il e

Acquisitions and

Biblicthéque nationale
du Cznada

Direction des acquisitions et

B.bliographic Services Branch  des services bibliographiques

335 Wellnglon Street 395, rue Wellington

Onawa, Ontano QOnawa {Ontana)

K1A I K1A DG
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

- Canada

Your lie  vore ripeevce

Oun e NOW e t#10renCe

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a confére le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées & Vaide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Coalitional Stability
in Strategic Situations

Licun XUE

Department of Economics

McGill University, Montreal

May 1996

A THESIS SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF
THE DEGREE OF

DocToR oF PHILOSOPHY

(©Licun Xue 1996



Bl e

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

335 Wellington Street
Ostawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Crtawa (Ontano)

Your ke VolTg ritrence

Oue bie Nowre nviivence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la theése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12513-0

Canada



Contents

Abstract

Résumé

Acknowledgements

. Introduction

Coalitional Stability under Perfect Foresight

21
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5

Introduction

Foresight and Stability in the Literature
Stability under Perfect Foresight
Formalization of Perfect Foresight

The Significance of a Stable SB
Existence of a Stable SB

Re-examination of the Related Literature
Concluding Remarks

Appendix 2.1 Proofs

Appendix 2.2 A Simple Cooperative Game

Appendix 2.3 Nonemptiness of the LCS

Appendix 2.4 Foresight, Feasible Outcomes, and Nonempty-

3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.54

valuedness of a Stable SB

. Negotiation-Proof Nash Equilibrium

Introduction

Negotiation-Proof Nash Equilibrium
Weakly Negotiation-Proof Nash Equilibrium
Extensive Form Games

Discussion

CPNE and the Nestedness Restriction
Agreements Among Farsighted Players
Correlated Strategies

Concluding Remarks

Appendix

i
iv

v

11
11
14
19

19
29

26
27
33
36
41
41

47
47
33
60
62

64
66
67
67
68



4. Sclf~enforcing Agrcements in Infinitely Repeated Games 70

4.1  Introduction

4.2 Self-enforcing Agreements

4.3  Relared Literature

4.3.1 Renegotiation Proofness

4.3.2 Perfectly Coalition-Proof Nash Equilibrinm and Strong
Perfect Equilibrium

4.3.3 The 3-core

44 Conclusion

Appendix

Bibliography

70
3
Y
I

83
34
85

36
89



i

Abstract

In many (social, econoraic, and political) strategic situations, conflict and coop-
eration coexist and group (or coalitional) behavior is as important as individual
behavior. This dissertation studies several issues in such situations.

Chapter 1 provides an overview of the theoretical background and motivates
the analysis undertaken.

Chapter 2 analyzes strategic situations with diverse coalitional interactions to
ascertain the “stable™ outcomes that will not be replaced by any rational (hence
farsighted) coalition of individuals, and the coalitions that are likely to form. The
analysis takes into full account the perfect foresight of rational individuals, which
has been overlooked in the literature.

Chapter 3 defines “negotiation-proof Nash equilibrium”, a notion that applies
to environments where players can negotiate openly and directly prior to the play
of a noncooperative game. The merit of the notion of negotiation-proof Nash
equilibrium is twofold: (1) It resolves the nestedness and myopia embedded in
the notion of coalition-proof Nash eguilibrium. (2) The negotiation process, which
is formalized by a “graph”, serves as a natural alternative to the approach that
models pre-play communication by an extensive form game.

Chapter 4 examines the notion of “renegotiation-proofness” in infinitely re-
peated games. It is shown that imposing renegotiation in all contingencies creates
both conceptual and technical difficulties. A notion of self-enforcing agreements
is offered: an agreement is self-enforcing if it is immune to any deviation by any

coalition which cannot (confidently) count on renegotiation.
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Résumeé

Dans beaucoup des situations stratégiques (sociales. économiques. on politiques).
le conflit et la coopération coexistent, et le comportement du groupe (on coali-
tional) est aussi important que le comportement individuel. Cette theése etudie
plusiers situations de cette nature.

Chapitre 1 fournit un survol du antécédent théorique, et motiver de 1" analyse
entreprise.

Chapitre 2 analyse les situations stratégiques avec intéractions diverse coali-
tionalles pour découvrir les résulitats stables qui ne sont pas replacés par auncune
coalition des individus rationnels (et par conséquent clairvoyant), et les coalitions
qui sont probable de se former. L’ analyse tient compte de la prévoyance parfaite
des individus rationnels, qui n’ est pas remarqueée par la littérature,

Chapitre 3 examine les accords autoforcés que les joueurs peuvent atteindre
dans une négociation publique avant de jouer des jeux non-cooperatifs. Une notion
des accords autoforcés est offerte, qui fait mieux que les notions précédentes, en
demandant que les accords soient autoforcés contre toute déviation, et en captant
la prévoyance parfaite des individus rationnels.

Chapitre 4 examine la notion de I’ épreuve de renégociation dans les jenx a
répétition infinie. On a montre que 'imposition de la renégociation dans toutes
éventualités crée des difficultés conceptuelles et techniques. Une notion des ac-
cords autoforcés est offrie: Un accord est autoforcé si il n'est immunisé contre
chague déviation par aucune coalition, qui ne peut pas (avec confiance) compter

sur renégociations.
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Chapter 1
Introduction

This dissertation analyzes several issues in strategic situations where group be-
havior is as important as individual behavior and there are interactions among,
individnals as well as among groups. In particular, it investigates the outcomes
that are likely to prevail in situations with diverse interactions among individuals
and groups of perfect foresight (Chapter 2): it also addresses the issues of nego-
tiation (Chapter 3} and renegotiation (Chapter 4) in strategic sitnations. The
interactive nature of the problems under investigation implies that individuals
and groups, who are assumed to be rational, behave stralcgically in that they
have to consider their knowledge and expectations of the behavior of the others.
While the problems under investigation are of obvious empirical importance, their
theoretical importance cannot be fully exposed without discussing game lieory
icself.

Game theory studies conflict and cooperation in situations where decision mak-
ers interact and their decisions affect each other’s welfare. The publication of
“Theory of Games and Economic Behavior” by von Neumann and Morgenstern
in 1944 marked the foundation of game theory, and, since then, game theory has
advanced considerably. The significant impact of game theory on social sciences
especially on economics is evidenced by the fact that 1994 Nobel prize in econom-
ics was awarded to three game theorists. Game theory is now part of almost every
economist’s “tool-kit”. Despite the progress that has been made, game theory is
still in the early stage of its development.

Following von Neumann and Morgenstern (1944), game theory distinguishes
between two approaches: the “coonerative approach” and the “noncooperative
approach”. The cooperative approach was the main subject of investigation in

1950s and 1960s. According to such an approach, a social environment is described
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Ly a couperative game that associates each group or coalition of players with a set
of payoffs it can achieve for its members independent of the rest of the players. and
the players are assumed to be able to communicate, to coordinate their actions.
to transmit threats, and to reach binding agreements. That is, players are able
to negotiate outside the formal structure of the game rules. Different negotiation
processes lead to various different solution concepts: the core, the stable set, the
bargaining set, to name a few. The core, for example, is the set of outcomes (or
distributions of welfare) that are immune to any conceivable coalitional deviation.
The description of a social environment as a cooperative game, however, does
not capture the externalities of the actions of one coalition upon the remaining
players. This; together with the involvement of binding agreements, greatly limit

the applicability of the cooperative approach.

During the last two decades, the emphasis of game theory has shifted to the
noncooperative approach, which concentrates on the individual and on what strat-
egy a selfish individual should/would use. The noncooperative approach repre-
sents a social environment as either a normal form game or an extensive form
game. A normal form game is static: players choose strategies independently
and simultaneously and payoffs are derived once each player submits his choice
of a strategy. On the other hand, an extensive form is dynamic: players act se-
quentially in a specific order. The ruling solution concepts for noncooperative
games are Nash equilibrium and its refinements, most of which make no attempt

to account for coalition formation or any mode of collusion among players.

The assumption that players reveal their strategies simultaneously and cannot
communicate their choice is a strong assumption. Such an assumption is only
plausible whén a game is a two-person strictly competitive game, where what is
good for one player is bad for the other player, hence communication serves no
purpose. In most games, as Ordeshook (1986, p. 302) wrote, “it is probably rare,

though, that communication among people, however imperfect, remains impossi-
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ble”. In fact, individuals are often compelled to communicate in order to achieve
outcomes that are mutually beneficial. The cooperative approach models the sit-
uations where communication not only is possible but also stands as a central
feature of human interactions; this approach abstracts away the details of the
procedure of communication and cooperation, and concentrates, instead. on the
possibility of agreements. However, the cooperative approach may also abstract
away the externalities inherent to noncooperative games.

The noncooperative approach, following Nash (1931), maintains that noncoop-
erative games are more fundamental than cooperative games and that cooperative
games can and should be subsumed under the noncooperative approach by mak-
ing communication and bargaining formal moves in a noncooperative extensive
form game. The resulting game would have an enlarged domain of strategies, and
the payoff functions could be extended in the ratural way. Then one can analyze
the consequences of communication and cooperative behavior by applying Nash
equilibrium or its refinements to the “transformed game”. Such an approach is

complex and unnatural. McKinsey (1952, p. 359) pointed out,

It is extremely difficult in practice to introduce into the cooperative games
the moves corresponding to negotiations in a way which will reflect all the
infinite variety permissible in the cooperative game, and to do this without

giving one player an artificial advantage (because of his having the first
chance to make an offer, let us say.

Moreover, modeling communication and bargaining as formal moves in an ex-
tensive form game not only is restrictive but also may bury some of the most
important aspects of communication. As Aumann (1987, p. 463) wrote,

... problems of negotiation are usually more amorphous; it is difficult
to pin down just what the procedures are. More fundamentally, there is a
feeling that procedures are not really that relevant; that it is the possibilities

for coalition forming, promising and threatening that are decisive, rather
than whose turn it is to speak.

The division between the cooperative and noncooperative approaci is unfortu-
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nate, since in most social environments, conflict and cooperation coexist. Selfish-
ness does not preclude individuals from cooperating or coordinating their actions
in a mutual beneficial fashion. Moreover, our society is organized in such a way
that many of our social, political, and economic activities can only be conducted
by groups of individuals. Given that most social environments involve interac-
tions among individuals as well as among groups or coalitions, game theory need
to recognize that both coalitional (or group) behavior and individual behavior are
equally important. Shubik (1984, p.7) wrote,
A theory of games is , among other things, a theory of organization. It
deals not so much with feasibility as with negotiation and enforceability -

with the power of individuals or groups to influence the distribution of goods
and welfare, whether by threats and collusion or by unilateral action.

Instead of modeling procedural details of communication, we can concentrate
on what communication can achieve. Communication admits coalition formation,
which enable players to coordinate their actions, through binding or nonbinding
agreements. This view can apply directly to noncooperative games. This ap-
proach is a hybrid of both the noncooperative and cooperative approaches, and it
can preserve the noncooperative ingredients as well as the externalities inherent
to noncooperative games. Such an approach, in my view, is not less fundamen-
tal than the noncooperative approach. If the noncooperative approach is mainly
motivated by the selfishness of the individuals, then it is not necessary adhere to
such an approach that makes no attempt to account for coalition formation or any
other mood of cooperation. After all, cooperation does not necessarily contradict
selfishress. Among the first to account for coalition formation in noncoopera-
tive games, the notion of “strong Nash equilibrium” (Aumann 1959) allows any
coalition to coordinate the choices of strategies of its members, and a Nash equi-
librium is strong if it is immune to any conceivable coalitional deviation. However,
this notion involves, at least ifnplicitly, binding agreements (emong the members
of deviating coalitions), since without binding agreements, a coalitional devia-
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tion may be subject to further deviations. Furthermore, if binding agreements
are available, then there is no need to restrict our attention to Nash equilibria.
Coalitions can and do form in the absence of binding agreements. The notion of
“coalition-proof Nash equilibrium”™ (Bernheim et al. 1987) attempts to capture
the notion of self-enforcing agreements for environment with unlimited, nonbind-
ing preplay communication. But as we shall discuss later in this chapter and more
formally in Chapter 3, this notion involves myopia and agreements that are not
fully self-enforcing.

Communication can also be introduced in an environment when a normal form
game is repeated finitely or infinitely many times. The notion of “renegotiation-
proofness™ (see Chapter 4) answers the following question: among the abun-
dance of subgame perfect equilibria, particularly in infinitely repeated games,
which equilibria are proof against renegotiation in every conlingency? Thus,
renegotiation-proofness entails that players have the opportunity to renegotiate
after every history of play, and this fact is common knowledge. Consequently, each
player, in contemplating a deviation, is confident that his deviation is followed
by a renegotiation; the grand coalition renegotiates regardless of whether the
renegotiated agreement will be honored. Therefore, given its demanding assump-
tion, renegotiation-proofness should not be the only way to introduce cooperative
behavior and select equilibria into repeated games.

Despite of the progress in the coalitional analysis, there are many questions that
remain to answered. As Roth (1988) pointed out, coalition formation “remains
one of the most difficult and important problems”. Not only cooperative behavior
in the current paradigm of noncooperative games need much further study, but
also it is necessary to end the division between the cooperative and noncooperative
approaches and seek a general framework.

The task of formalizing the communication process, especially the pro-

hibitions against communication among the players, is far from trivial. It
appears that to include it in a generalization of game theory will be an ma-
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jor theoretical step. Lacking such a generalization, several tacks have been

taken, each of which in unhappily special and arbitrary ( Luce and Raiffa

1957, p.p. 164-163).

Moreover, as discussed earlier, it is not natural to study coalition formation
within the framework of extensive form games where the order of moves is impor-
tant: extensive form games “depend very strongly on the precise form of proce-
dures, on the order of making offers and counter-offers, and so on” (Aumann 1987,
p.463). In general, a framework that deals explicitly with coalitional dynamics is
lacking.

It is a sad fact that we still lack a general theory of cooperative games in

extensive form. The standard solution theories tell us next to rothing about
coalitional dynamics ... (Shubik 1984, p. 68)

In fact, that a general and unified framework need to emerge was perceived by
von Neumann and Morgenstern when they formally founded game theory. von
Neumann and Morgenstern (1947, p. 608) raised objections to the two distinct
theories they were forced to employ, and suggested that when the theory is more
mature it may be unified.

“The Theory of Social Situations” (Greenberg 1990) offers an integrative ap-
proach to the study of strategic interactions. First, this approach unifies the
description of “noncooperative” and “cooperative” social environments, thereby
allowing for formulations of diverse interactions. Second, this approach represents
a social environment as a “situation” which forces the specification of all relevant
information, for example, the beliefs of the players, the institutional setting such
as the availability of binding agreements and social and legal restrictions on the
formation of certain coalitions, and the exact negotiation process (e.g., how player
make use of their opportunities). Third, the theory of social situations offers a
unified solution concept by insisting on the single stability criterion.

Such a stability criterion has an appealing interpretation in the context of social

norms and organizations [see von Neumann and Morgenstern (1947) and Green-
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berg (1990}]. The procedure of applying this approach is as follows. Starting with
a primitive description or the raw data of a social environment. the negotiation
process and all institutional and behavioral assumptions can be formalized as a

situation. Then the notion of stability is applied to derive the “solution”.

Primitive Description of a Social Environment

Negotiation Process —-l

Stability _.l
Solution

This approach provides a suitable framework for the study of conflict and co-
operation. This approach, together with the notion of von Neumann and Morgen-
stern abstract stable set, are the primary tools for the analysis in this dissertation.

The starting point of Chapter 2, “Coalitional Stability under Perfect Foresight”
is the observation that many social environments comprise botk “cooperative” and
“noncooperative” ingredients and the diversity of coalitional interactions cannot
be captured by either cooperative or noncooperative games. The primitive de-
scription of the social environment follows that of Chwe (1994), which is similar
to Rosenthal’s (1972) game in effectiveness form. The social environment spec-
ifies a set of alternatives (or status quo’s if temporarily under consideration or
outcomes if implemented) and a set of players who can rank (at least partially)
the alternatives. Furthermore, it specifies that if one alternative is the “status
quo”, which coalition is endowed with the power to make which alternatives the
new status quo’s. Note that in such an environment the actions of each coalition
may have externalities on the welfare of the remaining players. The question
is which outcomes will prevail and which coalitions are likely to form without
binding agreements in such a social environment if the actions are public, or al-
ternatively, what (possibly binding) agreements can be reached if the players can
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openly negotiate.

The noncooperative approach is not suitable here since it requires the specifica-
tion of strategies for each player. Treating the social environment as an “abstract
game”, the notions of “abstract core” and “von Neumann Morgenstern abstract
stable set” (the extensions of core and stable set to abstract games) can be ap-
plied. These notions, however, may embody myopia on the part of the players.
According to the definition of abstract core, a coalition deviates in spite of the
fact that further deviations may lead to outcomes that do not benefit its members
(this is also related to the issue of credibility of a deviation); and according to the
definition of abstract stable set, a coalition will not deviate if further deviations
may occur, even though these further deviations may ultimately lead to outcomes
that benefit its members. In the context of a cooperative game (which is special
case of the social environment under consideration), Harsanyi (1974) argued that
this lack of foresight is due to the fact that the “dominance relation” used in the
definition of stable set is a myopic one, and the problem of myopia can be solved
by replacing the direct dominance with an “indirect dominance” which allows the
players to look arbitrarily many steps ahead. Thus, following Harsanyi {(1974)
one need only to apply abstract stable set with indirect dominance to the social
environment under iﬁvestigation. As is shown in Chapter 2, however, this does
not solve the problem of myopia, because indirect dominance capture only partial
foresight. This also emerges in Chwe’s (1994) largest consistent set that is also
based on indirect dominance. Such a discovery is made possible by analyzing
the siluation that represents the negotiation process underlying the notions built
on indirect dominance. Such a discovery also motivated us to formalize perfect
foresight. The idea, roughly speaking, is to view the social environment as a
“graph” (which may not be acyclic). The formalization of perfect foresight as a
situation and the stability criterion allows us to derive the outcomes that will not

be replaced by farsighted players and the coalitions that are likely to form among
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farsighted players.

Chapter 3 returns to the issue of “cooperation in noncooperative games”. The
notion of “negotiation-proof IVash equilibrium” is defined to answer the following
question: “if players can engage in pre-play negctiation prior to the play of a non-
cooperative game, what self-enforcing agreements are negotiation-proof ?* The
pre-play negotiation is modeled from the viewpoint that communication admits
coalition formation, but each coalitional agreement is nonbinding. It is a priori
that every coalition can form to make joint objection to any strategy profile un-
der consideration. Rationality (and perfect foresight) of the self-interested players
dictates which coalitions might actually form in the open negotiation: rational
players form a coalition only if it is in the best interest of each member to join
this coalition. Thus, my approach to communication is cousistent with selfish-
ness of the players. This approach offers a natural alternative to the one that
models communication as an extensive form game [see, e.g., Farrell (1987, 1988),
Rabin (1994)]. Furthermore, the notion of “negotiation-proof Nash equilibrium”
resolves the nestedness restriction { after a coalition deviates, only its subsets can
further deviate ) and myopia embedded in the definition of coalition-proof Nash
equilibrium (Bernheim et al. 1987). A Nash equilibrium is negotiation-proof if
and only if no coalition can deviate in such a way that its deviation will ultimalely
lead to another negotiation-proof Nash equilibrium that benefits all its members.
The notion of negotiation-proof Nash equilibrium is also extended to extensive
form games ( including finitely repeated games), with emphasis on the difference

between negotiation-proofness and renegotiation-proofness.

Chapter 4 examines the issue of “renegotiation-proofness” in the context of
infinitely repeated games. In particular, it questions the study of cooperative be-
havior and equilibrium selection through renegotiation-proofness and argue that
imposing (or introducing, almost mechanically,} renegotiation in every contin-
gency is at least very demanding. This chapter defines the notion of “stable (self-
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enforcing) agreements” in infinitely repeated games where players can coordinate
their actions but cannot make binding contracts, thereby offering an alternative
to the study of cooperation through the notion of renegotiation-proofness. It dif-
fers from renegotiation-proofness in that it allows for 2ay coalition to deviate, and
moreover, 2 deviating coalition does not count on renegotiating with nonmembers.
In addition to its intuitive appeal, stable agreements can resolve the conflict be-
tween efficiency and renegotiation: the set of stable agreements is nonempty and
efficient (within the set of subgame perfect equilibrium outcomes) for a large class
of games iacluding all two-player games and all games for which every efficient
subgame perfect equilibrium path is stationary.

I hope to show, through this dissertation, that the study of cooperation, coali-

tions, and agreements not only is essentizl but also can be fruitful.
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Chapter 2
Coalitional Stability under Perfect Foresight

Consider a social environment with diverse coalitional interactions. What out-
comes are “stable” in that they will not be replaced by any coalition of rational
(hence farsighted) players? What coalitions are likely to form? This chapter ad-
dresses these iszues. The analysis undertaken focuses on the perfect foresight of
rational players that has been overlooked by the notions suggested in the litera-
ture for similar social environment. Perfect foresight is formalized by the means
of a “situation™ (Greenberg 1990) which specifies explicitly how farsighted play-
ers view and use their available alternatives, and the notion of stability [von
Neumann and Morgenstern (1947) and Greenberg (1990)] is used to derive the
“stable outcomes™ and the coalitions that are likely to form to bring about these

outcomes.

2.1 Introduction

This chapter defines a solution concept for strategic social environments with
diverse coalitional interactions. It improves on previous solution concepts for simi-
lar social environments in that it captures the perfect foresight of the individuals.
The primitive description of a social environment follows that of Chwe (1994),
which is sufficiently flexible to integrate the representation of a cooperative game,
an extensive form with perfect information, and a normal form game played in
such a fashion that there are moves and counter moves. Moreover, the description
can accommodate social environments of more complex structure. Particularly,
it allows for cooperation within a coalition and at the same time (noncoopera-
tive) interactions among coalitions (the action taken by one coalition may impose
externalities upon the payoffs of the other coalitions).

In most economic and game theoretic models, individuals or agents are pre-

sumed to be rational and intelligent. In a non-strategic setting, perfect foresight
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as implied by rationality and intelligence is captured by dynamic consistent plans
(policies) derived from dynamic programming. In strategic secial environments,
however, the interactive nature of the decision making poses more challenges.
Myopia in the Cournot model was criticized by a number of scholars [see, for ex-
ample, Chamberlin (1933)], for the reason that each firm ignores the reactions of
its rivals. The notion of coalition proof Nash equilibrium (Bernheim et al. 1987)
may also be subject to the criticism of myopia [see Chwe (1994)]. In the context
of cooperative games, Harsanyi (1974) criticizes the von Neumann and Morgen-
stern solution for its failing to incorporate foresight: in order to deter deviations,
it is not sufficient that further deviations will take place; what deters farsighted
individuals from deviation is that the resulting (final) payoffs would make them
worse off (see Appendix 2). Hence the von Neumann and Mcrgenstern solution
based on “direct dominance” may be subject to the “destabilizing effect of indirect
dominance”. “Indirect dominance” captures the fact that farsighted individuals
look ahead and it is the final payoffs that individuals care about. This very idea
can be extended to more complex social environments such as the ones studied by
Chwe (1994) and this chapter. Based on Harsanyi’s (1974) “indirect dominance”
and motivated by the fact that the von Neumann and Morgenstern abstract sta-
ble set! with indirect dominance may be too exclusive in that it can rule out
“arbitrarily”, Chwe (1994) defines the largest consistent set, a weaker notion that
is “not so good at picking out, but ruling out with confidence” (Chwe 1994, p.
239). It turns out, however, that the largest consistent set may be too inclusive in
many situations. I shall show that the inclusiveness of the largest consistent set
and the exclusiveness of the abstract stable set with indirect dominance are not
isolated phenomena. They both stem from the fact that indirect dominance as
defined in the literature does not capture perfect foresight: Individuals consider
only the final payoffs but not how, or if at all, these payoffs can be reached; that

IThis is a generalization of the more familiar notion of the von Neumann and Morgenstern
solution (stable set) for cooperative games.
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is, deviations “on the way™ to the final outcomes are ignored.

The purpose of this chapter is to develop a solution concept that captures
perfect foresicht. By examining the negotiation/reasoning process underlying the
notions based on indirect dominance, I show that indirect dominance overlooks
the “graph™ (formally defined in Section 3) of the social environment. The for-
malization of perfect foresight in this chapter recognizes the “graph structure™ of
the social environments and uses “paths” as the building blocks. In doing so, all
deviations “on the way” to the final outcomes are considered. The necessity for
“paths” is not obvious for a complex social environment that does not possess a
tree structure (for example, a social environment represents a cooperative game
or a normal form game). The solution concept I shall develop is derived by apply-
ing the notion of stability that is introduced by von Neumann and Morgenstern

(1944) and generalized and further developed by Greenberg (1047).

The organization of the rest of this chapter is as follows: In Section 2.2, [
formally define the social environment to be analyszed. Then I introduce the
solution concepts suggested in the literature for such a social environment. By
analyzing these solution concepts, I show why they do not capture perfect foresight
and identify the underlying problems. In Section 2.3, I formalize perfect foresight
by considering the graph of the social environment and using “paths™ as the
building blocks. Applying the notion of stability, I derive the “stable outcomes”
and the coalitions that are likely to form to bring about these stable outcomes. In
Section 2.4, I re-examine the literature by comparing, both formally and through
examples, the negotiation and reasoning process underlying and the implications
of the solution concepts in the literature with the solution concept I introduce.
Section 2.5 concludes the chapter by a brief corament on the methodologies that
are relevant to this chapter and points out several issues for further research. All
proofs are relegated to Appendix 2.1. Appendix 2.2 provides a simple cooperative

game that illustrates Harsanyi's criticism of the von Neumann and Morgenstern
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solution. A theorem that generalizes Chwe's (1994) result on the nonemptiness
of the largest consistent set is given in Appendix 2.3. Appendix 2.4 gives some

formal discussion on modeling foresight.

2.2 Foresight and Stability in the Literature

Consider a social environment with a set of individuals, N, who face a set
of alternatives Z. Each individual ¢ € N has a strict preference relation <; on
Z. Coalitions’ may be endowed with the power to replace one alternative by
some other alternatives. If coalition § C N is endowed with the power to replace
a € 7Z by some b € Z, we write a = b Using Chwe’s (1994) notation, a social
environment is represented by G = (N, Z, {<; }ien, {—Sr} SCN,S#£0)-

In this scction, I shall introduce and analyze the solution concepts in the liter-
ature for social environments represented by G, and identify the lack of foresight
in these notions. Before I proceed, I shall use some examples to illustrate the
flexibility of G, thereby facilitating the understanding of the social environments
depicted by G.

Norraal Form Games. Assume that a normal form game is played in such a
fashion that there are moves and counter-moves. Study of normal form game
played in such a fashion can be found, for example, in Greenberg (1990), Brams
(1994), and Chwe (1994). A normal form game is a triple G = (N, {Z* }ien,
{ui}ien), where N is the set of piayers and for i € N, Z? is the nonempty set of
strategies of player i and u® is player #’s payoff function, v* : Z¥ — R, where for
S C N, Z5 denotes the Cartesian product of Z* over i € §, ie., Z5 = [[;cs Z°.
To represent a normal form game by G, let Z = Z¥. If coalitions cannot form,
then for every i € N, and a,b € Z, a4 pifand only if a=* = b~% and a <; b if
and only if ui(a) < ui(b). If coalitions can form, for all a,b € Z, @ - b if and
only if a=% = b—5.

2A coalition is a nonempty subset of N.
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Cooperative Games. A cooperative game is a pair {N.v), wiere N is the
nonempty set of players and v is the characteristic function which assigns to
every coalition § C N a nonempty subset of R¥ denoted v(S). To represent this
game by G, let Z be the set of imputations (efficient and individually rational

~

payoff vectors in »#(N)). Fora,be Zand SC N, u

+ b if and only if &~ ¢ p(&).

Obviously, the von Neumann and Morgenstern (vN-M) solution (for coupera-
tive games) can be generalized to more complex social environment as studied in
this chapter. That is, one can apply the notion of vN-M abstract stable set to
the study of social environment G. For this purpose the following definitions are

introduced.

Definition 2.1. Let > be a dominance relation defined on Z. Then pair (%, >)

is called an abstract system. Theset, V C Z, is

(1) a vN-M internally stable selif V is free of inner contradictions, i.e., there
do not exist z,y € V such that y > =,

(2) a vN-M externally stable set if V accounts for every alternative it excludes,
i.e., if z ¢ V, it must be the case that there exists y € V such that ¥ > =,

and

(3) a vN-M (abstraci) stable set if it is both vN-M internally and externally
stable.

Let V be a (abstract) stable set for (Z,>). If z € Z is the status quo, the set
of “predicted outcomes” is given by {y € V | y = z or y > z}. That is, if some
z € V is the status quo, it will prevail; however, if some =z € Z \ V is the status
quo, then some y € V such that y > = will prevail.

The following dominance relation on Z is similar to the one used in the defini-

tion of vIN-M solution for cooperative games.

Definition 2.2. For a,b € Z, b is said to dominate a, or b > @, if

(1) there exists a coalition S C N that can replace a by b, ie, a =, b, and
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(2) all members of the acting coalition S prefer btoa.ie..a <; bforalli € S.

Let V be stable for (Z,>). If G represents a covuperative game, then V" is
equivalent to the vN-M solution for this cooperative game. However, Harsanyi
(1974) criticizes the vN-M solution for its failing to incorporate foresight. Such
a criticism can also apply to an abstract stable set V for (Z, >), which can be
illustrated through the following {extremely) simple example®, where N = {1,2}.
Z = {a,b,c}, player 1 can replace a by b, and player 2 can replace b by «.
The vector attached to each alternative is the payoff vector derived from that

alternative if it prevails.

) 1 2
aq,1) 4 bo,0) 12, (2,2)

FIGURE 2.1

The unique stable set for (Z,>) is V = {a,c}. According to the definition
of V, player 1 will not replace a by b, since b itself is not stable. But if he
is farsighted, he should and will replace a by b, knowing that player 2 (who is
rational} will subsequently replace b by c. That is, farsighted players do not just
look one step ahead. For this reason, Harsanyi suggests to replace the dominance
relation in the definition of V' by some “indirect dominance”(as opposed to the
“direct dominance” relation defined in Definition 2.2), which captures the fact
that farsighted individuals consider the final outcomes that their actions may
lead to. An alternative b is said to indirectly dominate another alternative a if b
can replace a in a sequence of “moves”, such that at each move the active coalition
prefers (the final alternative) b to the alternative it faces at that stage.? Formally,

3Appendix 2.2 offers a simple cooperative game for which the vN-M solution is subject to
Harsanyi's criticism. 1 thank Professor Ron Holzman for pointing out this example.

1In the main text of his paper, Harsanyi (1974) considers an indirect dominance entailing

that individuals consider also the intermediate outcomes. The indirect dominance in Definition
2.3 was mentioned by Harsanyi informally and formalized by Chwe (1994).
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Definition 2.3. For a,b € Z, b indireclly dominales a, or b > a. if there exist

29.41.....am In Z, where gy = a and a,, = b, and coalitions Sy, 51..... 5,
. 5 . ~
such that for 5 =0.1,...,m -1, a; SN a;41 and for all i € 5;. a; <; an.

Now, given the indirect dominance relation >, one can consider the (abstract)
stable set for (Z,>). Consider, again, Figure 2.1. The unique stable set for
(Z,>) is H = {c}, which captures foresight of the individuals in this example: If
a is the status quo, ¢ is the only predicted outcome. As noted by Chwe (1994).
however, the stable set for (Z,>>) can be too “exclusive™ in that its exclusion of
some alternatives may not be consistent with rationality and foresight. To rectify
this, Chwe suggests a new solution concept — “the largest consistent set™. In the
definition of (the largest) consistent set, a coalition rejects or deviates from an
alternative only if its deviation lead only to alternatives that benefit its members.
(In contrast, the stable set for (Z,>>) entails that a coalition deviates as long as
this deviation might lead to some alternative that benefits its members.) The
largest consistent set has the merits of “ruling out with confidence” and being
nonempty under weak condition. It turns out, however, that the largest consistent
set may be too inclusive. I shall illustrate this issue by the example in Figure 2.2,

But, first, I shall introduce the formal definition of the largest consistent set.

Definition 2.4 (Chwe). Consider a social environment G. A subset Y C 7 is
consistent if a € Y <= for every d such that a =, d, there exists ¢ € Y,
d=eor d < e, such that a £s e. The largesi consistent set (LCS) is the unique

maximal consistent set with respect to set inclusion.

According to Chwe (1994), the set of “predicted outcomes”, when x € Z is the
status quo, is given by {y € LCS | y = z or ¥ > z}. To illustrate that the stable
set for (Z,>>) can be too exclusive while the LCS can be too inclusive, consider
the example depicted in Figure 2, where N = {1,2} and Z = {a,b,¢,d}. Assume
that the status quo is a. If a prevails, the payoffs are 6 and O for players 1 and 2
respectively. Player 1 can replace a by b, which, if prevails, yields a payoff of 7 to
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2(6,0)
o
b(7,0) > €(5,10)
2|
d(10,5)
FIGURE 2.2

player 1 and 4 to player 2. Once b becomes the (new) status quo, there are two
possibilities: either player 2 can replace b by ¢, or players 1 and 2 together can

replace b by d. Applying the definition of indirect dominance gives
b>»u,d>bc>b andd > a.

As a result, the unique stable set for (Z,>>) is H = {c,d}. a is excluded from
H since d >» a and d € H. Note that ¢ € H but ¢ » a. Therefore, if a is
the status quo, the unique predicted outcome is d. But clearly, to reach d from a
requires player 1 first to replace a by b, and once b is reached, player 1 will not join
player 2 to replace b by d; instead, player 2 will replace b by c. Hence if players
are farsighted, in contemplating a deviation from a, player 1 should anticipate the
final outcome (c, in this case) that will arise, and thereby will not replace a by &.

The LCS solves the exclusion of a. Indeed, LCS = {a,¢,d}. Therefore, when
a is the status quo, the set of predicted outcomes is {a,d}. But there remains a
problem: when e is the status quo, one of the “predicted” outcomes is d, resulting
in the same difficulty as was discussed above. In Section 2.4, I shall show that
the inclusiveness of the LCS is by no means accidental.

The above analysis illustrates the following aspects of perfect foresight.

(1) A farsighted player considers only the final outcomes that might result
when making choices. Indeed, player 1, in contemplating a deviation from
a, does not make his decision by comparing a with b.

(2) Even though, as stated in (1), it is only the final outcomes that matter, a
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player of perfect foresight considers also how. if at all. these final outcomes
can be reached. In our example, it is feasible to reach d from a. but rational
players would not follow the “path” (a,b,d). (Were b reached. player 2
would deviate and implement c.) To capture perfect foresight, we must,
therefore, consider deviations “along the way™ to the final outcomes.

{3) The exclusiveness of the stable set for (Z,>») and inclusiveness of the
LCS are not isolated events. They both stem from the fact that indirect
dominance defined on Z fails to capture perfect foresight since it ignores
the possible deviations along the way from one alternative (e.g., «) to
another (e.g., d).

Therefore, to model perfect foresight, one need to consider the “graph™ of a
social environment and use “paths” as the building blocks in the formalization
of foresight. The social environment depicted in Figure 2.2 has been represented
purposely in a graph form to stress this point. The “graph” structure of the social
environment has been overlooked in the literature on foresight, since its necessity
is not obvious, particulariy when G represents a normal form game, a cooperative

game, or a social environment of more complex structure.
2.3 Stability under Perfect Foresight

2.3.1 Formalization of Perfect Foresight.
In this section, I shall formalize perfect foresight by considering the “graph” of
G. To this end, I introduce the following definition.

Definition 2.5. A directed graph generated by G, denoted ¢(G), consists of the
set of vertices (nodes) Z and a collection of arcs where for every a,b € Z, ab is
anarcifandonlyifthereexistssC:Nsuchthatai»b. If ab is an arc, b is
said to be adjacent from a and a adjacent to b. A pathis a sequence of vertices
(v1,v2,...,%), where for all j = 1,2,...,k — 1, vjv;4, is an arc, that is, there
exists a coalition S; C N such that v; 3, vj4+1- The length of this path is £ — 1.
¢(G) is said to be acyclic if every path consists of distinct vertices. ¢(G) is said
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to be bounded if there exists a finite integer J such that every path has a length

that does not exceed .J.

The following notations are introduced to facilitate the analysis that proceeds.
If ¢ € Z is a vertex that lies on the path «, I shall write a € . For a path «, let
ct|,,, where b € a, denote its continuation from b, and let t{a) denote its terminal
node (i.e., the last node that lies on ). Also, let II be the set of all paths, and for
a € Z, let TI, dencte the set of paths that originate from a (including a itself).
The preferences over paths in II are the preferences over their terminal nodes,
i.e., for any two paths @ and 3, a <; 3 if and only if t{(a) <: ¢(3). Also, we write
a <s B3 if t{a) <s t(8), Le, if t{a) <; t(B8) foralli € S.

For every a € Z, I, specifies the set of “feasible outcomes” when a is the
status quo (or under consideration). The objective of this section is to determine
which paths in II, might be followed by rational and farsighted individnals. Note
that in general G does not represent an extensive form game: At every node,
more than one coalitions may act, and ¢(G), the graph of G, need not be acyclic
(e.g., when G represents a cooperative game or a normal form game; see Figures
2.5 and 2.6). Given the complex nature of G, I shall employ the more general
framework of “the theory of social situations” (Greenberg 1990). The theory
of social situations unifies the representation of cooperative and noncooperative
social environments; moreover, it insists upon the explicit specification of the
negotiation/reasoning process (by the means of a “situation”) and extends the
notion of stability developed by von Neumann and Morgenstern (1947).

I shall retain the assumptions of Chwe (1994) that actions are public, binding
agreements are not permissible, and payoffs are derived at a status quo only if
no coalition wishes to replace it. In the spirit of the theory of social situations,

perfect foresight is formalized explicitly by the following “situation®”, which I

3A “situation” specifies how individuals view and use their alternatives; in particular, a
situntion specifies the “feasible outcomes” at every state or status quo and the opportunities
available to the individuals (i.e., what individuals can do at every status quo and what the
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shall henceforth refer to as “the situation with perfect foresight™: Assume that
alternative a € Z is the status quo. Consider a path o € II, and some node b € o
and assume that a coalition S C N can replace b by sume alternative ¢ that does
not lie on a, i.e., b S.candc ¢ a. In doing so, § is aware of that the set of
feasible paths from c is II.. In contemplating such a deviation from «, however.
members of § do not base their decision on comparing « with Il.. Rather. they
consider the paths that might be followed by rational and farsighted individunals
at ¢. Let o(T1.} C I, denote this set of paths. In determining whether some path
3 € Il. belongs to o(Il.), each deviating coalition applies the same reasoning.
Thus, the following definition is needed.

Definition 2.6. A standard of behavior (SB) o for the situation with perfect

foresight is a mapping that assigns to every ¢ € Z a subset of II,, called the

solulion at a.

Obviously, in order for o(Il,) to contain the set of paths (originating from a)
that will be followed by rational and farsighted players, ¢ cannot be an arbitrary
mapping. Following Greenberg (1990), we shall require that o be stable. Tha* is,
o must be free of inner contradictions and at the same time accounts for every

path it excludes.

Definition 2.7. An SB o for the situation with perfect foresight is

(1) internally stableif for all a € Z, a € o(Il,) implies that there do not exist
b € ¢, a coalition S C N, and ¢ € Z such that b Zicand S “prefers”
o(Il.) to o,

(2) externally stable if for all @ € Z, o € 11, \ o(II,) implies that there exist
b € a, a coalition S C N, and ¢ € Z such that b S.cand § “prefers”
a(Il;) to &, and

(3) stable if it is both internally and externally stable.

consequences of their actions are).
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That is, an SB ¢ is stable if for every a € Z, o(Il,) contains those and only
those paths that are not rejected by any coalition, whose members are aware of
and believe in the specification of the SB o.

Note that the notion of stability requires that a single path o be compared with
a set of paths o(I1.). The way such a comparison is made depends on the players’
attitude towards (Knightian) uncertainty. Following most of the application of
the theory of social situations, I shall concentrate on the following two extreme
behavioral assumptions.

(1) Optimism — players always hope for the best, i.e.,, S “prefers” ¢(Il;) to &
if for some B € o(Il.), & <s B, and
(2) Conservatism — players always fear the worst, i.e., § “prefers” o(Il.) to a
if for all B € o(Il.), @ <5 B.
If an SB ¢ is stable under optimism, it is called an “optimistic stable standard of

behavior” (OSSB), and if ¢ is stable under conservatism, it is called a “conserva-
tive stable standard of behavior” (CSSB). Formally,

Definition 2.8. Let o be an SB for the situation with perfect foresight. Then,

(1) cisan OSSB ifforalla € Z, & € I1;, \ o(Il,) <= there exist § C N,
b€ a, and c € Z such that b — ¢ and & <s B for some 8 € o(IL,) .

(2) cisaCSSBifforalae Z,a €1, \o(Il.) < thereexist S C N,
bEa,andceZsuchthatb—s>c,a(Hc)#@,anda«sﬂforall
B € o(Il).

2.3.2 The Significance of a Stable SB.

It is easy to verify that for the social environment depicted in Figure 2.2,
the situation with perfect foresight admits a unique OSSB which coincides with
the unique CSSB. Denoting this SB by o, we have that o(IL,) = {(b,¢)}°® and
o(Il.) = {a}. Hence, coalition {1, 2} will never form. Moreover, if a is the status

SRecall that (b, c) is the path that originates from b and terminates at c.



CHAPTER 2. COALITIONAL STABILITY UNDER FORESIGHT 23

quo, e (and only a) will prevail. Thus, the unique (optimistic or conservative}
stable SB gives rise to the outcome conforming to perfect foresight.

For an arbitrary social environment G, the notion of (optimistic or conservative)
stable SB is used in the same fashion. In particular, a stable SB enables us tu

answer the following questions.

(Ql) Which outcomes in Z are “stable” in that they will prevail. That is,
which outcomes, if happen to be the status quo, will not be replaced by
farsighted rational individuals.

(Q2) How stable outcomes are reached from “non-stable” outcormes.

(Q3) Which coalitions might form in the process of replacing a non-stable out-

come with a stable one.

Before I answer these questions, I shall establish a few important properties of
a stable SB. The first lemma shows that oredictions by a stable SB are consistent,
i.e., a “stable path” satisfies “truncation property”: the continuation of a “stable
path” is stable at any stage along the way. The second lemma guarantees that the

existence of a stable SB implies the existence of stable outcomes in Z. Formally,

Lemma 2.9, Assume that ¢ is a stable SB and that o € o(Il,). Then, for all
b€ o, alp € o(Il).

Lemma 2.10. If o is a stable SB, then there exists at least one a € Z such that
a € o(Il,).

The set of stable outcomes is, therefore, given by E = {e € Z | ¢ € o(I1,}}.
Each alternative ¢ € E is stable in the sense that it will prevail if it is the
status quo. Put differently, no coalition with the power to replace a by another
alternative would (eventually) benefit by doing so. Moreover, every outcome that
belongs to Z\ E is an unstable outcome. Whenever such an outcome is the status
quo, there is at least one coalition that can and will (eventually) benefit from
replacing it.
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As we examine paths rather than the elements in Z, we can predict not only
the stable outcomes but also the coalitions that might form when an unstable
otitcome is the status quo. More specifically, if a € Z \ A is under consideration
and if o(II,) # 0, the predicted outcomes are the terminal nodes of those stable
paths that belong to ¢(Il,), and the coalitions that might form are those that
implement the paths in o(Il,). Figure 2.3 serves as another example to illustrate
this point.

{1,2}
aq,1,1) — ©(0,0,0)

0 @

3
b©,2,2) & €(3,3,3)

Ficurre 2.3

The situation with perfect foresight for the social environment depicted in
Figure 2.3 admits a unique OSSB which coincides with the unique CSSB. When a
is the status quo, the unique stable path is (a, ¢, €), implying that coalition {1,2}
will form. Moreover, coalition {1,3} will not form: Player 1, being farsighted,
realizes that, in the absence of binding agreements, were he to join player 3 and
replace a by b, player 3 would then replace b by d.

A stable SB ¢ fully answers (Q1)-(Q3) whenever the status quo is some a € Z
for which ¢(Il.) # @. If the status quo ¢ € Z is such that ¢(Il,) = 0 then the
SB o tells us that a cannot remain as a status quo (since a ¢ o(IL,)), but ¢ is
silent about which paths are likely to be followed, and which outcome in Z might
result. It is, therefore, important to investigate those situations whose stable SBs
are nonemply-valued, i.e., o(Il,;) # 0 for every’ a € Z. A nonempty-valued stable

*Observe that if o is (externally) stable, then it must be the case that there exists at least
one a € Z for which o(Il,) # 0. If ¢ is nonempty-valued, this condition holds for everye € Z.

-
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s

SB provides complete answers to (Q1)-(Q3), since it has the property that no
matter what the status quo is, there will always exist paths which farsighted and
rational players would agree to follow. Furthermore, due to the interdependence
among the solutions at different status quo's in #, perfect foresight may not
emerge in a stable SB if it is not nonempty-valued. I shall return to this issue in
Section 2.5 and Appendix 2.4.

Proposition 2.12 below provides a sufficient condition for a stable 5B to be
nonempty-valued. To this end, we first need to define some dominance relations

on IT (the set of all paths).

Definition 2.11. Fora,f€ll,c € Z,and SC N, we write e £& Bifa € cx and
there exists b € 3 such that a “banda <g B. We also write o £ B if ex LS 3
forsome SCN,alsBifa li Bforsomeac Z, and ol gif @ LG B for some

a € Z and some S C N.

That is, a path § dominates path o if a possesses a vertex a that some coalition,
S, can replace with vertex b that lies on the path F, and every member of S prefers

the terminal node of 3 over the terminal node of a.

Proposition 2.12. Assume that II does not admit an infinite sequence of (not
necessarily distinct) paths a, o9, ... such that a; " a;,) for somea € Z. Then,
if o is either an QSSB or a CSSB, ¢ is nonempty-valued.

The following example illustrates that the condition in the above proposition

is not unnecessarily strong, even when the set of alternatives, Z, is a finite set.

2
%(0,0) L ¢(1,2)

|

bea,1

The soclal environment depicted in Figure 2.4 violates the condition in Propo-
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sition 2.12 since {(a,b) £ (a,¢) £° (a,b). Moreover, there exists a2 unique OSSB,
a, which coincides with the unique CSSB which satisfies o(Il;) = 0. That is, a is
rejected by both players, but players 1 and 2 cannot agree on which alternative,

b or ¢, should replace a.

2.2.3 Fristence of a Stable SB.

I now turn to the existence of (nonempty-valued} OSSB and CSSB. Consider
first, the OSSB. There are several conditions that guarantee the existence of OSSB
for the situation with perfect foresight. One such condition is the stricl acyclicity
of £. The dominance relation £ is said to be strictly acyclic if there do not exist
an infinite sequence of (not necessarily distinct) paths oy, a2,... in II such that

o; L oy foralli=1,2,.... Using Proposition 2.12, we have

Proposition 2.13. Assume that £ is strictly acyclic. Then there exdsts a unique
nonempty-valued OSSB.

It turns out that strict acyclicity of £ is also sufficient for the existence of
a nonempty-valued CSSB (which need not be unique). This result follows from

Proposition 2.13 together with the following proposition.

Proposition 2.14. If there exists a nonempty-valued OSSB, then there exists a
nonempty-valued CSSB and a largest® nonempty-valued CSSB of. Moreover, for
every nonempty-valued conservative or optimistic stable SB ¢, we have o(Il,) C
ot(1l,) for every a € Z.

The existence of CSSB require less demanding conditions than that of OSSB.
The example of “Condorcet paradox” in Figure 2.5 illustrates that CSSB exists
when OSSB fails to exist. Indeed, there exists a nonempty-valued CSSB ¢ such

that o(Ilz} = I for all z € {e,b,c}. Therefore, the CSSB predicts that each
z € {a,b,c} might arise.

#For two SB's, ¢ and o', 0 2> ¢’ if o(Ila) D o'(I,) for all a € Z.
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A weak sufficient condition for the existence of a nonempty-valued CSSB is
given in Theorem 3.11. For any two paths «, 8 € I1, I shall write & C /3, if there
exists b € 8 such that 8|, = a.

Theovem 2.15. Assume that there does not exist an infinite sequence of paths
0, Q2,... in Il such that for all 1,5 = 1,2,..., £ o1 and i < j implies
a; & o;. Then the situation with perfect foresight admits a nonempty valued
CSSB.

Note that the condition in Theorem 2.15 does not hold for the social envi-
ronment depicted in Figure 2.4. It holds, however, for the social environment
depicted in Figure 2.5. The sketch of the proof is as follows: First, note that
an empty-valued SB is conservative internally stable while an (nonempty-valued)
SB o such that o(II.) = II; for all z € Z is conservative externally stable. The
central idea is to show, by Zorn's Lemma, that under the given condition, there
exists a minimum nonempty-valued conservative externally stable SB, which is

also conservative internally stable.

2.4 Re-examination of the Related Literature

In this section, I shall compare, both formally and through examples, the
stable SBs for the situation with perfect foresight with the notions discussed in

Section 2.2. Such comparison is made by examining the negotiation/reasoning
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process (which is formalized by means of a situation) underlying these notions.
As shown by Chwe (1994), the notion of consistent set can be cast within the
framework of the theory of social situations, thereby revealing how individuals
view and use their alternatives. In particular, the siluation that describes the
negotiation/reasoning process underlying Chwe’s consistent set is as follows: For

every a € Z, the set of feasible outcomes when a is the status quo is
Xo={e}u{beZ|b>al}

For b € X,, if there is a coalition S C N such that b 5, ¢ for some ¢ € Z, then
the set of feasible outcomes at ¢ is given by X..

For this (Chwe) situation, again we can aprly the nction of stability. Some
b € X, is likely to arise or stable if no coalition wishes to replace b by some
¢ € Z, by considering the set of likely (stable) outcomes at ¢ (which is a subset of
X.)- Let i be an SB that assigns to every a € Z a subset of X,. The following
definition is parallel to Definition 2.8.

Definition 2.16. Let 3 be an SB for the “Chwe situation”. Then,

(1) ¥ isan OSSB ifforalle € Z, b € X, \ ¥(X,) < thereexist SC N
andceZsuchthatb-iv-candb-(sdforsomeded)(xc).

(2) YicaCSSBifforallac Z, b e X, \ ¥(X,) < there exist SC N and
¢ € Z such that b - ¢, Y(X.) # 0, and b <s d for all d € PH(X,).

Chwe (1994) shows that the CSSB for the “Chwe situation” is formally re-
lated to his consistent set. Proposition 2.17 states this formal relationship. This
proposition is slightly stronger than that of Chwe.

Proposition 2.17. ForY C Z, define an SB ¢ by ¥(X,) = X,NY foralla € Z.
Then, v is a CSSB for the “Chwe situation” if and only if Y is consistent and
1 is nonempty-valued. In particular, 1 is the largest (nonempty-valued) CSSB if
and only if Y is the LCS and 3 is nonempty-valued.
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Therefore, the following assumptions are embedded in the definition of the
LCS. The first two assumptions signify the difference between the LCS und the

notion proposed in this chapter.

(1) For every a € Z the set of feasible outcomes is given by X, = {a} U {b <
Z | b > a} C Z. For example, for the social environment depicted by
Figure 2.2, X, = {e,b,d} and X, = {b, ¢,d}. This is in sharp contrast. to
the situation with perfect foresight where the set of feasible outcomes at
a or b is the set of paths originating from a or b.

(2) b € Z is likely to arise or stable if b € X, (i.e., feasible at a) and no
coalition wishes to deviate from b. Therefore, deviations in the process
of reaching b from a are ignored. Indeed, for the social environment in
Figure 2.2, since d belongs to both X, and X, and d is the “end of the
play”, d is included in both %%(X,) (the solution when a is the status
quo) and %°(X,) (the solution when b is the status quo}, where 3 is the
unique CSSB for the “Chwe situation”. The situation with perfect fore-
sight employs paths as the building blocks and all deviations along every
path are considered. In particular, the path (a,b,d) does not belong to
o(I1;), where o is the unique CSSB (also the unique OSSB) for the situ-
ation with perfect foresight, since once b is reached, player 2 will deviate
and implement c.

(3) Individuals are conservative: A deviation occurs only if all resulting out-

comes benefit the deviating coalition.

A very interesting result is that the OSSB for the “Chwe situation” is formally
related to the stable set for (Z,>>). Such a result is derived by a theorem due to
Shitovitz [Theorem 4.5 (Greenberg 1990)].

Claim 2.18. ¢ is an OSSB for the “Chwe situation” if and only if Y = |}, 0(X.)
is a vN-M sabstract stable set for (Z, <).

For this reason, I shall refer to the “Chwe situation” as Harsanyi-Chwe sit-
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nation. Proposition 2.17 and Claim 2.18 imply that the negotiation/reasoning
process underlying Chwe’s LCS is exactly the same as the one underlying the
abstract stable set for (Z,>»), and the difference between these notions lies in the
different behavioral assumptions embedded in them. Therefore, the exclusiveness
of the stable set for {7, <) and the inclusiveness of the LCS are not isolated phe-
nomena. For Figure 2.2, the unique OSSB #° and the unique CSSB +° for the
Harsanyi-Chwe situation are such that ¥°(Xs,) = ¥°(Xs) = {c,d}; hence either
¢ or d might arise were b the status quo. Thus, if player 1 is optimistic, he will
reject a, hoping that d might arise; if player 1 is conservative, he will not rule a
out, fearing that ¢ might arise. (In contrast, the unique stable SB for the situation
with perfect foresight entails that were player 1 to replace a by b he would nec-
essariy end up with c.) Furthermore, d is included in both ¥°(X,) and ¥°(X.,),
implying that d might arise if a is the status quo. Therefore, I shall argue that
both the vN-M stabie set for (Z,>>) and the LCS do not capture perfect foresight
for the reason that they ignore the deviations on the way of replacing an alterna-
tive by another one. Now I am going to provide more examples to illustrate the
importance of paths in the formalization of perfect foresight.

First consider the following “coordination” game played in such a fashion that

there are moves and counter moves and assume that coalition {1,2} cannot form.

£ T
io11 | 00
d} 00 | 2,2

FIGURE 2.6

The LCS contains both (u,£) and (d,r). (u,£) is included, since, for example,
player 1's deviation from u to d is deterred by his own further deviation back to
u. This is the consequence of ignoring the graph structure of the social environ-
ment, The situation with perfect foresight consider the graph of the game. In
contemplating a deviation from (u, £) to (d, £), player 1 realizes that the only sta-
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ble path from (d, £} (prescribed by OSSB and CSSB for the situation with perfect
foresight) leads to (d,r). Therefore a player with prefect foresight will deviate
from (u, £).

The social environment depicted in Figure 2.3 is another example illustrating
the lack of foresight or rationality in the abstract stable set for (Z,>>) and the
LCS. Both the LCS and the unique stable set for (Z,>>) predict that coalition
{1, 3} might form, since ¢ is included in both notions and ¢ indirectly dominates
a via both b and c. As discussed in Section 2.3, however, the unique stable path
for the situation with perfect foresight is (a, ¢, €); hence only coalition {1,2} will
form.

Theorem 2.19 provides a formal result on the relationship between the CSSBs
(hence the stable outcomes), in particular, the largest CSSB, for the situation with
perfect foresight and the largest CSSB (hence the LCS) for the Harsanyi-Chwe

situation.

Theorem 2.19. Let G be a social environment. Let ¢ be the largest CSSB for
the Harsanyi-Chwe situation and o be a nonempty-valued CSSB for the situation
with perfect foresight such that for every a € Z, o € o(Il;), where t(a) # a,
implies t(e) 3> a. Then for all a € Z, o € o(Il,) implies t(c) € P*(X,), i.e., o
“refines” 1%,

Recall that ¥%(X,) C Xo = {a} U {b € Z | b > a}. Therefore, the condition
that for every a € Z, e € o(Il,), where t(c) # a, implies t(a) > a enables the
CSSB for the situation with perfect foresight to be formally compared with the
CSSB for the Harsanyi-Chwe situation. This condition holds, for example, for the
social environments depicted in Figures 2.2 and 2.3. Furthermore, the implication
of Theorem 2.19 is most compelling when G represents an extensive form game
with perfect information.

Extensive Form Games. An extensive form game with perfect information can
be represented by G in the following way: Let Z be the set of nodes and partition
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7 into Zo, %y, %2,...,%n, where Z;, i € N, is the set of nodes that belong to
player i and Z, is the set of terminal nodes. Then an extensive form game can be
represented by G: For every a € Z\ Zp and every i € N, let a <; b for all b € Zp,

and a ﬁ bifa € Z; and b is adjacent from a.

Consider an extensivé form game such that the graph ¢(G) (or the game tree in
this case) is bounded. The LCS is ronempty and coincides with the unique stable
set. for (Z,>>). At the “root” of the game tree, both notions predict that the set
of outcomes that are likely to prevail is Zg, the set of all terminal nodes. However,
if the (unique) CSSB for the situation with perfect foresight is nonempty valued,
then it is formally related to the notion of subgame perfection; if, in addition, the
situation with perfect foresight admits a (unique) nonempty valued OSSB, then
it refines the CSSB. Formally,

Claim 2.20. Let G represent an extensive form game with perfect information
and ¢(G) be bounded. Assume that the unique CSSB o€ for the situation with
perfect foresight be nonempty valued. Then for every a € Z, o°(Il,;) coincides
with the set of subgame perfect equilibrium paths for the subgame originating
from a. If, in addition, there exdists a (unique) nonempty valued OSSB ¢°, then
o°(Il,) C o°(IL,) for everya € Z.

In his concluding remarks, Chwe (2.20) recognizes several issues that the notion
of the LCS fails to address, yet no constructive solution was offered. The notion
suggested in this chapter resolves most if not all of these issues. Now, I shall
use the following example to illustrate that the issue of “preemption” that is not
well addressed by the L.CS (and the stable set for (Z, >>)) can be analyzed by the
stable SB for the situation with perfect foresight.

When a is the status quo, both stable set for (Z,>>) and the LCS predict that
b be the unique outcome. If players are rational and farsighted, however, player
1 will “preempt” player 2's move, and player 2 will “wait” and let player 1 move.
Indeed, the unique OSSB (which is also the unique CSSB) for the situation with
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perfect foresight, where paths are the building blocks, predicts that when a is the
status quo, the unique stable path is (a,c) (which Pareto dominates b).

I shall conclude this section by formally relating the OSSB for the situation
with perfect foresight to the vN-M stable set for a abstract system. Such a result
is, again, the special case of Shitovitz’s [Theorem 4.5 (Greenberg 1990)] result on
the formal relationship between OSSB for any situation and the stable set for the

corresponding abstract system.

Claim 2.21. ¢ is an OSSB for the situation with perfect foresight if and only if
the set Y = |J, oz 0(Ila) is 2 vN-M stable set for (II, £).

Thus, Harsanyi’s criticism should not be viewed as a criticism to the notion of
vN-M stability in general; rather, it is a criticism that can apply only to certain
abstract systems such as (Z,>) given in Section 2.2. This point has not been
clarified in the literature.

2.5 Concluding Remarks

The analysis of coalitional stability and foresight has demonstrated that to
model perfect foresight one need to consider the graph of the social environment
even if such a social environment does not represent an extensive form game. Also,
the analysis clarifies that it is not the notion of stability that is farsighted or my-
opic; it is the abstract system or the negotiation/reasoning process (which can be
formalized by a situation). The notion of stability in the theory of social situations
(Greenberg 1990) resembles that of von Neumann and Morgenstern (1947). One
of the advantages of the framework of the theory of social situations, however,

lies in the explicit specification of the negotiation/reasoning process as well as the
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individuals’ attitude towards strategic (Knightian} uncertainty, which enables us
tu examine the assumptions that might be otherwise implicit (or hidden) in exist-
ing notions. For example, as was shown in the previous section, the definitions of
the stable set with indirect dominance and the LCS embed several assurptions
that can be revealed by analyzing the corresponding (Harsanyi-Chwe) situation.
This is exactly where our formalization of perfect foresight was motivated and ini-
tiated. Moreover, the theory of social situations allows for difference behavioral
assumptions, while the vN-M stable set implicitly assumes optimistic behavior

(as the vN-M stable set is formally related to OSSB).

One of the implications of this chapter is that the representation and analysis of
a cooperative and a noncooperative environment can be bridged, and the notion of
stability can be applied regardless of the social environment’s cooperative or non-
cooperative nature. In particular, the notion of stability is not necessarily linked
to cooperative games, especially in view of the fact that many noncooperative
solution concepts can be derived by using the notion of stability [see Greenberg
(1990)] and the social environment studied in this chapter is by no means a pure
cooperative one. In a pure non-cooperative dynamic environment, the concept of
subgame perfection (and its variants) captures perfect foresight. In view of Claim
2.20, the theory of situation and the notion of stability enable the extension of
the concept of subgame perfect to social environments of more complex structure

(although this is not the motivation of this chapter).

The idea that farsighted individuals look arbitrary steps ahead is analogous to
the consideration of consistency in Dutta et al ’s (1989} definition of “consistent
bargaining set” for cooperative games. Recall that the core rules out a payoff
vector if there is an objection to this payoff vector; hence the core does not as-
sess the “credibility” of an objection. The bargaining set [Aumann and Maschler
(1964) and Mas-Colell (1989)] goes one step further by considering only “justi-

fied objections”, i.e., those objections that do not have counter-objections. The
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“credibility” of counter-objections is, however, left unattended. The consistent
bargaining set of Dutta et al. (1989) entails that every objection in a “chain™ of
objecticns is tested in precisely the same way as its predecessor. Note that the
formalization as well as the intuition of the notion of consistent bargaining set are
different from those of perfect foresight. In the definition of consistent bargaining
set, it 1s the “credibility” of an objection that matters. In our formalization of
foresight, however, it is the final ( “credible”) outcomes resulting from an objection
(which itself does not have to be “credible”) that matter. That is, if players are
farsighted, a coalition may object to a payoff vector as long as such an objection
(which itself may not be “credible”) will ultimately lead to (“credible™) ontcomes
that benefit its members.

Now, I shall point out several questions for future research. First, in our
analysis, individuals are assumed to be patient. This implies that for example, in
Figure 2.5, if individuals are optimistic, OSSB does not exist since each coalition
always hopes that its favorite alternative might arise and thereby always rejects
the status quo. Introducing discounting into this model may help resolve this
issue. Moreover, with discounting, we may be able to evaluate paths of infinite
length. Secondly, the stable SB for the situation with perfect foresight may fail
to be nonempty-valued. For the social environment in Figure 2.4, when a is the
status quo, the stable SB is silent on which path will arise. That is, the solution
for a is empty. Now, suppose there is another alternative z adjacent to ¢ and «

gives a payoff of —1 to each player.

z(_lv_l)

02|

FIGURE 2.8
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In this case, the unique CSSB (OSSB) predicts that z will prevail if it is the status
quo, thereby failing to capture the perfect foresight of the players. To resolve this
issue, we need to “break down” the emptiness of the solution for a. Section 3.3
in Chapter 3 offers, at least implicitly, 2 way of doing so. Thirdly, this chapter
assumes a simple information structure. It might be interesting to investigate the

consequences of incomplete information and imperfect information.

Appendix 2.1: Proofs

Proof of Lemma 2.9. Let o be an OSSB. Assume in negation that Ja € Z and

o € I, such that o € o(Il,) but af, ¢ o(Il;) for some b € a. By external

stability, 3¢ € |, {hence c € a) , d € Z, and S C N such that &}y <s 8 (hence

a <g B) for some B € o(Ilz). This contradicts the internal stability of o.
Similarly, we can show that Lemma 2.9 holds if o is a CSSB. |

Proof of Lemma 2.10. By external stability, o cannot be identically empty. There-
fore, o(Il,) # 0 for some a € Z. By Lemma 2.9, every terminal node of a path in
o(Il,) satisfies Lemma 3.6. §

Proof of Proposition 2.12. Let o be an OSSB or CSSB. Assume in negation that
there exists a € Z such that o(Il,) = 0. Then, a ¢ o(Il,). By external stability,
3S € N and b € Z such that a =, b,o(Ilp) # @ and a <g B for every B € o(Il,).
Let W, = {b € Z | 3S such that a =, b and o(Ilp) # 0}; then W, # 0. Let
® C II, such that for every b € W, there exists a € ® such that a|, € o(Il;).
By assumption, ¢ admits a maximal element with respect to £%. Let { be such
a maximal element. Then by external stability, { € o(Il;), contradicting that
o) =0. ¥

Proof of Proposition 2.18. The sufficiency of strict acyclicity is due to a theorem
due to von Neumann and Morgenstern (1947) on the existence of abstract stable
sets, and a theorem due to Shitovitz [Theorem 4.5 (Greenberg 1990)] that estab-
lishes a formal relationship between the graph of an OSSB and a von Neumann
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and Morgenstern abstract stable set. Moreover, it follows from Proposition 2.12

that this OSSB is also nonempty-valued. |

Proof of Proposition 2.14. Obviously, a nonempty-valued OSSB is also a nonempty-
valued conservative internally stable SB. By a theorem of Greenberg, Monderer,
and Shitovitz (1995), there exists a largest nonempty-valued conservative inter-

nally stable SB with respect to set inclusion that is also the largest nonempty-
valued CSSB. 1

Proof of Theorem 2.15.
Let T be the set of conservative externally stable SB’s such that ¢ € ¥ implies
(Cl) o satisfies “truncation property”, i.e., for every a € Z,a € o(I1,) implies
alp € o(Il;) for all b € , and
(C2) foreverye € Z,a € Il,\ o(I1,) and &, € o(I1;), where b is adjacent from
a, imply that there exists S C NV and ¢ € Z such that a —s cand & <5

for all 8 € o(IL.).

Obviously, let 6% be such that o(Il,) = I, for all a € Z; then ¢® € . For
a € Z and o € X, define

CDOM(o,a)={aell|ac€aand b€ Z and S C N such that a —s b,
o(Ily) # 0, and @ <s B for all 8 € a(I1,,)}.

Claim Al: Let 0 € £ and ¢ € Z. Then o) € CDOM(o, a) implies that there exist
Ji < oo and ag,...,ap inIlg such that oy L g £ -+- £ gy, i < j < J; implies
o; ¢ ¢ and oy, € o(Tl,). Moreover, let b € a, be adjacent from a; then { € I,
and ¢|, € o(I1,) imply ¢ ¢ CDOM(0, a) and therefore { € o(IL.).

a1 € CDOM(o, ) implies that there exists S C /N and by € Z such that
a —g, by and @y <g, B forall B € o(Il,). If { € II, and (s, € o(Il;,) imply that
¢ ¢ CDOM(o,a) and hence by (C2) ¢ € o(IL,), then we are done. Otherwise,

let oo € II, be such that aply, € o(Il,,) and ap € CDOM(0, a). That is, there
exist a coalition S3 C N and b3 € Z such that @ —g, b3 and az <g;, 8 for
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all 8 € a{lly,). If ¢ € 11, and (s, € o(Ils,) imply { ¢ CDOM(o,a) and hence
¢ € o(I1,), then we are done. Otherwise, let oy € II, be such that ay,, € o(Il,)
and a3 € CDOM(s, a). Continuing in this fashion, there exist a sequence of paths
¢y, erg, ... such that for all i = 1,2,...,a; £ &i41. Moreover, by (Cl), i < j
implies a; ¢ a;. By assumption, such a sequence is finite.

Clairn A2: Every ¢ € T is nonempty valued.

Assume otherwise there exists a € Z such that ¢(Il,) = 0. Then a ¢ o(IL,).
By external stability, a € CDOM(c, @). Then Claim A2 follows from Claim Al.

Now, define a partial ordering > on I such that for every 0,0’ € £, 0’ 2 g if
and »nly if ¢'(Il,) C o(Il,) for all a € Z. Let © be a chain in I, i.e., every two
elements in © C ¥ are comparable.
Claim A3: Let 0 € T and ¢ € Z. Then o € CDOM(o,a) implies that there
exist J; < oo and a,...,ay, inIl; suchthat oy Z e £ -+ Loy, and i < j < Jy
implies &; ¢ a;. Moreover, there exists ¢’ € © such that ¢/ > o0 and if b € a,
is adjacent from @, then, ¢ € II, and (], € ¢'(IL,) imply ¢ ¢ CDOM(¢”,a) for all
o” € © and therefore ¢ € o/ (I1,). (In particular, a;, € ¢'(I1,).)

This follows from (repeatedly applying) Claim Al.

Claim A4: T has a maximal element with respect to 2.

By Zorn’s lemma, it suffices to show that every chain in ¥ has an upper bound
in T. Let © be a chain. Define 1 by n(Il,) =, ¢ 0([.) foralla € Z.

To show that 1 belongs to X, it suffices to show that 7 is nonexpty valued.
Assume otherwise, that there exists a € Z such that n{Il;) = 0. Hence, a ¢ 7{Il,),
implies that there exists ¢! € © such that a € ¢!(Il,). By Claim A3, there exist
Ji < 00 and ), ,...,ay inIl,, where @)y = @a,suchthat &y L ao £ --- £ ay,
and i < j < Jy implies o; € ;. Moreover, there exists g2 € © such that if b € o,
is adjacent from a then, { € II, and (|, € o2(Il) imply ¢ ¢ CDOM(e¢’, a) for all
o' € © and therefore { € 02(IL,). In particular, &, € 02(Il,). If there do not exits
¢ € ay, and ¢’ such that oy, € CDOM(c’,c), then a;, € o(Il,) forall o € ©,
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contradicting n(Il,) = 0. Let ¢ € ay, be the closest node to a such that for some
o3 € © such that o3 > 03, oy, € CDOM(03,¢). Applying Claim A3, there exists
Jo < oo and ay, a1y ,00 40, In I1, such that ay, £ ag 41 2 <o Ly, g
and J), < i < j < Jy 4+ J; implies a; € «;. Also, there exists a3 € © such
that if d € a4, is adjacent from ¢ then, { € II, and (|4 € o2(Il,) imply
(lc ¢ CDOM(a4,c) for all o' € © and therefore ¢ € o4(I1.) and ¢ € aq(Il,).
In particular, oy, 44, € 04{Il.). Moreover, since o) L 0y < o3 <04, 1 < i <
J < Ji + J2 implies a; ¢ ;. Continuing in this fashion, there exists an infinite
sequence &, ag,... such that forall i,7 = 1,2,... ,; £ o1 and i < j implies
o; ¢ o;. A contradiction.

Therefore, ¥ admits a maximum element. Let 7 be such a maximum element.
Then,

Claim AJ: 7 is conservative internally stable,

Otherwise, there exists ¢ € Z and « € 7(Il,) and @ € CDOM(7), a). Define ¢/

as
"1L) = { () \ {(6,)} if@e 1-..[;, and 1(0) = a
7(Iy) otherwise

where (#, o) denotes the path combining § and a. By Claim A3, for all b € Z such
that there exists 8 € n(Il,) with 8|, = «, there exists £ € n(II) such that £ # 3.
Therefore 7' is nonempty valued and conservative externally stable. Obviously, 7/
satisfies (C1) and (C2) and hence belongs to . Since 7' > 7, contradicting that

7 is-the maximum element in Z.

7n is a CSSB since it is both conservative internally and externally stable. 1

Proof of Proposition 2.17.

Let Y C Z be a consistent set. Then, e € Y <= Vd such that a = d,dc e
Y € YN X, such that a £g e. Since o(X,) =X, NY, e €Y < a €
o(X,) <= Vd such that a ~> d, 3e € o(Xa) such that a £s e. Obviously, if
Y is consistent and ¢ is nonempty-valued, then o is a conservative stable SB. To

complete the proof, we need only to show that if o is conservatively stable then
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it is nonempty-valued. Indeed, otherwise, 3a € Z such that o(X,) = 0, implying
¢ ¢ 7(X.). By external stability, 3b € Z,§ C N such that a — b, 0(X,) # 0,
and ¢ <5 ¢ Ve € o(X,). But ¢ € ¢(X;) and e <s ¢ imply a <« ¢ and hence
¢ € X,. Therefore ¢ € o(X,). A contradiction.

The second part of the proposition follows from the theorem of Greenberg et.
al. {1995) that if a situation admits a nonempty-valued CSSB, then it admits a

largest nonempty-valued CSSB with respect to set inclusion. |

Proof of Claim 2.18. Again, this claim can be derived as a special case of Shi-
tovitz's theorem [Theorem 4.5 (Greenberg 1990)]. 1

Proof of Theorem 2.19. Let o be a nonempty-valued CSSB for the sitnation with
perfect foresight. In view of the theorem of Greenberg, Monderer, and Shitovitz
(1995) that was used in the proof of Proposition 2.14, it suffices to show that &
defined by

§(Xa) = U{t(a) | @ € o(IL)}

is 2 nonempty-valued conservative internally stable SB for the Harsanyi-Chwe
situation. Indeed, let b € &(X,); then b € &(X,) and hence & € o(Il;). Therefore,
theredoanotexistceZandSCNsuchthatbi»c,a(Hc)aéﬂ, and b <5 7
for all 5 € o(Il.). Since n € o(Il.} implies t(n) € 6(X.), there does not exist
c€ Z and S C N such that b —= ¢, #(X.) # 0, avd b <s d for all d € &(X.).
Hence & is conservative internally stable. Since o is nonempty-valued, & is also

nonempty-valued. |§

Proof of Claim 2.20. 1t is easy to verify that the situation with perfect foresight
is equivalent to the “tree situation” in Greenberg (1990). Then Claim 4.5 follows
from Theorem 8.2.2 in Greenberg (1990) and Proposition 2.14 in this chapter. 1

Proof of Claim 2.21. This is a special case of Shitovitz’s theorem [Theorem 4.5
(Greenberg 1990)]. The proof in our context follows easily from the definition of
OSSB and that of abstract stable set. |
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Appendix 2.2: A Simple Cooperative Game
Professor Ron Holzman {in 1994) pointed out to me the following four-person
transferable utility (TU) game that can be used to illustrate Harsanyi's criticism.

»(S) =1, if |S| 2 3 or S = {3,4},

é, ifS= {17 3}7 {1v4}! {2!3}7 {2! 4}3

0, otherwise

where v(S) denotes the value of coalition S.

This TU game has a finite stable set that consists of the following 7 points:

{24

Consider z = (%,0, %, %-) €K . z<y={0,3,3,3), since x 2.3} y and £ <24} Y-

The only imputation in K that dominates y is z = (§, 1,0, 3) since

Y L2 z and y <(1,2,4} 2-
If players are farsighted, coalition {2,4} will replace = by y, knowing that coali-
tion {1,2,4} will replace y by z. Note that no coalition will replace z, since no

imputation will make either player 1, 2, or 4 better off.

Appendix 2.3 Nonemptiness of the LCS

Casting the LCS within the framework of the theory of social situations pro-
vides additional benefit: it extends Chwe’s (1994) result on the nonemptiness of
the LCS.

Theorem 2.22. If there is no infinite sequence a,,82,... in Z such that i < j
implies a; < a;, then there exists a nonempty valued CSSB.

Hence by Proposition 2.17, the largest consistent set is nonempty. Moreover,
the nonempty-valuedness of the CSSB implies that for all a € Z \ LCS, there is
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b € LCS such that a < b. Note that in contrast to Chwe (1994, Proposition 2},
Theorem 2.22 does not require Z to be countable.

The sketch of the proof is as follows. First, note that an SB ¢ such that
o(X,.) = X, for all ¢ € 7 is nonempty-valued conservative externally stable. I use
Zorn’s Lemma to show that there exists a minimal nonempty-valued conservative
externally stable SB and then show this SB is also conservative internally stable.
This is dual to a theorem of Greenberg, Shitovitz and Monderer (1993) that the

maximal nonempty valued conservative stable SB is conservative externally stable.

Proof of Theorem 2.22. For a € Z and an SB o, define

CDOM(0, X,) ={b € X, | 3S C N and c € Z such that b —s ¢c,0(X.) # 0
and Vd € o(X.), b <s d}

Let K be the set of SBs ¢ with the following properties:

(Al) Va,bceZ, ceo(Xe)NXy = c€a(Xy).

(A.2) Vae Z, 3b€ Z such that b € o(X}) and o(X,) C o(Xe)-

(A.3) o isconservative externally stable, i.e., 0(X,.) D X.\CDOM{c, X,), Va €
Z.

K # 0 since 6° € K where 0%(X,) = X, for every @ € Z. Define a partial ordering
“<" on K such that for every ¢,0’' € K,0 < ¢’ if and only if 0(X,) D ¢'(X,) for
everya € Z.

Claim 1. K has a maximal element (with respect to “<”).

By Zorn’s Lemma, it suffices to show that every chain in X has an upper bound
in K. Let C be 2 chain. It suffices to show that 7 € X where 7(X,) = (,¢c 0(Xa)
for every a € Z.

We first prove that 7 satisfies (A.1). By the definition of , for every a,b,c € Z,
¢ € {X,) N X, implies ¢ € 6(X,)NX, for every ¢ € C. Since every o in C satisfies
(A.1), c € o(X}) for every o € C. Thus c € (X3).



CHAPTER 2. COALITIONAL STABILITY UNDER FORESIGUHT 143
To prove that 7 satisfies (A.2), we need the following property of
(C.1) Letoe€Canda,b& Z. Then, o(X,) D o(X,) implies 5(X,} D 1(\4).

Indeed, 7(X,) C o(X,) C o(X,) C X,. Since 5 satisfies (A.1), ¢ € (X)) =
XN Xe = ¢ € 7(Xa)y e 7(Xa) D (Xe)

We now proceed to prove that 7 satisfies (A.2). If for every ¢ € Z,a € (X,,).
then we are done. Otherwise, there exists ap € Z such that ap ¢ [, cc 7(X,,) =
1(Xe, ), Implying that there exists oy € C such that ag € 0(X,,}. Since o €
K, (A.2) implies that there exists a; € Z such that a) € a1(X,,) C o(X,,).
By (C.1), M(Xa,) D n{Xa,). I a1 € n(X,,), we are done. Otherwise, there
exists oo € C such that a; € 02(Xg,). Since a1 € 61(X,,) and € is a chain,
gy < 02. In particular, 02(X,,) C 01(X,,). Applying (A.2) again, there exists
az € Z such that ay € 02(X,,) C a-z'(xa,). Thus ap € 02(X,,) C 72(X,,) C
01(Xa,) C 01{Xg, ). By (C.1), n(Xa,) D n(Xy,) D n(Xa,). If 2 € n(X,,), then
we are done. Otherwise, there exists g3 € C such that a, ¢ 03(Xa,). Continuing
this inductively, there exists 0(Xa,) D 01(Xa,) 2 02(Xa,) D 02(Xy,) D --- D
0i(Xax_,) D 0k(Xa,) D +-- such that for i > 1,a; € 0:(Xa,) \ 0ip1(X.,) and
N(Xao) O M(Xa,) D --+ D n(Xq,) D «+-. If there exists J < oo such that e, &
7(Xa, ), then 7 satisfies (A.2) and we are done. Otherwise, since 1 < ¢ < j implies
¢; # a; and a; € 0i(X,,) C X, there exists a infinite sequence aj,a3,...,ax,...
such that a; « a; if ¢ < j, contradicting the assumption of the theorem.

Finally, we show that 7 also satisfies (A.3). Otherwise, there exists a € 7(X,)1J
CDOM(7;, X,). Since by (A.2) n is nonempty valued, CDOM(z, X,) C CDOM(z, .
X.) for every o € C. Hence a ¢ CDOM(o, X,) for every o € C. But o belongs to
K and hence is conservative externally stable. Thus a € o(X,) for every o € C,
implying e € 7{X,), a contradiction.

Since 7 satisfies (A.1), (A.2), and (A.3), 7 € K. Thus, every chain in K has an

upper bound in X, and therefore by Zorn’s Lemma, KX has a maximal element.
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Claim 2. Let o° be the maximal element in X. Then o* is also conservative
internally stable.

Assume in negation that there exists b € Z such that b € ¢*(X,) and & €
CDOM(o*, X,). Define ¢’(X.) = ¢°(Xz) \ {b} for every z € 7. Since 6* < o',
to reach the desired contradiction, it suffices to show that ¢’ € K. Since o~
satisfies (A.1), so does ¢’. To see that ¢’ satisfles (A.2), let z € Z. Since 6* € K,
by (A.2) there exists ¢ € Z such that o*(X;) D ¢*(X.) D e. If ¢ # b, then
o'(X;) O ¢'(X.) 3 ¢ and we are done. Otherwise, ¢ = b; hence, ¢*(X:} D
o*(X,) 2 b. But b € CDOM(c", X,) implies that there exists ¢ € Z and S such
that b —g ¢, 0*(X,.) # 0 and for every d € 0*(X,),b <s d, Le, b = d. Thus,
b ¢ o*(X,.) and by (A.1), o (Xp) D o*(X,). Again, since o~ € K, (A.2} implies
that there exists h € Z such that h € ¢*(X5) C 0*(X,). Also, b € ¢*(X,) implies
h # b Thus o/(X:} D ¢/(Xn) 3 h; hence ¢’ satisfies (A.2) and is nonempty
valued. Consequently, CDOM(¢’, Xz} O CDOM(c*, X.) for every = € Z, which
implies o’ is conservative externally stable, i.e., ¢’ satisfies (A.3). So o’ € K, a
contradiction.

Since o* is both internally and externally stable, it is a CSSB. 1

Appendix 2.4 Foresight, Feasible Outcomes, and Nonempty-
valuedness of a Stable SB

Given a social environment G = (N, Z, {<:}ien, {i}SC.V,S¢a), let F, denote
the set of “outcomes” individuals in N regard “feasible” at every a € Z. {F,}acz
together with {—s}scny can be called a “situation” in the sense of Greenberg
(1990). Such a situation describes how individuals view their available alterna-
tives. Foresight or myopia on the part of the individuals is reflected, particularly,
in the specification of {F,}eez-

If F, = {a} for all a € Z, then the situation entails myopia of the individuals.
Consider, for example, Figure 2.1. The unique OSSB and CSSB ¢ is such that

o(Fe) = {c}, o(Fp) = 0, and o(Fy) = {a}.
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The unique vN-M abstract stable set {or the set of stable outcomes) is given by
V =o(F,) Ue(Fp) Uo(F.) = {a,c}. That o(F,) is empty can be interpreted as
follows: b, the only feasible outcome at b is ruled out from o(F,), since player 2
can “induce” ¢ and he prefers o(F.) = {c} to b; yet this reasoning is not reflected
in o( F}), which asserts that player 2 will not stay at b but does not specify what he
will do. A problem arises immediately since o(F}) play a key role in determining
o{F,), the solution at a. That o(F;) fails to specify whal player 2 will do is due
to that ¢ is not a feasible outcome at b.

A remedy is to consider ¢ as a feasible outcome when b is the status quo, since

¢ can replace a. Generally, let F,; = X, where
Xo={a}ufbeZjb>»alCcZ

as discussed in Section 2.4. In this case, the OSSBI is formally related to the vN-M
abstract stable set for (Z,>»), and CSSB to the LCS. In doing so, both OSSB
and CSSB are free of myopia. This, however, is not the case for a slightly more
complex example depicted in Figure 2.2, as discussed in Section 2.2. According
to the specification of {F,},ez, d belongs to F, = X,. But such a specification
does not address how d is reached from a; consequently, deviations “along the
way” from a to d are ignored.

In the example depicted in Figure 2.2, the perfect foresight of player 1 should
enable him to assess if d can be reached when a is the status quo. This cannot
be achieved if d is simply considered as a feasible at ¢. The path that leads
from a to d should be considered instead. Generally, let F, = II, for all ¢ € Z,
where a is the set of paths originate from a. Then this “path” situation captures
perfect foresight in that every coalition, in choosing an (joint) action, considers
that another coalition might react, a third coalition might in turn react, as so on.
Rationality determines which paths will be followed hence the coalitions that will
form to implement such a path. The perfect foresight will emerge in the OSSB or
CSSB if it is non-empty valued. Otherwise, as discussed in Section 2.5, an stable
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SB may display myopia. Consider, again, the example depicted in Figure 2.8. An
empty solution at a represents the fact that both players cannot agree on any path
to follow; each player wish to induce his favorite outcome. Consequently, either
path (a,b) or (a,c) might aclually arise; this fact should be used to determine
the solution at z, given that an empty solution at e tells nothing but that players
cannot agree upon either path. In this case, we need to modify the definition of a
stable SB to account for what might actually arise whenever players cannot reach

an agreement as what path to follow,
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Chapter 3
Negotiation-Proof Nash Equilibrium

This chapter defines “negotiation-proof Nash equilibrium”, a notion that applies
to environments where players can negotiate openly and directly prior to the
play of a noncooperative game. It recognizes the possibility that a group of self-
interested players may choose to coordinate, nonbindingly and voluntarily, their
choice of strategies and make a joint objection, and it takes the perfect foresight
of rational players fully into account. The merit of the notion of negotiativn-proof
Nash equilibrium is twofold: (1) It resolves the nestedness and myopia embedded
in the notion of cealition-proof Nash equilibrium. (2) The negotiation process,
which is formalized by a “graph”, serves as a natural extension to approach that

models pre-play communication by an extensive form game.

3.1 Introduction

The most fundamental solution concept for noncooperative games is that of
Nash equilibrium. One common interpretation of Nash equilibrium is as a self-
enforcing agreement. That is, if players communicate and agree on a certain
profile of strategies without a binding agreement, then these strategies must con-
stitute a Nash equilibrium. But communication may achieve better outcomes for
the players since it creates the opportunity for negotiation and coordination. In
this paper I analyze the consequence of open negotiation prior to the play of a
noncooperative game. I defined the notion of “negotiation-proof Nash equilib-
rium”, which recognizes the possibility that a group of self-interested players may
choose to coordinate, nonbindingly and voluntarily, their choice of strategies, and
takes the perfect foresight of rational players fully into account.

The are several approaches to communication. The notion of correlated equi-
librium (Aumann 1974) considers mediated communication: a mediator (or a cor-

relation device) helps the players communicate and share information. Mediated
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communication can achieve payoffs that are not possible in any Nash equilibrium,
and it does so by extending the set of equilibria. Alternatively, one can consider
direct unmediated communication prior to the play of a noncooperative game,
exploring the coordination role of communication. One approach to direct com-
munication is to explicitly model the procedure of communication as a dynamic
game, which specifies how messages are interchanged, the order of offers and
counter-offers, and etc. [see, e.g., Farrell (1987, 1988) and Rabin (1994)]. The
result, however, may be sensitive to the exact procedure employed and strong
restrictions often have to be made to isolate the desired result. Also, one may
argue that modeling communication as a noncooperative game may not fully cap-
ture the coordination role of communication, since the communication game itself
may in turn call for coordination. Another approach to direct communication
focuses on the possibility that players can coordinate their choice of strategies via
self-enforcing agreements that are mutually beneficial, leaving the details of com-
munijcation unmodeled [see, e.g., Bernheim et al.’s (1987)]. I shall first motivate
my analysis by examining such an approach to direct communication, and then

discuss the relation of my analysis to the first approach.

Bernheim et al.’s (1987) notion of coalition-proof Nash equilibrium (CPNE) “is
designed to capture the notion of an efficient self-enforcing agreement for environ-
ments with unlimited but nonbinding, pre-play communication” (.3). One moti-
vation is that the notion of sirong Nash equilibrium (SNE) fails to capture the fact
that a coalitional deviation may be subject to further deviations in the absence
of binding agreements. An agreement is coalition-proof if it is efficient within the
class of “self-enforcing” agreements. In turn, an agreement is “self-enforcing” if
and only if no proper subset of players, taking the strategies of its complement as
fixed, can deviate in such a way that benefits all its members. Therefore, in the
definition of CPNE, self-enforceability of agreements is restricted to an important
aspect: only subsets of a deviating coalition can further deviate. While such 2
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(nestedness) restriction enables CPNE to be defined recursively, it also implies
that the definition of CPNE may involve agreements that are open to further
deviations. Consider the 3-player game in Table 3.1, where player 1 chouses rows,

layer 2 chooses columns, and player 3 chooses matrices.
piay play

TABLE 3.1
L R L R
Ul 221 | 1,00 Ul 000 | 020
D | 000 | 330 D{ 000 | 141
A B

The game in Table 3.1 has two Nash equilibria (in pure strategies): (U, L, A)
and (D, R, B). However, (U, L, A) is not coalition-proof by the following argu-
ment: Players 1 and 2 can jointly deviate to (D, R, A) which renders both players
1 and 2 higher payoffs. Such a deviation is “self-enforcing” because, according to
the nestedness restriction in the definition of CPNE, only subsets of {1,2} can
further deviate. Without the nestedness restriction, the self-enforceability of the
deviation to (D, R, A) is evidently in doubt. Players 2 and 3 have incentive to fur-
ther deviate from (D, R, A) to (D, R, B) in a self-enforcing way, thereby upsetting
its self-enforceability.

TABLE 3.2

L C R L C R
U | 1,11 | 000 | 0,00 050 | 000 | 440
M | 000 | 000 [ 000 M 000 | 222 | 000
D | 000 | 000 [ 000 00,0 | 000 | 330

<

=)

A B

Aside from the critique of the nestedness restriction, the definition of CPNE
also fails to account for the foresight of rational players, as noticed by Chwe (1994).
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The myopia embedded in the definition of CPNE can be illustrated by the ex-
ample in Table 3.2 taken from Chwe (1994). For this game, the unique CPNE is
(M, C, B). Although (D, R, B) renders both players 1 and 2 higher payoffs than
(M, C, B) does, players 1 and 2 will not. jointly deviate to (D, R, B). According
to the definition of CPNE, such a joint deviation is not self-enforcing, the reason
being that player 1 can subsequently deviate to (U, R, B), 2 “self-enforcing agree-
ment” under the nestedness assumption. But this implies, evidently, that players
1 and 2 are myopic: were they farsighted, their joint deviation to (D, R, B) should
be encouraged, not discouraged, by player 1’s further deviation to (U, R, B).

This chapter offers a model of pre-play communication that overcomes the
difficulties of CPNE as illustrated through the examples in Tables 3.1 and 3.2. The
suggested notion, “negotiation-proof Nash equilibrium”, exploits open nonbinding
negotiation that takes place prior to the play of an one-shot noncooperative game.
The pre-play negotiation is conducted as follows: Suppose a strategy profile is
considered by all the players. A group or coalition of players can make a joint
objection by announcing openly, “if the rest of you stick with your strategies, we
shall adopt new strategies so-and-so”. This objection is simply a declaration of
joint intention or a joint “contingent threat” that comprises no binding power.
Given the new, revised strategy profile, another coalition, not necessarily a subset
of the original objecting coalition, can make a further objection by announcing
openly the new strategies its members will adopt contingent on the strategies of
nonmembers. The process continues in this manner, until no coalition has an
incentive to make any further objection. Since players are rational (and hence
farsighted) and binding agreements are not possible, a coalition, in contemplating
an objection, has to consider the ultimate consequences of its objection; and a
self-interested player joins a coalition only if it is in his best interest to do so.

The above pre-play negotiation process takes after the “coalitional contingent
threat situation” (Greenberg 1990) but for the following two distinct features:
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(i} The pre-play negotiation is proceeded by an one-shot noncooperative gamne,
hence a2 meaningful agreement must be self-enforcing, i.e., must be a Nash
equilibrium;

(ii) In the pre-play negotiation, players are farsighted in that each coali-
tion®, in making an objection, considers that another coalition may make
counter-objections, a third coalition may make further objections, and
etc. What matters to farsighted players is the final agreements that their
objections will lead to; hence they may strategically “deviate” to an agree-
ment, which is not necessarily a Nash equilibrium, in order to induce a final

agreement (necessarily a Nash equilibrium) that benefits all its members.

Loosely speaking, a Nash equilibrium is negotiation-proof if and only if no coali-
tion can make an objection to it in such a way that its objection will ultimately
lead to another negotiation-proof Nash equilibrium that benefits all its members.
Such a definition is intrinsically “circular”,!® and is achieved by employing von
Neumann and Morgenstern's (1947) “abstract stable set™.

In the above pre-play negotiation, it is feastble that any coalition can form and
object to any strategy profile. However, a rational and self-interested player is not
bounded to join any coalition. The formation of any coalition is purely voluntary
and is driven by each member’s pursuing his own interest, and a group of ralional
players forms a coalition only if it is in the best interest of each member not to quit
this coalition. Thus, our negotiation process captures the intrinsic néncooperative
behavior of the players. In Table 3.1, for example, its is feasible for players 1 and
2 to form a coalition and jointly “deviate” from (U, L, A) to (D, R, A). But,
player 1, being mational and hence farsighted, will not join player 2 to make such a
deviation, knowing player 3 {or players 2 and 3) will further deviate to (D, R, B).
It is not essential who can make a proposal that players 1 and 2 form a coalition
to jointly deviate from (U, L, A) to {D, R, A): player 1 will neither initiate nor

9 A single player is a singleton coalition.
10Recall that the nestedness restriction enables CPNE to be defined recursively.
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accept such a proposal.

Therefore, it is @ priori that any coalition can form, but rationality dictates
which coalitions (would) actually form. Here, I take the view that *“it is the
possibilities for coalition forming, promising and threatening that are decisive,
rather than whose turn it is to speak” (Aumann 1987). The negotiation allows the
players to negotiate openly and directly, and to exercise their “bargaining power”
embedded in the structure of the game, in particular, the intrinsic properties of
payoffs. As discussed earlier, some models of pre-play communication impose
procedures that can be represented by extensive form games. For example, in
Rabin’s (1994) [see also Farrell (1987, 1988)] model of pre-play communication (for
two-player games), players make repeated simultaneous proposals of equilibria; if
the players propose the same equilibrium, they have an agreement to play that
equilibrium.!! The pre-play negotiation process postulated in this paper may be
viewed as a natural extension to these models.

In the next section, the pre-play negotiation process among rational (and far-
sighted) players is formalized as a “(directed) graph”. Such a graph need not be
acyclic and does not stipulate that each “node” should belong to a single player.!2
This is in cont'rast to an extensive form game, which is a acyclic graph and re-
quires each node to belong to a single player. The graph captures the dynamics as
well as the diverse coalitional interactions in the negotiation process. Although,
such a complex negotiation process cannot be represented by an extensive form
game in discrete time, it might be possible to accommodate such a process in an
extensive form game in continuous time, such as the framework used by Perry
and Reny (1994).

The rest of this chapter is organized as follows. In the next section, following

'1Such a procedure may be “at variance with common procedure” [see Rabin (1994, p.389))].

2In fact, when a strategy profile = is under consideration, it is feasible that any coalition
ean make an objection. Rationality dictates which coalitions would actually form, and = is
not negotiation-proof as long as there exists one coalition of rational players who will ultimately
benefit by objecting to =. Therelore, it is not necessary to restrict that only a particular coalition
or player can object to x.
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the formalization of the negotiation process, a formal definition of “negotiation-
proof Nash equilibrium” is offered using von Neumann and Morgenstern abstract
stable set. Section 3.3 provides a way to improve the notion of negotiation-proof
Nash equilibrium. Section 3.4 extends negotiation-proofness to dynamic games.
Section 3.5 offers a brief discussion of several attempts in the literature to relax
the nestedness restriction of CPNE and to capture the foresight of players in

strategic settings. It also briefly discuss the possibility of allowing for correlated
strategies.

3.2 Negotiation-Proof Nash Equilibrium

Consider a strategic form game G = (N, {Z;}ien, {ti}ien), where N is the set
of players and for every i € N, Z; is the set of strategies of player i, and u; is
the payoff function of player i, u;: Z — R, where Z = [{,cy Zi- For SC N, let
Zs =[J;cs Zi, and for all z,y € Z, I write z <s vy if ui(x) < ui(y) forallie S.

Assume that z € Z is under consideration. As discussed in the introduction, it
is a priori that any coalition cen form to jointly object to z. If a coalition SC N
objects to z by choosing ys € Zs contingent on Tn\g, then the resulting new
strategy profile is y = (ys, Tn\s); in this case, I shall write z —5 ¥ to denote “S
objects y to z”. Thus, for all S C N, —3 is a (binary) relation on Z that specifies
what S can do if and when it forms. Given that players are raticnal and hence

farsighted, if a coalition S forms and objects ¥ to z, it must be the case that

(Cl) such an objection leads to a final agreement z that benefits all members
of S.

Recall the example in Table 3.1. Coalition {1, 2} does not form for the exact
reason that (Cl) is violated. The example Table 3.3 illustrate that a coalition
forms when (C1) holds.

Both (U, L, A) and (D, R, B) are CPNE's. In fact, they are also SNE's. I shall
argue, however, that pleyers 1 and 2, being farsighted (as implied by rationality),
will jointly deviate from (U, L, A) to (D, R, A), because player 3, for his own
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TABLE 3.3
L R L R
U | 222 { 001 Ul 000 | 1,1,1
D | 001 | 220 D | 000 | 341
A B

interest, will subsequently deviate to (D, R, B), which renders both players 1
and 2 higher payoffs than (U, L, A}. Note that players 1 and 2 do not (strictly)
prefer (D, R, A) to (U, L, A). Thus, in contemplating a deviation, a coalition of
farsighted players considers the final agreement that its deviation leads to, as
asserted by /C1). Note that the joint deviation of players 1 and 2 from (U, L, A)
to (D, R, A) is self-enforcing: neither player 1 nor player 2 has an incentive to
object to such an agreement, knowing that the joint deviation leads to (D, R, B).
Again, it is not essential that who proposes this agreement; it is the existence of

such an agreement that invalidates (U, L, A).

TABLE 3.4
L R L R
U | 222 | 00,1 U | 000 | 1,11
M| 201 | 402 M | 002 | 0,10
D | 001 | 220 D | 000 | 341
A B

As condition (C1} asserts, it is not sufficient for coalition {1, 2} to form and
make a joint objection in such a way that this objection can feasibly lead to a final
agreement that makes both players 1 and 2 better off. Further deviations along
the way to the final agreement that players 1 and 2 hope to reach, may leads to
an agreement that make player 1 or 2 worse off. Consider the example in Table
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3.4, which is a modification of Table 3.3. It is still feasible that players 1 and 2's
joint deviation from (U, L, A) to {D, R, A) leads to (D, R, B). But, will player 2
join player 1 to deviate from (U, L, A) to (D, R, A) in the hope that player 3 will
subsequently deviate to (D, R, B)? The answer is no. Once (D, 2, A) is reached,
it is inevitable that player 1’s further deviation to (M, R, A) would prevail. Thus,
although it is feasible for players 1 and 2 to jointly deviate from (U, L, A) to
(D, R, A), player 2, being self-interested and farsighted, will not form a coalition

with player 1 to make such a deviation.

The above two examples illustrate that rational and farsighted players, in con-
templating their deviations, consider all further deviations and recognize the other
players are also rational and farsighted; they “strategically” deviate from an agree-
ment if and only if such a deviation will ultimalely lead to final agreements that
make them better off. That is, a coalition forms to make a joint objection if and
only if such an objection can lead to a final agreement that benefits all its mem-
bers, and no coalition has an incentive to prevent this final agreement from being
reached by deviating along the way to this final agreement. The perfect foresight
is captured by considering, as a whole, the succession or “path” of deviations that
lead to a final agreement. Consider, in the examples in both Tables 3.3 and 34,
the path that players 1 and 2 deviate from (U, L, A) to (D, R, A) and player 3
subsequently deviates to (D, R, B). This path “prevails” in the example depicted
by Table 3.3 because it survives all rational deviations of farsighted coalitions
(or players); that is, players 1 and 2's joint deviation from (U, L, A} to (D, R, A)
will lead to (D, R, B). The same path, however, does not prevail in the example
depicted by Table 3.4.

Thus, we can represent the pre-play negotiation process by a (direcled) graph
that consists of the set of vertices (nodes) Z and a collection of ams where for
every a,b € Z, ab is an arc if and only if there exists $ C N such that a —g b.

Assume that some ¥ € Z can replace z through a succession of deviations and,
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at every “stage”, the deviating coalition prefers y to the agreement from which it
deviates.'® This succession of deviations that replace z with ¥ a called a “path”

(of deviations) from « to y. Formally,

Dcfinition 3.1. A path from z € Z is a sequence of strategy profiles (z°,2',...,

£™) in Z, where z° = z, such that there exist coalitions S°,S!,...,5™ ! and

gf —g, 23t and @¥ <g; 2™, forall j =0,1,...,m— 1.

For a game G, let II denote the set of all paths, including all “degenerate”
paths, i.e., all elements in Z. For a € II, let f{a) denote the final “node” (strategy
profile) that lies on path o, ie., f(a) = z™, and if z is strategy profile that lies
on «, I shall write z € a. For o, 8 € I, if f(a} <5 f(B) for some S C N, I shall
write & <5 5.

As discussed in the introduction, the open negotiation is proceeded by a non-
cooperative game; hence a meaningful agreements must belong to the set of Nash
equilibria (self-enforcing agreements} of G. Therefore, only those paths that lead
to Nash equilibria are of interest. Let NE denote the set of Nash equilibria of &
and let lIyg = {a | f(a) € NE}. In order to determine whether a path & € Iy e
will prevail, deviations along a have to be considered. For any = € ¢, if a coalition
can initiate another path @ that makes its members better off than ¢, then o is

said to be “dominated” by 5. That is,

Definition 3.2. For o, 8 € IIxg, @ is dominated by 8, or o < 3, if there exists
z € o and y € B such that z —s y and o <g 8.1

3 itself may be dominated by another path, say, v. Thus whether o will
prevail depends whether 8 will prevail; whether 8 will prevail depends, in turn,
on whether v will prevail; and so on. We wish to identify a set of paths £ CIIyg

13The Iatter condition implies that we restrict our attention to those “paths” that can pos-
sibly be followed by rational players.

14For the example in Table 3, let & = ((U, L, A), (D, R, A), (D, R, B)) (i.e., path a consists
of players 1 and 2’s deviation from (U, L, A) to (D, R, A) and player 3’s further deviation to
(D, R, B)) and 8 = ((D, R, A}, (M, R, A)); then, a < 8.
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such that it contains these and only lhose paths that are not objected by any
coalition, whose members are aware of and believe in the specitication of such
E. That is, ¥ is both consistent and self-policing: moreover, it “justifies” every
path it excludes. This is precisely the intuition behind the von Neumann and

Morgenstern abstract stable set. Recall,

Definition 3.3. Let D be an arbitrary nonempty set and £ be a binary relation
on D, called the dominance relation'®. The pair (12, Z) is called an abstruct

system. K C Dis

(1) internally stable if K is free of inner contradiction, i.e., there do not exist
a,b€ K,suchthat a Z b;

(2) externally stable if K accounts for every element it excludes, i.e., if a €
D\ K, then there exists b € K such that a Z b.

(3) an abstract stable set if K is both internally and externally stable.

Let X be an abstract stable set for {IIy g, <), then it contains those paths that
are to prevail in the pre-play negotiation, once ¥ becomes common knowledge.
Note that the abstract stable set for (IIyg, <) takes noncooperative behavior
of self-interested players fully into consideration. If a path « in I involves any
coalition, it implies that members of this coalition recognize the interdependence
of their welfares and choose to coordinate their choice of strategies. Should some
player find it not in his best interest to joint such a coalition, o would have
been ruled out from . Consider, again, the path that players 1 and 2 deviate
from (U, L, A) to (D, R, A) and player 3 subsequently deviates to (1), R, B) in the
examples in both Tables 3.3 and 3.4. This path belongs to the unique abstract
stable set for (Il g, <) associated with example in Table 3.3, implying that players
1 and 2 will form a_coalition if (U, L, A) is under consideration. The same path,
however, does not belong to the unique abstract stable set for (IIy g, <) associated
with Table 3.4, because player 2 knows that once {D, R, A) is reached, players 1

135 £ b means that a is dominated by b.
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and 3 will deviate to (A, R, A) (which belongs to the abstract stable set): hence

players 1 and 2 will not form a coalition when (U, L, A) is under consideration.
If ¥ is an abstract stable set for (Ilxx, <) then it is ~dynamically consistent™.

That is, every “stable path” in L satisfies “truncation property”: the continuation

of a “stable path” is stable at any stage along the way. Formally.

Lemma 3.1. Assume that T is an abstract stable set for (Ilng. <) and that

a € X, Then, |, € L for all £ € o, where «|; is the continuation of o from .

If a Nash equilibrium z is not objected by any coalition who believes the

specification of ¥ (that is stable), then z is said to be “negotiation-proof™.

Dcfinition 3.4. Let ¥ be an abstract stable set for the abstract system (Ilx g, <):
then the set of Negotiation-Proof Nash Equilibria (NPNE's) of G is given by

Qu={re NE|(z) €I} ={z € Z|3ac = such that z = f(a)}.

If ¥ is an abstract stable set for (Ilxg, <), then Qy is nonempty (by the ex-
ternal stability of ¥). Qx contains those and only those self-enforcing agreements
from which no coalition can initiate such a deviation that will ultimately lead to
some self-enforcing agreement in Qyx that benefits all its members. That is, on
one hand, if  belongs to Qx, then no coalition {or player) will uitimately benefit
by objecting to z; on the other hand, if z does not belong to Qy, then it must be
the case that af least one coalition (or player) will ultimately benefit by objecting
to . Again, what matters is the existence of a coalition that ultimately benefits
from its objection; it is not essential who turn it is to “move” when a strategy
profile is under consideration.

For the game in Table 3.1, both (U, L, A) and (D, R, B) are negotiation-proof.
For the game in Table 3.2, although the unique NPNE is (M, C, B), which co-
incides with the unique CPNE, the underlying logic is very different: In CPNE,
players 1 and 2 will not deviate to (D, R, B) because of both the nestedness re-
striction and myopia embedded in the definition of CPNE as discussed in the
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introduction. According to the definition of NPNE, however, players 1 and 2
will not deviate to (D, R, B) because such a deviation cannot eventnally Lene-
fit them. For the example in Table 3.3, (D, R, B) is the unique NPNE, which
“refines” CPNE and SNE. The set of NPNE's of the game in Table 4 comprises
(U. L. A), (M,R, A), and (D, R, B).

Following von Neumann and Morgenstern (1947), the dominance relation < on
Iy g is sald to be sirictly acyclic if there does not exist an infinite sequence of

paths o',a?, ... in llyg such that of < @ *! forall j =1,2

LI I

Proposition 3.2. If < isstrictly acyclic, then, the set of NPNE's of G is uniquely
defined and nonempty.

The examples in Tables 3.1 through 3.4 all satisfy the condition in Proposition
3.2

Corollary 3.3. Let G be a game such that N E is finite and all Nash equilibria
can be weakly Pareto-ranked. Then, the set of NPNE’s of G is uniquely defined
and nonempty. Moreover, if G has a unique Pareto efficient Nash equilibrium
(within NE), then it is the unique NPNE.

TABLE 3.5
L R L R
Ul 222 | 000 U 220 | 000
0,00 | 33,0 D | 000 |.1,11
A B

Thus, for games with common interests and coordination games, pre-play ne-
gotiation achieves full efficiency; and if a game has a unique Nash equilibrium
(for example, the Cournot oligopoly model}, then it is also the unique NPNE.
The property of NPNE in Corollary 3.3 is not shared by CPNE. It is easy to
verify that the game in Table 3.5 does not admit a CPNE or an SNE. But the
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unigne NPXE is (U, L, A).
NPNE may differ from CPNE or SNE even for two-player games.

TABLE 3.6 .
L R
2,2 0.0
0,0 1,2

Both (U, L) and (D, R) are CPNE’s and SNE's. However, the unique NPNE
is (U, L): player 1, being farsighted, will objects (U, R) to (D, R).

3.3 Weakly Negotiation-Proof Nash Equilibrium

The game in Table 3.6 illustrates that the foresight of rational players enables
NPNE to provide “sharp prediction”. However, the dominance relation < may
endow a deviating coalition (or player) with too much “power”. To illustrate this,
consider a slight. modification of Table 3.6, which gives rise to the familiar “battle

of the sexes” game in Table 3.7.

TABLE 3.7

L R
Ul 21| 00
D{ oo {12

In this case, paths « = ((U, R), (D, R)) and 8 = ((U, R), (U, L)) dominate each
other, Therefore, for T C IIyg to be (internally) stable, either « or £ must be
excluded from . Indeed, (Ily g, <) admits a stable set £! that rules out & and
another =2 that rules out 8. Consequently, (U, L) is an NPNE according to B!
and (D, R) is an NPNE according to £2.16 The exclusion of one path, say «
from E!, is attributed to that 3 belongs to £! and « is dominated by 3. Note,

'The Nash equilibrium in mixed strategies yields payoffs of (2, 2), is not an NPNE according
to either X! or ¥?, because it is Pareto dominated by both (U, L) and (D, R).
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however, that ;3 itself is also dominated by a. Therefore, it does not seem sound
to rule out one path based on another if these two paths dominate each other.
For this reason, I define a “stronger” dominance relation <« based on <: o & 3
if o < 3 and 3 £ . Since farsighted players look arbitrarily many steps ahead,

the dominance relation < relation can be generalized as follows.
Definition 3.5. Fora, B3 €ll, a € 3if
(1) ¢ < B, and

(2) there do not exist 3°,3!,...,8™ in Ty, where 8° = 3 and 3™ = e, such
that for j =0,1,...,m—=1, & < gt

Using < we can define the notion of “Weakly Negotiation-Proof Nash Equi-
librium (WNPNE)" as follows.

Definition 3.6. Let T be an abstract stable set for the abstroct system (I, <
); then the set of WNPNE's of G is given by

We={ze NE|(z) € X} ={r € Z |3 € T such that z = f{a)}.

The notion of WNPNE coincides with the notion of NPNE for the games
in Tebles 3.1 to 3.6. However, for the game in Table 2.7, (Ilyz, <) admits a
unique abstract stable set that includes both « and 3; hence the set of WNPNE’s
Wy = {(U,L),(D,R)} is uniquely defined.'” WNPNE may exist when NPNE,
CPNE, or SNE fails to exist. Consider the following example.

TABLE 3.8
L R L R
Ul 123! 0,00 U | 000 | 312
D | 0,00 | 231 D! 000 | 000
A B

17The Nash equilibrium in mixed strategics is not weakly negotiation-proof.



G2 CHAPTER 3. NEGOTIATION-PROOF NASH EQUILIBRIUM

The game does not admits a CPNE, an NPNE, or an SNE; however, there exists
a unique stable set for (Ily g, <), giving rise to three WNPNE's: (U, L, 4,), (D, R,
A), and (U, R, B). The implication of the examples in Tables 3.7 and 3.8 is that
pre-play negotiation cannot pin down the exact equilibrium to be played in these

games,'®

Proposition 3.4. Let G be a finite game. Then, the set of WNPNE’s Is nonempty
and wiquely defined.

3.4 Extensive Form Games

Although the primary concern of this paper is normal form games, the notions
of NPNE and WNPNE can also be extended to dynamic games. (We shall focus
on WNPNE in this section.) In doing so, we have to be explicit about whether
there is on-going open negotiation as the game unfolds. In the absence of on-going
negotiation, players negotiate openly only before they engage in an extensive form
game and will not have the opportunity to meet again once the game starts. In
this case, we need only to consider negotiation-proof agreements. If on-going
negotiation is exercised, then players negotiate prior to the start of every subgame;
that is, players renegoliale after every history of play. In this case, agreements has
to be “renegotiation-proof”. Such a distinction is important particularly from the
view point of a single player. Renegotiation-proofness entails that every player,
in contemplating a deviation, is certain that all players will meet and renegotiate
after his deviation; in fact, he believes negotiation will occur after any deviation
by any player {or coalition) in any future period. If for whateve~ reason a player
is uncertain whether renegotiation will take place after a unilateral deviation and
is averse to such a uncertainty, then negotiation-proofness may well be relevant.!?

Negotiation-proofness for extensive form games can be defined in the same

185uch is the case whenever a game has multiple (weakly) negotiation-proof equilibria. Sec
Subsection 3.5.4.

191n the context of repeated games, the consideration that renegotiation might not take
place after every history appears, for example, in Pearce (1987), Bergin and MacLeod (1993),
and Chapter 4 of this dissertation.
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fashion as negotiation-proofness for normal form games except that for extensive
form games only “meaningful” agreements have to be subgame perfect equilibria.
Let SPE denote the set of subgame perfect equilibria for G and let Igpp = {a |
fle) € SPE}.

Definition 3.7. Let T be an abstract stable set for the abstract system (Ilgpy. &
); then the set of Weakly Negotiation-Proof Nash Equilibria (WNPNE's) of G is
given by

Wy = {z € SPF | da € T such that z = f(«)}.

Consider the following game [from Bernheim et al. (1987)] repeated twice

without discounting.

TABLE 3.9
L C R
U |55 (06 | 00
M| 60 | 44 | 00
D |00 | 00 | 22

There exists a unique WNPNE: In the first period, players choose (U, L); the
second period play is (D, R) if any player deviates in the first neriod and (M, C)
otherwise. The equilibrium payoffs are (9,9).

Renegotiation-proofness entails that renegotiation precedes every subgame. For
extensive form games with finite number of stages, we can use a simple recursive

definition as in, for example, Bernkeim and Ray (1989) and Ferreira (1996).
Definition 3.8.

(1) For a single stage game G, z € Z is renegotiation-proof if and only if it is
a WNPNE. '

(2) Let t > 1. Assume that renegotiation-proof equilibrium has been de-
fined for all games with less than ¢ stages. Then for any game G with
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L stages, x € % is renegotiation-proof if and only if x is a WNPXE for

G =(N,Z,{uitien), whive
7 = {z € Z |the restriction of = to any proper subgame of G

constitutes 2 WNPNE for that subgame}.

For the example in Table 3.9, the unique WNPNE is not renegotiation-proof:
player 1, say, will deviate in the first period by playing M, being certain that in the
second period player 2 will join him to renegotiate and abandon the punishment
equilibrium (D, R) for (M, C).2° The unique renegotiation-proof equilibrium is
to repeat (M, C), which yield payoffs of (8, 8).

Renegotiation-proof equilibrium exists for ﬁnite games.

Proposition 3.5. Let G be a finite game in extensive form. Then there exists
a renegotiation-proof equilibrium. Moreover, every negotiation-proof equilibrium
is subgame perfect.
3.5 Discussion

3.5.1 CPNE and the Nestedness Restriction

One of the motivations to define NPNE and WNPNE is to resolve the nest-
edness restriction and the myopia embedded in the definition of CPNE. I first
discuss briefly several notions in the literature that attempt to relax the nested-
ness restriction.

Recall, first, the following definition of CPNE using von Neumann and Mor-
genstern abstract stable set (Greenberg 1989 and 1990). For a game G, let

D={(S,z)| SCNandze Z},
and for (S,z) and (T,y) in D,
(8,2) L (T,y) <= T CS,zy\r =yn\T, aud T <5 ¥.

201f the game is repeated more than twice, each player is certain that players 1 and 2 will
renegotiate every time he or his opponent deviates.
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Theorem 3.5 (Greenberg 1989). Let K be an abstract stable set for (1, 2).
Then the set of CPNE’s is given by {z | (N,z) € K}.

The nestedness restriction is evident in the above definition. This {nestedness)
restriction can be relaxed in several ways, depending on whether the agreements
of a deviating coalition are cornmon knowledge [see Greenberg (1994)]. In the
“coalition contingent threat situation™ (Greenberg 1990), each deviation is made
publicly (and is hence common knowledge} and further deviations are not re-
stricted to subcoalitions. This negotiation process is delineated by a dominance

relation on Z2! defined as follows.
z L'y <= 35 C N, such that zy\s = yn\s, and = <s .

The abstract stable set for the abstract system (Z, Z') consists of those and only
those agreements that players, who may be myopic, can reach in open pre-play
negotiation. Such an abstract stable set may contain strategy profiles that are not
Nash equilibria [see Greenberg (1990)], in which case, it is necessary to enforce,
via binding contracts, these agreements, or to assume that & is not played as an
one-shot noncooperative game.

Arce M. {1994) argued that “coalition building” often occurs in political situ-
ations; that is, new members are added efficiently to an existing coalition so that
the final outcome benefits all members of the new coalition. Therefore, the nest-
edness restriction of CPNE is “inverted”. This implies that cooperation becomes
possible in prisoner’s dilemma, since once a coalition forms, it will never break.

The nestedness assumption can also be relaxed under the assumption that the
agreements of a deviating coalition are not common knowledge. Loosely speak-
ing, the negotiatio:}'_ process underlying the definition of CPNE can be viewed as
follows: A deviatin-g-coaﬁtion S, upon reaching an agreement among its members,
leaves the scene of negotiation and members of S will never approach nonmem-

bers. In Chakravorti and Kahn’s (1993) definition of “universal coalition-proof

2lwithout the nestedness assumption it is sufficient to define the dominance relation on Z.
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equilibrium”, a subset of §, say T, is allowed to approach and attract some mem-
bers that are not in S, say some Q C N\ S, in contemplating further deviatjons.
Since () is not aware of the previous agreement of § , Chakravorti and Kahn pos-
tulated that Q joins 7' only if any actions of 7' U Q that hurt some member of
will also hurt some member of 7°. Moreover, in defining their notion, Chakravorti
and Kahn employed semi-stable set (Roth 1974) rather than (abstract} stable set

used in this paper.

3.5.2 Agrcements among Farsighted Players

Study of agreements among farsighted players in strategic environments can
be found, for example, in Chwe (1994) and Xue (1995), where a strategic form
game is a special case of the model [introduced in Chwe (1994)] they analyzed.
Chwe (1994) formalized Harsanyi's (1974} “indirect dominance” in an attempt
to capture foresight. For a normal form game, a strategy profile ¥ is said to
indirectly dominate another strategy profile z if ¥ can be reached from z through
a succession of deviations, and at each “stage”, the deviating coalition prefers
y to the agreement from which it deviates. Thus, this indirect dominance is
defined on the set of strategy profiles. Based on such an indirect dominance, Chwe
(1994) defined “the largest consistent set (LCS)” and applied it to the negotiation
processes underlying the “coalitional contingent threat situation” and CPNE. In
both cases, LCS may involve agreements that are not Nash equilibria. Moreover,
the implicit behavior assumption [See Xue (1995)] underlying the LCS is different
from the one embedded in the notion of abstract stable set that has been used
to define NPNE and WNPNE. Chwe (1995) also applied LCS to open pre-play
negotiation but assumed that players only consider Nash equilibrium strategies in
the negotiation; while in this paper a coalition may deviate to an agreement that
is not necessarily a Nash equilibrium, as long as such a deviation will eventually
lead to some final agreement (necessarily a Nash equilibrium) that benefit all its
members. Furthermore, Xue (1995) showed that indirect dominance captures only
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partial foresight in that it ignores deviations on the way to the final agreements.
Xue (1993) offered a formalization of perfect foresight by considering thie “paths”
of deviations. The notions of NPNE and WNPNE are built on this formalization

of perfect foresight.

3.5.3 Correlated Strategies

CPNE can be extended to allow for correlated strategies. In Moreno and
Wooders (1994), for example, a correlation device (or mediator) is available every
time a coalition forms, and a coalitional deviation is carried out through such a
correlation device. In their notion of “coalition-proof correlated equilibrium™, self-
enforceability of a deviation resembles that of CPNE. Correlated strategies can
also be introduced to the pre-play negotiation analyzed in this paper, and then
players bargain to determine which correlated equilibria are negotiation-proof, 1f
a corrzlated equilibrium is negotiation-proof, then this equilibrium is implemented
by the corresponding correlation device that makes a private recommendation to

each player.

3.5.4 Concluding Remarks

TG model pre-play communication is no doubt a task of great difficulty; this dif-
ficulty is magnified only by the restrictive framework of dynamic games. Instead
of modeling how messages are interchanged among the players, this paper offers a
model of pre-play communication in which players negotiate openly and directly.
I assume that communication admits the possibility of cealition formalion in that
any group of players can coordinate their choice of strategies, thereby making
joint objections in the negotiation. I set aside the details of communication that
lead to the formation of a coalition; instead, I assume that every coalition can
form and exploit rationality of the self-interested players to ascertain which coali-
tions will actually form (or “survive”), thereby fully capturing noncooperative
behavior intrinsic to a noncooperative game. Moreover, a strategy profile x is

not negotiation-proof as long as there exists one coalition of rational and self-
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interested players who will ultimately benefit by making an objection to z. Thus,
it is not necessary to stipulate that only a particular coalition or player can object
to z.%?

As the analysis in this paper indicates, pre-play negotiation does not nec-
essarily pin down the exact equilibrium to be played. If a game has multiple
negotiation-proof equilibria, one solution might be to randomize (through the use
of a correlation device or mediator) with equal probability among these equilib-
ria, on the ground that pre-play negotiation has exhausted all the “bargaining
power” embedded in the structure of the game, and hence all negotiation-proof
equilibria are equally “plausible”. This is similar to the idea that a exogenous rule
is employed to break a tie. Such a solution is obviously more prescriptive than
descriptive. Alternatively, one may argue that communication does not offer a
compelling justification for equilibrium analysis when multiple negotiation-proof
equilibria arise [see also Rabin (1994)], and resort to weak solution concept like
ralionalizability. If one does insist on equilibrium analysis, it might be neces-
sary to consider a equilibrium selection procedure such as the one proposed by
Harsanyi and Selten (1988), who used an evolutionary process to identify a unique

equilibrium.

APPENDIX

Proof of Lemma 3.1. Assume otherwise that o € Z(Il;), but a|. ¢ T for some
z € a. By external stability of I, there exists 8 € ¥ such that t a|- < 8. By
Definition 3.2, & < 3, contradicting the internal stability of .

Proof of Proposition 3.2. Since < is acyclic, by a theorem of vor Neumann and
Morgenstern (1947), (IIyg, <) admits a unique abstract stable set . By exter-
nal stability, £ # 0. Therefore, the set of NPNE's is nonempty and uniquely
defined. 1 |

22This is one of the important features that distinguish the graph from an extensive from
game.
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Proof of Corollary 3.3. Since N [ is finite and the set of Nash equilibria can be
weakly Pareto ranked, < is strictly acyclic. Then, it follows from Proposition 3.2
that the set of NPNE's is uniquely defined and nonempty.

Let x be the Pareto efficient Nash equilibrium within N and T = {a € [Iyy |
f(a) = z}. Then, 8 € Iyg \ T if and only if f(3) <~ £. Since f(J) —x r.
3 < z. Therefore, 3 € IIxg \ T if and only if 3 < x. But x € . Hence ¥ is
stable for (IIx g, <). Uniqueness follows from the fact that £ must be contained
in any stable set, since for all @ € I, there does not exists 3 € IIy;; such that

a<fB 1

Proof of Propositivn 3.4. We need only to show that (IIy g, <) admits a unique
abstract stable set. By a theorem of von Neumann and Morgenstern {1947}, it
suffices to show that « is strictly acyclic. That is, there does not exist an infinite
sequence cf paths a',c?,... in IIyg such that o & &/*! for all j = 1,2....
Indeed, let !, 0?,... be a sequence of paths in Iy z such that o & of! for all
j =1,2.... I claim that i < j implies that o' # /. Otherwise, o € o''! &
.o. & & = a'; hence & < a't! < .-+ € & = of. Then, by Definition 5,
o & ottt A contradiction. Il is finite since N E is finite. Thus, a!,a?,...

must be a finite sequence and hence « is strictly acyclic. 1

Proof of Proposition 3.5. Since G is finite, recursively applying Proposition 3.4
yields the existence of renegotiation-proof equilibrium. The second assertion fol-

lows from Definition 3.8 and the “one-stage deviation principle”. R
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Chapter 4
Self-enforcing Agreements in Infinitely Repeated
Games

This chapter defines the notion of “stable (self-enforcing) agreements” in infin-
itely repeated games where players can coordinate their actions but cannot make
binding contracts. It differs from renegotiation proofness in that it allows for any
coalition to deviate, and moreover, a deviating coalition does not count on rene-
gotiating with nonmembers. In addition to its intuitive appeal, stable agreements
can resolve the conflict between efficiency and renegociation: the set of stable
agreements is nonempty and efficient {within the set of subgame perfect equilib-
rium outcomes) for a large class of games including all two-player games and all

games for which every efficient subgame periect equilibrium path is stationary.

4.1 Introduction

The theory of repeated games has succeeded in explaining cooperation through
long-term interactions: a cooperative outcome can be supported by a subgame
perfect equilibrium of an infinitely repeated game. Thus, cooperation can be
achieved through self-enforcing agreements, provided that only unilateral devia-
tions are considered. However, this very “folk theorem” asserts that, in general,
any feasible and individually rational payoff vector can be supported by a subgame
perfect equilibrium [see, e.g., Fudenberg and Maskin (1986)]. In particular, many
Pareto inferior payoffs can be supported by subgame perfect equilibria. Thus,
repetition allows for, but by no means singles out, cooperative outcomes.

The literature on renegotiation-proofness in infinitely repeated games [see, e.g.,
Bernheim and Ray (1989), Farrell and Maskin (1989), Asheim (1991)] attempts to
refine the set of subgame perfect equilibria by assuming that the grand coalition
(and only the grand coalition) has the opportunity to negotiate anew (out of a
“bad” equilibrium) after every history. An immediate question that arises is why
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are deviations restricted to single players or else the grand coalition”? In addition,
why is it that only the grand coalition can renegotiate? While both individual
rationality and Pareto optimality are important, coalitional rationality should
also be considered. There is anocther, and more subtle reason to object to the
notion of renegotiation-proofness. As I shall shortly illustrate, it entails that the
grand coalition must renegotiate after every history. This is a very demanding
assumption: Each player, in contemplating a deviation, is certain that the grand
coalition will necessarily form to renegotiate. In particular, the grand coalition
might renegotiate toward the very (cooperative) outcome from which deviations
will occur, precisely because of the imposition of renegotiation. This is illustrated

through the example in Table 4.1 taken from Asheim (1991).

TABLE 4.1
as b2 Co d2
a - = - -
! 33 | 535 | 55 | -5,4

by | 5.5 12 | -5-5 | -53

€1 -5,-5 -3,-5 2,1 3,2

di | 45 | 25| 35 | 00

Suppose that this game is repeated infinitely many times and the discount
factor is 0.5. Let 7 denote the path of the infinite repetition of (a;,a). Note that
7 can only be supported by a subgame perfect equilibrium with Pareto inferior
punishments: Player 1’s deviation (to d,) is punished by m, the path of playing
(b1,by) for one period and then reverting to . Similarly, Player 2’s deviation (to
d») is punished by 7y, the path of playing (¢1, ¢2) for one period and then reverting
to w .2* These punishments are subject to “renegotiation”: Player 1, for example,
can deviate to d;, because he realizes that at the next period players 1 and 2

will definilely renegotiate in order to avoid the Pareto inferior path my. It follows

231f, in addition, player i € {1,2} deviates from m;, 7 € {1,2}, ;i restarts. This specifies a
simple strategy profile in the sense of Abreu (1988).
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. that 7 is not supported by a renegotiation-proof equilibrium. In fact, the only
subgame perfect equilibrium that is not subject to renegotiation (see Section 3} is
the infinite repetition of the Nash equilibrium of the stage game, (d;,d2), which
yields each player the lowest payoff within the set of subgame perfect equilibria.

As our discussion above demonstrates, the imposition of renegotiation after ev-
ery history may well be implausible: After a player deviates, the grand coalition
renegotiates only to find itself in the same position in the next stage. When this
oceurs, the deviating player can no longer count on renegotiation. The model pre-
sented in this chapter captures, among other things, this phenomenon: deviating
players cannot count on renegotiating with the rest of society. More specifically,
my model builds on the following three ingredients: First, I allow every coalition,
not only single players and the grand coalition, to deviate. Second, a deviating
coalition (or nlayer) believes that other players will not be willing to renegotiate.
This is captured formally by assuming that nonmembers of the deviating coalition

' will partition themselves into singletons (and thus, will not be able to correlate
their actions). Thus, a coalition bases its deviations on what it can “enforce”
by solely coordinating the actions of its own members.2* The third ingredient of
the analysis in this chapter is that players are assumed to be “conservative” or
“uncertainty averse” in the sense that they always fear the worst outcome, from
the set of “plausible” outcomes. I then define the notion of “stable (self-enforcing)
agreements”.

- When applied to the example in Table 4.1, the only stable agreement is .
Indeed, a single player, in contemplating a deviation from the cooperative outcome
w, realizes that the other player will nol be willing to renegotiate. Therefore, a
single player, by acting alone, cannot avoid any punishment {subgame perfect)
equilibrium, and hence will not deviate from 7. The grand coalition {1,2}, on

24There are, of course, other possibilities that may well be worth pursuing. What I point out
) in this chapter is that the existing literature on “renegotiation proofness” should be examined
.. more carefully, and that the results of such an examination may be encouraging.
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the other hand, will deviate from any Pareto inferior outcome, in particular, the
infinite repetition of the Nash equilibrium of the stage game (d;,d2). since its
members can jointly “enforce™ w. from which, as argued above, no single player
will deviate.

The organization of the rest of this chapter is as follows: In Section 4.2 1
formalize the notion of “stable (self-enforcing) agreements”, which incorporates
both coalitional rationality and dynamic consistency. I also investigate some
properties of stable agreements. In Section 4.3 the notion of stable agreements
is related to several notions in the literature including renegotiation-proofness,
perfectly coalition proof Nash equilibrium, and the 3-core. All proofs are relegated
to the appendix.

4.2 Self-enforcing Agreements

In this section I formally define the notion of “stable (self-enforcing) agree-
ments” if coalitions ¢an form and no binding agreements can be signed.

Consider a (stage) normal form game G = (N, {A;}ien, {¢i}ien), where N is
the finite set of players, A; is the action set of playeri € N, andu; : A > R is
the payoff function of player i € N, where A = .y Ai. Forevery i € N, A; is
assumed to be compact and u; continuous. Let G denote the infinite repetition
of G and let /7 denote the set of paths (action profiles), i.e., /T = A%, All players
discount future payoffs using the same discount factor § € (0,1). Thus, player i's
(normalized discounted) payoff from o = (a!,0?,...) € [T is

Uile) = (1—6) > _ 8'u(a).
t=1

Let H = U2 A", where A? = 0, be the set of all histories. A (pure) strategy for
i € N is a mapping f;: H — A;. |

A stable agreement (for N) is a2 path in /7 from which no coalition § C N
would wish to deviate.2’ Let PEP denocte the set of perfect equilibrium paths, a

25All inclusions in this chaptor are weak.
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set that is assumed to be nonempty. For @ € PEP and 7 > 1, let o, denote the
continnation of & from 7 (including 7) on. Suppose a path o« € PE P is considered
by the grand coalition V. A coalition § C N, in contemplating a deviation from
x at some period T > 1, has to compare a|; with “the set of paths that are likely
to oceur were S to deviate”.?® Denote this set by o(S | @, 7). Paths that do not
belong to o(8 | @, 7) are considered “implausible” continuations should S deviate
from « at stage T.

To make the analysis more tractable and in view of the fact that all continua-
tions of the game, from any history, are isomorphic to G°°, I assume that for all
a,a' € PEP and all 7,7 2 1, and forevary SC N, (S | e, 7) = 0(S | &', T').
That is, the mapping o is assumed to be indevendent of histories. While this is,
certainly, a restrictive assumption, it is weaker than that of stationarity in the lit-
erature of renegotiation-proofness, because the latter entails that such a mapping

is also independent of S (see Section 3).

Definition 4.1. A standard of behavior (or norm) is a mapping o that assigns

to every S C N a subset of PEP.

Following Greenberg (1990), I shall require that the standard of behavior & be
“stable”: o must be free of inner contradictions, i.e., “internally stable” and at
the same time must account for every path it excludes, i.e., “externally stable”.
As emphasized above, I assume that when a coalition S deviates its members
believe that non-members will partition themselves into singletons. Therefore,
in determining ¢(S), S considers only further deviations of two forms: either by
a single individual in N \ S, or, by subsets of $.2° Thus, within our context,
“internal stability™ stipulates that for all § C N, if & € ¢(S) then there do not
exist a coalition T C S or T = {j} for some j € N\ S and a stage 7 > 1 such that
“T prefers ¢(T) to a|:.” And, “external stability” stipulates that for all S C N,

2%An important part of the analysis that follows concerns the nature of this set.
2"Recall that agrecments are non-binding.
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if « € PEP\ o(S) then there exist coalition T"C S or 7" = {j} for some j € N\ &
and a stage 7 > 1 such that “T prefers o(7") to a|,..” The standard of behavior o
is stable if it is both internally and externally stable.

To formally define stability, we must first be precise on the meaning of 7
prefers o(T) to ¢|,”, or, more generally, on the meaning of *7' prefers A to a”
where A is a subset of PEP and o belongs to PEP. To motivate our definition
of this preference relation (between a single path and a set of paths), consider the

infinite repetition of the following 3-player game,

TABLE 4.2
£ r £ T
“1 901 | 002 1 901 | 002
d | 0,01 | 09, d | 001 | 09,1
A B

where player 1 chooses rows, player 2 chooses columns, and player 3 chooses
matrices. I claim that the coalition T' = {1,2} “prefers Ato a”, where A = PEP
and o is the agreement (in A) that results from “repeating (u,r, L) forever”.
Indeed, observe that players 1 and 2 can coordinate their actions in the following
way: After any history, play (d,£) if player 3 is currently playing®® R; play (u, £)
if player 3 is currently playing L and if (z,£) has been played no more times than
(d,r); otherwise play (d,r). By using these coordinated actions, both players 1
and 2 would be better off than they are under o from any path that might result.
It is important to note that players 1 and 2 can only coordinate their own actions,
and such a coordination might not suffice to define a unique path. Indeed, player
3's choice is not determined. He can (“rationally”) choose, at each stage, either

L or R. But, no matler how player 3 would play, by coordinating their actions,

28Since o is an agrcement, the actions of players 1 and 2 may depend also on the current
action of player 3.
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players 1 and 2 would be better-off than they are under a.??

It is precisely this reasoning that underlines the following definition.

Decfinition 4.2. Let 'C N, AC PEP, and « € PEP. We say that T prefers A

to ¢ if there exists a set B C A such that

(i) 8 € B <= /An € B such that for some 7 > 1, 8* =7 forall Lt < 7,
Blp =7, and S # 7
(i) Ui(e) < Ui(B) forall € Band forallieT.

Condition (i) captures the fact that members of T can coordinate their actions,
and condition (ii) captures the fact that the set of paths that respect this coor-
dination and the original set A, are preferred by each (conservative) player in T

over the agreement .

Definition 4.3. A standard of behavior o is stableif forall SC N, a € PEP\
o(§) <= 3721, T C SorT ={j} for some j € N\T, such that T prefers o(S)

to ar.

Let o be a stable standard of behavior. The set o(N) is called the set of
stable (or self-enforcing) agreements. The set of stable agreements, o(/N), captures
coalitional rationality and dynamic consistency: it contains those and only those
agreements in PE P that are not rejected by any S C N whose members are aware
of and believe in o, and realize that subsets of S or single players may pursue
further deviations, and that any coalition that further deviates goes through the
same reasoning. The reader is invited to verify that in the example in Table 4.1,
this set consists of the unique (Pareto) efficient perfect equilibrium path (PEP),
ie., o(N) = {r}.

It is evident that our definition of a stable standard of behavior is inspired by
the theory of social situations. Indeed, (see, e.g., Greenberg (1989)) the standard

29This example also illustrates +he importance of considering all coalitional deviations, since
the grand coalition is not alle to improve upon, for example, tha infinite repetition of (u,r, L).
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of behavior that assigns to each subgame the set PEP is “conservatively stable”

in the sense that

a€ T\PEP <31 >21,ie N, and b; € 4, s.t. Ui(al;) < Ui({bi.l)). 3.
V3 e PEP.

Our definition builds on this result and extends it to allow for coalitions to
deviate. This extension complicates the analysis in two ways. When deviations are
restricted to single players, (1) it is sufficient to consider only one stage deviation
( because G is contimious at infinity), and (2) the set of actions a deviating
player ¢ € N can take is not restricted; it can be any element b; in A;. Neither
(1) nor (2) remain valid when we extend, as we do, the analysis to altow for
coalitions to deviate. Indeed, the example in Table 4.2 above illustrates that
when coalitions can form, the “one-stage deviation principle” does not hold; we
must allow coalitions to coordinate their actions in several (or infinite) stages. A
coordinated one-stage deviation may not suffice to make every member better-off.

Now I shall illustrate, through another example, that a coalition S C N cannot
base its deviation on arbitrary actions in As = [[;c5 Ai- Consider the infinite
repetition of the prisoner’s dilemma in Table 4.3 and assume § = 0.4. It is easy
to verify that the ccoperative outcome of the infinite repetition of (d, £) cannot
be supported by a subgame perfect equilibrium. In fact, the unique PEP, =, is
to repeat (u,r) infinitely. Let o be a standard of behavior such that o(S) = =,
for all § C {1,2}. Were we to consider the joint deviation of {1,2} from = at
some period to (d,£), 7 would be ruled out. Such a deviation, however, cannot
be carried out without a binding agreement, since itself is subject to individual
deviations. To insist upon the self-enforceability of all agreements, a coalitional
deviation has to be consistent with ¢. Therefore, 7, the unique PEP, will be the
unique stable (self-enforcing) agreement.

Now I proceed to investigate some properties of stable agreements. The follow-

ing lemma indicates that individual deviations (in Definition 4.3) do not rule out
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TABLE 4.3

£ r
130 | 11
d] 22 | 03

any PEP. This assertion holds even if the deviating player can choose an arbitrary
action at the period of deviation. This is in contrast to the notion of renegotiation
proofness, which entails that a deviating player, believing that the grand coalition

will necessarily renegotiate, may deviate from a PEP (see Sections 4.1 and 4.3).

Lemma 4.1, Let o € PEP. Then there do not exist 7 > 1 and i € N such that
i prefers PEP to of.. In fact, @« € PEP if and only if there do not exist r 2 1,
i € N, and b; € A; such that ¢ prefers {b} x PEP to c|,, where b = (b; o™ ;).

Therefore, to derive PEP rather than impose it, we can modify Definition 4.3
by maintaining that a deviating player ¢ € N can choose arbitrary action in 4;
at the period of deviation.

The following proposition states that the stable standard of behavior exists*
and stable agreements are efficient within PEP if every efficient path « € PEP
is “stationary”, i.e., a = (a,q,a,...) for some a € A, as was the case for the

example in Table 4.1,

Proposition 4.2. There exists a stable standard of behavior ¢ such that o({i}) =
PEP, for all i € N. Moreover, if every efficient PEP is “stationary”, then every
stable agreement in o(N) is efficient (within PEP).

The following lemmas provide sufficient conditions on the stage game to guar-
antee the nonemptiness of ¢(/N). Again, the example in Table 4.1 satisfies each

condition.

30Recall that for every i € N, A; is compact, 4; is continuous, and hence the set of PEP is
compact [sec Abreu (1988)].
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Lemma 4.3. If |{N| = 2, then ¢(N) coincides with the efficient frontier of I’I'P.
Lemma 4.4. If PEP admits a unique efficient path «, then o(N) = {«}.

Remark 4.1. More general sufficient condition to guarantee the nonemptiness of
o{N) is yet to be established. I have been unable to find a counter example such
that o(NN) = §. Even if for some game o{N) = §, i.e., the grand coalition cannot
reach any self-enforcing agreement, a stable standard of behavior ¢ con still be
useful: By external stability ¢ cannot be empty valued (i.e., there exists S C N
such that o(§) # @), therefore, ¢ will “predict” the coalitions that are likely to

form.

4.3 Related Literature

4.3.1 Renegotiation Proofness.

The notion of stable agreements is motivated by the difficulties in the renego-
tiation proofness literature, and defined by applying the notion of stability and
“the theory of social situations™ (Greenberg 1990). Application of the notion of
stability and the theory of social situations to repeated games can be found in
Greenberg (1989) and Asheim (1991). In this subsection, I shall provide a brief re-
view of several theories of renegotiation-proofness that exhibit different attempts
to improve the notion of renegotiation-proofness, and show that existing difficul-
ties cannot be resolved under the assumption of renegotiation. Tue notion of
stability and the theory of social situation, again, provide a common framework

for our discussion.

Definition 4.4. Let = C PEP. Then I is®!
(i) internally R-stable if for every o € Z, (1) there does not exist 7 > 1 ich

31Note that “ N prefers £ to ajy” is equivalent to “there exists 8 € ¥ such that Ui(8) >
Ui(a]s) for all £ € N™. To facilitate comparison with the definition of stuble agreements in the
previous section, we retain the same notations as in the previous section. Also, I distinguish
individual deviations from the deviations of the grand coalition to allow a deviating pluyer to
choose any b; € A; at period 7. Such a distinction is unnecessary in the definition of stable
agreements, in view of Lemma 4.1.
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that N prefers ¥ to a|; and (2) there do not exist 7 > 1,7 € N and
b; € A; such that i prefers {8} x £ to «|,, where b = (b;,aT;);

(ii) externally R-stable if for every o € PEP\ X, (1) there exists 7 > 1 such
that N prefers ¥ to «, or (2) thereexist 7 > 1,1 € N and & € A; such

that i prefers {8} x Z to a|,, where b = (b;, aZ;).

I label the stability notion in the above definition R-stability for its relation to
renegotiation-proofness, which considers only deviations of single players and the
grand coalition and imposes renegotiation after every history. Note the stationar-
ity of : ¥ is independent of either histories or deviating coalitions (singletons or
the grand coalition). Two equivalent notions of renegotiation-proofness, weakly
renegolialion-proofness (WRP) (Farrell and Maskin, 1987) and internal consis-
tency (IC) (Bernheim and Ray, 1989), can be defined as follows.

Definition 4.5. T isinternally R-stableif and only if {z € ®" | z; = Ui(a),a € T}

is weakly renegotiation-proof (internally consistent).

Therefore, WRP and IC test only for internal R-stability. In general, internally
R-stable set need not be unique and one internally R-stable set may contain a
path that is Pareto dominated by some path in another internally R-stable set.
To solve this problem, Farrell and Maskin (1987) proposed strong renegoliation-
proofness (SRP). Let ¥ and ¥’ be internally R-stable. Then ¥ is “dominated”™
by £’, denoted T < E', if there exist & € ¥ and 8 € &' such that « is Pareto
dominated by 8.

Definition 4.6. If ¥ is internally R-stable and there does not exist another
internally R-stable set £’ such that & < ', then {z € ®" | z; = Ui(a),a € £}

is strongly renegotiation-proof.

However, the criterion in the notion of SRP is too demanding of a “candidate”
set E. As a result, a SRP set may not exist. Bernheim and Ray (1989) insisted
that the “challenging” set ¥’ should itself not be subject to such challenges, and
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propose the notion of consisient sel. Let © and £’ be internally R-stable. Then ¥
is “indirectly dominated” by %', denoted ¥ « ¥, if there exist a tinite sequence

of internally R-stable sets, &;,... .Sy suchthat T < &, <+ < T <« &L
Yy

Definition 4.7. Let £ be an internally R-stable set such that &/ < ¥ for every
internally R-stable set £’ such that £ « £'. Then, {x € RV | ;i = Ui(a).cx € £}

is consistent.

The notions of SRP and consistent. set, however, may, on one hand. eliminate
subgame perfect equilibria that are defeated only by equilibria that are themselves
not viable [see, e.g., Asheim (1991), Bergin and MacLeod (1993)], and. on the
other hand, may fail to account for every path they exciude. To resolve these
issues, the notion of Pareto perfect equilibrium (PPE) in infinitely repeated games
{Asheim, 1991) - the extension of Pareto perfection in finitel: repeated games
{Bernheim and Ray, 1985) — insists on both internal and external R-stability. In
particular, external R-stability implies that non-viable equilibria must be defeated
by viable ores. Under the stationarity assumption, Pareto perfect equilibrium is

defined as follows:

Definition 4.8. « is a Pareto perfect equilibrium (PPE) path if and only if £ is
both internally and externally R-stable aind & € Z.

However, the existence of a stable ¥ is problematic even in simple two-player
games: For the example in VTable 4.1, the infinite repetition of the Nash equi-
librium of the stage game, (d;, ds), constitutes the unique nonempty internally
R-stable set. Thus, it is the only candidate for a Pareto perfect equilibrium
path. But this path cannot account for the exclusion of other perfect equilibrium
paths. Consequently, Pareto perfect equilibrium fails to exist. Relaxing the as-
sumption of stationarity, existence f Pareto perfect equilibrium is restored [see
Asheim (1991)]. But in this case, there are multiple Pareto perfect equilibria:
infinite repetition of {ai,as), (b1,62), (¢1,¢2), or (dy,d2) can each be supported
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by a Pareto perfect equilibrium. Asheim (1991) concluded that this is due to “the

inherent difficulty of imposing renegotiation-proofness™ in such a case.

The multiplicity of theories of renegotiation-proofness has demonstrated the
attempts to improve the notion of renegotiation-prwofness. The attempts dis-
cussed above, however, maintain the assumption that »negotiation occurs after
every history. This implies, from a deviating player’s point of view, that after his
deviation, the grand coalition will necessarily form to renegotiate. This assump-
tion may well be implausible as illustrated by the example in Table 4.1: A player
deviates from 7, counting that the grand coalition negotiates back to = itself; the
grand coalition never realizes that it is its renegotiation back to 7 that encourages
a single player to deviate from 7. Moreover, the imposition of renegotiation after
every history results in a conflict between efficiency and renegotiation. Indeed,
the infinite repetition of the Nash equilibrium of the stage game, (dy,d;), is the
unique WRP equilibrium and the unique SRP equilibrium, and it also gives rise
to the unique consistent set. This equilibrium, however, is unanimously least

preferred among the set of subgame perfect equilibria (SPE).

Pearce (1987) recognized that imposition of renegotiation after every history
may be too strong: Cooperation requires punishments, so any theory of renegoti-
ation should consider how renegotiation affects the sustainability of punishments.
In Pearce’s notion of renegotiation-proofness, renegotiation occurs only if the pro-
posed equilibrium is as good as the original equilibrium in every subgame. In the
case of Table 4.1, infinite repetition of (a1, a2), (b1,b2) and (c1,¢2) can each be

supported by Pearce’s notion of renegotiation-proofness.

This chapter tackles the problem of renegotiation-prooiness by insisting upon
that a coalition must base its deviation on what it can “enforce” by solely coordi-
nating the actiorz of its own members. Thus, a single player, when contemplatin_

a deviation, cannot count on renegotiating with the rest of the players and has to
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consider the worst (purishment) subgame perfect equilibrizm.*? while the grand
coalition can base its deviation on any single PEP from which no proper subsets
wish to deviate. The notion of stable agreement, by offering a way out of the
conceptual difficulty of renegotiation-proofness, also resolves the conflict between
efficiency and renegotiation: For two-player games, where the only coalition that

can form is the grand coalition, we have

(1) o(N), the set of stable agreements, centains only those paths that are
Pareto optimal within PEP. For the example in Table 4.1, o(N) = {x}.
But as the same example demonstrates, WRP, SRP, and consistency may
select only Pareto inferior equilibria within the set of SPE's. Moreover, a
PPE may also be inefficient [see Asheim (1991)].%%

(2) The set of stable agreements is nonempty. But SRP equilibrium may
fail to exist [see Bernheim and Ray (1989)]. Stationary Pareto perfect
equilibriurn may also fail to exist. This is the case in Table 4.1 where
Pareto optimal payoffs can only be supported by Pareto inferior payoffs,

For games with more than two players, consideration of deviations of partial
coalitions is important as demonstrated by the example in Table 4.2. The notion
of stable agreements takes into consideration this important aspect of “coalitjonal

rationality”, which renegotiation-proofness fails to address.

4-3.2 Perfectly Coalition-Proof Nesh Egquilibrium and Strony Perfecl [iquilib-
TiUm.

Bernheim, Peleg, and Whinston {1987) applied their coalition proof Nash equi-
librium to dynamic games with finite horizon and proposed the notion of per-
fectly coalition-proof Nash equilibrivny ZTCPNE). This definition was extended by

32Were he to assume that the grand coalition would necessarily renegotiate, he would more
likely reject a (cooperative) path, as implicd by Lemma 1 and Definition 4.

33A sufficient condition for SRP, consistency, and Parcto perfection to select only Pareto
efficient equilibria within the set of SPE’s is that any ecfficient payoff within the set of SPE

payoffs can be supported by payoffs which are themselves efficient within the set of SPE payolls
[see Asheim (1991)}. The example in Tabie 4.1 violates this condition.
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Asheim (1988) to dynamic games with infinite horizon jsee also Asilis and Kahn
(1992)]. Unlike renegotiation-proofness, PCPNE considers all coalitional devia-
tions. It assumes, however, that after every history every coalition will form to
“renegotiate”. In particular, for two-player games, PCPNE coincides with Pareto
perfect equilibrium (Asheim, 1991). This signifies the difference between PCPNE
and the notion suggested in this chapter.

Rubinstein’s (1980) strong perfect equilibrium is more demanding®® in that it
requires an equilibrium to survive all conceivable deviations, many of which are
not credible. In particular, Pareto efficiency in the space of all feasible outcomes

is imposed.

4.3.8 The g-core.

The [3-core { Aumann, 1959) of the repeated game is the core of its S-characteristic
function. Let X; be the set of strategies of i € N, f.e, X; = {z; | z: : H — A;}
The S-characteristic function v : N2 — R¥ is given by: for all § C N,

(8= U {ue R |u; < Uj(zs,z_s),Vj € S}.

z.s€EXs2sEXs

The p-core is the set of payoff vectors ¢ in v(N) for which there does not exist
S C N such that for some £ € v(S), & > ¢ for all ¢ € §. The similarity
between our notion and S-core is that each coalition is certain about its ability to
coordinate the actions of its members but has to consider all contingencies created
by nonmembers. But the notion of stable agreements differs from the F-core in

the following aspects.

(1) In determining v(S), S has to consider the entire range of strategies of the
members in N \ §, including, for example, dominated strategies of V \ S.
In the definition of stable agreements, however, even though a deviating
coalition assumes that no coalition that contains nonmembers will form

to renegotiate, it does require individual rationality of nonmembers.

A strong perfect cquilibrium is always perfectly coalition proof.
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{(2) The definition of J-core does not consider the credibility or the selt-
enforceability of an “objection™.?* In the definition of stable agreements,
a coalition S considers the possible “internal” deviations and therefore the
credibility of an objection is verified.

(3) The 3-core does not consider dynamic consistency. In fact, J-core is a
notion in a static setting. Our notion captures the dynamic consistency

at both individual level (every stable agreement is in P /4/?) and coalitional

level,

4.4 Conclusion

In this chapter, I defined a notion of stable agreement in infinitely repeated
games where players can cocrdinate their actions but cannot make binding coun-
tract. The notion of stable agreements is nol 2 new definition of rensgotiation-
proofness; rather it is intended to serves as an alternative to the study of co-
operation and equilibrium selection in repeated games through the notion of
renegotiation-proofness. While it is interesting and instructive to test whether
a subgame perfect equilibrium is renegotiation-proof, renegotiation-proofness is
not and should not the only way of equilibrium selection or accounting for co-
ordination in repeated games. Imposing renegotiation after every history is a
very strong assumption, particularly from the viewpoint of single players. This
motivates the study of stable agreements in this chapter. My definition of stable
agreement is based on a pessimistic view of a deviating coalition: A deviating
coalition, which is uncertain whether renegotiation will take place, consider the
worst possibility that renegotiation might not occur; 2 coalition deviates only if
it can guarantee its members higher payoffs by solely coordinate the actions of its
members. That is, in contemplating its deviation, a coalition cannot confidently
count on renegotiating with other players, although it is possible that renegotia-

tion might actually occur after its deviation.

33This lack of “credibility” can be amended when N is finite, as was shown by Ray (1983)
and Greenberg (1990).
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Appendix

I first introduce the following notations to facilitate the proofs: For A C 1
and T C N, let &1(.A) denote the subsets of A that satisfy conditions (i) and (it)
in Definition 2. Hence T prefers .1 to some a € 20 if and only if there exists

&p € $p(4) such that for all 3 € ¢, Ui{a) < U;(J) foralli € 1"

Proof of Lemma 4.1. Otherwise, 3i € N and ¢(;y € ®[PPF2P] such that U7;(a*) <
U;(3"). where U;(e*) = min,e pgp Ui(a) and U;(3*) = minge,, ,, i(13). Since
U; is continuous at infinity, 31 > 0 such that U;(a") < U;(3*), where J* =
(3*1,..., ‘8“?, o"). Let 7 be the smallest ¢ such that the above holds. Now. consider
the period 7 — 1, then U;(e*) < U;(8°"~!, @), violating the stability of /2171 (see
page T).

For the second assertion, “if” is obvious, in view of the stability of F2I1* given

on page 7. The “only if” part follows from the proof of the first assertion (with

minor modification). |

Proof of Proposition 4.2.

The proof of existence resembles Greenberg’s (1990) results on the existence
of OSSB in the hierarchical situation. For each S C N, define, recursively, two
subsets of PEP, A(S) and B(S), as follows:

Forallie N,

B({i}) = PEP, and

M=l € B{i}|3r>1, i) € dr[B({i})] s.t.
Al = { Uilal-) < U:(8), Y8 € ds- } :

For S C N, assume that A(T) and B(T) are defined for all T" C S such that.
T # S. Define
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sy = [ FEPEP|Br2 1T C S with T # S aad 67 € Sr(B(T) \ A(T)]
) = st. foralli € T, Uilal,) < Us(3).¥3 € 6

and
ALS) = { a€ B(S)|3r>1land ¢gs € (I’S[B(S)]' s.t. foralli € T,}
Uilel+) < U:(8),V8 € és.

I claim that B(S) is compact for all § C N. Since PEP is a compact set,
B3({i}) is compact. Therefore, for |S| > 1, it suffices to show that B(S) is closed.
Let {«;} be a sequence of paths in 3(S) with a; — @, we need to show that
e € 3(8). Otherwise,3r > 1,7 C Swith T # S and ¢r € S [B(T)\A(T)] s.t. for
alli € T, Ui(a|,) < U;(5),Y8 € ¢r. Since U; is a continuous function for alli € N,
there exists J such that for all 7 > J, for all i € T, Ui(e;|-} < Ui(B).V0 € o
Then «; € B(S). Contradiction.

Now, define

A*(8) = {a € B(S)|3r > 1 and ¢s € D5[B(S)\ A(S)] s.t. foralli e T,}
Ui(elr) < Ui(B), V8 € ¢s.

I claim that A(S) = A*(S). I first show that A(S) C A*(S). Consider o € A(S).
Then 3r > 1 and ¢5 € B5[B(S)] st. for all i € T, Ui(al,) < Ui(B),V8 €
¢s. Since B(S) is compact, 3r > 1 and ¢5 € Pg[B(S)] st. for alli € T,
Ui{alr) < Ui(B),V8 € ¢5 and B € ¢% implies 8 € A(S). Therefore o € A*(S).
To show the converse inclusion, assume in negation that 3a € A"(S)\ A(S).
Then a € A*(S) implies that 3r > 1 and ¢s € ®[B(S) \ A(S)] s.t. for all
1€ T Ui(al:) < Ui(B),V8 € ¢s. Then 3¢'(S) € $5[B(S)] such that ¢s C @
and ¢s # ¢5. Since a € A(S), V¢'(S) € B5[B(S)] such that ¢s C ¢ and
s # ¢%,30 € ¢5 and ¢ € S such that Ui(a) £ U;(8). If 8 € A(S), contradiction,
since 8 € B(S) \ A(S) and yet 8 € ¢s. Otherwise 8 € A(S). Then, 3r > 1
and @5 € Ps[B(8)] s.t. for all i € T, Ui(8l;) < Ui(n),¥n € ¢% and € ¢%
implies 7 € A(S). Again we can replace 8 with some n € ¢%. If 3 € S such
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that Ui(a) £ Ui(n), then 1 € ¢s. which implies that 5 need not belong o
Contradiction.

Now, I shall claim that the standard of behavior o given by o (&) = B(S)\ M)
forall § C N is stable.®® Indeed, a € PEP\0(8) < a € [PEP\ B(S)]'.(S8) «»
a € [PEP\ B(S)] U A*(S). By the definition of B(S) and A*(S). a is stable.

To prove the second assertion, assume in negation that there is o € o(N)
such that for some 3 € PEP, Ui(a) < U;(3) for all i € N. Then 3 ¢ o(N).
since |on| = L,Vony € Py[o(N)]. By external stability, 3r > 1. 7" C ¥ and
or € dr[o(T)] such that for all i € T, Ui(3|r) < Ui(n) Vn € ¢r. Since 3 is
stationary, it follows that 3r > 1, T C § and ¢r € P4[o(7")] such that for all
i € T,U;(al;} < Ui(n) Y1 € ¢, violating the internal stability of 0. B

Proof of Lemma 4.3. From Lemma 1 and using the notations in the proof of
Proposition 2, A({i}) =0, for all i € N and B({1,2}) = PEP. Then A({1,2})
coincides with the Pareto frontier of the PEP. |

Proof of Lemma 4.4. Obvious. 1

36Note that every PEP is immune to individual deviations.
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