No.7 Experiment _
- Regular bubble formation regime ]
Q, (slpm) | Film No. | d... (slpm) N N,... V, (mm®) | d, (mm)
0.046 25 2 28 3 0.096 0.568
0.046 26 2 26 3
0.046 27 2 27 3

| 0.090 22 2 - 35 5 0.158 0.671

| o.00 2 2 38 5

| o0.000 24 2 35 5
0.130 16 2 53 5 0.164 0.679
0.130 17 2 53 5
0.130 18 2 54 5
0.175 19 2 57 5
0.175 20 2 56 5
0.175 21 2 58 5
0.230 13 2 78 20 0.285 0.817
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0.230 14 2 67 10 0.291 0.823
0.230 15 2 70 10
0.350 28 2 81 10 0.468 0.964
0.350 29 2 81 10
0.350 30 2 79 10
0.500 31 2 86 10 0.495 0.982
0.500 32 2 85 10
0.500 33 2 85 10
0.800 34 2 109 15 0.748 1.126
0.800 35 2 114 15

- 0.800 36 2 101 15
0.650 2 96 10
0.650 2 2 101 10
0.650 2 94 10
0.700 37 2 98 10
1.000 4 2 117 10 0.728 1.116
1.000 5 2 114 10
1.000 6 2 114 10

Coalescence bubble formaticn regime
K,

" 1.500 10 6 0.705 1.516_ 1.425
1.500 11 6 0.816 1.934 1.546
1.950 7 6 0.601 1,966 1.554
1.950 6 0.620 2.068 1.581
2.600 13 6 0.645 3.922 1.957
2.600 14 6 0.520 2.743 1.737

Gas globe formation regime
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Nooce
10.500 1-17 8
10.500 1-18 8
15.000 1-19 9
15.000 1-20 g
15.000 1-21 8 s _
Table A-8 Experimental Results for No.8 Experiment _
Regular bubble t-';;mation regime ]
Q, (sipm) | Film No. | d,,.. (mm) N N_.. V, (mm®) | d, (mm)
0.070 25 2 37 3 0.143 0.649
0.070 26 2 38 3
0.070 27 2 36 3
0.160 28 2 43 2 0.156 0.668
0.160 29 2 4 2
0.160 30 2 46 2
0.230 31 2 56 5 0.209 0.736
0.230 32 2 59 5
0.230 33 2 55 5
0.310 22 2 69 5 0.267 0.799
0.310 23 2 63 5
0.310 24 2 70 5
0.400 34 2 72 10 0.265 0.797
0.400 35 2 76 10
0.400 36 2 82 10
0.480 37 2 80 10 0330 | 0.857
" 0.480 1 2 84 10
| o450 2 2 s« | 10
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0.590 3 2 96 10 0.402 0.916
0.590 4 2 100 10
0.590 5 2 93 10
0.700 6 2 99 10 0.467 0.963
0.700 7 2 118 10
0.700 8 2 110 10
0.820 9 2 114 10 0.506 0.989
0.820 10 2 112 10
0.820 11 2 114 10
0.880 12 2 109 10
0.880 13 2 123 10
0.880 14 2 110 10
1.001 21 2 122 10

{ 1.001 22 2 128 10

| 1001 23 2 126 | 10

| 1144 24 2 131 10
1.144 25 2 128 10
1.144 26 2 125 10
1.287 27 2 132 10
1.287 - 28 2 128 10

1.287 29 2 136 10

Coalescence bubble formation regime
K,
1.573 18 6 0.699 1.642 1.464
2.002 30 6 0.587 1.988 1.560
2.002 31 6 0.593 7 2.026 1.570
2.717 33 6 0.476 2.585 1.703
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Table A-9 Experimental Results for No.9 Experiment
Regular bubble formation regime
Q, (slpm) | Film No. | d,.. (mm) N N V, (mmY) | d, (mm)

0.858 23 5 7 2 44.795 1.406
0.858 24 5 7 2 42.290 4.323
0.858 25 5 7 2 39411 4.222
1.430 7(2) 5 10 2 46.713 4.468
1.430 8(2) 5 10 2 47.546 4.495
1.430 9(2) 5 10 2 54.176 4.695
2.431 1(2) 5 12 3 55.632 4.736
2.431 2(2) S i3 3 80.024 5.347
2.431 3(2) 5 14 3 62.963 4.936
3.000 10(2) 5 13 3 71.199 5.142
3.600 11(2) S 13 3 50.153 4.575
3.000 12(2)~ 5 14 3 52.596 4.649
3.861 35 5 16 3 58.735 4.823

] 3.861 36 5 16 3 74.456 5.220
3.861 37 5 16 3 75.370 5.241
5.720 26 5 20 3 76.076 5.257
5.720 27 5 21 3 83.730 5.428
5.720 28 5 18 3 79.119 5.326
6.864 32 5 19 3 120.985 6.136
6.864 33 5 20 3 93.813 5.638
6.864 34 5 20 3
8.720 16(2) S 21 5
8.720 17(2) 5 25 3
8.720 18(2) 5 24 5

Coalescence bubble formation regime
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K,
14.300 24(2) 15 1.198 333.174 8.601
14.300 25(2) 15 1.331 397.186 9.120
Table A-10 Experimental Results for No.10 Expeniment
Regular bubble formation regime
Q, (slpm) | Film No. | d,.. (mm) N N0 V, (mm®) | d, (mm)
1.050 18 5 16 2 18.816 3.300
1.050 19 5 16 2 14.630 3.034
2.400 13 5 25 3 33.719 4.008
2.400 14 5 25 3 28.998 3.812
2.400 15 b 25 3
3.150 10 5 30 3
3.150 11 5 29 3 34.685 4.046
3.150 12 5 31 3 20.728 3.408
4.000 7 5 33 3
4.000 8 5 28 3 56.602 4.764
4.000 9 5 31 3 51.903 4.628
[ 4.500 16 5 32 3
5.000 4 5 33 3 40.829 4.272
5.000 5 5 34 3
5.000 6 5 34 3 34.026 4.020
6.000 1 5 34 3
I 6.000 2 5 33 3
6.000 3 5 34 3 "
Gas globe formation regime I
Noote
24 28 7
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25 28 6
26 25 &
27 20 7
Table A-11 Experimental Results for No.11 Experiment
Regular bubble formation regime
O, (slpm) | Film No. | d. {(mm) N N... V, (mm’) d,
(mm)
2.860 15 5 21 3 42.651 4.335
2.860 17 5 20 3 37.362 4.148
2.860 18 5 23 3
2.860 19 5 24 3
4.720 31 5 26 3 51.794 4.625
4.720 32 5 24 3 51.261 4.609
4.720 33 5 23 3 78.410 5.310
6.150 37 5 29 5 83.126 5.415
6.150 1 5 30 5 56.514 4.761
6.150 2 5 26 5 91.191 5.585
7.600 3 5 33 5 87.745 5.513
7.600 4 5 31 5
7.600 b 5 29 2
" 9.152 34 5 32 5
9.152 35 5 36 4
9.152 36 5 36 5
Coalescence bubble formation regime
K,
" 14.157 g 14 1.203 329.140 8.566
| 14157 10 14 1.006 204263 | 7.756
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19.591 11 14 0.943 419.689 5.289
19.591 12 14 1.216 641.652 | 10.701
19.591 | 13 14 1.299 715.844 | 11.099

Table A-12 Experimental Results for No.12 Experiment
Regular bubble formation regime
Q, (sipm) | Film No. | d,.. (mm) N N.. | V,(mm¥ | d,(mm)

0.400 4 5 18 3 6.680 2.337
1.100 1 5 28 5 9.198 2.600
1.100 2 5 27 5 8.937 2.575
1.100 3 5 26 5 8.231 2.505
1.550 35 5 32 5 9.978 2.671
1.550 36 5 37 5 9.779 2.653
1.550 37 5 34 5

2.100 32 5 40 5 12.301 2.864
2.100 33 5 41 4 11.519 2.802
2.100 34 5 38 5

2.700 29 5 41 5

2.700 30 5 40 5 10.661 2.731
2.700 31 5 42 5 12.569 2.885
3.410 26 5 43 5 15.364 3.084

| _3.410 27 5 42 5 13.379 2.945
3.410 28 5 43 5
4.200 23 5 45 5 15.674 3.105
4.200 24 5 46 5
4.200 25 5 46 5 21.314 3.440
5.000 20 5 48 5 16.370 3.150
5.000 21 5 45 5
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5.000 22 5 45 5 23.603 3.559 !
Coalescence bubble formation regime
K,
7.000 6 1 1.121 71.534 5.150
7.000 7 1 1.177 77.567 5.291
7.000 8 1 0.937 53.037 4.662
L Table A-13 Experimental Results for No.13 Experiment
D -Regular bubgle formation regime
Q. (slpm) { Film No. | d,p (Mmm) N N.. | V,(mm®) | d, (mm)
2.000 21 5 28 2 12.970 2.915
2.000 22 5 25 2 14.691 3.039
2.000 23 5 26 2
2.860 15 5 32 4 19.738 3.353
2.860 16 5 32 4 19.315 3.329
| 2.860 17 5 32 5
“ 3.860 18 5 34 )
|L 3.860 19 5 36 5 19.460 3.337
“ 3.860 20 5 34 5 18.968 3.309
| 5.150 12 5 39 5 30.795 3.389
5.150 13.: 5 41 5 24.705 3.614
5.150 14 5 37 5
Coalescence bubble formation regime
K,
6.292 26 10 1.142 59.588 4.846
| 6.292 27 10 1.469 90.634 | 5.573
6.292 28 10 1.207 65.351 4.997
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Table A-14 Experimental Results for No.I4 Experiment
Regular bubble formation regime
Q, (sipm) | Film No. | d,p. (mm) N N .o V, (mm® | 4, (mm)
0.300 16 5 7 1 6.838 2.355
0.300 17 5 9 2 7.348 2.412
0.300 18 5 9 2 5.855 2.236
0.600 13 5 12 1 7.423 2.420
0.600 14 5 12 1
0.600 15 S 13 1
2.400 10 5 26 3 13.027 2.919
2.400 11 5 28 3 9.953 2.669
2.400 12 5 26 3
| 3.000 7 5 36 5 13.583 2.960
3.000 8 5 35 3
3.000 9 5 38 S
3.550 4 5 37 5
3.550 5 5 36 5
“ 3.550 6 5 38 S 16.432 3.154
| a.400 1 5 38 5 25.053 | 3.630
| 4400 2 5 40 5 17516 | 3222
4.400 3 5 42 h)
5.000 19 5 45 5
5.000 20 5 43 5 16.944 3.187
5.000 21 5 45 5
Coalescence bubble formation regime
K,
| 7.000 22 10 0.869 46.746 | 4.469
| 7.000 23 10 0.974 s6.624 | 4.764
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Gas globe formation regime
N
25.000 24 8
25.000 25 8
50.000 26 6
50.000 27 7
Table A-15 Experimental Results for No.15 Experiment
- Regular bubble formation regime
Q, (slpm) | Film No. | d,. (mm) N Ny | ¥, (mm®) | d, (mm)
0.286 12 5 4 2 14.039 2.993
| 0.286 13 5 4 2
0.286 14 5 4 2
0.720 9 ) 10 1 16.792 3.177
0.720 10 5 12 1
0.720 11 5 12 2 15.436 3.089
" 1.430 15 5 15 3 24.062 | 3.582
1.430 16 5 17 3 21.785 3.465
1.430 17 5 16 2
2.045 5 19 1 20.600 3.401
it 2.045 7 5 20 |
2.045 5 19 2 22.366 3.496
3.003 18 5 21 2 35.655 4.084
3.003 19 5 172 2 35.698 4.085
3.003 20 5 21 2
‘} 3.575 5 23 2 41.379 | 4.291
| 3575 4 5 2 2 | 34800 | 4.054
| 3.57 5 2 2
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4.433 21 5 24 3
4.433 22 5 25 2
4.433 23 5 26 2
5.291 34(D) 5 26 4 41.038 4.280
5.291 35(1) 5 27 4 56.510 4.761
5.291 36(1) 5 29 4
5.863 29 5 32 3
5.863 30 5 30 3
5.863 31 5 31 3
6.435 37(1) 5 32 5 43.724 4.371
6.435 1 5 30 5
6.435 2 5 31 5 38.304 4.182
8.580 32 5 36 4 52.970 4.660
8.580 33 5 34 4
8.580 34 5°7 ] 36 4 45.928 | 4.443
Coalescence bubble formation regime
K,
11.154 21 10 0.770 97.169 5.704
11.154 33(D 10 0.880 121.298 6.142
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APPENDIX III

TK-SOLVER PROGRAM FOR BUBBLE
FORMATION THROUGH A NARROW SLOT

TK-SOLVER is a commercial software for solving various mathematical problems,

such as non-linear equations, optimization and ordinary differential equations. All of the
calculations made in the present thesis were done by TK-SOLVER. In TK-SOLVER there
are eleven sheets; each sheet has a specific role and is furnished with tools that help
accomplish the task. Some of the sheets are explained here:

Rule Sheet

The rule sheet contains the equations or rules for a model. Each row contains one
rule and its status.

Variable Sheet

Each variable has its name and major attributes defined on one row of the variable
sheet.

Unit Sheet
The unit sheet shows the relationships between different units.

Table Sheet -

Table sheet shows the relationship between values of corresponding elements in
different lists by displaying the values in columns and rows.

As an simple example, detailed TK-SOLVER programming of bubble formation

model, Equations (205) and (207), is given in this appendix.

N

Y

-
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RULE SHEET For Academic Use Only

Rule

dn=3"0.5/2"wW

Vib-0.0474*Q*2/g*Vib*(-2/3} =2*W*SIGMA/RHOL/g

d=2*(3*Vib/4/PilH™{1/3)

11/4*dn*Q"2=TERM1 + TERM2

TERM1 =g* (VI 2-Vib"2)-1.705*Q"2*{VF*{1/3)-ViDb~(1/31)-8*W*SIGMA/RHOL* (V{-Vib}
TERM2 = (8*W*SIGMA/RHOL* Vb + 0.568*Q"2*Vib*(1/3)-2*g* Vib 2} *In{VE/Vib)

df =2*({3*V{/4/Pil))*(1/3)

[ B NN )

VARIABLE SHEET For Academic Use Only
St Input: Name Qutput: Unit: Comment:
L Vb 1.8376302 mm”*3 Bubble volume during first stage
L .001 Q L/min Flow rate
- 980 o cm/sec”2 Accelaration due to gravity
125 w micromete Spacing of the slot
72 SIGMA dyn/cm Surface tension of liquid
1 RHOL g/cm™3 Density of liquid
L d 1.5196836 mm Bubble diameter of first stage
L A" 2.1340683 mm*3 Final bubble volume
L df 1.5973616 mm Final bubble diameter
dn 108.25318 micromete Neck distance before bubble detac.
L TERM1 -.0009835 1st part of bubble formation Equ.
L TERM2 .00099177 2nd part of bubble formation Equ.
UNIT SHEET For Academic Use Only
From To Muttiply By— Add Offset: Comment
cm mm 10
cm*3 mm~3 1000
L/min cm*3/sec 16.6666666667
cm micromete 10000
TABLE SHEET For Academic Use Only
Name Title
bubble
TABLE: bubble For Academic Use Only
Screen or Printer: Screen
Title:
Vertical or Horizontal: Vertical

Row Separator:

Column Separator:

First Element: 1
Last Element:

List————— Numeric Format—— Width—— Heading

Q 10
Vf 10
df 7 10
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TABLE: bubble

For Academic Use Only

Element Q Vf df

1 4] 1.98440342

2 .004 2.63971762 1.71469264

3 .008 3.20883212 1.82999312

4 012 3.75429802 1.92830935

) .016 4.29833318 2.0172845

6 .02 4.84770929 2.09930669

7 .024 5.40458054 2.17731564

8 .028 5.96942576 2.25066735

9 032 6.54199232 2.32044067

10 .036 7.12182187 2.38706454

11 .04 7.70838152 2.45087706

12 .044 8.30114988 2.51215565

13 .048 8.89964653 2.571134

14 .052 9.50344057 2.62801242

15 .056 10.1121501 2.68296472

16 .06 10.7254383 2.73614311

17 .064 11.3430077 2.78768181

18 .068 11.9645958 2.83769993

19 072 12.5899694 2.88630365

20 076 13.2189212 2.93358807

21 .08 13.8512654 2.97963872

22 .084 14.4868355 3.02453282

23 .088 15.125481 3.06834G3

24 092 15.7670657 31111247

25 096 16.4114658 3.15294394
GLOBAL SHEET—— — For Academic Use Only

Display Intermediate Values: Yes

Stop on List Error: No

Use Automatic iteration: Yes

Comparison Tolerance: .000001

Typical Value: 1

Maximum lteration Count: 10

Global Numeric Format:

Append Variable Names: Yes N

Use Page Breaks: No

Number Pages: Yes

Form Length: 66

Printed Page Length: 60

Printed Page Width: .80

Left Margin: 0

Printer Setup String:
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